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ABSTRACT

SOMETHING IS FISHY! - HOW AMBIGUOUS LANGUAGE AFFECTS GENERALIZATION

OF VIDEO ACTION RECOGNITION NETWORKS

Modern neural networks designed for video action recognition are able to classify video snip-

pets with high degrees of confidence and accuracy. The success of these models lies in the com-

plex feature representations they learn from the training data, but the limitations of these models

are rarely linked on a deeper level to the inconsistent quality of the training data. Although newer

and better approaches pride themselves on higher evaluation metrics, this dissertation questions

whether these networks are recognizing the peculiarities of dataset labels. A reason for these pe-

culiarities lies in the deviation from standardized data collection and curation protocols that ensure

quality labels. Consequently, the models may learn data properties that are irrelevant or even unde-

sirable when trained using only a forced choice technique. One solution for these shortcomings is

to reinspect the training data and gain better insights towards designing more efficient algorithms.

The Something-Something dataset, a popular dataset for video action recognition, has large

semantic overlaps both visually as well as linguistically between different labels provided for each

video sample. It can be argued that there are multiple possible interpretations of actions in videos

and the restriction of one label per video can limit or even negatively impact the network’s ability to

generalize to even the dataset’s own testing data. To validate this claim, this dissertation introduces

a human-in-the-loop procedure to review the legacy labels and relabel the Something-Something

validation data. When the new labels thus obtained are used to reassess the performance of video

action recognition networks, significant gains of almost 12% and 3% in the top-1 and top-5 accu-

racies respectively are reported. This hypothesis is further validated by visualizing the layer-wise

internals of the networks using Grad-CAM to show that the model focuses on relevant salient

regions when predicting an action in a video.
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Chapter 1

Introduction

1.1 Motivation

Actions form an essential part of non-verbal communication between two or more people. In

a given context, actions can convey a definitive meaning to a conversation. Differences in back-

ground, illumination, camera motion or orientation can influence how an action is perceived or

interpreted by humans and machines alike, considering that actions have a large range of motion.

Actions involving human-object interactions are particularly interesting because there is a corre-

lation between the positions of the human and objects over time. How a human interacts with an

object informs us of its properties, specific regions where the object can be handled i.e. affor-

dances, as well as the effect of interaction of that object with other objects e.g. cutting a carrot

placed on a board with a knife. These factors largely impact what eventual action is performed by

the individual. The numerous reasons stated above help us understand why action recognition is a

challenging topic, one that has long been studied and progressed over the years.

An image freezes this action in the moment, but a video allows it to progress sequentially and

more gracefully. A static image or a video frame can give us details about various spatial elements

like objects, actors, scenes, etc. Videos involve a temporal dependency of past, current as well as

future frames. Between those frames, there is an interaction between different elements to form a

meaningful action. These complex spatio-temporal interdependencies make it a challenging task

to design models that can effectively solve action recognition in videos.

The data collection and curation of datasets in Computer Vision follow a standardized process

that ensures quality of the data fed to models for training and evaluation. This process involves

searching for images or videos of classes on the internet and getting them reviewed by human

labelers typically on a crowd-sourced platform. The review is posed as a binary identification

problem wherein human labelers confirm if the sample belongs to the associated class or not. One
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important aspect to note here is that the quality of the original data sourced is rich because it is

mined from expert websites. A second layer of quality control is induced when a labeler reviews

it, resulting in a dataset with an acceptable label noise.

The Something Something dataset is a popular video action recognition dataset focused on

understanding human-object interaction in videos. Contrary to established routines of data formu-

lation, the conception of this dataset takes a different approach. Users on a crowd-sourced platform

like MTurk are given a sentence i.e. a video label and asked to record a video based on the label.

The given sentence is also known as a caption template. This caption template is of the form some-

thing action something where the user can select an action from a range of descriptions. The user

also uploads the object name used during recording of the video. The result of such an approach

can be a large variation of the quality of the videos in the dataset. While a particular video seen

individually may not be wrong, it might not be close to the expected label. There is lot of overlap

between two labels in both visual as well the linguistic sense. For example, picking something up

and lifting something up completely without letting it fall. The two labels are semantically very

close to each other, but the variation in the interpretation of characteristics like affordance can

result in a distinction between the two classes. Similarly, examples like moving something up vs

picking something up vs lifting something up completely without letting it drop down highlight the

linguistic similarity between the labels. This gives us to understand that solely based on the visual

appearance of the progression of an action in a video, it can have more than one correct labels.

Modern neural networks designed for the task of video action recognition are able to classify

actions in video snippets with high confidence and accuracy. Ideally, we would expect the current

state of the art networks to be able to disambiguate between the visual and linguistic subtleties of

different classes in the Something Something dataset. However, studying the pattern of misclas-

sifications reveals the systematic inaccuracies in the source itself, i.e. the videos and the corre-

sponding legacy labels. This dissertation tries to address these data inconsistencies and presents

a robust way of data reannotation using a multi-person assessment of legacy labels. Further, this
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dissertation attempts to shed light on the idea that the existing video action recognition networks

warrant a greater trust in their ability to generalize than what they are assumed to.

1.2 Current Techniques and Shortcomings

The study of video action recognition has seen a steady progress in research and develop-

ment over the years. This domain has been revolutionized due to the recent advancements in the

field of deep neural networks. Before the advent of deep learning methods, handcrafted features

were used to classify actions in videos [3–5]. These handcrafted features were domain specific

and years of research went into developing efficient features. Deep neural network architectures

quickly replaced the handcrafted features due to their ability to automatically learn abstract feature

representations of video frames.

Convolutional Neural Networks (CNN) are the state-of-the-art deep learning approach for

extracting feature representations from a video frame [6–9]. Karpathy et al. [1] and Donahue

et al. [10] laid the foundations of using CNNs for video classification. The approaches com-

puted the embeddings of every frame in the video using a 2D CNN architecture and modeled the

temporal information in the video sequence using fusion strategies like Long Short Term Mem-

ory(LSTM) [11].

Simoyan and Zisserman proposed the Two Stream Network [12] which was later augmented

by Ng et al. [13]. This approach processed spatial information by an RGB stream and temporal

information, or motion between frames using optical flow fields. Despite the many successes

in static image feature representations, 2D CNN attempts had a major limitation. The temporal

information in videos was squashed within the first few 2D convolutional layers. Further attempts

at better model designs aimed to preserve the temporal information by making changes to the

convolution operations in the architecture.

Tran et al. added a third dimension to the convolutional kernels to preserve the temporal infor-

mation when they proposed 3D Convolutional Networks (C3D). The C3D model was efficient, yet

computationally very expensive. This parameter explosion was solved by Carreira and Zisserman
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with the I3D model [14]. The core idea inflated the filters and pooling kernels from 2D to 3D and

leveraged the pretrained weights used for training ImageNet dataset. This model for video action

recognition had significantly fewer parameters than C3D (25M vs 79M). Similar networks aimed

at achieving the efficiency of 3D CNNs and the computational complexity of 2D CNNs [15–17].

An idea similar to the Two Stream network was proposed by Feichtenhofer et al. with the

SlowFast network [18]. Compared to the Two Stream network, this approach had two major dif-

ferences. First, instead of using optical flow as motion information as an additional modality, the

model only used raw data as input. Second, the network had two pathways that selectively focus on

processing the spatial and temporal information. The Slow pathway processed spatial information,

while the Fast pathway processed temporal information. This design was inspired by the human

vision.

Around the same time as the SlowFast algorithm, Lin et al. proposed a Temporal Shift Module

(TSM) which shifted the channels along the temporal dimension. In an offline setting where a

complete video segment is available, a channel shift ensures that any time instance has information

from the current frame as well as previous and future frames. This approach is one of the state-

of-the-art networks achieving a very low processing latency and low trainable parameters. This

research analyzes the predictions obtained from SlowFast and TSM to understand the nature of

misclassifications seen in video action recognition.

In analysing videos, humans can often reason about complex scenes and interactions based on

visual and linguistic information. The popular datasets for action recognition e.g. Kinetics [19],

UCF-101 [20], HMDB-51 [21] have labels that comprise of a single word or two word description

of the action. The Something Something dataset [22] is another dataset that provides fine-grained

textual descriptions of actions involving human object interactions. However, it has a more com-

plex description of labels in the form of something action something where something serves as a

placeholder for the objects. This is denoted as a caption template by the authors. This dissertation

investigates the impacts of the complex video labels in the Something Something dataset on the

classification performance of video action recognition models.
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Recent studies using the Something Something dataset discuss shortcomings in the network ar-

chitecture design, but none investigate the impact of dataset shortcomings on model performance.

This research direction has been very recently pursued in the image domain with ImageNet [23].

The authors Beyer et al. , in [24] argue that images in the ImageNet dataset have multiple objects

present, but only a single corresponding label for one of those objects. This adversely affects the

performance of image classifiers networks that might predict one of the many objects, but still be

penalised because it does not match the human labeled object in the validation data. To mitigate

this issue, the authors introduce a human-in-the-loop method to disambiguate labeling flaws. The

Reassessed Labels or ReaL consists of all objects seen in the image as reviewed by the annotators.

The popular networks are then re-evaluated; not re-trained, and their systematic gain in perfor-

mance is reported. While this dissertation closely resembles the above approach, it identifies the

same pattern of data collection and curation inconsistencies in the validation data with reference to

videos. Compared to multiple objects in images, the source of ambiguities the Something Some-

thing dataset stems from the visual and linguistic overlap of videos and their corresponding labels.

A comparative systematic gain is reported when the networks are re-evaluated thus implying that

relevant properties are learnt by them.

The success of CNNs lies in their ability to model complex feature representations learned

from training data. Despite their superior performance, it becomes a hindrance that there are no

easily interpretable and understandable explanations when these networks fail catastrophically at a

particular task. To understand why a network predicts what it predicts, there have been many recent

attempts at decomposable visualizations of the feature representations of CNNs [25]. Selvaraju et

al. in [25] introduce Gradient-weighted Class Activation Mapping (Grad-CAM) to produce a

visual explanation of the final convolutional layer. This approach highlights the salient regions

in an image that contribute positively to the network’s decision in classifying a particular class

for the image. This work uses the inferences of Grad-CAM for a single image, and extends it to

understand how the reference models predict an action within a video.
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1.3 Summary of Research

The goal of this dissertation is not to propose another state of the art model for video action

recognition. It takes a step in the direction less explored, and delves into addressing the short-

comings of the dataset that is used to train the networks. The focus of this study is the Something

Something dataset, a popular video dataset focused on human-object interaction. The labels are of

the form something action something where something is a placeholder for the object.

There is a large overlap in the linguistic and visual nature of the videos labels and corresponding

videos across different classes. In order to examine this claim, this research looks at the closeness

of the labels when they are transformed to a numerical representations. This step is intended to

bring the natural language perceptions about legacy labels into a visually interpretable domain.

SentenceBERT [26] a natural language embedding architecture is used for this transformation. It

takes an individual label from the dataset and outputs a fixed size encoding of it. Subsequently, all

the legacy labels now transformed into this linguistic embedding space are plotted onto a TSNE

plot [27] to examine different correlations and overlaps between labels. Cosine similarity is used

as a measure of similarity between the two representations. This visualization helps to understand

how seemingly uncorrelated natural language labels are positioned so close to each other that it

triggers potential confusions in the model predictions.

Next, the predictions of two popular state of the art architectures for video action recognition

are analysed: SlowFast [18] and TSM [16]. The resultant sample set is obtained by the union of

all misclassifications in both top-1 and top-5 categories of the two networks. A pilot experiment

is set up wherein users are asked to select all possible descriptions of a video from the available

choices. This study revealed that 84.6% of samples had multiple selections for videos. The results

of this study allowed the scaling up of video samples to include both top-1 and top-5, totalling

approximately 11,857 videos for review. The scaled up human-in-the-loop pipeline, is released as

a video annotation task on Amazon MTurk, a crowd-sourcing platform. Each video is presented

with options obtained from the intersection of predictions from the two networks. Every individual
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worker, i.e. the human labeler, selects all the options that describe the video displayed. To mitigate

the influence of bias caused by faulty selections by participants, it is ensured that each video is

reviewed by three participants. Figure 1.1 shows an illustration of the annotation task as seen by

the workers on MTurk.

Figure 1.1: An illustration of the video reannotation tool as presented to the workers on Amazon MTurk, a
crowd-sourcing platform. Each worker is shown a video and the corresponding labels describing the video.
Workers are tasked with selecting all the relevant labels that describe the video. The options available are
obtained from the union of the predictions from SlowFast and TSM.

The reannotated video labels thus obtained are consolidated for further analysis. MTurk re-

quires approving or rejecting a worker’s task so that they get paid. If a task is approved, the worker

is paid, and rejected otherwise. This middle step that needs to be carried out for quality control of

worker annotations, is facilitated by a tool developed called ReviewMe ( 2.4). Every video sample

thus has four passes that it goes through: three from MTurk workers, and one to check the rele-

vancy of all three by using the ReviewMe tool. The worker task verdict is leveraged to reassign

the annotated labels to the samples using a Majority Voting of the approvals. If the original label

is present along with any additional labels from multiple participants, then the sample under con-

sideration gets all the additional labels. Similarly, if the target video label is not present in either
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of the selections, but a common label is seen, then the label of the video sample will be updated to

include both labels once reviewed. Lastly, the new set of labels obtained for the validation data is

denoted as REAssessed Labels or ReaL data, similar to the notation in [24]. The two models are

then re-evaluated with the ReaL data for changes in the performance. An increase of almost 12%

in the top-1 accuracy and 3% in the top-5 accuracy is observed for both networks when they are

reevaluated on the revised data.

To investigate what the networks learn within each convolutional layer, the layer-wise visual-

izations using Grad-CAM [25] are explored. For a given class index corresponding to the label in

the dataset, activation maps are obtained for the video in the forward pass and gradients from back-

ward pass of the layer with respect to the input. A weighted score is obtained for each feature map

in the layer under consideration by global average pooling each pixel in the map. Only the regions

that have a positive effect on the class’s output are visualized. A heatmap of the weighted feature

maps is overlayed on every respective video frame. Figure 1.2 shows selected frames from the

original video and the corresponding heatmaps obtained from Grad-CAM overlaid on the video

using the TSM network. The visualization gives an insight into how TSM network focuses on

salient regions in the video with the class label moving something down. The network focuses on

the main object that is interacted with as seen from the highlighted regions in the bottom row of

the figure. Also, the model has awareness of the future frames which is evident from the focus on

the bottom part of the object, or the trajectory of moving it down.

1.3.1 Contributions

This dissertation investigates the systematic inaccuracies in performances of video action recog-

nition models caused due to ambiguous language and visual overlap between distinct classes. The

main contributions of the work are:

• Exploration and visualization of different natural language embedding techniques of labels

in the Something Something dataset [22].
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Figure 1.2: Grad-CAM visualization of a video with class label moving something down as processed by
TSM. The network focuses on the main object(s) that is interacted with as seen from the salient regions in
the bottom row of the figure. Also, the model has awareness of the future frames which is evident from the
focus on the bottom part of the object, or the trajectory of moving it down.

• Comparisons and investigation into the misclassifications by two state-of-the-art networks

for video action recognition for Something Something dataset: SlowFast [18] and TSM [16].

• A robust human-in-the-loop procedure to review labels of video samples in the validation set

using MTurk, a crowd-sourced platform. The results are aggregated using Majority Voting

relying on worker approval.

• The Reassessed Labels thus obtained used to re-evaluate SlowFast and TSM and the metric

is called ReaL accuracy. The ReaL accuracy reports an increase of 12% top-1 and 3% top-5

over the original validation accuracy.

• A visual investigation into each convolutional layer of SlowFast and TSM using GradCAM.

This approach examines the failures of the model as well as a comparison of model learning

for semantically similar class labels.
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1.3.2 Scope

Many factors can impact the performance of a video action recognition system. Unfortunately,

evaluating all factors is beyond the scope of this dissertation. This dissertation does not focus on

the evaluation or optimization of any of the following:

• Exhaustive video action recognition models: To examine the validity of our hypothesis, I

chose two state of the art networks for analysis: SlowFast [18] and TSM [16]. Other more

recent networks like MViT [28] have not been explored.

• Variability of datasets for video action recognition: Given the rich correlation between the

labels, my study is focused only on the Something Something dataset as there is a large

overlap of different labels both linguistically as well as visually. Other popular video action

recognition datasets have not been explored.

• The focus of this dissertation is on reassessing and reannotating the labels in the validation

set. Samples in training data have not been considered given the influence of data augmen-

tation like random cropping and resizing that can remove the main object interacted with

during training.

• Data augmentation techniques: Only resizing and random cropping for training and center

cropping for testing have been used as discussed in Section 4.5.1. The classes in the dataset

rely heavily on directionality of actions (left-to-right, right-to-left). Thus horizontal flipping

is not considered in data augmentations.

• The use of GradCAM [25] for visualization as a proof of concept of the internal workings of

networks. Other visualization techniques like temporal-GradCAM [29], GradCAM++ [30]

and XGradCAM [31] have not been considered in this research.

• A TSNE visualization of legacy labels in the Something Something dataset is presented using

SentenceBERT [26] as motivation for the main work. Other embedding techniques have not

been considered for the given scope of the dissertation.
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1.3.3 Document Outline

The rest of the document is structured as follows: Chapter 2 discusses the prior literature of

the techniques used to design video action recognition models, the evolution of embeddings in

natural language processing as well as the investigative visualization techniques used to examine

the internal workings of CNN architectures. Chapter 3 briefly introduces the background concepts

necessary for the reader to understand the basis of our experiments. This chapter also gives an

overview of the popular datasets for video action recognition, and describes the dataset in focus,

Something Something dataset, in a greater detail. Chapter 4 explains the approach to study the

misclassifications of video action recognition networks and the patterns of confusions between

class labels. This chapter also introduces the human-in-the-loop approach to obtain annotations

for re-evaluation of the models. Chapter 5 describes the experimental setup and case studies of

few examples as predicted by the existing and proposed models. It highlights the importance

of broadening the scope of the networks with regard to the allowed class labels for the videos.

Additionally, this chapter illustrates the failure cases of the networks and the patterns of confusions

between visually and linguistically similar classes. Chapter 6 concludes the dissertation with a

discussion and research ideas for future work that can be undertaken in this area.
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Chapter 2

Prior Literature

This chapter aims to provide the reader with the necessary background of literature to under-

stand the following chapters. Readers may want to skip to subsections pertaining to their interests.

Section 2.1 explains the evolution of different techniques to design networks to classify actions

in videos. Section 2.2 explains the concept of Human Object Interaction and the various attempts

aimed at understanding the local information of the objects and the actors to classify actions in

videos. Section 2.3 discusses the embedding techniques used to convert the domain of natural

language into numerical data for analysis using the concept of embeddings. Section 2.4 describes

the recent attempts to look at the shortcomings of the data and its effects on the model perfor-

mance. Section 2.5 discusses the attempts aimed at a visual investigation of the internal workings

of popular CNN architectures.

To summarize, this work takes advantages of numerous methods mentioned in this chapter.

First, the use of SBERT to visualize the linguistic closeness of labels in the Something-Something

dataset to each other ( 2.3). Further, SlowFast and TSM are run in inference mode to filter out the

misclassifications for review ( 2.1). Inspired by the work with ReaL accuracy, a crowd sourced

review and reannotation of the legacy labels in the validation set is proposed. The resulting new

label are used to reevaluate the networks ( 2.4). As an additional validation of the correctness of

model predictions, the visualization of layer-wise salient regions of networks using Grad-CAM

when they predict an action class for the label is presented ( 2.5).

2.1 Video action recognition

Video action recognition in the domain of Computer Vision is largely influenced by factors like

differences in background, color, illumination, camera motion, orientation, etc. Additionally, there

is an intra class variation based on how different people perform the same action as well as an inter

class variation or similarity between different actions. While a static image freezes an action in
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the moment, a video brings in a spatio-temporal dependency between the frames. These various

reasons help us understand why video action recognition is a challenging topic, one that has long

been studied and progressed over the past decade.

The different attempts to classify actions within videos have been revolutionized by the use

of deep neural networks. Before the advent of deep learning methods, handcrafted features were

used to classify actions in videos. These handcrafted features were domain specific, and years of

research went into developing efficient features. The features quickly became out of date as modern

deep neural network architectures started automatically learning abstract feature representations of

video frames. Presented below is an examination of the evolution of video action recognition.

