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Abstract

Transfer Learning with Weather Radar

This work presents the culmination of the doctoral research by the author in exploring

modern methods of Data Discovery in weather radar data, improvements in the cyberin-

frastructure concerning multi-dimensional gridded data, with a concentration on real-time

data streaming, and experimental use cases involving real world datasets. Included in this

work is a successful method for the classification of weather radar image data using convo-

lutional neural networks, with inspiration drawn from the subfield of Transfer Learning in

the Computer Vision community. Once this model was developed, it was deployed on single

radar data from each of the radars in the CASA DFW network to assign labels to support

a human-in-the-loop semi-supervised method for data discovery in the weather radar scans.

This model has been furthermore applied to the WSR-88D network of dual-polarimetric

weather radars in the United States to demonstrate the model’s generalizability, and its util-

ity in discovering phenomena of interest in vast datasets. This work discusses the end-to-end

development of the data discovery system, with special focus on initial data labeling, choices

and tradeoffs in model architecture, and training concerns in the machine learning model.

This represents the first published research known to the authors on utilizing the power

of transfer learning to transfer the learning of high quality convolutional neural networks

trained on photographic images to the weather radar image domain.
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CHAPTER 1

Introduction

Weather radars in the United States produce a vast amount of data every year. This data

is invaluable to researchers in many fields, including atmospheric science, meteorology, and

weather radar engineering. The data represents many types of phenomena in the atmosphere,

and is critically important in forewarning disasters and in characterization of the atmospheric

effects that relate directly to public safety, agriculture, and recreation.

Weather radar data is also extremely expensive to produce, maintain, and analyze. De-

velopment of research radars is a task few groups in few universities are equipped to attempt,

as it requires a start-up cost not only in the millions of dollars, but also in terms of the wide-

ranging human capital and expertise needed to develop these sophisticated, high-fidelity

instruments. Additionally, simply managing the data is a complicated task, involving large

amounts of compute power to turn complex time series returns into human-readable radar

variables and visualize them in real-time. There is also a need for simply storing the data,

necessitating costly servers with huge data footprints.

Given the immense amount of expertise and cost in producing, analyzing, and storing

this data, it is perhaps surprising that so little is known about the data after it has been

stored. Research groups embark upon years-long projects that culminate in seasons-long

field campaigns, transporting radars domestically and internationally, and involving tens to

hundreds of professionals to collect critically important data, but there remains no satisfac-

tory method or set of methods for semantic tagging of the data once it has been collected,

beyond radar technicians on the ground noting events as they occur.
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Efforts have begun to move data from theWSR-88D radars in the NEXRAD system in the

US to cloud storage, reducing the overhead in providing data to researchers, and simplifying

said researchers’ access to the data. Simultaneously, projects are in development to leverage

cloud compute to help reduce Time to Science in utilizing this and other datasets, along

with simplifying the programming overhead to allow scientists to analyze their data using

techniques and services in modern infrastructure. The data available in the cloud, along

with that present data silos at various universities and national labs in the United States,

encodes priceless insights and a multitude of opportunities for researchers to leverage, should

they be able to access it.

1.1. Problem Statement

With respect to weather radar data, there is no simple way to query the large amounts

of data available to researchers in a semantic search. Text-based data has been the focus

of search engines which have illustrated methods for extracting valuable information for the

past twenty years. Natural images, such as photographs, have been studied for decades, and

recent developments in deep learning continue to increase the semantic information available

in image data. There may be ways to apply these insights to weather radar data as well, as

it is generally stored and presented as images.

Similarly to natural images, in fact, the amount of radar data produced and easily avail-

able to researchers and engineers continues to grow at a high rate. The radar network

perhaps most well known to researchers is the NEXRAD network, which is comprised of

over 150 dual-polarimetric S-band WSR-88D weather radars observing the atmosphere at

all times, located throughout the United States. An upper estimate of the data produced in

2



a day by a typical WSR-88D, assuming a 1 degree beamwidth, no beam overlap, 460 range

gates per radial, could be given by

(1)
6scans

hr
· 24hr
day

· 360radials · 460gates
radial

· 6vars
scan

· 12elevations
VCP

· 4bytes
pixel

= 6.9GB

where VCP stands for the volume coverage pattern, and 6sars refers to 6 radar variables.

This is considered an upper estimate since it assumes a data point in every pixel at every

elevation angle, which is rarely the case, but it drives home the point that weather radars

are producing a lot of data every day. Furthermore, considering all 160 WSR-88D radars,

scanning every day for a year, an upper estimate on data produced annually is 401 TB. This

is an extremely large dataset, and represents more data than humans can tractably parse in

a meaningful manner. When we consider that this is only data from one radar network in

the United States, and that similar networks are operating in Europe (Opera) and China,

there is a sense of urgency around developing modern technological methods for extracting

information from and labeling these voluminous datasets, in real-time and on historical data.

As such, it is urgent and appropriate to explore methods of analyzing the algorithms that

have provided such insights in the natural image domain, and using techniques designed in

the computer vision sub-field of transfer learning, attempt to extract information in weather

radar image data.

1.2. Research Objectives

This dissertation aims to develop an automated method for characterizing the spatial

information available in weather radar scan data, utilizing information present in dual-

polarimetric radar variables. The major goal of this research is to develop a set of automated

3



Figure 1.1. WSR-88D radar sites in the US and abroad. Image can be found
at https://www.roc.noaa.gov/WSR88D/Maps.aspx

methods to classify precipitation regimes and to illustrate the feasibility of deploying these

models on voluminous weather radar datasets to extract insights and populate semantic tags

to facilitate Data Discovery. This dissertation also aims to demonstrate that information

available in natural image datasets and the models trained upon these datasets can transfer

learning to the domain of weather radar data, allowing researchers to develop their own tools

and locate specific atmospheric phenomena of interest by following the techniques presented

herein.

Hand-labeling can and must be employed to generate an initial dataset for training the

target task, image classification of precipitation regimes. Once this is completed, techniques

from the computer vision sub-field of Transfer Learning can be used to train models to learn

functions to perform this classification. The optimal models above can be determined via

4



theoretical and empirical testing using readily available benchmarked datasets. An iterative

process can be then embarked upon to deploy the model on new data to perform classi-

fications and increase dataset size. Using a combination of automated classification and

hand-labeling of the new generated data, a satisfactorily large dataset can be generated to

train new models and finalize learning.

The key points to be addressed in this research are:

• Hand-labeling weather radar data to produce a dataset for initially training models

• Determining optimal end-to-end deep learning architectures for learning and classi-

fying similar images from benchmark datasets

• Using radar reflectivity image data from a research radar network to perform pre-

cipitation regime image classification

• Demonstrating the encoding of multiple radar variables into three-channel images

to enhance classification ability

• Deployment of learned models on unseen data available in research radar network

to automate data discovery and further enhance dataset, ultimately producing a

hand- and machine-labeled dataset to supply to other researchers

• Employing the model on the national network of weather radars in the NEXRAD

system, thus demonstrating effectiveness of the model at multiple spatial resolutions

and radar frequencies

• Utilizing tools like CHORDS to perform semantic image classification in real-time

1.3. Dissertation Overview

Chapter 2 presents a review of necessary and relevant literature for this research, with a

focus on previously developed methods in weather radar image analysis, as well as transfer
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learning. Additionally, some background information on the calculation of various radar

variables is presented, with specific focus on relevant radar moments in this work and how

they are visualized both in real-time, and stored on disk. Finally, the weather radar networks

examined in this research are discussed.

Chapter 3 discusses the meteorological phenomena that can be seen in weather radar

data, and how they present in the images as functions of radar variables. Precipitation

regimes are examined, with some atmospheric precursors and products discussed to explore

the relevance of these patterns and why they should be the foci of this classification work.

The spatial and temporal characteristics of the radar returns are discussed within the scope

of how they are viewed in the radar data, so as to better understand the textures and patterns

that the deep learning architectures will learn to classify.

Chapter 4 details the experiments performed to select and train the deep learning models.

Initially there is a treatment of relevant concepts and math used in machine learning, to

develop the nomenclature and standards that follow. Both shallow and deep networks are

discussed in brief as necessary. An experiment is performed to select a convolutional base

and illustrate the utility of using large models in transfer learning tasks. A set of experiments

designed to illustrate the learning ability of the selected convolutional base and top model are

detailed, utilizing a readily available benchmark dataset called MNIST-Fashion, chosen to

mirror both natural images as well as weather radar images. Next, the target task of weather

radar images are classified according to their corresponding precipitation regimes, using

hand-labeled data from a radar in the CASA DFW Urban Testbed of X-band weather radars.

Finally, relevant concerns are detailed regarding the proposed research of deploying models

on data from the rest of the CASA DFW network, using multi-channel data with multiple

6



radar variables to produce pseudo-images that encode greater amounts of information for

training and testing, and deploying models on the S-band WSR-88D NEXRAD radars.

Chapter 6 discusses advances in real-time weather radar data, and details the research

in implementing weather radar data as a core component of the Cloud-HOsted Real-Time

data Services in the geosciences (CHORDS) portal. This chapter details a survey of current

methods in real-time weather radar data visualization, along with modern cyberinfrastruc-

ture concerns related to the storage and visualization of weather radar data. The current

CF/Radial standard is discussed, as well as the importance in using such standards to

promote findability, accessibility, interoperability, and reusability (FAIR) principles in the

domain of weather radar data.

Chapter 7 summarizes the findings so far in this research project, and outlines the pro-

posed research to complete this dissertation.

The Appendix A discusses certain practical considerations for deep learning research

and their use in this work. Additionally outlined are compute capabilities and constraints,

bottlenecks and trade-offs.
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CHAPTER 2

Background

One area of computational research into the meteorological nature of weather radar scans

is in the field of meteorological object tracking. The goal of this field is to identify “storm

cells,” areas of localized convective activity, track their history in terms of evolution, merging,

and splitting, and make short term forecasts about where they are going. The definition of

the storm cells themselves is a matter of some debate, though some basic definitions exist

from the perspective of remote sensing, such as that of [2], who defines the cells as comprised

of a 30 dbz horizontal reflectivity across a spatial area of 20 km2. This area of research is

not directly related to the object of this study, which is to correctly label scans as containing

stratiform or convective activity, though it is related, and could be easily applied to this

classification problem with minimal extra algorithmic overhead.

There are several approaches to this problem that have been explored in using algorithms

to perform these objectives. Thunderstorm Identification, Tracking, Analysis, and Nowcast-

ing (TITAN) [3], is an early algorithm designed to perform a similar task on NWS NEXRAD

data. Another heuristic method, this system utilizes an empirically-determined horizontal

reflectivity threshold, Tz, to locate spatially contiguous runs of high intensity returns within

this single bin to designate as storm centroids. The Storm Cell Identification and Tracking

(SCIT) algorithm [4], seeks to improve upon TITAN’s approach mainly by adding more

reflectivity bins with which to organize storm decisions. The algorithm attempts to locate

storm cell centroids in NWS NEXRAD radar data, and follow them in space and time. This

method operates on a radial-by-radial basis, binning reflectivity values, and then checking for

spatial proximity of the binned regions, assigning storm cell centroid status to those spatially
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proximate areas of high reflectivity. As [5] points out, these two methods are limited by their

requirement that spatially adjacent pixels must contain horizontal reflectivity values within

certain thresholds to be considered by the algorithm as components for storm cell centroid

candidates. That work describes a method that attempts to find storm cells via usage of

the watershed transform, a technique pulled from the field of image processing, with a few

tweaks to ensure that it performs well with weather radar imagery. Namely, they propose

altering the “saliency” and “hysteresis” levels to allow the watershed to identify mature and

growing storm cells while weeding out false positives. This approach negates the need for

empirically-chosen global thresholds for bins, as it considers all possible thresholds when

classifying the image. However, the method requires significant data preprocessing prior to

its application, including filters to remove high frequency image content and quantization of

values, which may remove useful local features from the image.

2.1. Neural Networks

2.2. Image Classification with Machine Learning

Image Classification is a sub-field of a larger umbrella of image data machine learning

that also includes image segmentation and semantic understanding. It is, however, the first

step to achieving these latter two. Image Segmentation refers to...

2.3. Transfer Learning

Transfer Learning is most often used to learn target tasks that differ from source tasks

but reside in the same natural image domain. However, these architectures have been used

to classify and segment image data There have been a few efforts to apply deep learning

9



algorithms in the area of climate science, applying models to weather data. For exam-

ple, [6] applied a deep learning architecture called AlexNet [7] to locate tropical cyclones,

weather fronts, and atmospheric rivers, in colormapped continuous spatial variables, like

precipitation, temperature, and other meteorological properties. They briefly describe is-

sues surrounding the usage machine learning models developed for natural image data in a

non-natural-image data domain, and focus their analysis on a continental data scale.

