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ABSTRACT 

OPTIMAL STOCHASTIC SCHEDULING OF RESTORATION OF INFRASTRUCTURE SYSTEMS 

FROM HAZARDS: AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH 

This dissertation introduces approximate dynamic programming (ADP) techniques to identify 

near-optimal recovery strategies following extreme natural hazards. The proposed techniques are 

intended to support policymakers, community stakeholders, and public or private entities to 

manage the restoration of critical infrastructure of a community following disasters. The 

computation of optimal scheduling schemes in this study employs the rollout algorithm, which 

provides an effective computational tool for optimization problems dealing with real-world 

large-scale networks and communities. The Markov decision process (MDP)-based optimization 

approach incorporates different sources of uncertainties to compute the restoration policies. The 

fusion of the proposed rollout method with metaheuristic algorithms and optimal learning 

techniques to overcome the computational intractability of large-scale, multi-state communities 

is probed in detail. Different risk attitudes of policymakers, which include risk-neutral and risk-

averse attitudes in community recovery management, are taken into account.  

The context for the proposed framework is provided by objectives related to minimizing food-

insecurity issues and impacts within a small community in California following an extreme 

earthquake.  Probabilistic food security metrics, including food availability, accessibility, and 

affordability, are defined and quantified to provide risk-informed decision support to 

policymakers in the aftermath of an extreme natural hazard. The proposed ADP-based approach 
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then is applied to identify practical policy interventions to hasten the recovery of food systems 

and reduce the adverse impacts of food insecurity on a community.  

All proposed methods in this study are applied on a testbed community modeled after Gilroy, 

California, United States, which is impacted by earthquakes on the San Andreas Fault. Different 

infrastructure systems, along with their spatial distributions, are modeled as part of the 

evaluation of the restoration of food security within that community. The methods introduced are 

completely independent of the initial condition of a community following disasters and type of 

community (network) simulation. They treat the built environment like a black box, which 

means the simulation and consideration of any arbitrary network and/or sector of a community 

do not affect the applicability and quality of the framework. Therefore, the proposed 

methodologies are believed to be adaptable to any infrastructure systems, hazards, and 

policymakers’ preferences. 
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CHAPTER 1: INTRODUCTION 

1.1. COMMUNITY RESILIENCE 

Household well-being relies on interdependent critical infrastructure systems (ICISs) such as 

transportation, energy, water, and food distribution. While ICISs shape the ability of our 

communities to meet everyday household needs, the level to which these needs are met can be 

quite variable across households through time and space and there may well be acute periods of 

disruption due to events such as natural hazards. 

A disruption to ICISs, whether the result of a natural catastrophe (e.g., Hurricane Maria in 2017 

or the Japan Earthquake and Tsunami of 2011), a terrorist attack (e.g., the 2001 World Trade 

Center Attack), or an accident (e.g., the 2003 North America Blackout), could potentially lead to 

extensive losses of functionality that influence not only the infrastructure but also all the entities 

depending on them. Therefore, an interdependent network is more vulnerable to disasters with 

large geographic footprints. In this regard, the functionality of ICISs has recently gained 

attention with a particular emphasis on analyzing their risk and improving their resilience. 

The term resilience has frequently been used in the research literature because of the role in 

mitigating the disruption of ICISs. The word resilience derives from the Latin word “resiliere” 

which means “to bounce back”.  

Hosseini et al. (2016) studied the definition of resilience throughout studies published from 2000 

to 2015 in different domains. They categorized the definitions of resilience into four domains: 

organizational (e.g., Vogus and Sutcliffe, 2007), social (e.g., Keck and Sakdapolrak, 2013; 

Pfefferbaum et al., 2008), economic (e.g., Rose and Liao, 2005; Martin, 2011), and engineering 
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(e.g., Bruneau et al., 2003; Youn et al., 2011). They also classified resilience assessment 

methodologies into qualitative (e.g., Kahan et al., 2009; Vlacheas et al., 2013) and quantitative 

(e.g., Ayyub, 2014; Bruneau et al., 2003; Chang and Shinozuka, 2004; Henry and Ramirez-

Marquez, 2012) methodologies, each of which was classified into several sub-categories. 

In the realm of ICISs, the concept of system resilience has been advanced over the last few years. 

A resilient community has been described as a community that has prepared for potential hazards 

to be able to resist, absorb, and adjust to changing conditions as well as to return to a level of 

normalcy within a reasonable time following a disaster (Alexander, 2013; Bruneau et al., 2003; 

PPD-21, 2013). 

Bruneau et al. (2003) proposed a community resilience framework and a quantitative index, 

known as the resilience triangle model. They recommended four attributes of resilience: (i) 

Robustness: the strength or ability of a system to resist any disruptive event or accident to 

prevent losing functionality, (ii) Redundancy: the extent of substitutable components or systems 

that are capable of satisfying functionality requirements in the presence of disruption, (iii) 

Resourcefulness: the ability to recognize and manage problems in a case of emergency or 

disaster by defining priorities and allocating material and human resources to achieve predefined 

goals, and (iv) Rapidity: the speed or rate of system restoration to meet an acceptable level of 

functionality in the aftermath of a disaster. 

A probabilistic seismic approach to measure community resilience by analyzing original 

performance loss in a system and the recovery period was introduced by Chang and Shinozuka 

(2004). They defined standards with respect to four dimensions of community resilience of the 

Bruneau et al. (2003) model: technical, organizational, social, and economic dimensions. Chang 
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and Shinozuka (2004) demonstrated their proposed measurement framework by evaluating the 

resilience of the water distribution system in Memphis, Tennessee, for two retrofit plans. 

Another conceptual framework of community resilience and recovery under disasters was 

introduced by Miles and Chang (2003, 2004, and 2006). The relationships among a community’s 

households, businesses, critical infrastructure, and neighborhoods are the cornerstone of their 

proposed framework. Five factors - time, space, agents’ attributes, interactions, and policy - were 

suggested to establish the model. Spatiotemporal effects describe the importance of the topology 

and evolution of the community with the passage of time. 

Lin et al. (2016) proposed a disaggregation framework by means of an optimization problem. 

The study explored design performance purposes for single structures that enabled a community-

level goal to be achieved. The framework motivates an advance from current performance-based 

design (PBD) methods for individual facilities and sites (e.g., Hemmati and Mahmoud, 2019; 

Asteris et al. 2018; Karami Mohammadi and Hemmati, 2013; Khayat at al., 2016; Karimi 

Askarani and Pakbaz, 2016; Khaloo et al. 2016a, 2016b; Seyyed Alangi et al. 2018) to a 

community-level performance-based design (e.g., Masoomi and van de Lindt, 2018a, 2018b, 

2019; Masoomi, 2018; Masoomi et al. 2018; Nozhati et al. 2019a). The resilience assessment can 

also play a significant role in monitoring essential factors at petroleum facilities (Karimi 

Askarani et al. 2018). 

Resilience-based design (RBD) was suggested by Cimellaro et al. (2015) as a continuation of 

PBD. RBD reflects the interdependencies of all structures and infrastructure systems within a 

community to evaluate a community-level resilience metric. Mieler et al. (2015) also proposed a 

conceptual framework that is consistent with broad, community-level goals instead of the 

consideration of the structures (i.e., components) individually.  
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Lin and Wang (2017) proposed a building portfolio recovery model (BPRM) to predict the 

stochastic recovery process of building portfolios in the aftermath of a hazard. The BPRM 

models recovery of each building-level functionalities as a discrete state, continuous time 

Markov Chain, while the portfolio-level recovery can be computed by aggregating 

spatiotemporally the building-level recovery processes. 

Masoomi et al. (2018) proposed a population outmigration framework to estimate the number of 

displaced people after a tornado event as a metric that is helpful to administrators for planning an 

emergency response after a disruption. The representation examines the interdependence of 

residential buildings, the electrical power network, the potable water network, and business 

sectors to study the post-hazard population outmigration. 

A comprehensive review of the effects of natural hazards on the built environment, social and 

economic systems is provided by Koliou et al. (2018). 

In this study, all methodologies include the spatiotemporal interactions between the components 

and networks within a community in addressing the four properties of the resilience assessment 

identified by Bruneau et al (2003) (i.e., robustness, redundancy, resourcefulness, and rapidity). 

However, the decision-making methodologies, introduced in the next section, emphasize 

particularly resourcefulness and rapidity. 

1.2. RISK-INFORMED DECISION-MAKING FRAMEWORK 

The absence of a comprehensive risk-informed decision-making framework at the community 

level presents a challenge to post-disaster risk management. Network-level decision-making 

algorithms must address large-scale optimization problems that pose computational challenges. 

The complexity of these optimization problems increases when various sources of uncertainty 
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are considered. During the past decade, researchers have proposed different methods to extend 

decision formulations regarding risk mitigation, response, and recovery from individual facilities 

or networks to a community. 

Ji et al., (2016) suggested scheduling repair of a network based on the importance values of its 

components. Components with larger importance values have higher priority to be repaired. For 

example, the restoration of electrical transmission substations, transmission lines, critical 

facilities, and the distribution components is a restoration plan that can return electricity to the 

greatest number of clients. Some researchers found more efficient factors to prioritize damaged 

components. For example, the largest ratio of the functionality increase to a damaged component 

required repair time (Nojima and Kameda, 1992), components degree (Sun and Zeng, 2017), or 

betweenness (Ulusan and Ergun, 2018). Different heuristic algorithms have also been applied to 

solve complicated restoration scheduling problems, such as genetic algorithms (Ozdamar, 1999; 

Xu et al., 2007), simulated annealing algorithms (Boctor, 1996; Bouleimen and Lecocq, 2003), 

and binary particle swarm optimization (Zhang and Wang, 2017). Some researchers have 

assumed that the operation model of the ICISs is linear, and utilized the mathematical 

programming approaches like a mixed integer linear programming (MILP) model (Ouyang and 

Fang, 2017).  

The recovery process of ICISs includes multiple phases in which decisions must be made at 

specific stages to satisfy the policymakers’ preferences. With this in mind, many researchers in 

various fields have utilized powerful sequential decision methodologies, such as dynamic 

programming (DP) and Markov decision processes (MDP). In the realm of civil infrastructure 

management, several studies have used MDPs to optimize the repair and maintenance of 

infrastructure (Ellis et. al, 1995; Frangopol et. al, 2004; Corotis et. al, 2005). Madanat (1993) 



  

6 
 

introduced Latent MDP (LMDP) at the component level to recognize the random errors in the 

measurements of the conditions of infrastructure.  Subsequently, Smilowitz and Madanat (2000) 

extended LMDP to system-level maintenance scheduling, where they considered condition state 

and budgetary constraints. Medury and Madanat (2013) used Approximate Dynamic 

Programming (ADP) with MDP for pavement management systems. Papakonstantinou and 

Shinozuka (2014) reviewed the literature on optimal maintenance planning using Dynamic 

Programming (DP) and MDPs. Meidani and Ghanem (2015) studied the problem of maintenance 

of pavement using DP and MDP with random transitions. 

This dissertation introduces various scheduling formulations based on approximate dynamic 

programming (ADP) to identify near-optimal recovery actions following extreme natural 

hazards. This approach can support rational risk-informed decision making at the community 

level. 

The proposed methodology has the following key properties (hereinafter referred to as 

"paramount properties"): 

i. It balances the reluctance for low immediate reward with the desire of high future 

rewards (also referred as “non-myopic” or look-ahead property); 

ii. It considers different sources of uncertainties; 

iii. It makes decisions periodically to not only take advantage of information that becomes 

available when recovery actions are in progress but also to adapt to disturbances over the 

recovery process; 

iv. It manages a large decision-making space, which is typical for the problems at the 

community level; 
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v. It can handle multi-objective decisions, which are common in real-world domains, 

especially in community resilience applications. The interconnectedness among networks 

and probable conflicts among competing objectives complicate the decision-making 

procedure; 

vi. It considers different constraints, such as time constraints, limited budget and repair crew, 

and current regional entities’ policies; 

vii. It can address different risk behaviors of policymakers from risk-neutral to risk-averse 

behaviors. 

1.3. FOOD SECURITY 

The food and agriculture sector has been identified as one of sixteen critical infrastructure sectors 

by Presidential Policy Directive 21 (PPD, 2013). For households at all income levels, and 

especially for those that are food-insecure, food access can be threatened by natural hazards. 

Extreme natural hazards can disrupt critical infrastructure systems, such as transportation or 

electrical power systems, damaging roads and bridges critical for maintaining food supply chains 

and electrical transmission lines needed for providing electricity for food refrigeration. 

Maintaining food security in the aftermath of a natural hazard challenges a community’s 

resilience, recovery, and social well-being. The functionality of food retailers in terms of 

availability and accessibility must be returned to pre-disaster levels quickly and predictably in 

the aftermath of an extreme environmental event. Their ability to play this role in maintaining the 

security of the food chain depends on the vulnerability of utility networks (e.g., power, potable 

water, and wastewater), transportation systems, and building structures within the community to 

severe natural hazards. Problems in food access and affordability are greatly exacerbated 

following disasters when food distribution networks are compromised due to damage to facilities 
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and damage and disruption to the critical infrastructure systems upon which they depend.  For 

example, disaster-related food programs served 2.4 million households and distributed $928 

million in benefits to households impacted by Hurricanes Katrina, Rita, and Wilma in 2005 

(Food Research and Action Center, 2017).  In 2008, similar programs issued $447 million in 

benefits to 1.2 million households impacted by wildfires in California and hurricanes making 

landfall on the Gulf Coast (United States Department of Agriculture, 2010). The human and 

economic losses and social disruption caused by failure of infrastructure systems are 

disproportionately high in relation to the actual physical damage to such systems, and the 

potential exists for even larger losses in the future, given that population and economic 

development in hazard-prone coastal areas of the United States has increased dramatically in the 

past two decades while investments in resilient infrastructure systems are lagging. 

This study introduces a methodology to consider how the interconnectedness among civil 

infrastructure systems impacts food-security of urban inhabitants. To this end, different 

infrastructure systems along with their spatial distribution are modeled to evaluate the restoration 

of food security within a community. Food security metrics, including food availability, 

accessibility, and affordability, are defined in Chapter 6 and quantified to provide risk-informed 

decision support to policymakers in the aftermath of an extreme natural hazard.  A decision-

making framework based on ADP techniques is employed to provide the optimal strategies to 

identify practical policy interventions to hasten the recovery of food systems and reduce the 

adverse impacts of food insecurity on a community. 
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1.4. ORGANIZATION 

This dissertation addresses several important issues related to risk and resilience assessment and 

introduces several methodologies for decision-making under uncertainty to address these issues.  

Chapter 2 introduce a testbed community, which provides a context for the numerical algorithms 

and models that are used for the decision problems considered in this dissertation. Chapters 3 and 

4 describe decision-making methodologies for post-disaster community recovery management, 

both deterministically and stochastically. Chapter 5 introduces several methods to address large-

scale communities, where the number of decision variables becomes extremely large.  Chapter 6 

deals with the definition of food security metrics and utilizes the methods, presented in Chapters 

3-5 and the entire community, presented in Chapter 2. 

Chapter 2 describes the different sectors and networks of the testbed community modeled and 

utilized in this dissertation, discussing the topology and structure of each layer and explaining 

how the dependencies and interdependencies within and between networks are modeled. The 

electrical power network, potable water network, highway bridges, main food retailers, and 

household units are modeled.  The future chapters use the testbed community introduced in this 

chapter. 

Chapter 3 introduces a sequential discrete optimization approach as a decision-making 

framework at the community level by starting from first principles of dynamic programming. 

The needs for dynamic optimization algorithms and approximate dynamic programming methods 

to address the community resilience problem are explained in this chapter. 

Chapter 4 discusses a stochastic scheduling formulation based on a Markov Decision Process. 

The MDP-based optimization approach proposed in this chapter incorporates different sources of 

uncertainties to determine optimal restoration policies. The computation of optimal scheduling 
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schemes using the method provides an effective computational tool for problems that are 

confronted by real-world communities. This chapter also studies the applicability of the method 

to address different risk attitudes of policymakers, which include risk-neutral and risk-averse 

attitudes in community recovery management. 

Chapter 5 offers several methods to enrich the methodologies, introduced in Chapters 3 and 4 

and to enhance their computational efficiencies. This chapter mainly discusses the applicability 

of meta-heuristic, optimal learning, and linear belief models in large-scale problems. 

Chapter 6 presents the food security issues in the aftermath of an extreme natural hazard. This 

chapter utilizes the proposed methods in the previous chapters to compute the near-optimal 

recovery decisions for a dysfunctional community, with an emphasis on food security issues. 

