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ABSTRACT
A NUMERICAL SIMULATION OF A COLD OROGRAPHIC CLOUD SYSTEM

A computer simulation of a two-dimensional, meso-scale, cold
orographic cloud system, which represents the first stage of develop-
ment of a comprehensive model, is presented. Simulation is achieved
by numerically solving, in finite difference form, a set of time-
dependent hydrodynamic and thermodynamic equations. The domain of
solution is an 11 kilometer long and 3.5 kilometer deep rectangular
box containing a triangular orographic barrier with an altitude of 1
kilometer and base of 3 kilometers. Grid spacing is constant at 100
meters. The equations of the model are based upon Ogura and Phillips
(1962), Ogura (1963), and Orville (1965), with appropriate modifications
in the energy and vorticity equations relevant to a cold cloud system.
Ice microphysics is not included. The condensation-evaporation process
is included by parameterization, but the precipitation mechanism is
omitted. Condensation is continually driven by the forced 1ifting of
upstream moisture over the orographic barrier and is influenced by the
formation of a lee wave structure that evolves in time as the solution
progresses from the initial state. The bulk thermal stratification of
the model is stable, as governed by the upstream temperature sounding.

An expedient method of initialization, which minimizes the
adjustment or "settling down" period associated with the degree of
refinement of the initial state of a numerical solution, was developed.
Special emphasis was given to the development of physically realistic
boundary conditions that minimize artificialities inherent in numerical

solutions as caused by wrongly posed numerical boundary conditions. A

ii



significant "state of the art" achievement was realized in developing
the appropriate boundary conditions.

Two basic cases were performed, corresponding to one elapsed
hour of atmospheric time: one in which the top boundary was a rigid
1id, and the other in which the boundary was flexible, allowing wave
energy to pass through the boundary. These two cases utilized a
"Tocally" constant eddy exchange coefficient i.e. the coefficient
appears as a constant in the transport equations. In both cases a cap
cloud formed over the orographic obstacle and a lenticular cloud formed
downstream in the first lee wave crest. The clouds contain water only,
no ice. A comparison of kinetic energy and cloud evolutions indicated
that the flexible boundary is more appropriate than the rigid boundary.
A third case was performed, simulating a shorter span of time than the
other cases, using a non-linear, finite-differenced eddy exchange
coefficient. The flexible boundary was employed in this case. Results
favored using the non-linear coefficient over the "locally" constant
coefficient of the other cases pending an improvement on the boundary

condition for the eddy coefficient at the Tower boundary.
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1.0 INTRODUCTION

1.1 General Statement of the Research

This report represents completion of the initial phase in the
development of a computer-simulated, two-dimensional, meso-scale,cold
orographic cloud system. The method of simulation involves the numerical
solution of a set of shallow convection hydrodynamic and thermodynamic
equations similar to a set first derived by Ogura and Phillips (1962),
extended by Ogura (1963), and further extended by Orville (1965). Finite
difference analogs are applied to the equations in their analytical form
in order to establish the numerical framework. The goal herein is to
describe the method of simulation, discuss its merits and limitations,
and to indicate both the successes and failures encountered during the
development of the cloud model. The work up to the present time has
established a firm basis for a more realistic simulation in the future
development of the orographic cloud model with the knowledge gained
pointing to those areas where more refinement is needed and suggesting
future avenues of numerical experimentation. It is envisioned that the
cloud model, coupled with actual field observations, will lend greater
understanding to the physical processes of the real atmosphere, indicating
the relative importance of the mechanisms involved in a cold orographic
cloud system. A long range objective is to utilize the model, when it
has been developed to a sufficient level of sophistication, to evaluate
weather modification potential in a cold orographic system.

1.2 Background Information for the Present Stage of Development

Orography, or mountainous terrain, is known to have considerable
influence on both synoptic (alobal) and meso-scale (local) circulations

as well as the associated microclimate. Under varying conditions,



mountain surfaces act as elevated heat and moisture sources or sinks,

as well as mechanical 1ifting devices to upstream heat, momentum, and
moisture. The manner in which a mountain behaves is dependent on such
interrelated conditions as surface roughness and slope, vegetation and
snow covering, and the prevailing seasonal and daily cycles of solar
insolation and radiative losses. The thermodynamic stratification of

the ambient atmosphere is of prime importance to the general influence
of an orographic obstacle on flow behavior. This 1list is by no means
exhaustive and one can realize that orographic influence is quite complex
indeed.

In the first stage of development in the model, it was not possible
or realistic to incorporate all of the above physical mechanisms. The
long range goal is to extend the structure of the model to include other
phenomena as experience and knowledge are gained.

In the presented cold orographic cloud model, the major forcing
mechanisms are considered to be the upstream temperature, moisture, and
momentum. The orographic barrier is treated strictly as a mechanical
1lifting device which acts neither as a thermodynamic source nor sink,
Radiation is therefore omitted at the mountain surface and in the over-
lying atmosphere. No surface roughness is characterized explicitly.

The horizontal scale of the modelled system is presently not large
enough for significant ice growth (i.e. a parcel travels through the
system in a relatively short time). Initial calculations of the ice
nucleation and growth-by-diffusion processes indicated they were much
too small to include in the model for the average residence time of a
parcel. The potential exists for the inclusion of ice in the next phase

of the model development at which time the size of the system will be



increased significantly. The model is presently 11 kilometers long and
3.5 kilometers deep. Condensation occurs in the model but precipitation
of the condensation products does not occur at this time.

Field data have been used to help determine initial conditions, to
serve as a guide for boundary conditions, and to act as a basis for
comparison with the simulated results. Classical analytical solutions
and classical field observations for airflow over mountains also have
been consulted for added comparison and reinforcement.

1.3 Aspects of the Numerical Approach

The dependent variables appearing in the equations of the simulated
cloud system interact in a complicated and nonlinear manner, making a
closed-form analytical solution cumbersome, if not impossible. A
numerical approach allows for solutions of the variables at discrete
points in space for discrete steps in time. Although this technique
does not make drastic linearizing assumptions necessary for an analytical
solution (if one is even possible), it has many associated difficulties,
which must be overcome.

At large or essentially infinite vertical and horizontal distances
from an orographic barrier, definite statements about the magnitude and
general behavior of the system variables can be cited. However, in the
finite difference case, as opposed to the analytic case, it is not
convenient to place the boundaries at large distances from the obstacle
because this would increase the number of grid points to the extent that
either computer memory is exceeded or the computational time becomes
exorbitantly impractical. Therefore, an arbitrary, smaller region of
the total atmosphere must be chosen. (The equations are based upon the
Boussinesq assumption with regard to density, so the vertical extent of

the solution is limited even in the analytical case.)



Boundary conditions must be applied to the resulting artificial
boundaries such that a numerical solution is possible, but more importantly,
such that physical reality is not hampered. Many numerical solutions
appearing in the Titerature have employed boundary conditions that permit
solutions yet distort the physics of the problem. Such results do not
correlate with the real world or, at best, are no better than a Tinearized
analytical solution.

In view of this, one of the major pursuits of the research has been
to seek realistic boundary conditions that insure uniqueness to the
equations in their analytical form, satisfy requirements for a numerical
solution, and minimize any artificiality on the character of the solution.
A significant degree of success has been realized in this pursuit after
the expenditure of several efforts. These various efforts will be
summarized in the text of this thesis, with the goal of illustrating the
types of difficulties that arise in a numerical solution with respect to
boundary conditions.

Another difficulty associated with numerical solutions involves the
grid spacing or the distance between discrete points in the grid domain.
Phenomena smaller in scale than the grid length, known as "sub-grid"
phenomena, (e.g. turbulence, thermodynamic gradients, etc.) are lost to
the system unless they are somehow included by a parameterization.
Requirements for spatial resolution are most critical at specific regions
in the grid network (e.g. where microphysical or dynamical events are
most pronounced such as in a cloud or near the earth's surface) which
suggests using a variable, or expanded, grid spacing in those areas. For
convenience, the presented model has a constant grid spacing of 100

meters, which was chosen with regard to the total size of the grid network.



Turbulent mixing in the model is parameterized by an eddy exchange
coefficient which varies in space.

Time resolution, above and beyond numerical stability criteria,
generally does not present much of a problem in numerical solutions.
Time steps are usually small in comparison to the physical events being
modelled but one must proceed cautiously to be certain that this is true.
For example, models including sound waves have a much more stringent
requirement for temporal resolution than do incompressible models.

Lastly, phenomena larger in scale than the total grid network,
known as "super-grid" phenomena, are also lost to the system unless
parameterized. For instance, an upstream shear (which is the result of
synoptic scale mechanisms) can only be parameterized in a meso-scale
model, as was done in the presented cloud model. "Super-grid" phenomena
involving interaction between the upper and Tower portions of the atmos-
phere cannot be simulated in the model due to its shallow depth,

1.4 Brief Literature Review

The Titerature contains many mathematical models (both analytical
and numerical) of cloud systems, but the majority of these models
either do not consider orography explicitly, or do not consider it at
all. However, there are several synoptic scale prognostic and general
circulation models now in existence in which orography is parameterized
on a subgrid basis. Fairly sophisticated models simulating orographically
induced cumulus convection in meso-scale systems appear in the literature,
most notably by Orville (1965, 1967, 1968, 1970). Cold orographic simula-
tion, however, is in its infancy. Chappell (1970) and Grant et al (1971)
have done extensive work in the area of modelling ice microphysics with-

out model1ing a general dynamic structure, but rather, considering a



mean distribution of vertical motion over an orographic obstacle. Their
work has been related to the potential of weather modification. Willis
(1970) presented a model of cold orographic precipitation which super-
imposed a parameterized microphysical process on a mean vertical velocity
field over an orographic barrier. Because of the limitations inherent

in these models, there is a great need for a cold orographic cloud model
that is time dependent and which couples the microphysical and dynamical

processes.



2.0 THE NUMERICAL MODEL

2.1 Basic Assumptions of the Model

Before proceeding to the equations which describe the simulated
orographic cloud system, it is pertinent to enumerate the basic
assumptions underlying the model.

These basic assumptions are:

1. The flow is two-dimensional.

2. The fluid is incompressible. Along with the first assumption,
this allows definition of a stream function.

3. Eddy viscosity and eddy diffusivity are considered equal. A
single eddy coefficient is used in all the transport equations.

4. The eddy exchange coefficient varies in space but the entire
field is smoothed to produce a locally constant counterpart for each
grid point in the model.

5. Radiation is excluded at the modelled ground surface and in
the overlying simulated atmosphere itself.

6. Momentum on the upstream boundary is not affected by the
presence of the orographic obstacle, i.e. upstream influence is pre-
cluded at the boundary.

7. The microphysics of ice is not included in the model. (The
reasons for this exclusion are given in section 1.2 of the introduction.
The expressions involving ice are included in the ensuing discussion
for completeness, however.)

8. The precipitation process is omitted at this time. Condensa-

tion products are carried through the grid network by the flow. (The



precipitation process is relevant only if ice microphysics is included
in the model.)

2.2 The Basic Equations

The system of equations that constitute the cloud model evolve from
Ogura and Phillips (1962), Ogura (1963), and Orville (1965). 1In
essence, the system represents deviation from a dry adiabatic atmosphere.
Entropy is specified with respect to a base state of ice since the
model is concerned with sub-freezing phenomena.

The basic transport equations are:

- _ ¥ u2 9 (8 - -
on/at = -u an/5x wan/az+Kvn+gax (e‘l'va w, w_i)

(1)

3¢/ot = -u 34/3x - w 3¢/3z + K v2% (2)

3Q/5t = -u 3Q/3x - w 3Q/3z + K v2Q (3)

dw/at = -u Jw/dX - W Jw/3z + K v2y - Pr (4)

where n 1is vorticity; ¢ is the perturbation of entropy from a
reference state; 6 1is the potential temperature deviation from an
adiabatic atmosphere of temperature © ; Q is the total moisture which
includes the ice, liquid, and vapor phases; w 1is total moisture minus
the ice component; w,6 , w

v
ice phases, respectively. All1 the moisture variables are dimensionless

g and wj represent the vapor, liquid, and
mixing ratios of moisture substance to dry air. Pr represents the
production of ice by nucleation and the growth of existing ice sub-
stance by water vapor diffusion. E 1is the ratio of the molecular

weights of water and dry air. The last term in equation (1) is the



"vorticity production" term due to horizontal gradients in the
temperature and moisture variables.

K 1is a locally constant eddy exchange coefficient obtained by
space averaging the actual K . The eddy coefficient, K , varies in

space according to the equation:

K= (ax)3 r|vn]| (5)

as given by Leith (1969) and also discussed by Fox and Lilly (1972).
The constant A 1is 3.7, as given by Leith, and ax is 100 meters,
which is the grid spacing. The space averaging operator used to obtain

the locally constant coefficient, K , is given by

K. .=0.8 K; 3 + 0.05 (K. K + K

] i+, ¢ i34 * K50
(6)

where i and j denote subscripting in the horizontal and vertical

i1,

directions, respectively.

By defining a locally constant eddy exchange coefficient, the
equations are simplified to exclude terms containing derivatives of the
coefficient. For example, equation (3) would have the following form

if the actual K were used:
3Q/at = -u 3Q/ax -w 3Q/9z + Kv2Q + 3K/ax 8Q/ax + 3K/sz 3Q/sz.

(3a)
Problems associated with using K instead of K are discussed later.
The assumptions of two-dimensionality and fluid incompressibility
allow for a stream function which is defined by:

VZp = -n (7)

with the horizontal component of velocity, u , and the vertical

component of velocity, w , given by:
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=
n

ay/az (8)

n

W = =3y/ax . (9)

Vorticity is related to the velocity components by:
n = aw/ax - au/az . (10)

The moisture variables are related by:

Q=¢'-‘+w-i (.l])
W=t for saturation (12)
w = w, for unsaturation (13)

with Wy representing saturated vapor.

The entropy perturbation is given by:

L

. W L-O.'l
6 = g.+ 1VVs 4 12 % oaturated (14)
Cp o Cp o
L. w
§ = % P unsaturated (15)
Cp ©

with Liv and L“1 representing the latent heats of sublimation and
fusion, respectively. Cp 1is the specific heat of dry air.

Equations (14) and (15) are used to determine ¢ initially and
to compute the lower boundary values at the end of each time step as
will be explained Tater.

In order to close the system, providing a link between all
variables, it is necessary to have a criterion for determining
saturation. Ogura (1963) expressed the saturation mixing ratio by a
series expansion of an exponential:

by = L2 £ (14 o+ 3 (£40)2) (16)

Vs Ve



11

= 2 1
where f4 LVR/RVG , R 1is the gas constant of water vapor, and Lvn

v
is the latent heat of vaporization. Using this expression in equation

(14) yields:

”
_ -1 2 _1_2._‘ ]/2
Osat = T3 (fp + [f3 + F3(0 - g5 - F)17%) (17)
with
‘- f4eS£(To)oR
cp p 7 VK
f. f
_ 1 1
fo=2e * 72—
2
PR
352

eq,(T,) = 6.11 Exp {17.27 [(T, - 273.16)/(T - 35.86)1}

T

o = ©-9z/Cp

m

] -1%% /(o +78 (2))

6(z) = initial value of o as a function of height, z .

Here esa(To) is the saturation vapor pressure over liquid water; R
is the gas constant of dry air; 1/K =Cp/R ; P 1is the reference
pressure; m is a nondimensional pressure found in the reference by
Ogura and Phillips.

A straightforward solution for & in equation (15) gives:
L, w
5 . :, /18
®unsat = % " T - (18)
Equations (17) and (18) serve to determine whether saturation has
or has not occurred at each grid point in the model for each time step.

To elucidate, we summarize:
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then 6 = 8 =w, w=0 (19)

w

if 6sat <9 unsat °’ Vv

unsat ’

if o

>
sat g

then ¢ esat . Wy = Wy s W, T W - W

unsat ’ v Vs Vv

(20)
In either case if Q > w , then w; = Q-w. If Q <w, then
wy = 0 and w=0Q . Here it will be noted that w; is found as a
residual dependent upon the two transport equations (3) and (4) .

The production term which appears in equation (4) contains both
nucleation and diffusional growth of ice crystals. As has been
mentioned, ice has been excluded from the model at present. Therefore,
equation (4) is not used and Q 1is substituted in all expressions
where w appears. The potential exists for inclusion of the ice

process in the model, pending an increase in the size of the model.

2.3 The Grid Network

The equations of the cloud model are solved at discrete points
in a grid network which represents a two-dimensional orographic
cloud system eleven kilometers long and three and one-half kilometers
deep. Grid spacing is constant at one hundred (100) meters, creating
an 110 by 35 basic rectangular shape. The orographic barrier, which
is one kilometer high, interrupts this basic shape beginning three
kilometers from the upwind face and has windward and leeward slopes
of 1/2 and -1, respectively. (See figure 2.1.) The downstream
boundary is five kilometers from the downstream edge of the mountain.
The windward slope of 1/2 was chosen as more realistic than 1 whereas
the leeward slope was taken for numerical convenience and expediency.
Since the windward slope is believed to be more important than the
leeward slope in cold orographic systems, this unequal treatment of

the slopes is justified.
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Ten numerically cumbersome points result from the choice of the
windward slope. (See figure 2.2.) Finite difference representations
of vertical derivatives at these points have truncation errors an order
of magnitude greater than the resulting truncating errors at the other
points in the grid. It was found that a simple arithmetic average of
the two horizontally adjacent points results in an error that is
consistent with the rest of the domain. This fact is readily shown by
a Taylor series argument.

The Towest grid points, on the slopes and level portions of the
grid, do not correspond to the earth's surface but rather, correspond
to some distance above the surface. This condition is reflected in the
tangential velocity component (slip) and the eddy exchange coefficient
at the lower boundary. The other variables are affected by these two
parameters to produce the effect that the lower boundary does not
coincide with the earth's surface. More detailed discussions
concerning the treatment of the slip and the eddy exchange coefficient
at the Tower boundary are given in section 4.2.2 and section 4.3.3,
respectively.

2.4 The Numerical Scheme

2.4.1 Overview of the scheme - The numerical solution is obtained

by marching forward in time increments that are limited in size by
numerical stability requirements. These time increments are relatively
short, ranging from about six to nine seconds in length such that

high frequency mechanisms, except for acoustic waves, are properly
included with regard to the hundred meter grid spacing. Acoustic waves
are prevented, or "filtered", by the incompressible nature of the

fluid as governed by the basic equations of the model. Spatial and
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temporal derivatives in all equations are replaced by finite difference
analogs.

A rather novel time-splitting scheme (see the next section) is used
to solve the basic transport equations i.e. equations (1), (2), (3),
and (4). (It will be remembered that equation (4) does not appear in
the model at present because of the exclusion of ice. Equation (11) is
omitted for the same reason.) This scheme is used to determine values
of the transported variables at each grid point in the grid network
at each time step.

The stream function is obtained each time step by solving equation
(7), Poisson's equation, utilizing a successive over-relaxation method
(see section 2.4.3). The velocity components are found, once the
stream function is known, by solving equations (8) and (9) in centered-
difference format.

The eddy exchange coefficient, K , is found at each grid point
per given time step by solving equation (5) with centered-difference
analogs. Once this is accomplished for the entire grid network, a
locally constant coefficient, K , is established at each grid point
by means of equation (6). (See section 2.2.)

The remaining equations of the model, except equation (10), involve
no finite differencing; they are solved in a systematic manner based
on the variables gotten by finite differencing. Equation (10) is used
only to explain the method of initializing the model. (This explanation
will be given in section 3.0.) The unnumbered expressions which Tie
between equations (17) and (18) in section 2.2 are functions of height
only; they are computed prior to initiation of the model for use in

equation (17).
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The order in which the variables are solved each time step is
important and will now be given in closing this section. The order of

solution is: Q, ¢, 8, wy,» w,» Ny Y, Uy W, K, K . Appendix

VQ
A contains both a flow chart and further explanation concerning the
numerical scheme.

2.4.2 Time-splitting scheme - The variables Q, ¢, and n (also

w when w; is eventually included) are predicted by a two-step,
numerically explicit method involving an intermediate time t + 1/2 .
Crowley (1970) employed this method which utilizes a forward time
difference concept and centered difference analogs for the spatial
derivatives.

We have, using a representative variable ¢ :

o 120t - Jatlobyy sty a2 (6fy s2et 4ol )
(21a)
L2 LB B2 Ly ) (1120112, 00172y
(21b)
where
ut = ut At/ ax
Gt = wt At/ Az
Bt = ¢ at/(ax)?
et = K at/(02)?
At = length of a time step .

Superscripts refer to time, and subscripts refer to space. Also

Bt = et since Ax = Az = 100 meters. Computational stability requires

82 +2¢ < 1.
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The first step, equation (21a), involves x-derivatives only and
the second step, equation (21b), involves z-derivatives only. The first
step is performed at each grid point of the total grid network before
proceeding to the second step. The "vorticity production" term, i.e.
last term, of equation (1) is computed by the usual central differencing
operator and is added during the first step in the above scheme. The
ice production term of equation (4) will be treated in the same manner
when it is eventually included in the model.

Equations (21a) and (21b) can be considered as coupled operators,
a reasoning which is applied to the slopes where the tangential and
normal directions correspond to the first and second steps of the total
operation, respectively. This approach maintains consistency in the
numerical scheme as a whole.

Another unique feature of the time-splitting scheme, in addition
to the coupled operator and non-centered time differencing features,
is a purposely built-in damping mechanism. This mechanism, which is
proportional to the square of the velocity components, is embodied in
the terms %{at)z and %{ét)z. These additional terms are grouped
with the actual damping terms Bt and et , respectively. Since
center-differenced advective terms, as is the case in equations (21a)
and (21b), are unconditionally unstable if there is no damping, it is
essential to include such a mechanism in some way. If the velocities
at any point in the model are large and the corresponding K is
relatively small, this built-in feature insures numerical stability.
Results of the model indicate that K is much larger than the added
factor except near the grid top where turbulent exchange is small and

advection is large. Magnitudes of the various terms show that the
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built-in damping effect does not alter the character of the solution
but only insures numerical stability.

Non-centered differencing in the advective terms leads to a "psuedo-
viscosity" or diffusivity (Molenkamp, 1968) which often exceeds the
magnitude of the eddy exchange term itself in many numerical applications.
This "psuedo" effect is latent and in many cases it is diffucult or
impossible to quantify this embedded mechanism. The advantage of the
scheme used in this model is that the eddy exchange effects are
totally apparent i.e. there are no hidden effects.

2.4.3 Relaxation method to solve for the stream function - The

extrapolated Liebmann, or successive overrelaxation method (S.0.R.), is
used to solve equation (7), Poisson's equation, for the stream function
each time step. Most of the more sophisticated methods available for
solving Poisson's equation cannot be used in the model due to the
presence of the mountain which disrupts the basic rectangular domain.
(What results is a nonconvex region in which not all two points can be
connected by a single straight 1ine.) The advanced methods that might
conceivably work for a non-rectangular domain, such as the fast fourier
technique or various factorization algorithms, place undesirable
restrictions on the nature of the boundary conditions i.e. boundary
conditions must be periodic, reflective, etc.

The best method for obtaining the optimum relaxation factor
necessary for convergence of the S.0.R. seems to be experimentation.
For Dirichlet boundary conditions, the presence of the obstacle does not
cause any perceptible deviation from the optimum factor given
analytically for a pure rectangular domain of the same overall dimen-

sions. This interesting result is due to the fact that the nature of
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the associated iterative matrix is not altered by the obstacle (Varga,
1962) and, additionally, the number of grid points occupied by the
obstacle is small compared to the total number of grid points in the
domain. (In general, the shape of a rectangle and the numbey of points
it comprises influences the value of the optimum relaxation factor.)
Boundary conditions (Neumann, extrapolative, etc.) have a profound in-
fluence on the optimum relaxation factor for a given rectangle, however,
because they change the nature of the iterative matrix. Analytical
methods to determine the optimum factor for boundary conditions other
than Dirichlet do not seem to be available. However, by using the
optimum factor given for a rectangle (with Dirichlet boundary conditions)
as a basis, it is possible to experimentally obtain the optimum relaxa-
tion factor with the inclusion of an obstacle within the basic
rectangular shape and with the desired boundary conditions. This is
done by systematically trying values greater and lesser than the
optimum factor for the rectangle (with Dirichlet conditions) until the
number of jterations, including the obstacle and the chosen boundary
conditions, is minimized in solving Poisson's equation. In short, the
original relaxation factor serves only to expedite the trial and error
procedure by providing an initial "ball park" value.

The relaxation technique requires an initial estimate of the final
solution values of the stream function. Using the solution from the
previous time step would seem appropriate for this initial estimate.

A better method, found by experimentation and comparison, is to perform
a second degree extrapolation in time of the stream function. This

technique requires storage of the stream function from the three most
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recent time steps, but offers no difficulty because of the peripheral
memory devices available on most computers.

The ten "odd" grid points discussed in section 2.3 cause no
difficulty in the solution of the stream function. A Tower order
numerical representation was used at these points. When compared to
higher order schemes, no detectable difference appeared in the final
solution or number of iterations required for convergence. The nature
of Poisson's equation which is elliptical, seems to "dilute" the errors
of the lower order scheme employed at these ten points which are few
in number compared to the total grid network.

2.5 Initial Conditions

This section will summarize the initial conditions of the simulated
cloud model. A detailed description concerning the method of
initializing the model will be given in section 3.0 since initialization,
especially with respect to the flow field, is a major aspect of the
research presented in this retcre.

The variables & and Q are given initially throughout the
entire grid as functions of height only, based upon the initial upwind
soundings. The lapse rate for 6 is 3.22°K1Km with © equal to
271.3°¢ . Total moisture, Q , varies linearly from 3.5 g/Kg at the
Towest altitude to 0.5 g/Kg at the grid top. Liquid moisture, we s
is everywhere zero. The reference pressure, P , is 750 millibars.

The initial stream function is obtained by solving equation (7)
with a constant vorticity (i.e. space independent) which is determined

from a linear upstream shear. This Tinear profile is zero at the bottom

of the grid and reaches a maximum of 10m/sec at the grid top. The
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velocity components are initialized by equations (8) and (9) once the
initial stream function is found.

