## DISSERTATION

## THE SURFACE PROTEOME OF FRANCISELLA TULARENSIS

Submitted by

Jeffrey Craig Chandler

Department of Microbiology, Immunology and Pathology

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2011

Doctoral Committee:

Advisor: John T. Belisle

Robert D. Gilmore Lawrence D. Goodridge Jeannine M. Petersen

#### ABSTRACT

#### THE SURFACE PROTEOME OF FRANCISELLA TULARENSIS

The surface associated lipids, polysaccharides, and proteins of bacterial pathogens often have significant roles in environmental and host-pathogen interactions. Lipopolysaccharide and an O-antigen polysaccharide capsule are the best defined Francisella tularensis surface molecules, and are important virulence factors that also contribute to the phenotypic variability of Francisella species, subspecies, and populations. In contrast, little is known regarding the composition and contributions of surface proteins in the biology of *Francisella*, or what roles they have in the documented phenotypic variability of this genus. A sufficient understanding of the Francisella surface proteome has been hampered by the few surface proteins identified and the inherent difficulty of characterizing new surface proteins. Thus, the objective of this dissertation was to provide an enhanced definition of F. tularensis surface proteome and evaluate how surface proteins relate to aspects of F. tularensis physiology, specifically humoral immunity and phenotypic variability of subspecies and populations. Analyses of the F. tularensis live vaccine strain surface proteome resulted in the identification of 36 proteins, 28 of which were newly described to the surface of this bacterium. Bioinformatic comparisons of surface proteins to their homologs in other Francisella species, subspecies, and populations revealed numerous differences that may contribute variable phenotypes, including significant alterations in the ChiA chitinase (FTL\_1521).

ii

Given the utility of surface proteins in vaccines effective against other bacterial pathogens, the *F. tularensis* surface proteins recognized by three forms of vaccination were determined in a murine model. Immune serum derived from the most effective *F. tularensis* vaccine, *F. tularensis* live vaccine strain, recognized a small set of proteins, of which the majority of antigens were surface localized. In comparison, sera collected from mice vaccinated with two less effective subunit vaccines containing *F. tularensis* membrane and surface proteins recognized a much greater number of antigens. Although surface proteins were also recognized in response to subunit vaccinations, the majority of antigens were not surface associated. These data suggest that a targeted humoral response to a select set of identified surface proteins offers the greatest protective effect.

Finally, the research presented in this dissertation provided the first biochemical characterization of the surface localized ChiA chitinase that was predicted to contribute to the phenotypic variability of *Francisella* biotypes. Multiple chitinases are often produced by a single organism which synergistically depolymerize chitin in nature. Thus, biochemical evaluations were extended to other *F. tularensis* and *F. novicida* chitinases, ChiB (FTT\_1768), ChiC (FTW\_0313), and ChiD (FTT\_0066), that were identified by *in silico* analyses of *Francisella* genomes. Differences were noted between the chitinase genes and chitinase activities of *Francisella* species, subspecies, and populations. The chitinase activities observed for *F. tularensis* strains were predominantly associated with whole cell lysates, while the chitinase activities of *F. novicida* localized to the culture supernatant. The overall level of chitinase activity differed among the subpopulations of *F. tularensis*, and between *F. tularensis* and *F. novicida*. Recombinant production of the putative chitinases and enzymatic evaluations revealed ChiA, ChiB, ChiC, and ChiD possessed dissimilar chitinase activities. These

iii

biochemical studies coupled with bioinformatic analyses and the evaluation of *chiA* and *chiC* knockouts in *F. tularensis* A1 and A2 populations, respectively, provided a molecular basis to explain the differential chitinase activities observed among the species and subpopulations of *Francisella*.

### ACKNOWLEDGEMENTS

I would like to extend my gratitude to the members of my doctoral graduate committee, Drs. John T. Belisle, Robert D. Gilmore, Lawrence D. Goodridge, and Jeannine M. Petersen for their support and guidance. A special thank you is in order to my major professor Dr. John T. Belisle for all his help and patience, and to my friend Dr. Claudia R. Molins who contributed to all aspects of this dissertation. I would also like to acknowledge Drs. Jeannine M. Petersen and Martin E. Schriefer for allowing me the opportunity to perform much of this work at the Bacterial Diseases Branch of the Centers for Disease Control and Prevention.

# TABLE OF CONTENTS

| Chapter I<br>Literature Review Part I: The Genus <i>Francisella</i> |  |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|--|
| The history of tularemia1                                           |  |  |  |  |  |  |
| 1.2 Taxonomic classification4                                       |  |  |  |  |  |  |
| 1.3 Epidemiology and transmission8                                  |  |  |  |  |  |  |
| 1.4 Disease manifestations                                          |  |  |  |  |  |  |
| 1.5 Treatment                                                       |  |  |  |  |  |  |
| 1.6 Vaccines15                                                      |  |  |  |  |  |  |
| 1.7 Physiology of <i>Francisella</i> 18                             |  |  |  |  |  |  |
| 1.7.1 Genomics and proteomics19                                     |  |  |  |  |  |  |
| 1.7.2 Lipids                                                        |  |  |  |  |  |  |
| 1.8 Virulence factors                                               |  |  |  |  |  |  |
| 1.8.1 Envelope22                                                    |  |  |  |  |  |  |
| 1.8.1.1 Capsule23                                                   |  |  |  |  |  |  |
| 1.8.1.2 Lipopolysaccharide24                                        |  |  |  |  |  |  |
| 1.8.1.3 Envelope proteins27                                         |  |  |  |  |  |  |
| 1.8.2 The Francisella pathogenicity island28                        |  |  |  |  |  |  |
| 1.8.3 Chaperone proteins                                            |  |  |  |  |  |  |
| 1.8.4 Metabolic proteins                                            |  |  |  |  |  |  |
| 1.9 Host-pathogen interactions                                      |  |  |  |  |  |  |
| 1.9.1 Pathogenesis                                                  |  |  |  |  |  |  |
| 1.9.2 Innate immunity                                               |  |  |  |  |  |  |

|            | 1.9.3                     | Adaptive immunity                                                       | 35 |  |  |  |
|------------|---------------------------|-------------------------------------------------------------------------|----|--|--|--|
| 1.1        | 0 Liter                   | ature cited                                                             | 37 |  |  |  |
| Ch<br>Lite | apter II<br>erature       | Review Part II: The Surface Proteome of <i>F. tularensis</i>            |    |  |  |  |
| 2.1        | Intro                     | duction                                                                 | 52 |  |  |  |
| 2.2        | Bioir                     | nformatic signatures of <i>F. tularensis</i> surface proteins           | 53 |  |  |  |
| 2.3        | Surf                      | ace proteins of <i>F. tularensis</i>                                    | 53 |  |  |  |
| 2.4        | Grar                      | m-negative protein secretion and the secretome of <i>F. tularensis</i>  | 56 |  |  |  |
| 2.5        | Ana                       | lyses of <i>F. tularensis</i> membrane fractions                        | 63 |  |  |  |
| 2.6        | Туре                      | e IV pili of <i>Francisella</i> species                                 | 65 |  |  |  |
| 2.7        | Pos                       | sible variations in the surface proteome of <i>Francisella</i> biotypes | 66 |  |  |  |
| 2.8        | Diffe                     | erential production of <i>F. tularensis</i> surface proteins            | 70 |  |  |  |
| 2.9        | 2.9 Research objectives73 |                                                                         |    |  |  |  |
| 2.1        | 0 Liter                   | ature cited                                                             | 75 |  |  |  |
| Ch<br>Exp  | apter II<br>pandec        | I<br>Characterization of the <i>F. tularensis</i> Surface Proteome      |    |  |  |  |
| 3.1        | Intro                     | duction                                                                 | 82 |  |  |  |
| 3.2        | Mate                      | erials and methods                                                      | 84 |  |  |  |
|            | 3.2.1                     | Strains and culture conditions                                          | 84 |  |  |  |
|            | 3.2.2                     | Surface protein labeling and label localization                         | 85 |  |  |  |
|            | 3.2.3                     | Biotinylated protein purification                                       | 85 |  |  |  |
|            | 3.2.4                     | Isolation of MPF                                                        | 86 |  |  |  |
|            | 3.2.5                     | SDS-PAGE                                                                | 86 |  |  |  |
|            | 3.2.6                     | Western blotting                                                        | 87 |  |  |  |
|            | 3.2.7                     | Computer aided image analysis                                           | 87 |  |  |  |
|            | 3.2.8                     | Fractionation of MPF                                                    | 87 |  |  |  |

|          | 3.2.9               | Protein identification by MS                                          | 88  |
|----------|---------------------|-----------------------------------------------------------------------|-----|
|          | 3.2.10              | Bioinformatic analyses                                                | 89  |
| 3.3      | Resu                | ults                                                                  | 89  |
|          | 3.3.1               | Bioinformatic predictions of <i>F. tularensis</i> surface proteins    | 89  |
|          | 3.3.2               | Biotinylation of surface exposed proteins of <i>F. tularensis</i> LVS | 91  |
|          | 3.3.3               | Surface protein purification                                          | 92  |
|          | 3.3.4               | Proteins identified in MPF                                            | 96  |
|          | 3.3.5               | Surface proteomes of <i>F. tularensis</i> subspecies and populations  | 97  |
| 3.4      | Discu               | ussion                                                                | 98  |
| 3.5      | Litera              | ature cited                                                           | 102 |
| Ch<br>Su | apter I∖<br>face Pi | /<br>rotein Antigens of <i>F. tularensis</i>                          |     |
| 4.1      | Intro               | duction                                                               | 106 |
| 4.2      | Mate                | erials and methods                                                    | 108 |
|          | 4.2.1               | Strains and culture conditions                                        | 108 |
|          | 4.2.2               | Mice                                                                  | 109 |
|          | 4.2.3               | Immunization of mice                                                  | 109 |
|          | 4.2.4               | Infection of mice with <i>F. tularensis</i> SCHU S4                   | 110 |
|          | 4.2.5               | Isolation of MPF                                                      | 110 |
|          | 4.2.6               | SDS-PAGE and IEF                                                      | 111 |
|          | 4.2.7               | Western blotting                                                      | 112 |
|          | 4.2.8               | Computer aided image analysis                                         | 112 |
|          | 4.2.9               | Protein identification by MS                                          | 113 |
| 4.3      | Resu                | ults                                                                  | 113 |
|          | 4.3.1               | Protective immunity of MPF vaccination                                | 113 |

|                  | 4.               | .3.2                      | Live attenuated and subunit vaccines recognize membrane proteins                        | .114  |
|------------------|------------------|---------------------------|-----------------------------------------------------------------------------------------|-------|
|                  | 4.               | .3.3                      | 2D-separation of <i>F. tularensis</i> MPF                                               | .116  |
|                  | 4.               | .3.4                      | Sera recognition of surface proteins by <i>F. tularensis</i> LVS vaccinated mice        | .119  |
|                  | 4.               | .3.5                      | Altered antigen profiles are associated with differential protection                    | .121  |
| 4.4              |                  | Discu                     | ussion                                                                                  | .124  |
| 4.5              | ;                | Litera                    | ature cited                                                                             | .128  |
| Ch<br>Dif<br>and | ap<br>fer<br>d F | ter V<br>ential<br>Popula | I Chitinase Activity and Production within <i>Francisella</i> Species, Subspe<br>ations | cies, |
| 5.1              |                  | Introd                    | duction                                                                                 | .133  |
| 5.2              | 2                | Mate                      | rials and methods                                                                       | .135  |
|                  | 5.               | .2.1                      | Bacterial strains and growth conditions                                                 | .135  |
|                  | 5.               | .2.2                      | PCR and cloning of chitinase genes                                                      | .136  |
|                  | 5.               | .2.3                      | Construction of <i>chiA</i> and <i>chiC</i> knockouts and complemented strains          | .137  |
|                  | 5.               | .2.4                      | Recombinant chitinase production and purification                                       | .139  |
|                  | 5.               | .2.5                      | Assays for chitinase activity                                                           | .140  |
|                  | 5.               | .2.6                      | Antibody production, SDS-PAGE, and Western blotting                                     | .141  |
|                  | 5.               | .2.7                      | Bioinformatic analyses of Francisella chitinases                                        | .142  |
| 5.3              | 5                | Resu                      | lts                                                                                     | .143  |
|                  | 5.               | .3.1                      | In vitro chitinase activity of F. tularensis and F. novicida                            | .143  |
|                  | 5.               | .3.2                      | <i>F. tularensis</i> and <i>F. novicida</i> encode four putative chitinase genes        | .145  |
|                  | 5.               | .3.3                      | Differential endochitinase activities of ChiA, ChiB, ChiC, and ChiD.                    | .148  |

| 5.3.4                       | Production of individual chitinases by <i>F. tularensis</i> and <i>F. novicida</i>                                           | 152 |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.3.5                       | Analysis of chiA and chiC knockouts of F. tularensis                                                                         | 154 |
| 5.4 Disc                    | ussion                                                                                                                       | 155 |
| 5.5 Liter                   | ature cited                                                                                                                  | 161 |
| Chapter V<br>Final Disc     | I<br>ussion and Future Directions                                                                                            |     |
| 6.1 Intro                   | duction                                                                                                                      | 165 |
| 6.2 The                     | surface proteome of <i>F. tularensis</i> LVS                                                                                 | 166 |
| 6.3 The                     | immunoreactive surface proteins of <i>F. tularensis</i>                                                                      | 171 |
| 6.4 Diffe                   | rential chitinases of <i>F. tularensis</i> and <i>F. novicida</i>                                                            | 174 |
| 6.5 Con                     | clusions                                                                                                                     | 179 |
| 6.6 Liter                   | ature cited                                                                                                                  | 181 |
| Appendice                   | es                                                                                                                           |     |
| 1. Franci                   | sella vaccines, adapted from Pechous et al                                                                                   | 188 |
| 2. <i>F. tula</i><br>beta b | <i>rensis</i> LVS proteins containing predicted signal peptides and arrels                                                   | 193 |
| 3. <i>F. tula</i>           | rensis protein antigens detected by Western blot and 2D-PAGE                                                                 | 200 |
| 4. <i>F. tula</i>           | rensis proteins identified in membrane fractions by 2D-PAGE                                                                  | 203 |
| 5. Proteir                  | ns identified in <i>F. tularensis</i> LVS MPF                                                                                | 207 |
| 6. The si other <i>l</i>    | milarity of <i>F. tularensis</i> LVS surface proteins to homologs of <i>Francisella</i> species, subspecies, and populations | 214 |
| 7. Primer<br>knocke         | s used to construct recombinant chitinases and chitinase                                                                     | 216 |
| 8. Bioinfo                  | ormatic analyses of <i>F. tularensis</i> and <i>F. novicida</i> chitinases                                                   | 220 |

# LIST OF TABLES

| 1.1 | Epidemiology of <i>F. tularensis</i>                                                    | .9         |
|-----|-----------------------------------------------------------------------------------------|------------|
| 1.2 | Phenotypic and biochemical characteristics of Francisella biotypes1                     | 9          |
| 1.3 | Genomic characteristics of Francisella biotypes2                                        | 20         |
| 2.1 | Secreted proteins of <i>F. tularensis</i> and <i>F. novicida</i> 6                      | 30         |
| 2.2 | Metabolic pathways of <i>F. tularensis</i> subspecies and populations6                  | 39         |
| 3.1 | Comparative analysis of <i>F. tularensis</i> signal sequences9                          | 90         |
| 3.2 | Identification and bioinformatic analyses of <i>F. tularensis</i> LVS surface proteins9 | <b>}</b> 4 |
| 3.3 | MS/MS validation of proteins identified as surface exposed9                             | 95         |
| 4.1 | MPF spot identification by MS11                                                         | 7          |
| 5.1 | F. tularensis and F. novicida strains13                                                 | 36         |
| 5.2 | Plasmids used for chitinase production and knockouts13                                  | 38         |
| 5.3 | Summary of Francisella chitinase bioinformatics and activities15                        | 56         |

# LIST OF FIGURES

| 1.1 | Taxonomic organization of the genus Francisella                                                                                           | 6   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.2 | Structure of <i>F. tularensis</i> and <i>F. novicida</i> tetraacylated lipid A                                                            | 25  |
| 2.1 | Gram-negative secretion and translocation adapted from Tseng <i>et al.</i>                                                                | 57  |
| 2.2 | Comparison of the distributions of <i>F. tularensis</i> CDS                                                                               | 68  |
| 3.1 | Predicted subcellular localization of <i>F. tularensis</i> (type B, A1a, A1b, and A2) proteins                                            | 91  |
| 3.2 | Biotinylation of <i>F. tularensis</i> LVS surface exposed proteins                                                                        | 92  |
| 3.3 | Purified F. tularensis LVS LC-Biotin labeled surface proteins                                                                             | 93  |
| 3.4 | Surface proteins of <i>F. tularensis</i> subspecies and populations                                                                       | 97  |
| 4.1 | Survival of mice following a low dose i.n. challenge with <i>F. tularensis</i> SCHU S4                                                    | 114 |
| 4.2 | Immune sera response directed against MPF from various forms of vaccination                                                               | 115 |
| 4.3 | 2D-PAGE analysis of MPF                                                                                                                   | 116 |
| 4.4 | 2D-Western blot showing immunoreactive proteins contained in MPF in a pH range of 4-7 as a result of <i>F. tularensis</i> LVS vaccination | 121 |
| 4.5 | 2D-Western blot showing immunoreactive proteins contained in MPF as a result of MPF+CLDC and MPF+MPLA vaccination                         | 122 |
| 4.6 | The relationships of antigenic and surface proteins                                                                                       | 123 |
| 5.1 | In vitro chitinase activities of F. tularensis and F. novicida strains                                                                    | 144 |
| 5.2 | Domain features of <i>F. tularensis</i> (A1a, A1b, A2, and type B) and <i>F. novicida</i> chitinases                                      | 146 |

| 5.3 | Chitinase activity and substrate specificities of <i>F. tularensis</i> (A1a, A1b, A2, and type B) and <i>F. novicida</i> recombinant chitinases | 149 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.4 | Comparative endochitinase kinetics of <i>F. tularensis</i> (A1a, A1b, A2, and type B) and <i>F. novicida</i> recombinant chitinases             | 151 |
| 5.5 | Degradation of glycol chitin by <i>F. tularensis</i> (A1a, A1a, A2, and type B) and <i>F. novicida</i> recombinant chitinases                   | 152 |
| 5.6 | Chitinases produced <i>in vitro</i> by <i>F. tularensis</i> (A1a, A1b, A2 and type B) and <i>F. novicida</i>                                    | 153 |
| 5.7 | Analysis of <i>chiA</i> and <i>chiC</i> chitinase knockouts in MA00-2987<br>(A1b) and WY96-3418 (A2), respectively                              | 155 |

# ABBREVIATIONS

| Å     | Absorbance                                 |
|-------|--------------------------------------------|
| Α     | Angstrom                                   |
| ABC   | ATP-binding cassette                       |
| ACN   | Acetonitrile                               |
| ATP   | Adenosine-5'-triphosphate                  |
| AU    | Absorbance units                           |
| BCA   | Bicinchoninic acid                         |
| BLAST | Basic Local Alignment Search Tool          |
| CDC   | Centers for Disease Control and Prevention |
| CDS   | Protein coding sequences                   |
| CFU   | Colony forming unit                        |
| CHAB  | Cysteine heart agar supplemented with 9%   |
|       | heated sheen blood                         |
| CHAPS | 3-[(3-Cholamidopropyl) dimethylammonio]-   |
|       | 1-propapesulfonate hydrate                 |
| CI    | Cardiolinin                                |
|       | Cationic linosomo DNA complexos            |
|       | Cytoplaamia mambrana                       |
|       |                                            |
| CS    |                                            |
|       | Column volumes                             |
| Cyto  | Cytosol                                    |
| Da    | Dalton                                     |
| DNA   | Deoxyribonucleic acid                      |
| DSA   | Datura stramonium agglutinin               |
| DTT   | Dithiothreitol                             |
| FPI   | Francisella Pathogenicity Island           |
| g     | Gram                                       |
| GC    | Guanine-cytosine                           |
| GH    | Glycosyl hydrolase                         |
| h     | Hour                                       |
| HM    | Host membrane                              |
| HRP   | Horse radish peroxidase                    |
| Hsp   | Heat shock family proteins                 |
| i.d   | Intradermally                              |
| IEF   | Isoelectric focusing                       |
| IFN-v | Interferon gamma                           |
| la    | Immunoalobulin                             |
|       | Intracellular growth locus                 |
|       | Interleukin                                |
| IM    | Innermembrane                              |
| in    | Intranasally                               |
|       | Insortion-dolotion marker                  |
|       |                                            |

| i.p        | intraperitoneally                        |
|------------|------------------------------------------|
| IPTG       | IsopropyI-β-D-thiogalactopyranoside      |
| i.v        | Intravenously                            |
| KDO        | 3-deoxy-D-mannose-octulosonic acid       |
| Ι          | Liter                                    |
| kg         | Kilogram                                 |
| kV         | Kilovolt                                 |
| IB         | Luria-Bertani                            |
|            | Liquid chromatography                    |
| L C-Biotin | EZ-Link Sulfo-NHS-LC-Biotin              |
|            | Lipopolycoccharido                       |
|            | Lipopolysacchande                        |
| LVS        | Live vaccine strain                      |
| M          | Molar                                    |
| МАА        | Maakcia amurensis aggiutinin             |
| Mb         | Megabase                                 |
| mg         | Milligram                                |
| min        | Minute                                   |
| ml         | Milliliter                               |
| mm         | Millimeter                               |
| mM         | Milimolar                                |
| MH         | Mueller-Hinton                           |
| MMH        | Modified Mueller-Hinton                  |
| MPF        | Membrane protein fraction                |
| MPI A      | Monophosphoryl lipid A                   |
| MS         | Mass spectrometry                        |
| ΝΔ         | Nicotinic acid dinucleotide              |
|            | Non-classical                            |
|            | National Contar for Riotochnology        |
|            | Information                              |
| NLP        | Inionnation<br>Ned like recentere        |
|            | Nod-like receptors                       |
|            | Nanometer                                |
|            | Nuclear magnetic resonance               |
| NI         | Not tested                               |
| OD         | Optical density                          |
| OM         | Outer membrane                           |
| ORF        | Open reading frame                       |
| PAGE       | Polyacrylamide gel electrophoresis       |
| PAI        | Pathogenicity island                     |
| PATRIC     | Pathosystems Resource Integration Center |
| PBS        | Phosphate buffered saline                |
| PCR        | Polymerase chain reaction                |
| pdp        | Pathogenicity determining protein        |
| PE         | Phosphatidylethanolamie                  |
| Peri       | Periplasm                                |
| PG         | Phosphatidylalycerol                     |
| ΡΝΔ        | Peanut acqlutinin                        |
| rof        | Potoronco                                |
| DofSog     | Notoronoo Cogueneo detebese              |
|            | Relevence Sequence Galabase              |
|            | ROCKY MOUNTAIN LADORATORIES              |
| KNA        | Ribonucleic acid                         |
| S.C        | Subcutaneously                           |

| . Generalized secretion system        |
|---------------------------------------|
| . Sambucus nigra agglutinin           |
| . Signal peptide                      |
| . Signal peptidase I                  |
| . Signal peptidase II                 |
| . Two-arginine translocation          |
| . Tris buffered saline                |
| . T helper                            |
| . Toll-like receptor                  |
| . Tumor necrosis factor alpha         |
| . F. tularensis subspecies tularensis |
| . F. tularensis subspecies holarctica |
| . Volt                                |
| . Whole cell lysate                   |
| . Ohm                                 |
| . Microfarad                          |
| . Microgram                           |
| . Microliter                          |
| . Micrometer                          |
| . Micromolar                          |
| . Two-dimensional                     |
|                                       |

#### Chapter I

### Literature Review Part I: The Genus *Francisella*

## 1.1 The history of tularemia

In 1911, a report emerged from U.S. Public Health Service researcher George W. McCoy describing a novel disease (tularemia) identified in the California ground squirrel (Citellus beecheyi Richardson) (117). The disease was characterized as having plague-like lesions, transmissibility to other mammals (rodents and monkeys), and transmission (subcutaneous, cutaneous, multiple routes of intranasal, and intraperitoneal). The following year McCoy and his colleague Charles W. Chapin isolated the causative agent, naming it Bacterium tularense (now Francisella tularensis) in recognition of Tulare County, California where the disease was first observed (118). McCoy and Chapin's work was the first to definitively characterize tularemia, but earlier reports from the U.S., Japan, Russia, and Norway described illnesses in both humans and animals with similar symptoms (185). Beyond these observations, human symptoms described in several historical texts led some to speculate that tularemia was responsible for disease outbreaks centered in the Eastern Mediterranean during the 2<sup>nd</sup> millennium BC, including the biblical plague of the Philistines and the Hittite plague (202, 203).

The ability of *F. tularensis* to cause disease in man was first recognized in 1914 by W. B. Wherry, B.H. Lamb, and D. T. Vail of Cincinnati Hospital, Cincinnati, Ohio (217). A 21 year old male presented physicians with an inflammation of the eye

attributed to about 10 discrete ulcers formed on the conjunctiva. Three days after presentation, swelling of the patient's neck and submaxillary lymph nodes was noted. Approximately one week later the inflammatory process had spread to the left lacrimal sac, resulting in abscess formation. Initial attempts to identify the causative agent failed because organisms were not observed microscopically nor were they culturable on standard diagnostic media of the era. The patient left the hospital still suffering from disease, before diagnosis was achieved, and did not provide additional samples for confirmatory tests. Nonetheless, scrapings of infected material were injected into guinea pigs where disease was subsequently observed and propagated. After numerous serial passages cultivation of the infectious agent was successful on the same coagulated egg-yolk media used by McCoy and Chapin, and it shared identical phenotypic properties to F. tularensis. (118). This study provided some of the first clues regarding the epidemiology and transmission of tularemia. The patient worked as a restaurant meat cutter, and a poorly characterized illness (market men's disease) was associated with men who butchered rabbit meat (84). Incidentally, a year before observing their patient, a hunter in the area communicated to physicians the occurrence of a large rabbit die-off. Wherry and colleagues speculated the two incidents were linked and would later isolate *F. tularensis* from a wild cotton tail rabbit (*Sylvilagus*) (56).

Some of the largest gains in understanding *F. tularensis* and its associated illness were made by Dr. Edward Francis. Francis began his study of *F. tularensis* in 1919 on a field trip to Utah, examining a human illness reported by Dr. R.A. Pearse that initiated with the bite of a deer fly (Tabanidae family of flies in the order Diptera), had a one to four week duration, and severity ranging from slight malaise to death (144). In 1919, Francis identified the agent by successfully culturing *F. tularensis* (59). In collaboration with North American, Japanese, and European investigators, Francis demonstrated numerous illnesses with unknown etiological agents resulted from *F.* 

*tularensis* infection. Francis' works are currently recognized for providing the framework describing the bacteriology, symptomology, pathology, diagnosis, immunity, transmissibility, and epidemiology of *F. tularensis* (54, 56-58, 60).

The severity of *F. tularensis* infection, in addition to its ease of transmissibility and environmental stability, attracted the interest of several world governments for development as a biological weapon. The U.S., Japan, and former Soviet Union have all been involved in F. tularensis weaponization (41). Japanese scientists spearheaded biological weapons development, beginning in the early 1930's. Other nations were soon to follow, including the U.S. which began research in 1942 (72). The U.S. biological weapons program investigated the offensive potentials of F. tularensis and also developed defensive countermeasures. Throughout the 1950's and 1960's payload delivery systems were designed to disseminate F. tularensis aerosols (41). Vaccine and chemotherapeutic studies in humans were simultaneously conducted (41). Concern over these programs grew in the 1960's and many nations entered into disarmament agreements (31). An executive order given by U.S. President Richard M. Nixon in 1969 formally terminated offensive development of microorganisms in the U.S., and all stock piles were subsequently destroyed (31). The former Soviet Union continued development into the early 1990's and reportedly produced drug and vaccine resistant strains of F. tularensis (41, 216). Today at least 10 nations are thought to have active biological weapons programs, but the scope of *F. tularensis* development is unknown (2, 72).

In the late 1990's the Working Group on Civilian Biodefense lead by the U.S. Centers for Disease Control and Prevention (CDC) identified *F. tularensis* as one of the agents most likely to be used in a biological attack on the U.S. (41). The World Health Organization estimates the dispersal of 50 kilograms of *F. tularensis* in a metropolitan area of 5 million people would lead to 19,000 deaths and cause significant morbidity in

250,000 individuals (221). From an economic standpoint, a CDC report from 1997 predicted the cost of a *F. tularensis* attack to be 5.4 billion dollars for every 100,000 affected individuals (94). Although the production of large quantities of *F. tularensis* would require entities with considerable resources given that one liter of liquid media typically yields 5 grams (wet weight) of cells, these reports along with the terrorist attacks of September 2001, which included the intentional release of anthrax, raised questions about the capability of the U.S. to respond to biological threats (17). Prompted by these concerns government initiatives began to address biodefense preparedness including the development of new diagnostics, drugs, and vaccines effective against *F. tularensis* strains, including those with engineered resistances (41).

#### **1.2** Taxonomic classification

The classification of F. tularensis by McCoy and Chapin was based on differences in hosts, clinical manifestations, and morphological characteristics setting it apart from other known pathogens (118). A decade after its discovery, serological studies indicated F. tularensis was a member of the genus Pasteurella, and later, studies provisionally placed F. tularensis in the genus Brucella (75, 185). However, these classifications did not reflect the uniqueness of the Francisella bacterium and were not accepted by all researchers, including Edward Francis who did not concur with the "Pasteurella" designation (85). In 1947 Dorofeev et al. proposed F. tularensis should be placed in its own genus, coining the genus name Francisella in honor of Dr. Francis Dorofeev's proposal was later supported by DNA hybridization studies that (136). definitively showed F. tularensis was distinct from the Pasteurella (162). The relationship of *Francisella* strains to other genera was clarified in 1994 by 16S ribosomal gene analysis that determined it belonged to the y-proteobacteria class of bacteria, but had no close genetic relationships to any other known genus (51). Francisella's closest

relative is *Caedibacter taeniospiralis*, a parasite of the protozoan *Paramecium tetraurelia*, that shares 87% 16S rRNA sequence similarity (16). Analyses of the 16S sequence also provided genetic evidence for *F. tularensis* species and subspecies discriminations previously indicated by the differential virulence and metabolic characteristics of strains (51, 137).

Phenotypic observations and modern genetic typing have defined three species in Francisella (F. novicida, F. philomiragia, and F. tularensis) (Fig. 1.1) (96). Genetic comparisons of representative strains show a >91% genetic similarity between all species and >95% similarity between F. tularensis and F. novicida (25, 163). Of these, only F. tularensis is a clinically significant human pathogen and is divided into three subspecies, tularensis (type A), holarctica (type B), and mediasiatica (Fig. 1.1) (25, 193). F. tularensis type A and type B are responsible for most cases of tularenia whereas infection with F. tularensis mediasiatica is rare and is believed to cause a mild form of disease (25). Within subspecies tularensis, molecular typing data identified two populations, A1 and A2, each containing two subpopulations, A1a/A1b and A2a/A2b, respectively (Fig. 1.1) (100). F. tularensis A1 is differentiated from F. tularensis A2 by geographic distribution and virulence characteristics (100). Epidemiological evidence also indicates differences in virulence between F. tularensis A1 subpopulations that are supported by differential disease outcomes in a murine model (100, 129). A higher mortality in humans is associated with F. tularensis A1b compared to F. tularensis A1a, and F. tularensis A1b infected mice succumb to infection more rapidly than mice infected with F. tularensis A1a (100, 129). There are no known epidemiological or virulence differences between A2a and A2b subpopulations (149).



**Fig. 1.1 Taxonomic organization of the genus** *Francisella.* Species and subspecies in grey are not officially recognized according to the rules of the international code of bacterial nomenclature (101). The dashed line between *F. philomiragia* and *noatunensis* indicates *F. noatunensis* subspecies *noatunensis* is currently considered a subspecies of *F. philomiragia* (*F. philomiragia* subspecies *noatunensis*).

Classifications of species and subspecies in the genus *Francisella* are debated within the field of study. Proposals have been made to raise or lower the taxonomic ranking of several subspecies and species (23, 81, 88, 126, 139). Arguments for rearrangement are made from multiple premises, but largely based on genetic similarities. According to Wayne *et al.* (1987), bacterial strains are considered to be the same species if their respective DNA's reassociate at levels of 70% or greater and have

DNA melting temperatures that deviate <5% (211). This point of view does not directly take into consideration phenotypic differences such as virulence and metabolic capacity (88). Additionally, DNA reassociation based classification ignores divergent evolutionary patterns and dichotomous population structures many investigators consider important for discriminating species and subspecies (88).

The results of DNA reassociation experiments found *F. novicida* strains had 87 to 92% DNA relatedness to *F. tularensis* (75). According to the rules described by Wayne *et al., F. novicida* would be considered a subspecies of *F. tularensis*. However, the phenotype of *F. novicida* is substantially different from *F. tularensis*. It has unique nutritional requirements, functional metabolic pathways, geographic distributions, and perhaps most importantly, displays low virulence in humans (184). *F. novicida* also has an evolutionary history that shows divergence from *F. tularensis* (96). Thus, maintaining the current species classification of *F. novicida* is appropriate due to the relevant phenotypic features and evolutionary patterns.

The organization of the *F. tularensis* type B subspecies is also evolving. Olsufjev *et al.* proposed three unique *F. tularensis* type B populations (biovars I, II, and japonica) based on differential metabolic signatures and geographic distributions (Fig. 1.1) (138). *F. tularensis* type B biovar I differs from biovar II in that it is sensitive to erythromycin, presumably a result of a single insertion-deletion marker (INDEL) (149). Biovar japonica is similar to biovar I in that it is sensitive to erythromycin, but differs from biovar's I and II in that it is capable of glycerol fermentation and is found only in Japan (138). Surpassing the proposal of Olsufjev *et al.*, multilocus variable-number tandem repeat, single nucleotide polymorphism, and INDEL analyses have differentiated *F. tularensis* type B into as many as 10 distinct biovars where differences in geographic distribution are noted (89, 104, 208). There is little genetic diversity between *F. tularensis* type B

biovars, no documented differences in virulence, and few other phenotypic variations, thus elevation of any of these biovars to its own subspecies is unlikely (97).

Genetic and biochemical analyses of a number of clinical and environmental isolates led investigators to propose an expanded taxonomy of the *Francisella* genus (81, 95, 126, 139). A human clinical isolate from Spain identified by Huber *et al.*, was found to fall between *F. tularensis/F. novicida* and *F. philomiragia* phylogenetically, and was provisionally named *F. hispaniensis* (Fig. 1.1) (81). 16S rRNA gene sequence and DNA-DNA hybridization analyses of *F. philomiragia* subspecies *noatunensis* (also known as *F. psicidia*) have provided some evidence to support elevating its classification to the species level (*F. noatunensis*), that itself contains two subspecies (Fig. 1.1) (126, 139). Additionally, a number of recently identified isolates from both environmental and clinical samples display a high degree of 16S sequence similarity (between 87 and 99%) to characterized *Francisella* species and will likely expand the *Francisellaceae* family (13, 16, 95, 111, 126).

## 1.3 Epidemiology and transmission

*Francisella* is considered one of the most successful genera of microorganisms for its ability to occupy a wide variety of hosts (>300 currently documented), survive in many environments, and have a near global distribution (149). The clinically relevant subspecies, *F. tularensis* type A and type B, are phenotypically distinct from environmental species *F. novicida* and *F. philomiragia*. Further, these subspecies also display distinct characteristics that differentiate them from one another in terms of geographic distribution, vertebrate reservoirs, arthropod vector associations, and virulence (Table 1.1) (96, 100, 149, 185).

|                                                          |                                                                              |                                | Vectors for human transmission                                                 |                                                             |                                                     | Common vertebrate reservoirs                                     |                                                                                                                            |
|----------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <i>F. tularensis</i><br>subspecies<br>and<br>populations | Geographic<br>distribution                                                   | %<br>mortality<br>in<br>humans | Flies                                                                          | Hard ticks                                                  | Mosquitoes                                          | Lagomorphs                                                       | Rodents                                                                                                                    |
| A1a                                                      | Eastern<br>U.S.,<br>California,<br>Oregon, and<br>Utah                       | 4%                             | Chrysops<br>discalis                                                           | Amblyomma<br>americanum<br>and<br>Dermacentor<br>variabilis | -                                                   | Sylvilagus<br>floridanus                                         | -                                                                                                                          |
| A1b                                                      | Eastern<br>U.S., Alaska,<br>California,<br>Colorado,<br>Idaho, and<br>Oregon | 24%                            | Chrysops<br>discalis                                                           | Amblyomma<br>americanum<br>and<br>Dermacentor<br>variabilis | -                                                   | Sylvilagus<br>floridanus                                         | -                                                                                                                          |
| A2                                                       | Western<br>U.S. and<br>Alaska                                                | 0%                             | Chrysops<br>discalis                                                           | Dermacentor<br>andersoni                                    | -                                                   | Sylvilagus<br>audubonii                                          | -                                                                                                                          |
| type B                                                   | North<br>America,<br>Europe, and<br>Asia                                     | 7%                             | Chrysops<br>discalis,<br>Chrysops<br>relictus, and<br>Haematopota<br>pluvialis | Dermacentor<br>variabilis                                   | Aedes<br>cinereus and<br>Ochlerotatus<br>excrucians | Lepus<br>europaeus,<br>Lepus timidis,<br>and Lepus<br>brachyurus | Arvicola<br>terrestris,<br>Clethrionomys<br>species,<br>Microtus<br>arvalis, Mus<br>musculus, and<br>Ondatra<br>zibethicus |

### Table 1.1 Epidemiology of F. tularensis

Data compiled from (96, 100, 149, 185).

In the U.S., tularemia was more common and lethal in the first half of the 20<sup>th</sup> century compared to the present day. There were 22,812 cases diagnosed between 1927 and 1948 with a fatality rate of 7.7% (170). Peak incidence occurred in 1939 with 2,291 cases reported (22). Currently, an average of 126 cases of tularemia are reported each year with 1,133 cases reported from 2000 to 2008 (1). The highest incidence of cases occurs from May thru July (1). Tularemia has been reported in every state except Hawaii, but most incidences are reported in Arkansas, Massachusetts, Missouri, Oklahoma, and South Dakota. Both *F. tularensis* type A and type B are present in the U.S., but can occupy distinct ecological niches (130). *F. tularensis* type B is found throughout the U.S. and is believed to occupy a greater spectrum of habitats compared to *F. tularensis* type A (149). Natural occurrence of *F. tularensis* type A is exclusive to

North America, and these strains appear to be more host adapted (149). *F. tularensis* A1 and A2 populations are observed primarily in eastern and western U.S., respectively (100). Computational modeling suggests *F. tularensis* A1 is associated with lower elevations and higher temperatures compared to *F. tularensis* A2, but did not find ecologies unique to the *F. tularensis* A1a/A1b or A2a/A2b subpopulations (130). Kugeler *et al.*, reported the highest mortality from tularenia is associated with A1b (24%), which is significantly more than A1a (4%) (100). These investigators found no mortality associated with A2 infection, but did with *F. tularensis* type B infections (7%).

Tularemia is endemic to many Eurasian regions and has caused recent outbreaks in Spain, Kosovo, Ukraine, Germany, Sweden, Norway, Finland, Bulgaria, France, Austria, Turkey, and the Czech Republic (30, 92, 123, 183, 185, 194). *F. tularensis* type B strains are responsible for nearly all instances of tularemia in these regions (149). Populations of the three major *F. tularensis* type B biovars are found in different, and sometimes overlapping regions of Eurasia (113, 175). Similar to infection in the U.S., the number of tularemia cases in Europe and Asia has decreased recently. Early in the 20<sup>th</sup> century, up to 100,000 cases were reported in the former Soviet Union annually, compared to approximately 100 cases currently diagnosed in Russia each year (185, 194).

Transmission of *F. tularensis* to humans commonly occurs by the bite of an infected arthropod (97). Numerous species are naturally infected with *F. tularensis*, but only tabanid flies, mosquitoes, and hard-ticks represent important human vectors (Table 1.1) (148). The tabanid flies and mosquitoes transmit *F. tularensis* mechanically, with no evidence of long term survival in either arthropod type (148). In contrast, ticks maintain the bacteria in the gut and haemolymph (148). As reviewed by Petersen *et al.*, transtadial transmission of *F. tularensis* from the larvae, to nymphs, and then to adult ticks has been demonstrated under laboratory conditions for *Amblyomma americanum*,

*Dermacentor andersoni*, and *Dermacentor variabilis* (148). Studies also indicate a slow proliferation of the bacteria in ticks, with higher titers in adult compared to larval ticks (77). The suitability of ticks as reservoirs is not fully clear. Several reports indicate that *F. tularensis* can be transmitted transovarially, but these findings are disputed (148). Similarly, the fitness cost to infected ticks is not well described, and significant mortality has been noted in some studies but not others (148, 161).

A compilation of tularemia cases in the U.S. during the 1980's indicates 63% of infections reported in southwestern-central states are attributed to tick bites (195). Further, another survey found 74% of F. tularensis type A infections result from tick bites Three tick species are suspected to be the most important for human (188). transmission of *F. tularensis* type A strains. The geographic ranges of *A. americanum* and D. variabilis overlap with F. tularensis A1 populations, and D. andersoni coincides with the distribution of F. tularensis A2 populations (148). D. variabilis and D. andersoni are found naturally infected with F. tularensis, and A. americanum is known to maintain the bacteria experimentally (67, 148). It is not clear if there are differences in the tick host range between F. tularensis A1a/A1b and A2a/A2b subpopulations (148, 149). The geographic distribution and prevalence of *F. tularensis* type B is most closely associated with D. variabilis in the U.S. (148) Little is known regarding how the different F. tularensis subspecies and populations are maintained or transmitted by different tick species, but specific fitness costs between biotypes were identified in *D. variabilis* (161). Specifically, decreased survivorship was observed for F. tularensis A2 and type B, but not *F. tularensis* A1b infected nymphs.

Associations with small mammals represent the other important avenue of human acquired tularemia. In North America and Eurasia, cotton tail rabbits and hares (*Lepus*) are important hosts in the transmission of *F. tularensis* to man (96). In North America, the Eastern cottontail (*Sylvilagus floridanus*) is associated with *F. tularensis* A1

and the desert cottontail (*Sylvilagus audubonii*) with *F. tularensis* A2 (149). The brown hare (*Lepus europaeus*) is thought to be the major foci of tularemia in Central Europe (96). Rodents are the other major vertebrate foci of *F. tularensis*, particularly type B strains. A rise of rodent populations was directly attributed to an increased number of tularemia cases in Europe (185) . Hunting and processing of infected rodents can directly lead to tularemia, and rodents may contaminate food stocks as well as serve as the infection source of some arthropod vectors (185).

## 1.4 Disease manifestations

*F. tularensis* infections can initiate through the skin, mucosal membranes, lungs, and gastrointestinal tract. Infection is characterized by common symptoms including fever, sweats, chills, headache, body ache, nausea, vomiting, diarrhea, sore throat, and coughing. Disease onset is abrupt, usually within three to five days, but can be as rapid as one day or prolonged as 14 days post exposure (41). A study of 614 cases of human tularemia conducted by Dr. Francis delineated tularemia into four major clinical manifestations, ulceroglandular, glandular, oculoglandular, and typhoidal (56). Additional manifestations are now recognized such as oropharyngeal, gastrointestinal, and several other rare forms (41, 55).

The ulceroglandular form accounts for 80% of all diagnosed cases and occurs following the bite of an infected arthropod or handling of contaminated materials, typically infected meat (44). First, a papule appears at the site of infection at approximately the same time as the onset of general symptoms. Later, the papule becomes pustular and ulcerates concurrently with enlargement of regional lymph nodes (56). Active disease usually lasts two to three weeks, recovery can be lengthy, but mortality is rare even without treatment (48). Glandular tularemia is similar to the ulceroglandular type, except no primary lesion is observed at the site of infection. The

oculoglandular type occurs as a result of the bacterium entering though the eye and can be considered a variation of the ulceroglandular tularemia (44). Discrete lesions form on the conjunctiva of the eye, become pustular, and ulcerate. This form is rare, but is associated with a higher mortality rate (8 to 30%) (189). Consumption of contaminated food or water may result in oropharyngeal or gastrointestinal tularemia. The oropharyngeal type presents as a tonsillitis and is often accompanied by swelling of the cervical lymph nodes (44). The severity of the gastrointestinal form ranges from diarrhea to an acute fatal disease, and is related to the infectious dose (44). Typhoidal tularemia is characterized by a septicemia without the formation of a primary lesion or lymphadenopathy, and has high mortality (35%) without antibiotic treatment (44, 63).

Primary pneumonic tularemia results from inhalation of contaminated aerosols, and if caused by a *F. tularensis* type A strain, can result in 30 to 60% mortality if untreated (172). Outbreaks of pneumonic tularemia are commonly associated with lawn mowing and brush cutting, as these activities may aerosolize *F. tularensis* from environmental and animal reservoirs (41). Pneumonic tularemia is considered the most acute manifestation of infection, and was determined by the Working Group on Civilian Biodefense to be the most likely form encountered as a result of intentional release (41). Like other bacterial pneumonias, high fevers (as high as 104°F), headaches, and a nonproductive cough are dominant symptoms (198). A secondary pneumonic tularemia may also manifest. This form arises as a complication of other types of tularemia, most notably the typhoidal and ulceroglandular forms (198).

### 1.5 Treatment

Mortality associated with tularemia dramatically decreased in the antibiotic era. Currently in the U.S., <2% of *F. tularensis* cases are fatal with appropriate treatment (41). *F. tularensis* has no known resistances to aminoglycosides, tetracyclines, chloramphenicol, or quinolones (193). Aminoglycosides are considered the first line antibiotic therapy. The first aminoglycoside discovered, streptomycin, was highly efficacious against tularemia (52). One to three grams of streptomycin dosed daily over seven to 10 days routinely cured 97% of adult human subjects (63, 198). For this reason, streptomycin was considered the drug of choice until the mid-1990's. However, because of concerns over high doses, toxicity, hypersensitivity reactions, and drug availability streptomycin was replaced by gentamicin as the drug of choice. Gentamicin treatment is slightly less effective than streptomycin, having an increased instance of relapse and diminished cure rate (86%) (45). The specifics of this change in effectiveness are not fully clear, both gentamicin and streptomycin are able to kill extracellular and intracellular bacteria, but could be impacted by the slower intracellular accumulation of gentamicin (114, 115). Nonetheless, the lower doses needed for gentamicin treatment (5 mg/kg daily) helps to abrogate some of the damaging toxic effects associated with streptomycin use (45, 193). Other aminoglycosides have also successfully treated tularemia, but had a decreased efficacy compared to gentamicin (45).

Second-line antibiotic treatments of tularemia include daily doses of tetracycline and chloramphenicol proving 88% and 77% effective, respectively (41, 45). Increased rates of relapse are associated with these drugs, presumably because both are bacteriostatic (45). More recently quinolones were shown to be highly efficacious treatments for tularemia, matching cure rates of aminoglycoside therapies (5, 107, 124, 176). Quinolones, particularly ciprofloxacin, may soon become the drug of choice against tularemia because they can be given orally, accumulate intracellulary, and are generally well tolerated (107).

#### 1.6 Vaccines

Efforts to develop a tularemia vaccine have been underway since the early 1930's (53). The original formalinized killed vaccine preparation developed by Dr. Lee Foshay in 1932 provided limited protection against tularemia caused by F. tularensis type A strains in human and animal models (53, 90, 164). However, 30% of vaccinated humans contracted tularemia, and severe local and systemic side effects including necrosis at the injection site and high fever were noted (90). The extent of these symptoms required several Foshay vaccine participants to be hospitalized (90). The minimal success of the Foshay vaccine led Soviet researchers to investigate the effectiveness of live attenuated strains. One promising candidate was imported into the U.S. under the name "cutaneous tularemia live vaccine" in 1956 and is now referred to as the "live vaccine strain" (LVS) (200). Tests on U.S. military personnel determined F. tularensis LVS vaccination by scarification conferred significant levels of protection against high dose (1,000 CFU) s.c. and low dose (100 CFU) aerosol infection with the highly virulent *F. tularensis* type A strain SCHU S4 (172, 173). Subsequent works demonstrated increased efficacy when F. tularensis LVS vaccination was administered by aerosol, but a high percentage of volunteers developed illness and protection diminished over time (78). For these reasons the *F. tularensis* LVS vaccine lacks federal approval. Nonetheless, F. tularensis LVS vaccination has been the most widely used tularemia vaccine, and remains the comparative standard of all new tularemia vaccines.

Numerous attempts have been made to develop tularemia vaccines more effective than *F. tularensis* LVS. Because *F. tularensis* LVS is the most successful vaccine, a large focus has been placed on developing other live attenuated strains. To produce these strains, genetic modifications of one or more genes essential to *in vivo* propagation are necessary. Until recently, genetic manipulation of *F. tularensis* was

difficult because of a lack of genetic tools and restrictions of working with biosafety level three pathogens (109). In contrast, genetic manipulation of *F. novicida* was more readily accomplished because of available tools and its low virulence in humans (109). Thus, a large body of work accrued evaluating the efficacy of *F. novicida* mutants to generate a protective response (Appendix 1) (37, 91, 99, 127, 128, 142, 156, 182, 196, 215). Many *F. novicida* mutants offer protection to challenges with *F. novicida* species, but to date, have not been shown to protect against *F. tularensis* type A strains. More recently, attenuated *F. tularensis* strains (both type A and type B) were produced and evaluated as vaccine candidates (Appendix 1) (38, 50, 121, 125, 145, 154, 155, 167, 171, 181, 199, 204). These strains can protect against *F. tularensis* type A challenge in animal models, but efficacy is limited. The same issues of safety and efficacy experienced with *F. tularensis* LVS make the wide spread use and approval of attenuated strains questionable.

There have been several attempts to formulate a live tularemia vaccine using heterologous hosts stably producing *F. tularensis* antigens (Appendix 1) (61, 87, 186). Jia *et al.* showed vaccination with an attenuated *Listeria monocytogenes* strain producing the *Francisella* membrane protein IgIC (intracellular growth locus) offered protection to *F. tularensis* type A aerosol challenge near the level of *F. tularensis* LVS (87). No other heterologous vaccine has been shown effective (146). Others have taken a novel approach for live vaccine generation by substituting, evolutionary conserved, critical genes for *in vivo* growth of *Francisella* with temperature sensitive orthologs (42). Investigators found three temperature sensitive *F. novicida* mutants were capable of eliciting protective immune responses against lethal *F. novicida* challenge. These strains survived at cool body sites but showed reduced presence compared to wild-type in the warmer internal organs.

To circumvent safety issues of live attenuated vaccines, a number of investigators have explored subunit vaccines (Appendix 1). Vaccines designed with one or a few antigenic F. tularensis proteins, lipids, and carbohydrates were relatively ineffective against F. tularensis type A challenge (39, 61, 66). Nonetheless, the most effective vaccine candidates known are lipopolysaccharide (LPS) and the surface proteins FopA (FTT\_0583) and TUL4 (FTT\_0901) (174). To date, the best protective response with a single antigen is obtained using LPS. F. tularensis LPS vaccination affords a high degree of protection to F. tularensis type B, and is marginally effective against F. tularensis type A infections (39). Several explanations were suggested for why these vaccines are not sufficient, including the correct antigens cocktails were not used, or the correct type of immune response was not stimulated. Better protection to F. tularensis type A infections was obtained using complex subunit preparations containing bacterial surface components. Administration of a cell wall fraction provided modest protection against virulent strains in humans (119). More recently, Huntley et al. found an outer membrane protein fraction provided moderate protection against a low dose F. tularensis type A aerosol challenge (40 CFU) in a murine model (82). Another successful subunit vaccine did not contain any F. tularensis derived molecules. This preparation consisted of detoxified E. coli LPS (representing a highly conserved Gramnegative epitope) and an outer membrane protein from Neisseria meningitidis (68). This formulation offered some protection in mice to an intratracheal F. tularensis type A challenge. Thus, in light of these successes the generation of an effective subunit vaccine containing bacterial surface components appears plausible.

### 1.7 Physiology of Francisella

Francisella cells are small (0.2 to 0.7 µm × 0.2 to 1.7 µm), Gram-negative staining coccobacilli. All are non-motile obligate aerobes that form distinct pale white colonies with a convex shape when grown on agar medium. On blood containing agar small zones of what looks like  $\alpha$ -haemolysis are observed around colonies (141). A uniform coccoidal bacterial morphology is observed during logarithmic growth in liquid medium. However, when isolated from infected tissues or during stationary phase, bacteria are pleomorphic with some cells appearing elongated and filamentous. F. tularensis strains grow slowly in comparison to F. novicida and F. philomiragia. All strains grow between 24°C and 39°C, with optimal growth at 37°C. Supplementation of the media with cysteine or cystine is essential for growth of most F. tularensis strains, but not F. novicida or F. philomiragia. This requirement is thought to be due to a disruption of the sulfate assimilation pathway, specifically the gene encoding adenylylsulfate kinase (FTT\_1049) (103). This gene is intact in F. novicida, F. philomiragia, F. tularensis A2, and some strains of F. tularensis type B, but is disrupted in *F. tularensis* A1a and A1b populations.

Several biochemical features (Table 1.2) differentiate *Francisella* species and subspecies. *F. tularensis* and *F. novicida* are oxidase negative, while *F. philomiragia* is oxidase positive. *F. tularensis* type A and type B slowly catabolize D-glucose and maltose. *F. novicida* is able to degrade sucrose. *F. tularensis* type A has a functional citrulline ureidase pathway where *F. tularensis* type B does not. *F. tularensis* type A and type B biovar japonica ferment glycerol (184).

| Characteristics                    | F. tularensis<br>subspecies<br>tularensis type<br>A1 (SCHU S4) | <i>F. tularensis</i><br>subspecies<br><i>tularensis</i> type<br>A2 (WY96-3418) | F. tularensis<br>subspecies<br>holarctica<br>type B (LVS) | F. tularensis<br>subspecies<br>mediasiatica<br>(FSC147) | F. novicida<br>(U112) | F. philomiragia<br>(ATCC25017) |
|------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|
| Dimensions (µm)                    | 0.2-0.7 × 0.2                                                  | 0.2-0.7 × 0.2                                                                  | 0.2-0.7 × 0.2                                             | 0.2-0.7 × 0.2                                           | 0.7 × 1.7             | 0.7 × 1.7                      |
| Optimal growth temp.               | 37°C                                                           | 37°C                                                                           | 37°C                                                      | 37°C                                                    | 37°C                  | 25°C or 37°C                   |
| Cysteine requirement <sup>A</sup>  | Yes                                                            | Yes                                                                            | Yes                                                       | Yes                                                     | No                    | No                             |
| Glycerol fermentation <sup>B</sup> | Yes                                                            | Yes                                                                            | No                                                        | Yes                                                     | Weak                  | No                             |
| D-glucose<br>fermentation          | Yes                                                            | Yes                                                                            | Yes                                                       | No                                                      | Yes                   | Weak                           |
| Maltose fermentation               | Yes                                                            | Yes                                                                            | Yes                                                       | No                                                      | Weak                  | Yes                            |
| Sucrose fermentation               | No                                                             | No                                                                             | No                                                        | No                                                      | Yes                   | Yes                            |
| Citrulline ureidase                | Yes                                                            | Yes                                                                            | No                                                        | Yes                                                     | Yes                   | Unknown                        |

Table 1.2 Phenotypic and biochemical characteristics of *Francisella* biotypes

Data compiled from (25, 163, 184).

<sup>A</sup>A few strains of *F. tularensis* (type A and type B) do not have a requirement for cysteine.

<sup>B</sup>Type B biovar japonica ferments glycerol.

#### **1.7.1 Genomics and proteomics**

All *Francisella* have a circular chromosome approximately 2 Mb in size with similar guanine-cytosine (GC) contents of 30 to 33% (Table 1.3). Although the overall genomic content of *Francisella* species is highly similar, significantly greater decay of open reading frames (ORF) has been identified in *F. tularensis* (approximately 225) compared to *F. novicida* (approximately 55) (25). Genomic rearrangements have also occurred between *F. tularensis* subspecies and populations (15, 25, 150). There are more transposable elements in *F. tularensis* type A and type B compared to *F. novicida* and *F. philomiragia* (approximately 80, 110, 20, and 10, respectively) that are implicated in the diminished coding capacity of *F. tularensis* (25). One plasmid has been isolated from *F. novicida* and two from *F. philomiragia* (106, 143). The necessity of these plasmids is not understood, and no plasmids have been identified in *F. tularensis*.

| Characteristics          | <i>F. tularensis</i><br>subspecies<br><i>tularensis</i> type<br>A1 (SCHU S4) | <i>F. tularensis</i><br>subspecies<br><i>tularensis</i> type<br>A2 (WY96-3418) | <i>F. tularensis</i><br>subspecies<br><i>holarctica</i><br>type B (LVS) | F. tularensis<br>subspecies<br>mediasiatica<br>(FSC147) | F. novicida<br>(U112) | F. philomiragia<br>(ATCC25017) |
|--------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|
| Genome size (Mb)         | 1.892                                                                        | 1.898                                                                          | 1.895                                                                   | 1.893                                                   | 1.910                 | 2.045                          |
| % GC                     | 32.9                                                                         | 32.3                                                                           | 32.2                                                                    | 32.3                                                    | 32.5                  | 32.6                           |
| Predicted proteins       | 1603                                                                         | 1634                                                                           | 1754                                                                    | 1470                                                    | 1719                  | 1918                           |
| Predicted<br>pseudogenes | 101                                                                          | 186                                                                            | 213                                                                     | 263                                                     | 14                    | 7                              |

Table 1.3 Genomic characteristics of *Francisella* biotypes

Data compiled from (10, 25, 102, 184).

*F. tularensis* genomes encode between 1,600 and 1,750 proteins depending on the subspecies and population (Table 1.3). The differences in the predicted coding capacities are a result of subtle genetic alterations, and also arise from differences in the methods used for genome annotation (201). The small coding capacity is reflected in the decayed biosynthetic pathways of this genus, such as those for nucleic acid and amino acid synthesis (103). *F. tularensis* proteins are biased to contain amino acids from % GC poor codons, particularly isoleucine, tyrosine, asparagine, lysine, and phenylalanine (102). *F. tularensis* is unusual in that its genome is predicted to encode a greater proportion of envelope proteins (10% of all predicted ORFs) compared to typical proteobacteria species (6% of all predicted ORFs) (201). This suggests that envelope proteins play an especially significant role in the biology and pathogenicity of *F. tularensis*. As with other proteobacteria, approximately 30% of the gene products encoded by *Francisella* are annotated as hypothetical proteins with unknown function (201).

### 1.7.2 Lipids

*Francisella* species have unusually high cell wall lipid contents (70%) compared to other Gram-negative bacteria (about 25%) (3, 166). The majority of studies analyzing *Francisella* lipids characterize the fatty acid profiles of different strains (3, 75, 76, 81, 83,
140, 219). These analyses are useful for low resolution strain typing, and have also provided some insight about the lipid components of the cell wall. *Francisella* strains are all found to contain long-chain saturated and monounsaturated  $C_{18} - C_{26}$  fatty acids, abundant saturated even-chain acids ( $C_{10:0}$ ,  $C_{14:0}$ , and  $C_{16:0}$ ), and two long-chain hydroxy acids (3-OH  $C_{16:0}$  and 3-OH  $C_{18:0}$ ).

Few reports, with the exception of the lipid A component of LPS, are available describing lipid classes found in Francisella species, subspecies, and populations. Anderson et al. identified two major phospholipids in F. tularensis LVS, phosphatidylglycerol (PG) and phosphatidylethanolamie (PE), that constituted 24% and 76% of the total lipid, respectively (3). This analysis also identified trace amounts of two lysophospholipids, lyso-PE and lyso-PG, that increased in abundance with prolonged Bligh and Dyer extractions. No cardiolipin (CL) or phosphatidylserine, lipids commonly observed in other Gram-negative bacteria, was detected (62, 65). Analyses by Huber et al. identified additional lipid species in F. tularensis, F. novicida, F. philomiragia, and F. noatunensis (81). They describe the following polar lipid species in F. tularensis (type A, strain ATCC 6223<sup>T</sup>), PE, CL, phosphatidylcholine, aminolipid, aminophospholipids, phospholipids, three unidentified phospholipids, and PG. The authors were unable to specifically characterize several lipid species they describe as unidentified aminophospholipids, aminophosphoglycolipids, and a lipid with highly hydrophobic chromatographic behavior. The F. tularensis lipid profile was identical to F. novicida (ATCC 15482<sup>T</sup>). Polar lipid profiles differed between *F. tularensis* and *F. philomiragia/F.* noatunensis. Recently, the lipid profile of F. novicida U112 was analyzed using mass spectrometry (MS) (210). Seven lipids were identified in this study, CL, PG, PE, lyso-PE, phosphatidylcholine, and two species of lipid A. The investigators note the difference in lipid profiles between this and previous studies could be due to differences in growth state and culture medium.

## 1.8 Virulence factors

Bacteria use diverse and tightly regulated mechanisms to colonize and propagate in host niches. *F. tularensis* does not encode for classical virulence factors such as toxins or Type III and IV secretion systems, but has evolved different and equally effective components to cope with a changing host environment. A principle strategy of this bacterium is to avoid immune recognition. Specific examples include resistance to the action of human serum, modified structural components that do not elicit innate immune responses, and an intracellular lifecycle (168). Further, *F. tularensis* actively manipulates the host response for its advantage by suppressing inflammation, inhibiting phagosome maturation, and skewing cytokine responses (6, 20, 220).

## 1.8.1 Envelope

The envelope structure is the interface between a bacterium and the extracellular environment, and is composed of an array of macromolecules including proteins, lipids, sugars, and nucleic acids (19, 135). They are dynamic, and processes including membrane turn over, alterations in gene expression profiles, capsular formation, and retractable elements modify the envelope structure to allow bacteria to adapt to changing environments. Therefore the envelope is extremely important in pathogenesis. Bacteria use envelope components to hide from the immune system, attach to host cells, secrete effector molecules, and cope with physiological stresses. Hosts also take advantage of envelope components, using them to mount both innate and adaptive immune responses (43). In *F. tularensis*, the envelope's role in virulence is linked to the production of a capsule and unusual LPS (4, 69). A number of characterized and putative envelope proteins also impact pathogenesis (70, 120, 165, 204). Only a small number of proteins are specifically identified on the surface of the bacterium and will be discussed independently in Chapter II (110, 122, 131, 169).

#### 1.8.1.1 Capsule

The report that first identified *F. tularensis* described what was believed to be a capsule that encompassed the surface of the coccobacilli (118). Subsequent studies also noted the presence of a capsule on both *F. tularensis* type A and type B strains (76, 168, 187). Capsule deficient *F. tularensis* are sensitive to the action of normal human serum via activation of the classical complement pathway (168, 187). Differences in virulence associated with capsular production between strains have also been noted (29). For example, certain lyophilized stocks of *F. tularensis* LVS that do not produce a capsule are 1,000 fold less virulent than the capsule producing wild-type (29). The capsule has also been a target of therapeutic development. Apicella *et al.* successfully used anti-capsule antibodies as a therapeutic to *F. tularensis* type B infection (4).

Biochemical evaluation of capsular material was initially performed by Hood *et al.* (76). The capsule was extracted using a hypertonic sodium chloride solution (76). Analysis of this material detected four sugars (mannose, rhamanose, and two unidentified dideoxy sugars), two fatty acids ( $\alpha$ -OH 14:0 and 16:0), and amino acids (particularly aspartic acid and glutamic acid). Later, unpublished observations from Sorokin *et al.* found the capsule to consist of LPS (187). Whole genome sequencing of *F. tularensis* revealed two genes with homology to genes found in the poly- $\gamma$ -glutamate capsule biosynthetic locus of *Bacillus anthracis* (*capABCD*) (103). The homologs, CapB (FTL\_1416) and CapC (FTL\_1415), are reported in *F. tularensis* LVS to share 38% and 29% amino acid similarity to *B. anthracis*, respectively (192). *In silico* analyses indicate CapB and CapC homologues are present in all subspecies and populations of *F. tularensis*. However, there is no evidence of a poly- $\gamma$ -glutamate capsule, and if either of these genes are knocked out in *F. tularensis*, a capsule is still observed (4). Although the *F. tularensis* Cap homologs have an unknown function, when they are deleted the

coccobacillus is attenuated in animal models (4, 86, 192, 213). Recent MS and nuclear magnetic resonance (NMR) analyses indicate the capsule is composed of the O-antigen repeat core subunit of LPS (4). Mutational studies have found the genes of four glycosyltransferases involved in LPS biosynthesis, *wbtl* (FTT\_1455), *wtbA1* (FTT\_1464), *wtbM* (FTT\_1450), and *wtbC* (FTT\_1462) to be essential for capsular formation (4). These findings are in accordance with the effect of glycosyltransferase deletions on O-antigen capsule biosynthesis in other bacteria including *Escherichia coli* and *Salmonella enterica* (218).

#### 1.8.1.2 Lipopolysaccharide

The most important component to the stability of the outer membrane and surface of Gram-negative bacteria is LPS, a complex macromolecule composed of a hydrophobic anchor, non-repeating core oligosaccharide, and a structurally diverse outer polysaccharide (157). Despite commonalities of LPS in Gram-negative bacteria, LPS is structurally diverse, and variations are noted between genera and species in all three major components. Anomalies in these structures are identified between *Francisella* species and subspecies (157).

Structural characterization of *F. tularensis*, *F. novicida*, and *F. philomiragia* lipid A has been accomplished using NMR, gas chromatography, MS, and chemical methods (151, 178, 205, 206, 209). *Francisella* lipid A is structurally distinct from other bacteria, and between *Francisella* species and subspecies. The dominant lipid A species is an asymmetric  $\beta$ -1,6 linked diglucosamine backbone containing four amide or ester linked long chain fatty acids (Fig. 1.2) (206). Between the three species, specific differences in lipid A structures are noted, and include mannose addition to the 4' position in *F. tularensis* and *F. novicida* and  $\alpha$ -linked glucose to the 6' position of the non-reducing glucosamine in *F. novicida*. Additionally, a single phosphate moiety can be linked to the

1' reducing end of the lipid A core glucosamine in *F. tularensis* type B and *F. novicida*. In *F. novicida* this phosphate residue can be substituted with the positively charged sugar galactosamine (209). There is also evidence to suggest *F. tularensis* lipid A may be further modified by a hexosamine, but the exact nature of linkage is not clear (178). Differences in one or more of the acyl chains are apparent among species and subspecies. The number of carbons range between 14 and 20, and different chain lengths are noted in the same strain (69, 178).



**Fig. 1.2** Structure of *F. tularensis* and *F. novicida* tetraacylated lipid A. Dashed lines indicate various possible chemical substitutions. KDO is 3-deoxy-D-mannose-octulosonic acid. Data compiled from (151, 178, 205, 206, 209).

The core component of LPS bridges lipid A to the outer polysaccharide. Similar analytical techniques to those described above were used to determine the core structure of *F. tularensis* type B and *F. novicida* (69, 205, 206). Between these species the core structure is nearly identical. The inner core is composed of 3-deoxy-D-manno-octulosonic acid (KDO) linked to  $\alpha$ -mannose which itself is linked to  $\beta$ -mannose. The outer core of both species contains a  $\beta$ -glucose linked (1,2) to the inner core  $\alpha$ -mannose, and the inner core  $\beta$ -mannose is substituted with  $\alpha$ -N-acetyl galactosamine and  $\alpha$ -glucose. Structurally the outer core of *F. novicida* differs from *F. tularensis* in that the  $\beta$ -glucose linked to the  $\alpha$ -mannose inner core is itself substituted with  $\alpha$ -glucose.

Genome analyses of the O-antigen gene cluster suggest an identical repertoire of genes between *F. tularensis* type A and type B strains, and the O-antigen is identical between subspecies (69). The *F. tularensis* O-antigen polysaccharide structure was described in 1991 and is composed of a four sugar repeat of  $\rightarrow$  4)-2-acetamido-2deoxy-D-galacturonamide-(1  $\rightarrow$  4)- 2-acetamido-2-deoxy-D-galacturonamide-(1  $\rightarrow$ 3)- 2acetamido-2,6-dideoxy-D-glucose-(1 $\rightarrow$ 2)-4,6-dideoxy-4-formamido-D-glucose-(1 $\rightarrow$ (207). This structure differs in *F. novicida*. The adjacent 2-acetamido-2-deoxy-Dgalacturonamide residues are conserved, but the other two sugars are replaced by a third 2-acetamido-2-deoxy-D-galacturonamide and 2,4-diacetamino-2,4,6-trideoxy-D-

glucose (205).

The unusual structure of *F. tularensis* LPS, specifically lipid A, represents a key virulence factor. Lipid A is typically recognized by the TLR-4-MD2-CD14 complex with the aid of LPS binding protein and typically leads to an inflammatory immune response (157). However, *F. tularensis* lipid A is not efficiently recognized by TLR-4, does not bind to the LPS binding protein, and is approximately 1,000 fold less endotoxic than *E. coli* lipid A (205). The inertness of *F. tularensis* lipid A is thought to be due to absence of a phosphate at the 4' non-reducing glucosamine dimer and unusual acylation pattern

(tetraacylated with longer fatty acid chains) compared to bacteria such as *E. coli* that produce highly stimulatory lipid A (69). Production of altered LPS structures is also correlated to distinct changes in *F. tularensis* virulence and immunity (69). Most prominently, mutations in the O-antigen gene cluster that result in the loss of O-antigen, greatly increase both *F. tularensis* type A's and type B's sensitivity to serum, hinder intracellular replication, and attenuate the coccobacilli in animal models (160, 199).

#### 1.8.1.3 Envelope proteins

Envelope virulence factors of F. tularensis include genes encoding for components of Type IV pili, secretion and translocation, LPS, and capsule production. A recent study by Salomonsson et al. identified genes of two envelope proteins pilA (FTT\_0890) and FTT\_0918, absent in the F. tularensis LVS genome, that encode a putative Type IV pilin and siderophore uptake protein, respectively (108, 165). When complemented into F. tularensis LVS, these genes restored virulence to levels indistinguishable from other *F. tularensis* type B isolates (165). PilA and FTT 0918 also impact virulence in F. tularensis type A strains (165, 204). In support of these data, attenuation is observed in animal models when two additional Type IV pili genes, pilT (FTT 0088) and *pilF* (FTT 1156), and a siderophore biosynthetic gene *flsA* (FTT 0029), are deleted (24, 108). The necessity for iron is well documented in intracellular pathogens, but the potential role of *pilA* is more ambiguous. *F. tularensis* lacking *pilA* is unable to disseminate like wild-type strains when introduced by the s.c. route of infection, but behave similarly when introduced by the i.p. route (165). In Burkholderia pseudomallei Type IV pili act as adhesions, allowing bacteria to attach to epithelial cells (47). Type IV pili may also participate in virulence in other ways such as facilitating biofilm formation, DNA uptake, and twitching motility (147).

A considerable number of ATP-binding cassette (ABC) transporters are routinely identified as virulence factors in both *in vitro* and *in vivo* genetic screens (120). ABC transporters are involved in both export and import of a variety of molecules including sugars, amino acids, inorganic and organic ions, lipids, and certain drugs (74). It is likely *F. tularensis*' transporters allow for adaptation to new niches and compensate for eroded biosynthetic pathways. For example, a knockout of the transporter *tolC* (FTL\_1865) in *F. tularensis* LVS prevents the bacterium's ability to delay the early proinflammatory response (153). Interestingly, although there is no clinically relevant drug resistance to aminoglycosides, tetracycline, or chloramphenicol, transporters allowing for multidrug efflux of these drugs have been identified in *Francisella* genomes (18, 64). The Type II secretion system could also impact *F. tularensis* virulence. Several proteins shown to be secreted by this system in *F. novicida* such as chitinases ChiA (FTN\_0627) and ChiB (FTN\_1744), and M13 family metallopeptidase (FTN\_1186), are reported to be significantly altered in specific *F. tularensis* subspecies and populations (15, 70, 103).

#### 1.8.2 The *Francisella* pathogenicity island

Pathogenicity islands (PAIs) are gene clusters, 10 to 200 kb, that encode at least one gene important in virulence (180). These clusters are flanked by mobile genetic elements, often have differing GC contents compared to the core genome, and are thought to be transferred horizontally between species (180). The *Francisella* PAI (FPI) was identified by comparing the GC content adjacent to known virulence genes located in the *igl* operon to the core genome (132). One region, 17-kDa downstream of this operon, was found to have a GC content of 26.6%, 6.6% less than the core genome, and is surrounded by transposable genetic elements (133). The FPI is approximately 30 Kb, contains between 16 and 19 genes depending on the species and subspecies, and shares 97% sequence similarity between species (12). The FPI is duplicated in *F*.