Food security metrics based on food availability, accessibility, and affordability are defined and 

quantified probabilistically either at the grid level or at the community level. 

Chapter 7 summarizes the important contributions, limitations and future extensions of this 

research.  

Lastly, every chapter is presented with a quotation to join the dissertation with a touch of 

literature, of philosophy and of joyfulness. 



  

11 
 

CHAPTER 2: TESTBED COMMUNITY MODELING 

 

—The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.” 

Stephen Hawking 

2.1. INTRODUCTION 

Household well-being depends on the services provided by critical infrastructure systems (ICISs) 

such as transportation, energy, water, and food distribution, which are interdependent in their 

functioning.  While ICISs shape the ability of communities to meet everyday household needs, 

the level to which these needs are met can be quite variable across households through time and 

space and there may well be acute periods of service disruption due to events such as natural 

disasters.  Unexpected damages due to unpredictable cascading failures can become regional 

disasters when the interdependencies in infrastructure systems are not well-understood 

(Zimmerman et al., 2016). Hence, the performance of such systems has recently garnered 

attention in resilience research, with an emphasis on improving the resilience of communities in 

the aftermath of severe hazards (McAllister, 2013). Predictable functioning of these systems is a 

cornerstone of a resilient community, one that is able to resist, absorb, and adapt to variable 

circumstances and bounce back to its initial state, or bounce forward to a more robust state 

following a disturbance (Vale, 2014). 

The ICISs within a community are a system of systems (SoS) with highly coupled networks. 

Large-scale cascading effects can be potentially triggered by a malfunction of one or few 

components. Thus, the assessment of risk and resilience at the community level must consider 

the topology of the community and interdependencies among networks.  In this dissertation, a 



  

12 
 

testbed community was modeled, including interdependent utility networks, to provide a context 

for the decision algorithms that are the main goal of this research.   

2.2. THE ROLE OF NETWORK INTERDEPENDENCIES IN COMMUNITY FUNCTIONALITY 

Understanding dependencies and interdependencies among critical civil infrastructure systems 

(networks1) and different critical sectors within a system is essential for quantifying reliability, 

vulnerability, survivability (robustness), and recoverability (rapidity) of such systems (Bruneau 

and Reinhorn, 2007).  Further, metrics for measuring the resilience of communities and the 

performance of systems and components to support risk management and decision-making 

requires the consideration of the consequences of system interdependencies.   Numerous sources 

of uncertainty propagate through the phases of transition of a system, from its initial condition 

prior to a disruptive event to a stable condition of normalcy following a period of recovery. The 

study of metrics along with uncertainties permits the effect of external disruptive events on 

systems and their corresponding recovery activities to be quantified from a stochastic viewpoint. 

Interdependencies can be categorized by four basic types: physical, cyber, geographic, and 

logical (Rinaldi et al., 2001). In this study, physical interdependency of networks are modeled by 

graph theory with an augmented adjacency matrix, denoted as A. 

Consider a directed network G(N, E), where N denotes the set of nodes, and E represents the set 

of edges in G. The adjacency matrix of A is a square matrix of dimension N in which element Aij 

represents the dependency of two nodes of i and j. Matrix A is symmetric for undirected graphs, 

but not necessarily symmetric for directed graphs (networks). In order to consider uncertainty in 

                                                 
1 The term network is regularly used to model a system in which the links between components, as opposed to the 
components themselves, are unreliable (Aslett, 2012). In this study, however, the terms network and system, as well 
as the terms of nodes and components, are used interchangeably. 
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the strength of coupling between nodes over time, one can model dependency by different time-

dependent distributions, such as uniform, triangular, and pert-beta. Therefore, in the general case, 

A can be a time-dependent stochastic matrix that describes the interdependencies between nodes 

i and j over a period of recovery. Defining xi(t) as the state of the node i, the network state vector 

at time t, x(t) = (x1(t); x2(t); ...; xN(t)), denotes the state of all nodes at time t. The system function 

(x(t)), which can be assessed for any likely realization of x(t), maps the network state vector 

into a network performance at time t. 

The system performance function (x(t)) represents the system behavior at time t and quantifies 

system resilience. Figure 2-1 shows stages that characterize the system the transition over time: 

 

Figure 2-1. Concept of System Resilience (Adopted from McAllister, 2013) 

 Prior to the disruptive event, the original system is in state S0. Proactive activities during 

this period can improve the performance of the built environment at this stage as well as 

shorten the time to full or partial recovery. On the other hand, aging and temporary 

malfunctions can degrade system performance. These factors introduce uncertainties in 

the initial conditions prior to disruption. 
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 Following the disruptive event e at time te, system degradation initiates due to the loss of 

functionality of system components. Interdependencies contribute to this degradation 

significantly due to the cascading failures. Uncertainties in the hazard modeling and 

interdependencies propagate in this stage. Degradation continues to a maximum disrupted 

state  (Sd). The degradation period for certain hazards such as earthquakes can be 

virtually instantaneous, representing a sudden reduction in functionality (td - te ~ 0), while 

it occurs more gradually for other hazards. 

 Following the disruptive event, a period of time (preparation time) is required for the 

community to take stock of what has occurred and to inspect damage, secure funding for 

repair, obtain permits, hire contractors, and prepare construction drawings. 

 Recovery from the disturbance, following initiation of repair of damage, follows the 

preparation time. Depending on the degree of interdependency among buildings and 

infrastructure systems, recovery paths can be highly uncertain (McAllister, 2013). 

The system performance function, (x(t)), can be assumed to be a non-decreasing function, 

under the assumption that the resilience is defined as uncoupled from the next event (Cimellaro 

et al., 2013), in which any further drop in functionality due to a future shock occurs after the 

recovery process from the current shock has been completed. The non-decreasing assumption for 

(x(t)) implies that: 

(x(t1))  (x(t2))                   t1 t2                                                        Equation 2-1 

The system resilience given the disruptive event e at time t is (Barker et al., 2013): 

𝑅𝜑(𝑡𝑟|𝑒) = 𝜑(𝑡𝑟|𝑒)−𝜑(𝑡𝑑|𝑒)𝜑(𝑡0)−𝜑(𝑡𝑟|𝑒)     tr  (ts, tf)                                                   Equation 2-2 
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Pant et al. (2014) defined other temporal resilience metrics along with the stochastic ratio of the 

resilience defined by Equation 2-2. The metric “time to full network service resilience, T(x(t))(e)” 

and the metric “time to  100% resilience,” T(e) shows the entire time taken from the time 

when recovery activities commence, at time ts, up to the time, t, when the system service is 

restored to   (x(t0)). Different recovery strategies can be commensurable in favor of temporal 

metrics. 

2.3. TESTBED COMMUNITY- GILROY, CA 

The testbed community considered in this study is Gilroy, CA, located in Santa Clara County, 

CA, approximately 50 kilometers (km) south of the city of San Jose (see Figure 2-2). Gilroy is at 

the intersection of two main highways, U.S. 101, which extends through the City in the north-

south route and SR 152, which extends in an east and west direction (Gilroy Annex, 2011). As a 

result, damage to the highway bridges disrupts accessibility to critical facilities, like main food 

retailers, in the aftermath of an extreme earthquake event on the San Andreas Fault which runs 

approximately 12 km to the southwest from the center of Gilroy. The area of Gilroy is 

approximately 41.91 km2 with a population of 48,821 in 14,175 household units at the time of 

the 2010 Census. While not all characteristics of Gilroy are covered in this study, our model of 

the community maintains adequate detail to study the dependency of food retailers on the 

availability and functioning of water, power, structure and transportation networks following an 

earthquake on the San Andreas Fault. 
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Figure 2-2. Gilroy Position along with the Population Heat Map over the Defined Grids 

2.4. URBAN GRIDS 

The study area is divided into 36 grids (about 1.0-1.14 km2 on a side) to define the properties of 

infrastructure systems, residential buildings, and the population in sufficient detail. Figure 2-2 

shows a population heat map distributed over the defined grids. Other population qualities, such 

as racial and ethnic composition and age distribution are tabulated in Tables 2-1 and 2-2, 

respectively. 

Table 2-1. Racial and Ethnic Composition of Gilroy (United States Census Bureau, 2010a) 
Subject Number Percent 

Total Population 48,821 100 

Hispanic or Latino 28,214 57.8 

Not Hispanic or Latino 20,607 42.2 

White alone 15,335 31.4 

Black or African American alone 709 1.5 
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American Indian and Alaska Native alone 180 0.4 

Asian alone 3,265 6.7 

Native Hawaiian and Other Pacific Islander alone 86 0.2 

Some Other Race alone 58 0.1 

Two or More Races 974 2 

 

Table 2-2. Age Distribution of Gilroy (United States Census Bureau, 2010b) 
Age Group Number Percent 

Preschool (0-4 years) 4,144 8.4 

School (5-17 years) 10,839 22.2 

Young Adult (18-24 years) 4,514 9.2 

Prime Working (25-54 years) 20,717 42.4 

Retirement (55-64 years) 4,509 9.25 

Senior Citizen (65+ years) 4,098 8.4 

 

Household units are increasing at a faster pace in Gilroy than in Santa Clara County or the State 

of California (Harnish, 2014).   In 2010, the average number of persons per household in Gilroy 

was 3.4, higher than the state and county average. 95.4% of Gilroy's housing units are occupied. 

A heat map of household units over the defined grids is shown in Figure 2-3. Table 2-3 shows 

the age of the housing stock of Gilroy. 
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Figure 2-3. Household Units over the Defined Grids 

Table 2-3. Age of Housing Stock of Gilroy (Harnish, 2014) 
Year Built 2000-2009 1990-1999 1980-1989 1970-1979 1969 or earlier 

Percent (%) 21 18 18 21 22 

 

For each urban grid the total population and population in three age categories (child ages 0-17, 

adult ages 18-64, and senior ages 65+) were estimated using 2010 Census block data (United 

States Census Bureau, 2010a). The 2010 Block data provides the smallest level of geography for 

population counts with detailed characteristics such as age groups. For the data used in the 

models the total population was 47,905, the population for children ages 0-17 was 14,674, the 

population for adults ages 18-64 was 29,163, and the population for seniors ages 65+ was 4,068. 

Grids 11 and 21 both had the smallest population with 21 persons, and grid 23 had the largest 

population with 4,390 persons. 
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2.5. DESCRIPTION OF INFRASTRUCTURE SYSTEMS IN GILROY CITY 

An 115kV power transmission line provides the electricity to the Llagas substation, the only 

transmission substation within the defined boundary of Gilroy. Twenty-eight steel lattice 

transmission towers are located within the community boundary, so that if any one of the towers 

supplying the substation fails, the city will not have external electric power.  The series 

arrangement of overhead distribution lines without any redundancy makes the Electrical Power 

Network (EPN) more vulnerable when subjected to a severe earthquake or other natural hazard 

event.  Distribution lines components are spaced 100 m from the substation to the centers of 

urban grids, food retailers, and water pumps, as shown in Figure 2-4. 

The EPN does not depend on any other network; hence, we only need to consider the 

dependency within the network. The probability that a critical facility like a water pump or a 

food retailer G has electricity is: 

ˆ

1

( ):
n

l
l

P EG P EE


 
  

 
                                                                                 Equation 2-3 

where EG is the event that G has electricity, EEl is the event that the lth EPN component is 

functional, and n̂  is the minimum number of EPN components required to supply electricity to 

G. The sample space is a singleton set that has the outcome, “is functional and nonfunctional.” 

The lth EPN component is functional when it is undamaged or completely repaired and all the 

EPN components serving that EPN component are functional. 
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Figure 2-4. The Modeled Electrical Power Network 

The city’s Water Master Plan (Smelser and Akel, 2011) indicates that the Llagas sub-basin is the 

only source of domestic water in Gilroy. The Llagas sub-basin is approximately 24 km long, 4.8 km 

wide and located below the City of Gilroy. It is recharged by Llagas and Uvas Creeks from the 

basin’s western side. Gilroy operates water wells, which are situated in wood-frame buildings, to 

provide water to the city inhabitants. Potable water is pumped directly into the distribution system; 

extra water is used to fill reservoirs. The various elevation levels necessitate the use of booster 

pumping stations in addition to well pumps. The potable water is distributed to the urban grids 

through pipes ranging between 102 mm and 610 mm in diameter. This study models the main 610 

mm potable water pipelines along with wells (W), water tanks (WT), and booster pump stations 

(BPS). The locations of water network components of Gilroy, shown in Figure 2-5, are obtained 

from a database, maintained by the city’s Water Master Plan. 

The functionality of the WN depends on not only the functionality of its components but also the 

availability of electricity following the extreme hazard for water pump operation. Therefore, the 
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dependency between the WN and EPN systems must be considered. The probability that a 

critical facility like an urban grid rectangle or a food retailer G has potable water is 

'

ˆ

' 1

( ):
k

l
l

P WG P EW


 
   

 
                                                                            Equation 2-4 

where WG is the event that G has water, k̂  is the minimum number of WN components (which 

could be BPS, wells, water tanks, or pipelines) required to supply water to G, and EWi is the 

event that the l’th WN component is functional. Again, the sample space here is a singleton set 

that has the outcome, “is functional and nonfunctional.” If the l’th WN component is a pipeline, 

then it is said to be functional when it is undamaged or completely repaired and all the WN 

components serving that pipeline are functional. 

In addition, if the l’th WN component is a BPS, well, or water tank, then it is said to be functional 

when it is undamaged or completely repaired and all the EPN components serving the l’th WN 

component are functional.  While the pipelines are not directly dependent on the EPN, they are 

indirectly dependent on the EPN through the other WN components.  The variables �̂� and �̂� 

accommodate any potential redundancy in the EPN and WN.  
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Figure 2-5. The Modeled Potable Water Network 

2.6. FOOD RETAILERS 

The majority of the food requirements of the city inhabitants is supplied by six main food 

retailers, summarized in Table 2-4, each of which has more than 100 employees. In this study, 

the availability of each food retailer depends on the physical structure that houses the food 

retailer as well as the availability of electricity and potable water. Figure 2-6 shows the locations 

of all main food retailers within the study area. 

Table 2-4. The Number of Employees of Main Food Retailers (Harnish, 2014) 

Food Retailer Walmart Costco Target Mi Pueblo Food Nob Hill Foods Safeway 

No. Employees 395 220 130 106 100 130 
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Figure 2-6. Main Food Retailers in Gilroy 

To assign the probabilities of shopping activity to each urban grid rectangle, the gravity model 

proposed by Adigaa et al. (2015) is used.  The gravity model identifies the shopping location 

probabilistically, given the location of residences. These probabilities are assigned to be 

proportional to food retailers’ capacities and inversely corresponding to retailers' distances from 

centers of urban grid rectangles.  Consequently, distant small locations are less likely to be 

selected than close large locations.  If the center of an urban grid is c, then food retailer r is 

chosen according to the following distribution: 

( | ) crbT

r
P r c w e                                                                                           Equation 2-5 

where wr is the capacity of food retailer r, determined by Harnish (2014), b is a negative 

constant, and Tcr is the travel time from urban grid c to food retailer r. Google's Distance Matrix 

API was called from within R by using the ggmap package (Kahle and Wickham, 2018) to 

provide distances and travel times for the assumed transportation mode of driving. 
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2.7. HAZARD SIMULATION 

Gilroy has experienced several strong earthquakes over the past century, most recently the 1989 

Loma Prieta earthquake, with moment magnitude, Mw=6.9, and an epicenter located 

approximately 27 km (16 mi) northwest of Gilroy on a section of the San Andreas Fault System. 

The Loma Prieta Earthquake caused an estimated $6 billion in property damages, 63 fatalities, 

and 3,757 injuries (National Research Council, 1994). In this study, an earthquake scenario 

similar to Loma Prieta is simulated, in which Mw=6.9 and the epicenter is located approximately 

12 km (7 mi) southwest of downtown Gilroy, approximately the closest distance from the San 

Andreas Fault to the city. 