These initial conditions stem from field data by Balicx anc
Rasmussen (1972). The linear shear is only a rough approximation to
actual observations and can be easily refined at a later date in both
magnitude and shape. The same type of refinement is also possible for
the moisture. The Tapse rate for temperature is very realistic since
it is essentially unchanged from the actual data; it yields a rather
stable environment.

2.6 Concept of a Virtual Point

A knowledge of the "virtual" point concept is essential for
understanding the next section which is concerned with the boundary
conditions of the model. The use of an external or "virtual" point is
a powerful method to handle spatial boundary conditions in numerical
solutions. This method depends upon the vanishing of either the first
or second derivative, but not both, at a boundary. Centered-difference
formulae are considered here since they are the type used in the model;
centered differences are employed because they cause the least
difficulty in numerical solutions. The finite difference analogs to
the first and second normal derivatives in centered-difference form
are:

¢ = @

_ 1 -1
ap/on = e
Py “ 2¢o i

h2
Here ¢ 1is any variable, n denotes the normal direction, and h is

32¢/an? =

the grid spacing. 91 lies interior to the boundary, 9 lies on the

boundary, and ¢_; is the "virtual® point which lies outside the
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boundary. Now, if one of these derivatives is small compared to the
other, or indeed vanishes, we may proceed. If both vanish, the problem
is trival.

Consider that the first derivative vanishes, but not the second.
Then ¢_; = ¢; . substituting this into the second derivative analog

yields: a7¢/on? = 2(¢1 & ¢o)/h2 . Now on the other hand, if the

1"

second derivative vanishes and not the first, we have: 97 2¢0 =
This is eliminated in the first derivative analog to give:
ag/an = (o7 - ¢,)/h .

It will be noted that in both cases the remaining derivative
analog nas the appearance of noncentered differencing. But it is
important to realize that this result develops from centered-difference
analogs. If both derivatives are non-zero and this representation is
attempted for both, computation problems would be certain to appear.
If, and only if, one derivative is zero and the other is not, will
this technique work,

It is interesting to note that a "virtual" point may "reside" in
a different medium if the boundary is an interface between two
different substances. But this is of no consequence since the "virtual"

point is only a concept based upon physical reasoning at the boundary.

2.7 Boundary Conditions

2.7.1 Introduction to boundary conditions - The boundary

conditions for the variables of the simulated cloud system are enumerated
in this section with brief accompanying explanations. A later section
(section 4.0) will be devoted to an in depth discussion concerning the
development of these boundary conditions since this development, along

with the method of initializing the model, represents a significant
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portion of the research endeavor. Appendix B contains a summary of the
boundary conditions and additional explanations in regard to finite
difference applications.

2.7.2 Top boundary - For ¢ and Q, it is assumed that vertical

mixing is negligible and that the variables continue to vary linearly

in the neighborhood of the top boundary for all time. A "virtual" point
(see section 2.6) is defined in each case by setting the second derivative
analog equal to zero. The "virtual" point is then eliminated in the

first derivative analog. The resulting simplified equations at the top
boundary are solved using the same time-splitting scheme (section 2.4.2)
applied to the interior portion of the grid. In essence, the boundary
conditions are 32%¢/5z2 = 0 and 92Q/58z2 =0 .

Vorticity is set equal to the value one grid point below the
boundary all along the top. This is done at the end of each step in
the time-splitting scheme. The boundary condition is essentially
an/sz = 0 .

A Neumann condition is applied to the stream function in the form
ay/sz = U, where U 1is a constant horizontal velocity component along
the top and is invariant in time.

The eddy exchange coefficient (i.e. the locally constant coef-
ficient) is treated similarly to vorticity with the difference being
that there is no transport equation involved, so the condition is
applied only once, at the end of each time step. The boundary condi-
tion corresponds to 8K/az =0 .

2.7.3 Side boundaries - Linear extrapolation from interior values

is applied to ¢ and Q at the end of each time step (after the

second step of the time-splitting scheme, not at the end of each step
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of the time-splitting scheme) for both Tateral boundaries. This
corresponds to 32¢/5x2 = 32Q/3x% = 0 .

Vorticity and the eddy coefficient are set equal to their first
interior values at the end of each time step. This is done for both
lateral boundaries. Since the side values of vorticity are used only
in the first step of the time-splitting scheme, it is redundant to
apply the boundary condition twice as for the top boundary. The eddy
coefficient has no transport equation so the time-splitting operator
is not relevant. For both variables, 5/5x = 0 at the lateral
boundaries.

The stream function is specified as a function of height at the
upstream boundary and does not change with time. At the downstream
face, the values from the previous time step are maintained during
convergence of the iterative routine (see section 2.4.3) then reset
by second degree extrapolation from interior values. In essence
33y/ox3® = 0 at the downstream face.

2.7.4 Lower boundary - Vorticity and the stream function are zero

along the lower boundary, both on the Tevel portions and the mountain
slopes. The normal component of velocity is zero and the tangential
component is obtained by noncentered differencing at the lower boundary,
slopes and level portions.

Q 1is found at the lower boundary by a similar method as for the
top boundary except that different terms are neglected. Here the
normal flux of moisture is zero which requires the first derivative with
respect to the normal direction to vanish on the slopes and levels,
i.e. 3Q/sn =0 . In addition, the second derivative is assumed zero,

i.e. 32Q/sn%2 = 0, 1lest the lower boundary acts as a sink to moisture.
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8 1is specified as a function of slope height at the lower
boundary and acts as a constraint on the solution. In general,
radiative gains and losses at the earth's surface produce a sinusoidal
time variation of temperature superimposed on the height dependency.
¢ s then found as a function of & and Q on the slopes and level
portions by using either equation (14) if saturation has occurred or
equation (15) if not. A comparison of Q and w,s s obtained by
equation (16) determines the saturation criterion.

For the purpose of the eddy exchange coefficient, the numerical
Tower boundary is considered ten meters above the physical boundary
i.e. the earth's surface. (The tangential velocity component is treated
somewhat differently in regard to the distance above the physical
boundary. This is more fully explained in section 4.2.2.) The value of
the eddy exchange coefficient 1ies linearly between the value of the
grid point immediately above in the normal direction and the value
below which must be zero. (Eddy exchange vanishes at the ground.) On

the slopes the whole procedure is done in the normal direction.
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3.0 METHOD OF INITIALIZING THE MODEL

It is necessary to specify some initial state of the model, that
is, specify values for the system variables corresponding to an
initial time. Once this initialization is completed, the solution may
progress via the time-dependent structure of the basic equations.
Undoubtedly there are several ways in which the thermodynamic and
dynamic fields may be initialized, since any irregularities that arise
from either a crudely or well specified initial state would adjust, j.e.
smooth out, as the solution progresses in time. The ultimate solution
can be expected to be independent of the starting values but it is
desirable from the standpoint of economy to set forth a refined set of
initial conditions that requires the least adjustment time possible.

The solution becomes valuable only when the initial adjustment, or
"settling down" period, is completed. The dynamic variables are perhaps
the most difficult to initialize; the thermodynamic variables, which

are transported by the dynamic field, offer less difficulty to initiali-
zation. This section of the thesis presents a method that seems quite
efficient in initializing the model, the technique for initializing

the dynamic field being the most significant contribution to the total
initialization.

Since the forcing mechanism of the cloud system is the upstream
sounding of the dependent variables, it seemed appropriate to initialize
all fields as functions of height only, based on the upwind values. The
exceptions to this treatment are the stream function and vorticity

fields.
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Far upstream from the orographic obstacle the only component of

velocity that would exist is the horizontal one. Here w = %% =0

such that equation (10) reduces to n = - %%—. By specifying a linear
upstream shear the vorticity is then constant at Tocations far upstream.
(For a shear that is not linear, but higher degree, v. cicity becomes

a function of height.) As a first approximation, one can say that this
constant vorticity applies to the entire grid domain of the model. This
is not to say that vertical motion is nonexistent everywhere in the grid
domain (the mountain boundary which causes the streamlines to deviate

from a horizontal alignment prevents vertical motion from vanishing),

au oW

but that T and Ty adjust to maintain a constant vorticity i.e.
%% - %% = constant. Solving equation (7) with the constant vorticity

then yields an initial stream field and, hence, an initial velocity
field.

It is reasonable to assume an initially constant vorticity every-
where in the model for the purposes of initializing the stream function
because the coupling of equations (1) and (7) insures an adjustment
influenced by the presence of the mountain as the solution progresses
in time. The greatest adjustment is felt in the vicinity of the
mountain as would be expected.

Another way to conceptualize this method of initializing the stream
function is to consider the vorticity in the cloud system as the sum of
a mean quantity governed by the upstream shear and a perturbation
quantity (not necessarily small) that expresses the deviation from the
mean due to the mountain i.e. n(x,z,t) = n + n'(x,z,t). In essence,
we can assume n'(x,z,t) to be zero at the start of the model for the

sake of initialization.
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Orville (1967), for convective flow above a two-dimensional
triangular mountain, superimposed the potential flow around a circular
cylinder, the radius of which equals the mountain height, upon a linear
shear flow that begins at a height corresponding to the mountain top
and extends upward. From these superimposed flows he obtained initial
velocity and vorticity fields. These conditions, along with the initial
thermodynamic fields, required lengthy integration on the computer before
kinetic energy stabilized and the model could be started. (Orville's
forcing mechanisms are heat and moisture on the mountain surface.)

The adjustment time in the proposed model was found to be quite
short with kinetic energy changing remarkably 1ittle from the start.

By comparison, Orville's kinetic energy changed in excess of 307 over
an adjustment period of 30 minutes of computer time (then he added
heating and moisture at the mountain surface), whereas the kinetic
energy of the presented model changed by less than 6% over an
adjustment period of approximately 12 minutes, on the same computer.

As an experiment, furtner improvement was sought by causing the
thermodynamic variables to conform to the initial streamlines rather
than to horizontal lines based on the upstream soundings. This
technique resulted in large horizontal gradients in moisture and
temperature near the mountain, hence large vorticity production in that
region. (Consider the last term in equation (1).) The adjustment
period increased, not decreased.

Initializing the thermodynamic variables as functions of height
only and the stream function by a constant vorticity based on the
upstream shear allows the equations to adjust the variables smoothly.

In short, the upwind values which determine the mean characteristics
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of the model are perturbed by the mountain shape in a manner that
maintains compatibility between the various parameters as time
progresses from the initial state.

In closing this discussion, it is pertinent to mention that the
prescribed method of initialization, which seems to minimize the
adjustment period of the model, is quite convenient because several
starting conditions can be tried without excessive expense on the

computer.
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4.0 THE NUMERICAL BOUNDARY CONDITIONS AND RELATED DISCUSSION

4.1 Preface

The appropriate boundary conditions were determined by a combination
of physical reasoning and numerical experimentation. The "vorticity
production" term (last term of equation (1)) and eddy exchange coef-
ficient were invaluable instruments in developing the final boundary
conditions because they display a great deal of sensitivity to changes
in the other variables. If a change near the boundaries occurred in
either one or both of these parameters which was inconsistent with the
interior, it was an indication that the boundary conditions were
wrongly posed. The other variables were much less sensitive to
inconsistencies, requiring more computational time before it became
apparent that something was awry.

The discussion to follow will elucidate the successes and failures
encountered while trying to achieve reasonable boundary conditions.
The importance of boundary conditions cannot be overemphasized in the
realm of numerical solutions where a condition may lead to answers
which may not be physically meaningful. Also, a boundary condition
which may be suitable for one circumstance, such as a neutral environ-
ment with no gravity waves, may be completely inadequate for another
such as a stably stratified atmosphere which has gravity waves.

4.2 The Stream Function

4.2.1 Inflow boundary - Incoming momentum is one of the primary

driving mechanisms in a cold orographic cloud system. Moist air at the
lower altitudes is 1ifted over the orographic barrier to the

condensation level, thus supplying cloud water for the nucleation and
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growth of ice crystals. Chappell (1970) and Grant et al (1971)
discuss the intricacies of cold orograpnic cloud systems.

It seemed appropriate to specify the horizontal component of
velocity at the upstream face as a function of altitude and invariant
in time. Specifying the horizontal velocity component specifies the
stream function itself, but vertical motion develops as part of the
solution. In other words, the positions of the streamlines at the
upstream boundary are invariant, but the streamline slopes may change
with time. A linear profile was chosen to approximate field observa-
tions. It would be a simple matter to experiment with other profiles
as the level of sophistication in the model increases.

Kao (1965), Benjamin (1970), and Wong (1970) have shown that
stratification which produces gravity waves also causes upstream
influence in the form of blocking (stagnation) and other associated
effects. Upstream influence depends strongly upon the shape of the
barrier and extends far upstream. Lilly (1969) cites field observations
which indicate blocking up to the ridge top on the windward side.
Evidence seems to indicate a wedge-shaped stagnation zone as shown in
figure 4.1. There is also manifestation of local overturning near the
slope surface within the blocked region.

One of the weaknesses of the present model is that all the upwind
air is forced over the barrier to the exclusion of any blocking or
other upstream influence. To properly include upstream influence, it
would probably be necessary to perform a synoptic scale balance, i.e.
consider mechanisms larger than the present model, because the forcing
dynamics on a meso-scale system result from the synoptic scale

geostrophic balance. This might be prohibitive in a strictly
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two-dimensional model because the synoptic balance is three-dimensional
due to coriolis influences. (One alternative may be to place the
upstream boundary beyond the stagnation wedge which is not known a
priori.)

4.2.2 Lower boundary - As was done by Orville (1967), the

stream function is zero along the Tower boundary for all time. This
type of treatment extends back to the work of Malkus and Witt (1959)
who assumed this condition for numerical expediency. They found that
the lower boundary was not critical in their particular investigation.
The same reasoning was applied to this model, but the validity is open
to debate as will be discussed later.

Slip occurs at the model surface (slopes and levels) which is not
coincident with the ground, but lies some unspecified distance above
it. (This distance is considered to be ten meters for the purpose of
establishing a value for the eddy coefficient at the lower boundary.)
It is essential to have motion at the lTowest level due to the spatial
resolution of the model. Otherwise, the thermodynamic variables would
have an unreasonable effect on the solution in the vicinity of the
lTower boundary. (Orville, 1964).

S1ip is allowed by computing the tangential velocity using
noncentered differencing of the stream function in the normal direction
on the slopes and level portions. (This differencing more correctly
corresponds to setting the velocity at the bottom equal to the velocity
halfway between the Towest grid point and the grid point above. A
Taylor series truncation argument which appears in Appendix A verifies

this claim.) The normal component of velocity is zero at the lower
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boundary which Ties within the atmospheric surface layer where
vertical motion, or motion normal to a slope, is vanishingly small.

At least two shortcomings are apparent in the present treatment of
the Tower boundary for the stream function. One shortcoming is that
the flow in the region which 1ies between the numerical boundary and
the physical ground is mathematically construed to be invariant in time
and space. This arbitrary treatment precludes such behavior as
Katabatic winds, separation, etc., which may have profound influence
on the dynamics of the whole system. The second shortcoming, which is
coupled to the first, is that a viable surface layer cannot be
parameterized with the present Tack of spacial resolution at the lower
boundary. An expanding grid spacing in the proximity of the Tower
boundary could remedy this lack of resolution.

4.2.3 Top boundary - Since gravity waves occur in the model, it
is undesirable to specify a constant stream function at the top
boundary as has been used in many numerical solutions appearing in the
literature. Reflection of waves off a rigid 1id affects the dynamics
of the entire system in an unrealistic manner. The only time a rigid
1id occurs in nature is the infrequent case when a strong inversion
layer is present far above the earth's surface.

A less serious constraint is to specify a constant horizontal
component of velocity at the top boundary. Roache (1970) suggests
(%%)top B Uconst’ which is a Neumann boundary condition. Horizontal
motion remains invariant whereas vertical motion develops as part of
the solution. In the Dirichlet, or rigid 1id case, vertical motion

vanishes at the top boundary.
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Some discussion on the Neumann boundary condition is pertinent.

In the two-dimensional linear theory of Tee waves, steady state
analytical solutions stem from perturbation methods. The mean
horizontal component of velocity is constant or a function of height
only, whereas the mean vertical component is zero since it corresponds
to an undisturbed environment. The perturbation of the horizontal
component, which is a function of both space variables, is considered
small compared to the mean value and hence is neglected. The perturba-
tion of the vertical component due to the presence of an obstacle is
sought as the solution.

The same concept is applied in justifying the top boundary
condition for the stream function in this cloud model. At the top, it
is assumed that any deviation from some constant horizontal velocity
component is small compared to that constant value. Vertical motion
everywhere in the system and horizontal motion everywhere except near
the top boundary become part of the solution.

LiTlly (1971) attests that variation in the horizontal component
of the wind can be significant in the presence of large amplitude waves.
Generally, wave amplitude increases inversely with the square root of
the mean density. The implications are that wave amplitude increases
up into the upper troposphere or lTower stratosphere where eventual
turbulent break-down takes place. The upper boundary of the model is
3.5 kilometers above the earth's surface, well within the troposphere.
Very large amplitudes should not occur at this level, but may occur in
the immediate vicinity of the mountain lee. Therefore, the upper
boundary condition may not be too restrictive nor cause an unwanted wave

reflection. A possible shortcoming of the model, however, is that the
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top boundary lies too shallow in the atmosphere to the exclusion of
any interaction between the stratosphere and troposphere. Lilly's
(1972) description of wave momentum flux implies that the shallowness
of the model may have serious dynamical consequences.

Two cases were performed on the top boundary for comparative
purposes. One with the Neumann condition and the other with the
Diricihlet condition. These cases will be discussed in section 5.0.

4.2.4 Downstream boundary - The downstream boundary condition

proved to be the most difficult to resolve. Originally it was hoped
that a downstream condition given by Roache (1970) could be utilized.
He states that for some numerical flow problems it might be possible
to neglect horizontal variation in vertical motion at the downstream
face i.e. W « By 0 . This simplifies Poisson's equation, equation

ax 3)(2 32
(7), to include only vertical derivatives i.e. -—Jf = -n. This last
3z
equation is solved at the downstream boundary as a two-point boundary
value problem with the stream function zero at the bottom and with a

Neumann condition (ay/sz = U ) at the top. However, it is solved

const
prior to solving Poisson's equation for the entire domain so that the
downstream boundary condition is essentially Dirichlet in nature.
Roache's condition was used in the first runs of the computer
model. It was not until other aspects of the model were resolved, and
more time steps were taken, that it became apparent that the condition
was inadequate. The first thought was that the downstream boundary
was not far enoqgh from the mountain for the condition to work properly.
Extending the boundary did not solve the problem. Figures 4.2 and 4.3

show the results of these failures. The failures result from the fact

that Roache's boundary condition allows no curvature in the streamlines
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in the neighborhood of the downstream boundary. When a wave originating
at the mountain reaches the downstream face it must conform to this
constraint of no curvature. The character of the wave is exaggerated and
eventual computational disaster results as shown in the figures.

It is conceivable that this particular boundary condition would work
if the numerical boundary were far enough downstream where the wave
amplitudes had decayed appreciably. But this would greatly increase
computational time. Roache's condition seems to work for the case of a
homogeneous atmosphere which has no gravity waves. (Figure 4.4)

The boundary condition finally used was obtained by equating the
finite difference analogs of the horizontal second derivative at the
first and second interior grid points i.e. (253)1-1 = (§E§le2 and
solving for the stream function at the boundaaj. (See Fi;ﬁre 4.5)

This maintains the trend of concavity in the function at the points
i=1-1 and i = I-2 but does not require equality of the curvatures
at these two points. What results is a second degree extrapolation from
interior points i.e. ¢y =3¢y y - 39y, * ¥y 3 . Since lee waves are
considerably longer than the grid spacing a higher degree curve should
not be necessary. A numerical interpretation is that the third

derivative vanishes one and one-half grid points from the boundary i.e.

The problem remaining, however, is how to apply this boundary
condition and whether it satisfies uniqueness of solution. Should it
be applied after every iteration of the relaxation scheme or after
convergence of the scheme? If applied every iteration the condition
truly represents a vanishing third derivative, but if it is applied

after convergence, it is merely an "after the fact" extrapolation.
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An heuristic proof of uniqueness was found numerically for the case
of application every iteration by converging to the same solution (to
within a small tolerance) independent of several initial estimates in
the relaxation scheme. A more rigorous proof is shown in Appendix C.

When the condition was employed after every iteration of the
relaxation scheme in longer runs of the model, computational time was
too great. For Roache's downstream condition the number of iterations
averaged about thirty per time step. The new condition (applied every
iteration) increased this average to an excess of five hundred iterations
per time step. The next best approach was to apply the new condition
at the end of convergence, using the boundary values of the stream
function from the previous time step during the process of convergence.
(The boundary condition is then Dirichlet as far as Poisson's equation
is concerned, followed by a spatial extrapolation.) Since the time
steps are less than ten seconds, the character of the solution should
not be destroyed. Only the occurrence of an unsteady phenomenon that
is transient over a very short period would upset the solution. This
possibility seems unlikely.

4.3 The Variables ¢, Q, n, 6, and K

4.3.1 Top boundary - At the top, one can reason that turbulent
mixing is negligibly small compared to advection. This assumption has
a priori justification because the bulk Richardson number associated
with the upwind sounding is large enough to preclude turbulence.
Turbulence should occur only in regions of the model where the local
Richardson number can be less than one (e.g., near large wave inflection).

The top boundary is far enough above the mountain to be governed by the
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bulk stability of the model. The boundary is also far enough below the
portion of the atmosphere where turbulent breakdown occurs associated
with the breaking of large amplitude waves to be isolated from that
effect (Lilly, 1972). Therefore, the mixing terms may be neglected in
the transport equations at the top boundary.

Neglecting the vertical mixing term and assuming linear variation of
a variable at the upper boundary amounts to setting the second derivative

52
equal to zero, i.e., 2% - 0 where ¢ represents any variable in this

572

case. The "virtual" p;?nt concept is used to transform the first
derivative analog at the top boundary. The horizontal mixing term is
retained to lend damping to the numerical scheme. (It offers no diffi-
culty anyway since finite differencing is performed along the top boundary,
not across it as for the vertical derivatives.) In this manner, a trans-
formed version of the transport equation appears at the top which is solved
along with the equation for the interior, using the same time-splitting
operator for consistency.

The a priori reasoning concerning turbulence at the top of the
model was reinforced by locally computed Richardson numbers in the model
itself. The bulk value is 14.2. The values along the lateral and top
boundaries do not deviate significantly from this bulk value. However
there is considerable variation near the mountain slopes and in the lee
waves as had been expected.

The method of assuming negligible mixing and linear variation worked
well for both ¢ and Q but not for n . The eddy coefficient, which is
coupled to vorticity, showed a sudden large increase near the top boundary
and the vorticity itself changed inconsistently.

The variables ¢ and Q have a natural tendency to vary linearly

with height in the model, while vorticity is governed by the shear and
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Tocal gradients in the thermodynamic variables. After careful
consideration it was felt that the "vorticity production” term should
not change significantly with height, nor should the shear, in the
vicinity of the top boundary. (This argument applies to each point at
a given altitude. The above mentioned parameters would experience
horizontal variation from point to point at a given altitude.) This
means that the vorticity at the top boundary equals the vorticity one
grid point below. Consequently, setting the top value equal to the
value immediately below at the end of each step of the time-splitting
scheme would seem reasonable. The success in consistency of the
vorticity and eddy coefficient that resulted when this technique was
employed seems to warrant its usage. The effective boundary condition
is =0,

8 is a function of ¢ and Q at the top. The moisture variables
Wy and w, are functions of 6 and Q .

The eddy exchange coefficient is set equal to the value one grid
point below, as in the case of vorticity, but this is done at the end
of a time step since there is no transport equation involved. This
treatment of the eddy coefficient is consistent due to coupling with
the vorticity.

During the first runs of the model, extrapolation techniques were
performed on the various functions to obtain boundary values. This met
with failure. Extrapolations display an erratic behavior since they
are hypersensitive to disturbances that are continuously propogating

through the system. They are also sensitive to gradients in the

variables themselves.
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4.3.2 Lateral boundaries - At the beginning it was felt that

the thermodynamic variables should be specified at the upstream face
(as functions of altitude) since they are driving parameters along with
upstream momentum. Figure 4.6 shows the results of that attempt.
Disturbances propogating upstream reflect off the boundary causing an
erroneous production of vorticity which upsets the entire solution.
Matsuno (1966) discusses reflective phenomena of numerical boundaries
in detail.

Nitta (1962) suggests various outflow conditions for numerical
solutions, one of which is to apply a linear extrapolation from interior
values at the end of a time step. (This has the appearance of a
vanishing second derivative in the horizontal direction.) Yamada (1971)
has enjoyed success with this method at both inflow and outflow
boundaries. This technique was finally used in the cloud model for ¢
and Q .

Before resorting to this extrapolative technique, however, a more
elegant application of the vanishing second derivative was sought for
¢ and Q. As in the case of the top boundary, the extrapolation
implies negligible mixing aﬁd linear variation such that the "virtual"
point concept might be utilized again. But this met with failure.

The solution began to break down in the lower right hand corner of the
grid, where velocities are small and mixing becomes significantly greater.
However, many things remain unclear in this regard and seem to warrant
further investigation.

Vorticity is set equal to the first interior value at the comple-
tion of a time step at both lateral boundaries. This method uses the

the same reasoning that was applied to the top boundary except that the
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horizontal direction is considered. Also, Roache (1970) indicates that
numerical drifting errors may result unless vorticity is handled in
this manner. Lastly, this particular boundary condition on vorticity
is consistent with the condition applied to the thermodynamic variables
which are coupled to the vorticity.

The eddy exchange coefficient is handled the same »s vorticity
in the interest of consistency. The model results justify this decision.
Mixing characteristics have small space-wise variation at distances far
from the obstacle. Even downstream, where waves produce a periodic
variation in mixing, the variation of mixing is very slight over the
span of one grid length near the boundary.

4.3.3 Lower boundary - In general, the surface temperature

observed in nature is a periodic function of time owing to the daily
cycles of solar insolation and radiative losses. In addition, the
surface temperature is also a function of slope height. Geiger (1965)
explains slope behavior elaborately.