2.4. Dual-Polarized Doppler Weather Radar

One of the key benefits [8] in dual-polarimetric Doppler weather radar over its prede-

cessor, single-polarization, is that allows observing not only power return from a volume of

scatterers, but also identifying parameters related to shape. This is due to its usage of not

only one antenna polarization in transmit and receive modes, but two orthogonally polarized

antennas, which convey both power return in the horizontal as well as vertical. For low ele-

vation scans, as in those employed in plan-position indicator (PPI) scans, which are the focus

of this research, these shape parameters can convey a great deal more information for the

radar engineer to use in analysis. This information is used directly by radar meteorologists to

determine relevant atmospheric parameters with respect to various weather phenomena, as

well as to inform several types of algorithms concerned with extracting additional informa-

tion from these scans. It is relevant to survey some of these techniques briefly here as many

of the phenomena described tie directly into precipitation regime, and the methods utilized

to extract key information as below directly inspires and influences the research presented

in this work. Some efforts of note along with brief descriptions:

• Hydrometeor classification - determination of scatterer type in radar scans

– Using dual-polarizaton data to identify winter precipitation [9]
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∗ Using data from multiple radars and radar frequencies, this work uses

scattering theory and T-matrix simulations to develop an algorithm based

on fuzzy logic to classify scatterers in radar gates by their predominant

hydrometeor type.

– Semisupervised scheme for hydrometeor classification [10]

∗ Uses a fuzzy logic method as above, but adds a k-means clustering com-

ponent to take advantage of localized spatial similarity of precipitation

type to improve classification in range-height indicator (RHI) scans

• Nowcasting and short-term forecasting

– LSTM model for precipitation nowcasting [11]

∗ Utilizes a memory-based neural network architecture called long short-

term memory (LSTM) with a novel addition of convolutional input layers

to utilize spatial and temporal information in short-term rainfall intensity

prediction

– TITAN [3]

∗ Early and well-known set of algorithms for identifying and tracking thun-

derstorms using NEXRAD WSR-88D data, using many image processing

techniques with thresholded spatial and temporal information

• Quantitative precipitation estimation (QPE) - counting how much precipitation has

already occurred

– QPE in the CASA DFW Urban Testbed network [1]

∗ This paper computes the real-time rainfall rate in high spatio-temporal

resolution by using information available from multiple radars scanning

similar areas, on different time scales
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This section intends to acquaint the reader with some of the major derived radar vari-

ables, with a focus on those that are used in this effort to classify stratiform and convective

precipitation regimes both from one another and from cases that represent neither. For a

full treatment of weather radar theory, with specific focus on signal processing, consult [12]

and [13].

2.4.1. Moments. There are a few important radar variables, also called moments, that

are necessary to detail here. First is radar horizontal reflectivity factor Zh, which is perhaps

the most commonly used and well-known variable. The formula to calculate this moment is

given by [12]

(2) Zh(dBZ) = 10 log10

(

λ4

π5 |Kw|2
∫

σh(D)N(D)dD

)

whereas vertical reflectivity factor Zv is given by

(3) Zv(dBZ) = 10 log10

(

λ4

π5 |Kw|2
∫

σv(D)N(D)dD

)

In the above equations, λ is the radar wavelength in meters, |Kw|2 is the dielectric factor

for water (see below), σh and σv are the radar cross section (RCS) from horizontal and vertical

polarization, respectively, D is the equivalent particle diameter in mm, and N(D)d(D) is

the number of drops in a given spatial volume denoted of size dD. The dielectric factor for

water can be calculated by
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(4) |Kw|2 =
∣

∣

∣

∣

ǫr − 1

ǫr + 2

∣

∣

∣

∣

2

where ǫr is the complex relative dielectric constant of water.

These equations map somewhat to the return power at each polarization, which translates

roughly to a proportionality between reflectivity and rainfall rate. This proportionality has

been the subject of frequent empirical study, and can be calculated when there is an overlap in

radar coverage and ground instrument (like rain gauge) positions. The relationship between

the two is typically modeled as

(5) R(mm/hr) = αZβ

where α and β are constants that can be solved empirically. Rain rate can be calculated

as a function of various radar variables as inputs to algorithms of various complexity, and is

itself a radar variable in its own right, often available to researchers for study alongside the

others.

Scatterers like raindrops are typically oriented with respect to the ground according to a

probability distribution, which is a function of drop size, air resistance, and wind. Raindrops

are not perfectly spherical at larger sizes, however, and as such, exhibit different levels of

power returns in the vertical and horizontal polarizations. As such, it is often interesting to

compare the reflectivities in these polarizations, and in conjuction with horizontal reflectivity,

some hydrometeor classification between large raindrops (more oblate -¿ higher difference
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between Zh and Zv) and hail (high Zh, similar Zh and Zv) can occur. This is another radar

variable, called differential reflectivity, given by

(6) Zdr(dB) = Zh − Zv

Since Zdr relies information on axis ratio, scatterer canting angle, and scatterer size, it

can be used to identify scatterers which may be present under only a stratiform or convective

precipitation regime.

Another useful radar variable is specific differential phase, which is the bulk phase shift

due to scatterers in a range volume, and is formally defined as

(7) Kdp(deg /km) =
180

π
λRe

[
∫

[fh(D)− fv(D)]N(D)dD

]

where fh and fv are complex forward scattering amplitudes at eahc polarization. Because

radar cannot directly measure Kdp, we can use the accumulated differential phase shift

Φdpalong each radial and take its range derivative to provide the estimate

(8) K̂dp =
Φdp(r2)− Φdp(r1)

2(r2 − r1)

This parameter can be difficult to estimate and there are many methods, ranging from

the simple estimate above to adaptive parametric aprroximations [14].

The fourth major variable we can compute is called variously correlation coefficient,

copolar correlation coefficient, and cross polar correlation coefficient, and seeks to provide
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an estimate of how similar scatterers within a range volume are to one another. It can

defined as

(9) ρhv(0)(unitless) =
〈SvvS

∗

hh〉
〈S2

hh〉
1/2 〈S2

vv〉1/2

where Shh and Svv are the horizontal and vertical components of the backscattering

matrix, ∗ is the complex conjugate operator, and 〈〉 are ensemble averages.

Velocity and corresponding spectrum width variables can be calculated via Fourier analy-

sis of the complex IQ returns, and can be useful in informing meteorological analysis, but will

not be covered here as they’re not used in this research work. Additionally, there are many

potential radar variables. For more information, refer to [12] or the CF/Radial specification

1.

Examples of the four radar variables can be seen in Figure 2.1. The plots were produced

using python, matplotlib, and Py-ART, with colormaps from the colorcet library and Py-

ART.

2.4.2. Colormapping. The term “colormapping” refers to the process of converting

numerical data, usually held in arrays of more than one dimension, and mapping the values

to a set of colors for representation on an image. This is most often done in the sciences

as a way for humans to be able to more readily understand trends in the data, or identify

features of interest.

In the domain of weather radar data, the most obvious way to represent the variables

associated with returns from precipitation is by producing a plot where the image is centered

1https://ral.ucar.edu/projects/titan/docs/radial_formats/CfRadialDoc.pdf
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Figure 2.1. Examples of radar variables, left to right, top to bottom: Zh,
ρhv, Zdr, andKdp. Case from 2016-05-11, XMDL Radar, CASA DFW network.
This particular scan is from the stratiform precipitation regime, as evidenced
by relatively low Zh, high ρhv, and middling Zdr.

on a radar (or radars) of interest, and mapping the values in specific moments to colors via a

colormap. The choice of colormap is important, and the optimal choice may not be obvious.

Typically, radar reflectivity factor Zh is represented via a “rainbow” style colormap, with

high values of dBZ in the ‘warm’ region of the color space, such as oranges, reds, pinks,
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and yellow, while lower values correspond to ‘cool’ colors, i.e, greens, blues, and purples.

This is intended to assist the viewer in quickly identifying regions of high returns that could

correspond to intense rain or hail, while visually separating these from areas of medium

returns or lower return values that would indicate more sedate forms of precipitation, and

thus, less dangerous. The intuition behind the initial studies that motivated this work were

based on these simple assumptions: specifically, that if humans could use the colormapped

data in the images to make inferences regarding the content of said images, then perhaps this

process could be automated using techniques developed by the computer vision community.

As such, it becomes important to assess the choice of colormaps themselves. Even within

the weather radar community, there is disagreement as to which specific colormap should

be used when displaying data from any variable. Continuing with the examination of Zh,

there are a few major colormaps that are used by different groups that are worth discussing

here, such as NWS Reflectivity and CSU-CHILL. Additionally, when prototyping code or

doing basic exploration of the data, many groups have resorted to using the ‘jet’ colormap

to display the data. See Figure 2.2 for examples of some of the above colormaps, along with

perceptually uniform colormaps provided in the colorcet library.

While it is clear that it is disadvantageous to use the colormap, ‘jet’ has its advantages,

but many visualization guides advise moving away from its widespread usage in science

data. This discussion is more relevant below in section ??, where selection of colormaps

is aimed at allowing human eyes and human brains the highest advantages possible in the

display of nominal weather radar image data, but there are questions that need answering

here, too, with respect to how a machine can best learn from image data. Such questions

include: Does a convolutional neural network make more robust classifications if different

regimes of colormaps are employed on the same data? As a colormap can be thought of
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Figure 2.2. Examples of colormaps. Case from 2016-05-11, XMDL Radar,
CASA DFW network. Variable plotted is Corrected Reflectivity Zh. Notice
how in the perceptually uniform colormaps ’rainbow’ and ’bmy’ that it is easier
to quickly detect textures within the precipitation regions of the image. The
NWS colormap draws the eye to the red regions, which correspond to higher
reflectivities, and ’jet’ fails to do either.

as a quantization of data, do the bin intervals matter with respect to classification? Do

the intervals need to be uniformly spaced, as is often done for human inference? Does the
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quantization help, or is it better to focus on the raw data? Experiments will follow to test

these questions and outline the results.

It is pertinent here however to discuss the types of colormaps that are generally used to

display image data in science. Specifically there are a few major categories, which I will refer

to as ‘rainbow,’ ‘diverging,’ and ‘linear.’ Rainbow colormaps tend to be employed where data

in different intervals may correspond to different phenomena or regimes, and can be used to

display categorical or “categorical-adjacent” datasets. In radar data, rainbow colormaps are

used to represent horizontal and vertical reflectivity factors. Diverging colormaps are used

to demarcate a point in the data, and highlight values increasing or decreasing from that

point. A common example in weather radar data is velocity of scatterers, where warmer

colors may indicate increasing radial velocity away from the radar, while cooler colors would

correspond to increasing radial velocity towards the radar, with 0 meters per second being the

point of demarcation. This colormap is also appropriate to log differential reflectivity, where

0 dB describes a volume where scatterers are equivalent in shape in both horizontal and

vertical directions. Finally, linear colormaps tend to be used to describe intensity data. This

would apply to specific differential phase, cross polar correlation coefficient, and normalized

coherent power data.

2.5. Weather Radar Networks

Weather radar, like any instrument, is most valuable when considering the context of ob-

served phenomena in the greater geospatial region. As such networks of weather radars are

maintained and operated globally. This dissertation focuses on two such networks: namely,

the Collaborative Adaptive Sensing in the Atmosphere (CASA) Dallas-Fort Worth network,
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and the WSR-88D NEXRAD network. There are further examples that may warrant atten-

tion in future work, such as systems operated by the Department of Energy in the United

States, though it is expected that the techniques and results achieved here would be appli-

cable to other systems as well.

2.5.1. CASA DFW. The CASA DFW radar network is a network of 9 X-band weather

radars in the greater Dallas-Fort Worth (DFW) urban metroplex, as demonstrated in Figure

2.3. It represents efforts by the U.S. National Science Foundation Engineering Center (NSF-

ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) made over the past

15 years to design a system to address problems regarding the curvature of the Earth and

gaps in NEXRAD radar coverage due to ground clutter [1]. The Dallas-Fort Worth urban

metroplex is a large-scale, high population, complex cityscape, and prone to damage and loss

of life with respect to natural disasters like flash floods, tornadoes, and hail. The network

utilizes X-band radars operating in concert to assist nowcasting and disaster preparedness

by providing relevant safety officers and stakeholders with composite radar data in high-

resolution in both time and space. X-band systems were chosen in part due to their high-

resolution spatial querying, and their lower footprint and operation cost as compared to

S-band radar systems.