The spatial estimation of earthquake ground-motion amplitudes is an essential element of seismic 

risk assessment of a community, and is typically characterized by ground-motion prediction 

equations (GMPEs). GMPEs require several parameters, such as earthquake magnitude Mw, fault 

properties (Fp), soil conditions (i.e., the average shear-wave velocity in the top 30 m of soil, Vs30, 

shown in Figure 2-7), and epicentral distances (R) to compute the seismic intensity measure (IM) 

at any point. Modern GMPEs typically take the form 

30 1 2ln( ) ( , , , )w s pIM f M R V F                                                             Equation 2-6 

1 2ln( ) ln( )IM IM                                                                              Equation 2-7 

where σ and τ are period dependent and reflect the intra-event (within event) and inter-event 

(event-to-event) uncertainty respectively.  The intra-event term εσ is spatially correlated, while 

the event-to-event term ετ is perfectly correlated for any given data-set from a single earthquake. 
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Figure 2-7. Heat Map of Shear Velocity, Vs30, at Gilroy Area 

In this study, we use the Abrahamson et al. (2013) GMPE with epicenter approximately 12 km of 

Gilroy downtown on the San Andreas Fault projection. The histograms of IMs at selected 

locations in Gilroy are presented in Figure 2-8. Figure 2-9a and 2-9b show the map of ground 

motion field for Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV), 

respectively. 
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Figure 2-8. The Histograms of IM at Some Selected Locations in Gilroy and the Medians 

 

Figure 2-9. The Simulations of Median of Spatially Correlated PGA (a) and PGV (b) Fields over 
the Defined Grids 

Permanent ground displacements (PGD) due to liquefaction occur only in zones where the PGV 

exceeds 75 cm/s (30 in/s) (O'Rourke and Jeon, 2000). As Figure 2-9b indicates, the PGV within 

the Gilroy area does not exceed roughly 35 cm/s; thus, the likelihood of pipe breakage by PGD 

due to liquefaction is negligible. 
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2.8. DAMAGE AND RESTORATION ASSESSMENT OF FACILITIES 

Food retailer establishments, power transmission towers, power substation, water tanks, wells, 

pipelines, household units, and bridges must function as an integrated system to provide the 

needed food and services to urban inhabitants. The performance of these engineered components 

when subjected to an earthquake is defined by seismic fragility curves. The relations between 

ground-motion intensities and earthquake damage are pivotal elements in seismic loss estimation 

and risk analysis of a community. The fragility of a component in this study is defined as the 

probability that it equals or exceeds a given damage state, conditioned on a level of an Intensity 

Measure (IM), such as peak ground displacement, velocity, acceleration, or spectral acceleration. 

HAZUS-MH (FEMA, 2003) is one nonproprietary source of the seismic fragilities used herein. 

In the present study, the seismic fragility curves of EPN components included in HAZUS-MH 

and Xie et al. (2012) are used for illustration. It is customary [Ellingwood 1991] to model 

component fragilities with lognormal distributions. The conditional probability of being in or 

exceeding a particular damage state (ds), conditioned on a particular level of intensity measure 

IM= im, is defined by 

ln( )
( | )

im
P DS ds IM im




 
   

 
                                                     Equation 2-8 

where is the standard normal distribution and λ and   are the mean and standard deviation of 

ln(im). 

Regarding the water network, this study will follow the assumptions in the study by Adachi and 

Ellingwood (2009), in which the components are assumed to be either fully functional or 

nonfunctional. The failure probability of a pipe is bounded as: 
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   1 1 expPGV PGV f PGVG CL E P E CL                                       Equation 2-9 

in which  .PGVG is the moment-generating function of PGV (the residual of the PGV), Pf  is 

the failure probability of a pipe, L is the length of the pipe, and PGV is the average PGV for the 

entire length of the pipe. The term C for water pipe segment i is 0.00187 iC K PGV   , where 

K is a coefficient determined by the pipe material, diameter, joint type, and soil condition based 

on the guidelines prepared by the American Lifeline Alliance (ALA) (2001). The Upper Bound 

(UB) and exact solutions in Equation 2-9 are close enough that in practical applications, the UB 

assessment (conservative evaluation) can be used (Adachi and Ellingwood, 2009). 

Restoration quantification suffers from the lack of documented data on delay and repair time for 

different components of a network. The analysis of uncertainties in component restoration is an 

interdisciplinary endeavor. HAZUS-MH (FEMA, 2003) has restoration curves primarily based 

on expert judgment and available empirical data. The HAZUS-MH restoration curves are based 

on the assumption that restoration can be modeled by a normal distribution, which admits the 

possibility that restoration times can be negative. Accordingly, this study utilizes exponential 

distributions to model the repair times. 

In summary, five networks were modeled for Gilroy in this dissertation—the household units, 

the food retailers, the electric power network, the water supply network, and the highway-

bridges. The dependencies among the components of each network as well as among networks 

were modeled to capture the effects of cascading failure, as shown in Figure 2-10.  The 

algorithms developed in the following chapter are applied to modeling recovery following a 

severe earthquake in Gilroy to provide context for the analysis. 
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Figure 2-10. Gilroy Networks and the Corresponding Interdependencies 
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CHAPTER 3: NEAR-OPTIMAL RECOVERY PLANNING USING APPROXIMATE 
DYNAMIC PROGRAMMING 

 

 

—Life can only be understood going backwards, but it must be lived going forwards.” 

Kierkegaard 

3.1. INTRODUCTION 

The functionality of modern infrastructure systems is essential for providing continuous services 

to communities and in supporting their public health and safety. Natural and anthropogenic 

hazards pose significant challenges to infrastructure systems and cause undesirable system 

malfunctions and consequences. Past experiences show that these malfunctions are not always 

inevitable despite design strategies like increasing system redundancy and component reliability 

(Nachlas, 2017).  Therefore, a sequential rational decision-making framework should enable 

malfunctioning systems to be restored in a timely manner after the hazards. Post-event stressors 

and chaotic circumstances, time limitations, budget and resource constraints, and complexities in 

the community recovery process, highlight the necessity for a comprehensive risk-informed 

decision-making framework for recovery management at the community level.   This decision-

making framework must take into account indirect and delayed consequences of decisions (also 

called the post-effect property of decisions), which requires foresight or planning.  Such a 

comprehensive decision-making system must also be able to handle large-scale scheduling 

problems that encompass large combinatorial decision spaces to make the most rational plans at 

the community level. 
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Generally speaking, optimization problems in large-scale systems belong to two main branches 

of operations research (Gosavi, 2015): 

1. Parametric optimization (also referred to as static optimization). 

2. Control optimization (also referred to as dynamic optimization). 

Parametric optimization deals with finding values of decision variables (or set of parameters) 

that optimize some performance measure (objective function). Parametric optimization 

customarily is implemented using mathematical programming, e.g., linear, non-linear, and 

integer programming.  

Conversely, control optimization refers to computing a set of actions (decisions) to be taken in 

the different states that a system reaches, such that the decisions selected optimize some 

performance measure of the system.  Since the solution of the problem relies on a dynamic state 

control optimization is also called a dynamic optimization. Control optimization is generally 

implemented by means of dynamic programming, but sometimes via mathematical programming 

as well. 

In the context of civil engineering, several studies have utilized the framework of dynamic 

programming for management of bridges and pavement maintenance (e.g., Ellis et al., 1995; 

Corotis et al., 2005). Typical methodological formulations employ principles of dynamic 

programming that utilize state-action pairs. These types of formulations are especially powerful 

when the outcome of each action is not fully predictable, as discussed in Chapter 4. In this 

chapter, it is assumed that the outcome of the decision maker is fully predictable, enabling the 

development of a powerful and relatively unexplored methodological framework of formulating 

large infrastructure problems as string-actions.  The formulation does not require an explicit 
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state-space model; therefore, it is shielded against the common problem of state explosion when 

such methodologies are employed. The sequential decision-making methodology presented here 

not only manages network-level infrastructure but also considers the interconnectedness and 

cascading effects in the entire recovery process that have not been addressed in past studies. 

Dynamic programming formulations frequently suffer from the curse of dimensionality. This 

problem is further aggravated when dealing with large combinatorial decision spaces, which are 

characteristic of community recovery assessment. Therefore, using approximation techniques in 

conjunction with the dynamic programming formalism is essential for the solution of realistic 

decision problems, several of which are available in the literature (Kochenderfer, 2015).   Here, a 

promising class of approximation techniques called rollout algorithms is employed, which blend 

naturally with our string-action formulation.  Together, they form a robust tool to overcome 

some of the limitations faced in the application of dynamic programming techniques to massive 

real-world problems.  The proposed approach is able to handle the curse of dimensionality in its 

analysis and management of multi-state, large-scale infrastructure systems and data sources. The 

proposed methodology is also able to consider and improve the current recovery policies of 

responsible public and private entities within the community. The proposed methodology is first 

applied to the modeled EPN, discussed in Chapter 2. 

3.2. OPTIMIZATION PROBLEM STATEMENT 

After a severe earthquake event occurs, each component (e.g., home, water pump, power 

substation, bridge, etc.) within the community ends up in one of the damage states based on the 

fragility curves for that component. Let the total number of damaged components be M. To 

restore a network, a number of available resource units, N, as a generic single number, including 
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equipment, replacement components, and repair crews are considered for assignment to damaged 

components, and each damaged component is assumed to require only one unit of resource (also 

called as resource units, RUs) (Ouyang et al., 2012). M and N are non-negative integers, and 

following severe earthquakes, like those considered in this study, N << M. This assumption is 

justified by the availability of limited resources to the planner when a large number of 

components are damaged in the aftermath of a hazard event.  A decision maker or planner has 

the task of assigning resource units to repair these damaged components. Often, the decision 

maker has a heuristic or judgment-based policy on the basis of which he can make his decisions 

to optimize multiple objectives. The precise nature of the objective of the planner can vary. At 

the beginning of the first decision epoch, the decision maker deploys N unit of resources at N out 

of M damaged components. Each unit of resource is assigned to a distinct damaged component. 

At every subsequent decision epoch, the planner has the option of reassigning some or all of the 

resources to new locations based on his heuristics and objectives. He must have the flexibility of 

such a reassignment even if the repair work at the currently assigned locations is not complete. 

At every decision epoch, it is possible to forestall the reassignment of the units of resource that 

have not completed the repair work; however, we choose to solve the more general problem of 

preemptive assignment, where non-preemption at a few or all the locations is a special case of 

our problem. The preemptive assignment problem is a richer decision problem than the non-

preemptive case in the sense that the process of optimizing the decision actions is a more 

complex task because the size of the decision space is bigger. Nevertheless, our goal is to address 

both preemptive and non-preemptive scheduling in this dissertation. 

Two different scheduling schemes are proposed herein.  In the first, which will be addressed in 

this chapter, outcomes of the decisions are fully predictable to the decision maker.  In the second, 
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which will be addressed in Chapter 4, the outcomes of decisions are not fully predictable 

(stochastic scheduling), but can be anticipated to some level of statistical regularity before the 

next action is determined. 

3.3. OPTIMIZATION PROBLEM FORMULATION  

Suppose that the decision maker begins by assigning repair locations to different resource units. 

The number of such non-trivial decisions to be made is less than or equal to M−N. When M 

becomes less than or equal to N (because of sequential application of repair actions to the 

damaged components), the assignment of units of resource becomes a trivial problem in our 

setting because each unit can simply be assigned one to one, in any order, to the damaged 

components. Consequently, a strict optimal assignment can be achieved in the trivial case. The 

size of this trivial assignment problem reduces by one at every new decision epoch until all the 

remaining damaged components are repaired. The additional resource units are retired rather 

than redeployed because deploying more than one unit of resource to the same location does not 

decrease the repair time associated with that damaged component. Henceforth, we focus on the 

non-trivial assignment problem. 

Let Dt be the set of all damaged components at time, t, before a repair action xt is performed. Let 

endt denote the decision epoch at which repair action 
endtx is selected so that 1

endtD N  . Note 

that : (1,2,..., )endt A t  .  Let 1 2( , ,..., )
endtX x x x represent the string of actions resulting from the 

non- trivial assignment. A repair action is said to be completed when at least 1 out of the N 

damaged components is repaired. Let P(Dt) be the powerset2 of Dt. 

                                                 
2 The powerset (or power set) of any set D is the set of all subsets of D. 
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( ) : { ( ):| | }P PN t tD C D C N                                                                     Equation 3-1 

so that ( )Pt N tx D . C represents the number of element of the subsets that should be equal to the 

number of N (RUs). Let Rt be the set of all repaired components after the repair action xt is 

completed. Note that 11 | |
endtD N  , and the decision-making problem moves into the trivial 

assignment problem previously discussed. The objective is a string X of repair actions that 

optimizes objective functions F(X), denoted by F1 and F2 and defined as follows: 

 Objective 1: Let the variable p represent the population of Gilroy and γ represent a fraction 

of its population. Let X1 = (x1, . . . , xi) be the string of repair actions that results in restoration 

of a system or a system of systems to γ × p number of people. Here, ( )Pi N tx D , where Di is 

the number of damaged components at the ith decision epoch.  Let n represent the number of 

days required to restore the system or community to γ ×p number of people as a result of 

repair actions X1. Formally, 

1 1( )F X n                                                                                                   Equation 3-2 

The optimal solution 
*
1X  for Objective 1 is: 

1

*
1 1 1: arg min ( )

X

X F X                                                                                   Equation 3-3 

In objective 1, the aim is to find the string of actions that minimizes the number of days needed 

to restore the community to a certain fraction (γ) of the pre-event population of Gilroy. 

 Objective 2: Objective F2 is defined in terms of the number of people who have benefited 

from a specific system or several interdependent systems per unit of time; an example might 

be to restore power service to the maximum number per unit of time.  The goal is to 
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maximize this objective over a string of repair actions. Let the variable kt denote the total 

time elapsed between the completion of repair action xt−1 and xt, in which k1 is the time 

elapsed between the start and completion of repair action x1. Let ht be the total number of 

people who have benefited after the repair action xt is complete. Then, 

2
1

1
( )

end

end

t

t t
tt

F X h k
k 

                                                                                 Equation 3-4 

The optimal solution X∗ given by 

*
2 2 2: arg min ( )

X

X F X                                                                               Equation 3-5 

3.4. THE PROPOSED OPTIMIZATION SOLUTION 

Calculating X* is a sequential optimization problem. The decision maker applies the repair action 

xt at the decision epoch t to maximize or minimize an objective function. The string of actions, as 

represented by X, are an outcome of this sequential decision-making process. This is particularly 

relevant in the context of dynamic programming where numerous solution techniques are 

available for the sequential optimization problem. Rollout is one such solution technique. It is 

possible to use the dynamic programming formalism to describe the method of rollout, but here 

the rollout concept is explained by starting from first principles (Bertsekas, 2013). The 

description of the rollout algorithm is inherently tied with the notion of approximate dynamic 

programming. 

3.4.1. Approximate Dynamic Programming 

Objective 1 can be optimized as described below.  (The extension of this methodology to 

objective 2 is straightforward, using adapting notation used for objective 2 to the methodology 
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presented below, and replacing the maximization problem by a minimization problem.) 

Objective 1 is optimized in the following manner: First calculate 
*

1
x  as follows: 

 
1

1

*

1 1
arg min

x
Jx x                                                                                 Equation 3-6 

where the function J1 is defined as: 

   
2 ,..

1 1
.,

1 1
min

ix x
J F Xx                                                                              Equation 3-7 

Next, calculate 
*

2
x as: 

 
2

2

*

2 2

*

1
arg min ,

x
xJx x                                                                         Equation 3-8 

where the function J2 is defined by 

   
3

2 1 2
,

1 1
,...

min,
ix x

J F Xx x                                                                      Equation 3-9 

Proceeding similarly in a step-wise fashion, we calculate the α-solution (at the αth step) as 

follows: 

* * *
1 1arg min ,..., ,( )x x xJ x                                                             Equation 3-10 

where the function Jα is defined by 

   
1 ,

1 1 1
...,

min,...,
ix x

J F Xx x


 


                                                               Equation 3-11 

Functions Jα in Eqs (3-6) – (3-11) are called the optimal cost-to-go functions and are defined by 

the following recursion: 

1
1 1 1 1( ,..., ) min ( ,..., )

x
J x x J x x


   


                                                     Equation 3-12 
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J is standard notation used to represent cost-to-go functions in the dynamic programming 

literature. 

The approach discussed above to calculate the optimal solutions is typical of the dynamic 

programming formulation. However, except for very special problems, such a formulation 

cannot be solved exactly because calculating and storing the optimal cost-to-go functions Jα can 

be numerically intensive. 