We will briefly dwell in the handcrafted features and then discuss the more recent neural network

approaches.

2.1.1 Handcrafted features for video action recognition

Previous strategies for video classification involved building a classifier trained on a "bag of

features". These features, known as handcrafted features, required a deep understanding of the

key elements in images and videos for their formulation. The features, can either be sparse, as

proposed by Dollar [32] and Laptev [33, 34] or dense as proposed by Wang in improved Dense

trajectories (iDT) [5]. iDT was able to achieve the state of the art results on HMDB51 dataset

(60.1%)[3.2] in 2011. The iDT features are notable due to their competitive performance with

several deep learning models. Building on 2D optical flow by Efros [3], the computation of 3D

optical flow by Ballin [4], continues to influence many video understanding models today. The

introduction of Convolutional Neural Networks (CNN) in 2012; however, transformed the domain

of visual understanding.

2.1.2 Deep learning for video action recognition

Deep neural networks quickly garnered tremendous attention after their use by Krizhevsky et

al. for image classification on ImageNet [6]. The deep network’s ability to automatically learn

feature representations was a huge improvement from the once tedious process of handcrafting
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features. The research community working on video action recognition quickly incorporated deep

neural networks and achieved high results on prevalent datasets. A review of some of the promi-

nent strategies employed for understanding videos via deep neural networks is discussed below.

This section is described as ’vanilla action recognition’ because despite the evolution of the ar-

chitectures to address shortcomings of previous approaches, the inherent objective to improve

the classification performance of human actions in videos remains consistent. Hence the name

’vanilla’. Modern vanilla action recognition architectures can be studied in primarily five cate-

gories. Table 2.1 describes these approaches, as well as the development of these methods over the

years. As a benchmark, the performance of these models is demonstrated on UCF101 dataset, a

popular dataset for action recognition[3.2].

2.1.2.1 2D Convolutional Neural Networks

In 2014, Karpathy et al. [1] laid the foundations of using CNN for video classification. They

proposed using two streams for processing information in the spatio-temporal domain. The con-

text stream processes frames at a lower resolution and fovea stream processes frame at a higher

resolution center crop. These activations from both streams are concatenated and fed to the first

fully connected layer; however, the convolution operation on the frames in the first layer, results in

an image, thereby essentially losing the temporal information. The papers in video action recogni-

tion that followed used a better way to model the temporal information within the video for action

classification.

Donahue et al. [10] proposed the Long term Recurrent Convolutional Network (LRCN) which

addressed a major shortcoming of efficient modeling of long term dependency of temporal infor-

mation within videos. The CNN features computed for every frame, were passed to a Long Short

Term Memory (LSTM) [11] for sequential modeling. Figure 2.1 shows the design of the LRCN

architecture. This strategy demonstrated the advantage of using LSTM, by showing the improve-

ment of almost 17% compared to the CNN model by Karpathy et al. [1] on RGB frames. While

this architecture appealed to the research community with its use of CNNs for spatial modeling and
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Table 2.1: There are five main approaches to video action recognition using deep neural networks. The
table provides a brief overview of the methods, the papers as well as the comparative performance of these
networks on UCF101, a popular dataset for video action recognition. For two methods, the authors did not
evaluate on UCF101, and hence it is left blank.

Approach Author (et al. ) Year Performance (UCF101)

2D CNN
Karpathy [1]
Donahue [10]

Kar [35]

2014
2015
2017

65.4%
82.6%
93.2%

Two Stream

Simoyan [12]
Ng [13]

Wang [36]
Wang [37]

Feichtenhofer [18]

2014
2015
2016
2018
2019

88.0%
88.6%
90.3%
94.9%

-
3D CNN Tran [38] 2015 83.4%

Inflated CNN
Carreira [14]
Girdhar [39]

2017
2019

98.0%

-

Improved 3D CNN
Xie [15]
Lin [16]

Jiang [17]

2018
2019
2019

96.8%
95.9%
96.2%

RNNs for sequence modeling, it was very expensive to train due to the high number of parameters,

and limited training data available then.

15



Figure 2.1: The CNN+LSTM architecture. Each frame in the video is processed individually by the CNN
and the output feature representations are passed through a single or stacked LSTM (Long Short Term
Memory) for sequential modeling. This approach showed an improvement of almost 17% over the previous
approach in [1].

Kar et al. [35] proposed a novel architecture known as AdaScan that learns to adaptively pool

the discriminative key frames from a video and then train a classifier on them to better classify an

action within the video. This pooling and classification are done in a single scan of the video. The

approach outperformed several action recognition methods on the UCF101 and HMDB51 datasets

at the time.

Despite the many successes, the 2D CNN attempts had a major limitation. The temporal in-

formation in videos was squashed within the first few 2D convolutional layers. Further attempts

at better model designs aimed at preserving the temporal information by making changes to the

convolution operations in the architecture.
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2.1.2.2 Two Stream networks

Simoyan and Zisserman [12] in 2014, laid the foundations for an important approach that has

influenced multiple papers since its publication. Known as the Two Stream network, this novel

architecture draws from the two pathways design of the human visual cortex. In the human visual

cortex, there is one pathway that relies on processing the spatial information from visual input,

called the ventral stream. Another important stream, known as the dorsal stream, processes the

motion. Inspired by this, the authors designed the Two Stream network such that one stream

processed spatial information, or appearance from still images, while the other processed temporal

information or the motion between frames. The authors demonstrate the effectiveness of using

dense optical flow to model the motion between consecutive frames by showing an improvement

in the classification results between Spatial ConvNet (RGB only) and Temporal ConvNet(RGB

+ Optical flow) by almost 10% on the UCF101 [20] dataset. Another contribution of this paper

is using the idea of multitask learning to improve the overall performance of the network, while

increasing the amount of training data. The network is trained on two action datasets, UCF101 [20]

and HMDB51 [21] having a separate loss for each dataset and aggregating the individual losses

for the network’s final training loss. A multitask training using both UCF101 and HMDB51,

increased the network’s overall evaluation performance on HMDB51 by a staggering 9% more

than just training independently on HMDB51 itself.

Ng et al. developed an architecture inspired by the Two Stream architecture [13]. Both Ng and

Donahue exploit the advantage of LSTMs for sequential modeling, yet, while Donahue used only

RGB frames as input, Ng used both stacked RGB in conjunction with optical flow information (as

in the Two Stream architecture) as visual inputs and then use LSTM to model sequential data over

it. The final predictions of the frames to the video level prediction are done as a linearly weighted

sum of the prediction scores of the individual frames, which improved the performance over the

Two Stream network by a small margin on UCF101. Despite the successes, the problem of an

exhausting number of training parameters and insufficient training videos still persisted.
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Feichtenhofer et al. [18] presented the SlowFast network, inspired by the Two Stream archi-

tecture by Simoyan and Zisserman [12]. The SlowFast network draws on the same idea of spatial

and temporal processing separately, as explained in the Two Stream network. The model consists

of a Slow pathway operating at a low frame rate to capture the spatial semantics, and a Fast path-

way operating at a high frame rate, which captures the motion in the video. This method has two

key differences from the two stream architecture. Firstly, the use of variable frame rates for the

Slow and Fast pathways as opposed to the fixed frames from both spatial and temporal channels

in the Two Stream method. Another significant difference is the use of only raw data as input,

compared to using optical flow as motion information in the previous network. This design is

partially inspired by the biological human retina, which consists of the Magnocellular (M-cells)

and Parvocellular (P-cells). The M-cells focus on the high temporal frequency, and are responsible

for fast motion in sight, but not the spatial information. The Fast pathway is comparable to the

M-cells. The P-cells, on the other hand, are more responsive to spatial detail and color, but not

to motion. The Slow pathway is similar in concept to the P-cells. The SlowFast network boasted

state-of-the-art performance in action recognition on the Kinetics400 dataset (79%) [19].

Temporal Segment Networks (TSN) [36] prized as the state of the art in action recognition

in 2016. This idea focused on two major problems in CNNs prevalent then. First, to design a

video recognition framework that can model a long range temporal structure. The variation of

information between consecutive frames in a video is not pronounced. Hence, a dense sampling

method for video recognition would result in highly related samples, thereby redundant for the

model. To solve this, the authors propose a sparse sampling method, which extracts short snippets

uniformly distributed over the video and randomly picks a frame from them. A segmental consen-

sus function takes as input the information from these frames and aggregates them over the whole

video. To fully take advantage of the ConvNets, the authors perform an ablation study using dif-

ferent modalities like RGB image, stacked RGB difference, stacked optical flow field, and stacked

warped optical flow fields. The frame sampling method proposed by the authors has now become

the standard for sampling videos frames in the domain of video action recognition.
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The conclusion was that the network outperformed the prevalent state of the art networks on

both UCF and HMDB using three modalities together namely RGB, optical flow, and warped op-

tical flow. In 2018, this work was extended with three major additions [37]. First, the handling of

untrimmed videos was proposed, as compared to only trimmed videos in the prior work in Tem-

poral Segment Networks. The untrimmed video is divided into short windows of fixed duration,

and action recognition is performed on each window independently. A hierarchical aggregating

strategy called Multi-Scale Temporal Window Integration (M-TWI) predicts the final results for

the untrimmed video. Second, to produce video level prediction results, the authors proposed a

top-K pooling or attention weighting on the snippet scores as an aggregation function. Third, the

work introduced the concept of cross modality initialization wherein learned representations from

one modality like RGB, can be successfully transferred to another modality like optical flow.

2.1.2.3 3D Convolutional Neural Networks

Despite taking stacked multiple images and treating them as different channels, a 2D convolu-

tion results in an image. Thus the temporal information is lost at the first convolution step itself.

By explicitly adding a third dimension to the convolutional kernels, the model is able to preserve

the temporal information without loss. Tran et al. with 3D Convolutional Networks (C3D) for-

mulated a new stream to tackle the problem of understanding spatio-temporal data in videos [38].

The authors proposed 3D convolution, where convolution and pooling are done spatio-temporally

to preserve the temporal information. Instead of a (k x k) kernel for convolution, it is changed to

(d x k x k) where d is the temporal depth of the kernel. Since the network is cumbersome to train

on large video datasets, the model performance is evaluated on UCF101 [20]. A linear classifier

(SVM) is applied on the compact features learned from the C3D, and achieves pretty high accu-

racy on UCF101. Using only ten dimensions to achieve a high baseline result (54%), the authors

demonstrate the effectiveness of the information captured by C3D in the videos. The disadvantage

of this method, however, is that it is computationally very expensive to train and resource heavy.

The C3D model uses a VGG-like architecture that resulted in a massive 79 M trainable parameters.
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2.1.2.4 Inflated 3D CNN

Carreira and Zisserman proposed the I3D model in 2017, which is the state of the art in action

recognition [14]. The motivation for this idea is twofold. First, the reuse of existing 2D CNN

models developed for image classification pre-trained on ImageNet for 3D convolutions. For this,

the authors use Inception-v1 pre-trained on ImageNet, the state of the art 2D CNN model for

image classification, and inflate its filters and pooling kernels from 2D into 3D. This led to very

deep spatio temporal classifiers. In addition to the RGB stream, the Two Stream I3D model takes

input from the optical flow stream. The authors hypothesized that this model performs better

since it can capture fine-grained temporal structure of actions. Secondly, the authors validated

the importance of pre-training models by pre-training their Inflated 3D ConvNet model on the

Kinetics400 dataset and finetuning it to the respective dataset (UCF101 [20] or HMDB51 [21]).

The resulting pre-trained I3D model outperformed the previous existing state of the art models by

a significant margin on the two datasets under consideration. A Two Stream I3D pre-trained with

ImageNet and Kinetics dataset is able to achieve 98% accuracy on UCF101 dataset.

In the Action Transformer model, Girdhar et al. proposed to aggregate features around the

person of interest to explore the action of a person based on their interactions with other people and

objects around them in a scene [39]. An action in the current frame also requires a context of events

that have happened in previous scenes, to establish a context of past events for better learning. The

Action Transformer network aims to utilize this contextual information in classifying an action of

a person. Building upon the I3D model for spatio-temporal features and a region proposal network

for person localization, these features serve as input to the transformer model. As noted by the

authors, this network focused on the hand and face regions for cues, as these serve to be the most

salient features for discriminating an action. This architecture is a little different from the other

architectures described above. The network solved the problem of detection of humans in the video

as well as classifying the actions performed by the individual actors. This problem sub-domain is

known as action detection and localization.
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2.1.2.5 Improved 3D CNN

3D CNNs are efficient, yet they are computationally expensive. The future attempts at design-

ing architectures for video action recognition aimed at preserving the efficiency of 3D CNNs and

reducing the number of computations at the same time. Since this network architecture is inspired

by 3D CNN networks, it is studied in this subtype of action recognition architectures. The moti-

vation behind the work by Xie et al. [15] is to develop an architecture that is efficient much like

the 3D CNNs, yet has the complexity of 2D CNNs. This task is achieved by replacing certain

3D convolutions with 2D convolutions, to make the model more computationally efficient, while

retaining the accuracy. Taking the I3D architecture [14] by Carreira and Zisserman (discussed in

2.1.2.4), the approach explores retaining the 3D temporal convolutions at bottom most layer (called

as Bottom-Heavy I3D) or the top most layer (called the Top-Heavy I3D) of the I3D network, and

having 2D convolutions for the rest of the layers. The authors find that the Top-Heavy I3D is better

performing, which leads to an interesting insight that the temporal information is more relevant for

the upper layers with higher spatial information abstraction. Another contribution is reformulat-

ing the 3D convolution module as a separable 3D CNN module, defined as S3D, which performs

better than the I3D using only RGB frames, while enjoying less computational cost. This model

also performs better than I3D on the Kinetics [19], UCF [20], HMDB [21] as well as Something

Something [40] datasets using RGB frames as input.

The advantages of dense optical flow as an important modality have been leveraged by the video

action recognition models to add local motion information between consecutive frames [12,13,18].

The computation of optical flow, however, is very expensive and thus limits the model’s ability to

be deployed in real time during inference. Thus, efforts made by Stroud et al. [41] in Distilled 3D

Networks (D3D) aimed at incorporating the optical flow computation within the C3D model so as

to eliminate the requirement of computing the optical flow signal offline. The authors propose a

Student Teacher network that distills the knowledge of the optical flow computation into an S3D

model [15]. The resulting D3D model is able to achieve performance at par with the models that

use the additional optical flow signal, but only using the RGB modality as input signal.
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Lin et al. discuss a similar question of revisiting the problem of 3D CNNs as in S3D [15]. The

authors proposed the Temporal Shift Module (TSM), which shifts the channels along the temporal

dimension [16]. A video A is represented as A ∈ RN×C×T×H×W where N is the batch size, C

is the number of channels, T is the number of frames or the temporal channel, H and W are the

height and width of the frame. The channel shift is done, such that the temporal information at

any time instance Ti has the information from Ti−1 and Ti+1. Figure 2.2 illustrates the core idea

of TSM. The authors hypothesize that this mingling of neighboring frames is very important for

complex temporal modeling. The rest of the convolution is similar to a 2D CNN. This method can

handle trimmed (offline) as well as untrimmed (online) videos, with a simple shift in the frames

considered at any time instance. This method won the first place in the Something Something

challenge for action recognition, while achieving very low processing latency.

Figure 2.2: Illustration of the Temporal Shift Module (TSM). At any given instance Ti, the network is aware
of channel information from the past frame Ti-1 as well as the future frame Ti+1. In an online setting where
future frames are not available, the network only relies on the past frames for sequential information.

This dissertation takes two networks to establish baseline experiments for the main idea: Slow-

Fast and TSM. Trained on the Something Something dataset, the models are run on the validation

data in inference mode and the patterns of misclassifications are analysed.

Jiang et al. design the Spatio Temporal Module (STM) with a goal to incorporate temporal

information in the 2D CNNs [17]. The authors propose two modules that form the STM mod-

ule, namely Channel-wise Spatio-Temporal Module (CSTM) and Channel-wise Motion Module
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(CMM) to efficiently encode motion features. The STM module is introduced as a replacement to

the residual blocks in ResNet, thereby creating a computationally lighter model for action classifi-

cation in videos.

The models discussed in vanilla action recognition rely on using the complete frame to learn

about actions. For actions involving a focused interaction between the actor and the objects in the

scene, using the complete frame information poses as a shortcoming. The next section delves into

the challenges involving human-object interactions in actions, and how different models attempt

to solve it.

2.2 Human Object Interactions in videos

Classifying videos involving Human Object interaction (HOI) is challenging as it involves

analysing the action the actor is performing and detect the object in the video to model the inter-

relationships between the human and the object. Figure 2.3 displays the complex dynamics of

human-object interaction. A lot of insight is obtained about the object by knowing how an actor

interacts with it, i.e. object properties like hardness, softness, elasticity, etc.. Affordances, or the

different behaviors an object allowing the execution of also give information about the object, and

thereby how an action is performed. There is a temporal dependency or a cause and effect in

how one or more objects in a scene interact with each other as the video progresses. This section

discusses the different attempts at understanding Human Object Interaction in videos using these

insights.

Escorcia et al. discussed the dynamic nature of human-object interactions over time [42]. This

method focused on actions where the human and the interacted object might be the same, yet the

evolution of the action over time is different. To explain this better, the authors give an example of

two actions, namely answering the phone and dialing a phone. They consider features like relative

location, relative object sizes, and relative overlap between the detected human and objects over

several time intervals. These features are then aggregated into descriptors and trained using a linear

SVM for a video level class prediction label.
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Figure 2.3: A video from Something Something of moving a mouse near a pen. Human Object interactions
have inherent correlations between the subject, object, other objects as well as scene semantics.

Neverova et al. focused on understanding the relationships between objects in a human-object

interaction video. The aim of this paper was to study the manner, order and effect of the object

interactions of the human [43]. Humans have the faculty known as reasoning that can deduce the

sequential dependency of actions on objects before reaching a final state. Using the example of

cutting a carrot placed on a cutting board, the authors explained the temporal interactions between

the human, carrots, and the knife (the carrot was chopped by the human). By considering time

as the explicit causal signal, this paper studied the object level reasoning in videos. The goal

was to identify the causal event A before B, not from the pixels in the video frames, but from

the object level perspective. The state of the art models in object detection can help us detect the

objects present in a video frame. Despite this information, determining their semantic sense of

interactions between actors and objects in a scene is a more challenging task. The paper proposed

Object Relation Network (ORN) to reason between objects in space and time. The ORN took

as input the object detection masks over different object categories and temporal occurrences and

modeled relationships between detected objects through the video.

Human actions seen across available action recognition datasets belong to a variety of coarse

action groups such as sports actions, daily actions, cooking actions, etc. Ji et al. exploited the

context information from videos to design a coarse to fine approach to classify human actions [44].

The authors proposed a context knowledge map to classify an action into a coarse grained group.

The coarse grained classifier took as input all informative sources like scene, objects, pose estima-

tion, visual data, and optical flow features from the video and explores the relations between them.

The context knowledge map summarized this information and modeled their relationships to form
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a coarse grained action group, rather than fusing all information directly. Utilizing the features

from the coarse grain group thereafter, a fine grained classifier realized the accurate action in the

video.

One of the foremost limitations of the current human-object interaction recognition models is

that they consider the entire scene for the feature representation, and hence fail to recognize and

model the specificity of the objects and relations with the actor. Materzynska et al. addressed the

compositionality of actions by looking into the dynamics of the objects in consideration and the

subjects interacting with them [40]. The novel recognition method, known as Spatio-Temporal

Interaction Networks (STIN) relied on the state of the art object detectors for its analysis. A spatial

interaction module establishes the reasoning between the objects in the video, and a temporal

reasoning module encodes the relations and transformations between the objects and the human.

For activities without a prominent object-actor interaction, the model relied on scene-level spatio-

temporal feature representations for predictions. To understand the composability of the model,

the combinations of verbs and nouns in the training set do not occur in the test set.

Another attempt to tackle the local information processing for efficient human-object interac-

tion is proposed by Martinez et al. in [45]. The authors proposed altering the last few layers of an

existing network to extract local object information. In addition to the global frame information,

the network had discriminative spatial filter banks that corresponding to each action in the dataset.

Visualizing the filters with the highest response in the video frame for each action, the authors

demonstrated the increase in the model performance as it discerns the finer details of the specific

objects correlating with certain actions.