Many of the features and products provided by the CASA DFW system are irrelevant in

the present work, including the three-dimensional wind fields and high-resolution rain rate

products. Instead, this research focuses on classifying images produced from single weather

radars, and as such can use dual-polarimetric radar variables from each of the radars in the

network individually. Data from each radar in the network are analyzed by signal processing

servers at each radar, and the radar variables are stored at the DFW Radar Operations

Center (DROC) in two ways: first, all moment data from each completed PPI scan is stored
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Figure 2.3. The CASA DFW Urban Testbed network of dual polarimetric
X-band Doppler weather radars [1], plotted on Google Maps.

in NetCDF-format files on DROC servers; and second, Portable Network Graphics (PNG)

files are generated at each of three elevation scan angles, for each of four radar moments,

including horizontal reflectivity, copolar correlation coefficient, differential reflectivity, and

radial velocity.
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2.5.2. NEXRAD. NEXRAD is a network of WSR-88D S-band radars that are intended

to provide weather radar data throughout the United States with minimal gaps in coverage.

The above concerns regarding Earth curvature, ground clutter, and coverage gaps notwith-

standing, the network represented a massive undertaking by the National Weather Service,

and serves to this day as a major data provider in the geosciences. Recently, the data was

moved to be stored in Amazon Web Services cloud storage, further increasing ease of ac-

cess for recent and historical weather data. The data produced from this network is used

in weather prediction, as comparison with other sensors, and as inputs to high resolution

models for short-, medium-, and long-term forecasting.

When testing these models, atmospheric data scientists are presented with many chal-

lenges, including identifying phenomena of interest in the prohibitively voluminous datasets.

As such, it is of critical importance to develop automated methods for discovering insights

and phenomena that are present in the available data, as a way to build datasets and improve

forecast model fidelity.

2.6. Summary

In this section we have discussed and laid out the theoretical underpinnings of: machine

learning; deep learning; specifically transfer learning, where a pre-trained feature extractor

is used as a backbone in a larger architecture for custom training on a new, more limited

labelled dataset; and the radar systems that we observe weather phenomena and on which

we which to apply the techniques mentioned above.

In the next section, we will discuss in more detail the meteorological constructs that

generate the phenomena that is observed with weather radars, and how these phenomena

are measured in the dual-polarimetric Doppler weather radar moments.
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CHAPTER 3

Radar and Meteorology

For most of the 20th and early 21st century, weather radar has provided the highest

resolution and most complete snapshot of meteorological phenomena. Some recent work

has illuminated methods for developing even higher resolution weather data solutions by

analyzing cellular communications data, but for most in the academic realm of geosciences,

weather radar remains the most trusted and most available instrument for observing the

atmosphere and meteorological phenomena.

Since this work focuses on identifying and classifying meteorological phenomena in weather

radar scans, some discussion is warranted on what features can be observed in this data for-

mat, how humans analyze weather radar data, and solidifying the terminology used through-

out this document.

3.1. Precipitation Regimes

Essentially, we examine two major precipitation regimes: stratiform, and convection.

Examples drawn from the hand-labeled dataset of scans observed by the XMDL radar in the

CASA DFW network are shown in Figure 3.1.

Unfortunately, there is no hard and fast definition for what either of these particular

regimes are. It would be satisfying to be able to point out a few membership functions for

radar parameters, as well as some specific atmospheric generating processes, as a way to

conveniently put every precipitation radar scan into one of the two bins. In fact, the former

must be done to produce a training dataset, but it is worth noting here that this is something

of a fiction.
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(a) Stratiform - 2017-08-07 06:30:34 UTC (b) Convection - 2017-08-07 05:25:57 UTC

Figure 3.1. Examples of radar reflectivity Zh from the two major precipita-
tion regimes, observed by the XMDL radar in the CASA DFW network

3.2. Radar Observations of Meteorological Echoes

The highly cited (> 650) ”Stratiform Precipitation in Regions of Convection: A Mete-

orological Paradox?”[15] published in 1997 in the Bulletin of the American Meteorological

Society attempts to provide a definition for stratiform precipitation, that we will use as a

basis for the analysis in this work. To wit: ”Stratiform precipitation is fairly homogeneous in

the horizontal, giving it a layered structure in vertical cross sections of radar reflectivity. In

particular, it often exhibits a pronounced layer of high reflectivity called the ”bright band,”

marking the layer in which the downward settling ice particles are melting.” Additionally,

the authors contrast this with convection, which they aver can be detected on radar scans

via pronounced cells of high reflectivity, corresponding to storm cells, another term with
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loose definition. The paper points out that storm cells typically feature spatially localized

intense returns, that when viewed vertically in a range-height indicator (RHI) scan, appear

to have a much taller core, and less pronounced bright band, than do the more spatially

uniform stratiform precipitation scans.

It is with this knowledge that we turn our attention to plan-position indicator (PPI)

scans, where elevation is fixed, and the radar scans in azimuth. In these scans, especially

at lower elevation angles, there is far less of a chance to see a bright band, or melting layer.

However, stratiform regimes tend to produce more spatially uniform reflectivity returns over

a large coverage area, whereas convection regimes produce cells of intense precipitation or

hail, and correspondingly intense reflectivity returns, over smaller areas. One final possibility

is that convection can occur within a largely stratiform region, so there is overlap, from the

perspective of the bulk image classification.

Other research efforts have attempted to use horizontal reflectivity data from PPI scans in

classifying the two regimes. Along with pointing out the meteorological interest in discerning

data of this type, [16] presents an algorithm that itself improved upon a prior work [17] via

the Tropical Rainfall Measuring Mission (TRMM) to partition stratiform and convective

regions within individual volumetric scans. This latter work points out the difficulty in

using the melting layer identification as a method for performing stratiform vs convection

classification: namely,

(1) Vertical resolution of weather radar scans (in PPI mode) are inadequate to resolve

the melting layer except near the radar, limiting the sampling area

(2) The melting layer is not always well-developed even in stratiform regimes, especially

in early-stage or late-stage stratiform, or in scans where both types of precipitation

are present
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The authors describe a condition for the determination of stratiform precipitation in

terms of a vertical updraft wind speed w:

(10) |w| << |Vt|

where Vt is the snow particle terminal velocity, for particles above the melting layer. In

convection, this updraft speed is higher with respect to the fall speed, leading to particles

growing in a different manner, and generating much larger rain drops or hail by the time

they reach the ground.

By inference, and as stated above, in stratiform rain cases, precipitation is more spatially

uniform than in convection, and this fact is utilized by [17] to perform classifications using

the horizontal structure of the precipitation field. They convert the polar weather radar

volume scan to a three-dimensional Cartesian grid, then look for peaks in the rain rate,

which is directly proportional to reflectivity. By defining and combining criteria regarding

the intensity of reflectivity values, the number of peaks outside a convective center, and sta-

tistics from the surrounding area of the convective center, they make classifications regarding

precipitation types in scans for specific regions.

This method utilizes information about the atmospheric processes and how they present

in the highest resolution data available to perform classifications. However, its reliance on

well-calibrated rain rate returns, available only via empirical determination and variable

not only between locations but also in time limits the utility of this method in producing

high fidelity classifications for other radars. Furthermore, its statistics regarding reflectivity

field values may not correspond to optimal discriminating functions for the two regimes, a
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drawback in any method that relies on heuristics, design choices, and other hyperparameters

to determine a suitable function.

As we will discuss in Chapter 4, one advantage in utilizing machine learning algorithms

as tools for functional approximation is that many of the above design choices, parameters,

and nonlinear mappings can be learned by models well-suited to the task. This is not a

new concept, of course, and early attempts using neural networks have been tried by other

groups for performing these classifications. In one example [18], a shallow, three layer neural

network consisting of two hidden layers of 8 neurons each was developed and trained on a set

of features chosen by the authors. The features included storm height, reflectivity values at

specific elevations above ground level, height of maximum reflectivity level, vertical gradient

of reflectivity, and horizontal reflectivity standard deviation. This last feature ties in directly

to the discussion above, whereby variable spatial returns may be less likely to be considered

stratiform precipitation regimes.

As above, the classification was performed on WSR-88 reflectivity data, but this study

utilized radars throughout the southeastern United States, as compared to only one plat-

form in the previous regime. Compared to the aforementioned methods, the false alarm

rate in classifying stratiform was comparable, but was far superior to classifying convective

precipitation than the others. And false alarm rate (FAR) is perhaps the most important

metric when considering data discovery, where the results of any algorithm are expected to

represent the class that the algorithm labels them. This study also demonstrated the value

in utilizing neural networks as a functional approximation technique, and their strength in

finding feature spaces where decisions can be more readily made.

The neural network in [18] was impressive but only could learn a linear function, given its

structure. Additionally, the features in the network were drawn from a low-resolution 2 km
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x 2 km grid, which may have smoothed over local variability of interest. Finally, the feature

engineering provided valuable predictors, yet overlooked the raw two-dimensional textures

inherent in radar reflectivity data, that form a large component of how humans perform

precipitation regime classification.

Other methods have been shown to perform this classification and include instruments

other than weather radar, such as disdrometers [19] and satellites [20]. These systems are

vaulable tools and can provide information to those with access to the data, but require either

specialized instruments to implement, or correspond to smaleler-than-desireable coverage

areas than weather radar, and as such will be ignored in this analysis.

3.3. Summary

In this section, we examined some of the current state of the art in meteorological phe-

nomena recognition, both through qualitative and quantitative methods, by examining the

physics of the generating distributions, and how those present textures in weather radar scans

that can be leveraged to algorithmically determine to which precipitation regime belongs in

each scan and area of each scan.

In the next section, we willl look at more specific parameters of the machine learning

architecture used in this research, with the early experiments in discovering data of interest in

our dataset, as well as benchmarking our architecture with a ”gold-standard” image dataset.

28



CHAPTER 4

Classifying Meteorological Observations in Radar

Image Data

A question of particular interest is that since most available convolutional bases are

trained on photographic images, can the knowledge from the structures, textures, and fea-

tures they extract be applied to data outside the natural image domain? These models are

trained for 3 input channels, which are usually red (R), green (G), and blue (B), to form

the 3-tuple denoted RGB. In the reflectivity alone case, there is a single channel of image

data, which is simply the Zh intensity value. There is usually, however, color information

that is applied to this data via a colormap, which both quantizes the data and assigns color

to this data bins. This is usually intended as a method to enable ease of visualization for

humans, both in real-time analysis as well as when examining prior data. A common practice

to facilitate the human-data-discovery pipeline is to store generated images as png files, or

some other image specification.

As such, this method sets up a convenience in data processing, if it can be incorporated

into a machine learning pipeline as a direct input, thus saving costly steps involving file I/O,

reading specific variables data, and processing into a suitable format.

This leaves a few specific questions for this work:

• Can a deep learning (DL) model learn from and properly classify single channel

data?

• Can it do so from a colormapped version of the data?

• Is there a specific colormapping technique that would yield a more suitable or even

optimal mapping ot use as input to a DL model?
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We designed and present a few experiments, designed to answer these questions. The

first question is one that is key in this dissertation. Put another way, can low- and mid-level

image features be used in weather radar image data to identify and classify precipitation

regimes? This question will be answered over the course of this manuscript. However, the

following two questions need to be addressed as part of this, and will be examined first.

One way that Deep Learning architectures can be thought of working is via extracting

image features and analyzing the spatial and pixel-based content, then using these features to

discriminate between classes. RGB tuples are usually the input, which gives 3 independent

channels of data for the DL models to analyze. As such, it seems unlikely that the specific

colors used would matter, so long as the space was appropriately trained and modeled, and

test images remain consistent with training images.

In order to test this hypothesis, we examine a few colormapped versions of the input

MNIST Fashion dataset, which containsN = 60000 training samples encompassing 10 classes

relating to categories of clothing. The usage of this dataset is to provide a point of comparison

for the model accuracy and loss curves generated in this research with benchmark values

produced by others in the field. We will illustrate the design choices regarding constructing

and training the end-to-end deep learning model architecture using this dataset prior to

implementing it on the desired target dataset of precipitation regimes. Specifically, we

perform the following experiments to answer the following questions:

• With many available choices of carefully trained convolutional base models available

in the field, which to choose?

• Experiment: Compare classification curves of two such models, VGG16 and Mo-

bileNetV2, using MNIST-Fashion dataset

• Does colormap matter?
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• Since many available processed weather radar scans involve colormapped data de-

signed for human evaluation, it is important to discover if colormapping intensity

values has a deleterious effect on model learning

• Experiment: Encode the MNIST-Fashion images in three colormaps, and compare

validation accuracy of chosen model on each dataset, which are detailed here:

(1) Black & White: Raw data duplicated in three channels

(2) Viridis: Perceptually uniform, to faithfully match colormap design to data

characteristics

(3) NWS Reflectivity: Mapping data to rainbow colormap preferred by the Na-

tional Weather Service to represent horizontal reflectivity data

• How much can we learn?

• Train model on each dataset until maximum learning is achieved in top classifier,

then fine tune model to maximize learning on target dataset

This chapter first introduces image classification and develops a brief but necessary back-

ground in techniques and advances that lead to solving problems of the kind in this work.

