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ABSTRACT 

A NUMERICAL SIMULATION OF A CO LD OROGRAPHIC CLOUD SYSTEM 

A computer simulation of a two-dimensional, meso-scale, cold 

orographic cloud system, which represents the first stage of develop-

men t of a comprehensive model, is presented. Simulation is achieved 

by numerically solving, in finite difference form, a set of time-

dependent hydrodynamic and thermodynamic equations. The domain of 

solution is an 11 kilometer long and 3.5 kilometer deep rectangular 

box containing a triangular orographic barrier with an altitude of 1 

kilometer and base of 3 kilometers. Grid spacing is constant at 100 

meters. The equations of the model are based upon Ogura and Phillips 

(1962), Ogura (1963), and Orville (1965), with appropriate modifications 

in the energy and vorticity equations relevant to a cold cloud system. 

Ice microphysics is not included. The condensation-evaporation process 

is included by parameterization, but the precipitation mechanism is 

omitted. Condensation is continually driven by the forced lifting of 

upstream moisture over t he orographic barrier and is influenced by the 

formation of a lee wave structure that evolves in time as the solution 

progresses from the initial state. The bulk thermal stratification of 

the model is stable, as governed by the upstream temperature sounding. 

An expedient method of initialization, which minimizes the 

adjustment or "settling down" period associated with the degree of 

refinement of the initial state of a numerical solution, was developed. 

Special emphasis was given to the development of physically realistic 

boundary conditions that minimize artificialities inherent in numerical 

solutions as caused by wrongly posed numerical boundary conditions. A 
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significant "state of the art" achievement was realized in developing 

the appropriate boundary conditions. 

Two basic cases were performed, corresponding to one elapsed 

hour of atmospheric time: one in which the top boun da ry was a rigid 

lid, and the other in which the boundary was flexible, allowing wave 

energy to pass through the boundary. These two cases utilized a 

"locally" constant eddy exchange coefficient i.e. the coefficient 

appears as a constant in the transport equations. In both cases a cap 

cloud formed over the orographic obstacle and a lenticular cloud formed 

downstream in the first lee wave crest. The clouds contain water only, 

no ice. A comparison of kinetic energy and cloud evolutions indicated 

that the flexible boundary is more appropriate than the rigid boundary. 

A third case was performed, simulating a shorter span of time than the 

other cases, using a non-linear, finite-differenced eddy exchange 

coefficient. The flexible boundary was employed in this case. Results 

favored using tr,€' non-linear coefficient over the "locally" constant 

coefficient of the other cases pending an improvement on the boundary 

condition for the eddy coefficient at the lower boundary. 
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l .0 INTRODUCTION 

1.1 General Statement of the Research 

This report represents completion of the initial phase in the 

development of a computer-si mulated, two-dimensional, meso-scale,cold 

orographic cloud system. The method of simulation involves the numerical 

solution of a set of shallow convection hydrodynamic and thermodynamic 

equations similar to a set first derived by Ogura and Phillips (1962), 

extended by Ogura (1963), and further extended by Orville (1965). Finite 

difference analogs are applied to the equations in their analytical form 

in order to establish t he numerical framework. The goal herein is to 

descri be the method of simulation, discuss its merits and li mitations, 

and to indicate both the successes and failures encountered during the 

development of the cloud model. The work up to the present time has 

established a firm basis for a more realistic simulation in the future 

development of the orographic cloud model with the knowledge gained 

pointing to those areas where more refinement is needed and suggesting 

future avenues of numerical experimentation. It is envisioned t hat the 

cloud model, coupled with actual field observations, will lend greater 

understanding to the physical processes of the real atmosphere, i ndicating 

the relative importance of the mechanisms involved i n a cold orographic 

cloud system. A long range objective is to utilize the model, when it 

has been developed to a sufficient level of sophistication, to evaluate 

weather modification potential in a cold orographic system. 

1.2 Background Informati9n for the Present Stage of Development 

Orography, or mountainous terrain, is known to have considerable 

influence on both synoptic (global) and mesa-scale (local) circulations 

as well as the associated microcli mate. Under varying condit ions, 
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mountain surfaces act as elevated heat and moisture sources or sinks, 

as well as mechanical lifting devices to upstream heat, momentum, and 

moisture. The manner in which a mountain behaves is dependent on such 

interrelated conditions as surface roughness and slope, vegetation and 

snow covering, and the prevailing seasonal and daily cycles of solar 

insolation and radiative losses. The thermodynamic stratification of 

the ambient atmosphere is of prime importance to the general influence 

of an orographic obstacle on flow behavior. This list is by no means 

exhaustive and one can realize that orographic influence is quite complex 

indeed. 

In the first stage of development in the model, it was not possible 

or realistic to incorporate all of the above physical mechanisms. The 

long range goal is to extend the structure of the model to include other 

phenomena as experience and knowledge are gained. 

In the presented cold orographic cloud model, the major forcing 

mechanisms are considered to be the upstream temperature, moisture, and 

momentum. The orographic barrier is treated strictly as a mechanical 

lifting device which acts neither as a thermodynamic source nor sink. 

Radiation is therefore omitted at the mountain surface and in the over-

lying atmosphere. No surface ro 1Jghness is characterized explicitly. 

The horizontal scale of the modelled system is presently not large 

enough for significant ice growth (i.e. a parcel travels through the 

system in a relatively short time). Initial calculations of the ice 

nucleation and growth-by-diffusion processes indicated they were much 

too smal l to include in the model for the average residence time of a 

parcel. The potential exists for the inclusion of ice in the next phase 

of the model deve lo pment at which time the size of the system will be 
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increased significantly. The model is presently 11 kilometers long and 

3.5 kilometers deep. Condensation occurs in the model but prec ipitation 

of the condensation products does not occur at this t ime. 

Field da t a have been used to help determine initial conditions , to 

serve as a guide for boundary conditions, and to act as a basis for 

comparison with the simulated results. Classical analytical sol utions 

and classical field observations for airflow over mountains also have 

been consulted for added comparison and rei nforcement. 

1.3 Aspects of the Numerical Approach 

The dependent variables appearing in t he equations of the simulated 

cloud system interact in a complicated and nonlinear manner, maki ng a 

closed-form analytical solution cumbersome, if not impossible. A 

numerical approach allows for solutions of the variables at discrete 

points in space for discrete steps in time. Although this technique 

does not make drastic linearizing assumptions necessary for an analytical 

solution (if one is even possible}, it has many associated difficulties, 

which must be overcome. 

At large or essentially infinite vertical and horizontal distances 

from an orographic barrier, definite statements about the magnitude and 

general behavior of the system variables can be cited. However, in the 

finite difference case, as opposed to the analytic case, it is not 

convenient to place the boundaries at large distances from the obstacle 

because this would increase the number of grid points to the extent that 

either computer memory is exceeded or the computational time becomes 

exorbitantly impractical. Therefore, an arbitrary, smaller region of 

the total atmosphere must be chosen. (The equations are based upon the 

Boussinesq assumption with regard to dens i ty, so the vertical extent of 

the solution is limited even in the analytical case.) 
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Boundary conditions must be applied to the resulting artificial 

boundaries such that a numerical solution is possible, but more importantl y, 

such that physical reality is not hampered. Many numer ica l solutions 

appearing in the literature have employed boundary conditions that permit 

solutions yet distort the physics of the problem. Such results do not 

correlate with the real world or, at best, are no better than a linearized 

analytical solution. 