2.3 Natural Language embeddings

Embedding is a commonly used term in the domain of statistical modeling and machine learn-

ing. It is a representation of an abstract concept encoded into a real valued vector. With regard to

Computer Vision, an embedding can be a feature representation of an image or a video. Similarly,

in the domain of Natural Language Processing, an embedding can be a representation of a word or
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a sentence. An efficient embedding technique is able to bring closer two or more concepts that are

semantically relevant or similar. Mathematical operations can be performed on the embeddings

to show the relation between those concepts. For example, the cosine similarity of representa-

tions between two similar entities will be closer to each other in a high dimensional space than

two dis-similar entities. In practice, the embeddings are extracted from the penultimate layer i.e.

the network layer before the final classification layer. For example, an image embedding from

Resnet-50 [9] is of 2048 dimensions, while the embedding from BERT [2] is 768 dimensions.

In this section, the common embedding techniques used in domain of Natural Language Pro-

cessing are reviewed. The two main types of embeddings discussed are Word Embeddings and

Sentence Embeddings. While word embeddings have complexities like context change for the

same word in a sentence, like The bank robber hid in a village by the bank of the river, sentence

embeddings have a challenge of encapsulating the semantic meaning of all words into one fixed

length vector. The evolution of techniques tackling these challenges will be discussed.

2.3.1 Word embeddings

Word embedding involves the process of mathematical projection of a word into a real valued

feature space. Using methods like neural networks, co-occurrence matrices, probabilistic models

etc, words or phrases from a vocabulary are mapped onto a continuous vector space of a fixed

dimension size.

2.3.1.1 One-hot encoding

The earliest approaches to word embeddings assigned a unique one-hot vector of finite dimen-

sions to a word. Based on the number of words in the vocabulary, every word was expressed with a

1 in place of the word as in occurred in the vocabulary, and 0 for all other words. Suppose there are

4 words: ’red’, ’green’, ’blue’, ’yellow’. The one hot encoding for each word will be as follows:

red: [1,0,0,0], green: [0,1,0,0], blue: [0,0,1,0], yellow: [0,0,0,1]. Despite kickstarting the domain

of distributional semantics, this method had several limitations in its use:
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1. Similarity issue

Every word in the vocabulary is mapped onto a unique one hot encoded vector. For example,

a cat and a tiger are two similar concepts. However, a one hot representation of either

removes any similarity one concept to another.

2. Vocabulary size

Often the words or phrases in the vocabulary range in thousands depending on the language

modeling application. The size of the one hot vector is equal to the number of words belong-

ing to the vocabulary. Thus, for a word in a vocabulary of 10,000 words, every word results

in a very sparse one hot vector of dimensions 10,000. A much larger input vector space than

the training data size limits the ability to build reasonably generalizable language models.

3. Computational issue

Such a large sparse feature dimension can limit the computational memory and storage ca-

pacity of machines processing them. While there are algorithms that process sparse vectors,

the neural networks commonly used for language modeling are limited in the ability due to

high dimension input data.

2.3.1.2 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TF-IDF) is an important numerical representa-

tion of text used in information retrieval. It is also used as a document retrieval in different search

engines. Proposed by Salton and McGill [46] in 1986, this method weights a particular word in

the vocabulary to the frequency of appearance in the document and the relative importance with

respect to other words. For stop words like the, at, is, the tf-idf vector is very low. The similarity

between two documents is computed using the cosine similarity of the two corresponding tf-idf

vectors. Larger the cosine similarity, closer is the target document to the existing document. As

seen from the term, TF-IDF is a combination of two concepts: Term Frequency and Inverse Docu-

ment Frequency [47]

Term Frequency: Term Frequency corresponds to the logarithm of the raw count of a word in a
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document. Mathematically, it is expressed as:

tf(t, d) = log(1 + freq(t, d)) (2.1)

Inverse Document Frequency

Inverse Document Frequency measures how common or rare a word is in the document. Rarer

the word higher is the IDF, while if the word is more common then its IDF will be closer to zero.

The word in consideration, the current document and the total document set are considered for

calculating the IDF score. It is calculated as the logarithm of the total number of documents in the

document over the number of documents that contain the word in consideration. Mathematically,

it is expressed as:

idf(t,D) = log(
N

count(d ∈ D : t ∈ d)
) (2.2)

Rarer the word, the idf score will be closer to 1, while for the most commonly occurring words,

the idf score will be 0. The TF-IDF score is then the product of the tf and the idf scores for the

word in a document. It is expressed in the eqution 2.3.

tfidf(t,D) = tf(t, d) · idf(t,D) (2.3)

Higher the tf-idf score of a word, more relevant it is in the document.

2.3.1.3 Word2Vec

Word2Vec is an embedding technique proposed by Mikolov et al. [48] that is used to transform

text in a document to a real valued numerical form interpretable by machine learning algorithms.

It differs from the TF-IDF and One hot embedding techniques as this approach involves the use

of a neural network to compute text to embeddings. The neural word embeddings are obtained

from training words against other words that neighbor them in the input corpus. The Word2Vec

approach is highly efficient at modeling the relations between words that are semantically close to

each other. Also, vector operations can be performed on these embeddings of words. Considering
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the example of four words: Man, King, Woman, Queen. If we take the difference of the vector

representations of King and Man and add the representation of Woman, the output representation

obtained is that of Queen. The cosine similarity of pairs of representations for Man and King and

Woman and Queen are also very high, owing to the high conceptual similarity between the pairs

of words. Due to the high efficiency of the Word2Vec technique, it is used in many applications

including recommendation systems, text data mining, machine translations, etc.

2.3.1.4 Glove

Global Vectors (GloVe), proposed by Pennington et al. [49], is another learning based word

embedding approach similar to Word2Vec. Compared to Word2Vec that uses a neural network for

representation of a word, GloVe learns by constructing a global co-occurrence matrix by estimating

the probability a given word will co-occur with other words. Given the vast number of words in

the corpus, the co-occurrence matrix is also a huge matrix of dimension (number of words X

context). The context is the number of column in the matrix, and each row shows the count of

the word in the given context. Owing to the combinatorial nature of the words pairings that can

establish context, the number of columns is large, and dependent on the window size chosen for the

approach. The co-occurrence matrix is then factorized to achieve a lower dimension representation

and high variance within the data using dimensionality reducing techniques PCA [50].

2.3.1.5 BERT

BERT (Bidirectional Encoder Representations from Transformers), designed by Devlin et al.

[2], is the most recent architecture used in a variety of language modeling tasks like Question

Answers [51], Text Summarization [52], Machine Translation [53], etc. It is a context based

language representation. The context of a particular word in the sentence is obtained by parsing the

sequence in both directions left-right as well as right-left. The sequential model used to establish

the textual context is a Transformer [54].
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A Transformer, on a very high level of technical detail, works on the principle of multiple

stacked self attention modules. The self attention module applies attention mechanism to every

word in the sentence or a group of sentences to decide the weight of a particular word.

The main difference between the Word2Vec, GloVe and BERT approach is that Word2Vec

and GloVe construct vectors for words independent of context. A word found in the corpus will

have the same representation independent of its meaning in the given context. For example, in the

sentence He went to the prison cell with his cell phone to extract blood cell samples from inmates,

the word cell will have the same Glove and Word2Vec representation even though it has different

meanings in the context. However, BERT takes into consideration the context of the word and thus

each cell will have a different vector representation.

Another difference is that both Glove and Word2Vec approches cannot handle words that are

Out Of Vocabulary (OOV), as they are trained on all the words only found within the corpus. BERT

works on the sub-word approach, so it can be used to get a representation for words not found in

the corpus as well. Section 3.1 discuss the working of BERT in a greater detail.

2.3.2 Sentence embeddings

BERT model is very efficient at finding the embeddings for atomic words in a sentence. Find-

ing encodings for a contiguous sentence, however, is a different task. One approach could be to

find the mean or sum of individual encodings of every word in a sentence. By doing this, the

semantically most important words are lost as the unimportant words also contribute equally in the

summation operation. Another approach is to take the [CLS] token embedding from BERT model

as a representation for the sentence. This technique has been found to have a significantly lower

embedding quality than averaging the GloVe word vector embeddings [26]. Attempts to find an

efficient sentence embedding technique have been made since 2015.

2.3.2.1 SentenceBERT

SentenceBERT or SBERT derives fixed length embedding vectors for sentences in a text [26].

A similarity measure like cosine similarity can be used to find the semantic alignment between two
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sentence level encodings. The proposed network relies on computing a mean of the 768 dimension

BERT embeddings for each word in the sentence. It differs from the process discussed above in

that the SBERT makes use of a siamese and triplet network to derive meaningful sentence level

embeddings. This is achieved by training the model on datasets that contain pairs of sentences

and a relative similarity score between the two. This joint training helps the model associate the

encodings of the sentences together. For the preliminary experiments, this research makes use of

the SBERT model to examine the semantic relevance of different labels in the video dataset.

2.4 Reassessment of labels

Different domains of Computer Vision have relied on certain datasets to highlight the landmark

achievements of networks that can solve the problem for which the datasets were designed for. In

the image domain, MNIST [55] was one of the foremost datsets, followed by CIFAR [56] and

relavtively recent and most popular ImageNet dataset [23].

Numerous attempts going back over a decade starting with AlexNet [6] have continously dis-

played a steady increase in the performance in image classification on ImageNet. While a system-

atic gain in performance is reported, the meaningful generalizability of these models is largely an

unanswered and underexplored question. The source of this gap in research can be traced back to

the dataset and its inherent flaws that seep into the networks. It is now being found that the gen-

eralizability of recent state of the art image classification networks has been significantly weaker

and in some cases, even impacting negatively.

Beyer et al. in [24] discuss the shortcomings in the validation set of ImageNet and collect a new

label set that addresses these shortcomings. The dataset contains 1000 categories of real world ob-

jects. Most of the images in that belong to those classes have a single identifiable objects that maps

to the single label. However, many images contain multiple objects that are also present in the class

set. The existence of only one single label in such cases can lead to a bias resulting in inaccuracies.

Similarly, there is an ambiguity between identical group of classes within the dataset. Thus, even

when an image classifier correctly identifies one of the many objects in an image, it can still be
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penalized if the predicted label does not match the intended label. A new annotation procedure as

proposed by the authors aims to mitigate this label noise and get an empirical understanding of the

generalizability of image classifiers.

A human-in-the-loop approach using a crowd-sourcing platform is undertaken such that every

image is annotated by 5 distinct humans. This accounts for any variability assumed due to error by

the annotators. A new evaluation metric called ReaL accuracy from Reassessed Labels is presented

by consolidating and analysing the results of reannotations. A ResNet 50 evaluated on ReaL labels

saw an increase of 6% on the validation data (76.10% on original ImageNet labels vs 82.94% on

the ReaL labels).

Yun et al. in [57] take a very similar approach as above to address the label inaccuracies in

ImageNet. There are certain key differences between the two approaches. The authors focus on

re-labeling the training set compared to validation set in [24].Human annotations were replaced by

machine annotations. These machine annotations were obtained by using a state of the art image

classifier trained on a much larger dataset like JFT-300M [58] and InstagramNet-1B [59]. While it

saves a lot of manual review, this approach is still prone to the biases and inaccuracies of the image

classifier and the datasets it is trained on.

Similar to [24], Meding and Buschoff et al. in [60], discuss the similarity of model perfor-

mance for various state of the art image classification models. The authors focus on the influence

of inductive bias on the difference in performance of the networks. Inductive bias is defined as the

set of assumptions and choices available to the decision space before the data is introduced. Or in

other words, the factors that contribute to the model initialization before exposing the training data

to them. The authors observe that this inductive bias has negligible influence on the variation of

performance and the major contribution comes from certain patterns in the available data. These

patterns collectively result in the quality of data known as Dichotomous Data Difficulty (DDD).

In DDD, 46.2% images in the data are correctly classified by all models. This type of data

is denoted as ’trivial’ by the authors. Similarly, 11.5% images are hard for all the models to

classify. These are known as ’impossible’. The remaining 42.5% images decide the difference
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in the decision boundary of two models. There are some erroneous samples within the data that

require cleaning. The authors note that removing this erroneous data is helpful, but does not

change the DDD nature of the datasets. Another interesting observation noted is that there is a

shared notion of easy and difficult level of images for both humans and CNNs. Meaning, humans

with no machine learning experience are able to reliably and consistently predict which images are

trivial or impossible for CNNs.

2.5 GradCam visualizations

Convolutional Neural Networks have undoubtedly changed the way problems in machine learn-

ing are tackled. Their high efficiency has revolutionized solutions for domains like image classifi-

cation [6], image captioning [61], visual question answers (VQA) [51], semantic segmentation [62]

etc. The success of these networks lies in their ability to model complex feature representations

learned from training data. Despite the superior performance, the research community still lacks

trust in the interpretable capabilities of these networks. As they continue to remain a blackbox

for researchers and developers alike, the failure cases of these networks often leave users wonder-

ing for a coherent explanation for the same. Recent attempts in establishing a quantifiable trust

in the internal complex representation of CNNs aim to answer this very question why a network

predicts what it predicts. Thus, it is required that the internal feature representations of CNNs be

decomposable and presented in a manner that is intuitive, interpretable and easily comprehensible.

The earliest attempts to investigate visual interpretations of CNN networks was proposed by

Zeigler and Fergus [63] and extended by Zhou et al. [64] with Class Activation Maps (CAM). The

authors illustrated what a CNN learns when it classifies an image into a particular class. Although

this was a positive step in peeling the metaphorical CNN onion, there was a striking limitation to

this approach. The design involved convolutional layers followed by global average pooling and

then a softmax layer. However, this architecture differs from the many modern CNN architectures

which have a fully connected layer following the convolutional layers before a softmax layer. The

generalizability of CAM was fairly limited as it could not include commonly used CNNs.
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To solve this, Selvaraju et al. proposed Grad-CAM [25] that accounts for the intermediate

fully connected layer in CNN layout and opens up the visual interpretability for almost all com-

mon CNN designs. The core idea proposed by the authors relies on two important concepts in

neural networks: activations obtained in the network forward pass, and gradients available in the

backward pass. For a particular class label usually the class label corresponding to the input image,

the activations and gradients are processed to determine the salient regions in the image that maxi-

mize the score of the class label. The resulting salient regions are overlaid onto the input image as

heatmaps with focus on pixels with a positive influence on the class score. This dissertation relies

heavily on Grad-CAM as a way to examine network learnability as well as getting an insight into

their failure cases.

While Grad-CAM paved for a more structured interpretation of CNNs by highlighting salient

regions, there were some shortcomings in the approach. The method struggles to localize multiple

occurrences of the same class in an image. Additionally, for a given class, the network does not

cover the complete area of the class object in the image. To solve this, Aditya and Sarkar et al.

proposed Grad-CAM++ [30] to extend Grad-CAM visualizations and address the flaws. Most of

the idea of the first approach is retained in this one, with an important change. When calculating

the weight of the activation map, the authors consider a second order differential of the class score

with the activation map. The intuition behind this is to account for the multiple occurrences of the

class object in the image which fade away in the first approach.

Further attempts in this direction ask questions rooted deeply in the technical details of the

implementation. Fu et al. propose XGrad-CAM [31] as a way to address why Grad-CAM uses

the average of gradients for weight of activation maps and its effect on network visualization. To

achieve better explainability, the authors propose using two axioms that the networks must conform

to for more theoretical and reliable visualization. These axioms are sensitivity and conservation.

Sensitivity states that the importance of each feature map should be reflected in the class score

when it is removed, or replaced by zero values. Conservation ensures that the feature maps are the

only dominant contributor of the class score and not any unexplained factors.
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The numerous approaches described above focus on obtaining interpretability for a single im-

age. The methods highlight salient regions, or the spatially influential information in the input.

For videos however, there is an additional challenge of the temporal information contributing to

an action or event. This remains unaccounted for by previous CAM attempts. In [29], Manttari

and Broome et al. propose an approach to identify the temporal information most meaningful to

the network for its classification. Meaning, the proposed idea shows which frames in a video con-

tribute most to the class score. To do this, the a learned mask is applied on the temporal dimension.

This mask is either a ’freeze’ removing motion data from the video, or a ’reverse’ that inverts the

sequential progression of frames. When the order of frames is reversed, theoretically, it should

drastically change the model prediction. Similarly, if an entire video is frozen to one frame, the

score should be affected except for in videos with no observable motion. This helps identify the

salient frames sampled from the video. The authors conclude that 3D convolutions focus their tem-

poral attention on short sequences and spatial attention on more contiguous areas. Coincidentally,

this work also validates this claim as will be seen in the further chapters.
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Chapter 3

Background

This chapter is intended to provide an overview into some of the key concepts utilised in our

work. Section 3.1 provides the reader with an introduction to BERT, the current state of the art

network used for language modeling. The advantages of BERT are then extended from obtaining

word embeddings to obtained sentence level embeddings of labels in the video dataset. Section 3.2

provides an overview of the popular datasets used for video action recognition. In particular, this

section gives a detailed description of the Something Something dataset which is the focus of my

experiments. Section 3.3 provides an introduction to Grad-CAM, an investigative visualization

technique to get an insight into important regions of the image for an action class prediction. The

approach generates heatmaps for convolutional layers in the video action recognition models and

overlays them on the video frames. This method helps to examine the failure cases of the networks

and what regions are focused on while making the wrong predictions. Readers are encouraged to

skip to the sections pertaining to their interests.

3.1 BERT

BERT (Bidirectional Encoder Representation from Transformers) [2] is a concept presented

in the domain of Natural Language Processing by Google in 2018, that has created a huge stir in

the field of Machine Learning. It is a context based language representation and the state of the art

architecture across various applications like machine translation [53], sentiment classification [65],

visual question answers [51] etc. The pre-trained model is available for the community to build on

and that helps in two ways: greatly reducing the efforts and resources needed for training such a

heavy model and to build highly efficient applications with a simple plug and play with the model.

The key idea in BERT is the bi-directionality to understand language context in a deeper sense.

Combining the advantages of a Transformer [54], another state-of-the-art attention model in NLP,

the architecture parses text from both left-to-right as well as right-to-left to learn contextual rela-
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tions between words in a text. In traditional uni-directional language models, every word is input

sequentially as it occurs in the direction of parsing. BERT, however, takes the entire sequence of

words at once. Hence, although the name suggests bi-directional, a more relevant description of

the approach would be non-directional. A relative importance of a word is decided based on all of

its surrounding words.

Figure 3.1: The architecture of BERT as proposed by the authors in [2]. The network parses the input
sequence of words from both left-right and right-left for efficient context modeling. The output of BERT is
a fixed length vector representation of every word based on the context in the input text.

Figure 3.1 shows an illustration of the BERT architecture. The input to BERT is a sequence

of tokens. A token is an individual entry in the sentence or sequence. Every token is replaced by

its ID in an embedding table. The embedding table is simply a dictionary that has the keys as the

words used during training, and the corresponding values as the indices of the words as they occur

on the text. Two special tokens are added to the input [CLS] and [SEP]. [CLS] token is inserted

at the beginning of the first sentence and [SEP] token is inserted at the end of every sentence.

Let’s consider the example sentence: The cat is sitting on the fence. After word tokenization, our

example sentence looks like: [’The’, ’cat’, ’is’, ’sitting’, ’on’, ’the’, ’fence’]
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Figure 3.2: The input to the BERT model is a summation of three different embeddings: the token embed-
ding for every word as well as the [CLS] and [SEP] tokens, the sentence embedding indicating the position
of the sentence in the input text (0 or 1) and the positional encoding of every word as it occurs in the input
text.

Thus the tokenized input to BERT is now a sequence of token IDs of the words along with

the token IDs for [CLS] and [SEP] tokens. In addition to the tokens, BERT has two more inputs:

the sentence number encoding and the positional encoding of every token in the input sentences.

The three encodings (tokenized encoding, sentence encoding and position encoding) are summed

together as input to the network. Figure 3.2 illustrates the input to the BERT model. The output of

the network is an embedding vector of 768 dimensions for each token. This embedding of tokens

can be used for various applications as required. Suppose we want to understand whether a text

is spam or not, we take the representation of the [CLS] token which encodes the meaning of all

the text in itself, and train a binary classification model to classify the given text into spam or not

spam.