There are several conventions regarding nomenclature and formal description of this sets of

problems and solutions. As such, it is critical to establish a convention to be used through-

out this document. Additionally, the open source movement in the research fields has led

to an increase in open access publications. Following along in this spirit, this document will

attempt to follow conventions set by respected, oft-cited, open access materials, such as [21].

4.1. Image Classification

In order to understand image classification, transfer learning, and the application of these

to weather radar images, we must first examine the basics of machine learning, and carry this
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examination through deep neural networks (DNNs), how these models are developed, and

how features can be extracted from images and used to generate predictions, classifications,

and ultimately, to generalize to unseen data. It is expected that the readers will have had

some prior experience in studying machine learning techniques, and as such, the examination

here will not be exhaustive.

It is perhaps important here to specify that image classification is one sub-type of classifi-

cation problem that is discussed in image-based deep learning literature. Image classification

is to make an inference about the class to which an image belongs in its entirety. Contrary

to this is object detection, which seeks to find localized objects in a given image. In object

detection, there can be multiple instances of a given object in any image, and it is expected

that there are many types of objects that may or may not be present in any image given to

the system.

4.1.1. Machine Learning Concepts. We can define machine learning as a method-

ology for allowing a program ”to learn from an experince E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured by P ,

improves with experience E,” as described in an early book [22] on the topic. This verbalizes

and formalizes the experiment space in which machine learning algorithms live. In this ter-

minology, the task T is what we seek to achieve; in this work, this is always a classification of

input data into categories, such as classifying weather radar. The experience E is the data

that the model learns from, and consists of two types of datasets, referred to as training and

validation data. In supervised learning problems, the umbrella under which the problems in

this work exist, the training and validation datasets have labels corresponding to the correct

classification. These labels are used to teach the model how to classify the data samples pre-

sented during the training phase. Additionally, the validation set is a group of data samples
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representing a stratified random sample of all samples available in training, and is used to

evaluate the model during training to provide information to both the model itself and the

researcher. The performance measure, P , is how the predictions of the model are evaluated,

which usually takes the form of an accuracy, which is computed as the fraction of correctly

predicted values to the total number of values. This is evaluated on a held-out test set of

data, which is a simulation of unseen data, and is useful as a measure of the model’s ability

to generalize to heretofore unseen, or potentially new, data.

Many problems in machine learning relate to an experience E, or a dataset, where indi-

vidual samples can be drawn from generating distributions as vectors of some set of features

of interest. In the most classic example of this type of dataset, [23] describes a dataset

consisting of 3 different types of Iris flowers (i.e, classes), where each individual flower (sam-

ple) is described in terms of a set of quantitative characteristics (features). Many textbooks

use this as a well-defined problem- and data-space to introduce these concepts. We could

define a design matrix X composed of all data samples in the Iris dataset as X ∈ ℜ150x4, as

there are 150 samples corresponding to individual flowers, each represented by 4 real-valued

quantitative features.

4.1.2. Shallow Networks. Shallow networks, also referred to as multilayer percep-

trons, describe the most basic formulation of neural networks. There is a set of inputs, x1,

a set of layers l, outputs for each layer yl, which are functions themselves of weights matrix

Wl, the inputs, and biases bl.

Neural networks borrow nomenclature from the field of neurology, and as such, the small-

est ”cell” in a neural network is called a ”neuron.” In computing, these neurons are made

up of connections to the outputs from the previous layer, compute a linear combination on
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these inputs with a set of individual weights and biases, and the output generates the values

for the next set of layers.

The idea behind neural networks is essentially to set up a function that has the ability

to ”learn” a dataset’s inherent class distributions by looking at the data, passing it through

this model architecture, computing the combinations of input variable values, propagating

through the layers, and making some prediction at the output layer. In classification prob-

lems, this output prediction is of class membership, hence the term ”classification.” Neural

networks can also be used in regression problems, but that usage is out of scope for this

work.

In the simplest example of a multilayer perceptron, there is a layer of inputs, an output,

and one neuron. This case is identical to linear regression, and can be represented as

(11) y = wTx+ b

where w is a vector of weights, x is the vector of inputs, and b is a bias term.

In order for this model to learn, there must be a way to evaluate its predictions. There

may be many ways to evaluate predictions, some optimal given a particular data set or end

goal, but one common method is to the mean squared error. The mean squared error in this

case is given by

(12) MSEtest =
1

m

m
∑

i=1

(

ŷtest − ytest
)2
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where m is the number of data samples in the test set, ŷtest is the labels predicted for the

test set, and ytest is the true labels. The error above will be minimized when all predicted

labels match the true labels. The goal in training any machine learning model is in altering

the weights vector w (or matrix W) and bias b such that the amount of correctly predicted

labels increases. This is generally achieved by employing a loss function to compute the

error, or loss, between predicted values and true labels. The loss function is another way to

evaluate model performance P , and choice of loss function is important, determined by both

the data space, the type of machine learning algorithm, and the desired output.

Since the objective in training is to minimize the loss, we can compute the gradient,

the partial derivative of the objective function at every layer with respect to outputs, and

minimize that. More formally, we allow our model to experience the training data set and

its labels, (X(train), ytrain). In the simple case of linear regression, we seek to minimize the

gradient on the training set,

(13) ∇
w
MSE(train) = 0

Substituting,

(14) ∇
w

∣

∣

∣

∣

∣

∣
ŷ(train) − y(train)

∣

∣

∣

∣

∣

∣

2

2
= 0

from which the optimal set of weights can be computed following [21] as
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(15) w =
(

X(train)TX(train)
)

−1

X(train)Ty(train)

While this function has an optimal set of weights that can be determined analytically,

it is unfortunately too limited to be of much use in more complicated problems, such as

those involving modeling non-linear class distributions, as well as ”deeper” models, or those

with image inputs. To search for solutions in these problem spaces, we must employ deep

feedforward network models, a class of models in the field of deep learning.

4.1.3. Deep Feedforward Networks. Deep learning implies depth, a concept that is

suitable and relevant in deep feedforward networks, a class to which the deep convolutional

neural networks utilized in this work belong. In this context, depth corresponds to many

layers of many neurons each, generating many, many more connections than in shallow

network architectures.

The goal of a deep learning model is to satisfactorily approximate some function f(·),

that maps inputs x to output categories y, with some set of parameters θ. The general

function can then be written as

(16) y = f(x;θ)

As above, we follow the standards and nomenclature presented in [21], etc, in this work.

The name ’feedforward’ comes from two aspects: first, that information flows from inputs

to outputs forward through the model; and, values propagate from input to output without

any feedback connections to previous layers, as is sometimes used in memory-based models
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like recurrent neural networks[24], or models that take inspiration from such connections,

such as ResNet[25].

There can be many intermediate functions, or layers, between input and output, con-

nected via a chain of functions, such as

(17) f(x) = f (1)(f (2)(f (3)(x)))

where the superscript (l) denotes the function at layer l. The term ”deep” learning in

part comes from the usage of many of these such layers, or more generally,

(18) f(x) = f (1)(f (2)(· · · f (l)(· · · f (d)(x))))

for d layers.

There is one more limitation in shallow models to overcome prior to designing a deep

architecture capable of modeling general functions: nonlinearity. One way to account for

this is to apply a nonlinear mapping on the inputs at each layer φ such as φ(x) This can be

managed in multiple ways: specifying a general nonlinear function for the inputs, leading to

a class of problems including support vector machines [26]; manually designing the function,

analogous to many empirical and theoretical strategies in many fields involving decades of

work; and learning the mapping, as is done in deep learning.

Formally, we can express this as

(19) y = F (x;θ,w) = φ(x;θ)Tw
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with parameters θ to be drawn from a class of nonlinear functions, and weights w to be

learned to map the inputs to the output type of interest.

Generally, the weights vector w is initialized to random small values, training samples

are input to the system, and the loss is calculated between predicted and true labels for the

output.

This phase is often referred to as forward propagation. It is worth noting that recent

works have shown [27] [28] that more carefully initialized weights can lead to more stable

properties in deep learning models, discussed later in this work.

In the next phase of training, backpropagation, the gradient of the loss function is calcu-

lated. The loss function, or cost function, needs to be minimized, which in turn improves

the understanding by the model of the dataset. Computing an analytical solution of a single

neuron, feedforward neural network, as above, is not infeasible. Doing so for shallow neural

networks, featuring a relatively small number of parameters to optimize may be reasonable

in some cases, but doing so in a deep neural network, where the number of parameters may

extend into the tens of millions is not only intractable but likely impossible. However, if

the specified loss function is differentiable, we can use its gradient calculated with respect

to the parameters as a way to seek local minima in these high-dimensional spaces. Doing

this allows the network to learn by adjusting its weights, backpropagating changes informed

by moving in the opposite direction of the gradient, which seeks to minimize the loss and

increase learning.

4.1.4. Layers and Activations. Training a neural network is a nontrivial task, even

when the details of stochastic gradient descent and basic connection types have been worked

out. Specifically, we examine a subset of the available layers and activation functions, focus-

ing those that will be used in this research in the top classifier.
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There are two layers called batch normalization layers, and these are used to shorten

training times and make it less likely that either vanishing or exploding gradients are en-

countered. These two issues form one of the core challenges in training a deep neural network,

and are often the result of poorly initialized weight vectors w or as a consequence of the

many layers present in a deep neural network. One way to counter this is to include nor-

malization steps, where weights in each batch normalize inputs to these specific layers. This

was introduced in [29] to reduce this internal covariate shift, and uses batch statistics in the

following algorithm from their paper:

• Input: values of x in a particular batch, given by B = x1...m with parameters to be

learned, γ, β

• Output: yi = BNγ,β(xi)

(1) Compute mini-batch mean: µβ = 1
m

∑m
i=1 xi

(2) Compute mini-batch variance: σ2
β = 1

m

∑m
i=1(xi − µbeta)

2

(3) Normalize inputs: x̂i =
xi−µβ√
σ2

β
+ǫ

(4) Scale and shift: yi = γx̂i + β ≡ BNγ,β(xi)

where xi is and input, B is the set of inputs in the training batch, and ǫ is a small

non-zero weight that ensures no division by zero is possible.

This is ultimately a relatively straightforward calculation, but by normalizing inputs at

late stages, we saw a marked increase in the network’s ability to learn. At the stage this is

employed, the inputs themselves are the many feature tensors produced by the convolutional

base, which are in turn the resulting feature maps from the image data, which itself could be

drastically different from image to image. It is believed that the batch normalization defuses

some of the issues with these disparate inputs.
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In order to generalize to nonlinear functions, we must introduce a nonlinear mapping σ(·)

somewhere in the network. It is most often applied to each neuron, such that ŷi = σ (xw+ b).

There are many choices for this function, though the most common is the rectified linear

unit, or ReLU. This was designed in part as an analogy to activations in the brain, though

the ReLU can take on more potential values. It is given by

(20) σ(·) = max(0, x)

There are many variations on this, including noisy ReLUs, leaky ReLUs, and Parametric

ReLUs, though these are not employed in this research and will not be discussed.

Finally, in training it can be good to randomly zero out neurons in order to mitigate

effects of overfitting. This is based on the assumption that if a network is unable to ”count

on” any neuron or set of neurons during training, redundancy will be built into the network,

and also generalizability, since no set of neurons can learn specific features in specific images.

The rate of dropout varies, and studies point out that more or less may be useful given

the application and other layers. The authors of the batch normalization paper suggested

that dropout could itself be dropped out of networks in many cases when batch normalization

was employed, though it was found through experimentation that a dropout rate of 0.33, or

33%, worked well in this research.

4.2. Benchmarking Deep Learning Methods with MNIST-Fashion

Given the complexity of the task at hand and the need for an experiment framework that

can be compared to other efforts in the field, it may be relevant and useful to use a known
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dataset to benchmark the algorithms we develop in this work. As such, this section details

the effort to standardize the experiments on a well-studied and well-understood dataset.

4.2.1. Dataset. Historically, the MNIST dataset[30] has been employed as a method

for ensuring that results from research in various computer vision tasks are valid and com-

parable to a well-understood baseline. Unfortunately, the MNIST dataset has recently been

considered to be overused[31], leading to many models that are excellent at classifying the

handwritten digits dataset, but not optimally generalizable to more complex tasks arising

from images that include more features and more overlap. It has also been pointed out that

MNIST-trained algorithms do not find general representations in computing feature maps,

leading some researchers to believe that models often simply memorize the training data to

generate the high levels of accuracy often observed in state-of-the-art architectures.

As a result, we have chosen to forego usage of the MNIST dataset in favor of a more

complicated dataset called MNIST-Fashion [32]. This dataset consists of 70,000 images

representing 10 classes of items of clothing. The images are square and equally sized 28x28,

single-channel intensities on black backgrounds. These design choices mirror those in the

original MNIST dataset, which is based on the desire for a drop-in improved replacement

for the oft-used digit recognition database. Some example images in each class are shown in

Figure 4.1.