In the problem at hand, let ( )PN t tD  ; then the storage of Jα requires a table of size 

1
t

t

S


 


                                                                                          Equation 3-13 

where α ≤ i for objective 1, and α ≤ tend for objective 2. In the dynamic programming literature, 

this is referred to as the curse of dimensionality. If we consider objective 2 and wish to calculate 

Jα such that α = M-N (we assume for the sake of this example that only a single damaged 

component is repaired at each t), then for 50 damaged components and 10 unit of resources, Sα≈ 

10280. In practice, Jα in is replaced by an approximation denoted by J , called a scoring function 

or approximate cost-to-go function. One way to calculate J  is with the aid of a heuristic; 

however, there are several ways to approximate Jα that do not utilize heuristic algorithms. All 

such approximation methods fall under the category of approximate dynamic programming. 
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3.5. ROLLOUT ALGORITHM3 

Although obtaining a strict optimal policy is often quite difficult due to the curse of 

dimensionality, a heuristic policy can be easily designed in many cases. The idea of the rollout 

approach is to improve a heuristic policy via simulation. Suppose that a heuristic H is used to 

approximate the optimization, and let Hα(x1, ..., xα) denote the corresponding approximate 

optimal value; then rollout yields the suboptimal solution by replacing Jα with Hα in Equation 3-

10: 

1 1
arg min ( ,..., , )

x
x H x x x


                                                                Equation 3-14 

In many practical problems, rollout results in a significant improvement over the underlying base 

heuristic (Bertsekas et al., 1997). 

It is possible to identify the base heuristic H in several ways: 

i. The current recovery policy of regionally responsible public and private entities; 

ii. The importance analyses that prioritize the importance of components based on the 

considered importance factors; 

iii. The greedy algorithm4 that computes the greedy heuristic; 

iv. A random policy without any pre-assumption; 

v. A pre-defined empirical policy; e.g., base heuristic based on the maximum node and link 

betweenness (shortest path). 

                                                 
3 On a historical note, the term rollout was first coined by Tesauro in reference to creating computer programs that 

play backgammon (Tesauro and Galperin, 1997). An approach similar to rollout was also shown much earlier in 

(Abramson, 1990). 

4 A greedy algorithm, as the name suggests, always makes the choice that seems to be the best at that moment. A 
greedy algorithm makes greedy choices at each step to ensure that the objective function is optimized. It has only 
one shot to compute the optimal solution so that it never goes back and reverses the decision. Analyzing the run time 
for greedy algorithms will generally be much easier. 
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The rollout method, described above for a discrete, deterministic, and sequential optimization 

problem using first principles and string-action formulation, can be interpreted in terms of the 

policy iteration algorithm in dynamic programming. The policy iteration algorithm (see Howard 

(1960) for further details, including the definition of policy in the dynamic programming sense) 

computes an improved policy (policy improvement step), given a base policy (stationary), by 

evaluating the performance of the base policy. The policy evaluation step is typically performed 

through simulations. A rollout policy can be viewed as the improved policy calculated using the 

policy iteration algorithm after a single iteration of the policy improvement step. For a discrete 

and deterministic optimization problem, the base policy used in the policy iteration algorithm is 

equivalent to the base heuristic, and the rollout policy consists of the repeated application of this 

heuristic. This approach was used by Bertsekas et al., (1997) to provide performance guarantees 

on the basic rollout approach and to discuss variations to the rollout algorithm. Henceforth, base 

policy and base heuristic will be considered indistinguishable terms. 

Ideally, we would like the rollout method to never perform worse than the underlying base 

heuristic (guaranteed performance). This is possible under each of the following three cases 

(Bertsekas et al., 1997): 

1. The rollout method is terminating (optimized rollout). 

2. The rollout method utilizes a base heuristic that is sequentially consistent. 

3. The rollout method is terminating and utilizes a base heuristic that is sequentially 

improving (extended rollout and fortified rollout). 

A sequentially consistent heuristic guarantees that the rollout method is terminating. It also 

guarantees that the base heuristic is sequentially improving. Therefore, 3 and 1 are special cases 

of 2 with a less restrictive property imposed on the base heuristic (that of sequential 
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improvement or termination). When the base heuristic is sequentially consistent, the fortified and 

extended rollout methods are the same as the rollout method. 

A heuristic must possess the property of termination to be used as a base heuristic in the rollout 

method. Even if the base heuristic is terminating, the rollout method need not be terminating. 

Apart from the sequential consistency of the base heuristic, the rollout method is guaranteed to 

be terminating if it is applied to problems that exhibit special structure. The problem considered 

herein exhibits such a structure because the finite number of damaged components is equivalent 

to the finite node set in Bertsekas et al. (1997).  Therefore, the rollout method in this study is 

terminating. In such a scenario, the optimized rollout algorithm could be used to guarantee 

performance without putting any restriction on the base heuristic to be used in the proposed 

formulation; however, a better base heuristic can potentially enhance further the computed 

rollout policy. Nevertheless, the problem herein does not require any special structure on the 

base heuristic for the rollout method to be sequentially improving, which is justified later in this 

section. 

A base heuristic that admits sequential consistency in dynamic programming is analogous to the 

Markov or stationary policy. Similarly, the terminating rollout method defines a rollout policy 

that is stationary. 

Two different base heuristics are considered in this study. The first base heuristic is a random 

heuristic denoted by H. The idea behind consideration of this heuristic is that in actuality there 

are cases where there is no thought-out strategy or the computation of such a scheme is difficult 

or impossible. It will be shown through simulations that the rollout formulation can accept a 

random base policy at the community level from a decision maker and improve it significantly. 

The second base heuristic is called a smart heuristic because it is based on the importance of 
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components and expert judgment, denoted by Ĥ . The importance factors used in prioritizing the 

components can accommodate the contribution of each component in the network. This base 

heuristic is similar in spirit the items (ii) and (v) listed above. Let H be a random heuristic; the 

state of this algorithm at the first decision epoch is 1j where, 1 1( )j x . Similarly, the state of the 

algorithm at the αth decision epoch is the α-solution given by 1( ,..., )j x x  , i.e., the algorithm 

generates the path of the states 1( ,..., )j j . Note that 0j  is the dummy initial state of the 

algorithm H. The algorithm H terminates when α=i for objective 1, and α = tend for objective 2.   

Henceforth, in this section, only objective 1 is considered without any loss of generality. Let 𝐻𝛼 (𝑗~𝛼) denote the cost-to-go starting from the α-solution, generated by applying H (i.e., H is 

used to evaluate the cost-to-go). The cost-to-go associated with the algorithm H is equal to the 

terminal reward, i.e., 𝐻~𝛼 (𝑗𝛼~ ) = 𝐹1(𝑋1). Therefore, 𝐻~1 (𝑗1~ ) = 𝐻~2 (𝑗2~ ) =. . . = 𝐻~𝑖 (𝑗𝑖~). This 

heuristic cost-to-go is used in Equation 3-10 to find an approximate solution. This approximation 

algorithm is termed “Rollout on H” (RH) owing to its structure, which is similar to the 

approximate dynamic programming approach rollout. The RH algorithm generates the path of 

the states (j1,j2,...,ji) as follows: 

𝑗𝛼 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝛿∈𝑁(𝑗𝛼−1) 𝐽~(𝛿), 𝛼 = 1, . . . , 𝑖                                                     Equation 3-15 

where, j-1=(x1,…, x-1), and 

𝑁(𝑗𝛼−1) = {(𝑥1, . . . . , 𝑥𝛼−1, 𝑥)| 𝑥 ∈ 𝑃𝑁(𝐷𝛼)}                                           Equation 3-16 

The RH algorithm improves sequentially with respect to H and ultimately outperforms H (see 

Ragi et al. (2015) for the details of the proof).  
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The RH algorithm described above is known as a one-step lookahead approach because the 

repair action at any decision epoch t (current step) is optimized by minimizing the cost-to-go 

given the repair action at t. It is possible to generalize this approach to incorporate multi-step 

lookahead.  Suppose that we optimize the repair actions at any decision epoch t and t + 1 (current 

and the next step combined) by minimizing the cost-to-go given the repair actions for the current 

and next steps. This can be viewed as a two-step lookahead approach.  Note that a two-step 

lookahead approach is computationally more intensive than the one-step approach.  In principle, 

it is possible to extend it to step size λ, where 1≤λ≤i. However, as λ increases, the computational 

complexity of the algorithm increases exponentially.  Particularly, when λ is selected equal to i at 

the first decision epoch, the RH algorithm finds the exact optimal solution by exhaustively 

searching through all possible combinations of repair action at each t, with computational 

complexity O(Si).  Also, note that RH provides a tighter upper bound on the optimal objective 

value compared to the bound obtained from the original heuristic (either smart or random) 

approach.  

3.5.1. Case 1: Repair Action Optimization of EPN for Household Units  

The search space PN(Dt) undergoes a combinatorial explosion for modest values of N and Dt, at 

each t, until few decision epochs until moving into the trivial assignment problem, where the 

value of βt is small. Because of the combinatorial nature of the assignment problem, it is 

desirable to reduce the search space for the rollout algorithm, at each t, without sacrificing on the 

performance. Because the EPN is considered only for household units in this section, it is 

possible to illustrate techniques to reduce the size of the search space for the above rollout 

algorithm that provide insight into formulating such methods for other similar problems.  
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Two representative methods to deal with the combinatorial explosion of the search space are 

considered, namely, 1-step heuristic and N-step heuristic. Note that these heuristics are not the 

same as the base heuristic H or �̂�.  Before describing the 1-step and N-step heuristic, a 

discussion of H and �̂� is necessary.   Both H and �̂�, have a preordained method of assigning 

units of resources to the damaged locations. This order of assignment remains fixed at each t. In 

H, this order is decided randomly; while in �̂�, it is decided based on importance factors.  This 

order can be illustrated further with the help of an example. Suppose that each of the components 

of the EPN is identified with serial numbers 1 to 327 as shown partially in Figure 3-1; the 

assignment of these numbers to the EPN components is based on �̂� and remains fixed at each t.  

A damaged component with a lower number is always assigned a resource unit before a damaged 

component with a higher number, based on the availability of resource units.  Therefore, the 

serial numbers depict the preordained priority assigned to components which is decided before 

initiating the decision-making.   For example, if components 21 and 22 are both damaged, the 

decision maker will assign one unit of resource to component 21 first and then schedule repair of 

component 22, contingent on availability of resources. Such a fixed pre-decided assignment of 

unit of resource by heuristic algorithm H and �̂� matches the definition of a consistent path 

generation in Bertsekas et al. (1997).  Therefore, H and �̂� are sequentially consistent. Note that 

the assignment of numbers 1 to 327 in Figure 3-1 is assumed only for illustration purposes; the 

rollout method can incorporate a different preordained order defined by H and �̂�.  
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Figure 3-1. The Labeled Electrical Power Network 

Now consider the 1-step and N-step heuristics. In Figure 3-1, note that each successive EPN 

component (labeled 1-327), is dependent upon the prior EPN component for electricity; 

component 227 is dependent upon component 50, component 55 is dependent upon component 

50, components in the branch 53-57 and 225-231 depend upon the component 52 for electricity, 

and so forth. This serial nature of an EPN can be exploited by representing it as a tree structure, 

as shown in Figure 3-2. Each number in the EPN tree represents an EPN component; each node 

represents a group of components determined by the label of the node, and the arcs of the tree 

capture the dependence of the nodes. If the number of damaged components in the root node of 

the EPN tree is greater than N, then it would be unwise to assign a unit of resource at the first 

decision epoch to the fringe nodes of the EPN tree because no benefit is derived until the 

damaged components in the root node are repaired.  As soon as the number of damaged 

components in the root node of the EPN tree becomes less than N, only then is the assignment 

problem at other levels of the EPN tree explored. 
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Figure 3-2. Electrical Power Network Tree 

1-step Heuristic: Now increase the pool of candidate damaged components, where the 

assignment of units of resources must be considered, to all the damaged components of the next 

level of the EPN tree if and only if the number of damaged components at the current level of the 

EPN tree is less than N. Even after considering the next level of the EPN tree, if the number of 

damaged components is less than N, one additional step is taken to account for all damaged 

components two levels below the current level. This process is repeated until the pool of 

candidate damaged components is greater than or equal to N, or the levels of EPN tree are 

exhausted.  

N-step Heuristic: It might be possible to ignore a few nodes at each level of the EPN tree and 

assign units of resources to only the most promising nodes. This is achieved in the N-step 

heuristic (here N in N-step is not same as N-number of workers). Specifically, if the number of 

damaged components at the current level of the EPN tree is less than N, then the algorithm 

searches for a node at the next level that has the least number of damaged components, adds 

these damaged components to the pool of damaged components, and checks if the total number 
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of damaged components at all explored levels is less than N. If the total number of candidate 

damaged components is still less than N, the previous process is repeated at unexplored nodes 

until either the pool of damaged components is greater than or equal to N or the levels of the 

EPN tree are exhausted.  In other words, rather than to consider the set (Dt) of all damaged 

components at each t, only a subset of Dt denoted by 𝐷𝑡1~
 (1-step heuristic) and 𝐷𝑡𝑁~

 (N-step 

heuristic), are considered. 

The performance of random H is illustrated in Figure 3-3. The faint lines depict plots of EPN 

recovery for multiple scenarios when H is used for decision making. Here the objective pursued 

by the decision maker is objective 2. The black line shows the mean of all the recovery 

trajectories, and the red lines show the standard deviation. Henceforth, in various plots, instead 

of plotting the recovery trajectories for all the scenarios, only the means of the different 

trajectories are compared.  

 

Figure 3-3. Electrical Power Network Recovery Due to Base Heuristic H with One Standard 
Deviation Band 
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Figure 3-4 shows the performance of the RH algorithm described above with respect to H. The 

simulation results demonstrate significant improvement over algorithm H when RH is used, for 

both the 1-step case and the N-step case. Another result is the performance shown by the 1-step 

heuristic with respect to the N-step heuristic. Even though the N-step heuristic skips some of the 

nodes at each level in EPN tree to accommodate more promising nodes into the search process, 

the performance improvement shown is minimal.  Even though all the damaged components are 

not used to define the search space of the rollout algorithm and only a small subset is chosen 

with the use of either 1-step and N-step heuristic (limited EPN tree search), the improvement 

shown by RH over H is significant. This is because pruning the search space of the rollout 

algorithm using a subset of Dt (restricting an exhaustive search) is only a small part of the entire 

rollout algorithm.  

 

Figure 3-4. Comparison of Base Heuristic vs. Rollout Algorithm with 1-step vs. with N-step 
Heuristic for Objective 2 

Figure 3-5 shows the histogram of values of F2(X) for multiple scenarios as a result of 

application of string-actions computed using H and RH (1-step and N-step heuristic). The rollout 

algorithms show substantial improvement over H, for the EPN restoration optimization.  
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Figure 3-5. Histogram of F2(X) with Base (H), Rollout with 1-step and N-step Heuristic 

Figure 3-6 shows simulation results for multiple scenarios when objective 2 is optimized, but 

when �̂�  is considered instead of H. This simulation study highlights some interesting 

characteristics of the rollout algorithm. In the initial phase of decision making, the algorithm 

�̂� competes with the rollout algorithm 𝑅�̂�, and in fact slightly outperforms the rollout algorithm 

in many instances. However, after a period of 10 days, rollout (both 1-step and N-step heuristic) 

outperforms �̂� significantly Because rollout has the lookahead property, it suggests conservative 

repair decisions initially (despite staying competitive with �̂�) in anticipation of overcoming the 

loss suffered due to initial conservative decisions. Optimizing with foresight is an emergent 

behavior exhibited by the optimization methodology presented herein, which can offer 

significant advantages in critical decision- making scenarios.  
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Figure 3-6. Comparison of Base Heuristic (�̂�) vs. Rollout with 1-step vs. N-step Heuristic for 
Objective 2 

3.5.2. Case 2: Repair Action Optimization of EPN for Household Units & Retailers  

It is difficult to come up with techniques similar to the 1-step and N-step heuristics to reduce the 

size of the search space PN(Dt) for objective 1 and objective 2, when multiple networks are 

considered simultaneously in the analysis. This is because any such technique must 

simultaneously balance the pruning of candidate damaged components in Figure 3-2 (to form 

subsets like 𝐷𝑡1~  and 𝐷𝑡𝑁~
), serving both food retailers and household units. There is no 

natural/simple way of achieving this as in the case of the 1-step and N-step heuristics where only 

household units were considered. When the decision process involves complex objective 

functions and interaction between networks, it is difficult to prune the action space in a 

physically meaningful way just by applying heuristics.  Any such heuristic must incorporate the 

gravity model, explained in Chapter 2, and consider the network topology and actual physical 

position of important EPN components within the network.  As shown above, methodology 

described above works well even if only a small subset of Dt (𝐷𝑡1~  and 𝐷𝑡𝑁~
) is selected to construct 
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PN(Dt) to avoid huge computational costs. This is because the methodology leverages the use of 

the one-step lookahead property, with consistent and sequential improvement over algorithm H 

or �̂�, to overcome any degradation in performance as a result of choosing 𝐷𝑡~ ≪ Dt. This is further 

justified in the simulation results shown in Figures 3-7 to 3-10.  