Due to its training process, BERT has an advantage over the previous attempts at word embed-

ding and language modeling. Despite their effectiveness, the previous attempts at word embedding

(GloVe, Word2Vec) faced a major limitation. These methods were not able to encode words that

were not seen in the vocabulary of the training corpus of the networks. This is called the Out Of

Vocabulary (OOV) problem. BERT, on the other hand, with a training corpus of 30K words com-

pared to millions required for others, is able to handle the OOV problem. The network splits such

words into subwords and characters and uses that information in their encoding. The subwords in
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the the tokenization process are assigned the # character. Suppose playing is a OOV word, but play

and ing are seen in the training corpus. The embedding for playing is thus obtained by splitting it

into the sub-words ’play’ and ’#ing’ and then summed for the representation.

3.1.1 SentenceBERT

In order to apply BERT embeddings of words to a sentence to find a sentence level embedding,

Reimers and Gurevych proposed SentenceBERT or SBERT [26]. The context of the sentence is

lost when embeddings from all words are simply pooled together. Consider two sentences putting

something and something on the table and putting something, something and something on the

table. Semantically, the two sentences are very similar. However, the BERT representation of

each word will be different, and thus in pooling BERT token embeddings for sentence level, the

similarity between the two sentences is lost. Another approach would be to consider the [CLS]

token for sentence level mapping. The authors state that this approach does not give good sentence

level embeddings either. Thus, to tackle the problem of mapping similarity between like sentences,

the authors propose a Siamese network type training.
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Figure 3.3: The SBERT model consists of the same BERT model replicated multiple times where the
weights are tied together. Two sentences A and B are passed through BERT to get their embeddings. Each
branch gets its embeddings pooled together to handle different sentence lengths. The objective function of
the two pooled sentence embeddings is reduced.

Figure 3.3 shows the SBERT network architecture. It consists of two replicas of the network

operating on two sentences together, with the weights tied. Sentence u and Sentence v as shown

in the figure are passed through BERT individually to obtain their word embeddings. In order to

handle sentences of different lengths, the embeddings thus obtained for the sentences are pooled

using a pooling operation. The authors state that Mean pooling gave the best results for sentence

level embeddings. The two sentences interact with each other using an objective function given

by:

o = softmax(Wt(u, v, |u− v|)) (3.1)

where W t is a weight vector of dimensions R3n where n is the dimensionality of the embedding and

k is the number of classes in the dataset. Since u,v and |u− v| are concatenated together, the total

dimensionality is 3n. The dataset considered by the authors for their experiments had 3 classes

to denote the association of different sentences: contradiction, entailment and neutral. The cross
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entropy loss of this objective function is minimized for learning. In inference mode, the sentence

is passed through the SBERT network to obtain the sentence level embedding. This dissertation

makes use of the sentence level embedding of the action labels present in the Something Something

dataset. The input to SBERT is a class label while the output is a fixed length embedding vector.

3.2 Datasets

This section deals with the popular datasets available for designing models for visual under-

standing. While there is an exhaustive list of datasets available for video action recognition, a small

subset that is referenced in a majority of the papers in the literature will be described here. The

datasets referred are:

1. HMDB51

2. UCF101

3. Kinetics400

4. Something Something

Table 3.1 presents a summary of these datasets and their descriptions. The Something Something

dataset is the focus of this dissertation. The design of the dataset as well as the TSNE visualizations

and confusions of the labels will be described in adequate detail.

Table 3.1: Popular datasets used for video action recognition. The Something Something dataset is the
focus of this dissertation (last row).

Name Classes Samples Avg video
length

Description

HMDB51 [21] 51 6766 2-3 secs Digitized movies and
Youtube videos

UCF101 [20] 101 13320 7 secs User Uploaded web videos
Kinetics400 [19] 400 306245 10 secs Youtube videos
Something Some-
thing [22]

174 220,847 2-6 secs Crowd sourced videos
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3.2.1 HMDB51

HMDB51 [21] is a popular dataset for action recognition and video understanding. It was

designed to overcome the limitation of shortage of action classes and controlled conditions of the

actors performing the actions. Taking digitized movies or Youtube as the video source, this dataset

contains approximately 7000 videos over 51 action classes. The videos are available over varied

distortions like camera motion, viewpoint variation, video quality changes, and occlusion. This

dataset was designed to capture the complexity of human actions in videos. There are five main

groups of the actions namely: facial actions (like chew, talk), facial actions with object interactions

(smoke, eat, drink), general body movements (climb, dive, etc.), body movements with object

interactions (brush hair, kick ball, ride bike) and body movements for human interactions (hug,

shake hands, punch, etc.).

3.2.2 UCF101

Introduced in 2012, UCF101 [20] still remains one of the most popular datasets for action

recognition and video understanding. It was designed to address two key limitations in the video

datasets available then, namely the low number of classes and the unrealistically controlled en-

vironments and actions performed by the actors. The videos in this dataset are web videos that

are user-uploaded and performed in an unconstrained environment. The videos consist of a wide

variety of distortions including camera motion, illumination variations, partial occlusion, and low

quality frames. There are 13320 videos across 101 action classes. The average length of a video is

7 seconds. The videos are divided into 5 major types namely: human-object interactions, body mo-

tion, human-human interaction, playing musical instruments and sports. Comparable to MNIST or

CIFAR-10 datasets in the image domain as proof of concept of new research ideas, UCF-101 plays

a similar role in the video domain.
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3.2.3 Kinetics400

The Kinetics400 dataset [19] was introduced to address the need for a video dataset for action

classification large enough for training deep neural networks. While the previous existing datasets,

namely HMDB51 and UCF101 were still in use, many limitations in them begged the requirement

of a much larger dataset. Both HMBD51 and UCF101 were designed as a solution to the low num-

ber of classes and training samples. The Kinetics400 dataset thus formed, contained 400 classes

of actions, each containing 400 video samples per class. The video samples were collected from

Youtube videos and thus were prone to distortions like camera motions, illumination differences,

shadows, background clutter, etc.. As this dataset is specifically designed for action classification

and not action localization, the videos are short length with an average of 10 seconds per clip. To

make it available as a multi-modal dataset, both audio and visual information are available for the

clips. Typically the actions belong to human-object interactions and human-human interactions

and belong to one of the three groups, namely, person action, person-person action, and person-

object action. While the UCF101 is a good dataset for classification, it has multiple videos of the

same person doing the action, hence the participant variation in the dataset is low. Kinetics400

data collection step ensures that each video is unique, and has no repetitions throughout in terms

of the actors performing the actions. The Kinetics400 dataset contains 306,245 video clips. To

address the issue of multiple labels in a video sample (brushing teeth while dancing), the video

will only have a single label, if both labels appear in the action set. Thus, the authors Kay et al.

recommend a top-5 rather than a top-1 measure for evaluating classification performance for the

networks. This idea is interesting as it considers the possibility of multiple actions being performed

in a single video. This dissertation draws on similar intuitions of the data for analysis.

3.2.4 Something something

Humans often can reason about complex scenes and interactions based on visual and linguistic

information. Modern neural nets, however, are not capable of this depth of reasoning. The labels

in the available datasets like UCF101, HMDB51, Kinetics400 describe an action at a higher level
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of abstraction than at a finer detail of objects and interaction methods. Studying objects from

images does not give information about the change in their pose, or distance from the observer.

Video data, on the other hand, can better describe object properties like rigidity, elasticity, softness,

stiffness, etc. as the object is interacted with through the length of the video. Video data also helps

understand if it can be used in relation to another object. For example, a sharp pointy object can

be used to poke holes into another object. Objects and actions are predominantly inter-related, and

analysing one independently from the other is not efficient. Words help in connecting the objects

and actions to the visual world, and to abstract, everyday concepts.

3.2.4.1 Description

The Something Something dataset is designed to provide textual descriptions of actions per-

formed with objects. The textual descriptions provide insights into the physical properties of ob-

jects, as well as their spatial relations or material properties. The average length of the videos is

between 2 to 6 seconds. Videos are collected from crowd workers where they were asked to per-

form an action of the form Holding something in front of something and enter the noun phrase and

the object before uploading the video. It consists of 220K videos for 174 action labels in the form

of textual descriptions such as pulling [something] from [something] or poking [something] with

[something]. Here, something serves as a placeholder for objects when the focus is recognition of

action in the videos. The labels are known as caption templates. There are a varying degrees of

granularity of textual descriptions available for the labels for each video.
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Figure 3.4: A video frame of an action in the Something Something dataset labeled holding something in

front of something. There is a large variety in the granularity of the labels as provided in the dataset.

Figure 3.4 shows a video frame of an action labeled holding something in front of something.

The placeholders are replaced by the annotations for the objects interacted with in the video. Pre-

sented below are some of the degrees of details available in textual descriptions in the labels.

• Action level annotation: Holding [something] in front of [something]

• Object level annotation: Holding a cap in front of a shirt

• Fine grained annotation: Holding a blue plastic cap in front of a man’s short sleeve

The labels are grouped into 50 coarse grained classes to simplify the action classification task.

Table 3.2 shows an example of the variants of actions involving movement of a camera being

grouped into one action group called ’Camera Motions’.
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Table 3.2: Multiple class labels are grouped into one action group for simplicity of the problem. Eight class
labels involving movement of a camera are grouped into an action group called ’Camera motions’.

Class Labels Action Group

Moving away from [something] with your camera

Turning the camera right while filming [something]

Approaching [something] with your camera

Turning the camera left while filming [something] Camera Motions

Turning the camera upwards while filming [something]

Moving [something] away from the camera

Moving [something] towards the camera

Turning the camera downwards while filming [something]

Compared to the other datasets described above, the Something Something datset is chosen as

the main focus of this work due to two compelling reasons. First, the intra-class variation or how

different people perform the same action in a human-object interaction environment. Second, the

high similarity of different action classes to each other both visually and linguistically.

Most datasets in Computer Vision follow a standardized protocol for collection and curation.

This involves procuring images or videos of classes from Youtube or other sources. Next, human

labelers are asked to review whether the video corresponds to the class attributed. The assessment

checks employed thus ensure the quality of data available to the research community; however, the

Something Something data collection deviates from this protocol by crowd-sourcing the videos.

The quality control check verify the length and uniqueness of the videos, but are limited only to

that. The resultant video will be produced based on how a person interprets a label, and thus open

to a large variation from what is expected in the class label.
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3.2.4.2 Confusion of classes in videos

Due to the nature of the labels, there is a lot of overlap in the actions based on how the objects

are interacted with, e.g. pushing something slightly so it falls and pushing something slightly

but it doesn’t fall. This confusion can be seen in the linguistic sense with examples like holding

something in front of something and holding something next to something, and also in the visual

sense uncovering something and unfolding something. This research focuses mainly on trying to

understand these ambiguities in the linguistic and visual sense of the classes and investigating the

degree to which the networks are able to learn these ambiguities.

3.2.4.3 TSNE visualization of sentence embedding of labels

This work aims to understand the nature of the labels in the linguistic sense. I explore the

different ways in which the labels can be visualized to get an insight into the plausible confusions

between the model predictions. TSNE [27] visualization is used as a basis to visualize the labels

in one singular space. TSNE requires data to be in the vector representation of fixed length. All

data points are then projected into a 2D or 3D space for visualization.

Multiple approaches were explored to get a suitable understanding of the vector representations

of the labels. First, a sentence is converted into individual words. Each word is converted into a

GloVe vector embedding of 300 dimensions. The mean of embeddings of all words in that label

is attributed as a final label level representation in 300 dimensions. Figure 3.5 shows the TSNE

visualization of this approach

As discussed in section 2.3, this method has a limitation in that every word in the label has an

equal contribution to the final representation. Words that are most frequent in the training corpus

of GloVe models (Wikipedia corpus, etc), but have a high semantic relevance in the label set (in

front of, on top of, next to) tend to get a lower weight in the mean representation. To solve this,

an efficient label embedding would map the complete sentence by accounting for the words in

context.
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Approaching something with your camera

Attaching something to something

Bending something so that it deforms

Bending something until it breaks

Burying something in something

Closing something

Covering something with something

Digging something out of something

Dropping something behind something

Dropping something in front of something

Dropping something into something
Dropping something next to something

Dropping something onto somethingFailing to put something into something because something does not fit

Folding something

Hitting something with something

Holding something

Holding something behind somethingHolding something in front of something

Holding something next to something

Holding something over something

Laying something on the table on its side not upright

Letting something roll along a flat surface
Letting something roll down a slanted surface

Letting something roll up a slanted surface so it rolls back down

Lifting a surface with something on it but not enough for it to slide downLifting a surface with something on it until it starts sliding down

Lifting something up completely without letting it drop downLifting something up completely then letting it drop down

Lifting something with something on it

Lifting up one end of something without letting it drop downLifting up one end of something then letting it drop down

Moving away from something with your camera

Moving part of something

Moving something across a surface until it falls downMoving something across a surface without it falling down

Moving something and something away from each other
Moving something and something closer to each other

Moving something and something so they collide with each otherMoving something and something so they pass each other

Moving something away from something

Moving something away from the camera Moving something closer to something

Moving something down

Moving something towards the camera

Moving something up

Opening something
Picking something up

Piling something up

Plugging something into something

Plugging something into something but pulling it right out as you remove your hand

Poking a hole into some substancePoking a hole into something soft

Poking a stack of something so the stack collapsesPoking a stack of something without the stack collapsing

Poking something so it slightly moves

Poking something so lightly that it doesn't or almost doesn't move

Poking something so that it falls over

Poking something so that it spins around

Pouring something into somethingPouring something into something until it overflows

Pouring something onto something

Pouring something out of something

Pretending or failing to wipe something off of something
Pretending or trying and failing to twist something

Pretending to be tearing something that is not tearable

Pretending to close something without actually closing itPretending to open something without actually opening it
Pretending to pick something up

Pretending to poke something

Pretending to pour something out of something but something is empty

Pretending to put something behind something
Pretending to put something into something

Pretending to put something next to something

Pretending to put something on a surface

Pretending to put something onto something
Pretending to put something underneath something

Pretending to scoop something up with something

Pretending to spread air onto somethingPretending to sprinkle air onto something

Pretending to squeeze something

Pretending to take something from somewhere

Pretending to take something out of something

Pretending to throw something

Pretending to turn something upside down

Pulling something from behind of something
Pulling something from left to rightPulling something from right to left

Pulling something onto something

Pulling something out of something

Pulling two ends of something but nothing happens
Pulling two ends of something so that it gets stretched

Pulling two ends of something so that it separates into two pieces

Pushing something from left to rightPushing something from right to left
Pushing something off of something

Pushing something onto something

Pushing something so it spins

Pushing something so that it almost falls off but doesn't

Pushing something so that it falls off the table

Pushing something so that it slightly moves

Pushing something with something

Putting number of something onto something

Putting something and something on the table

Putting something behind something

Putting something in front of something

Putting something into something

Putting something next to something

Putting something on a flat surface without letting it roll

Putting something on a surface
Putting something on the edge of something so it is not supported and falls down

Putting something onto a slanted surface but it doesn't glide down

Putting something onto something

Putting something onto something else that cannot support it so it falls down

Putting something similar to other things that are already on the tablePutting something that can't roll onto a slanted surface so it slides down
Putting something that can't roll onto a slanted surface so it stays where it is

Putting something that cannot actually stand upright upright on the table so it falls on its side

Putting something underneath something

Putting something upright on the table

Putting something something and something on the table

Removing something revealing something behind

Rolling something on a flat surface

Scooping something up with something

Showing a photo of something to the camera

Showing something behind something

Showing something next to something

Showing something on top of something

Showing something to the camera

Showing that something is emptyShowing that something is inside something

Something being deflected from something

Something colliding with something and both are being deflected

Something colliding with something and both come to a halt

Something falling like a feather or paper

Something falling like a rock

Spilling something behind something

Spilling something next to something

Spilling something onto something

Spinning something so it continues spinningSpinning something that quickly stops spinning

Spreading something onto something
Sprinkling something onto something

Squeezing somethingStacking number of something

Stuffing something into something

Taking one of many similar things on the table

Taking something from somewhere

Taking something out of something

Tearing something into two pieces

Tearing something just a little bit

Throwing somethingThrowing something against something

Throwing something in the air and catching itThrowing something in the air and letting it fall

Throwing something onto a surface

Tilting something with something on it slightly so it doesn't fall down
Tilting something with something on it until it falls off

Tipping something over

Tipping something with something in it over so something in it falls out

Touching (without moving) part of something

Trying but failing to attach something to something because it doesn't stick

Trying to bend something unbendable so nothing happens

Trying to pour something into something but missing so it spills next to it

Turning something upside down

Turning the camera downwards while filming somethingTurning the camera left while filming something
Turning the camera right while filming somethingTurning the camera upwards while filming something

Twisting (wringing) something wet until water comes out

Twisting something

Uncovering something

Unfolding something

Wiping something off of something

TSNE visualization of word embeddings of labels in something v2

Figure 3.5: TSNE visualization of label embeddings. The GloVe embedding of every word in the label is considered. The final label level embedding
is given by the mean of all the words in the label.
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The SentenceBERT approach is used for a comprehensive mapping of the labels into the em-

bedding space for our hypothesis. Every label is treated as a sentence in the set and an embedding

is obtained for it. SentenceBERT outputs an embedding of 768 dimensions for every label. Every

encoding is L2 normalized to have a unit norm for consistency. The stacked representation of the

label encodings is a matrix of size 174×768 that is used for TSNE visualization. Figure 3.6 shows

the 2D TSNE visualization of the labels.

It can be seen that there are groups of labels that are close to each other in the embedding space.

move something left to right and move something right to left have a very similar representation.

That makes sense as the model is not aware of the directionality in the sentence, but focuses on

the words which only differ in the order of occurrence. Similarly, the labels moving something

up and moving something down are very close to each other almost overlapping. The efficiency

of the SBERT model can be seen in the separability for examples lifting up one end of something

then letting it drop down and lifting up one end of something without letting it drop down as these

two labels only differ by one word. The subsequent sections explain how the insight from the

visualization is used to understand the degree of confusions the model makes in its predictions.

Although this idea is important to understand the possible confusions between labels independent

of any action recognition algorithms, it is not the main part of my work.

Comparing mean embeddings and sentence embeddings

A sense of differences of the two embedding approaches can be understood by considering some

examples and examining their behavior in the two plots. Let us consider unfolding something

and uncovering something. The mean embedding places the two apart from each other, given the

variation in embedding of the root words uncover and unfold. However, the sentence embedding

is able to map the semantic relevance between the two labels, and places them close to each other.