*tularensis* (A1a, A1b, A2, type B, and *F. tularensis mediasiatica*), but not in species rarely pathogenic for humans (*F. novicida* and *F. philomiragia*) (12). Two predicted operons are encoded within the FPI, *igl* and pathogenicity determining protein (*pdp*) (132). Both operons are virulence factors specifically related to diminished phagosomal maturation and escape and cytosolic replication (12). Several FPI genes share some similarity to components of the Type VI secretion apparatus of *Vibrio cholerae* and represent another virulence factor linked to the envelope of *F. tularensis* (12). The two most conserved proteins of the Type VI secretion system, hypothetical protein VgrG (FTT\_1347) and Hcp (FTT\_1355), display a high degree of similarity to bacteriophage proteins and are encoded by all *F. tularensis* biotypes (12). VgrG resembles the spike complex of bacteriophage T4 which is capable of puncturing the outer membrane, and Hcp resembles the tail tube complex of phage lambda which polymerizes to form a 40 Å channel (9). Functional Type VI secretion was recently described in *F. novicida* (12).

Expression of FPI genes is tightly regulated by several protein transcription factors that are also essential for virulence. The most important of these are members of the stringent starvation family A gene family and include *mglA* (FTT\_1275), *mglB* (FTT\_1276), and *sspA* (FTT\_0458). Deletion studies of *mglA* and *mglB* have found that both of these regulators are essential for virulence in animal and cellular models (14, 105). MglA forms a complex with SspA that in turn interacts with RNA polymerase to control expression of over 100 genes and upregulate expression of all FPI genes (26). *MglA* knockouts show decreased ability to escape from the phagosome and do not prevent phagosomal maturation (112). Less is known about the global regulatory impact of *mglB*, but its deletion decreases the production of several FPI proteins such as IgIB (FTT\_1713), PdpA (FTT\_1699), and PdpB (FTT\_1700) (179). Another regulator, FevR/PigR (FTT\_0383), has been shown to directly interact with the MglA-SspA complex, and regulate many of the known target genes of this complex (26). Other

known regulators of the FPI include MigR (FTT\_0694), and PmrA (FTT\_1557), but little is known about their modes of action (146).

## 1.8.3 Chaperone proteins

Proteins involved in macromolecule assembly and fate are known virulence factors in F. tularensis (120, 212). Several heat shock family proteins (Hsp) involved in protein folding and chromosomal replication were the first chaperons implicated in F. tularensis virulence (46). The expression of Hsp generally increases in response to stresses such as temperature, pH, and oxidative stress (134). Hsp GroES (FTT\_1695), GroEL (FTT\_1696), and DnaK (FTT\_1269) were all found upregulated in F. tularensis LVS when coccobacilli were exposed to hydrogen peroxide and a change of temperature from 37°C to 42°C (46). Chaperones are among the most highly upregulated genes during the bacterium's intracellular lifecycle. Wehrly et al. performed global transcriptional profiling of F. tularensis type A strains grown in murine bone marrowderived macrophages finding that the previous three Hsp were upregulated intracellulary (212). This study also identified numerous other upregulated chaperones including: HtpG (FTT\_0356), ClpP (FTT\_0624), ClpX (FTT\_0625), Lon (FTT\_0626), HslU (FTT\_0687), HsIV (FTT\_0688), HtpX (FTT\_0862), DnaJ (FTT\_1268), GrpE (FTT\_1270), a DnaJ-like chaperone (FTT 1512), ClpB (FTT 1769), and Hsp (FTT 1794).

Screens of transposon mutant libraries led to the identification of seven chaperones important in virulence including the peptidases Lon (FTT\_0626), CphB (FTT\_0802), and PepP (FTT\_0609), proteins participating in disulfide bond formation DsbA (FTT\_1103) and DsbB (FTT\_0107), and Hsp HptG (FTT\_0356) and ClpB (FTT\_1769) (120). DsbA and ClpB are the best understood of these chaperons. DsbA is a predicted periplasmic protein containing a disulfide bridged thioredoxin fold which acts as an oxidant for a dithiol in substrate proteins, and is kept oxidized by DsbB (73).

Proteins containing disulphide bonds are virulence factors for many bacteria and include toxins and adhesions, and disruption of their folding renders many of these products non-functional (73). In *F. tularensis*, DsbA mutants are attenuated for survival and replication in macrophages and in mice (154, 191). ClpB is a virulence factor in *L. monocytogenes* and *Salmonella* typhimirium, and participates in the stress response of numerous other bacteria (121). It is a member of the Clp family ATPases that functions by disaggregating highly complex proteins and reactivating them (223). ClpB was shown to be essential for replication of *F. tularensis* LVS in target organs (121). *F. tularensis* LVS ClpB mutants also show an increased sensitivity to oxidative stress and pH and are partially attenuated for intracellular survival (121).

### 1.8.4 Metabolic proteins

The success of a pathogen is dependent on acquisition or biosynthesis of key metabolites. The genome of *F. tularensis* contains approximately 350 genes predicted to be involved in 155 pathways of small molecule metabolism (103). *F. tularensis* genomes are considered to be highly decayed, as illustrated by the numerous pathway holes predicted to disrupt more than half of the reactions for *F. tularensis*' central metabolic network (103). Thus, many remaining metabolic genes are also important for virulence.

Amino acid and nucleotide metabolic pathways are mostly disrupted in *F. tularensis* type A and type B strains. *F. tularensis* SCHU S4 growth is supported by supplementation with 13 amino acids, but does not require aromatic amino acid supplementation (93, 103). Deletions of aromatic amino acid biosynthetic genes attenuate virulence of *F. tularensis* in cell culture and *in vivo*, a finding consistent with the limited pool of aromatic amino acids found intracellulary (120, 159). Additionally,

over 10 virulence genes involved in nucleotide biosynthesis are known, and deletions of these genes are also thought to interfere with intracellular survival (120).

# 1.9 Host-pathogen interactions

The ability of *F. tularensis* to survive and persist in the host is dependent on intrinsic factors of the bacterium that allow the organism to occupy a specific niche, and also the mechanisms and regulatory events of the host itself. *F. tularensis* strains survive both intracellulary and extracellulary within its many susceptible hosts (120). This dichotomy is presumably a result of highly governed metabolic regulatory events allowing for rapid, and dramatically different, molecular responses to changing niches. A number of genes involved in central metabolism, envelope biogenesis, secretion, and regulation were identified in *F. tularensis* that promote these changes and are critical to the success of the bacterium. Similarly, hosts have developed complex networks to counter infection that take into account the bacterium's different lifecycles and multiple colonization pathways.

## 1.9.1 Pathogenesis

Shortly after host entry, *F. tularensis* is either eliminated by the innate immune system, or invades host cells including dendritic cells, monocytes, lung and kidney epithelial cells, neutrophils, hepatocytes, fibroblasts, and most frequently macrophages (21, 71, 79). Entry into macrophages involves bacterial ligand interactions with several types of host cell receptors also known to mediate uptake of other intracellular bacterial pathogens. These include complement receptor 3, mannose receptor, nucleolin, and class A scavenger receptors (8, 11, 33, 152). However, the mechanism by which phagocytosis of *F. tularensis* is achieved is unique from the normal trigger and zipper mechanisms (120). Following ligand recognition, pseudopod loops surround and

internalize bacteria into large phagosomal compartments that dramatically shrink in size shortly after formation (6). The specific ligand or ligands involved are unknown, but are likely pre-formed surface carbohydrates (32). Within the phagosome bacterial effectors, namely the igl proteins IgIA (FTT 1714), IgIB (FTT 1713), and IgIC (FTT 1712), alter normal phagosomal maturation (6). The Francisella containing phagosome acquires late endosomal markers and the vacuolar ATPase, but not cathepsin D, and does not fuse Following phagosomal acidification, bacteria degrade the with lysosomes (32). phagosomal membrane by an unknown mechanism and escape into the cytosol as rapidly as 30 to 60 minutes after uptake (146). Alternatively, the coccobacilli may stay in the phagosome for many hours, or escape and enter another vacuole-like structure following cytosolic replication (27). The final result of a cell infected with F. tularensis is death, initiated by the induction of Type I apoptosis and pyropoptosis (120). The bacteria then escape the initial host cell, disseminate to other susceptible cells locally, and then spread throughout the body. The primary sites of dissemination are lymph nodes, lungs, intestine, pleura, spleen, liver, and the kidneys (41, 198). Severe inflammation and necrosis may occur at these sites, which can eventually lead to death.

#### 1.9.2 Innate immunity

Complement deposition is a principle innate immune response mounted against many Gram-negative pathogens to counter infections and slow or prevent dissemination (40). However, most wild-type strains of *F. tularensis* have limited susceptiblity to direct complement mediated killing because of capsular production (43). Complement can increase opsonization of the coccobacilli by polymorphonuclear leukocytes, monocytes, macrophages, dendritic cells, and neutrophils, but this might not be advantageous to the host (43). McCaffrey *et al.* found opsonized *F. tularensis* LVS ingested by neutrophils inhibited activation of the host cell and prevented the respiratory burst (116). Bacteria

were able to survive in these cells, thus neutrophil involvement may contribute to the dissemination of bacteria (116).

The initial cytokine response to *F. tularensis* is characterized by a delayed production of pro-inflammatory and Th-1 type cytokines by macrophages, dendritic cells, and especially natural killer cells (80, 146). These include tumor necrosis factor alpha (TNF- $\alpha$ ), interferon gamma (IFN- $\gamma$ ), and interleukin 12 (IL-12) (43). Production of cytokines occurs 72 to 96 and 24 to 48 hours post infection in *F. tularensis* type A and type B, respectively (98). Activation of macrophages by both IFN- $\gamma$  and TNF- $\alpha$  is crucial for controlling infection with *F. tularensis* LVS, in large part by stimulating the production of nitric oxide (146). The role of IL-12 is multifaceted, and besides stimulating the production can be initiated through pattern recognition receptors, specifically TLR-2, but requires active synthesis from the coccobacilli (34).

Activation of the TLR-2/TLR-1 and TLR-2/TLR-6 heterodimer complexes is linked to the recognition of triacylated and diacylated lipoproteins, respectively (177). *F. tularensis* encodes both the proliproprotein diacylglyceryltransferase (FTT\_1228) required for diacylated lipoprotein synthesis and the apolipoprotein *N*-acyltransferase (FTT\_0614) required for triacylated lipoprotein synthesis. To date, only two TLR-2/TLR-1 ligands have been identified, the surface and envelope associated lipoproteins TUL4 (FTT\_0901) and FTT\_1103, respectively (197). The TLR-2/TLR-6 heterodimer is also stimulated by *F. tularensis*, but the ligands are unknown (197). Other TLR's are likely activated by *F. tularensis*, but the specific receptors and their ligands are not defined. Collazo *et al.* demonstrated MyD88 (shared TLR pathway adaptor protein) knockout mice were more susceptible to *F. tularensis* LVS infection than TLR-2 deficient mice (36).

Intracellular Nod-like receptors (NLR) also participate in innate immunity against *F. tularensis* (214). Recognition of bacterial DNA by the NLR AIM2 leads to the formation of an intracellular protein complex called the inflammasome (49, 158). The inflammasome recruits and activates caspase-1, a cysteine protease that processes proforms of IL-1 $\beta$  and IL-18 into their active forms (28). Pro-IL-1 $\beta$  is not abundant in resting macrophages and monocytes, and its production is stimulated via MyD88 dependent TLR activation (80). In contrast, sufficient levels of pro-IL-18 are constitutively present in these cells (214). IL-1 $\beta$  and IL-18 are potent secreted pro-inflammatory cytokines that are important in establishing fever and up-regulate the production of IFN- $\gamma$ , respectively (214).

## 1.9.3 Adaptive immunity

Before the introduction of streptomycin, tularemia was treated with marginal success using xenogeneic immune serum (53). It was also noted by Edward Francis, "One who has recovered from an attack of tularaemia need not fear a second attack, because he is then immune to the disease" (60). These and other early reports definitively established the importance of an adaptive response to *F. tularensis*. It is now clear that both the cell mediated and humoral responses work synergistically to provide protection. Like the innate response, bacterial surface components appear to be key targets and stimulators of adaptive immunity (174).

The cell mediated response is considered to be the most important for controlling *F. tularensis* infection due to the intracellular lifecycle of the coccobacilli, and is effective against both *F. tularensis* type A and type B strains. The response is mediated primarily by CD4<sup>+</sup> and CD8<sup>+</sup> T cells. In mice, both CD4<sup>+</sup> and CD8<sup>+</sup> T cell populations are required to control *F. tularensis* type A infection, but either type offers protection against *F. tularensis* type B (43). The signatures of CD4<sup>+</sup> and CD8<sup>+</sup> T cell responses induced by *F.* 

*tularensis* in murine models are similar in humans and are characterized by significant production of Th-1 type cytokines including IFN- $\gamma$  and TNF- $\alpha$  (43). Therefore, T cell immunity against *F. tularensis* is strongly linked to macrophage activation. Only two *F. tularensis* T cell antigens are well described, the surface protein TUL4 (FTT\_0901) and the predicted outer membrane protein FopB (FTT\_1747) (169, 222).

Despite the necessity of cell mediated immunity, antibodies enhance immunity against *F. tularensis* (43). Specific IgG, IgM, and IgA antibodies are detectable in human patients about 2 weeks after infection (43). Titers of all three antibody isotypes peak 1 to 2 months after infection, but can be detected up to 11 years post infection (43). A large percentage of the specific antibody response is directed at LPS, and an unusual early LPS-specific antibody response has been shown to protect mice in a T cell independent manner (35, 43). Passive transfer of immune sera has also shown efficacy in humans and animals, but significant protection is not observed with *F. tularensis* type A strains (53, 190). Monoclonal antibodies reactive to two *F. tularensis* surface proteins, TUL4 (FTT\_0901) and FopA (FTT\_0583), and the capsule also provide a limited protective effect against *F. tularensis* infection (4, 174). The protective roles of specific antibodies through other types of mechanisms such as lysis, antibody-mediated cellular toxicity, and cooperation with T cells are not clear (43).

# 1.10 Literature cited

- 1. 10/4/10, posting date. Tularemia, Statistics. Centers for Disease Control and Prevention. [Online.]
- 2. 2005. USAMRIID's Medical managment of biological casualties handbook. Sixth ed., Fort Detrick, Fredrick, Maryland.
- 3. Anderson, R., and A. R. Bhatti. 1986. Fatty acid distribution in the phospholipids of *Francisella tularensis*. Lipids **21**:669-671.
- Apicella, M. A., D. M. Post, A. C. Fowler, B. D. Jones, J. A. Rasmussen, J. R. Hunt, S. Imagawa, B. Choudhury, T. J. Inzana, T. M. Maier, D. W. Frank, T. C. Zahrt, K. Chaloner, M. P. Jennings, M. K. McLendon, and B. W. Gibson. 2010. Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of *Francisella tularensis*. PLoS One 5:e11060.
- 5. Aranda, E. A. 2001. Treatment of tularemia with levofloxacin. Clin Microbiol Infect **7**:167-168.
- 6. **Asare, R., and Y. Abu Kwaik.** 2010. Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by *Francisella tularensis*. Environ Microbiol.
- Bakshi, C. S., M. Malik, M. Mahawar, G. S. Kirimanjeswara, K. R. Hazlett, L. E. Palmer, M. B. Furie, R. Singh, J. A. Melendez, T. J. Sellati, and D. W. Metzger. 2008. An improved vaccine for prevention of respiratory tularemia caused by *Francisella tularensis* SCHU S4 strain. Vaccine 26:5276-5288.
- 8. Balagopal, A., A. S. MacFarlane, N. Mohapatra, S. Soni, J. S. Gunn, and L. S. Schlesinger. 2006. Characterization of the receptor-ligand pathways important for entry and survival of *Francisella tularensis* in human macrophages. Infect Immun **74**:5114-5125.
- 9. Ballister, E. R., A. H. Lai, R. N. Zuckermann, Y. Cheng, and J. D. Mougous. 2008. *In vitro* self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A **105**:3733-3738.
- Barabote, R. D., G. Xie, T. S. Brettin, S. H. Hinrichs, P. D. Fey, J. J. Jay, J. L. Engle, S. D. Godbole, J. M. Noronha, R. H. Scheuermann, L. W. Zhou, C. Lion, and M. P. Dempsey. 2009. Complete genome sequence of *Francisella tularensis* subspecies *holarctica* FTNF002-00. PLoS One 4:e7041.
- 11. Barel, M., A. G. Hovanessian, K. Meibom, J. P. Briand, M. Dupuis, and A. Charbit. 2008. A novel receptor ligand pathway for entry of *Francisella tularensis* in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol **8**:145.
- 12. Barker, J. R., A. Chong, T. D. Wehrly, J. J. Yu, S. A. Rodriguez, J. Liu, J. Celli, B. P. Arulanandam, and K. E. Klose. 2009. The *Francisella tularensis* pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol **74**:1459-1470.
- Barns, S. M., C. C. Grow, R. T. Okinaka, P. Keim, and C. R. Kuske. 2005. Detection of diverse new *Francisella*-like bacteria in environmental samples. Appl Environ Microbiol **71**:5494-5500.
- 14. **Baron, G. S., and F. E. Nano.** 1998. MgIA and MgIB are required for the intramacrophage growth of *Francisella novicida*. Mol Microbiol **29**:247-259.
- 15. Beckstrom-Sternberg, S. M., R. K. Auerbach, S. Godbole, J. V. Pearson, J. S. Beckstrom-Sternberg, Z. Deng, C. Munk, K. Kubota, Y. Zhou, D. Bruce, J. Noronha, R. H. Scheuermann, A. Wang, X. Wei, J. Wang, J. Hao, D. M. Wagner, T. S. Brettin, N. Brown, P. Gilna, and P. S. Keim. 2007. Complete

genomic characterization of a pathogenic A.II strain of *Francisella tularensis* subspecies *tularensis*. PLoS One **2**:e947.

- 16. **Beier, C. L., M. Horn, R. Michel, M. Schweikert, H. D. Gortz, and M. Wagner.** 2002. The genus *Caedibacter* comprises endosymbionts of *Paramecium* spp. related to the Rickettsiales (Alphaproteobacteria) and to *Francisella tularensis* (Gammaproteobacteria). Appl Environ Microbiol **68**:6043-6050.
- 17. Bhatnagar, N., E. Getachew, S. Straley, J. Williams, M. Meltzer, and A. Fortier. 1994. Reduced virulence of rifampicin-resistant mutants of *Francisella tularensis*. J Infect Dis **170**:841-847.
- 18. Bina, X. R., C. L. Lavine, M. A. Miller, and J. E. Bina. 2008. The AcrAB RND efflux system from the live vaccine strain of *Francisella tularensis* is a multiple drug efflux system that is required for virulence in mice. FEMS Microbiol Lett **279**:226-233.
- 19. **Bos, M. P., V. Robert, and J. Tommassen.** 2007. Biogenesis of the Gramnegative bacterial outer membrane. Annu Rev Microbiol **61:**191-214.
- 20. Bosio, C. M., H. Bielefeldt-Ohmann, and J. T. Belisle. 2007. Active suppression of the pulmonary immune response by *Francisella tularensis* SCHU4. J Immunol **178**:4538-4547.
- 21. Bosio, C. M., and S. W. Dow. 2005. *Francisella tularensis* induces aberrant activation of pulmonary dendritic cells. J Immunol **175:**6792-6801.
- 22. Brooks, G. F., and T. M. Buchanan. 1970. Tularemia in the United States: epidemiologic aspects in the 1960s and follow-up of the outbreak of tularemia in Vermont. J Infect Dis **121:**357-359.
- 23. Busse, H. J., B. Huber, P. Anda, R. Escudero, H. C. Scholz, E. Seibold, W. D. Splettstoesser, and P. Kampfer. 2010. Objections to the transfer of *Francisella novicida* to the subspecies rank of *Francisella tularensis* response to Johansson *et al.* Int J Syst Evol Microbiol **60**:1718-1720.
- 24. Chakraborty, S., M. Monfett, T. M. Maier, J. L. Benach, D. W. Frank, and D. G. Thanassi. 2008. Type IV pili in *Francisella tularensis*: roles of *pilF* and *pilT* in fiber assembly, host cell adherence, and virulence. Infect Immun **76**:2852-2861.
- 25. Champion, M. D., Q. Zeng, E. B. Nix, F. E. Nano, P. Keim, C. D. Kodira, M. Borowsky, S. Young, M. Koehrsen, R. Engels, M. Pearson, C. Howarth, L. Larson, J. White, L. Alvarado, M. Forsman, S. W. Bearden, A. Sjostedt, R. Titball, S. L. Michell, B. Birren, and J. Galagan. 2009. Comparative genomic characterization of *Francisella tularensis* strains belonging to low and high virulence subspecies. PLoS Pathog **5**:e1000459.
- 26. Charity, J. C., L. T. Blalock, M. M. Costante-Hamm, D. L. Kasper, and S. L. Dove. 2009. Small molecule control of virulence gene expression in *Francisella tularensis*. PLoS Pathog **5**:e1000641.
- 27. Checroun, C., T. D. Wehrly, E. R. Fischer, S. F. Hayes, and J. Celli. 2006. Autophagy-mediated reentry of *Francisella tularensis* into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A **103**:14578-14583.
- 28. Chen, G., M. H. Shaw, Y. G. Kim, and G. Nunez. 2009. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol **4**:365-398.
- 29. Cherwonogrodzky, J. W., M. H. Knodel, and M. R. Spence. 1994. Increased encapsulation and virulence of *Francisella tularensis* live vaccine strain (LVS) by subculturing on synthetic medium. Vaccine **12**:773-775.
- 30. Chitadze, N., T. Kuchuloria, D. V. Clark, E. Tsertsvadze, M. Chokheli, N. Tsertsvadze, N. Trapaidze, A. Lane, L. Bakanidze, S. Tsanava, M. J.

**Hepburn, and P. Imnadze.** 2009. Water-borne outbreak of oropharyngeal and glandular tularemia in Georgia: investigation and follow-up. Infection **37**:514-521.

- 31. Christopher, G. W., T. J. Cieslak, J. A. Pavlin, and E. M. Eitzen, Jr. 1997. Biological warfare. A historical perspective. JAMA **278**:412-417.
- 32. Clemens, D. L., and M. A. Horwitz. 2007. Uptake and intracellular fate of *Francisella tularensis* in human macrophages. Ann N Y Acad Sci **1105**:160-186.
- 33. Clemens, D. L., B. Y. Lee, and M. A. Horwitz. 2005. *Francisella tularensis* enters macrophages via a novel process involving pseudopod loops. Infect Immun **73**:5892-5902.
- Cole, L. E., K. A. Shirey, E. Barry, A. Santiago, P. Rallabhandi, K. L. Elkins, A. C. Puche, S. M. Michalek, and S. N. Vogel. 2007. Toll-like receptor 2mediated signaling requirements for *Francisella tularensis* live vaccine strain infection of murine macrophages. Infect Immun 75:4127-4137.
- 35. Cole, L. E., Y. Yang, K. L. Elkins, E. T. Fernandez, N. Qureshi, M. J. Shlomchik, L. A. Herzenberg, and S. N. Vogel. 2009. Antigen-specific B-1a antibodies induced by *Francisella tularensis* LPS provide long-term protection against *F. tularensis* LVS challenge. Proc Natl Acad Sci U S A **106**:4343-4348.
- 36. **Collazo, C. M., A. Sher, A. I. Meierovics, and K. L. Elkins.** 2006. Myeloid differentiation factor-88 (MyD88) is essential for control of primary *in vivo Francisella tularensis* LVS infection, but not for control of intra-macrophage bacterial replication. Microbes Infect **8**:779-790.
- 37. Cong, Y., J. J. Yu, M. N. Guentzel, M. T. Berton, J. Seshu, K. E. Klose, and B. P. Arulanandam. 2009. Vaccination with a defined *Francisella tularensis* subsp. novicida pathogenicity island mutant (Delta*iglB*) induces protective immunity against homotypic and heterotypic challenge. Vaccine 27:5554-5561.
- 38. Conlan, J. W., H. Shen, I. Golovliov, C. Zingmark, P. C. Oyston, W. Chen, R. V. House, and A. Sjostedt. 2010. Differential ability of novel attenuated targeted deletion mutants of *Francisella tularensis* subspecies *tularensis* strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization. Vaccine 28:1824-1831.
- 39. **Conlan, J. W., H. Shen, A. Webb, and M. B. Perry.** 2002. Mice vaccinated with the O-antigen of *Francisella tularensis* LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine **20**:3465-3471.
- 40. **Daha, M. R.** 2010. Role of complement in innate immunity and infections. Crit Rev Immunol **30:**47-52.
- Dennis, D. T., T. V. Inglesby, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, A. D. Fine, A. M. Friedlander, J. Hauer, M. Layton, S. R. Lillibridge, J. E. McDade, M. T. Osterholm, T. O'Toole, G. Parker, T. M. Perl, P. K. Russell, and K. Tonat. 2001. Tularemia as a biological weapon: medical and public health management. JAMA 285:2763-2773.
- Duplantis, B. N., M. Osusky, C. L. Schmerk, D. R. Ross, C. M. Bosio, and F. E. Nano. 2010. Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proc Natl Acad Sci U S A 107:13456-13460.
- 43. Elkins, K. L., S. C. Cowley, and C. M. Bosio. 2007. Innate and adaptive immunity to *Francisella*. Ann N Y Acad Sci **1105**:284-324.
- 44. Ellis, J., P. C. Oyston, M. Green, and R. W. Titball. 2002. Tularemia. Clin Microbiol Rev 15:631-646.

- 45. Enderlin, G., L. Morales, R. F. Jacobs, and J. T. Cross. 1994. Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin Infect Dis **19:**42-47.
- 46. Ericsson, M., A. Tarnvik, K. Kuoppa, G. Sandstrom, and A. Sjostedt. 1994. Increased synthesis of DnaK, GroEL, and GroES homologs by *Francisella tularensis* LVS in response to heat and hydrogen peroxide. Infect Immun 62:178-183.
- 47. Essex-Lopresti, A. E., J. A. Boddey, R. Thomas, M. P. Smith, M. G. Hartley, T. Atkins, N. F. Brown, C. H. Tsang, I. R. Peak, J. Hill, I. R. Beacham, and R. W. Titball. 2005. A Type IV pilin, PilA, contributes to adherence of *Burkholderia pseudomallei* and virulence *in vivo*. Infect Immun **73**:1260-1264.
- 48. Evans, M. E., D. W. Gregory, W. Schaffner, and Z. A. McGee. 1985. Tularemia: a 30-year experience with 88 cases. Medicine (Baltimore) 64:251-269.
- Fernandes-Alnemri, T., J. W. Yu, C. Juliana, L. Solorzano, S. Kang, J. Wu, P. Datta, M. McCormick, L. Huang, E. McDermott, L. Eisenlohr, C. P. Landel, and E. S. Alnemri. 2010. The AIM2 inflammasome is critical for innate immunity to *Francisella tularensis*. Nat Immunol 11:385-393.
- Forestal, C. A., H. Gil, M. Monfett, C. E. Noah, G. J. Platz, D. G. Thanassi, J. L. Benach, and M. B. Furie. 2008. A conserved and immunodominant lipoprotein of *Francisella tularensis* is proinflammatory but not essential for virulence. Microb Pathog 44:512-523.
- 51. Forsman, M., G. Sandstrom, and A. Sjostedt. 1994. Analysis of 16S ribosomal DNA sequences of *Francisella* strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol **44**:38-46.
- 52. **Foshay, L.** 1947. Treatment of tularemia with streptomycin. Am J Med **2:**467-473.
- 53. Foshay, L., W. H. Hesselbrock, H. J. Wittenberg, and A. H. Rodenberg. 1942. Vaccine prophylaxis against tularemia in man. Am J Public Health Nations Health 32:1131-1145.
- 54. **Francis, E.** 1942. Fermentation of sugars by *bacterium tularense*. J Bacteriol **43**:343-346.
- 55. **Francis, E.** 1947. Streptomycin in treatment of tularemia. Trans Assoc Am Physicians **60**:181-186.
- 56. **Francis, E.** 1929. A summary of present knowledge of tularaemia. Harvey Lectures **23**:25-48.
- 57. Francis, E., A. C. Evans, and United States. 1926. Agglutination, crossagglutination and agglutinin absorption in tularæmia. Govt. print. off., Washington.
- 58. **Francis, E., B. Mayne, and G. C. Lake.** 1922. Tularæmia Francis 1921: a new disease of man. Govt. print. off., Washington.
- 59. **Francis, E.** 1919. Deer-fly fever or Pahvant Valley plague. Govt. print. off., Washington.
- 60. **Francis, E.** 1937. Sources of infection and seasonal incidence of tularaemia in man. U. S. Govt. print. off., Washington.
- 61. **Fulop, M., R. Manchee, and R. Titball.** 1995. Role of lipopolysaccharide and a major outer membrane protein from *Francisella tularensis* in the induction of immunity against tularemia. Vaccine **13**:1220-1225.
- 62. **Geiger, O., N. Gonzalez-Silva, I. M. Lopez-Lara, and C. Sohlenkamp.** 2010. Amino acid-containing membrane lipids in bacteria. Prog Lipid Res **49:**46-60.

- 63. Giddens, W. R., J. W. Wilson, Jr., F. T. Dienst, Jr., and M. D. Hargrove. 1957. Tularemia; an analysis of one hundred forty-seven cases. J La State Med Soc 109:93-98.
- 64. Gil, H., G. J. Platz, C. A. Forestal, M. Monfett, C. S. Bakshi, T. J. Sellati, M. B. Furie, J. L. Benach, and D. G. Thanassi. 2006. Deletion of TolC orthologs in *Francisella tularensis* identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci U S A **103**:12897-12902.
- 65. **Gold, V. A., A. Robson, H. Bao, T. Romantsov, F. Duong, and I. Collinson.** 2010. The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci U S A **107:**10044-10049.
- 66. **Golovliov, I., M. Ericsson, L. Akerblom, G. Sandstrom, A. Tarnvik, and A. Sjostedt.** 1995. Adjuvanticity of ISCOMs incorporating a T cell-reactive lipoprotein of the facultative intracellular pathogen *Francisella tularensis*. Vaccine **13:**261-267.
- 67. **Gordon, J. R., B. G. Mclaughlin, and S. Nitiuthai.** 1983. Tularemia transmitted by ticks (*Dermacentor-Andersoni*) in Saskatchewan. Canadian Journal of Comparative Medicine-Revue Canadienne De Medecine Comparee **47**:408-411.
- Gregory, S. H., W. H. Chen, S. Mott, J. E. Palardy, N. A. Parejo, S. Heninger, C. A. Anderson, A. W. Artenstein, S. M. Opal, and A. S. Cross. 2010. Detoxified endotoxin vaccine (J5dLPS/OMP) protects mice against lethal respiratory challenge with *Francisella tularensis* SCHUS4. Vaccine 28:2908-2915.
- 69. **Gunn, J. S., and R. K. Ernst.** 2007. The structure and function of *Francisella* lipopolysaccharide. Ann N Y Acad Sci **1105**:202-218.
- 70. Hager, A. J., D. L. Bolton, M. R. Pelletier, M. J. Brittnacher, L. A. Gallagher, R. Kaul, S. J. Skerrett, S. I. Miller, and T. Guina. 2006. Type IV pili-mediated secretion modulates *Francisella* virulence. Mol Microbiol **62**:227-237.
- 71. Hall, J. D., M. D. Woolard, B. M. Gunn, R. R. Craven, S. Taft-Benz, J. A. Frelinger, and T. H. Kawula. 2008. Infected-host-cell repertoire and cellular response in the lung following inhalation of *Francisella tularensis* SCHU S4, LVS, or U112. Infect Immun **76**:5843-5852.
- 72. **Harris, S.** 1992. Japanese biological warfare research on humans: a case study of microbiology and ethics. Ann N Y Acad Sci **666:**21-52.
- Heras, B., S. R. Shouldice, M. Totsika, M. J. Scanlon, M. A. Schembri, and J. L. Martin. 2009. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 7:215-225.
- 74. **Higgins, C. F., and K. J. Linton.** 2004. The ATP switch model for ABC transporters. Nat Struct Mol Biol **11**:918-926.
- 75. Hollis, D. G., R. E. Weaver, A. G. Steigerwalt, J. D. Wenger, C. W. Moss, and D. J. Brenner. 1989. *Francisella philomiragia* comb. nov. (formerly *Yersinia philomiragia*) and *Francisella tularensis* biogroup novicida (formerly *Francisella novicida*) associated with human disease. J Clin Microbiol **27**:1601-1608.
- 76. **Hood, A. M.** 1977. Virulence factors of *Francisella tularensis*. J Hyg (Lond) **79:**47-60.
- 77. **Hopla, C. E.** 1955. The multiplication of tularemia organisms in the lone star tick. Am J Hyg **61:**371-380.
- 78. Hornick, R. B., and H. T. Eigelsbach. 1966. Aerogenic immunization of man with live Tularemia vaccine. Bacteriol Rev **30**:532-538.
- 79. Horzempa, J., D. M. O'Dee, R. M. Shanks, and G. J. Nau. 2010. *Francisella tularensis* Delta*pyrF* mutants show that replication in nonmacrophages is sufficient for pathogenesis *in vivo*. Infect Immun **78**:2607-2619.

- Huang, M. T., B. L. Mortensen, D. J. Taxman, R. R. Craven, S. Taft-Benz, T. M. Kijek, J. R. Fuller, B. K. Davis, I. C. Allen, W. J. Brickey, D. Gris, H. Wen, T. H. Kawula, and J. P. Ting. 2010. Deletion of *ripA* alleviates suppression of the inflammasome and MAPK by *Francisella tularensis*. J Immunol.
- 81. Huber, B., R. Escudero, H. J. Busse, E. Seibold, H. C. Scholz, P. Anda, P. Kampfer, and W. D. Splettstoesser. 2010. Description of *Francisella hispaniensis* sp. nov., isolated from human blood, reclassification of *Francisella novicida* (Larson *et al.* 1955) Olsufiev *et al.* 1959 as *Francisella tularensis* subsp. *novicida* comb. nov. and emended description of the genus *Francisella*. Int J Syst Evol Microbiol **60**:1887-1896.
- Huntley, J. F., P. G. Conley, D. A. Rasko, K. E. Hagman, M. A. Apicella, and M. V. Norgard. 2008. Native outer membrane proteins protect mice against pulmonary challenge with virulent type A *Francisella tularensis*. Infect Immun 76:3664-3671.
- 83. Jantzen, E., B. P. Berdal, and T. Omland. 1979. Cellular fatty acid composition of *Francisella tularensis*. J Clin Microbiol **10**:928-930.
- 84. Jellison, W. L. 1974. Tularemia in North America, 1930 1974. Missoula (MT).
- 85. **Jellison, W. L.** 1972. Tularemia: Dr. Edward Francis and his first 23 isolates of *Francisella tularensis*. Bull Hist Med **46:**477-485.
- 86. Jia, Q., B. Y. Lee, R. Bowen, B. J. Dillon, S. M. Som, and M. A. Horwitz. 2010. A *Francisella tularensis* live vaccine strain (LVS) mutant with a deletion in *capB*, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against *F. tularensis* challenge. Infect Immun **78**:4341-4355.
- 87. Jia, Q., B. Y. Lee, D. L. Clemens, R. A. Bowen, and M. A. Horwitz. 2009. Recombinant attenuated *Listeria monocytogenes* vaccine expressing *Francisella tularensis* IgIC induces protection in mice against aerosolized type A *F. tularensis*. Vaccine **27**:1216-1229.
- 88. Johansson, A., J. Celli, W. Conlan, K. L. Elkins, M. Forsman, P. S. Keim, P. Larsson, C. Manoil, F. E. Nano, J. M. Petersen, and A. Sjostedt. 2010. Objections to the transfer of *Francisella novicida* to the subspecies rank of *Francisella tularensis*. Int J Syst Evol Microbiol 60:1717-1718; author reply 1718-1720.
- 89. Johansson, A., J. Farlow, P. Larsson, M. Dukerich, E. Chambers, M. Bystrom, J. Fox, M. Chu, M. Forsman, A. Sjostedt, and P. Keim. 2004. Worldwide genetic relationships among *Francisella tularensis* isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol **186**:5808-5818.
- 90. Kadull, P. J., H. R. Reames, L. L. Coriell, and L. Foshay. 1950. Studies on tularemia. V. Immunization of man. J Immunol 65:425-435.
- Kanistanon, D., A. M. Hajjar, M. R. Pelletier, L. A. Gallagher, T. Kalhorn, S. A. Shaffer, D. R. Goodlett, L. Rohmer, M. J. Brittnacher, S. J. Skerrett, and R. K. Ernst. 2008. A *Francisella* mutant in lipid A carbohydrate modification elicits protective immunity. PLoS Pathog 4:e24.
- 92. Kantardjiev, T., I. Ivanov, T. Velinov, P. Padeshki, B. Popov, R. Nenova, and M. Mincheff. 2006. Tularemia outbreak, Bulgaria, 1997-2005. Emerg Infect Dis 12:678-680.
- 93. Karlsson, J., R. G. Prior, K. Williams, L. Lindler, K. A. Brown, N. Chatwell, K. Hjalmarsson, N. Loman, K. A. Mack, M. Pallen, M. Popek, G. Sandstrom, A. Sjostedt, T. Svensson, I. Tamas, S. G. Andersson, B. W. Wren, P. C. Oyston, and R. W. Titball. 2000. Sequencing of the *Francisella tularensis* strain SCHU 4

genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb Comp Genomics **5**:25-39.

- 94. Kaufmann, A. F., M. I. Meltzer, and G. P. Schmid. 1997. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis 3:83-94.
- 95. Kay, W., B. O. Petersen, J. O. Duus, M. B. Perry, and E. Vinogradov. 2006. Characterization of the lipopolysaccharide and beta-glucan of the fish pathogen *Francisella victoria*. FEBS J **273**:3002-3013.
- 96. Keim, P., A. Johansson, and D. M. Wagner. 2007. Molecular epidemiology, evolution, and ecology of *Francisella*. Ann N Y Acad Sci **1105:**30-66.
- 97. Keim, P. S., and D. M. Wagner. 2009. Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol **7**:813-821.
- 98. Kirimanjeswara, G. S., S. Olmos, C. S. Bakshi, and D. W. Metzger. 2008. Humoral and cell-mediated immunity to the intracellular pathogen *Francisella tularensis*. Immunol Rev **225**:244-255.
- 99. Kraemer, P. S., A. Mitchell, M. R. Pelletier, L. A. Gallagher, M. Wasnick, L. Rohmer, M. J. Brittnacher, C. Manoil, S. J. Skerett, and N. R. Salama. 2009. Genome-wide screen in *Francisella novicida* for genes required for pulmonary and systemic infection in mice. Infect Immun **77**:232-244.
- 100. Kugeler, K. J., P. S. Mead, A. M. Janusz, J. E. Staples, K. A. Kubota, L. G. Chalcraft, and J. M. Petersen. 2009. Molecular epidemiology of *Francisella tularensis* in the United States. Clin Infect Dis **48**:863-870.
- 101. Lapage, S. P., P. H. A. Sneath, International Union of Microbiological Societies. International Committee on Systematic Bacteriology., and International Union of Microbiological Societies. Bacteriology and Applied Microbiology Section. 1992. International code of nomenclature of bacteria, and Statutes of the International Committee on Systematic Bacteriology, and Statutes of the Bacteriology and Applied Microbiology Section of the International Union of Microbiological Societies : bacteriology Section of the International Union of Microbiological Societies : bacteriological code, 1990 revision / ed. Published for the International Union of Microbiological Societies by American Society for Microbiology, Washington, D.C.
- Larsson, P., D. Elfsmark, K. Svensson, P. Wikstrom, M. Forsman, T. Brettin, P. Keim, and A. Johansson. 2009. Molecular evolutionary consequences of niche restriction in *Francisella tularensis*, a facultative intracellular pathogen. PLoS Pathog 5:e1000472.
- 103. Larsson, P., P. C. Oyston, P. Chain, M. C. Chu, M. Duffield, H. H. Fuxelius, E. Garcia, G. Halltorp, D. Johansson, K. E. Isherwood, P. D. Karp, E. Larsson, Y. Liu, S. Michell, J. Prior, R. Prior, S. Malfatti, A. Sjostedt, K. Svensson, N. Thompson, L. Vergez, J. K. Wagg, B. W. Wren, L. E. Lindler, S. G. Andersson, M. Forsman, and R. W. Titball. 2005. The complete genome sequence of *Francisella tularensis*, the causative agent of tularemia. Nat Genet 37:153-159.
- 104. Larsson, P., K. Svensson, L. Karlsson, D. Guala, M. Granberg, M. Forsman, and A. Johanssont. 2007. Canonical insertion-deletion markers for rapid DNA typing of *Francisella tularensis*. Emerg Infect Dis **13**:1725-1732.
- 105. Lauriano, C. M., J. R. Barker, S. S. Yoon, F. E. Nano, B. P. Arulanandam, D. J. Hassett, and K. E. Klose. 2004. MgIA regulates transcription of virulence factors necessary for *Francisella tularensis* intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101:4246-4249.

- 106. Le Pihive, E., D. Blaha, S. Chenavas, F. Thibault, D. Vidal, and E. Valade. 2009. Description of two new plasmids isolated from *Francisella philomiragia* strains and construction of shuttle vectors for the study of *Francisella tularensis*. Plasmid **62**:147-157.
- 107. Limaye, A. P., and C. J. Hooper. 1999. Treatment of tularemia with fluoroquinolones: two cases and review. Clin Infect Dis **29:**922-924.
- 108. Lindgren, H., M. Honn, I. Golovlev, K. Kadzhaev, W. Conlan, and A. Sjostedt. 2009. The 58-kilodalton major virulence factor of *Francisella tularensis* is required for efficient utilization of iron. Infect Immun **77**:4429-4436.
- LoVullo, E. D., L. A. Sherrill, L. L. Perez, and M. S. Pavelka. 2006. Genetic tools for highly pathogenic *Francisella tularensis* subsp *tularensis*. Microbiology-Sgm 152:3425-3435.
- 110. Ludu, J. S., O. M. de Bruin, B. N. Duplantis, C. L. Schmerk, A. Y. Chou, K. L. Elkins, and F. E. Nano. 2008. The *Francisella* pathogenicity island protein PdpD is required for full virulence and associates with homologues of the Type VI secretion system. J Bacteriol **190**:4584-4595.
- 111. **Machado-Ferreira, E., J. Piesman, N. S. Zeidner, and C. A. Soares.** 2009. *Francisella*-like endosymbiont DNA and *Francisella tularensis* virulence-related genes in Brazilian ticks (Acari: Ixodidae). J Med Entomol **46**:369-374.
- 112. **Mariathasan, S., D. S. Weiss, V. M. Dixit, and D. M. Monack.** 2005. Innate immunity against *Francisella tularensis* is dependent on the ASC/caspase-1 axis. J Exp Med **202**:1043-1049.
- 113. **Marinov, K. T., E. D. Georgieva, I. N. Ivanov, and T. V. Kantardjiev.** 2009. Characterization and genotyping of strains of *Francisella tularensis* isolated in Bulgaria. J Med Microbiol **58**:82-85.
- 114. **Maurin, M., N. F. Mersali, and D. Raoult.** 2000. Bactericidal activities of antibiotics against intracellular *Francisella tularensis*. Antimicrob Agents Chemother **44**:3428-3431.
- 115. **Maurin, M., and D. Raoult.** 2001. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrobial Agents and Chemotherapy **45**:2977-2986.
- 116. **McCaffrey, R. L., and L. A. Allen.** 2006. *Francisella tularensis* LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J Leukoc Biol **80**:1224-1230.
- 117. **McCoy, G. W.** 1911. Studies upon plague in ground squirrels. A plague-like disease of rodents. Pub. Health Bull.
- 118. **McCoy, G. W., and C. W. Chapin.** 1912. Further observations on a plague-like disease of rodents with a preliminary note on the causative agent, *Bacterium tularense*. The Journal of Infectious Diseases **10**:61-72.
- 119. **McCrumb, F. R.** 1961. Aerosol infection of man with *Pasteurella tularensis*. Bacteriol Rev **25**:262-267.
- 120. **Meibom, K. L., and A. Charbit.** 2010. The unraveling panoply of *Francisella tularensis* virulence attributes. Curr Opin Microbiol **13:**11-17.
- 121. Meibom, K. L., I. Dubail, M. Dupuis, M. Barel, J. Lenco, J. Stulik, I. Golovliov, A. Sjostedt, and A. Charbit. 2008. The heat-shock protein ClpB of *Francisella tularensis* is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol 67:1384-1401.
- 122. Melillo, A., D. D. Sledjeski, S. Lipski, R. M. Wooten, V. Basrur, and E. R. Lafontaine. 2006. Identification of a *Francisella tularensis* LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett 263:102-108.

- Meric, M., M. Sayan, D. Dundar, and A. Willke. 2010. Tularaemia outbreaks in Sakarya, Turkey: case-control and environmental studies. Singapore Med J 51:655-659.
- 124. Meric, M., A. Willke, E. J. Finke, R. Grunow, M. Sayan, S. Erdogan, and S. Gedikoglu. 2008. Evaluation of clinical, laboratory, and therapeutic features of 145 tularemia cases: the role of quinolones in oropharyngeal tularemia. APMIS 116:66-73.
- 125. Michell, S., R. E. Dean, J. E. Eyles, M. G. Hartley, E. Waters, J. L. Prior, R. W. Titball, and P. C. Oyston. 2010. Deletion of the *Bacillus anthracis capB* homologue in *Francisella tularensis* subspecies *tularensis* generates an attenuated strain that protects mice against virulent tularemia. J Med Microbiol.
- 126. **Mikalsen, J., and D. J. Colquhoun.** 2009. *Francisella asiatica* sp. nov. isolated from farmed tilapia (*Oreochromis* sp.) and elevation of *Francisella philomiragia* subsp. *noatunensis* to species rank as *Francisella noatunensis* comb. nov., sp. nov. Int J Syst Evol Microbiol.
- 127. Mohapatra, N. P., S. Soni, B. L. Bell, R. Warren, R. K. Ernst, A. Muszynski, R. W. Carlson, and J. S. Gunn. 2007. Identification of an orphan response regulator required for the virulence of *Francisella* spp. and transcription of pathogenicity island genes. Infect Immun **75**:3305-3314.
- 128. **Mohapatra, N. P., S. Soni, T. J. Reilly, J. Liu, K. E. Klose, and J. S. Gunn.** 2008. Combined deletion of four *Francisella novicida* acid phosphatases attenuates virulence and macrophage vacuolar escape. Infect Immun **76:**3690-3699.
- 129. Molins, C. R., M. J. Delorey, B. M. Yockey, J. W. Young, S. W. Sheldon, S. M. Reese, M. E. Schriefer, and J. M. Petersen. 2010. Virulence differences among *Francisella tularensis* subsp. *tularensis* clades in mice. PLoS One **5**:e10205.
- Nakazawa, Y., R. A. Williams, A. T. Peterson, P. S. Mead, K. J. Kugeler, and J. M. Petersen. 2010. Ecological niche modeling of *Francisella tularensis* subspecies and clades in the United States. Am J Trop Med Hyg 82:912-918.
- 131. **Nano, F. E.** 1988. Identification of a heat-modifiable protein of *Francisella tularensis* and molecular cloning of the encoding gene. Microb Pathog **5**:109-119.
- 132. Nano, F. E., and C. Schmerk. 2007. The *Francisella* pathogenicity island. Ann N Y Acad Sci **1105**:122-137.
- 133. Nano, F. E., N. Zhang, S. C. Cowley, K. E. Klose, K. K. Cheung, M. J. Roberts, J. S. Ludu, G. W. Letendre, A. I. Meierovics, G. Stephens, and K. L. Elkins. 2004. A *Francisella tularensis* pathogenicity island required for intramacrophage growth. J Bacteriol **186**:6430-6436.
- 134. **Neckers, L., and U. Tatu.** 2008. Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe **4**:519-527.
- 135. Ohta, H., H. Hara, K. Fukui, H. Kurihara, Y. Murayama, and K. Kato. 1993. Association of *Actinobacillus actinomycetemcomitans* leukotoxin with nucleic acids on the bacterial cell surface. Infect Immun **61**:4878-4884.
- 136. **Olsufjev, N. G.** 1970. Taxonomy and characteristic of the genus *Francisella* Dorofeev, 1947. J Hyg Epidemiol Microbiol Immunol **14**:67-74.
- 137. Olsufjev, N. G., and I. S. Meshcheryakova. 1982. Infraspecific taxonomy of tularemia agent *Francisella tularensis* McCoy et Chapin. J Hyg Epidemiol Microbiol Immunol **26**:291-299.
- 138. Olsufjev, N. G., and I. S. Meshcheryakova. 1983. Subspecific taxonomy of *Francisella-tularensis* Mccoy and Chapin 1912. International Journal of Systematic Bacteriology **33**:872-874.

- 139. Ottem, K. F., A. Nylund, E. Karlsbakk, A. Friis-Moller, and T. Kamaishi. 2009. Elevation of *Francisella philomiragia* subsp. *noatunensis* Mikalsen et al. (2007) to *Francisella noatunensis* comb. nov. [syn. *Francisella piscicida* Ottem et al. (2008) syn. nov.] and characterization of *Francisella noatunensis* subsp. *orientalis* subsp. nov., two important fish pathogens. J Appl Microbiol **106**:1231-1243.
- 140. Ottem, K. F., A. Nylund, E. Karlsbakk, A. Friis-Moller, B. Krossoy, and D. Knappskog. 2007. New species in the genus *Francisella* (Gammaproteobacteria; Francisellaceae); *Francisella piscicida* sp. nov. isolated from cod (*Gadus morhua*). Arch Microbiol **188**:547-550.
- 141. **Oyston, P. C.** 2008. *Francisella tularensis*: unravelling the secrets of an intracellular pathogen. J Med Microbiol **57**:921-930.
- 142. Pammit, M. A., E. K. Raulie, C. M. Lauriano, K. E. Klose, and B. P. Arulanandam. 2006. Intranasal vaccination with a defined attenuated *Francisella novicida* strain induces gamma interferon-dependent antibody-mediated protection against tularemia. Infect Immun **74**:2063-2071.
- 143. **Pavlov, V. M., I. V. Rodionova, A. N. Mokrievich, and I. S. Meshcheriakova.** 1994. Isolation and molecular-genetic characteristic of a cryptic plasmid from the *Francisella novicida* like F6168 strain. Mol Gen Mikrobiol Virusol:39-40.
- 144. Pearse, R. A. 1911. Insect bites. Medical Sentinal 3:81-82.
- 145. Pechous, R. D., T. R. McCarthy, N. P. Mohapatra, S. Soni, R. M. Penoske, N. H. Salzman, D. W. Frank, J. S. Gunn, and T. C. Zahrt. 2008. A Francisella tularensis SCHU S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PLoS One 3:e2487.
- 146. **Pechous, R. D., T. R. McCarthy, and T. C. Zahrt.** 2009. Working toward the future: insights into *Francisella tularensis* pathogenesis and vaccine development. Microbiol Mol Biol Rev **73:**684-711.
- 147. Pelicic, V. 2008. Type IV pili: e pluribus unum? Mol Microbiol 68:827-837.
- 148. **Petersen, J. M., P. S. Mead, and M. E. Schriefer.** 2009. *Francisella tularensis:* an arthropod-borne pathogen. Vet Res **40**:7.
- 149. **Petersen, J. M., and C. R. Molins.** 2010. Subpopulations of *Francisella tularensis* ssp. *tularensis* and *holarctica*: identification and associated epidemiology. Future Microbiol **5**:649-661.
- 150. Petrosino, J. F., Q. Xiang, S. E. Karpathy, H. Jiang, S. Yerrapragada, Y. Liu, J. Gioia, L. Hemphill, A. Gonzalez, T. M. Raghavan, A. Uzman, G. E. Fox, S. Highlander, M. Reichard, R. J. Morton, K. D. Clinkenbeard, and G. M. Weinstock. 2006. Chromosome rearrangement and diversification of *Francisella tularensis* revealed by the type B (OSU18) genome sequence. J Bacteriol 188:6977-6985.
- 151. Phillips, N. J., B. Schilling, M. K. McLendon, M. A. Apicella, and B. W. Gibson. 2004. Novel modification of lipid A of *Francisella tularensis*. Infect Immun **72**:5340-5348.
- 152. **Pierini, L. M.** 2006. Uptake of serum-opsonized *Francisella tularensis* by macrophages can be mediated by class A scavenger receptors. Cell Microbiol **8**:1361-1370.
- 153. Platz, G. J., D. C. Bublitz, P. Mena, J. L. Benach, M. B. Furie, and D. G. Thanassi. 2010. A *tolC* mutant of *Francisella tularensis* is hypercytotoxic compared to the wild type and elicits increased proinflammatory responses from host cells. Infect Immun **78**:1022-1031.
- 154. **Qin, A., D. W. Scott, and B. J. Mann.** 2008. *Francisella tularensis* subsp. *tularensis* SCHU S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect Immun **76:**3086-3092.

- 155. Qin, A., D. W. Scott, J. A. Thompson, and B. J. Mann. 2009. Identification of an essential *Francisella tularensis* subsp. *tularensis* virulence factor. Infect Immun **77**:152-161.
- Quarry, J. E., K. E. Isherwood, S. L. Michell, H. Diaper, R. W. Titball, and P. C. Oyston. 2007. A *Francisella tularensis* subspecies *novicida purF* mutant, but not a *purA* mutant, induces protective immunity to tularemia in mice. Vaccine 25:2011-2018.
- 157. Raetz, C. R., and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635-700.
- 158. Rathinam, V. A. K., Z. Z. Jiang, S. N. Waggoner, S. Sharma, L. E. Cole, L. Waggoner, S. K. Vanaja, B. G. Monks, S. Ganesan, E. Latz, V. Hornung, S. N. Vogel, E. Szomolanyi-Tsuda, and K. A. Fitzgerald. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395-403.
- 159. Ray, K., B. Marteyn, P. J. Sansonetti, and C. M. Tang. 2009. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol **7**:333-340.
- 160. Raynaud, C., K. L. Meibom, M. A. Lety, I. Dubail, T. Candela, E. Frapy, and A. Charbit. 2007. Role of the *wbt* locus of *Francisella tularensis* in lipopolysaccharide O-antigen biogenesis and pathogenicity. Infect Immun **75:**536-541.
- 161. Reese, S. M., G. Dietrich, M. C. Dolan, S. W. Sheldon, J. Piesman, J. M. Petersen, and R. J. Eisen. 2010. Transmission dynamics of *Francisella tularensis* subspecies and clades by nymphal *Dermacentor variabilis* (Acari: Ixodidae). Am J Trop Med Hyg 83:645-652.
- 162. **Ritter, D. B., and R. K. Gerloff.** 1966. Deoxyribonucleic acid hybridization among some species of the genus *Pasteurella*. J Bacteriol **92**:1838-1839.
- 163. Rohmer, L., C. Fong, S. Abmayr, M. Wasnick, T. J. Larson Freeman, M. Radey, T. Guina, K. Svensson, H. S. Hayden, M. Jacobs, L. A. Gallagher, C. Manoil, R. K. Ernst, B. Drees, D. Buckley, E. Haugen, D. Bovee, Y. Zhou, J. Chang, R. Levy, R. Lim, W. Gillett, D. Guenthener, A. Kang, S. A. Shaffer, G. Taylor, J. Chen, B. Gallis, D. A. D'Argenio, M. Forsman, M. V. Olson, D. R. Goodlett, R. Kaul, S. I. Miller, and M. J. Brittnacher. 2007. Comparison of *Francisella tularensis* genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8:R102.
- 164. **Ruchman, I., and L. Foshay.** 1949. Immune response in mice after vaccination with *Bacterium tularense*. J Immunol **61:**229-234.
- 165. Salomonsson, E., K. Kuoppa, A. L. Forslund, C. Zingmark, I. Golovliov, A. Sjostedt, L. Noppa, and A. Forsberg. 2009. Reintroduction of two deleted virulence loci restores full virulence to the live vaccine strain of *Francisella tularensis*. Infect Immun **77**:3424-3431.
- 166. **Salton, M. R.** 1953. Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. Biochim Biophys Acta **10**:512-523.
- 167. Sammons-Jackson, W. L., K. McClelland, J. N. Manch-Citron, D. W. Metzger, C. S. Bakshi, E. Garcia, A. Rasley, and B. E. Anderson. 2008. Generation and characterization of an attenuated mutant in a response regulator gene of *Francisella tularensis* live vaccine strain (LVS). DNA Cell Biol 27:387-403.
- 168. **Sandstrom, G., S. Lofgren, and A. Tarnvik.** 1988. A capsule-deficient mutant of *Francisella tularensis* LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun **56**:1194-1202.

- Sandstrom, G., A. Tarnvik, and H. Wolf-Watz. 1987. Immunospecific Tlymphocyte stimulation by membrane proteins from *Francisella tularensis*. J Clin Microbiol 25:641-644.
- 170. Sanford, J. P. 1983. Landmark perspective: Tularemia. JAMA 250:3225-3226.
- 171. Santiago, A. E., L. E. Cole, A. Franco, S. N. Vogel, M. M. Levine, and E. M. Barry. 2009. Characterization of rationally attenuated *Francisella tularensis* vaccine strains that harbor deletions in the *guaA* and *guaB* genes. Vaccine 27:2426-2436.
- Saslaw, S., H. T. Eigelsbach, J. A. Prior, H. E. Wilson, and S. Carhart. 1961. Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 107:702-714.
- 173. Saslaw, S., H. T. Eigelsbach, H. E. Wilson, J. A. Prior, and S. Carhart. 1961. Tularemia vaccine study. I. Intracutaneous challenge. Arch Intern Med 107:689-701.
- 174. Savitt, A. G., P. Mena-Taboada, G. Monsalve, and J. L. Benach. 2009. *Francisella tularensis* infection-derived monoclonal antibodies provide detection, protection, and therapy. Clin Vaccine Immunol **16**:414-422.
- 175. Scheel, O., T. Hoel, T. Sandvik, and B. P. Berdal. 1993. Susceptibility pattern of Scandinavian *Francisella tularensis* isolates with regard to oral and parenteral antimicrobial agents. APMIS **101**:33-36.
- 176. Scheel, O., R. Reiersen, and T. Hoel. 1992. Treatment of tularemia with ciprofloxacin. Eur J Clin Microbiol Infect Dis 11:447-448.
- 177. Schenk, M., J. T. Belisle, and R. L. Modlin. 2009. TLR2 looks at lipoproteins. Immunity 31:847-849.
- 178. Schilling, B., M. K. McLendon, N. J. Phillips, M. A. Apicella, and B. W. Gibson. 2007. Characterization of lipid A acylation patterns in *Francisella tularensis*, *Francisella novicida*, and *Francisella philomiragia* using multiple-stage mass spectrometry and matrix-assisted laser desorption/ionization on an intermediate vacuum source linear ion trap. Anal Chem **79**:1034-1042.
- 179. Schmerk, C. L., B. N. Duplantis, D. Wang, R. D. Burke, A. Y. Chou, K. L. Elkins, J. S. Ludu, and F. E. Nano. 2009. Characterization of the pathogenicity island protein PdpA and its role in the virulence of *Francisella novicida*. Microbiology **155**:1489-1497.
- 180. Schmidt, H., and M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14-56.
- 181. Sebastian, S., S. T. Dillon, J. G. Lynch, L. T. Blalock, E. Balon, K. T. Lee, L. E. Comstock, J. W. Conlan, E. J. Rubin, A. O. Tzianabos, and D. L. Kasper. 2007. A defined O-antigen polysaccharide mutant of *Francisella tularensis* live vaccine strain has attenuated virulence while retaining its protective capacity. Infect Immun **75**:2591-2602.
- 182. Shen, H., W. Chen, and J. W. Conlan. 2004. Mice sublethally infected with *Francisella novicida* U112 develop only marginal protective immunity against systemic or aerosol challenge with virulent type A or B strains of *F. tularensis*. Microb Pathog **37**:107-110.
- Siret, V., D. Barataud, M. Prat, V. Vaillant, S. Ansart, A. Le Coustumier, J. Vaissaire, F. Raffi, M. Garre, and I. Capek. 2006. An outbreak of airborne tularaemia in France, August 2004. Euro Surveill 11:58-60.
- 184. **Sjostedt, A.** 2005. Family XVII. Francisellaceae genus I. *Francisella*, p. 200-210. *In* Brenner DJ, Ed. Bergey's Manual of Systematic Bacteriology. Springer-Verlag, New York.

- 185. **Sjostedt, A.** 2007. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci **1105:**1-29.
- 186. **Sjostedt, A., G. Sandstrom, and A. Tarnvik.** 1992. Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of *Francisella tularensis* expressed by *Salmonella typhimurium*. Infect Immun **60**:2855-2862.
- 187. Sorokin, V. M., N. V. Pavlovich, and L. A. Prozorova. 1996. *Francisella tularensis* resistance to bactericidal action of normal human serum. FEMS Immunol Med Microbiol **13**:249-252.
- Staples, J. E., K. A. Kubota, L. G. Chalcraft, P. S. Mead, and J. M. Petersen. 2006. Epidemiologic and molecular analysis of human tularemia, United States, 1964-2004. Emerg Infect Dis 12:1113-1118.
- 189. Steinemann, T. L., M. R. Sheikholeslami, H. H. Brown, and R. W. Bradsher. 1999. Oculoglandular tularemia. Arch Ophthalmol **117**:132-133.
- 190. Stenmark, S., H. Lindgren, A. Tarnvik, and A. Sjostedt. 2003. Specific antibodies contribute to the host protection against strains of *Francisella tularensis* subspecies *holarctica*. Microb Pathog **35**:73-80.
- 191. Straskova, A., I. Pavkova, M. Link, A. L. Forslund, K. Kuoppa, L. Noppa, M. Kroca, A. Fucikova, J. Klimentova, Z. Krocova, A. Forsberg, and J. Stulik. 2009. Proteome analysis of an attenuated *Francisella tularensis dsbA* mutant: identification of potential DsbA substrate proteins. J Proteome Res 8:5336-5346.
- 192. Su, J., J. Yang, D. Zhao, T. H. Kawula, J. A. Banas, and J. R. Zhang. 2007. Genome-wide identification of *Francisella tularensis* virulence determinants. Infect Immun **75**:3089-3101.
- 193. Tarnvik, A., and M. C. Chu. 2007. New approaches to diagnosis and therapy of tularemia. Ann N Y Acad Sci 1105:378-404.
- 194. **Tarnvik, A., H. S. Priebe, and R. Grunow.** 2004. Tularaemia in Europe: an epidemiological overview. Scand J Infect Dis **36**:350-355.
- 195. Taylor, J. P., G. R. Istre, T. C. McChesney, F. T. Satalowich, R. L. Parker, and L. M. McFarland. 1991. Epidemiologic characteristics of human tularemia in the southwest-central states, 1981-1987. Am J Epidemiol 133:1032-1038.
- 196. **Tempel, R., X. H. Lai, L. Crosa, B. Kozlowicz, and F. Heffron.** 2006. Attenuated *Francisella novicida* transposon mutants protect mice against wildtype challenge. Infect Immun **74:**5095-5105.
- 197. Thakran, S., H. Li, C. L. Lavine, M. A. Miller, J. E. Bina, X. R. Bina, and F. Re. 2008. Identification of *Francisella tularensis* lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J Biol Chem 283:3751-3760.
- 198. **Thomas, L. D., and W. Schaffner.** 2010. Tularemia pneumonia. Infect Dis Clin North Am **24:**43-55.
- 199. Thomas, R. M., R. W. Titball, P. C. Oyston, K. Griffin, E. Waters, P. G. Hitchen, S. L. Michell, I. D. Grice, J. C. Wilson, and J. L. Prior. 2007. The immunologically distinct O antigens from *Francisella tularensis* subspecies *tularensis* and *Francisella novicida* are both virulence determinants and protective antigens. Infect Immun **75**:371-378.
- Tigertt, W. D. 1962. Soviet viable *Pasteurella tularensis* vaccines. A review of selected articles. Bacteriol Rev 26:354-373.
- 201. **Titball, R. W., and J. F. Petrosino.** 2007. *Francisella tularensis* genomics and proteomics. Ann N Y Acad Sci **1105:**98-121.
- 202. **Trevisanato, S. I.** 2007. The biblical plague of the Philistines now has a name, tularemia. Med Hypotheses **69**:1144-1146.
- 203. **Trevisanato, S. I.** 2007. The 'Hittite plague', an epidemic of tularemia and the first record of biological warfare. Med Hypotheses **69**:1371-1374.

- 204. Twine, S., M. Bystrom, W. Chen, M. Forsman, I. Golovliov, A. Johansson, J. Kelly, H. Lindgren, K. Svensson, C. Zingmark, W. Conlan, and A. Sjostedt. 2005. A mutant of *Francisella tularensis* strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infect Immun 73:8345-8352.
- Vinogradov, E., W. J. Conlan, J. S. Gunn, and M. B. Perry. 2004. Characterization of the lipopolysaccharide O-antigen of *Francisella novicida* (U112). Carbohydr Res 339:649-654.
- 206. Vinogradov, E., M. B. Perry, and J. W. Conlan. 2002. Structural analysis of *Francisella tularensis* lipopolysaccharide. Eur J Biochem **269:**6112-6118.
- Vinogradov, E. V., A. S. Shashkov, Y. A. Knirel, N. K. Kochetkov, N. V. Tochtamysheva, S. F. Averin, O. V. Goncharova, and V. S. Khlebnikov. 1991. Structure of the O-antigen of *Francisella tularensis* strain 15. Carbohydr Res 214:289-297.
- 208. Vogler, A. J., D. Birdsell, L. B. Price, J. R. Bowers, S. M. Beckstrom-Sternberg, R. K. Auerbach, J. S. Beckstrom-Sternberg, A. Johansson, A. Clare, J. L. Buchhagen, J. M. Petersen, T. Pearson, J. Vaissaire, M. P. Dempsey, P. Foxall, D. M. Engelthaler, D. M. Wagner, and P. Keim. 2009. Phylogeography of *Francisella tularensis*: global expansion of a highly fit clone. J Bacteriol 191:2474-2484.
- 209. Wang, X., A. A. Ribeiro, Z. Guan, S. C. McGrath, R. J. Cotter, and C. R. Raetz. 2006. Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in *Francisella tularensis* subsp. *novicida*. Biochemistry **45**:14427-14440.
- 210. Wang, X. Y., Z. Q. Guan, Y. Y. Li, and C. R. H. Raetz. 2010. Application of electrospray ionization mass spectrometry to characterize glycerophospholipids in *Francisella tularensis* subsp *novicida*. International Journal of Mass Spectrometry **293**:45-50.
- Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Truper. 1987. Report of the Ad-Hoc-Committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology 37:463-464.
- 212. Wehrly, T. D., A. Chong, K. Virtaneva, D. E. Sturdevant, R. Child, J. A. Edwards, D. Brouwer, V. Nair, E. R. Fischer, L. Wicke, A. J. Curda, J. J. Kupko, 3rd, C. Martens, D. D. Crane, C. M. Bosio, S. F. Porcella, and J. Celli. 2009. Intracellular biology and virulence determinants of *Francisella tularensis* revealed by transcriptional profiling inside macrophages. Cell Microbiol **11**:1128-1150.
- 213. Weiss, D. S., A. Brotcke, T. Henry, J. J. Margolis, K. Chan, and D. M. Monack. 2007. *In vivo* negative selection screen identifies genes required for *Francisella* virulence. Proc Natl Acad Sci U S A **104**:6037-6042.
- 214. Weiss, D. S., T. Henry, and D. M. Monack. 2007. *Francisella tularensis*: activation of the inflammasome. Ann N Y Acad Sci **1105**:219-237.
- 215. West, T. E., M. R. Pelletier, M. C. Majure, A. Lembo, A. M. Hajjar, and S. J. Skerrett. 2008. Inhalation of *Francisella novicida* Delta *mglA* causes replicative infection that elicits innate and adaptive responses but is not protective against invasive pneumonic tularemia. Microbes Infect **10**:773-780.
- 216. Wheelis, M., L. Rózsa, and M. Dando. 2006. Deadly cultures: biological weapons since 1945. Harvard University Press, Cambridge, Mass.

- 217. Wherry, W. B., and B. H. Lamb. 2004. Infection of man with *Bacterium tularense*. 1914. J Infect Dis **189**:1321-1329.
- 218. Whitfield, C. 2006. Biosynthesis and assembly of capsular polysaccharides in *Escherichia coli*. Annu Rev Biochem **75**:39-68.
- 219. Whittaker, P., J. B. Day, S. K. Curtis, and F. S. Fry. 2007. Evaluating the use of fatty acid profiles to identify *Francisella tularensis*. J AOAC Int **90**:465-469.
- 220. Woolard, M. D., J. E. Wilson, L. L. Hensley, L. A. Jania, T. H. Kawula, J. R. Drake, and J. A. Frelinger. 2007. *Francisella tularensis*-infected macrophages release prostaglandin E2 that blocks T cell proliferation and promotes a Th2-like response. J Immunol **178**:2065-2074.
- 221. **World Health Organization.** 1970. Health aspects of chemical and biological weapons. Report of a WHO Group of Consultants. Geneva,.
- 222. Yu, J. J., T. Goluguri, M. N. Guentzel, J. P. Chambers, A. K. Murthy, K. E. Klose, T. G. Forsthuber, and B. P. Arulanandam. 2010. *Francisella tularensis* T-cell antigen identification using humanized HLA-DR4 transgenic mice. Clin Vaccine Immunol **17**:215-222.
- 223. **Zolkiewski, M.** 2006. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol Microbiol **61**:1094-1100.

## Chapter II

## Literature Review Part II: The Surface Proteome of *F. tularensis*

# 2.1 Introduction

The surface proteins of bacterial pathogens constitute a diverse group of structures and enzymes that are involved in numerous biotic and abiotic interactions including, adhesion, invasion of host cells, environmental sensing, nutrient processing and acquisition, and immune effectors (14, 53, 68). Further, bacterial surface proteins are often recognized by hosts and are considered the basis for the many rationally designed vaccines (12, 84). Given the diversity and importance of these proteins, the characterization of surface proteomes can provide valuable insights into pathogenesis, the niches bacterium exploit for survival, and vaccine development. Francisella species, subspecies, and populations are documented to survive in >300 species of animals (intracellulary and extracellulary) and identified in environmental samples, but have different niche requirements (11, 66, 75). It is likely that surface proteins mediate these interactions, and alterations in surface proteomes may contribute to the phenotypic variability of Francisella biotypes (19, 62). Although only 10 proteins are reported on the surface of Francisella species, several have documented roles in pathogenesis and immunity (5, 49, 62, 82, 90, 92). Further, experimental characterizations of the F. tularensis membrane proteome and secretome as well as bioinformatic predictions indicate a much large number of proteins are surface associated, and these too may play important roles in F. tularensis ecology and virulence (44, 48). This chapter discusses the known and candidate surface proteins of *Francisella* species, subspecies,

and populations, and their roles in the biology, pathogenesis, and phenotypic variation of this genus.

### 2.2 Bioinformatic signatures of *F. tularensis* surface proteins

To be surface associated, the proteins of Gram-negative bacteria must first bypass the outer membrane and integrate with cell surface components (41). The physiological processes that allow for these interactions are determined largely by a protein's structure. The two most common signatures that are used for the identification and support of surface protein classifications are signal peptides and  $\beta$ -barrels that enable protein translocation/secretion and integration into the outer membrane, respectively (94, 99). Bioinformatic analyses of *F. tularensis* genomes indicate >1/6<sup>th</sup> of the proteins are secreted or translocated (Appendix 2). In contrast, a much smaller number of proteins contain  $\beta$ -barrels (Appendix 2) (about 40). Of these approximately half contain a signal peptide (Appendix 2). Other methods to identify surface proteins *in silico* rely primarily on homology searches that compare a target sequence to proteins of known surface localization (101). These types of analyses indicate approximately 3% of the proteins encoded by *F. tularensis* could be surface associated.

## 2.3 Surface proteins of *F. tularensis*

Currently, 10 proteins have been specifically localized to the surface of *F*. *tularensis*. (60, 62, 67, 80). The first of these identified, FopA (FTT\_0583), is a 43 kDa antigen that was identified in lithium chloride extracts (13). In addition to frequent identification in membrane preparations, the surface localization of this protein was confirmed by Melillo *et al.* using surface protein biotinylation (62). FopA contains a C-terminal OmpA-C like domain, and thus belongs to the OmpA family of proteins. OmpA homologs are among the most abundant types of surface proteins in other Gram-

negative bacteria and function as cell surface receptors, enhance conjugation frequencies, aid in host cell invasion, and participate in biofilm formation (87). FopA is highly conserved among *F. tularensis* genomes, is required for *F. novicida* growth in murine macrophages, and is described as a virulence factor in *F. tularensis* LVS (90, 92). Monoclonal antibodies to FopA can be administered therapeutically to provide a marginal protective effect against *F. tularensis* infection (82).

A 17 kDa lipoprotein, TUL4 (FTT\_0901), was another presumed *F. tularensis* surface protein that was first identified in *N*-lauroyl sarcosinate insoluble protein fractions (13). It was initially considered an integral membrane lipoprotein protein based on the results of [<sup>3</sup>H] palmitate radiolabeling and detergent extractions (86). However, subsequent studies clearly determined that TUL4 localized on the outer membrane (44, 47). Antibodies directed against this protein have some protective effect, and TUL4 stimulation of T cells leads to the production of important proinflammatory cytokines IFN- $\gamma$  and TNF- $\alpha$  (26, 82, 85). The function of TUL4 is unknown for the coccobacilli, it is not required for virulence, and beyond Francisellaceae, bioinformatic similarity searches do not identify any closely related orthologs with known function (29).