In view of this, one of the major pursuits of the research has been 

to seek realistic boundary conditions that insure uniqueness to the 

equations in their analytical form, satisfy requirements for a numerical 

solution, and minimize any artificiality on the character of the solution. 

A significant degree of success has been realized in this pursuit after 

the expenditure of several efforts. These various efforts will be 

summarized in the text of this thesis, with the goal of illustrating the 

types of difficulties that arise in a numerical solution with respect to 

boundary conditions. 

Another difficulty associated with numerical solutions involves the 

grid spacing or the distance between discrete points in the grid domain. 

Phenomena smaller in scale than the grid length , known as "sub-grid" 

phenomena, (e.g. turbulence, thermodynamic gradients, etc.) are lost to 

the system unless they are somehow included by a parameterization. 

Requirements for spatial resolution are most critical at specific regions 

in the grid network (e.g. where microphysical or dynamical events are 

most pronounced such as in a cloud or near the earth's surface) which 

suggests using a variable, or expanded, grid spacing in those areas. For 

convenience, the presented model has a constant grid spacing of 100 

meters, which was chosen with regard to the total size of the grid network. 
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Turbulent mixing in the model is parameterized by an eddy excha nge 

coefficient which varies in space. 

Time resolution, above and beyond numerical stabi lity cr i teria, 

generally does not present much of a problem in numeri cal solut ions. 

Time steps are usually small in comparison to the physical events being 

modelled but one must proceed cau t iously to be certain that t hi s i~ true. 

For example, models including sound waves have a much more stringent 

requirement for temporal resolution than do incompressible models. 

Lastly, phenomena larger in scale than the total grid network, 

known as 11 super-grid 11 phenomena, are also lost to the system unless 

parameterized. For instance, an upstream shear (which is the result of 

synoptic scale mechanisms) can only be parameterized in a meso-scale 

model, as was done in t he presented cloud model. 11 Super-grid" phenomena 

involving interaction between the upper and lower portions of the atmos-

phere cannot be simulated in the model due to its shallow depth. 

l .4 Brief Literature Review 

The literature contains many mathematical models (both analytical 

and numerical) of cloud systems, but the majority of these models 

either do not consider orography explicitly, or do not consider it at 

all. However, there are several synoptic scale prognostic and general 

circulation models now in existence in which orography is parameterized 

on a subgrid basis. Fairly soph i sticated models simulating orographically 

induced cumulus convection in meso-scale systems appear in the literature, 

most notably by Orville (1965, 1967, 1968, 1970). Cold orographic simula-

tion, however, is in its infancy. Chappell (1970) and Grant et al (1971) 

have done extensive work in the area of modelling ice microphysics with-

out modelling a general dynamic structure, but rather, considering a 



6 

mean distribution of vertical motion over an orographic obstacle. Their 

work has been related to the potential of weather modification. Willis 

(1970) presented a model of cold orographic precipitation which super-

imposed a parameterized microphysical process on a mean vertical velocity 

field over an orographic barrier. Because of the limitations inherent 

in these models, there is a great need for a cold orographic cloud model 

that is time dependent and which couples the microphysical and dynamical 

processes. 



7 

2.0 THE NUMERICAL MODEL 

2.1 Basic Assumptions of the Mode l 

Before proceeding to the equations which describe the simulated 

orographic cloud system, it is pertinent to enumerate the basic 

assumptions underlying the model. 

These basic assumptions are: 

1. The flow is two-dimensional. 

2. The fluid is incompressible. Along with the first assumption, 

this allows definition of a stream funct ion. 

3. Eddy viscosity and eddy diffus i vity are considered equal. A 

single eddy coefficient is used in all the transport equations. 

4. The eddy exchange coefficient varies in space but the entire 

field is smoothed to produce a locally constant counterpart for each 

grid point in the model. 

5. Radiation is excluded at the modelled ground surface and in 

the overlying simulated atmosphere itself. 

6. Momentum on the upstream boundary is not affected by the 

presence of the orographic obstacle, i.e. upstream influence is pre-

cluded at the boundary. 

7. The microphysics of ice is not included in the model. (The 

reasons for this exclusion are gi ven in section 1.2 of the introduction. 

The expressions involving ice are included in the ensuing discussion 

for completeness, however.) 

8. The precipitation process is omitted at this time. Condensa-

tion products are carried through the grid network by the flow. (The 
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precipitation process is relevant only if ice microphysics is included 

in the model.) 

2.2 The Basic Equations 

The system of equations that constitute the cloud model evolve from 

Ogura and Phillips (1962), Ogura (1963), and Orville (1965). In 

essence, the system represents deviation from a dry adiabatic atmosphere. 

Entropy is specified with respect to a base state of ice since the 

model is concerned with sub-freezing phenomena. 

The basic transport equations are: 

- 2 o (0 on/ at= -u on/ ax - w an/ oz+ K v n + g - - + Ew -ax 0 v 

aQ/ at = -u aQ/ ax - w aQ/ az + K v2Q ( 3) 

ow/ at= -u aw/ ax - w aw/ oz+ K v2w - Pr (4) 

where n is vorticity; is the perturbation of entropy from a 

reference state; e is the potential temperature deviation from an 

adiabatic atmosphere of temperature 0 ; Q is the total moisture which 

includes the ice, liquid, and vapor phases; w is total moisture minus 

the ice component; wv , w1 , and wi represent the vapor, liquid, and 

ice phases, respectively. All the moisture variables are dimensionless 

mixing ratios of moisture substance to dry air. Pr represents the 

production of ice by nucleation and the growth of existing ice sub-

stance by water vapor diffusion. E is the ratio of the molecular 

weights of water and dry air. The last term in equation (1) is the 
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"vorticity production" term due to horizontal gradien t s in the 

temperature and moisture variables. 

K is a locally constant eddy exchange coefficient obtained by 

space averaging the actual K. The eddy coefficient , K, varies in 

space accordi ng to the equation: 

(5) 

as qiven by Leith (1969) and also discussed by Fox and Lilly (1972). 

The constant \ is 3.7, as given by Leith, and ~x is 100 meters, 

which is the grid spacing. The space averaging operator used to obtain 

the locally constant coefficient, K, is given by 

K. . = 0. 8 K. . + 0. 05 ( K. +l . + K. l . + K. . +l + K. . l ) l ,J l ,J l ,J 1- ,J l ,J l ,J-
( 6) 

where i and j denote subscripting in the horizontal and vertical 

directions, respectively. 

By defining a locally constant eddy exchange coefficient, the 

equations are simplified to exclude terms containing derivatives of the 

coefficient. For example, equation (3) would have the following form 

if the actual K were used: 
aQ/ at = -u aQ/ ax -w aQ/ az + Kv2Q + aK/ ax aQ/ ax + aK/ az aQ/ az. 

(3a) 

Problems associated with using K instead of K are discussed later. 

The assumptions of two-dimensionality and fluid incompressibility 

allow for a stream function which is defined by: 

V2 l/i = - n ( 7) 

with the horizontal component of velocity, u , and the vertical 

component of velocity, w , given by: 



u = alji /az 

w = -alji/ax 

10 

Vorticity is related to the velocity components by: 

n = aw/ax - au/ az 

The moisture variables are related by: 

Q = w + w. 
1 

w = w 
V 

for saturation 

for unsaturation 

with wvs representing saturated vapor. 