Similarly for the labels corresponding to the action group Camera Motions, it can be seen that

the mean embeddings are placed very close to each other due to the large overlap of different

words in those labels. However, the sentence embeddings are able to separate them according to
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Approaching something with your camera
Attaching something to something

Bending something so that it deformsBending something until it breaks

Burying something in something

Closing something

Covering something with something

Digging something out of something

Dropping something behind something
Dropping something in front of something

Dropping something into something

Dropping something next to something

Dropping something onto something

Failing to put something into something because something does not fit

Folding something

Hitting something with something

Holding something

Holding something behind something

Holding something in front of something
Holding something next to something

Holding something over something

Laying something on the table on its side not upright

Letting something roll along a flat surface

Letting something roll down a slanted surface
Letting something roll up a slanted surface so it rolls back down

Lifting a surface with something on it but not enough for it to slide down
Lifting a surface with something on it until it starts sliding down

Lifting something up completely without letting it drop downLifting something up completely then letting it drop down

Lifting something with something on it
Lifting up one end of something without letting it drop downLifting up one end of something then letting it drop down

Moving away from something with your camera Moving part of something

Moving something across a surface until it falls downMoving something across a surface without it falling down

Moving something and something away from each other
Moving something and something closer to each other

Moving something and something so they collide with each other
Moving something and something so they pass each other

Moving something away from something

Moving something away from the camera

Moving something closer to something

Moving something down

Moving something towards the camera

Moving something up

Opening something

Picking something upPiling something up

Plugging something into somethingPlugging something into something but pulling it right out as you remove your hand

Poking a hole into some substancePoking a hole into something soft

Poking a stack of something so the stack collapsesPoking a stack of something without the stack collapsing

Poking something so it slightly moves

Poking something so lightly that it doesn't or almost doesn't move

Poking something so that it falls over
Poking something so that it spins around

Pouring something into something

Pouring something into something until it overflows

Pouring something onto something
Pouring something out of something

Pretending or failing to wipe something off of something

Pretending or trying and failing to twist somethingPretending to be tearing something that is not tearable

Pretending to close something without actually closing itPretending to open something without actually opening it

Pretending to pick something up

Pretending to poke something

Pretending to pour something out of something but something is empty

Pretending to put something behind something

Pretending to put something into something

Pretending to put something next to something
Pretending to put something on a surface

Pretending to put something onto something

Pretending to put something underneath something

Pretending to scoop something up with something

Pretending to spread air onto somethingPretending to sprinkle air onto something

Pretending to squeeze something

Pretending to take something from somewherePretending to take something out of something

Pretending to throw somethingPretending to turn something upside down

Pulling something from behind of something

Pulling something from left to rightPulling something from right to left

Pulling something onto something

Pulling something out of something

Pulling two ends of something but nothing happens
Pulling two ends of something so that it gets stretchedPulling two ends of something so that it separates into two pieces

Pushing something from left to rightPushing something from right to left

Pushing something off of something

Pushing something onto something

Pushing something so it spins

Pushing something so that it almost falls off but doesn't

Pushing something so that it falls off the table

Pushing something so that it slightly moves

Pushing something with something

Putting number of something onto something

Putting something and something on the table

Putting something behind something
Putting something in front of somethingPutting something into somethingPutting something next to something

Putting something on a flat surface without letting it roll

Putting something on a surface

Putting something on the edge of something so it is not supported and falls down

Putting something onto a slanted surface but it doesn't glide down

Putting something onto something

Putting something onto something else that cannot support it so it falls down

Putting something similar to other things that are already on the table

Putting something that can't roll onto a slanted surface so it slides down

Putting something that can't roll onto a slanted surface so it stays where it is

Putting something that cannot actually stand upright upright on the table so it falls on its side

Putting something underneath something

Putting something upright on the table

Putting something something and something on the table

Removing something revealing something behind

Rolling something on a flat surface

Scooping something up with something

Showing a photo of something to the camera

Showing something behind somethingShowing something next to something

Showing something on top of something

Showing something to the camera

Showing that something is empty
Showing that something is inside something

Something being deflected from something
Something colliding with something and both are being deflectedSomething colliding with something and both come to a halt

Something falling like a feather or paper
Something falling like a rock

Spilling something behind somethingSpilling something next to something
Spilling something onto something

Spinning something so it continues spinningSpinning something that quickly stops spinning

Spreading something onto something

Sprinkling something onto somethingSqueezing something

Stacking number of something

Stuffing something into something

Taking one of many similar things on the table

Taking something from somewhere

Taking something out of something

Tearing something into two pieces

Tearing something just a little bit

Throwing somethingThrowing something against something

Throwing something in the air and catching itThrowing something in the air and letting it fall

Throwing something onto a surface

Tilting something with something on it slightly so it doesn't fall downTilting something with something on it until it falls off
Tipping something over

Tipping something with something in it over so something in it falls out

Touching (without moving) part of something

Trying but failing to attach something to something because it doesn't stick

Trying to bend something unbendable so nothing happens

Trying to pour something into something but missing so it spills next to it

Turning something upside down

Turning the camera downwards while filming somethingTurning the camera left while filming something
Turning the camera right while filming somethingTurning the camera upwards while filming something

Twisting (wringing) something wet until water comes outTwisting something

Uncovering somethingUnfolding something

Wiping something off of something

2d TSNE visualization of normalized sentence embeddings of labels in something v2

Figure 3.6: TSNE visualization of label embeddings using SBERT. Contrary to the mean embeddings, we take the label level embedding by passing
every label in the dataset to SentenceBERT.
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the semantic relevance each label has with the label it is most similar to, even if it does not belong

to the same action group.

3.2.4.4 Color map of class labels

In addition to the TSNE plots for the sentence embedding, a color map displaying a pairwise

equivalence of different class labels with one another is also plotted. Cosine similarity between

two class labels is chosen as the measure of equivalence between them. The cosine similarity is

expressed in equation 4.3. Figure 3.7 shows the color map of the pairwise equivalence of different

labels. The diagonal of the color map represents the cosine similarity of one class with itself. Since

it is the class label itself, the cosine similarity is 1.0 and is shown as a bright yellow box across the

diagonal. Little clusters of a lighter shade can be seen spread around the diagonal. These classes

represent the same action differing only by the preposition. Similarly, when an action is a part

of another action, the equivalence score is high too. This can be seen from the pair showing a

photo of something to the camera and showing something to the camera with an equivalence score

of 0.9. this equivalence is also noted by the annotators when both labels are presented as video

descriptions. There exist lines with a darker shade concentrated in the lower part of the plot. One

pair having an equivalence of 0.05 is pretending to squeeze something and taking something from

somewhere.

Surprisingly, there is a very high equivalence score of almost 0.98 between a specific pair

of class indices 102 and 120. These classes are putting number of something onto something

and putting something, something and something on the table. The efficiency of the sentence

embeddings can be seen from these relations, as it is able to understand the context of the two

labels and relate that one is a special case of the other.

Although these visualizations gives us to understand the patterns in the class labels, it only

serves as the inspiration for the main idea presented in this thesis. Section 4.3 discusses how to

design a video action recognition network that handles multi-output rather than one single class

label. The effect of language embedding on model prediction is explained in that section.
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Figure 3.7: Colormap showing the pairwise equivalence of different class labels with one another. We choose cosine similarity as an equivalence
measure of the sentence embeddings of class labels.
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3.3 Gradient-weighted Class Activation Mapping (Grad-CAM)

Convolutional Neural Networks are highly efficient at many popular Computer Vision tasks

like image classification, image captioning, visual question answers (VQA), semantic segmenta-

tion etc [6, 51, 61]. The success of these networks lies in their ability to model complex feature

representations learned from training data. Despite their superior performance, these networks still

remain a blackbox for researchers and developers alike. In events where the network fails catas-

trophically at a particular task, the users are left wondering for a coherent explanation for its failure.

To be able to establish trust in the CNNs as they continue to become an integral part of our lives,

we need better methods that explain why a network predicts what it predicts. Thus, it is required

that the internal feature representations of CNNs be decomposable and presented in a manner that

is intuitive, interpretable and easily comprehensible. Selvaraju et al. propose Gradient-weighted

Class Activation Mapping popularly known as Grad-CAM [25] to highlight and visualize image

regions that contribute most towards predicting an action class in a video. Figure 3.8 shows the

salient regions that a ResNet 50 model focuses on when it predicts the detected object as dog.

Consequently, when the network predicts a dog, it focuses on the regions highlighted in red in the

image.
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Figure 3.8: An illustration of Grad-CAM to visually investigate the internal workings of a common CNN
architecture. The kernels in the last convolutional layer are overlaid onto the image as heatmaps to highlight
salient regions in the image having a positive influence on the prediction of a class. As seen the classifier
predicts a dog in the image, and the respective region around the dog’s face is highlighted by Grad-CAM.

This approach extends the work of [64] where the architecture used for visualizations had con-

volutional layers followed by a global pooling and then a softmax layer. Grad-CAM can generalize

to all popular CNNs used for image based analaysis. This method takes into consideration the fully

connected layer that follows the last convolutional layer before getting a class specific score using

softmax.

Figure 3.9: Architecture of a common image classification CNN architecture. The gradients are shown as
blue arrows while activations are shown as black arrows. The two interact to generate heatmaps that are
overlaid onto the source image for visual insights into the network’s internal workings.
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Figure 3.9 shows an illustration of how an input image propagates through a CNN for image

classification and the resultant Grad-CAM visualization obtained for the last convolutional layer.

The architecture is referenced from the main paper and edited to highlight only a single task of

image classification for ease of comprehension. There are two main components of the neural

network training protocol that make this interpretation possible: Gradients and Activations, shown

in the top left corner.

The last convolutional layer has K feature maps generated by convolving kernels over the

output of the previous layer. Each kernel has dimensions W where H is the height and W is

the width of the output. The output from this layer is global average pooled and flattened before

passing through a fully connected and softmax layer. If we denote the feature maps as A then

A ∈ R
WxH and any specific kth feature map is denoted as Ak ∈ R

W where 1 ≤ k ≤ K. The output

of class C from the logit layer is denoted as yc. This value is needed to compute the gradients that

flow backwards into the network. The gradient of yc with respect to a particular kth feature map is

calculated as:
∂yc

∂Ak

The gradients also have the dimensions as Ak i.e. W . The gradient for every element in Ak can

also be calulated as
∂yc

∂Ak
i,j

where 1 ≤ i ≤ W and 1 ≤ j ≤ H

In order to calculate which feature maps that have the most contribution in the final output, a

score is assigned to every feature map. The score is obtained by performing global average pooling

as is given by αc
k. αc

k is mathematically expressed as:

αc
k =

1

Z

W∑

i=1

H∑

j=1

∂yc

∂Ak
i,j

where Z = WXH (3.2)

A positive value of αc
k means that the kernel contributes positively t the decision and the value

gives the magnitude of how much. With the score available for each activation map, every feature
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map is weighted as a weighted sum αc
kAk of all K feature maps is given as:

S =
K∑

k=1

αc
kAk where S ∈ WXH (3.3)

To see the regions in feature maps that have a positive influence on the decision of predicting class

C, all positive signal from S is considered. This is achieved by applying ReLU activation on S.

The final heatmap Lc is given as:

Lc = ReLU(S)

The dimensions of Lc are WxH which is usually 14x14. However, the size of the image fed as

input is usually a center crop of size 224x224. We resize Lc to 224x224 and overlay it onto the

image. Figure 3.8 shows the visualization obtained by overlaying the heatmap Lc (right side) onto

the input image (left side). A region in the image that activates or has a positive influence on the

class score yc is shown in red.

The algorithm and illustration described above is for a single image, and how it is processed

by a CNN intended for images. In case of videos, however, there is an additional complexity of

modeling temporal dependency between frames. In Chapter 4, section 4.6 it is discussed how

image based Grad CAM can be extended to investigate video action recognition models and the

insights derived from it. The advantages of Grad-CAM are used to examine the failure cases of

networks and if it corroborates with what humans would intuitively look for in that video.
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Chapter 4

Methodology

This dissertation examines the effect of ambiguous language in the labels of the Something

Something dataset on the generalizability of video action recognition networks. A human-in-the-

loop approach is introduced to address the systematic inaccuracies in the validation data. These

inaccuracies are investigated by comparing and aggregating the results of two popular video action

recognition models evaluated on the target dataset. The networks referenced in this study are

SlowFast [18] and TSM (Temporal Shift Module) [16].

The misclassified samples are reannotated and denoted as ReaL or Reassessed Labels. The

ReaL accuracy is reported by reevaluating the networks on the reassessed labels. The study reveals

that the networks already learn relevant information of the action classes. The multi-person assess-

ment of labels verifies the claim that there are more than one permissible interpretations of videos

in the dataset, especially if the video labels have a high linguistic closeness between each other.

The source of this confusion stems from the manner in which the dataset was collected. Because

of the inherent ambiguities in the samples in the dataset, the video action recognition models suffer

when they are penalised if the predicted label does not match the one associated label for the video.

The restriction of a single label for a video can negatively impact its ability to generalize to real

world data.

The rest of this section describes our techniques in more detail. Section 4.1 gives an introduc-

tion into how classical fully-supervised neural networks are trained. Section 4.2 gives an overview

of Resnet-50, which serves as the backbone for the two video action recognition networks refer-

enced in our study. Section 4.4 describes the working of the SlowFast architecture and the Tem-

poral Shift Module (TSM) network. Section 4.5 gives an overview of how the misclassifications

of the networks are compared and aggregated as well as the conception of the human in the loop

approach to reannoate the videos. This section is the main idea of the thesis. This section also

explains the ReaL accuracy and effect of reannotations on the model performance. Lastly, Sec-
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tion 4.6 illustrates the layer-wise activation maps of the networks using the GradCAM approach.

The progression of activations over the layers reveals that the networks indeed focus on expected

regions of the video frames to learn an action label.

4.1 Forced Choice training

Neural networks are one of the highly efficient algorithms in the domain of machine learning.

The models are able to learn an abstract representation of the data in the feature space that can

be used for applications as required. Particularly for a supervised learning task where the labels

are available for the data, the models are trained in such a manner that helps reduce the distance

between the label corresponding to a sample in the training dataset and the label predicted by the

model. This distance between the actual and the predicted label is known as the loss function.

Figure 4.1: Training of neural networks. The label corresponding to the maximum probability in the output
probabilities (P) is considered as the predicted class label. This is denoted as Forced Choice approach in
this work.

Figure 4.1 illustrates how an image of a dog is classified by the neural networks. The output of

the network is a real valued vector called logits. The logits are then passed through a softmax layer

that transforms them into a probability distribution (P) for the input sample. The softmax layer is

mathematically expressed as:

softmax(x)i =
exp(xi)∑
j exp(xj)

(4.1)

The input image is assigned the index of the entry having the maximum probability (0.775 for the

index 0 in the above figure). For most classification problems available in the literature, the popular
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loss function used in the training of neural networks is the Cross Entropy Loss. Cross Entropy

is defined as a measure between two probability distributions for an event and mathematically

expressed as:

LCE = −
n∑

i=1

tilog(pi) (4.2)

for n classes where ti is the truth label and pi is the softmax probability for the ith class. The loss

is then minimized using an iterative optimization technique for a successful training of the neural

networks. This form of learning will be used in this research for video action recognition and will

be denoted as the Forced Choice Learning approach.

4.2 Design of Resnet-50

Resnet [9] has been a very popular CNN architecture in Computer Vision ever since its incep-

tion in 2015. The key idea utilized in this network is the residual connection between layers or the

output layer. In the design of the residual blocks, the authors used a shortcut connection or skip

connection to propagate the information from the previous layer to the current layer, with an aim

of improving the flow of information. Figure 4.2 shows the design of the residual block in Resnet.

In addition, they are also used to extract multi-level features which have been found effective in a

variety of applications like Visual Question Answers (VQA), image classification, medical image

analysis etc [9, 51, 66]. This results in the ability to build deep convolutional networks for extract-

Figure 4.2: Residual block in a Resnet architecture. The skip connection between blocks is used to learn
multi-level features from images.
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ing spatial features from images. The number of layers in popular variants of Resnet are 18, 36,

50, 101, and 152. A Resnet 50 trained on ImageNet is referenced as the architecture to test an

initial hypothesis in this work.

Resnet 50 has 50 layers that are grouped into 4 blocks. Each block has multiple convolutional

layers with shortcut/residual connections. The number of kernels between two Resnet blocks are

increased by a factor of 2 and the spatial resolution decreased by 2. Considering a convolutional

and pooling block as a unit, the number of units distributed across the 4 blocks in Resnet are

[3,4,6,3].
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Figure 4.3: The block diagram of a Resnet-50 network. The shortcut connections are between blocks and
used to extract multi-level features from images.

Fig 4.3 shows the architecture of Resnet 50. There are 256 kernels in the units of Block 1, 512

kernels in units of Block 2, 1024 kernels in units of Block 3 and 2048 kernels in units of Block 4.

The feature representations from the last block are average pooled for a video level representation

and passed to a FC layer for classification.
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The architecture design described above is used as a backbone in all our experiments. In the

initial experiments, we proposed a network that used a 3D Resnet-50 and incorporated language

embeddings of the labels in the dataset as obtained from SBERT. This network was known as the

Hybrid network. While the approach and its results laid the foundations of the bulk of experiments

in this thesis, it was not pursued more in depth. The details of the hybrid network are presented in

brief in section 4.3.

4.3 Hybrid network for language embedding

Extending the work by Carreira and Zisserman in I3D [14], the existing 2D CNN architecture

is used for spatial feature extraction and convert it into 3D CNN for temporal modeling within the

network. The authors inflate a 2D kernel into 3D by replicating the spatial kernels of size (k×k)

in the temporal dimension. Similarly, the kernels in 2D Resnet 50 network are inflated to design a

3D Resnet 50 network. The features in the penultimate layer are global average pooled for a video

level representation of the input video clip.

At this stage, the network splits into two branches: one branch focuses on the predicting the

class index using the forced choice approach. The other branch focuses on predicting the language

embedding of the labels where the classes are semantically relevant to the phrases most common

in the linguistic sense to the embedding of the target label. Figure 4.4 illustrates the architecture of

the Hybrid network.

Figure 4.4: Architecture of the hybrid model that combines forced choice and language embedding. For
inference, we only look at the output of the forced choice branch, but train for both the branches for more
semantic relevance of the predictions.
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The input to the model is a sequence of video frames. The output is a vector representation

of that video by the model. The model output is divided into two branches. One branch focuses

on correctly classifying the action in the video by the forced choice method. The output of this

branch has a dimensionality corresponding to the number of classes in the dataset and is known as

the logit layer. A softmax layer follows the FC layer, converting the logit layer into a probability

distribution vector for the video. The final label assigned to the video corresponds to the index

of the highest probability value in the vector. During training, the cross entropy loss between the

label predicted by the model and the actual label for the video is minimized.

The other branch focuses on maximizing the cosine similarity between the predicted and the

target language embedding for the class label. To do this, there is a slight change in the way

the labels are fed to the network. Instead of assigning an integer to every label in the dataset, a

768-dimension vector representation of the labels using SentenceBERT [26] is considered. The

language embeddings of the labels thus obtained are L2 normalized to have a norm of 1.0. Thus

the output of this FC layer has a 768-dimension vector representation that is similar to SBERT

output for the labels. These vectors are also normalized to unit length.

During training, the cosine similarity of the predicted and the target embedding is maximized.

The cosine similarity is a measure of how close two vectors are in vector space. Mathematically, it

is expressed as:

cos(x, y) =
x · y

∥x∥ ∥y∥
(4.3)

The range of the values for the cosine similarity is in the range [-1, 1]. A value of -1 indicates

the two vectors are in opposite direction with an angle of 180 between them. Similarly, a value

of 1 indicates the two vectors are coinciding with an angle of 0 between them. Our model is

trained to maximize the cosine similarity between the target and the predicted language embedding

representation i.e make the angle between the two vectors 0. The loss corresponding to the cosine

similarity is known as the Cosine Embedding loss. Mathematically it is expressed as:

loss(x1, x2) = 1− cos(x1, x2) (4.4)
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Maximizing the cosine similarity in turn implies minimizing the cosine embedding loss.

The system is trained to minimize the sum of the cross entropy and cosine embedding loss. In

order to have an equal contribution of both the classification loss and the cosine embedding loss,

we multiply the cosine embedding loss by 5 so that it matches the range of values of the cross

entropy loss. The final loss used for optimization is then given by the sum of the cross entropy and

the weighted cosine embedding loss. Thus,

Lhybrid = Lcls + 5 ∗ Lembedding (4.5)

where Lcls is the cross entropy or the classification loss and Lembedding is the cosine embedding

loss.

4.3.1 Evaluation metrics

During inference, two forms of evaluation metrics are taken into consideration: Top-1 accu-

racy and Top-5 accuracy. Top-1 accuracy is the conventional calculation of accuracy. It cor-

responds to the number of samples correctly predicted by the network over the total number of

samples in the validation or testing set.

Top-5 accuracy is a more specific concept of the Top-k accuracy where k is equal to 5. Top-k

is described by considering the k top predicted classes by the model in decreasing order of their

probabilities. If the correct label belongs to any of the k predictions for the video sample, then

the classification is considered correct. For example, if we have 5 samples in the dataset, and the

target label for the videos belongs to the k top labels predicted by the model for 3 samples, then

our top-k accuracy is 3/5 or 60%.

During evaluation, the Top-1 and Top-5 accuracy are kept consistent as the evaluation metric.

However, for the language embedding branch, the cosine similarity of the L2 normalized predicted

language embedding is calculated with the L2 normalized representation of every class in the

dataset. The classes are arranged in decreasing order of their cosine similarities. The class label

having the highest cosine similarity is assigned to the video for calculation of the Top-1 accuracy.
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For the Top-5 accuracy, if the correct class label belongs to the top-5 labels predicted by the model

(in a descending order of sorted cosine similarities), then the prediction is considered correct.

For this work, the Top-5 accuracy is more important to study as it helps us understand the

nature of the mistakes made by the model when it predicts a class label for a video. In all the

experiments, the idea is to explore the predictions of the model where the actual label is present

in the top 5 predictions of the model, but the first predicted label does not match the actual label.

This helps to get an insight into the nature of mistakes made by the model, and ask questions that

can understand the data and the labels better.

4.3.2 Results

In this section, we look at the predictions of the forced choice and the hybrid models for a few

samples from the validation set and try to understand the nature of mistakes. We choose the top

4 predictions by the networks for analysis. The findings of every sample are tabulated with the

Video ID of the sample as the first column followed by the actual label of that video in the dataset.

The next four columns in the table explain the top 4 predictions of the model. In each sample,

we compare the actual label with the first choice of the models, and then give a gist of the other

prediction results.