Specific biotin labeling and subsequent enrichment was used to identify the remaining known surface proteins of *Francisella* species (60, 62). Using these methods, Melillo *et al.* found six proteins in addition to FopA (FTT\_0583) on the surface of *F. tularensis* LVS (DnaK, FTT\_1269; GroEL, FTT\_1696; hypothetical protein FsaP, FTT\_0119; IgIA, FTT\_1359; hypothetical protein VgrG, FTT\_1347; and hypothetical protein Bfr, FTT\_1441), but did not detect TUL4 (FTT\_0901). Similarly, Ludu *et al.* determined the surface localization of the proteins IgIB (FTN\_1323) and IgIC (FTN\_1322) in *F. novicida* (60). Of these, bioinformatic analyses suggest only hypothetical protein FTT\_0119 has a surface localization (60, 62). However, the

as these are increasingly being described on the surface of other pathogenic bacteria (69). Chaperones such as GroEL and DnaK have auxiliary functions while surface associated and are involved in processes such as immune modulation, cell adhesion, and host factor binding (9, 16). GroEL and DnaK are upregulated when coccobacilli are exposed to hydrogen peroxide, and GroEL was especially abundant in the *F. tularensis* LVS-containing phagosomes of macrophages indicating an important role for these proteins during intracellular survival (49).

The hypothetical surface protein FsaP (FTT\_0119) is reported to contain a lysine motif LysM domain which may anchor it to peptidoglycan or act as a surface associated adhesion (6, 62). In a study by Melillo *et al.*, *F. tularensis* LVS was shown to efficiently adhere to A549 human epithelial cells, and production of *F. tularensis* FsaP in *E. coli* allowed for epithelial cell interaction with the heterologous host (62). In contrast, *F. novicida* does not associate with lung epithelial cells. Bioinformatic analyses of the *F. novicida* FsaP homolog identified a single amino acid substitution in its signal peptide that was predicted to prevent protein translocation (62). In support of this prediction FsaP was not localized in the outer membrane of *F. novicida*. Thus, surface localization of FsaP represents a distinct difference in the surface proteomes of *F. tularensis* and *F. novicida*.

IgIA (FTT\_1714), IgIB (FTT\_1713), and IgIC (FTT\_1712) are surface proteins thought to be involved in Type VI secretion. All of these proteins have been identified as antigens and have important roles in pathogenesis (15, 45, 46, 81). IgIA and IgIB are conserved components of Type VI secretion systems and orthologs are identified in bacterial pathogens such as *V. cholerae*, *Pseudomonas aeruginosa*, and *Burkholderia mallei* (15). Together these proteins form a complex shown to enhance the intracellular growth and virulence *F. tularensis* LVS (15). IgIC is unique to *Francisella* and is required for the coccobacilli to escape the phagosome and replicate in the cytosol of

macrophages (57, 81). Crystallization and structural analyses of IgIC revealed an unusual structure that displayed little homology to any other protein (91). The predominant feature is a  $\beta$ -sandwich plate conformation composed of two units of antiparallel  $\beta$ -strands that are sandwiched together by hydrophobic interactions. This conformation is unique to IgIC (91). Mechanistically, the specific function of IgIC is unknown, thus it is difficult to speculate on the structural significance of this protein. Another surface protein involved with Type VI secretion, hypothetical protein VgrG (FTT\_1347) resembles the spike complex of bacteriophage T4 and is encoded by all *F. tularensis* biotypes (5). In *V. cholerae*, VgrG homologs form a trimeric complex that may puncture host membranes and also enzymatically cross-link host cell actin (77).

### 2.4 Gram-negative protein secretion and the secretome of *F. tularensis*

Considering the importance of translocation and secretion in surface protein localization and identification, it is necessary to briefly preface the specific mechanisms and structures that allow for protein export. Two evolutionary conserved pathways, the generalized secretion system (Sec) and two-arginine translocation (Tat), allow protein transport into or across the plasma membrane in Gram-negative bacteria (Fig. 2.1) (41). A number of more specialized "one-step" and "two-step" secretion systems are also known (Fig. 2.1) (25). One-step secretion systems export proteins directly from the cytoplasm beyond the outer membrane, and include Type I, III, VI, and VI systems (41). Two-step secretion systems rely on Sec or Tat machinery to move protein to the periplasm where Type II or V, and occasionally Type I, secretion systems shuttle proteins in or beyond the outer membrane (41).


**Fig. 2.1 Gram-negative secretion and translocation adapted from Tseng** *et al.* **(94).** A simplified view of secretion and translocation systems of Gram-negative bacteria. HM, Host membrane; OM, outer membrane; IM, inner (cytoplasmic) membrane.

The specificity of secretion is largely dependent on the recognition of signal peptides. In the case of Sec secretion, hydrophobic N-terminal leader sequences of 20 to 30 amino acids are recognized on unfolded proteins (71). Signal sequence recognition is very similar between Sec and Tat systems except the Tat signal peptides

contain a motif of two arginines, have different charge properties, and are slightly less hydrophobic than Sec signal peptides (23). Most Type I signaling motifs are located at the C-terminus, but these sequences are not always highly conserved (41). The molecular features allowing for recognition of Type II secretion substrates are not completely characterized, but can involve the tertiary structure of the substrate and multiple contacts with the secretion complex (20). Type II protein secretion appears to require N-terminal secretion signals on the protein or even mRNA (24). Similarly, Type III secretion utilizes N-terminal signal peptides, but non-N-terminal signaling motifs are known to allow the secretion of several proteins (24). Analyses of protein substrates of Type IV secretion in Legionella pneumophila and Agrobacterium tumefaciens showed that Type IV signaling motifs reside at the C-terminus and consist of hydrophobic or positively charged amino acid clusters (2). However, other motifs and accessory proteins are shown to effect Type IV secretion of some proteins (2). In general, Type V secretins contain N-terminal cleavable secretion sequences for Sec translocation (94). Following Sec translocation of Type V secretins the C-terminal domain forms a β-barrel pore which allows for export of the passenger domain through the outer membrane (94). The events and signals of Type VI secretion that allow for substrate recognition and export are currently unclear (10).

The Sec system is complete and highly conserved in the *Francisella* genus, but no functional Tat system is apparent (19). In addition, three specialized secretion systems, Type I, Type II, and Type VI are identified (19, 93). Components of both Type III and Type IV systems are recognized, but are predicted to be non-functional (19). There is currently no evidence to support the presence of Type V autotransporter proteins (93). Few studies have identified substrates of *Francisella* protein secretion (Table 2.1). Two proteins have been shown to be secreted by the Type VI secretion system in *F. novicida*, a VgrG homolog (FTN\_1312) and a hypothetical protein IgII

(FTN\_1317) (5). Lee et al. characterized the protein secretomes of F. tularensis LVS and a F. tularensis type A clinical isolate grown in vitro, identifying 12 substrates (54). A similar study identified 21 and 26 proteins in culture supernatants (CS) of F. tularensis LVS and SCHU S4, respectively (48). Interestingly, only 17 of the 47 proteins in the latter study were predicted to contain signal peptide motifs. Along with chaperons containing no predicted signal peptides, other predicted cytosolic proteins were identified in these studies including glyceraldehyde-3-phosphate dehydrogenase (FTT\_1368). Glyceraldehyde-3-phosphate dehydrogenase was the first assumed cytosolic protein identified on the surface of a bacterium, and was shown to interact with host plasminogen, fibronectin, and lysozyme as well as the cytoskeletal proteins myosin and actin (59, 70). F. tularensis is also capable of binding plasminogen to its surface which can then be digested into plasmin by a tissue plasminogen activator (21). Cell surface plasmin is an important virulence mechanism of other bacterial pathogens that allows these organisms to degrade the extracellular matrix surrounding host cells and enhances dissemination to distal sites (21). F. tularensis SCHU S4 was recently shown to bind activated plasmin to its surface whereas *F. tularensis* LVS did not (22). The authors of this study showed that plasmin coated F. tularensis SCHU S4 was capable of degrading antibodies and reduced uptake of the bacteria by macrophages. The specific molecules that allow F. tularensis to bind to plasminogen/plasmin are unknown, but several *F. tularensis* membrane proteins have plasminogen binding affinities (21).

| Strain (ref)                                                                              | Growth conditions                                                           | Protein identified                                            | Loci      |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|-----------|
| <i>F. tularensis</i> LVS<br>and <i>F. tularensis</i><br>(recent clinical<br>isolate) (54) |                                                                             | Superoxide dismutase (Fe)                                     | FTT_0068  |
|                                                                                           |                                                                             | Succinyl-CoA synthetase, alpha subunit                        | FTT_0503  |
|                                                                                           |                                                                             | Succinyl-CoA synthetase subunit beta                          | FTT_0504  |
|                                                                                           |                                                                             | AhpC/TSA family protein                                       | FTT_0557  |
|                                                                                           |                                                                             | Peroxidase/catalase                                           | FTT_0721  |
|                                                                                           | Chamberlain broth, CS collected at 8, 16, and 24 hours post inoculation     | Purine nucleoside phosphorylase                               | FTT_0766  |
|                                                                                           |                                                                             | Molecular chaperone DnaK                                      | *FTT_1269 |
|                                                                                           |                                                                             | Glyceraldehyde-3-phosphate dehydrogenase                      | FTT_1368  |
|                                                                                           |                                                                             | Malonyl CoA-acyl carrier protein transacylase                 | FTT_1374  |
|                                                                                           |                                                                             | Hypothetical protein                                          | *FTT_1441 |
|                                                                                           |                                                                             | Co-chaperonin GroES                                           | FTT_1695  |
|                                                                                           |                                                                             | Chaperonin GroEL                                              | *FTT_1696 |
|                                                                                           |                                                                             | Hypothetical protein                                          | FTN_0175  |
|                                                                                           |                                                                             | Glycosyl hydrolase family chitinase                           | FTN_0627  |
|                                                                                           |                                                                             | M13 family metallopeptidase                                   | FTN_1186  |
| F. novicida U112                                                                          | Tryptic soy broth supplement with 0.1% cysteine, CS collected mid log phase | Hypothetical protein                                          | FTN_1261  |
| ()                                                                                        |                                                                             | Glycosy hydrolase family 3 protein                            | FTN_1474  |
|                                                                                           |                                                                             | Chitin-binding protein                                        | FTN_1485  |
|                                                                                           |                                                                             | Chitinase                                                     | FTN_1744  |
| F. novicida U112                                                                          | TSAP broth, CS collected when growth                                        | Hypothetical protein VgrG                                     | *FTN_1312 |
| (5)                                                                                       | reached an OD <sub>600</sub> of 1.0                                         | Igli                                                          | FTN_1318  |
|                                                                                           | Chamberlain broth, CS harvested at late log<br>phase                        | Pyrrolidone-carboxylate peptidase                             | FTL_0207  |
|                                                                                           |                                                                             | Glutamate dehydrogenase                                       | FTL_0269  |
|                                                                                           |                                                                             | Glycine cleavage system<br>aminomethyltransferase T           | FTL_0477  |
|                                                                                           |                                                                             | Hypothetical protein                                          | *FTL_0617 |
|                                                                                           |                                                                             | Histone-like protein HU form B                                | FTL_0895  |
|                                                                                           |                                                                             | ATP-dependent protease peptidase subunit                      | FTL_0965  |
|                                                                                           |                                                                             | AhpC/TSA family protein                                       | FTL_1015  |
|                                                                                           |                                                                             | Glyceraldehyde-3-phosphate dehydrogenase                      | FTL_1146  |
|                                                                                           |                                                                             | Molecular chaperone DnaK                                      | *FTL_1191 |
| <i>F. tularensis</i> LVS<br>(48)                                                          |                                                                             | D-ribulose-phosphate 3-epimerase                              | FTL_1432  |
|                                                                                           |                                                                             | Purine nucleoside phosphorylase                               | FTL_1461  |
|                                                                                           |                                                                             | Translation initiation inhibitor                              | FTL_1498  |
|                                                                                           |                                                                             | Peroxidase/catalase                                           | FTL_1504  |
|                                                                                           |                                                                             | Glycerophosphoryl diester phosphodiesterase<br>family protein | FTL_1511  |
|                                                                                           |                                                                             | Putative periplasmic protease                                 | FTL_1605  |
|                                                                                           |                                                                             | Chaperonin GroEL                                              | *FTL_1714 |
|                                                                                           |                                                                             | 50S ribosomal protein L11                                     | FTL_1748  |
|                                                                                           |                                                                             | Transcription antitermination protein nusG                    | FTL_1749  |
|                                                                                           |                                                                             | Triosephosphate isomerase                                     | FTL_1780  |

# Table 2.1 Secreted proteins of F. tularensis and F. novicida

| Strain (ref)                     | Growth conditions                                 | Protein identified                                            | Loci      |
|----------------------------------|---------------------------------------------------|---------------------------------------------------------------|-----------|
| <i>F. tularensis</i> LVS<br>(48) | Chamberlain broth, CS harvested at late log phase | Succinate dehydrogenase iron-sulfur subunit                   | FTL_1785  |
|                                  |                                                   | Superoxide dismutase                                          | FTL_1791  |
|                                  | Chamberlain broth, CS harvested at late log phase | Superoxide dismutase (Fe)                                     | FTT_0068  |
|                                  |                                                   | Triosephosphate isomerase                                     | FTT_0080  |
|                                  |                                                   | Acid phosphatase (precursor)                                  | FTT_0221  |
|                                  |                                                   | Ribosome recycling factor                                     | FTT_0316  |
|                                  |                                                   | 3-dehydroquinate dehydratase                                  | FTT_0471  |
|                                  |                                                   | Hypothetical protein                                          | FTT_0484  |
|                                  |                                                   | Lactate dehydrogenase                                         | FTT_0535  |
|                                  |                                                   | AhpC/TSA family protein                                       | FTT_0557  |
|                                  |                                                   | Outer membrane associated protein                             | *FTT_0583 |
|                                  |                                                   | Beta-lactamase                                                | FTT_0611  |
|                                  |                                                   | Hypothetical protein                                          | FTT_0704  |
|                                  |                                                   | Peroxidase/catalase                                           | FTT_0721  |
| F. tularensis SCHU               |                                                   | Glycerophosphoryl diester phosphodiesterase<br>family protein | FTT_0726  |
| 54 (48)                          |                                                   | Purine nucleoside phosphorylase                               | FTT_0766  |
|                                  |                                                   | D-ribulose-phosphate 3-epimerase                              | FTT_0789  |
|                                  |                                                   | Fumarylacetoacetate hydrolase family protein                  | FTT_1023  |
|                                  |                                                   | 50S ribosomal protein L9                                      | FTT_1060  |
|                                  |                                                   | Transcriptional regulator                                     | FTT_1075  |
|                                  |                                                   | Molecular chaperone DnaK                                      | *FTT_1269 |
|                                  |                                                   | Translation initiation inhibitor                              | FTT_1338  |
|                                  |                                                   | Glyceraldehyde-3-phosphate dehydrogenase                      | FTT_1368  |
|                                  |                                                   | Acyl carrier protein                                          | FTT_1376  |
|                                  |                                                   | Hypothetical protein                                          | *FTT_1441 |
|                                  |                                                   | Co-chaperonin GroES                                           | FTT_1695  |
|                                  |                                                   | Chaperonin GroEL                                              | *FTT_1696 |
|                                  |                                                   | Outer membrane protein                                        | FTT_1747  |

Table 2.1 Secreted proteins of F. tularensis and F. novicida, continued

\*Indicates the protein was previously identified as surface exposed.

Hager *et al.* confirmed the presence of a functional Type II secretion system in *F. novicida* and identified seven substrate proteins that included three chitinolytic proteins (FTN\_0627, FTN\_1485, and FTN\_1744), a M13 family metallopeptidase (FTN\_1186), a family 3 glycosyl hydrolase (FTN\_1474), and two hypothetical proteins (FTN\_0175 and FTN\_1261) (35). A homolog of the *F. novicida* secreted chitinase, ChiA (FTN\_0627), was identified in *F. tularensis* membrane fractions and was recognized as an antigen in

multiple studies (Appendix 3) (44). Genome analyses indicated the secreted chitinases differ between *F. tularensis* biotypes, and this variability might contribute to unique phenotypes and niche occupations (19, 64). Chitinases are similar to cellulases in that they are both glycosyl hydrolases that act on similar polymers, chitin (a polymer of  $\beta$ -1,4 linked *N*-acetyl-D-glucosamine) and cellulose (a polymer of  $\beta$ -1,4 linked D-glucose), respectively (65). Several bacteria that degrade cellulose assemble large cellulase-containing surface structures called cellulosomes (7, 83). Given the similarities of chitinases and cellulases and their substrates, the existence of analogous surface associated chitinosomes has been proposed (52).

Bacterial glycoproteins are typically translocated products that may be fully secreted or incorporated into surface structures such as an S layer or the outer membrane (39, 83). Balonova *et al.* used four lectins, *Sambucus nigra agglutinin* (SNA), *Maakcia amurensis agglutinin* (MAA), *Datura stramonium agglutinin* (DSA), and *Peanut agglutinin* (PNA) to identify and profile *F. tularensis* membrane glycoproteins (3). SNA preferentially recognizes sialic acid linked (2-6) to galactose; MAA recognizes sialic acid linked (2-3) to galactose; DSA recognizes structures with terminal galactose (1-4) linked with *N*-acetyl glucosamine; and PNA recognizes galactose (1-3) linked to *N*-acetyl galactosamine (3). Lectin profiling, in conjunction with hydrazide labeling, identified 20 putative glycoproteins and provided evidence of the glycan moieties synthesized by *F. tularensis*. Sixteen of the proteins identified showed affinity for SNA, six for MAA, two for DSA, and one for PNA. Four proteins (outer membrane protein FopA, FTH\_1293; signal recognition particle receptor FtsY, FTH\_1598; ABC superfamily ATP binding cassette transporter, FTH\_1206; and succinate dehydrogenase, FTH\_1721) had affinity for two or more of these lectins.

# 2.5 Analyses of *F. tularensis* membrane fractions

Membrane localization is a principle signature of many surface associated proteins, and analyses of membrane fractions by 2D-PAGE has provided insights to the possible composition of the *F. tularensis* surface proteome (33, 37, 44, 45, 72, 73, 89, 95, 97). 2D separation of *F. tularensis* membrane proteins was largely pioneered under the direction of Jiri Stulik and resulted in improved procedures for sample fractionation (carbonate extraction), solubilization (addition of the detergent ASB-14), and introduced narrow range isoelectric focusing (IEF) pH gradients that allowed for improved protein resolution (37, 43). Solubilization methods were optimized by Twine *et al.* who demonstrated that specific concentrations of ASB-14 allowed for the visualization of additional membrane proteins (95). The number of protein spots observed in sodium carbonate membrane preparations ranges from 300-800 when separated using pH 3-10 IEF strips and 200 spots using pH 6-11 IEF strips (43, 72, 73). Despite these findings, only 38 and 85 membrane proteins were identified in *F. tularensis* type A and type B, respectively (Appendix 4) (37, 45, 46, 72, 73, 89, 95).

Analyses of outer membrane preparations of *F. tularensis* SCHU S4 and LVS by Huntley *et al.* may provide a more realistic view of the surface proteome. In this study twelve proteins were identified by MS in conjunction with 2D-PAGE. Of these, only five were predicted by the authors bioinformatic analyses to be outer membrane proteins (peroxidase/catalase, FTT\_0721; Type IV pilin multimeric outer membrane protein, FTT\_1156; hypothetical protein, FTL\_0439; outer membrane associated protein, FTT\_0583; and peptidoglycan-associated lipoprotein, FTT\_0842). The remaining proteins were predicted to be cytosolic (pyruvate dehydrogenase subunit E1, FTT\_1485 and GroEL, FTT\_1696), periplasmic (DnaK, FTT\_1269), or could not be assigned a localization (F0F1 ATP synthase subunit beta, FTT\_0064; lipoprotein, FTT\_1103; OmpA family protein, FTT\_0831; and TUL4, FTT\_0901). Although MS characterizations were

not achieved, Huntley *et al.* identified several other surface protein candidates (hypothetical protein, FTT\_1095; outer membrane efflux protein, FTT\_1258; outer membrane protein, FTT\_1573; outer membrane protein TolC precursor, FTT\_1724; FKBP-type peptidyl-prolyl cis-trans isomerase family protein, FTT\_1043; hypothetical protein FupA, FTT\_0918; hypothetical protein FupB, FTT\_0919; hypothetical protein, FTT\_0025; lipoprotein, FTT\_0904; and LamB/YcsF family protein, FTT\_0223) by Western blot analyses of the outer membrane fraction.

Several of the identified outer membrane proteins (hypothetical protein, FTT\_1095; outer membrane efflux protein, FTT\_1258; and outer membrane protein TolC precursor, FTT\_1724) share significant similarity to the *E. coli* protein TolC (44). TolC forms an outer membrane channel that is utilized by efflux pumps and Type I secretion systems to expel toxins, proteases, and lipases, and can also be involved in multidrug resistances (32, 76). In *F. tularensis* TolC homologs (FTT\_1095 and FTT\_1724) are involved in drug efflux, and deletion of either gene caused increased sensitivities to other small molecules including detergents and dyes (32). Deletion of FTT\_1724 resulted in significant attenuation of *F. tularensis* in an i.d. murine model of infection (32). In this model, decreased bacterial burdens of *F. tularensis*  $\Delta FTT_1724$  compared to wild-type were observed in the lungs, liver, and spleen (76). Additionally, *F. tularensis*  $\Delta FTT_1724$  was hypercytotoxic to both murine and human macrophages and caused overproduction of several proinflammatory chemokines (76).

*F. tularensis* does not encode all of the genes classically associated with iron acquisition, such as *tonB* (63). Nonetheless, several of the possible surface exposed outer membrane proteins identified by Huntley *et al.* were documented to play a role in iron sequestering. The homolog of hypothetical protein FTT\_0025 was upregulated in *F. novicida* during iron limiting conditions, co-transcribed with a siderophore operon, and had an impact on siderophore secretion or uptake (63). Hypothetical protein FupA

(FTT\_0918) regulates both siderophore dependent and independent uptake of iron, and is a major virulence factor in *F. tularensis* (58, 79). The *fupA* gene is disrupted in *F. tularensis* LVS along with the adjacent gene encoding for hypothetical protein FupB (FTT\_0919). This alteration of a possible surface protein is thought to be one of two mutations most responsible for *F. tularensis* LVS attenuation (79).

## 2.6 Type IV pili of *Francisella* species

Type IV pili are filamentous fibers of protein observed on the surface of numerous pathogenic bacteria including enteropathogenic E. coli, V. cholerae, P. aeruginosa, and Neisseria species (17, 61). In these organisms Type IV pili are implicated in adhesion to host cells, biofilm formation, twitching motility, and natural transformation (1, 28, 40). Type IV pili or pili-like structures have been reported on the surface of F. tularensis LVS and F. novicida (18, 31, 102). The abundance, and potentially the structure, of F. tularensis LVS Type IV pill differ depending on the growth conditions used for cultivation (31). Bacteria grown on solid Mueller Hinton (MH) chocolate agar were shown to form short, think, horn-like structures (31). However, based on previous observations, it was speculated that these might be membrane protrusions (30, 31). The large protrusions were absent from bacteria grown in liquid media and were replaced by long thin fibers that frequently had polar localizations. F. tularensis growth in Chamberlains medium increased the proportion of cells producing Type IV pili compared to cells grown in MH broth. Fiber production was greatest after 16 hours of growth in both liquid media tested. F. tularensis LVS that is deficient of pilF (FTL\_0828) or *pilT* (FTL\_1770/FTL\_1771, split gene) did not produce Type IV pili, but complementation of these genes to their respective knockouts restored surface fiber production (18). Similarly, Type IV pilus formation of F. novicida requires pilF and pilT (102). The gene encoding PiIF is highly conserved in *F. tularensis* genomes (4, 8, 19,

51). In contrast *pilT* is split into two genes in most *F. tularensis* type B, but not *F. tularensis* type A strains (4, 8, 19, 51). Type IV pilus fibers have been observed microscopically when *F. novicida* PilA (FTN\_0415) was produced in a pili negative *Neisseria gonorrhea* strain (78). However, there is no evidence to support that PilA itself is the major structural Type IV pilin subunit in *F. tularensis* (31). Complementation of *F. novicida pilA* in *N. gonorrhea* supported genetic transformation but did not allow for twitching motility (78). The *pilA* gene is conserved in all biotypes of *F. tularensis*, but is absent in the *F. tularensis* LVS strain (4, 8, 19, 51). *F. tularensis* lacking *pilA* is deficient in dissemination compared to wild-type strains via the subcutaneous route of infection (79).

#### 2.7 Possible variations in the surface proteome of *Francisella* biotypes

The composition of the surface proteome of *F. tularensis* subspecies and populations is not only dependent on the repertoire of surface proteins encoded, but can be influenced by differences in non-surface proteins such as those involved in regulation or secretion. Although genetic comparisons of 1.1 million genomic nucleotide sites between 13 *F. tularensis* strains (two A1a, two A2, eight type B, and one subspecies *mediasiatica*) indicate that *F. tularensis* genomes are monomorphic, sharing >99.2% pair-wise average nucleotide identity, slight differences alter the coding capacity of *F. tularensis* biotypes. (50). Analyses of genome annotations obtained from the National Center for Biotechnology Information (NCBI) reference sequence database (RefSeq) using the pathosystems resource integration center database (PATRIC) identified variance in the number of protein coding sequences (CDS) between *F. tularensis* subspecies and populations (Fig. 2,2) (88). *F. tularensis* subspecies *mediasiatica* has the lowest coding capacity (1,406 CDS), followed by *F. tularensis* A1a (1,603 CDS), *F. tularensis* subspecies *tularensis* A2 (1,634 CDS), *F. tularensis* 

subspecies tularensis A1b (1,640 CDS), and F. tularensis subspecies holarctica type B (1,704 CDS), respectively. The average length of proteins (in terms of the number of amino acids) also differs (Fig. 2.2). F. tularensis subspecies mediasiatica encodes on average the longest proteins and F. tularensis type B the shortest, 322 and 296 amino acids, respectively. The average length of F. tularensis A1a (310 amino acids) and A2 (309 amino acids) proteins is similar and F. tularensis A1b and type B proteins also have similar average amino acid lengths, 297 and 296, respectively. A comparison of the distributions of CDS of defined amino acid length identifies additional variance in subspecies and populations (88) (Fig. 2.2). In all F. tularensis subspecies and populations, the highest number of proteins range between 101-200 or 201-300 amino acids in length. F. tularensis A1a and A2 populations encode an average of 380 proteins with lengths of 101 to 200 amino acids and an average of 434 proteins with lengths of 201 to 300 amino acids. The number of proteins ranging from 101 to 200 amino acids are similar between F. tularensis A1b and type B, 433 and 459, respectively. F. tularensis A1b has fewer proteins (405) than F. tularensis type B (484) with lengths of 201 to 300 amino acids. F. tularensis subspecies mediasiatica has fewer proteins between 0-500 amino acids in length compared to F. tularensis type A and type B, but shares a similar number of proteins containing 501 amino acids or more.



**Fig. 2.2 Comparison of the distributions of** *F. tularensis* **CDS.** The distributions of predicted CDS (RefSeq annotations), based on defined ranges of amino acid length, of *F. tularensis* subspecies and populations (A1a, A1b, A2, type B, and *mediasiatica*) are presented.

PATRIC analyses of *F. tularensis* genomes identified additional differences in CDS of twelve major classes of biosynthetic pathways that could alter surface protein composition including amino acid metabolism, biosynthesis of polyketides and nonribosomal peptides, biosynthesis of secondary metabolites, carbohydrate metabolism, energy metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins, metabolism of other amino acids, nucleotide metabolism, translation, and xenobiotics biodegradation and metabolism (Table 2.2) (88). In each genome, the total number of CDS assigned to pathways differed, ranging from 1,336 in *F. tularensis* A1a to 1,383 in *F. tularensis* A1b. It should be noted that a

single protein can be assigned to a particular metabolic pathway more than once, and may also be assigned to more than one pathway.

| Predicted pathway                                     | SCHU<br>S4<br>(A1a) | MA00-<br>2987<br>(A1b) | WY96-<br>3418<br>(A2) | LVS<br>(type B) | FSC147<br>(mediasiatica) |
|-------------------------------------------------------|---------------------|------------------------|-----------------------|-----------------|--------------------------|
| Amino acid metabolism                                 | 210                 | 226                    | 204                   | 215             | 219                      |
| Biosynthesis of polyketides and nonribosomal peptides | 20                  | 20                     | 19                    | 20              | 18                       |
| Biosynthesis of secondary metabolites                 | 258                 | 263                    | 259                   | 274             | 255                      |
| Carbohydrate metabolism                               | 208                 | 217                    | 209                   | 206             | 213                      |
| Energy metabolism                                     | 78                  | 80                     | 77                    | 77              | 76                       |
| Glycan biosynthesis and metabolism                    | 71                  | 71                     | 77                    | 72              | 73                       |
| Lipid metabolism                                      | 85                  | 82                     | 85                    | 81              | 83                       |
| Metabolism of cofactors and vitamins                  | 126                 | 130                    | 123                   | 123             | 124                      |
| Metabolism of other amino acids                       | 44                  | 44                     | 45                    | 42              | 46                       |
| Nucleotide metabolism                                 | 104                 | 111                    | 102                   | 101             | 102                      |
| Translation                                           | 26                  | 28                     | 26                    | 26              | 26                       |
| Xenobiotics biodegradation and metabolism             | 106                 | 111                    | 113                   | 113             | 106                      |

Table 2.2 Metabolic pathways of *F. tularensis* subspecies and populations

The number of CDS features assigned to particular physiological pathways of *F. tularensis* subspecies and populations (A1a, A1b, A2, type B, and *mediasiatica*). Pathway predictions were compiled from PATRIC using PATRIC CDS annotations.

Champion *et al.* prepared a comparative analysis of the predicted proteomes of *F. tularensis* type A and type B as well as *F. philomiragia* and *F. novicida*, and identified a number of genes present, absent, or disrupted between species and subspecies (19). Fourteen loci were uniquely found in *F. tularensis* type A and type B. Of these, seven are specific to the *F. tularensis* type A populations (hypothetical protein, FTT\_0496; hypothetical protein, FTT\_0677; adenosine deaminase, FTT\_0939; hypothetical protein, FTT\_1080; lipoprotein, FTT\_1122; O-methyltransferase, FTT\_1766; and hypothetical protein FTT\_1791), one to *F. tularensis* A1 (hypothetical protein, FTT\_1068), and one to *F. tularensis* type B (hypothetical protein, FTT\_0776). The remaining five (hypothetical protein, FTT\_0755; hypothetical protein, FTT\_1011; and hypothetical protein, FTT\_1580) are shared by both *F. tularensis* subspecies, and are disrupted or absent in at least one of the less virulent

species (*F. novicida* and *F. philomiragia*). Eleven of these genes encode for products of unknown function, but three are predicted to be membrane proteins (FTT\_1080, FTT\_0755, and FTL\_0776) and one a lipoprotein (FTT\_1122). Sixty three genes are disrupted in *F. tularensis* type A or type B subspecies compared to *F. novicida*. Seven disrupted genes are conserved between both subspecies, 21 are specific to *F. tularensis* type A, and 35 specific to *F. tularensis* type B. Sixteen of these are predicted components of transport systems and 18 are annotated as hypothetical proteins and may have significant on the surface proteome. The majority of the remaining disrupted genes are predicted to be involved in amino acid or nucleic acid metabolism.

## 2.8 Differential production of *F. tularensis* surface proteins

Analyses of the *F. tularensis* proteome in response to various abiotic and biotic stresses identified differences in production of several likely surface proteins (45, 55, 56, 89, 96). As *F. tularensis* survives intracellulary in cells such as macrophages, multiple studies have evaluated the effects of reactive oxygen species on protein production (45, 55, 56, 96). Lenco *et al.* found 5 mM hydrogen peroxide added to liquid cultures of *F. tularensis* LVS and a *F. tularensis* LVS  $\Delta iglC$  (FTL\_0113/FTL\_1159)\_mutant had similar effects on both strains (56). Analyses by 2D-PAGE showed 19 spots were found to be more than 2-fold upregulated in the wild-type and mutant strains. A large number of these spots were chaperone proteins that were identified in membrane preparations, as secreted proteins, or surface exposed including HtpG (FTT\_0356), GroES (FTT\_1695), GroEL (FTT\_1696), ClpB (FTT\_1769), and Hsp (FTT\_1794), This finding is consistent with reports of chaperone upregulation in response to oxidative pressure (27, 100). In contrast to a previous report, the surface protein IglC was not upregulated in *F. tularensis* LVS, a result later duplicated (33, 55). However, another study found IglC to be upregulated in *F. tularensis* type A strain FSC033 when grown in modified MH broth

supplemented with 5 mM hydrogen peroxide (96). Janovska *et al.* identified a single protein recognized by immune serum that appeared only after *F. tularensis* LVS was exposed to hydrogen peroxide (45). Two proteins were identified in the spot, FTT\_1702 and the surface protein TUL4 (FTT\_0901).

A study by Twine et al. evaluated the proteomic differences of F. tularensis grown in vivo by 2D-PAGE (96). BALB/c mice were infected i.d. with F. tularensis type A strain FSC033. Four days after infection, bacteria were isolated from the spleen using an immunomagnetic isolation protocol. In vivo regulation of proteins was then compared to bacteria grown in broth (also exposed to hydrogen peroxide). These analyses identified 78 differentially produced proteins. The abundance of 23 proteins increased while 32 decreased. Ten protein spots were unique to bacteria isolated in vivo, while 14 protein spots were specific to broth grown bacteria. The abundance of three proteins increased than 4-fold (family 18 chitinase ChiA, FTT 0715; by more peroxidase/catalase, FTT\_0721; and hypothetical protein, FTT\_1539), and all had bioinformatic signatures for surface associations and were identified in F. tularensis membrane fractions (44, 73).

DsbA acts as an oxidant for a dithiol in substrate proteins, and disulphide bond formation enables proper folding of the substrate protein that is often critical for its function (38). DsbA substrates are often surface associated and can include pili, adhesions, and components of secretion systems (38). Straskova *et al.* utilized 2D-PAGE to identify potential substrate proteins of the membrane associated thiol disulfide oxidoreductase (DsbA, FTL\_1096) in *F. tularensis* LVS (89). Their approach centered on identifying proteins that accumulate in the membrane fraction by 2D-PAGE, given this is the subcellular localization most impacted by a DsbA knockout. As a secondary technique, the authors utilized quantitative MS analysis to validate their observations. Nine proteins were found to differentially accumulate in the mutant strain. Five of the

upregulated or unique proteins were annotated as hypothetical proteins (FTL\_1579, FTL\_1532,FTL\_1306, FTL\_0661, and FTL\_0115). FTL\_0115 is the *F. tularensis* LVS homolog of the Hcp protein associated with Type VI secretion (5). Two of the hypothetical proteins, FTL\_1579 and FTL\_1306, are important for *F. tularensis* survival in macrophages (48, 100). Secretion or production of hypothetical protein FTL\_1579 differs between *F. tularensis* SCHU S4 and LVS. It is not secreted by *F. tularensis* LVS, indicating a possible difference in the respective surface proteomes (48). Two other proteins consistently accumulated in DsbA mutants, serine-type D-Ala-D-Ala carboxypeptidase (FTL\_1060) and chitinase family 18 protein ChiA (FTL\_1521). Two proteins containing signal peptides were less abundant in the membrane of the DsbA mutant, hypothetical protein (FTL\_0694) and macrophage infectivity potentiator, fragment (FTL\_1097).

Growth temperature is another factor that effects production of proteins likely associated with the surface of *F. tularensis* (34, 42). Temperature shifts from 37°C to 44°C caused the upregulation of surface associated (or likely surface associated) chaperones of *F. tularensis* LVS including GroEL (FTL\_1714), GroES (FTL\_1715), DnaK (FTL\_1191), ClpB (FTL\_0094) and HtpG (FTL\_0267) (34). Numerous membrane proteins were also upregulated and had either predicted roles in transport or unknown functions. Several FPI genes, including *iglB* (FTL\_1158), were downregulated in response to this temperature shift. Shifting growth from ambient temperature to 37°C had a similar effect on a number of chaperones and membrane proteins (42). One of the most highly upregulated proteins in response to this change was identified by Grall, *et al.* who determined a >10-fold increase in transcription of the gene encoding the homolog of the *F. novicida* secreted chitinase ChiB (FTN\_1744) (34).

# 2.9 Research objectives

Surface proteins have documented roles in ecology, pathogenesis, immunity, and phenotypic variability of *Francisella* biotypes. Experimental evidence of membrane and secreted proteins, as well as bioinformatic signatures of surface proteins, led to the hypothesis that the number of *Francisella* surface associated proteins is much greater than what is currently identified. Therefore, a more comprehensive characterization of the F. tularensis surface proteome was a primary objective of the research in this dissertation. Comparisons of the identified surface proteins to those of known structure and function may reveal linked mechanisms important to the survival and virulence of Francisella biotypes. It is also likely that uncharacterized or novel types of surface proteins are present, and evaluation of these would not only further the study of Francisella, but provide insight into the physiological process of organisms that produce similar products. An additional hypothesis tested in this dissertation is that differences in previously unidentified surface proteins contribute to the phenotypic variability of Francisella species, subspecies, and populations. This hypothesis was supported by the biological consequences of known surface protein variations and altered coding capacities of Francisella biotypes (19, 62).

The identification of bacterial surface proteins has an added advantage that many are immunogens, and their presentation is required for the host to mount effective immune responses (84). Accordingly, the surface proteins naturally recognized during infection are often the most effective immunogens and serve as the basis for a number of subunit vaccines. Effective vaccinations with live attenuated strains of *F. tularensis* elicit a strong antibody response that recognizes a number of membrane proteins, and fractions containing these proteins can provide modest protection as a vaccine. Thus, it could be hypothesized that the protective antigens are likely surface associated. The determination of these antigens was an additional objective of this dissertation and is

significant given there is no approved prophylactic to *F. tularensis* infection because of issues of safety and efficacy with live attenuated vaccine strains.

# 2.10 Literature cited

- 1. **Alm, R. A., and J. S. Mattick.** 1997. Genes involved in the biogenesis and function of Type-4 fimbriae in *Pseudomonas aeruginosa*. Gene **192:**89-98.
- 2. Alvarez-Martinez, C. E., and P. J. Christie. 2009. Biological diversity of prokaryotic Type IV secretion systems. Microbiol Mol Biol Rev **73**:775-808.
- 3. Balonova, L., L. Hernychova, B. F. Mann, M. Link, Z. Bilkova, M. V. Novotny, and J. Stulik. 2010. Multimethodological approach to identification of glycoproteins from the proteome of *Francisella tularensis*, an intracellular microorganism. J Proteome Res **9**:1995-2005.
- Barabote, R. D., G. Xie, T. S. Brettin, S. H. Hinrichs, P. D. Fey, J. J. Jay, J. L. Engle, S. D. Godbole, J. M. Noronha, R. H. Scheuermann, L. W. Zhou, C. Lion, and M. P. Dempsey. 2009. Complete genome sequence of *Francisella tularensis* subspecies *holarctica* FTNF002-00. PLoS One 4:e7041.
- 5. Barker, J. R., A. Chong, T. D. Wehrly, J. J. Yu, S. A. Rodriguez, J. Liu, J. Celli, B. P. Arulanandam, and K. E. Klose. 2009. The *Francisella tularensis* pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol **74**:1459-1470.
- 6. **Bateman, A., and M. Bycroft.** 2000. The structure of a LysM domain from *E. coli* membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol **299:**1113-1119.
- 7. Bayer, E. A., H. Chanzy, R. Lamed, and Y. Shoham. 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struc Biol **8**:548-557.
- Beckstrom-Sternberg, S. M., R. K. Auerbach, S. Godbole, J. V. Pearson, J. S. Beckstrom-Sternberg, Z. Deng, C. Munk, K. Kubota, Y. Zhou, D. Bruce, J. Noronha, R. H. Scheuermann, A. Wang, X. Wei, J. Wang, J. Hao, D. M. Wagner, T. S. Brettin, N. Brown, P. Gilna, and P. S. Keim. 2007. Complete genomic characterization of a pathogenic A.II strain of *Francisella tularensis* subspecies *tularensis*. PLoS One 2:e947.
- Bergonzelli, G. E., D. Granato, R. D. Pridmore, L. F. Marvin-Guy, D. Donnicola, and I. E. Corthesy-Theulaz. 2006. GroEL of *Lactobacillus johnsonii* La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen *Helicobacter pylori*. Infect Immun 74:425-434.
- 10. Bernard, C. S., Y. R. Brunet, E. Gueguen, and E. Cascales. 2010. Nooks and crannies in Type VI secretion regulation. J Bacteriol **192:**3850-3860.
- 11. **Berrada, Z. L., and S. R. Telford Iii.** 2011. Survival of *Francisella tularensis* type A in brackish-water. Arch Microbiol **193:**223-226.
- 12. **Berry, J. D.** 2005. Rational monoclonal antibody development to emerging pathogens, biothreat agents and agents of foreign animal disease: The antigen scale. Vet J **170**:193-211.
- 13. **Bevanger, L., J. A. Maeland, and A. I. Naess.** 1988. Agglutinins and antibodies to *Francisella tularensis* outer membrane antigens in the early diagnosis of disease during an outbreak of tularemia. J Clin Microbiol **26**:433-437.
- 14. **Bierne, H., and P. Cossart.** 2007. *Listeria monocytogenes* surface proteins: from genome predictions to function. Microbiol Mol Biol Rev **71:**377-397.
- 15. Broms, J. E., M. Lavander, and A. Sjostedt. 2009. A conserved alpha-helix essential for a Type VI secretion-like system of *Francisella tularensis*. J Bacteriol **191**:2431-2446.
- 16. Candela, M., M. Centanni, J. Fiori, E. Biagi, S. Turroni, C. Orrico, S. Bergmann, S. Hammerschmidt, and P. Brigidi. 2010. DnaK from

*Bifidobacterium animalis* subsp. *lactis* is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology **156**:1609-1618.

- 17. **Carbonnelle, E., S. Helaine, L. Prouvensier, X. Nassif, and V. Pelicic.** 2005. Type IV pilus biogenesis in *Neisseria meningitidis*: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol **55**:54-64.
- Chakraborty, S., M. Monfett, T. M. Maier, J. L. Benach, D. W. Frank, and D. G. Thanassi. 2008. Type IV pili in *Francisella tularensis*: roles of *pilF* and *pilT* in fiber assembly, host cell adherence, and virulence. Infect Immun 76:2852-2861.
- Champion, M. D., Q. Zeng, E. B. Nix, F. E. Nano, P. Keim, C. D. Kodira, M. Borowsky, S. Young, M. Koehrsen, R. Engels, M. Pearson, C. Howarth, L. Larson, J. White, L. Alvarado, M. Forsman, S. W. Bearden, A. Sjostedt, R. Titball, S. L. Michell, B. Birren, and J. Galagan. 2009. Comparative genomic characterization of *Francisella tularensis* strains belonging to low and high virulence subspecies. PLoS Pathog 5:e1000459.
- 20. **Cianciotto, N. P.** 2009. Many substrates and functions of Type II secretion: lessons learned from *Legionella pneumophila*. Future Microbiol **4**:797-805.
- 21. Clinton, S. R., J. E. Bina, T. P. Hatch, M. A. Whitt, and M. A. Miller. 2010. Binding and activation of host plasminogen on the surface of *Francisella tularensis*. BMC Microbiol **10**:76.
- 22. Crane, D. D., S. L. Warner, and C. M. Bosio. 2009. A novel role for plasminmediated degradation of opsonizing antibody in the evasion of host immunity by virulent, but not attenuated, *Francisella tularensis*. J Immunol **183**:4593-4600.
- 23. Cristobal, S., J. W. de Gier, H. Nielsen, and G. von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in *Escherichia coli*. EMBO J **18**:2982-2990.
- 24. **Deane, J. E., P. Abrusci, S. Johnson, and S. M. Lea.** 2010. Timing is everything: the regulation of Type III secretion. Cell Mol Life Sci **67**:1065-1075.
- 25. **Desvaux, M., M. Hebraud, R. Talon, and I. R. Henderson.** 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol **17**:139-145.
- 26. Ericsson, M., G. Sandstrom, A. Sjostedt, and A. Tarnvik. 1994. Persistence of cell-mediated immunity and decline of humoral immunity to the intracellular bacterium *Francisella tularensis* 25 years after natural infection. J Infect Dis **170:**110-114.
- 27. Ericsson, M., A. Tarnvik, K. Kuoppa, G. Sandstrom, and A. Sjostedt. 1994. Increased synthesis of DnaK, GroEL, and GroES homologs by *Francisella tularensis* LVS in response to heat and hydrogen peroxide. Infect Immun **62:**178-183.
- Essex-Lopresti, A. E., J. A. Boddey, R. Thomas, M. P. Smith, M. G. Hartley, T. Atkins, N. F. Brown, C. H. Tsang, I. R. Peak, J. Hill, I. R. Beacham, and R. W. Titball. 2005. A Type IV pilin, PilA, contributes to adherence of *Burkholderia pseudomallei* and virulence *in vivo*. Infect Immun **73**:1260-1264.
- Forestal, C. A., H. Gil, M. Monfett, C. E. Noah, G. J. Platz, D. G. Thanassi, J. L. Benach, and M. B. Furie. 2008. A conserved and immunodominant lipoprotein of *Francisella tularensis* is proinflammatory but not essential for virulence. Microb Pathog 44:512-523.
- 30. Gerasimov, V. N., V. I. Dolotov, A. V. Stepanov, and N. N. Urakov. 1997. Morphology, ultrastructure and populational features of bacteria *Francisella*. Vestn Ross Akad Med Nauk:24-30.

- 31. Gil, H., J. L. Benach, and D. G. Thanassi. 2004. Presence of pili on the surface of *Francisella tularensis*. Infect Immun **72**:3042-3047.
- 32. Gil, H., G. J. Platz, C. A. Forestal, M. Monfett, C. S. Bakshi, T. J. Sellati, M. B. Furie, J. L. Benach, and D. G. Thanassi. 2006. Deletion of ToIC orthologs in *Francisella tularensis* identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci U S A 103:12897-12902.
- 33. **Golovliov, I., M. Ericsson, G. Sandstrom, A. Tarnvik, and A. Sjostedt.** 1997. Identification of proteins of *Francisella tularensis* induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect Immun **65:**2183-2189.
- 34. **Grall, N., J. Livny, M. Waldor, M. Barel, A. Charbit, and K. L. Meibom.** 2009. Pivotal role of the *Francisella tularensis* heat-shock sigma factor RpoH. Microbiology **155**:2560-2572.
- 35. Hager, A. J., D. L. Bolton, M. R. Pelletier, M. J. Brittnacher, L. A. Gallagher, R. Kaul, S. J. Skerrett, S. I. Miller, and T. Guina. 2006. Type IV pili-mediated secretion modulates *Francisella virulence*. Mol Microbiol **62**:227-237.
- Havlasova, J., L. Hernychova, M. Brychta, M. Hubalek, J. Lenco, P. Larsson, M. Lundqvist, M. Forsman, Z. Krocova, J. Stulik, and A. Macela. 2005. Proteomic analysis of anti-*Francisella tularensis* LVS antibody response in murine model of tularemia. Proteomics 5:2090-2103.
- Havlasova, J., L. Hernychova, P. Halada, V. Pellantova, J. Krejsek, J. Stulik, A. Macela, P. R. Jungblut, P. Larsson, and M. Forsman. 2002. Mapping of immunoreactive antigens of *Francisella tularensis* live vaccine strain. Proteomics 2:857-867.
- Heras, B., S. R. Shouldice, M. Totsika, M. J. Scanlon, M. A. Schembri, and J. L. Martin. 2009. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 7:215-225.
- 39. Hitchen, P. G., and A. Dell. 2006. Bacterial glycoproteomics. Microbiology 152:1575-1580.
- 40. **Hobbs, M., and J. S. Mattick.** 1993. Common components in the assembly of Type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol **10**:233-243.
- 41. **Holland, I. B.** 2010. The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol **619:**1-20.
- 42. Horzempa, J., D. M. O'Dee, R. M. Shanks, and G. J. Nau. 2010. *Francisella tularensis* Delta*pyrF* mutants show that replication in nonmacrophages is sufficient for pathogenesis *in vivo*. Infect Immun **78**:2607-2619.
- 43. Hubalek, M., L. Hernychova, J. Havlasova, I. Kasalova, V. Neubauerova, J. Stulik, A. Macela, M. Lundqvist, and P. Larsson. 2003. Towards proteome database of *Francisella tularensis*. J Chromatogr B Analyt Technol Biomed Life Sci **787**:149-177.
- 44. Huntley, J. F., P. G. Conley, K. E. Hagman, and M. V. Norgard. 2007. Characterization of *Francisella tularensis* outer membrane proteins. J Bacteriol 189:561-574.
- 45. Janovska, S., I. Pavkova, M. Hubalek, J. Lenco, A. Macela, and J. Stulik. 2007. Identification of immunoreactive antigens in membrane proteins enriched fraction from *Francisella tularensis* LVS. Immunol Lett **108**:151-159.
- 46. Janovska, S., I. Pavkova, M. Reichelova, M. Hubaleka, J. Stulik, and A. Macela. 2007. Proteomic analysis of antibody response in a case of laboratory-

acquired infection with *Francisella tularensis* subsp. *tularensis*. Folia Microbiol (Praha) **52**:194-198.

- Khlebnikov, V. S., I. R. Golovliov, D. P. Kulevatsky, N. V. Tokhtamysheva, S. F. Averin, V. E. Zhemchugov, S. Y. Pchelintsev, S. S. Afanasiev, and G. Y. Shcherbakov. 1996. Outer membranes of a lipopolysaccharide-protein complex (LPS-17 kDa protein) as chemical tularemia vaccines. FEMS Immunol Med Microbiol 13:227-233.
- 48. Konecna, K., L. Hernychova, M. Reichelova, J. Lenco, J. Klimentova, J. Stulik, A. Macela, T. Alefantis, and V. G. Delvecchio. 2010. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent *Francisella tularensis* strains. Proteomics.
- 49. Kovarova, H., P. Halada, P. Man, I. Golovliov, Z. Krocova, J. Spacek, S. Porkertova, and R. Necasova. 2002. Proteome study of *Francisella tularensis* live vaccine strain-containing phagosome in Bcg/Nramp1 congenic macrophages: resistant allele contributes to permissive environment and susceptibility to infection. Proteomics **2**:85-93.
- 50. Larsson, P., D. Elfsmark, K. Svensson, P. Wikstrom, M. Forsman, T. Brettin, P. Keim, and A. Johansson. 2009. Molecular evolutionary consequences of niche restriction in *Francisella tularensis*, a facultative intracellular pathogen. PLoS Pathog **5**:e1000472.
- Larsson, P., P. C. Oyston, P. Chain, M. C. Chu, M. Duffield, H. H. Fuxelius, E. Garcia, G. Halltorp, D. Johansson, K. E. Isherwood, P. D. Karp, E. Larsson, Y. Liu, S. Michell, J. Prior, R. Prior, S. Malfatti, A. Sjostedt, K. Svensson, N. Thompson, L. Vergez, J. K. Wagg, B. W. Wren, L. E. Lindler, S. G. Andersson, M. Forsman, and R. W. Titball. 2005. The complete genome sequence of *Francisella tularensis*, the causative agent of tularemia. Nat Genet 37:153-159.
- 52. Le Gal, Y., and H. O. Halvorson. 1998. New developments in marine biotechnology. Plenum Press, New York.
- 53. Lebeer, S., J. Vanderleyden, and S. C. De Keersmaecker. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171-184.
- 54. Lee, B. Y., M. A. Horwitz, and D. L. Clemens. 2006. Identification, recombinant expression, immunolocalization in macrophages, and T-cell responsiveness of the major extracellular proteins of *Francisella tularensis*. Infect Immun **74**:4002-4013.
- 55. Lenco, J., M. Hubalek, P. Larsson, A. Fucikova, M. Brychta, A. Macela, and J. Stulik. 2007. Proteomics analysis of the *Francisella tularensis* LVS response to iron restriction: induction of the *F. tularensis* pathogenicity island proteins IgIABC. FEMS Microbiol Lett **269**:11-21.
- 56. Lenco, J., I. Pavkova, M. Hubalek, and J. Stulik. 2005. Insights into the oxidative stress response in *Francisella tularensis* LVS and its mutant Delta*igl*C1+2 by proteomics analysis. FEMS Microbiol Lett **246**:47-54.
- 57. Lindgren, H., I. Golovliov, V. Baranov, R. K. Ernst, M. Telepnev, and A. Sjostedt. 2004. Factors affecting the escape of *Francisella tularensis* from the phagolysosome. J Med Microbiol **53**:953-958.
- 58. Lindgren, H., M. Honn, I. Golovlev, K. Kadzhaev, W. Conlan, and A. Sjostedt. 2009. The 58-kilodalton major virulence factor of *Francisella tularensis* is required for efficient utilization of iron. Infect Immun **77**:4429-4436.

- 59. Lottenberg, R., C. C. Broder, M. D. Boyle, S. J. Kain, B. L. Schroeder, and R. Curtiss, 3rd. 1992. Cloning, sequence analysis, and expression in *Escherichia coli* of a streptococcal plasmin receptor. J Bacteriol **174**:5204-5210.
- 60. Ludu, J. S., O. M. de Bruin, B. N. Duplantis, C. L. Schmerk, A. Y. Chou, K. L. Elkins, and F. E. Nano. 2008. The *Francisella* pathogenicity island protein PdpD is required for full virulence and associates with homologues of the Type VI secretion system. J Bacteriol **190**:4584-4595.
- 61. **Mattick, J. S.** 2002. Type IV pili and twitching motility. Annu Rev Microbiol **56:**289-314.
- 62. Melillo, A., D. D. Sledjeski, S. Lipski, R. M. Wooten, V. Basrur, and E. R. Lafontaine. 2006. Identification of a *Francisella tularensis* LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett 263:102-108.
- 63. Milne, T. S., S. L. Michell, H. Diaper, P. Wikstrom, K. Svensson, P. C. Oyston, and R. W. Titball. 2007. A 55 kDa hypothetical membrane protein is an iron-regulated virulence factor of *Francisella tularensis* subsp. *novicida* U112. J Med Microbiol **56**:1268-1276.
- 64. Molins, C. R., M. J. Delorey, B. M. Yockey, J. W. Young, S. W. Sheldon, S. M. Reese, M. E. Schriefer, and J. M. Petersen. 2010. Virulence differences among *Francisella tularensis* subsp. *tularensis* clades in mice. PLoS One **5**:e10205.
- 65. Muzzarelli, R. A. 1999. Native, industrial and fossil chitins. EXS 87:1-6.
- Nakazawa, Y., R. A. Williams, A. T. Peterson, P. S. Mead, K. J. Kugeler, and J. M. Petersen. 2010. Ecological niche modeling of *Francisella tularensis* subspecies and clades in the United States. Am J Trop Med Hyg 82:912-918.
- 67. **Nano, F. E.** 1988. Identification of a heat-modifiable protein of *Francisella tularensis* and molecular cloning of the encoding gene. Microb Pathog **5**:109-119.
- 68. **Niemann, H. H., W. D. Schubert, and D. W. Heinz.** 2004. Adhesins and invasins of pathogenic bacteria: a structural view. Microbes Infect **6**:101-112.
- 69. **Pancholi, V., and G. S. Chhatwal.** 2003. Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol **293**:391-401.
- 70. **Pancholi, V., and V. A. Fischetti.** 1992. A major surface protein on group-A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding-activity. J Exp Med **176:**415-426.
- 71. **Papanikou, E., S. Karamanou, and A. Economou.** 2007. Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol **5**:839-851.
- 72. **Pavkova, I., M. Hubalek, J. Zechovska, J. Lenco, and J. Stulik.** 2005. *Francisella tularensis* live vaccine strain: proteomic analysis of membrane proteins enriched fraction. Proteomics **5**:2460-2467.
- 73. Pavkova, I., M. Reichelova, P. Larsson, M. Hubalek, J. Vackova, A. Forsberg, and J. Stulik. 2006. Comparative proteome analysis of fractions enriched for membrane-associated proteins from *Francisella tularensis* subsp. *tularensis* and *F. tularensis* subsp. *holarctica* strains. J Proteome Res **5**:3125-3134.
- 74. **Pelletier, N., D. Raoult, and B. La Scola.** 2009. Specific recognition of the major capsid protein of *Acanthamoeba polyphaga* mimivirus by sera of patients infected by *Francisella tularensis*. FEMS Microbiol Lett **297**:117-123.
- 75. **Petersen, J. M., and C. R. Molins.** 2010. Subpopulations of *Francisella tularensis* ssp. *tularensis* and *holarctica*: identification and associated epidemiology. Future Microbiol **5**:649-661.

- 76. Platz, G. J., D. C. Bublitz, P. Mena, J. L. Benach, M. B. Furie, and D. G. Thanassi. 2010. A *tolC* mutant of *Francisella tularensis* is hypercytotoxic compared to the wild type and elicits increased proinflammatory responses from host cells. Infect Immun **78**:1022-1031.
- 77. **Pukatzki, S., A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos.** 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A **104**:15508-15513.
- Salomonsson, E., A. Forsberg, N. Roos, C. Holz, B. Maier, M. Koomey, and H. C. Winther-Larsen. 2009. Functional analyses of pilin-like proteins from *Francisella tularensis*: complementation of Type IV pilus phenotypes in *Neisseria gonorrhoeae*. Microbiology 155:2546-2559.
- 79. Salomonsson, E., K. Kuoppa, A. L. Forslund, C. Zingmark, I. Golovliov, A. Sjostedt, L. Noppa, and A. Forsberg. 2009. Reintroduction of two deleted virulence loci restores full virulence to the live vaccine strain of *Francisella tularensis*. Infect Immun **77**:3424-3431.
- 80. **Sandstrom, G., A. Tarnvik, and H. Wolf-Watz.** 1987. Immunospecific Tlymphocyte stimulation by membrane proteins from *Francisella tularensis*. J Clin Microbiol **25**:641-644.
- 81. **Santic, M., M. Molmeret, K. E. Klose, S. Jones, and Y. A. Kwaik.** 2005. The *Francisella tularensis* pathogenicity island protein IgIC and its regulator MgIA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol **7**:969-979.
- 82. Savitt, A. G., P. Mena-Taboada, G. Monsalve, and J. L. Benach. 2009. *Francisella tularensis* infection-derived monoclonal antibodies provide detection, protection, and therapy. Clin Vaccine Immunol **16**:414-422.
- 83. Scott, J. R., and T. C. Barnett. 2006. Surface proteins of Gram-positive bacteria and how they get there. Annu Rev Microbiol **60**:397-423.
- 84. Sette, A., and R. Rappuoli. 2010. Reverse vaccinology: developing vaccines in the era of genomics. Immunity **33:**530-541.
- 85. **Sjostedt, A., G. Sandstrom, and A. Tarnvik.** 1990. Several membrane polypeptides of the live vaccine strain *Francisella-tularensis* LVS stimulate T-cells from naturally infected individuals. Journal of Clinical Microbiology **28**:43-48.
- 86. Sjostedt, A., A. Tarnvik, and G. Sandstrom. 1991. The T-cell-stimulating 17kilodalton protein of *Francisella tularensis* LVS is a lipoprotein. Infect Immun 59:3163-3168.
- 87. Smith, S. G., V. Mahon, M. A. Lambert, and R. P. Fagan. 2007. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1-11.
- Snyder, E. E., N. Kampanya, J. Lu, E. K. Nordberg, H. R. Karur, M. Shukla, J. Soneja, Y. Tian, T. Xue, H. Yoo, F. Zhang, C. Dharmanolla, N. V. Dongre, J. J. Gillespie, J. Hamelius, M. Hance, K. I. Huntington, D. Jukneliene, J. Koziski, L. Mackasmiel, S. P. Mane, V. Nguyen, A. Purkayastha, J. Shallom, G. Yu, Y. Guo, J. Gabbard, D. Hix, A. F. Azad, S. C. Baker, S. M. Boyle, Y. Khudyakov, X. J. Meng, C. Rupprecht, J. Vinje, O. R. Crasta, M. J. Czar, A. Dickerman, J. D. Eckart, R. Kenyon, R. Will, J. C. Setubal, and B. W. Sobral. 2007. PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res 35:D401-406.
- Straskova, A., I. Pavkova, M. Link, A. L. Forslund, K. Kuoppa, L. Noppa, M. Kroca, A. Fucikova, J. Klimentova, Z. Krocova, A. Forsberg, and J. Stulik. 2009. Proteome analysis of an attenuated *Francisella tularensis dsbA* mutant: identification of potential DsbA substrate proteins. J Proteome Res 8:5336-5346.

- 90. Su, J., J. Yang, D. Zhao, T. H. Kawula, J. A. Banas, and J. R. Zhang. 2007. Genome-wide identification of *Francisella tularensis* virulence determinants. Infect Immun **75**:3089-3101.
- 91. Sun, P., B. P. Austin, F. D. Schubot, and D. S. Waugh. 2007. New protein fold revealed by a 1.65 A resolution crystal structure of *Francisella tularensis* pathogenicity island protein IgIC. Protein Sci **16**:2560-2563.
- 92. **Tempel, R., X. H. Lai, L. Crosa, B. Kozlowicz, and F. Heffron.** 2006. Attenuated *Francisella novicida* transposon mutants protect mice against wild-type challenge. Infect Immun **74:**5095-5105.
- 93. **Titball, R. W., and J. F. Petrosino.** 2007. *Francisella tularensis* genomics and proteomics. Ann N Y Acad Sci **1105:**98-121.
- 94. **Tseng, T. T., B. M. Tyler, and J. C. Setubal.** 2009. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol **9 Suppl 1:**S2.
- 95. Twine, S. M., N. C. Mykytczuk, M. Petit, T. L. Tremblay, P. Lanthier, J. W. Conlan, and J. F. Kelly. 2005. *Francisella tularensis* proteome: low levels of ASB-14 facilitate the visualization of membrane proteins in total protein extracts. J Proteome Res **4**:1848-1854.
- 96. **Twine, S. M., N. C. Mykytczuk, M. D. Petit, H. Shen, A. Sjostedt, J. Wayne Conlan, and J. F. Kelly.** 2006. *In vivo* proteomic analysis of the intracellular bacterial pathogen, *Francisella tularensis*, isolated from mouse spleen. Biochem Biophys Res Commun **345**:1621-1633.
- 97. **Twine, S. M., M. D. Petit, K. M. Fulton, R. V. House, and J. W. Conlan.** 2010. Immunoproteomics analysis of the murine antibody response to vaccination with an improved *Francisella tularensis* live vaccine strain (LVS). PLoS One **5:**e10000.
- 98. Twine, S. M., M. D. Petit, H. Shen, N. C. Mykytczuk, J. F. Kelly, and J. W. Conlan. 2006. Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-*Francisella* vaccines. Biochem Biophys Res Commun 346:999-1008.
- 99. Walther, D. M., D. Rapaport, and J. Tommassen. 2009. Biogenesis of betabarrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 66:2789-2804.
- 100. Wehrly, T. D., A. Chong, K. Virtaneva, D. E. Sturdevant, R. Child, J. A. Edwards, D. Brouwer, V. Nair, E. R. Fischer, L. Wicke, A. J. Curda, J. J. Kupko, 3rd, C. Martens, D. D. Crane, C. M. Bosio, S. F. Porcella, and J. Celli. 2009. Intracellular biology and virulence determinants of *Francisella tularensis* revealed by transcriptional profiling inside macrophages. Cell Microbiol 11:1128-1150.
- 101. Yu, N. Y., J. R. Wagner, M. R. Laird, G. Melli, S. Rey, R. Lo, P. Dao, S. C. Sahinalp, M. Ester, L. J. Foster, and F. S. Brinkman. 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608-1615.
- 102. **Zogaj, X., S. Chakraborty, J. Liu, D. G. Thanassi, and K. E. Klose.** 2008. Characterization of the *Francisella tularensis* subsp. *novicida* Type IV pilus. Microbiology **154:**2139-2150.

## Chapter III

# Expanded Characterization of the F. tularensis Surface Proteome

## 3.1 Introduction

Surface proteins are required for maintaining biological functions in bacteria and mediate interactions of pathogens with their hosts, vectors, and the environment (21). Despite the importance of this group of proteins, research to better understand the composition and activities of surface proteomes is limited because of numerous analytical challenges. The prediction of surface proteins using bioinformatic tools is often inaccurate, classifying known surface proteins as having intracellular or unknown localizations (10, 28, 30, 39). Many surface proteins are of low abundance, and although they may be enriched by subcellular fractionation, these procedures often contaminate the surface protein fraction (50). Insolubility and membrane associations are other characteristics adding to the difficulty of analyzing these proteins. Extraction of surface proteins from membranes can be achieved using organic solvents or detergents; however, these approaches also extract non-surface exposed membrane proteins and may adversely impact downstream analyses such as protein ionization for mass MS (4).

Chemical labeling of surface proteins with biotin offers a robust method to characterize bacterial surface proteomes, allowing for their specific labeling and enrichment (23). This approach has been applied to surface protein identification in Gram-negative and Gram-positive bacteria, and spirochetes (12, 33, 34). Additionally, cell surface biotinylation has proven effective in other intracellular Gram-

negative pathogens that share many commonalities, such as a small genome, a low % GC, and arthropod associations, with *F. tularensis*. In one such species, *Rickettsia parkeri*, specific biotinylation facilitated the identification of over 90 surface proteins (34, 49).

Despite having a larger coding capacity compared to a similar bacterium like *R. parkeri* (1.9 Mbp compared to an estimated 1.3 Mbp), only 10 proteins have been reported on the surface of *Francisella* species (22, 25, 26, 36). FopA (FTT\_0583) and TUL4 (FTT\_0901) were the first *F. tularensis* proteins described as surface exposed, but their classifications were based solely on membrane localization (26, 36). The surface association of FopA was confirmed by Melillo *et al.* utilizing chemical labeling with biotin, affinity chromatography, and protein identification by MS (25). Melillo *et al.* identified six additional surface proteins on *F. tularensis* LVS (DnaK, FTT\_1269; GroEL, FTT\_1696; hypothetical protein FsaP, FTT\_0119; IgIA, FTT\_1359; hypothetical protein, FTT\_1347; and hypothetical protein Bfr, FTT\_1441), but did not detect TUL4. A similar study by Ludu *et al.* identified two *F. novicida* surface proteins, IgIB (FTN\_1323) and IgIC (FTN\_1322), that participate in Type VI secretion (1, 22).

The analysis by Melillo *et al.* of the enriched surface protein fraction identified only the most abundant proteins in the sample (25). Visualization of the total protein content of this sample using SDS-PAGE clearly showed that many more protein bands were present, that were not subject to further characterization (25). Similarly, the work of Ludu *et al.* only targeted specific proteins for identification (22). Based on these observations, and the much larger number of surface proteins in similar Gram-negative bacteria, it was hypothesized that the majority of *F. tularensis* surface proteins are unidentified. To test this hypothesis, we built upon the methods of Melillo *et al.*, utilizing a similar surface labeling and purification methodology, but extended the scope of

protein identification with the intent of identifying the majority of proteins enriched after chemical labeling. These analyses identified 36 proteins on the surface of *F. tularensis* LVS, 28 of which are newly described to this localization. Further, due to the phenotypic variations documented for *F. tularensis* subspecies and populations, and the unknown relationships of these differences in regard to the surface proteome, experiments were performed to determine if surface protein labeling could be extended to other *F. tularensis* biotypes. Specific labeling of surface proteins was achieved for a *F. tularensis* type B clinical isolate and *F. tularensis* A1a, A1b, and A2 populations.

# 3.2 Materials and methods

## 3.2.1 Strains and culture conditions

*F. tularensis* strains (LVS, type B; KY99-3387, type B; SCHU S4, A1a; MA00-2987, A1b; WY96-3418, A2) were kindly provided by Dr. Jeannine Petersen (CDC, Fort Collins, CO). For identification of surface proteins, *F. tularensis* strains were grown on Cysteine Heart agar supplemented with 9% heated sheep blood (CHAB) for 44 to 52 h at 37°C. Cells were collected by scraping and then suspended in phosphate buffered saline, pH 7.4 (PBS), for surface labeling. To generate sufficient quantities of *F. tularensis* LVS to prepare a membrane protein fraction (MPF), *F. tularensis* LVS was inoculated directly from frozen stocks into MH broth supplemented with 1% Isovitalex (BD Biosciences, San Jose, CA) and incubated at 37°C on a platform shaker for 30 h. Subcultures were inoculated to fresh MH broth supplemented with 1% Isovitalex and harvested after 20 h of growth. Cells were collected by centrifugation at 4,500 × g and washed in PBS, pelleted and stored at -80°C.

#### 3.2.2 Surface protein labeling and label localization

Suspensions of *F. tularensis* strains were collected by centrifugation at 4,500 × g, washed three times in PBS, and adjusted to an OD<sub>600</sub> of 0.15-0.19 AU in PBS. An aliquot (80 µl) at 6.6 mg/ml of EZ-Link Sulfo-NHS-LC-Biotin (LC-Biotin) (Thermo/Pierce, Rockford, IL) was added for every 1 ml of the cell suspension. Labeling of proteins was conducted at room temperature for 1 h with gentle rocking. Labeled cells were collected as described above, washed once in Tris buffered saline, pH 7.4 (TBS), and twice in PBS. Biotin labeled cells were suspended in SDS-PAGE sample buffer (0.3 M Tris, 50% glycerol, 10% SDS, 25% β-mercaptoethanol, and trace bromophenol blue) for analysis by SDS-PAGE, or 1% 3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate hydrate (CHAPS) buffer (1% CHAPS in PBS) for affinity purification of labeled proteins.

*F. tularensis* LVS lysates from cells grown on CHAB, were prepared by suspending cells in breaking buffer (PBS, 1.2  $\mu$ g/ml DNase I, 1.2  $\mu$ g/ml RNase A, 1  $\mu$ g/ml lysozyme), and one Complete EDTA-free protease inhibitor cocktail tablet (Roche Applied Science, Mannheim, Germany) per 50 ml buffer. Cell suspensions were lysed by nine repetitions of pulsed sonication using a 4710 series Ultrasonic Homogenizer (Cole and Palmer Instrument Company, Vernon Hills, IL) employing the following instrument parameters: % duty of 50, output of 5, 60 seconds pulsed, 60 seconds off. Unbroken cells and debris were removed from the lysate by centrifugation at 4,500 × g, 4°C, for 20 min. Lysates were labeled with LC-Biotin as described above.

## 3.2.3 Biotinylated protein purification

Surface labeled proteins were extracted for affinity purification by boiling cells suspended in CHAPS buffer for 15 min at 120°C with vigorous intermittent vortexing.

Extracts were added to immobilized streptavidin resin (Thermo/Pierce) pre-equilibrated in PBS and incubated overnight at 4°C with gentle shaking. Ten resin volumes of CHAPS buffer, followed by 10 resin volumes of PBS was used to wash the resin. Biotinylated proteins were eluted by boiling the resin in SDS-PAGE sample buffer for 10 min at 120°C.

## 3.2.4 Isolation of MPF

*F. tularensis* LVS cell pellets were thawed and suspended in breaking buffer to a final concentration of 1 g cells (wet weight) per 1 ml of buffer. Cells were placed on ice and lysed by sonication as described above. Unbroken cells were removed from the lysate by centrifugation at 4,500  $\times$  g at 4°C for 20 min. MPF was obtained by centrifugation of cell lysates at 100,000  $\times$  g for 4 h. Supernatants were removed; pellets were suspended in breaking buffer and dialyzed against 10 mM ammonium bicarbonate buffer using 3,500 Da molecular weight cut-off dialysis membranes (Spectrum Laboratories Incorporated, Rancho Dominguez, CA). MPF protein concentration was determined by the bicinchoninc assay (BCA) (Thermo/Pierce) (41).

#### 3.2.5 SDS-PAGE

Aliquots of labeled proteins were applied to SDS-PAGE using 4-12% Bis-Tris SDS-Polyacrylamide gels (Invitrogen, Carlsbad, CA) under denaturing conditions (19). Detection and destaining of protein in polyacrylamide gels was accomplished by staining with Simply Blue (Invitrogen) according to the protocols of the manufacturer. Gel images were digitized using a HP Scanjet 4850 photo scanner (Hewlett-Packard Company, Palo Alto, CA).

#### 3.2.6 Western blotting

Biotinylated surface proteins resolved by SDS-PAGE were transferred to nitrocellulose membranes by Western blot as described previously (42). Membranes were incubated in TBS containing 0.1% Tween 20 and 5% nonfat milk and were washed in TBS containing 0.1% Tween 20 (TBST). Nitrocellulose membranes were incubated in horse radish peroxidase (HRP) conjugated anti-biotin antibody (1:1,000) (Cell Signaling Technology, Danvers MA). Following incubation, membranes were again washed in TBST before being incubated with LumiGLO (Cell Signaling Technology). Chemiluminescence signals were visualized using CL-Exposure film (Thermo/Pierce). Western blot images were digitized using a GS-710 calibrated imaging densitometer (Bio-Rad, Hercules, CA).