The entropy perturbation is given by: 

e = - + 0 

L. w 
1 V VS 

Cp 0 

e Livw 
~= -+--

0 Cp 0 

+ Li twt 
Cp 0 

saturated 

unsaturated 

(8) 

(9) 

( 10) 

( 11) 

( 12) 

( 13) 

( 14) 

( 15) 

with Liv and Li t representing the latent heats of sublimation and 

fusion, respectively. Cp is the specific heat of dry air. 

Equations (14) and (15) are used to determine initially and 

to compute the lower boundary values at the end of each time step as 

will be explained later. 

In order to close the system, providing a link between all 

variables, it is necessary to have a criterion for determining 

saturation. Ogura (1963) expressed the saturation mixing ratio by a 

series expansion of an exponential: 

( 16) 
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where f4 = Lvt/Rv02 , Rv is the gas constant of water vapor, and Lvt 

is the latent heat of vaporization. Using this expression in equation 

(14) yields: 

with 

e - f-1 sat - 3 f [f2 f ( - Lit - f )]1/2 } { 2 + 2 + 3 Cp0 1 

Cp P TT 1 /K 

est(T0 ) = 6.11 Exp {17.27 [(T0 - 273.16)/(T0 - 35.86)]} 

T = 0 - gz/Cp 
0 

TT =l -~/(0+e(z)) 

( 17) 

e(z) = initial value of e as a function of height, z . 

Here es t (T
0

) is the saturation vapor pressure over liquid water; R 

is the gas constant of dry air; 1/K = Cp/R; P is the reference 

pressure; TT is a nondimensional pressure found in the reference by 

Ogura and Phillips. 

A straightforward solution for e in equation (15) gives: 

( 18) 

Equations (17) and (18) serve to determine whether saturation has 

or has not occurred at each grid point in the model for each time step. 

To elucidate, we summarize: 
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if esat < 8unsat then e = eunsat 

if esat > eunsat' then e = esat , 

In either case if Q > w, then wi = Q - w 

w = 0 t (19) 

w = w w t - V 
(20) 

If Q w , then 

wi = 0 and w = Q. Here it will be noted that wi is found as a 

residual dependent upon the two transport equations (3) and (4) . 

The production term which appears in equation (4) contains both 

nucleation and diffusional growth of ice crystals. As has been 

mentioned, ice has been excluded from the model at present. Therefore, 

equation (4) is not used and Q is substituted in all expressions 

where w appears. The potential exists for inclusion of the ice 

process in the model, pending an increase in the size of the model. 

2.3 The Grid Network 

The equations of the cloud model are solved at discrete points 

in a grid network which represents a two-dimensional orographic 

cloud system eleven kilometers long and three and one-half kilometers 

deep. Grid spacing is constant at one hundred (100) meters, creating 

an 110 by 35 basic rectangular shape. The orographic barrier, which 

is one kilometer high, interrupts this basic shape beginning three 

kilometers from the upwi nd face and has windward and leeward slopes 

of 1/2 and -1, respectively. (See figure 2.1.) The downstream 

boundary is five kilometers from the downstream edge of the mountain. 

The windward slope of 1/2 was chosen as more realistic than 1 whereas 

the leeward slope was taken for numerical convenience and expediency. 

Since the windward slope is believed to be more important than the 

leeward .slope in cold orographic systems, th i s unequal treatment of 

the slopes is -justified. 
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Ten numerically cumbersome points result from the choice of the 

windward slope. (See figure 2.2.) Finite difference representations 

of vertical derivatives at these points have truncat ion errors an order 

of magnitude greater than the resulting truncati ng errors at the other 

points in the grid. It was found that a simple arithmetic average of 

the two horizontally adjacent points results in an error that is 

consistent with the rest of the domain. This fact i s readily shown by 

a Taylor series argument. 

The lowest grid points, on the slopes and level portions of the 

grid, do not correspond to the earth 1 s surface but rather, correspond 

to some distance above the surface. This condition is reflected in the 

tangential velocity component (sl i p) and the eddy exchange coefficient 

at the lower boundary. The other variables are affected by these two 

parameters to produce the effect that the lower boundary does not 

coincide with the earth 1 s surface. More detailed discussions 

conce rning the treatment of the slip and the eddy exchange coefficient 

at the lower boundary are given in section 4.2.2 and section 4.3.3, 

respectively. 

2.4 The Numerical Scheme 

2.4.1 Overview of the scheme - The numerical solution is obtained 

by marching forward in time increments that are limited in size by 

numerical stability requirements. These time increments are relatively 

short, rangi ng from about six to nine seconds in length such that 

high frequency mechanisms, except for acoustic waves, are properly 

included with regard to the hundred meter grid spacing. Acousti c waves 

are prevented, or 11 filtered 11
, by the incompressible nature of the 

fluid as governed by the basic equations of the model. Spatial and 
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temporal derivatives in all equations are replaced by finite difference 

analogs. 

A rather novel time-splitting scheme (see the next section) is used 

to solve the basic transport equations i.e. equations (1), (2), (3), 

and (4). (It will be remembered that equation (4) does not appear in 

the model at present because of the exclusion of ice. Equation (11) is 

omitted for the same reason.) This scheme is used to determine values 

of the transported variables at each grid point in the grid network 

at each time step. 

The stream function is obtained each time step by solving equation 

(7), Po i sson's equation, utilizing a successive over-relaxation method 

(see section 2.4.3). The velocity components are found, once the 

stream function is known, by solving equations (8) and (9) in centered-

difference format. 

The eddy exchange coefficient, K, is found at each grid point 

per given time step by solving equation (5) with centered-difference 

analogs. Once this is accomplished for the entire grid network, a 

locally constant coefficient, K, is established at each grid point 

by means of equation (6). (See section 2.2.) 

The remaining equations of the model, except equation (10), involve 

no finite differencing; they are solved in a systematic manner based 

on the variables gotten by finite differencing. Equation (10) is used 

only to explain the method of initializing the model. (This explanation 

will be given in section 3.0.) The unnumbered expressions which lie 

between equations (17) and (18) in section 2.2 are functions of height 

only; they are computed prior to initiation of the model for use in 

equation (17). 
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The order in which the variables are solved each time step is 

important and will now be given in closing this sect ion. The order of 

solution is: Q, ¢, e, wv, wt ' n, 1/J, u, w, K, K . Appendix 

A contains both a flow chart and further explanat ion concerning the 

numerical scheme. 

2.4.2 Time-splitting scheme - The variables Q, ¢, and n (also 

w when wi is eventually included) are predicted by a two-step, 

numerically explicit method involvi ng an intermediate time t + 1/ 2 

Crowley (1970) employed this method which ut ilizes a forward time 

difference concept and centered difference analogs for the spatia l 

derivatives. 