Figure 4.5: A video with the label ’Moving something up’. All three models get the first prediction wrong,
but the language embedding and hybrid models have more semantically relevant first predictions of picking
up than the forced choice prediction of putting an object underneath.

In Figure 4.5 we see a few of the video frames from the action moving something up and in

Table 4.1 the predictions of the two approaches. This sample shows how the hybrid model confuses

the first prediction with a label(s) that is semantically more relevant to the actual label than the
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Table 4.1: Predictions of a video labeled moving something up by the two models. The predictions of the
hybrid model are semantically closer to the action of moving up than the forced choice predictions.

Video
Id

Actual Label Model
Type

Prediction 1 Prediction 2 Prediction 3 Prediction 4

46296
Moving
something
up

Forced
Choice

Putting
something
underneath
something

Moving some-
thing up

Pretending to
put something
underneath
something

Lifting some-
thing up com-
pletely without
letting it drop
down

Moving
something
up

Hybrid
Model

Lifting
something
up com-
pletely
without
letting it
drop down

Picking some-
thing up

Lifting some-
thing with
something on it

Holding some-
thing

forced choice approach. moving something up and picking something up are very similar to each

other, in both the linguistic as well as the visual sense. Similarly, lifting something up without

letting it drop down can be viewed as a more expressive form of moving something up, but still

maintains the semantic relevance to the action. In the forced choice model however, the predicted

label is semantically very far away from the actual label, even though the very next prediction is

the correct one. It is an interesting question to try and understand the internal details of the model

when it predicts an almost disjoint category of class label only from the visual features.

Figure 4.6: A video labeled ’Moving something closer to something’. The language and hybrid model are
able to make more semantically relevant first predictions that align with slightly moving an object, but the
forced choice model’s first prediction is completely irrelevant to the main label.

In Table 4.2 we see that the hybrid model does better at semantically relevant first predictions

that the forced choice. As seen from Figure 4.6, moving something and something closer to each

other is almost overlapping with moving something closer to something. Given the inherent over-
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Table 4.2: Compared to an irrelevant first prediction of the forced choice model, language models are able
to capture the semantic relevance in their first predictions.

Video
Id

Actual Label Model
Type

Prediction 1 Prediction 2 Prediction 3 Prediction 4

206534
Moving
something
closer to
something

Forced
Choice

Pretending
to open
something
without
actually
opening it

Moving some-
thing and some-
thing closer to
each other

Moving some-
thing closer to
something

Pretending to
close something
without actually
closing it

Moving
something
closer to
something

Hybrid
Model

Moving
something
and some-
thing closer
to each other

Moving some-
thing closer to
something

Hitting some-
thing with
something

Moving some-
thing and
something so
they collide
with each other

lap between pairs of labels in the dataset, the language information is also a compelling source

of information to successfully disambiguate between actions. The degradation of the model due

to lack of this additional information can be seen in the forced choice which is very far from any

related activity to moving something closer to something.

Although this network is not used in the rest of the experiments, the insights obtained from it

laid the foundations for the bulk of my work. Incorporating the language branch does not improve

classification accuracy, but the nature of predictions in the top-5 category were more graceful and

semantically more relevant to the actual label. This demonstrates that when networks are exposed

to the language of the labels rather than just a one hot vector, they can learn to associate more

nuanced characteristics of the actions in their predictions.

4.4 Introduction to Video Action Recognition Networks

This section gives an understanding of the working of two video action recognition networks

referenced in this dissertation: SlowFast [ 4.4.1] and Temporal Shift Module (TSM) [ 4.4.2]. Both

the networks rely on a Resnet architecture as their backbone, hence it was covered as background

before an overview of the models. The readers can skip to the respective sections pertaining to

their interests.
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4.4.1 SlowFast

Figure 4.7: Block diagram of SlowFast network. There are two pathways: Slow pathway processes frames
at a lower frame rate, focusing on spatial information. The Fast pathway processes frames at a higher frame
rate, focusing on the temporal information in a video. The pathways communicate with each other using
lateral connections.

In 2019, Feichtenhofer et al. proposed the SlowFast network [18] for video action recognition.

This architecture was influenced by the design of the retinal ganglion cells in the primate visual

system. In those cells, there were 80% Parvocellular (P cells) and 15-20% Magnocellular (M cells).

The P cells focused on the spatial stimuli, focusing on colors, textures and lighting while the M

cells focused on the motion. Thus, the M cells respond to fast temporal changes and have a high

frame refresh rate. The P cells respond slowly to temporal changes, thus having a slower frame

refresh rate.

Thus, the authors propose a similar design of the network, mimicking the two cells as individ-

ual pathways processing the video frames. The Slow pathway follows the P cells while the Fast

pathway follows the M cells. The Slow pathway processes the video at low frame rates focus-

ing on the spatial information in the video frames. Compared to that, the Fast pathway processes

video frames at high frame rates focusing on the temporal information or motion. In order for the
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two pathways to communicate with each other, the authors propose a lateral connection that fuses

information from both pathways. Figure 4.7 shows the architecture of the SlowFast network.

The SlowFast architecture bears resemblance to the Two Stream Network [12] in many ways.

The network also had two branches, one that processed spatial information with the video frames

and the other modeled the motion in the video. However, the local motion between frames was

modeled using optical flow [4]. Compared to that, SlowFast only uses raw frames for processing

and experiments with different temporal speeds for efficient spatio-temporal information extrac-

tion.

Figure 4.8: The instantiation of the SlowFast network. The input dimensions to a pathway are shown as
(T ×S2, C)whereT isthetemporaldimensionornumberofframes,S×S is the kernel size and C is the
number of output channels. Strides are denoted as temporal stride, spatial stride2. There is no temporal
down-sampling in the network until the global average pooling. The number of frames in the Fast pathway
is α times that of the Slow pathway, where α = 8. The lateral connections used to fuse the Slow and Fast
pathway are not shown in the design.
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Table 4.8 shows the instantiation of SlowFast network. The input dimensions to a pathway are

shown as (T ×S2, C)whereT isthetemporaldimensionornumberofframes,S ×S is the kernel

size and C is the number of output channels. Strides are denoted as temporal stride, spatial stride2.

There is no temporal down-sampling in the network until the global average pooling. The number

of frames in the Fast pathway is α times that of the Slow pathway, where α = 8. The lateral

connections used to fuse the Slow and Fast pathway are not shown in the design.

Slow Pathway

The Slow pathway operates on a large temporal stride τ meaning one out of every τ frames in a

video is fed as input to the Slow pathway. Thus, for a video with 64 frames and a τ of 16, the

Slow pathway processes 1 out of every 16 frames, and thus takes an input of 4 video frames. For

generalizability, if the number of frames in the Slow pathway is T, then the total number of frames

in the video is Tτ .

Fast Pathway

Compared to the Slow pathway, the Fast pathway operates on a smaller temporal stride, sampling

more frames than the former. The temporal stride of the Fast pathway is given by τ /α where α > 1.

Thus for a video with 64 frames and τ of 16 and α of 4, the Fast pathway processes 4 out of every

16 frames, and thus takes 16 video frames as input. Compared to other prominent architectures,

there is no temporal downsampling of the input tensor over the layers in the Fast pathway until

the final global average pooling layer before final classification. Additionally, because the Fast

pathway is not intended for spatial processing, the number of channels in the layers is significantly

lesser compared to other networks (or even the Slow pathway). Thus, at every stage the number of

channels in the convolution layer are 1/β times the channels in the Slow pathway. The value of β

used in the paper is 8.

Lateral Connection

In order for the two independently processing pathways to be able to share information throughout

the network, the authors added lateral connections to fuse the two representations. These connec-

tions are added between every stage as seen from the table between pool1, res2, res3, and res4.
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Because the two pathways differ in their temporal dimensions, a transformation is performed to

be able to fuse them together. Given the feature shape of Slow pathway as (T, S2, C) and Fast

pathway as (αT, S2, βC), where T is the temporal dimension, S is the convolution kernel and C is

the number of channels, the authors propose three ways to equalize the dimensions and finalize on

using a time-strided convolution operation. This is a 3D convolution of a 5 × 12 kernel with 2βC

output channels and stride of α.

Classification Layer

The classification layer consists of a global average pooling operation that is performed on each

pathway’s output. The respective pooled features, 2048 dimensions for Slow pathway and 256 for

Fast pathway as seen in Table 4.8, are then concatenated and used as the final video level represen-

tation. Thus, the video level representation from SlowFast is 2048+256 = 2304 dimensions. This

feature vector is then passed to a fully-connected layer for classification with output as number of

classes in the dataset.

4.4.2 Temporal Shift Module (TSM)

Up until 2018, the CNN architectures used for video action recognition had two prominent con-

cepts; using 2D CNN for spatial representation and modeling temporal information using various

aggregation techniques [1, 10, 12] or incorporating the temporal channel with the convolutions us-

ing 3D CNNs [14,15,38]. However, while these approaches were efficient they suffered two major

shortcomings which were parameter explosion and heavy computation cost. Lin et al. proposed

the Temporal Shift Module (TSM) for a high accuracy low computation cost video action recogni-

tion network. The authors focused on getting the high efficiency and accuracy of 3D CNNs while

maintaining the complexity and costs of 2D CNNs. The resulting design achieved low latency in

a real-time online setting and quickly became the state of the art for video action recognition on

numerous popular datasets.
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Figure 4.9: Illustration of the Temporal Shift Module (TSM). At any given instance Ti, the network is aware
of channel information from the past frame Ti-1 as well as the future frame Ti+1. In an online setting where
future frames are not available (c), the network only relies on the past frames for sequential information.

The core idea of TSM is to shift part of the channels along temporal dimension to facilitate

the exchange among neighboring frames. Thus information processed from any current frame also

has the past and the future frames mingling within itself (bi-directional TSM). The channels from

those frames are partly shifted into the current frame. Similarly, for an online setting where the

future frames are not available, the current frame mingles with the past frames (uni-directional

TSM). Figure 4.9 illustrates the idea of shifting channels in both offline as well as online settings.

The TSM module consists of two operations: shift and multiply-accumulate. The time dimen-

sion undergoes a +1 and -1 shift and multiplied and accumulated into the channel dimension. This

is done using two approaches partial shift and residual shift. In partial shift, a certain fraction of

channels are shifted from the past and future frames into the current frame. The authors shift 1/8

channels for this type of shift in each direction. This brings down the cost of memory movement.

Figure 4.10: TSM consists of two operations: shift and multiply accumulate. In in-place shift(a), the
specific network block is replaced by TSM block. In residual shift(b), the TSM block is inserted in the
residual branch of the network. The latter approach gave better results.
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When using a Resnet-50 backbone, replacing any specific block of the network with a TSM

block can harm the spatial learning feature of the model. This type of replacement is known as

in-place TSM as shown in Figure 4.10 (a). Thus, the authors insert the TSM module in the residual

branch of the network as shown in Figure 4.10 (b). Another factor to be considered in the residual

block is the proportion of shifted channels. Too small a fraction does not allow the network to

understand the temporal reasoning for large temporal relationships (where the actions are slightly

delayed rather than instantenous). As stated earlier, shifting 1/4 channels (1/8 in each direction)

gives the best performance. This architecture gives 61.38% validation accuracy on the Something-

Something v2 dataset. Additionally, this network is light enough to be run in real time on any

smartphone as well 1.

4.5 Relabeling the Something-Something dataset

This section describes the core idea of our work. Starting with the experimental setup to run the

networks in inference mode, the section moves to explain the protocol for a multi-person assess-

ment of the legacy labels. This step involves details of an initial experiment conducted to verify the

hypothesis that there are multiple valid interpretations to describe a video. The scaled up version

of crowd sourcing the top-1 misclassification is explained in section 4.5.3. Finally, this section

describes how the results obtained are consolidated and the rules employed to relabel a particular

video sample.

4.5.1 Experimental setup

This section investigates the nature of misclassifications of the two networks discussed above:

SlowFast [18] and TSM [16]. The Top-1 and Top-5 evaluation metrics are considered and the

pattern of labels as predicted by both networks is inferred to be an indicator of what the networks

possibly learn from the videos. The checkpoints of the best performance of the networks are avail-

1In this case however, the backbone network used for TSM changes from Resnet-50 to MobileNet V2 [67]
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able online23. The networks are run in inference mode. Every video undergoes a preprocessing

step as specified for video action recognition. A fixed number of frames (T) are sampled from

the video. The video is normalized with the mean and standard deviation values of ImageNet.

The mean values for the RGB channels are (0.485, 0.456, 0.406) while the standard deviation is

(0.229, 0.224, 0.225) respectively. The short side of the video is resized to 256 and a center crop of

224x224 is obtained. Thus for a video with N frames, the final dimensions of the tensor that is in-

put to the model are TxCxHxW. I use 32 frames for SlowFast and 16 frames for TSM as those gave

the best performance. The SlowFast network has a validation accuracy of 60.25% while TSM has

a validation accuracy of 61.38%. Table 4.3 shows the performance of both networks in inference

mode.

Focusing on the misclassification numbers helps get an insight into the nature of mistakes of the

two models. The results are consolidated by finding the union of the two networks. In total there

are 9481 samples obtained from the union of predictions in the top-1 category and 2106 samples in

the top-5 category. Before understanding how the labels are reassigned to the videos for evaluation,

I process the file to examine the patterns of classes that are most confused as well as the classes

that are least confused. Please note that these classes belong to the actual label of samples in the

dataset, and not the selections by the workers. The latter will be discussed in section 5.1. Table 4.4

summarizes in decreasing order of counts of classes that are most confused as well as classes that

are least confused in the Top-1 category.

Table 4.3: Top-1 and top-5 validation accuracy of SlowFast and TSM. The union of misclassifications from
both networks is used for reannotation and re-evaluation of the networks.

Approach Top-1 accuracy Top-5 accuracy # misclassified samples
SlowFast 60.25% 86.67% 9963

TSM 61.38% 87.04% 9568

2SlowFast: https://github.com/facebookresearch/pytorchvideo/blob/main/docs/source/model_zoo.md

3TSM: https://github.com/mit-han-lab/temporal-shift-module
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Table 4.4: Patterns of classes that are most confused as well as least confused. Please note that these are
the counts of samples corresponding to the legacy labels and not the selections by the workers. The most
confused classes have multiple valid interpretations with other labels in the set causing confusions in model
predictions.

Class Name Count

Most confused

Moving something up 168
Showing something to the camera 155
Putting something on a surface 150
Dropping something onto something 147
Stuffing something into something 146

Least confused

Turning the camera left while filming something 7
Lifting a surface with something on it but not enough for it to slide down 6
Pushing something onto something 6
Spilling something behind something 4
Turning the camera downwards while filming something 4

4.5.2 Baseline experiment for multi-label interpretation of video samples

It is my hypothesis that humans perceive the same video differently based on certain charac-

teristics like specific series of events or subsegments in a video, or the focus on specific objects in

a frame or sequence of frames. To verify this hypothesis, a pilot study is conducted wherein the

users are shown a video and asked to select all relevant descriptions of the video from the available

choices. This initial experiment is carried out with a small sample size of 1000 samples belonging

to the top-5 misclassifications category. The aim is to understand how users interpret a video when

they are presented with options describing it. This tool is named as AnnotateMe. Every video was

annotated by two participants to mitigate any annotation bias. The goal of the pilot experiment is

to seek answers to the following questions:

• Do the network predictions align with the way humans perceive the videos?

• Are there multiple different interpretations of the same video as selected by the users?

• How many times is the actual label selected from the available choices?

• What are the patterns of selections for a particular class of videos?
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Figure 4.11 shows the user interface of AnnotateMe tool. The video is seen on the left hand side

while the video descriptions (or video labels) can be seen on the right. The label options presented

to the users are obtained from the union set of predictions from the two models. The actual video

label as associated with the video in the dataset also belongs to the choices presented to the users,

but is randomized in occurrence to prevent users from tricking the system and selecting it as the

only choice. Thus, if both networks agree on all the 5 predictions, then the intersection set contains

5 entries. Similarly, if neither networks agree on the predictions, then there are 10 entries for that

video.

The users/annotators are shown the video and the corresponding labels for it and asked to select

all the video labels that best describe the video. Every video has two confidence values: Yes and

Maybe. If the user is confident of the selection, then Yes is selected, Maybe if the selection seems

fitting but not completely. As in the given example in figure 4.11, the user is confident of the

selection showing something on top of something, so it is marked as Yes. However, the selection

poking something so lightly that it doesn’t or almost doesn’t move fits the video description but not

completely. Thus, the confidence score for it is Maybe. The selected labels will be seen below the

video below the Final Label heading.

In addition, they are also given the choice to add a video label describing the video if it is not

present in the labels pool. This can be done by using two drop down menus seen below the label

choices. To avoid overwhelming the user with all the 174 labels in the dataset, a two step process

is set up. The user first selects the coarse group of the description from the first drop down menu.

This menu contains 50 entries, i.e. the 50 coarse grained labels made available by the authors.

Based on the coarse group selected, the second drop down menu updates its entries to all the fine-

grained labels belonging to that group. Any selection made from the second drop down menu will

be updated in label set for the video. Any ambiguous video sample goes for a second review by

selecting the ’Mark for Review’ checkbox on the left corner.
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Figure 4.11: Illustration of the AnnotateMe tool used a pilot experiment to get annotations from humans.
Users are tasked to select all relevant labels in the options that describe the video on the left side. Addi-
tionally, users can also select labels from the drop down menus that are not seen in the selections. Any
ambiguous sample can be marked for review for a second pass.
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4.5.2.1 Inferences

The goal of the pilot study was to answer the question whether there indeed are multiple ways

of interpreting a videos and if the labels in the given dataset are relevant. For this, I got annotations

for videos from multiple participants and analysed the patterns of selections. The actual label was

included in the selections, and randomized to account for accidental bias. Table 4.5 summarizes

the count of the number of annotators selecting the actual label. It is observed that out of 1004

videos where each video was annotated by 2 participants, in 527 samples of 52.49% of the total

samples, both participants were in agreement in selecting the actual label in the descriptions of

videos. One of the annotators selected the actual label for 32% of the total videos, while none of

the annotators selected the actual label for 156 or 15.53% total samples.

Table 4.5: Summary of the results of the pilot experiment. 84.76% of the total samples had multiple labels
selected. 52.5% total samples had the actual label that was agreed upon by both annotators. This result
asserts the claim that there are multiple interpretations of an action in a video.

# annotators agreeing on the actual label Count Percentage

2 527 52.49%

1 321 32%

0 156 15.53%

Total number of samples 1004

Similarly, independent of agreement, 851 samples or 84.76% of the total samples had multiple

labels selected. There were 310 samples that had multiple labels out of 527 samples where both

annotators agreed. This accounts for 58.82% of the samples. Out of the 321 samples, there were

125 samples that had multiple labels where either of the annotator selected the actual label. And

63 samples had multiple label selections where neither of the annotators selected the actual label

in their selections. This result asserts my claim that there are more than one way of interpreting

a video based on how language is used to describe the action in the video. As described earlier,
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the labels presented to the annotators were obtained from the union set of the predictions of the

SlowFast and TSM networks. Almost all annotators gave the feedback that the selections were

relevant and positively aligned with the video shown. This helps to understand that the model are

learning important characteristics of the videos when making predictions of the actions, and those

that align with how a human, untrained for the specific task of classifying videos would perceive

them as well.

While this pilot study focused on a very small sample set of 1000 videos belonging to the Top-5

category of misclassifications, the conclusion that there are multiple interpretations of a video and

the action in it as perceived by humans is reassuring. Relabeling the Top-5 category can help to

bridge the difference in the Top-5 validation accuracy, almost the entire community focuses and

compares network performances based on the Top-1 accuracy. Thus, in order to produce a more

coherent and consistent result of my hypothesis, I replicated the experiment to include samples

from the Top-1 category as well. The following section describes the process to scale up the pilot

experiment for a more thorough analysis.

4.5.3 Crowd-sourced annotations

The pilot experiment described above laid the foundations to include more samples belonging

to the Top-1 category as well as some balance samples from the Top-5 category. A similar union of

results from the two networks provided approximately 11,857 video samples. Of these, there are

9481 samples in Top-1 category and 1106 samples in the Top-5 category. These videos were crowd-

sourced to Amazon MTurk4 for annotations and designed as a video classification experiment. I

(requester) submit the task for the annotators (workers) in return for monetary compensation upon

successful completion of the task. The terms requester and worker are used interchangeably for me

and the users respectively. Each task is known as HIT (Human Intelligence Task) and the worker

is paid 3 cents ($0.03) upon successful completion of the task when it is approved. If the task is

rejected, the worker is not paid.