This research draws upon insights provided in the field of transfer learning, and as such,

uses a trained model as its convolutional base layer. The goal of this layer is to utilize

general low- and mid-level image features present in many images, and train a top model

classifier initialized from random weights to learn to classify the target task. It is specified

that as a rule of thumb, the target task should not be very different from the source task

that the model was trained upon[33]. Throughout this work, however, the goal is to classify
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Table 4.1. Some relevant technical characteristics of two deep learning ar-
chitectures

Model Size Parameters
VGG16 528 MB 138,357,544
MobileNetV2 14 MB 3,538,984

weather radar images, which are quite different from the natural images that most available

models were trained upon. Another benefit of benchmarking on the MNIST-Fashion dataset,

though, is that it too represents a set of images that differs from the ImageNet dataset [34],

which is what the convolutional base models were trained upon, a dataset containing more

than 14 million natural images representing 20,000 classes. The MNIST-Fashion images are

natural images, but they also are similar to the single-variable weather radar data as well,

in that they contain information in only one channel. It is expected that this dataset is thus

similar to both source and target tasks, whereas the two are themselves quite different.

4.2.2. Selecting a Convolutional Base. Before turning to single-channel weather

radar data in Section 4.3, we must design an end-to-end model capable of matching or

exceeding MNIST-Fashion benchmark error rates using a convolutional base trained initially

on the ImageNet dataset. There are several readily available models from which to choose

[35]. It is assumed that in the well-trained case, a larger model corresponds to better

generalization to unseen data, as there is more room within the architecture to model more

features relevant to classification. Meanwhile, smaller models may be have shorter training

time necessitating less compute power, at the cost of generalization power.

To test this, we designed an experiment involving one well-known deep learning archi-

tecture from each category. The VGG16 [36] architecture represents a large model, at 528

MB, while MobileNet version 2 (MobileNetV2) [37] is much smaller, using 14 MB memory.

See Table 4.1 for technical specifications of each model.
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Figure 4.1. Examples from each class in the MNIST-Fashion Dataset. Each
class is represented by three rows in the figure.

Each convolutional base requires data to be formatted in a specific manner: input images

must be normalized on the interval [0, 1]; they must be a specific size, [96x96]; and they

must contain three channels, since the convolutional bases were trained on three-channel

RGB natural images. In order to conform to these requirements, all training and testing

images were generated from the dataset by a combination of upscaling the resolution and
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duplicating the single channel data to three channels, effectively retaining the black & white

input nature of the raw images. At training and validation time, images were scaled from

[0, 255] to [0, 1]. During training, data augmentation was utilized in an effort to ”fake out”

more data, as well as to attempt to make the network more generalizable to translations and

scaling in the images. Specifically, input images were centered and normalized, as well as

randomly horizontally flipped.

We demonstrate the usage of each convolutional base using the same top model. The top

model uses as input the features extracted in each convolutional base, and learns to classify

the target dataset using those features while training its own set of parameters. Through

theoretical and empirical processes, a relatively small top model consisting of 6 layers was

chosen. This set of layers includes batch normalization, global average pooling, dropout,

dense connections, and its final output layer is a softmax classification layer. An example

diagram illustrating a top-down view of the end-to-end classifier is shown in Figure 4.2.

During training, the weights in the convolutional base model are held constant, to preserve

the findings from training on the ImageNet dataset and to provide the top model consistent

inputs while it learns. No fine-tuning was employed in this test. Results of training can be

found in Figure 4.3.

The results are interesting. Training was limited to 30 epochs, and while the loss had

not completely leveled off at epoch 30, the results indicate that on the validation set, the

VGG16-based model had a lower loss than the MobileNetV2 version. This is in line with

expectation, as the MobileNetV2 is intended as a valuable tool in performing classification

on systems of limited compute power, but such limitations inhibit its ability to approach the

accuracy found in larger models. As such, the analysis in this work will focus on utilizing

VGG16 as the convolutional base in classifying weather radar data.
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Figure 4.2. End-to-end deep learning architecture, with VGG16 convolu-
tional base and bespoke top model.

Additionally, there is a region of interest with respect to the training characteristics of

the MobileNetV2 model, where validation loss increases while training loss decreases. It is

unclear why this occurs in early epochs, though it is likely due to early overfitting when the

smaller model perhaps memorizes the dataset. Interestingly, this phase ends around epoch

10, where validation loss begins to decrease again and ultimately crosses the training loss.

That validation loss is lower than training loss at the end of training may seem to be

counterintuitive, since the validation data is unseen when training batches. However, this is

not an uncommon result when using data augmentation in training. The validation images

are drawn from a held-out portion of the training dataset, but during validation, no data

augmentation techniques are applied. Thus, the model can perform better on validation data

than the augmented training data, even while said augmentation assists in learning more

generalized filters for the images.

Finally, we will see that validation accuracy, when using VGG16 as the convolutional base,

can be increased. Meanwhile, test set accuracy will match current available benchmarks, but
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(a) Loss

(b) Accuracy

Figure 4.3. VGG16 and MobileNetV2 training and validation characteristics
during training on MNIST-Fashion dataset.
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in order to achieve this result, the entirety of the convolutional base will need to be made

trainable, and many more epochs of training must occur.

4.2.3. Does Colormap Matter? Many weather radar variables, such as horizontal

reflectivity Zh, are intensity values. In other words, there is some range of acceptable values

from a minimum to a maximum value, and higher values indicate more intense or higher

returns than lower values. This is somewhat analogous to the type of data in the images in

the raw MNIST-Fashion dataset, and as such, similar processing can be applied to the latter

dataset to model the former.

Specifically of interest is the type of colormap used to visualize the data. Weather radar

data variables, when plotted as images, usually are represented by a mapping from their raw

data space to a color space. This mapping usually has some forethough behind it as well:

radial velocity data, which ranges from a negative to positive Nyquist velocity of scatterers,

centered about zero, is typically plotted using a diverging colormap; meanwhile, horizontal

reflectivity, where higher values indicate larger and more intense precipitation, is plotted

with a segmented colormap where ”warmer” colors (i.e, red, orange, purple, white) identify

higher returns than color colors (i.e, blue, green, etc). When such a colormap is applied to

data, the values are essentially quantized according to pre-determined bins. Since Zh is in dB

and since each increase in dB corresponds to an order of magnitude increase in power return

of scatterers, these bins are usually kept to a small width; often, 4 dB width to a color, or

perhaps ”category,” of reflectivity returns. This is designed to inform human viewers as to

the contents of the data and the type of scan, but encodes a large amount of potential values

and cases in each bin. Furthermore, such quantization represents a downsampling, so that

images of weather radar data have less information than is present in the raw data. Finally,
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textures present from this colormapping process in the processed images may represent

artificial bounds, relatively arbitrary distinctions leveed upon continuous data.

The above factors raise concern in using pre-generated weather radar data as inputs to a

classification model. As data discovery is a fundamental goal of this research, and as many

radar data servers continue to produce colormapped data of this type, it is imperative to

discover if such operations impact the classification ability of a deep learning model. We

designed an experiment where the MNIST-Fashion data was colormapped according to three

categories to test this:

(1) Pure Intensity (No colormapping): This is equivalent to the data that was used as

input for the above experiment in determining the convolutional base to use

(2) Perceptually Uniform Intensity (Viridis): There has been growing interest[38] in

utilizing colormaps designed to appear continuous for human viewers in faithfully

representing continuous data, as changes in color appearance can more accurately

represent the changes in numerical data. The viridis colormap can be found in

many analysis packages in many languages (python1, MATLAB2, R3) and is chosen

to represent this class of colormaps.

(3) Segmented Colormap (NWS Reflectivity): The National Weather Service uses a

consistent colormap for reflectivity data, similar to the above, where warmer colors

indicate higher returns, and cooler colors represent lower return values. This is avail-

able in many analysis packages, but this research utilized the Py-ART package[39]

’NWSRef’4 colormap for this experiment.

1https://matplotlib.org/gallery/color/colormap_reference.html
2https://www.mathworks.com/help/matlab/ref/colormap.html, listed as ’parula’
3https://cran.r-project.org/web/packages/viridis/index.html
4http://arm-doe.github.io/pyart/dev/dev_reference/graph.html?highlight=nwsref
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Refer to Figure 4.4 for example images from three image classes, represented by each of

the colormaps in this experiment.

Figure 4.4. Various images from MNIST-Fashion dataset, visualized using
different colormaps. Images appear blurry as they are resampled versions low-
resolution ([28x28]) inputs.
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The deep learning model described above was trained and validated separately using

each colormap for 30 epochs of training. As above, training data was augmented by ran-

dom transformations chosen from pre-determined parameters. The training and validation

characteristics are shown below in Figure 4.5.

Figure 4.5. First 30 epochs in training deep learning model, with input
image representations derived from three colormaps, black & white, viridis,
and NWS Reflectivity

As before, we see that validation accuracy is higher than training accuracy, while vali-

dation loss is lower than training loss, as can be seen when data augmentation is used in

training. This plot shows better results for the data in its original format, with each input

channel corresponding to the same intensity values, which renders as a black & white image.

The viridis colormapped data shows the next best results, followed by the NWS Reflectivity

data. However, it is important to note that at this point in training, each validation accu-

racy continues to rise. As such, we should examine the results following a longer period of
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training, to find where each network learns as much as it can, with respect to classifying new

data.

4.2.4. Fine Tuning. As demonstrated in Figure 4.5, the network is able to learn data

from each colormap and produce satisfactory validation accuracy results even after 30 epochs

of training. However, it is also apparent that longer training time will continue to increase

the learning in the model, as none of the validation accuracy plots have reached a horizontal

asymptote. As such, we can continue training in the model for more epochs to see if the

loss and accuracy continues to improve. To assist in training, we monitor the validation

loss, and if 10 epochs of training have passed without an improvement, the learning rate is

reduced by a factor of 5. The motivation for this is that each gradient step after each batch

loss is computer is unable to further approach the local minima in the convex region of the

multi-dimensional loss function, but that if the learning rate is lowered, gradient steps will

be decreased, allowing further training.

Additionally, we employ a technique called fine tuning, whereby after a set number of

training epochs has reached, all layers in the convolutional base are unfrozen and the entire

model is trained for a further number of set epochs. The idea is that the features extracted in

the convolutional base, as trained upon the natural images in ImageNet, are not as accurate

on the target task as they could be, and so we must allow the weights in the base model to

adapt to this target dataset through more training. In order to not lose the insights learned

when training the top model, however, we set the learning rate to a lower value, so that each

gradient step does not drastically change the makeup of a framework that is already working

well.

Other authors have attempted to find not only working methods for training such archi-

tectures, but to also find optimized versions. In fact, this process is at the core of transfer
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learning, which again, is the process by which a model is trained deeply and carefully on a

source dataset, but is then adapted to a new target task. Two works stand out from early

in the development in this field: [33], which trained AlexNet [7] on a few different source

tasks and tested on different target tasks; and [40], which was also based on AlexNet but

replaced the final layer with two custom designed layers, making a top classifier to perform

object detection on a different (but still natural image) dataset. The latter stresses the im-

portance of adding layers to assist the network learning to generalize to the new task, while

the former illustrates that fine tuning as described above actually led to better results on a

target dataset trained from source data, than a network simply trained on the target task

in the first place.

The result of this is that we can implement these same concepts using larger networks,

and expect to see good results. To test this hypothesis, we employ the following strategy for

each of the three datasets:

(1) Initialize weights in top classifier, freeze weights in convolutional base (VGG16)

(2) Compile model with adaptive learning rate technique Adam, initial learning rate =

1x10−4

(3) Begin training, 300 batches of size 32 original and augmented images per epoch, for

100 epochs

(4) If a validation set loss plateau is reached, reduce learning rate by factor of 5 and

continue training

(5) After 100 epochs:

(6) Unfreeze all layers in convolutional base

(7) Reset Adam learning rate to 1x10−5

(8) Continue training as above
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(9) Stop training after a further 100 epochs (total 200)

The goal of this experiment is in part to fundamentally understand that maximum learn-

ing capabilities of the end-to-end convolutional neural network model with respect to the

various colormapped input datasets. The results are shown in Figure 4.6 below.

We would expect that the original data has the best results, followed by the colormapped

sets, which artificially introduce color mappings to aid human viewing. Additionally, we

expect the NWS Reflectivity to suffer further deleterious effects due to its lower resolution

binned color scale, which introduces artificial textures not present in the raw intensity data.