In Figures 3-7 and 3-8, H is used as the base heuristic. This base heuristic is the same as the one 

used in the simulations shown in Case 1, which is not particularly well tuned for Case 2. Despite 

this, RH shows a stark improvement over H. Figure 3-7 shows that the rollout algorithm, with the 

random selection of candidate damaged components (𝐷𝑡~
), significantly outperforms H for 

objective 1. When candidate damaged locations are selected randomly, in addition to the 

randomly selected damaged components, we the damaged components selected by �̂� at each t 

are added to the set PN(Dt).  Using the rollout algorithm, the mean number of days, over multiple 

damage scenarios, to provide electricity to γ times the total number of people is approximately 8 

days, whereas for the base heuristic it is approximately 30. Similarly, Figure 3-8 shows that for 

objective 2 the benefit of EPN recovery per unit of time with rollout is significantly better than 

with H.  
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Figure 3-7. Cumulative Moving Average Plot for Objective 1 where =0.8 with Base Heuristic 
(H) and Rollout 

 

Figure 3-8. Comparison of Base Heuristic (H) vs. Rollout Algorithm 

Figures 3-9 and 3-10 summarize the results for both the objectives when �̂� is considered. In 

Figure 3-9, the number of days to reach a threshold γ = 0.8 as a result of �̂� algorithm is better 

than H.  However, the number of days to achieve objective 1 is still fewer using the rollout 

algorithm. The key inference from this observation is that rollout might not always significantly 

outperform the base heuristic but will never perform worse than the underlying heuristic 
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(Bertsekas et al., 1997). For simulations in Figures 3-9 and 3-10, the candidate damaged 

locations in defining the search space for the rollout algorithm are again chosen randomly and 

are a subset of Dt.  As in the case of the simulations presented in Figure 3-7, damaged 

components selected by �̂�  are added to the set PN(𝐷~𝑡).  The number of days required to restore 

electricity to 80% of the population in Figure 3-7 is a day less than that required in Figure 3-9.  

Despite performing rollout using a random base heuristic instead of the smart base heuristic used 

in the later. This can be attributed to three reasons: a) The damaged components in the set (𝐷~𝑡) 

are chosen randomly for each simulation case;  b) �̂� was designed for the simulations in the past 

section and is not particularly well tuned for simulations when both household units and retailers 

are considered simultaneously; and c) �̂� is used in simulations in Figure 3-9 to approximate the 

cost-to-go function whereas H is used in simulations in Figure 3-7 for the approximation of the 

scoring function.  

 

Figure 3-9. Comparison of Base Heuristic (�̂�) vs. Rollout for Objective 1 
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Figure 3-10 shows a behavior similar to Figure 3-6 where �̂� might outperform rollout in the 

short-term (as a result of myopic decision making on the part of the heuristic); in the long run, 

however, rollout improves upon the string-actions provided by algorithm �̂� significantly.   

 

Figure 3-10. Comparison of Base Heuristic (�̂�) vs. Rollout for Objective 2 
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CHAPTER 4: OPTIMAL STOCHASTIC DYNAMIC SCHEDULING USING MARKOV 

DECISION PROCESSES 

 

— Uncertainty is an uncomfortable position. But certainty is an absurd one.”  

Voltaire 

4.1. INTRODUCTION 

Following the occurrence of an extreme natural or man-made event, community recovery 

management should aim at providing optimal restoration policies for a community over a 

planning horizon. Calculating such optimal restoration policies in the presence of uncertainty 

poses significant challenges for community leaders. Stochastic scheduling for several 

interdependent infrastructure systems is a difficult control problem with huge decision spaces. 

The Markov decision process (MDP)-based optimization approach proposed in this chapter 

incorporates different sources of uncertainties to identify suitable restoration policies.  Efficient 

tools of MDPs are utilized to obtain optimal sequential actions. The application of approximate 

dynamic programming (ADP) and rollout algorithms along with the MDP formulation not only 

provides a robust and stochastic computationally tractable approach but also provides sufficient 

flexibility in the framework to consider any organizational recovery policies in an on-line 

manner. Combining these two decision-theoretic methods enables different sources of 

uncertainty in recovery management at the community level to be treated appropriately and 

efficiently.  
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In Chapter 4, the MDP formulation will be utilized, along with ADP techniques, to provide a 

comprehensive risk-informed decision-making framework that possesses the paramount 

properties, mentioned in Chapter 1. 

The proposed method will treat the community as a complex system that embeds a collection of 

task-oriented systems. Therefore, the framework will compute the near-optimal recovery 

strategies for a complex system with respect to different objective functions. The role of risk-

aversion on the part of decision makers will also be examined. 

4.2. TECHNICAL PRELIMINARIES 

In dynamic programming DP and in MDP, a decision maker (also called an agent) interacts with 

a community (environment), by means of three signals: a state signal, which defines the state of 

the community, an action signal, which allows the decision maker to control the community, and 

a scalar reward signal, which provides the decision maker with feedback on his/her immediate 

performance. At each discrete time step, the decision maker takes the state measurement and 

makes a decision, which causes the community to transition into a new state. A reward is 

produced that assesses the quality of this transition.  The decision maker receives information on 

the new state, and the whole cycle repeats until the end of recovery. State transitions can be 

deterministic or stochastic. The community dynamics and the reward function, together with the 

set of possible states and the set of possible actions (respectively called state space and action 

space), establish an MDP. Figure 4-1 depicts the interaction between a decision maker and the 

community. 

In this section, we present the mathematical setting for a MDP.  Powell (2007) provides a 

detailed treatment of the subject. 
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Figure 4-1. The Flow of Interaction in Markov Decision Process, Adopted from Busoniu et al. 
(2010) 

4.2.1. MDP Framework 

A Markov decision process (MDP) is defined by the six-tuple (X, A, A(.), P, R, γ), where X 

denotes the state space, A denotes the action space, A (x) ⊆ A is the set of admissible actions in 

state x, P(y| x, a) is the probability of transitioning from state x ∈ X to state y ∈ X when action a ∈ A (x) is taken, R(x, a) is the reward obtained when action a ∈ A (x) is taken in state x ∈ X, and γ 

is the discount factor.  Let Π be the set of Markovian policies (π), where π: X → A is a function 

such that π(x) ∈ A (x) for each x ∈ X.  The goal is to compute a policy π that optimizes the 

expected total discounted reward given by 

0
0

( ): ( , ( ))t
t t

t

V x E R x x xx  




 
   

                                     Equation 4-1 

The optimal value function for a given state x ∈ X is connoted as
*

V


: X →ℝ given by 

*

( ) sup ( )x V xV


 
                                                                          Equation 4-2 
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The optimal policy is given by 

* ( )argsupV x





                                                                          Equation 4-3 

Note that the optimal policy is independent of the initial state x0. Also, the maximization takes 

place over policies π, where at each time t the action taken is at = π(xt). 

 

Figure 4-2. Decision Graph of a Markov Decision Process 

The optimal policy, π*, can be determined using different methods, including linear 

programming and dynamic programing. The methods of value iteration, policy iteration, policy 

search, etc. can find a strict optimal policy.  Bellman’s optimality principle (Chang et al., 2013) 

is especially useful for defining the Q-value function (described subsequently) , which plays a 

pivotal role in the description of the rollout algorithm.  Bellman’s optimality principle states that 𝑉π∗(x) satisfies  

**

( )

( ) : sup ( , ) ( | , ) ( )
a A x y X

V x R x a P y x a V y 
 

 
  

 
                 Equation 4-4                   

in which the term within the braces in Equation 4-4 is denoted the Q-value function associated 

with the optimal policy π*:  

X0 X1 X2

R0 R1

A0 A1

R2

A2

X3

. . .

. . .

. . .
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**( , ) : ( , ) ( | , ) ( )
y X

Q x a R x a P y x a V y 


                      Equation 4-5                   

The ( , )Q x a
 value function associated with any policy, π, can be defined similarly. 

4.2.2. Simulation-based MDP 

For large-scale problems, the state, action or outcome space in the framework defined in the 

previous section must be represented in a compact form for a simulation-based representation 

(Fern et al., 2006).  A simulation-based representation of a MDP is a 7-tuple (X, A, A (.), P, R, γ, 

I), where |X| or |A| (|· | = the cardinality of the argument set “·”) is usually large, and the matrix 

representation of P and R is infeasible because the large dimensions of a typical community 

recovery problem. The function R returns a real-valued reward, given the current state, current 

action, and future state (R: X  A  X  ℝ). Function I is a stochastic function that provides 

state according to the initial state distribution, while P is a function that returns the new state 

given the current state and action.  Essentially, the underlying MDP model is implemented as a 

simulator. 

4.2.3. Approximate Dynamic Programming in the MDP Context 

Calculating an optimal policy using the methods above is usually infeasible for community 

resilience analysis due to the dimensions of the state and/or action spaces.  The size of the 

state/action space grows exponentially with the number of state/action variables, a phenomenon 

referred to by Bellman as the curse of dimensionality.  The computational costs of running a 

single iteration of the value iteration and policy iteration algorithm for the MDPs defined in the 

past section are O(|X|2|A|) and O(|X|2|A| + |X|3), respectively. The computational cost of finding 

the optimal policy by directly solving the linear system provided by the Bellman equation is 
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O(|X|3 |A|3) (Chang et al., 2013).  Finally, the computational cost of an exhaustive direct policy 

search algorithm for a single trajectory consisting of K simulation steps is 
| |

1

3 | | | | | |
K

k X

k

X A X


 
 
 
 , 

which is prohibitive for even small-sized problems (Busoniu et al., 2010). 

Thus, these algorithms described above are computationally intractable for large problems 

involving resilience assessment or recovery of a real-size community and approximate solutions 

are necessary.  To this end, several algorithms have been developed in the realm of Approximate 

Dynamic Programming (ADP) that enable near-optimal restoration policies to be identified. One 

popular class of algorithms involves approximating the Q-value function in Equation 4-5. 

However, it often is difficult in practice to identify a suitable approximation to the Q-value 

function for practical, large-scale problems.  Thus, in the following, a promising class of ADP 

algorithms based on the rollout algorithms introduced in Chapter 3 are utilized that sidesteps 

these difficulties by avoiding an explicit representation of the Q-value function. 

4.2.4. Rollout in the MDP Context 

While computing an optimal policy for an MDP is often quite difficult because of the curse of 

dimensionality, policies based on heuristics (termed as base policies) can be readily identified in 

many cases.  As noted in Chapter 3, the principal idea behind the rollout technique is to improve 

upon the performance of the base policy through various means. Therefore, the base policy does 

not have to be close to optimal. In this study, we focus on improvement of the base policy 

through simulation.  This idea was first proposed for stochastic scheduling problems by 

Bertsekas and Castanon (1999). Instead of the classical DP scheme (Bertsekas, 2017), the agent 

“rolls out” or simulates the available policy over a selected finite horizon H< ∞; thereafter, the 

agent implements the most “promising” action in an on-line fashion. In on-line methods, unlike 
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classical off-line techniques, optimal actions are calculated only for the states realized in the real-

world (reachable states); the idea is to conserve computational effort on the unreachable states. 

Conversely, in off-line computations the policy is pre-computed for all the states and stored; 

then, the agent selects an optimal action from the stored policy corresponding to the observed 

evolution of the system (Chang et al., 2013). 

Monte Carlo (MC) simulations assess the Q-value function on demand. To estimate the Q-value 

function ( ˆ ( , )Q x a
represents the estimate) of a given state-action pair (x, a), NMC number of 

trajectories are simulated, where each trajectory is generated using the policy π, with length H, 

and starting from the pair (x, a).  The assessed Q-value function is typically taken as the average 

of the sample returns obtained along these trajectories:  

MC

0 0 0 0

0

,1 , , , 1
1 1MC

1ˆ ( , ) ( , , ) ( , (x ), )
N H

k
i i k i k i k

i k

Q x a R x a x R x x
N

   
 

    
               Equation 4-6                   

For each trajectory i0, the first state-action pair to (x, a) is fixed; the simulator provides the next state 

0 ,1ix  when the current action 𝑎 in state 𝑥 is completed. Thereafter, actions are chosen using the base 

policy.   Note that if the simulator is deterministic, a single trajectory suffices, while in the stochastic 

case, a sufficient number of trajectories (NMC) must be pursued to approximate the Q-value function. 

This study focuses on the rollout policy computed with single-step look-ahead. An agent can 

consider multistep look-ahead, at an added computational cost, to extract maximum performance out 

of the solution technique. The number of look-ahead steps mainly depends on the scale of the 

problem, computational budget, real-time constraints, and agent’s preferences. An important property 

of the rollout algorithm, as noted previously, is that it improves upon the performance of the 

underlying base policy, if the base policy is not strictly optimal. The rollout policy computed using 
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this method is not necessarily strict-optimal, but it is guaranteed that it will never perform worse than 

the underlying base policy.  

4.3. POST-HAZARD RECOVERY FORMULATION 

Following an earthquake, the EPN and WN systems and components either remain undamaged or 

exhibit a level of damage which is determined from the seismic fragility curves. Suppose that an 

agent must restore a community that includes several networks, which function as a System of 

Systems (SoS).  Let M be the total number of damaged components at time t, and let tc denote the 

decision time at which all the damaged components are repaired (M=0).  The agent has only a limited 

number of RUs that can be assigned, which is usually much less than M, especially in severe 

disasters that impact large communities. The RUs differ from network to network because of the skill 

of repair crews and qualities of the required tools. The problem is to assign the available RUs to M 

damaged components in a manner that best achieves the community objectives and policymakers’ 

preferences. 

The following assumptions are made: (1) The agent has access to all the damaged component for 

repair purposes; (2) A damaged component only needs one RU to be repaired and assigning more 

than one RU would not reduce the repair time (Ouyang et al., 2012); (3) The agent has limited RUs 

for each network and cannot assign a RU of one network to another (e.g., a WN RU cannot be 

assigned to the EPN); (4) The agent can preempt the assigned RUs from completing their work and 

reassign them at different locations to maximize the beneficial outcomes. (5) Once a damaged 

component is repaired, all assigned RUs are available for re-assignment even if their assigned 

components are not fully repaired.  It is also possible to let the RU continue the repair work at the 

same location in the next time slot according to the objectives of the agent. Such assignment is 

referred to as preemptive scheduling, which allows the agent to be flexible in planning and is 
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particularly useful when a central stakeholder manages an infrastructure system; see (Nozhati et al., 

2018b) for a discussion on non-preemptive scheduling. (6) The agent can deal with stochastic 

scheduling, where the outcome of the repair actions is not fully predictable and can be quantified 

probabilistically. The unpredictability arises mainly from the randomness in the repair times (see 

Table 4-1). The MDP simulator exhibits stochastic behavior owing to the random repair times. On 

the other hand, the alternative perspective, where the outcome of actions is fully predictable (Chapter 

3), is also an active research topic (Nozhati et al., 2019b). 

The proposed MDP methodology is applied to the modeled EPN and WN described in Chapter 2. 

Restoration times are synthesized based on exponential distributions (Nozhati et al., 2018a, 2018b; 

Sarkale et al., 2018; FEMA, 2003), as summarized in Table 4-1. The proposed framework, 

nevertheless, allows one to use any arbitrary distribution. The pipe-restoration time in the WN is 

based on repair rate or number of repairs per kilometer (Adachi and Ellingwood, 2009). 

Table 4-1. The Expected Repair Times (Unit: Days) 
Damage states 

Component Minor Moderate Extensive Complete 

Electric sub-station 1 3 7 30 

Transmission line component 0.5 1 1 2 

Distribution line component 0.5 1 1 1 

Water tanks 1.2 3.1 93 155 

Wells 0.8 1.5 10.5 26 

Pumping plants 0.9 3.1 13.5 35 

4.4. MARKOV DECISION PROCESS FORMULATION 

Suppose that 
E
tx and 

W
tx represent the damage states of the EPN and WN at time, t, respectively. 