At the present stage of the model development, the span of time
over which the calculations are made justify omission of the temporal
periodicity. Slope temperatdre becomes an unchanging function of
height only.

If the lower boundary value of Q is known, it is then a
straightforward task to determine whether saturation has occurred by
comparing the value of Q to the value of wys from equation (16).
¢ is then found by using either equation (14) or (15). The problem,
of course, is finding the boundary value of Q .

One of the suppositions in the present model is that the

mountain surface neither subtracts nor adds moisture to the cloud
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system, which is fairly well justified since a snow covered ground does
not exhibit the vast evapotranspiration mechanism that occurs on a
vegetated surface in the warm seasons. The only sink effect, excluding
precipitation, is the nocturnal deposition of frost which is a negligible
quantity. In short, the model surface can be treated as an inert entity
to moisture.

Therefore, no moisture flux takes place in the air Tayer next to
the surface. This holds for the lowest grid points in the model which
Tie some small distance above the physical surface. In this region
K3Q/an = 0 (where n denotes the normal direction) on the levels
and slopes of the model. Furthermore one can argue that moisture is
well enough mixed in the neighborhood of the Tower boundary such that
there is no variation of Q in the normal direction within this neighbor-
hood. Hence all normal derivatives vanish in that region. (The normal
direction is considered because it is appropriate for both slopes and
levels.)

As a consequence, the transport equation for Q simplifies to
include only tangential derivatives. The modified equation is valid
only in the vicinity of the lower boundary. It is solved using the
coupled operator, equations (21), as for the interior of the grid
network.

Somewhere between the Towest grid point and the point which lies
above, the flux of moisture in the normal direction is no longer zero.
At this higher level it is necessary to retain the terms containing
normal derivatives, which means that the lower point becomes involved
in the finite differencing for the point above it (in the normal

direction). In essence, the lower boundary is independent of the
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overlying values for Q but not the converse. This kind of approach
stems from the fact that the grid spacing does not properly resolve the
moisture behavior near the bottom boundary.

An attempt to use the vanishing first derivative to define a
"virtual" point for the second derivative resulted in a persistent sink
effect at the bottom boundary. Thus the second derivative was set
equal to zero also but with the justification already mentioned. Better
resolution using smaller grid spacing near the lower boundary, where
things change rapidly with height, would improve the solution in regard
to the behavior of moisture.

To apply the same method to ¢ as to Q on the Tower boundary,
i.e. solve the associated transport equation in reduced form, then
solve for ©® as a function of ¢ and Q would be inappropriate. For
one thing, it is not as easy to determine a viable boundary condition
for ¢ at the lower boundary as it is for Q. In addition, entropy is
a function of temperature in the strict sense, not vice versa. The
behavior at the surface would be erratic if 6 were given as a function
of ¢ and Q (supposing that a reasonable lower boundary condition
were available for ¢ ) because this would make & a transported
variable at the surface, whereas the radiation process which controls
surface temperature is not a transport phenomenon in the advective and
turbulent mixing senses. The method used, that of specifying the
temperature at the lower boundary, acts as a constraint on the model.

In essence it is assumed that the radiation balance maintains time
independent temperatures at the lower boundary.

A value for the eddy exchange coefficient is necessary at the lower

boundary since it is used in the reduced equation for Q . Lumley and
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Panofsky (1964) state that the eddy exchange coefficients (Viscosity,
diffusivity) are zero at the earth's surface. For a neutrally stratified
environment the coefficients vary linearly with height within the surface
layer, which is anywhere from 20 to 200 meters deep. For the purposes

of the eddy coefficient, it is assumed that the first interior grid
points and the lower boundary points themselves both Tie within the
surface layer. The lapse rate in the model is close enough to neutral

to assume a linear variation of the eddy coefficient within this layer.
Assuming the bottom boundary to be ten meters above the earth's surface,
the eddy coefficient is interpolated between zero and the value one

grid point above (in the normal direction).

The vorticity is maintained at zero along the lower boundary on
both the slopes and Tevel portions. This specification follows Orville
(1965) who borrowed from Malkus and Witt (1959). The latter had found
that the bottom boundary condition for vorticity had no influence on the
general character of their solution. (See sec. 4.2.2)

There is evidence that the coupling, via equation (5), of vorticity
and eddy exchange in the cloud model renders the present treatment
of vorticity at the lower boundary inappropriate. Gradients in
vorticity are artifically large near the bottom, causing the eddy
exchange coefficient to behave erratically in that region. The dif-
ficulty is not apparent when the space-averaged coefficient is used
[equation (6)], but disporportionately large gradients in the coef-
ficient appear if the transport equations are solved in the form of
equation (3a) in which the eddy coefficient is finite differenced. The

boundary condition for the eddy exchange coefficient itself aggravates
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this situation. A more detailed discussion will be given later.
(sec. 5.4)

4.4 The Velocity Components

4.4.1 Top boundary - Both velocity components are needed at the

top boundary in order to compute ¢ and Q . The horizontal component,
u , is constant for all time as has been discussed in section (4.2.3).
The vertical component, w , is found in the usual way via equation

(9).

4.4.2 Lateral boundaries - Although the velocity components are

not needed at the inflow and outflow boundaries they are calculated
for inspection. U is calculated in the usual way, via equation (8),
but w 1is gotten by non-centered differencing.

4.4.3 Lower boundary - The normal component of velocity is con-

sidered vanishingly small near the lower boundary and, hence, set to
zero.

The tangential component, which is needed in the solution of Q
at the lower boundary is computed by non-centered differencing. (See
the discussion in section (4.2.2).) This manner in which slip is
permitted at the Tower boundary is somewhat lacking in rigor and may

have serious dynamical implications on the model.
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5.0 MODEL RESULTS AND DISCUSSION

5.1 General Introduction

The solution of the cloud model is time dependent, with each
transport equation containing a temporal term. The equations of the
model incorporate time variation from an initial state as a means of
convergence to a possible steady state condition, although steady state
is not required by the model. Recent evidence by Balick and Rasmussen
(1972) suggests that a steady state orographic cloud may not occur in
nature. In reality, then, one might expect the model to yield an
initially quasi-steady state structure until which time cloud activity
becomes pronounced. The length of simulation time that was performed
with the model is insufficient to make a final judgment concerning
stationarity of the solution.

Two basic cases were performed: one in which the model top is
rigid with a Dirichlet boundary condition on the stream function and
the other in which a Neumann condition is applied as discussed in
section 4.2.3. Al1 other things are the same in these two cases, with
both simulating slightly over an hour of real atmospheric time. The
Neumann case, which represents the culmination of all the efforts
of development in the model thus far, was performed first. Afterwards,
it was decided that a rigid T1id case would serve as an interesting and
perhaps enlightening basis for comparison.

The essence of the two cases appears in Figures 5.1 through 5.10
via the variables Q, &, w, , n and ¢ . The figures are drafted
duplications of the actual microfilm outputs. Each variable is depicted

in six frames, the first corresponding to the initial state with each
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ensuing frame representing a hundred (100) time step increment from the
previous one. The only exception to this is the last frame which
corresponds to the 480 time step or a little over an hour of elapsed
atmospheric time.

A third case was explored in which the eddy exchange coefficient
was finite differenced in Tieu of the space-averaged approach taken in
the other two cases. (See the first part of section 2.2) Various sub-
cases evolved which suggested improvements in the lower boundary con-
ditions for both the vorticity and the eddy exchange coefficient. This
last case was not run as long as the other two cases because of
difficulties that developed at the lower boundary.

5.2 The Neumann Case

In the Neumann case, the evolution of the stream function (Figure
5.5) seems to indicate no sign of wave reflection off the top boundary.
However, the wave structure of the model as a whole implies a transient
nature, even in the last frame.

A stationary gravity wave system, which is expected in the model,
exhibits an upwind tilt alignment according to linear theory and
field observation (Lilly, 1969, 1971, 1972). The model, however, shows
a very definite downstream tilt in the short, large amplitude wave
immediately downstream of the mountain. This tendency lessens as time
progresses but continues to persist. In addition, no periodic array of
waves is established in the wake of the mountain although the incipience
of a periodicity is apparent. Nothing so definite can be said about the
tilt of the waves above the mountain top, but it is obvious that the
wave amplitudes are not growing with height as occurs in the prototype

atmosphere. This lack of amplitude growth is due to the fact that the
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model's air density does not decrease with altitude, which is an
attendent mechanism in the real atmosphere.

The apparent transience of the solution, even by the 480 time
step, may be real, but possibly misleading. Perhaps it is because
enough time has not been modelled to achieve a steady state (or quasi-
steady state) condition. Another reason may be that the lateral
boundaries are not far enough from the obstacle, perhaps permitting
transient reflections. A third possibility may be the steepness of the
leeward slope which acts to supply a large amount of momentum to the
surface under the restoring action of gravity. This momentum should
be counteracted by the opposing pressure gradient that develops to the
lee of a mountain (Scorer, 1955), but since there is no surface friction
in the model, some of the momentum may be reflecting upward, back into
the solution.

One thing that seems to justify the solution stationarity,
however, is that the lenticular cloud (Figure 5.3) which forms in the
wave crests downstream of the mountain remains in one place. As it
grows, it does not shift position or advect out of the model as would
a non-stationary cloud. (Cold orographic clouds are somewhat stationary
in behavior.)

The behavior of the cap cloud forming over the mountain crest,
however, seems to indicate a shortcoming in the model. As the solution
progresses from the starting conditions the isohumes of Q begin to
pack together toward the center of the upstream boundary. (It will be
remembered that the upstream boundary is allowed to flux by lTinear
extrapolation from interior values at the end of each time step.) The

upstream values of Q 1lose their Tinear variation with height. Larger
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values near the bottom shift upward and lesser values at the top move
downward. The resulting effect is to cause the cloud to form as far
upstream as the boundary itself. The whole process seems to be a
manifestation of upstream influence, but it cannot be stated with
certainty whether the disturbances which propogate upstream to alter
the moisture profile are of a real or numeric mode.

The same packing behavior occurs to ¢ and hence 6 since the
Tatter is a function of ¢ and Q except on the Tower boundary. (See

section 2.7.4 and section 4.3.3.) It is likely that the proximity of

the upstream boundary to the mountain barrier is partly or entirely

responsible for the packing phenomenon.

Since the upstream values of moisture and entropy are altered,
this changes the forcing function of the modelled cloud system. The
upstream alteration is unsteady so this would surely have some transient
effect on the entire system.

The cusp of the mountain appears to have an anomalous effect on the
solution at the lower boundary, most visibly on the variable Q (Figure
5.1). The anomoly is manifested in the break that occurs in the lowest
isohume which then advects downstream, yet does not reconnect. This
peculiar result originates at the cusp where condensation first takes
place rather artificially. (The first runs of the model had less up-
stream moisture such that no condensation took place. The anomaly did
not occur in those runs.) Naturally, all the variables receive
unrealistic treatment at the mountain cusp which would indeed be a
singular point in an analytical solution, and certainly does not have

adequate spacial resolution in the numerical model.
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The space-averaged eddy coefficient, K , does not strictly
conserve the variables Q, ¢ , and p which have associated transport
equations. In the real atmosphere, what is lost due to mixing at one

point is gained at another. In the model, however, local source or
oK

sink effects arise depending on the sign and magnitude of vy and
%; . These two factors are omitted as discussed in section 2.2 and if

they are small or indeed vanish at each point in the model, the above
variables are conserved in the numerical scheme. Calculations indicate
that the greatest discrepancies occur near the mountain boundary, but
this does not seem to destroy the general structure of the solution.

The relative importance of eddy exchange in a cold orographic
cloud system is hard to evaluate in the actual atmosphere. This is one
of the things that might be learned from a numerical model. For an
environment whose bulk stratification is stable, turbulence can exist
only at isolated localities in the cloud system. The overall effect
of this local turbulence may not be very important, but this consider-
ation is open for debate.

The downstream boundary conditions appear adequate for all the
variables. However, there is distance enough for only one or two
waves to form downstream of the mountain. It would be desirable to
extend the boundary far enough downstream to allow several waves to
develop because this would certainly lend more validity to the
solution.

The variables seem well-behaved at the top boundary, where vertical
mixing is considered negligible.

The method of handling the ten "odd" points (see sec. 2.3) causes

an unreasonable effect on the vorticity. This is most 1ikely due to
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the arbitrary zero specification of vorticity at the lower boundary
which results in large gradients of vorticity near the boundary. The
other variables show no difficulty in this regard. Also the degree of
irregularity in the vorticity at these points seems to diminish with
time (Figure 5.4).

5.3 The Dirichlet Case

The stream function in the Dirichlet case (Figure 5.10) shows a
more exaggerated downstream tilt and greater wave amplitude Teeward of
the obstacle. The waves at the higher altitudes seem to be longer and
certainly have less amplitude than the waves in the Neumann case. Wave
energy cannot pass through the top as in the Neumann case. Also, there
is evidence of the beginnings of blocking near the surface upwind of
the mountain which does not happen in the Neumann case.

The lenticaular cloud in the Dirichlet case (Figure 5.8) displays
a highly transient behavior, shifting position toward the downstream
face then retreating as time progresses. This serves to indicate the
greater degree of non-steady behavior in the Dirichlet case as opposed
to the Neumann case.

The packing of the isohumes observed in the Neumann case also
occurs in the Dirichlet case, but to a lesser extent. As a consequence,
the cap cloud develops more realistically.

The fact that the packing of ¢ and Q 1is more pronounced in
the Neumann case offers a possible explanation for this phenomenon.
Wong (1970) shows that the existence of lee waves has an upstream
influence on upwind momentum in addition to the effect of blocking.
This accompanying influence is dependent on the amplitude of the lee

waves downstream and acts to distort the upstream wind profile at
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altitudes above the obstacle. In the Dirichlet case the amplitudes of
the waves which Tie higher than the mountain are less than for the
Neumann case. Now although the upstream momentum is fixed at the
upstream boundary in both cases, the larger amplitude Tee waves in the
Neumann case send a stronger "signal" upstream. This "signal" is
manifested in ¢ and Q since the boundary values of these variables
are allowed to flux each time step. Placing the upstream boundary
further from the obstacle would most 1ikely alleviate or certainly
decrease the packing effect. One other remedy might be to allow the
stream function itself to change upstream along with the other variables.

The anomalous effect of the cusp on the variable Q 1is Tess
extreme in the Dirichlet case than in the Neumann case and it seems
that the effect is only a by-product of the initial "settling down"
period in the model. In time, the Neumann case would probably adjust
this anomaly also.

The same discussion of section 5.2 regarding the space-averaged
eddy coefficient applies to the Dirichlet case also.

A comparison of the kinetic energies for the Neumann and Dirichlet
cases shows that the Neumann case remains somewhat more stable after
an initial hump in the energy curve. The energy in the Dirichlet case
does not show as great a variation at first, but then displays a
continuously increasing trend that becomes more extreme toward the end
of the simulation time. (See Figure 5.11)

5.4 The Finite-Differenced Case for the Eddy Exchange Coefficient, K

A third case was performed in which the eddy exchange coefficient
was finite differenced. This approach is more rigorous, mathematically

speaking , than the space-averaged method. The Neumann condition
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was placed on the stream function at the top boundary for yhis last
case.

In the first attempt the vorticity was maintained zero at the
lower boundary as for the other cases. After only thirty time steps
the solution demonstrated an unusual character near the cusp on the
leeward side (Figure 5.12a). The situation grew worse with time.

A detailed analysis of all the variables led to the suspicion that

the problem resulted from the rather arbitrary specification of the
bottom vorticity, which is linked to the eddy coefficient via equation
(5).

In the next attempt the condition 232n/3n% = 0 was placed at the
lower boundary (n denotes the normal direction). A "virtual" point
was used to modify the analog of the first derivative, an/an . Since
motion in the normal direction becomes vanishingly small near the lower
boundary, this condition can be shown (using equation (8) in a rotated
form) to give second degree freedom to the tangential velocity at the
lower boundary. In this new effort, the solution was much better
behaved as seen in Figure 5.12b which corresponds to the hundredth time
step. However, the solution is beginning to show signs of trouble
at this point and eventually "blows up."

The difficulty stems from the Tower boundary condition on K .
(It will be remembered from section 4.3.3 that K at the boundary is
found by linear interpolation in the normal direction between the
value above and the zero value which lies ten meters below at the
physical ground.) This condition causes excessively large gradients
in the value of K near the lower boundary. In that region, the

derivatives 9K/ax and 3K/3z which can be grouped with -u and -w
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by rearranging equation (3a), complete with these velocity components
in their magnitude to the point of disrupting the solution. [Equation
(3a) is used only to represent the differencing of K ; the other
variables, of course, have corresponding terms in their associated
equation.] One possible improvement would be to incorporate the
transformed analog of an/an into equation (5) to obtain K at the
boundary. This does not seem inconsistent with the present resolution
of the Tower boundary, which 1ies some unspecified distance above the
physical surface. (See section 4.2.2 in regard to slip at the bottom
boundary.) The best answer probably Ties in better spatial resolution
near the lower boundary.

If a variable eddy exchange coefficient is to be considered, it is
far more appropriate to finite difference the coefficient than to use
the space-averaging technique. Otherwise, the transported variables
are not properly conserved in the numerical scheme and physical

significance is lost.
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6.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary and Conclusions

The knowledge gained during the development of the cold orographic
cloud model offers hope and direction for an improved simulation. The
realization of a viable dynamic system upon which to superimpose a
microphysical ice process appears close at hand.

The present technique for condensation, which approximates the
actual microphysics by a parameterization, seems adequate. In general,
condensation strongly depends on nucleating particles. Water vapor
cools to a supercooled state without condensing if enough of these
particles are not present in the actual atmosphere, whereas the model
assumes condensation based only on the temperature criterion of the
Clausius Clapeyron relationship. Cloud water appears at reasonable
locations in the model even though this parameterization is used.

By comparison, the Neumann boundary condition for the stream
function at the upper boundary is superior to the Dirichlet condition,
pending an improvement on the upstream boundary to alleviate the
packing phenomenon of ¢ and Q . The basic philosophies behind all
the other boundary conditions appear sound and seem reinforced by the
results of the model.

The numerical scheme, which enjoys a noncentered time-splitting
process and fully displays all damping characteristics (there is no
hidden or "psuedo" damping) has proved quite successful. Although
the scheme is designed for equations with a constant turbulent mixing

coefficient, it can also be used for the case of a nonconstant
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coefficient by grouping the factors 3K/sx and 3K/3z into the
advective terms i.e. (-u + 3K/ox) and (-w + 3K/3z).

The method of initialization, which minimizes the adjustment
period of the initial state, is one of the major accomplishments of the
research. A variety of starting conditions and boundary condition
experimentations can be attempted at reasonable computer expense.

This offers an excellent benefit in that a series of boundary experi-
mentations and initial states would possibly lend increased under-
standing to the physical processes of a cold orographic cloud system.

6.2 Recommendations

One of the most obvious lessons gained from the model is that the
boundaries should be extended for dynamical and microphysical reasons.
This extension most certainly should be done for the lateral boundaries
in order to lessen the upstream influence, to include several wave
lengths downstream, and to allow a parcel enough time for significant
ice growth. Perhaps the depth of the model can be left unaltered so
that the equations themselves, which assume shallow convection, can be
retained in their present form. But maintaining the shallowness of
the model may possibly preclude an important interplay between the
upper and lower portions of the atmosphere, to the detriment of
realism in the dynamic structure.

The mountain shape itself is quite unrealistic in addition to the
numerical difficulties it creates at the cusp and at the ten "odd"
points (sec. 2.3). If the lateral boundaries were extended, more
realistic mountain slopes could be depicted. Transforming the chosen
shape into a straight line by one of many techniques found in the

literature would solve many of the present numerical difficulties at
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the Tower boundary. Since a transformation would produce a rectangular
grid domain, the solution of equation (7) for the stream function could
be expedited by more sophisticated methods available for a rectangular

shaped grid network. The transformation would also eliminate any "odd"
points associated with the slopes.

Better spatial resolution at the lower boundary would improve the
solution. This refinement could be accomplished by an expanding grid
spacing near the bottom of the grid network. Some mechanism of surface
drag should also be included in Tieu of the present method of slip at
the Tower boundary (see sec. 4.2.2). (At present, the numerical
boundary is some unspecified distance above a non-slip surface.)

The space-averaged turbulent mixing coefficient should certainly
be replaced by the actual coefficient. Because of the bulk stability
of the model (Richardson number of 14.2), turbulent mixing is signifi-
cant only near the mountain boundary, exactly where the present treat-
ment of mixing is least suitable. Using the actual coefficient implies
using either an/an = 0 or 32n/an? = 0 at the lower boundary (see
sec. 5.4). The better of the two conditions could be determined by
experimentation.

The turbulent mixing mechanism (equation (5)) which is coupled to
vorticity is perhaps unsuitable for the cloud model, which is a meso-
scale simulation. The assumption of two-dimensional turbulence, upon
which the present scheme is based, applies more rigorously to a synoptic
scale volume in which the horizontal dimensions are much greater than
the vertical dimension. A more appropriate characterization for

meso-scale phenomena is suggested by Drake (1972). This method depends
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upon the local stabilities and the local dynamic deformations within
the cloud system.

The model now assumes equality of eddy viscosity and eddy dif-
fusivity. It could be important to distinguish the two processes
for increased realism in the solution, since the modelled system
simulates a stably stratified environment in which eddy viscosity
should dominate eddy diffusivity.

One method to allow upstream influence may be to place the upstream
boundary beyond the stagnation wedge which Ties on the windward side
of the mountain, while maintaining the present boundary conditions.
This method could possibly prevent having to perform a synoptic scale
balance for achieving the same result.

Radiation should eventually be included in the model. A first
step would be to do this implicitly rather than to invoke a complicated
mathematical treatment. For the mountain surface, this could be done
by superimposing a sinusoidal time variation of temperature to
duplicate the diurnal cycles. Field data by Balick and Rasmussen
(1972) implies an analogous time variation in the body of air above the
atmospheric surface. Observations show that the Tapse rate remains
nearly constant but shifts toward colder temperatures toward the
evening hours. This type behavior could easily be parameterized in
the model. However, refinement of the radiation processes should be
made in the final analysis.

Several experiments with surface roughness, type of snow covering,
vegetation covering, etc. should eventually be made for the sake of
gaining knowledge about their relative importance to the cloud system

as a whole.
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Inclusion of the precipitation process would be essential to

complete the integrity of the model.



59

REFERENCES



60

REFERENCES

Balick, L. K. and Rasmussen, J. L., 1972; A case study of the water
budget of an orographic cloud. Atmospheric Science Technical
Paper 187, Department of Atmospheric Science, Colorado State
University.

Benjamin, T. B., 1970; Upstream influence. J. Fluid Mech., Vol. 40,
49-79,

Bergen, J. D., 1969; Cold air drainage on a forested mountain slope.
J. Appl. Met., Vol. 8, No. 6, 884-895.

Chappell, C. F., 1970; Modification of cold orographic clouds. Ph.D.
Thesis, Colorado State University.

Crowley, W. P., 1970; A numerical model for viscous, free-surface,
barotropic wind driven ocean circulations. J. Comp. Phys.,
Vol. 5, 139-168.

Drake, R. L., 1972; Interacting convective cells in a two-dimensional
anelastic system, dry convection. Nation Center of Atmospheric
Research preprint, Boulder, Colorado.

Drake, R. L., M. B. Ellingson, D. P. Anderson, P. D. Coyle, 1972;
Interacting dry line thermals, numerical experiments. National
Center for Atmospheric Research preprint, Boulder, Colorado.

Egger, J., 1970; On the simulation of subgrid orographic effects in
numerical forecasting. J. Atmos. Sci., Vol. 27, 896-902.

Fox, D. G. and Lilly, D. K., 1972; Numerical simulation of turbulent
flows. Reviews of Geo. and Space Phys., Vol. 10, No. 1, 51-72.

Garabedian, P. R., 1964; Partial Differential Equations, John Wiley
and Sons, Inc.

Geiger, R., 1965; The Climate Near the Ground, Harvard University
Press.

Grant, L. 0., C. F. Chappell, P. W. Mielke, Jr., 1971; The climax
experiment for seeding cold orographic clouds. Proc. First Int.
Conf. in Cloud Models, Camberra, Australia.

Kao, T. W., 1965; The phenomenon of blocking in stratified flows.
J. Geo. Res., Vol. 70, No. 4, 815-822.

Krishnamurti, T. N., 1964; Theory of two-dimensional mountain waves.
Reviews of Geo., Vol. 2, No. 4, 593-624.



61

Leith, C. E., 1969; "Numerical simulation of turbulent flow," in
Properties of Matter Under Unusual Conditions (H. Mark and S.
Fernbach, Eds.), Interscience Publishers Inc., New York.

Lilly, D. K., 1969; The Colorado lee wave program. Clear Air Turbu-
lence and Its Detection, Plenum Press, 232-245.

Lilly, D. K., 1971; Brief reports, observations of mountain-induced
turbulence. J. Geo. Res., Vol. 76, No. 27, 6585-6588.

Lilly, D. K., 1972; Wave momentum flux - a GARP problem. Bull. Amer.
Met. Soc., Vol. 53, No. 1, 17-23.

Lin, J. T. and C. J. Apelt, 1970; Stratified flow over an obstacle,

a numerical experiment. Project THEMIS, Tech. Rep. No. 4,
CER69-70JTL2, Fluid Dynamics and Diffusion Laboratory, Colorado
State University.

Lumley, J. L. and H. A. Panofsky, 1964; The Structure of Atmospheric
Turbulence, Interscience Publishers Inc., New York.

Malkus, J. S.; and G. Witt, 1959; The evolution of a convective
element: A numerical calculation. The Atmosphere and the Sea
in Motion, Rockefeller Institute Press, 425-439.

Matsuno, T., 1966; False reflection of waves at the boundary due to
the use of finite differences. J. Met. Soc. Japan, Vol. 44,
No. 2, 145-157.

Molenkamp, C. R., 1968; Accuracy of finite-difference methods applied
to the advection equation. J. Appl. Met., Vol. 7, 160-167.