In fact, this is the case, though there are some interesting results to examine. First, the

perceptually uniform colormap, viridis, has nearly the same loss and accuracy curves in

the fine tuning phase of training, as well as a similar test set accuracy. This perhaps may

indicate a utility in using perceptually uniform colormaps for not only human visualization

but in machine learning settings as well. Second, while the training characterization suffers

when using the NWS Reflectivity colormap, the validation and test set accuracies are still

quite good. For the record, the best test set accuracy on the MNIST-Fashion dataset, using

VGG16 as convolutional base, is 0.9355 as of this writing, which all three datasets surpass

in this experiment.

The major takeaway here is that colormapped intensity data can provide a useful and

satisfactory dataset for transfer learning. We can have some confidence now, that the model

will be able to learn and classify when considering radar data, many variables of which

represent intensity values and which are often visualized in colormapped form. This is

particularly useful in the case of the CASA DFW data, which is stored not only in NetCDF

form for the raw data, but also has pregenerated radar moments for each scan to assist in

5https://github.com/zalandoresearch/fashion-mnist
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human viewing of historical data. The experiments regarding this data, as well as its usage

in classifying precipitation regimes, will be detailed in the next section.

4.3. Reflectivity Alone - CASA DFW

Data was hand-labeled by the author into one of three classes:

• Stratiform Precipitation

• Convective Precipitation

• Unclassified

The first two were labeled when the conditions in Chapter 3 were met for each case.

The third category is considered to be ”everything else,” for now. Once these categories

were populated, the model described above was trained using the reflectivity pre-generated

images as inputs. The data was split into a training and testing set, where each were

about 3 same size, and the testing set was populated with data from completely different

days than in training. When training, the data was further split into two sets, where 90%

of the training set was actually input to the model, and the remaining 10% was used for

computing validation characteristics during training. It was by monitoring the validation

loss and categorical accuracy that we were able to employ an early stopping condition in

training, in order to avoid overfitting. Due to the small size of the dataset, this occurred

after only 15 epochs of training.

We must detail a few success metrics here in order to compare the results of this experi-

ment to similar ones described in Chapter 3. There are five metrics listed in [18], which we

formulate here and compare to the results observed in the present experiment.

Probability of detection (POD) is given by:
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(21) POD =
ntruepositive

ntruepositive + nfalsenegative

False alarm rate (FAR) is given by:

(22) FAR =
nfalsepositive

ntruepositive + nfalsepositive

Cumulative success index (CSI) is given by:

(23) CSI =
[

(POD)−1 + (1− FAR)( − 1)− 1
]

−1

The results from this experiment are detailed in Table 4.2 below. The two final param-

eters from the original paper[18] are omitted as they relate to pixels, not only precipitation

regime. Furthermore, the deep neural network presented here (DNN) was trained on a third

class to be able to ignore images that were unrelated to stratiform or convective precipita-

tion, which was not performed by the other methods. As such, we add a third entry to the

table below.

4.3.1. Data Discovery. Deploying the model on CASA DFW servers as a way to

identify candidate scans for enlarging precipitation regime dataset, and using iterative, semi-

human-supervised process to expand dataset. Given the complicated nature and lack of con-

viction regarding directory structural conventions, the CASA DFW servers are particularly

challenging to parse. However, this is a data engineering problem.
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Table 4.2. Statistics for various algorithms in the literature in calculating
stratiform and convective precipitation regimes. The algorithm presented in
this research is denoted by DNN, and includes a third class to model all other
cases. As such, a row is reported illustrating the overall classification rates,
and is bolded to emphasize this.

Algorithm Rain Type POD FAR CSI
NN[18] Stratiform 0.97 0.07 0.90

Convective 0.52 0.29 0.43
SHY95[17] Stratiform 0.85 0.05 0.81

Convective 0.72 0.59 0.36
BL00[16] Stratiform 0.84 0.04 0.80

Convective 0.74 0.58 0.36
SHYM[18] Stratiform 0.89 0.05 0.85

Convective 0.69 0.51 0.40
DNN Stratiform 1.00 0.00 1.00

Convective 0.99 0.04 0.96
DNN Overall 0.976 0.012 0.965

As a substitute, several directories were backed up locally to allow deployment of the

model and general testing to occur. The trained model was deployed on two months of data:

June 2018 and September 2018. For June, convective precipitation was identified, while no

stratiform scans were selected. This is perhaps to be expected, given the warmth in the

Dallas-Fort Worth area in the peak summer months, and a higher likelihood of convective

activity. Some sample scans identified are shown below.

4.3.2. CASA - Generated RGB Colormapped Images. We can generate three-

channel pseudo-images where each channel in the image encodes data from different radar

variables. This sort of research has been tested in assisting human visualization and classifi-

cation before, but it is hypothesized that this could assist a deep learning model in making

inferences, especially regarding localized phenomena where radar variable interactions must

be considered in order to make correct classifications. This is an area of proposed research.

4.3.3. NEXRAD. It is beyond the scope of this dissertation to illustrate how the above

techniques could be applicable to NEXRAD data, but the process would transfer easily to
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this dataset. NEXRAD data is organized in multiple ”levels,” the most analagous to the

CASA DFW dataset being ”Level 2.” Level 2 data indicates that several dual-polarimetric

weather radar variables are contained in plan-position indicator (PPI) scans, at various

elevations. This format lends itself to the Cartesian-gridding and image colormapping that

encodes the radar data in a format easily recognizable to our machine learning architecture,

while providing various opportunities for combining radar moments and elevations into the

same ”images” to be able to learn from data at various altitudes, while capturing more than

horizontal reflectivity alone.

One major bonus to using NEXRAD data is the ability to leverage cloud technology in

accessing data and deploying a deep learning pipeline. This is due to NEXRAD data being

made available through Google Cloud Platform and Amazon Web Service, at no cost to

researchers. Our workflow involves human inspection of pre-generated RGB images on the

CASA DFW servers to seed the initial dataset, then copying these images to local storage

for the deep learning process to take place. It is not ultimately scaleable to the country-

wide, large-scale weather radar system that NEXRAD represents. However, leveraging cloud

compute ”near” cloud storage could allow a researcher to conduct this research on a much

larger scale. The NEXRAD dataset should thus be examined for this kind of research in

future, both in learning what is in the historical data, but also in running real-time image

classification on a country-scale.

4.4. Summary

In this section, we discussed machine learning components in more detail, as well as laying

out the architecture we wish to use to classify weather radar image data. We illustrated that
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this architecture can learn a benchmark dataset as well as the best models reported in the

field, and discussed in more detail the image data that will be learned.

In the next section, we will show how we have accelerated the deep learning labeling

process with this architecture, discuss the final dataset and the model’s performance on it,

and the new features added to the architecture, drawn from cutting edge research in the

field of deep learning.
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(a) Loss

(b) Accuracy, with final test set accuracy as well

Figure 4.6. Fully training & fine tuning the VGG16 + top model classifier
network on each dataset respectively, and computing learning characteristics.
Interestingly, the NWS Reflectivity colormapped data works well, but not as
well as both the original dataset, and the viridis colormapped data.
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(a) 20180604 (b) 20180607

(c) 20180605 (d) 20180624

Figure 4.7. Example data that was discovered by model and labeled as
convective precipitation. These scans were selected randomly from a large
dataset from the month of June 2018, at the XMDL radar. Expert human
curation is needed, though these four samples certainly represent the expected
precipitation regime.
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(a) 20180903 - Predicted Convective (b) 20180908 - Predicted Stratiform

(c) 20180922 - Predicted Stratiform (d) 20180929 - Predicted Stratiform

Figure 4.8. Example data that was discovered by model. These scans were
selected randomly from a large dataset from the month of June 2018, at the
XMDL radar. Unlike in Figure 4.7, there were more stratiform predictions.
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CHAPTER 5

Discovering the Optimum Model and Increasing

Dataset Size

Various issues arise in the preceding chapters regarding the classification system devel-

oped and dataset compiled. A brief list of such issues includes:

• Limited labeled dataset

• Restricted generalization ability of the model

• Lack of integration of recent developments in image-based machine learning tech-

niques

As previously discussed, the initial dataset includes, in total, roughly 1,200 weather

radar images. This dataset was compiled by the author’s careful inspection of hundreds of

thousands of images and labeled by hand when a particular meteorological phenomena or

precipitation regime was present. The data corpus was constructed of scans from one X-band

radar, located in Midlothian, TX, with time coverage between January 2016 to December

2017. Given that plan-position indicator (PPI) scans are produced at the 1 degree elevation

every minute, there are roughly 500,000 scans available each year. Even with diligent search-

ing and labeling, many potentially valuable radar scans representing phenomena of interest

will be missed.

Part of the inspiration for this work, and indeed a major goal, however, was to be able

to apply a ”less-educated” model to new data, produce what may be referred to as ”less-

educated guesses” as to class membership on said new data, and allow a human expert the

ability to peruse these guesses and correct mistakes made in terms of false positives and

false negatives. This process greatly reduces the time taken to label the many thousands of
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candidate images and generates an opportunity to increase the dataset size by an order of

magnitude.

The second item in the list above goes hand-in-hand with the first item, in that in order

to improve the generalization ability of the model, we must be able to train the model using

many more representations of classes of interest. To do this, we must include more data.

Figure 5.1. Complete end-to-end deep learning architecture devised in this
chapter. Note that convolution layers now include batch normalization, while
downsampling layers are formed by the new BlurPool layer. These two are
tuneable parameters in this architecture, and we tested many configurations
to find the best set of parameters and hyperparameters.

The third item can be used to assist the second item as well. Computer vision, transfer

learning, and machine learning in general are currently some of the most active areas of

research in science as a whole. The tools that are being developed, and indeed, that have

been developed, can find application in almost every field, and each field in turn can offer

insight into improving the tools themselves. It is essentially impossible for any one researcher
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or team of researchers to stay abreast of every relevant development related to their field.

However, leveraging insights made from recent discoveries remains useful, important, and

essential for any effort in this field.

To that end, we propose a set of experiments to determine the optimal model to use

for our transfer learning procedure by incorporating recent discoveries from the field into

our deep learning model architecture, and testing each variation on a consistent dataset to

determine the best architecture. The following sections in this chapter detail the efforts

made to increase the dataset size, descriptions of the additional model layers, and present

the results of the set of experiments that yields the optimum model, given these alterations

and improvements. We illustrate that the optimum model from the tested configurations is

shown in the end-to-end architecture diagram in Figure 5.1.

5.1. Increased Dataset Size

5.2. BlurPool

A dataset must include many representations of the desired phenomena of interest in

order to allow better generalization on test sets. In the specific case of weather radar data,

however, it is likely to see scans that are highly visually similar to one another when successive

scans are recorded in one minute intervals, as the images in this study are produced. This

high level of inter-image intercorrelation may lead to instances of overfitting, if the training

dataset is not large enough to present many uncorrelated events, as well as many scans for

each event. Storms and weather precipitation events will tend to move slowly across the

high-resolution, large geographic sampling area present in each scan, leading to the same or

similar echoes occurring in tens of successive scans as represented in Figure 5.2. It is thus
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desirable to not only encourage generalizability to unseen data in a particular classifier, but

in this case, to also be resilient to image object translation.

(a) 2018-04-21 23:50:38 UTC (b) 2018-04-21 23:51:41 UTC (c) 2018-04-21 23:52:38 UTC

(d) 2018-04-21 23:53:38 UTC (e) 2018-04-21 23:54:38 UTC (f) 2018-04-21 23:55:38 UTC

Figure 5.2. A particular precipitation event as observed in successive scans.
Note the similarity between successive scans. In an ideal classifier, all would
be classified as ”Convective.”

Convolutional neural networks like VGG16 are designed to be resilient to this type of

translation, but a recent paper [41] illustrated that by replacing the downsampling layer

which follows a convolution block, we can gain both accuracy and consistency of prediction.

This layer is called BlurPool, as it is a pooling layer that utilizes a Gaussian blur filter kernel
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to first low-pass filter the image feature representations following a particular convolution

block, before applying the downsampling mechanism.

An important step in any deep learning classifier is the downsampling layer, which takes

as input a wider, shallower set of image representations, and reduces the width while in-

creasing the depth. Width in this context refers to what can be thought of as the number

of pixels in the image or image representation, and depth, the number of channels or acti-

vations. We wish to take a high-dimensional input (image), and produce a low dimensional

set of predictions (classes). Thus, these downsampling layers are of critical importance to

the deep learning process.

The authors of this paper argue that the current set of most commonly used downsam-

pling layers, however, is not as resilient to translation in input image objects as would be

desirable. They draw inspiration from signal processing, whereby a signal must be low-pass

filtered prior to down-sampling, to mitigate issues arising from potential high frequency

energy aliasing into lower frequencies. The current most often used downsampling layers

in deep learning models, like max pooling or average pooling, essentially allow this sort of

aliasing. With a Gaussian filter kernel applied to activation layers prior to downsampling,

we can mitigate or eliminate this type of contamination, effectively anti-aliasing the deep

learning operations and promoting shift-invariance in the model.