We have, using a representative variable ¢ 

t+l/2_ t l t t t l t 2 t t t t ¢ .. -¢ . . - ,:;-(l2 (¢·+1 .-¢. l .)+(M2 a ) +s )(¢·+1 --2¢· .+¢ . l .) l ,J l ,J l ,J 1- ,J l ,J l ,J 1- ,J 

where 

at= ut f:.. t/tix 

ot = wt f:..t / f:..z 

st=~ 1::-, t/( 1::-,x) 2 

Et= Kt f:..t/(t:,.z) 2 

f:..t = length of a time step 

(21a) 

(21b) 

Superscripts refer to time, and subscripts refer to space. Also 

st= Et since f:..X = f:.. z = 100 meters. Computational stability requires 

that a 2 + 2S < l 
o2 + 2E < l . 
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The first step, equation (21a), involves x-derivatives only and 

the second step, equation (21b), involves z-derivatives only. The first 

step is performed at each grid point of the total grid network before 

proceeding to the second step. The "vorticity production" term, i.e. 

last term, of equation (1) is computed by the usual central differencing 

operator and is added during the first step in the above scheme. The 

ice production term of equation (4) will be treated in the same manner 

when it is eventually included in the model. 

Equations (21a) and (21b) can be considered as coupled operators, 

a reasoning which is applied to the slopes where the tangential and 

normal directions correspond to the first and second steps of the total 

operation, respecti vely. This approach maintains consistency in the 

numerical scheme as a whole. 

Another unique feature of the time-splitting scheme, in addition 

to the coupled operator and non-centered time differencing features, 

is a purposely built-in damping mechanism. This mechanism, which is 

proportional to the square of the velocity components, is embodied in 

the terms t( at) 2 and ~ ot) 2 • These additional terms are grouped 

with the actual damping terms st and Et , respectively. Since 

center-differenced advective terms, as is the case in equations (21a) 

and (21b), are unconditionally unstable if there is no damping, it is 

essential to include such a mechanism in some way. If the velocities 

at any point in the model are large and the corresponding K is 

relatively small, this built-in feature insures numerical stability. 

Results of the model indicate that K is much larger than the added 

factor except near the grid top where turbulent exchange is small and 

advecti on is large. Magnitudes of the variou s terms show that the 
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built-i n damping effect does not alter the character of the solution 

but only insures numerical stability. 

Non-cente red differencing in the advective terms leads to a 11 psuedo-

vi scosity 11 or diffusivity (Mol enkamp, 1968) which often exceeds the 

magnitude of the eddy exchange term itself in many numerical appl i cations. 

This 11 psuedo 11 effect is 1 a tent and in many cases it is di ffucult or 

imposs i ble to quantify this embedded mechanism. The advantage of the 

scheme used in this model is that the eddy exchange effects are 

totally apparent i.e. t here are no hidden effects. 

2.4.3 Relaxation method to solve for the stream function - The 

extrapolated Liebmann, or successive overrelaxation method (S.O.R.), is 

used to solve equation (7), Poisson's equation, for the stream function 

each time step. Most of the more sophisticated methods available for 

solving Poisson's equation cannot be used in the model due to the 

presence of the mountain which disrupts the basic rectangular domain. 

(What results is a nonconvex region in which not all two points can be 

connected by a single straight line.) The advanced methods that might 

conceivably work for a non-rectangular domain, such as the fast fourier 

technique or various factorization algorithms, place undesirable 

restrictions on the nature of the boundary conditions i.e. boundary 

conditions must be periodic, reflective, etc. 

The best method for obtaining the optimum relaxation factor 

necessary for convergence of the S.O.R. seems to be experimentation. 

For Dirichlet boundary conditions, the presence of the obstacle does not 

cause any perceptible dev i ation from the optimum factor given 

analytically for a pure rectangular domain of the same overall dimen-

sions. This interesting result is due to the fact that the nature of 
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the associated iterative matrix is not altered by the obstacle (Varga, 

1962) and, additionally, the number of grid points occupied by the 

obstacle is small compared to the total number of grid points in the 

domain. (In general, the shape of a rectangle and the number of points 

it comprises influences the value of the optimum relaxation factor.) 

Boundary conditions (Neumann, extrapolative, etc.) have a profound in-

fluence on the optimum relaxation factor for a given rectangle, however, 

because they change the nature of the iterative matrix. Analytical 

methods to determine the optimum factor for boundary conditions other 

than Dirichlet do not seem to be available. However, by using the 

optimum factor gi ven for a rectangle (with Dirichlet boundary conditions) 

as a basis, it is possible to experimentally obtain the optimum relaxa-

tion factor with the inclusion of an obstacle within the basic 

rectangular shape and with the desired boundary conditions. This is 

done by systematically trying values greater and lesser than the 

optimum factor for the rectangle (with Dirichlet conditions) until the 

number of iterations, including the obstacle and the chosen boundary 

conditions, is minimized in solving Poisson 1 s equation. In short, the 

original relaxation factor serves only to expedite the trial and error 

procedure by providing an initial 11 ball park 11 value. 

The relaxation technique requires an initial estimate of the final 

solution values of the stream function. Using the solution from the 

previous time step would seem appropriate for this initial estimate. 

A better method, found by experimentation and comparison, is to perform 

a second degree extrapolation in time of the stream function. This 

technique requires storage of the stream function from the three most 
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recen t time steps, but offers no di fficulty because of the peripheral 

memory devices available on most computers. 

The ten "odd" gri d points dis cussed in section 2.3 cau se no 

difficulty in the solution of the stream function. A lower 0rder 

numerical representation was used at these points. When compared to 

higher order schemes, no detectable difference appeared in the final 

solution or number of iterations required for convergence. The nature 

of Poisson's equation which is elliptical, seems to "dilute" the errors 

of the lower order scheme employed at these ten points which are few 

in number compared to the total grid network. 

2.5 Initial Conditions 

This section will summarize the initial conditions of the simulated 

cloud model. A detailed descript i on concerning the method of 

initializing the model wi l l be given in section 3.0 since initialization, 

especially with respect to the flow field, is a major aspect of the 

research presented in this re rLr~ . 

The variables e and Q are given initially throughou t the 

entire grid as functions of height only, based upon the initial upwind 

soundings. The lapse rate for 8 is 3.22°K/Km with 0 equal to 
0 271. 3 K . Total mois t ure, Q ' varies l inearly from 3 .5 g/Kg at the 

lowest altitude to 0.5 g/Kg at the grid top. Li quid moisture, w1 , 

is everywhere zero. The reference pressure, P , is 750 millibars . 

The initial stream function is obtained by solving equation (7) 

with a constant vorticity (i.e. space independent ) whi ch is determined 

from a linear upstream shear. This linear profile is zero at the bottom 

of the grid and reaches a maximum of l0m/sec at the grid top. The 
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velocity components are initialized by equations (8) and (9) once the 

initial stream function is found. 

These initial conditions stem from field data by Balic i< anc: 

Rasmussen (1972). The linear shear is only a rough approxi mation to 

actual observations and can be easily refined at a later date in both 

magnitude and shape. The same type of refinement is also possible for 

the moisture. The lapse rate for temperature is very realistic since 

it is essentially unchanged from the actual data; it yields a rather 

stable environment. 

2.6 Concept of a Virtual Point 

A knowledge of the "virtual" point concept is essential for 

understanding the next section which is concerned with the boundary 

conditions of the model. The use of an external or "virtual" point is 

a powerful method to handle spatial boundary conditions in numerical 

solutions. This method depends upon the vanishing of either the first 

or second derivative, but not both, at a boundary. Centered-difference 

formulae are considered here since they are the type used in the model; 

centered differences are employed because they cause the least 

difficulty in numerical solutions. The finite difference analogs to 

the first and second normal derivatives in centered-difference form 

are: 
acp/ an = 

4> 1 - ct> _, 
2h 

h2 
Here cp is any variable, n denotes the normal direction, and h is 

the grid spacing. cp 1 lies interior to the boundary, cp
0 

lies on the 

boundary, and cp _1 is the "virtual" point which lies outside the 
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boundary. Now, if one of t hese deriva t ives i s small compared to t he 

other, or indeed van i shes, we may proceed . If both vani sh , the prob l em 

is tri val . 