## 3.2.7 Computer aided image analysis

Digitized images of anti-biotin Western blots were analyzed with ImageQuant TL software (GE Health Care Life Sciences, Piscataway, NJ), and the number of reactive protein bands in each sample determined based on densometric parameters.

## 3.2.8 Fractionation of MPF

An aliquot (400  $\mu$ g) of MPF suspended in 50  $\mu$ l of 0.2 M ammonium bicarbonate was digested with 10  $\mu$ g sequencing grade trypsin (modified) (Roche Applied Science). MPF suspended with trypsin was incubated at 37°C for 4 h, followed by overnight digestion with an additional 10  $\mu$ g of trypsin. Samples were dried under vacuum and reconstituted in HPLC grade H<sub>2</sub>O. MPF was dried and reconstituted in H<sub>2</sub>O an additional two times before suspension in 120  $\mu$ l of 3% acetonitrile (ACN) containing 0.1% acetic acid. Insoluble material was removed from the sample by centrifugation at  $16,000 \times g$  for 10 min.

Peptides were separated by strong cation exchange chromatography using an Alliance 2695 separations model HPLC (Waters, Milford, MA) coupled with a PolyLC Polysulfoethyl A column (4.6 mm x 200 mm) (The Nest Group, Inc., Southborough, MA). Peptides were eluted with increasing gradient of potassium chloride (KCl) by mixing 10 mM potassium dihydrogen phosphate (KH<sub>2</sub>PO<sub>4</sub>), 25% ACN with 10 mM KH<sub>2</sub>PO<sub>4</sub>, 25% ACN, and 500 mM KCl. A fraction was collected every minute at a flow rate of 1 ml/min. Fractions were dried under vacuum and reconstituted in 100  $\mu$ l of 0.1% trifluoroacetic acid, and desalted using OMIX C18 tips (Varian, Palo Alto, CA). Desalted samples were dried under vacuum and suspended in 11  $\mu$ l of 3% ACN, 0.1% formic acid. Samples were sonicated for 5 min followed by centrifugation for 10 min at 16,000 × g. Each sample was transferred to clean autosampler vials in preparation for LC-MS/MS analyses.

#### 3.2.9 Protein identification by MS

Affinity purified proteins were subjected to in-gel proteolytic digestion with trypsin or chymotrypsin in 0.2 M ammonium bicarbonate buffer at 25°C or 37°C, respectively. Peptides from enzymatic digestion were applied to a capillary C18 reversed phase column (0.74 x 50 mm) (Agilent Technologies, Santa Clara, CA) and eluted with an increasing linear gradient of ACN in 0.1% formic acid. Effluent was introduced directly into a ThermoFinnigan LTQ electrospray mass spectrometer (Thermo Scientific, San Jose, CA) or an Agilent 6520 quadrapole-time of flight mass spectrometer (Agilent Technologies).

Identification of affinity purified surface proteins was achieved using Sequest (Ver. 27, rev. 12), X tandem (Ver. 2006.04.01.2), and MASCOT (Matrix Science Ltd,

www.matrixscience.com) softwares. Scaffold version 2\_01\_02 software (Proteome Software Incorporated, Portland, OR) was used to validate peptide and protein identifications. Peptide identities were accepted only when a peptide identification probability of >95% was obtained as specified by the peptide prophet algorithm (16). Protein identifications were accepted if protein identification probabilities were >99%, as assigned by the protein prophet algorithm, and contained at least two unique peptides (27). Oxidation of methionine and the addition of LC-Biotin to lysine were considered for search analyses.

#### 3.2.10 Bioinformatic analyses

Numerous bioinformatic approaches were employed to predict the subcellular localization of F. tularensis (accession number: NC\_007880) proteins. Subcellular protein localizations were predicted with **PSORTb** (Ver. 3.0.0) (http://www.psort.org/psortb/index.html). Classical signal peptides were detected with SignalP (Ver. 3.0) (http://www.cbs.dtu.dk/services/SignalP/), and signal peptides and lipoproteins were predicted with LipoP (Ver. 1.0) (http://www.cbs.dtu.dk/services/LipoP/). Non-classically secreted proteins (those lacking N-terminal signal peptides) were predicted with the SecretomeP (Ver. 2.0) (http://www.cbs.dtu.dk/services/SecretomeP/) software.

## 3.3 Results

#### 3.3.1 Bioinformatic predictions of *F. tularensis* surface proteins

*In silico* analyses of *F. tularensis* subspecies and populations (type B, A1a, A1b, and A2) were conducted to identify signatures of surface exposed proteins. SignalP software indicated an average of 289 proteins are translocated across the cytoplasmic membrane between all biotypes (Table 3.1). Further, analyses using the LipoP software

predicted between 52 to 57 proteins are processed by signal peptidase II, indicating a similar number of lipoproteins encoded in each *F. tularensis* subtype (Table 3.1).

| Table 3.1 Comparative analysis of <i>F. tularensis</i> signal sequences |         |              |  |
|-------------------------------------------------------------------------|---------|--------------|--|
| Strain                                                                  | SignalP | LipoP (Spll) |  |
| LVS (type B)                                                            | 294     | 52           |  |
| SCHU S4 (A1a)                                                           | 288     | 56           |  |
| MA00-2987 (A1b)                                                         | 284     | 57           |  |
| WY96-3418 (A2)                                                          | 291     | 55           |  |

The number of proteins predicted by SignalP v. 3.0 and LipoP v 1.0 softwares to contain signal peptides (SignalP) or be processed by signal peptidase II (LipoP). Analyses were performed using *F. tularensis* subspecies and populations (A1a, A1b, A2, type B) CDS annotated by RefSeq.

PSORTb was used to identify the outer membrane and extracellular proteins of *F. tularensis* subspecies and populations (Fig. 3.1). The number of proteins predicted slightly differed between each *F. tularensis* biotype at each location. *F. tularensis* type A1b encoded for the highest number of predicted outer membrane proteins, and *F. tularensis* A1a the most extracellular proteins. Based on these *in silico* analyses, *F. tularensis* subspecies and populations should possess between 42 and 48 potential surface (outer membrane and extracellular) proteins. Given that surface proteins are frequently assigned to other subcellular localizations [cytoplasmic, cytoplasmic membrane (CM), periplasmic, and unknown] by PSORTb, and surface protein composition can be influenced by intracellular processes, analyses were extended to identify proteomic differences between *F. tularensis* subspecies and populational subcellular proteins are of proteins predicted within the additional subcellular localizations (Fig 3.1). The total number of proteins predicted within the additional subcellular localizations were similar for all *F. tularensis* subspecies and populations, but *F. tularensis* type B was predicted to encode slightly more cytoplasmic, CM, periplasmic, and unknown localization proteins than *F. tularensis* A1a, A1b, and A2.



Number of proteins predicted to localize within each subcellular localization

**Fig. 3.1 Predicted subcellular localization of** *F. tularensis* (type B, A1a, A1b, and **A2) proteins.** PSORTb v. 3.0 software was used to predict the subcellular localizations of *F. tularensis* proteins. The strain archetype used for the analyses is indicated in parentheses.

## 3.3.2 Biotinylation of surface exposed proteins of *F. tularensis* LVS

A membrane impermeable biotin label, LC-Biotin (35), was employed to characterize the surface proteome of *F. tularensis* LVS. Initial experiments to optimize surface labeling were performed with LC-Biotin concentrations in a range between 6.6 and 26.4 mg/ml, and incubation times of 10, 30, 60, and 120 min. This established that treatment of freshly harvested *F. tularensis* with 6.6 mg/ml LC-Biotin for 60 min provided optimal labeling (data not shown). After surface labeling of *F. tularensis* LVS, the proteins were extracted from the cells and detected by Western blot using a HRP-conjugated anti-biotin antibody as the probe (Fig. 3.2). This resulted in the detection of

17 distinct bands using the ImageQuant TL software. In contrast, Western blot analyses of an equivalent amount of *F. tularensis* LVS whole cell lysate (WCL) labeled with an equal amount of biotin resulted in a more complex banding pattern. Additionally, compared to surface labeled cells, the signature of biotinylation was more rapidly detected in WCL by Western blot, and exposure times of the X-ray film were reduced to 15 sec in contrast to the two min exposure of the surface labeled samples (Fig 3.2).





#### 3.3.3 Surface protein purification

Identification of surface proteins was facilitated by purification of the biotin labeled products with immobilized streptavidin affinity chromatography. Anti-biotin
Western blot analysis of the purified material demonstrated the enrichment of several biotin labeled proteins and the presence of 23 anti-biotin reactive bands (Fig. 3.3). An aliquot of affinity purified material was resolved by SDS-PAGE, stained with Simply Blue, and the gel cut into nine slices based on molecular mass (Fig. 3.3). Gel slices were subjected to digestion with trypsin and chymotrypsin, and the resulting peptides analyzed by LC-MS/MS leading to the identification of 36 proteins (Tables 3.2 and 3.3).



**Fig. 3.3 Purified** *F. tularensis* LVS LC-Biotin labeled surface proteins. Biotinylated surface proteins purified using immobilized streptavidin were separated by SDS-PAGE and analyzed by anti-biotin Western blot. (A) Anti-biotin Western blot of purified biotinylated surface proteins accompanied by densitometry analysis of reactive protein bands. (B) Simply Blue stained gel of affinity purified material. Gel fractions excised for LC-MS/MS analysis are denoted on the right by the molecular mass range. \*indicates reactive protein bands only visualized after affinity purification.

| Gene<br>locus | Protein name                                                       | Signal<br>Peptide <sup>A</sup> | PSORTb<br>localization<br>(score) <sup>B</sup> | Identified in<br>MPF | Previously identified as<br>membrane or surface protein<br>and ref |
|---------------|--------------------------------------------------------------------|--------------------------------|------------------------------------------------|----------------------|--------------------------------------------------------------------|
| FTL_0009      | Outer membrane protein                                             | Spl                            | Peri (9.84)                                    | Yes                  | Yes (14, 31, 32)                                                   |
| FTL_0111      | Intracellular growth locus, subunit A                              | NC (SP)                        | Un                                             | Yes                  | *Yes (14)                                                          |
| FTL_0112      | Intracellular growth locus, subunit B                              | -                              | Un                                             | Yes                  | *Yes (22, 47)                                                      |
| FTL_0113      | Intracellular growth locus, subunit C                              | -                              | Un                                             | Yes                  | *Yes (9, 14, 22, 32)                                               |
| FTL_0234      | Elongation factor G                                                | -                              | Un                                             | Yes                  | No                                                                 |
| FTL_0267      | Heat shock protein 90                                              | -                              | Cyto (9.26)                                    | Yes                  | Yes (14)                                                           |
| FTL_0269      | Glutamate dehydrogenase                                            | -                              | OM (9.92)                                      | Yes                  | Yes (32)                                                           |
| FTL_0325      | OmpA family protein                                                | Spll                           | Un                                             | Yes                  | Yes (13, 14, 31, 45)                                               |
| FTL_0336      | Peptidoglycan-associated lipoprotein                               | Spll                           | OM (10.00)                                     | Yes                  | Yes (6, 13, 31, 45)                                                |
| FTL_0387      | Aspartate aminotransferase                                         | -                              | Un                                             | Yes                  | No                                                                 |
| FTL_0421      | Lipoprotein                                                        | Spll                           | OM (10.00)                                     | Yes                  | *Yes (6, 11, 13, 14, 31, 40)                                       |
| FTL_0569      | Hypothetical protein                                               | Spl                            | Un                                             | Yes                  | Yes (31)                                                           |
| FTL_0572      | Hypothetical protein                                               | Spl                            | Un                                             | Yes                  | Yes (14, 32)                                                       |
| FTL_0617      | Hypothetical protein                                               | -                              | Un                                             | Yes                  | *Yes (14, 25, 32, 47)                                              |
| FTL_1015      | AhpC/TSA family protein                                            | NC (SP)                        | Un                                             | Yes                  | Yes (14)                                                           |
| FTL_1026      | 50S ribosomal protein L9                                           | -                              | Cyto (9.26)                                    | Yes                  | No                                                                 |
| FTL_1096      | Lipoprotein                                                        | Spll                           | Un                                             | Yes                  | Yes (13, 31, 32, 44, 45, 47)                                       |
| FTL_1146      | Glyceraldehyde-3-phosphate dehydrogenase                           | -                              | Cyto (9.26)                                    | No                   | No                                                                 |
| FTL_1191      | Chaperone protein dnaK                                             | NC (SP)                        | Cyto (9.26)                                    | Yes                  | *Yes (13, 14, 24, 25, 47)                                          |
| FTL_1225      | Hypothetical protein                                               | Spll                           | Un                                             | No                   | No                                                                 |
| FTL_1328      | Outer membrane associated protein                                  | Spl                            | OM (9.93)                                      | Yes                  | *Yes (6-8, 13, 14, 25, 26, 45, 47)                                 |
| FTL_1494      | Hypothetical protein                                               | Spl                            | Un                                             | No                   | No                                                                 |
| FTL_1504      | Peroxidase/catalase                                                | NC (SP)                        | Cyto (9.26)                                    | Yes                  | Yes (13, 14, 31)                                                   |
| FTL_1521      | Chitinase family 18 protein                                        | Spl                            | Un                                             | Yes <sup>c</sup>     | Yes (13, 44, 47)                                                   |
| FTL_1527      | Enolase (2-phosphoglycerate<br>dehydratase)                        | -                              | Cyto (9.26)                                    | Yes                  | No                                                                 |
| FTL_1553      | Succinyl-CoA synthetase subunit beta                               | -                              | Un                                             | Yes                  | No                                                                 |
| FTL_1579      | Hypothetical protein                                               | Spl                            | Un                                             | No                   | Yes (44)                                                           |
| FTL_1592      | Acetyl-CoA carboxylase, biotin<br>carboxyl carrier protein subunit | -                              | Un                                             | Yes                  | Yes (14, 31)                                                       |
| FTL_1714      | Chaperonin GroEL                                                   | -                              | Cyto (9.26)                                    | Yes                  | *Yes (11, 13, 14, 25, 47)                                          |
| FTL_1745      | 50S ribosomal protein L7/L12                                       | -                              | Un                                             | Yes                  | Yes (14)                                                           |
| FTL_1751      | Elongation factor Tu                                               | -                              | Cyto (9.26)                                    | Yes                  | Yes (14)                                                           |
| FTL_1772      | Aconitate hydratase                                                | -                              | Cyto (9.26)                                    | Yes                  | Yes (14, 32, 47)                                                   |
| FTL_1786      | Succinate dehydrogenase, catalytic and NAD/flavoprotein subunit    | -                              | CM (9.82)                                      | Yes                  | Yes (14)                                                           |
| FTL_1789      | Citrate synthase                                                   | -                              | Cyto (9.26)                                    | No                   | No                                                                 |
| FTL_1907      | Cell division protein FtsZ                                         | -                              | Un                                             | Yes                  | Yes (14)                                                           |
| FTL_1912      | 30S ribosomal protein S1                                           | -                              | Cyto (9.26)                                    | Yes                  | Yes (47)                                                           |

| Table 3.2 | Identification | and bioinformatic | analyses of F | . tularensis LVS | surface proteins |
|-----------|----------------|-------------------|---------------|------------------|------------------|
|           | Include        |                   |               |                  |                  |

<sup>A</sup>Signal peptide prediction based on analyses by SignalP (Ver. 3.0), LipoP (Ver. 1.0), and SecretomeP (Ver. 2.0). <sup>B</sup>Subcellular location and scores were obtained with PSORTb (Ver. 3.0,). <sup>C</sup>Indicates protein was found in MPF only by LC-MS/MS analysis of a protein spot. \*Indicates that the protein was previously characterized as surface exposed. Spl, signal peptide cleaved by signal peptidase I; SpII, signal peptide cleaved by signal peptidase II; NC (SP), non-classical sec-translocation signal peptide; Peri, periplasmic; Cyto, cytosol; OM, outer membrane; CM, cytoplasmic membrane.

|                                                                    |          | laontinoa a            | o ourrado (                    | proced                                                |                                    |                                    |
|--------------------------------------------------------------------|----------|------------------------|--------------------------------|-------------------------------------------------------|------------------------------------|------------------------------------|
| Protein name                                                       | Locus    | <sup>A</sup> Fraction  | Predicted<br>molecular<br>mass | <sup>B</sup> Protein<br>identification<br>probability | Number<br>of<br>unique<br>peptides | Percentage<br>sequence<br>coverage |
| 50S ribosomal protein L7/L12                                       | FTL_1745 | 10-15 kDa              | 12847.82                       | 99.80%                                                | 2                                  | 22%                                |
| Lipoprotein                                                        | FTL_0421 | 15-20 kDa              | 15771.85                       | 100.00%                                               | 3                                  | 22%                                |
| Hypothetical protein                                               | FTL_0617 | 15-20 kDa              | 16809.36                       | 100.00%                                               | 5                                  | 45%                                |
| 50S ribosomal protein L9                                           | FTL_1026 | 15-20 kDa              | 16087.49                       | 99.80%                                                | 2                                  | 19%                                |
| Acetyl-CoA carboxylase, biotin<br>carboxyl carrier protein subunit | FTL_1592 | 20-25 and<br>15-20 kDa | 16403.98                       | 100.00%                                               | 6                                  | 59%                                |
| Outer membrane protein                                             | FTL_0009 | 20-25 kDa              | 19477.11                       | 100.00%                                               | 5                                  | 34%                                |
| Intracellular growth locus, subunit A                              | FTL_0111 | 20-25 kDa              | 20890.88                       | 99.80%                                                | 2                                  | 14%                                |
| Intracellular growth locus, subunit C                              | FTL_0113 | 20-25 kDa              | 22133.41                       | 99.80%                                                | 2                                  | 13%                                |
| Peptidoglycan-associated lipoprotein                               | FTL_0336 | 20-25 kDa              | 23291.32                       | 99.80%                                                | 2                                  | 11%                                |
| Hypothetical protein                                               | FTL_0569 | 20-25 kDa              | 19785.57                       | 99.80%                                                | 2                                  | 24%                                |
| AhpC/TSA family protein                                            | FTL_1015 | 20-25 kDa              | 19668.22                       | 100.00%                                               | 3                                  | 28%                                |
| Hypothetical protein                                               | FTL_1494 | 20-25 kDa              | 18158.27                       | 99.80%                                                | 2                                  | 18%                                |
| Hypothetical protein                                               | FTL_1225 | 25-37 kDa              | 25699.94                       | 99.80%                                                | 2                                  | 11%                                |
| Hypothetical protein                                               | FTL_1579 | 25-37 kDa              | 25702.85                       | 99.80%                                                | 2                                  | 11%                                |
| OmpA family protein                                                | FTL_0325 | 37-50 kDa              | 46754.18                       | 99.80%                                                | 2                                  | 6%                                 |
| Aspartate aminotransferase                                         | FTL_0387 | 37-50 kDa              | 44382.87                       | 100.00%                                               | 4                                  | 14%                                |
| Glyceraldehyde-3-phosphate<br>dehydrogenase                        | FTL_1146 | 37-50 kDa              | 35413.40                       | 99.80%                                                | 2                                  | 8%                                 |
| Outer membrane associated protein                                  | FTL_1328 | 37-50 kDa              | 41259.65                       | 100.00%                                               | 5                                  | 12%                                |
| Succinyl-CoA synthetase subunit<br>beta                            | FTL_1553 | 37-50 kDa              | 41541.74                       | 100.00%                                               | 4                                  | 17%                                |
| Citrate synthase                                                   | FTL_1789 | 37-50 kDa              | 46794.56                       | 100.00%                                               | 3                                  | 10%                                |
| Cell division protein FtsZ                                         | FTL_1907 | 37-50 kDa              | 39745.31                       | 100.00%                                               | 4                                  | 15%                                |
| Elongation factor Tu                                               | FTL_1751 | 50-75 and<br>37-50 kDa | 43390.62                       | 100.00%                                               | 7                                  | 31%                                |
| Intracellular growth locus, subunit B                              | FTL_0112 | 50-75 kDa              | 57917.61                       | 100.00%                                               | 7                                  | 17%                                |
| Glutamate dehydrogenase                                            | FTL_0269 | 50-75 kDa              | 49158.07                       | 100.00%                                               | 3                                  | 11%                                |
| Hypothetical protein                                               | FTL_0572 | 50-75 kDa              | 51977.34                       | 100.00%                                               | 3                                  | 7%                                 |
| Lipoprotein                                                        | FTL_1096 | 50-75 kDa              | 39545.19                       | 100.00%                                               | 4                                  | 18%                                |
| Enolase (2-phosphoglycerate dehydratase)                           | FTL_1527 | 50-75 kDa              | 49511.19                       | 99.80%                                                | 2                                  | 8%                                 |
| Chaperonin GroEL                                                   | FTL_1714 | 50-75 kDa              | 57402.70                       | 100.00%                                               | 8                                  | 20%                                |
| Succinate dehydrogenase, catalytic and NAD/flavoprotein subunit    | FTL_1786 | 50-75 kDa              | 65860.61                       | 99.90%                                                | 2                                  | 5%                                 |
| 30S ribosomal protein S1                                           | FTL_1912 | 50-75 kDa              | 61669.35                       | 100.00%                                               | 5                                  | 12%                                |
| Elongation factor G                                                | FTL_0234 | 75-100 kDa             | 77730.37                       | 100.00%                                               | 6                                  | 13%                                |
| Heat shock protein 90                                              | FTL_0267 | 75-100 kDa             | 72371.65                       | 100.00%                                               | 7                                  | 13%                                |
| Chaperone protein dnaK                                             | FTL_1191 | 75-100 kDa             | 69182.22                       | 100.00%                                               | 5                                  | 10%                                |
| Peroxidase/catalase                                                | FTL_1504 | 75-100 kDa             | 81226.95                       | 100.00%                                               | 3                                  | 6%                                 |
| Chitinase family 18 protein                                        | FTL_1521 | 75-100 kDa             | 83595.21                       | 100.00%                                               | 3                                  | 5%                                 |
| Aconitate hydratase                                                | FTI 1772 | 100-150 kDa            | 102703 80                      | 99 80%                                                | 2                                  | 3%                                 |

#### Table 3.3 MS/MS validation of proteins identified as surface exposed

<sup>A</sup>Fraction indicates the SDS-PAGE based molecular mass fraction in which the respective surface protein was identified (Fig 3.3). <sup>B</sup>Protein identification probabilities were calculated using Scaffold version 2\_01\_02 software.

A positive correlation was observed between the calculated molecular mass of each surface protein identified and the expected molecular mass based on SDS-PAGE migration (Table 3.3). Of the proteins identified, 27 were previously shown to be membrane associated or surface exposed (Table 3.2). Bioinformatic analyses revealed that 16 of the 36 proteins contained predicted signal peptides and four were defined as non-classical secreted proteins (Table 3.2). Further evaluation of the 36 surface proteins with PSORTb did not predict a subcellular location for nine of the 19 proteins not identified as secreted or translocated. An additional nine of these 19 proteins were predicted to be localized to the cytosol, and one (FTL\_0269) was predicted as an outer membrane protein. The identification of non-membrane or non-secreted proteins was not unexpected since bioinformatic prediction and experimental detection of presumably cytosolic proteins in bacterial surface and membrane preparations is not uncommon (10, 30, 39).

#### 3.3.4 Proteins identified in MPF

To evaluate the association of identified surface proteins to proteins contained within the *F. tularensis* LVS membrane, the MPF was digested with trypsin followed by 2D-LC, MS/MS, and protein identification. This resulted in the identification of 278 proteins with a high degree of confidence (Appendix 5). Of the 36 proteins identified by surface biotin labeling, 31 were detected in the MPF, indicating they were in high enough concentrations to be identified without further enrichment (Table 3.2). The validity of MPF protein identifications were supported by the identification of numerous identical proteins in independently prepared membrane fractions. Over 55% of previously identified membrane proteins were identified in MPF (Appendix 4) (11, 14, 15, 31, 32, 44, 45).

#### 3.3.5 Surface proteomes of *F. tularensis* subspecies and populations

The genetic differences that exist between *F. tularensis* subspecies and populations could alter the surface proteome and contribute to the documented phenotypic variability of *F. tularensis* biotypes (Appendix 6). Thus the application of surface protein labeling was evaluated in other *F. tularensis* subspecies and populations (type B, A1a, A1b, and A2). Following surface labeling, the proteins were extracted from the cells and detected by anti-biotin Western blot (Fig. 3.4). The repertoire of protein bands observed by this analysis was highly similar between all strains, but differences were noted in the apparent abundance or labeling efficiencies of surface proteins. *F. tularensis* A2 had a consistently weaker reactive profile compared to *F. tularensis* type A1 and type B (Fig. 3.4).



**Fig. 3.4 Surface proteins of** *F. tularensis* **subspecies and populations.** Anti-biotin Western blot of surface labeled *F. tularensis* lysates. Lane 1, *F. tularensis* LVS (type B); Lane 2, *F. tularensis* KY99-3387 (type B); Lane 3, *F. tularensis* WY96-3418 (A2); Lane 4, *F. tularensis* SCHU S4 (A1a); Lane 5, *F. tularensis* MA00-2987 (A1b). Unlabeled controls of each lysate were evaluated and a single reactive band that resolved at 19 kDa was observed for each *F. tularensis* subspecies and population.

## 3.4 Discussion

Prior to this work only 10 proteins were identified on the surface of *F. tularensis* or *F. novicida* (22, 25, 26, 36). However, experimental characterization of surface proteomes of other Gram-negative pathogens, and bioinformatics predictions, suggested many more proteins exist on the surface of *F. tularensis*. The methodology employed here of protein labeling with membrane impermeable *N*-hydroxysuccinimide esters of biotin identified over five times the number of surface proteins previously described in the most complete surface proteome characterization of *F. tularensis* (25). A total of 36 surface exposed proteins were identified in this study, and of these, 28 were newly established *Francisella* surface proteins and studies that characterized *F. tularensis* proteins that could be surface localized. Specifically, 19 of the surface proteins identified here were also observed in membrane fractions (Table 3.1). Bioinformatic analyses provided additional support that the proteins identified were surface exposed. Seventeen of the 36 surface proteins were predicted to be secreted or membrane associated.

Bioinformatic approaches failed to predict a subcellular location for nine of the surface proteins, while another 10 were predicted to localize to the cytosol. The experimental identification of known or predicted cytosolic proteins in bacterial membranes and surface subcellular fractions is not uncommon. There is a growing list of presumed intracellular proteins identified on the surface of pathogenic bacteria that appear to be multifunctional based on their subcellular location (29). We identified glycolytic enzymes, 2-phosphoglycerate dehydratase (FTL\_1527) and glyceraldehyde 3-phosphate dehydrogenase (FTL\_1146), as being surface exposed. This is consistent with findings in both Gram-negative and Gram-positive pathogens where these proteins were demonstrated to participate in bacterial adhesion and were identified on cell surfaces despite lacking signal peptides (30, 39). Likewise, elongation factor Tu

(FTL\_1751) was observed as surface associated, and homologues of this gene product in *Lactobacillus, Mycoplasma*, and *Pseudomonas* species are described as surface associated and act as adhesions and plasminogen ligands (10, 18). The bacterial GroEL and DnaK chaperones or stress response proteins are also known to interact with the innate immune response and enhance antigen presentation (43). Although they are cytosolic functioning chaperones, they have been noted as surface exposed in other bacteria (37). Thus, the surface presentation of GroEL (FTL\_1714) and DnaK (FTL\_1191) in *F. tularensis* was not unexpected. Recently, a study by Koneca *et al.* identified 22 predicted cytosolic proteins that were expelled into the CS by *F. tularensis* LVS and SCHU S4 (17). The authors ruled out the possibility that cell lysis contributes to the pool of culture filtrate proteins. Of the predicted cytosolic proteins identified, four were found in the current studies on the surface of *F. tularensis* LVS including GroEL (FTL\_1714), glutamate dehydrogenase (FTL\_0269), glyceraldehyde-3-phosphate dehydrogenase (FTL\_1146), and hypothetical protein (FTL\_0617).

The mechanism that allows for cytosolic proteins to reach the bacterial surface is not clear, but likely involves bacterial secretion. Thus far, four translocation and secretion systems are described or predicted to be functional in *F. tularensis* (Sec, Type I secretion, Type II secretion, and Type VI secretion) (5). While the less well characterized Type VI secretion could be hypothesized for the surface localization of predicted cytosolic proteins, the emerging hypothesis that non-traditional conserved signal peptide like motifs on selected cytosolic proteins allow for Sec mediated translocation is another explanation for the surface presence of cytosolic proteins that have similar localization profiles across bacterial species (3).

Another possibility to explain the identification of predicted cytosolic proteins as surface structures is that the *N*-hydroxysuccinimide biotin labeling reagent was able to cross both the outer and inner membranes and label the most abundant cytosolic

proteins. However, the protein profile obtained from cell surface labeling was markedly different from that obtained by *N*-hydroxysuccinimide biotin labeling of a WCL. Alternatively, cytosolic contaminants may have been co-purified with biotinylated surface proteins. This possibility could have been explored further by increasing salt gradients during washing to reduce non-specific interactions and monitor contaminants, or by identifying the covalently linked biotin tag on specific peptides. Attempts to perform the latter were largely unsuccessful, with only a few biotinylated peptides detected by MS (data not shown). However, detection was only performed on biotinylated surface peptides obtained after in-gel proteolytic digestion. It is possible that this procedure could be optimized by digesting biotinylated surface proteins in-solution and specifically purifying and analyzing the labeled peptides.

An intriguing hypothesis is that differences in surface proteomes contribute to the variable phenotypes of *Francisella* species, subspecies, and populations. A specific example of a difference in surface proteome composition is potentially the surface associated chitinase ChiA (FTL 1521). In *F. tularensis* A1 the homolog of *chiA* is intact, known to express, and its product is associated with virulence in a murine model (20, 46). The chiA gene is truncated in F. tularensis A2 and is predicted to be a pseudogene (2). In addition, ChiA is a documented F. tularensis antigen, thus differences in the surface presentation of this protein between F. tularensis biotypes could also impact immune recognition and be an important consideration in areas such as vaccine design. Another aspect of F. tularensis' surface proteins that warrants further investigation is how the proteome could change in response to different stimuli. Differential surface protein compositions are critical to the success of some pathogens. The best examples of this are the reciprocally regulated surface proteins OspA and OspC of Borrelia burgdorferi involved in attachment to the mid-gut of ticks and dissemination to vertebrate hosts, respectively (38). A similar type of surface proteome remodeling may be used by

*F. tularensis* to cope with the changing environments. Evidence for this includes the upregulation of the oxidative stress related surface proteins KatG (FTL\_1504) and AhpC/TSA family protein (FTL\_1015), in macrophages (48).

In conclusion, the work presented in this chapter provides the most complete characterization of *F. tularensis* surface proteins to date, and confirmed the hypothesis that the majority of these proteins were previously unknown to localize at the surface. Of the identified proteins, several may have unique roles in virulence and the phenotypic variations observed between *F. tularensis* subspecies and populations. The surface proteome identification strategy utilized here can be used as a platform to evaluate these differences, and this methodology may be applied to the investigation of how the *F. tularensis* surface proteome could adapt to changing environments and stresses, such as the transition from ticks to vertebrates and survival of the bacterium intracellulary.

## 3.5 Literature cited

- 1. Barker, J. R., A. Chong, T. D. Wehrly, J. J. Yu, S. A. Rodriguez, J. Liu, J. Celli, B. P. Arulanandam, and K. E. Klose. 2009. The *Francisella tularensis* pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol **74**:1459-1470.
- Beckstrom-Sternberg, S. M., R. K. Auerbach, S. Godbole, J. V. Pearson, J. S. Beckstrom-Sternberg, Z. Deng, C. Munk, K. Kubota, Y. Zhou, D. Bruce, J. Noronha, R. H. Scheuermann, A. Wang, X. Wei, J. Wang, J. Hao, D. M. Wagner, T. S. Brettin, N. Brown, P. Gilna, and P. S. Keim. 2007. Complete genomic characterization of a pathogenic A.II strain of *Francisella tularensis* subspecies *tularensis*. PLoS One 2:e947.
- 3. Braunstein, M., B. J. Espinosa, J. Chan, J. T. Belisle, and W. R. Jacobs, Jr. 2003. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of *Mycobacterium tuberculosis*. Mol Microbiol **48**:453-464.
- 4. **Carroll, J., M. C. Altman, I. M. Fearnley, and J. E. Walker.** 2007. Identification of membrane proteins by tandem mass spectrometry of protein ions. Proc Natl Acad Sci U S A **104**:14330-14335.
- Champion, M. D., Q. Zeng, E. B. Nix, F. E. Nano, P. Keim, C. D. Kodira, M. Borowsky, S. Young, M. Koehrsen, R. Engels, M. Pearson, C. Howarth, L. Larson, J. White, L. Alvarado, M. Forsman, S. W. Bearden, A. Sjostedt, R. Titball, S. L. Michell, B. Birren, and J. Galagan. 2009. Comparative genomic characterization of *Francisella tularensis* strains belonging to low and high virulence subspecies. PLoS Pathog 5:e1000459.
- 6. Clinton, S. R., J. E. Bina, T. P. Hatch, M. A. Whitt, and M. A. Miller. Binding and activation of host plasminogen on the surface of *Francisella tularensis*. BMC Microbiol **10**:76.
- 7. **Fulop, M., R. Manchee, and R. Titball.** 1995. Role of lipopolysaccharide and a major outer membrane protein from *Francisella tularensis* in the induction of immunity against tularemia. Vaccine **13**:1220-1225.
- 8. **Fulop, M., R. Manchee, and R. Titball.** 1996. Role of two outer membrane antigens in the induction of protective immunity against *Francisella tularensis* strains of different virulence. FEMS Immunol Med Microbiol **13:**245-247.
- 9. **Golovliov, I., M. Ericsson, G. Sandstrom, A. Tarnvik, and A. Sjostedt.** 1997. Identification of proteins of *Francisella tularensis* induced during growth in macrophages and cloning of the gene encoding a prominently induced 23kilodalton protein. Infect Immun **65:**2183-2189.
- Granato, D., G. E. Bergonzelli, R. D. Pridmore, L. Marvin, M. Rouvet, and I. E. Corthesy-Theulaz. 2004. Cell surface-associated elongation factor Tu mediates the attachment of *Lactobacillus johnsonii* NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160-2169.
- 11. Havlasova, J., L. Hernychova, P. Halada, V. Pellantova, J. Krejsek, J. Stulik, A. Macela, P. R. Jungblut, P. Larsson, and M. Forsman. 2002. Mapping of immunoreactive antigens of *Francisella tularensis* live vaccine strain. Proteomics 2:857-867.
- 12. Hempel, K., J. Pane-Farre, A. Otto, S. Sievers, M. Hecker, and D. Becher. 2010. Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen *Staphylococcus aureus* via biotinylation approach. J Proteome Res **9**:1579-1590.

- 13. Huntley, J. F., P. G. Conley, K. E. Hagman, and M. V. Norgard. 2007. Characterization of *Francisella tularensis* outer membrane proteins. J Bacteriol **189:**561-574.
- 14. Janovska, S., I. Pavkova, M. Hubalek, J. Lenco, A. Macela, and J. Stulik. 2007. Identification of immunoreactive antigens in membrane proteins enriched fraction from *Francisella tularensis* LVS. Immunol Lett **108**:151-159.
- 15. Janovska, S., I. Pavkova, M. Reichelova, M. Hubaleka, J. Stulik, and A. Macela. 2007. Proteomic analysis of antibody response in a case of laboratoryacquired infection with *Francisella tularensis* subsp. *tularensis*. Folia Microbiol (Praha) **52**:194-198.
- 16. Keller, A., A. I. Nesvizhskii, E. Kolker, and R. Aebersold. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem **74**:5383-5392.
- 17. Konecna, K., L. Hernychova, M. Reichelova, J. Lenco, J. Klimentova, J. Stulik, A. Macela, T. Alefantis, and V. G. Delvecchio. 2010. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent *Francisella tularensis* strains. Proteomics.
- Kunert, A., J. Losse, C. Gruszin, M. Huhn, K. Kaendler, S. Mikkat, D. Volke, R. Hoffmann, T. S. Jokiranta, H. Seeberger, U. Moellmann, J. Hellwage, and P. F. Zipfel. 2007. Immune evasion of the human pathogen *Pseudomonas aeruginosa*: elongation factor Tuf is a factor H and plasminogen binding protein. J Immunol 179:2979-2988.
- 19. **Laemmli, U. K.** 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature **227**:680-685.
- Larsson, P., P. C. Oyston, P. Chain, M. C. Chu, M. Duffield, H. H. Fuxelius, E. Garcia, G. Halltorp, D. Johansson, K. E. Isherwood, P. D. Karp, E. Larsson, Y. Liu, S. Michell, J. Prior, R. Prior, S. Malfatti, A. Sjostedt, K. Svensson, N. Thompson, L. Vergez, J. K. Wagg, B. W. Wren, L. E. Lindler, S. G. Andersson, M. Forsman, and R. W. Titball. 2005. The complete genome sequence of *Francisella tularensis*, the causative agent of tularemia. Nat Genet 37:153-159.
- 21. Lebeer, S., J. Vanderleyden, and S. C. De Keersmaecker. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171-184.
- 22. Ludu, J. S., O. M. de Bruin, B. N. Duplantis, C. L. Schmerk, A. Y. Chou, K. L. Elkins, and F. E. Nano. 2008. The *Francisella* pathogenicity island protein PdpD is required for full virulence and associates with homologues of the Type VI secretion system. J Bacteriol **190**:4584-4595.
- 23. Marks, K. M., and G. P. Nolan. 2006. Chemical labeling strategies for cell biology. Nat Methods 3:591-596.
- 24. **Meibom, K. L., I. Dubail, M. Dupuis, M. Barel, J. Lenco, J. Stulik, I. Golovliov, A. Sjostedt, and A. Charbit.** 2008. The heat-shock protein ClpB of *Francisella tularensis* is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol **67**:1384-1401.
- 25. Melillo, A., D. D. Sledjeski, S. Lipski, R. M. Wooten, V. Basrur, and E. R. Lafontaine. 2006. Identification of a *Francisella tularensis* LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett 263:102-108.
- 26. **Nano, F. E.** 1988. Identification of a heat-modifiable protein of *Francisella tularensis* and molecular cloning of the encoding gene. Microb Pathog **5**:109-119.

- 27. Nesvizhskii, A. I., A. Keller, E. Kolker, and R. Aebersold. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem **75**:4646-4658.
- Noh, S. M., K. A. Brayton, W. C. Brown, J. Norimine, G. R. Munske, C. M. Davitt, and G. H. Palmer. 2008. Composition of the surface proteome of *Anaplasma marginale* and its role in protective immunity induced by outer membrane immunization. Infect Immun 76:2219-2226.
- 29. **Pancholi, V., and G. S. Chhatwal.** 2003. Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol **293**:391-401.
- 30. **Pancholi, V., and V. A. Fischetti.** 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med **176:**415-426.
- 31. **Pavkova, I., M. Hubalek, J. Zechovska, J. Lenco, and J. Stulik.** 2005. *Francisella tularensis* live vaccine strain: proteomic analysis of membrane proteins enriched fraction. Proteomics **5**:2460-2467.
- 32. Pavkova, I., M. Reichelova, P. Larsson, M. Hubalek, J. Vackova, A. Forsberg, and J. Stulik. 2006. Comparative proteome analysis of fractions enriched for membrane-associated proteins from *Francisella tularensis* subsp. *tularensis* and *F. tularensis* subsp. *holarctica* strains. J Proteome Res **5**:3125-3134.
- 33. **Pinne, M., and D. A. Haake.** 2009. A comprehensive approach to identification of surface-exposed, outer membrane-spanning proteins of *Leptospira interrogans*. PLoS One **4:**e6071.
- 34. **Pornwiroon, W., A. Bourchookarn, C. D. Paddock, and K. R. Macaluso.** 2009. Proteomic analysis of *Rickettsia parkeri* strain portsmouth. Infect Immun **77:**5262-5271.
- 35. **Qiu, H., and Y. Wang.** 2008. Quantitative analysis of surface plasma membrane proteins of primary and metastatic melanoma cells. J Proteome Res **7**:1904-1915.
- 36. **Sandstrom, G., A. Tarnvik, and H. Wolf-Watz.** 1987. Immunospecific Tlymphocyte stimulation by membrane proteins from Francisella tularensis. J Clin Microbiol **25**:641-644.
- 37. Schaumburg, J., O. Diekmann, P. Hagendorff, S. Bergmann, M. Rohde, S. Hammerschmidt, L. Jansch, J. Wehland, and U. Karst. 2004. The cell wall subproteome of *Listeria monocytogenes*. Proteomics **4**:2991-3006.
- 38. **Schwan, T. G.** 2003. Temporal regulation of outer surface proteins of the lymedisease spirochaete *Borrelia burgdorferi*. Biochem Soc Trans **31**:108-112.
- Sha, J., T. E. Erova, R. A. Alyea, S. Wang, J. P. Olano, V. Pancholi, and A. K. Chopra. 2009. Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of *Aeromonas hydrophila*. J Bacteriol 191:3095-3107.
- 40. Sjostedt, A., G. Sandstrom, A. Tarnvik, and B. Jaurin. 1990. Nucleotide sequence and T cell epitopes of a membrane protein of *Francisella tularensis*. J Immunol **145:**311-317.
- 41. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem **150**:76-85.
- 42. **Sonnenberg, M. G., and J. T. Belisle.** 1997. Definition of *Mycobacterium tuberculosis* culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun **65**:4515-4524.

- 43. **Stewart, G. R., and D. B. Young.** 2004. Heat-shock proteins and the hostpathogen interaction during bacterial infection. Curr Opin Immunol **16**:506-510.
- Straskova, A., I. Pavkova, M. Link, A. L. Forslund, K. Kuoppa, L. Noppa, M. Kroca, A. Fucikova, J. Klimentova, Z. Krocova, A. Forsberg, and J. Stulik.
  2009. Proteome analysis of an attenuated *Francisella tularensis dsbA* mutant: identification of potential DsbA substrate proteins. J Proteome Res 8:5336-5346.
- 45. **Twine, S. M., N. C. Mykytczuk, M. Petit, T. L. Tremblay, P. Lanthier, J. W. Conlan, and J. F. Kelly.** 2005. *Francisella tularensis* proteome: low levels of ASB-14 facilitate the visualization of membrane proteins in total protein extracts. J Proteome Res **4**:1848-1854.
- 46. **Twine, S. M., N. C. Mykytczuk, M. D. Petit, H. Shen, A. Sjostedt, J. Wayne Conlan, and J. F. Kelly.** 2006. *In vivo* proteomic analysis of the intracellular bacterial pathogen, *Francisella tularensis*, isolated from mouse spleen. Biochem Biophys Res Commun **345**:1621-1633.
- 47. **Twine, S. M., M. D. Petit, K. M. Fulton, R. V. House, and J. W. Conlan.** Immunoproteomics analysis of the murine antibody response to vaccination with an improved *Francisella tularensis* live vaccine strain (LVS). PLoS One **5:**e10000.
- 48. Wehrly, T. D., A. Chong, K. Virtaneva, D. E. Sturdevant, R. Child, J. A. Edwards, D. Brouwer, V. Nair, E. R. Fischer, L. Wicke, A. J. Curda, J. J. Kupko, 3rd, C. Martens, D. D. Crane, C. M. Bosio, S. F. Porcella, and J. Celli. 2009. Intracellular biology and virulence determinants of *Francisella tularensis* revealed by transcriptional profiling inside macrophages. Cell Microbiol **11**:1128-1150.
- 49. **Yu, X., and D. Walker.** 2005. Genus I. *Rickettsia* da Rocha-Lima 1916, 567<sup>AL</sup>. In Brenner DJ, Ed. Bergy's Manual of Systematic Bacteriology. New York.
- Zhang, H., R. N. Brown, W. J. Qian, M. E. Monroe, S. O. Purvine, R. J. Moore, M. A. Gritsenko, L. Shi, M. F. Romine, J. K. Fredrickson, L. Pasa-Tolic, R. D. Smith, and M. S. Lipton. 2010. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 180 labeling. J Proteome Res 9:2160-2169.

## Chapter IV

## Surface Protein Antigens of F. tularensis

## 4.1 Introduction

Presently, there is no approved vaccine available in the United States for the prevention of tularemia (35). However, an attenuated *F. tularensis* type B strain, LVS, was previously developed for human use (41, 42). This vaccine provides a significant level of protection against virulent F. tularensis infection in humans and animals, is more effective than other reported vaccines, but is no longer used due to issues of safety and sustained efficacy (29, 34, 54, 55). Although T cell mediated responses are an aspect of protection afforded by F. tularensis LVS vaccination, an important role for humoral immunity has been documented (6, 12, 15, 18). Early studies provided evidence that humans could be treated using immune sera (15, 18). Similarly, Drabick et al. demonstrated that passive transfer of immune sera could protect mice against a F. tularensis LVS infection that was 10,000 times higher than the LD<sub>50</sub> (12). The protective effect of this serum could be abrogated by preabsorption with a F. tularensis LVS lysate, implicating antibodies in protection (12). To emphasize the importance of antibodies, specific IgG, IgM, and IgA were detectable in human patients for at least 1.5 years after F. tularensis LVS vaccination (15). Additionally, mice depleted of CD4+ and CD8+ T cells are known to retain a high degree of immunity against reinfection with F. tularensis LVS (10).

Many antigens, including proteins and polysaccharides, are recognized by specific antibodies after *F. tularensis* LVS infection or vaccination (8, 26). Several of

these were previously tested as vaccines, but displayed little to no protective efficacy against a challenge with virulent *F. tularensis* (Appendix 1). Two surface proteins, outer membrane associated protein FopA (FTT\_0583) and lipoprotein TUL4 (FTT\_0901), when presented individually in a heterologous host or with immune-stimulating complexes, failed to offer any substantial protection in murine models (19, 21, 46). However, marginal protection was recently observed when FopA and TUL4 monoclonal antibodies were administered therapeutically (43). The best protective effects observed with a single antigen were obtained using the surface molecule LPS (7-9, 13, 19). Cole *et al.* demonstrated that vaccination with LPS elicits the production of specific antibodies from B-1a B cells that are capable of providing lasting protective immunity against *F. tularensis* LVS (8). Unfortunately, antibodies to LPS do not provide complete protection to infection was also obtained using anti-capsule monoclonal antibodies that recognizes the O-antigen repeat of LPS, but it is unknown if the protective effect extends to *F. tularensis* type A infection (2).

As reported in this chapter, and previously by Huntley *et al.*, mice vaccinated with *F. tularensis* membrane preparations admixed with adjuvant are modestly protected against *F. tularensis* type A (25). However, these vaccines do not produce the same level of protective immunity as *F. tularensis* LVS. It is possible that a subunit vaccine based on a membrane preparation lacks the immunogens required for full protection against virulent *F. tularensis*. Alternatively, membrane preparations could possess the correct set of immunogens, but their presentation in the context of an adjuvant elicits a different antigen response compared to *F. tularensis* LVS vaccination.

Although many different molecules may be recognized as antigens, only a portion of these can serve as protective immunogens (38). Immunogen identification is facilitated by identifying bacterial components recognized during active infections, and

often these are surface proteins (3, 44). This premise is best demonstrated by the use of surface proteins in effective vaccines against organisms such as serogroup B N. meningitidis, Chlamydia pneumonia, Streptococcus pyogenes and Streptococcus agalactiae (20, 31, 39, 50). Based on this evidence, and the known protective effect of F. tularensis membrane proteins, it was hypothesized that surface proteins would be recognized by immune sera from mice vaccinated with *F. tularensis* LVS. Accordingly, immune sera from F. tularensis LVS vaccinated mice were used to identify antigenic surface proteins that could also be immunogens. Further, immune sera from two adjuvanted subunit vaccinations containing MPF, a fraction that contains the majority of surface proteins, were evaluated and compared to F. tularensis LVS immune sera to assess changes in the humoral response (in the context of surface proteins) associated with decreased efficacy. The adjuvants, cationic liposome DNA complex (CLDC) and monophosphoryl lipid A (MPLA), were chosen because of their ability to stimulate differing effector responses (Th1/Th2 and Th1 type responses, respectively) and their use in humans (32). Presented here, 10 surface proteins were recognized as antigens by F. tularensis LVS vaccination. Sera from both subunit vaccinations also recognized surface proteins, but the breadth of the humoral responses were expanded to a much larger number of proteins, most of which are not surface associated.

## 4.2 Materials and methods

#### 4.2.1 Strains and culture conditions

To generate sufficient quantities of MPF for immunoproteomic analyses, *F. tularensis* LVS was inoculated directly from frozen stocks into MH broth supplemented with 1% lsovitalex (BD Biosciences) and incubated at 37°C on a platform shaker for 30 h. Subcultures were inoculated to fresh MH broth supplemented with 1% lsovitalex and harvested after 20 h of growth. Cells were collected by centrifugation at 4,500 × g and

washed in PBS, pelleted and stored at -80°C. Production of stocks for vaccination or infection was achieved by culturing *F. tularensis* strains in modified MH broth supplemented with 0.14% CaCl<sub>2</sub>, 0.21% MgCl<sub>2</sub> hexahydrate, 0.1% glucose, 0.025% ferric pyrophosphate and 2% Isovitalex at 37°C with constant shaking overnight (MMH). Aliquots of 1 ml were frozen at -80°C and thawed prior to use (4). Frozen stocks were titered by enumerating viable bacteria from serial dilutions plated on modified MMH agar (5, 16).

#### 4.2.2 Mice

Specific-pathogen-free, 6 to 8 week old male Balb/c mice (wild-type) were purchased from Jackson Laboratories (Bar Harbor, ME). Mice were housed in sterile microisolater cages in the biosafety level three facility at the National Institute of Allergy and Infectious Diseases/Rocky Mountain Laboratories (RML) (Hamilton, MT). All mice were provided sterile water and food *ad libitum* and all research involving animals was conducted in accordance with Animal Care and Use guidelines and approved by the Animal Care and Use Committee at RML

#### 4.2.3 Immunization of mice

In two independent experiments mice were immunized s.c. with *F. tularensis* LVS (n = 10 or 5), MPF mixed with CLDC (n = 10) (provided by Dr. Jeff Fairman, Juvaris Biotherapeutic, Burlingame, CA), or MPLA (n = 10) (Invivogen, San Diego, CA). CLDC and MPLA were prepared per manufacturers' instructions. MPF was serially diluted in 5% dextrose/water for addition to CLDC, and in PBS, for addition to MPLA. Each mouse was injected s.c. with 10  $\mu$ g MPF in adjuvant in a total of 200  $\mu$ l. Mice were immunized with MPF twice, two weeks apart. *F. tularensis* LVS was serially diluted in PBS and 200 CFU, in 200  $\mu$ l, and injected s.c. into each mouse. Actual inoculum concentration was

confirmed by plating a portion of the inoculums, incubating plates at  $37^{\circ}$ C, and enumerating colonies. Unvaccinated mice served as negative controls. All mice were bled for serum 12 days after the final injection. Blood was collected via the tail vein into microtainer tubes (BD Biosciences). Blood was subsequently allowed to coagulate at room temperature for 30 min, centrifuged at 9.6 × g to separate cells from serum, and stored at -80°C.

### 4.2.4 Infection of mice with *F. tularensis* SCHU S4

Mice were infected i.n. with approximately 10 CFU of *F. tularensis* SCHU S4 30 days after the last vaccination. Just prior to infection, mice were anesthetized by injection of 100 µl of 12.5 mg/ml ketamine + 3.8 mg/ml xylazine i.p. Approximately 10 CFU in 25 µl was administered into the nares of each mouse. Actual inoculum concentration was confirmed by plating a portion of the inoculum, incubating plates at 37°C, and enumerating colonies. This dose routinely resulted in a mean-time-to-death of five days in naïve Balb/c mice. Statistical analyses of survival were performed using the log-rank (Mantel-Cox) test.

#### 4.2.5 Isolation of MPF

*F. tularensis* LVS cell pellets were thawed and suspended in breaking buffer to a final concentration of 1 g cells (wet weight) per 1 ml of buffer. Cells were placed on ice and lysed by nine repetitions of pulsed sonication using a 4710 series Ultrasonic Homogenizer (Cole and Palmer Instrument Company) employing the following instrument parameters: % duty of 50, output of 5, 60 seconds pulsed, 60 seconds off. Unbroken cells and debris were removed from the lysate by centrifugation at 4,500 × g, 4°C, for 20 min. MPF was obtained by centrifugation of cell lysates at 100,000 × g for 4 h. Supernatants were removed, pellets suspended in breaking buffer, and dialyzed

against 10 mM ammonium bicarbonate buffer using 3,500 Da molecular weight cut-off dialysis membranes (Spectrum Laboratories Incorporated). MPF protein concentration was determined by the BCA assay (Thermo/Pierce) (47).

#### 4.2.6 SDS-PAGE and IEF

Aliquots of MPF were applied to SDS-PAGE using 4-12% Bis-Tris SDS-Polyacrylamide gels (Invitrogen) under denaturing conditions (30). 2D-PAGE) was performed with 300 µg aliquots of MPF. First, MPF was precipitated with three volumes of acetone and 13.3% trichloroacetic acid and incubated overnight at -20°C. The precipitate was collected by centrifugation at 4,000 × g, 4°C, for 20 min, and was washed twice with 1 ml of cold acetone. The protein pellet was air dried and suspended in 22.5 µl of 50 mM Tris, pH 7.1, 8 M urea, 2 M thiourea, 100 mM dithiothreitol (DTT), 4% (w/v) CHAPS, 1% (w/v) ASB-14, 7% pH 4-7 ampholytes, and 0.3% pH 3-10 ampholytes, sonicated for 30 min, and incubated for 4 h at room temperature. Samples were diluted with 130 µl of 8 M urea, 2 M thiourea, 20 mM DTT, 4% (w/v) CHAPS, 1% (w/v) ASB-14, 0.7% pH 4-7 ampholytes, and 0.3% pH 3-10 ampholytes and centrifuged for 30 min at 13,000 × g to remove any insoluble material. One third of the sample was applied to an Immobiline dry strip (GE Healthcare Life Sciences) with either pH gradients of 4-7 or 6-11, following the manufacturer's instructions.

IEF was performed using a Multiphore II unit (GE Healthcare Life Sciences) at 50 V, 100 V, 150 V, 200 V, 250 V, 300 V sequentially for 6 min followed by 500 V for 12 min and 3000 V for 5 h. The focused Immobiline strips were rinsed in ultrapure  $H_2O$  and incubated in 0.375 M Tris, pH 7.1, 6 M urea, 2% SDS, 30% glycerol, 1% DTT, and trace bromophenol blue for 15 min at room temperature. Immobiline strips were again rinsed in ultrapure  $H_2O$  and incubated in 0.375 M Tris, pH 7.1, 6 M Tris, pH 7.1, 6 M urea, 2% SDS, 30% glycerol, 1% DTT, and trace bromophenol blue for 15 min at room temperature.

glycerol, 2.5% iodoacetamide, and trace bromophenol blue before a final rinsing in ultrapure  $H_2O$ . Proteins were resolved in the second dimension by SDS-PAGE.

Detection and destaining of protein in polyacrylamide gels was accomplished by staining with the Pierce Silver Stain Kit (Thermo/Pierce) according to the protocols of the manufacturer. Gel images were digitized using a HP Scanjet 4850 photo scanner (Hewlett-Packard Company).

#### 4.2.7 Western blotting

MPF resolved by SDS-PAGE was transferred to nitrocellulose membranes by Western blot as previously described by Sonnenberg *et al.* with the following modifications (48). Membranes were incubated in TBS containing 0.1% Tween 20 and 5% nonfat milk and were washed in TBS containing 0.1% Tween 20 (TBST). Nitrocellulose membranes were incubated with sera pooled from vaccinated or control mice (1:200). Alternatively, membranes were incubated with anti-*Francisella* LPS (1:250) monoclonal antibodies (Immunoprecise, Victoria, British Columbia, Canada). Following incubation, membranes were again washed in TBST before being incubated with alkaline phosphatase conjugated goat-anti-mouse IgG or IgM (1:5,000) to detect primary antibodies. A final TBST wash was performed and antibody reactive proteins were detected using BCIP/NBT SigmaFAST tablets (Sigma-Aldrich, St. Louis, MO). Western blot images were digitized using a HP Scanjet 4850 photo scanner.

#### 4.2.8 Computer aided image analysis

The digitized images of 2D-Western blots were compared to Pierce Silver Stain Kit stained 2D-protein gels using Delta2D gel analysis software (DECODON, Greifswald Germany), and areas of immunoreactivity were correlated with specific spots or areas of stained gels.

#### 4.2.9 Protein identification by MS

Protein spots were subjected to in-gel proteolytic digestion with trypsin in 0.2 M ammonium bicarbonate buffer at 37°C. Peptides from enzymatic digestion were applied to a capillary C18 reversed phase column (0.74 x 50 mm) (Agilent Technologies) and eluted with an increasing linear gradient of ACN in 0.1 % formic acid. Effluent was introduced directly into an Agilent 6520 quadrapole-time of flight mass spectrometer (Agilent Technologies).

Proteins present in the MPF were identified using Mass Hunter Qualitative Analysis (Ver. B.02.00) (Agilent Technologies) and MASCOT softwares (Matrix Science Ltd). Spectral data were searched against the γ-proteobacteria NCBI non-redundant protein database. A peptide tolerance of 20 ppm, MS/MS tolerance of 0.01 Da, and 1 missed cleavage were allowed. Oxidation of methionine and carbamidomethyl modification of cysteine was considered in the search analyses. Protein and peptide identification was validated with Scaffold version 2\_01\_02 (Proteome Software Incorporated). Peptide identifies were accepted only when a peptide identification probability of >95% was obtained as specified by the peptide prophet algorithm (27). Protein identifications were accepted if protein identification probabilities were >99.0%, as assigned by the protein prophet algorithm, and contained at least two unique peptides (33).

## 4.3 Results

## 4.3.1 **Protective immunity of MPF vaccination**

A comparative evaluation of the protective immune response generated by *F. tularensis* LVS *versus* the MPF based subunit vaccines was performed by challenging vaccinated mice with *F. tularensis* strain SCHU S4 30 days after the last vaccination in two independent experiments. As expected, mice vaccinated with *F. tularensis* LVS

were well protected against a low dose (10 CFU) i.n. challenge (Fig. 4.1). Animals vaccinated with either of the MPF formulations showed moderate protection as compared to unvaccinated controls. Specifically, those receiving MPF+MPLA showed the greatest protection, with 40-60% of the animals surviving infection (Fig. 4.1). Vaccination with MPF+CLDC resulted in 0-30% survival (Fig. 4.1). No statistical differences in survival rates were determined between identical vaccine groups in the two experiments.



Fig 4.1 Survival of mice following a low dose i.n. challenge with *F. tularensis* SCHU S4. Mice were immunized s.c. with *F. tularensis* LVS (n = 10, experiment A or n = 5, experiment B), MPF+MPLA (n = 10), or MPF+CLDC (n = 10) in two independent experiments (A and B). Differences in survival of groups in the same experiment were evaluated using the Mantel Cox log rank test. \* = significantly greater than all other groups except MPF+CLDC (p<0.0002). \*\* = significantly greater than all other groups except *F. tularensis* LVS (p<0.001). \*\*\* = significantly greater than all other groups (p<0.04). \*\*\*\* = significantly greater than unvaccinated controls (P<0.0002).

## 4.3.2 Live attenuated and subunit vaccines recognize membrane proteins

Immune sera from LVS and MPF vaccinations were tested by 1D-Western blot to determine the presence of specific antibodies to MPF (Fig. 4.2). Vaccination with MPF and adjuvant produces a strong antibody response to proteins of both high and low

molecular masses. In contrast to MPF vaccination, most proteins recognized by *F. tularensis* LVS vaccination were resolved at molecular masses over 50 kDa. The extent of the number of bands recognized by *F. tularensis* LVS immune serum was much less compared to both MPF vaccinations. All immune sera blots were developed until non-specific reactivity was observed with their respective naïve control serums (data not shown). In all cases control serum reactivity was rare and weak. As expected, LPS was readily detectable in the sample and was the primary epitope recognized by IgM antibody isotypes (Fig 4.2B) (24, 25).



**Fig. 4.2** Immune sera response directed against MPF from various forms of vaccination. A) Western blot analysis to determine immune serum reactivity (IgG) to MPF. Silver stained MPF (Lane 1); MPF probed with *F. tularensis* LVS anti-serum (Lane 2); MPF probed with MPF+MPLA anti-serum (Lane 3); MPF probed with MPF+CLDC anti-serum (Lane 4). B) Western blot analysis to determine immune serum reactivity (IgM) to MPF. MPF probed with anti-LPS antibody (Lane 1); MPF probed with *F. tularensis* LVS anti-serum (Lane 2); MPF probed with MPF+CLDC anti-serum (Lane 2); MPF probed with anti-LPS antibody (Lane 1); MPF probed with *F. tularensis* LVS anti-serum (Lane 3); MPF probed with MPF+CLDC anti-serum (Lane 4).

#### 4.3.3 2D-separation of *F. tularensis* MPF

2D-PAGE analysis of the MPF revealed 295 and 271 individual protein spots when pH 4-7 and pH 6-11 IPG strips were used, respectively (Fig. 4.3A and 3B). However, only proteins with higher isoelectric points were well resolved on basic IPG strips (Fig. 4.3B). Numbered spots were subject to MS analyses for protein identification (Table 4.1). Identifications were successful for 52 individual spots corresponding to 48 proteins. Multiple proteins were identified in 15 of the spots (spot numbers 8, 13, 15, 16, 17, 22, 29, 58, 59, 60, 61, 62, 63, 64, and 72). Of these, the proteins identified in spots 8, 13, and 16 were recognized by immune serum from other studies (26, 51). At least one protein was previously identified as immune reactive in spots 15, 17, 22, 29, 60, 61, 62, and 63 (26, 51). Until now, the proteins located in spots 58, 59, 64 and 72 have not been shown to react to immune serum.



**Fig 4.3 2D-PAGE analysis of MPF.** Three hundred micrograms of MPF was separated in the pH range of 4-7 (A) or 6-11 (B). Representatives of silver stained gels from numerous technical replicates are shown. The numbered arrows indicate spots taken for LC-MS/MS analysis.

| Spot<br>number | ·<br>Protein name                                                                               | Locus          | Predicted<br>molecular<br>mass (Da) | Sera<br>reactivity | Protein<br>identification<br>probability | No. of<br>unique<br>peptides | %<br>sequence<br>coverage |
|----------------|-------------------------------------------------------------------------------------------------|----------------|-------------------------------------|--------------------|------------------------------------------|------------------------------|---------------------------|
| 1              | Could not be identified with                                                                    | -              | -                                   | Χ, Υ               |                                          | -                            | -                         |
| 2              | Pyruvate dehydrogenase, E1<br>component                                                         | FTL_0309       | 100268.34                           | X, Y, Z            | 100.00%                                  | 24                           | 27%                       |
| 3              | Chitinase family 18 protein                                                                     | *FTL_1521      | 83595.21                            | X, Y, Z            | 100.00%                                  | 6                            | 8%                        |
| 4              | Chaperone protein dnaK                                                                          | *FTL_1191      | 69182.22                            | X, Y, Z            | 100.00%                                  | 22                           | 41%                       |
| 5              | Peroxidase/catalase                                                                             | *FTL_1504      | 81226.95                            | X, Z               | 100.00%                                  | 5                            | 6%                        |
| 6              | Dihydrolipoamide                                                                                | FTL_0310       | 56798.85                            | X, Y, Z            | 100.00%                                  | 14                           | 29%                       |
| 7              | Aspartyl-tRNA synthetase                                                                        | FTL_0020       | 66805.23                            | х                  | 100.00%                                  | 4                            | 5%                        |
| 8              | Dihydrolipoamide<br>succinyltransferase component of<br>2-oxoglutarate dehydrogenase<br>complex | FTL_1783       | 52717.94                            | X, Y, Z            | 100.00%                                  | 10                           | 26%                       |
|                | Chaperonin GroEL                                                                                | *FTL_1714      | 57402.70                            |                    | 100.00%                                  | 39                           | 79%                       |
| 9              | Could not be identified with<br>confidence                                                      | -              | -                                   | X, Y, Z            | -                                        | -                            | -                         |
| 10             | Could not be identified with<br>confidence                                                      | -              | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 11             | Hypothetical protein                                                                            | *FTL_0572      | 51977.34                            | Χ, Υ               | 100.00%                                  | 8                            | 16%                       |
| 12             | Hypothetical protein                                                                            | *FTL_0572      | 51977.34                            | Χ, Υ               | 100.00%                                  | 17                           | 36%                       |
| 13             | Hypothetical protein                                                                            | *FTL_0572      | 51977.34                            | Х, Ү               | 100.00%                                  | 8                            | 17%                       |
|                | Dihydrolipoamide dehydrogenase                                                                  | FTL_0311       | 50527.53                            |                    | 100.00%                                  | 10                           | 22%                       |
| 14<br>15       | FUF1 ATP synthase subunit<br>alpha<br>Enclase (2-phosphoglycerate                               | +IL_1/9/       | 55536.23<br>49511 19                | X, Y<br>X          | 100.00%                                  | 22<br>5                      | 37%                       |
| 15             | dehydratase)<br>E0E1 ATP synthase subunit                                                       | FTI 1797       | 55536.23                            | X                  | 100.00%                                  | 9                            | 17%                       |
| 16             | alpha<br>F0F1 ATP synthase subunit beta                                                         | FTL_1795       | 49864.94                            | х                  | 100.00%                                  | 22                           | 60%                       |
|                | Outer membrane associated                                                                       | *FTL_1328      | 41259.65                            |                    | 100.00%                                  | 8                            | 18%                       |
| 17             | protein<br>Elongation factor Tu                                                                 | *FTL 1751      | 43390.62                            | X. Y. Z            | 100.00%                                  | 16                           | 49%                       |
|                | Aspartate aminotransferase                                                                      | *FTL 0387      | 44382.87                            |                    | 99.80%                                   | 2                            | 4%                        |
| 18             | Outer membrane associated                                                                       | -<br>*FTL_1328 | 41259.65                            | х                  | 100.00%                                  | 6                            | 13%                       |
| 19             | protein<br>Outer membrane associated                                                            | *FTL_1328      | 41259.65                            | Х, Ү               | 100.00%                                  | 6                            | 13%                       |
| 20             | Outer membrane associated                                                                       | *FTL_1328      | 41259.65                            | Χ, Υ               | 100.00%                                  | 13                           | 29%                       |
| 21             | protein<br>Outer membrane associated                                                            | *FTL_1328      | 41259.65                            | Χ, Υ               | 100.00%                                  | 5                            | 10%                       |
| 22             | protein<br>Glutamate-1-semialdehyde-2,1-<br>aminomutase                                         | FTL_1283       | 47064.12                            | х                  | 99.80%                                   | 2                            | 4%                        |
|                | OmpA family protein                                                                             | *FTL_0325      | 46754.18                            |                    | 100.00%                                  | 8                            | 21%                       |
|                | Cell division protein FtsA                                                                      | FTL_1908       | 44804.05                            |                    | 100.00%                                  | 8                            | 17%                       |
| 23             | Could not be identified with<br>confidence                                                      | -              | -                                   | х                  | -                                        | -                            | -                         |
| 24             | NADH dehydrogenase I, F                                                                         | FTL_1825       | 46282.70                            | Х                  | 100.00%                                  | 6                            | 14%                       |
| 25             | Could not be identified with confidence                                                         | -              | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 26             | Outer membrane associated                                                                       | *FTL_1328      | 41259.65                            | Χ, Υ               | 100.00%                                  | 4                            | 10%                       |
| 27             | Outer membrane associated                                                                       | *FTL_1328      | 41259.65                            | Х, Ү               | 100.00%                                  | 7                            | 20%                       |
| 28             | Outer membrane associated                                                                       | *FTL_1328      | 41259.65                            | X, Y, Z            | 100.00%                                  | 8                            | 20%                       |
| 29             | Universal stress protein                                                                        | FTL_0166       | 30220.68                            | Χ, Υ               | 100.00%                                  | 5                            | 19%                       |
|                | Outer membrane associated                                                                       | *FTL_1328      | 41259.65                            |                    | 100.00%                                  | 6                            | 12%                       |
| 30             | protein<br>Periplasmic solute binding family<br>protein                                         | FTL_1936       | 33814.86                            | Χ, Υ               | 100.00%                                  | 6                            | 21%                       |

# Table 4.1 MPF spot identification by MS

| Spot<br>number | Protein name                                                       | Locus     | Predicted<br>molecular<br>mass (Da) | Sera<br>reactivity | Protein<br>identification<br>probability | No. of<br>unique<br>peptides | %<br>sequence<br>coverage |
|----------------|--------------------------------------------------------------------|-----------|-------------------------------------|--------------------|------------------------------------------|------------------------------|---------------------------|
| 31             | Periplasmic solute binding family                                  | FTL_1936  | 33814.86                            | Χ, Υ               | 100.00%                                  | 9                            | 24%                       |
| 32             | Could not be identified with<br>confidence                         | -         | -                                   | Χ, Υ               | -                                        | -                            | -                         |
| 33             | Hypothetical protein                                               | FTL_0929  | 26874.96                            | Χ, Υ               | 99.80%                                   | 2                            | 11%                       |
| 34             | Outer membrane protein                                             | *FTL_0009 | 19477.11                            | Χ, Υ               | 100.00%                                  | 4                            | 29%                       |
| 35             | AhpC/TSA family protein                                            | *FTL_1015 | 19668.22                            | Χ, Υ               | 100.00%                                  | 6                            | 35%                       |
| 36             | Could not be identified with<br>confidence                         | -         | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 37             | Could not be identified with<br>confidence                         | -         | -                                   | х                  | -                                        | -                            | -                         |
| 38             | Acetyl-CoA carboxylase, biotin<br>carboxyl carrier protein subunit | *FTL_1592 | 16403.98                            | X, Y, Z            | 100.00%                                  | 7                            | 62%                       |
| 39             | Acetyl-CoA carboxylase, biotin<br>carboxyl carrier protein subunit | *FTL_1592 | 16403.98                            | Х, Ү               | 100.00%                                  | 7                            | 69%                       |
| 40             | Could not be identified with<br>confidence                         | -         | -                                   | х                  | -                                        | -                            | -                         |
| 41             | 50S ribosomal protein L9                                           | *FTL_1026 | 16087.49                            | X, Z               | 100.00%                                  | 7                            | 39%                       |
| 42             | F0F1 ATP synthase subunit<br>epsilon                               | FTL_1794  | 15736.95                            | Х                  | 100.00%                                  | 6                            | 44%                       |
| 43             | Could not be identified with<br>confidence                         | -         | -                                   | х                  | -                                        | -                            | -                         |
| 44             | 50S ribosomal protein L7/L12                                       | *FTL_1745 | 12847.82                            | X, Y, Z            | 100.00%                                  | 6                            | 43%                       |
| 45             | Hypothetical protein                                               | FTL_0105  | 13728.82                            | X, Y, Z            | 100.00%                                  | 5                            | 42%                       |
| 46             | Could not be identified with<br>confidence                         | -         | -                                   | X, Y, Z            | -                                        | -                            | -                         |
| 47             | Could not be identified with<br>confidence                         | -         | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 48             | Could not be identified with<br>confidence                         | -         | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 49             | Could not be identified with<br>confidence                         | -         | -                                   | х                  | -                                        | -                            | -                         |
| 50 & 51        | F0F1 ATP synthase subunit B                                        | FTL_1799  | 17383.26                            | Х                  | 100.00%                                  | 3                            | 19%                       |
| 52             | Could not be identified with<br>confidence                         | -         | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 53             | 50S ribosomal protein L3                                           | FTL_0236  | 22307.33                            | Χ, Υ               | 100.00%                                  | 5                            | 29%                       |
| 54             | Could not be identified with<br>confidence                         | -         | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 55             | Could not be identified with<br>confidence                         | -         | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 56             | Hypothetical protein                                               | FTL_0571  | 22451.65                            | Χ, Υ               | 100.00%                                  | 7                            | 0%                        |
| 57             | Could not be identified with<br>confidence                         | -         | -                                   | Х, Ү               | -                                        | -                            | -                         |
| 58             | 50S ribosomal protein L15                                          | FTL_0255  | 15095.61                            | Χ, Υ               | 100.00%                                  | 2                            | 11%                       |
|                | 50S ribosomal protein L11                                          | FTL_1748  | 15269.89                            |                    | 100.00%                                  | 5                            | 27%                       |
| 59             | 50S ribosomal protein L15                                          | FTL_0255  | 15095.61                            | Χ, Υ               | 100.00%                                  | 5                            | 30%                       |
|                | 50S ribosomal protein L5                                           | FTL_0248  | 19996.34                            |                    | 99.80%                                   | 2                            | 9%                        |
|                | 50S ribosomal protein L11                                          | FTL_1748  | 15269.89                            |                    | 100.00%                                  | 7                            | 38%                       |
| 60             | Hypothetical protein                                               | FTL_0850  | 20453.33                            | Χ, Υ               | 100.00%                                  | 2                            | 7%                        |
|                | 50S ribosomal protein L15                                          | FTL_0255  | 15095.61                            |                    | 100.00%                                  | 4                            | 26%                       |
|                | Lipoprotein                                                        | *FTL_0421 | 15771.85                            |                    | 100.00%                                  | 6                            | 46%                       |
| 61             | Lipoprotein                                                        | *FTL_0421 | 15771.85                            | Χ, Υ               | 100.00%                                  | 8                            | 55%                       |
|                | 50S ribosomal protein L10                                          | FTL_1746  | 18731.70                            |                    | 100.00%                                  | 5                            | 29%                       |
| 62             | Lipoprotein                                                        | *FTL_0421 | 15771.85                            | Χ, Υ               | 100.00%                                  | 3                            | 24%                       |
|                | 50S ribosomal protein L11                                          | FTL_1748  | 15269.89                            |                    | 100.00%                                  | 3                            | 22%                       |
|                | 50S ribosomal protein L10                                          | FTL_1746  | 18731.70                            |                    | 100.00%                                  | 5                            | 32%                       |

# Table 4.1 MPF spot identification by MS, continued

| Spot<br>number | Protein name                               | Locus     | Predicted<br>molecular<br>mass (Da) | Sera<br>reactivity | Protein<br>identification<br>probability | No. of<br>unique<br>peptides | %<br>sequence<br>coverage |
|----------------|--------------------------------------------|-----------|-------------------------------------|--------------------|------------------------------------------|------------------------------|---------------------------|
| 63             | Lipoprotein                                | *FTL_0421 | 15771.85                            | Χ, Υ               | 100.00%                                  | 2                            | 17%                       |
|                | 50S ribosomal protein L11                  | FTL_1748  | 15269.89                            |                    | 100.00%                                  | 7                            | 38%                       |
|                | 50S ribosomal protein L10                  | FTL_1746  | 18731.70                            |                    | 100.00%                                  | 5                            | 32%                       |
| 64             | 50S ribosomal protein L25                  | FTL_0950  | 10903.65                            | Χ, Υ               | 100.00%                                  | 3                            | 22%                       |
|                | Preprotein translocase family protein      | FTL_0847  | 12881.27                            |                    | 100.00%                                  | 2                            | 14%                       |
| 65             | Could not be identified with<br>confidence | -         | -                                   | х                  | -                                        | -                            | -                         |
| 66             | Could not be identified with<br>confidence | -         | -                                   | х                  | -                                        | -                            | -                         |
| 67             | Glutamine synthetase                       | FTL_1899  | 38256.94                            | Y                  | 100.00%                                  | 6                            | 13%                       |
| 68             | DNA-directed RNA polymerase subunit alpha  | FTL_0261  | 35357.51                            | Y                  | 100.00%                                  | 2                            | 5%                        |
| 69             | Could not be identified with<br>confidence | -         | -                                   | Y                  | -                                        | -                            | -                         |
| 70             | Intracellular growth locus, subunit C      | *FTL_0113 | 22133.41                            | Y                  | 100.00%                                  | 7                            | 38%                       |
| 71             | LemA-like protein                          | FTL_0361  | 21986.26                            | Υ, Ζ               | 100.00%                                  | 7                            | 32%                       |
| 72             | Hypothetical protein                       | FTL_0104  | 14595.73                            | Υ, Ζ               | 100.00%                                  | 3                            | 24%                       |
|                | Thioredoxin                                | FTL_0611  | 12022.97                            |                    | 100.00%                                  | 4                            | 43%                       |
| 73             | Could not be identified with<br>confidence | -         | -                                   | Y                  | -                                        | -                            | -                         |
| 74             | Could not be identified with<br>confidence | -         | -                                   | Y                  | -                                        | -                            | -                         |
| 75             | 30S ribosomal protein S8                   | FTL_0250  | 14410.78                            | Y                  | 100.00%                                  | 5                            | 42%                       |
| 76             | Could not be identified with<br>confidence | -         | -                                   | Z                  | -                                        | -                            | -                         |
| 77             | Could not be identified with               | -         | -                                   | Z                  | -                                        | -                            | -                         |

| Table 4.1 MPF Spot identification by MS. contin |
|-------------------------------------------------|
|-------------------------------------------------|

X, Y, and Z designate proteins reactive to sera from mice vaccinated with MPF-CLDC, MPF-MPLA, and *F. tularensis* LVS, respectively. Protein probabilities of correct identification, number of unique peptides, and % sequence coverage were determined by Scaffold software.