E
tx is a vector of length

E
tL , where 

E
tL  is the number of damaged components in EPN. Each 
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element of the vector 
E
tx is in one of the five damaged states (counting no damage as one 

possible state) in Table 4-1.  Similarly, define 
W
tx ( W W

t tx L ), where 
W
tL  is the number of 

damaged components in the WN at time slot t.   Let NE and Nw denote available RUs for the EPN 

and WN, respectively: 
E

E tN L  and t
W

WN L .   The tuples of the MDP framework are defined as 

follows: 

 States X: xt denotes the state of the damaged components in the community at time t as the 

stack of two vectors, 
E
tx and ,W

tx : 

 : , . . | |E W E W
t t t t t tx x x s t x L L                                                         Equation 4-7 

 Actions A: at denotes the repair actions to be carried out on the damaged components at time 

t, as the stack of two vectors, 
E
ta and

W
ta , 

 : , . . | |E W E W
t t t t t ta a a s t a L L                                                      Equation 4-8 

where both, 
E
ta and

W
ta ,  are binary vectors of length 

E
tL and

W
tL , respectively, where values 

of zero and unity mean no repair and conduct repair, respectively. 
E
ta  and 

W
ta represent the 

actions (no repair, repair) to be performed on the damaged components of the EPN and WN. 

 Set of Admissible Actions A (xt): The set of admissible repair actions A (xt) for the state 𝑥𝑡 is 

the set of all possible binary combinations of integers one and zero such that each element of 

this set is of size 
E W
t tL L  and each element has NE number of ones in the first 

E
tL  locations 

and Nw number of ones at the remaining locations. The interdependence between networks 

causes the size of the set of admissible actions to increase, as follows: 
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Let 
E
tD  be the set of all damaged components of the EPN before a repair action at is 

performed.  E
tP D  denotes the powerset of 

E
tD ; 

    : :| |
E

E E
N t t EP D C P D C N                                                            Equation 4-9 

where  
E

E
N tP D  represents the size of the set of admissible actions for the EPN.  

W

W
N tP D  

can be defined similarly. The size of the set of admissible actions, at any time t, is the 

product of the size of set of admissible actions for EPN and WN: 

    ( ) :
E W

E W
t N t N tA x P D P D                                                            Equation 4-10 

Therefore, when multiple networks are considered simultaneously, the size of A (xt) grows 

very fast. Searching exhaustively over the entire set A (xt) for calculating the optimal solution 

is not possible.  

 Simulator P: Given xt and at, the simulator P provides the new state xt+1. P is a generative 

model that can be implemented as a simulator without any explicit knowledge of the actual 

transitions. It considers the interconnectedness within and between networks to compute the 

cascading effects of at through the whole community and recovery process.  As stated 

previously, a compact representation of P is important for large-scale problems.  

 

It is assumed that as soon as at least one of the damaged components is repaired, the repair 

action at is considered complete. Define this completion time at every t by t̂t . Recall that the 

repair time is exponentially distributed. The completion time is the minimum of the repair 

times at one or more damaged locations, where repair action is being performed. The 
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minimum of exponential random variables is exponentially distributed; therefore, the 

completion time is also exponentially distributed (Aslett, 2012). The sojourn time (a.k.a. the 

holding time) is the amount of time that the system spends in a specific state. For an MDP, 

the sojourn time, ts, is exponentially distributed (Bertsekas, 2017; Aslett, 2012; Ibe, 2013).  

Note that for the MDP formulation, t̂t  is equal to ts.  

 

A natural question that arises is “does this formulation work when the repair times are non-

exponential?” In that case, the completion time is not exponentially distributed. However, in 

the present problem formulation, the completion time is the same as the sojourn time. Thus, 

the sojourn time would not be exponentially distributed, which is inconsistent with the 

Markovian assumption. This can be remedied simply by incorporating the lifetime of the 

damaged component into the state definition. The lifetime of the damaged component is the 

time required for the damaged component to be repaired after the occurrence of hazard. With 

this new definition of the state space, the sojourn time is not the same as the completion time

t̂t , and the sojourn time is exponentially distributed. Here the completion time t̂t  is still the 

minimum of the repair time at one or more damaged locations but with any underlying 

distribution of the repair times. Thus, the framework is sufficiently flexible to accommodate 

repair times with any underlying distribution. 

 Rewards R:  Two different objectives are pursued for the agent: 

The first objective (hereinafter Obj. 1) is to optimally plan decisions so that a certain 

percentage of the total inhabitants (denoted by threshold α) benefit by the recovery of utilities 

in the shortest period of time, implying that household units not only have electricity and 

water by also have access to a functional retailer that has electricity and water.  Conversely, 
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even if a household unit has electricity and water and has access to a retailer that has 

electricity but not water, the household unit does not benefit from the recovery actions. The 

mapping of people in the gridded rectangle to a food retailer is determined by the gravity 

model. The aim here is to optimally plan the repair actions to minimize the time it takes to 

achieve the benefit from utilities to α percent of people. The reward function for the first 

objective is defined as:  

1 1
ˆ( , , )t t t tR x a x t                                                                                  Equation 4-11 

The second objective (hereinafter Obj. 2) is to optimally plan decisions so that the maximum 

number of inhabitants are benefited from recovery of utilities per unit of time (days, in the 

present case). Therefore, in the second case, there are two objectives embedded in the reward 

as follows: 

2 1( , , )t t t

rep

r
R x a x

t
                                                                             Equation 4-12 

where r is the number of people deriving benefit from utilities after the completion of at, and 

trep is the total repair time to reach xt+1 from any initial state x0 (i.e., ˆ
rep tt t ). Note that the 

reward function is stochastic because the outcomes of the repair action are stochastic. 

 Initial State I: As mentioned in Section 3, the stochastic damage model of the EPN and WN 

components can be obtained by the fragility curves. The initial damage states associated with 

the components will be provided by these models. 
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Discount factor γ: In this study, the discount factor is set equal to 0.99 (Howard, 1960). A 

measure of how “far-sighted” the agent is in considering its decisions. The discount factor 

weighs the future stochastic rewards at each discrete time t. 

4.5. RESULTS AND DISCUSSION 

The simulation results are divided into two sections. The first section caters to risk-neutral 

decision makers, and the second section caters to risk-averse decision makers (Cha and 

Ellingwood, 2014; Tversky and Kahneman, 1992).  Each of these sections is further divided into 

two sub-sections to demonstrate the performance of the method developed in the preceding 

section on two separate objectives functions. When Objective 1 is considered, the reward 

function in the MDP is given by Equation 4-11, while for Objective 2, the reward function is 

given by Equation 4-12. For all the simulation results presented henceforth, NMC in Equation 4-6 

and Equation 4-13 was selected so that the standard deviation of the estimated Q-value ˆ ( , )Q x a
 

is below 0.05. 

As mentioned in Chapter 3, the most feasible base policy for community recovery planning often 

is the current recovery strategy of regional responsible companies or organizations. However, 

there is no restriction on the selection of a policy as a base policy. We proposed the alternatives 

for the definition of base policies for recovery management problems in Nozhati et al. (2019b) 

and Chapter 3. In this study, the base policy is defined based on expert judgment and importance 

analyses that prioritize the importance of components owing to their contribution to the overall 

risk. Specifically, the restoration sequence defined by our base policy for EPN is transmission 

line, power substation, and distribution lines to downtown and water pumps; similarly, the base 
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policy for WN involves water wells, water tanks, BPS, and pipelines to downtown and food 

retailers. 

4.6. MEAN-BASED STOCHASTIC OPTIMIZATION 

The mean-based optimization is suited to risk-neutral decision makers (Meidani and Ghanem, 

2015). In this approach, the optimal policy is determined based on the optimization of the Q-

value function, where the estimate of the Q-value function ˆ ( , )Q x a
 is based on the mean of NMC 

trajectories, as demonstrated in Equation 4-6. Calculating the Q-value based on the expected Q-

value of NMC trajectories may not always be appropriate, especially in the case of risk-averse 

decision makers. However, it has been shown that the mean-based stochastic optimization 

approach can be appropriate when the objective function properly encodes the risk preferences of 

policymakers (Bertsekas, 2017).  Nevertheless, we demonstrate the performance of our method 

when the decision maker has a risk-averse attitude to planning. 

4.6.1. Implementation of Rollout Algorithm for Objective 1 

The rollout algorithm with respect to Obj. 1 identifies recovery strategies to minimize the time it 

takes to provide the utilities to α percent of people in the community.  In this formulation, the 

selection of α depends on the preferences of policymakers. For our simulation, we selected 

α=0.8, implying that we want to provide the benefit of the utility recoveries to 80% of the people 

in the community in a minimum amount of time.  

Figure 4-3 shows the performance of the rollout and base policies for Objective 1. The rollout 

algorithm optimizes the restoration of two networks, EPN and WN, simultaneously to provide 

utilities for 80% of people in 19.3 days following the earthquake, while the base policy 

completes this task in 26.1 days.  This 35% improvement over the entire recovery period 
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indicates the performance of rollout at the community level.  Figure 4-3 also highlights the look-

ahead property of rollout. Although the base policy showed better performance during the first 

15 days following the earthquake, the rollout algorithm outperformed the base policy during the 

recovery period. By selecting conservative repair decisions initially, rollout can balance the 

desire for low present cost with the undesirability of high future costs. 

The performance of rollout on the individual food retailers is summarized in Table 4-2.  Note 

that the base policy restored EPN and WN to Safeway, Nob Hill Foods, and Mi Pueblo Food 

faster than the rollout policy; however, the base policy is incapable of determining the recovery 

actions to balance the rewards so that 80% of people benefit from the restoration of utilities (our 

true objective). 

Table 4-2. Performance of Rollout vs. Base Policy for the First Objective Function for the 
Retailers 

Policy Recovery time Costco Walmart Target Safeway Nob Hill Foods Mi Pueblo Food  

Base 26.06 0.31 0.31 21.02 5.91 5.91 2.76 

Rollout 19.23 0.31 0.31 15.95 18.33 18.33 8.01 
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Figure 4-3. Performance of Rollout vs. Base Policy for the First Objective Function 

After 80% of the people have benefitted from utility restoration, the progress in restoration of the 

EPN and WN continues to be evaluated. Even though the objective of providing the benefit of 

utilities to 80% of the population has been met, 25% of the EPN components remain unrepaired. 

This interesting result shows the importance of prioritizing the repair of the components of the 

network so that the objectives of the decision maker are met. Because the objective here was to 

restore utilities so that 80% of people would benefit from the restoration in a minimum amount 

of time, the algorithm prioritized repair of only those components that would have the maximum 

effect on that objective without wasting resources on the repair of the remaining 25% of EPN 

components. 

4.6.2. Implementation of Rollout Algorithm for Objective 2 

The rollout algorithm applied to Objective 2 identifies recovery strategies that maximize the 

number of inhabitants per day that benefit from the strategy selected. In other words, the 

algorithm must maximize the area under the restoration curve normalized by the total recovery 
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time. This objective function is specifically defined to match the definition of the common 

resilience index, which is proportional to the area under the restoration curve (Bruneau et al., 

2003).  Figure 4-4 depicts the performance of base policy and the corresponding rollout policy. It 

highlights the look-ahead property of the rollout algorithm for Obj. 2. 

 

Figure 4-4. Performance of Rollout vs. Base Policy for the Second Objective Function 

The performance of the rollout algorithm was analyzed for the individual networks. One of the 

main reasons for this analysis is that these networks are restored and maintained by different 

public or private entities who would like to know how rollout would perform for their individual 

systems. The recovery actions at, were determined using the rollout policy for the combined 

network that considers all the interdependencies (for Obj. 2), and the performance of these repair 

actions on individual networks was subsequently checked. 

First, we check the performance of the repair actions on the EPN network, calculating the effect 

of EPN restoration on only the household units. The results are depicted in Figure 4-5. The base 
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policy leads to EPN recovery so that the mean number of people provided with electricity is 

24,229 per day, while the rollout policy provides electricity for 27,689 people on average. 

Second, the performance of the repair actions on the EPN is checked, but the effect of EPN 

restoration on both household units and retailers is considered. In this analysis, summarized in 

Figure 4-6, people derive benefit of EPN recovery when their household unit has electricity and 

they go to a retailer that has electricity. In this case, the mean number of people who benefit from 

the EPN recovery owing to the base policy is 23,155/day, whereas that owing to the rollout 

policy is 25,906/day. Third, the performance of the repair actions on the WN is checked, 

calculating the effect of WN restoration on only the household units, as illustrated in Figure 4-7. 

In this case, the mean number of people with potable water under the base and rollout policies is 

31,346/day and 25,688/day, respectively.   Finally, the performance of the repair action on the 

WN is checked, but where the effect of WN restoration on both household units and retailers is 

considered. In this case, people benefit from WN recovery when their household unit has water, 

and they go to a retailer that has water. In this case, the mean number of people with potable 

water under the base and rollout policies is 31,346/day and 25,688/day, as shown in Figure 4-8. 
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Figure 4-5. The Performance of Policies to Provide Electricity for Household Units 

 

Figure 4-6. The Performance of Policies to Provide Electricity for Household Units and 
Retailers 

It is interesting to note that the rollout policy need not outperform the individual base policy 

when the recovery of each individual network is considered separately because in our 
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framework, the calculation of recovery actions due to rollout considers the combined network 

and corresponding interdependencies that outperforms the base policy as shown in Figure 4-3 to 

4-6. Our objective considers two networks as one complex system (or SoS), which is captured in 

the definition of the benefit, and is not reflected in the restoration of a single network alone. 

Figures 4-7 and 4-8 indicate that the concerns of individual stakeholders must be alleviated when 

recovery is performed based on interdependencies in the network.  Nozhati et al. 2019b and 

Sarkale et al. 2018 provide a thorough examination of the performance of rollout when the EPN 

and WN are considered separately.  Furthermore, the number of days required to restore the WN 

is less than what is required to restore EPN, even when the optimized recovery actions for the 

combined network are used to evaluate the performance of the individual network restoration 

(see Figures 4-5 and 4-8). This behavior can be attributed to a lesser number of WN components 

being restored compared to the number of EPN components. 

 

Figure 4-7. The Performance of Policies to Provide Potable Water for Household Units 
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Figure 4-8. The Performance of Policies to Provide Potable Water for Household Units and 
Retailers 

4.7. WORST-CASE STOCHASTIC OPTIMIZATION 

Mean-based stochastic optimization seeks to identify the most cost-efficient repair actions in the 

face of uncertainty under the assumption that the decision maker has a risk-neutral attitude.  This 

assumption has been criticized on several counts (Tversky and Kahneman, 1992; Von Neumann 

and Morgenstern, 2007).  Research on risk attitudes has revealed that most decision makers are 

not risk-neutral in the face of a low-probability threat or hazard. Moreover, policymakers and 

community stakeholders are not risk-neutral, especially when considering large systems at the 

community level that influence public safety (Cha and Ellingwood, 2012). Finally, a stochastic 

model of uncertainty may not be possible in many practical problems in which only limited data 

exist and, accordingly, policy-makers tend to be more risk-averse (Bertsekas, 2017). These 

observations lead us to study the performance of the proposed rollout algorithm for risk-averse 

policymakers. 
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Risk-averse policymakers tend to be more worried about extrema than expected consequences of 

uncertainty. Worst-case optimization (a.k.a. robust optimization) is employed for MDPs to allow 

for risk-averse behavior (Iyengar, 2005; Meidani and Ghanem, 2015; Nilim and Ghaoui, 2005). 