Consider that the first derivative van ishes, but not the second. 

Then cp _1 = cp 1 . substituting this into the seco nd derivative analog 

yields: ci 2 cp/ an2 = 2( ¢1 - cp
0

)/h 2 . Now on the other hand, if the 

second derivative vanishes and not the first, we have: <t> _1 = 2¢
0 

- ¢1 . 

This is eliminated in the first derivative analog to give: 

a¢/ an = (¢1 - cp
0

)/h . 

It will be noted that in both cases the remaining der ivative 

analog has the appearance of noncentered differencing. But it is 

important to realize that this result develops from centered-difference 

analogs. If both derivatives are non-zero and this representation is 

attempted for both, computation problems would be certain to appear. 

If , and only if, one derivative is zero and the other is not, will 

this technique work. 

It is interesting to note t hat a "virtual" point may "reside" in 

a different medium if the boundary is an interface between two 

different substances. Bu t this is of no consequence since the "virtual " 

poin t is only a concept based upon physical reasoning at the boundary. 

2.7 Boundary Conditions 

2.7.l Introduction to boundary conditions - The boundary 

conditions for t he variables of the simulated cloud system are enumerated 

in this section with brief accompanying explanations. A later section 

(section 4.0) will be devoted to an in depth discussion concerning the 

development of these boundary conditions since this development, along 

with the method of ini t ializing the mode l , represents a significant 
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portion of the research endeavor. Appendix B contains a summary of the 

boundary conditions and additional explanations in regard to finite 

difference applications. 

2.7.2 Top boundary - Fo r and Q, it is assumed that ve r tical 

mixing is negligible and that the variables continue to vary linearly 

in the neighborhood of the top boundary for all time. A "virtual" point 

(s ee sect i on 2.6) is defined in each case by sett i ng the second derivative 

analog equal to zero. The "virtual" point is then eliminated in the 

first derivative analog. The resulting simplified equations at the top 

boundary are solved using the same time-splitting scheme (section 2.4.2) 

applied to the interior portion of the grid. In essence, the boundary 

conditions are a2 ~/ az2 = O and a2Q/az 2 = O 

Vorticity is set equal to the value one grid point below the 

boundary all along the top. This is done at the end of each step in 

the time-splitting scheme. The boundary condition is essentially 

an/ az = O . 

A Neumann condition is applied to the stream function in the form 

at/ az = U, where U is a constant horizontal velocity component along 

the top and is invariant in time. 

The eddy exchange coefficient (i.e. the locally constant coef-

ficient) is treated similarly to vorticity with the difference being 

that there is no transport equation involved, so the condition is 

applied only once, at the end of each time step. The boundary condi-

tion corresponds to aK/ az = 0 . 

2.7.3 Side boundaries - Linear extrapolation from interior values 

is applied to and Q at the end of each time step (after the 

second step of the time-splitting scheme, not at the end of each step 
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of t he time-splitting scheme) for both lateral boundaries. This 

corresponds to a2¢/ ax2 = a2Q/ ax2 = O . 

Vorticity and the eddy coefficient are set equal to their first 

interior values at the end of each time step. Thi s is don e for both 

lateral boundaries. Since the side values of vorticity are used only 

in the first step of the time-splitting scheme, it is redundant to 

apply the boundary condition twice as for the top boundary. The eddy 

coefficient has no transport equation so the time- splitting operator 

is not relevant. For both variables, a/ ax= O at the lateral 

boundaries. 

The stream funct i on is specified as a function of height at the 

upstream boundary and does not change with time. At the downstream 

face, the values from the previous time step are maintained during 

convergence of the iterative routine (see section 2.4.3) then reset 

by second degree extrapolation from interior values. In essence 

a3w/ ax3 = o at the downstream face. 

2.7.4 Lower boundary - Vort icity and the stream function are zero 

al ong the lower boundary, both on the level portions and the mountain 

slopes. The normal component of velocity is zero and the tangential 

component is obtained by noncentered differencing at the lower boundary, 

slopes and level portions. 

Q is found at the lower boundary by a similar method as for the 

top boundary except that different terms are neglected. Here the 

normal flux of mo i sture is zero which requires the first derivative with 

respect to the normal direction to vanish on the slopes and levels, 

i.e. aQ/ an = 0 In addition, the second derivative is assumed zero, 

i.e. a2Q/ an2 = 0 lest the lower boundary acts as a sin k to moisture. 
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e is spec ified as a function of slope height at t he lower 

boundary and acts as a constraint on the solution. In general, 

radiative gains and losses at the earth's surface produce a sinusoidal 

time variation of temperature superimposed on the height dependency. 

¢ is t hen found as a function of e and Q on the slopes and level 

portions by using either equation (14) if saturation has occurred or 

equation (15) if not. A comparison of Q and wvs as obtained by 

equation (16) determines the saturation criterion. 

For the purpose of the eddy exchange coefficient, the numerical 

lowe r boundary is considered ten meters above the physical boundary 

i. e. t he earth's surface. (The tangentia l velocity component is treated 

somewha t differently in regard to the distance above the physical 

boundary. This is more fully explained in section 4.2.2.) The value of 

the eddy exchange coefficient lies linearly between the value of the 

grid point immediately above in the normal direction and the va l ue 

below which must be zero. (Eddy exchange vanishes at the ground.) On 

the slopes the whole procedure is done in the normal direction. 
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3.0 METHOD OF INITIALIZING THE MODE L 

It is necessary to specify some initial state of the model , that 

is, specify values for the system variables corresponding to an 

initial time. Once this initialization is completed, the solution may 

progress via the time-dependent structure of the basic equations. 

Undoubtedly there are several ways in which the thermodynamic and 

dynamic fields may be ini t ialized, since any irregularities that arise 

from either a crudely or well specified initial state would adjust, i.e. 

smoo t h out, as the solution progresses in time. The ultimate solution 

can be expected to be independent of the starting values but it is 

desirable from the standpoint of economy to set forth a refined set of 

init i al conditions that requires the least adjustment time possible. 

The solution becomes valuable only when the initial adjustment, or 
11 settling down 11 period, is completed. The dynamic variables are perha ps 

the most difficult to initialize; the thermodynamic variables, which 

are transported by the dynamic field, offer less difficulty to initiali-

zation. This section of the thesis presents a method that seems quite 

efficient in i nitializing the model, the technique for initializing 

t he dynamic f ield being the most significant contribution to the total 

initialization. 

Since the forcing mec hanism of the cloud system is the upstream 

sounding of the dependent variables, it seemed appropriate to initialize 

all fields as function s of height only, based on the upwind values. The 

exceptions to this treatment are t he stream function and vorticity 

fields. 
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Far upstream from the orographic obstacle the only component of 

velocity that would exist is the horizontal one. 

such that equation (10) reduces to au n= -az· 

Here aw w = - = 0 ax 
By specifying a linear 

upstream shear the vorticity is then constant at locations far upstream. 