\*Indicates proteins previously identified as surface exposed in Chapter III. Loci are from the F. tularensis LVS genome.

## 4.3.4 Sera recognition of surface proteins by *F. tularensis* LVS vaccinated mice

To address the immunological relevance of surface exposed proteins, we assessed whether vaccination of mice with *F. tularensis* LVS elicited a humoral response to the surface proteins. However, direct 2D-PAGE and 2D-Western blot analyses of chemically labeled surface proteins (described in Chapter III) was not possible due to the low abundance of recoverable surface proteins and the potential interference of LC-Biotin. Therefore, 2D-Western blot analyses were performed using

the MPF as a surface protein surrogate, as the majority of surface proteins are contained in this fraction (described Chapter III). Pooled sera from mice vaccinated with F. tularensis LVS recognized 18 MPF protein spots. Reactivity was observed only to proteins that resolved in the pH range of 4-7, and like the 1D-Western blot analyses, the majority of dominant immunogens displayed a mass of greater than 50 kDa (Fig. 4.4). From these 18 immune reactive spots 17 proteins were identified by MS (Table 4.1). These included, pyruvate dehydrogenase, E1 component (FTL\_0309), chitinase family 18 protein (FTL\_1521), chaperone protein dnaK (FTL\_1191), peroxidase/catalase (FTL\_1504), dihydrolipoamide acetyltransferase (FTL\_0310), dihydrolipoamide succinvitransferase component of 2-oxoglutarate dehydrogenase complex (FTL 1783), chaperonin GroEL (FTL 1714), elongation factor Tu (FTL 1751), aspartate aminotransferase (FTL\_0387), outer membrane associated protein (FTL\_1328), acetyl-CoA carboxylase, biotin carboxyl carrier protein subunit (FTL 1592), 50S ribosomal protein L9 (FTL 1026), 50S ribosomal protein L7/L12 (FTL 1745), hypothetical protein (FTL\_0105), LemA-like protein (FTL\_0361), thioredoxin (FTL\_0611), and hypothetical protein (FTL\_0104). Three of the immune-reactive protein spots (spot numbers 8, 17, and 72) each provided two protein identifications, and four of the immune-reactive protein spots (spot numbers 9, 46, 76, and 77) could not be identified, likely due to low abundance. Of these 17 proteins that were reactive to F. tularensis LVS immune sera, 10 were shown in Chapter III to be surface exposed (Table 4.1).



**Fig. 4.4 2D-Western blot showing immunoreactive proteins contained in MPF in a pH range of 4-7 as a result of** *F. tularensis* LVS vaccination. The numbered arrows correspond to the spots labeled in Fig. 4.3 and the protein identifications presented in Table 4.1.

### 4.3.5 Altered antigen profiles are associated with differential protection

The inability of *F. tularensis* subunit vaccines to induce protective immunity to the same level as *F. tularensis* LVS vaccination suggests that either the appropriate antigens are not present in the subunit vaccines or different types of immunity are induced (19, 21, 25). To assess whether the surface proteins recognized after *F. tularensis* LVS vaccination were also antigens when presented as a subunit vaccine, mice were vaccinated s.c. with MPF admixed with the adjuvant MPLA or CLDC, and the serological responses evaluated.

Based on the reactivity of immune sera from MPF vaccinated animals, the antigen profiles of the MPF+CLDC and MPF+MPLA vaccines were similar to one another (Fig. 4.5), but strikingly different from the antigen profile obtained by *F. tularensis* LVS vaccination. Specifically, animals vaccinated with MPF+CLDC displayed reactivity to a total of 66 protein spots, and sera from MPF-MPLA vaccinated animals recognized 57 protein spots (Table 4.1). A large number of these (48 protein spots) were recognized by both MPF-CLDC and MPF-MPLA vaccinated mice. However, it

should be noted that several of the shared antigenic spots were more reactive with the MPF-CLDC sera than with sera of MPF-MPLA vaccinated animals (e.g. spots numbered 9, 19, 21, 25, 26, 27, 57, and 58) (Fig. 4.5A-D). In sharp contrast to mice vaccinated with *F. tularensis* LVS, those that received the MPF subunit vaccines strongly recognized both high and low molecular mass proteins over a broad pH range, not just those with an acidic to neutral pH. All but two of the protein spots (spot numbers 76 and 77) recognized by the *F. tularensis* LVS vaccinated animals, reacted with sera from animals vaccinated with at least one of the MPF-adjuvant preparations.



**Fig. 4.5 2D-Western blot showing immunoreactive proteins contained in MPF as a result of MPF+CLDC and MPF+MPLA vaccination.** A) MPF resolved in a pH range of 4-7 evaluated using MPF+CLDC immune sera. B) MPF resolved in a pH range of 6-11 evaluated using MPF+CLDC immune sera. C) MPF resolved in a pH range of 4-7 evaluated using MPF+MPLA immune sera. D) MPF resolved in a pH range of 6-11 evaluated using MPF+MPLA immune sera. D) MPF resolved in a pH range of 6-11 evaluated using MPF+MPLA immune sera. The numbered arrows correspond to the spots labeled in Fig. 4.3 and the protein identifications presented in Table 4.1.

Protein identification was successful for 52 of the 75 protein spots reactive to sera from MPF+CLDC or MPF+MPLA vaccinated mice, and resulted in the identification of 48 individual proteins (Table 4.1). The 17 proteins identified in evaluation of sera from *F. tularensis* LVS vaccinated animals were also recognized after vaccination with MPF + adjuvant (Fig. 4.6A and Table 4.1). Considerable overlap was noted in the profile of proteins reactive to sera from MPF+MPLA and MPF+CLDC vaccinated mice, but sera from each of these groups also recognized a small subset of unique proteins (Fig. 4.6A and Table 4.1). Seventeen of the 48 immunoreactive proteins were found on the surface of *F. tularensis* LVS (described in Chapter III) (Fig. 4.6B and Table 4.1). These data demonstrated that the humoral responses to proteins of the membrane fraction are expanded after vaccination with the MPF based subunit vaccines compared with live *F. tularensis* LVS.



**Fig. 4.6 The relationships of antigenic and surface proteins.** A) The relationship of antigenic spots (S) and proteins (P) recognized by immune sera of mice vaccinated with *F. tularensis* LVS, MPF+CLDC and MPF+MPLA. B) The relationship of proteins identified as antigenic in this study compared to proteins described on the surface of *F. tularensis* LVS in Chapter III.

## 4.4 Discussion

An efficient humoral immune response is important for control and clearance of *F. tularensis* infections (12, 14). However, the repertoire of bacterial products that serve as protective immunogens is unknown. In many pathogens, naturally recognized surface proteins are immunogens, and these serve as the basis of rationally designed vaccines (3, 44). Presented here, a strong correlation was observed between proteins identified on the surface of *F. tularensis* LVS and those recognized as antigens by immune sera from *F. tularensis* LVS vaccinated mice. Specifically, 10 of the 17 antigenic proteins were surface exposed, strongly suggesting at least some of these are immunogens. The less protective MPF vaccinations also reacted to surface proteins, but the breadth of the immune responses was expanded to recognize a greater number of protein antigens, the majority of which were not identified as surface exposed. Of the antigens successfully identified after MPF vaccinations, 17 of 48 were surface associated.

This dichotomy in the breadth of the humoral response to vaccination of mice with live *F. tularensis* LVS *versus* that with a subunit vaccine is noted in previous studies (17). The evaluation of microarrays consisting of 1,741 recombinant *F. tularensis* proteins by Eyles *et al.* revealed that mice vaccinated with adjuvant mixed with killed *F. tularensis* LVS generated a much broader humoral response than mice vaccinated with live *F. tularensis* LVS (17). A comparison of the data presented here to the study by Eyles *et al.* showed that 16 of the top 48 antigens detected using the microarray platform were recognized as major antigens of the MPF. Additionally, 11 of the antigens defined by Eyles *et al.* were characterized as surface products in the experiments presented in Chapter III. These combined data demonstrate a relatively strong correlation in the major antigens of *F. tularensis* LVS regardless of the screening platform and the vaccine preparation. The importance of *F. tularensis* surface proteins as antigens, and potential

immunogens, is further underscored by the observation that all but one of the surface exposed proteins identified in Chapter III (FTL\_0387) were classified as antigens in previous studies (17, 22, 23, 26, 37, 49, 51, 52).

In addition to recognizing a limited number of predominantly surface proteins, another possibility to explain the increased efficacy of *F. tularensis* LVS compared to MPF vaccinations is functional differences of the antibodies produced. Agglutinating antibodies aid in opsonization by phagocytes and restrict movement of some bacteria (1). Anderson *et al.* determined that mice vaccinated with *F. tularensis* LVS produced high titers of agglutinating antibodies 30 days post vaccination which correlated with the control and clearance of *F. tularensis* SCHU S4 infection (1). Ninety days post vaccination, the titer of agglutinating antibodies decreased and mice were unable to control *F. tularensis* SCHU S4 replication in the lung. Certain antibody subtypes have also been implicated in protection against *F. tularensis*, particularly those that are efficient at complement fixation (IgM, IgG3, and IgG1) (28). Thus, assessing the production of agglutinating antibodies and antibody subtyping could provide insight into the protective effect of MPF vaccinations.

An alternative hypothesis to explain the diminished efficacy of subunit vaccination is that different quantities of antibodies to particular antigens were produced. Consistent with previous reports, LPS was recognized only by IgM antibodies of *F. tularensis* LVS and MPF vaccinated mice (24, 25). However, Western blot analyses revealed differences in LPS reactivity between the different vaccinations used here. The reactivity to LPS appeared stronger in *F. tularensis* LVS immune sera at lower molecular masses compared to MPF vaccinated mice. Given that IgM is the most efficient agglutinating antibody this could be of particular significance (28). Western blot profiling of IgG responses revealed additional differences in the level of reactivity to some proteins. In general, IgG recognition by *F. tularensis* LVS immune sera was limited in

contrast to MPF seras. Overproduction of antibodies can be associated with immunosuppression (53). Therefore, along with the expanded recognition of proteins antigens, greater quantities of antibodies produced could account for the reduced efficacy of MPF vaccinations.

The protective effect exerted by *F. tularensis* LVS to *F. tularensis* type A infection is critically dependent on cell mediated responses, and it is possible that differences in the cell mediated effector mechanisms stimulated by the vaccines tested account for differences in the protective efficacies observed (15). In mice vaccinated with *F. tularensis* LVS, IFN- $\gamma$  production by re-stimulated *F. tularensis* LVS-specific T cells is one of the most important mediators of protection upon infection (36, 45). These cells must recognize specific antigens to impart their effects, and the expanded humoral recognition of MPF vaccinations may also coincide with expanded presentation of non-protective epitopes to T cells, resulting in diminished T cell recognition of *F. tularensis* (11). Nonetheless, like the humoral response to *F. tularensis* LVS vaccination, T cell stimulation is at least partially dependent on surface structures. The only two well described *Francisella* T cell antigens, TUL4 (FTL\_0421) and FopB (FTL\_0009), are both surface proteins also recognized by the humoral response (40, 56).

The work presented here confirms the hypothesis that surface proteins would be recognized during *F. tularensis* LVS immunization, and correlates decreased efficacy of MPF subunit vaccinations to expanded antibody recognition of non-surface proteins. The antigenic surface proteins identified are noted in numerous *F. tularensis* vaccine studies conducted in both animals and humans and may be protective immunogens. This hypothesis is supported by the successful therapeutic use of monoclonal antibodies and immune recognition (both B and T cells) of several *F. tularensis* surface proteins (43). Thus, in addition to the humoral response, subunit vaccines containing surface proteins may also activate the cell mediated response that is critical for protective

immunity. Further study is needed to determine which of the other surface proteins may act as protective immunogens and how they can be combined with adjuvants to elicit appropriate effector responses required for optimal protection.

## 4.5 Literature cited

- 1. Anderson, R. V., D. D. Crane, and C. M. Bosio. 2010. Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine **28**:6562-6572.
- Apicella, M. A., D. M. Post, A. C. Fowler, B. D. Jones, J. A. Rasmussen, J. R. Hunt, S. Imagawa, B. Choudhury, T. J. Inzana, T. M. Maier, D. W. Frank, T. C. Zahrt, K. Chaloner, M. P. Jennings, M. K. McLendon, and B. W. Gibson. 2010. Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of *Francisella tularensis*. PLoS One 5:e11060.
- 3. **Berry, J. D.** 2005. Rational monoclonal antibody development to emerging pathogens, biothreat agents and agents of foreign animal disease: The antigen scale. Vet J **170**:193-211.
- 4. **Bosio, C. M., H. Bielefeldt-Ohmann, and J. T. Belisle.** 2007. Active suppression of the pulmonary immune response by *Francisella tularensis* SCHU4. J Immunol **178:**4538-4547.
- 5. **Bosio, C. M., and K. L. Elkins.** 2001. Susceptibility to secondary Francisella *tularensis* live vaccine strain infection in B-cell-deficient mice is associated with neutrophilia but not with defects in specific T-cell-mediated immunity. Infect Immun **69**:194-203.
- 6. **Casadevall, A.** 2003. Antibody-mediated immunity against intracellular pathogens: two-dimensional thinking comes full circle. Infect Immun **71**:4225-4228.
- Cole, L. E., K. L. Elkins, S. M. Michalek, N. Qureshi, L. J. Eaton, P. Rallabhandi, N. Cuesta, and S. N. Vogel. 2006. Immunologic consequences of *Francisella tularensis* live vaccine strain infection: role of the innate immune response in infection and immunity. J Immunol 176:6888-6899.
- 8. Cole, L. E., Y. Yang, K. L. Elkins, E. T. Fernandez, N. Qureshi, M. J. Shlomchik, L. A. Herzenberg, and S. N. Vogel. 2009. Antigen-specific B-1a antibodies induced by *Francisella tularensis* LPS provide long-term protection against *F. tularensis* LVS challenge. Proc Natl Acad Sci U S A **106**:4343-4348.
- 9. **Conlan, J. W., H. Shen, A. Webb, and M. B. Perry.** 2002. Mice vaccinated with the O-antigen of *Francisella tularensis* LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine **20**:3465-3471.
- 10. **Conlan, J. W., A. Sjostedt, and R. J. North.** 1994. CD4+ and CD8+ T-celldependent and -independent host defense mechanisms can operate to control and resolve primary and secondary *Francisella tularensis* LVS infection in mice. Infect Immun **62:**5603-5607.
- Douglas, A. D., S. C. de Cassan, M. D. Dicks, S. C. Gilbert, A. V. Hill, and S. J. Draper. 2010. Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against *Plasmodium falciparum* MSP1. Vaccine 28:7167-7178.
- 12. **Drabick, J. J., R. B. Narayanan, J. C. Williams, J. W. Leduc, and C. A. Nacy.** 1994. Passive protection of mice against lethal *Francisella tularensis* (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine. Am J Med Sci **308**:83-87.
- 13. **Dreisbach, V. C., S. Cowley, and K. L. Elkins.** 2000. Purified lipopolysaccharide from *Francisella tularensis* live vaccine strain (LVS) induces
protective immunity against LVS infection that requires B cells and gamma interferon. Infect Immun **68**:1988-1996.

- 14. Elkins, K. L., C. M. Bosio, and T. R. Rhinehart-Jones. 1999. Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium *Francisella tularensis* live vaccine strain. Infect Immun **67**:6002-6007.
- 15. Elkins, K. L., S. C. Cowley, and C. M. Bosio. 2007. Innate and adaptive immunity to *Francisella*. Ann N Y Acad Sci **1105**:284-324.
- Elkins, K. L., T. R. Rhinehart-Jones, S. J. Culkin, D. Yee, and R. K. Winegar. 1996. Minimal requirements for murine resistance to infection with *Francisella tularensis* LVS. Infect Immun 64:3288-3293.
- Eyles, J. E., B. Unal, M. G. Hartley, S. L. Newstead, H. Flick-Smith, J. L. Prior, P. C. Oyston, A. Randall, Y. Mu, S. Hirst, D. M. Molina, D. H. Davies, T. Milne, K. F. Griffin, P. Baldi, R. W. Titball, and P. L. Felgner. 2007. Immunodominant *Francisella tularensis* antigens identified using proteome microarray. Proteomics 7:2172-2183.
- Foshay, L., W. H. Hesselbrock, H. J. Wittenberg, and A. H. Rodenberg. 1942. Vaccine prophylaxis against tularemia in man. Am J Public Health Nations Health 32:1131-1145.
- 19. **Fulop, M., R. Manchee, and R. Titball.** 1995. Role of lipopolysaccharide and a major outer membrane protein from *Francisella tularensis* in the induction of immunity against tularemia. Vaccine **13**:1220-1225.
- Giuliani, M. M., J. Adu-Bobie, M. Comanducci, B. Arico, S. Savino, L. Santini, B. Brunelli, S. Bambini, A. Biolchi, B. Capecchi, E. Cartocci, L. Ciucchi, F. Di Marcello, F. Ferlicca, B. Galli, E. Luzzi, V. Masignani, D. Serruto, D. Veggi, M. Contorni, M. Morandi, A. Bartalesi, V. Cinotti, D. Mannucci, F. Titta, E. Ovidi, J. A. Welsch, D. Granoff, R. Rappuoli, and M. Pizza. 2006. A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834-10839.
- 21. Golovliov, I., M. Ericsson, L. Akerblom, G. Sandstrom, A. Tarnvik, and A. Sjostedt. 1995. Adjuvanticity of ISCOMs incorporating a T cell-reactive lipoprotein of the facultative intracellular pathogen *Francisella tularensis*. Vaccine **13:**261-267.
- Havlasova, J., L. Hernychova, M. Brychta, M. Hubalek, J. Lenco, P. Larsson, M. Lundqvist, M. Forsman, Z. Krocova, J. Stulik, and A. Macela. 2005. Proteomic analysis of anti-*Francisella tularensis* LVS antibody response in murine model of tularemia. Proteomics 5:2090-2103.
- 23. Havlasova, J., L. Hernychova, P. Halada, V. Pellantova, J. Krejsek, J. Stulik, A. Macela, P. R. Jungblut, P. Larsson, and M. Forsman. 2002. Mapping of immunoreactive antigens of *Francisella tularensis* live vaccine strain. Proteomics 2:857-867.
- 24. Huntley, J. F., P. G. Conley, K. E. Hagman, and M. V. Norgard. 2007. Characterization of *Francisella tularensis* outer membrane proteins. J Bacteriol 189:561-574.
- Huntley, J. F., P. G. Conley, D. A. Rasko, K. E. Hagman, M. A. Apicella, and M. V. Norgard. 2008. Native outer membrane proteins protect mice against pulmonary challenge with virulent type A *Francisella tularensis*. Infect Immun 76:3664-3671.
- 26. Janovska, S., I. Pavkova, M. Hubalek, J. Lenco, A. Macela, and J. Stulik. 2007. Identification of immunoreactive antigens in membrane proteins enriched fraction from *Francisella tularensis* LVS. Immunol Lett **108**:151-159.

- 27. Keller, A., A. I. Nesvizhskii, E. Kolker, and R. Aebersold. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem **74:**5383-5392.
- 28. Koskela, P., and A. Salminen. 1985. Humoral immunity against *Francisella tularensis* after natural infection. J Clin Microbiol **22**:973-979.
- 29. **KuoLee, R., G. Harris, J. W. Conlan, and W. Chen.** 2007. Oral immunization of mice with the live vaccine strain (LVS) of *Francisella tularensis* protects mice against respiratory challenge with virulent type A *F. tularensis*. Vaccine **25**:3781-3791.
- 30. **Laemmli, U. K.** 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature **227**:680-685.
- Maione, D., I. Margarit, C. D. Rinaudo, V. Masignani, M. Mora, M. Scarselli, H. Tettelin, C. Brettoni, E. T. Iacobini, R. Rosini, N. D'Agostino, L. Miorin, S. Buccato, M. Mariani, G. Galli, R. Nogarotto, V. Nardi Dei, F. Vegni, C. Fraser, G. Mancuso, G. Teti, L. C. Madoff, L. C. Paoletti, R. Rappuoli, D. L. Kasper, J. L. Telford, and G. Grandi. 2005. Identification of a universal group B streptococcus vaccine by multiple genome screen. Science 309:148-150.
- 32. **Mbow, M. L., E. De Gregorio, N. M. Valiante, and R. Rappuoli.** 2010. New adjuvants for human vaccines. Curr Opin Immunol **22:**411-416.
- 33. Nesvizhskii, A. I., A. Keller, E. Kolker, and R. Aebersold. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem **75**:4646-4658.
- 34. **Oyston, P. C., A. Sjostedt, and R. W. Titball.** 2004. Tularaemia: bioterrorism defence renews interest in *Francisella tularensis*. Nat Rev Microbiol **2**:967-978.
- Pasetti, M. F., L. Cuberos, T. L. Horn, J. D. Shearer, S. J. Matthews, R. V. House, and M. B. Sztein. 2008. An improved *Francisella tularensis* live vaccine strain (LVS) is well tolerated and highly immunogenic when administered to rabbits in escalating doses using various immunization routes. Vaccine 26:1773-1785.
- 36. **Pechous, R. D., T. R. McCarthy, and T. C. Zahrt.** 2009. Working toward the future: insights into *Francisella tularensis* pathogenesis and vaccine development. Microbiol Mol Biol Rev **73**:684-711.
- 37. **Pelletier, N., D. Raoult, and B. La Scola.** 2009. Specific recognition of the major capsid protein of *Acanthamoeba polyphaga* mimivirus by sera of patients infected by *Francisella tularensis*. FEMS Microbiol Lett **297**:117-123.
- 38. Pizza, M., V. Scarlato, V. Masignani, M. M. Giuliani, B. Arico, M. Comanducci, G. T. Jennings, L. Baldi, E. Bartolini, B. Capecchi, C. L. Galeotti, E. Luzzi, R. Manetti, E. Marchetti, M. Mora, S. Nuti, G. Ratti, L. Santini, S. Savino, M. Scarselli, E. Storni, P. Zuo, M. Broeker, E. Hundt, B. Knapp, E. Blair, T. Mason, H. Tettelin, D. W. Hood, A. C. Jeffries, N. J. Saunders, D. M. Granoff, J. C. Venter, E. R. Moxon, G. Grandi, and R. Rappuoli. 2000. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816-1820.
- Rodriguez-Ortega, M. J., N. Norais, G. Bensi, S. Liberatori, S. Capo, M. Mora, M. Scarselli, F. Doro, G. Ferrari, I. Garaguso, T. Maggi, A. Neumann, A. Covre, J. L. Telford, and G. Grandi. 2006. Characterization and identification of vaccine candidate proteins through analysis of the group A streptococcus surface proteome. Nat Biotechnol 24:191-197.
- 40. **Sandstrom, G., A. Tarnvik, and H. Wolf-Watz.** 1987. Immunospecific Tlymphocyte stimulation by membrane proteins from *Francisella tularensis*. J Clin Microbiol **25**:641-644.

- 41. Saslaw, S., H. T. Eigelsbach, J. A. Prior, H. E. Wilson, and S. Carhart. 1961. Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med **107:**702-714.
- 42. Saslaw, S., H. T. Eigelsbach, H. E. Wilson, J. A. Prior, and S. Carhart. 1961. Tularemia vaccine study. I. Intracutaneous challenge. Arch Intern Med **107:**689-701.
- 43. **Savitt, A. G., P. Mena-Taboada, G. Monsalve, and J. L. Benach.** 2009. *Francisella tularensi*s infection-derived monoclonal antibodies provide detection, protection, and therapy. Clin Vaccine Immunol **16:**414-422.
- 44. **Sette, A., and R. Rappuoli.** 2010. Reverse vaccinology: developing vaccines in the era of genomics. Immunity **33:**530-541.
- 45. Shen, H., G. Harris, W. Chen, A. Sjostedt, P. Ryden, and W. Conlan. 2010. Molecular immune responses to aerosol challenge with *Francisella tularensis* in mice inoculated with live vaccine candidates of varying efficacy. PLoS One **5:**e13349.
- 46. **Sjostedt, A., G. Sandstrom, and A. Tarnvik.** 1992. Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of *Francisella tularensis* expressed by *Salmonella typhimurium*. Infect Immun **60**:2855-2862.
- 47. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem **150**:76-85.
- 48. **Sonnenberg, M. G., and J. T. Belisle.** 1997. Definition of *Mycobacterium tuberculosis* culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun **65**:4515-4524.
- 49. Sundaresh, S., A. Randall, B. Unal, J. M. Petersen, J. T. Belisle, M. G. Hartley, M. Duffield, R. W. Titball, D. H. Davies, P. L. Felgner, and P. Baldi. 2007. From protein microarrays to diagnostic antigen discovery: a study of the pathogen *Francisella tularensis*. Bioinformatics **23**:i508-518.
- 50. Thorpe, C., L. Edwards, R. Snelgrove, O. Finco, A. Rae, G. Grandi, R. Guilio, and T. Hussell. 2007. Discovery of a vaccine antigen that protects mice from *Chlamydia pneumoniae* infection. Vaccine **25**:2252-2260.
- 51. **Twine, S. M., M. D. Petit, K. M. Fulton, R. V. House, and J. W. Conlan.** 2010. Immunoproteomics analysis of the murine antibody response to vaccination with an improved *Francisella tularensis* live vaccine strain (LVS). PLoS One **5:**e10000.
- 52. **Twine, S. M., M. D. Petit, H. Shen, N. C. Mykytczuk, J. F. Kelly, and J. W. Conlan.** 2006. Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-*Francisella* vaccines. Biochem Biophys Res Commun **346**:999-1008.
- 53. Waldmann, H., G. Hale, M. Clark, S. Cobbold, R. Benjamin, P. Friend, C. Bindon, M. Dyer, S. Qin, M. Bruggemann, and H. Tighe. 1988. Monoclonalantibodies for immunosuppression. Prog Allergy **45**:16-30.
- 54. Wayne Conlan, J., and P. C. Oyston. 2007. Vaccines against *Francisella tularensis*. Ann N Y Acad Sci **1105**:325-350.
- 55. **Wayne Conlan, J., H. Shen, R. Kuolee, X. Zhao, and W. Chen.** 2005. Aerosol-, but not intradermal-immunization with the live vaccine strain of *Francisella tularensis* protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an alphabeta T cell- and interferon gamma- dependent mechanism. Vaccine **23**:2477-2485.

56. Yu, J. J., T. Goluguri, M. N. Guentzel, J. P. Chambers, A. K. Murthy, K. E. Klose, T. G. Forsthuber, and B. P. Arulanandam. 2010. *Francisella tularensis* T-cell antigen identification using humanized HLA-DR4 transgenic mice. Clin Vaccine Immunol **17**:215-222.

### Chapter V

# Differential Chitinase Activity and Production within *Francisella* Species, Subspecies, and Populations

# 5.1 Introduction

The second most abundant polysaccharide found in nature is chitin, a biopolymer composed of repeating units of  $\beta$ -1,4 linked N-acetyl-D-glucosamine (30). Chitin is synthesized by many eukaryotes and is an essential component of arthropod cuticles, insect peritrophic membranes, and fungal cell walls. The abundance of this biopolymer allows it to serve as a major environmental reservoir of carbon and nitrogen, and it is especially concentrated in marine environments. Therefore, many bacteria have evolved chitinases to depolymerize chitin into metabolically accessible subunits. However, chitinases are not unique to prokaryotes and can be found in vertebrates, arthropods, plants, protozoa, and fungi (19, 33). All chitinases possess one or more glycosyl hydrolase (GH) superfamily domains of the 18, 19, 20 or 48 superfamilies responsible for their enzymatic activities (7, 10). Non-enzymatic domains commonly found in chitinases include those that facilitate adherence to chitin or potentially the depolymerization of the polysaccharide such as N-acetylglucosamine-binding protein A, carbohydrate binding, and fibronectin type 3 domains (3, 18, 45). The enzymatic activities of individual chitinases differ based on whether they act as endo- or exochitinases. Endochitinases catalyze the hydrolysis of the  $\beta$ -1,4 glycosidic bonds at internal sites of the chitin polymer. In contrast, exochitinases progressively release single sugars (N-acetylglucosaminidase activity), or disaccharides (chitobiosidase activity) from the non-reducing end of the polymer (7). The form of hydrolyzing activity,

organization of functional domains, primary amino acid sequence, and protein folds are all used to distinguish and subgroup individual chitinases (6, 7).

Chitinases are especially abundant in the  $\gamma$ -proteobacteria, including both saprophytic and pathogenic species, likely due to the association of this bacterial class with marine environments (5, 8, 9, 12, 23, 27, 38). However, the involvement of chitinases in bacterial infections or vector transmission has received limited evaluation. A study by Kirn *et al.* found that a chitin binding protein of *V. cholerae* allowed for binding to glycan moieties on the surface of human epithelial cells (18). In *L. pneumophila*, a chitinase was shown to enhance bacterial survival in the lungs of mice, but the specific mechanism remains unknown (8). Adding to the potential importance of chitinases in human disease is the observation that chitinases enable vector based transmission of the protist *Plasmodium falciparum* (the etiological agent of malaria) by degrading the peritrophic membrane that surrounds the mosquito blood meal (43).

*F. tularensis* and *F. novicida* genomes are known to encode for two putative chitinases, ChiA (FTT\_0715) and ChiB (FTT\_1768) (22, 34). Both of these chitinases are secreted in *F. novicida* where they likely function synergistically to attach to and depolymerize chitin (12, 26). In *F. tularensis*, ChiA is identified in membrane preparations, has a possible association in virulence, and was shown in Chapter III to be a surface associated protein (39, 42). *In silico* analyses of ChiA identified differences in this protein between *F. tularensis* subspecies and populations that could alter its presentation on the surface of some biotypes (28). Although ChiB was not identified as a surface protein in *F. tularensis* LVS, the secretion of this protein in *F. novicida* suggests there could be a surface interaction. The failure to identify ChiB on the surface of *F. tularensis* LVS localization may be a result of regulation of gene expression or alterations in secretion pathways between *Francisella* species and populations. *In silico* analyses of ChiB also indicated differences between *F. tularensis* biotypes that could

influence the surface localization of this protein (4). Therefore, it was hypothesized that chitinases represent an enzymatic class of surface proteins that contribute to the phenotypic variation of *F. tularensis* subspecies and populations.

In this study, chitinase production and activity was evaluated across the *F. tularensis* subspecies and populations (A1a, A1b, A2, and type B) and compared to that of *F. novicida*. This included two previously undescribed chitinase gene products (ChiC and ChiD) as well as the previously studied ChiA and ChiB (12, 26). Despite the similarity among *Francisella* genomes, variability was observed between chitinase genes and gene products of the *Francisella* species and *F. tularensis* subspecies and populations. These differences correlated to the chitinase activity of individual species and populations, and individual chitinases presented unambiguous variability in activity.

## 5.2 Materials and methods

#### 5.2.1 Bacterial strains and growth conditions

*Francisella* strains (Table 5.1) were grown from frozen stocks on CHAB at 35°C for 48 h, followed by subculture onto CHAB for 24 h at 35°C. *Francisella* liquid cultures were grown using a 24 h CHAB subculture to inoculate modified MMH broth (1, 28). Liquid cultures of *Francisella* were incubated at 35°C overnight with shaking at 160 rpm. *E. coli* strains were grown at 37°C in Luria-Bertani (LB) broth, with shaking at 160 rpm or on LB agar. Appropriate antibiotics were added to the media when needed.

| Francisella strain <sup>a</sup> | Species    | Subspecies | Population            | Source | Geographic origin |
|---------------------------------|------------|------------|-----------------------|--------|-------------------|
| OK01-2528                       | tularensis | А          | A1a <sup>⊳</sup>      | Human  | Oklahoma          |
| MO02-4195                       | tularensis | А          | A1a <sup>b</sup>      | Human  | Missouri          |
| SCHU S4                         | tularensis | А          | A1a <sup>b</sup>      | Human  | Ohio              |
| MA00-2987                       | tularensis | А          | A1b <sup>b</sup>      | Human  | Massachusetts     |
| MD00-2970                       | tularensis | А          | A1b <sup>b</sup>      | Human  | Maryland          |
| WY96-3418                       | tularensis | А          | A2a <sup>b</sup>      | Human  | Wyoming           |
| NM99-1823                       | tularensis | А          | A2b <sup>b</sup>      | Human  | New Mexico        |
| MI00-1730                       | tularensis | В          | -                     | Human  | Michigan          |
| KY99-3387                       | tularensis | В          | B.II <sup>c</sup>     | Human  | Kentucky          |
| LVS                             | tularensis | В          | B.Br.LVS <sup>c</sup> | Rat    | Russia            |
| GA99-3550 (U112)                | novicida   | -          | -                     | Water  | Utah              |
| GA99-3548                       | novicida   | -          | -                     | Human  | Louisiana         |

Table 5.1 F. tularensis and F. novicida strains

<sup>a</sup>CDC accession number.

<sup>b</sup>Classification based on Kugeler *et al.* (20).

<sup>c</sup>Classification based on Vogler et al. (44).

### 5.2.2 PCR and cloning of chitinase genes

PCR amplification of chitinase genes was performed using 30 to 75 ng of genomic DNA, 2.5 units of PrimeSTAR<sup>™</sup> HS DNA Polymerase (Takara Bio Inc., Otsu, Shiga, Japan), 1x PrimeSTAR Buffer (Mg<sup>2+</sup> plus), 200 µM of each dNTP, and 1 µM of each primer in a final reaction volume of 50 µl. Primers (Appendix 7) were designed using VectorNTI advance 11.0 software (Invitrogen) and included specific restriction enzyme sites for use in downstream cloning. PCR conditions were 98°C for 2 min, followed by 30 cycles of 98°C for 10 sec, 45°C to 65°C for 5 sec and 72°C for 2 min 30 sec. Amplicons were cloned using the Zero Blunt<sup>®</sup> TOPO<sup>®</sup> PCR Cloning Kit (Invitrogen) following the manufacturer's instructions. Engineered restriction enzyme sites were used to isolate the cloned chitinase gene from TOPO<sup>®</sup> and ligation into the pET23b-(+) expression vector (Novagen, San Diego, CA). All clones were sequence verified by the

Proteomics and Metabolomics Facility at Colorado State University using the primers listed in Appendix 7.

#### 5.2.3 Construction of *chiA* and *chiC* knockouts and complemented strains

Constructs for in-frame deletions of chiA (FTMG\_00598) in F. tularensis strain MA00-2987 (A1b) and chiC (FTW 0313) in F. tularensis strain WY96-3418 (A2) were made using the sacB-based allelic exchange vector pMP590 (24). Specifically, constructs pMP590- $\Delta$ chiA and pMP590- $\Delta$ chiC (Table 5.2) were created by were created by PCR amplification of 477 to 941 bp DNA fragments that encompassed both flanking regions and 65 to 120 bp 65 to 120 bp of the 5' and 3' regions chiA and chiC, followed by ligation of the corresponding amplicons into the multiple cloning site of pMP590 (primers used are listed in Appendix 7). Electroporation was used to transform competent Francisella cells with the pMP590-chiA or pMP590-chiC constructs (24). Plasmid DNA (0.1-1.0 µg) was added to 100 µl of competent cells and electroporation was performed using a Bio-Rad Gene Pulsar (Bio-Rad) with the following parameters: 2.0 kV, 25 µF, 200  $\Omega$ . Electroporated cells were incubated in 1 ml of MMH broth for 3 h at 35°C while shaking (160 rpm). Transformants were selected by plating on MMH agar containing 5 µg/ml of kanamycin and incubating at 35°C for 2 to 4 days. Individual clones were transferred to MMH plates containing 8% sucrose to select for homologous recombination events. Genomic DNA was isolated from the knockout strains, the genomic fragment representing the region of homologous recombination was amplified by PCR and the sequence verified.

| Plasmid                                      | Description                                           | Source      |
|----------------------------------------------|-------------------------------------------------------|-------------|
| pCR <sup>®</sup> -Blunt II-TOPO <sup>®</sup> | Km <sup>R</sup> , Zeo <sup>R</sup> , cloning vector   | Invitrogen  |
| pET23b-(+)                                   | Ap <sup>R</sup> , Histidine tagged, expression vector | Novagen     |
| pET23b-(+)_FTT_0715                          | A1a/A1b chiA expression vector                        | This study  |
| pET23b-(+)_FTH_1471                          | type B chiA expression vector                         | This study  |
| pET23b-(+)_FTN_0627                          | F. novicida chiA expression vector                    | This study  |
| pET23b-(+)_FTT_1768                          | A1a/A1b chiB expression vector                        | This study  |
| pET23b-(+)_FTH_0088                          | type B chiB expression vector                         | This study  |
| pET23b-(+)_FTN_1744                          | F. novicida chiB expression vector                    | This study  |
| pET23b-(+)_FTT_1592                          | A1a/A1b chiC (GH18 fragment) expression vector        | This study  |
| pET23b-(+)_FTW_0313                          | A2 chiC expression vector                             | This study  |
| pET23b-(+)_FTH_1579*                         | type B chiC (no signal peptide) expression vector     | This study  |
| pET23b-(+)_FTT_0066                          | A1a/A1b chiD expression vector                        | This study  |
| pET23b-(+)_FTW_0142                          | A2 chiD expression vector                             | This study  |
| pET23b-(+)_FTH_1730                          | type B chiD expression vector                         | This study  |
| pET23b-(+)_FTN_1644                          | F. novicida chiD expression vector                    | This study  |
| pMP590                                       | sacB-based allelic exchange vector                    | LoVullo(25) |
| pMP529                                       | Francisella shuttle/integration vector                | LoVullo(25) |
| pMP590-∆ <i>chiA</i>                         | allelic exchange vector for chiA knockout             | This study  |
| pMP590-∆ <i>chiC</i>                         | allelic exchange vector for chiC knockout             | This study  |
| pMP529- <i>chi</i> A                         | chiA integration vector                               | This study  |
| pMP529- <i>chiC</i>                          | chiC integration vector                               | This study  |

Table 5.2 Plasmids used for chitinase production and knockouts

\*Attempts to produce protein with the signal peptide failed.

FTT, FTW, FTH and FTN loci correspond to those listed in Appendix 7.

Deletion mutants were complemented by cloning the full length target genes, *chiA* (FTMG\_00598) and *chiC* (FTW\_0313) into the shuttle vector pMP529 to create pMP529-*chiA* and pMP529-*chiC*. Electroporation of the deletion mutants with the complementing plasmids was performed as described for wild-type *F. tularensis*. To select for transformants, electroporated cells were plated onto MMH plates containing 200 µg/ml of hygromycin and incubated for 2 to 4 days at 35°C. Complementation was confirmed by PCR amplification, sequencing, and Western blot.

#### 5.2.4 Recombinant chitinase production and purification

To produce recombinant chitinases, expression vectors possessing individual chitinase genes (Table 5.2) were transformed into chemically competent E. coli BL21\* (DE3) pLysS cells (Invitrogen). Recombinant clones were grown in 2 L of LB broth with 100 µg/ml of ampicillin and 34 µg/ml of chloramphenicol at 37°C for 3 h while shaking at 160 rpm prior to addition of 0.1 mM isopropyl- $\beta$ -D-thiogalactopyranoside (IPTG). Cultures were grown for an additional 4 h and the cells harvested by centrifugation at 3,500 x g. Cells were suspended in 10 ml of breaking buffer [PBS, pH 7.4, 1.2 µg/ml DNase I, 1.2 µg/ml RNase A, 1 µg/ml lysozyme and one Complete EDTA-free protease inhibitor cocktail tablet (Roche Applied Sciences) per 50 ml of buffer], placed on ice and lysed by probe sonication using a Vibra Cell VCX750 sonicator (Sonics and Materials, INC, Newton, CT). Sonication was performed at an amplitude setting of 30 with seven 60 sec pulses and a 60 sec pause between the pulse cycles. Unbroken cells and debris were removed by centrifugation at 12,000 x g, and the clarified lysate was applied to a 0.8 x 0.4 mm Poly-Prep (Bio-Rad) column pre-packed with 1.5 ml His-Resin (EMD Chemicals, Gibbstown, NJ) pre-equilibrated in binding buffer (5 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9). Unbound proteins were eluted with 15 column volumes (CV) of binding buffer, followed sequentially with 10 CV of wash buffer A (20 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9) and 23 CV of wash buffer B (40 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9), and 20 CV of 10 mM Tris-HCl, pH 8.0). The bound recombinant protein was eluted with 5 ml of elution buffer (0.5 M imidazole, 10 mM Tris-HCl, pH 8.0). All purification steps were performed at 4°C. The eluent of purified protein was dialyzed at 4°C against 10 mM ammonium bicarbonate using a 3,500 Da molecular mass cut off dialysis membrane and concentrated using a 10,000 Da molecular mass cut off Amicon Ultra Centrifugal Filter Unit (Millipore, Billerica, MA).

Protein concentrations were determined using the BCA assay (36). Samples were aliquoted and frozen at -80°C until further use.

## 5.2.5 Assays for chitinase activity

To assess secreted chitinase activity of *Francisella* strains, the cells were grown in MHH broth (10 ml) overnight. Immediately prior to harvesting the CS, an aliquot (2 ml) of each culture was serially diluted on CHAB agar in duplicate. The agar plates were incubated for 48 hrs at 35°C and colonies enumerated. The CS was separated from the bacterial cells by centrifugation at 5,000 × g for 15 min, concentrated using a 10,000 Da molecular mass cut off Amicon Ultra Centrifugal Filter Unit, and brought to a volume of 500 µl with PBS, pH 7.4. An aliquot of the processed CS corresponding to approximately  $6.0 \times 10^8$  CFU of the original 10 ml culture was assayed against three chitin analogs (*p*-nitrophenyl *N*-acetyl- $\beta$ -D-glucosaminide, *p*-nitrophenyl *N*,*N*-diacetyl- $\beta$ -D-chitobioside and *p*-nitrophenyl  $\beta$ -D-*N*,*N*,*N*'-triacetylchitotriose) provided in the Colorimetric Chitinase Assay (Sigma-Aldrich), and according to the manufacturer's instructions, except activity was assessed after incubation of the enzyme reaction for 16 h at 35°C. Release of *p*-nitrophenol was measured at an absorbance of 405 nm using a Multiskan EX spectrophotometer with Ascent v2.6 software (Thermo-Fisher, Waltham, MA).

To evaluate cell associated chitinase activity, *Francisella* strains were grown on CHAB agar for 24 h at  $35^{\circ}$ C. The cells were scraped from the agar and suspended in PBS to a turbidity of 0.6-0.7 measured using a Microscan turbidity meter (Siemens Healthcare Diagnostics, Deerfield, IL). To ensure consistency and to normalize enzymatic activity between each culture, the number of CFUs in the cell suspension was determined. An aliquot (300 µl) of the cell suspension was subjected to seven freeze-thaw cycles using a dry ice-ethanol bath and a 37°C heat block. This process allowed

for the lysis of *F. tularensis* without generating hazardous aerosols. Unbroken cells and the WCL were separated by centrifugation at 17,000  $\times$  g for 15 min. An aliquot of the WCL corresponding to approximately 1.6  $\times$  10<sup>8</sup> CFU of the original cell suspension was applied to the Colorimetric Chitinase Assay (Sigma-Aldrich) and chitinase activity measured as described for the CS. All chitinase activity was reported as the average of chitinase activity of the three replicate cultures from each strain of *F. tularensis* or *F. novicida*. Background activity from substrate alone was subtracted from all the activity values reported.

The enzymatic activity of individual recombinant chitinases (ChiA, ChiB, ChiC or ChiD) produced in *E. coli* was determined using a variation of the Colorimetric Chitinase Assay. An aliquot (10  $\mu$ I) of the recombinant chitinases at 1  $\mu$ g/ml in 0.1 M sodium phosphate buffer, pH 5.9, was added to 90  $\mu$ I of the appropriate chitin analog at a concentration of 267  $\mu$ M in 0.1 M sodium phosphate, pH 5.9. Separate assays were conducted at ambient temperature and 37°C. The release of *p*-nitrophenol was determined at various times (0, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240, 300, 360, 420, 480, and 540 sec) during the enzymatic reaction. Three technical replicates were used for each time point and activity was reported as the average of these replicates. Enzymatic activity of the individual recombinant chitinases was confirmed using a glycol chitin substrate as described by DebRoy *et al.* (8).

## 5.2.6 Antibody production, SDS-PAGE, and Western blotting

Anti-sera were generated in rabbits to histidine tagged products of *F. tularensis* A1a/A1b ChiA (FTT\_0715), *F. tularensis* A1a/A1b ChiB (FTT\_1768), and *F. tularensis* A2 ChiC (FTW\_0313). All anti-sera were produced by SDIX (Windham, ME).

Recombinant proteins (0.1 µg) and WCLs (15 µg) of *F. tularensis* or *F. novicida* strains were separated by SDS-PAGE using NuPAGE 4-12% Bis-Tris SDS-

polyacrylamide gels (Invitrogen) and transferred to nitrocellulose membranes by electroblotting (37). The nitrocellulose membranes were incubated in PBS, pH 7.4 containing 5% nonfat milk for 1 h and washed in PBS. Incubation of the primary antibody [antichitinase serum diluted 1:500 in PBS with 0.1% Tween<sub>20</sub> + 5% nonfat dry milk] with the nitrocellulose membranes was performed at ambient temperature with gentle shaking for 3 h, followed by washing with PBS, pH 7.4. The secondary antibody, goat anti-rabbit IgG (1:5,000) (Calbiochem, Darmstadt, Germany), was applied for 1 h at room temperature with gentle shaking. A final series of PBS washes were performed and antibody reactive proteins were detected using a solution of BCIP/NBT made with SigmaFAST tablets (Sigma-Aldrich). Western blot and SDS-PAGE images were digitized using a HPScanjet 4850 photo scanner (Hewlett-Packard Company).

### 5.2.7 Bioinformatic analyses of *Francisella* chitinases

DNA and protein similarity searches were performed using BLASTN and BLASTP respectively, against the non-redundant and whole-genome shotgun reads databases of NCBI. To predict similarity to other known products, the largest product from each chitinase class (ChiA, ChiB, ChiC, and ChiD) of *Francisella* was used for BLAST similarity searches. If multiple products were predicted to be the same size, BLAST searches were performed using the *F. novicida* U112 chitinase. *Francisella* genomes that were available in GenBank and used in this study were: *F. tularensis* subsp. *tularensis* A1b strain MA00-2987 (accession number *ABRI0000000)*, *F. tularensis* subsp. *tularensis* A1a strain SCHU S4 (accession number AJ749949), *F. tularensis* subsp. *tularensis* A2 strain WY96-3418 (accession number CP000608), *F. tularensis* subsp. *holarctica* OSU18 (accession number CP000437), *F. tularensis* subsp. *holarctica* LVS (accession number AM233362), and *F. novicida* strain GA99-3550/U112 (accession number CP000439). DNA and protein sequence alignments

were performed using LALIGN (www.ch.embnet.org/software/LALIGN\_form.html) and ClustalW (www.ebi.ac.uk/clustalw/#). Conserved domains within the individual chitinase sequences of *F. tularensis* were identified using the NCBI Conserved Domain search software (concise display) (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (25). The presence of GH18, GH19, GH20, and GH48 domains were also identified in *Francisella* genomes using the UniProt database (www.uniprot.org). Signal peptide predictions were accomplished using the SignalP 3.0 software (http://www.cbs.dtu.dk/services/SignalP).

## 5.3 Results

#### 5.3.1 In vitro chitinase activity of F. tularensis and F. novicida

To determine the chitinase activity of *Francisella* grown in vitro, endochitinase, chitobiosidase and N-acetylglucosaminidase activities were evaluated using a panel of 12 Francisella strains (Table 5.1) representing F. tularensis (A1a, A1b, A2, and type B) and F. novicida (Fig. 5.1). Comparisons were normalized to the cell numbers used to generate the WCL and CS. Endochitinase activity differed between the Francisella species and populations (Fig. 5.1A and B). The F. tularensis A2 strains showed the highest level of endochitinase activity in the WCL (avg. A<sub>405</sub> of 0.27), but displayed minimal activity in the CS (Fig. 5.1A and B). Endochitinase activity was detectible in the WCL of F. tularensis A1a and A1b strains; however, this activity was barely above background. The WCL of *F. tularensis* type B strains displayed approximately half of the endochitinase activity of the F. tularensis A2 strains (avg. A<sub>405</sub> of 0.13). In contrast, the endochitinase activity of F. novicida strains was observed in the WCL and CS, with the CS possessing the greatest activity (avg.  $A_{405}$  of 0.57) and the WCL activity (avg.  $A_{405}$  of 0.11) similar to that of *F. tularensis* type B strains. No chitobiosidase or Nacetylglucosaminidase activities were detected in the WCL of F. tularensis or F. novicida

strains (data not shown). However, both types of exochitinase activities were detectable in the CS of *F. novicida* (Fig. 5.1C and D). These data provide strong evidence of differential production of chitinase among the *Francisella* species and populations, and suggest underlying differences in their chitinase genetic profiles and subcellular localizations.





144

#### 5.3.2 *F. tularensis* and *F. novicida* encode four putative chitinase genes

To more completely evaluate the genetic differences existing between Francisella species and populations with respect to chitinase genes, a comprehensive bioinformatics analysis was performed. Genes encoding for chiA and chiB were previously described in F. novicida and F. tularensis (12, 22). Domain searches of the chiA and chiB gene products found they possessed a GH18 domain (PfamID: PF00704), a characteristic domain of bacterial chitinases. Thus, a search for chitinase genes was performed by BLAST analyses using the previously described Francisella ChiA and ChiB and their GH18 domains. These and additional search analyses identified a total of four chitinase genes, chiA, chiB, chiC, and chiD in F. tularensis and F. novicida (Fig. 5.2). The chiA gene product shared the greatest similarity with a probable chitinase of Polysphondylium pallidum (E value 6  $\times$  10<sup>-51</sup>). The Francisella ChiB most closely resembled a chitinase from Saccharophagus degradans (E value 2 × 10<sup>-11</sup>), and the ChiC displayed the greatest similarity to a hypothetical chitinase of Photobacterium damselae (E value 2 ×  $10^{-22}$ ). F. tularensis and F. novicida ChiD showed limited similarity to other known chitinases, but most closely resembled a chitinase from *Lactococcus lactis* (*E* value  $7 \times 10^{-8}$ ). However, a specific type of GH18 domain, ChiD-like domain (cd02871), previously identified in Bacillus circulans resembles the GH18 of the *Francisella* ChiD (E value 2.65 × 10<sup>-79</sup>).



**Fig. 5.2** Domain features of *F. tularensis* (A1a, A1b, A2, and type B) and *F. novicida* chitinases. The relative positions of conserved domains were identified in the chitinase gene products of *F. tularensis* and *F. novicida*. Solid black boxes indicate the predicted signal peptide cleavage site, striped boxes indicate the location and completeness of the GH18 domain (truncated GH18 domains appear as a pentagon), open boxes indicate the position of fibronectin type 3 domains, grey boxes indicate carbohydrate binding domains and dark grey chevrons represent incomplete *N*-acetylglucosamine-binding protein A domains. (A) *chiA* gene products, (B) *chiB* gene products, (C) *chiC* gene products, (D) *chiD* gene products. A *chiC* gene was identified in the genome of *F. novicida* GA99-3548 and GA99-3549 but not *F. novicida* U112.

Differences in the predicted presence, functionality, and subcellular localizations of these four genes were observed among F. tularensis populations (A1a, A1b, A2, and type B), and F. novicida. F. tularensis A1a and A1b possessed genes for chiA, chiB, chiC, and chiD with an altered chiB and chiC. Specifically the chiC of F. tularensis A1a possessed a point mutation causing a premature stop codon and two predicted ORFs annotated as FTT 1592 and FTT 1593 and encoding products of 387 and 207 amino acids, respectively. The F. tularensis A1a FTT\_1592 ORF encodes for the C-terminal portion of ChiC that includes a complete GH18 domain. This was found to be identical in the F. tularensis A1b genome (MA00-2987); however, it is currently annotated as one reading frame (FTMG 01551). The ChiB of the F. tularensis A1a and A1b populations contained a 124 amino acid N-terminal truncation that removed a partial Nacetylglucosamine-binding protein A domain and the conserved signal peptide for translocation. F. tularensis A2 appeared to encode a functional chiC and chiD. F. tularensis type B was predicted to have all four chitinase genes, but the chiC product possessed a 58 amino acid C-terminal truncation that appeared to impact the essential GH18 domain. F. novicida strain U112 was predicted to only lack chiC. Two additional F. novicida genomes became available during the course of this study, the genome for strain GA99-3548 (accession number ABAH0000000) and strain GA99-3549 (accession number AAYF0000000). Both of these F. novicida strains possessed a chiC. In addition to the overall absence or presence of the four chitinases, the domain structure between ChiA, ChiB, ChiC, and ChiD differed. A more comprehensive bioinformatic analysis of the Francisella chitinases can be found in Appendix 8.

The *in silico* analyses of the putative chitinases predicted that each of the *Francisella* species, subspecies and populations possessed two or more functional chitinases. When applied to the differential endochitinase activities observed with the WCL of *Francisella* species, subspecies and populations (Fig. 5.1) this bioinformatics

data led to several hypotheses. 1) Enzyme kinetics of the individual chitinases or different levels of chitinase production in the various *Francisella* strains significantly influence the overall endochitinase activity; 2) the strong chitinase activity of the *F. tularensis* A2 population is attributable to ChiC or ChiC in combination with ChiD; and 3) the moderate endochitinase activity of *F. tularensis* type B and *F. novicida* is a result of activity from ChiA, ChiB, ChiD or a combination of these proteins.

#### 5.3.3 Differential endochitinase activities of ChiA, ChiB, ChiC, and ChiD

To establish the level of endochitinase enzyme activity associated with individual gene products, F. tularensis and F. novicida chitinases predicted to be functional (those with a complete or partially altered GH18 domain) were produced as recombinant proteins in E. coli and assayed for endochitinase, chitobiosidase, and Nacetylglucosaminidase function. The ChiA, ChiB, and ChiC proteins possessing a complete GH18 domain were positive for endochitinase activity (Fig. 5.3). The F. tularensis type B ChiC was found to be negative for all chitinase activity; a result that correlates with the 58 amino acid C-terminal deletion that truncates the GH18 domain of this protein. The greatest endochitinase activity over a nine min assay was observed for the ChiB product of F. tularensis A1a/A1b and type B, and F. novicida. The full length ChiC of F. tularensis A2 was slightly less active than the intact ChiB proteins. Interestingly, the recombinant F. tularensis A1a/A1b C-terminal ChiC fragment (FTT\_1592) was active, but at decreased levels compared to the full length F. tularensis A2 ChiC. The ChiA of F. tularensis A1a/A1b and type B, and F. novicida yielded modest endochitinase activity (A<sub>405</sub> of 0.40, 0.38 and 0.40, respectively), and none of the ChiD proteins were found to possess chitinase activity. Only ChiA and ChiC chitinases displayed minimal measurable activity to the chitobiosidase analog, and Nacetylglucosaminidase activity was not observed for any chitinase enzyme (Fig. 5.3).



Recombinant tested

Fig. 5.3 Chitinase activity and substrate specificities of *F. tularensis* (A1a, A1b, A2, and type B) and *F. novicida* recombinant chitinases. *F. tularensis* and *F. novicida* chitinases with complete or partial GH18 domains were produced as recombinants in a heterologous system and assayed for nine minutes to determine their specificities to analogs capable of distinguishing between (•) endochitinase, ( $\Delta$ ) chitobiosidase and ( $\Diamond$ ) *N*-acetylglucosaminidase activities. Absorbance at 405 nm was determined for three technical replicates of each enzyme at 37°C. The average of the technical replicates is reported as a bar of corresponding color and shading. Background measurements of the chitin analogs were subtracted from the data reported.

The kinetics of endochitinase activity were evaluated to further to define differential enzyme activities (Fig. 5.4). The kinetic profiles of the ChiA proteins of F. tularensis A1a/A1b and type B, and F. novicida were similar to one another (Fig. 5.4A), but these chitinases yielded a much slower rate of catalysis than ChiB or ChiC (Fig. 5.4D). The ChiB recombinant proteins of F. tularensis A1a/A1b and type B, and F. novicida all presented similar kinetic profiles, and these recombinant products provided the greatest activity over the nine min endochitinase assay (Fig. 5.4B). Although the maximum release of p-nitrophenol from the endochitinase substrate by ChiC of F. tularensis A2 was slightly less than that observed with the most active ChiB protein, the ChiC protein had a dramatically higher rate of catalysis, where the activity plateaued The F. tularensis A1a/A1b C-terminal ChiC fragment (FTT 1592) after 90 sec. containing the intact GH18 domain again presented significantly less activity than the full length ChiC of *F. tularensis* A2, but its activity also plateaued at 90 sec. (Fig. 5.4C). To test whether the form of the recombinant protein influenced activity, each chitinase was also produced as a recombinant product without predicted signal peptides or without histidine-tags, and assayed for chitinase activity. The relative endochitinase activities between ChiA, ChiB, ChiC, and ChiD did not change with these other recombinant forms (data not shown). Kinetic evaluations were also conducted at ambient temperature, and although total activities were lower at this temperature compared to 37°C, the relative endochitinase activities did not differ between ChiA, ChiB, ChiC, and ChiD (data not shown).



**Fig. 5.4** Comparative endochitinase kinetics of *F. tularensis* (A1a, A1b, A2, and type B) and *F. novicida* recombinant chitinases. Recombinants that tested positive for endochitinase activity (Fig. 3) were assayed with an endochitinase analog to determine the relative activity of each functional enzyme at 37°C. The average absorbance at 405 nm of three technical replicates is reported for time points 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240, 300, 360, 420, 480 and 540 sec, except for ChiC where activity plateaued at 90 sec. Kinetics of (A) ChiA recombinant proteins, (B) ChiB recombinant proteins, (C) ChiC recombinant proteins and (D) relative comparison of all functional chitinases. Background measurements of the endochitinase analog were subtracted from the data reported.

To validate the activity observed with the small chitin analogues in the colorimetric assay, a second assay with glycol chitin (a soluble polymeric chitin) as the substrate was performed (8). The presence or absence of chitinase activity for each of the recombinant chitinases was the same as that observed using the colorimetric assay (Fig. 5.5). To account for the neutral pl of the ChiD products, the glycol chitin assay was also performed at a neutral pH, and no activity was observed (data not shown).



Fig. 5.5 Degradation of glycol chitin by *F. tularensis* (A1a, A1a, A2, and type B) and *F. novicida* recombinant chitinases. 10  $\mu$ g of recombinant chitinases were assayed for their capacity to hydrolyze glycol chitin. A zone of clearance around the well where the chitinase is added indicates positive chitinase activity. For positive and negative controls, 10  $\mu$ g of *Trichoderma viride* chitinase and 10 mM ammonium bicarbonate were used, respectively (data not shown).

## 5.3.4 Production of individual chitinases by *F. tularensis* and *F. novicida*

Western blot analyses of WCL from *in vitro* grown *F. tularensis* and *F. novicida* were performed with antiserum generated against the recombinant chitinases (Fig. 5.6).

This evaluation was performed to determine the relative production of individual chitinase proteins shown to possess endochitinase activity (Fig. 5.3). Antiserum specificity was confirmed using the individual recombinant chitinases (data not shown). A protein band of the correct molecular mass (83 kDa) reactive to anti-ChiA antiserum was detected in WCL of *F. tularensis* A1a/A1b and type B, but as predicted by bioinformatics, not to *F. tularensis* A2. A ChiA product of about 125 kDa was detected in *F. novicida* WCL. This was greater than the predicted mass of 95.5 kDa. The ChiB antiserum recognized products at a predicted mass of 79 kDa in the WCL of *F. tularensis* type B and *F. novicida*, but did not identify a product in the WCL of *F. tularensis* A1a, A1b, or A2. A protein band corresponding to ChiC was only detected in *F. tularensis* A2. Products corresponding to the *F. tularensis* A1a and A1b ChiC fragments or the inactive *F. tularensis* type B ChiC were not detected.



**Fig. 5.6** Chitinases produced *in vitro* by *F. tularensis* (A1a, A1b, A2 and type B) and *F. novicida*. Western blots of WCL (15 μg) of each *Francisella* strain using anti-ChiA antiserum, anti-ChiB antiserum and anti-ChiC antiserum. Lanes 1-3, A1a strains OK01-2528, MO02-4195 and SCHU S4, respectively; Lanes 4-5, A1b strains MA00-2987 and MD00-2970, respectively; Lanes 6-7, A2 strains NM99-1823 and WY96-3418, respectively; Lanes 8-10, type B strains KY99-3387, LVS and MI00-1730; Lanes 11-12, *F. novicida* strains GA99-3548 and U112.

#### 5.3.5 Analysis of *chiA* and *chiC* knockouts of *F. tularensis*

To demonstrate that the observed endochitinase activity of F. tularensis A2 was attributable solely to ChiC, a *chiC* knockout ( $\Delta chiC$ ) and the corresponding complement were generated in F. tularensis A2 strain WY96-3418 and evaluated for chitinase activity (Fig. 5.7B). The  $\Delta chiC$  strain displayed minimal to no endochitinase activity (A<sub>405</sub> of 0.005). When this mutant was complemented with *chiC*, endochitinase activity was restored (A<sub>405</sub> of 1.088) to a level greater than that of the wild-type *F. tularensis* A2 strain (A<sub>405</sub> of 0.239). Western blot analysis using anti-ChiC antiserum verified the production of ChiC in WCL of the wild-type F. tularensis A2 and the complemented  $\Delta chiC$  strains, and confirmed its absence in WCL of the  $\Delta chiC$  mutant (Fig. 5.7D). Additionally, to determine whether the low endochitinase activity observed for F. tularensis A1a and A1b strains was provided by ChiA and not the fragmented ChiC, a *chiA* knockout ( $\Delta$ *chiA*) in A1b strain MA00-2987 and the corresponding complemented strain were generated (Fig. 5.7A and D). The endochitinase activity of the wild-type strain was low ( $A_{405}$  of 0.054), but was reduced further to an  $A_{405}$  of 0.004 in the  $\Delta$  chiA mutant and restored to a level moderately higher (A<sub>405</sub> of 0.097) than the wild-type F. tularensis A1b strain when the  $\Delta chiA$  strain was complemented with *chiA*. Western blot analyses using anti-ChiA antiserum verified the production of ChiA in WCL of the wild-type F. tularensis A1b and the complemented  $\Delta chiA$  strains, and demonstrated its absence in the  $\Delta chiA$  mutant (Fig. 5.7D). These results indicate that the ChiC fragment of *F. tularensis* A1b is not active under the conditions tested and the low endochitinase activity observed is due to ChiA, a protein that yields modest endochitinase activity as a purified recombinant product.



Fig. 5.7 Analysis of *chiA* and *chiC* chitinase knockouts in MA00-2987 (A1b) and WY96-3418 (A2), respectively. Endochitinase ( $\bullet$ ) and chitobiosidase ( $\blacksquare$ ) activity of WCL from (A) wild-type strain MA00-2987,  $\Delta$ *chiA* MA00-2987, and  $\Delta$ *chiA*/comp MA00-2987; and (B) wild-type strain WY96-3418,  $\Delta$ *chiC* WY96-3418, and  $\Delta$ *chiC*/comp WY96-3418. Western blot with anti-ChiA (C) against WCL from Lane 1, wild-type strain MA00-2987; Lane 2,  $\Delta$ *chiA* MA00-2987; and Lane 3,  $\Delta$ *chiA*/comp MA00-2987. Western blot with anti-ChiC (D) against WCL from Lane 1, wild-type strain UCL from Lane 2,  $\Delta$ *chiC* WY96-3418; Lane 2,  $\Delta$ *chiC* WY96-3418; and Lane 3,  $\Delta$ *chiC*/comp WY96-3418. For (A) and (B), background measurements of the chitin analogs were subtracted from the data reported.

# 5.4 Discussion

The genomes of *F. tularensis* and *F. novicida* are highly similar with >95% minimum percent identity, and the genomes of *F. tularensis* strains are considered monomorphic with pair-wise average nucleotide identity of >99.2% (4, 21). Despite this, genetic differences do exist among the *Francisella* species, subspecies, and populations, and these are reflected in the documented phenotypic variations among members of this genus (35). However, it is unknown how alterations in *Francisella's* 

surface proteome contribute to this variability. This study determined how genetic alterations in a surface exposed chitinase, ChiA, as well as other chitinases that bare bioinformatic signatures of surface proteins, dictate unique *F. tularensis* and *F. novicida* phenotypes. Differences in endochitinase activity were detected between *Francisella* species, and even between *F. tularensis* subspecies and populations. A detailed comparison of *F. tularensis* A1a, A1b, A2, and type B strains and *F. novicida*, coupled with evaluation of the two previously identified chitinase genes (*chiA* and *chiB*) and two newly identified putative chitinase genes (*chiC* and *chiD*) provided a molecular basis for the observed chitinase phenotypes. Table 5.3 provides a summary of the chitinase gene products for each of the *Francisella* species and populations.

| Francisella  | Chitinase | Predicted               | Recombinant | In vitro        |
|--------------|-----------|-------------------------|-------------|-----------------|
| biotype      | class     | pseudogene <sup>a</sup> | activity    | production      |
| A1a/A1b      | ChiA      | No                      | +           | +               |
|              | ChiB      | Nob                     | +           | -               |
|              | ChiC      | Yes/Yes <sup>c</sup>    | -/+         | -               |
|              | ChiD      | No                      | -           | NT <sup>d</sup> |
| A2           | ChiA      | Yes <sup>d</sup>        | NT          | -               |
|              | ChiB      | Yes <sup>e</sup>        | NT          | -               |
|              | ChiC      | No                      | +           | +               |
|              | ChiD      | No                      | -           | NT              |
| type B       | ChiA      | No                      | +           | +               |
| 31.5         | ChiB      | No                      | +           | +               |
|              | ChiC      | No <sup>f</sup>         | -           | -               |
|              | ChiD      | No                      | -           | NT              |
| E novicida   | ChiA      | No                      | +           |                 |
| r . noviciua | ChiR      | No                      | +           | ÷               |
|              | ChiC      | No <sup>g</sup>         | +<br>NT     | +               |
|              | ChiD      | No                      | -           | NT              |

| Table 5.3  | Summary of Francisella chitinase |  |
|------------|----------------------------------|--|
| bioinforma | atics and activities             |  |

<sup>a</sup> The pseudogene designation is based on existing notations made to the annotated genome sequences.

<sup>b</sup> *F. tularensis* A1a/A1b ChiB has an N-terminal truncation resulting in deletion of the signal peptide and the *N* -acetylglucosamine-binding protein A domain, but does not impact the GH18 domain.

<sup>c</sup> *F. tularensis* A1a/A1b*chiC* contains a point mutation that causes a premature stop codon and results in two predicted open reading frames. One reading frame (FTT\_1592c) encodes an unaltered GH18 domain.

<sup>d</sup> *F. tularensis* A2 *chiA* is truncated due to a mutation resulting in a premature stop codon; GH18 domain is missing.

 $^{\rm e}$  F. tularensis A2 chiB is truncated due to a mutation resulting in a premature stop codon; GH18 domain is missing.

<sup>f</sup> *F. tularensis* type B ChiC contains a C-terminal truncation of that impacts the GH18 domain, but its gene is not annotated as a pseudogene.

 $^9$  F. novicida strain GA99-3550 did not encode chiC . However, F. novicida GA99-3548 encoded a chiC whose product was predicted functional.

NT designates not tested.

Among the four chitinases, ChiD was not a factor in defining the variable chitinase activity among Francisella species, subspecies, and populations. The chiD gene was ubiquitous in all strains evaluated, but the purified ChiD protein was the only putative F. tularensis and F. novicida chitinase that failed to display any form of chitinase activity. Examination of the active chitinases (ChiA, ChiB, and ChiC) revealed that the single active chitinase in F. tularensis A2 was ChiC, and this protein accounted for the relatively robust endochitinase activity of the F. tularensis A2 strains. In contrast, F. tularensis A1 strains had multiple predicted functional chitinases (ChiA, ChiB, and ChiC), but barely detectible enzymatic activity. This weak activity was a result of ChiA, since neither ChiB nor the ChiC fragment were detected in the WCL of F. tularensis A1 strains grown in vitro. When compared to the F. tularensis A1 and A2 populations, F. tularensis type B had a dissimilar chitinase profile comprised of a predicted functional ChiA and ChiB. These differences between the chitinase profiles of type A and type B were not surprising given the number of phenotypic variations that exists among these two subspecies (4, 16, 29, 32). The low endochitinase activity of purified F. tularensis ChiA proteins and the dominant activity of the ChiB protein support the conclusion that the robust endochitinase activity observed for F. tularensis type B is attributable to ChiB. Unlike F. tularensis, F. novicida displayed high chitinase activity in the CS with considerably less activity detected in the WCL. Additionally, the total chitinase activity of this species was markedly higher than that of F. tularensis. Analysis of F. novicida chitinases revealed a functional ChiA and ChiB in F. novicida strain U112. As previously shown, chiC was absent from this strain (34); however, when F. novicida genome GA99-3548 and GA99-3549 became available, a chiC nearly identical to the F. tularensis A2 chiC was identified. The presence of chiC in F. novicida GA99-3548 might account for the consistently higher levels of chitinase activity of this strain as compared to the F. novicida U112.