4https://www.mturk.com
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Figure 4.12: An illustration of the video reannotation tool as presented to the workers on Amazon MTurk, a
crowd-sourcing platform. Each worker is shown a video and the corresponding labels describing the video.
Workers are tasked with selecting all the relevant labels that describe the video. The options available are
obtained from the union of the predictions from SlowFast and TSM.

Figure 4.12 shows an illustration of the MTurk experiment as presented to the users. The

workers can select all appropriate descriptions of the video seen on the left. The workers volunteer

to complete as many HITs as they like. No personal information of the workers is accessed in

any way. We can apply certain filters to limit the number of workers for our tasks, but we did not

apply such filters so as to maximize the responses for a more diverse data. A total of 1663 workers

participated in this study. The maximum number of approvals received by a worker were 494 while

the average number of approvals were 16.

Because we can anticipate erroneous selections from workers trying to game the system or in

an attempt to mitigate annotation bias, every video is intended to be reviewed by three workers. It

is inconvenient and inefficient to have to review 36,000 videos one by one. To make this process

streamlined and efficient, another tool is designed to review the annotations obtained from workers

on the MTurk platform. Figure 4.13 shows the interface of the tool used to review the videos, aptly

named ReviewMe. Three annotations are collected for every video. These have to be reviewed
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Figure 4.13: The ReviewMe tool is designed to make the assessment of worker annotations obtaine from
MTurk more efficient and streamlined. Each worker’s selections are seen below the video. Each worker
column has a radiobutton to approve or reject a task based on how much it matches the video shown above.

individually before being approved or rejected. In order to save time and redundant efforts, the

tool shows a video and the corresponding answers from the workers. No personal information of

the workers is made available, and neither is any identifier seen in the interface. All workers are

named as Worker 1, Worker 2 and Worker 3. Each worker’s answers are seen below, along with

the number of assignments completed, the number of blank entries by the worker as well as the

current approval rating. Every HIT has two options associated with it: Approve and Reject.

If the worker does not select any option and leaves the task blank then the task is rejected and

the worker is not paid for it. Similarly, if the selections are done in such a way that they are not

close to the expected answer then the assignment is rejected. If the selection is correct or is close

to the actual label, then the HIT is approved, and rejected otherwise. For example, if the relevant

selection is picking something up and the subject selects lifting something, the task is approved.
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However, if the worker selects throwing something in the air then the assignment will be rejected.

At the end of every batch, all the results are compiled together, and a worker’s HIT is approved

or rejected using MTurk’s API. The decision is then communicated to the workers through MTurk

API.

4.5.4 Evaluation of human annotators

In order to quantify the user agreement of labels, we would have to apply agreement rating

algorithms like Fleiss Kappa score [68, 69] and Cohen Kappa score [70]. Yet, this setup differs

from the conditions required for the calculation of the scores thus preventing us from applying them

to our data. Both algorithms assume that there is a single selection for a particular sample. But

in this experimental conditions of this research, there is a particular interest in getting all relevant

selections for the videos. The Fleiss Kappa score is inappropriate because while every annotator

can make multiple choices, not every annotator must make the same number of choices. To address

this issue, I rely on the evaluation judgement of worker submissions using the ReviewMe tool.

The underlying assumption in using the evaluations from the tool is that the worker selections

have been meticulously verified with the corresponding video before approval or rejection. To

ensure the integrity of the selections, for cases where there is doubt with the worker selections, the

videos are marked for a second review thus eliminating any false approvals. Although these steps

are taken to obtain as revised and clean data as possible, there are always some samples which slip

through the cracks. Across all the batches, there are a total of 560 samples in the Top-1 category

of videos wherein there were no approvals for either of the workers, or cases where there was only

one approval for one worker, but the selection was not matching the actual label. To account for

these incomplete or missing samples, I pass the samples through MTurk once again and use the

best of both results. After the second round of curation, there were 506 videos that were salvaged

and 54 videos that were not added into the final data to be used for evaluation. Removing the 54

entries resulted in a data that contains 9427 samples belonging to the Top-1 category.
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Once the batches have been processed and reviewed, all results from MTurk are consolidated to

analyse patterns of human evaluations of video labels. The Majority Voting strategy is applied by

taking advantage of the reviews of worker HITs obtained using ReviewMe. The decision to assign

a label or a set of labels to the video relies on three rules. These rules focus on the total number of

approvals or rejections for a particular sample as well as the agreement of selections between the

workers. The labels are assigned if one of the following conditions are met:

1. All HITs are approved and all workers agree on the labels. This is usually the condition

where the actual label is present in the selection list, but also when additional labels are to

be incorporated.

2. Two HITs are approved and both workers agree on the labels. This condition ensures a

majority approval of workers to allow alteration of labels.

3. All the HITs are approved, but none of the workers agree on the labels. This case is particu-

larly interesting because it leads to all the possible ways of interpreting a video correctly.

The results of the data are tabulated to understand how many times the actual label was selected

by the annotators corresponding to the number of approvals. It can be observed that the upper

bound of the label set cannot be determined with certainty as each worker can potentially select

valid multiple interpretations for the video. In a condition where all workers are approved and

each worker has selected one label that is different from the legacy label, the number of labels in

the reassessed set for the video sample will be 4. However, there can be more than 4 valid labels

in this set as well. The lower bound for the reassessed label will be 1 if all workers agree on the

label and it is the legacy label for the video sample. In my experiments, the maximum number of

reassessed labels was seen to be 8.

Table 4.6 illustrates the distribution of samples based on the number of worker approvals and

the condition whether the actual label is present in the selections. This helps to get an insight into

the numerous ways in which the workers interpret a video and how many times it aligns with the

actual label in the dataset. Once all samples are reassigned following the rules mentioned above,
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Table 4.6: The distribution of worker assessment verdicts with existence of labels in the selections. Out of
9427 samples, 4149 samples are where all 3 workers were approved, and selected the legacy label in their
selections. We consider a Majority Voting using approval verdict for adding a new label to the label set.

Number of workers approved Label in selection Count
3 Yes 4149
3 No 1282
2 Yes 2359
2 No 871
1 Yes 753
1 No 13

Total samples handled 9427

the two networks are re-evaluated. The scope of this dissertation does not account for the relabeling

of the training data and only examines samples in the validation set. This is because the training

step involves random cropping and resizing, where the actual object in consideration might be lost

particularly if it is filmed off center and more towards the edge of the video frame. Chapter 5

Section 5.1 discusses the change in accuracy, also denoted as ReaL accuracy and the inferences

about the networks from it.

4.6 Applying Grad-CAM visualizations to videos

Chapter 3 Section 3.3 explained how Grad-CAM algorithm is applied to visualize the convolu-

tional layers of a CNN model when it classifies an image input. As a quick recap, Grad-CAM is an

approach to investigate the internal layers of a CNN model by highlighting the regions in an image

that have a positive influence on the prediction of a particular class. It is used to study and answer

the question why a network predicts what it predicts as a way to establish trust in the learning and

predictive capabilities of the networks.

The two fundamentals of Grad-CAM are activation maps and gradients. Activation maps are

obtained when an image is processed in the forward pass, while gradients are obtained in the back-

ward pass. Heatmaps are generated based on the weighted interaction of activations and gradients

and overlaid on the input image to highlight salient regions of the image that have a positive in-

fluence on the prediction of the class. While this technique was developed primarily for a static
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image, it can be easily extended for videos. The focus is on how the concept adapts to the net-

works referenced in this thesis, i.e. SlowFast and TSM, and what insights are obtained from the

visualizations of certain videos processed by these networks.

4.6.1 Grad-CAM for SlowFast

In SlowFast network, there is no down-sampling of the temporal information in videos. Thus,

the number of frames input to each pathway remain consistent throughout the extent of the network.

Let us consider a SlowFast network that takes as input a video segment consisting of D frames.

For ease of understanding, we discuss the fast pathway first and how Grad-CAM is applied on it.

The input to the fast pathway is a tensor of dimensions D×C ×H ×W . In the last convolutional

layer, the output dimensions of activation maps in the fast pathway are [256×D × 7× 7]( 4.4.1).

The gradients also have the same dimensions as the activation maps. Following the tutorial on

Grad-CAM, the pooled gradients or weights of every activation maps is a 1-D tensor of size [256].

These weighted kernels of size 7×7 are used to generate the heatmaps. The heatmaps obtained for

each of the D frames are overlaid on the original input image and visualized. The Slow pathway is

almost similar but with two minor changes. First, the number of frames input to it are D/4 instead

of D. Second, the number of activation maps in the last convolutional layer are 2048 instead of

256.
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Figure 4.14: Grad-CAM visualization for taking something out of something using SlowFast. While the
Slow pathway (middle column) focuses on the object interacted with, the Fast pathway (last column) focuses
on the movement of the hand during the length of the video.
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Figure 4.14 shows the Grad-CAM visualization for selected frames from a video with action

label taking something out of something. The first column shows the original video frames, the

second shows the heatmap of the Slow pathway overlaid on the video frame while the third column

shows the heatmaps of the fast pathway. The Slow pathway focuses more on the object that is being

interacted with in a video and its change as the video progresses. In comparison, the fast pathway

focuses more on the motion of the hand as it performs the necessary action through the video.

It is observed that as the hand starts to reach the medicine bottles in the first frame, the re-

gion around the hand in the fast pathway gets highlighted. In the third frame, the Slow pathway

highlights the medicine bottle that is being picked up. The Fast pathway continues to focus on the

hands, but the activation is not as high. In the following frame however, the Fast pathway again

highlights the hand as it moves away from the bottle and out of the frame boundary. The last

frame shows that the medicine bottle left on the surface is highlighted thus implying that the Slow

pathway focuses on the objects being interacted with.

4.6.2 Grad-CAM for TSM

Similar to SlowFast, there is no temporal down-sampling of video frames in TSM. Thus the

number of frames remains consistent throughout the depth of the network. The frames mingle with

each other due to the temporal shift function in the residual layer of the network. In the penultimate

layer before the softmax function is applied, the results from the frames are aggregated using a

consensus function, usually Average Pooling over the video frames. Comparing with the example

of how SlowFast processes the video, let us consider a video consisting of D frames as input to the

network. Thus, the input dimensions are D × C × H × W . In the last convolutional layer, the

dimensions of the video as fed to the consensus function are [D× 2048× 8× 8]. This is the input

tensor used to generate the activation maps, and the kernel size of 8x8 is used for overlaying on

the frames for visualization.

The dimensions of the gradients are same as the activation maps in the forward fuinction i.e.

[D × 2048 × 8 × 8]. The weighted gradient is a tensor of size [204] indicating one weight value
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for every activation map present in the last layer. Thus, the consolidation of all the activation maps

results in a tensor of size [D× 8× 8] which is used to overlay onto the video frames, one for each

frame.

Figure 4.15: Grad-CAM for Squeezing something using TSM. The area around the ball reduces in size as
the hand moves forward to grab and squeeze it. TSM focuses more on the target object rather than the hand,
much like the Slow pathway in SlowFast network.
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Figure 4.15 illustrates selected frames from a video with class label Squeezing something.

The first column shows the original video frames, while the second column shows the heatmaps

overlaid onto the frames. Contrary to the SlowFast illustration where is one visualization for

the Slow pathway and one for the Fast pathway, TSM only has a single pathway as the video is

processed. While there are subtle differences between the two networks, the TSM visualization

can be considered to be more aligned with the Slow pathway processing spatial information over

the duration of the video.

It is observed that as the hand moves closer to the ball, the network highlights the ball as the

target object interacted with. As soon as the ball is grabbed, the region immediately locks in on the

object as indicated by a red region around the boundary of the ball and the hand. When the ball is

pressed, the region around the ball not only coincides, but also reduces in size. This indicates that

the model can learn the reduction in size of the target object. This pattern continues as the ball is

further pressed in the fourth frame. The progression of the five frames shows the complete nature

of how TSM understands or focuses on when it predicts an action of squeezing something.

Chapter 5 section 5.3 presents some case studies of agreements and disagreements of SlowFast

and TSM. It paves a way for the reader to establish trust in the networks as they process video input

to predict a particular action. The discussion highlights how two similar actions can be confused

with each other, what relevant commonalities are seen between the two actions that compel the

confusions for the networks. It also implies the core inconsistencies of the data collection and

labeling step as the main source of the reduced model performance.
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Chapter 5

Results

This chapter provides the effect of Reassessed Labels of the validation set of Something Some-

thing dataset, and the insights from ReaL accuracy on video action recognition models. An analysis

and evaluation of the labels obtained from crowd-sourced experiments is presented, along with the

patterns observed by the human-in-the-loop approach.

The goal of the experiments is to understand the effects of ambiguous language in the labels

of the Something Something dataset on the performance of video action recognition networks. A

direct cause of the ambiguity can be traced to the inconsistency in data collection and curation

step of the dataset and how it translates to model performance. A video involving human object

interaction can be interpreted in more than one ways. For example, dropping something into some-

thing can also be interpreted as putting something into something based on how similar the videos

look visually. Similarly, when the class labels describing the videos are linguistically close to each

other, the possibility of confusions in classifying them is higher. My argument is that the networks

are learning very relevant properties of actions from videos and can predict the classes with a good

confidence. However, the validation accuracy of these network is hurt when the predicted label

does not match the actual label due to an error in the data itself. To explain, I took two different

approaches and arrived at the same conclusion.

First, I introduced a human-in-the-loop approach and review each video in the validation set

through a crowd-sourced platform. A user is shown a video and a corresponding set of labels

associated with it. The task is to select all relevant choices that describe the video. To remove

user bias due to attempts to game the system, annotations from three users are collected. User

selections are compiled and the labels are reassigned based on three rules using approvals of worker

annotations. The new dataset thus obtained is referred to as Reassessed Labels. the networks are

then re-evaluated using the new labels and refer to it as ReaL accuracy. Second, the internal

workings of the networks are probed as a way to corroborate what networks learn when predicting
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a particular class label. These internal workings of the networks are visualized using the Grad-

CAM [25] approach. It is observed that the heatmaps for similar classes are similar e.g. Pushing

something slightly so that it moves and Poking something slightly so that it moves. There are many

videos in the Stuffing something with something class that are confused with Putting something

into something or Dropping something into something. Surprisingly, upon observing the videos

manually, there is more agreement with the network’s first prediction that is with a high confidence

than what the actual label is for the video. This infers that the model can predict a class correctly,

but still gets it wrong because the actual label itself is wrong. This is explained in more detail in

section 5.3.2.

The rest of the section is as follows: Section 5.1 describes the re-evaluation of the networks

using the reassessed labels. This section also discusses the patterns of co-occurring classes where

the workers select one class when they select the legacy label corresponding to the video. A change

in the original and ReaL accuracy for SlowFast and TSM is examined. Section 5.3 handles case

studies of Grad-CAM visualization for a varied configurations of videos that are correctly classified

by both networks as well as the confusions in model predictions. This section also gives the reader

to understand the similarities in the internal learning when the network predicts a label that makes

sense for the action being performed. Lastly, Grad-CAM is extended from the last layer to all

other layers of the network to study the progressions of the network’s learning as it gets better at

predicting an action.

5.1 Re-evaluating the models

In this section, I discuss the patterns of reassessed labels obtained from the human-in-the-loop

step using Amazon MTurk, a crowd-sourced platform. Before studying the impact of the new

annotations on the model performance, we will briefly look at the co-occurring classes obtained

from the new annotations in section 5.1.1. In particular, the focus is to see what percent of the total

samples of one class were attributed to the other class. Table 5.1 lists the top-5 classes with the

highest percentage of co-occurrence of classes.
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Table 5.1: Top-5 classes co-occurring with the legacy label as selected by crowd-sourced workers. We
observe that based on what the action label changes based on what target object is considered. Similarly, a
label is confused with its parent class. The influence of ambiguous language of labels and visual overlap of
actions results in multi-label selections by the workers.

Class Label Count Co-occurrence class Count Percent

Pouring something out of

something

25 Pouring something into

something

21 84%

Poking a hole into some sub-

stance

11 Poking a hole into something

soft

9 81.82%

Letting something roll along

a flat surface

113 Rolling something on a flat

surface

91 80.53%

Throwing something onto a

surface

71 Throwing something 56 78.87%

Lifting something up com-

pletely without letting it drop

down

46 Picking something up 36 78.26%

5.1.1 Patterns in co-occurring classes

It is observed that the co-occurring classes semantically align with the actual class labels. Based

on which object is considered as the focus object in the video, the label selection is changed

accordingly. This is evident from pouring something out of something where the focus is on the

object pouring the liquid but is confused with pouring something into something where the focus

is on the object being poured into. While the main action is pouring, both actions are correct for

the given video. Similarly, an action is confused with its parent class. This is seen for throwing

something onto a surface and throwing something. Such instances where the parent parent label

and the child label are considered as distinct labels is one of the core sources of confusions of

model predictions for this dataset. We also observe that throwing something in the air and letting
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it fall is often confused with something falling like a rock. The annotators consider the main action

as the object that is falling down rather than throwing it in the air. Similarly, when an object is

dropped but the surface on which it lands or might land is not shown, annotators tend to anticipate

a surface and thus select the label dropping something onto something in place of something falling

like a rock.

Based on how a person perceives the positions of two objects relative to each other influences

their selection of labels. For example, depending on which object is considered in focus at the time

of selecting a label, a change in perception when two objects are shown next to each other can lead

the worker to select either or all of the three labels: showing something next to something as well as

showing something behind something or even showing something in front of something. A parallel

trend is observed when workers confuse the prepositions front, behind, into, onto, etc. For 75%

of the samples of twisting (wringing) something wet until water comes out, workers also selected

twisting something. This tells us that while an action is a unit of cause and effect, humans often

consider a hierarchy of the abstraction that describes the video, and then make it more verbose.

When no action is performed in the video, the most common label that is selected is showing

something to the camera. On a fine level the position and placement of the hands can help discern

between poking and pushing an object. However, when the main cause distinguishing one action

from another involves the application of a slight force to move an object, a poking action is con-

fused with a pushing action for 75% of the samples. There are also instances where number of

objects are stacked together. Workers tend to select putting number of something onto something

70% of the time in place of the stacking label. Overall, it is observed that there are myriad rea-

sons considered by the workers when they select a particular to describe a video. While access to

any personal information like knowing whether English was the person’s first language was un-

available, I observed that workers with a good grasp of the language often selected more verbose

options and had multiple selections rather than a single one.

The influence of Reassessed Labels and how ReaL accuracy compares to the original validation

accuracy will now be studied.
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5.1.2 Real accuracy for SlowFast and TSM

Using the proposed ReaL accuracy, I re-evaluate SlowFast and TSM. It would be expected

that the accuracy would be higher if the human annotators agreed with the first predictions of

the networks. However, this was hidden from the annotators when the order of the labels was

randomized. The predictions for each sample are available when the two networks were run in

inference mode after training. To evaluate the ReaL accuracy, I check if the Top-1 prediction of

the network belongs to the set of labels now available for the sample. If the prediction does not

belong to the set of labels available, then it is deemed incorrect. The ReaL accuracy corresponds

to the number of correct predictions out of the total number of samples present.

Table 5.2: The performance change from the original accuracy to ReaL accuracy when SlowFast and TSM
are re-evaluated using the reassessed label set. We observe an increase of almost 12% top-1 and 3% top-5 for
both networks indicating that both networks respond positively to the inclusion of multiple interpretations
of actions in a video.

Network Category Original accuracy ReaL accuracy

SlowFast
Top-1 60.25% 72.21%

Top-5 86.66% 89.31%

TSM
Top-1 61.38% 73.34%

Top-5 87.04% 89.83%

Table 5.2 summarizes the difference in performance of the two networks between the original

validation accuracy and ReaL accuracy. The ReaL top-1 accuracy implies that the first prediction

falls in the set of Reassessed labels available for the sample. Both networks have an increase of

almost 12% in their top-1 accuracies. The same change is also reflected in the top-5 accuracy,

where SlowFast sees a change of 2.65% and TSM sees an increase 2.79% in the top-5 accuracy.
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Figure 5.1: Scatter plot of comparative performances of SlowFast and TSM based on original and ReaL
accuracy. The Y axis shows the accuracy in %, but the X-axis is not shown to have a greater spread of values
across the plot for ease of interpretation. Black and red correspond to SlowFast and TSM respectively.