(For a shear that is not linear, but higher degree, v. cicity becomes 

a function of height.) As a first approximation, one can say that this 

constant vorticity applies to the entire grid domain of the model. This 

is not to say that vertical motion is nonexistent everywhere in the grid 

domain (the mountain boundary which causes the streamlines to deviate 

from a horizontal alignment prevents vertical motion from vanishing), 

but that !~ and :; adjust to maintain a constant vorticity i.e. 

: ; - !~=constant . Solving equation (7) with the constant vorticity 

then yields an initial stream field and, hence, an initial velocity 

field. 

It is reasonable to assume an initially constant vorticity every-

where in the model for the purposes of initializing the stream function 

because the coupling of equations (1) and (7) insures an adjustment 

influenced by the presence of the mountain as the solution progresses 

in time. The greatest adjustment is felt in the vicinity of the 

mountain as would be expected . 

Another way to conceptualize this method of initializing the stream 

function is to consider the vorticity in the cloud system as the sum of 

a mean quantity governed by the upstream shear and a perturbation 

quantity (not necessarily small) that expresses the deviation from the 

mean due to the mountain i.e. n(x ,z, t) = n + n'(x,z,t). In essence, 

we can assume n' (x,z,t) to be zero at the start of the model for the 

sake of initialization. 
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Orville (1967), fo r convective flow above a t wo-dimensional 

tri angular mountain, su pe rimposed the potential flow around a circular 

cyli nder, the radius of which equals the mountain height, upoi1 a linear 

shea r flow t hat begin s at a height correspondi ng to the mountain top 

and extends upward. From these superimposed flows he obtained initial 

velocity and vorticity fields. These conditions, along with the initial 

thermodynamic fields, required lengthy integration on the computer before 

ki ne t ic energy stabilized and the model could be started. (Orville's 

forc i ng mechanisms are heat and moisture on the mountain surface.) 

The adjustment time in the proposed model was found to be quite 

short with ki netic energy changing remarkably little from the start. 

By comparison, Orville's kinetic energy changed in excess of 30% over 

an adjustment period of 30 minutes of computer time (then he added 

heating and moisture at the mountain surface), whereas the kinetic 

energy of the presented model changed by less than 6% over an 

adjustme nt period of approximately 12 minutes, on the same computer. 

As an experiment, further improvement was sought by causing the 

thermodynamic variables to conform to the initial streamlines rather 

than to horizontal lines based on the upstream soundings. This 

technique resulted in large horizontal gradients in moisture and 

temperature near the mountain, hence large vorticity production in that 

region. (Consider t he las t term in equation (1).) The adjustment 

period increased, not decreased. 

Initializing the thermodynamic variables as functions of height 

only and the stream function by a constant vorticity based on the 

upstream shear allows the equations to adjust the variabl es smoothly. 

In short, the upwind values which determine the me an characteristics 
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of the model are perturbed by the mountain shape in a manner that 

maintains compatibility between the various parameters as time 

progresses from the initial state. 

In closing this discussion, it is pertinent to mention that the 

prescribed method of initialization, which seems to minimize the 

adjustment period of the model, is quite convenient because several 

starting conditions can be tried without excessive expense on the 

computer. 
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4.0 THE NUMERICAL BOUNDARY CONDITIONS AND RELATED DISCUSSION 

4.1 Preface 

The appropriate boundary conditions were determined by a combination 

of physical reasoning and numerical experimentation. The 11 vorticity 

production 11 term (las t term of equation (1 )) and eddy exchange coef-

ficient were invaluable instruments in developing the final boundary 

condit i ons because they display a great deal of sensitivity to changes 

in the other variables. If a change near the boundaries occurred in 

either one or both of these parameters which was inconsistent with the 

interior, it was an indication that the boundary conditions were 

wrongly posed. The other variables were much less sensitive to 

inconsistencies, requ i ring more computational time before it became 

apparent that something was awry. 

The discussion to follow will elucidate the successes and failures 

encountered while trying to achieve reasonable boundary conditions. 

The importance of boundary conditions cannot be overemphasized in the 

realm of numerical solutions where a condition may lead to answers 

which may not be physically meaningful. Also, a boundary condition 

which may be suitable for one circumstance, such as a neutral environ-

ment wi th no gravity waves, may be completely inadequate for another 

such as a stably stratified atmosphere which has gravity waves. 

4.2 The Stream Function 

4.2.l Inflow boundary - Incoming momentum is one of the primary 

driving mechanisms in a cold orographic cloud system. Moist air at the 

lower altitudes is lifted over the orographic barrier to the 

condensation level, thus supplying cloud water for the nucleation and 
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growth of ice crystals. Chappell (1970) and Grant et al (1971) 

discuss the intricacies of cold orographic cloud systems. 

It seemed appropriate to specify the horizontal component of 

velocity at the upstream face as a function of altitude and invariant 

in time. Specifying the horizontal velocity component specifies the 

stream function itself, but vertical motion develops as part of the 

solution. In other words, the positions of the streamlines at the 

upstream boundary are invariant, but the streamline slopes may change 

with time. A linear profile was chosen to approximate field observa-

tions. It would be a simple matter to experiment with other profiles 

as the level of sophistication in the model increases. 

Kao (1965), Benjamin (1970), and Wong (1970) have shown that 

stratification which produces gravity waves also causes upstream 

influence in the form of blocking (stagnation) and other associated 

effects. Upstream influence depends strongly upon the shape of the 

barrier and extends far upstream. Lilly (1969) cites field observations 

which indicate blocking up to the ridge top on the windward side. 

Evidence seems to indicate a wedge-shaped stagnation zone as shown in 

figure 4.1. There is also manifestation of local overturning near the 

slope surface within the blocked region. 

One of the weaknesses of the present model is that all the upwind 

air is forced over the barrier to the exclusion of any blocking or 

other upstream influence. To properly include upstream influence, it 

would probably be necessary to perform a synoptic scale balance, i .e. 

consider mechanisms larger than the present model, because the forcing 

dynamics on a meso-scale system result from the synoptic scale 

geostrophic balance. This might be prohibitive in a strictly 
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two-dimensional model because the synopt i c balance is three-dimensiona l 

due to coriolis influences. (One alternative may be to place the 

upstream boundary beyond the stagnation wedge which is not known a 

priori.) 

4.2.2 Lower boundary - As was done by Orville (1967), the 

stream function is zero along the lower boundary for all time. This 

type of treatment extends back to the work of Malkus and Witt (1959) 

who assumed this condition for numerical expediency. They found that 

the lower boundary was not critical in their particular investigation. 

The same reasoning was applied to this model, but the validity is open 

to debate as will be discussed later. 

Slip occurs at the model surface (slopes and levels) which is not 

coincident with the ground, but lies some unspecified distance above 

it. (This distance is considered to be ten meters for the purpose of 

establishing a value for the eddy coefficient at the lower boundary.) 

It is essential to have motion at the lowest level due t o the spatial 

resolution of the model. Otherwise, the thermodynamic variables would 

have an unreasonable effect on the solution in the vicinity of t he 

1 ower boundary. ( Orvi 11 e, 1964) . 

Slip is allowed by computing the tangential velocity using 

noncentered differencing of the stream function in the normal direction 

on the slopes and level portions. (This differencing more correctly 

corresponds to setting the velocity at the bottom equal to the velocity 

halfway between the lowest grid point and the grid point above. A 

Taylor series truncation argument which appears in Appendix A verifies 

this claim.) The normal component of velocity is zero at the lower 
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boundary whi ch l i es within the atmospheric surface layer where 

vertical motion, or motion normal to a slope, is vanishingly small. 