As noted, the differential chitinase phenotypes of the *Francisella* species and populations were not a simple reflection of the number of active chitinases produced, but were also a result of the variable activity among the predicted chitinases. All the putative *F. tularensis* and *F. novicida* chitinases contained GH18 family domains. Interestingly, the *chiC* fragments identified in *F. tularensis* A1a and A1b were annotated as pseudogenes, but the C-terminal fragment containing an intact GH18 domain was active as a recombinant product. On the contrary, the *chiC* of *F. tularensis* type B was annotated as a functional gene; however, its GH18 domain was truncated and displayed no activity as a recombinant protein. The inactivity of ChiD is also likely a result of a non-functional GH18 domain. Functional GH18 domains contain a conserved catalytic motif of "DXDXE" where the glutamate residue acts as an acid critical for catalysis (13). Examination of this motif in the ChiD products (487-NFDLS-491) revealed the glutamate was replaced by a neutral serine residue. This along with a non-conserved aspartic acid to asparagine substitution likely inactivated this catalytic domain in ChiD.

Beyond GH18 domains, the other regions of the individual *F. tularensis* chitinases were hypothesized to contribute to their variable activity. A fibronectin type 3 domain, was present only in the ChiA proteins and was positioned between the GH18 and carbohydrate binding domains, a common observation in other chitinases (40). This domain is thought to serve as a linker that adjusts the relative position of the chitinase catalytic and carbohydrate binding domains (40). Fibronectin type 3 domains of cellulases are also known to help disorganize polymers of cellulose. Thus, it may play a similar role in chitin depolymerization (15, 45). Tandem bacterial (Type 3) carbohydrate binding domains were identified in ChiA and ChiC. These domains have been shown to localize chitinases to their substrate and aid in chitin depolymerization (14, 41). The carbohydrate binding domains were not essential for the chitinolytic activity, as demonstrated with the C-terminal ChiC fragment of *F. tularensis* A1 strains; however, a

comparison of activity from this C-terminal fragment and the intact ChiC of *F. tularensis* A2 strains demonstrated that the presence of the non-enzymatic carbohydrate binding domains enhanced activity. A second binding domain, *N*-acetylglucosamine-binding protein A domain, was identified in ChiB and ChiD but in a truncated form. This domain was previously described in a surface associated chitin binding protein of *V. cholerae* and enhanced attachment of this bacterium to both chitin and human epithelial cells (18). The linkage of these bioinformatic analyses with the production of individual chitinases and their differential activities provide a molecular basis to explain the overall chitinase activity of the different *Francisella* species and populations. It also suggests that each of these proteins identified as chitinases may act on different substrates or provide different biological functions.

Putative signal peptides were identified in all of the chitinases (except *F. tularensis* A1a/A1b ChiB and ChiC GH18 containing fragment). Despite this, *F. tularensis* endochitinase activity was dominant in the WCL, in contrast to *F. novicida* where activity was focused in the CS. *F. novicida* chitinase (ChiA and ChiB) secretion is dependent on a Type II secretion system and in particular four "pili" proteins [PilA (FTN\_0415), PilB (FTN\_1115), PilC (FTN\_1116) and PilQ (FTN\_1137)] are known to be essential for chitinase secretion (12). Homologues of these are encoded by all *Francisella* biotypes analyzed in this study, except *F. tularensis* LVS that lacks *pilA* (11). Thus, the absence of chitinase secretion in *F. tularensis* is hypothesized to result from differences in the expression and production of secretion machinery between *F. novicida* and *F. tularensis*. Alternatively, with the larger number of pseudogenes in *F. tularensis* as compared to *F. novicida*, it is possible that one or more unidentified products essential for secretion are absent from *F. tularensis* (4, 34).

*F. tularensis* type A strains are considered more virulent than *F. tularensis* type B strains, and recent studies revealed differences among the virulence of *F. tularensis* type

A populations (A1a, A1b, and A2) (20, 29). The ChiA protein is highly over produced (>20 times) in mice infected with an *F. tularensis* A1a strain FSC033, but a knockout of *chiA* in *F. tularensis* A1 strain SCHU S4 revealed no difference in virulence as compared to the wild-type strain. These data suggest that *F. tularensis* A1a produces ChiA during *in vivo* growth for a function not directly linked to pathogenesis. To date, no studies have been conducted to decipher the potential roles of ChiB and ChiC in *F. tularensis* virulence. The virulence differences that exist between *F. tularensis* A1, A2, and type B, however, provide a justification for the study of ChiB and ChiC mutants in animal models. Additionally, ecological niche modeling predicts that *F. tularensis* A1 and A2 populations occupy distinct habitats within the United States, and therefore, the identified differences in chitinases between these two populations may be required for maintenance and survival (31). Unlike *F. tularensis, F. novicida* is regarded as an environmental organism and only rarely causes infections within humans (17). The more complete repertoire and higher *in vitro* activities of *F. novicida* chitinases within the CS may reflect its ecological niche and utilization of chitin for nutrients.

These studies validated the hypothesis that genetic permutations of chitinases contribute to the phenotypic variability of *Francisella* species, subspecies, and populations, and link these differences to the surface proteome. Although only one surface associated chitinase was identified in Chapter III, truncation and inactivation of this chitinase in *F. tularensis* A2 represents a distinct difference in the surface proteomes of *F. tularensis* populations. It is also possible that the other chitinases alter the *F. tularensis* surface proteome, as they have signal peptides and are secreted in *F. novicida* (12). The observed variability in structure and function of the specific chitinases provides a foundation to investigate the role of these enzymes in the growth and survival of pathogenic *F. tularensis* subspecies and populations, and environmental strains of *F. novicida*.

# 5.5 Literature cited

- 1. **Baker, C. N., D. G. Hollis, and C. Thornsberry.** 1985. Antimicrobial susceptibility testing of *Francisella tularensis* with a modified Mueller-Hinton broth. J Clin Microbiol **22**:212-215.
- Beckstrom-Sternberg, S. M., R. K. Auerbach, S. Godbole, J. V. Pearson, J. S. Beckstrom-Sternberg, Z. Deng, C. Munk, K. Kubota, Y. Zhou, D. Bruce, J. Noronha, R. H. Scheuermann, A. Wang, X. Wei, J. Wang, J. Hao, D. M. Wagner, T. S. Brettin, N. Brown, P. Gilna, and P. S. Keim. 2007. Complete genomic characterization of a pathogenic A.II strain of *Francisella tularensis* subspecies tularensis. PLoS One 2:e947.
- 3. Boraston, A. B., D. N. Bolam, H. J. Gilbert, and G. J. Davies. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J **382**:769-781.
- Champion, M. D., Q. Zeng, E. B. Nix, F. E. Nano, P. Keim, C. D. Kodira, M. Borowsky, S. Young, M. Koehrsen, R. Engels, M. Pearson, C. Howarth, L. Larson, J. White, L. Alvarado, M. Forsman, S. W. Bearden, A. Sjostedt, R. Titball, S. L. Michell, B. Birren, and J. Galagan. 2009. Comparative genomic characterization of *Francisella tularensis* strains belonging to low and high virulence subspecies. PLoS Pathog 5:e1000459.
- 5. **Cottrell, M. T., D. N. Wood, L. Yu, and D. L. Kirchman.** 2000. Selected chitinase genes in cultured and uncultured marine bacteria in the alpha- and gamma-subclasses of the proteobacteria. Appl Environ Microbiol **66**:1195-1201.
- 6. **Coutinho, P. M., E. Deleury, G. J. Davies, and B. Henrissat.** 2003. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol **328**:307-317.
- 7. **Dahiya, N., R. Tewari, and G. S. Hoondal.** 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol **71**:773-782.
- 8. **DebRoy, S., J. Dao, M. Soderberg, O. Rossier, and N. P. Cianciotto.** 2006. *Legionella pneumophila* Type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A **103:**19146-19151.
- 9. Eppinger, M., M. J. Rosovitz, W. F. Fricke, D. A. Rasko, G. Kokorina, C. Fayolle, L. E. Lindler, E. Carniel, and J. Ravel. 2007. The complete genome sequence of *Yersinia pseudotuberculosis* IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet **3**:e142.
- 10. **Fujita, K., K. Shimomura, K. Yamamoto, T. Yamashita, and K. Suzuki.** 2006. A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem Biophys Res Commun **345:**502-507.
- 11. **Gil, H., J. L. Benach, and D. G. Thanassi.** 2004. Presence of pili on the surface of *Francisella tularensis*. Infect Immun **72**:3042-3047.
- Hager, A. J., D. L. Bolton, M. R. Pelletier, M. J. Brittnacher, L. A. Gallagher, R. Kaul, S. J. Skerrett, S. I. Miller, and T. Guina. 2006. Type IV pili-mediated secretion modulates *Francisella virulence*. Mol Microbiol 62:227-237.
- Hsieh, Y. C., Y. J. Wu, T. Y. Chiang, C. Y. Kuo, K. L. Shrestha, C. F. Chao, Y. C. Huang, P. Chuankhayan, W. G. Wu, Y. K. Li, and C. J. Chen. 2010. Crystal structures of *Bacillus cereus* NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: a chitinase without chitin binding and insertion domains. J Biol Chem 285:31603-31615.

- 14. Ikegami, T., T. Okada, M. Hashimoto, S. Seino, T. Watanabe, and M. Shirakawa. 2000. Solution structure of the chitin-binding domain of *Bacillus circulans* WL-12 chitinase A1. J Biol Chem **275**:13654-13661.
- 15. Kataeva, I. A., R. D. Seidel, 3rd, A. Shah, L. T. West, X. L. Li, and L. G. Ljungdahl. 2002. The fibronectin type 3-like repeat from the *Clostridium thermocellum* cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol **68**:4292-4300.
- 16. Keim, P., A. Johansson, and D. M. Wagner. 2007. Molecular epidemiology, evolution, and ecology of *Francisella*. Ann N Y Acad Sci **1105**:30-66.
- 17. Keim, P. S., and D. M. Wagner. 2009. Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol **7**:813-821.
- 18. **Kirn, T. J., B. A. Jude, and R. K. Taylor.** 2005. A colonization factor links *Vibrio cholerae* environmental survival and human infection. Nature **438**:863-866.
- 19. Koga, D., M. Mitsutomi, M. Kono, and M. Matsumiya. 1999. Biochemistry of chitinases. Exs 87:111-123.
- 20. Kugeler, K. J., P. S. Mead, A. M. Janusz, J. E. Staples, K. A. Kubota, L. G. Chalcraft, and J. M. Petersen. 2009. Molecular epidemiology of *francisella tularensis* in the United States. Clin Infect Dis **48**:863-870.
- Larsson, P., D. Elfsmark, K. Svensson, P. Wikstrom, M. Forsman, T. Brettin, P. Keim, and A. Johansson. 2009. Molecular evolutionary consequences of niche restriction in *Francisella tularensis*, a facultative intracellular pathogen. PLoS Pathog 5:e1000472.
- Larsson, P., P. C. Oyston, P. Chain, M. C. Chu, M. Duffield, H. H. Fuxelius, E. Garcia, G. Halltorp, D. Johansson, K. E. Isherwood, P. D. Karp, E. Larsson, Y. Liu, S. Michell, J. Prior, R. Prior, S. Malfatti, A. Sjostedt, K. Svensson, N. Thompson, L. Vergez, J. K. Wagg, B. W. Wren, L. E. Lindler, S. G. Andersson, M. Forsman, and R. W. Titball. 2005. The complete genome sequence of *Francisella tularensis*, the causative agent of tularemia. Nat Genet 37:153-159.
- 23. Li, X., and S. Roseman. 2004. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci U S A 101:627-631.
- 24. LoVullo, E. D., L. A. Sherrill, L. L. Perez, and M. S. Pavelka, Jr. 2006. Genetic tools for highly pathogenic *Francisella tularensis* subsp. *tularensis*. Microbiology 152:3425-3435.
- 25. Marchler-Bauer, A., J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, S. He, D. I. Hurwitz, J. D. Jackson, Z. Ke, C. J. Lanczycki, C. A. Liebert, C. Liu, F. Lu, S. Lu, G. H. Marchler, M. Mullokandov, J. S. Song, A. Tasneem, N. Thanki, R. A. Yamashita, D. Zhang, N. Zhang, and S. H. Bryant. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205-210.
- Margolis, J. J., S. El-Etr, L. M. Joubert, E. Moore, R. Robison, A. Rasley, A. M. Spormann, and D. M. Monack. 2010. Contributions of *Francisella tularensis* subsp. *novicida* chitinases and Sec secretion system to biofilm formation on chitin. Appl Environ Microbiol **76**:596-608.
- 27. McClelland, M., K. E. Sanderson, J. Spieth, S. W. Clifton, P. Latreille, L. Courtney, S. Porwollik, J. Ali, M. Dante, F. Du, S. Hou, D. Layman, S. Leonard, C. Nguyen, K. Scott, A. Holmes, N. Grewal, E. Mulvaney, E. Ryan, H. Sun, L. Florea, W. Miller, T. Stoneking, M. Nhan, R. Waterston, and R. K.

**Wilson.** 2001. Complete genome sequence of *Salmonella enterica* serovar Typhimurium LT2. Nature **413**:852-856.

- Molins-Schneekloth, C. R., J. T. Belisle, and J. M. Petersen. 2008. Genomic markers for differentiation of *Francisella tularensis* subsp. *tularensis* A.I and A.II strains. Appl Environ Microbiol 74:336-341.
- 29. Molins, C. R., M. J. Delorey, B. M. Yockey, J. W. Young, S. W. Sheldon, S. M. Reese, M. E. Schriefer, and J. M. Petersen. Virulence differences among *Francisella tularensis* subsp. *tularensis* clades in mice. PLoS One **5**:e10205.
- 30. **Muzzarelli, R. A.** 1999. Native, industrial and fossil chitins. EXS **87:**1-6.
- Nakazawa, Y., R. A. Williams, A. T. Peterson, P. S. Mead, K. J. Kugeler, and J. M. Petersen. 2010. Ecological niche modeling of *Francisella tularensis* subspecies and clades in the United States. Am J Trop Med Hyg 82:912-918.
- 32. Petersen, J. M., P. S. Mead, and M. E. Schriefer. 2009. *Francisella tularensis*: an arthropod-borne pathogen. Vet Res **40**:7.
- 33. Robertus, J. D., and A. F. Monzingo. 1999. The structure and action of chitinases. Exs 87:125-135.
- 34. Rohmer, L., C. Fong, S. Abmayr, M. Wasnick, T. J. Larson Freeman, M. Radey, T. Guina, K. Svensson, H. S. Hayden, M. Jacobs, L. A. Gallagher, C. Manoil, R. K. Ernst, B. Drees, D. Buckley, E. Haugen, D. Bovee, Y. Zhou, J. Chang, R. Levy, R. Lim, W. Gillett, D. Guenthener, A. Kang, S. A. Shaffer, G. Taylor, J. Chen, B. Gallis, D. A. D'Argenio, M. Forsman, M. V. Olson, D. R. Goodlett, R. Kaul, S. I. Miller, and M. J. Brittnacher. 2007. Comparison of *Francisella tularensis* genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8:R102.
- Sjostedt, A. 2005. Family XVII. Francisellaceae genus I. Francisella, p. 200-210. In Brenner DJ, Ed. Bergey's Manual of Systematic Bacteriology. Springer-Verlag, New York.
- 36. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem **150**:76-85.
- 37. **Sonnenberg, M. G., and J. T. Belisle.** 1997. Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun **65**:4515-4524.
- Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of *Pseudomonas* aeruginosa PAO1, an opportunistic pathogen. Nature 406:959-964.
- Straskova, A., I. Pavkova, M. Link, A. L. Forslund, K. Kuoppa, L. Noppa, M. Kroca, A. Fucikova, J. Klimentova, Z. Krocova, A. Forsberg, and J. Stulik.
  2009. Proteome analysis of an attenuated *Francisella tularensis dsbA* mutant: identification of potential DsbA substrate proteins. J Proteome Res 8:5336-5346.
- 40. **Toratani, T., Y. Kezuka, T. Nonaka, Y. Hiragi, and T. Watanabe.** 2006. Structure of full-length bacterial chitinase containing two fibronectin type III domains revealed by small angle X-ray scattering. Biochem Biophys Res Commun **348**:814-818.

- 41. **Tsujibo, H., T. Kubota, M. Yamamoto, K. Miyamoto, and Y. Inamori.** 2003. Characterization of chitinase genes from an alkaliphilic actinomycete, *Nocardiopsis prasina* OPC-131. Appl Environ Microbiol **69**:894-900.
- 42. Twine, S. M., N. C. Mykytczuk, M. D. Petit, H. Shen, A. Sjostedt, J. Wayne Conlan, and J. F. Kelly. 2006. *In vivo* proteomic analysis of the intracellular bacterial pathogen, *Francisella tularensis*, isolated from mouse spleen. Biochem Biophys Res Commun **345**:1621-1633.
- 43. Vinetz, J. M., S. K. Dave, C. A. Specht, K. A. Brameld, B. Xu, R. Hayward, and D. A. Fidock. 1999. The chitinase PfCHT1 from the human malaria parasite *Plasmodium falciparum* lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proc Natl Acad Sci U S A **96**:14061-14066.
- Vogler, A. J., D. Birdsell, L. B. Price, J. R. Bowers, S. M. Beckstrom-Sternberg, R. K. Auerbach, J. S. Beckstrom-Sternberg, A. Johansson, A. Clare, J. L. Buchhagen, J. M. Petersen, T. Pearson, J. Vaissaire, M. P. Dempsey, P. Foxall, D. M. Engelthaler, D. M. Wagner, and P. Keim. 2009. Phylogeography of *Francisella tularensis*: global expansion of a highly fit clone. J Bacteriol 191:2474-2484.
- 45. Watanabe, T., Y. Ito, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from *Bacillus circulans* WL-12 in chitin degradation. J Bacteriol **176**:4465-4472.
## Chapter VI

## **Final Discussion and Future Directions**

# 6.1 Introduction

Bacteria are the most physiologically diverse organisms on Earth, and are involved in seemingly infinite types of biological, physical, and chemical interactions. At the center of these complex interactions are proteins, whose roles may best be summarized as "the heart of all living processes" (79). Francisella biotypes encode a limited number of proteins compared to many other bacteria, yet these coccobacilli persist in diverse environments including water, soil, and over 300 different species of animals (7, 60). As described within this dissertation it is recognized that bacterial surface proteins influence niche occupations and host pathogen interactions, but prior to the characterization of the F. tularensis surface proteome described in Chapter III, only 10 proteins were localized to the surface of F. tularensis and F. novicida (46, 50, 53, 65). Nevertheless, the majority of these 10 previously identified proteins were documented to have roles in virulence, phenotypic variation, and immunity, emphasizing the importance of the F. tularensis surface proteome (3, 39, 50, 67, 75). In light of bioinformatic predictions and evidence regarding the surface proteomes of similar bacterial pathogens it was hypothesized that the majority of *F. tularensis* surface proteins were still unknown. The following discussion addresses the characterization of the *F. tularensis* LVS surface proteome, and provides insight into how these data were used to more completely understand the humoral response to effective F. tularensis vaccinations and the role of surface associated chitinases in the phenotypic variability of *Francisella* species, subspecies, and populations.

#### 6.2 The surface proteome of *F. tularensis* LVS

The characterization of the *F. tularensis* LVS surface proteome in Chapter III was a method development project that provided a platform amenable to the characterization of the surface proteomes of *F. tularensis* subspecies and populations and allowed for the evaluation of the hypothesis that the majority of *F. tularensis* surface proteins were unknown. This methodology was shown as a viable technique for surface proteome characterizations of *F. tularensis* A1a, A1b, and A2 populations. Further, the localization of eight previously identified surface proteins was confirmed and 28 new surface proteins were identified. The identification of additional *F. tularensis* surface proteins is significant given their roles in niche occupation, as immune targets, and in phenotypic variability of other bacterial pathogens (3, 39, 50, 67, 75). Importantly, the discovery of these proteins allowed for additional experiments to be conceived and conducted that examined unknown properties of the *F. tularensis* surface proteome. These experiments included determining the surface proteins targeted by the humoral responses of effective *F. tularensis* vaccination and biochemical characterizations of surface associated chitinases that were predicted to alter the phenotypes of *Francisella* biotypes

Characterizations of bacterial surface proteomes are a significant technical challenge due to issues such as inaccurate bioinformatic predictions, low abundance, hydrophobicity, and outer membrane associations (9, 57, 91). Given these obstacles, no single method is currently sufficient for positive identifications. In this dissertation, a surface protein biotinylation strategy was used as the primary tool for surface protein identifications, and comparisons to previously reported membrane and secreted proteins. Although the

combination of these data provided a high degree of confidence for accurate surface protein identifications, other complementary techniques not addressed in Chapter III could have been beneficial. Perhaps the most useful of these would have been 2D-PAGE / Western blot and cryo-immunogold electron microscopy (14, 58). In the former, the combination of this procedure with MS could provide an unambiguous definition of the proteins labeled with biotin. Cryo-immunogold electron microscopy using anti-biotin probes, in contrast, could determine that biotinylation of proteins was specific to the cell surface. However, the usefulness of this technique could be compromised by the presence of naturally biotinylated cytosolic biotin carrier proteins produced by *F. tularensis*. The utility of cryo-immunogold electron microscopy characterization of surface proteins could be enhanced if monoclonal antibodies to specific proteins were used as probes, but this requires extensive resources that limit the practicality of this methodology.

Many of the proteins identified in Chapter III have physiological roles not fully understood in *F. tularensis*, but homologs in other bacteria provide insight to their functions. In addition to FopA (FTL\_0583), two newly identified surface proteins; OmpA family protein (FTL\_0325) and peptidoglycan-associated lipoprotein (FTL\_0336) were predicted to contain OmpA\_C-like domains. OmpA-like proteins often act as cell surface receptors, enhance conjugation frequency, participate in biofilm formation, and are host cell invasins in other Gram-negative pathogens (73). The *F. tularensis* OmpA family protein shares significant similarity with OmpA/MotB like proteins that form multi-protein complexes that are ion channels and the stator of the flagella motor of *E. coli.* (37). The peptidoglycan-associated lipoprotein of *F. tularensis* may act as a cell surface receptor, and although it remains to be demonstrated for living bacteria, this protein was recently shown to interact with plasminogen (13). Coating of the bacterial surface with plasminogen or the activated form of plasminogen, plasmin, could be an important

strategy used by *F. tularensis* for dissemination, host cell invasion, or to avoidance of recognition (13).

The close association of *F. tularensis* with phagocytic cells, particularly macrophages, suggests that this coccobacillus evolved mechanisms to efficiently cope with oxidative pressures. Antioxidant proteins produced by intracellular pathogens are often conserved and localized in CS (74, 78). However, in addition to being identified in the CS, two oxidative stress proteins, peroxidase/catalase (FTL\_1504) and AhpC/TSA family protein (FTL\_1015), were found on the surface of F. tularensis LVS (38). Peroxidase/catalase is perhaps the best understood of these oxidative stress proteins, where in pathogens, including Mycobacterium tuberculosis and Salmonella enterica serovar Typhimurium, it is an important virulence factor that detoxifies hydrogen peroxide produced by macrophages (28, 54). In contrast, AhpC/TSA family protein is a putative disulfide oxidoreductase that is predicted to detoxify reactive sulfur species (11, 48). Both of these antioxidant proteins are upregulated by F. tularensis growing in macrophages, and peroxidase/catalase knockouts show increased sensitivity to hydrogen peroxide (11, 45, 88). Surface localization of these proteins in F. tularensis may provide an additional barrier to reactive intermediates by concentrating antioxidant potential directly around the coccobacilli. A third surface protein, NAD/flavoprotein subunit protein has a putative role in oxidative protection. This protein contains a Pyr\_redox superfamily domain identified in NADH peroxidases, but its mitigation of the oxidative stress response has not been determined in Francisella (48).

An increasing number of proteins with defined functions are now known to have additional roles depending on their subcellular localizations or differing environmental conditions (56). Future evaluations of the *F. tularensis* surface proteome should consider the enzymatic and structural contributions of multifunctional proteins. The production of these so called "moonlighting proteins" may be an important strategy used

by bacteria such as *F. tularensis* to cope with diverse and changing environments given extensive genomic decay. Proteins involved in central metabolism or chaperones are among the most intensively evaluated multifunctional proteins. While surface localized, many of these proteins are involved in immune modulation, cell adhesion, and host factor binding (4, 8, 33, 89). Not unexpectedly, proteins including glyceraldehyde-3phosphate dehydrogenase (FTT\_1368), GroEL (FTT\_1696), and DnaK (FTT\_1269) were identified on the surface of F. tularensis LVS where they may play analogous moonlighting roles. It is now recognized that a much broader spectrum of proteins have multiple functions and include proteins with known roles in transcription, translation, signal transduction, proteolysis, DNA binding, and cell wall biosynthesis. (29, 31). Of the additional types of multifunctional proteins, the most prominent representatives detected on the surface of *F. tularensis* were involved in translation. These included two elongation factors and three ribosomal proteins. Elongation factors are surface associated in other bacteria such as Lactobacillus, Mycoplasma, and Pseudomonas species and act as adhesions and bind host factors (24, 40). The role for surface associated ribosomal proteins is unclear, but while localized in the cytosol a variety of alternative functions including regulation of ribosome synthesis and cell stress responses are described (86).

A portion of surface proteins identified in Chapter III were classified as hypothetical proteins with no known function. The characterization or at least partial definition of these proteins will be a necessary step to develop a sufficient understanding of the physiological processes governed by the *F. tularensis* surface proteome. The importance of hypothetical proteins in *F. tularensis* biology is emphasized by the recently described virulence factors, hypothetical proteins FTT\_1103 and FTT\_0918 (FupA) (61, 64). The homolog of hypothetical protein FTT\_1103 was identified on the surface of *F. tularensis* LVS, and when this gene was disrupted in *F. tularensis* SCHU S4, the

bacteria were greatly attenuated in mice and showed deficiencies in HepG2 cells for intracellular replication and phagosomal escape (61). Siderophore dependent and independent uptake of iron in *F. tularensis* is mediated by hypothetical protein FTT\_0918 (44). Although the homolog of this protein was not surface localized in *F. tularensis* LVS, likely due to a C-terminal truncation, in *F. tularensis* SCHU S4 it is an outer membrane protein that is likely surface associated (32). In addition to identifying new virulence factors, unique structural conformations may be observed in hypothetical surface proteins and link to unique functions. The surface protein IgIC (FTT\_1712) was recently annotated as a hypothetical protein and described to form a unique  $\beta$ -sandwich plate conformation (76). The precise mechanism of IgIC has yet to be determined, but this protein is essential for bacteria to escape the phagosome (43, 66). Additionally, several of the hypothetical surface proteins identified in Chapter III are conserved in other species. Therefore further investigation in *F. tularensis* could support physiological evaluations of a wide array of organisms.

Another objective of the expanded characterization the *F. tularensis* LVS surface proteome was to identify proteins that might contribute to the phenotypic variability of *F. tularensis* biotypes. A comparison of the CDS (the numbers of amino acids) between *F. tularensis* subspecies and populations identified numerous differences in surface proteins (Appendix 6). Of the 38 known *F. tularensis* surface proteins, 22 differ in size compared to *F. tularensis* LVS in at least one other *F. tularensis* subspecies or population. This includes the surface chitinase, ChiA (FTT\_0715), which was shown in Chapter V to contribute to differential chitinase activities of *F. tularensis* biotypes. Extensive variations were noted in several other surface proteins. Outer membrane protein (FTL\_0009), glutamate dehydrogenase (FTL\_0269), 50S ribosomal protein L7/L12 (FTL\_1745), and succinate dehydrogenase, catalytic and NAD/flavoprotein subunit (FTL\_1786) are substantially truncated in *F. tularensis* A1b. The gene encoding

hypothetical protein (FTL\_1225) is highly eroded in *F. tularensis* A2. Glyceraldehyde-3phosphate dehydrogenase (FTL\_1146) and elongation factor Tu (FTL\_1751) are fused with adjacent genes in *F. tularensis mediasiatica* and *F. tularensis* A1b, respectively. These changes could alter the function of the specific surface protein, and also impact downstream pathways. Further, single nucleotide polymorphisms and novel CDS may contribute to variability of *F. tularensis* surface protein function. The impact of single nucleotide polymorphisms in altering the function of *Francisella* surface proteins is already recognized. A single amino acid substitution in hypothetical protein FsaP (FTL\_1658) of *F. novicida* disrupts its translocation by Sec and abrogates *F. novicida* attachment to human A549 epithelial cells (50).

#### 6.3 The immunoreactive surface proteins of *F. tularensis*

Bacterial molecules naturally recognized by hosts during infection are often surface proteins with immunogenic properties (5, 69). This observation was confirmed by the use of surface proteins in vaccines effective against pathogens including serogroup B *N. meningitidis, C. pneumonia, S. pyogenes* and *S. agalactiae* (20, 47, 62, 81). Given the role of surface proteins in vaccinology, and that there is no licensed vaccine for *F. tularensis*, the surface proteins recognized by the humoral response to vaccination with live *F. tularensis* LVS (the most effective *F. tularensis* vaccine) were determined in Chapter IV. Using MPF as a surface protein surrogate, *F. tularensis* LVS immune sera recognized a total of 17 antigens, 10 of which were localized to the surface in Chapter III. Similarly, proteins recognized by the host after immunization with marginally effective adjuvanted MPF preparations were determined. Surface proteins were recognized, but the humoral response targeted many more antigens compared to *F. tularensis* LVS vaccination, and the majority of these were not surface associated. Therefore, expanded humoral recognition to non-surface proteins does not correlate to

enhanced protection. These data suggest that the select set of surface proteins recognized by *F. tularensis* LVS are protective surface protein immunogens.

Vaccines designed with surface proteins typically rely on the humoral immune response to initiate antibody dependent mechanisms such as complement or phagocytosis mediated killing by macrophages and neutrophils (35). Thus, experiments to determine the ability of the *F. tularensis* surface protein antigens to stimulate these mechanisms will be required. However, there may be additional protective properties of antibodies that must be considered. In the case of *F. tularensis* it is particularly important to evaluate how antibodies control bacteria with an intracellular lifecycle. Antibodies could target bacteria during an extracellular phase, and in addition to the classic extracellular killing mechanisms, they may block or inhibit cell surface invasins or bacterial secretion systems, attenuating the pathogen (51). Antibodies may also have a direct impact on intracellular bacteria. An antibody able to neutralize the listeriolysin O toxin of *L. monocytogenes* was found to accumulate in *L. monocytogenes* infected macrophages where it attenuated growth of this bacteria (17). Further, the production of some proinflammatory cytokines can be influenced by antibodies (42).

Immunity to *F. tularensis* infection is most effective when both the humoral and cell mediated responses are elicited (18, 35, 68). Thus, new tularemia vaccines will need to contain the components needed to activate both arms of adaptive immunity. In addition to *F. tularensis* surface proteins identified as being antigens recognized by the humoral response, they also stimulate cell mediated immunity. TUL4 (FTT\_0901) and outer membrane protein FopB (FTT\_1747) were both shown to be surface associated in Chapter III, and are the only well described T cell antigens (65, 72, 90). T cell recognition of these proteins leads to the production of IFN- $\gamma$  and TNF- $\alpha$  that elicit important effector mechanisms to control *F. tularensis* infections (18). Both IFN- $\gamma$  and TNF- $\alpha$  production is interlinked with the activation of macrophages and their ability to kill

intracellular bacteria (18). However, macrophages have little effect on non-opsonized *F. tularensis* (34, 35). Therefore, the production of opsonizing antibodies has a synergistic relationship with cell mediated killing. A protective response may involve innate immune mechanisms that work independently or that support the adaptive response. For example, IFN-γ production by T cells and natural killer cells can be driven by activation of TLR-2 (1, 35). The surface proteins TUL4 and lipoprotein (FTT\_1103) are the only two *F. tularensis* TLR-2 ligands. These observations clearly show the importance of *F. tularensis* surface proteins in immunity, and how they function to bridge immune responses.

Surface proteins to be included in an effective subunit vaccine against tularemia must consider several factors relevant to the biology of F. tularensis. 1) As discussed above, the surface proteins of F. tularensis interact with the host in a variety of ways to produce differing types of immune responses. It is likely that multiple surface protein immunogens are required for protection. This could explain the limited effectiveness of previously evaluated vaccines that contained only one or two surface proteins (19, 21, 2) Protection afforded by F. tularensis LVS vaccination to infection with F. 71). tularensis type A strains indicates a number of surface protein immunogens are conserved between F. tularensis subspecies. Nonetheless, the inclusion of F. tularensis subspecies and population specific immunogens could have a significant positive impact on vaccine efficacy. In particular, the repertoire of *F. tularensis* type A1 surface protein immunogens should be identified due to the more severe disease outcomes associated with this population. Such studies could be accomplished using the methodologies described in Chapters III and IV. 3) A subunit vaccine should contain proteins produced by bacteria in vivo. F. tularensis surface proteomes could vary in vivo compared to bacteria grown in vitro. The abundances of particular proteins may differ, and the in vivo surface proteome of F. tularensis may contain proteins not produced or surface localized

in bacteria grown on laboratory medium, or vice versa. As a possible example, transcriptional analyses suggest that production of the surface associated, acetyl-CoA carboxylase, biotin carboxyl carrier protein subunit (FTL\_1592), could be diminished *in vivo* (23). Although this protein is a frequently identified antigen, its decreased presence on *in vivo* bacteria may correlate to poor immunogenicity. Additional transcriptional analyses as well as *in vivo* surface protein and antigen profiling could identify new immunogens, and help to better delineate immunogen candidates.

## 6.4 Differential chitinases of *F. tularensis* and *F. novicida*

The surface associated chitinase ChiA (FTT\_0715) of *F. tularensis*, along with other putative chitinases that bare signatures of surface localization, ChiB (FTT\_1768), ChiC (FTT\_1592 / FTT\_1593), and ChiD (FTT\_0066), were shown in Chapter V to contribute to the phenotypic variability of *Francisella* species, subspecies, and populations. Specifically, the greatest chitinase activities were associated with *F. novicida* which can encode as many as three functional chitinases. Compared to *F. novicida*, chitinase activities of *F. tularensis* strains were substantially lower. In *F. tularensis* the highest activity was detected in *F. tularensis* A2 populations that produce a single, but highly active chitinase, ChiC. Little activity was detected in *F. tularensis* type A1 strains that encode a functional ChiA and ChiB, but these strains only produced a weakly active ChiA *in vitro*. The chitinase activities of *F. tularensis* A2, and were linked to the production of ChiA and ChiB..

The enzymatic action of the *F. tularensis* and *F. novicida* chitinases is a result of GH18 domains identified in all functional chitinases. However, despite a similar enzymatic domain, disparate kinetics and substrate specificities between ChiA, ChiB, ChiC, and ChiD were detected. Differences in enzymatic activities of GH18 domains are

common, and in accordance with the benefits of a single organism's ability to produce multiple chitinases with dissimilar activities to synergistically process chitin into monomers or small oligosaccharides (16, 27, 77). Enzymatic variability is also attributed to the different crystalline configurations and molecular associations of chitin found in nature (52). Surprisingly, although ChiD was predicted to be a functional chitinase containing an intact GH18 domain, it was inactive in all Francisella biotypes against the chitin analogs evaluated in Chapter V. Closer bioinformatic inspection of the predicted active site, 487-NFDLS-491, identified amino acid substitutions from the expected motif of DXDXE, where X usually indicates aromatic or aliphatic amino acid (30). Glutamate-491 to serine and aspartic acid-487 to asparagine substitutions are likely responsible for inactivation of the ChiD GH18 domain (30). The identification of apparently inactivated GH18 chitinases is not unusual, and the primary role of these chitinase-like proteins is hypothesized to be chitin binding (55). It could be informative to mutate the active site of ChiD to a highly conserved "DIDLE" motif found in ChiD homologs to determine if this protein has chitinolytic potential. If chitinase activity is restored, it would likely differ from Nother Francisella chitinases given that ChiD's typically function as acetylglucosaminidases (2). This form of chitinase activity could allow Francisella to survive in novel niches, and the loss of ChiD enzymatic activity could provide insight on the evolutionary history of Francisella. Nevertheless, chiD is present in all Francisella genomes suggesting it has an important function.

The *F. tularensis* chitinases contained several non-enzymatic accessory domains including *N*-acetylglucosamine-binding protein A, carbohydrate binding, and fibronectin type 3 domains that putatively facilitate adherence to or the depolymerization of chitin (6, 36, 87). Bioinformatic analyses of *Francisella* genomes also identified two non-chitinases with accessory domains that may contribute to the activity or function of chitinases. A chitin binding protein (FTT\_0816) was identified in *F. tularensis* and *F.* 

*novicida* genomes and contained a chitin\_bind\_3 superfamily domain. This domain was recently shown to enzymatically introduce chain breaks in crystalline chitin by a newly described mechanism (85). However, the specifics of catalysis are not well understood (85). The chitin\_bind\_3 domain shares structural similarities with GH61 domains that are found in fungi, thus proteins containing this domain may eventually be classified as chitinases (26). Another non-chitinase protein, hypothetical protein (FTT\_1577), was identified that contained putative chitin binding domains similar to those identified in the functional *Francisella* chitinases.

Although multiple chitinolytic proteins are encoded, not all are needed in every F. tularensis subspecies and population. Genes encoding chiB and chiC are altered in F. tularensis A1 and their products were not detectable during in vitro growth. The proposed GH61-like "chitinase" of F. tularensis A1 (FTT\_0816) is truncated by nearly 300 amino acids. F. tularensis A2 chiA and chiB are truncated and do not encode the enzymatic GH18 domain, while the ChiC GH18 domain is partially truncated in F. tularensis type B, rendering the enzyme inactive. The erosion of multiple chitinases in F. tularensis genomes may coincide with the phenomena of genomic reduction that is observed in many intracellular pathogens (10). Genomic reduction of F. tularensis chitinases is best illustrated by examining the genome of F. philomiragia. Other types of GH domains act as chitinases, and F. philomiragia encodes for two putative chitinases with GH19 and GH20 domains (16). There are remnants of this putative GH20 chitinase in F. tularensis and F. novicida genomes (FTL\_0869), but the gene is extensively truncated compared to F. philomiragia (79, 79, and 813 amino acids, respectively). A putative GH19 chitinase is not present in either F. tularensis or F. novicida. The more complete repertoire of chitinases in F. philomiragia is not unexpected given the ties of this bacterium to aquatic environments where chitin is abundant and is frequently used as a nutrient source (70). However, the reduction of chitinolytic genes is also apparent

in *F. philomiragia*. The gene encoding for the putative GH20 chitinase is split in *F. philomiragia* ATCC 25017 but not *F. philomiragia* ATCC 25015.

It is difficult to speculate whether the different chitinase repertoires confer an advantage to their respective F. tularensis populations. In most cases, the chitinases from each class were shown in Chapter V to have similar kinetics regardless of the F. tularensis or F. novicida parent strain. Based on this observation, it could be argued that the chitinases did not evolve differently between Francisella populations to act on unique substrates. However, only a small number of chitin analogs were tested in Chapter V, thus differences in kinetics may be detectable using other substrates. The ChiB and ChiC chitinases of F. tularensis A1 displayed the greatest differences in activity compared to their respective archetype chitinases, possibly indicating some degree of enzyme differentiation or specialization. These two chitinases were not detectable in F. tularensis A1 strains in vitro, but may be produced under differing circumstances. Therefore, closer evaluations of F. tularensis A1 ChiA and ChiB substrate specificities and studies to evaluate the regulators of chitinase expression could provide useful information for determining the biological roles of these enzymes. Given the synergistic activities of chitinases, an alternative explanation for the differing chitinase repertoires is that multiple types of chitinases are required to process a particular substrate. In this regard, different chitinase combinations might expand or retract substrate specificities.

One of the most striking observations resulting from *in vitro* growth of *F. tularensis* and *F. novicida* was the differential localization of chitinase activities between these two species. All of the chitinases identified in this study, except those with N-terminal truncations, were identified with signal peptides. However, activity of *F. tularensis* chitinases was associated with WCL, whereas the chitinase activity in *F. novicida* was detected in CS. The identification of secreted chitinases is consistent with

the utilization of chitin for nutrients. Bacteria do not synthesize chitin and are incapable of internalizing large polymers of chitin, thus many chitinases process chitin into short oligosaccharides extracellulary (52). In accordance with the function of secreted chitinases, F. novicida forms biofilms on chitin and can use chitin as a sole source of carbon (49). An intracellular role of F. tularensis chitinases is more ambiguous. Intracellular chitinolytic enzymes are identified in the periplasm of Gram-negative bacteria, but these are usually involved in the processing of chitibiose into Nacetylglucosamine (82). When tested against a chitibiose-like analog, the Francisella chitinases were inactive. Intracellular localization of F. tularensis chitinases could be an artifact defective secretion involving the secretion apparatus or regulatory components of secretion. Multiple genes whose products are predicted to be involved with secretion, transport, and regulation are differentially altered in F. tularensis subspecies and populations compared to F. novicida (12). A final possibility is that subtle changes of F. tularensis chitinase structures make the proteins incompatible for secretion. Studies that investigate the subcellular localizations of F. tularensis chitinases could provide useful information to help determine an unknown role or substrate for these enzymes.

Given that 1) ChiA was the most highly upregulated protein in a murine infection model; 2) ChiB was the most highly upregulated protein in response to a temperature shift from 37°C to 44°C; 3) the repertoire of chitinases differs between *Francisella* species, subspecies, and populations; and 4) that virulence and vector survival roles have been described for the chitinases of human pathogens, it is likely that chitinases play important and possibly dichotomous roles in the biology *Francisella* biotypes (12, 23, 83, 84). In addition to the upregulation of ChiB, increased production of ChiA may be associated with a temperature up-shift. *In vivo* upregulation of ChiA was determined by examining bacteria isolated from the spleen of mice collected in a latter stage of infection when the potential for fever is high (84). Thus, the increased production of

these chitinases could be related to the colonization of a new host before the animal succumbs to infection. Often the next host is a biting arthropod, and after ingestion of the *Francisella*-containing blood meal, the food bolus is typically surrounded by peritrophic membrane containing chitin (41, 59). Accordingly, the modification of the peritrophic membrane by chitinases is an important aspect to the transmission cycle of the malaria parasite *P. falciparum* (41, 83). Another explanation for the presence of at least one functional chitinase in each *Francisella* species, subspecies, and population is this bacterium's association with ciliates and amoeba that synthesize chitin (22, 25, 80). Chitin synthesis in protozoans is thought to occur either at the cell surface or possibly in specialized vesicles called chitosomes (63). In this scenario chitinases may be analogous to proteins such as plasmin that degrade components of the extracellular matrix and enhance the invasiveness of some bacterial pathogens (15). Further, the chitosome may represent a niche exploitable by *F. tularensis*, where chitin and its precursors may be processed by chitinases for nutrients.

## 6.5 Conclusions

In conclusion, three aspects of *F. tularensis* biology that are directly related to the bacterium's surface proteins were evaluated in this dissertation. An expanded description of the surface proteome provided experimental evidence for the surface localization of 36 proteins, 28 of which are newly identified to the surface of *F. tularensis*. This work also identified the surface protein antigens recognized by the most effective tularemia vaccine and correlated expanded antigen recognition of non-surface proteins to decreased efficacy of subunit vaccines. The identification of naturally recognized surface protein antigens supports future studies seeking to develop a safe and effective subunit vaccine. Finally, the first biochemical characterization of the surface exposed *F. tularensis* chitinase, ChiA, was performed. Given the synergistic action of chitinases,

and their likely surface associations, biochemical analyses were extended to other putative chitinases identified in *F. tularensis* subspecies and populations and *F. novicida*. Genetic differences in chitinases between *Francisella* biotypes translated into biochemically distinct phenotypes. The variations in chitinase repertoires and their activities may be relevant to the different niche occupations and virulence characteristics of *Francisella* species, subspecies, and populations.

# 6.6 Literature cited

- 1. Anderson, R. V., D. D. Crane, and C. M. Bosio. 2010. Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine **28:**6562-6572.
- 2. Armand, S., H. Tomita, A. Heyraud, C. Gey, T. Watanabe, and B. Henrissat. 1994. Stereochemical course of the hydrolysis reaction catalyzed by chitinases A1 and D from *Bacillus circulans* WL-12. FEBS Lett **343**:177-180.
- 3. Barker, J. R., A. Chong, T. D. Wehrly, J. J. Yu, S. A. Rodriguez, J. Liu, J. Celli, B. P. Arulanandam, and K. E. Klose. 2009. The *Francisella tularensis* pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol **74**:1459-1470.
- 4. Bergonzelli, G. E., D. Granato, R. D. Pridmore, L. F. Marvin-Guy, D. Donnicola, and I. E. Corthesy-Theulaz. 2006. GroEL of *Lactobacillus johnsonii* La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen *Helicobacter pylori*. Infect Immun **74:**425-434.
- 5. **Berry, J. D.** 2005. Rational monoclonal antibody development to emerging pathogens, biothreat agents and agents of foreign animal disease: The antigen scale. Vet J **170**:193-211.
- 6. Boraston, A. B., D. N. Bolam, H. J. Gilbert, and G. J. Davies. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J **382**:769-781.
- 7. Broman, T., J. Thelaus, A. C. Andersson, S. Backman, P. Wikstrom, E. Larsson, M. Granberg, L. Karlsson, E. Back, H. Eliasson, R. Mattsson, A. Sjostedt, and M. Forsman. 2011. Molecular detection of persistent *Francisella tularensis* subspecies *holarctica* in natural waters. Int J Microbiol **2011**.
- 8. Candela, M., M. Centanni, J. Fiori, E. Biagi, S. Turroni, C. Orrico, S. Bergmann, S. Hammerschmidt, and P. Brigidi. 2010. DnaK from *Bifidobacterium animalis* subsp. *lactis* is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology **156**:1609-1618.
- Carroll, J., M. C. Altman, I. M. Fearnley, and J. E. Walker. 2007. Identification of membrane proteins by tandem mass spectrometry of protein ions. Proc Natl Acad Sci U S A 104:14330-14335.
- 10. **Casadevall, A.** 2008. Evolution of intracellular pathogens. Annu Rev Microbiol **62:**19-33.
- 11. **Chae, H. Z., K. Robison, L. B. Poole, G. Church, G. Storz, and S. G. Rhee.** 1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A **91**:7017-7021.
- Champion, M. D., Q. Zeng, E. B. Nix, F. E. Nano, P. Keim, C. D. Kodira, M. Borowsky, S. Young, M. Koehrsen, R. Engels, M. Pearson, C. Howarth, L. Larson, J. White, L. Alvarado, M. Forsman, S. W. Bearden, A. Sjostedt, R. Titball, S. L. Michell, B. Birren, and J. Galagan. 2009. Comparative genomic characterization of *Francisella tularensis* strains belonging to low and high virulence subspecies. PLoS Pathog 5:e1000459.
- 13. Clinton, S. R., J. E. Bina, T. P. Hatch, M. A. Whitt, and M. A. Miller. 2010. Binding and activation of host plasminogen on the surface of *Francisella tularensis*. BMC Microbiol **10**:76.
- Cole, J. N., R. D. Ramirez, B. J. Currie, S. J. Cordwell, S. P. Djordjevic, and M. J. Walker. 2005. Surface analyses and immune reactivities of major cell wallassociated proteins of group A streptococcus. Infect Immun 73:3137-3146.

- 15. da Silva, C. M., L. de Abreu Vidipo, R. Nishi, and M. Cristina Plotkowski. 2004. Binding of plasminogen to *Pseudomonas aeruginosa* results in formation of surface-associated plasmin and enhanced bacterial invasiveness. Microb Pathog **36**:59-66.
- 16. **Dahiya, N., R. Tewari, R. P. Tiwari, and G. S. Hoondal.** 2005. Chitinase production in solid-state fermentation by *Enterobacter* sp. NRG4 using statistical experimental design. Curr Microbiol **51**:222-228.
- 17. Edelson, B. T., and E. R. Unanue. 2001. Intracellular antibody neutralizes *Listeria* growth. Immunity **14:**503-512.
- 18. Elkins, K. L., S. C. Cowley, and C. M. Bosio. 2007. Innate and adaptive immunity to *Francisella*. Ann N Y Acad Sci **1105**:284-324.
- 19. **Fulop, M., R. Manchee, and R. Titball.** 1995. Role of lipopolysaccharide and a major outer membrane protein from *Francisella tularensis* in the induction of immunity against tularemia. Vaccine **13**:1220-1225.
- Giuliani, M. M., J. Adu-Bobie, M. Comanducci, B. Arico, S. Savino, L. Santini, B. Brunelli, S. Bambini, A. Biolchi, B. Capecchi, E. Cartocci, L. Ciucchi, F. Di Marcello, F. Ferlicca, B. Galli, E. Luzzi, V. Masignani, D. Serruto, D. Veggi, M. Contorni, M. Morandi, A. Bartalesi, V. Cinotti, D. Mannucci, F. Titta, E. Ovidi, J. A. Welsch, D. Granoff, R. Rappuoli, and M. Pizza. 2006. A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834-10839.
- 21. Golovliov, I., M. Ericsson, L. Akerblom, G. Sandstrom, A. Tarnvik, and A. Sjostedt. 1995. Adjuvanticity of ISCOMs incorporating a T cell-reactive lipoprotein of the facultative intracellular pathogen *Francisella tularensis*. Vaccine **13:**261-267.
- 22. **Gooday, G. W.** 1990. The Ecology of chitin degradation. Adv Microb Ecol **11**:387-430.
- 23. **Grall, N., J. Livny, M. Waldor, M. Barel, A. Charbit, and K. L. Meibom.** 2009. Pivotal role of the *Francisella tularensis* heat-shock sigma factor RpoH. Microbiology **155**:2560-2572.
- Granato, D., G. E. Bergonzelli, R. D. Pridmore, L. Marvin, M. Rouvet, and I. E. Corthesy-Theulaz. 2004. Cell surface-associated elongation factor Tu mediates the attachment of *Lactobacillus johnsonii* NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160-2169.
- 25. **Greub, G., and D. Raoult.** 2004. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev **17:**413-433.
- 26. Harris, P. V., D. Welner, K. C. McFarland, E. Re, J. C. Navarro Poulsen, K. Brown, R. Salbo, H. Ding, E. Vlasenko, S. Merino, F. Xu, J. Cherry, S. Larsen, and L. Lo Leggio. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305-3316.
- 27. Hashimoto, M., T. Ikegami, S. Seino, N. Ohuchi, H. Fukada, J. Sugiyama, M. Shirakawa, and T. Watanabe. 2000. Expression and characterization of the chitin-binding domain of chitinase A1 from *Bacillus circulans* WL-12. J Bacteriol 182:3045-3054.
- 28. **Hebrard, M., J. P. Viala, S. Meresse, F. Barras, and L. Aussel.** 2009. Redundant hydrogen peroxide scavengers contribute to *Salmonella* virulence and oxidative stress resistance. J Bacteriol **191:**4605-4614.
- 29. Hernandez, S., A. Gomez, J. Cedano, and E. Querol. 2009. Bioinformatics annotation of the hypothetical proteins found by omics techniques can help to disclose additional virulence factors. Curr Microbiol **59**:451-456.

- Hsieh, Y. C., Y. J. Wu, T. Y. Chiang, C. Y. Kuo, K. L. Shrestha, C. F. Chao, Y. C. Huang, P. Chuankhayan, W. G. Wu, Y. K. Li, and C. J. Chen. 2010. Crystal structures of *Bacillus cereus* NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: a chitinase without chitin binding and insertion domains. J Biol Chem 285:31603-31615.
- 31. **Huberts, D. H., and I. J. van der Klei.** 2010. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta **1803**:520-525.
- 32. Huntley, J. F., P. G. Conley, K. E. Hagman, and M. V. Norgard. 2007. Characterization of *Francisella tularensis* outer membrane proteins. J Bacteriol **189:**561-574.
- 33. **Jeffery, C. J.** 2009. Moonlighting proteins--an update. Mol Biosyst **5**:345-350.
- Kirimanjeswara, G. S., J. M. Golden, C. S. Bakshi, and D. W. Metzger. 2007. Prophylactic and therapeutic use of antibodies for protection against respiratory infection with *Francisella tularensis*. J Immunol **179:**532-539.
- 35. **Kirimanjeswara, G. S., S. Olmos, C. S. Bakshi, and D. W. Metzger.** 2008. Humoral and cell-mediated immunity to the intracellular pathogen *Francisella tularensis*. Immunol Rev **225**:244-255.
- 36. **Kirn, T. J., B. A. Jude, and R. K. Taylor.** 2005. A colonization factor links *Vibrio cholerae* environmental survival and human infection. Nature **438**:863-866.
- Kojima, S., A. Shinohara, H. Terashima, T. Yakushi, M. Sakuma, M. Homma, K. Namba, and K. Imada. 2008. Insights into the stator assembly of the *Vibrio* flagellar motor from the crystal structure of MotY. P Natl Acad Sci USA 105:7696-7701.
- 38. Konecna, K., L. Hernychova, M. Reichelova, J. Lenco, J. Klimentova, J. Stulik, A. Macela, T. Alefantis, and V. G. Delvecchio. 2010. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent *Francisella tularensis* strains. Proteomics.
- 39. Kovarova, H., P. Halada, P. Man, I. Golovliov, Z. Krocova, J. Spacek, S. Porkertova, and R. Necasova. 2002. Proteome study of *Francisella tularensis* live vaccine strain-containing phagosome in Bcg/Nramp1 congenic macrophages: resistant allele contributes to permissive environment and susceptibility to infection. Proteomics 2:85-93.
- Kunert, A., J. Losse, C. Gruszin, M. Huhn, K. Kaendler, S. Mikkat, D. Volke, R. Hoffmann, T. S. Jokiranta, H. Seeberger, U. Moellmann, J. Hellwage, and P. F. Zipfel. 2007. Immune evasion of the human pathogen *Pseudomonas aeruginosa*: elongation factor Tuf is a factor H and plasminogen binding protein. J Immunol 179:2979-2988.
- 41. Langer, R. C., and J. M. Vinetz. 2001. *Plasmodium* ookinete-secreted chitinase and parasite penetration of the mosquito peritrophic matrix. Trends Parasitol **17**:269-272.
- 42. Lee, E. H., and Y. Rikihisa. 1997. Anti-*Ehrlichia chaffeensis* antibody complexed with *E. chaffeensis* induces potent proinflammatory cytokine mRNA expression in human monocytes through sustained reduction of IkappaB-alpha and activation of NF-kappaB. Infect Immun 65:2890-2897.
- 43. Lindgren, H., I. Golovliov, V. Baranov, R. K. Ernst, M. Telepnev, and A. Sjostedt. 2004. Factors affecting the escape of *Francisella tularensis* from the phagolysosome. J Med Microbiol **53**:953-958.
- 44. Lindgren, H., M. Honn, I. Golovlev, K. Kadzhaev, W. Conlan, and A. Sjostedt. 2009. The 58-kilodalton major virulence factor of *Francisella tularensis* is required for efficient utilization of iron. Infect Immun **77**:4429-4436.

- 45. Lindgren, H., H. Shen, C. Zingmark, I. Golovliov, W. Conlan, and A. Sjostedt. 2007. Resistance of *Francisella tularensis* strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect Immun **75**:1303-1309.
- 46. Ludu, J. S., O. M. de Bruin, B. N. Duplantis, C. L. Schmerk, A. Y. Chou, K. L. Elkins, and F. E. Nano. 2008. The *Francisella* pathogenicity island protein PdpD is required for full virulence and associates with homologues of the Type VI secretion system. J Bacteriol **190**:4584-4595.
- Maione, D., I. Margarit, C. D. Rinaudo, V. Masignani, M. Mora, M. Scarselli, H. Tettelin, C. Brettoni, E. T. Iacobini, R. Rosini, N. D'Agostino, L. Miorin, S. Buccato, M. Mariani, G. Galli, R. Nogarotto, V. Nardi Dei, F. Vegni, C. Fraser, G. Mancuso, G. Teti, L. C. Madoff, L. C. Paoletti, R. Rappuoli, D. L. Kasper, J. L. Telford, and G. Grandi. 2005. Identification of a universal group B streptococcus vaccine by multiple genome screen. Science 309:148-150.
- Marchler-Bauer, A., J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, S. He, D. I. Hurwitz, J. D. Jackson, Z. Ke, C. J. Lanczycki, C. A. Liebert, C. Liu, F. Lu, S. Lu, G. H. Marchler, M. Mullokandov, J. S. Song, A. Tasneem, N. Thanki, R. A. Yamashita, D. Zhang, N. Zhang, and S. H. Bryant. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205-210.
- Margolis, J. J., S. El-Etr, L. M. Joubert, E. Moore, R. Robison, A. Rasley, A. M. Spormann, and D. M. Monack. 2010. Contributions of *Francisella tularensis* subsp. *novicida* chitinases and Sec secretion system to biofilm formation on chitin. Appl Environ Microbiol **76**:596-608.
- 50. Melillo, A., D. D. Sledjeski, S. Lipski, R. M. Wooten, V. Basrur, and E. R. Lafontaine. 2006. Identification of a *Francisella tularensis* LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett 263:102-108.
- 51. **Messick, J. B., and Y. Rikihisa.** 1994. Inhibition of binding, entry, or intracellular proliferation of *Ehrlichia-Risticii* in P388d(1) cells by anti-*E. Risticii* serum, immunoglobulin-G, or Fab fragment. Infection and Immunity **62:**3156-3161.
- 52. Muzzarelli, R. A. 1999. Native, industrial and fossil chitins. EXS 87:1-6.
- 53. **Nano, F. E.** 1988. Identification of a heat-modifiable protein of *Francisella tularensis* and molecular cloning of the encoding gene. Microb Pathog **5**:109-119.
- 54. **Ng, V. H., J. S. Cox, A. O. Sousa, J. D. MacMicking, and J. D. McKinney.** 2004. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol **52**:1291-1302.
- 55. **Ober, C., and G. L. Chupp.** 2009. The chitinase and chitinase-like proteins: a review of genetic and functional studies in asthma and immune-mediated diseases. Curr Opin Allergy Clin Immunol **9**:401-408.
- 56. **Pancholi, V., and G. S. Chhatwal.** 2003. Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol **293:**391-401.
- 57. **Pancholi, V., and V. A. Fischetti.** 1992. A major surface protein on group-A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding-activity. J Exp Med **176:**415-426.
- 58. **Peters, P. J., E. Bos, and A. Griekspoor.** 2006. Cryo-immunogold electron microscopy. Curr Protoc Cell Biol **Chapter 4**:Unit 4 7.
- 59. **Petersen, J. M., P. S. Mead, and M. E. Schriefer.** 2009. *Francisella tularensis:* an arthropod-borne pathogen. Vet Res **40**:7.

- 60. **Petersen, J. M., and C. R. Molins.** 2010. Subpopulations of *Francisella tularensis* ssp. *tularensis* and *holarctica*: identification and associated epidemiology. Future Microbiol **5**:649-661.
- 61. Qin, A., D. W. Scott, J. A. Thompson, and B. J. Mann. 2009. Identification of an essential *Francisella tularensis* subsp. *tularensis* virulence factor. Infect Immun **77**:152-161.
- Rodriguez-Ortega, M. J., N. Norais, G. Bensi, S. Liberatori, S. Capo, M. Mora, M. Scarselli, F. Doro, G. Ferrari, I. Garaguso, T. Maggi, A. Neumann, A. Covre, J. L. Telford, and G. Grandi. 2006. Characterization and identification of vaccine candidate proteins through analysis of the group A streptococcus surface proteome. Nat Biotechnol 24:191-197.
- 63. **Ruiz-Herrera, J., and A. D. Martinez-Espinoza.** 1999. Chitin biosynthesis and structural organization *in vivo*. EXS **87:**39-53.
- 64. Salomonsson, E., K. Kuoppa, A. L. Forslund, C. Zingmark, I. Golovliov, A. Sjostedt, L. Noppa, and A. Forsberg. 2009. Reintroduction of two deleted virulence loci restores full virulence to the live vaccine strain of *Francisella tularensis*. Infect Immun **77**:3424-3431.
- 65. **Sandstrom, G., A. Tarnvik, and H. Wolf-Watz.** 1987. Immunospecific Tlymphocyte stimulation by membrane proteins from *Francisella tularensis*. J Clin Microbiol **25:**641-644.
- 66. **Santic, M., M. Molmeret, K. E. Klose, S. Jones, and Y. A. Kwaik.** 2005. The *Francisella tularensis* pathogenicity island protein IgIC and its regulator MgIA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol **7**:969-979.
- 67. Savitt, A. G., P. Mena-Taboada, G. Monsalve, and J. L. Benach. 2009. *Francisella tularensis* infection-derived monoclonal antibodies provide detection, protection, and therapy. Clin Vaccine Immunol **16**:414-422.
- 68. Sebastian, S., J. T. Pinkham, J. G. Lynch, R. A. Ross, B. Reinap, L. T. Blalock, J. W. Conlan, and D. L. Kasper. 2009. Cellular and humoral immunity are synergistic in protection against types A and B *Francisella tularensis*. Vaccine **27**:597-605.
- 69. Sette, A., and R. Rappuoli. 2010. Reverse vaccinology: developing vaccines in the era of genomics. Immunity **33:**530-541.
- 70. **Sjostedt, A.** 2005. Family XVII. Francisellaceae genus I. *Francisella*, p. 200-210. *In* Brenner DJ, Ed. Bergey's Manual of Systematic Bacteriology. Springer-Verlag, New York.
- 71. Sjostedt, A., G. Sandstrom, and A. Tarnvik. 1992. Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of *Francisella tularensis* expressed by *Salmonella typhimurium*. Infect Immun **60**:2855-2862.
- 72. Sjostedt, A., G. Sandstrom, A. Tarnvik, and B. Jaurin. 1990. Nucleotide sequence and T cell epitopes of a membrane protein of *Francisella tularensis*. J Immunol **145:**311-317.
- 73. Smith, S. G., V. Mahon, M. A. Lambert, and R. P. Fagan. 2007. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett **273:**1-11.
- 74. **Sonnenberg, M. G., and J. T. Belisle.** 1997. Definition of *Mycobacterium tuberculosis* culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun **65**:4515-4524.

- 75. **Su, J., J. Yang, D. Zhao, T. H. Kawula, J. A. Banas, and J. R. Zhang.** 2007. Genome-wide identification of *Francisella tularensis* virulence determinants. Infect Immun **75**:3089-3101.
- 76. **Sun, P., B. P. Austin, F. D. Schubot, and D. S. Waugh.** 2007. New protein fold revealed by a 1.65 A resolution crystal structure of *Francisella tularensis* pathogenicity island protein IgIC. Protein Sci **16**:2560-2563.
- 77. Svitil, A. L., S. Chadhain, J. A. Moore, and D. L. Kirchman. 1997. Chitin degradation proteins produced by the marine bacterium *Vibrio harveyi* growing on different forms of chitin. Appl Environ Microbiol **63**:408-413.
- 78. Switala, J., B. L. Triggs-Raine, and P. C. Loewen. 1990. Homology among bacterial catalase genes. Can J Microbiol **36**:728-731.
- 79. **Tanford, C., and J. A. Reynolds.** 2001. Nature's robots : a history of proteins. Oxford University Press, Oxford ; New York.
- 80. **Thelaus, J., A. Andersson, P. Mathisen, A. L. Forslund, L. Noppa, and M. Forsman.** 2009. Influence of nutrient status and grazing pressure on the fate of *Francisella tularensis* in lake water. FEMS Microbiol Ecol **67:**69-80.
- 81. Thorpe, C., L. Edwards, R. Snelgrove, O. Finco, A. Rae, G. Grandi, R. Guilio, and T. Hussell. 2007. Discovery of a vaccine antigen that protects mice from *Chlamydia pneumoniae* infection. Vaccine **25**:2252-2260.
- 82. **Toratani, T., T. Shoji, T. Ikehara, K. Suzuki, and T. Watanabe.** 2008. The importance of chitobiase and *N*-acetylglucosamine (GlcNAc) uptake in *N*,*N*-diacetylchitobiose [(GlcNAc)2] utilization by *Serratia marcescens* 2,170. Microbiology **154:**1326-1332.
- 83. **Tsai, Y. L., R. E. Hayward, R. C. Langer, D. A. Fidock, and J. M. Vinetz.** 2001. Disruption of *Plasmodium falciparum* chitinase markedly impairs parasite invasion of mosquito midgut. Infect Immun **69**:4048-4054.
- 84. **Twine, S. M., N. C. Mykytczuk, M. D. Petit, H. Shen, A. Sjostedt, J. Wayne Conlan, and J. F. Kelly.** 2006. *In vivo* proteomic analysis of the intracellular bacterial pathogen, *Francisella tularensis*, isolated from mouse spleen. Biochem Biophys Res Commun **345**:1621-1633.
- Vaaje-Kolstad, G., B. Westereng, S. J. Horn, Z. Liu, H. Zhai, M. Sorlie, and V. G. Eijsink. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219-222.
- 86. **Warner, J. R., and K. B. McIntosh.** 2009. How common are extraribosomal functions of ribosomal proteins? Mol Cell **34:**3-11.
- 87. Watanabe, T., Y. Ito, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from *Bacillus circulans* WL-12 in chitin degradation. J Bacteriol **176**:4465-4472.
- 88. Wehrly, T. D., A. Chong, K. Virtaneva, D. E. Sturdevant, R. Child, J. A. Edwards, D. Brouwer, V. Nair, E. R. Fischer, L. Wicke, A. J. Curda, J. J. Kupko, 3rd, C. Martens, D. D. Crane, C. M. Bosio, S. F. Porcella, and J. Celli. 2009. Intracellular biology and virulence determinants of *Francisella tularensis* revealed by transcriptional profiling inside macrophages. Cell Microbiol 11:1128-1150.
- 89. Weisberg, R. A. 2008. Transcription by moonlight: structural basis of an extraribosomal activity of ribosomal protein S10. Mol Cell **32**:747-748.
- 90. Yu, J. J., T. Goluguri, M. N. Guentzel, J. P. Chambers, A. K. Murthy, K. E. Klose, T. G. Forsthuber, and B. P. Arulanandam. 2010. *Francisella tularensis* T-cell antigen identification using humanized HLA-DR4 transgenic mice. Clin Vaccine Immunol **17:**215-222.