Nickerson, E. C., 1965; A numerical experiment in buoyant convection
involving the use of a heat source. J. Atmos. Sci., Vol. 22,
412-418.

Nitta, T., 1962; The outflow boundary condition in numerical time
integration of advective equations. J. Met. Soc. Japan, Vol. 40,
No. 1, 13-24.

Ogura, Y., 1963; The evolution of a moist convective element in a
shallow, conditionally unstable atmosphere: A numerical
calculation. J. Atmos. Sci., Vol. 20, 407-424.

Ogura, Y. and N. A. Phillips, 1962; Scale analysis of deep and shallow
convection in the atmosphere. J. Atmos. Sci., Vol. 19, 173-179.

Orville, H. D., 1964; On mountain upslope winds. J. Atmos. Sci., Vol.
21, No. 6, 622-633.

Orville, H. D., 1965; A numerical study of the initiation of cumulus
clouds over mountainous terrain. J. Atmos. Sci., Vol. 24, 684-
699.



62

Orville, H. D., 1968; Ambient wind effects on the initiation of
cumulus clouds over mountains. J. Atmos. Sci., Vol. 25, 385-
403.

Orville, H. D., 1970; A numerical simulation of the 1life history of
a rainstorm. J. Atmos. Sci., Vol. 27, 1148-1159.

Queney, P., ed., 1960; The airflow over mountains. W.M.0. Tech.
Note No. 34.

Roache, P. J., 1970; Sufficiency conditions for a commonly used
downstream boundary condition on stream function. J. Comp.
Phys., Vol. 6, 317-321.

Scorer, R. S., 1953; Theory of airflow over mountains: II - the flow
over a ridge. Quart. J. Roy. Met. Soc., Vol. 79, 70-83.

Scorer, R. S., 1955; Theory of airflow over mountains: IV - separation
of flow from the surface. Quart. J. Roy. Met. Soc., Vol. 81,
340-350.

Takeda, T., 1971; Numerical simulation of a precipitating convective
cloud: the formation of a "long-lasting" cloud. J. Atmos. Sci.,
Vol. 28, 350-376.

Taylor, P. A. and Y. Delage, 1971; A note on finite-difference schemes

for the surface and planetary boundary layers. Boundary Layer
Met., Vol. 2, 108-121.

Varga, R. S., 1962; Matrix Iterative Analysis, Prentice-Hall,
Englewood Cliffs, N.J.

Willis, P. T., 1970; A parameterized numerical model of orographic
precipitation. EG&G Inc., Boulder, Colorado.

Wong, K. K., 1970; Stratified flow over extended obstacles and its
application to topographical effect on vertical wind shear.
J. Atmos. Sci., Vol. 27, 884-889.

Yamada, T., 1971; Numerical and wind tunnel simulation of response
of stratified shear layers to nonhomogeneous surface features.
Ph.D. Thesis, Colorado State University.



63

APPENDICES



64

APPENDIX A
A FLOWCHART OF THE MODEL AND FURTHER EXPLANATION CONCERNING
THE NUMERICAL SCHEME



65

APPENDIX A

A FLOWCHART OF THE MODEL AND FURTHER EXPLANATION CONCERNING
THE NUMERICAL SCHEME

A flowchart depicting the method of initializing the model
(described in section 3.0) is shown in Figure Al. The layout of the
model itself (described in section 2.0) is given in the flowchart of
Figure A2. Both flowcharts serve to supplement and reinforce their
related discussions in the main text of the thesis.

Section 4.2.2 explains how slip is allowed at the Tower boundary
and makes the claim that the uncentered differencing of the stream
function more correctly corresponds to the tangential velocity
component half a grid spacing above the lower boundary rather than at
the boundary itself. Consider first a single Taylor's series expan-
sion (in the vertical direction) at the Tower boundary with j

increasing upward (see Figure A3 as a guide)

- o 5
"’jﬂ = ‘f»’j + h(BZ)j + O(h ) (A-l)
from which we obtain
5 ¢.+] - v
(4 = vy = L +o(h) (A2)

(remembering that %% = u as given by equation (8)) where Uj is
the tangential velocity component at the Tower boundary and h is the

grid spacing. Now consider the two expansions

9 h/2)? 32 h/2)3,33
B h/2(5%)j+1/2+(_é_l ( )j+1/2+ i_é_l (——Eﬁj+]/2+0(h“)

Vi1 T Vi41/2 172 223
(A3)
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- ,ghgzy a?— h/2)3,33
v = vin2 26 i 2 ( 54172 571( "’) s41/2+0(h*)
(A4)

Subtracting equation (A4) from equation (A3) yields after rearranging

Vs Vs
A I
(az it/2 " j+]/2 h *ioil) (A5)

where Uj+]/2 is the tangential velocity component one half a grid
spacing above the lower boundary. One can see that equations (A2)
and (A5) differ on their right hand sides only in the order of
truncation error, equation (A5) having less error. Therefore the

differencing

more correctly represents the tangential velocity component Uj+1/2
than Uj . (For this discussion, the series expansions were
performed on the level portion of the Tower boundary for convenience.

The same argument holds for the slopes.)
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Flowchart of Initialization of the Model

e . 2
initialize ¢ by solving V =7 const,
based upon linear upstream shear
1.e.n is constant everywhere inthe model

;

find initial values of u and w
from initial y

initialize Q,8,¢ as functions of height

based upon the upwind soundings;

w =0 such that wv=Q; k=0 since
[V7l=0 at the start

store all initial
fields on tape

Figure Al.
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Fiowchart of the Mode!

read parameters which limit the number of
time steps to be computed and the time of computation

read parameters that control
frequency of printin
and plotting

Y

perform first portion of the program
which sets up arrays, constants, etc.

read variables of the most
ecent time step from
the.storage

tape

¥

read variables from
jnitial tape that has

been created

first run
of themodel ?

is time

~t=teat limit or number
increment time of time steps
step exceeded ?
calculate
Qand¢
_ es N
calculate plot variable ! y plot vorlobiel
9:“‘"\:,“’2 A
@ no
_ , es
CG‘C‘:;me print variable ? i print variable

@ no ya
calculate go to ®®©@©

4 in sequence (n= 1,2,3,4,5)
calculate compute at for
uw,k,k O the next time step '

Figure A2.



- N

+2
j+|
Uisie
j+|2 —————— x -J#- ———————————

j  —e—di X
\\Iower boundary/r-

Figure A3,



70

APPENDIX B
A SUMMARY OF THE BOUNDARY CONDITIONS
WITH ADDITIONAL EXPLANATIONS



71

APPENDIX B
A SUMMARY OF THE BOUNDARY CONDITIONS
WITH ADDITIONAL EXPLANATIONS

This appendix presents a discussion concerning the application of
boundary conditions in the model including a summary of the conditions
used at each boundary. There are different ways an analytical
boundary condition may be transformed into a numerical counterpart.
Two methods are employed in the model: the "virtual" point method and
the extrapolation method. For explanatory purposes we need consider
only one boundary; the top boundary is chosen for convenience. At the
top boundary 1 <i <I and j=4J where i and j denote sub-
scripting in the x and z (horizontal and vertical) directions,
respectively.

Consider any variable ¢ and its associated transport equation
3¢/at = -u 3/3x - w 3¢/8z + K 32¢/3x2 + K 32¢/0z2 (B1)

If we place the boundary condition 38¢/3z = 0 at the top boundary, the
“virtual" point method transforms the finite difference analog of
32¢/322 (see section 2.6 which describes the "virtual" point concept)

so that we may re-represent equation (B1) as

ae/ot = - u a¢/ax + K 3%¢/ax2 + K(32¢/322)transformed (B2)

which is solved at the boundary along with equation (B1) for the
interior of the model. The extrapolation method, on the other hand,
does not involve the transport equation at all. A finite difference

representation of 3¢/3z at the top boundary may be given by
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5 _ &y = 94
¢/9z = —h (B3)

where h 1is the grid spacing. Setting this expression equal to zero

we obtain

by = 63.1 - (B4)

Equation (B4) is applied at the end of a time step to obtain the
boundary values from interior values. Now if we consider the boundary
condition 3%¢/3z2 = 0 at the top boundary, the "virtual" point method

yields

3¢/t = -u a¢/ox + K 32¢/ax2 (B5)

"w(a¢/az)transformed
and the extrapolation method yields

By = Y.y " Hgeg (B6)

In summary, the "virtual" point method involves solving a transformed
transport equation at the boundary itself and the extrapolation
method involves interior values at the end of a time step.

The boundary condition summary of Figure B1 shows the analytical
form of the boundary conditions for the variables of the model and the

corresponding numerical form of these conditions.



%/32%0
.o
ax
e,
=9 (6,Q)
8=0 (¢,Q)
8:6($,Q)
—\
6-8 (z)
an/dz=0
an.
210
X,
7=0
dy/ 8 z=Uconst
Y= ylz)
N
y=0
dk /92=0
K.
g—:- 0
R/o %0 il
Figure Bl1.

analytical form

a8 %0

P

3G/an - Q-0

model.

W

'|-.‘.|
"
o

Schematic summary
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Q20 Q,

numerical form

“sirtual’ point

method

e N

1= d

QraQ-G,

1=1

solve simplified transport equation

8:8 (¢,Q)

¥ = yiz)

tangential dervatives only )

"virtual' point method

—\

¢=¢(6,Q)

8:8(¢,Q)

lirear interpolation between
zero value 10 meters below
and the value at the grid pont
above inthe normal direction

of the boundary conditions in the
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APPENDIX C
UNIQUENESS PROOF FOR POISSON'S EQUATION OF THE STREAM
FUNCTION WITH THE IMPOSED BOUNDARY CONDITIONS
OF THE CLOUD MODEL

This appendix presents a proof of uniqueness of the equation

v2y = - n (C1)

for the imposed boundary conditions of the cloud model. The classical
method of energy conservation (Garabedian (1964)) is employed.
Assuming two solutions, ¢; , and v, , which both satisfy equation

(C1), we may define
¢ = V2 - W
such that
V2y, - V2y; = V24 = 0.
Then we may also state that
$v2¢ = 0
which may be reexpressed as
oV24 = U « ¢V$ - Vo-Vp = V¢V - |V¢|2 = 0 (c2)

by a well known vector identity. Equation (C2) is integrated over the

entire area, A , of the model to give

2 = . dA - 2 dA. C3
IAI 9v2¢ dA Iﬂfww IAI |vé| (€3)
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Gauss's divergence theorem is then used to transform the first integral
on the right hand side of equation (C3) to yield
[ [ veovo dA = § ¢Vé- N ds
A S
where n is the outward normal unit vector of the closed curve

encompassing the cloud model and s 1is the arc length of that curve.

Equation (C3) may be rewritten as
>
[ [ ¢v2¢ dA = § ¢v¢'nds - [ [ |v¢|2dA =0 . (c4)
A S A

Equation (C4) is used to construct the proof of uniqueness.

Consider the four boundaries of the model as shown in Figure Cl:

(a) Tleft boundary v, = y; = ¥(z); therefore ¢ =y, - y; =0
a3y, 3%y

3
(b) right boundary = —— = (; therefore 3% =g
ax3 ax3 ax3
Yy 9
P L . 9% _
(c) top boundary = =7 = Uconst > therefore == =10

(d) Tlower boundary ¢, = ¢; = 0; therefore ¢ =0 .

Using Figure C1 as a guide we have at the top boundary

(3%) =0 for 0<x<lL
X,H

from which it follows that

3 3¢ _ 32 3¢ _
(= ) = (=) =0, etc. for 0 <x <L
x ez !y ax2 % 'y i X<

(C5)

i.e. all derivatives in the x-direction of %% vanish at the top.
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Since v24 = 0 we may differentiate with respect to x to obtain

9 _ 3% , 3 3% _
_y2 + 0 (C6)
oX ax3 % 522
which holds everywhere in the closed region and on the boundaries of
the model. But the right boundary condition of the model is
3%
(=t} =8
ax3 L,z

such that equation (C6), as applied to the right boundary, becomes

_E_Efi) = ( ) &0
X 372'| 7 B3z ‘axoz
Therefore
32¢ = constant, C (C7)
( ) 0
aX9Z L3

but equation (C5) can be applied to the upper right hand corner of the

model to yield

32
(_?i) = ()
IXozZ L,H

which shows that the constant C0 must be zero. Then equation (C7)

is written as

2

(8 ( ) =0

axaz’ 9z 2
such that

(EQJ = constant, C, .

9% LsZ ]
However, 3$~ ——f—- 0 at x=L and z =0 by the same

ax

reasoning used to obtain equation (C5) such that the constant ¢

also must vanish. We then have
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9

(22) =0

3X L,Z
. 3¢ . . .
instead of ( 3) = 0 at the right boundary of the model, which is

x> L,z

a key result of the uniqueness proof. This result is based on corner
arguments. Figure C2 summarizes the final boundary conditions on ¢ ,
which differ from the initial boundary conditions only at the right
boundary.

The Tine integral of equation (C4) has four contributions, one

for each boundary of the model. That is,

- H L H L
[ ¢véends = [ ¢( - %%sz + [ ¢ %%—dx + [ ¢ %% dz + [ ¢( - %%)dx .
- Left °  Top © Right © Bottom

But each contribution is zero because either ¢ = 0 or -%% =0 at

each boundary. Then equation (C4) reduces to

[ [oev2¢dA=-[ [ |ve|]2dA=0. (C8)
A A
This equation requires that

3y2 - (3%4y2 -
(Bx) ( 9z 0
because all the terms in the equation are non-negative. Therefore

3¢ _ 3¢ _ =
% 57 0 or ¢ = constant, C3 "

but the constant C3 must vanish because ¢ is zero at the left and
lower boundaries.

We may now state that the solution of v2y = - n is unique, with
no additive constant, for the given boundary conditions since ¢ = 0

such that v, = v; .
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- =N

(g—“f) xH = Yconstant

z:H
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L Ny S
¥ =0
Figure Cl.
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—\L —
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APPENDIX D
LISTINGS OF THE COMPUTER PROGRAMS FOR
THE INITIALIZATION PACKAGE, THE CLOUD
MODEL PACKAGE, AND THE PLOTTING PACKAGE
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INITIALIZATION PACKAGE



08,5220, V0424010 ,DER | CSON Stet, (2.+THETREF:

sLIMIT, T30S PR=GQ [2oF4d 2,

SARRIGN, MR 7 C8e(Fdes2) 2,

ormaRa CdoFds THETREFsR (CPPREF
PROGRAR BETSY CONl=R_ (R sPREF

DIMENS 10N TK (361, TPP(36], TP (36) Wi (1361, TMP (361 ,PIBK (36) PHIPRIBED,

1PRES 136) ,DELC (361 ,ESLTK (361 ,ESITK(36) , TR (361

DIMENSION WS | TERM(36) ,DIFUI36) LGPRTERM (36 ,PIB (36 ,F22.:56) Filon!l

11961 ,MOA (36) ,R124156) FLLI (36),F1156) ,F2156! ,F5(56!

DIMENS |ON 0S (361 ,WyS (361 W51 (36) A0 (361 ,5PR 136 , AL AL (56!

DIMEMNS 10N AVOR (361

DIMENSION D(111,56) ,EL11), 56

COoMON SI111,36)

COMMON, BLOCK S, DELT, TIME, NSTEPS, | TER, |V AR, FORM
COMMON.BLOCK1S. MT

€ INITIALIZE TIME

DELT=8,76
TIME=0.0
MSTEPS=0

| TER=0

LML=31

M T=25
WRe110

W ALIRR]
MLB=356
EPS=0.005
V=10,

im0
DELxZ=100,
HUM| TER=600
RELF=0.405

DELxZ2=2, *DELXZ
DELXZSQ=0ELxZ++2
C222./3.
WBASE=0,0095
DWDZ=-0.057145E-06
TREF=271.353

Tr TREF = TREF
DxDZ=0. 00522
CTDZ=-0.00976
DO=0.249
PO=1000.
T0=299.0
FFie1,7
FF2e1,0%

coree! E-05
CELTA=Q,
COM=0.T
FLa=604,2
FLIv=§TT.5
FiLlta?e,7
SLPLLI=0,5T4
FLLIBOT=T0.7
“P=0,240
PREF~75C.

AP=0, 00685
Pa% 006, 00685 WP
APas 20076
Crr=1,.0.206
Pa), 0609557

>0, 110226
Fdof g (Fye (THETREFee2;

COPQeFLIV (R THETREF #0 2]

CONSeCON2s2 2,

FNO=0. 1

MmOl=0,917

COrdFNOsMO | 5. 14159

THEM=S S0L - 0%

COMNBaF [ Vee2. (WysTHERM)

CONTog ! E«0B (1, -CONM

CoNm=FLIV.CP

CONBA=CONS. THE TREF

cor@sFLLt. CP

CONTQaCP«THE TREF. FL\L

CONT1aCPs THE TREF

WRITE(G, 40 Fa,COMNY CONQ,CONS, 000,005

WRITE(6,3) CONT,COND,COMBA,COMG, COMITQ, 200"
4 FORMAT (1m0, 6112, E15,. 71
5 FORMAT (1m0, 6012,E13.7) 1

WRITE 6, T

T FORMAT (1M1

WRITEL6,5!

5 FORUAT (1m0, TR DELC W ™ e PiB
! PrilPR PRES,. MO F1 F2 FS ES. T
251 Me. 'l

et B

0O 1 =1 ,MmB

VNV

FLLl (W =FLLIBOT-SLPLL v

i (] =WBASE+DEDZ 100 %

TR (JI = TREF-0LR* 100, */

TE () =TREF+DTDZ+ 100, *u

DELC tui=TR(J)-275.16

TPP () =0KDZ+ 100, *uu

PHIPR (U] = (TPR (U] +CONB W (J) | THE TREF
TP U1 = TPP (J) + THE TREF
PIBiul =l ,~ALR= 100, s (THETREF<TPP (U]}
PIBR 1u) =P B J) »sExK

THe2456.5+100. vuJ

PRES (U1 =1015.25+ ( (299, 16-0LR+*TM. 286. 16 ++xPQ
P04 () =0, 000354850 «PRES (u). TR ()
RI24(J) = 1CONA PHOA (U] ) +=0,5) oFF1+FF2
DIFULUI= (DO (TR{UI. TO)wel @11« (PO PRES (I}
GPRTERM (Ui =D [Fly) «COE. (TRIJ) *2)
ARGTI=17 27« (T (U)=278,16!. (TK (J)-95,.80!
ESLTI (UimG, 11 vExP (ARGT )

ARG2e21 .07+ (TK (U1 =278,161. (TK (U1 =T,.66!
ESITE (Ui =6, 11 +ExP (ARG2)

WS ITERM () =CONTES ] T () PIBK (U]
FlivieCasESLTE (U] . P B LU}
F2iuieC1a02eF 1 1y

F2lui=F2luiee2

FS1u =C8eF1 ()

FIComI0uuisf tuiet g

DS (PHIPR (I -FLL ] (Ul bt TONTI=F T (Ui oFBiu1oF 22100
IF 198 tui LE.0.) OStui=g, 0

VU= (ST IS 1UI 1 -F2ui) T8Il
SATah 4o TPP (L)

WS iU o110 et sSATe0 5eS5ATee2;
SATar e TPP (.}

WS S TERM e (1, oS5AT4) BeSATee2)

28



4

YA N

POV (o) mheld (] AROA (U]
GPR L)@ (D IFU L) o0V (). PO L] (1 SGPRTERM (L) oM, (L))
AVAL (J)od, *R12d 1) GPR ()
™ (U eP Bl TP LY
WRITE(6,2) TRIU DELC (V) Wil (TP LU) , TPP (U] PIB U PIBK (U] PP
1, PRES I, FULd), F2uu0, F3) ESLTE L) ESITE (W), DM
2 FORMAT (1m0, 201 %,F6, 10,10, FE.B, 201, F&,11,901x,F9,% 1. Fo.5
1 CONTINUE
WRITE 6,11
1" FORMAT L)
WRITE (6,100
101 FORMAT (1H0,+ WSITERM 0IFy GPRYERM F22
1 FICoN1Q Pr0a m124 FuLle )
0O 14 =1, MB
WRITE16, 121 WSITERH (LI, DIFV ) GPRTER (U] F221u) FIC0NT0 (Ul MOA (u
1,24 00 FLL ]t
12 FOPMAT (1H ,B(1X,E15.5))
14 CONTINE
WRITEI6, 11
WRITE 16, 1021
102 FORMAT (1m0, » Qs WS Wi MmOy
1 PR AvaL TEMP.. )
DO 15 u=1,MB
WRITELE,66) OS5 (U] ,WVS (Ul bS] (U] MDY (U], GPR (U], AVAL (W), TMP (U]
66 FOPMAT (1w ,T(1x,E15.8))
15 CONTINUE

WRITE SINGLE SUBSCRIPTED VAR|ABLES ON TAPE

BUFFER QUT(7,1) (WSITERM(1) ,F3(36))

6 IFIWNIT, T 6,9,7

7T WRITE(E, B

8 FORMAT (10, +EMND OF TAPL ERROR.. |

9 CONTINUE
BNOFILE 7
10 1M=L R
JO M= B

DO 70 v=1,MB
DO 70 l=1,Lm
Dtl,u1=0.0
Etl,v=0.0

70 Stl,u1=0.0

COUBLE SUBSCRIPTED ARPAYS NOW WRITTEN ON TAPE

laal}
CaLL STDI(S,PHIPR, IDIM, DIM, LML
I Va1
CALL WRTAPE(S,LR1 MBI

%, TOTAL MO|STURE
CALL STD(S,ks4, [0 M, 0 1M, LML)
lvaRe2
CAMLL WRTAPE (S,LR1 MBI

T Ta PRIML
ChL STOIS,TPP, [CIM, OIMLML)
liblet )
ChL WRTAPE (S,LR1 MBI

Wi, APOR

™~

~n

CALL STD (S, W, IDIM,JO1IM, LML)
|vAReg
CALL WRTAPL (S,LF! MBI

WL leulD
DO 6! u=1,MB
DO &' I=1,LM!
6! Sil,ui=0,0
IvARe=g
CALL WRTAPE (SR, MB!

Wi, ICE
DO 65 u=1, M0
0O €5 |=1,LM
65 S(l,vi=0,0
IvaRa?
CALL WRTAPE (S,LR1, MBI

VORe=Y, (M T M)
DO 23 w=1,MB
23 AVOR (J)=VvOR. 100,
VORTICITY
CALL STD(S,AVOR, IDIM,DIM,LM)
IVARa12
CALL WRTAPE (S,LRI MBI

CALL MARGO (W, EPS,RELF LML, MLT, UN LR, UM TER, VOR
JTet Tel
L TN
MLB=uBe 1
WRITE(6,24!
WRITE 16,1051
105 FORMAT (1+40,57x, »STREAM FLACT|ONY. )
24 FOMT (/7777000000
0O 25 u=1,MB
WRITE(E, 56 (Stl,u),l=1 LR
36 FORMAT 11211x,F9. 211
WRITE 6,200
20 FORMAT (/)
25 CONTINUE

STREAM FLACT 0N
IvaR=19
CALL WRTAPE (S,LR1 MB)

HRITE 16,24)

COMP AND W-COMP
w1
DO 16 1=2,LR
Etl,Jie=(Stlet,ui=St]=1,u1) DELXT2
16 Dtl,Ji=1St],1=8(],u¢1) 1. DELAZ
0O 18 1=2,LR
0O 18 v=2, ML T
Etl,si==iSile1,01=-501-1,J1) DELATZ
19 Ctl, =S, u=11=51),¢11 ) DELRZ2
LM r 420
00 26 w=uT, B
LiMre -2
CO 26 l=2,L1M
Ctl,uie=(Stlet,u1=S(1-1,ul ] /DELRZ2
26 DUl ni=i8i],u-11-81] 00111 DELKZ2
ILmr <20
0O 27 weul, B

€8



le=lLel
0O 27 lolL.uk
Etlywie=tStlet,ui=8tl=1,u1 ). DELAS2
2T Dtl i etStl = =8t ,ve 1) 1. DELAZ2
AL, R
JisHLB
12e0M. 250
DO 20 K=1,10
[ACIREH
12=12=1
Jisgt=1
DUIZ N ie S lde w1812, =111 DELAS2
CUldnie=D L2, w1
Delter utiatBiltet ut=ieS it ut=tii (2,800 :
(IR PSNINL R RCAPVIN I B
Cult,tieglt=t,ut) DG
b R TRARVITTYE TRAISVIEA IS TR . o]

¢ Juse

-

D20, VT oB LM e 20 T DELD
Cuede,JTi=g.0
0O 37 l=1,U0
Ul MBi=0.0

37 Dul B eh] 0 DELAS
UAPIeUN 50

DO 39 le Py,
il D=0

N DU ADIEI B DS
0O 1T =1,
[ ALV 4+ ST
[ TN _LPRVIE JTE W]
DUV im0 (2,

1T DU iDL,
WRITE 6, Y04

104 FORAT (10, 628, v~ (PP |
00 29 =1 M B
WRITE 6. 58) tl,ui,le,m0)
WRITE 16,200

28 CONTINE

O
Ivae1s
CALL WRTAPE (DR, M)

W TE16,24)
WP TE (6, 108;

105 FORMAT (100 827, o= COMPe. )
0O 35 u=1.m D
WRITE (6,98 (Etl,ul, l=1,.8)
WL 8,200

5 conTing

P,
lvame1§
AL WRTAPE (LR, "MB:
ELr vISCOSITY
00 200 w=1,M B
9 200 J=1,.P1
$tl,vi=0.0
lvale1 7
Tl WPTAPL (SR, MDD

2%

o

(] 4
VARG TING WRTAPE (4, 01 .MLD)
SIS ion ALe D)

COMMONBLOCK L. DELT, TIME , NSTEPS, | TER, [ VAR, UF O
BUFFER OUT(T, 1) (DELT, IVAR)
IFONIT, 7 6,8,7

WRITE 6,0

FORPAT (100, *END OF TAPT CRROR [N WRTAPEs.)
BUFFER QUTIT, 1) (ACY, 1) AILRY M)
IFIUNIT. T 9.16,10

WRITE (6,80

CONT INUE

IFtIvAaR,.EG.171 ENDFILE 7

Lo

oo

SUBROUTINE STD(A,B,IDIM, 01M, LM
DIMENSION ALIDIM,JOIM) ,B(1)
COMMON/BLOCK 1S/ M.T

M= M-10

FRLILNS 3

DO 1 wel, Ll

DO 1 le1,1DIN

All,v1e@(n)