Note that Obj. 1 involves a minimization problem, while Obj. 2 addresses a maximization 

problem.  Both Objs. 1 and 2 require the use of NMC trajectories. However,  unlike in Equation 4-

6, the mean of the NMC estimated Q-values is not used to approximate the original Q-value 

function in Equations 4-4 and 4-5; rather, depending on whether Obj. 1 or Obj. 2 is considered, 

the maximum or minimum value among the NMC trajectories is used to represent worst-case 

behavior.   If 
*
0i  maximizes Equation 4-6, where  *

0 1, , ,MCi N   the worst-case Q-value 

estimation for Obj. 1 is represented in Equation 4-13 and is used in Equation 4-4.  Conversely, 

for Obj. 2, 
*
0i  minimizes Equation 4-6, where  *

0 1, , ,MCi N   

* * * *
0 0 0 0,1 , , , 1
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                           Equation 4-13 

When Obj. 1 is considered, the number of days required to reach the threshold of α=0.8 under 

the base policy under worst-case optimization is 26.1 days,  whereas under rollout, it is 19.7 

days, a 32% improvement that signifies a desirable performance of the proposed methodology 

for the risk-averse policymakers.  Figure 4-9 shows the performance of rollout for Obj. 2, where 

the number of people deriving benefit from utilities per day because of recovery actions 

under the base and rollout policies is 22,395/day and 24,478/day.  Figure 4-9 also illustrates the 

look-ahead property, which is characteristic of the rollout algorithms. Finally, the performance of 

rollout for the individual networks is summarized in Table 4-3 and Figure 4-10. The results 

indicate that risk-averse policymakers should not presume that rollout will outperform the base 

policy when the EPN and WN are considered separately. 
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Table 4-3. The Performance of Policies in Different Cases for the Worse-case Optimization 
Case   Base policy Rollout policy 
EPN restoration for household units 24229 27897 

EPN restoration for household units and retailers 23155 26159 

WN restoration for household units 31346 25966 

WN restoration for household units and retailers 30099 23535 

 

 

Figure 4-9. Performance of Rollout vs. Base Policy in the Worst-case Optimization for the 
Second Objective Function 
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Figure 4-10. The Performance of Policies in Different Cases for the Worse-case Optimization 

In summary, the results presented in this section illustrate the desirable performance of the 

rollout algorithm when a decision-maker is risk-averse. The individual attitudes toward risk can 

be dependent on the personalities of policymakers and stakeholders of a community and be 

influenced by many factors, such as the community properties, type of hazard, available 

resources and time, existing information about the uncertainties and prior experience with similar 

hazards,  to name but a few. Lastly, because of the stochastic approximation involved in the 

computation of the estimated Q-values, it is not possible to compare the performance of the 

mean-based and worst-case optimization methods proposed above.  

 



  

80 
 

CHAPTER 5: ADDRESSING LARGE-SCALE COMMUNITIES’ RECOVERY 

 

—Risk is just an expensive substitute for information.”  

Adrian Slywotzky and Karl Weber 

5.1. INTRODUCTION 

Optimal recovery decisions for community resilience assurance post-hazard involve a 

combinatorial decision-making problem under uncertainty. The last remaining major bottleneck 

with the rollout solution proposed above is that for the current state, the Q values must be 

determined for all possible actions. This large-scale computation can be costly and impractical 

for large-scale communities and metropolitan areas. This chapter proposes different methods to 

enhance the efficiency of the rollout algorithm for large-scale communities to provide near-

optimal recovery strategies in a timely fashion. 

Rollout can be implemented regardless of the size of the state space. However, the execution of 

rollout algorithm that exhaustively searches the entire action space is potentially computationally 

expensive. In the case of exhaustive search, the rollout algorithm linearly depends on the action 

space. There are several more efficient optimization techniques than exhaustive search so that the 

estimation of the most promising actions can be accelerated.  
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5.2. SIMULATED ANNEALING5 

One of the most common techniques in the realm of optimization is the employment of 

metaheuristic algorithms. Metaheuristics provide an adequate approximate solution to an 

optimization problem, especially with a limited computational budget.  Simulated annealing 

(SA) has been used in many combinatorial optimization problems since its introduction by 

Kirkpatrick et al. (1983).  While there is no guarantee that a globally optimal solution can be 

found by all metaheuristics, it has been proved that SA converges to its global optimum under 

general conditions (Yang, 2008).  

The cornerstone of the SA algorithm is the utilization of a random search in terms of a Markov 

chain that not only accepts changes that improve the objective function but also some that are not 

ideal; thereby avoiding being trapped in local minima. The difference in objective values is 

proportional to the likelihood of accepting a worse solution. The transition probability of 

accepting a worse solution is: 

B

f
k TP e


                                                                                             Equation 5-1 

where Δf is the change in objective function, T is a positive real number representing the current 

temperature, and KB is the Boltzmann's constant (KB=1 in this study). The search process would 

be a greedy search, provided that 𝑇 → 0, 𝑃 → 0 because it only accepts better solutions. On the 

other hand, the search process would be tantamount to a random selection process provided that 𝑇 → ∞, 𝑃 → 1, because it accepts any solution. 

                                                 
5  This method mimics the annealing process in material processing when a metal cools and freezes into a crystalline 
state with minimum energy and larger crystal size so as to decrease the defects in metallic structures. The annealing 
process includes the well-defined control of temperature and cooling rate (often called annealing schedule) (Yang, 
2008). 
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Thus, if T is too high, the system is at a high energy position and cannot easily land at the 

minima. If T is too low, the system can be trapped in a local minimum and there is not adequate 

energy to escape the local minimum. This study uses the common approach of geometric cooling 

(Yang, 2008). The advantage of this method is that when T → 0 and t →∞, there is no need to 

determine the maximum number of iterations tf .  The cooling process should be slow enough to 

allow the system to stabilize efficiently. 

The SA algorithm is employed to search in the subset of the action space |A|, denoted as A , 

where A A . This avoids searching over the entire set |A| exhaustively. A fixed number of 

iterations is provided to the SA algorithm to repopulate A at each iteration. Such a restriction on 

the number of iterations captures the constraints on the amount of time to be expended in 

calculating the optimal recovery actions at every t, and the solution accuracy warranted of each 

candidate recovery action at t. Despite this restriction, the simulation results show how the 

combined approach leads to a significant improvement over the recovery actions calculated in 

Chapter 3 using H. 

In this study, H is chosen to be a random base restoration policy without any pre-assumption to 

show the effectiveness of the proposed method. Thereafter, the recovery actions are calculated 

using the fused method (Rollout w/ SA) explained previously. The rollout algorithm sequentially 

and consistently improves the underlying H, and the SA algorithm guides the rollout search to 

find the optimum actions at each stage non-exhaustively. Figure 5-1 shows the application of the 

proposed fused algorithm (Rollout w/ SA) in the restoration of the defined community. As 

mentioned in Chapter 4, the number of benefited people (ordinate of Figure 5-1) is defined as 
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people who have functional main utilities of electricity, potable water, and available food 

retailers. 

 

Figure 5-1. Comparison of Base and Rollout with SA Policies 

5.3. OPTIMAL COMPUTING BUDGET ALLOCATION 

When applying uniform rollout for solving an MDP problem, a fixed rollout sampling budget α 

is allocated to each action, yielding α rollout samples per candidate action to estimate the Q 

value associated with that action.  In the literature on simulation methods for optimization, this is 

analogous to total equal allocation (TEA) with a fixed budget α for each simulation experiment 

(a single simulation experiment is equivalent to one rollout sample).  In practice, the best 

possible action is of primary interest, and the search should be directed towards the most 

promising candidates. Also, for large real-world problems, the simulation budget available is 

insufficient to allocate α number of rollout samples per action. Oftentimes, one would like to get 

a rough estimate of the performance of each action and spend the remaining simulation budget in 

refining the accuracy of the best estimates. This is the classic exploration vs. exploitation 

problem faced in optimal learning and simulation-based optimization studies. 
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Instead of a uniform allocation α for each action, non-uniform allocation methods also have been 

explored in the literature pertaining to the rollout algorithm; such methods are often referred to 

as adaptive rollout methods (Dimitrakakis and Lagoudakis, 2008). An analysis of performance 

guarantees for adaptive rollout remains an active area of research (Dimitrakakis and Lagoudakis, 

2008; Lazaric et al., 2016)). These non-uniform allocation methods guarantee performance 

without a constraint on the budget of rollouts. Hence, we explore an alternative non-uniform 

allocation method that would not only fuse well into our solutions (adaptively guiding the 

stochastic search) but would also incorporate the constraint of simulation budget in its allocation 

procedure. Numerous techniques have been proposed in the simulation optimization community 

to solve this problem. We draw upon one of the best performers (Branke et al., 2007) that 

naturally fits into our solution framework— Optimal Computing Budget Allocation (OCBA). 

Moreover, the probability of correct selection P{CS} of an alternative in OCBA mimics finding 

the best candidate action at each stage in the rollout algorithm. 

Formally, the OCBA problem (Chen et al., 2000) can be stated as: 

1 ,...,
1

max { } . .
n

n

i
N N

i

P CS s t N B


                                                              Equation 5-2 

where B represents the simulation budget for determining optimal at for xt at any t, and Ni is the 

simulation budget for the ith action at a particular t. At each OCBA allocation step (for the 

definition of the allocation step (see Chen et al. (2000)), barring the best alternative, the OCBA 

solution assigns an allocation that is directly proportional to the variance of each alternative and 

inversely proportional to the squared difference between the mean of that alternative and the best 

alternative. Here, only information required to initialize the OCBA algorithm is provided. For a 

detailed description of OCBA, see Chen et al. (2000). In the next section, the proposed fused 
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algorithm is applied to the WN of Gilroy, with the objective of performing repair actions in such 

a way that the maximum number of people will have water in minimum amount of time. 

5.3.1. Simulation Results 

Two different simulation plots of rollout fused with OCBA are presented in Figures 5-2 and 5-3, 

termed rollout with OCBA1 and rollout with OCBA2. The basic method is the same for both 

cases; only the per-stage simulation budget is different. A per-stage budget (budget at each 

decision time t) of B = 5 ·  n+5000 is assigned for rollout with OCBA1 and B = 5 · n+10000 for 

rollout with OCBA2.  Figure 5-2 compares the performance of rollout fused with OCBA and 

base policy. The “look-ahead property” that is characteristic of the rollout algorithm is evident in 

the results in Figure 5-2, where the base policy initially outperforms the rollout policy; however, 

after about six days the former steadily outperforms the later.  The area under the curve of the 

plots represents the product of the number of people who have water and the number of days for 

which they have water, and is a measure of the performance of the proposed method in meeting 

the objective. A larger area represents that greater number of people were benefitted as a result 

of the recovery actions. The area under the curve for recovery with rollout (blue and red plots) is 

more than its base counterpart (black). A per-stage budget increase of 5,000 simulations in 

rollout with OCBA2 with respect to rollout with OCBA1 shows improvements in the recovery 

process. 
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Figure 5-2. Performance Comparison of Rollout vs. Base Policy for Three Units of Resources 

 

Figure 5-3. Performance Comparison of Rollout vs. Base Policy for Five Unit of Resources 

For the rollout with OCBA in Figure 5-4, B = 5 ·  n+20000, whereas α = 200 for the uniform 

rollout simulations. The recovery as a result of these algorithms outperforms the base policy 

recovery in all cases. Also, the performance of rollout with OCBA is comparable to uniform 

rollout despite a meagre simulation budget of 10% of uniform rollout. The area under the 

recovery process in Figure 5-4, as a result of uniform rollout, is only marginally greater than that 
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due to rollout with OCBA.  Note that after six days, OCBA slightly outperforms uniform rollout 

because it prioritizes the simulation budget on the most promising actions per-stage. Rollout 

exploits this behavior in each stage and gives a set of sequential recovery decisions that further 

enhances the outcome of the recovery decisions.  Note that such an improvement is being 

achieved at a significantly low simulation budget with respect to uniform rollout. Therefore, 

these two algorithms form a powerful combination together, where each algorithm consistently 

and sequentially reinforces the performance of the other. Such synergistic behavior of the 

combined approach is appealing. Lastly, these simulation studies show that increments in the 

simulation budget of rollout results in only marginal performance improvement for each 

increment. Beyond a certain increment in the simulation budget, the gain in performance might 

not scale with the simulation budget expended.  A possible explanation is that a small simulation 

budget increase might not dramatically change the approximation of the Q - value function 

associated with a state-action pair in the MDP.  

 

Figure 5-4. Performance Comparison of Uniform Rollout (TEA), Rollout with OCBA and Base 
Policy for Three Units of Resources 
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CHAPTER 6: EVALUATING FOOD SECURITY HOUSEHOLDS IN THE AFTERMATH OF 
DISASTERS  

 

 

—Innovations that are guided by smallholder farmers, adapted to local circumstances, and 

sustainable for the economy and environment will be necessary to ensure food security in the 

future.” 

Bill Gates 

6.1. INTRODUCTION 

Resilience-related research during the past decade has led to recommendations of goals and 

metrics to describe the performance of independent and, indeed, interdependent civil 

infrastructure systems (ICIS) (Bruneau et al., 2003; Applied Technology Council, 2016). These 

metrics have been investigated for different systems, such as Electrical Power Networks (EPN) 

(Ouyang, et al., 2012), Water Networks (WN) (Adachi and Ellingwood, 2009), residential 

buildings (Lin & Wang, 2017), health-care facilities (Cimellaro et al., 2013), and transportation 

systems (Pant et al., 2014). However, there has been very little effort connecting disruption in 

civil infrastructure to failures in food distribution and food retail infrastructure, despite that fact 

that food security depends on these critical infrastructure systems that have been identified in the 

Presidential Policy Directive 21 (PPD, 2013). 

The food security of households within a community is, in part, a function of the pre-event 

spatial configuration and distribution of businesses and organizations comprising the food 

distribution network, the vulnerability of households to disruptions, and the vulnerabilities and 
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resilience of these businesses and organizations. The vulnerabilities of these entities are shaped, 

in part, by the vulnerabilities of the individual infrastructural systems (electricity, natural gas, 

water, wastewater/sewer, etc.) upon which they depend and the characteristics of infrastructure 

system interdependencies. Unfortunately, there is little systematic data on the consequences of 

direct damage and disruption to infrastructure systems for the businesses and organizations 

within the food distribution network in local communities that can inform an understanding of 

how ICIS interdependencies impact community food security in the context of natural hazards. 

The United States Department of Agriculture (USDA) identifies a household as food secure if it 

has “access, at all times, to enough food for an active, healthy life for all household members” 

(Coleman-Jensen et al., 2015).  The degrees of food security are characterized by four levels: (1) 

high food security, when there are no reported food access problems or limitations; (2) marginal 

food security, when there is concern about not having enough food; (3) low food security (food 

insecure without hunger), when the quality, variety or desirability is reduced, and (4) very low 

food security (food insecure with hunger), when eating patterns are disrupted and food intake is 

reduced (United States Department of Agriculture, 2017).  According to Coleman-Jensen et al. 

(2015), the rates of low and very low food security are higher among households with children 

and minority households. 

Food security is not just an issue of the ability of households to purchase or otherwise acquire 

food from a business or agency. It is also a function of a variety of dimensions of access to 

providers such as grocery stores, food banks, convenience stores, etc. In this regard, the five A’s 

or dimensions of consumer’s access to health care, first conceptualized by Penchansky and 

Thomas (1981), can be helpful to provide a taxonomic definition of access and improve the 
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measurement science of fit between supply and demand (Biehl et al., 2017). These five (5) 

dimensions are Accessibility, Availability, Affordability, Accommodation, and Acceptability. 

For the purpose of this study, we focus on three of the five dimensions that are particularly 

germane and relevant for the nexus between civil infrastructure and household food security: 

accessibility, availability, and affordability. Our primary target is on supply-side issues, with a 

focus on potential impacts of infrastructure damage and disruption for the retailers that are the 

direct providers or suppliers of food to households within local communities. 

This chapter first studies the impact of interconnectedness among ICISs on the functionality and 

accessibility of food retailers in the Gilroy community, introduced in Chapter 2,  exposed to a 

severe earthquake on the San Andreas Fault.  Food availability, accessibility, and affordability 

are the basis for the food insecurity metrics, defined subsequently, that quantify the impacts of 

the disrupted critical systems on the food security of Gilroy inhabitants in the aftermath of the 

earthquake. The probability distributions of these metrics are developed by simulating spatial 

and temporal recovery processes that capture various uncertainties following the earthquake. The 

ADP approach developed in Chapters 2-5 is applied to identify practical policy interventions to 

hasten the recovery of ICISs and reduce the adverse impacts of food insecurity in Gilroy. 

6.2. PROBABILITY OF FOOD SECURITY MODEL  

The literature on business disruption after a natural hazard suggests that it is often not direct 

damage to an establishment’s building or inventory that results in disruption and failure, but 

rather disruption of critical infrastructure (Graham, 2007; Xiao & Van Zandt, 2012). The 

disruption of business activities and the failure of businesses and other food-related organizations 

has, in turn, consequences for accessibility, affordability, and availability.   In this study, all three 
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conditions must be satisfied to consider a household or an urban grid as a food-secure area in a 

community (Nozhati et al., 2019c); see Figure 6-1 and Equation 6-1. A brief discussion of each 

of these dimensions food access and critical infrastructure is presented in the following 

paragraphs. 