91. Zhang, H., R. N. Brown, W. J. Qian, M. E. Monroe, S. O. Purvine, R. J. Moore, M. A. Gritsenko, L. Shi, M. F. Romine, J. K. Fredrickson, L. Pasa-Tolic, R. D. Smith, and M. S. Lipton. 2010. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 180 labeling. J Proteome Res 9:2160-2169. Appendix 1

Francisella vaccines, adapted from Pechous et al.

| Subunit vaccine          |                                  |                                              |                                  |                                       |       |       |       |
|--------------------------|----------------------------------|----------------------------------------------|----------------------------------|---------------------------------------|-------|-------|-------|
| Model                    | Antigen                          | Adjuvant                                     | Vaccination route<br>(dose μg)   | Challenge<br>(dose, CFU)              | Boost | Prot. | ref   |
| C3H/HeN                  | Ethanol-<br>inactivated<br>LVS   | Freund's<br>adjuvant                         | i.p. (20)                        | SCHU S4, i.n.<br>(40)                 | No    | Yes   | (82)  |
| C3H/HeN                  | LVS LPS                          | Freund's<br>adjuvant                         | i.p. (20)                        | SCHU S4, i.n.<br>(40)                 | No    | No    | (82)  |
| C3H/HeN                  | Outer<br>membrane<br>proteins    | Freund's<br>adjuvant                         | i.p. (20)                        | SCHU S4, i.n.<br>(40)                 | No    | Yes   | (82)  |
| BALB/c                   | LPS<br>(smooth)                  | Freund's<br>adjuvant                         | s.c. (50)                        | LVS, i.p.<br>(2.5 x 10 <sup>6</sup> ) | Yes   | Yes   | (61)  |
| BALB/c                   | Outer<br>membrane<br>preparation | Freund's<br>adjuvant                         | s.c. (100)                       | LVS, i.p.<br>(2.5 x 10 <sup>6</sup> ) | Yes   | Yes   | (61)  |
| BALB/c                   | LVS LPS                          | Bovine serum albumin                         | s.c. (20)                        | type B no. 108,<br>i.d. (80)          | No    | Yes   | (39)  |
| BALB/c                   | LVS LPS                          | Bovine serum<br>albumin                      | s.c. (20)                        | type B no. 108,<br>Aerosol (30)       | No    | No    | (39)  |
| BALB/c                   | LVS LPS                          | Bovine serum<br>albumin                      | s.c. (20)                        | type A no. 33,<br>i.d. (60)           | No    | No    | (39)  |
| BALB/c                   | LVS LPS                          | Bovine serum<br>albumin                      | s.c. (20)                        | type A no. 33,<br>Aerosol (50)        | No    | No    | (39)  |
| Live attenuated v        | accines                          |                                              |                                  |                                       |       |       |       |
| Species or<br>subspecies | Model                            | Mutated locus                                | Vaccination route<br>(dose, CFU) | Challenge<br>(dose, CFU)              | Boost | Prot. | ref   |
| •                        | BAL B/c                          | None (wt)                                    | id (100)                         | FSC033,                               | No    | No    | (182) |
|                          |                                  |                                              | i.u. (100)                       | Aerosol (10)                          |       | No    | (102) |
|                          | C5/BL/6                          | FIN_1645                                     | i.n. (149)                       | U112, I.N. (25)                       | NO    | Yes   | (99)  |
|                          | BALB/C                           | FTN_0176                                     | $1.p. (3.3 \times 10^{3})$       | U112, i.p. (170)                      | No    | Vos   | (156) |
|                          | DALD/C                           | 1111_1700                                    | 1.p. (0.35 × 10 )                | SCHU S4 in                            | NO    | 163   | (150) |
|                          | BALB/c                           | FTN_1700                                     | i.p. (6.95 x 10°)                | (100)                                 | No    | No    | (156) |
|                          | BALB/c                           | FTN_1465                                     | i.n. (10 <sup>6</sup> )          | U112, i.n. (10 <sup>6</sup> )         | No    | Yes   | (127) |
|                          | BALB/c                           | FTN_1465                                     | i.n. (10 <sup>6</sup> )          | SCHU S4, i.n.<br>(100)                | No    | No    | (127) |
|                          | BALB/c                           | FTN_1608                                     | i.n. (6 x 10 <sup>5</sup> )      | U112, i.n.<br>(6 x 10 <sup>7</sup> )  | No    | Yes   | (196) |
|                          | BALB/c                           | FTN_0714                                     | i.n. (6 x 10 <sup>7</sup> )      | U112, i.n.<br>(6 x 10 <sup>7</sup> )  | No    | Yes   | (196) |
|                          | BALB/c                           | FTN_1310                                     | i.n. (6 x 10 <sup>7</sup> )      | $(6 \times 10^7)$                     | No    | Yes   | (196) |
|                          | BALB/c                           | FTN_0337                                     | i.n. (6 x 10⁵)                   | $(6 \times 10^7)$                     | No    | Yes   | (196) |
|                          | BALB/c                           | FTN_0020                                     | i.n. (6 x 10 <sup>3</sup> )      | $(8 \times 10^5)$                     | No    | Yes   | (196) |
|                          | BALB/c                           | FTN_1322                                     | i.n. (10°)                       | U112, i.n. (10 <sup>3</sup> )         | No    | Yes   | (142) |
| F. novicida              | BALB/c                           | FTN_1322                                     | i.n. (10°)                       | U112, i.n. (10⁺)                      | No    | Yes   | (142) |
|                          | BALB/c                           | FTN_1322                                     | i.n. (10°)                       | U112, i.n. (10°)                      | No    | No    | (142) |
|                          | BALB/C                           | FTN_1323                                     | i.n. (10°)                       | U112, I.N. (10 <sup>-</sup> )         | NO    | Yes   | (37)  |
|                          | BALB/c                           | FTN_1323                                     | i.n. (10 <sup>6</sup> )          | 10 <sup>4</sup> )                     | No    | Yes   | (37)  |
|                          | BALB/c                           | FTN_1323                                     | Oral (10 <sup>3</sup> )          | (52)                                  | Yes   | No    | (37)  |
|                          | C57BL/6                          | FTN_1290                                     | Aerosol (10 <sup>5</sup> )       | $(35-38 \times 10^4)$                 | No    | No    | (215) |
|                          | C57BL/6                          | FTN_1290                                     | Aerosol (10 <sup>5</sup> )       | $(35-38 \times 10^4)$                 | No    | No    | (215) |
|                          | BALB/c                           | FTN_0090<br>FTN_1556<br>FTN_1061<br>FTN_0954 | i.n. (10 <sup>3</sup> )          | U112, i.n. (10 <sup>6</sup> )         | No    | Yes   | (128) |
|                          | BALB/c                           | FTN_0090<br>FTN_1556<br>FTN_1061<br>FTN_0954 | i.n. (10 <sup>6</sup> )          | U112, i.n. (10 <sup>6</sup> )         | No    | Yes   | (128) |
|                          | BALB/c                           | FTN_0090<br>FTN_1061<br>FTN_0954             | i.n. (10 <sup>3</sup> )          | U112, i.n. (10 <sup>3</sup> )         | No    | No    | (128) |

Francisella vaccines, adapted from Pechous et al. (146)

| Species or subspecies              | Model   | Mutated locus                    | Vaccination route<br>(dose, CFU)         | Challenge<br>(dose, CFU)                                      | Boost | Prot. | ref   |
|------------------------------------|---------|----------------------------------|------------------------------------------|---------------------------------------------------------------|-------|-------|-------|
|                                    | BALB/c  | FTN_1061<br>FTN_0954             | i.n. (10 <sup>3</sup> )                  | U112, i.n. (10 <sup>3</sup> )                                 | No    | No    | (128) |
| F. novicida                        | BALB/c  | FTN_0546                         | s.c. (400-500)                           | U112, s.c. (660)                                              | No    | Yes   | (91)  |
|                                    | C57BL/6 | FTN_0546                         | s.c. (400-500)                           | U112, s.c. (660)                                              | No    | Yes   | (91)  |
|                                    | BALB/c  | FTN_0546                         | Aerosol (100)                            | U112, i.n. (50)                                               | No    | Yes   | (91)  |
|                                    |         |                                  |                                          |                                                               |       |       |       |
|                                    | C57BL/6 | FTT_0107                         | i.n. (6.8 x 10 <sup>3</sup> )            | SCHU S4, i.n.<br>(13- 1.3 x 10 <sup>4</sup> )                 | No    | No    | (154) |
|                                    | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.n.<br>(100)                                        | No    | No    | (145) |
|                                    | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.n.<br>(2 x 10 <sup>3</sup> )                       | No    | No    | (145) |
|                                    | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.d.<br>(100)                                        | No    | Yes   | (145) |
|                                    | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.d.<br>(2 x 10 <sup>3</sup> )                       | No    | Yes   | (145) |
|                                    | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.n.<br>(100)                                        | Yes   | Yes   | (145) |
|                                    | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.n.<br>(2 x 10 <sup>3</sup> )                       | Yes   | No    | (145) |
|                                    | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.d.<br>(100)                                        | Yes   | Yes   | (145) |
| F. tularensis<br>subsp. tularensis | BALB/c  | FTT_0893<br>FTT_0894             | i.n. (10 <sup>4</sup> )                  | SCHU S4, i.d.<br>(2 x 10 <sup>3</sup> )                       | Yes   | Yes   | (145) |
| (type A)                           | BALB/c  | FTT_0918                         | i.d. (10 <sup>5</sup> )                  | FSC033, i.d.<br>(500)                                         | No    | Yes   | (204) |
|                                    | BALB/c  | FTT_0918                         | i.d. (10 <sup>5</sup> )                  | FSC033,<br>Aerosol (10)                                       | No    | Yes   | (204) |
| E                                  | BALB/c  | FTT_1357<br>FTT_1712             | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | FSC033, i.d.<br>(500)                                         | No    | No    | (204) |
|                                    | BALB/c  | FTT_1357<br>FTT_1712             | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | FSC033,<br>Aerosol, (10)                                      | No    | No    | (204) |
|                                    | BALB/c  | FTT_1459<br>FTT_1460<br>FTT_1461 | s.c. (10 <sup>5</sup> )                  | SCHU S4, s.c.<br>(100)                                        | No    | No    | (199) |
|                                    | BALB/c  | FTT_1103                         | i.n. (1.6 x 10 <sup>8</sup> )            | SCHU S4, i.n.<br>(1 x 10 <sup>3</sup> )                       | No    | Yes   | (155) |
|                                    | C57BL/6 | FTT_1103                         | i.n. (1.6 x 10 <sup>8</sup> )            | SCHU S4, i.n.<br>(1 x 10 <sup>3</sup> )                       | No    | Yes   | (155) |
|                                    | BALB/c  | FTT_0805                         | s.c. (10 <sup>4</sup> )                  | SCHU S4, s.c.<br>(10 <sup>3</sup> )                           | No    | Yes   | (125) |
|                                    | BAL B/c | None (wt)                        | in (200)                                 | SCHU S4, i.n.                                                 | No    | Yes   | (145) |
|                                    | BALB/c  | None (wt)                        | i.n. (200)                               | (100)<br>SCHU S4, i.n.                                        | No    | No    | (145) |
|                                    | BAL B/c | None (wt)                        | in (200)                                 | (2 x 10°)<br>SCHU S4, i.d.                                    | Yes   | Yes   | (145) |
|                                    | BALB/c  | None (wt)                        | i.n. (200)                               | (100)<br>SCHU S4, i.d.                                        | Yes   | Yes   | (145) |
|                                    | BALB/c  | FTL_0094                         | i.p. (13)                                | (2 x 10°)<br>LVS, i.p.                                        | No    | Yes   | (121) |
|                                    | BALB/c  | FTL_0094                         | i.p. (1.3 x 10 <sup>3</sup> )            | (1 x 10 <sup>-</sup> )<br>LVS, i.p.<br>(1 x 10 <sup>4</sup> ) | No    | Yes   | (121) |
| F. tularensis<br>subsp. holarctica | BALB/c  | FTL_0395                         | i.n. (10 <sup>6</sup> )                  | SCHU S4, i.n.<br>(100)                                        | No    | No    | (145) |
| (type B)                           | BALB/c  | FTL_0395                         | i.n. (10 <sup>6</sup> )                  | SCHU S4, i.n.<br>(2 x 10 <sup>4</sup> )                       | No    | No    | (145) |
|                                    | BALB/c  | FTL_0395                         | i.n. (10 <sup>6</sup> )                  | SCHU S4, i.d.                                                 | No    | No    | (145) |
|                                    | BALB/c  | FTL_0395                         | i.n. (10 <sup>6</sup> )                  | SCHU S4, i.d.                                                 | No    | No    | (145) |
|                                    | BALB/c  | FTL_0395                         | i.n. (10 <sup>6</sup> )                  | SCHU S4, i.n.                                                 | Yes   | Yes   | (145) |
|                                    | BALB/c  | FTL_0395<br>FTL_0396             | i.n. (10 <sup>6</sup> )                  | (100)<br>SCHU S4, i.n.<br>(2 x 10⁴)                           | Yes   | No    | (145) |

Live attenuated vaccines, continued

| Species or<br>subspecies                      | Model   | Mutated locus        | Vaccination route<br>(dose, CFU) | Challenge<br>(dose, CFU)                       | Boost | Prot. | ref   |
|-----------------------------------------------|---------|----------------------|----------------------------------|------------------------------------------------|-------|-------|-------|
|                                               | BALB/c  | FTL_0395<br>FTL_0396 | i.n. (10 <sup>6</sup> )          | SCHU S4, i.d.<br>(100)                         | Yes   | Yes   | (145) |
|                                               | BALB/c  | FTL_0395<br>FTL_0396 | i.n. (10 <sup>6</sup> )          | SCHU S4, i.d.<br>(2 x 10 <sup>4</sup> )        | Yes   | Yes   | (145) |
|                                               | BALB/c  | FTL_0552             | i.n. (10⁵)                       | SCHU, i.n. (200)                               | No    | Yes   | (167) |
|                                               | C57BL/6 | FTL_0552             | i.n. (10⁵)                       | SCHU, i.n. (200)                               | No    | Yes   | (167) |
|                                               | C3H/HeN | FTL_0421             | i.d. (10 <sup>5</sup> )          | LVS, i.d. (10 <sup>7</sup> )                   | No    | Yes   | (50)  |
|                                               | BALB/c  | FTL_1071             | i.p. (2.2 x 10 <sup>7</sup> )    | LVS, i.p.<br>(2.8 x 10 <sup>5</sup> )          | No    | Yes   | (171) |
|                                               | BALB/c  | FTL_1478             | i.p. (3.6 x 10 <sup>7</sup> )    | LVS, i.p.<br>(2.8 x 10⁵)                       | No    | Yes   | (171) |
|                                               | C57BL/6 | FTL_1793             | i.n. (5 x 10 <sup>4</sup> )      | SCHU S4, i.n.<br>(14)                          | No    | Yes   | (7)   |
| <i>F. tularensis</i> subsp. <i>holarctica</i> | C57BL/6 | FTL_1793             | i.n. (500)                       | LVS S4, i.n.<br>(104)                          | Yes   | Yes   | (7)   |
| (type B)                                      | C57BL/6 | FTL_1793             | i.n. (500)                       | SCHU S4, i.n.<br>(104)                         | Yes   | No    | (7)   |
|                                               | BALB/c  | FTL_0592             | i.d. (1.5 x 10 <sup>8</sup> )    | FSC 108, i.d. 17                               | Yes   | Yes   | (181) |
|                                               | BALB/c  | FTL_0592             | i.d. (1.5 x 10 <sup>8</sup> )    | SCHU S4, i.d.<br>10                            | Yes   | Yes   | (181) |
|                                               | BALB/c  | FTL_1416             | i.n. (1 x 10⁵)                   | SCHU S4,<br>Aerosol<br>(10x LD <sub>50</sub> ) | No    | Yes   | (86)  |
|                                               | BALB/c  | FTL_1416             | i.d. (1 x 10 <sup>6</sup> )      | Aerosol<br>(10x LD <sub>50</sub> )             | No    | No    | (86)  |
|                                               | BALB/c  | FTL_1416             | i.n. (1 x 10⁵)                   | LVS, i.n.<br>(4 x 10 <sup>3</sup> )            | No    | Yes   | (86)  |
|                                               | BALB/c  | FTL_1416             | i.d. (1 x 10 <sup>6</sup> )      | LVS, i.n.<br>(4 x 10 <sup>3</sup> )            | No    | Yes   | (86)  |

#### Live attenuated vaccines, continued

# Heterologous host vaccines producing Francisella antigens

| Model   | Antigen               | Host                                                                  | Vaccination route<br>(dose, CFU)         | Challenge<br>(dose, CFU)                          | Boost | Prot. | ref   |
|---------|-----------------------|-----------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|-------|-------|-------|
| BALB/c  | FTT_1357,<br>FTT_1712 | Listeria<br>monocytogenes<br>ΔactA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | SCHU S4,<br>Aerosol<br>(1 [10 LD <sub>50</sub> ]) | Yes   | Yes   | (87)  |
| BALB/c  | FTT_1357,<br>FTT_1712 | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | LVS, i.n.<br>(4.4 x 10 <sup>3</sup> )             | Yes   | Yes   | (87)  |
| BALB/c  | FTT_0721              | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | SCHU S4,<br>Aerosol<br>(1 [10 LD <sub>50</sub> ]) | Yes   | No    | (87)  |
| BALB/c  | FTT_0721              | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | LVS, i.n.<br>(4.4 x 10 <sup>3</sup> )             | Yes   | No    | (87)  |
| BALB/c  | FTT_0221              | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | LVS, i.n.<br>(4.4 x 10 <sup>3</sup> )             | Yes   | No    | (87)  |
| BALB/c  | FTT_1441              | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | LVS, i.n.<br>(4.4 x 10 <sup>3</sup> )             | Yes   | No    | (87)  |
| BALB/c  | FTT_1269              | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | LVS, i.n.<br>(4.4 x 10 <sup>3</sup> )             | Yes   | No    | (87)  |
| BALB/c  | FTT_1696              | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | LVS, i.n.<br>(4.4 x 10 <sup>3</sup> )             | Yes   | No    | (87)  |
| BALB/c  | FTT_0997              | Listeria<br>monocytogenes<br>∆actA                                    | i.d. (10 <sup>6</sup> -10 <sup>7</sup> ) | LVS, i.n.<br>(4.4 x 10 <sup>3</sup> )             | Yes   | No    | (87)  |
| BALB/cj | FTT_0901              | Salmonella<br>enterica<br>serovar<br>Typhimirium<br>Δasd Δcya<br>Δcrp | i.p. (5 x 10 <sup>3</sup> )              | LVS, i.v.<br>(160-230)                            | No    | No    | (186) |

| Heterologous | host vaccines | producing | Francisella anti | gens, continued |
|--------------|---------------|-----------|------------------|-----------------|
| notororogouo | 1000 10001100 | producing | i lanoloona anti | gono, oonanaoa  |

| Helerologous no | st vaccines proc | ucing Francisella                                         | a antigens, continueu            |                                                        |       |       |      |
|-----------------|------------------|-----------------------------------------------------------|----------------------------------|--------------------------------------------------------|-------|-------|------|
| Model           | Antigen          | Host                                                      | Vaccination route<br>(dose, CFU) | Challenge<br>(dose, CFU)                               | Boost | Prot. | ref  |
| BALB/c          | FTT_0583         | Salmonella<br>enterica<br>serovar<br>Typhimirium<br>AaroA | i.v. (10 <sup>7</sup> )          | LVS, i.p.<br>(10 <sup>1</sup> -2.5 x 10 <sup>6</sup> ) | Yes   | No    | (61) |

Prot. = protection, i.d. = intradermally, i. n. = intranasally, i.p. = intraperitoneally, i.v = intravenously, s.c. = subcutaneously. References correspond to those of Chapter I.

Appendix 2

F. tularensis LVS proteins containing predicted signal peptides and beta barrels

| F. tularensis LVS | proteins containing | predicted beta | barrels and s | ignal peptides |
|-------------------|---------------------|----------------|---------------|----------------|
|-------------------|---------------------|----------------|---------------|----------------|

| T. marensis Evo proteins containing predicted beta barrels and signal peptides |          |
|--------------------------------------------------------------------------------|----------|
| Protein                                                                        | Locus    |
| Hypothetical protein                                                           | FTL_0147 |
| TolB protein precursor                                                         | FTL_0334 |
| Hypothetical protein                                                           | FTL_0439 |
| Soluble lytic murein transglycosylase                                          | FTL_0466 |
| Hypothetical protein                                                           | FTL_0469 |
| Hypothetical protein                                                           | FTL_0574 |
| FAD-binding family protein                                                     | FTL_0645 |
| VacJ lipoprotein                                                               | FTL_0765 |
| Hypothetical protein                                                           | FTL_0823 |
| Hypothetical protein                                                           | FTL_0867 |
| Hypothetical protein                                                           | FTL_0994 |
| Hypothetical protein                                                           | FTL_1107 |
| Outer membrane associated protein                                              | FTL_1328 |
| Chitinase family 18 protein                                                    | FTL_1521 |
| Putrescine-binding periplasmic protein                                         | FTL_1582 |
| Hypothetical protein                                                           | FTL_1646 |
| Hypothetical protein                                                           | FTL_1689 |
| Hypothetical protein                                                           | FTL_1694 |
| Hypothetical protein                                                           | FTL_1836 |
| Hypothetical protein                                                           | FTL_1852 |
| Outer membrane lipoprotein                                                     | FTL_1897 |

F. tularensis LVS proteins containing predicted beta barrels, but lacking signal peptides

| Protein                                     | Locus    |
|---------------------------------------------|----------|
| Hypothetical protein                        | FTL_0116 |
| Acetyltransferase                           | FTL_0455 |
| Glycogen branching enzyme                   | FTL_0483 |
| Hypothetical protein                        | FTL_0752 |
| Lipoprotein                                 | FTL_0784 |
| Lipoprotein                                 | FTL_0841 |
| Hypothetical protein                        | FTL_0862 |
| Hypothetical protein                        | FTL_0998 |
| Hypothetical protein                        | FTL_1002 |
| Hypothetical protein                        | FTL_1005 |
| Hypothetical protein                        | FTL_1162 |
| Hypothetical protein                        | FTL_1327 |
| Lipoprotein                                 | FTL_1372 |
| Organic solvent tolerance protein           | FTL_1374 |
| FAD-binding family protein                  | FTL_1489 |
| Hypothetical protein                        | FTL_1629 |
| 16S rRNA processing protein RimM            | FTL_1737 |
| 2-oxoglutarate dehydrogenase E1 component   | FTL_1784 |
| Hypothetical protein                        | FTL_1840 |
| Outer membrane associated protein, fragment | FTL_1876 |

#### *F. tularensis* LVS proteins containing predicted signal peptides, but not beta barrels

| Protein                              | Locus    |
|--------------------------------------|----------|
| Peptidase                            | FTL_0008 |
| Outer membrane protein               | FTL_0009 |
| Phosphate acetyltransferase          | FTL_0016 |
| Acid phosphatase                     | FTL_0031 |
| Hypothetical protein                 | FTL_0035 |
| Hypothetical protein                 | FTL_0039 |
| Chorismate mutase                    | FTL_0043 |
| Aromatic amino acid HAAP transporter | FTL_0058 |

| <i>F. tularensis</i> LVS proteins containing predicted signal peptides, but not beta barreis | s, continued |
|----------------------------------------------------------------------------------------------|--------------|
| Protein                                                                                      | Locus        |
| Major facilitator transporter                                                                | FTL_0063     |
| Outer membrane lipoprotein                                                                   | FTL_0069     |
| Hypothetical protein                                                                         | FTL_0073     |
| Acetyltransferase protein                                                                    | FTL_0088     |
| Chitinase                                                                                    | FTL_0093     |
| Voltage-gated CIC-type chloride channel clcA                                                 | FTL_0101     |
| Hypothetical protein                                                                         | FTL_0102     |
| Hypothetical protein                                                                         | FTL_0103     |
| Hypothetical protein                                                                         | FTL_0104     |
| Hypothetical protein                                                                         | FTL_0105     |
| Hypothetical protein                                                                         | FTL_0108     |
| Hypothetical protein                                                                         | FTL_0115     |
| Hypothetical protein                                                                         | FTL_0124     |
| CrcB family protein                                                                          | FTL_0141     |
| Hypothetical protein                                                                         | FTL 0142     |
| Hypothetical protein                                                                         | FTL_0143     |
| ABC transporter, membrane protein                                                            | FTL 0145     |
| Lipoprotein releasing system, subunit B, outer membrane lipoprotein                          | FTL 0150     |
| UDP-N-acetvlmuramatealanine ligase                                                           | FTI 0172     |
| Hypothetical protein                                                                         | FTL 0174     |
| Inner-membrane protein                                                                       | FTL 0178     |
| Cyclobexadienyl debydratase precursor, pseuodogene                                           | FTL 0187     |
| Cytochrome O ubiquinol oxidase subunit II                                                    | FTL_0101     |
| Hynothetical protein                                                                         | FTL 0199     |
| TPR repeat-containing protein                                                                | FTL_0100     |
| TPP repeat containing protein                                                                | FTL_0205     |
| Hypothetical protain                                                                         | FTL_0206     |
| Pyrolidone-carboxylate pentidase                                                             | FTL 0207     |
| Clutamate, gamma-aminobutvrate anti-porter                                                   | FTL_0273     |
| Mercuric reductose protein                                                                   | FTL 0277     |
| Hypothetical protein                                                                         | FTL 0270     |
| Aromatic amino acid HAAP transporter                                                         | FTL 0283     |
|                                                                                              | FTL 0286     |
| Hypothetical protein                                                                         | FTL 0287     |
| Aromatic amino acid HAAD transportor                                                         | ETL 0201     |
|                                                                                              | ETL 0207     |
|                                                                                              | ETL 0208     |
|                                                                                              | FTL_0290     |
|                                                                                              | FTL_0300     |
|                                                                                              | FTL_0317     |
| Cipopiolein<br>Oma A family protain                                                          |              |
| CDD clockel phoenhotidultronoferace                                                          | FTL_0325     |
| CDP-alconol phosphalidylitansierase                                                          | FTL_0329     |
|                                                                                              | FTL_0330     |
| Tork protein                                                                                 | FTL_0332     |
| Peptidogiycan-associated lipoprotein                                                         | FTL_0336     |
| Hypothetical protein                                                                         | FTL_0347     |
| 4-nyuroxybenzoate polyprenyltransterase                                                      | FIL_0355     |
| rype rv pili fiber bullaling block protein                                                   | FIL_0359     |
| Hypotnetical protein                                                                         | FIL_0371     |
| Giycerol-3-phosphate denydrogenase                                                           | FIL_0372     |
| Hypothetical protein                                                                         | FTL_0373     |
| Methionine sulfoxide reductase B                                                             | FTL_0379     |
| Superoxide dismuate _Cu-Zn_ precusor                                                         | FTL_0380     |
| Amino acid permease                                                                          | FTL_0382     |
| Cation transporter                                                                           | FTL_0388     |

F. tularensis LVS proteins containing predicted signal peptides, but not beta barrels, continued

| <i>F. tularensis</i> LVS proteins containing predicted signal peptides, but not beta barreis, o | ontinued |
|-------------------------------------------------------------------------------------------------|----------|
| Protein                                                                                         | Locus    |
| Type IV pili fiber building block protein                                                       | FTL_0392 |
| Hypothetical protein                                                                            | FTL_0411 |
| Lipoprotein                                                                                     | FTL_0421 |
| Hypothetical protein                                                                            | FTL_0423 |
| Lipoprotein                                                                                     | FTL_0424 |
| Hypothetical protein                                                                            | FTL_0434 |
| Hypothetical protein                                                                            | FTL_0448 |
| Hypothetical protein                                                                            | FTL_0451 |
| Hypothetical protein                                                                            | FTL_0464 |
| Lipoprotein releasing system, subunit C,putative membrane protein                               | FTL_0474 |
| Outer membrane lipoprotein                                                                      | FTL_0491 |
| Hypothetical protein                                                                            | FTL_0493 |
| UDP-N-acetylmuramate_L-alanyl-gamma-D-glutamyl- me so-diaminopimelate ligase                    | FTL_0508 |
| Hypothetical protein                                                                            | FTL_0514 |
| ABC transporter, periplasmic protein                                                            | FTL_0515 |
| Hypothetical protein                                                                            | FTL 0523 |
| Hypothetical protein                                                                            | FTL 0532 |
| Outer membrane protein                                                                          | FTL 0535 |
| Outer membrane protein OmpH                                                                     | FTL 0536 |
| Hypothetical protein                                                                            | FTL 0559 |
| Hypothetical protein                                                                            | FTL 0560 |
| Hypothetical protein                                                                            | FTL 0569 |
| Hypothetical protein                                                                            | FTI 0571 |
| Hypothetical protein                                                                            | FTI 0572 |
| Hypothetical protein                                                                            | FTL 0573 |
| UDP-olucose 4-epimerase                                                                         | FTI 0594 |
| NADH oxidase                                                                                    | FTL 0634 |
| Hypothetical protein                                                                            | FTL 0638 |
| Lipoprotein                                                                                     | FTL 0642 |
| Hypothetical protein                                                                            | FTL 0647 |
| Hypothetical protein                                                                            | FTL 0656 |
| Cell division protein                                                                           | FTL 0659 |
| Hypothetical protein                                                                            | FTL 0661 |
| Hypothetical protein                                                                            | FTL 0665 |
| Polyamine transporter, subunit I, ABC transporter, membrane protein                             | FTL 0679 |
| Hypothetical protein                                                                            | FTI 0684 |
| Outer membrane efflux protein                                                                   | FTI 0686 |
| Major facilitator transporter                                                                   | FTL 0688 |
|                                                                                                 | FTL 0694 |
| Hypothetical protein                                                                            | FTL 0698 |
|                                                                                                 | FTL 0700 |
| EAD binding family protein                                                                      | FTL 0701 |
| Hypothetical protein                                                                            | FTL 0702 |
| Hypothetical protein                                                                            | FTL 0706 |
| 2-octaprenyl-6-methoxyphenyl hydroxylase                                                        | FTL 0726 |
| Hypothetical protein                                                                            | FTL 0737 |
| Hypothetical protein                                                                            | FTL 0738 |
| Oxidoreductase short-chain dehydrogenase family protein                                         | FTI 0743 |
| Linonrotein                                                                                     | FTI 0764 |
| Gamma-dlutamyltranspentidase                                                                    | FTI 0766 |
| Type IV nili associated protein                                                                 | FTI 0707 |
| Type IV pill alvoosvlation protein                                                              | FTI 0709 |
| rype rv pili grycosylation protein<br>Type IV pili linoprotein                                  | FTL_0790 |
| Type IV pillin multimeric outer membrane protein                                                | ETL_0/99 |
| Amino acid transportor family protein                                                           | FIL_UOUU |
| Annino aciu iransporter fanniy protein                                                          |          |

F. tularensis LVS proteins containing predicted signal peptides, but not beta barrels, continued

| E tularensis LVS proteins containing predicted signal paptides, but not beta barrels, continued     Protein   Locus     Hypothetical protein   FTL, 0814     Hypothetical protein   FTL, 0812     Hypothetical protein   FTL, 0812     Hypothetical protein   FTL, 0814     Preprotein translocase family protein   FTL, 0846     Hypothetical protein   FTL, 0865     DNA, RNA endonuclease family protein   FTL, 0870     Beta-lactamase   FTL, 0870     Hypothetical protein   FTL, 0870     SPFH domain-containing protein_band 7 family protein   FTL, 0874     Hypothetical protein   FTL, 0874     Hyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------|
| ProteinLocusHypothetical proteinFTL.0814Hypothetical proteinFTL.0824Hypothetical proteinFTL.0845Preprotein translocase family proteinFTL.0846Preprotein translocase suburit SedDFTL.0846Major facilitator transporterFTL.0865DNA, RNA endonuclease family proteinFTL.0879Hypothetical proteinFTL.0881Apolipoprotein N-acytransferaseFTL.0881Hypothetical proteinFTL.0881SPH4 domain-constaristeraseFTL.0881Hypothetical proteinFTL.0881Hypothetical proteinFTL.0885Proton-dependent oligopeptide transport_POT_family proteinFTL.0881Hypothetical proteinFTL.0883LipoproteinFTL.0881Hypothetical proteinFTL.0883LipoproteinFTL.0881Hypothetical proteinFTL.0881Hypothetical proteinFTL.0883LipoproteinFTL.0883Hypothetical proteinFTL.0883LipoproteinFTL.0883Hypothetical proteinFTL.0883 </th <th><i>F. tularensis</i> LVS proteins containing predicted signal peptides, but not beta barr</th> <th>els, continued</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>F. tularensis</i> LVS proteins containing predicted signal peptides, but not beta barr | els, continued |
| Hypothetical proteinFTL_0812Hypothetical proteinFTL_0845Preprotein translocase family proteinFTL_0847Preprotein translocase subunt SecDFTL_0848Hypothetical proteinFTL_0845Major facilitator transporterFTL_0878Beta-lactamaseFTL_0878Beta-lactamaseFTL_0878Hypothetical proteinFTL_0878Apolipoprotein N-acyttransferaseFTL_0878Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0984Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0985Hypothetical proteinFTL_0986Hypothetical proteinFTL_0988Hypothetical proteinFTL_0988Hypothetical proteinFTL_0987Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Protein                                                                                   | Locus          |
| Hypothetical proteinFTL_0842Preprotein translocase family proteinFTL_0844Preprotein translocase subunt SecDFTL_0847Preprotein translocase subunt SecDFTL_0846Major facilitator transporterFTL_0850Major facilitator transporterFTL_0847DNA, RNA endonuclease family proteinFTL_0878Hypothetical proteinFTL_0886DNA, SNA endonuclease family proteinFTL_0887SPFH domain containing protein_band 7 family proteinFTL_0886SPFH domain containing protein_band 7 family proteinFTL_0817Hypothetical proteinFTL_0886SPFH domain containing protein_band 7 family proteinFTL_0814Hypothetical proteinFTL_0814Hypothetical proteinFTL_0815Hypothetical proteinFTL_0814Hypothetical proteinFTL_0856Hypothetical proteinFTL_0856Hypothetical proteinFTL_0857Hypothetical proteinFTL_0858Proton-dependent digopetide transport_POT_family proteinFTL_0856Hypothetical proteinFTL_0856Hypothetical proteinFTL_0856Hypothetical proteinFTL_0857Hypothetical proteinFTL_0858LipoproteinFTL_0859Hypothetical proteinFTL_0856Hypothetical proteinFTL_0856LipoproteinFTL_0857Hypothetical proteinFTL_0858LipoproteinFTL_0858LipoproteinFTL_0858Hypothetical proteinFTL_0856Hypothetical protein <td>Hypothetical protein</td> <td>FIL_0814</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hypothetical protein                                                                      | FIL_0814       |
| Hypotherical proteinFTL_0843Preprotein translocase subunit SecDFTL_0843Hypotherical proteinFTL_0855DNA_RNA endonuclease family proteinFTL_0857Beta-lactamaseFTL_0857Hypotherical proteinFTL_0865DNA_RNA endonuclease family proteinFTL_0867Beta-lactamaseFTL_0878Hypotherical proteinFTL_0881Apolipoprotein N-acyltransferaseFTL_0882Hypotherical proteinFTL_0882Hypotherical proteinFTL_0892Hypotherical proteinFTL_0892Hypotherical proteinFTL_0892Hypotherical proteinFTL_0892Hypotherical proteinFTL_0893Hypotherical proteinFTL_0994Hypotherical proteinFTL_0994Hypotherical proteinFTL_0994Hypotherical proteinFTL_0994Hypotherical proteinFTL_09961Hypotherical proteinFTL_09961Hypotherical proteinFTL_0988LipoproteinFTL_0983Hypotherical proteinFTL_0997Hypotherical proteinFTL_1001Hypotherical proteinFTL_10101Hypotherical proteinFTL_1011Hypotherical proteinFTL_10121Hypotherical proteinFTL_10121Hypotherical proteinFTL_10121Hypotherical proteinFTL_10121Hypotherical proteinFTL_10121Hypotherical proteinFTL_10121Hypotherical proteinFTL_10121Hypotherical proteinFTL_10121Hyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hypothetical protein                                                                      | FTL_0822       |
| Preprotein transiccase stanuy proteinFIL_0847Preprotein transiccase stanuy proteinFIL_0850Major facilitator transporerFIL_0853DNA_RNA endonuclease family proteinFIL_0853Beta-lactamaseFIL_0873Apolipoprotein N-acyltransferaseFIL_0882Hypothetical proteinFIL_0883SPFH domain-containing protein_band 7 family proteinFIL_0882Hypothetical proteinFIL_0883SPFH domain-containing protein_band 7 family proteinFIL_0896Proton-dependent oligopeptide transporterFIL_0981Hypothetical proteinFIL_0984Hypothetical proteinFIL_0985Proton-dependent oligopeptide transporterFIL_0985Hypothetical proteinFIL_0985Proton-dependent oligopeptide transport_POT_family proteinFIL_0986Hypothetical proteinFIL_0986Hypothetical proteinFIL_0986Hypothetical proteinFIL_0987Hypothetical proteinFIL_0987Hypothetical proteinFIL_0986LipoproteinFIL_0987Hypothetical proteinFIL_1080Hypothetical proteinFIL_1081Hypothetical proteinFIL_1082LipoproteinFIL_1082Hypothetical proteinFIL_1082Hypothetical proteinFIL_1082Hypothetical proteinFIL_1082Hypothetical proteinFIL_1082Hypothetical proteinFIL_1082Hypothetical proteinFIL_1082Hypothetical proteinFIL_1082Hypothetical protein<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hypothetical protein                                                                      | FTL_0845       |
| Prepretein transactase studunt SecDFTL_0850Migor facilitator transporterFTL_0850NA, RNA endonuclease family proteinFTL_0878Beta-lactamaseFTL_0879Hypothetical proteinFTL_0879Hypothetical proteinFTL_0879Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0882Hypothetical proteinFTL_0984SPFH domain-containing protein_band 7 family proteinFTL_0984Hypothetical proteinFTL_0984Proton-dependent oligopeptide transporterFTL_0984Hypothetical proteinFTL_0984Proton-dependent oligopeptide transport_POT_family proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0984Hypothetical proteinFTL_0986Hypothetical proteinFTL_0087Hypothetical proteinFTL_0086Hypothetical proteinFTL_0086Hypothetical proteinFTL_0087Hypothetical proteinFTL_0086Hypothetical proteinFTL_0086Hypothetical proteinFTL_0086Hypothetical proteinFTL_0086Hypothetical proteinFTL_0086Hypothetical proteinFTL_0086Hypothetical proteinFTL_0086Hypothetical proteinFTL_108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preprotein translocase family protein                                                     | FIL_0847       |
| Pryponetical proteinFTL_0885DNA_RNA endonuclease family proteinFTL_0878Beta-lactamaseFTL_0879Hypothetical proteinFTL_0871Apolipoprotein N-acyltransferaseFTL_0885SPFH domain-containing protein_band 7 family proteinFTL_0886SPFH domain-containing protein_band 7 family proteinFTL_0886SPFH domain-containing protein_band 7 family proteinFTL_0896SPFH domain-containing protein_band 7 family proteinFTL_0896SPFH domain-containing protein_band 7 family proteinFTL_0951Hypothetical proteinFTL_0954Hypothetical proteinFTL_0954Hypothetical proteinFTL_0957Hypothetical proteinFTL_0956Hypothetical proteinFTL_0957Hypothetical proteinFTL_0958LipoproteinFTL_09597Hypothetical proteinFTL_09597Hypothetical proteinFTL_09597Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1022Hypothetical proteinFTL_1021Hypothetical proteinFTL_1022Hypothetical proteinFTL_1024LipoproteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026 <t< td=""><td>Preprotein transiocase subunit SecD</td><td>FIL_0848</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Preprotein transiocase subunit SecD                                                       | FIL_0848       |
| Najor tacilitation transporterFTL_0878DNA_RNA endonuclease family proteinFTL_0878Beta-lactamaseFTL_0879Hypothetical proteinFTL_0881Apolitoportein N-acyltransferaseFTL_0882Hypothetical proteinFTL_0894Hypothetical proteinFTL_0894Hypothetical proteinFTL_0894Hypothetical proteinFTL_09919Proton-dependent oligopeptide transporterFTL_0951Hypothetical proteinFTL_0954Beta-lactamase class AFTL_0954Hypothetical proteinFTL_0954Upporteical proteinFTL_0954Hypothetical proteinFTL_0954Hypothetical proteinFTL_0954Hypothetical proteinFTL_0954Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport_POT_family proteinFTL_0958Hypothetical proteinFTL_0090Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_10101Hypothetical proteinFTL_10101Hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hypothetical protein                                                                      | FIL_0850       |
| DNA_RNA endotructase family proteinFTL_087Hypothetical proteinFTL_0881Apolipoprotein N-acyltransferaseFTL_0881Hypothetical proteinFTL_0881Hypothetical proteinFTL_0885SPFH domain-containing protein_band 7 family proteinFTL_0894Hypothetical proteinFTL_0894Hypothetical proteinFTL_0919Proton-dependent oligopeptide transporterFTL_0924Hypothetical proteinFTL_0951Hypothetical proteinFTL_0957Hypothetical proteinFTL_0958Hypothetical proteinFTL_0959Hypothetical proteinFTL_0959Hypothetical proteinFTL_0959Hypothetical proteinFTL_0959Hypothetical proteinFTL_0959Hypothetical proteinFTL_01098LipoproteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1022Hypothetical proteinFTL_1023Hypothetical proteinFTL_1024LipoproteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Major racilitator transporter                                                             | FIL_0865       |
| DetailFIL_0079Hypothetical proteinFTL_0881Apolipoprotein N-acyttransferaseFTL_0881Hypothetical proteinFTL_0984SPFH domain-containing protein_band 7 family proteinFTL_0994Hypothetical proteinFTL_0994Hypothetical proteinFTL_0994Hypothetical proteinFTL_0951Hypothetical proteinFTL_0957Hypothetical proteinFTL_0957Hypothetical proteinFTL_0958Hypothetical proteinFTL_0957Hypothetical proteinFTL_0958UpoproteinFTL_09597Hypothetical proteinFTL_09597Hypothetical proteinFTL_09597Hypothetical proteinFTL_09598LipoproteinFTL_09597Hypothetical proteinFTL_09990Hypothetical proteinFTL_1001Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1023Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1024Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_1026Hypothetical proteinFTL_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DNA_RNA endonuclease family protein                                                       | FIL_0878       |
| rypometrical proteinFTL_0882Hypothetical proteinFTL_0892SPFH doman-containing protein_band 7 family proteinFTL_0892Hypothetical proteinFTL_0994Proton-dependent oligopeptide transporterFTL_0919Proton-dependent oligopeptide transporterFTL_0954Hypothetical proteinFTL_0954Beta-lactamase class AFTL_0957Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport_POT_family proteinFTL_0958Hypothetical proteinFTL_0958Hypothetical proteinFTL_0959Hypothetical proteinFTL_0959Hypothetical proteinFTL_0959Hypothetical proteinFTL_10091Hypothetical proteinFTL_10091Hypothetical proteinFTL_1001Hypothetical proteinFTL_10101Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beta-lactamase                                                                            | FIL_0879       |
| Apulopidual proteinFTL_0805SPFH domain-containing protein_band 7 family proteinFTL_0816Hypothetical proteinFTL_0914Hypothetical proteinFTL_0924Hypothetical proteinFTL_0924Hypothetical proteinFTL_0951Hypothetical proteinFTL_0957Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport POT_family proteinFTL_0958Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport POT_family proteinFTL_0958Hypothetical proteinFTL_0959Hypothetical proteinFTL_0959Hypothetical proteinFTL_0951Hypothetical proteinFTL_0951Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1012Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1040Hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Applingerate in N. applitzensferress                                                      | FIL_0881       |
| PryDenticular proteinFTL_0994Hypothetical proteinFTL_0914Hypothetical proteinFTL_0914Hypothetical proteinFTL_0924Hypothetical proteinFTL_0924Hypothetical proteinFTL_0951Hypothetical proteinFTL_0951Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport_POT_family proteinFTL_0988Hypothetical proteinFTL_0988Hypothetical proteinFTL_09897Hypothetical proteinFTL_09897Hypothetical proteinFTL_09909Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1022Hypothetical proteinFTL_1023Hypothetical proteinFTL_1024LipoproteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042LipoproteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046Hypothetical proteinFTL_1046Hypothetical proteinFTL_1047Hypothetical proteinFTL_1048Choloyldylcine hydrolase family proteinFTL_1048Hypothetical proteinFTL_10497Hypothetical proteinFTL_10497Hypothetical proteinFTL_10497Hypothetical proteinFTL_10497Hypothetical pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Apolipoprotein N-acylitansterase                                                          | FIL_0802       |
| SPEN Domain-containing protein_Data / raining proteinFTL_091Hypothetical proteinFTL_0924Hypothetical proteinFTL_0951Hypothetical proteinFTL_0957Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport _POT_ family proteinFTL_0958Hypothetical proteinFTL_09961Hypothetical proteinFTL_09971Hypothetical proteinFTL_09971Hypothetical proteinFTL_10011Hypothetical proteinFTL_10011Hypothetical proteinFTL_10011Hypothetical proteinFTL_10011Hypothetical proteinFTL_10011Hypothetical proteinFTL_100211Hypothetical proteinFTL_100211Hypothetical proteinFTL_101011Hypothetical proteinFTL_101011Hypothetical proteinFTL_10111Hypothetical proteinFTL_101211Hypothetical proteinFTL_101211Hypothetical proteinFTL_101211Hypothetical proteinFTL_10111FKBP-type petidyl-prolyl cis-trans isomerase family protein_family proteinFTL_10142D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_10160Hypothetical proteinFTL_10111Hypothetical proteinFTL_10111Hypothetical proteinFTL_10111Hypothetical proteinFTL_10111Hypothetical proteinFTL_10111Hypothetical proteinFTL_10111Hypothetical proteinFTL_10111Hypothetical proteinFTL_10111 <t< td=""><td>Reputerical protein</td><td>FTL_0096</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reputerical protein                                                                       | FTL_0096       |
| Trybotietical proteinFTL_09319Proton-dependent oligopeptide transporterFTL_0931Hypothetical proteinFTL_0931Hypothetical proteinFTL_09351Hypothetical proteinFTL_01001Hypothetical proteinFTL_1011Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10121Hypothetical proteinFTL_10142LipoproteinFTL_10142D-alanyl-D-alanine carboxypeptidase_pencillin binding protein_family proteinFTL_10146D-alanyl-D-alanine carboxypeptidase_pencillin binding protein_family proteinFTL_10146Hypothetical proteinFTL_10146Hypothetical proteinFTL_10146Hypothetical proteinFTL_10146Hypothetical proteinFTL_10146Hypothetical proteinFTL_101691Hypothetical proteinFTL_10111Hyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPER domain-containing protein_band 7 family protein                                      | FTL_0904       |
| Proton-dependent oligopeptide transporterFTL_0951Hypothetical proteinFTL_0954Hypothetical proteinFTL_0957Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport_POT_ family proteinFTL_0958Hypothetical proteinFTL_0998LipoproteinFTL_0999Hypothetical proteinFTL_09991Hypothetical proteinFTL_09991Hypothetical proteinFTL_0991Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1012LipoproteinFTL_10137Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_1014Hypothetical proteinFTL_10164Amino acid permeaseFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164Hypothetical proteinFTL_10164 <t< td=""><td>Reston dependent eligenentide transporter</td><td>FTL_0919</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reston dependent eligenentide transporter                                                 | FTL_0919       |
| TryDottetical proteinFTL_0951Hypothetical proteinFTL_0952Beta-lactamase class AFTL_0953Hypothetical proteinFTL_0954Proton-dependent oligopetide transport _POT_ family proteinFTL_0958LipoproteinFTL_0990Hypothetical proteinFTL_0990Hypothetical proteinFTL_0990Hypothetical proteinFTL_0990Hypothetical proteinFTL_1000Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1022Hypothetical proteinFTL_1023Hypothetical proteinFTL_1042LipoproteinFTL_1042LipoproteinFTL_1042D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046Hypothetical proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046Hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proton-dependent oligopeptide transporter                                                 | FTL_0924       |
| TryDurenca proteinFTL_0957Hypothetical proteinFTL_0958Proton-dependent oligopeptide transport_POT_family proteinFTL_0958Hypothetical proteinFTL_0959Hypothetical proteinFTL_0990Hypothetical proteinFTL_0091Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1042LipoproteinFTL_1042LipoproteinFTL_1042LipoproteinFTL_1042D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046Amino acid permeaseFTL_1069Hypothetical proteinFTL_1089Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1089Hypothetical proteinFTL_1089Hypothetical proteinFTL_1089Hypothetical proteinFTL_1081Hypothetical proteinFTL_1081Hypothetical proteinFTL_1081Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1121Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hypothetical protein                                                                      | FIL_0951       |
| Declaration declarationFTL_0958Proton-dependent oligopeptide transport _POT_ family proteinFTL_0958Proton-dependent oligopeptide transport _POT_ family proteinFTL_0998LipoproteinFTL_0999Hypothetical proteinFTL_0091Hypothetical proteinFTL_1000Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1042FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_ family proteinFTL_1064Amino acid permeaseFTL_1069Hypothetical proteinFTL_1080Cholydylycine hydrolase family proteinFTL_1080Cholydylycine hydrolase family proteinFTL_1097Hypothetical proteinFTL_10106Macrophage infectivity potentiator, fragmentFTL_1011Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1123Hypothetical proteinFTL_1124Hypothetical proteinFTL_1121Hypothetical proteinFTL_1121Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1221Hypothetical proteinFTL_1221Hypothetical proteinFTL_1221<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rete lectemore close A                                                                    | FTL_0954       |
| TryDonletical proteinFTL_0983Hypothetical proteinFTL_0983LipoproteinFTL_0997Hypothetical proteinFTL_0997Hypothetical proteinFTL_1000Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042LipoproteinFTL_1043D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046Amino acid permeaseFTL_1060Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080LipoproteinFTL_1080Hypothetical proteinFTL_1011Hypothetical proteinFTL_1080Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1221Hypothetical proteinFTL_1223Hypothetical proteinFTL_1233Hypothetical pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bela-lacialitase class A                                                                  | FIL_0957       |
| Proton-dependent ongopende transport_POT_taring proteinFTL_0988LipoproteinFTL_0997Hypothetical proteinFTL_0997Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042LipoproteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1069Hypothetical proteinFTL_1069Hypothetical proteinFTL_1069Hypothetical proteinFTL_1069Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1097Hypothetical proteinFTL_1098LipoproteinFTL_1097Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reportencia protein                                                                       | FIL_0956       |
| TypoInetical proteinFTL_0930Hypothetical proteinFTL_0991Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1042Hypothetical proteinFTL_1042LipoproteinFTL_1042KBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1043D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1060Hypothetical proteinFTL_1060Hypothetical proteinFTL_1060Hypothetical proteinFTL_1060Hypothetical proteinFTL_1060Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080LipoproteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1120Hypothetical proteinFTL_1120Hypothetical proteinFTL_1120Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proton-dependent ongopeptide transport _POT_ family protein                               | FIL_0903       |
| LipopideinFTL_0990Hypothetical proteinFTL_0997Hypothetical proteinFTL_1001Hypothetical proteinFTL_1001Hypothetical proteinFTL_1021Hypothetical proteinFTL_1037Hypothetical proteinFTL_1042LipoproteinFTL_1042LipoproteinFTL_1044D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1011Hypothetical proteinFTL_1011Hypothetical proteinFTL_11110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1211Hypothetical proteinFTL_1221Hypothetical proteinFTL_1223Hypothetical pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | FIL_0966       |
| Hypothetical proteinFTL_0097Hypothetical proteinFTL_1000Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1021Hypothetical proteinFTL_1040FKBP-type petidyl-prolyl cis-trans isomerase family proteinFTL_1040LipoproteinFTL_1042D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1045D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1069Hypothetical proteinFTL_1069Hypothetical proteinFTL_1080Choloyldycine hydrolase family proteinFTL_1080Choloyldycine hydrolase family proteinFTL_1096Hypothetical proteinFTL_1011Hypothetical proteinFTL_1101Hypothetical proteinFTL_11101Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1212Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1221Hypothetical proteinFTL_1223Hypothetical proteinFTL_1213Hypothetical proteinFTL_1223Hypothetical proteinFTL_1223Hypothetical proteinFTL_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | FTL_0990       |
| Hypothetical proteinFTL_1001Hypothetical proteinFTL_1011Hypothetical proteinFTL_1021Hypothetical proteinFTL_1037Hypothetical proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1045D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1060Hypothetical proteinFTL_1068Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1089LipoproteinFTL_1097Hypothetical proteinFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1113Hypothetical proteinFTL_1113Hypothetical proteinFTL_1113Hypothetical proteinFTL_1113Hypothetical proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           | FIL_0997       |
| Hypothetical proteinFTL_1001Hypothetical proteinFTL_1021Hypothetical proteinFTL_1037Hypothetical proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042LipoproteinFTL_1045D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1064Amino acid permeaseFTL_1069Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1122Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1211Hypothetical proteinFTL_1221Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           | FTL_1000       |
| Hypothetical proteinFTL_1021Hypothetical proteinFTL_1037Hypothetical proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042LipoproteinFTL_1045D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1064Amino acid permeaseFTL_1064Amino acid permeaseFTL_1089Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1096Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1110Hypothetical proteinFTL_1110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1121Hypothetical proteinFTL_1221Hypothetical proteinFTL_1221Hypothetical proteinFTL_1221Hypothetical proteinFTL_1221Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1226Hypothetical proteinFTL_1227Hypothetical proteinFTL_1228Hypothetical proteinFTL_1228<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | FTL_1001       |
| Hypothetical proteinFTL_1037Hypothetical proteinFTL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042LipoproteinFTL_1045D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1064Amino acid permeaseFTL_1069Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080LipoproteinFTL_1096Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_11101Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1120Hypothetical proteinFTL_1121Hypothetical proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1203Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1228Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           | FTL_1021       |
| TryDinitical proteinTrL_1040FKBP-type peptidyl-prolyl cis-trans isomerase family proteinFTL_1042LipoproteinFTL_1045D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1064Amino acid permeaseFTL_1069Hypothetical proteinFTL_1089LipoproteinFTL_1089LipoproteinFTL_1097Macrophage infectivity potentiator, fragmentFTL_1011Hypothetical proteinFTL_1101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_11101Hypothetical proteinFTL_1121Hypothetical proteinFTL_1121Hypothetical proteinFTL_1121Hypothetical proteinFTL_1221Hypothetical proteinFTL_1221Hypothetical proteinFTL_1221Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1238Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247Montentical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hypothetical protein                                                                      | FTL_1037       |
| The type periodiversition is isoble tasks | EKPD type pentidyl prolyl cic trans isomoroso family protoin                              | FTL_1040       |
| LipoproteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1046D-alanyl-D-alanine carboxypeptidase_penicillin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1069Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1096Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_11101Hypothetical proteinFTL_1202Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Linoprotein                                                                               | FTL_1042       |
| D-alaryl-D-alanine carboxypeptidase_pencilin binding protein_taring proteinFTL_1040D-alaryl-D-alanine carboxypeptidase_pencilin binding protein_family proteinFTL_1060Hypothetical proteinFTL_1069Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1080LipoproteinFTL_1089LipoproteinFTL_1097Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_11101Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypoth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dialanyl-Dialanine carboxypentidase, penicillin hinding protein, family protein           | FTL 1045       |
| DescriptionFTL_1000Hypothetical proteinFTL_1064Amino acid permeaseFTL_1069Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1097Hypothetical proteinFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_11178Hypothetical proteinFTL_11178Hypothetical proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247OperationFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D-alanyl-D-alanine carboxypeptidase_penicilin binding protein_ family protein             | FTL 1060       |
| Hypothetical proteinFTL_1064Amino acid permeaseFTL_1069Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1097Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_1111Hypothetical proteinFTL_11170Hypothetical proteinFTL_1170Hypothetical proteinFTL_1170Hypothetical proteinFTL_11201Hypothetical proteinFTL_1211Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1203Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Braiany-b-alarine carboxypeptidase_perioritin binding protein_ farming protein            | FTL 1064       |
| Hypothetical proteinFTL_1000Hypothetical proteinFTL_1080Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1096Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1111Hypothetical proteinFTL_1121Hypothetical proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247Other the thetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           | FTL 1069       |
| The potential potentialThe 1000Choloylglycine hydrolase family proteinFTL_1089LipoproteinFTL_1096Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1110Hypothetical proteinFTL_1133Hypothetical proteinFTL_1161Hypothetical proteinFTL_1170Hypothetical proteinFTL_1170Hypothetical proteinFTL_1171Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1203Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247Othertical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hypothetical protein                                                                      | FTL 1080       |
| LipoproteinFTL_1005LipoproteinFTL_1096Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1110Hypothetical proteinFTL_1133Hypothetical proteinFTL_1161Hypothetical proteinFTL_1170Hypothetical proteinFTL_1171Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1203Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cholovlalvcine bydrolase family protein                                                   | FTL 1080       |
| LipoproteinFTL_1030Macrophage infectivity potentiator, fragmentFTL_1097Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1133Hypothetical proteinFTL_1161Hypothetical proteinFTL_1161Hypothetical proteinFTL_1170Hypothetical proteinFTL_1170Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1203Hypothetical proteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | FTL 1096       |
| Hypothetical proteinFTL_1007Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1133Hypothetical proteinFTL_1161Hypothetical proteinFTL_1161Hypothetical proteinFTL_1170Hypothetical proteinFTL_1170Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Macrophage infectivity potentiator fragment                                               | FTL 1097       |
| Hypothetical proteinFTL_1101Hypothetical proteinFTL_1110Hypothetical proteinFTL_1113Hypothetical proteinFTL_1133Hypothetical proteinFTL_1161Hypothetical proteinFTL_1170Hypothetical proteinFTL_1170Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hypothetical protein                                                                      | FTL 1101       |
| Hypothetical proteinFTL_1133Hypothetical proteinFTL_1133Hypothetical proteinFTL_1161Hypothetical proteinFTL_1170Hypothetical proteinFTL_1170Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247Othetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hypothetical protein                                                                      | FTL 1110       |
| Hypothetical proteinFTL_1160Hypothetical proteinFTL_1161Hypothetical proteinFTL_1170Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hypothetical protein                                                                      | FTL 1133       |
| Hypothetical proteinFTL_1101Hypothetical proteinFTL_1170Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hypothetical protein                                                                      | FTL 1161       |
| Hypothetical proteinFTL_1178Hypothetical proteinFTL_1178Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hypothetical protein                                                                      | FTL 1170       |
| Hyperhetical proteinFTL_1170Membrane-bound lytic murein transglycosylase A _MLT_ family proteinFTL_1189ZIP metal transporter family proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hypothetical protein                                                                      | FTL 1178       |
| ZIP metal transporter family proteinFTL_100Hypothetical proteinFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Membrane-hound lytic murein transglycosylase A MLT family protein                         | FTL 1189       |
| Lin motal induspote framily potentFTL_1201Hypothetical proteinFTL_1202Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247ObservedFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7IP metal transporter family protein                                                      | FTL 1201       |
| Hypothetical proteinFTL_1209LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hypothetical protein                                                                      | FTI 1202       |
| LipoproteinFTL_1200LipoproteinFTL_1211Hypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hypothetical protein                                                                      | FTI 1202       |
| Lypothetical proteinFTL_1213Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           | FTI 1211       |
| Hypothetical proteinFTL_1215Hypothetical proteinFTL_1225Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hypothetical protein                                                                      | FTI 1213       |
| Hypothetical proteinFTL_1238Hypothetical proteinFTL_1247FTL_1247FTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hypothetical protein                                                                      | FTI 1225       |
| Hypothetical protein FTL_1247   Hypothetical protein FTL_1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hypothetical protein                                                                      | FTI 1220       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hypothetical protein                                                                      | FTI 10/7       |
| Glutathione reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Glutathione reductase                                                                     | FTI 1247       |
| Major facilitator transporter FTI 1278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major facilitator transporter                                                             | FTI 1278       |

| Protein                                                              | Locus    |
|----------------------------------------------------------------------|----------|
| Short-chain dehydrogenase_oxidoreductase                             | FTL_1280 |
| Hypothetical protein                                                 | FTL_1297 |
| Hypothetical protein                                                 | FTL_1299 |
| Virulence factor MviN                                                | FTL_1305 |
| Hypothetical protein                                                 | FTL_1306 |
| CTP synthetase                                                       | FTL_1311 |
| Hypothetical protein                                                 | FTL_1353 |
| Hypothetical protein                                                 | FTL_1365 |
| Hypothetical protein                                                 | FTL_1384 |
| Hypothetical protein                                                 | FTL_1385 |
| L-aspartate oxidase                                                  | FTL_1388 |
| ABC transporter, ATP-binding and membrane protein                    | FTL_1428 |
| Hypothetical protein                                                 | FTL_1438 |
| Beta-lactamase superfamily hydrolase                                 | FTL_1440 |
| Major facilitator transporter                                        | FTL_1450 |
| Hypothetical protein                                                 | FTL_1459 |
| Hypothetical protein                                                 | FTL_1472 |
| Type IV pili fiber building block protein                            | FTL_1475 |
| Permease YjgP_YjgQ family protein                                    | FTL_1481 |
| Hypothetical protein                                                 | FTL_1494 |
| Cysteine_glutathione ABC transporter membrane_ATP-binding component  | FTL_1495 |
| Cysteine_glutathione ABC transporter membrane_ATP-binding component  | FTL_1496 |
| C4-dicarboxylate transport protein                                   | FTL_1497 |
| 3-oxoacyl_acyl-carrier protein_ reductase                            | FTL_1507 |
| D-alanyl-D-alanine carboxypeptidase_D-alanyl-D-alanine-endopeptidase | FTL_1509 |
| Glycerophosphoryl diester phosphodiesterase family protein           | FTL_1511 |
| Serine transporter                                                   | FTL_1524 |
| Major facilitator transporter                                        | FTL_1528 |
| Hypothetical protein                                                 | FTL_1532 |
| Hypothetical protein                                                 | FTL_1540 |
| Hypothetical protein                                                 | FTL_1548 |
| Lipoprotein                                                          | FTL_1550 |
| Hypothetical protein                                                 | FTL_1552 |
| Hypothetical protein                                                 | FTL_1555 |
| Hypothetical protein                                                 | FTL_1556 |
| Major facilitator transporter                                        | FTL_1567 |
| Phospholipase D family protein                                       | FTL_1570 |
| Thioredoxin reductase                                                | FTL_1571 |
| Major facilitator transporter                                        | FTL_1573 |
| Hypothetical protein                                                 | FTL_1574 |
| Hypothetical protein                                                 | FTL_1575 |
| Hypothetical protein                                                 | FTL_1578 |
| Hypothetical protein                                                 | FTL_1579 |
| Lipoprotein                                                          | FTL_1581 |
| Peptidyl-prolyl cis-trans isomerase _PPlase                          | FTL_1596 |
| Organic solvent tolerance protein                                    | FTL_1597 |
| Putative periplasmic protease                                        | FTL_1605 |
| Cell division protein FtsW                                           | FTL_1613 |
| Hypothetical protein                                                 | FTL_1618 |
| Major facilitator transporter                                        | FTL_1624 |
| Hypothetical protein                                                 | FTL_1628 |
| Hypothetical protein                                                 | FTL_1633 |
| Chitinase, fragment                                                  | FTL_1635 |
| Lipoprotein                                                          | FTL_1637 |
| Amino acid transporter protein, fragment                             | FTL_1640 |

F. tularensis LVS proteins containing predicted signal peptides, but not beta barrels, continued

| F. tularensis LVS proteins containing predicted signal peptides, but not beta barrels, continued |          |  |
|--------------------------------------------------------------------------------------------------|----------|--|
| Protein                                                                                          | Locus    |  |
| Hypothetical protein                                                                             | FTL_1654 |  |
| Hypothetical protein                                                                             | FTL_1658 |  |
| Nucleoside permease NUP family protein                                                           | FTL_1661 |  |
| Disulfide bond formation protein                                                                 | FTL_1670 |  |
| RND efflux transporter                                                                           | FTL_1671 |  |
| Hypothetical protein                                                                             | FTL_1678 |  |
| Major facilitator transporter                                                                    | FTL_1685 |  |
| Hypothetical protein                                                                             | FTL_1692 |  |
| Hypothetical protein                                                                             | FTL_1693 |  |
| Hypothetical protein                                                                             | FTL_1696 |  |
| Hypothetical protein                                                                             | FTL_1699 |  |
| Amino acid transporter                                                                           | FTL_1703 |  |
| Lipoprotein releasing system, subunit A, outer membrane lipoproteins carrier                     | FTL_1706 |  |
| Potassium uptake protein                                                                         | FTL_1708 |  |
| Hypothetical protein                                                                             | FTL_1709 |  |
| Lipoprotein                                                                                      | FTL_1724 |  |
| Eflux protein                                                                                    | FTL_1725 |  |
| Sensor histidine kinase                                                                          | FTL_1762 |  |
| Hypothetical protein                                                                             | FTL_1776 |  |
| Succinate dehydrogenase, cytochrome b556                                                         | FTL_1788 |  |
| Major facilitator superfamily tranporter                                                         | FTL_1790 |  |
| Hypothetical protein                                                                             | FTL_1793 |  |
| F0F1 ATP synthase subunit C                                                                      | FTL_1800 |  |
| NADH dehydrogenase I, L subunit                                                                  | FTL_1819 |  |
| NADH dehydrogenase I, J subunit                                                                  | FTL_1821 |  |
| NADH dehydrogenase I, A subunit                                                                  | FTL_1830 |  |
| Hypothetical protein                                                                             | FTL_1837 |  |
| RND efflux membrane fusion protein                                                               | FTL_1845 |  |
| Hypothetical protein                                                                             | FTL_1848 |  |
| Lipoprotein                                                                                      | FTL_1853 |  |
| Outer membrane protein toIC precursor                                                            | FTL_1865 |  |
| Protease yegQ                                                                                    | FTL_1867 |  |
| Multidrug resistance protein, membrane located                                                   | FTL_1868 |  |
| Na_H_ antiporter                                                                                 | FTL_1869 |  |
| Amino acid transporter                                                                           | FTL_1873 |  |
| Aromatic amino acid HAAP transporter                                                             | FTL_1875 |  |
| Potassium-transporting ATPase C chain                                                            | FTL_1880 |  |
| Hypothetical protein                                                                             | FTL_1896 |  |
| Cell division protein FtsQ                                                                       | FTL_1909 |  |
| Putative acyltransferase                                                                         | FTL_1915 |  |
| Competence-related protein                                                                       | FTL_1916 |  |
| Periplasmic solute binding family protein                                                        | FTL_1936 |  |
| Outer membrane lipoprotein                                                                       | FTL_1939 |  |
| Peptide methionine sulfoxide reductase msrA                                                      | FTL_1960 |  |

Beta barrel and signal peptide predictions were accomplished using the BOMP and SignalP 3.0 softwares (Hidden Markov model), respectively.

Appendix 3

F. tularensis protein antigens detected by Western blot and 2D-PAGE
|                  | Protein identified                                                 | ref                      |
|------------------|--------------------------------------------------------------------|--------------------------|
| EUCI<br>FTT 0037 | NADH debydrogenase subunit G                                       | (97)                     |
| FTT 0049         | Transcription elongation factor NusA                               | (96)                     |
| FTT 0062         | F0F1 ATP synthase subunit alpha                                    | (74, 97, 98)             |
| FTT 0064         | F0F1 ATP synthese subunit beta                                     | (74 97)                  |
| FTT 0071         | Citrate synthase                                                   | (36, 74)                 |
| ETT 0074         | Succinate dehydrogenase, catalytic and NAD/flavoprotein            | (45,74,08)               |
| F11_0074         | subunit<br>Dibuda lia anni da anna in dana a farra a anna anna 40  | (45, 74, 98)             |
| FTT_0077         | oxoglutarate dehydrogenase complex                                 | (45, 46, 97, 98)         |
| FTT_0086         | Hypothetical protein                                               | (98)                     |
| FTT_0087         | Aconitate hydratase                                                | (45, 46, 97)             |
| FTT_0119         | Hypothetical protein                                               | (96)                     |
| FTT_0137         | Elongation factor Tu                                               | (36, 37, 43, 45, 96-98)  |
| FTT_0141         | 50S ribosomal protein L1                                           | (98)                     |
| FTT_0143         | 50S ribosomal protein L7/L12                                       | (36, 45, 74, 96, 98)     |
| FTT_0183         | 30S ribosomal protein S1                                           | (74, 97, 98)             |
| FTT_0188         | Cell division protein FtsZ                                         | (45, 74, 97, 98)         |
| FTT_0189         | dDP-3-0-[3-nydroxymyristoyi] N-acetyigiucosamine<br>deacetylase    | (97)                     |
| FTT_0209         | Periplasmic solute binding family protein                          | (96-98)                  |
| FTT_0245         | Universal stress protein                                           | (74)                     |
| FTT_0296         | Pyrrolidone-carboxylate peptidase                                  | (36)                     |
| FTT_0314         | Elongation factor Ts                                               | (36, 96, 98)             |
| FTT_0323         | Elongation factor G                                                | (97, 98)                 |
| FTT_0342         | 30S ribosomal protein S5                                           | (98)                     |
| FTT_0350         | DNA-directed RNA polymerase subunit alpha                          | (96, 97)                 |
| FTT_0356         | Heat shock protein 90                                              | (36, 45, 74)             |
| FTT_0373         | Nucleoside diphosphate kinase                                      | (36, 98)                 |
| FTT_0380         | NAD(P)-specific glutamate dehydrogenase                            | (74)                     |
| FTT_0471         | 3-dehydroquinate dehydratase                                       | (37, 43)                 |
| FTT_0472         | Acetyl-CoA carboxylase, biotin carboxyl carrier protein<br>subunit | (37, 43, 45, 74, 97, 98) |
| FTT_0473         | Acetyl-CoA carboxylase, biotin carboxylase subunit                 | (36)                     |
| FTT_0503         | Succinyl-CoA synthetase, alpha subunit                             | (36, 98)                 |
| FTT_0504         | Succinyl-CoA synthetase subunit beta                               | (46)                     |
| FTT_0510         | DNA gyrase subunit B                                               | (97)                     |
| FTT_0511         | Pyridoxal biosynthesis lyase PdxS                                  | (96, 97)                 |
| FTT_0535         | Lactate dehydrogenase                                              | (36)                     |
| FTT_0557         | AhpC/TSA family protein                                            | (45)                     |
| FTT_0580         | Hypothetical protein                                               | (97)                     |
| FTT_0583         | Outer membrane associated protein                                  | (36, 45, 96-98)          |
| FTT_0627         | Histone-like protein HU form B                                     | (45)                     |
| FTT_0630         | Host factor I for bacteriophage Q beta replication                 | (36)                     |
| FTT_0715         | Chitinase family 18 protein                                        | (36, 97, 98)             |
| FTT_0721         | Peroxidase/catalase                                                | (36, 45, 46, 74, 96-98)  |
| FTT_0726         | Glycerophosphoryl diester phosphodiesterase family protein         | (45)                     |
| FTT_0766         | Purine nucleoside phosphorylase                                    | (74)                     |
| FTT_0817         | Threonyl-tRNA synthetase                                           | (98)                     |
| FTT_0831         | OmpA family protein                                                | (45, 97)                 |
| FTT_0863         | LemA-like protein                                                  | (45, 97, 98)             |
| FII_0901         |                                                                    | (37, 43, 45, 98)         |
| FII_0918         | Hypothetical protein                                               | (46, 96, 98)             |
| FTT_0975         | Hypothetical protein                                               | (36)                     |
| FII_1043         | FKBP-type peptidyl-prolyl cis-trans isomerase family protein       | (45, 98)                 |
| FII_1060         | SUS ribosomal protein L9                                           | (36, 97, 98)             |
| FII_1101         | 4re-45 terredoxin (electron transport) family protein              | (45)                     |
| FTT_1103         | Conserved hypothetical lipoprotein                                 | (97, 98)                 |

F. tularensis protein antigens detected by Western blot and 2D-PAGE

| Loci <sup>A</sup>    | Protein identified                                                                | ref                             |
|----------------------|-----------------------------------------------------------------------------------|---------------------------------|
| FTT_1156             | Type IV pilin multimeric outer membrane protein                                   | (97)                            |
| FTT_1201             | Oxidoreductase, short-chain dehydrogenase family protein                          | (36)                            |
| FTT_1269             | Molecular chaperone DnaK                                                          | (36, 37, 43, 45, 46, 74, 96-98) |
| FTT_1270             | Heat shock protein GrpE                                                           | (36)                            |
| FTT_1281             | Sigma-54 modulation protein                                                       | (36)                            |
| FTT_1303             | Hypothetical protein                                                              | (97)                            |
| FTT_1313             | Transcriptional elongation factor                                                 | (98)                            |
| FTT_1317             | Inosine-5-monophosphate dehydrogenase                                             | (45)                            |
| FTT_1368             | Glyceraldehyde-3-phosphate dehydrogenase                                          | (36, 74)                        |
| FTT_1369             | Transketolase                                                                     | (36)                            |
| FTT_1373             | 3-oxoacyl-[acyl carrier protein] synthase III                                     | (97)                            |
| FTT_1374             | Malonyl CoA-acyl carrier protein transacylase                                     | (36, 97)                        |
| FTT_1377             | 3-oxoacyl-[acyl-carrier-protein] synthase II                                      | (74)                            |
| FTT_1389             | 3-methyl-2-oxobutanoate hydroxymethyltransferase                                  | (97)                            |
| FTT_1390             | Pantoate-beta-alanine ligase                                                      | (98)                            |
| FTT_1402             | Hypothetical protein                                                              | (45)                            |
| FTT_1441             | Hypothetical protein                                                              | (36, 45, 74, 97)                |
| FTT_1460             | UDP-glucose/GDP-mannose dehydrogenase                                             | (74, 98)                        |
| FTT_1483             | Dihydrolipoamide dehydrogenase                                                    | (45)                            |
| FTT_1484             | Dihydrolipoamide acetyltransferase                                                | (45, 46, 97)                    |
| FTT_1485             | Pyruvate dehydrogenase subunit E1                                                 | (46)                            |
| FTT_1498             | Acetyl-coenzyme A carboxylase carboxyl transferase subunit<br>alpha               | (36, 45)                        |
| FTT_1526             | Isocitrate dehydrogenase                                                          | (36, 45)                        |
| FTT_1530             | Fusion product of 3-hydroxacyl-CoA dehydrogenase and acyl-<br>CoA-binding protein | (97)                            |
| FTT_1531             | Acetyl-CoA acetyltransferase                                                      | (45)                            |
| FTT_1540             | Hypothetical protein                                                              | (97)                            |
| FTT_1539             | Hypothetical protein                                                              | (36, 45, 98)                    |
| FTT_1572             | Outer membrane protein OmpH                                                       | (36)                            |
| FTT_1591             | Lipoprotein                                                                       | (45)                            |
| FTT_1616             | Cysteinyl-tRNA synthetase                                                         | (98)                            |
| FTT_1676             | Hypothetical protein                                                              | (45, 46)                        |
| FTT_1695             | Co-chaperonin GroES                                                               | (36, 37, 43)                    |
| FTT_1696             | Chaperonin GroEL                                                                  | (36, 37, 43, 45, 74, 96-98)     |
| FTT_1702             | Hypothetical protein                                                              | (45)                            |
| FTT_1712<br>FTT_1357 | Intracellular growth locus, subunit C                                             | (36, 37, 43, 45, 74, 98)        |
| FTT_1713<br>FTT_1358 | Intracellular growth locus, subunit B                                             | (46, 97)                        |
| FTT_1714<br>FTT_1359 | Intracellular growth locus, subunit A                                             | (45)                            |
|                      | Outer membrane protein                                                            | (45)                            |
| FTT_1749             | Preprotein translocase subunit SecB                                               | (45)                            |
| FTT_1752             | Single-strand binding protein                                                     | (36)                            |
| FTT_1769             | ClpB protein                                                                      | (36, 45, 97)                    |
| FTT_1778             | Hypothetical membrane protein                                                     | (97, 98)                        |

F. tularensis protein antigens detected by Western blot and 2D-PAGE, continued

<sup>A</sup>FTT loci correspond to the predicted coding protein sequence tags of *F. tularensis* strain SCHU S4. References correspond to those of Chapter II.