LI e 20

DO 2 u=sL M, DIM

LM Im-2

DO 2 1=, liim

Atl,J=Bin

[N, ]

D0 3 yag M, OIM

ILIM=lL M

DO 3 l=lLim, IDIM

Al =B

RETUMN

(2

hoowean

[ -

SUBROUT INE MARGO (v, EPS, RELF , LML MLT, i, LI, NUMI TER, VOR)

DIMENS 1ON RES (6001
COMMON St111,96)
COMMON/BLOCKA/DELT, TIME NSTEPS, | TER, | VAR, JF ORM
JTet Te1
AL TeuN
BB+ 1
JTlayT+1
LRI e
(S 8L 8, &3
LMLISs ML +19
Xloy/ ( (MLB-1)92)
DO 2 u=1,mB
2= (LB-J) 02
DO 2 l=1,Lm
Sil,Ji=x1sx2100.
2 CONTINUE
LLs g +20
SiL,JTi=0.0
LTS
DO S u=uTi, B
Lo -2
[L B R
DO S JeL, M
Stl,vi=g,0
5 ConTirag
C1=4,/8,
C222,/8,
YOReyORe 100,
=0
B F SB-0,5) 0T B
0O 20 lu=1 M| TER

8



12

20
21

oy,
“f'L

DIFFes],E¢10

C™AAD |FF

| TERs |y

DO 18 vad,MT

DO 10 Isd,P

LN TR RVIEY YR CISVIEY TRIRRN Y TR RYLANET MO YR RTVI- N, o
EMANSAMANY (EMAN P

Stlywingil ek

Rel 80,0

RedBS (R}

DIFFsAMAN (D IFF M

CONTING

(R R RS

0O 18 T, 8

LMy (M-

0O "1 Qad.LiMn
MaStl=1,dieStlet oSt ,=t1o8 1] usti=d, o8], ulevOR sRLF
EMAxeAMAN Y (EMAL R

StlyJini],Jish

Rel. S11,u1

Lol 3Lt

DIFFsAMALL (DIFF, M

CONTINUE

1= [Mxe)

ReiStl=1,Jisd,vS0], 0= B, ~6,S11,JievORie(d, MLF &,
EMAxeAMAx] (EMAx R

Stl,vieSt], uish

Rl S01,01

ReARS (R)

DIFF=AMAXY (DIFF ®;

CONTINUE

Iu=LM 20

DO 12 =T, 8

IL=lLe)

DO 12 I=lL,LR

Ra(Sl=1, eSt]+1, 1250, =115 ], us1i=d, 250, 1+v0R; «PELF
EMaxeamMax! (EMAX, R)

Stl,ui=St],Jish

Rt StLl, 00

Ra4BS ()

DIFF=AMAX! (DIFF R

CONTINLE

PES (| TER) =0 |FF

DO 9 1=2,LR

Stl,1)=FS=100.+511,2)

IF (DIFF-EPS1 21,21,20

CONTIMUE

CONT INUE

CO 19 u=1,.8

SILRT, UiesS oSILR, JI-5,+SILR-1, JI+S(LR-2, i
WRITE(6,14)

WRITE(6,22) ITER,PELF

FORMAT (17, s/ PBER OF |TERATIONS=+, 14,28, *RELAXATION FACTOR=+ F9.6)
W ITE (6, 14)

FOMMAT (/77000

T 16,26

FORMAT (100,507, «PESIDUALS [t PERCENTAGE THAMGE..
WRTE 6,25 (PES(]), l=1,ITER)
FomPATI1011,,F9.%)

LTy

(44

98
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L

fair TLin DRI PTetD

AL L AR -

AAAAA

@A,
PROGRAM MOCEL
AMES L, FXE 400
CivME'SI. TF 2
CoMmal BLIIN' WSITER™ .56 DIF. (56 ,JPOTED™ S5 Bip 55 £ 85 T
Y86 PCA 36, RI2L 36,5 ) 56 ,F 536, ,FD B F8 5
I BLQOKY MUTL, LR, LML TEC DL RELF R, THETRER 1P, 10 22,08,

TR AN, 22, e LTS I TER R (S, CEL D

oy e Sl B LR R W R R b Pl 18 B e o i . Rl Mol St s
tFaLT

SV BLOCK TELT,TIME,'STEPS, (TER, [ 4P, F O™

TIMMON BLOCKS A1t .56 .80, 5.0 L8600 8% L E L5 LT
Trre 86,500,560 .
Coma0h BLOCK T 25!

LE-5"

SO BLOCKe T, 56,

TIMMON BLOCK!Z ITARRAY (2 T IFIRAT D%

TIMMON BLOIK Y "‘..2'“""'

- Pl BLOIKT2 TIMEDN

TIMON BLOTK T TS ﬂ: '£' ARIR CIRCTIIRE s.ep, e

e L BLK'S WT J' 2P SINT S0 R AT IR T ST
TIMMOH BLITKE JSKIP

TIME LIMIT N SETNLS AS SUPP_ET BY USER D JESS Tean, I L0MT ART

--.-u.

- .“5'[ P=253

“IMBER CF FIUES TI SKIP TD SET TI CELEST TIYE STEP . TAPE
*FIES=13
PARAMETERS T2 TETER'E wJa “atir TI™ME STEPS BEFORE P_ITTING PR NLLETD

IPLlrec=1
PRI 5] r

C

"IMBER OF _MES TO SKIP [N PRINTING LARIABLES TI TP OF MOATAN.
ihew oI 'ES ARE Dﬁ'! JTES START'G FROM 2P OF “7.! AN DM AR
« 5 (Pag

APDACS PERTISE'T TS MASS ST
[f aBE S o o
TH 2. =t
8, =6r” EFA”
M 4. =6 EFB’
185, sl XEF A2
IF 6. =6rr’ EFB2

AGE A'C PLITTI'G &L PR

"Mn:'.g-- b L] el
ITARRAY (2,50 =" JnAP DR
TARRAY (1,3 imi0m e
VTARRAY (2,100 =10mTA
ITARRAT (1,11 =1 0Ha,SAT LAPD
ITARRAY (2,11 1=10n@ AL _ |2
LTARRAY (1,12)=10m R
LTARRAY (2, 121®10KWT2ITY
TTARRATY (Y 181 =1 0R STRE A™
ITARRAY (2, 181100 AT IO
JTARRAY [P 1d1=' TE
TTARRATY (2, 14) =1 0P

CTARRAY (2,15 @ 0K w=23
ITARRAY (2,15 =1 0P

VTARRAT (1,16, =10m nlc

{ Slﬂ‘ﬂﬂl 2:12,F9,
IFOPMAT (2,8, =347,

SPETIFIEC IrSTALTS

M T=25
Re11

L . L
CEusT=tss,
PEF=2.405
Pl lms. 9"
THETREF=27 3
P, 245
crmd. 8§,
2=2, 3.
“Be4, 6.

o LA
EPS=3, 305
F_iMag 7
Tr22=5.9
THret E-05
P 5= 5056
tipe TER=SLY
W, 5=15%,
LE_/lo5, ™"

AATAGTS LT N TR LY T CEELED PR DT

b,e%, 0226
Folm€T7.%
F =6,z

MTEL T ASTALTR SR PR FIEL TISTANTS

A
s et

RN

ED

I STAS

L8



CELAT2e2,DELT
CELAISQeDEL Jee2
SO IRV e THETREF # o2
CONSa TN 21 . 2,
SN 1 eCPeTHE TREF
A=V P
COMR 1 @FLAMSDELAT "3
FAdsFLVL, (R (THETREF+2];
Tt Te
© FEAD (MG [N SIMNGLY SUBSCRIPTEC LARABLES
BUFFER [NiB, 1) (WSITERM(1; F5(56::
26 IFuMIT, B 26,29,27
27 WRITE6, 29!
29 FORMAT (1HO,*EOF OR PAR|TY ERROR [*. MOCE.-
29 CONTINUE
BUFFER NS, 1) (VEOF,VEQF:
80 IFIUNIT. 8! 80,82,84,82
82 WRITE6,65!
GO TO 31
84 CONTINUE

n

IF (nFILES.EQ.0) GO TO 89
DO 98 x=1 ,MFILES

88 CALL SKFL(B)

#% CONTINUE

[
C
C READING PHI,C, THETA, WY WL Wi, VORTICITY PSL, -0 0P, WM ECD Y
<

Prl, O, THETA, W, WL W1, VORTICITY
CALL ROATA(A,LRT MB)
CALL ROATA(E,LRI . MLB)
CALL ROATA(C,LR! MBI
CALL ROATAID,LRT MBI
CALL ROATA(F,LR1 MB)
CALL ROATALG,LR!I MBI
CALL ROATA(B,LRI MLB)

4

c

T INITIALIZE TOTAL MOISTURE SCHEME
GInT1=0.0
DO 55 u=1 MB
0o S5 |=1,m

55 QINTI=QINTI«EL] Ui

QINT1=aQ NT1+DELATSO

WRITE (6,541 QINTY
Sd4 FORMAT (100, « TOTAL MOISTURE AT [NITIAT|Ot== F9. 1 |

TSTRING JAR|ARES JST PEAD N
ThiL DRABT(IMUT) ALY, T PRRCS)
AL BRAICK (TMIY )

TALL PPAMBT (M2 BT, TWRTS)
Thi. PRMLCE (NP2
ThiL BRAIBT(NFI155,700, %0 PLS,
AL PRPAMCE NG
ThL BRPAMRTINMS LT, T MRS
Thi. BRMLY (NS
ThL BPMKETIIMELF T, IMPDSE
Thi PRNEY MR
AL DPAMMT T, L LS
b BPMETIPT,

- SC0817T

oy

"

"

n

n

SR AN MY

CALL BRANNT (ML120 BT, RS
Shie BRANCK (P11

PSLLL=COMP W-COMP EDDT 15238.7Y
CALL ROATAIH,LR! MB!
CALL ROATAIC,LRY ™M B:
CALL PDATA(D, LRI M B:
CALL RDATAIG,LRT, MBI
STOR MG U-COMP, WL-COMP AL ETTY LISICSITT
ZALL BRANNT (MM4(15) ,C 01,1 1aPCS!
CALL BRANCK (NM(15!!
CALL BRANWGT (NM(16],C (1,1 RCS;
CALL BRAMNCK (NMI1611
CALL BRAMNWT (NMIIT),GUT, 1) MRS
CALL BRANCE (NM(1T)
CHECE FOR EMND OF FILE
BUFFER N8, 11 (VEQF VEOF:
60 IF(UNIT,B) 60,62,64,62
62 WR|TE6,63!
€5 FORMAT (1HO, *PAR[TY ERROR [t ™MOCE.* .
GO0 To 31
64 COonTINE

STORING PS1 AD INITIALIZING EXTRAP SCHEME FOR SOP

CALL BRAMAT (M#013) ,H11, 1] P0RTS!
CALL BRAMNCE (MM(13))
CALL BRANST (NMI18) =11, 1] 1WRCS)
CALL PRANCE (NM118) )
CALL BRAMAT (MMU19) MUY, 1) 1eP0S)
CALL BRANCK (MP1(19)1)
CALL BRANNT (NMI20) 1L, 1) HRDS!
CALL BRAMNCK (M120) )

INITIALITE LAGINT ROUTINE FOR TIME ['CREMENTS
Tiri=DELT
Lo 22 k=2.4

22 TiKi=Tik=11=-T11)

STARTIIG TIME STEP
HASTP=)

"I WE ARE READTY TQ 30

55 conTirug
TCrKeT |MEF (ARG . 1500,
IFATCHE . GE. TLIMIT: GC TO 8¢
DE_A=QELT
TIME=T|MESCELT
HSTEPS=t STEPS+!
IF NSTEPS. ST.LIMSTEP: %C 75 8¢
1PLGT=MOD (1 STEPS, [PLCHE)
IPPHTMOL (1 STEPS, [PR7w
AL ClME
S TR P TP
Fri it msTPi=Fr1EL,
WWUITER GE MITER) %5 T2 Bt
WPLTE 16,401 'STEPS
£ FPVAT L. iir,tm ,eTHiS (S FOR TIME STEP», 4 |
WPITE 6,46, DECA,TIME,ITER Fritgr, T IRIR
&5, FORPAT (1ol , o DE_Tm=e FE .2, TIME=e FR.2,* LTER=s, ld, .
VR r=e (15,6, TIRTCAAT = FR 5.
W] 6, AT TR TR IR IR

88



4 FORMAT (1H ,*BY AREA=s F15, 1,0 TOPas F*2 ", o S5 765 F*2 " o BI""1%
Tes FI10,1
WRITE (6,480 QUT,QUTM,QRT, RT™, GTP STPY, XL IFF, 2087 ]

49 FORMAT (1m ,*Q, IMFLOWas FG.5, ¢ M4 ["Gae FS 5 0 5 2. 7F_leme 75, 5,¢
tMIsINGee F9. 5,0 Q,TOPas F9,5,s M. ‘e L3 ET TRAGE
JFOR AREA=+.F9.5,+ PRATIQ APEA 70 _'E EsRA_ms F™. 8,

WRITE (6,490 QINTI, QINT2

J9 FORMAT (1w , =Q, TOTAL AT PRELIO.S TIME S"EPa=s F3, " & 3, 7574. 27 "=

1S TIME STEP=»+,F9. 1}
SInT1=QINT2
TOTIMET IMECHK (221 ~T IMECHK (1)
WRITE (6,44) TOTIME

J4 FORMAT (1M0,+TOTAL TIME FOR TI!™E STEP=.« F8.5

WRITE(6,41) (TIMECHCIL!, [=1,22;

FORMAT (10012 ,FB.5:

00 45 k=121

45 TOF (K)@T[MECHK (K1) -T|MECHK (K]

WRITEI6,41) (TDF (K] ,K=1,21;

GO TO %0

conTINE

WRITE (6,52)

52 FORMAT (1M0, *KIMETIC EMERGY FOR AL TIME STEPSs |
WRITE (6,55 (FEE (K] ,K=1 MLMSTP

55 FORMAT(10(1x,E12.5))

WRITE(6,34) TLIMIT,LIMSTEP, M| TER

54 FORMAT (1H0,+TIME LIMITeme FE.1, o TIME STEP _iMiTas !5+ ITERA"!>. _

1Ml Tae, |3y
TCHC=T |MEF (ARG). 1000,
WRITE (6,95) TCHK NSTEPS, | TER

35 FORMAT (1M ,+T[ME=s F6.1,+ TIME STEP=s [5,+ [TERAT|2*S=s 8 |
e
SUBROUTINE ROATA (A,LRT MBI
DIMENSION A(LRT, MBI
COMMON/BLOCKA, DELT, TIME,NSTEPS, | TER, [LAR, F OR
PDUFFER [N(8, 1) (DELT, Ivam
VIFIT, 8 1,4,2

2 WRITE(6. 31

3 FORMAT (10, <PAR|TY ERROR [N RDATA OR EOFs
4 PFFER (M8, 11 (ALT, 1) AR MBI

TR NIT, e 11,148,012

12 WRITELE, 3

14 CONTIMUE
RPETRY
(2] +]

o4

L]

SUBROUTINE DINE

COMMONBLOCK /WS | TERM (1361 ,01F (36 ,GPRTERM (36! ,PIB (361 ,F22156: ,F1C
TONIOIS6) PHCAISE RI2A (56, FLL](36),F! (36, ,F2:56: ,F5(56)

TN BLOCK2,/MLT, R, LM DEL/Z,RELF RO, THETREF ,CP,C1,02,08,04,EP
15, FLAM, CONR2 , Crid 1 ARTS 1M TER R[S, UDEL 2T

TOMON/BLOCKS. B, MLB, LR DELJ2, CELRTSS, CON2, COonS, o1 e, 20
1.Fe,uT

TR LB OCK A/ DELT, TIME ISTEPS, I TER, VAR, FOAM

TR BLOYS, A(111,561 B 960,00 861,001 86 Ei 1Y, 86 ,F:
TINYL861,G1111,56) 1T, 56

TR T A 25, INCEr 151

TATUBLOTNe T, 560

TP 1O [TARPAY (2,17 IFORMAT (2. 8;

TR BT Y, [PLOT, IPRNT

T2, TIMETHC 1220

CAPRIO A TS Fr N, T IRCR CIRCT CIRC] D, CIRCE, T IRT
RIS R T BT TP GINT  GINT2, RAT I IR LT, AT, LT
Miv e JU S gl BV~ g g

ERETsRRERN

LR R T

C
¢ THIS IS THE START OF 4 NEW TIME STEP
TIMECHC (1) =T [MEF (ARG) . 1000,

C PEAD IN QLD VALUE OF PH| AMND Q
CALL BRANRD (NM(1],A01,1] ,N4ROS)
CALL BRANCK (NM(11)
CALL BRANRD (NM(2) ,E(1,1] N4ROS)
CALL BRANCK (NM(2))

2 UIS INC, W IND, EDDY VISCOSITY [N G

<
C SET wePw| TO INITIALITE CIFFERENCE SCHEME
CALL BRANRD (MM(1),H(1,1) NROS)
CALL BRANCK (NM(1))

AQ=DELT.DELXZ

A1=AD, DELXZ
£
C

TIMECHC (2) =T |MEF (ARG . 1000,
C

C COMPUTATION OF Q AND PrlIQ INE, PHl IN &)
C FIRST HALF OF TIME STEP FOR TOP PORTION
0O 1 J=2 M T
00 1 |=2,LR
COEFAI=(1~GLl+1,u1+GL1=-1,u)) /DELXT24C (], J1 A0
COLFBI =COLFA1 sCOEF A1,/ 2,4G 1], J) =A)
COEF A1 =COEFAY /2,
Hil =] ) -COEFATs (Allel Ul =ALL=1 Ul I+COEFBT = (At]*T,ci=-2. A1), v
TisaA(l=1,v1)
Ul =], JI-COEFAL= (ELI+Y , JI=Et]=1, 1 1+COEFBI s (E (et ,Li=2.*EL] .
HegEil=1,411
1 CONTINUE

€
€ FIRST wilF OF TIME STEP FOR TWE LEFT PORTION
LiMxe M 420
00 5 u=uT,.8
LMy [Mx-2
DG 5 [=2,L1Mx
COEFAT®{(~G(1e1,U)¢G(]=T,u) ) /DELXZ2+C (1,11 vA0
COEFBI »COEFAI«COEF AT, 2,4G (], ,J1 vAl
COEFAI=COEFAL 2,
Ml ], D) =COEFAT= (AL]#1 Ji=ALl=1,J) 1+COEFPT» (AL]*1,Ul=2,%41]
Tisarl=1,u1)
2l =], -COEFAT=(El]+1,Ji=E(]=1,J1 | +COEFBI=(EC]+1,01-2,%E(], v
Megil=1,u11
3 CONT|MUE
o
2 FIRST HALF OF TIME STEP FOR RIGHT PORTON
I +20
CO % o=uT, B
IL=lLet
COS l=lL,Lm
TOLFAIm((=GLlel,ui*Gil=1,ul ) /DELAZ2C (], u1!vA0
IFt1.EQ. L) COEFAta((=Grlet JieGi],J1oG(]l=1,0=11=G1],s~11! . DELATC
Tiladileng
CHFDI=COEFAT=COEF AT, 2, 4G 1] ,JiAY
TOEFAI=COLFAT 2,
il oht ], ) =COEF A e tAL] ) =A(]=1,J) ) +COLFBTe (AC]*1,ui-2,%00(],
tieht]-1,0i0
2t ai ™ ()l =2 0EF A e (E (1ot ,ui=ECl=1,u) 1=20EFB1s (E(let,ui=2.%E1],o
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e il-t,uld
5 onTiNE

ZALL FRSTIAQD, AT

¢ 200 POINTS,EMND OF FIRST WALF OF TIME STEP
CALL ODOPTS (H,LR!,MLB:
CALL ODOPTSI(Z,LR1,.MBI

QlnT2=0.0
© SECOND HALF FOR TOP
FRSAVE=G (LML+20,JT)
GILML420,JTI = (GILML+2T ,LTieG i M +19, 0711 2,
00 2 ve2 M7
DO 2 |=2,LR
COEFA2= (=G i1, -T11eG (], uel )i CELAI2eD [1.uiival
COEFB2=COEFA2-COEFA2. 2.+G 1, i »A!
COEFA2=COEFAZ. 2.
Al JimHi],JI=COEFAZe Ml . o=t1=Hi], st i4l0EFB2 (Miluoti=2 om0
TieHtl, =111
El,1oZ1], ) =COEFAZ® (1] ,um1i=T00 1 ol0EFB2s il a0t i=200l 000
tieZol,w=11)
QINT2=Q|NT2+E (], W)
2 CONTINUE
GILML+20,JT) =FEKSAVE
c
€ SECOND HALF FOR LEFT
LIMes ML +2C
0O 4 u=JT, B
LM | Mx=-2
DO 4 [=2,L1Mx
COEFA2=( (=G (], ~114Gt],us1) ) . DELXZ2+0 (], i1 vA0
IF (U EQ.uB) COEFA2= ((-GI],u=11#G(], 11 . DELAZ+C 1], ullead
IF(1LEQ.LIMX) COEFA2=((~Gil, u=11eG il disGll=t,ui=Gil=1,u=111. CELAT
140l wii=n0
COEFBR2=COEFA2+COEFA2. 2,46 1] ,Jisa1
COEFAZ=COEFA2. 2.
Al i (], J)=COEFAZs (HL] ,om1]=wl] U*TI14C2EFB2e IMI] et 1=2 *Hi], o
TisHtl,u=1101
Etl,1oZ (], i=COEFA2® (T 1 qumti=T0l et ) 1=20EFB2e (Z(] uet]=2.90 114w
1ieZt),u=111
QINT2eQINT2+E L] )
4 ToNTINE
T SETHMD wALF FOR RIGHT
lomrm+20
€0 6 u=uT,uB
li=liet
L9 6 |=l P
THFAZe (-G ] ,u=1)2G1] w11 ] CELAZZ2eC 1] ,11=A0
1IF U, BBl TOEFAZ=(1=Gt] ,u=1iG1] 0l DELA L (] 1i~Ad
IF B9, 000 CORFA2= 1 1=G [ ,u=1i2G ), JleGilel m1i-S1Te1oa1 1 DELATSL
BRSOV IRET 1)
THFBZoTOEFAZTEFAZ 2.4% ] L. kY
TRFAZSCORFA2. 2,
TS IR TR S 4 & Y OHCTSIRVER PR TE SRVES PR Sae 14 P IR TR QRS PR JC F o A
IR H POV i
€0, 18210, i=22EFA2e 1T, um11=T00 e 1 ieC0EFB2e 100 ot i=2, 0T
AT 44 PIA R
PRI LN S
L NI T
M 8, ST MR ARG, 1500,

vl S5O0 Ad A

COMFLOm AND OUTFLOW BOUADARIES
CALL INOUTIE LRI, M)
CALL IMOUT A LRI ™MD

i

B.2, FOR Q AND Pril AT Q0D PIINTS,EIL F SEZXL maAF F "¢ STEP
CALL ODDPTSI(E.LR! MBI
CALL QDOPTS(A,LRT MBI
TIMECH (4) =T [MEF (ARG) 153C.

ey

MOISTURE BALANCE THROLGH BOIDARIES
AT=0,0
QRTe0.0
QT™=0,0
QRTM=0,0
C UINFLOW AND OUTFLOM!
Co 11 w=2..8
AT TeC 1, i*EL )
QRT=QRT-C (LR, Ji*E (LR,
QLML TH=G (1, Wi e (E(2,1-Ei1,011
QRTH=QRTMG (LR, ul » (E(LRT i =€ (LR, Ui :
QINT2=QINT2+E (1, u1. 2,
QINT2=QINT2+E (LR, U1 2,
CONTINUE
QUTeQLTeC (1, 110EC, 1.2,
QT=QTeC(1,MBIsE(T, MBI 2,
QL T=QL T+DELT*DELAT
QRT=QRT-C (LAY, 1) *E(LRT, 1.2,
QRT=QRT-C (LR MBI ~E (LRT MBI 2,
QRT=QRTDEL T +DELXT
QL TP=QL THeDELT
QR TM=CR TMDELT
QTP=0.0
QTPM=0.0
2 1T
DO 12 l=2,Lm
QINT2=QINT2+E (], 11. 2,
ATPH=QTPMeG (], 1o (EL], 11-EL],2)
12-DTP=QTP-D (], 11E(],1). AQ
QTP=QTP-D (1, 1)eE(1, 1. 12,40
ATP=QTP-D (LR, TiE (LR 1) (2, «40)
QTP=QTPDELT+DEL-T
GTPH=GTPMDELT
QINT2=0 |NT2+DEL 753
W IFF=QINT2-a1NT
W lven TQRTQTPOL THeOR THe S TR
SABS#ARS (T | V)
IF(SARS.LT.. 001 201y=0.551
PAT =L IFF. L1

TIMETH Si-TIMEF LARS . 1550,

T Y

% mich BE PEPLACED WlTW THE PROCLATION TEGH (PRl
AT s ML wies PR Nk

L5 10 vt B

Th 15 et

Frlonmfe], i

06



10 mil,v1=0,0

Wl

s NaNaEaNaRel

(alal

NOW COMPUTE NEW TRETA, WL, AND W

IS ALREADT [N H (W] =PR)

COMPUTE WL IN G, WV INC, THETA IND
W 1S INF ALREADY,Q INE, Wl 1N W, PHl [N A

TIMECHC 16) =T IMEF (ARG), 1000,

PEAD [N OLD VALUES OF THETA

€ (THIS 1S TO GET LOWER BOUNDARY|

aNalal

Toe

L]
16
26

27

207

CALL BRANRD (NM(10),D(1,1) ,MROS)
CALL BRANCK (NMI101)

PORT]ON

DO 207 =1 M7

DO 207 l=1,LR1

Dl JI*THETREF sA (], Ul ~CONBF (1,0}
OS= (At], JN=FLLItUIoF (] ,J) CONTT=F1 (U] eFSiul+F22(J!
IF 1051 15,15,16

05=0.0

0S= (SORT (051 ~F2 (vl 1 /FSLJ)
IFtoS-Dtl,u1) 26,26,27

Gtl,J1=0.0

Ctl,vi=F (1,01

G0 TO 207

Dil,J1=0S

SAT=F4+0(1,u)

Cll,Ji=FICONIO (U] » 11, #SAT+0 S5eSATe+2)
Gll = (],u1=Ctl, )
IF(Gtl o .LT.0.00 Ctl, si=F(]l, 0
CONTINUE

C LEFT PORTION

295

298

208

LIMxe ML +21

DO 208 J=JT,B

LIMxm [Mx-2

DO 205 le1,LiMx
Otl,J=THETREF s L] ,J) ~CONBSF (], Ui
OS= (AL, J0=FLL] () *F (1,00 /CONTT=F1 (U] ) sF 3 (U1 #F 22141
TIF10S) 19,19,20

05=0.0

0S= (SQRT (051 -F2 (J) ) /FB L)
IFos-0tl,w1) 51,51, 52
Gll.Ji=0.0

Ctl,vi=F(],Jl

G0 To 205

Dil,ui=0s

SAT=Fa+D(],u!