5.3. BatchNormalization

We have presented some treatment of the Batch Normalization process elsewhere, though

this section aims to more deeply describe its place in deep learning model research, its added

value for this effort, and some implementation strategies used to adapt the off-the-shelf

VGG16 architecture to include Batch Normalization in its convolution blocks.
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As described above, the batch normalization, or BatchNorm or BN, layer seeks to nor-

malize and standardize the activations in deep neural networks in order to minimize the

effects of covariance shift and reduce issues arising from vanishing and exploding gradients.

This effect is confirmed in [42], who illustrates several interesting features of BN in deep neu-

ral networks. One insight gained was in examining activation weight ratios in intermediate

layers in DNNs trained both with and without BN. Those trained with BN had much larger

ratios and more variable values in gradients than did the DNN trained without BN. This

indicates that without BN, activations tend to converge to the same values regardless of the

input data, indicating a covariate shift. With BN, however, the data more deeply influences

intermediate layers. Additionally, it was shown that empirical distributions of gradient val-

ues with BN exhibited a distribution more reminiscent of a Gaussian curve, lower kurtosis,

and slimmer tails, which shows that the gradient values were more clustered around the mean

value of zero. Furthermore, it was demonstrated that gradient update step size created less

divergence in the relative loss functions across many mini-batch sizes. This result validates

our usage of a variable learning parameter mechanism in part, since the loss is not adversely

affected for decreasing step size. Finally, it was shown that weights in intermediate layers

tended to converge to low-rank, more variable values in the DNN without BN, whereas the

DNN trained with BN had a less marked effect in these terms.

Theoretically, it seems clear that batch normalization layers can and will help in our

experiment as well, but there is also a large corpus of practical evidence to support this

hypothesis as well. The fundamental VGG16 architecture [36] that we have built our base

architecture upon was chosen for its demonstrated success in transferring learning effectively

to target tasks that were much different than source tasks, but as it was introduced in 2014,

the model does not include any BN layers, since they had not yet been discovered. The
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paper also introduced a variation called VGG19, which included more layers and represented

a larger network, but again, it did not include BN.

The Extreme Inception, or Xception, DNN includes batch normalization in all convolu-

tion and separable convlution layers [43]. It was based in part on a style of network called

Inception, of which there exist multiple versions. The third major version of this network,

InceptionV3, batch normalizes all output activations [44]. Another iteration of this style of

network involves its combination with the ResNet style of architecture, and the combina-

tion, referred to as Inception-ResNet, includes some BN layers [45]. This is of particular

interest, since the authors implemented their network using Tensorflow [46], and discovered

that implementing BN for every activation layer led to greatly increased memory usage and

slower speed. Our networks also use Tensorflow, and our results indicate a similar effect,

where networks with BN spent more time in training and necessitated a smaller mini-batch

size. However, BN was still utilized where it was deemed reasonable and necessary to do so.

One final class of deep neural network that is worth mentioning is the MobileNet [47].

These networks take their name from their intended use space; mobile devices. On such

devices, trained networks must have a lower data footprint. This makes these networks ap-

plicable to situations and modalities where compute-limited or otherwise costrained compute

systems must be used, as in Internet of Things sensor setups. This comes at a cost of ac-

curacy and precision in learning classifiable deep feature representations, and in preliminary

testing, our VGG16 convolutional base outperformed MobileNet feature extractors. Still, it

is important to note that in MobileNets, BN is present.

We thus consider batch normalization to be a necessary layer to add to our architecture,

and we will illustrate an experiment below that compares networks with and without BN

and demonstrates the layer’s efficacy in improving classifications.
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5.4. Experiment Setup

The diagram in Figure 5.1 demonstrates the architecture configuration we use in this set

of experiments. We included both BlurPool and batch normalization layers in the diagram

to illustrate where these layers would exist in certain configurations.

The goal of this experiment is to test the end-to-end deep learning model to discover

the optimal set of parameters and hyperparameters for the expanded weather radar image

dataset. There are a few differences from the earlier experiments presented in this work:

• Increased dataset;

• Usage of batch normalization layers;

• Downsampling via BlurPool layers, and;

• Implementation strategy.

We have detailed above the efforts to increase the dataset using data from 2018 and

performing first stage classifications with the deep neural network presented in Chapter 4.

This experiment will seek to test the effectiveness of using BN layers after each activation to

manage gradients and reduce covariate shift, while also comparing the performance of low-

pass filtered, shift-invariant downsampling operations of BlurPool with the default average

or max pooling operations predominant in most off-the-shelf deep neural networks. Finally,

this approach involves a deeper implementation strategy in Tensorflow, whereby the BlurPool

activation was developed from scratch, and the BN layers were added via custom inclusion to

all convolutional layers in the feature extractor portion of the end-to-end model architecture.

Specifically, we tested nine configurations, as shown in Table 5.1. As can be seen, the

BlurPool parameter of kernel size governs the filter kernel that is used to perform the down-

sampling operation. A kernel size of 1 produces a 1x1 convolution and thus, offers no
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desirable filtering characteristics. The kernel size of 2 yields a 2x2 filter kernel that is essen-

tially an average pooling operation, which gives a useful comparison to an industry-standard

downsampling mechanism. The kernel BlurPool (k=2) is given by:

k =
1

N







1 1

1 1







where N is given by the sum of all elements in the matrix. Here, N = 4.

The kernel BlurPool (k=3) is given by:

k =
1

N















1 2 1

2 4 2

1 2 1















The kernel BlurPool (k=5) is given by:
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The kernel BlurPool (k=7) is given by:
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Table 5.1. Comprehensive results of each deep learning configuration tested
using the full dataset. The values reported reflect the class-weighted average
for both Precision and Recall. The Name column matches annotations on
Figure 5.3. Bolding accentuates best result in each column.

Three Class Avg Classification Stats
Configuration Details Name Categorical Precision Recall

Accuracy
Default VGG16 Architecture VGG16 0.9208 0.9249 0.9165

VGG16 with default convolution and DC BP (k=2) 0.8958 0.9071 0.8830
BlurPool downsampling (k=2)

VGG16 with default convolution and DC BP (k=3) 0.8807 0.8901 0.8720
BlurPool downsampling (k=3)

VGG16 with default convolution and DC BP (k=5) 0.9036 0.9143 0.8916
BlurPool downsampling (k=5)

VGG16 with default convolution and DC BP (k=7) 0.8946 0.9053 0.8824
BlurPool downsampling (k=7)

VGG16 with convolution + BatchNorm BN BP (k=2) 0.9160 0.9238 0.9148
and BlurPool downsampling (k=2)

VGG16 with convolution + BatchNorm BN BP (k=3) 0.9160 0.9238 0.9148
and BlurPool downsampling (k=3)

VGG16 with convolution + BatchNorm BN BP (k=5) 0.9220 0.9329 0.9161
and BlurPool downsampling (k=5)

VGG16 with convolution + Batch NormBN BP (k=7) 0.9198 0.9305 0.9160
and BlurPool downsampling (k=7)
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Figure 5.3. Precision and Recall statistics for each configuration tested. See
Table 5.1 for configurations corresponding to the names in this figure.

5.5. Results

The results of the described experiments can be seen in Table 5.1. Interestingly, the

default configuration given by VGG16 yields very good results, and indeed, has the highest

Recall value of any configuration tested. However, the best overall architecture was that

which utilized both batch normalization and BlurPool (k=5). It registered the highest

categorical accuracy as well as the highest precision, and its recall was nearly equivalent to

the best-in-class default VGG16.
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(a) Loss (b) Accuracy

Figure 5.4. Loss and accuracy curves for our best-case network, which uti-
lized the VGG16 base model feature extractor, with batch normalization layers
following each convolutional layer, and BlurPool layers with a kernel size of 5.
Training was allowed to progress with base model weights frozen until a loss
plateau was reached, before fine-tuning by allowing all parameters to update
during training. Fine Tuning began at Epoch 36.

5.6. Classifications on Unseen Data

5.7. Summary

As seen above, the added data has led to a greater level of generalization ability for the

deep neural network architecture. The addition of BlurPool appears to help not only the

consistency and generalizability of the model, but also the classification accuracy. Batch

Normalization ensures the training parameters are well-behaved and thus converge to a

better minimum in the loss function. And the newly trained model quickly and efficiently

produces believable classifications on large amounts of data in a short period of time.

In the next section, we will discuss how these models can be implemented in real-time

image classification.
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Figure 5.5. The fully trained model was deployed on all scans available from
2019 observed and recorded by the CASA XMDL radar. This set of plots shows
the statistics on how images were classified for all months together (top left),
and each month individually.
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CHAPTER 6

Real-Time Weather Radar with CHORDS

The issues and solutions presented in this dissertation thus far can be applied to enhance

the process of data discovery even further when introduced to workflows involving recent

developments in cyberinfrastructure for data. To this point, the focus has been on developing

methods for identifying interesting and relevant features in historical datasets. It is also

important, however, to consider real-time data, and the implications of incorporating the

aforementioned methods in real-time.

Perhaps some of the most important applications of weather data is in discovering what

is happening in the moment, and in predicting what will be happening in the near future.

The stated goals of many radar networks, including the CASA network and the WSR-

88D NEXRAD system, are to provide up-to-the-minute understanding of the ever evolving

meteorological systems, to provide disaster warning, transportation planning, and logistical

support for people operating within those network coverage regions. The data is used as

inputs to models to attempt to discern the near-future effects that weather might have at

many geographic scales. There is an industrial arms-race among start-up and large companies

alike to provide hyper-local data of increasing fidelity to capitalize on the financial benefits

of providing weather information with lower error rates than competitors, with the added

benefit ofdeveloping solutions to augment safety for the populace. And there is growing

momentum among science communities to develop modern infrastructure to facilitate these

goals, within the broader scope of improving the open source, research state-of-the-art.
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It is with this last goal in mind that the National Science Foundation (NSF) created

EarthCube. The EarthCube program has focused on developing an ecosystem where re-

searchers and engineers could focus on the technical and social aspects of modernizing cy-

berinfrastucture in the geosciences, in tandem with NSF. The Cloud-HOsted Real-time Data

Services for the geosciences (CHORDS) project is the funded project under the EarthCube

umbrella that is focused on developing solutions for cost-effective cloud-stored real-time data

streaming [48].

This chapter is designed to explain the operating characteristics and functions of CHORDS,

as well as the survey of research in integrating weather radar data with CHORDS as inform-

ing development of the project. While Chapter 4 illustrates the value designing and deploying

models in historical Data Discovery applications, there is also potential for application to

real-time streams to provide semantic insights regarding pressing weather concerns, along

with populating label databases as data is produced. It is with this in mind that we survey

the current state of the CHORDS project, and discuss its applications to the problem of

weather radar data storage, visualization, analysis, and classification, as a way to inform

continued development in this active project.

6.1. CHORDS

CHORDS in its current format functions as a conduit for managing time series data

streams. The system has been described in [48], but some summary is presented here.

The project developed as the result of an EarthCube workshop, where a group of scientists

representing multiple disciplines and multiple universities determined the need for a cross-

discipline, remotely accessible platform for handling real-time data streams. Over the past

6 years, the CHORDS project has evolved and managed a number of use cases, including
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seismological[49], hydrological[50], and meteorological. It is this lattermost application that

is the focus of this analysis.

A CHORDS Portal is a web application, managed via Docker1 containers, and consists

of several endpoints. A researcher manages their real-time stream by first specifying a Site,

which is the geospatial location where instruments are placed. The instruments themselves

are managed on the Instruments page, where a user can specify the properties observed

(Variables), and encode information about the observed properties from relevant standards,

like SensorML [51]. The observations themselves, the Measurements, can be visualized via

a time series plot illustrating recent data, or can be downloaded via the Data downloads

page. There is also a programmatic API available for REST commands to add data or

download, allowing connection to headless servers. As such, it is straightforward to stream

data to plug-ins like Grafana2 to perform more advanced thresholding and compute relevant

real-time statistics.

6.2. Specific Gates with Radar and Ground Sensors

While the limitations of the CHORDS database with respect to access and number of

writes is unable to handle the high bandwidth radar data in an exhaustive, one-pixel-per-

Instrument manner, there remains interest in specifying certain radar gate values in this

manner.

A weather scan can be thought of as an image, and indeed, this is an appropriate and

extremely valuable paradigm. However, each radar range gate can also be interpreted as a

time series, for each radar variable, and as such can be used as its own CHORDS Instrument.

In this paradigm, each radar variable at a point of interest maps to a CHORDS Variable,

1https://www.docker.com/
2https://grafana.com/
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and the CHORDS Site can be located in the center of the geospatial area of interest. In

order to managed the fact that each Instrument is in different actual locations, we can pass

the latitude and longitude of the radar range gates as Variables themselves, where each

measurement is constant. This is a powerful concept, and has been presented by the author

in [52]. A graphical outline of the CHORDS portal in this setup can be seen in Figure 6.1.