Figure 5.1 illustrates the change in performance of the two networks, i.e. the plot of original

and ReaL top-1 and top-5 validation accuracies for TSM and SlowFast networks. Each metric

is marked with a different marker. The black markers represent the original validation accuracy,

while red markers represent the ReaL accuracy for the metric under consideration. The Y-axis

shows the accuracy values in %, but the X-axis is not shown to have a greater spread of the values

across the graph for ease of interpretation.

5.1.3 Extending ReaL accuracy to training data

In the scope of my research, I have focused on the re-annotation and reassessment of the sam-

ples in the validation data. In order to apply the re-annotation protocol to the training pipeline

requires some changes in the way a forced choice training is carried out. Conventionally, the label
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for a sample is represented as a one-hot encoded vector for training. In keeping with the same

design, the model will predict a probability distribution after the softmax layer. The index of the

maximum probability value in the output (also denoted as argmax) will be used to calculate the

softmax loss with the ReaL set. Thus, if the argmax of the model prediction belongs to the ReaL

set, then it will be treated as a correct prediction. However, the possibility of multiple labels for a

single video sample results in moving to a k-hot encoding vector rather than a one-hot encoding.

Thereby, the cross entropy loss will have to be changed appropriately to account for all of the

labels now available for the sample. Instead of treating the problem as a multi-class classification

problem, it is considered as a binary classification problem for every independent label in the ReaL

set. A sigmoid cross entropy loss which does not require mutually exclusive predictions will be

used to train the network [24].

As a result, the concept of reassessed labels can be incorporated into the training pipeline to

study how the internal network learning is altered if it is no longer restricted to a single label and

allowed multiple valid interpretations of the video under consideration.

5.2 Comment on the dataset

This section is not required, but I was compelled to note it for the larger audience. There are

some vile and inappropriate videos in the Something Something dataset. For example, one video

shows ear-wax being taken out of a person’s ear and another video shows a person spreading a

green oil on another person’s back, just because the label corresponding to the video in question

was for Spreading something onto something. This was taken even further when a person recorded

a video of themselves unzipping their pants. The video has a label Moving part of something, but

the video is demonstrably inappropriate. People have recorded videos without proper clothing, in

a semi-naked state. While the focus of the dataset is on the action and not the background, the

videos are extremely disturbing and must strongly be curated and removed from the dataset. In

bringing a massive dataset with number of challenges to tackle in videos, the authors did not focus

on censoring such inappropriate materials within the videos. the only attributes the videos were

96



checked for were the consistency of the length of the videos and the uniqueness of the videos,

and probably violence or pornography. There was very minimal curation about whether the videos

were appropriate for the labels, or even appropriate for viewing. This however, might be a personal

remark and does not affect the conditions or results intended in getting real world videos from this

dataset for the purpose of this dissertation.

5.3 Peel the onion: What do the networks learn internally?

This section presents some case studies of network predictions for certain video samples using

Grad-CAM visualizations. I extend the same principle of visualization for a single image to videos.

A heatmap is generated for every frame in the video, or for an image at a fixed stride (usually 4 for

SlowFast).

5.3.1 When both networks agree on the actual label

5.3.1.1 Pretending to squeeze something

The video seen in Figure 5.2 is of a person squeezing something. Both networks, SlowFast and

TSM get the prediction correct for this video. As seen for the SlowFast Grad-CAM visualization

for Squeezing something in Figure 4.14, we observe that as the object gets squeezed, the area

of the region of heatmap starts reducing gradually. Similarly, in this example as well, when the

tube is being lightly squeezed, the are of the region where it is squeezed gradually reduces as

seen in column 2 (Slow Pathway). Additionally, in the last frame, the region around the fingers

is highlighted in column 3 (Fast Pathway) indicating that the hand will be released in the next

instance.

This order of rise and fall of activated regions, combined with the slow press and release of

the tube by the hand in the Fast Pathway makes the networks predict the action as happening but

not enough to conclude as complete. Thus, both networks accurately predict the example video as

Pretending to squeeze something.
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Figure 5.2: SlowFast Grad-CAM visualization for an action Pretending to squeeze something. The rise
and fall of activated regions, combined with the slow press of the tube by the hand in the rightmost column
makes the network predict the action label correctly.

98



5.3.1.2 Pushing something from left to right

The video seen in Figure 5.3 is of a bottle being pushed from left to right. The TSM Grad-

CAM visualization for this video shows that a number of aspects about the video. Starting with

the attention region highlighted around the bottle. Since this is the start of the action, the attention

is not as evident as in subsequent frames, but indicative of the object is focus that is interacted

with. In the next frame, we surprisingly observe that the network not only tracks the object, but

also is slightly ahead of the position of the bottle. This indicates that the temporal information

encoded within the network looks at the future frame, or prediction of what might happen next. I

hypothesize that this is indicative of the network’s ability to learn direction. This information is

vital as a slight change in its anticipated trajectory or position can lead to a misprediction.

Again in the third frame, the attention is at its max as the bottle is in the middle of the action viz.

being pushed. Note that since TSM has its backbone as ResNet-50, and is only modeling temporal

information within but keeping the overall structure intact, the Grad-CAM visualization is more

spatially focused in its attention regions, and implies temporal properties subtly within itself as is

evident in this case study.
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Figure 5.3: TSM Grad-CAM visualization for Pushing something from left to right. The network not only
focuses on the object, but is slightly ahead of it. The future frame included in the TSM design leads to
predict the direction of object motion (left to right).
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5.3.2 Pattern of confusions of classes

This section studies the pattern of confusions commonly seen between classes. For ease of

understanding, I present two classes and their common confusions predicted by the networks.

These confusions will be studied based on how the Grad-CAM visualizations differ for each. In

each case, it is observed that when the network confuses between two classes in question, they

are usually very similar visually. Additionally, their Grad-CAM maps are also very similar. The

network is focusing on subtle differences both in the spatial as well as temporal information when

it makes a certain prediction. In all the cases explained, we observe that the network prediction

is actually more relevant and corroborates with what a human would perceive as important signal

when identifying an action. However, these are also the videos where the networks supposedly

make a mistake. This mistake is not at the network end, but more at the source where the video

was collected and/or labeled.

5.3.2.1 Folding something confused as Closing something

Both folding something and closing something can be seen as being visually very similar in a

number of overlapping contexts. While the action of folding something is particularly associated

with paper-like objects, closing something has a much broader scope based on what objects can be

interacted with. I consider the two classes and filter out the samples which have been confused for

each other by TSM model.
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Figure 5.4: The legacy label corresponding to this video is Folding something. However, the model predicts
it as Closing something with 95.95% confidence. The target region where the half of the paper is folded
onto has the most saliency, which prompts the prediction of closing something.
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In figure 5.4, the video is of a person folding a piece of paper. The crease of the paper along

which it is folded is seen clearly in the original frames on the left column. As the action progresses,

it can be observed that the Grad-CAM visualization has highlighted very relevant regions as seen

by the model. This includes the region of both halves that are interacting with each other in the

first picture, the paper onto which the other half is folded as well as the transition from partial

covering to complete covering onto the paper. While the network predicts this action as Closing

something with 95.95% confidence, the actual label is Folding something. This is a rather tricky

sample because both interpretations makes sense for the model.
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Figure 5.5: The video is of a person closing an object. However, in this case the model predicts it as Folding

something and pays attention to the crease of the flap of the object that is being folded. Visually, it aligns
with how a human would interpret this action, yet the model fails in its prediction.
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In figure 5.5, the person closes the two flaps of the wallet. The model predicts the action Folding

something for this video with a confidence of 98.61%. When we compare the visualizations on the

right to the action predicted, the third frame reveals the main reason for the prediction. Folding an

object can be understood when a crease along which the flap is folded can be seen. Similarly the

first frame implies the crease, although it also considers the surface on which the flap folds. The

fourth frame focuses on the hand as it completes the action.

5.3.2.2 Stuffing something into something confused Putting something into something

Visually, stuffing something involves a repetition of the action when the container is smaller

than the object, or the object is longer in dimensions than the container. There is a slight struggle

that can be seen as the actor carries out the action. Putting something into something, on the other

hand, involves no such struggle. There is no repetition of the action and action is complete within

the first try.

When we visualize case study videos of the two classes when they are confused with each

other, we observe that when the network predicts the other class, it usually does so with a high

confidence over 85-90%. Additionally, when verified visually, the network prediction wins over

the actual label. To illustrate this point, we present the case study of two videos, where the network

predicts the other class and wins. The frames do not display the temporal aspect of the video that

helps determine the classes, but this can be better understood when the complete video is played.

In Figure 5.6, the video is of a person putting a spoon into a cup. The model predicts the label

as putting something into something with 99.38% confidence. However, the actual label for this

video is stuffing something into something. Visually, there is no struggle to put the spoon into the

cup, nor is there any repetition. Thus, this is a case where the actual label is incorrect, while the

model is able to predict the right label and therefore wins.

Similarly, in Figure 5.7, the video shows a person stuffing a tissue paper into its box. There

is non negligible struggle as well as repetition involved in completing the action. The network

predicts the label for this video as stuffing something into something with 94.95% confidence.
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Figure 5.6: The video is of a person putting a spoon into a cup. The model predicts the label for this video
as Putting something into something with 99.38% confidence. However, the actual label for this video is
Stuffing something into something. Visually, there is no struggle to put the object into the cup, and thus the
model wins over the actual label.
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Figure 5.7: The videos shows a person stuffing tissue paper into the box. The model predicts the label for
this video as Stuffing something into something with 94.95% confidence. However, the actual label for this
video is Putting something into something. Visually, there is repetition when the paper is put into the box,
and thus the model wins over the actual label.
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However, the actual label is putting something into something. This is another case where the

actual label is incorrect and the model is able to capture the true action and thus wins.

While the above two cases were only between the two classes, the next example is a little

different. The video frames in figure 5.8 show a person putting in a number of objects one by

one into a container. Each time the person puts an object into the container, the region around the

container is activated and shown by the red heatmap values in the middle column (Slow Pathway).

Additionally, when the hand moves towards the container, it is highlighted as seen in the third

column (Fast Pathway).
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Figure 5.8: The model predicts the label for this video as Putting number of something into something with
74.14% confidence. However, the actual label for this video is Putting something into something. Since
there is another more descriptive label in the label set, the model that label picks up. This also indicates the
high overlap between labels in the dataset which also creates unnecessary errors for the network.
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The top two predictions of the model are Putting number of something onto something with

74.14% confidence and Stuffing something into something with 24.79% confidence. These predic-

tions can be corroborated by number of distinct objects being put into the container, as well as the

repetition involved in performing the action, even when no obvious signs of struggle are seen dur-

ing. The actual label in this case, however, is Putting something into something. On a high level,

this label makes sense; however, even when the model picks up a more descriptive label from the

label set, it is still deemed incorrect. In this case, the high overlap between between labels in the

dataset is the reason for the unnecessary errors for the network.

5.3.3 Going deeper into the networks

In the previous section, I applied Grad-CAM on the final convolutional layer to get an insight

into the salient regions of video frames as the action evolves. This technique can be extended to

dive deeper into the network to see the gradual progression of what the network learns to focus on

as it reaches the final layer. I present a layer wise Grad-CAM visualization of two videos, one for

both SlowFast and TSM to study the change in their learning.

5.3.3.1 Visualizing TSM

Figure 5.9 illustrates the layer-wise visualization of a video labeled Plugging something into

something but removing it right as you remove your hand. Each row represents the progression

of frames into the action, while each column represents layer wise progression from left to right

starting with the original image, layer 1, layer 2, layer 3 and then the final layer. We observe that

as the layers get deeper, the saliency of the network narrows on the object that is interacted with.

While in layer 3 the object saliency also includes the wire, it quickly disappears in the final layer.

In the first layer, almost everything except for the boundary around the arm is having positive

values, but that reduces as the depth increases. It can be observed that in the middle row, the

action being performed is at its peak, and thus the attention is very highly and positively localized

around the plug point and the object. Unlike the previous case studies using SlowFast where one
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pathway focused on the hand while the other focused on the object, TSM behaves more like the

Slow pathway focusing on the object(s) in action.

Figure 5.9: Visualizing the earlier layers of TSM. For an action label Plugging something into something

but removing it right as you remove your hand, the network intially looks at the hand, but quickly changes
the focus to the object as it goes deeper into the layers. The last layer shows highest saliency source as the
target object.
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5.3.3.2 Visualizing SlowFast

Figure 5.10 illustrates selected frames for the layer-wise visualization of Slow pathway for

a video labeled as moving something down. Similar to the previous network, the Slow pathway

focuses on the object being interacted with and activates the salient regions around it. As the video

progresses going down the rows, we can see that the attention region around the bottle being moved

down increases. It peaks around the middle of the duration of the video (roughly around 16-18th

frame in a video with 32 frames). One very curious point to note is the blue blob that can be seen

in layer 4 or the one before the last layer. It is unknown why the network has a strong blue color

which disappears immediately in the next layer.

Figure 5.11 shows the visualization of the same action, but with the Fast pathway. Compared to

the previous figure, this figure can be considered as a complement based on how the salient regions

are highlighted. As can be seen in deeper layers, the focus is on the arm starting with the sleeve

of the actor and continuing till the last layer only reducing in magnitude. A curious observation

comparing the last layers of the Slow and Fast pathway show that the latter is able to predict the

future position of the bottle immediately seen in the next frame for the former (Slow) pathway.

This is because the Fast pathway sees 4 times more number of frames than the Slow pathway,

and thus models this information in the activations. In the middle layer, we can see that there is a

history of the previous position of the hand that is lingering in the current frame as the arm goes

down. When the network is focusing on the arm, it starts with the boundary of the sleeve in the

second frame and gradually ends up at the elbow in the last frame. Surprisingly, the blue ’ghost’

blob continues to have a presence even in this pathway, and disappears in the last layer.
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Figure 5.10: The layer visualization of the Slow pathway for Moving something down. The focus is on the
object and the attention increases as the bottle moves downwards with the video progression.
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Figure 5.11: The layer visualization of the Fast pathway for Moving something down. The focus is on
the arm starting with the sleeve of the actor and continuing till the last layer, only reducing in magnitude.
The Fast pathway is able to predict the future position of the object, which makes sense given it has more
expanse of the complete video fed to it as input.
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Chapter 6

Conclusion and Future Work

6.1 Summary

Gestures or actions have a major influence in conveying or establishing context in a non-verbal

communication. They differ from each other only in the range of their motions the former being

more localized than the latter. These actions can be frozen in the moment into an image, or can

progress more gracefully in a video. Classifying actions in a video is a topic that has long been

studied in the domain of Computer Vision. Human Object Interaction, a sub-domain of video

action recognition tasks, is challenged by the process of modeling how different objects interact

with each other in the video in addition to modeling the temporal dependency between the video

frames.

The current state of the art video action recognition networks are able to devise complex rep-

resentations of videos and classify them with a high degree of confidence. These networks are

trained to increase the confidence of the predicted class and to minimize the distance between the

actual label and the predicted label. The manner of collection and curation of datasets in Com-

puter Vision has followed a standarized protocol over the years. This involves collecting data from

the internet or other sources and reviewing them using human labelers. The integrity of the data

is maintained by posing the problem as a Yes or No question for annotators and consolidating the

results. However, deviating from this protocol in pursuit of getting more real-life videos and a mas-

sive dataset in terms of samples and labels can result in inherent flaws in the data. This deviation

can impact the networks in a negative way.

The labels in the Something Something dataset are of the form "Something action something"

where something is a placeholder. There is a lot of overlap in the nature of the 174 class labels in

the dataset with the use of different prepositions for the same action or a different label description

of the same action. One way to address the loopholes in the performance of the existing models
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is to reinspect the data and learn more perceptions about it. This work does not propose another

state-of-the-art model to classify actions in videos. Instead, it attempts to address the shortcomings

in the data and establish greater trust in the network’s learning ability of different actions.

To investigate our hypothesis, we begin by examining the predictions and misclassifications of

two popular video action recognition networks: SlowFast and TSM. We introduce a human-in-the-

loop technique to review the videos given options describing the videos. The options available to

the user for a video are obtained from the predictions of the networks. An initial pilot experiment

is conducted using 1000 videos where each video is annotated by two users to study if our hypoth-

esis holds true. As expected, 84% of samples selected contained multiple selections describing the

videos. This validation permitted us to scale the experiment to include almost 11,857 videos in

total. The reannotation of videos belonging to both top-1 and top-5 categories was crowd-sourced

to Amazon Mturk. Each video is annotated by 3 workers to mitigate user bias originating from

attempts to trick the system. An additional step of reviewing the workers’ answers is facilitated by

the ReviewMe tool. The tool is used to approve or reject the worker annotations which eventually

pays them for their participation as well ensures an additional step of quality control check. A

Majority Voting approach is applied to the answers thus obtained and approved from MTurk to de-

cide if the labels can be included in the final reassessment. The resultant labels, called Reassessed

Labels are used to re-evaluate the network performance in inference mode.

When the networks are re-evaluated in inference mode without any retraining, both networks

see an increase of almost 12% top-1 accuracy and 3% top-5 accuracy. This staggering jump in the

accuracy strongly implies that the models are already learning very relevant properties from the

video needed to classify the actions in them. The correctness of the model predictions is further

attested by the human-in-the-loop review system, where the options are the predictions from the

two networks. However, the flaw in the dataset collection penalises the model predictions if the

faulty expected label does not match the predicted label. Consequently to get higher validation

accuracy, the newer architectures might be forced to learn erroneous properties of the data.
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Additionally, in order to examine the internal workings of the models, we use Grad-CAM [25],

a post-hoc attention approach to investigate the workings of an already trained neural network.

This approach works by generating heat maps for the activations of different layers of the neural

networks, and displays them onto the input image. As a result, the salient regions in the image

that positively influence the prediction of a class can be visualized onto the image. Grad-CAM

visualization is used as another route to validate my hypothesis that the models are learning relevant

properties about the actions in videos. Some illustrations highlight the visualizations of the internal

layers of the models based on what label is predicted as well as the actual label for the video. It

can be inferred that the model can learn more verbose descriptions of the action as they are present

in the label set. This in turn can be seen by the change in the salient regions with the evolution

of the action. The network’s learning abilities can be showcased as they go deeper to classify the

video input.

6.2 Future Work

The research presented in this dissertation considers and proves the possibility that the networks

are already doing a good job of classifying actions in the Something Something dataset. Although

this dissertation focused on getting answers to bring the attention of the research community to the

flaws in dataset curation steps, there are many extensions that can further this effort and establish

some standardization of dataset quality.

As a proof of concept, this work considered only two networks for analysis. However, other

more recent networks like Vision Transformers [28] were not in the scope of this research. There

are key differences in how 3D CNNs and Transformers are able to model complexities in videos

for classification. Investigating these differences can further help bolster the hypothesis through

multiple ideas.

This work only handles re-annotating the validation data and re-evaluating the networks using

the data. There are many videos where the main object interacted with is either off-center and

closer to the edge of the video frame, or in such dark lighting conditions that it becomes impossible
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to properly see what action is performed. The data preprocessing steps used for training include

random cropping and resizing. These steps can completely eliminate the main object in the video

frame; however, the training data in the Something Something dataset is massive with around

170,000 samples. The flaws that exist in the validation data can also be expected to be consistent

in the training data. A continuation of this work can be extended to review the training data and

compare the difference in performance reflected by the reviews.

This work uses Grad-CAM as a attempt to visualize the internal workings of the two networks.

While Grad-CAM is effective at highlighting the salient regions in the frames, it can struggle when

there are multiple occurrences of the same object in the video frame. Additionally, the approach

struggles to highlight the complete object considered salient. There are other attempts like XGrad-

CAM [31], Grad-CAM++ [30] that can render better visualizations.

A technique proposed in the original Grad-CAM paper called Guided Grad-CAM renders the

exact features the networks focuses on when predicting a particular class in an image. Given time

constraints, our work did not take the advantage of this approach to get better insights into the

models. All Grad-CAM techniques mentioned above focus on getting the salient regions in an im-

age, i.e. the spatial information. However, the temporal aspect of videos is rarely considered. The

temporal Grad-CAM [29] focuses on understanding which frames in the video are most important

for classification. This can help us get an insight into which sampling technique is most ideally

suited for a network to maximize its learning. All the above ideas would be very compelling ex-

tensions of this work, and may inspire the community to trust their networks more than they do

today.
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