Ctl, i =FICONTOLII» (1, oSAT+0 S5eSaT2)
Ctl, 1= (], 1=C(],u
IFGtl,v.LT.0.00 Ctl,vi=Fil,ui
CONT INUE

[1m |Mret

ey

AL TeETALLT U1

CONT [HUE

Lo 208 l=1,L

ML THETALLLMBD)

Rt PORTION

lm 20
GO 2090 w=uT, B
IL=jLet

RELAELER

23
24

37

209

1=~

IF (W, 6T uT) CALL THETALIN, W)

DO 209 I~IL.LR!
Dil,)=THETREF s& (] 1 ~CONBSF (], 00
OS= (AL, JI=FLL] tu) oF (1,0 /CONTT=F1 (u) ) oFBi)oF22 10}
IF 10S) 25,25,24

05=0.0

0S= (SQRT (05! =F2(J) ). FBiJ)
IF10S-Dil,w)) 36,56,57
Gil,vi=0,0

Ctl,viefF (],

GO0 TO 209

Dtl,w1=0S

SAT=Fd+D(],J)

CLl,JImFICONTO LU) » (1,4SAT+0,5:SATes2]
Gll,JieF (], v1=Cil,ul
IFIGtl, 0 .LT,.0.0) Cil,Ji=F(],u
CONTINUE

LMLP3O=LML+30

DO 204 |=LMLP30,LRI

CALL THETAL],MLB)

TIMECH (T =T [MEF (ARG) /1000,

PLOTTING AND PRINTING Pe| AND Q

300

301
302

IF ¢ IPANT) 301,300,501

IVAR=1

S ORti=3

CALL MODPRNT (A, LRT,MLB)
IVAR=2

CALL MODPRNT (E,LR1, M8
IF(IPLOT) 303,502,308
IvAR=]

CALL PREPLOT (A,LRI MBI
IVAR=2

CALL PREPLOT (E.LRT,MUB)
CONT INUE

TIMECHC 18) =T |MEF (ARG) 1000,
IFLIPLOT.ME. 0} TIMECHC (9] =T [MECHK (8]

PE-STORE PHl AND Q (IN A AND E RESPECTIVELY)

CALL BRANWT (NML1) ,ALT, 1) ,NWRDS)
CALL BRANCK (NM(1))
CALL BRANWNT (NM(2),E(1,1] ,NROS)
CALL BRANCK (NM(2))

PLOTTING M0 PRINTING THETA, WV, WL, Wl
ITHETA [0 D,bv INC, WL 1N G, Wl TN W

500

551
%2

IF (IPRNT) 501,500,501
IvaR=10

F ORI

CALL MODPRYT (D,LR! MBI
F Ot S

lvaReg

ChLL MODPRT (C, LR MLB)
SSEPSYy =S5 | P

JS | Pat

lism-g

ML HODPRT (G, ,MB)
S | PP
IFImLoTI508,502,508

¥ AL

L6



TIMECHc (90 =T [MEF (ARG). 1000,

CALL PREPLOT (D.LR! MLD)
IvAR=9
CALL PREPLOT (C,LMT, MLBD)
IvaReg
CALL PREPLOT (G, LRT MBI
|vAReT
CALL PREPLOT (m,LRT MBI
508 CONTINUE

[aNalie Nal

COMPUTATION OF GRAVITY TERM FOR TeE VORTICITY (N E:
TIMECHC (101 =T IMEF (ARG). 1000,

(al

VF T=9, B+DELT. DELXI2
W TIsVFTe2,
C TOP PORTION
DO 45 o=1 AT
DO 45 [=2.Lh
IFGEL*1,u0,LT.0.00 Gilet,ui=0,0
IFIGtl=1,0.LT.0.0) Gtl-1,u1=0,0
Ctl,eVFTe((DLle1 ,u1=Dtl=1,01 )/ THETREF = 608+ (C (], =0 (=1, i1~
TUI#1, 04600 =1 Ji=Hi]le1 Jiemi]l=1,J1)
45 CONTINUE
C LEFT PORTION
LM pg 421
0O 76 =T ,MLB
LM [ Mx-2
DO 46 1=2,L1Mx
IFiGile1,01.LT.0.0) Gile1,ui=0.0
IFIGLI=1,0.LT.0.0) Gtl-1,u1=0.0
Etl, =W TetDtlet,1=D01=1,J1 ) THETREF+ 608~ (C L]+, 1=Cil=1,01-C
1Ule1,J18GL0=1,Ji=Hils1 , Jiemi]=1,J1])
46 CONTINUE
ElLlrxet JioWWT1s (1D (LIMXST,J1=D (LIMX,J) ) THETREF+0, 608+ (C (LIMX+T,
TI=CILIMX ) 1 =G L IMXT U] +G (LIMX, I =HIL [ Mxe T Ul sm(L M, )
Te CONTINUE
C RIGHT PORTION
I 20
DO 47 =yt MB
EtlL, =W TIetDUILeT, =D ilL,v) ) THETREF+0. 608 (C(IL*T W ~CLIL, )
TI=G I, QI *GUIL, D) =HIIL*T I eHTlL,J0 ]
IL=lLet
DO 47 j=lL,LF
IFGel+1, 0 .LT.0.0) GLl+1,Ui=0.0
IFIGUl=1,0.LT.0.0) Gil-1,J1=0.0
Etl, =W Te ((Di1e1,0=001=1,J) ) /THETREF+ 608 (C L1+t ,J1=CL]=1,J11-G
TEle, U126 (]=1, Ji=Hi]*1 Jlemi]l=1,01)
47 CONTIMUE
TOUINFLOM MDD OUTFLOW!
0O 40 w=1,mB
E11, =W T1e (D12, =D (1,411, THETREF+ 608+ (C (2,1 =C11,J11=G12,J] %G
1Tl =12, ) *HiT 0 )
CUmM i T1e (DR, U =D LR, ) THETREF + 608« (CiLRY ,J1=C (LR, U} 1=
TG, *G LR, Ul = ILRT  J) s (LR, U1}
4% TONTINE

IFLIPRT) 901,900,801
“i0 1'/AMmel

 Wr=§

ChL MODPET LR D)

91 CONTINUE
c
TIMECHC (111 =T|MEF (ARG:. 1000,
(4
C PME-STORE TWETA
CALL BRAMNGT (NMC101,001,1) ,NRO0S)
CALL BRANCK (NML101)

¢
¢
¢
C READ IN PS],EDDY VISCOSITY,U-COMP,AND W-COMP
CALL DRANRD (NM(15) AL, 1) NRDS)
CALL BRANCK (NM(13))
CALL BRANRD INMLTTI M1, 1] ,NRDS)
CALL BRANCK (NMI1T])
CALL BRANRD (NM(15) ,C(1,1] ,NRDS)
CALL BRANCK (NM(15])
CALL BRANRD (NM(16) ,F(1,1) ,NRDS)
CALL BRANCK (NM(161)
€ ALSO READ IN VORTICITY FROM PREVIOUS TIME STEP
CALL BRANRD (NM(12) ,B1(1,1] ,NWRDS!
CALL BRANCK (NM(121)
C SET Z=ETA TO INITIALIZE DIFFERENCE SCHEME
CALL BRANRD (NM(12),2(1,1) NRDS)
CALL BRANCK (NM(121)
(5
TIMECHK 112) =T IMEF (ARG) /1000,

C
C COMPUTE ETAX AMND ETAZIIN D AND G PESPECTIVELY)
c

c Toe
FESAVE=H (LML+20,JT)
HILMLA20,UT) @ (MILML421 , UTI#H (LML 19,JT1 ). 2,
DO 97 we2,m.T
DO 97 |=2,LR
Dil,imAle (ALl , J1=2. ALl , JI*A(I=1 Ul ) o (HL]®T ,01=2, omi], Ul enl]-1,
141 ) /DELXZSQ
Gll,JimAle (AL, =11=2 0801, Ji*AL] ,So1) ) o (HL] ,=1)=2,oM(] JIom(], e
11)) /DELXTSOe2. »Ale (AL]o1 , o=T)=AL]e1 ol i=A0]=T ,U=T114A([=1,0¢1]) (M
20181, u=1)=H(]*1 el )=HI]=1 =11l ]=1 0% 1] ). (16, *DELXTSQI
87 CONTINUE
C
C LEFT
HILML+20,JT) «FKSAVE
FRXSAVE = (LML-1,MB)
HILML-1 ,MLB) =2, sH (LML~ ,UBI -HILML-1,UB-1)
LiMr= M +19
0O 99 u=uT, 8
b IMxeg [Px-2
0O 98 l=2,L1Mx
Dtl,Jimhte (A]e1, U)=2, oht], JI+ALI=1 Ul e (HI]et U1=2, oml] lemi]=1,
14 ) /DELXTSQ
IF -8 192,190,190
190 Gtl , Jimhle (ALl u=1)=A(]=1 =110 (miletl U=ti=ml]l=T,  =Ti®mii=1 01~
IWil*1, 01 )74, *DELEZSO)
¥ To 98
192 CONTINE
Cll,Jimhte (ALl ,u=11=2 0801, Jish(] oot ))eml]l , =11=2, oHi] ,J)oHL] 00
110) DELFZSOe2. skt a (AL]&1 -1 =Allet Ut )=AL]=1 ,U-11¢A0]=1 et))e(n
Zilet u=t)=milet usti=wmi]=1,0=T1om(]=1,01))/ (16, *DELRTSQ!
v TouT L
Jom [Mpet
Ctl,vimhietht]et yi=2, ohl] uiehi]l=1, 0 )0 imi]el J1=2 omi] Jiomi]=1,
1) ML TSG

¢b



Gl mAlo (A (] u=1)=2,0h 0] S loimi] u=ti=mi] ulomil=t Jimmi]=, =1
110, DELADSG=-2,2Al o (=2, sh |, Ji=A(]=1 ,usli=Ailel u=tiehi]-1, Uieh|]*",
21 eA 0] = e (=ML Ul =HL =1 s 1) =mt el =142 smi]=1 Llemi]et, Lien
Sl wumli=Mil=1,u=11), (4,*DELXTSQ!
9 CONTINUE
HILML= 1 ,MLB) «FCSAVE

<
C RIGHT

(2}l

[4

Bl

IL=LML+21
DO 100 weuT,. B
l=lu
Dl mhle (Aflel ,U)=2. 0, dh)wimilet Ci=mi],ciomi]=t u=1i=m1], =1
111. DELXTSQ
GUl,imAle (AL],u=1)=2 0], Jiloimi],d=1i=M{], uiomi]el ati=mi]e!, o
1)) DELXISQ
IL=lLet
DO 100 l=jL,.LR
Dil,di=Ale (A(lel ,U1=2. oA (] JI*RII=1, U0 (HI]*T Ui=2, oM, ioml]=1,
1) ) /DELXTSQ
IF tu=JB) 196,194,194
194 Gil ,JImAls (ALl ,U=1)=Al]=1 =100 niMl]let ,U-Ti=mi]=1 =tiomi]=1 01~
THil*1,0)) (4, *DELRZSQ!
G0 TO 100
196 CONTINUE
GUl ,JieAle (A(],=1)=2. oA (], Ji*ALL, ol iloiMi],=11=2, oML] Ul eri], e
1700 DELXTSG+2, *Als (ALl+1 ,o-11-AL]41, et i=A(l=1,u=1]oA(]=1 U s1]]0(m
ZUls1 =1 =]+ e 1 —HIU =1 =Tl =1 e 1)), (16, *DELXTSA!
100 CONTINUE

MOW COMPUTE VORTICITY FOR THIS TIME STEP
(ADD GRAVITY TERM IN 1ST WALF OF TIME STEP)
CIRC=0,0

FIRST wiLF OF T|ML STEP FOR TOP PORTION
DO 48 u=2 M T
DO 4@ 1=2,LR
COEFATI= 12, s (—Hil*1  Jioml]=1,U1 ) /DELXI2¢C 1 ],J1 1 +A0
COEFBI=COEFA)+COEFAL/2, +H(] ,J) =AY
COEFA1=COEFAL /2,
Zil, i B, Ji~COEFAT=(BII+1,Uul=B(1=1,u1)+COEFBI= (B(le1,ui=2.+Bl],u
LEE ISR IVIFE: ¥ PVIE ¥ 3 PV T]
48 CONTINUE

FIRST wall FOR LEFT
LIMxe 20
00 50 u=uT, B
LMy (px-2
DO 50 [=2,LlMx
COFAl=(2, o (=milel Jiomi]l=1,0)) DELAT2+C (],J11*A0
COLFBI=COEF A1 «COEF AL 2, omi],J) *A1
COEF A1 =COEFAl1/2,
Zil, =B, J1=COEFATe (Bilel, ui=Bil=1,u) 1 +COEFBI=(B(le1,ui=2.B(],u
Tio@il-1, 1], N =011,u}
59 ConTINUE

FIRST sl F FOR R]GHT
ILmmLe20
L9 82 veutT, B
IL=fLet
02 82 J=lL .M
CHATA Ve (2, o t-m{]el  Jiemi]=1, U1 ) DELAIZC L] ,Ji1*AT
I, ILICHFA e t=pat | lomi] Jl ot ]=1,0=11=M{], =111 DELAZ#C !
AR PWINET T
THAFRI=COLF A e LOLF AT 2, 41 i "AT

COEFAI=COEFAL 2,
Sl B, Ji=COEFALs (Bl , JI=BiLl=1, 1 12C0EFBs (Blls? ,Li=2.°B1],~
AN TYESIRINES ) PRI 2 i

82 CONTINE

<
c iTOP LINEI
DO B4 |=2,LR
bl I B 1 § O]
54 CONTINUE
CALL ETA1(AD, A1)

€ 00D POINTS,END OF FIRST WALF OF T|ME STEP
CALL ODOPTS(Z.LR!,MB)

C SECOND WALF FOR TOP
FRKSAVE = (LML+20,uT)
HILML*20,uTi® (HILML*21 , uTI+HILML*18,uT1). 2,
DO 49 u=2,MT
DO 49 [=2,LR
COEFA2= (2, # (=M (] ,J=1)oM1], 1)), DELXT2+F (], 1940
COEFB2=COEFA2+COEF A2, 2.4M (], u) Al
COEFA2=COEFA2,/2,
Bl @Zt],J1~COEFA2s (Z(],u=11=2(],us1]1+COEFB2s (T(],ue1!=2,+T1),u
1ieZil,u=111=G11,u)
CIRC=C [RC+DELXZSQ*BI(],u!
49 CONTINUE
HILML+20,JT) =FKSAVE
c
€ SECOMND HALF FOR LEFT
LIMx= M +20
DO 51 u=uT, B
LM [Hx-2
DO S1 =2, 1Mx
COEFA2= (2, v t=H (], J=114H1],ue1]) DELXT24F (1,411 *A0
IF (U.EQ.B) COEFA2=((=HL],o=114M(],J) ) DELXZSF (],u]] %40
IFCLEQ.LIMX) COEFA2= [ (=M (], s=Tiemi] , Jiemt]=1 01 =+(1=1,0-11 1 DELAS
1oF (1,1 vA0
COEFBR2=COEFA2+COEF A2,/ 2, +H (] ,Jl »A1
COEFA2=COEFAZ/2.
Bil,U1aZ (], ~COBFAZe (Z(1,0=11=Z(1,J%1) ) +COEFBR2+ (ZU] w1 1=2. 0011 ,u
NeZil,=10=611,u0
CIRC=C [RCDELXZSQ B (], Ui
S1 CONTrE
(4
C SECOND WALF FOR RIGHT
JL=tr+20
0O S5 y=uT, B
ILeliet
00 53 [=|_,LF
COEFA2® (2, 0 (=ML =11 oMl oo 1) ) DELXT24F (|, *AQ
IF U EQ. ) COEFAZ= (=], w~11eHt],J1 ) DELATSF (],J11 %43
IFC1LEQ.IL) COEFA2® (=il u=T1om(], uiamilet uoli=HiloT,ui ) DELNZF
1il,u1) a0
COEFBR2=COLFA2+COEF A2, 2, oM (], ui *&1
TOEFAZ=COEFA2/2,
B, uimZt], ) =COBFA2e (Z0) ,=11=Z11,us1]]COEFBRe (Z(],u*1i=2, 2211 v
T1eZtly=101=6101,u
TR IRCADEL TSGR, i
58 ST M
(4
C'Te LE
U5 %% l=2,.
Dl i) ,20
AN (R SDEL rZSGeB ], 110 2,

€6



(alal

[aNalalhl

c
c
c

B R N e N NaNaNalal

A

NN ey

%6 CONTINUE
CaLL ETAZ(AQ,AV)
LINFLOW AND QUTFLOMI
DO ST =1 ,MB
B, L =B12,J]
CIMC=C IMCSDELXTSQBIT,u1. 2,
BILRY  Ji=BLR, )
CIMC=C |RC+DELXTSQ*BILRT Ui, 2,
57 CONTINUE

Q0D POINTS,END OF SECOND WALF OF TIME STEP
CALL ODOPTS(B.LRI . MBI

TIMECHX (1351 =T MEF (ARG) . 1000,

READ IN OLD VALUES OF THE STREAM FLACTION
CALL BRANRD (NM(13) ,A01,1) ,NIRDS|
CALL BRANCK (NM(131)

DO 58 «=1.53
L=
IF IK.EQ.5) L=7
NAME 1= (20-L 1
CALL BRANRD (NAME!,C(1,1) ,NROS)
CALL BRANCK (NAME!)
NAME2=NM (21-K)
CALL BRANIT (NAME2,CL1,1) NGOS)
CALL BRANCK (NAME2)
TS« =T (4}
S8 CONTINLE
TitieT(1)-DELT

FIRST GUESS FOR PS| [N SOR (20D DEG ExTRAPOLATION IN TIME)
CALL LAGINT

FINITE DIFFERENCE CONSTANTS CAN BE DESTROYED (C,D,F,G)

MO THE SOR ROUTINE TO SOLVE FOR THE STREAM FLACTION

TIMECroC (141 =T |MEF (ARG, 1000,

START OF |TERATION =+ = # » & % # & s » * & = & & % % = & % # 8 % & & % » s @

0O 70 lu=t,rem| TER
CiFFa-1_E+10
ITER= |y

T® PORTION
CO 64 u=2 LT
0O 64 |=2,0
Pothil=1,uloh(let Uiehl] o-1)oh1] 0ol )8, oA1],ui*0ELATSQeB(] .uiieR
r
Atl,imhi],uie®
LE 7 13 P
ReAps (P
CIFF=aMar 1 (CIFF B

<
L

c
c

(aNal

64 CONTINUE

LEFT PORTION
LML+ 20
DO 66 U=JT, B
LM, -2
DO &8 |=2.LiMx
Retail=l, JieAtlel 1ALl ,110A 11,1 )=d, %A (], *DELATSQA*BL], 1) ol
10r
Al Wimhi],JleR
Rel AL ,JI
Lt -JLJ1
DIFF=aMax! (D IFF R
65 CONTINE
l=g |Mxet
Re(All=1, 0CToA L], =116, %A1] ) *DELATSQA*B( ], 1 | vLSeRELF
Al Jishi],J)em
el AL,
P=ARS (R
DIFF=aMax!  IFF R}
66 CONTINE

RIGHT PORTION
Ie=u+20
DO €7 u=uT, B
l=lis1
DO &7 l=lL.Lm
Re(All=1,J)eatle1 Jisal]l , 11oAL] o1 )=4, oA (], J] sDELXTSQ*BL] ) ) oW
1ELF
All,Jiea(],uiem
Lo 7 N ]
Lol LT
DIFF=aMAX! D IFF M)
67 CONTINUE

TOM BOUNDARY FOR STREAM FUNCTION (NEUMANN CONDITION)
DO €3 1=2,Lr
63 ALl 1) =DELXT*A(],2]

IFDIFF-EPSITI, 71,70
70 CONTINUE
END OF ITERATION » = % & o 5 & & & % % & & = & s = & s » &« 9 o ¢« & &« v s & &
Tt CONTINE
DOWNSTREAM B.C. FOR PS]
DO &8 =1, B
68 AWM, Ji=S, cAILR, J)=5, o4 (WA= JI+A(LR=-2 ]
TIMECHS (151 =T IMEF (ARG) /1000,
PLOTTING BND PRINTING VORTICITY
IvaRe12
IFCIPRNT) 601,600,601
600 JFOMe3
CALL MODPRNT (B,LR1,MLB)
601 CONTINUE
TIMECHC 116) =T IMEF (ARG1 /1000,
IF (IPML0T1608,602,605
602 CALL PREPLOT (B,LR1T,MLB)
603 CONTINE

TIMECHX (1 T) =T |PEF (ARG) /1000,
PLOTTING &0 PRINTING STREAM FLACTION
Ivam=13
P IpenT) 701, 700, TOY
T30 JTORM1
CaLL MODPRMT (A,LR1,MLD)

143



laNaNal

[aNal

REAY

TO! IF(IPLQT) TOS, 702,703
T02 CALL PREPLOT (A,LR! MBI
TS CONTINUE

TIMECHC LTI =T |MEF (ARG). 1000,
oW COMPUTE U-COMP,W-COMP,AND EDDY %1SCOSITY

FEINEN=Q, 0
UMAxe=-1 E+10
ANUMA X *UMA X

ToP PORTION
DO 90 w=2,MT
DO 90 1=2,LR
CtlydimiAl],u=11=R11,0¢1] ). DELXT2
FICINENSFIC INENSC (], U1 092
UABS=ABS (C(],u) )
UMAX=AMAX T (UMAX , UABS)
Dil,Ji=iAil=1,Ji-A{]*1,u1) DELAZ2
FiC INENSFICINENSD (|, #02
Gil, =B, 1 =Bil=1,01 ) DELKZ2) o2+ ((Bi], oo 11-B(],0-11] DELIT2
11002
Gil,Ji=CON2T=SQRT (GL],u)
IFIGIL,u . GT.AVIS) Gil,J)=RYV]S
ANUMAX=AMAX T (ANUMAX G L], J))

90 CONTINUE

SET EDDY VISCOSITY AT TOP EQUAL TO FIRST [NTERIOR GRID VALUE
DO 95 |=2,LR

B Gl =Gl 2)

LEFT PORTlON
L IMx=LrL 220
DO 91 U=uT,uB
L 1M Mx=-2
DO 99 1=2,L1Mx
Cll,im Al ,u=11=AC], 1)1 DELXZ2
FIEINENSFIK INENSC (], J) # 02
UABS=ABS (C (L], )
UMAXSAMAX T (UMAX , UABS )
Dtl,JmAtl=1,ui=AC]e1,u)) DELXT2
FICINEN=FIC INENSD (|, ) # 2
GUl, =Bl 1, 1 =Btl=1,00 ) DELXZ2) #o2¢ (Bl *11=B(],~1] 1. DELATZ
11ee2
Gil, ) =CONZTSORT (G (], ul)
IFIG1],1,GT.RVIS) G, 1=RV[S
ANUMAX=AMAX T (AMUMAX, G (] ,ui]
9% CONTINUE
ECOT VISCOSITY ON SLOPES,LIMNEAR VARIATION IN THE MNORMAL DIRECTION
WL POINTS ARE GOTTEN BY SIMILAR SCHEME
Im [Mxe2
GUIN, N ®10, 0 1G], u=114G111=1,0-11)/12,286°DELXZ+20.)
GUIN=1, 1@ (GUl1=2,U14G (11, u-111/4,

@1 CONTINUE

AL POINTS MD SLOPES FOR VELOCITIES
Jory -1
j2e M +%0
s ¥
CO 82 Ke1,95
I=]s2
12212-1
Y ol
Ctlout®ibt] ,o-1)A0],u) ). DELAZ2
eV |1E T (], Ul ee2

C

4

C

I

<

B

»

Dilentimatl=1, 01 DELAD2
FINENSTK INENSD (], ) 92
Cilet,uimihtlet o=t oht] =111 (2,8000u 0
CHI2 e iAt]2e0 i sat]2,w=111 DL 22
Dilet ,winCilel, i 2,
Dil2Jim=Ci12,u1
CIRCBaC IPCReA[[*] , umTieA (], u=1)
CIMCBeC IRCBOA (1241, UisA[]12,w01)
82 CONTINE
(TOP QDD POINT)
Cltle2,u=timiA{]e2, ~21¢A([*2,0=111 CEL22
Dtle2,w=timAi]e) ,u=11.DELAI2
RIGHT PORTION
Iu=LrM 20
DO 96 w=uT, B
=i+
DO 85 l=lL,LF
Ctlydi®tht]l u=1i=At],w*1)).0ELAS2
FEINENSFK INENSC (], u) 92
UABS=ABS (C (] ,u1)
UMAZ=AMAX ] (UM X, UABS |
DileimtAtl=1,Ul=Atle1,u1 ] DELAT2
FEINENFE INENSD (], u) o2
Gll ot (Bl , J1=Bll=1,01 1 DELXT2) #o2e [ (B(],uet i =Bi],u="i) DEL-Z2
11592
GUl I =CONRISART (G L], W)
IFIGLL,u . GT . MVIS) Gtl,visRy]S
ANUMAX®AMAX ] (ANUMAX,G (1,41
83 CONTINUE
GUIL=1, =10, = (G tIL=1, =116 LIL,wi). (1, 41490ELRT+2C, 1
86 CONTINUE
{4V, 4]
CILML420,JT) = (CILML* 19, uTisCILML*21,uT1), 2,
DiLrML+20,uT)=0,.0
GILML+20,JTI =10, +G (LML *20,M.T). (DELAT*10.}