At least two shortcomings are apparent in the present treatment of 

t he lower boundary for the stream function. One shortcoming is t hat 

the flow i n the region which lies between the numerical boundary and 

the physical ground is mathematically construed to be invariant in time 

and space . This arbitrary treatment precludes such behavior as 

Ka t abatic winds, separation, etc., which may have profound influence 

on the dynami cs of the whole system. The second shortcoming, which is 

coupled t o the first, is that a viable surface layer cannot be 

parameterized with the present lack of spacial resolution at the lower 

bounda ry. An expanding grid spacing in the proximity of the lower 

boundary could remedy this lack of resolution. 

4.2.3 Top boundary - Since gravity waves occur in the model, it 

is undesirable to specify a constant stream function at the top 

boundary as has been used in many numerical solutions appearing in the 

literature. Reflect ion of waves off a rigid lid affects the dynamics 

of the entire system in an unreal i stic manner . The only time a rigid 

lid occurs in nature is the i nfrequent case when a strong inversion 

layer is present far abo ve the earth's surface. 

A less serious constraint i s to specify a constant horizontal 

component of velocity at the top boundary. Roache (1970) suggests 

(2J!..) = U which is a Neuman n boundary condition . Horizontal az top const' 
motion remains invariant whereas vertical motion develops as part of 

the solution. In the Dirichlet, or rigid lid case, vertical mot i on 

vanishes at the top boundary. 
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Some discussion on the Neumann boundary condition is pertinent. 

In t he t wo-dimensional linear theory of lee waves, steady state 

analytical solutions stem from perturbation methods. The mean 

horizont al component of velocity is constant or a function of height 

only, whereas the mean vertical component is zero since it corresponds 

to an undisturbed envi ronment. The perturbation of the horizontal 

component, which is a f unction of both space variables, is considered 

small compared to the mean value and hence is neglected. The perturba-

tion of the vertical component due to the presence of an obstacle is 

sought as the solution. 

The same concept is applied in justifying the top boundary 

condition for the stream function in this cloud model. At the top, it 

is assumed that any deviation from some constant horizontal velocity 

component is small compared to that constant value. Vertical motion 

everywhere in the system and horizontal motion everywhere except near 

the top boundary become part of the solution. 

Li l ly (1971) attests that variation in the horizontal component 

of the wind can be significant in the presence of large amplitude waves. 

General ly, wave amplitude increases inversely with the square root of 

the mean density. The implications are that wave amplitude increases 

up into the upper troposphere or lower stratosphere where eventual 

turbulent break-down takes place. The upper boundary of the model is 

3.5 kilometers above the earth's surface, well within the troposphere. 

Very large amplitudes should not occur at this l evel, but may occur in 

the immediate vicinity of the mountain lee. Therefore, the upper 

boundary condition may not be too restrictive nor cause an unwanted wave 

reflect i on. A possible shortcoming of the mode l , however, is that the 
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top boundary lies too shallow in the atmosphere to the exclusion of 

any interaction between the stratosphere and troposphere. Lilly 1 s 

(1972) description of wave momentum flux implies that the shallowness 

of the model may have serious dynamical consequences. 

Two cases were performed on the top boundary for comparative 

purposes. One with the Neumann condition and the other with the 

Dirichlet condition. These cases will be discussed in section 5.0. 

4.2.4 Downstream boundary - The downstream boundary condition 

proved to be the most difficult to resolve. Originally it was hoped 

t hat a downstream condition given by Roache (1970) could be utilized. 

He states that for some numerical flow problems it might be possible 

to neglect horizontal variation in vertical motion at the downstream 

face i.e. = a
2

~ = 0 . This simplifies Poisson 1 s equation, equation 
ax2 

(7), to include only vertical derivatives i.e. = -n. This last 
az 2 

equation is solved at the downstream boundary as a two-point boundary 

value problem with the stream function zero at the bottom and with a 

Neumann condition (a~ / az = Uconst) at the top. However, it is solved 

prior to solving Poisson 1 s equation for the entire domain so that the 

downstream boundary condition is essentially Dirichlet in nature. 

Roache 1 s condition was used in the first runs of the computer 

model. It was not until other aspects of the model were resolved, and 

more time steps were taken, that it became apparent that the condition 

was inadequate. The first thought was that the downstream boundary 

was not far enough from the mountain for the condition to work properly. 

Extending the boundary did not solve the problem. Figures 4.2 and 4.3 

show the results of these failures. The failures result from the fact 

that Roache 1 s boundary condition allows no curvature in the streamlines 
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in the neighborhood of the downstream boundary. When a wave originati ng 

at the mountain reaches the downstream face it must conform to this 

constra i nt of no curvature. The character of the wave is exaggerated and 

eventua l computational disaster results as shown in the figures . 

It is conceivable that this particular boundary condition would work 

if the numerical boundary were far enough downstream where the wave 

amplitudes had decayed appreciably. But this would greatly increase 

computa t ional time. Roache's condition seems to work for the case of a 

homogeneous atmosphere which has no gravity waves. (Figure 4.4) 

The boundary condition finally used was obtained by equating the 

finite difference analogs of the horizontal second derivative at the 

first and second interior grid points i.e. (~) = (~) and ax2 I-1 ax2 I-2 
solving for the stream function at the boundary. (See Figure 4.5) 

This maintains the trend of concavity in the function at the po i nts 

i = 1-1 and i = I-2 but does not require equality of the curvatures 

at these two points. What results is a second degree extrapolation from 

interior points i.e. w1 = 3w1_1 - 3w1_2 + w1_3 . Since lee waves are 

considerably longer than the gri d spacing a higher degree curve should 

not be necessary. A numerical i nterpretation is that the third 

derivative vanishes one and one-half grid points from the boundary i.e. 
-( )I- 1 1/2 - O. ax3 

The problem remaining, however, is how to apply this boundary 

condition and whether it satisfies uniqueness of solution. Should it 

be appl ied after every iteration of the relaxation scheme or after 

con vergence of the scheme? If applied every iteration the cond i tion 

truly represents a vanishing third derivative, but if it is app l ied 

after convergence, it is merely an "after the fact" extrapolation. 
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An heuristic proof of uniqueness was found numerically for the case 

of application every iteration by converging to the same solution (to 

within a small tolerance) independent of several initial estimates in 

the relaxation scheme. A more ri~orous proof is shown in Appendix C. 

When the condition was employed after every iteration of the 

relaxation scheme in longer runs of the model, computational time was 

too great. For Roache's downstream condition the number of iterations 

averaged about thirty per time step. The new condition (applied every 

iterati on) increased this average to an excess of five hundred iterations 

per time step. The next best approach was to apply the new condition 

at the end of convergence, using the boundary values of the stream 

function from the previous time step during the process of convergence. 

(The boundary condition is then Dirichlet as far as Poisson's equation 

is concerned, followed by a spatial extrapolation.) Since the time 

steps are less than ten seconds, the character of the solution should 

not be destroyed. Only the occurrence of an unsteady phenomenon that 

is transient over a very short period would upset the solution. This 

possibility seems unlikel y. 