F. tularensis proteins identified in membrane fractions by 2D-PAGE

| Membrane             | proteins identified in <i>F. tularensis</i> type A                                        |          |
|----------------------|-------------------------------------------------------------------------------------------|----------|
| Loci <sup>A</sup>    | Protein identified                                                                        | ref      |
| FTT_0018             | Secretion protein                                                                         | (73)     |
| FTT_0077             | Dihydrolipoamide succinyltransferase component of 2-oxoglutarate dehydrogenase<br>complex | (46, 73) |
| FTT_0087             | Aconitate hydratase                                                                       | (46, 73) |
| FTT_0142             | 50S ribosomal protein L10                                                                 | (73)     |
| FTT_0209             | Periplasmic solute binding family protein                                                 | (73)     |
| FTT_0245             | Universal stress protein                                                                  | (73)     |
| FTT_0365             | Phenol hydroxylase                                                                        | (73)     |
| FTT_0373             | Nucleoside diphosphate kinase                                                             | (73)     |
| FTT_0380             | Glutamate dehydrogenase                                                                   | (73)     |
| FTT_0503             | Succinyl-CoA synthetase, alpha subunit                                                    | (73)     |
| FTT_0504             | Succinyl-CoA synthetase subunit beta                                                      | (46)     |
| FTT_0634             | SPFH domain-containing protein/band 7 family protein                                      | (73)     |
| FTT_0721             | Peroxidase/catalase                                                                       | (46)     |
| FTT_0726             | Glycerophosphoryl diester phosphodiesterase family protein                                | (73)     |
| FTT_0903             | Hypothetical protein                                                                      | (73)     |
| FTT_0918             | Hypothetical protein                                                                      | (46)     |
| FTT_1043             | FKBP-type peptidyl-prolyl cis-trans isomerase family protein                              | (73)     |
| FTT_1103             | Lipoprotein                                                                               | (73)     |
| FTT_1157             | Type IV pili lipoprotein.                                                                 | (73)     |
| FTT_1260             | Hypothetical protein                                                                      | (73)     |
| FTT_1269             | Molecular chaperone DnaK                                                                  | (46)     |
| FTT_1346             | Hypothetical protein                                                                      | (73)     |
| FTT_1354             | Hypothetical protein                                                                      | (73)     |
| FTT_1441             | Hypothetical protein                                                                      | (73)     |
| FTT_1483             | Dihydrolipoamide dehydrogenase                                                            | (73)     |
| FTT_1484             | Dihydrolipoamide acetyltransferase                                                        | (46, 73) |
| FTT_1485             | Pyruvate dehydrogenase subunit E1                                                         | (46)     |
| FTT_1539             | Hypothetical protein                                                                      | (73)     |
| FTT_1572             | Outer membrane protein OmpH                                                               | (73)     |
| FTT_1591             | Lipoprotein                                                                               | (73)     |
| FTT_1651             | Hypothetical protein                                                                      | (73)     |
| FTT_1666             | 3-hydroxyisobutyrate dehydrogenase                                                        | (73)     |
| FTT_1676             | Hypothetical protein                                                                      | (46, 73) |
| FTT_1701             | Hypothetical protein                                                                      | (73)     |
| FTT_1712<br>FTT_1357 | Intracellular growth locus, subunit C                                                     | (73)     |
| FTT_1713             | Intracellular growth locus, subunit B                                                     | (46)     |
| FTT_1714<br>FTT_1359 | Intracellular growth locus, subunit A                                                     | (73)     |
| FTT_1747             | Outer membrane protein                                                                    | (73)     |

F. tularensis proteins identified in membrane fractions by 2D-PAGE

#### Membrane proteins identified in F. tularensis type B

| Membrane | proteine racialite in 1. talarchere gpe D                                                 |          |
|----------|-------------------------------------------------------------------------------------------|----------|
| FTT_0033 | NADH dehydrogenase I                                                                      | (73)     |
| FTT_0074 | Succinate dehydrogenase, catalytic and NAD/flavoprotein subunit                           | (45)     |
| FTT_0077 | Dihydrolipoamide succinyltransferase component of 2-oxoglutarate dehydrogenase<br>complex | (45, 73) |
| FTT_0087 | Aconitate hydratase                                                                       | (45, 73) |
| FTT_0101 | Hypothetical protein                                                                      | (72)     |
| FTT_0120 | Signal recognition particle receptor FtsY                                                 | (73)     |
| FTT_0137 | Elongation factor Tu                                                                      | (45)     |
| FTT_0142 | 50S ribosomal protein L10                                                                 | (73)     |
| FTT_0143 | 50S ribosomal protein L7/L12                                                              | (45)     |
| FTT_0166 | Hypothetical protein                                                                      | (73)     |
| FTT_0188 | Cell division protein FtsZ                                                                | (45)     |
|          |                                                                                           |          |

| wembrane proteins identined in F. tularensis type D, continued | Membrane | proteins | identified in | <i>ו F.</i> | tularensis | type | В, | continued |
|----------------------------------------------------------------|----------|----------|---------------|-------------|------------|------|----|-----------|
|----------------------------------------------------------------|----------|----------|---------------|-------------|------------|------|----|-----------|

| l eci <sup>A</sup> | Proteins identified                                                             | rof              |
|--------------------|---------------------------------------------------------------------------------|------------------|
|                    | Protein identified                                                              |                  |
| FTT_0198           |                                                                                 | (72)             |
| FTT_0245           | Universal stress protein                                                        | (73)             |
| FTT_0276           | Cyclonexadienyl denydratase                                                     | (73)             |
| FTT_0296           | Pyrrolidone-carboxylate peptidase                                               | (72)             |
| FTT_0356           | Heat shock protein 90                                                           | (45)             |
| FII_0365           | Phenol hydroxylase                                                              | (73)             |
| FTT_0369           | Hypothetical protein                                                            | (72, 89)         |
| FTT_0373           | Nucleoside diphosphate kinase                                                   | (73)             |
| FTT_0380           | Glutamate dehydrogenase                                                         | (73)             |
| FTT_0472           | Acetyl-CoA carboxylase, biotin carboxyl carrier protein subunit                 | (45, 72)         |
| FTT_0490           | Phospholipase D family protein                                                  | (89)             |
| FTT_0503           | Succinyl-CoA synthetase, alpha subunit                                          | (73)             |
| FTT_0557           | AhpC/TSA family protein                                                         | (45)             |
| FTT_0558           | Short chain dehydrogenase                                                       | (73)             |
| FTT_0562           | Polyamine transporter, ABC transporter, ATP-binding protein                     | (72)             |
| FTT_0583           | Outer membrane associated protein                                               | (45, 72, 95)     |
| FTT_0627           | Histone-like protein HU form B                                                  | (45)             |
| FTT_0634           | SPFH domain-containing protein/band 7 family protein                            | (72, 73)         |
| FTT_0704           | Hypothetical protein                                                            | (89)             |
| FTT_0721           | Peroxidase/catalase                                                             | (45, 72)         |
| FTT_0726           | Glycerophosphoryl diester phosphodiesterase family protein                      | (45, 72, 73)     |
| FTT_0746           | Hypothetical protein                                                            | (72)             |
| FTT_0757           | UTPglucose-1-phosphate uridylyltransferase                                      | (73)             |
| FTT_0825           | Hypothetical protein                                                            | (95)             |
| FTT_0831           | OmpA family protein                                                             | (45, 72)         |
| FTT_0842           | Peptidoglycan-associated lipoprotein                                            | (72, 95)         |
| FTT_0863           | LemA-like protein                                                               | (45, 95)         |
| FTT_0879           | Superoxide dismuate (Cu-Zn) precusor                                            | (95)             |
| FTT_0900           | Hypothetical protein                                                            | (72)             |
| FTT_0901           | Lipoprotein                                                                     | (45, 72)         |
| FTT_0904           | Lipoprotein                                                                     | (37)             |
| FTT_0972           | ABC transporter, ATP-binding protein                                            | (72)             |
| FTT_0991           | Lipoprotein                                                                     | (72)             |
| FTT_1029           | D-alanyl-D-alanine carboxypeptidase (penicillin binding protein) family protein | (72, 89)         |
| FTT_1040           | Lipoprotein                                                                     | (72)             |
| FTT_1043           | FKBP-type peptidyl-prolyl cis-trans isomerase family protein                    | (45, 72, 73)     |
| FTT_1101           | 4Fe-4S ferredoxin (electron transport) family protein                           | (45)             |
| FTT_1103           | Lipoprotein                                                                     | (72, 73, 89, 95) |
| FTT_1234           | Choloylglycine hydrolase family protein                                         | (72)             |
| FTT_1249           | Cell entry (mce) related family protein                                         | (72)             |
| FTT_1250           | Hypothetical protein                                                            | (73, 89)         |
| FTT_1257           | HyD family secretion protein                                                    | (72)             |
| FTT_1258           | Outer membrane efflux protein                                                   | (72)             |
| FTT 1269           | Molecular chaperone DnaK                                                        | (45)             |
| FTT 1317           | Inosine-5-monophosphate dehydrogenase                                           | (45, 72)         |
| FTT_1346           | Hypothetical protein                                                            | (73, 95)         |
| FTT 1354           | Hypothetical protein                                                            | (73)             |
| FTT 1355           | Hypothetical protein                                                            | (73)             |
| FTT 0209           | Periplasmic solute binding family protein                                       | (73. 95)         |
| FTT 1402           | Hypothetical protein                                                            | (45. 89)         |
| FTT 1416           | Lipoprotein                                                                     | (95)             |
| FTT 1441           | Hypothetical protein                                                            | (45, 73)         |
| FTT 1483           | Dihydrolipoamide dehydrogenase                                                  | (45, 73)         |
| FTT 1484           | Dihydrolipoamide acetyltransferase                                              | (45, 72, 73)     |
| FTT 1498           | Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha                | (45)             |
| 111_1430           |                                                                                 |                  |

| Loci <sup>A</sup>    | Protein identified                    | ref          |
|----------------------|---------------------------------------|--------------|
| FTT_1526             | Isocitrate dehydrogenase              | (45)         |
| FTT_1531             | Acetyl-CoA acetyltransferase          | (45)         |
| FTT_1539             | Hypothetical protein                  | (45, 73)     |
| FTT_1540             | Hypothetical protein                  | (72)         |
| FTT_1567             | Hypothetical protein                  | (95)         |
| FTT_1572             | Outer membrane protein OmpH           | (72)         |
| FTT_1591             | Lipoprotein                           | (45, 72, 73) |
| FTT_1676             | Hypothetical protein                  | (45, 73)     |
| FTT_1696             | Chaperonin GroEL                      | (37, 45)     |
| FTT_1701             | Hypothetical protein                  | (73)         |
| FTT_1702<br>FTT_1347 | Hypothetical protein                  | (45)         |
| FTT_1710<br>FTT_1355 | Hypothetical protein                  | (73)         |
| FTT_1712<br>FTT_1357 | Intracellular growth locus, subunit C | (45, 73)     |
| FTT_1714<br>FTT_1359 | Intracellular growth locus, subunit A | (45, 73)     |
| FTT_1747             | Outer membrane protein                | (45, 72, 73) |
| FTT_1749             | Preprotein translocase subunit SecB   | (45)         |
| FTT_1769             | ClpB protein                          | (45)         |
| FTT_1778             | Hypothetical protein                  | (95)         |
| FTT_1794             | Heat shock protein                    | (73)         |

<sup>A</sup>FTT loci correspond to the predicted coding protein sequence tags of *F. tularensis* strain SCHU S4. References correspond to those of Chapter II.

Proteins identified in F. tularensis LVS MPF

| Protein name                                            | Locus    | Predicted<br>molecular<br>mass | Protein<br>identification<br>probability | Number<br>of<br>unique<br>peptides | Percentage<br>sequence<br>coverage |
|---------------------------------------------------------|----------|--------------------------------|------------------------------------------|------------------------------------|------------------------------------|
| Chromosomal replication initiator protein dnaA          | FTL_0001 | 55839.60                       | 99.80%                                   | 2                                  | 6%                                 |
| DNA polymerase III, beta chain                          | FTL 0002 | 41674.84                       | 100.00%                                  | 3                                  | 9%                                 |
| Outer membrane protein                                  | FTL 0009 | 19477.11                       | 100.00%                                  | 3                                  | 24%                                |
| Recombinase A protein                                   | FTL 0012 | 38833.58                       | 100.00%                                  | 2                                  | 8%                                 |
| Phosphate acetyltransferase                             | FTL 0016 | 77167.56                       | 99.80%                                   | 2                                  | 4%                                 |
| Aspartyl-tRNA synthetase                                | FTL 0020 | 66805.23                       | 100.00%                                  | 6                                  | 13%                                |
| Carbamoyl phosphate synthase large subunit              | FTL 0029 | 120723.72                      | 99.80%                                   | 2                                  | 2%                                 |
| Hypothetical protein                                    | FTL_0039 | 15326.41                       | 99.80%                                   | 2                                  | 19%                                |
| GTP-binding protein LepA                                | FTL_0071 | 65573.59                       | 100.00%                                  | 5                                  | 13%                                |
| Hypothetical protein                                    | FTL_0073 | 37517.73                       | 100.00%                                  | 5                                  | 16%                                |
| Acetyltransferase protein                               | FTL_0087 | 27857.30                       | 99.80%                                   | 2                                  | 9%                                 |
| Acetyltransferase protein                               | FTL_0088 | 28838.19                       | 100.00%                                  | 2                                  | 12%                                |
| ClpB protein                                            | FTL_0094 | 96047.04                       | 100.00%                                  | 10                                 | 15%                                |
| Hypothetical protein                                    | FTL_0097 | 13793.84                       | 99.80%                                   | 2                                  | 19%                                |
| Hypothetical protein                                    | FTL_0104 | 14595.73                       | 99.80%                                   | 2                                  | 26%                                |
| Hypothetical protein                                    | FTL_0105 | 13728.82                       | 100.00%                                  | 3                                  | 35%                                |
| Intracellular growth locus, subunit A                   | FTL_0111 | 20890.88                       | 99.80%                                   | 2                                  | 14%                                |
| Intracellular growth locus, subunit B                   | FTL_0112 | 57917.61                       | 100.00%                                  | 11                                 | 27%                                |
| Intracellular growth locus, subunit C                   | FTL_0113 | 22133.41                       | 100.00%                                  | 6                                  | 37%                                |
| Intracellular growth locus, subunit D                   | FTL_0114 | 46401.43                       | 100.00%                                  | 4                                  | 11%                                |
| Hypothetical protein                                    | FTL_0116 | 155908.31                      | 100.00%                                  | 6                                  | 6%                                 |
| Hypothetical protein                                    | FTL_0120 | 55363.07                       | 99.80%                                   | 2                                  | 4%                                 |
| Hypothetical protein                                    | FTL_0125 | 127540.09                      | 100.00%                                  | 10                                 | 12%                                |
| Hypothetical protein                                    | FTL_0126 | 95339.57                       | 100.00%                                  | 4                                  | 6%                                 |
| Ferrous iron transport protein                          | FTL_0133 | 81459.74                       | 100.00%                                  | 5                                  | 10%                                |
| Lipopolysaccharide protein                              | FTL_0137 | 38744.36                       | 100.00%                                  | 6                                  | 22%                                |
| ABC transporter, ATP-binding protein                    | FTL_0146 | 49453.15                       | 100.00%                                  | 4                                  | 13%                                |
| Universal stress protein                                | FTL_0166 | 30220.68                       | 99.80%                                   | 2                                  | 14%                                |
| Inner-membrane protein                                  | FTL_0178 | 61952.44                       | 100.00%                                  | 4                                  | 10%                                |
| Acyltransferase                                         | FTL_0180 | 36125.96                       | 99.80%                                   | 2                                  | 8%                                 |
| Cytochrome d terminal oxidase, polypeptide subunit<br>I | FTL_0189 | 64275.75                       | 100.00%                                  | 4                                  | 14%                                |
| Cytochrome O ubiquinol oxidase subunit I                | FTL_0192 | 76200.11                       | 100.00%                                  | 3                                  | 6%                                 |
| Hypothetical protein                                    | FTL_0199 | 15640.67                       | 99.80%                                   | 2                                  | 16%                                |
| Pyrrolidone-carboxylate peptidase                       | FTL_0207 | 24215.13                       | 100.00%                                  | 3                                  | 19%                                |
| 30S ribosomal protein S2                                | FTL_0224 | 26421.69                       | 100.00%                                  | 8                                  | 36%                                |
| Elongation factor Ts                                    | FTL_0225 | 30959.65                       | 100.00%                                  | 8                                  | 34%                                |
| 30S ribosomal protein S7                                | FTL_0233 | 17807.64                       | 100.00%                                  | 3                                  | 23%                                |
| Elongation factor G                                     | FTL_0234 | 77730.37                       | 100.00%                                  | 9                                  | 15%                                |
| 30S ribosomal protein S10                               | FTL_0235 | 11895.96                       | 100.00%                                  | 4                                  | 31%                                |
| 50S ribosomal protein L3                                | FTL_0236 | 22307.33                       | 100.00%                                  | 3                                  | 20%                                |
| 50S ribosomal protein L4                                | FTL_0237 | 22553.16                       | 100.00%                                  | 5                                  | 17%                                |
| 50S ribosomal protein L23                               | FTL_0238 | 11135.83                       | 100.00%                                  | 3                                  | 40%                                |
| 50S ribosomal protein L2                                | FTL_0239 | 30401.42                       | 100.00%                                  | 4                                  | 19%                                |
| 30S ribosomal protein S3                                | FTL_0242 | 24877.10                       | 100.00%                                  | 3                                  | 17%                                |
| 50S ribosomal protein L16                               | FIL_0243 | 15710.48                       | 100.00%                                  | 5                                  | 38%                                |
| 50S ribosomal protein L14                               | FIL_0246 | 13235.48                       | 100.00%                                  | 2                                  | 30%                                |
| 505 ribosomal protein L24                               | FIL_0247 | 114/6.34                       | 100.00%                                  | 5                                  | 50%                                |
| 50S ribosomal protein L5                                | FIL_0248 | 19996.34                       | 100.00%                                  | 8                                  | 51%                                |
| 30S ribosomal protein S8                                | FIL_0250 | 14410.78                       | 100.00%                                  | 5                                  | 45%                                |
| SUS ribosomal protein L6                                | FIL_0251 | 19075.03                       | 99.90%                                   | 2                                  | 17%                                |
| ouo ribosomai protein L18                               | FIL_0252 | 13036.06                       | 99.80%                                   | 2                                  | 23%                                |

| Protein name                                                                     | Locus    | Predicted<br>molecular<br>mass | Protein<br>identification<br>probability | Number<br>of<br>unique<br>peptides | Percentage<br>sequence<br>coverage |
|----------------------------------------------------------------------------------|----------|--------------------------------|------------------------------------------|------------------------------------|------------------------------------|
| 50S ribosomal protein L30                                                        | FTL 0254 | 6871.10                        | 99.80%                                   | 2                                  | 25%                                |
| 50S ribosomal protein L15                                                        | FTL 0255 | 15095.61                       | 100.00%                                  | 4                                  | 32%                                |
| 30S ribosomal protein S13                                                        | FTL 0258 | 13377.65                       | 100.00%                                  | 3                                  | 20%                                |
| 30S ribosomal protein S4                                                         | FTL 0260 | 23236.78                       | 100.00%                                  | 6                                  | 27%                                |
| DNA-directed RNA polymerase subunit alpha                                        | FTL 0261 | 35357.51                       | 100.00%                                  | 3                                  | 14%                                |
| 50S ribosomal protein L17                                                        | FTL 0262 | 16784.34                       | 100.00%                                  | 7                                  | 53%                                |
| Heat shock protein 90                                                            | FTI 0267 | 72371.65                       | 100.00%                                  | 7                                  | 15%                                |
| Glutamate dehvdrogenase                                                          | FTI 0269 | 49158.07                       | 100.00%                                  | 3                                  | 10%                                |
| Heat shock protein, hsp40                                                        | FTL 0281 | 33669.83                       | 100.00%                                  | 3                                  | 13%                                |
| DNA mismatch repair protein MutS                                                 | FTL 0294 | 95812.74                       | 99.80%                                   | 2                                  | 3%                                 |
| Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha                 | FTL_0295 | 35436.02                       | 100.00%                                  | 10                                 | 32%                                |
| Pyruvate dehydrogenase, E1 component                                             | FTL_0309 | 100268.34                      | 100.00%                                  | 17                                 | 18%                                |
| Dihydrolipoamide acetyltransferase                                               | FTL_0310 | 56798.85                       | 100.00%                                  | 8                                  | 19%                                |
| Hypothetical protein                                                             | FTL_0317 | 12214.60                       | 100.00%                                  | 4                                  | 55%                                |
| OmpA family protein                                                              | FTL_0325 | 46754.18                       | 100.00%                                  | 4                                  | 13%                                |
| Hypothetical protein                                                             | FTL_0333 | 34654.68                       | 99.80%                                   | 2                                  | 7%                                 |
| Peptidoglycan-associated lipoprotein                                             | FTL_0336 | 23291.32                       | 100.00%                                  | 3                                  | 18%                                |
| Ribonuclease PH                                                                  | FTL_0357 | 25440.65                       | 99.80%                                   | 2                                  | 12%                                |
| Hypothetical protein                                                             | FTL_0358 | 12702.64                       | 99.80%                                   | 2                                  | 21%                                |
| LemA-like protein                                                                | FTL_0361 | 21986.26                       | 99.90%                                   | 2                                  | 16%                                |
| Aspartate aminotransferase                                                       | FTL_0387 | 44382.87                       | 99.90%                                   | 2                                  | 5%                                 |
| 2-polyprenylphenol 6-hydroxylase                                                 | FTL_0407 | 63814.61                       | 100.00%                                  | 6                                  | 11%                                |
| GTP-binding protein EngA                                                         | FTL_0414 | 52468.74                       | 99.80%                                   | 2                                  | 5%                                 |
| Lipoprotein                                                                      | FTL_0421 | 15771.85                       | 100.00%                                  | 3                                  | 30%                                |
| Hypothetical protein                                                             | FTL_0423 | 19303.26                       | 99.80%                                   | 2                                  | 16%                                |
| Chromosome partition protein B                                                   | FTL_0428 | 34592.91                       | 99.80%                                   | 2                                  | 9%                                 |
| Isoleucyl-tRNA synthetase                                                        | FTL_0436 | 106971.95                      | 100.00%                                  | 3                                  | 5%                                 |
| Malate dehydrogenase                                                             | FTL_0438 | 67344.46                       | 100.00%                                  | 3                                  | 9%                                 |
| Hypothetical protein                                                             | FTL_0439 | 58445.63                       | 99.80%                                   | 2                                  | 5%                                 |
| DNA topoisomerase IV subunit A                                                   | FTL_0462 | 83930.88                       | 100.00%                                  | 6                                  | 9%                                 |
| Soluble lytic murein transglycosylase                                            | FTL_0466 | 76931.27                       | 99.80%                                   | 2                                  | 3%                                 |
| Lysine decarboxylase, inducible                                                  | FTL_0476 | 81935.00                       | 100.00%                                  | 3                                  | 6%                                 |
| Glycine dehydrogenase subunit 2                                                  | FTL_0480 | 52781.98                       | 99.80%                                   | 2                                  | 3%                                 |
| DNA gyrase, subunit A                                                            | FTL_0533 | 97102.92                       | 100.00%                                  | 5                                  | 6%                                 |
| UDP-N-acetylglucosamine acyltransferase                                          | FTL_0539 | 28124.64                       | 100.00%                                  | 5                                  | 27%                                |
| Two-component response regulator                                                 | FTL_0552 | 25519.67                       | 100.00%                                  | 3                                  | 21%                                |
| Ribonuclease R                                                                   | FTL_0556 | 85994.62                       | 100.00%                                  | 7                                  | 14%                                |
| Hypothetical protein                                                             | FTL_0569 | 19785.57                       | 100.00%                                  | 2                                  | 14%                                |
| Hypothetical protein                                                             | FTL_0571 | 22451.65                       | 100.00%                                  | 3                                  | 22%                                |
| Hypothetical protein                                                             | FTL_0572 | 51977.34                       | 100.00%                                  | 3                                  | 9%                                 |
| Hypothetical protein                                                             | FTL_0574 | 52201.14                       | 99.80%                                   | 2                                  | 6%                                 |
| Fusion product of 3-hydroxacyl-CoA dehydrogenase<br>and acyl-CoA-binding protein | FTL_0584 | 100624.28                      | 100.00%                                  | 7                                  | 11%                                |
| Acyl-CoA dehydrogenase                                                           | FTL_0585 | 83333.70                       | 100.00%                                  | 7                                  | 14%                                |
| Hypothetical protein                                                             | FTL_0589 | 33263.61                       | 99.80%                                   | 2                                  | 9%                                 |
| dTDP-glucose 4,6-dehydratase                                                     | FTL_0592 | 65709.53                       | 100.00%                                  | 4                                  | 9%                                 |
| Galactosyl transferase                                                           | FTL_0593 | 23778.16                       | 99.80%                                   | 2                                  | 7%                                 |
| UDP-glucose 4-epimerase                                                          | FTL_0594 | 29955.57                       | 100.00%                                  | 4                                  | 19%                                |
| Galacturonosyl transferase                                                       | FTL_0595 | 41599.47                       | 100.00%                                  | 5                                  | 13%                                |
| UDP-glucose/GDP-mannose dehydrogenase                                            | FTL_0596 | 48862.13                       | 100.00%                                  | 2                                  | 5%                                 |
| Glycosyltransferase                                                              | FTL_0604 | 32975.90                       | 100.00%                                  | 3                                  | 12%                                |

## Proteins identified in MPF by 2D LC-MS/MS, continued

| Protein name                                                                     | Locus    | Predicted<br>molecular<br>mass | Protein<br>identification<br>probability | Number<br>of<br>unique<br>peptides | Percentage<br>sequence<br>coverage |
|----------------------------------------------------------------------------------|----------|--------------------------------|------------------------------------------|------------------------------------|------------------------------------|
| Transcription termination factor Rho                                             | FTL 0610 | 47129.05                       | 100.00%                                  | 4                                  | 12%                                |
| DNA-directed RNA polymerase subunit alpha                                        | FTL 0616 | 35074.14                       | 100.00%                                  | 5                                  | 15%                                |
| Hypothetical protein                                                             | FTL 0617 | 16809.36                       | 100.00%                                  | 3                                  | 31%                                |
| ABC transporter, ATP-binding protein                                             | FTL 0623 | 34827.65                       | 100.00%                                  | 4                                  | 15%                                |
| Glycosyl transferase                                                             | FTL 0625 | 35582.32                       | 99.80%                                   | 2                                  | 11%                                |
| Hypothetical protein                                                             | FTL 0655 | 40009.17                       | 100.00%                                  | 4                                  | 15%                                |
| Hypothetical protein                                                             | FTL 0656 | 44513.74                       | 99.80%                                   | 2                                  | 7%                                 |
| Pantothenate kinase                                                              | FTL 0671 | 27922.49                       | 99.80%                                   | 2                                  | 5%                                 |
| Pantoate-beta-alanine ligase                                                     | FTL 0673 | 29685.32                       | 100.00%                                  | 5                                  | 20%                                |
| Hypothetical protein                                                             | FTL 0675 | 27475.54                       | 99.80%                                   | 2                                  | 11%                                |
| Polyamine transporter, ABC transporter, ATP-binding protein                      | FTL_0681 | 42296.53                       | 99.80%                                   | 2                                  | 8%                                 |
| Outer membrane efflux protein                                                    | FTL_0686 | 54535.43                       | 100.00%                                  | 5                                  | 19%                                |
| HlyD family secretion protein                                                    | FTL_0687 | 37853.27                       | 99.80%                                   | 2                                  | 7%                                 |
| Cell entry (mce) related family protein                                          | FTL_0695 | 26945.01                       | 100.00%                                  | 4                                  | 19%                                |
| Ribonuclease E                                                                   | FTL_0717 | 95948.52                       | 100.00%                                  | 14                                 | 25%                                |
| Type IV pilin multimeric outer membrane protein                                  | FTL_0800 | 64493.72                       | 100.00%                                  | 3                                  | 6%                                 |
| Shikimate kinase I                                                               | FTL_0801 | 19752.84                       | 100.00%                                  | 3                                  | 14%                                |
| Bifunctional proline dehydrogenase,pyrroline-5-<br>carboxylate dehydrogenase     | FTL_0805 | 150007.35                      | 100.00%                                  | 19                                 | 18%                                |
| Type IV pili nucleotide binding protein, ABC<br>transporter, ATP-binding protein | FTL_0828 | 67091.35                       | 100.00%                                  | 5                                  | 12%                                |
| Glycerophosphoryl diester phosphodiesterase                                      | FTL_0829 | 29669.29                       | 99.80%                                   | 2                                  | 12%                                |
| Cyanophycin synthetase                                                           | FTL_0831 | 103993.16                      | 100.00%                                  | 3                                  | 5%                                 |
| Rhodanese-like family protein                                                    | FTL_0834 | 27864.42                       | 99.80%                                   | 2                                  | 11%                                |
| D-methionine transport protein, ABC transporter,<br>ATP-binding subunit          | FTL_0838 | 39193.40                       | 100.00%                                  | 8                                  | 34%                                |
| Preprotein translocase family protein                                            | FTL_0847 | 12881.27                       | 100.00%                                  | 3                                  | 33%                                |
| Preprotein translocase subunit SecD                                              | FTL_0848 | 69654.94                       | 100.00%                                  | 9                                  | 23%                                |
| Major facilitator transporter                                                    | FTL_0865 | 49728.62                       | 100.00%                                  | 3                                  | 7%                                 |
| Peptidase, M24 family protein                                                    | FTL_0877 | 68759.17                       | 100.00%                                  | 2                                  | 6%                                 |
| Trigger factor                                                                   | FTL_0891 | 49570.86                       | 100.00%                                  | 5                                  | 13%                                |
| ATP-dependent CIp protease subunit P                                             | FTL_0892 | 22150.49                       | 99.80%                                   | 2                                  | 13%                                |
| DNA-binding, ATP-dependent protease La                                           | FTL_0894 | 86222.64                       | 100.00%                                  | 9                                  | 14%                                |
| Hypothetical protein                                                             | FTL_0896 | 54765.05                       | 100.00%                                  | 3                                  | 9%                                 |
| Protease, GTP-binding subunit                                                    | FTL_0899 | 50111.49                       | 99.80%                                   | 2                                  | 7%                                 |
| SPFH domain, band 7 family protein                                               | FTL_0903 | 40421.33                       | 100.00%                                  | 4                                  | 12%                                |
| SPFH domain, band 7 family protein                                               | FTL_0904 | 34589.21                       | 100.00%                                  | 8                                  | 28%                                |
| Ketol-acid reductoisomerase                                                      | FTL_0916 | 37878.69                       | 99.80%                                   | 2                                  | 6%                                 |
| Glutaredoxin 2                                                                   | FTL_0923 | 25150.96                       | 99.80%                                   | 2                                  | 14%                                |
| Ferritin-like protein                                                            | FTL_0926 | 19073.63                       | 100.00%                                  | 3                                  | 33%                                |
| Aldolase/adducin class II family protein                                         | FTL_0939 | 26480.33                       | 99.80%                                   | 2                                  | 13%                                |
| Ribose-phosphate pyrophosphokinase                                               | FTL_0949 | 34909.35                       | 99.80%                                   | 2                                  | 8%                                 |
| 50S ribosomal protein L25                                                        | FTL_0950 | 10903.65                       | 99.80%                                   | 2                                  | 34%                                |
| Hypothetical protein                                                             | FTL_0951 | 46805.03                       | 100.00%                                  | 3                                  | 11%                                |
| A I P-dependent protease ATP-binding subunit                                     | FIL_0964 | 51237.15                       | 99.90%                                   | 2                                  | 5%                                 |
| Lactate dehydrogenase                                                            | FIL_0987 | 34076.74                       | 100.00%                                  | 4                                  | 13%                                |
| Haloacid dehalogenase                                                            | FIL_0995 | 21938.39                       | 99.80%                                   | 2                                  | 15%                                |
| Hypothetical protein                                                             | FIL_1013 | 27667.18                       | 100.00%                                  | 3                                  | 12%                                |
| AnpC/TSA family protein                                                          | FIL_1015 | 19668.22                       | 100.00%                                  | 3                                  | 25%                                |
| 305 ribosomal protein S6                                                         | FIL_1024 | 13054.09                       | 99.90%                                   | 2                                  | 28%                                |
| 50S ribosomal protein L9                                                         | FIL_1026 | 16087.49                       | 100.00%                                  | 7                                  | 56%                                |
| Ribosomal large subunit pseudouridine synthase B                                 | FTL_1030 | 31171.86                       | 100.00%                                  | 3                                  | 11%                                |

## Proteins identified in MPF by 2D LC-MS/MS, continued

| Protein name                                                                       | Locus    | Predicted<br>molecular<br>mass | Protein<br>identification<br>probability | Number<br>of<br>unique<br>peptides | Percentage<br>sequence<br>coverage |
|------------------------------------------------------------------------------------|----------|--------------------------------|------------------------------------------|------------------------------------|------------------------------------|
| FKBP-type peptidyl-prolyl cis-trans isomerase family protein                       | FTL_1042 | 29357.52                       | 100.00%                                  | 6                                  | 27%                                |
| D-alanyl-D-alanine carboxypeptidase (penicillin<br>binding protein) family protein | FTL_1046 | 51339.76                       | 100.00%                                  | 3                                  | 11%                                |
| 30S ribosomal protein S21                                                          | FTL_1047 | 7840.30                        | 99.80%                                   | 2                                  | 15%                                |
| RNA polymerase sigma-70 factor                                                     | FTL_1050 | 67646.46                       | 99.80%                                   | 2                                  | 4%                                 |
| D-alanyl-D-alanine carboxypeptidase (penicillin<br>binding protein) family protein | FTL_1060 | 48033.60                       | 100.00%                                  | 3                                  | 14%                                |
| Hypothetical protein                                                               | FTL_1064 | 31675.76                       | 100.00%                                  | 3                                  | 16%                                |
| Hypothetical protein                                                               | FTL_1067 | 69415.81                       | 100.00%                                  | 3                                  | 7%                                 |
| Bifunctional GMP synthase/glutamine<br>amidotransferase protein                    | FTL_1071 | 57698.31                       | 99.80%                                   | 2                                  | 5%                                 |
| 1-deoxy-D-xylulose-5-phosphate synthase                                            | FTL_1072 | 67385.50                       | 100.00%                                  | 3                                  | 10%                                |
| Lipoprotein                                                                        | FTL_1096 | 39545.19                       | 100.00%                                  | 6                                  | 27%                                |
| Macrophage infectivity potentiator, fragment                                       | FTL_1097 | 10524.01                       | 99.80%                                   | 2                                  | 37%                                |
| Hypothetical protein                                                               | FTL_1100 | 15476.99                       | 99.80%                                   | 2                                  | 19%                                |
| 3-oxoacyl-[acyl-carrier-protein] synthase II                                       | FTL_1137 | 44020.95                       | 100.00%                                  | 3                                  | 10%                                |
| 3-oxoacyl-(acyl-carrier-protein) reductase                                         | FTL_1139 | 26357.24                       | 100.00%                                  | 3                                  | 20%                                |
| Putative glycerol-3-phosphate acyltransferase PIsX                                 | FTL_1142 | 37840.30                       | 100.00%                                  | 4                                  | 22%                                |
| Pyruvate kinase                                                                    | FTL_1148 | 51776.46                       | 100.00%                                  | 5                                  | 13%                                |
| Fructose-1,6-bisphosphate aldolase                                                 | FTL_1149 | 38159.39                       | 99.80%                                   | 2                                  | 7%                                 |
| Hypothetical protein                                                               | FIL_1164 | 44640.56                       | 100.00%                                  | 5                                  | 14%                                |
| 30S ribosomal protein S9                                                           | FIL_1186 | 14736.01                       | 99.80%                                   | 2                                  | 22%                                |
| 50S ribosomal protein L13                                                          | FIL_1187 | 15937.61                       | 100.00%                                  | 3                                  | 30%                                |
| Chaperone protein dnaK                                                             | FIL_1191 | 69182.22                       | 100.00%                                  | 3                                  | 6%                                 |
| Heat shock protein DnaJ                                                            | FIL_1192 | 41480.80                       | 100.00%                                  | 5                                  | 14%                                |
| Phenylalanyl-tRNA synthetase subunit alpha                                         | FIL_1197 | 38505.40                       | 99.80%                                   | 2                                  | 7%<br>0%                           |
| Phenylalanyl-tRNA synthetase, beta subunit                                         | FIL_1198 | 88165.30                       | 100.00%                                  | 2                                  | 3%                                 |
| Hypothetical protein                                                               | FIL_1202 | 36896.57                       | 100.00%                                  | 3                                  | 13%                                |
| Lipoprotein                                                                        | FIL_1211 | 21033.05                       | 100.00%                                  | 3                                  | 22%                                |
| Hypothetical protein                                                               | FIL_1213 | 13301.99                       | 100.00%                                  | 4                                  | 10%                                |
| Signal recognition particle protein Eff                                            | FIL_1219 | 47072.30<br>50311.00           | 99.90%<br>100.00%                        | 2                                  | 30%                                |
| 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine                                  | FTL_1255 | 48246.88                       | 00.00%                                   | 3                                  | J0/8                               |
| pyrophosphokinase/dihydropteroate synthase                                         | 111_1205 | 40240.00                       | 33.0078                                  | 2                                  | 470                                |
| Biotin synthase                                                                    | FTL_1272 | 34906.21                       | 100.00%                                  | 4                                  | 17%                                |
| Dethiobiotin synthetase                                                            | FTL_1275 | 24502.30                       | 99.90%                                   | 2                                  | 13%                                |
| Glutathione synthetase                                                             | FTL_1284 | 37159.94                       | 99.90%                                   | 2                                  | 8%                                 |
| 23S rRNA m(2)G2445 methyltransferase                                               | FTL_1287 | 83481.52                       | 100.00%                                  | 3                                  | 6%                                 |
| Acetyl-CoA carboxylase beta subunit                                                | FTL_1309 | 33386.81                       | 100.00%                                  | 6                                  | 14%                                |
| Outer membrane associated protein                                                  | FTL_1328 | 41259.65                       | 100.00%                                  | 7                                  | 19%                                |
| Hypothetical protein                                                               | FTL_1341 | 15407.51                       | 99.80%                                   | 2                                  | 16%                                |
| UTPglucose-1-phosphate uridylyltransferase                                         | FTL_1357 | 32148.15                       | 100.00%                                  | 3                                  | 7%                                 |
| Cation-efflux family protein                                                       | FTL_1358 | 42813.45                       | 100.00%                                  | 4                                  | 15%                                |
| Hypothetical protein                                                               | FTL_1363 | 36704.83                       | 100.00%                                  | 3                                  | 9%                                 |
| Hypothetical protein                                                               | FTL_1364 | 26430.83                       | 100.00%                                  | 4                                  | 24%                                |
| Hypothetical protein                                                               | FTL_1384 | 13313.44                       | 99.80%                                   | 2                                  | 18%                                |
| Cold-shock DEAD-box protein A                                                      | FTL_1392 | 64008.24                       | 100.00%                                  | 14                                 | 31%                                |
| 50S ribosomal protein L20                                                          | FTL_1404 | 13348.57                       | 100.00%                                  | 3                                  | 27%                                |
| Threonyl-tRNA synthetase                                                           | FTL_1407 | 72381.56                       | 100.00%                                  | 2                                  | 3%                                 |
| Hypothetical protein                                                               | FTL_1414 | 44264.38                       | 100.00%                                  | 3                                  | 7%                                 |
| Capsule biosynthesis protein capB                                                  | FTL_1416 | 44579.71                       | 100.00%                                  | 4                                  | 12%                                |

| Proteins identified in MPF | y 2D LC-MS/MS, | continued |
|----------------------------|----------------|-----------|
|----------------------------|----------------|-----------|

| Protein name                                                                     | Locus    | Predicted<br>molecular<br>mass | Protein<br>identification<br>probability | Number<br>of<br>unique<br>peptides | Percentage<br>sequence<br>coverage |
|----------------------------------------------------------------------------------|----------|--------------------------------|------------------------------------------|------------------------------------|------------------------------------|
| Cyanophycinase                                                                   | FTL 1419 | 29302.93                       | 99.80%                                   | 2                                  | 9%                                 |
| Carbohydrate/purine kinase pfkB family protein                                   | FTL 1420 | 40313.98                       | 99.80%                                   | 2                                  | 5%                                 |
| Hypothetical protein                                                             | FTL 1426 | 26495.63                       | 100.00%                                  | 3                                  | 16%                                |
| Enoyl-[acyl-carrier-protein] reductase (NADH)                                    | FTL 1442 | 27775.17                       | 99.80%                                   | 2                                  | 8%                                 |
| 50S ribosomal protein L21                                                        | FTL 1453 | 11561.63                       | 100.00%                                  | 4                                  | 34%                                |
| Preprotein translocase subunit SecA                                              | FTL 1458 | 103590.04                      | 100.00%                                  | 5                                  | 8%                                 |
| ATP-dependent metalloprotease                                                    | FTL 1464 | 70752.29                       | 100.00%                                  | 4                                  | 8%                                 |
| Inosine-5-monophosphate dehydrogenase                                            | FTL_1478 | 52091.72                       | 100.00%                                  | 3                                  | 8%                                 |
| Cytosol aminopeptidase                                                           | FTL_1479 | 51988.90                       | 100.00%                                  | 2                                  | 6%                                 |
| FAD-binding family protein                                                       | FTL_1489 | 114567.82                      | 100.00%                                  | 6                                  | 8%                                 |
| Deoxyguanosinetriphosphate triphosphohydrolase                                   | FTL_1503 | 50409.72                       | 99.80%                                   | 2                                  | 6%                                 |
| Peroxidase/catalase                                                              | FTL_1504 | 81226.95                       | 100.00%                                  | 5                                  | 10%                                |
| Glycerophosphoryl diester phosphodiesterase family<br>protein                    | FTL_1511 | 39076.81                       | 100.00%                                  | 4                                  | 17%                                |
| 2-amino-3-ketobutyrate coenzyme A ligase                                         | FTL_1522 | 43952.33                       | 99.80%                                   | 2                                  | 9%                                 |
| Enolase (2-phosphoglycerate dehydratase)                                         | FTL_1527 | 49511.19                       | 100.00%                                  | 6                                  | 22%                                |
| Polynucleotide phosphorylase/polyadenylase                                       | FTL_1537 | 75501.74                       | 100.00%                                  | 8                                  | 15%                                |
| Penicillin binding protein (peptidoglycan synthetase)                            | FTL_1539 | 62733.93                       | 100.00%                                  | 4                                  | 8%                                 |
| Hypothetical protein                                                             | FTL_1542 | 78582.16                       | 100.00%                                  | 6                                  | 11%                                |
| Glutamine amidotransferase subunit PdxT                                          | FTL_1545 | 19960.97                       | 99.90%                                   | 2                                  | 13%                                |
| DNA gyrase subunit B                                                             | FTL_1547 | 89740.80                       | 100.00%                                  | 2                                  | 3%                                 |
| Hypothetical protein                                                             | FTL_1552 | 69884.07                       | 100.00%                                  | 12                                 | 26%                                |
| Succinyl-CoA synthetase subunit beta                                             | FTL_1553 | 41541.74                       | 100.00%                                  | 4                                  | 12%                                |
| Acetyl-CoA carboxylase, biotin carboxylase subunit                               | FTL_1591 | 50050.70                       | 100.00%                                  | 6                                  | 17%                                |
| Acetyl-CoA carboxylase, biotin carboxyl carrier<br>protein subunit               | FTL_1592 | 16403.98                       | 100.00%                                  | 4                                  | 48%                                |
| Putative periplasmic protease                                                    | FTL_1605 | 38067.40                       | 100.00%                                  | 7                                  | 18%                                |
| Dolichyl-phosphate-mannose-protein<br>mannosyltransferase family protein         | FTL_1609 | 68148.00                       | 99.80%                                   | 2                                  | 4%                                 |
| Glycosyl transferase, group 2 family protein                                     | FTL_1611 | 35935.44                       | 100.00%                                  | 4                                  | 15%                                |
| Phosphoenolpyruvate carboxykinase                                                | FTL_1616 | 60476.89                       | 100.00%                                  | 3                                  | 9%                                 |
| Hypothetical protein                                                             | FTL_1639 | 29381.81                       | 99.90%                                   | 2                                  | 9%                                 |
| Hypothetical protein                                                             | FTL_1658 | 49321.86                       | 100.00%                                  | 6                                  | 18%                                |
| Lipid A transport protein, ABC transporter, ATP-<br>binding and membrane protein | FTL_1668 | 66676.73                       | 100.00%                                  | 6                                  | 12%                                |
| RND efflux transporter                                                           | FTL_1671 | 50088.80                       | 99.80%                                   | 2                                  | 5%                                 |
| AcrB/AcrD/AcrF family transporter                                                | FTL_1672 | 112503.15                      | 100.00%                                  | 3                                  | 4%                                 |
| Hypothetical protein                                                             | FTL_1678 | 38458.69                       | 100.00%                                  | 3                                  | 11%                                |
| Cell division protein                                                            | FTL_1705 | 92016.36                       | 100.00%                                  | 7                                  | 10%                                |
| Chaperonin GroEL                                                                 | FTL_1714 | 57402.70                       | 100.00%                                  | 16                                 | 46%                                |
| Co-chaperonin GroES                                                              | FIL_1715 | 10271.87                       | 100.00%                                  | 2                                  | 24%                                |
| Hypothetical protein                                                             | FTL_1723 | 23828.44                       | 100.00%                                  | 3                                  | 17%                                |
| S-adenosylmethionine synthetase                                                  | FTL_1739 | 42103.04                       | 99.80%                                   | 2                                  | 7%                                 |
| DNA-directed RNA polymerase, beta subunit                                        | FIL_1743 | 157387.04                      | 100.00%                                  | 26                                 | 24%                                |
| DINA-GIRECTEG KNA POLYMERASE SUBUNIT DETA                                        | FIL_1/44 | 101335.00                      |                                          | 19                                 | 19%                                |
| 505 ribosomal protein L1/L12                                                     | FIL_1/40 | 12047.0Z                       | 33.00%<br>100.00%                        | 2<br>F                             | ZU%                                |
| 50S ribosomal protein L10                                                        | FIL_1/40 | 24644 67                       | 100.00%                                  | С<br>11                            | 4∠%<br>54%                         |
| 500 ribosomal protein L11                                                        | FIL_1/4/ | 24041.07                       |                                          | 2                                  | 0470<br>16%                        |
| Transcription antitermination protein puse                                       | FTL 1740 | 10081 00                       | 100.00%                                  | ა<br>ვ                             | 21%                                |
| Elongation factor Tu                                                             | FTI 1751 | 43390 62                       | 100.00%                                  | 3<br>13                            | ∠ı⁄₀<br>38%                        |
|                                                                                  |          | 10000.02                       | 100.0070                                 | .0                                 | 00/0                               |

| Protein name                                                                              | Locus    | Predicted<br>molecular<br>mass | Protein<br>identification<br>probability | Number<br>of<br>unique<br>peptides | Percentage<br>sequence<br>coverage |
|-------------------------------------------------------------------------------------------|----------|--------------------------------|------------------------------------------|------------------------------------|------------------------------------|
| Anaerobic glycerol-3-phosphate dehydrogenase                                              | FTL_1756 | 57775.19                       | 100.00%                                  | 11                                 | 26%                                |
| Sensor histidine kinase                                                                   | FTL_1762 | 54752.94                       | 100.00%                                  | 3                                  | 7%                                 |
| Aconitate hydratase                                                                       | FTL_1772 | 102703.80                      | 100.00%                                  | 13                                 | 24%                                |
| Dihydrolipoamide succinyltransferase component of<br>2-oxoglutarate dehydrogenase complex | FTL_1783 | 52717.94                       | 100.00%                                  | 9                                  | 29%                                |
| Alpha-ketoglutarate decarboxylase                                                         | FTL_1784 | 105679.39                      | 100.00%                                  | 18                                 | 24%                                |
| Succinate dehydrogenase iron-sulfur subunit                                               | FTL_1785 | 26565.80                       | 100.00%                                  | 5                                  | 24%                                |
| Succinate dehydrogenase, catalytic and<br>NAD/flavoprotein subunit                        | FTL_1786 | 65860.61                       | 100.00%                                  | 7                                  | 15%                                |
| F0F1 ATP synthase subunit epsilon                                                         | FTL_1794 | 15736.95                       | 100.00%                                  | 3                                  | 30%                                |
| F0F1 ATP synthase subunit beta                                                            | FTL_1795 | 49864.94                       | 100.00%                                  | 10                                 | 37%                                |
| F0F1 ATP synthase subunit gamma                                                           | FTL_1796 | 33235.28                       | 100.00%                                  | 4                                  | 18%                                |
| F0F1 ATP synthase subunit alpha                                                           | FTL_1797 | 55536.23                       | 100.00%                                  | 10                                 | 23%                                |
| F0F1 ATP synthase subunit delta                                                           | FTL_1798 | 19202.29                       | 99.90%                                   | 2                                  | 20%                                |
| F0F1 ATP synthase subunit B                                                               | FTL_1799 | 17383.26                       | 100.00%                                  | 7                                  | 45%                                |
| Translation initiation factor IF-2                                                        | FTL_1809 | 92422.06                       | 100.00%                                  | 10                                 | 20%                                |
| Transcription elongation factor NusA                                                      | FTL_1810 | 55178.89                       | 100.00%                                  | 6                                  | 15%                                |
| Hypothetical protein                                                                      | FTL_1811 | 16546.95                       | 100.00%                                  | 4                                  | 35%                                |
| NADH dehydrogenase subunit G                                                              | FTL_1824 | 87340.84                       | 100.00%                                  | 9                                  | 17%                                |
| NADH dehydrogenase I, F subunit                                                           | FTL_1825 | 46282.70                       | 100.00%                                  | 3                                  | 9%                                 |
| NADH dehydrogenase subunit D                                                              | FTL_1827 | 47585.74                       | 100.00%                                  | 6                                  | 16%                                |
| NADH dehydrogenase I                                                                      | FTL_1828 | 24988.46                       | 99.80%                                   | 2                                  | 11%                                |
| Amidophosphoribosyltransferase                                                            | FTL_1861 | 55417.57                       | 100.00%                                  | 4                                  | 8%                                 |
| Outer membrane protein toIC precursor                                                     | FTL_1865 | 57243.63                       | 100.00%                                  | 3                                  | 11%                                |
| Protein-L-isoaspartate O-methyltransferase                                                | FTL_1866 | 23203.94                       | 99.80%                                   | 2                                  | 11%                                |
| GTPase ObgE                                                                               | FTL_1874 | 36887.99                       | 99.80%                                   | 2                                  | 10%                                |
| Glutamine synthetase                                                                      | FTL_1899 | 38256.94                       | 99.80%                                   | 2                                  | 9%                                 |
| Cell division protein FtsZ                                                                | FTL_1907 | 39745.31                       | 100.00%                                  | 11                                 | 41%                                |
| Cell division protein FtsA                                                                | FTL_1908 | 44804.05                       | 100.00%                                  | 7                                  | 20%                                |
| 30S ribosomal protein S1                                                                  | FTL_1912 | 61669.35                       | 100.00%                                  | 9                                  | 22%                                |
| Adenylosuccinate synthetase                                                               | FTL_1930 | 46879.73                       | 100.00%                                  | 2                                  | 8%                                 |
| ABC transporter, ATP-binding protein                                                      | FTL_1935 | 25593.76                       | 99.80%                                   | 2                                  | 12%                                |
| Periplasmic solute binding family protein                                                 | FTL_1936 | 33814.86                       | 100.00%                                  | 7                                  | 40%                                |
| Heat shock protein                                                                        | FTL_1957 | 16739.78                       | 99.80%                                   | 2                                  | 15%                                |
| Bitunctional indole-3-glycerol phosphate<br>synthase/phosphoribosylanthranilate isomerase | FTL_1958 | 51323.54                       | 100.00%                                  | 3                                  | 11%                                |
| Anthranilate synthase component I                                                         | FTL_1966 | 58066.29                       | 100.00%                                  | 4                                  | 11%                                |

#### Proteins identified in MPF by 2D LC-MS/MS, continued

Protein identifications were accomplished using Scaffold version 2\_01\_02 software. Identifications were accepted if they could be established at greater than 99.0% probability and contained at least two identified peptides as assigned by the protein prophet algorithm.

The similarity of *F. tularensis* LVS surface proteins to homologs of other *Francisella* species, subspecies, and populations

| The similarity of F. tularensis LVS surface proteins to hor       | nologous of other Francisella            | species, subspecies, an        | d populations                                 |                                                |                      |                                   |                                       |
|-------------------------------------------------------------------|------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------|----------------------|-----------------------------------|---------------------------------------|
|                                                                   | F. tularensis LVS (type B) loci          | F. tularensis OSU18            | F. tularensis Schu S4                         | F. tularensis MA00-2897                        | F. tularensis WY96-  | F. novicida U112 loci             | F. tularensismediasiatica             |
|                                                                   | / protein size ( # amino acids)          | size (# amino acids)           | (A Id) IOCI / protein size<br>(# amino acids) | (A III) IOCI / Protein Size (#<br>amino acids) | size (# amino acids) | / protein size (#<br>amino acids) | ioci / proteinsize (# annio<br>acids) |
| Outer membrane protein                                            | FTL_0009 / 179                           | FTH_0009 / 191                 | FTT_1747 / 191                                | *FTMG_01241 / 79                               | FTW_1985 / 191       | FTN_0119 / 179                    | FTM_1727 / 179                        |
| Intracellular growth locus, subunit A                             | FTL_0111 / 184                           | FTH_0103 / 196                 | FTT_1359 / 196                                | FTMG_01711 / 196                               | FTW_0535 / 184       | FTN_1324 / 184                    | FTM_1711 / 184                        |
| Intracellular growth locus, subunit B                             | FTL_0112 / 506                           | FTH_0104 / 514                 | FTT_1358 / 514                                | FTMG_01710 / 514                               | FTW_0536 / 506       | FTN_1323 / 506                    | FTM_1710 / 506                        |
| Intracellular growth locus, subunit C                             | FTL_0113 / 209                           | FTH_0105 / 211                 | FTT_1357 / 211                                | FTMG_01636 / 211                               | FTW_0537 / 211       | FTN_1322 / 209                    | FTM_1709 / 209                        |
| Hypothetical protein                                              | FTL_0123 / 164                           | FTH_0115 / 164                 | FTT_1347 / 164                                | FTMG_01699 / 164                               | FTW_0547 / 164       | FTN_1312 / 164                    | FTM_1699 / 164                        |
| Elongation factor G                                               | FTL_0234 / 704                           | FTH_0229 / 704                 | FTT_0323 / 704                                | *FTMG_01100 / 273                              | FTW_1759 / 704       | FTN_0237 / 704                    | FTM_1529 / 704                        |
| Heat shock protein 90                                             | FTL_0267 / 628                           | *Gene absent                   | FTT_0356 / 628                                | *FTMG_01718/ 628                               | FTW_1729 / 628       | FTN_0266 / 628                    | FTM_0300 / 628                        |
| Glutamate dehydrogenase                                           | FTL_0269 / 449                           | FTH_0268 / 449                 | FTT_0380 / 449                                | FTMG_00268 / 186                               | FTW_0766 / 449       | FTN_1532 / 449                    | FTM_1499 / 449                        |
| OmpA family protein                                               | FTL_0325 / 417                           | FTH_0323 / 417                 | FTT_0831 / 417                                | FTMG_00712 / 417                               | FTW_1355 / 417       | FTN_0346 / 417                    | FTM_0423 / 417                        |
| Peptidoglycan-associated lipoprotein                              | FTL_0336 / 207                           | FTH_0334 / 207                 | FTT_0842 / 207                                | FTMG_00723 / 207                               | FTW_1344 / 207       | FTN_0357 / 207                    | FTM_0434 / 207                        |
| Aspartate aminotransferase                                        | FTL_0387 / 396                           | FTH_0378 / 396                 | FTT_0884 / 396                                | FTMG_00763 / 396                               | FTW_1295 / 396       | FTN_0410 / 396                    | FTM_0473 / 396                        |
| Lipoprotein                                                       | FTL_0421 / 149                           | FTH_0414 / 149                 | FTT_0901 / 149                                | FTMG_00011 / 149                               | FTW_1278 / 149       | FTN_0427 / 149                    | FTM_0489 / 149                        |
| Hypothetical protein                                              | FTL_0569 / 178                           | FTH_0570 / 178                 | FTT_1542 / 178                                | FTMG_00937 / 178                               | FTW_0387 / 178       | FTN_1451 / 178                    | FTM_0356 / 179                        |
| Hypothetical protein                                              | FTL_0572 / 476                           | FTH_0573 / 476                 | FTT_1539 / 476                                | FTMG_00934 / 476                               | FTW_0390 / 476       | FTN_1448 / 476                    | FTM_0359 / 476                        |
| Hypothetical protein                                              | FTL_0617 / 146                           | FTH_0620 / 161                 | FTT_1441 / 161                                | FTMG_00833 / 161                               | FTW_0445 / 157       | FTN_1410 / 146                    | FTM_1475 / 146                        |
| AhpC/TSA family protein                                           | FTL_1015 / 174                           | FTH_0990 / 174                 | FTT_0557 / 174                                | FTMG_00439 / 174                               | FTW_0983 / 174       | FTN_0958 / 174                    | FTM_1128 / 174                        |
| 50S ribosomal protein L9                                          | FTL_1026 / 151                           | FTH_1002 / 154                 | FTT_1060 / 151                                | FTMG_00172 / 154                               | FTW_0970 / 151       | FTN_0949 / 151                    | FTM_0893 / 151                        |
| Lipoprotein                                                       | FTL_1096 / 373                           | FTH_1071 / 373                 | FTT_1103 / 365                                | FTMG_00217 / 365                               | FTW_1411 / 373       | FTN_0771 / 373                    | FTM_1247 / 373                        |
| Glyceraldehyde-3-phosphate dehydrogenase                          | FTL_1146 / 333                           | FTH_1121 / 352                 | FTT_1368 / 348                                | FTMG_01648 / 348                               | FTW_0523 / 348       | FTN_1332 / 333                    | FTM_0654 / 1009                       |
| Chaperone protein dnaK                                            | FTL_1191 / 642                           | FTH_1167 / 642                 | FTT_1269 / 642                                | FTMG_01748 / 642                               | FTW_0571 / 642       | FTN_1284 / 642                    | FTM_1061 / 642                        |
| Hypothetical protein                                              | FTL_1225 / 229                           | FTH_1203 / 229                 | FTT_0975 / 229                                | FTMG_00087 / 229                               | FTW_0879 / 77        | FTN_0855 / 229                    | FTM_0973 / 229                        |
| Outer membrane associated protein                                 | FTL_1328 / 392                           | FTH_1293 / 393                 | FTT_0583 / 393                                | FTMG_00466 / 392                               | FTW_1428 / 393       | FTN_0756 / 392                    | FTM_1261 / 392                        |
| Hypothetical protein                                              | FTL_1494 / 169                           | FTH_1449 / 169                 | FTT_1334 / 169                                | FTMG_01519 / 169                               | FTW_1500 / 169       | FTN_0643 / 169                    | FTM_1348 / 169                        |
| Peroxidase/catalase                                               | FTL_1504 / 728                           | FTH_1458 / 741                 | FTT_0721 / 741                                | FTMG_00604 / 741                               | FTW_1518 / 741       | FTN_0633 / 739                    | FTM_1361 / 741                        |
| Chitinase family 18 protein                                       | FTL_1521 / 764                           | FTH_1471 / 760                 | FTT_0715 / 760                                | FTMG_00598 / 760                               | FTW_2084 / 198       | FTN_0627 / 870                    | FTM_1367 / 776                        |
| Enolase (2-phosphoglycerate dehydratase)                          | FTL_1527 / 456                           | FTH_1477 / 456                 | FTT_0709 / 456                                | FTMG_00592 / 456                               | FTW_1532 / 456       | FTN_0621 / 456                    | FTM_1373 / 456                        |
| Succinyl-CoA synthetase subunit beta                              | FTL_1553 / 387                           | FTH_1504 / 387                 | FTT_0504 / 387                                | FTMG_00391 / 387                               | FTW_1561 / 387       | FTN_0594 / 387                    | FTM_1400 / 387                        |
| Hypothetical protein                                              | FTL_1579 / 239                           | FTH_1525 / 239                 | FTT_0484 / 239                                | FTMG_00372 / 239                               | FTW_1586 / 239       | FTN_0575 / 239                    | FTM_1419 / 239                        |
| Acetyl-CoA carboxylase, biotin carboxyl carrier protein subunit   | FTL_1592 / 157                           | FTH_1538 / 157                 | FTT_0472 / 157                                | FTMG_00360 / 157                               | FTW_1598 / 157       | FTN_0563 / 160                    | FTM_1431 / 157                        |
| Hypothetical protein                                              | FTL_1658 / 438                           | FTH_1599 / 438                 | FTT_0119 / 438                                | FTMG_01378 / 438                               | FTW_0204 / 438       | FTN_1596 / 438                    | FTM_0181 / 439                        |
| Chaperonin GroEL                                                  | FTL_1714 / 544                           | FTH_1651 / 544                 | FTT_1696 / 544                                | FTMG_01472 / 544                               | FTW_0264 / 544       | FTN_1538 / 544                    | FTM_0235 / 544                        |
| 50S ribosomal protein L7/L12                                      | FTL_1745 / 125                           | FTH_1685 / 125                 | FTT_0143 / 125                                | *FTMG_01581 and<br>FTMG_01582 / 38 and 62      | FTW_0233 / 125       | FTN_1569 / 125                    | FTM_0208 / 126                        |
| Elongation factor Tu                                              | FTL_1751 / 394                           | FTH_1691 / 394                 | FTT_0137 / 394                                | *FTMG_01128 / 605                              | FTW_0227 / 394       | FTN_1576 / 394                    | FTM_0201 / 394                        |
| Aconitate hydratase                                               | FTL_1772 / 937                           | FTH_1708 / 937                 | FTT_0087 / 937                                | FTMG_01346 / 937                               | FTW_0164 / 937       | FTN_1623 / 937                    | FTM_0152 / 937                        |
| Succinate dehydrogenase, catalytic and NAD/flavoprotein subunit   | FTL_1786 / 597                           | FTH_1722 / 597                 | FTT_0074 / 597                                | FTMG_01333 / 509                               | FTW_0150 / 597       | FTN_1637 / 597                    | FTM_0138 / 597                        |
| Citrate synthase                                                  | FTL_1789 / 419                           | FTH_1725 / 424                 | FTT_0071 / 424                                | FTMG_01330 / 424                               | FTW_0147 / 421       | FTN_1640 / 419                    | FTM_0135 / 419                        |
| Cell division protein FtsZ                                        | FTL_1907 / 381                           | FTH_1830 / 381                 | FTT_0188 / 381                                | FTMG_00967 / 381                               | FTW_1903 / 381       | FTN_0164 / 381                    | FTM_1653 / 381                        |
| 30S ribosomal protein S1                                          | FTL_1912 / 556                           | FTH_1835 / 574                 | FTT_0183 / 556                                | FTMG_01621 / 556                               | FTW_1908 / 556       | FTN_0159 / 556                    | FTM_1658 / 556                        |
| Protein sequence information was derived from GenBank or the Broa | d Institute databases. Sequences obtaine | d from the latter are denotted | by *.                                         |                                                |                      |                                   |                                       |

Protein sequence information was derived from GenBank or the Broad Institute databases. Seque Loci in bold differ in protein size (number of amino acids) compared to F. tularensis LVS.

Primers used to construct recombinant chitinases and chitinase knockouts

| Primers                | used to ge        | snerate I        | histidine tagged chitinase recombinants                      |                                                  |
|------------------------|-------------------|------------------|--------------------------------------------------------------|--------------------------------------------------|
| Chitinase<br>class     | Loci <sup>a</sup> | Amplicor<br>size | ា Forward primer (5'-3') <sup>b</sup>                        | Reverse Primer (5'-3') <sup>b</sup>              |
| ChiA                   | FTT_0715          | 2292             | <u>GCT AGC</u> ATG AAC AAA ACA AAA TTA GTC TCA GTA G         | <u>GTC GAC</u> TTG TTT TTC CCA AAC ATT AC        |
|                        | FTH_1471          | 2292             | <u>GCT AGC</u> ATG AAC AAA ACA AAA TTA GTC TCA GTA G         | <u>GTC GAC</u> TTG TTT TTC CCA AAC ATT AC        |
|                        | FTN_0627          | 2622             | <u>GCT AGC</u> ATG AAC AAA ACA AAA TTA                       | <u>GTC GAC</u> TTG TTT TTC CCA AAC               |
| ChiB                   | FTT_1768          | 1830             | <u>GCT AGC</u> ATG CCA TAT TCT GAT ACC C                     | <u>СТС GAG</u> ТТТ АТС АТТ ТАТ АGG АТА А         |
|                        | FTH_0088          | 2202             | <u>GCT AGC</u> ATG AAA TAC AAA AAG TTA TTA                   | <u>СТС GAG</u> ТТТ АТС АТТ ТАТ АGG АТА А         |
|                        | FTN_1744          | 2202             | <u>GCT AGC</u> ATG AAA TAC AAA AAG TTA TT                    | <u>СТС GAG</u> ТТТ АТС АТТ ТАТ АGG АТА АА        |
| ChiC                   | FTT_1592          | 1173             | <u>ACT AGT</u> GTG ACT GGA TAT AAA GCT ATC                   | <u>CTC GAG</u> TTT AGA AGT ATA CTT TTC TTG AG    |
|                        | FTW_0313          | 2298             | <u>АСТ АGТ</u> АТG ААА ААА АТG ААА ТТА АТС ТСА ТС            | <u>CTC GAG</u> TTT AGA AGT ATA CTT TTC TTG AG    |
|                        | FTH_1579          | 2049             | <u>ACT AGT</u> ACT ACT ATT AAA TCA GCA TCA TC                | CTC GAG TCG ACT TCC ATG CC                       |
| ChiD                   | FTT_0066          | 2853             | <u>GCT AGC</u> ATG AGA AAA CTT TTT ATA A                     | <u>CTC GAG</u> TTT ACT ATC TAT TTT TGT CCA       |
|                        | FTT_0142          | 2853             | <u>GCT AGC</u> ATG AGA AAA CTT TTT ATA A                     | <u>CTC GAG</u> TTT ACT ATC TAT TTT TGT CCA       |
|                        | FTT_1730          | 2853             | <u>GCT AGC</u> ATG AGA AAA CTT TTT ATA A                     | <u>CTC GAG</u> TTT ACT ATC TAT TTT TGT CCA       |
|                        | FTN_1644          | 2853             | <u>GCT AGC</u> ATG AGA AAA CTT TTT ATA A                     | CTC GAG TIT ACT ATC TAT TIT TGT CCA              |
| <sup>a</sup> FTT corre | sponds to A16     | a/A1b strair     | ns; FTW corresponds to A2 strains; FTH corresponds to type B | strains; FTN corresponds to F. novicida strains. |

<sup>b</sup>The Nhel (GCT AGC), Spel (ACT AGT), Sall (GTC GAC) and Xhol (CTC GAG) restriction sites are underlined.

| ants       |
|------------|
| combin     |
| ase rec    |
| d chitin   |
| tagged     |
| histidine  |
| enerate h  |
| ised to ge |
| rimers u   |

217

| Internal sequencing primers (5 - 3)                        |                                                 |                                                   |                                    |
|------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------|
| Loci <sup>a</sup> Primer 1                                 | Primer 2                                        | Primer 3                                          | Primer 4                           |
| FTT_0715 GTATGG AAA ACT TTG CTA AGC AGT                    | <u> GTT GCA TTG CTA CTT TAC CGT ACT TGT TAA</u> | 1                                                 | 1                                  |
| FTH_1471 GTATGG AAA ACT TTG CTA AGC AGT                    | GTT GCA TTG CTA CTT TAC CGT ACT TGT TAA         | 1                                                 | ·                                  |
| FTN_0627 GTA TGG AAA ACT TTG CTA AGC AGT                   | GTT GCA TTG CTA CTT TAC CGT ACT TGT TAA         | CGC TAG ATC AAT GAC TGT AGC TAG TG                |                                    |
| FTT_1768 GAG CCT ATA ACT TTA GGC AAG GG                    | <u> GAT AAA GTT GCA GGA CCA CTT CT</u>          | TTT ACG AAA CAC GGA AAC CGA A                     |                                    |
| FTH_0088 GAG CCT ATA ACT TTA GGC AAG GG                    | GGG TGA GTT TAC AAT TAA GCC AG                  | 1                                                 | ·                                  |
| FTN_1744 GGG TGA GTT TAC AAT TAA GCC AG                    | ACA ACT GGC TTA CCT CAA ACT AT                  |                                                   | ı                                  |
| FTT_1592                                                   |                                                 |                                                   | ı                                  |
| FTT_1593                                                   | ·                                               | ı                                                 | ı                                  |
| FTW_0313 GTT ATT GCT GAA GTG AAA GAT GCT A                 | AGC AAC AGT CTC GCC AGC TGA G                   | GAC GTT AGA TGG TTC ACC AAA TCC T                 | CTG CAG AAG ATG TGG CTC CTT AC     |
| FTH_1579 GTT ATT GCT GAA GTG AAA GAT GCT A                 | GAC GTT AGA TGG TTC ACC AAA TCC T               | ı                                                 | ·                                  |
| FTT_0066 TAA TTG CTG CTG AAC CAG AAG T                     | CAT GGG CCA GTT GTT GCT GG                      | GTA GTT CTG ATA TGC CTA AGA ATG AT                | GGA TAC ATT CCA AAT GGA CTA TAT GG |
| $FTW_0142$ TAA TTG CTG CTG AAC CAG AAG T                   | CAT GGG CCA GTT GTT GCT GG                      | <b>GTA GTT CTG ATA TGC CTA AGA ATG AT</b>         | GGA TAC ATT CCA AAT GGA CTA TAT GG |
| FTH_1730 TAA TTG CTG CTG AAC CAG AAG T                     | CAT GGG CCA GTT GTT GCT GG                      | <b>GTA GTT CTG ATA TGC CTA AGA ATG AT</b>         | GGA TAC ATT CCA AAT GGA CTA TAT GG |
| FTN_1644 TAA TTG CTG CTG AAC CAG AAG T                     | CAT GGG CCA GTT GTT GCT GG                      | <b>GTA GTT CTG ATA TGC CTA AGA ATG AT</b>         | GGA TAC ATT CCA AAT GGA CTA TAT GG |
| <sup>a</sup> FTT corresponds to A1a/A1b strains; FTW corre | ssponds to A2 strains; FTH corresponds to type  | e B strains; FTN corresponds to <i>F. novicid</i> | a strains.                         |

Internal sequencing primers (5'-3')

| Primers us                        | ed fc  | or constructing kr   | nockouts              | and complemented knockouts                        |                                               |
|-----------------------------------|--------|----------------------|-----------------------|---------------------------------------------------|-----------------------------------------------|
| Construct                         |        | -ragment amplified   | Amplicon<br>size (bp) | Forw ard primer (5'-3') <sup>b</sup>              | Reverse Primer (5'-3') <sup>b</sup>           |
| рМР590-                           | chiA   | upstream             | 562                   | ТТТ GAC ТАА <u>GGA TCC</u> АТА ТТА АС             | TCT AGC A <u>GT CGA C</u> AT GAT CC           |
|                                   | chiA   | downstream           | 941                   | AAG TAG CTG CAG ACC AAG GC                        | АGT ТА <u>G GAT CC</u> A ATT ACT ААТ АG       |
| рМР590-                           | chiC   | upstream             | 477                   | ATG AGT <u>ACG CGT</u> ATG ATG CTG                | ATC CTC GTC GAC ACG G                         |
|                                   | chiC   | downstream           | 608                   | TAA CAC A <u>GT CGA C</u> AT TTA TGG              | AGG AA <u>A CGC GT</u> C ATA CTA TC           |
| pMP529- <i>chiA</i>               | chiA   |                      | 2918                  | ААТ <u>АСС ССТ</u> ТСА ТСТ GAG СТС СТТ ТАА GC     | ТАТ <u>АСС ССТ</u> ТАТ СТТ САТ ААА ТТА ТСС GC |
| pMP529- <i>chi</i> C <sup>a</sup> | chiC   |                      | 2298                  | <u>ACG CGT</u> ATG AAA AAG ATG AAA TTA ATC TCA TC | <u>ACG CGT</u> TTT AGA AGT ATA CTT TTC TTG AG |
| <sup>a</sup> Primers design       | sn pəu | ing complement seque | ence.                 |                                                   |                                               |

<sup>b</sup>The BamHI (GGA TCC), Sall (GTC GAC), Pstl (CTG CAG) and Mlul (ACG CGT) restriction sites are underlined.

Bioinformatic analyses of F. tularensis and F. novicida chitinases

**ChiA:** Homologues of *F. novicida* ChiA were identified in *F. tularensis* A1a, A1b, A2 and type B. The *F. tularensis* A1a/A1b and type B, and *F. novicida chiA* genes were predicted to encode proteins of 760, 760 and 870 amino acids respectively (Fig. 5.2A). The *F. tularensis* A2 *chiA* gene is annotated as a pseudogene and is predicted to encode a truncated product of 198 amino acids. All the predicted intact ChiA proteins contained a full length GH18 domain (PfamID: PF00704). Three accessory domains, fibronectin type 3 domain (Pfam ID: PF00041) and two tandem carbohydrate binding domains (PfamID: PF02839), were identified in the ChiA sequences of *F. tularensis* A1a, A1b, and type B, and *F. novicida*. The *F. novicida* ChiA, however, possessed a third carbohydrate binding domain that partially accounts for its larger size. All accessory domains are located C-terminal to the GH18 domain. All *chiA* gene products were predicted to possess an N-terminal signal peptide suggesting they are translocated across the CM.

**ChiB:** The genomes of *F. tularensis* A1a, A1b, and type B, and *F. novicida* possessed the *chiB* gene encoding chitinases of 606, 730 and 730 amino acids, respectively, and that contained an intact GH18 domain. *F. tularensis* A2 displayed an altered *chiB* gene resulting in a product with a 566 amino acid truncation that accounts for the absence of the GH18 domain (Fig. 5.2B). A partial *N*-acetylglucosamine-binding protein A domain (conserved domain (cdd) ID: PRK13211) was identified at the N-terminus of all predicted ChiB proteins except that of the *F. tularensis* A1a/ A1b where a 124 amino acid N-terminal truncation occurs. This truncation also encompassed the signal peptide conserved in the other ChiB sequences of *F. tularensis* A2 and type B, and *F. novicida*.

**ChiC:** The third chitinase (ChiC) identified in *F. tularensis* A1a, A1b, A2 and type B, and *F. novicida* differed significantly when compared across the subtypes. *F. tularensis* A2 and *F. novicida* strains GA99-3548 and GA99-3549 encode *chiC* with

221

predicted full length products of 762 amino acids. The *F. tularensis* type B ChiC contained a C-terminal truncation of 58 amino acids that impacts the GH18 domain. Most interestingly, the *F. tularensis* A1a/A1b *chiC* gene possessed a point mutation that causes a premature stop codon and two predicted ORFs. In *F. tularensis* A1a these two reading frames were annotated as FTT\_1592 and FTT\_1593 and encode products of 387 and 207 amino acids, respectively. The *F. tularensis* A1a FTT\_1592 ORF encodes for the C-terminal portion of ChiC that includes a complete GH18 domain (Fig. 5.2C). The ChiC proteins also possess two tandem carbohydrate binding domains (PfamID: PF02839). The position of these domains is directly after the N-terminal signal sequence, a location that is in sharp contrast to those of the ChiA proteins.

**ChiD**: ChiD was highly conserved among all *Francisella* species and populations (Fig. 5.2D). All were predicted to contain a full length C-terminal GH18 domain, and an incomplete second GH18 domain. A partial *N*-acetylglucosamine-binding protein A domain was also predicted at the C-terminus. It should be noted that the shotgun genome sequence used by others to assemble the *F. tularensis* A1b genome found several alterations in *chiD*, including a mutation leading to a premature stop codon. However, our conventional sequencing of *chiD* amplified by PCR from *F. tularensis* A1b strain MA00-2987 found it to be identical to the *F. tularensis* A1a *chiD*.