TIMECHC (191 =T IMEF (RG] 1000,
BYADARY VALUES FOR U-COMP,W-COMP, AND EDCT [SCOSITY
(TOP BOURDARY FOR U AND W
CIRCT=0.0
DO 84 [=2,Lr
Ctl VimiAt], 11-A10],21) DELXZ
CIRCT=CIRCT-C (1, 1) *DELXT
FRIHENSFC INENSC (], ) v 02
Ol NimiAC]=1,00-AC0e1, 10}, DELXZ2
FEINEN=F K INENSD (], ) # 92
4 CONTINLE

EFT LEVEL PORTION
CIRCB=0.0
DO 86 [=2,0
Cl.MBi=At], B DELIT
CIRCH=C |RCB+C (| MBI «DELFT
Ctl,MBi=0,0
6 S, MBI =10, °G1], B, (IDELAT+10.)
PlomT LEVEL PORTON
LMLPS0-LM +50
L9 07 lm PSP
Tl.MBIeAl], B DELAZ
TINRel IR (] MBI DEL T
RN TR
07 G MBIe1G, 0%t B DELrTeS,

LR ML DI

56



CImC10=0.0
0o 98 u=1,MB IF(IMOTI908, 002,808
Cil, a2, 902 |vARe1B
CUm =R, J) CALL PREPLOT (C,LRT, MB!
DU, JI=D 12,4} IviR=1§
CIRCIQaC IRCIO=D 11,u) *DELXS CALL PREPLOT(D,LRY D)
D (LR, Ul =D i, i |vime)
CIRC1O=C IRC 1O+D (LR, Ul *DELAZ CALL PREPLOT (E,LRI MB)
Gl JIieG2,J) 808 CONTINUE
GILRY ) =G (LR, ) C IOMPUTATION OF TIMT INCREMENT FOR PEAT TIME STEP
¥ CONTINUE DELToANUMAXS s 24CON22 % (DELAZ*92) » ('UMAN 042,
[ DELT® (~ANUMAX+SQRT (DELTI ). (UMANe+2)
CIRCRaC IRC, (CIRCTSC|RC [QeC|RCB) <
[4 C STORE STREAM FACTION AND WORTIC|TY
C CALL BRANNT (NM(13] ,411,1) ,MRCS)
C SMOOTWING OPERATOR ON EDDY COEFFICIENT (B~POINTI CALL BRANCK (NM(13))
DO 150 =2, M.T CALL BRANWT (NMI12) ,B01,1) HWRCS)
DO 150 1=2,LR CALL BMANCK (NMI1211)
Eil,1 =0, 806 (], 1 080 (GtleT,JieGi]l=1,uieGil ,vetioGi], =11 4
150 CONTINUE c
LiMxeLM +20 C
DO 152 U=uT, B TIMECHC 122) =T |MEF (ARG . 1000,
LMy [Mx=2 C EMD OF TIME STEPe o 5 o o % 2 8 ¢ & 8 8 % o 0 0 ¢ 0 0 ¢ 8 s 8 v 0 08 0 0008
Do 151 l-!.LIH! C s A L L L L L P Ty
Etl, 1=, 809G 0], 1%, 050 1GLIs1, JI4Gt]=1, 010G (] o1 18G1],u=11) € svvsase tsssssssnsnsnnan
151 CONTINUE C wenvans
ElLIMxe2, =G iLIMxe2, u) C ssssnsensnnnnnnes
EILIMX+1,J) =G (LIMX+T,U) RE TURN
152 CONTINUE 0o
IL=L+20 SUBROUTINE TWETALLT,uN)
DO 158 U=uT, 8 COMMON/BLOCK | /WS I TERM (6] ,DIFU (36 ,GPRTERM (361 ,PIB (36 ,F22 % ,F 17
Etle,Ji=GilL,v) TOM10(36) ML (36) R124(96) FLL] (96: ,F1(56),F2(%6),F5(5;
lL=lLet COMMON.BLOCK2/MLT, LR, LML ,DELXZ ,RELF M0, THETREF ,CP, 11,02,75, 4,EP

[4
4

DO 153 |=]L,LR

Etl, 120,86 (], 20+, 08+ (G1le1,02G11=1, 1611 e T1oG1],u=11]
153 CONTINUE

DO 154 =2, LR

Etl.n=€(1,2)
1S54 £t ,MBI=G(],MB)

DO 155 =1, M B

B0, =2,
155 LR, =R,

STORING U-COMP W—COMP,EDDT vISCOSITY
CALL BRANWT (NM(15),C(1,1) ,NWRDS)
CALL BRANCK (NM(15))

CALL BRANWT (NM(16),D1(1,1) ,MRDS)
CALL PRANCK (NM(16) )
CALL BRArST (N(1T) ELY, 1] MRDS)
CALL DRANCK (NMLTT) )

TIMECH (20) =T |MEF (ARG) /1000,

PLOTTING &0 PRINTING '~COMP, W-COMP, AND EDOY COEF
IFIPenT) 901,800,801
950 lvame1S
o O
TALL MODPRT (C LR B
lvam=18§
TALL MODPRT (DR, MB)
1y 7
|
ThL POOPRT (LR, MB)
M ot g

(al

(Al

TIMECHC (210 =T |MEF (ARG 1000,

1S,FLAM, COND2, CriK ,NWRDS , NUM| TER RV | S, LOEL XZ

COMMON/BLOCKS, ' UB, MLB, LR, DELXT2,DELXTSQ, COMQ,CONS, CONT 1, C0NS, SON 21

1,Fa,ut

Cmocts.dn1|.5:..:!1l.!s:.c|Hr.s:.onn.!s:.!:mr_x:,r:

TI10,56),60111,9) ,Hi111,96)
THETA [N DML IN G, WV 1M CW 1M F Wl 10 H,PHD TN A,0 INE
1=11
Nl
W0 MDD W=
Fil,wi=g(l,u
Hil,Ji=0.0
SAT=F4+D(1,u)
WYS=F 1CONTOtJ) » (1, +SAT+0, 5+SATes2)
IF(F(1,u)-vS) 55,54,54
53 Ctl,ui=F (],
Ctl.ui=0.0
Al 1= Gl e COMBeC (], i1, THETREF
% 10 %
54 1), .S
Gllst=F (] ui=C1],d)
L 10 i
e 5,.57.57
5 W.~0.0
kb PRVIE S AV
L b NETTY 3
All, @ Ct], et t) , JisFLL] (Ul sbh. CP:. THETREF
» Tt INE
LT
(4] 7
YR ,TINE NCPTS (A,LP1 MB;
CIMISIoN anmt B

96



COMMON. BLOCK2, MLT, LR, LML DELXZ,RELF MO 1, THETREF ,CP,C1,22,05,04,EP
15, FLAM, CON22, CHc NWRDS  NUM| TER B | S, LOELT

1= M=

et B

DO 299 x=1,10

l=]e2

ey

Atl,JimtAtler uishil=1,u11. 2,

299 CONTINE

WL TUR

oo
SUBROUTINE INOUT (A, LRI MBI
DIMENSION ALLRT MBI
LB R =1
DO ! uel ,MB
A1, J1e2, A 12, J1=ALS, i
ALRT Ul @2, A (LB, JI=AILB=1,J]
! CONTINUE
RE TURN
(2]
SUBROUT [NE PREPLOT (A, LRI MLB)
DIMENSION A(LRT MBI
COMMON/BLOCKA/DELT, TIME,NSTEPS, | TER, | VAR, F ORM
BUFFER QUTIB, 1) (DELT, IVAR)
S IFiuNIT, 80 5.8,6
6 WRITELE, 7
7 FORMAT (1440, +END OF TAPE ERROR |N PREPLOT+.)
® BUFFER OQUT(B, 11 (ALY, 1), AWM MBI
9 IFIMNIT, 8 9,12,1Q

10 WRITE(E,7)
12 CONTINUE

IF (IvAR EQ,17) ENDFILE ®

R TURN

©®o

SUBROUTINE MODPRNT (A, LR1T, MBI

DIMENSION A(LRY MBI

DIMENSION IFORM(2)

COMMON/BLOCK2 /MLT, LR, LML, DELXZ ,RELF MO, THETREF ,CP,C1,C2,C5,04,EP
1S, FLAM, CON22 , CHiC ,NRDS  NUM TER RV S, WDELXT
COMMONBLOCKADELT, TIME NSTEPS, | TER, | VAR, JF ORM
COMMON/BLOCK 10, | TARRAY (2,17), IFORMAT (2,51
COMMON/BLOCK 18/ JSK |P

IFORMI1 )= FORMAT (1, UFORM)
IFORM(2)=]FORMAT (2, JFORM)

JTerg Te1

FINGING MAX]IMUM AND MINIMUM VALUES OF FedTion

VHAze-1_E+10

VM- AX

0O 15 U=t ML T

DO 15 a1 LR
WAZeAMAYT (AT] ,J) ,VPMAK]
MM (AL, ™I

15 CONTINUE

LIMaeL e 22

GO 16 veuT MB

LiMrey Mx-2

20 16 =1 ,LiM

Ao fMAr 1 (A1) ,u) L)
Pt 2T U RT RS PV (1]

6 TN

Loy 219
L9 1T weuT M

HAC TR

DO 17 I=lL,LR!
VMANEAMAXT (A (], , VMAX)
WMIN=AMINT (A L], a0 MR

17 CONTINUE

WRITE6, 1!
! FORMAT (1H1)
WRITE(6,2) |TARRAY (1, |VAR], |TARRAY (2, |VAR;
2 FORMAT (1M ,50x,2410)
WRITE(6,5) NSTEPS,DELT, TIME, V[N, \MAx
3 FORMAT(IH ,+T|ME STEP=+,[d,+ DELT®+,F5,2,+ T ME=e F7. 2, 45: o™ tae,
1E15.6,+ Mix=+ E15,6.)
IF(IVAR-13) 8,7,8
7 WRITE(6,4) ITER
4 FORMAT (1H ,*NUMBER OF [TERAT|OtSe=« |4 |
8 CONTINUE
DO 10 w1 M T,5KIP
LB | -y
WRITE(6,9) JJ
® FORMAT (1H 49X, vums, [2)
WRITELG, IFORM) (&[], v, 1= LR}
WRITE (6,20)

10 CONTINUE

DO 11 u=yT MB

L Bl -y

WRITE(6,9) wu

WRITE (6, IFORM) (AL],u), =1 ,LRT)
WRITE (6,20)

11 CONTINUE
20 FORMAT (/)

RETURN
0o
SUBROUTINE LAGINT
COMMON/BLOCKZMLT, LR, LML DELXZ RELF RO |, THETREF ,CP, 21,02,02, 04, EP
15,FLAM,CONZZ , CHC, MWRD'S ,NUM TER RV 1S, UDEL YT
C?'OMKS/-S.M.LFI JOELXZ2,0ELXTSQ, COMR, CONS, CONY 1, CONM, COPRY
1.F4,uT
COMMON/BLOCKS A(111,56),B1111,51,C0111,%:,0t1171,31,E(111,5) ,Ft
1111,5),G(111,36) ,H(111,36)
COMMON/BLOCK T 11125, INDEX 151
COMMOM/BLOCK 14/ T (10) ,FEINEN, CIRCR, CIRCT, CIRID,CIRCB, IR
0O 1 us2 M T
DO 1 1=2,LF
1 At]l,J1=0,0
LiMxe L +21
00 2 u=uT, B
L IMxm [Mx-2
0o 2 |=2,L1Mx
2 All,u=0.0
IL=LrML+20
0O 5 usutT, 8
IL=lLet
003 lajL,LR
5 Al =00
M5|=17
00 & L=2,4
MS|eM5 |1
TML BRAIRT (P2 MST LT 0T, 1 LM RDS!
AL BRANCK (1IMS ]
ToP=1
BTt
Vi 5 rez,4
IFw,Lo.0) 0 170 %
TRatofe (T01)=T 0}

L6



BOT=BOTs (TiL)-TiK)}
S CONTINUE
DO 12 us2 M T
DO 12 |=2.m
Atl,)®ail, U1 (TOP. BOT)oC ], !
12 CONTINE
LM M e 21
DO 14 weuT,. 8
LIMxe [Mx=-2
DO 14 |=2,L1Mx
All,Ji®AL],u1e(TOP. BOT)eC(],ul
14 CONTINUE
LML e20
00 16 u=uT, B
IL=lLst
DO 16 l=lL.LR
All JimAL],J)i*(TOP,BOTIoC(],ui
16 CONTINUE
6 CONTINUE
RETURN
END
SUBROUTINE FRST(AQ A1)
COMMON/BLOCK2/MLT, LR, LM DELXZ  RELF 01, THETREF ,CP,C1,22,08,04,EP
1S, FLAM, CONR2, O , NWRD'S , NUMI TER RV 1 S, UDEL X2
COMMON/BLOCKS/ B, MLB, LR ,DELXT2,DELXTSG, COM2,CONS, CONT T, 20N, CON2Y
1,Fa,uT
COMMON/BLOCKS/A(111,96) ,B(111,36),C0111,9),00111,51,Ec111,5;,F1(
T101,56),G(111,36) ,M(111,36)
COMMON BLOCKE, Z(1111,36)
(TOP BOUNDARTY)
0O 101 |=2,LR
Cllotimti=Gilel , 10Gil=1,11). DELRZ2+C(],111%40
BUl, 1=Cil, 10=Ctl, 112,261,141
Cllyni=Ctl, 112,
HUL TimAtl , 1=Cl Vawchp]lel N0=A00=1,100+B(], 1ie(ai]er, 10=2,5A1],1
TisAil=1,111
Ztl il N =Ctl Ve tEtlet, 1=Etl=1, 10 04B0], 100 tEC]®1,11=2,¢E(),1
TisEt]=1,1))
101 CONTINUE
WEFT, LEVEL)
LML -1
DO 102 l=2,LMM1
Cll,MBI=((=Gt]+1,MBI+G(]-1,MBI) . DELXT2¢C (], MBI *AQ
Bl ,MBI=C(],MBI=Ci] MBI 2,461 ,MBIsAI
Cil,mBi=C(] Bl 2,
Z01,MBI=E (], MBI=CU], MBI (E(]l+1,MBI-E(I=1,MBI1+B([,MBI~(E(]1
TMBI -2, vE(l MBI+E(l-1 MBI
102 CoOnTINE

T IRIGHT LEVEL)

LMLPSIe rq +51
DO 105 le P31 LR
T MBI = (=Gile1,MBI+GI]=1,MB8) ). DELXZ2+C (] MBI +A0
Dl MBIt (] , MBIeC1], MBI 2, 4G(],MBIsAI
TCtl,ABaCi] B2,
ZUl MBI ,MBI=Ctl MBI« (Ecls!,MBI-E0]-1,MBi +B(] ,MBIelEl]e}
1B -2, ¢E(] ,MBi+EL]l-1,MBI)
08 ConTing
'SLPES)
s
IRL. 0. 8
12=Lr+5¢
Lo 104 ret,p
-
i1=]1e2

12=12-1 .
CLlV it t=G (182, u=118G ([ 1=2, 0811 ). (B, *DELATI®C (11,4l ) 9AQ
| TTRIRVI 8 AN TR R IRV S A SRS S I -
CulleCilt vl 4,
St sE T, =CtlN I (ENL192, =11 =Etl1=2,ue 11 o1, uiv L[] 102,
Tu=11=2 . 0Et1Y ,ieE(11=2,ue11)
CUI2\WI®LI=G (12¢1, 08 1) 6G (121,011 )/ (4, DELXTI#C (12,u) 1 vA0Q
Bll2,1=C 112, *CLI2,W1/2,4G(12,J1 %A1 2,
ClLi2,1=Ct12,u 2,
U2, N2, =CLI2, 1 (L1241, 00 11=E(12=1,0=11 ) +B([2,u * (E( 1201,
1ue 112, L UL12, U1 +E(12=1,u=11})

104 CONTINUE

(LEFT EDGE OF MOUNTAIN)
CULML MBI =C (LML, MLD) *AQ
Z LML MUB) o (LML, MU =C (LML, MU » (E (LML, MBI =€ (LML -1, B0 )
IF(CILML M8 LT, 0,00 ZILM, MBI =E (LML, MUB) =C (LML, MLB) « (E (LML+2,.8
H=E B )2.2%

IRIGHT EDGE OF MOUNTAIN)
l= e +30

= B
CilywieCil,Jiva0/1 414
ZUl i =E], N=Ctl S B A =Etl=1,u=1)1)
IFICH W .LT.0.00 201, J1=Etl,i=Cil, o (Etlet,ui=E(],ui)e1,414
1cusP)
l=+20
=T
CtlynioCil,J1v40/2.29%
Ztly il ) =Cll gl * (EC] 1= t1=2, 08111
IFICH LT, 0,00 Zil,WimE(],u1=2,298°C (], uiv(Etlet, oet)=€1],0 1,1
1,414
RE TURN
(2]
SUBRQUTINE SCND (AQ, A1)
COMPMON/BLOCK2/LT, LR, LML, DELXZ, RELF , MO |, THE TREF ,CP,C1,02,05,C4,EP
15, FLAM, CONZ2 , CviC , NRDS , NUM| TER , v | 5, LDELXT
COMMON/BLOCKS/ 8, MLB, LR ,DELXZ2, DELXZSQ, CONZ, CONS, CONT T, COND, CONR Y
1,Fa,JT
COMMONBLOCKSA (111,90 ,B0111,9) ,C0111,91,0c111,9) ,Ec111,96) ,F(
1100, 96 ,60101,96) . Hi111,9)
[« (1,5
COMMON/BLOCK 1S/QLT,QRT,QTP, QINT1,QINT2,QRAT10,QD IFF QL TH, QRTM, QTPM
(TOP BOUNDARY)
DO 111 |=2,.m
Dil,11=D(],1)%0
AL, 1 etl, =Dl Vhetmil, 1i=mil,2))
Etl, =i, =0l e qZel 1=2¢c1,201
111 CONTINUE
WEFT,LEVEL)
LM -1
DO 112 =200
Etl,mBi=Z(] A8
QINT2=QINT2+E (1,41 /2.
112 ConTINUE

T OIRIGHT, LEVEL)

LMLPSI =L 51
DO 115 le L PSI LR
Cil,mBi=Zil ,me
QINT2eQINT2eE (], v /2.
118 ConTINE
1SLOPES)
¥
IRL.S. 8
12e0q.+50
CO 114 K=t 9

86



e -1
1h=]1e2
12=12-1
Cilt, =il
QINT2=QINT2¢E (11 ,u1. 2,
QINT2eQINT2eE (1 1=1,u)
Etl2,Wi=Zi12,v)
QINT2eQINT2eE (12,u)1 .2,
114 CONTINE
€ (LEFT EDGE OF MOUNTAIN)
ELM MBI =T (LM, MB)
€ (MIGHT EDGE OF MOUNTAINI
EILML*30, MBI =7 (LML+30,M.B)
[TV " ]
CILM+20,JTieZ (LM +20,JT)
RETURN

N
SUBROUTINE ETAI (AQ,AT)
COMMON/BLOCK2/AMLT, LR, LML, DELXZ ,MELF MmO |, TWE TREF ,CP,01,02,08,04,0°
1S, FLAM, CONR2, Crid , NWRD'S , NUMI TER Ry | §, WOEL X2
COMMON/BLOCKS/ B, MLD, LI, DELXZ2,DEL X280, COMZ, CONS, CONI T, CONG, CONY
1,Fd,JT
COMMON/BLOCKE /AT, 96) D111, 960, C111 .96 ,00111,96 ,E0111,96:,F1(
RS TIIREMS TRCTRERNS 1]
COMMON/BLOCKR/Z1111,96)
IWEFT,LEVEL)
UM e -1
DO 102 l=2,LMm
COLFAl®m  ((=mi]e] MBI*(]=1,MB)) DELXZSC (] MBI vAQ
COLFBI=COEFAY»COLFAL /2, 4M (] MBI *AY
COLFAV=COEFA1/2,
ZU MBI =Bl MBI~ COLFAT«(Bile) , MBI~Bil-1,MBII+ COLFB!~ (Bi]le!
1,BI=2,°BU1 ,MBI*BiI~1,BII«E(] MBI
102 CONTINUE
€ IMIGMT,LEVEL)
LIPS e M 81
DO 103 l= M P31,
COEFAl=  ((=wt]e1 ,MBIsHt]l=1,M8)] DELXZ+C L], ) A0
COLFB1=COEFAI +COEFA1/2,4m(] MBI *Al
COEFA1=COEFAL/2,
ZU,MBIi=B(]l MBI~ COLFAl=(Bil+! ,MBI-Bil-1,MBIl+s COCFBI=(Bi]e1
1.MBI=-2.+Bi1,ABI+B(l-1 MBI i«Ei] MBI
103 CONTINUE
C (SLOPES)
o
AL &
2= +3%0
DO 104 Ke1,9
-1
Itel1e2
12=12-1
COFAI®{{~mil102,u-Tion(11=2, %111/ (2. 9DELXZI*C (11,01} *AQ
CODFR =COEFAI «COLF AL /4, M| 1,J] *ALS,
COLFAV=COEFAl /4,
ZUI i1, ) =COEFAT« (BULI1e2,u=-11=B(11=2,0%1] ) +COEFBI*(B(]1+2, -
AANEF U TIRPNTE. TRRE-RV ARFE 3 § VT
COEFAI®(l=mi|2e1 e iomi]2=1, 011}/ 12, *DELAZI#C (12,1 ) *A0
COLFPI=COEF A «COEF AN /2, om(12,J1 *A1/2,
COLFA1=COEFAY/2,
T2, 0159112, ~COEFALe (Bi]2¢1,0¢11-B112-1,0-111+COLFBT = (B112+1,0e
111=2,oB112,01+9t12-1,-111E112,u
194 CONT v
T OWEFT EDGE OF MOUNTALNI
[ LT T ¥ TR

[al

SOML MBI B LML MUB) - LML MUB) B LML MUB B LML= MUB
IF (LML, MBI LT 0,00 JILML MBI @B LM MBI =2 (LM MBI 2 (B M2, 8
1I=BILM Bl 2,25
IRIGHT EDGE OF MOUNTAIMI
l= M+ 80
LB
CtlywimCt] ,wivAd, 1, 414
ctlyioBil i =Cil i (Bl wi=Bil=t =1}
1P, T, 0,00 DtlavioBtl,wi=Cil,ulniBilet uiaBi],uiie! 41

¢ Cuse)

l=r 20

et

CllyimCil,uivad. 2,25

Sl i oBtl a1 =C L i (D] Wi=BL]=2,us1))

IFICEl. o7 0,00 StlowioBi]l wi=2, 28800 ] ,uiviDilet woti=Bil,wii !
1,414

L TURN

()]

SUBRQUTINE ETA2(AQ,AY)

COPMMON, BLOCK2MLT, LR, LML ,OEL X2, MELF M0 |, TR TREF P, 01, 02,08,04,EP
1S, FLAM, COND2, CHK  NWRDS , NUM| TER AV | S, WDEL T

‘crm‘ . OCKS. B, MB, LR DELAZ2,DELADSQ, O, COMS, Nt COvl, S0
. |J

COMMONBLOCKB ALY, 96 ,B(111,98),C0110,880,00111,58,L1111,86),F(
1010, 96),60001,96) ,mil11,56)

COMMON. BLOCKE. Z(111,56)

€ WEFT,LEVEL)

LM e -
DO 112 1=2,LMM!
BULFLBI=Z (], MBI*2, s (WL, B =W ] MBI Do (200, B =2 (], MLB o= i)
ARRT TR R IECIEI LT TECTIERN § IFENIAS AL ¥ TR A AL TRET &
2/00Lx2
112 CONTINUE
€ IMIGHT,LEVEL)
LMUPS e 48
DO 113 la PSR
Bl MBI aZt] MBI o2, (HC1, B =H T, MBI * (0], 8)=T(],MB1) ehl=(m(]
161, B =HUl=1,JBiomt]l=1,MBi=ri]o) MBI o Cilet ,MBI=CL]=1,MB)) a1
2/DELxZ
1153 CONTINE
C ISLOPES)
LB
AL N, &
12=L 0450
DO 114 Ke1,9
Jeu-1
l1=] 142
12=12-1
l=11
Bill,vimZilt, uie Ml o=t i omtl=1, 0=t i=2, 0], Uil (2(], o=t 02 (1=1
THI=2, 0200, Ul ) 9A1/2.5 (HU1&T, =20 #m (] ,um T =il =1, 0= 1] =H(]=2,01 =}
242, 0=V 1oM1]=2, =111 0 1CTL182,u=11=C1]1=2,u0 1)) vA1, (10, "DELAT)
I=12
B2, 1= 112, uistmilel UlsHi] ,u=11=2 oMt ] D110 (Tt]et , WeT (], =112
1o Z0l,Jl)oht=12, omllel ,U)=2, omi],u=Tiomi]=1 U=1)=mi]el , Le1)ie(Cl]e
21,0811 =C]=1,0=11)vA1/ 14, *DELXZ]
114 CONTINUE
T OnEFT EDGE OF MOUNTAIN)
B MBI=Z (LM 8
TR ieHT EDGE OF MOMTAN
DM 30, MBI=T (LM +30,MB)
(L 7]
DL e20,uTi=Z (LM *20,JT)
T