Figure 6.1. CHORDS Portal, where selected radar range gates are used as
Variables, allowing collocated ground sensors to stream data and provide direct
ground-to-radar validation in real-time

The major gain here is that ground sensors collocated with these radar range gates can

be streamed to the same Instrument, allowing real-time validation of either (or both) results.

This was tested using the hydrometeor classification product from the CASA DFW network
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Figure 6.2. Aligning hydrometeor identification product with hail sensor
hits in the Dallas Fort Worth area, illustrating an example CHORDS use case

and ground hail sensor data provided by Understory3. See Figure 6.2 to see the benefit of

such a setup.

6.3. Full Image Support

As of now, full image support has not been implemented, though this research has per-

formed a substantive literature review and various experiments to inform the implementation

of full radar image support. Some of the key concepts and research are presented below.

6.3.1. Data Storage. There are two reasonable methods for storing full radar data

in a CHORDS portal. The first is to simply post full NetCDF files containing completed

volume scans. One benefit to this method is that it opens up a host of potential plug-ins,

and allows analysis and visualization of any radar variable. However, the downside is that

3https://understoryweather.com/
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this represents an increase in storage footprint, and is a heavier load on server bandwidth.

The main alternative to this is simply passing pre-generated images, such as those presented

above. This is often done at radar operation centers in order to have a human-readable

record of historical data, or as a method for generating reports. As such, it represents lower

overhead for the data generation and transmission. Additionally, as has been shown in this

work, there can be useful insight extracted from pre-generated data. However, this does

limit the kinds of analysis that can be performed as plug-ins to the CHORDS portal, and

negates the possibility of cross-comparison to collocated instruments, one of the major gains

in utilizing CHORDS portals in the preceding section.

6.3.2. Data Analysis. Increasingly, computing and data storage is managed in the

cloud. Various cloud storage and cloud compute platforms have arisen in recent years,

leading to cyberinfrastructure developments in the way that data is analyzed. Given the

simplicity of storing data in the cloud, it is reasonable to extend CHORDS-managed data

to plug-in to other cloud services. For the N-dimensional datasets common in geosciences,

including weather radar data, there are a few major toolkits worth mentioning:

• Xarray4

– N-Dimensional array file I/O and analysis package in Python, designed as a

NetCDF analysis toolkit. Allows labeled arrays, dataset management, and

specification of dimensions, while providing tools for analyzing N-D data bor-

rowed from popular tabular packages (such as pandas5)

• Dask6

4http://xarray.pydata.org/en/stable/
5http://pandas.pydata.org/
6https://dask.org/
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– Assists packages like Numpy and Xarray by providing straightforward paral-

lelization of common numerical computing functions

• Pangeo7

– Closely integrated with the two projects above, Pangeo is a project that seeks

to reduce Time to Science for researchers needing to take advantage of cloud

compute power, or supercomputers, for large scale analysis.

• NetCDF-in-the-cloud

– Another EarthCube project, attempting to provide NetCDF storage to cloud-

based data storage platforms

6.4. Summary

In this section, we described some of the methods and libraries that could be useful in

applying this system in real-time. In the next section, we will summarize the findings in this

dissertation and discuss avenues for future work.

7http://pangeo.io/
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CHAPTER 7

Dissertation Summary

Data Discovery is an issue of extreme importance throughout the geosciences, where

many petabytes of data have been produced, and the speed and quality of the production

of the data have outstripped the ability to analyze and tag the data. Efforts are ongoing

throughout the field of geosciences to bridge this gap, enhancing cyberinfrastructure via

modern computing and networking capabilities, along with developing the social aspects

in managing the need for these developments. Unfortunately, the effort to extend these

advances to the subfield of weather radar data has not been present to this point.

The research in this dissertation details the current progress in efforts to apply transfer

learning techniques to the problem of weather radar image classification. A set of experiments

was detailed that confirm the capabilities of the chosen end-to-end deep learning model to

learn to classify intensity data encoded in images. Additionally, a hand-labeled dataset of

weather radar reflectivity images was generated to aid in training said models, which in turn

were used to discover more data. Finally, an optimal model for perception-level learning with

weather radar image data was described, and, with the addition of cutting edge techniques

from the field of deep learning, a set of experiments was conducted and described to illustrate

the best set of hyperparameters for the architecture.

7.1. Contributions Future Work

The natural next step in the research detailed here is to attempt not only to classify

images as belonging to specific precipitation regimes, but to develop a dataset and models

capable of finding objects of interest within each image, which may include phenomena such

as hail, intense rain, bow echoes, supercells, individual storm cells, and gust fronts. This
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would allow more detailed experiments to be conducted and allow extending this research,

which resides in the image classification subset of deep learning, to the fields of instance

segmentation, where instances of specific regimes and phenomena are segmented locally

in weather radar images, and semantic segmentation, where these meteorological objects

of interest are tagged with their semantic meaning. The uses of this system would be

in ultimately producing forecast text for non-weather experts to use in early-response to

meteorological events and emergency preparedness, as well as semantic tagging of datasets in

real-time for meteorological and atmospheric science researchers to leverage for downstream

experiments, thus reducing a major bottleneck in finding and tagging data.

Indeed, the research here illustrates a way to reduce such a bottleneck by offering a

fast, algorithmic approach to finding phenomena of interest in radar scans. It shows that

we can learn from very compressed data. Specifically, the images we use in this model are

Cartesian-gridded from their original spherical coordinate observation and storage plane,

then colormapped to a coarse quantized space, and compressed into a .png style image of

lower resolution and size. This compression leads to a dataset with images that are far smaller

than what is actually recorded in the scans; literally, two orders of magnitude smaller. Two

major contributions emerge here: (1) that we can learn precipitation regime information

from such compressed images, and; (2) that we can reduce the data footprint needed for

data discovery. This takes the analysis from supercomputers and moves it onto laptops

(with discrete GPU, of course). Effectively, this research lowers the barrier for atmospheric

scientists and meteorological weather radar researchers to use deep learning techniques, to

be able to find phenomena of interest in large, unwieldy datasets, and to be able to deploy

these methods in real-time to tag scans as they’re observed in future field campaigns and

operational settings.
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7.1.1. Contribution on Compiling Dataset for CASA DFW.

• Compiling Dataset for CASA DFW. This represents many tasks. The pre-

cipitation regime classification model has shown very promising results and demon-

strated an ability to discover relevant data, while ignoring data not representing a

class of interest. We have deployed it on all available scans from the CASA DFW

network from Jan to Aug 2019, and used statistical methods to perform a coarse cli-

matological analysis to ensure classified scans (N = 334, 000) match expected bulk

statistics that match reality in the Dallas-Fort Worth area. We showed through

an iterative process, where the model is trained on a small human-labeled dataset,

the trained model finds more data, that data is sanitized, and the model is further

trained on the larger dataset, that a final dataset of labeled weather radar images

could be obtained far more efficiently than human labeling without aid of semi-

supervised process could occur. The final goal of this is to release a dataset and an

accompanying publication, to allow other researchers to continue work in this field,

and to increase awareness of this set of solutions.

• Reducing Data Sample Intercorrelation. Since the dataset was initially small,

and since successive radar images share a great deal of information with one another

due to the short-term temporal consistency of meteorological phenomena, there

is concern that there is high levels of intercorrelation in successive scans. This

reduces the independence of the training and testing datasets, leading to concerns

of overfitting and poor abilities to fully model the precipitation regimes. In tandem

with the ”Compiling Dataset” component, this is a situation that has been quantified

and mitigated, largely by expanding the usable dataset via the iterative process

described above.
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7.1.2. Future Avenues. Future work would involve illustrating the utility in these

models learning to classify images produced by radars in the NEXRAD network; fully devel-

oping the dataset from all radars in the CASA DFW network; and, finalizing models trained

on fully developed dataset of images classified by precipitation regimes.

Major goals for the proposed research:

• Meteorological Phenomena. While the models presented in this research provide

a state-of-the-art solution in classifying precipitation regimes, there remains a great

deal of information in weather radar data. To that end, an exploration should occur

into finding other interesting phenomena to attempt to find in the data. This could

be localized phenomena like hail, heavy rain, or flash floods, or it could be larger

meteorological processes. This may necessitate a further examination into localizing

learning by implementing object detection. Already the author has investigated

the possibility of implementing meteorological object detection algorithms on these

datasets in the search for gust fronts, but currently, no solution has been found.

However, the foundations for this analysis have been laid, including the development

of an image annotation solution. It is possible there are more ”stones to overturn”

here.

• Extending to NEXRAD Data. As discussed in Chapters 1 and 4, the NEXRAD

network represents a topic of interest and it remains to be explored how well these

algorithms map to the NEXRAD data space. The WSR-88D radars in the NEXRAD

network observe the atmosphere using a different frequency than the radars in the

CASA DFW network, and cover a larger spatial area, introducing a range variation

from the trained data. The proposed research here is to attempt to apply the current

model, trained on the X-band CASA radars, to data collected by NEXRAD radars,
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and to use the resulting classifications to build a NEXRAD dataset. There is an

inherent component here in simply validating that the trained model can work well

in the new data space. If not, we propose hand label a dataset and train a new

model from scratch, though it is expected that the model’s learn will map more or

less directly to the new data.

• Utilizing Other Radar Variables. It can be seen in this research that only

reflectivity scans at only 1 degree elevation scan, and only PPI scans, have been

used to this point. This may represent an opportunity for developing more insights.

There has been effort to design a set of tools capable of producing normalized

pseudo-images consisting of relevant radar variables as a conduit for performing

the above research. As such, it is planned that this exploration should continue in

conjuction with the above.
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APPENDIX A

Appendix A - Tools

One of the goals of this dissertation is to provide guidance to both weather radar data

specialists and atmospheric scientists in utilizing modern software tools to assist in their

research. This need, in addition to the cause of providing an in depth look at the entire

workflow for the purposes of documentation of academic methods, leads to the formation of

this section.

Herein is described the main software and hardware tools that facilitated the research in

this document. The main programming language and libraries for analysis, machine learning,

and display of data will be discussed, in addition to the hardware used in implementing the

research stack.

It should be noted that, with the exception of a few tools designed by the author for the

express purposes above, these tools are available to all researchers, scientists, engineers, and

enthusiasts.

A.1. Python

Python was used for most of the analysis, server design, file handling, and access to

machine learning APIs, throughout this work. As an interpreted language, it allowed quick

prototyping of code and data exploration. Its large community of active developers led to the

ability to quickly find solutions to issues encountered, while also producing the ecosystem

of tools that simplified the process of managing and interpreting data, generating models,

and managing reproducible workflows. It also directly provided an interface for accessing

the data, as well as the hardware tools that made this research possible.
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A.1.1. NumPy. Numpy is a python package that exposes an API for creating numerical

structures, usually arrays, where the underlying code is written in C. The functional API is

designed following standards, styles, and naming conventions of MATLAB and follows these

where possible.

A.1.2. Scikit-Learn. Scikit-Learn is a package under the SciPy umbrella (like NumPy),

whose focus is in providing data scientists and machine learning researchers a set of tools to

assist common tasks, such as handling datasets and managing pipelines and workflows, along

with certain plots. This toolkit was used in this research mostly with respect to managing

the train/val/test splits on the datasets, and in evaluating models.

A.1.3. Tensorflow and Keras. Tensorflow, along with its wrapper and API keras,

were used to build and train the deep learning networks. Tensorflow is a large open source

package that seeks to harness the power of CUDA-enabled GPUs in training and testing

on deep neural networks, while keras is closely tied to Tensorflow and exposes much of its

functionality for researchers who may not be experts in computer science. As its name

suggests, the numerical language in Tensorflow are in tensors, where complicated datasets,

such as the image datasets in this research, can be succinctly and efficiently represented.

Additionally, while many models are available in so-called model zoos, this research used the

convolutional bases available in the keras toolkit.

A.2. Alternatives to Python

It is of some importance to mention alternatives to the tools utilized in this research.

Each has its advantages and disadvantages. The tools used above reflect researcher choice

based on previous experience and convenience in implementing the aforementioned tasks,

though these could have been implemented in many languages and with many toolkits.
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Even within python, there are other packages of note. Theano can be used directly as

an access point for GPU functionality instead of tensorflow. Another competitor in this

arena is Torch, with its python API, PyTorch. Many researchers also use Caffe, with python

wrappers.

Outside of python, R and Julia are potentially useful and in turn used by many data

scientists. And many workflows include components of all of the above, in addition to bash

scripting.

Future additions to this proposal include more discussion on the exact workflow used, as

well as links to a finalized Github repository for reproducibility.
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