  3

1 1 2 3

availability,accessibility,affordabilityCFood i
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i


                                       Equation 6-1 

 

Figure 6-1. Definition of Food Security in This Study 

Availability (C1):  The relationship between food supplied and the demand for food. For food to 

be available, food retailers depend on infrastructure systems to operate such as water, electricity 

and buildings. Therefore, a household unit and a food retailer both must be functional (F), see 

Equation 6-2. In this study, a building is considered as functional when it has a safe structure and 

the potable water and electricity (U) are available, see Equation 6-3.  
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                                                 Equation 6-3 

Accessibility (C2):  The relationship of physical access to food retailers, which is a function of 

the road network. There are several modes of transportation, such as driving, bicycling and 

walking. This study considered driving as the primary mode of transportation, which includes 

cars and local buses.  ggmap by using Google’s routing API was called from within R to 

compute all alternative driving routes between each food retailer and each urban grid center by 

using the ggmap package (Kahle and Wickham, 2018). ggmap computes all the alternative routes 

between a household unit and retailers. Once at least one functional route is found, the 

accessibility from the origin to the destination is satisfied.  

2
1

Alldriving routesbetween householdand foodretailer
1,...,

:C R
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                    Equation 6-4 

where N is the total number of driving paths between a household unit and a food retailer. Rr 

denotes the functionality of the rth path between two points. 

Affordability (C3):  The relationship between household income and food retailers. While this 

dimension of food access is not impacted by critical infrastructure, it is an important factor to 

capture pre-event levels of food security.  Food security within a community depends on many 

factors and the likelihood that a household unit is in a state of food insecurity immediately 

following a severe hazard event can be substantial.  Availability and accessibility are dominant 

factors in food insecurity following a hazard, while affordability is the most significant factor 

prior to a hazard. The role of availability along with accessibility is assessed in the next section. 
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6.3. THE ROLE OF AVAILABILITY AND ACCESSIBILITY 

There are several factors that affect the recovery trajectory of a network, among which the 

number of recovery crews that can be allocated, network age, event area, and event type are most 

important (Barabadi and Ayele, 2018).  The dominant factors of Gilroy’s recovery have been 

discussed in Chapters 2-4.  In this section, the EPN recovery policy is generally as follows: the 

transmission line, the power sub-station, the distribution line to the water pump or the well that 

supplies Costco and Walmart, and the distribution lines that supply the downtown. The WN 

recovery policy is generally as follows: potable water wells, water tanks, pipelines that supply 

food retailers and residences. We assume that the food retailers as well as bridges can be repaired 

simultaneously. A random repair time generated based on exponential distributions presented in 

Table 6-1, is assigned to damages components. 

Table 6-1. The Expected Repair Times (Unit: Days) 
Damage State 

Component Minor Moderate Extensive Complete 

Residential buildings 2 30 90 180 

Food retailers 5 30 120 240 

Highway bridges 0.6 2.5 75 230 

Electric sub-station 1 3 7 30 

Transmission line component 0.5 1 1 2 

Distribution line component 0.5 1 1 1 

Water tank 1.2 3.1 93 155 

Wells 0.8 1.5 10.5 26 

Pumping station 0.9 3.1 13.5 35 

 

Figure 6-2 shows the percent of available EPN components with one and two standard deviation 

bands over time. This figure is important for decision-support algorithms and policymakers, in 
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that the number of damaged components determines the dimension of the decision-making 

problem and the number of required RUs for the EPN or any other network in time. The times to 

full recovery of the EPN, (x( ))(e)tT , and time to 75% recovery, T0.75(e), are also represented in 

Figure 6-2b. The times required to restore electric power and water for each food retailer are 

presented in Figure 6-3, which indicates the vulnerability of each food retailer due to the 

unavailability of utilities and informs the periods of time that reliable backup utility systems 

should be provided. 

 

Figure 6-2. a) The Percent of Available the EPN Components Over Time b) Times to Full and 
75% Recovery 
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Figure 6-3. Time to Availability of Electricity and Water for Each Main Food Retailer 

The shape of the recovery trajectories and availability of utilities for each retailer depend on the 

location of each retailer in the community and, more importantly, to the recovery strategies. For 

instance, Walmart and Costco are next to each other and pretty close to the power substation; 

thus, they have the shortest time to regain electricity. Safeway, Nob Hill Foods, and Mi Pueblo, 

which are close together in downtown Gilroy, have roughly similar recovery times. 

As noted in Figure 6-1, food security depends on availability, accessibility, and affordability. 

With this in mind, the number of food-secure people has been calculated over the 36 urban grids 

(see Figure 2-3) as well as the community over time with respect to availability and accessibility 

in this subsection. For the sake of brevity, only three different grids (one in the south, one in the 

middle, and one in the north of the community), along with the entire community, are presented. 

Figure 6-4 shows the number of people, adults, children, and seniors that are food-secure in these 

three grids. Children include those aged 0-17, including those of preschool and school age, as 

indicated in (Harnish, 2014). 
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Figure 6-4. The Number of Food-secure People with ±σ Over Three Different Grids 

Figure 6-5 represents the number of food-secure people with different age distributions at the 

community level. Young children are especially vulnerable to food insecurity; policy makers 

should be conscious of the number of food-insecure children.  This figure is important to 

policymakers in that they can be informed when the community reaches a locally-defined 

desirable threshold. 
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Figure 6-5. Total Number of Food-secure People at the Community Level with ±σ b) Over the 
First 100 Days c) Times to Full Food Security Recovery 

6.4. THE ROLE OF AFFORDABILITY 

Affordability measures whether people have sufficient financial resources to purchase essential 

food items from food retailers. Prior to the occurrence of a severe hazard event when conditions 

of availability and accessibility are less important, affordability is the most significant issue for 

vulnerable populations. Affordability has a direct relationship with individual or household 

income. The annual median family income (MFI) for each area of the country is provided by the 

Federal Department of Housing and Urban Development (HUD).  Gilroy has a lower median 

family income ($76,060 in 2012) than the median family income ($89,445 in 2012) of the 

surrounding area, which means that the role of affordability should receive special attention 

(Harnish, 2014).  The State of California categorizes income into five groups based the MFI as 

follows; 

 Extremely Low-Income: 30 percent or less of the median family income; 

 Very Low-Income: 31 percent to 50 percent of the median family income; 
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 Low-Income: 51 percent to 80 percent of the median family income; 

 Moderate-Income: 81 percent to 120 percent of the median family income; and 

 Above Moderate-Income: Greater than 120 percent of the median family income. 

A heat map of food-insecure people based on the poverty rates over the urban grids is shown in 

Figure 6-6. 

 

Figure 6-6. The Map of Food-insecure People over the Defined Grids 

Figure 6-6 also highlights the fact that, regardless of what happens due to the hazard as well as 

the recovery activities plans in the aftermath of the hazard, the number of people represented in 

Figure 6-6 remain in the food insecurity state. In other words, it is assumed that chronic food 

insecurity issues will return to pre-event levels. 
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Figure 6-7. The Number of Food-insecure People with ±σ over Three Different Grids 

The food insecurity curves of the three different urban grids in terms of initial food-insecure 

people, along with that for the whole community, are presented in Figures 6-7 and 6-8, 

respectively. Figure 6-8 can inform policymakers as to when the community reaches the desired 

percentiles from food securities perspective.  Note that the community cannot reach to a 

complete food security status due to the affordability factor, which considers the food insecurity 

of the households living in poverty which is represented the level of chronic food insecurity prior 

to the hazard. 
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Figure 6-8. Total Number of Food-insecure People at the Community Level with ±σ 

6.5. THE APPLICATION OF THE PROPOSED ADP APPROACH IN FOOD SECURITY OF GILROY 

COMMUNITY 

In this section, we apply the ADP approach, proposed in Chapters 3-5, to the Gilroy community 

to illustrate how the approach can be implemented efficiently to find the near-optimal decisions 

following a severe hazard. 

Chapter 4 elaborates the MDP formulation for the community recovery problem. We briefly 

presents it for the food security problem. Let xt be the state of the damaged components of the 

community at time t; xt is a vector, where each element represents the damage state of each 

component in Gilroy based on the level of intensity measure and the seismic fragility curves. Let 

g
ta  denote the repair action to be carried out on the damaged structures in the gth

 region of the 

grid at time t. The repair action for the entire community at time t, at, is the stack of the repair 

action g
ta .differs from grid to grid and depends on the assigned RUs and the number of damaged 

buildings within grid g. There is a limited number of RUs (defined earlier) available to the 
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decision maker for the repair of the buildings in the community. In this study, we also limited the 

number of RUs for each urban grid so that the number of available RUs is 20 percent of the 

number of damaged buildings in each region of the grid. Therefore, the number of RUs varies 

over the community in proportion to the density of the damaged buildings. The assignment of 

RUs to damaged locations is non-preemptive in the sense that the decision maker cannot preempt 

the assigned RUs from completing their work and reassign them to different locations at every 

decision epoch t. This type of scheduling is more suitable when the decision maker deals with 

non-central stakeholders and private owners, which is the case for a typical building portfolio. 

Chapter 3 discusses preemptive scheduling and its benefits. We wish to plan decisions optimally 

so that a maximum number of inhabitants be in food security per unit of time (day in our case). 

Refer to the definition of food security is in the past section. Therefore, the reward function 

embeds two objectives as follows: 

1( , , )t t t

rep

r
R x a x

t
                                                                                 Equation 6-5 

where r is the number of food secure people after the completion of at , and trep is the total repair 

time to reach xt+1 from any initial state x0. Note that the reward function is stochastic because the 

outcome of the repair action is stochastic. In this study, we set the discount factor to be 0.99, 

implying that the decision maker is “farsighted” in the consideration of the future rewards. 

We simulated NMC number of trajectories to reach a low (0.1 in this study) dispersion in Equation 

4-6. Alluded to previously, Equation 4-6 addresses the mean-based optimization that is suited to 

risk-neutral decision makers. However, this approach can easily address different risk aversion 

behaviors with Equation 4-13. Figure 6-9 shows the total number of food secure people over the 

community. Noted that the ADP approach computes the near-optimal recovery strategies in the 
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on-line fashion, described in Chapter 4. We also computed the different numbers of children, 

adults, and senior citizens that have safe buildings over the recovery. Different age groups have 

different levels of vulnerability to food insecurity; for example, children are a vulnerable group 

and must be paid more attention during the recovery process. 

 

Figure 6-9. Food Secure People over Time 

6.6. CONCLUDING REMARKS 

This chapter presented a probabilistic framework for evaluating food-security related issues 

affected by damages to ICISs caused by a severe earthquake. The restoration and functionality of 

networks are quantified, immediately following the simulated earthquake until full restoration. 

The case study results also demonstrate the periods of time that each main food retailer suffers 

from the lack of main utilities of electricity and potable water. Food security metrics based on 

food availability, accessibility, and affordability are defined and quantified probabilistically 

either at the grid level or at the community level. However, a more comprehensive definition of 

food security metrics should be considered. For example, the definition of availability could 

include the performance and serviceability of the wastewater system and the telecommunication 
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network. Further, a gravity model that can capture the effect of affordability and the income of 

level households would improve the model. 
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CHAPTER 7: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

— There is no single development, in either technology or management technique, which by 

itself promises even one-order of magnitude improvement within a decade in productivity, in 

reliability, in simplicity.” 

Fredrick P. Brooks, Jr., NO SILVER BULLET 

7.1. SUMMARY 

In this dissertation, a comprehensive risk-informed decision-making methodology for the 

recovery management of communities with an emphasis on food security issues was proposed. 

The proposed mathematical approach leveraged approximate dynamic programming along with 

heuristics for the determination of optimal recovery actions. The methodology overcame the 

curse of dimensionality which is inherent to large decision spaces and manages multi-state, 

large-scale infrastructure systems under disasters. 

As a basis for the proposed decision-making methodology, a community-level analysis was 

introduced in Chapter 2 for Gilroy, CA, which was used to provide context to the decision tools 

introduced in subsequent chapters.  Interdependencies within and among  various layers of the 

networks that can potentially produce large-scale cascading effects that make up Gilroy were 

discussed, along with  hazard simulation and the component damage and restoration assessment.  

Earthquakes emanating from the San Andreas Fault were the prevailing hazard of the Gilroy 

area. This chapter described how ground motion prediction equations (GMPEs) and fragility 
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curves can simulate a seismic event and determine intensities that can be used to evaluate 

damage in the aftermath of an earthquake. 

Chapter 3 explained the necessity of dynamic optimization in post hazard recovery management. 

It presented a sequential discrete optimization approach, as a decision-making framework at the 

community level. This chapter described the requirement of approximate dynamic programming 

techniques to handle large-scale problems like community recovery management. The 

methodology introduced not only incorporated recovery policies of responsible public and 

private entities within the community but also substantially enhanced the performance of their 

underlying strategies with limited resources. Different base heuristics, used at the community-

level recovery, were used in the simulation studies. Chapter 3 showed that rollout technique 

significantly enhanced the base heuristics. Furthermore, the efficient performance of the rollout 

formulation in optimizing different common objective functions for community resilience was 

demonstrated. 

Chapter 4 detailed the most important properties (paramount properties) of an exhaustive 

decision-making framework and introduced Markov decision process (MDP)-based optimization 

to incorporate different sources of uncertainties in the restoration policies. This chapter also 

displayed how the rollout algorithm, proposed in Chapter 3, can be employed in stochastic 

optimization. This chapter ended by studying the applicability of the method to address different 

risk attitudes of policymakers, which include risk-neutral and risk-averse attitudes in community 

recovery management. 

Stochastic recovery scheduling of large-scale networks in the metropolitan areas following 

hazards is a difficult stochastic control problem with a huge combinatorial decision space. 

Chapter 5 proposed different methods to address this issue. While the proposed rollout can be 
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easily implemented regardless of the size of the state space, it heavily depends on the action 

space with the exhaustive search manner. In this regard, Chapter 5 showed how the fusion of 

rollout and metaheuristic algorithms can address dimensionality issues. The method is 

particularly simple to implement and is often surprisingly effective. Furthermore, Chapter 5 

offered an optimal learning technique called as optimal computing budget allocation (OCBA) to 

allocate the computational budget much more effectively. This subclass of adaptive rollout 

algorithms fused with rollout performs competitively with respect to rollout with total equal 

allocation (TEA). 

This dissertation also introduced a methodology to consider how the interconnectedness among 

civil infrastructure systems impacts food-security of urban inhabitants. Chapter 6 defined new 

food security metrics, including food availability, accessibility, and affordability. These metrics 

are quantified in this chapter to provide risk-informed decision support to community 

stakeholders in the aftermath of an extreme natural hazard. 

7.2. RECOMMENDATIONS FOR FUTURE STUDIES 

It is believed that the methodology can be extended to other hazards and communities.  Several 

networks like telecommunication, wastewater/sewer, natural gas networks, business and 

commercial sectors, industrial facilities, schools, emergency services and health care facilities 

like hospitals have not been included in this study.  However, as Figure 4-1 depicts the proposed 

methodology treats the built environment like a black box which means the simulation and 

consideration of any arbitrary network and/or sector of a community do not affect the 

applicability and quality of the framework.   Of course, the consideration of a network depends 

upon the preferences of the policymakers and community stakeholders. These preferences must 
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be included in the reward function thereby considering by the methodology.  Furthermore, there 

are various network/community modeling approaches, such as Bayesian networks, Petri-net 

based approach, the hierarchical holographic modeling approach, the high-level architecture-

based approach, to name but a few.  Ouyang (2014) reviewed these modeling approaches and 

categorized them. The nature of the problem determines the selection of the simulation approach. 

To summarize, the proposed methodologies of this study are independent of the type of 

networks, the community/network modeling approaches, and the considered objectives and 

policymakers’ preferences. Nevertheless, more accurate community simulation and more 

exhaustive objectives can mimic the environment more realistically, thereby achieving precise 

recovery strategies, provided by the proposed methods of this study. 

This study proposed several methods to overcome the curse of dimensionality that is 

characteristic of decision problems with large variable spaces. The rollout method can be readily 

performed independently of the size of the state space as well as the combination with 

metaheuristics and OCBA was shown to increase the efficiency of the methodology 

significantly. However, even more powerful methods that can be implemented easily for large 

state and action spaces is essential if optimal restoration policies for urban areas with millions of 

inhabitants and built facilities are to be identified. To this end, the methods like neuro-dynamic 

programming and function approximator are recommended. 

Sequential decision problems with state uncertainties that can be modeled as partially observable 

Markov decision processes (POMDP) can be considered as an extension of this study. A 

POMDP is an extension to the MDP formulation introduced in Chapter 4. In a POMDP, a model 

stipulates the probability of making a particular observation given the current state. The state 
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uncertainty in community recovery problems can be produced by inspection errors and the lack 

of information from the whole of a community, especially immediately following a disaster. 
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