06



0o
sASCENT

SKFL

N
ST

RN
END

ENTRY
com
sSA1
L1
Sa
sal

Ry

EQ
EQ
EQ
[ 2]
EQ
conN
CoN

SKFL
]
SKFL
]
xie1
al

x1
u

2
"y
4000019
Q

uN
ST
SKFL
5

0

00L
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0B, 5220, V0424010 ,DER I CHSON
sLIMIT, T=?, PRa100,PT=0,0000+800
*ASSIGN, AR =g R
TFORTRAN
PROGRAM DOTTIE
COMMON,BLOCK 1, WS | TERM (36,0 IFU (361 ,GPRTER (36 ,P B (361 ,F22136),F1C
1ON10 136) ,M-OA (36 ,R124 (361 ,FLL| (96),F1(96) ,F2(56) ,F3(56)
COMMON, BLOCK2. M. T, LR, LML, DELXZ RELF , M0, THETREF ,CP,C1,C2,C5,C4,EP
15, FLAM, CONZ2, O ,NIWRD'S  NUM| TER
COMMON/BLOCKEDELT, TIME NSTEPS, | TER, [ VAR, FORM

COMMON. BLOCKD/Z1111,56)
COMMONBLOCK 14/ AFLOI1TI AFM] (171 AFINC (170, I TAMRAY (2,171
COMMONBLOCK1S/LRT ,MLB
COMMON/BLOCK 16,/ Mx 1, MX2, Mr2, MxS, NY 1, N2
c
C NUMBER OF FILES TO BE SKIPPED
NFILES=0
(2
CISKIP SINGLE SUBSCRIPTED VAR]ABLLS!
CALL SCFLIE)
(4
ITARRAY (1, 11=10H | 4

ITARRAY (2,11 =1004]
ITARRAY(1,2)=10% Q,TOTAL

I TARRAY (2,2) = 1000 | STURE
ITARRAY (1,51 =1 0#VORTICITY

| TARRAY (2,5) =1 0+PRODUCTION
| TARRAY (1,71 =100 Wi,
I TARRAY (2,71 =100ICE
ITARRAY(1,8)=10m WLl
I TARRAY (2,81 =10:0U10D
ITARRAT(1,9) =100 WLV
ITARRAY (2,8) =1 0nAPOR
ITARRAY(1,10)=10M ™
ITARRAY (2,101 =10MTA

ITARRATY (1,11)=100d, SAT VAPO
ITARRAY12,11)=10WR AND LIQ
ITARRAY (1,121=10m voR
ITARRAY (2,12)=10WTICITY
ITARRAT(1,151=106 STREAM
ITARRAY (2,15) =1 0WFUNCTION
ITARRAY (1, 14) =100 TE
ITARRAY (2,141 =100%

ITARRAY (1,15) =100 u-Co
ITARRAY (2,15)=100F

|TARRAY (1,161 =10H W0
ITARRAY (2,16) =101®
ITARRAY(1,1T)=10  EDOY VI
ITARRAY (2,1T1=1006C0SITY
AFLOI11=0,0%5
AFINC 1 1)=0,0025

AFw) (11=],04%
AFLO(2)=0,0005

AF 1 (21=0,00025
MFH]121=0,0095

AFLO(TI=0,0

A Ti=0,0

Mul(T1=0,0
AFLOI®)=0,00005

AF |1 18120,00005

w10 =0,00085

L0 =0,0008
W19 =0, 00025

Mwl (9 =0,0095

C RASTOR POINTS FOR MOUNTAIN SWAPE AND TITLE POSITIONS

aNaNalal

-

SCIP FILES AS SPECIFIED BY IFILES

AFLOt1g1=1,0
AFINC 101 =2,
AFml 1101 =18,
NFLO121==0,010
AFINC1121=0,008
AFHLL121=0,010
AFLOL1SI=100,
AFINC (1312100,
AFmMl 113121000,
AFLOLIBI=2,0
AFINC1B)=2,
AFHl 118)=10,
AFLOLIGI=0.0
AFINCI161=0,0
AFrl (16120,0
AFLOLI T80,
AFINCI1TI#80,
AFHL (1719280,
ML=51

[ ICTRR]

M T2%

HB=3%
JBLD-1

LRe R~

FuML=M

FuB=8

FLR= R

FrLTer T

MXTe5] & (FLUL-1,) 922, FLR
MX2e51 ¢ (FLML+19,) +922. /FLR
MY2e51 49220, /FLR
MAS=S] ¢ (FLML+29. ) +922. /FLM
NY1=110,+FuB*922. /FLR
NY2eiT 1480

IF (nF ILES.EQ.0) GO TO 9
DO 8 N=1 N ILES

CALL SKFL (8!

CONT INUE

CONT INUE

DO 31 IT=1,26
WRITE (6,95
FORMAT (///77)
0O 10 K=1,5
CALL RDVAR
CALL MODPLOT
CONT INUE
CALL ROVAR
DO 12 K=1,2
CALL ROVAR
CALL MODPLOT

12 CONTINUE

T etome

CALL RDVAR
CALL MODPLOT

o

Chil MOVAR

7 LG COEFFICIET

2ol



ChLL ROvVAR
CALL MODPLOT

WRITE(6,36) NSTEPS, TIME
36 FORMAT (1M ,*THIS IS FOR TIME STEP+,14,+ TOTAL PEAL TIME=+.F8.2/)
BUFFER [N(B, 11 (VEOF,VEOF)
18 IF(WNIT,8) 18,16,20,16
16 WRITE G, 1T
17 FORMAT (1m0, *NO EOF OR PAR|TTY EMROR [N DOTTIEs. |
28 WRITC 16,200
20 FORMAT (110, sEOF ENCOUNTERED=/)
50 CONTINUE
31 CONTINUE
oo

SUBROUTINE ROVAR
DIMDNSION AL111,56)
COMMON/BLOCKA/DELT, TIME,NSTEPS, | TER, | VAR, FORM
COMMION/BLOCKS/Z(111,56)
COMMON/BLOCK 1S/LRT . MLB
BUFFER INIS, 1) (DELT, IVAR)
S IF(NIT,. 0 5,0,6
6 WRITEE,
7 FORUAT (100, +EOF OR PARITY ERROR [N ROVARS. |
S BUFFER [IN(B, 1) (ALY, 1), ALRT,MB))
® IFINIT, B 9,12,10
10 WRITEE, 7}
12 CONTINUE
MBI Bt
DO 1 u=1 MB
DO 1 l=1,um
1 ZtlJisat] BPI-y)
RETURN

N
SUBRQUTINE MODPLOT
DIMENSION ITITLE2), ISTITLE ()
COMMON/BLOCK S/ DELT, TIME ,NSTEPS, | TER, | VAR, JF O
COMMON/BLOCKB/Z(111,96)
COMMION/BLOCK 14/AFLO(17) , AFW] (171, AFINC (17, | TARRAY (2,17)
COMMON/BLOCK 1S/LRI LB
COMPON/BLOCK 16,7001, MX2, MT2, M3, NY 1 NT2
ITITLE (V) =] TARRAY (1, | VAR)
ITITLE(2)=] TARRAY (2, | VAR)
CALL OPTIONIO,1,0,0,0)
CALL FRSTPT (Mx1,51)
CALL VECTOR (Mx2,MY2)
CaLL VECTOR (Mx3,51)
ENCODE (14,100, ISTI TLE) NSTEPS

100 FORMAT (+TIME STEP=~]4)
CALL PURT (206, NT1,ISTITLE,14,1,0)
EMNCODE €10,101, ISTITLEIDELT

101 FORMAT (*DELT=+FS,2)
CaLL PURT (476, NY1, ISTITLE, 10,1.00
EMNCODE (12,102, ISTITLEI TIME

102 FORPUT («T|ML=+F7.2)
CALL PURT(§19,Mv1, ISTITLE,12,1,0)
IFilvaR-15) 10,9,10

® DMCODE (9, 108, ISTITLE) I TER

105 FORMAT (« | TEM=+4)
CAMLL PWRT(TT2,Nv1, ISTITLE,S,1,00

10 CONTINE
CoL PWRT (952,072, 1TITLE,20,2,00
FLO=AMLO (| VAR)
Fraje=alfw) (| vam)
FItCaaF [0 | 'vam)

TCrcoT | MEF (ARG ) /1000,
WRITC 16, 14) [TITLE, TCHe

Id FOMMAT (1M ,*STARTING TIME FOR+, 1x,2410,5%,F7.5)

IF(IVAR=-18) 25,24.25

24 CALL wCore

G0 TO 26

28 CONTINE

1

c Toe

1]
C LEFT

20

CALL CALCNTI(Z,LR1,MLB,FLO,FHI,FINC,0,~1,0!
CONTINUE

IFtIVAR,EQ.8) CALL CLOWD
TCrCoT |MEF (ARG) /1000,

WRITE(6, 15 ITITLE, TOK

FORMAT (1M ,*FINISHING TIME FORe,2410,5%,F7.5.)
IF LIVAR=13) 20,16,20

FLO=B5000.

Frl=17000,

FINC=4000.

CALL CALONTIZ, LRI, MB,FLOFHI,FING,2,-1,00
TCHK=T | MEF (ARG) /1000,

WRITE(6,1S) ITITLE, TCHc

CONTINUE

CALL FRAME

(2]

SUBROUTINE CLOWD

COMMON/BLOCK2/MLT, LR, LML, DELXZ ,RELF P01 , THE TREF ,CP,C1,C2,C5,C4,EP
S, FLAM, CON22, CHiC , NWRD'S, NUM] TER

COMMON/BLOCKD/Z (111, 56)

COMMON/BLOCK 1S/LR1 ,MLB

0O 10 w=11,B

DO 10 l=1,um
IF(Ztl,0-0.000020: 10,8,0
xe|

Yoy

CALL PSTMIX,Y,1H,,0,0,1)
CONTINUE

LIMxeLM -2

DO 20 u=1,11

LMy M2

DO 20 l=1,LiMx
IF(Z(1,0-0.000020) 20,189,180
=]

Yoy

CALL PSTMIX,Y,1H,,0,0,11
CONT INUE

€ RIGHT

ILer 31

DO 30 u=1,11

IL=l-1

DO 50 l=iL,LR1
IFIZ1,01-0,000020) 30,28,28
Ae]

Yoy

CALL PSYMIX,T,1m,,0,0,1)
CONT INUE

A Tumey

0o

SUBROUT INE UCOMP

COMMON/BLOCK2 LT, LR, LML, DELXZ ,RELF O], THE TREF,CP,C1 L2,08,C4, 0
$,FLaM, CONZ2, CrH 14RDS , N TER

COMONILOCKB Z1111,56)

COMPIONILOCK 18/ M B

SR 1

€ol



ade R

deM B

r2evde g, D xde), 08

LRL20eU ML 20

LMLS0eL M e 30

CALL SET10.08,0,.98,0,08,v2,-12,0,12.0,1..,74, 1)
CALL PERIMILR,0,U8,0!)

Ap=LR

DO 100 1=1,LR1, 10

ATal=1

Al=AT/AB

XCENTER=Q,9+A1+0,08

x1=xCENTER-0, 058

x2eXCENTER0, 058

JBOT=1

IF UL GT LML AND, 1L LE.LML20) JBOTe(]=LHL). 2¢1
IF L1, GT.UM20.AND, | .LT.LALSG) JBOT=11=]eLM 20
CALL SETINI, 22,0,08,72,-12.0,12.0,1.,74, 1)
T0=B0T

CALL FRSTPT(0.0,70)

10ASH=177T8

CALL DASHUNIIDASH)

DO 50 J=uBOT,M.B

xoZtl, 0

Yoy

caLL VECTOR(X,Y)

CONTINVE

CALL FRSTPT(0,.0,74)

1DASH=14508

CALL DASHLNI IDASH)

CALL VECTOR(0,0,70)

100 CONTINUE

RETURN

a0 1]

SUBROUTINE CALCNT  (AM,MX,NY,FLO,HI,FINC, NSET,NHI ,NOOT)

DIMENS 1ON AM (MX,NY)

COMMON/CONT/MT NT, X, I T, 10X, 107, 155, NP, CV MNT  ASH, [NX (8], INY (8,
1IPT(S, 5 ,LEGEND 111) ,REC (8001 ,NO
Cmﬂﬂf.m.hﬂ..md.m.“l.?-(TIU.CP.CT.CZ.C!.CI.I?
15, FLAM, CONZ2 , Cric , NWRD'S , NUM| TER

COMMON/BLOCKEDELT, TIME NSTEPS, | TER, | VAR, FORM
COMMON/CAL TN/ XKLL, XLMLSO

T INITIALIZE

nMLeM

ALS0=L M +30
IF(NSET180,81

NO=1ABS (NSET!

G0 To &2

Mo=1

CONTINUE

IFLIvaR EQ,. 13 GO TO 11
li=r -1

IReLry +30

00 10 w=1,10

IL=iLe2

IRejm-1

AL, Ui =S, cAM{IL-1,01 =5, sAM(|L=2,J) *AM{ -5,
AMUIR, U1eS, o BM(IRe T, Ul -5, cAM([Re2, J) *AML [Re5, Ul
IF (U, E£0.10) GO TO 10
L=t

IRt=)p-1
DIFFaam(|m, ul =M1 1L,
DiveiR-]L

0O 9 J=lLt,Im

0l

9 AMUL J)eAMLIL, VI *DIFFs (=101 ClY
10 CONTINUE
11 CONTINUE

MTapix
NT=NY
CRIT=16,
IF (FINC,LT.0,1 CR|Te-F|rC
FANC=F | NC
GLO=FLO
HA=H |
NNT=2
1DASH=NDOQT
IF INDOT,EQ,0) [DASH=1777B
IPTiY,11=8
IPT(1,2)=)
IPT(1,831=2
IPT12,1)27
IPT(2,5)=3
IPT(3,1)1=6
IPT(35,21-8
IPT(5,51=4
INR (1)@=
INX(2) @1
INX(5)=0
INX (d) =
INX (5] =1
INX(6) =1
INX(T) =0
INX () ==1
INYI1)=0
INY (21 =1
INT (3} =e1
INT (d)=e1
INY (51 =0
INY (61 =~1
INY(T)==1
INY (@) ==
IF 11GLO.EQ.0.1.AND, (MA.EQ.0.)1%0,%2

50 GLO=1,E100

HA==GLO

DO 55 =1 NT

DO S5 Kxe=1,MT

GLO=MINT (AM(KK,K],GL0)

HASMAXT (AM KK, K], HA)

CONTINUE

IF (FANC,LE.0.) FANC = (MA-GLO)/CRIT

51 CONTINUE

IF (Nw1] 155,53,54

5S4 Arberid

IF (ABS (GLO).GT.ABS (HA))AHA=GLO
ENCODE (8, 100, 1SH) AMA

100 FORMAT (ES, 1)

DECODE (8,101, 1SH) 1M

191 FORMAT (Sx |5

IEP=2-1m
ASH=10, ¢ |EXP

53 IF(NSET.ME,O) GO TO 24

s 4=T
vdetyT
IF i T=nTi 20 21,22

21 12 =, 95

2 ® (r4/74) %, 900,05

v0l



C
€

GO TOo 283
22 x2 = .8
Y2 = (Td/xd)s 90,085
25 CALL SET (,05,x2,.08,72,1,,x4,1,,74,1)
CALL PERIMIMT=1,0,NT=1,0)
24 CONTINE
IF INSET,EQ.2) GO TO 2%
ENCODE (108,201 ,LEGEND | GLO,MA FANC , ASH, AM(2,2)

201 FORMAT (1S-CONTOUR FROM E11.4,4M TO E11,4,18W CONTOUR [NTERVAL E11.

14,124 SCALING=E®. |, 9 PT(2,2/=€£11,5)
CALL OPTION( 0,1,1,00
56
=108
IFINSET.LT,0) M=22
CALL PWRT (30,MM,LEGEND, M4, 0,01
25 CONTINUE
CALL OPTION(O,1,0,0)
ODETERMINE CURRENT LEVEL TO BE CONTOURED

CVaGLO-FANC
120 CveCVeFANC
CALL DASHUN(IDASH!

CALL SCAN(AM,MT,NT)
TEST FOR ALL LEVELS CONTOURED, INCREMENT IF nNOT

IF (HA=CVI 190,150, 120
150 CONTINUE

CALL DASHLNIITTTEI
IF (N1151,52,38
32 CALL HILO (AM MT NT)
51 RETURN
35 CaLL PTVALULAM,MT,NT)
PETURN
(3]
SUBROUTINE SCANIAM,M, NI
DIMENSION AM(M, NI
COMMONACONT AMT NT, 1%, 17, 10X, 10T, 1SS, NP, Cv ,NNT , ASH, [NX (81, INY I8),
VIPT(S,5) LEGEND (11) ,REC (800) ,NQ
NP=Q
DO 58 u=1,800
58 REC(U)I =0
158=0
2 MTiamT-1
0O 110 l=1,MT1
IF (aMl,n-Cv) 55,110,110
95 IF (AM(]+1,1)-CVv) 110,57,%7
57 lx=]e1
Iray
10x=-1
IDT=0
CALL LINEAR (AM, MT MNT)
110 CONTINUE
HT1eyT-1
DO 20 l1=1,NT1
IF (AT, ) -Cv) 1%,20,20
15 IF (AMIMT,e1)=Cv) 20,1717
17 JneT
Irajer
D=0
107=-1
CML LINEAR (aM, MT NT)

DENTOS10

SCANOZ3O0
SCANOSTO
SCANOSS0
SCANOSOO
SCANOE0O
SCANOETO

SCANDESO
SCANOG40

SCANDGED
SCANOETO

SCANOESO
SCANOTOO
SCANOTIO
SCANOT20
SCANOTSO
SCANOT40
SCANOTSO
SCAND TR
SCANOTTD

20
22

25
27

40

-~ W

12

-

-

CONT INUE

DO 30 |=1,MT1

MT2eMTe1=]

IF (AM(MT2,NT)=CVI 25,%0,%
IF (AM(MT2-1 ,NTI=CV) 30,27,27
| x=MT2-1

| reNT

1Dx=1

107=0

CALL LINEAR (AM, MT NT)
CONTINUE

DO 40 [=1,NTI

NT2eNTe =]

IF (AM(1,NT2)=-CV) 55,40,40
IF (AM(1,NT2-11-CV)  40,57,37
I x=1

1YeT2-1

10x=0

10v=1

CALL LINEAR (AM, MT NT)
CONT INUE

158=1

NT1eT=1

MT | aMT=1

DO 10 =2, NTY

0o 10 1=1,MT1

IF (aM(],n=Cvi S,10,10
IF tamtlsr, ui=Cv) 10,7,7
COM =100 (]*1)%y

IF NPy 12,110,102

0o ® 10= 1, NP

IF (MECIDI=COM ) 9,10,9
CONT INUE

la= |+

IRLN]

IDx=~1

107=0

CALL LINEAR (aM, MT NT)
CONTINUE

RL TURN

(3]

SUBROUTIMNE LINEAR (AM, |DIM, 0 1M
COPMMON/CONT/MT NT, 1%, 17, 1DX, [DT, S5, NP, CV NNT  ASH, [Nx (81, INTIB),
1IPT(5,3) ,LEGEND (11 ,REC 1800) ,NO
COMMONCAL [N/ XKLL, XLMLUS0
DIMENSION AMUIDIM, JD M)

t=0

1x0=1x

Irgejr

ISK=]Dx +2

IST=1DT+2

IS=IPT(ISx, 157

1S0=1S

IFLISO-@11,1,17

IS0=1S0~8

IF o 10,2,10

]y

Z=v

Iv2e]re|Dr

DrelDy

r - (UAMULA, IY)I=CVI/ (AMUIR, IT)-AMTTX, [Y210) «DY & 27
G0 TO S4

r=jy

=

SCANOTSO
SCANOROC
SCANO®10
SCANOSZ20
SCANGE S0
SCANOB4D
SCANOES0
SCANO®E0
SCANORTO

SCANORSO
SCANOSO0
SCANODTO
SCANGS20
SCANOS3O
SCANOR40
SCANODSO
SCANOSS0
SCANGSTO

SCANOGD0
SCANTOOQ
SCANIOIO
SCANTO020
SCAN1030
SCANT040
SCAN10S0
SCANTOBO

SCANT 080
SCAN1090

SCANIY10
SCaM1 120
SCANT 130
SCANT 140
SCAN1IS0

SCANITTO
SCANI 180
SCANT 180

TRACO180
TRACO190
TRACO200
TRACO210
TRAC0220
TRACG230
TRAL 0250

TRACO270
CALCO150

cacorTo
caLcormo
CaLCoteo
c

caLcoese

G0l



evol 2T

&7

84

a7
]
L

51
20
21
2
23
07

14
a5

Dx=|Dx
1x2e] %+ 1DX

x o ((AMUIX, IY)=CVI/ZLAMEDR, 1Y) =AM(1X2, 17100 *DX oW

IF (1S,€Q.1) 306,49
NPahPs
RECINP)=100s | xelY
15218+

IF tis~®) @, 7,7
1S=15~-9

IDx=INX (1S)
10T=INY (18
1x2=1xe1Dx
IT2=lve|DY
JTBaUTRe |

IF (NI 73,67
CONTINUE

CALL FRETPT (X, 7)
Xleyx

Tiey

Nel

G0 TO 81
CONTINUE

IFIY1.GE. 11, . AND, Y,GE.11,) GO TO 08

WFTiex M e s (Y1=1,]
RLFTaxy g o2, o (V=1,]
T e 50=(71=1,)
AT L 80= 1Y=1,)

IF i) AEAFTIAND . X LE. FT)
IF (X1, GE. XTI AND . X, GE ., XRT)

GO T
GO T
IFX LT 0FTI AND X GT.FT) GO T
GO T

IFIXT.GT, T AND , k. LT, KT
CONT INUE

IF (21, LT T AND , X, 6T, XHT) GO TO B4

CONTINUE

IFR1. 6T aFTI. AND, . X.LT.AFT) GO TO 05

G0 TO 87

CALL LIMNEINTIX, 7, x1,71,X0,70,1)
CaLL VECTOR(x0,Y0)

G0 TO 80

CALL LIMNEINT (X, ¥, x1,71,x0,70,2)
CALL VECTOR(X0,70)

G0 To &1

CALL LINEINT (X, Y, x1,71,X0,70,2!
CALL FRSTPT (X0, 70)

GO TO #9

CALL LINEINT(X, ¥, x1,71,x0,70,11
CALL FRSTPT (x0,70)

G0 TO 99

CALL FRSTPT (X, T)

G0 TO 8%

CONT INUE

CALL VECTOR(X,Y)

CONT INUE

Kley

Tlay
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Welr=1ves 12,2212

IFlIs-1800 12,28,12
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MEC NP =100 Inse]Y

IF 1px 62,988,582
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G0 To ot
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CALL FRSTPT(x0,Y0!

G0 TO %@

CALL LINEINT (X, 7, X1,71,x0,70,1)
CaLL FRSTPT(x0,Y0)

CONT INUE

CALL VECTOR(X,7)

CONT INUE

PETURN
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XFTexLMe2, ¢ (7=1,)
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CALL LIMEINT (R, Y, X1, 71, x0,70,1)
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G0 TO 100
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CALL VECTOR(x,T)

CONTINUE

RETURN

IFLIn2) 15,74,18

IF (1x2=MT) 19,19, 74
IF v 11,7410
IF tlv2-NT)  12,12,74
IF (CVv=AM(IX2,172)) 16,16,98
ISTE=118/21+2

IF (ISTE.EQ.15) 49,1
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Itelv2

GO TO 8

oo

SUBROUTINE MILO (AM, M, NI
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1IPT(S, 51 ,LEGEND (V1) ,REC 18001 NG
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| T2myeils INY (KX )
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G0 To 30

15 KS=2

-3 3

AL
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IFCAM], i =-AMLIX2,1721110,10,%0
CONTINUE
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DIMINSION AMIM N)

MEPa (MT229) /24

1P = (NT+4T) /88
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IFDIFF-TEST) 5.6.6
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Figure 4.2 The stream function using the downstream condition Cal R 0;

2
the horizontal extent is 7 kilometers which was o
then increased to 11 kilometers, the depth is 3.5 kilometers.
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Figure 4.3 The stream function using the downstream condition

2
i—f = 0 ; the horizontal extent has been increased
X

to 11 kilometers, depth is 3.5 kilometers.
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Figure 4.6 The results of specifying the thermodynamic variables as invariant in time at the inflow
boundary; the horizontal extent is 7 kilometers, depth is 3.5 kilometers; represents 100

time steps for all variables.
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Figure 5.1

Neumann case; thg evolution of the total moisture field, Q . The isohumes represent grams
per kilogram, moisture to dry air. Time in real seconds.
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Figure 5.2 Neumann case; the evolution of the potential temperature deviation, 6 .

to degrees Kelvin.

Time in real seconds.
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Figure 5.3 Neumann case; the evolution of 1liquid (cloud) water, w, » The threshold value for plotting

is 0.05 grams per kilogram, moisture to dry air; the maximum value of wy reaches 0.468 grams
per kilogram. Time in real seconds.
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Figure 5.4 Neumann case; the evolution of the vorticity field, n . Values range from -0.0200 sec-]

to 0.0107 sec']. Time in real seconds.
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Figure 5.5 Neumann case;

the evolution of the stream function,

Time in real seconds.
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Figure 5.6 Dirichlet case; the evolution of the total moisture field, Q . The isohumes represent grams
per kilogram, moisture to dry air. Time in real seconds.
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Figure 5.7 Dirichlet case; the evolution of the potential temperature deviation, & . Isotherms

correspond to degrees Kelvin.

Time in real seconds.
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Figure 5.8 Dirichlet case; the evolution of liquid (cloud) water, w, - The threshold value for plotting

is 0.05 grams per kilogram, moisture to dry air; the maximum value of w, reaches 0.474
grams per kilogram. Time in real seconds.
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Figure 5.9 Dirichlet case; the evolution of the vorticity field,
to 0.0075 sec™|. Time in real seconds.

n . Values range from -0.0127 sec”
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Figure 5.12 The stream function for the case where K is finite
differenced. (a) after 30 time steps with n = 0 at
Tower boundary; (b) after 100 time steps with
2
3—2 = 0 at the lTower boundary. Time in real seconds.
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