4.3 The Variables ¢, Q, n , e , and R" 

4.3.l Top boundary - At the top, one can reason that turbulent 

mixing is negligibly small compared to advection. This assumption has 

a priori justification because the bulk Richardson number associated 

with the upwind sounding is large enough to preclude turbulence. 

Turbulence should occur only in regions of the model where the local 

Richardson number can be less than one (e.g., near large wave inflection). 

The top boundary is far enough above the mountain to be governed by the 
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bulk stability of the model. The boundary is also far enough below the 

portion of the atmosphere where turbulent breakdown occurs associated 

with the breaking of large amplitude waves to be isolated from that 

effect (Lilly, 1972). Therefore, the mixing terms may be neglected in 

the transpor t equations at the top boundary. 

Neglecting the vertical mixing term and assumin g linear variation of 

a variable at the upper boundary amounts to setting the second de r ivative 

equa l to zero, i.e., -~ = 0 where cp represents any variable in this 
az2 

case. The "virtual" point concept is used to transform the first 

derivative analog at the top boundary. The horizontal mixing term is 

retained to lend damping to the numerical scheme. (It offers no diffi-

culty anyway since finite differencing is performed along the top boundary, 

not across it as for the vertical derivatives.) In this manner, a trans-

formed version of the transport equation appears at the top which is solved 

along with the equation for the interior, using the same time-splitting 

operator for consistency. 

The a priori reasoning concerning turbulence at the top of the 

model was reinforced by locally computed Richardson numbers in the model 

itself. The bulk value is 14.2. The values along the lateral and top 

boundaries do not deviate significantly from this bulk value. However 

there is considerable variation near the mountain slopes and in the lee 

waves as had been expected. 

The method of assuming negligible mixing and linear variation worked 

we l l for both cp and Q but not for n. The eddy coefficient, which is 

cou pled to vorticity, showed a sudden large increase near the to p bo undary 

and the vorticity itself changed inconsistently. 

The variables cp and Q have a natural tendency to vary l i nearl y 

wi t h height in the model, while vorticity is go verned by the shear and 
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local gradients in the thermodynamic variables. After carefu l 

consideration it was felt that the "vorticity production 11 term should 

not change significantly with height, nor should the shear, in the 

vicinity of the top boundary. (This argument applies to each point at 

a given altitude. The abo ve mentioned parameters would experience 

horizontal variation from point to point at a given altitude .) This 

means that the vorticity at the top boundary equals the vorticity one 

grid point below. Consequently, setting the top value equa l to the 

value i1m11ediatel y below at the end of each step of the time-splitting 

scheme would seem reasonable. The success in consistency of the 

vorticity and eddy coefficient that resulted when this technique was 

employed seems to warrant its usage. The effective boundary condition 

is an_ 0 az 
e is a function of and Q at the top. The moisture variables 

wv and wi are functions of e and Q. 

The eddy exchange coefficient is set equal to the value one grid 

point below, as in the case of vorticity, but this is done at the end 

of a time step since there is no transport equation involved. This 

treatment of the eddy coefficient is consistent due to coupling with 

the vorticity. 

During the first runs of the model, extrapolation techniques were 

performed on the various function s to obtain boundary values. This met 

with failure. Extrapolations display an erratic behavior since they 

are hypersensitive to disturbances that are continuously propagating 

through the system . They are also sensitive to gradients in the 

variables themselves. 
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4.3.2 Lateral boundari es - At the beginning it was felt that 

the thermodynamic variables should be specified at the upstream face 

(as functions of altitude) since they are driving parameters along with 

upstream momentum. Figure 4.6 shows the results of that attempt. 

Disturbances propagating upstream reflect off the boundary causing an 

erroneous production of vorticity which upsets the entire solution. 

Matsuno (1966) discusses reflective phenomena of numerical boundaries 

in detail. 

Nitta (1962) suggests various outflow conditions for numerical 

solutions, one of which is to apply a linear extrapolation from interior 

values at the end of a time step. (This has the appearance of a 

vanishing second derivative in the horizontal direction.) Yamada (1971) 

has enjoyed success with this method at both inflow and outflow. 

boundaries. This technique was f i nally used in the cloud model for 

and Q. 

Before resorting to this extrapolative technique, however, a more 

elegant application of the vanishing second derivative was sought for 

and Q. As in the case of the top boundary, the extrapolation 

implies negligible mixing and linear variation such that the "virtual" 

point concept might be utilized again. But this met with failure. 

The solution began to break down in the lower right hand corner of the 

grid, where velocities are small and mixing becomes significantly greater. 

However, many things remain unclear in this regard and seem to warrant 

further investigation. 

Vorticity is set equal to the first interior value at the comple-

tion of a time step at both lateral boundaries. This method uses the 

the same reasoning that was applied to the top boundary except that the 
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horizontal direction is considered. Also, Roache (1970) indicates that 

numerical drifting errors may result unless vorticity is handled in 

this manner. Lastly, this particular boundary condition on vorticity 

is consistent with the condition applied to the thermodynamic variables 

which are coupled to the vorticity. 

The eddy exchange coefficient is handled the same~~ vorticity 

in the interest of consistency. The model results justify this decision. 

Mixing characteristics have small space-wise variation at distances far 

from the obstacle. Even downstream, where waves produce a periodic 

variation in mixing, the variation of mixing is very slight over the 

span of one grid length near the boundary. 

4.3.3 Lower boundary - In general, the surface temperature 

observed in nature is a periodic function of time owing to the daily 

cycles of solar insolation and radiative losses. In addition, the 

surface temperature is also a function of slope height. Geiger (1965) 

explains slope behavior elaborately. 

At the present stage of the model development, the span of time 

over which the calculations are made justify omission of the temporal 

periodicity. Slope temperature becomes an unchanging function of 

height only. 

If the lower boundary value of Q is known, it is then a 

straightforward task to determine whether saturation has occurred by 

comparing the value of Q to the value of wvs from equation (16). 

is then found by using either equation (14) or (15). The problem, 

of course, is finding the boundary value of Q 
One of the suppositions in the present model is that the 

mountain surface neither subtracts nor adds moisture to the cloud 
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system, which is fairly well justified since a snow covered ground does 

not exhibit the vast evapotranspiration mechanism that occurs on a 

vegetated surface in the warm seasons. The only sink effect, excluding 

precipitation, is the nocturnal deposition of frost which is a negligible 

quantity. In short, the model surface can be treated as an inert entity 

to moisture. 

Therefore, no moisture flux takes place in the air layer next to 

the surface. This holds for the lowest grid points in the model which 

lie some small distance above the physical surface. In this region 

K aQ/ an = O (where n denotes the normal direction) on the levels 

and slopes of the model. Furthermore one can argue that moisture is 

well enough mixed in the neighborhood of the lower boundary such that 

there is no variation of Q in the normal direction within this neighbor-

hood. Hence all normal derivatives vanish in that region. (The normal 

direction is considered because it is appropriate for both slopes and 

levels.) 

As a consequence, the transport equation for Q simplifies to 

include only tangential derivatives. The modified equation is valid 

only in t he vicinity of the lower boundary. It is solved using the 

coupled operator, equations (21), as for the interior of the grid 

network. 

Somewhere between the lowest grid point and the point which lies 

above, the flux of moisture in the normal direction is no longer zero. 

At this higher level it is necessary to retain the terms containing 

normal derivatives, which means that the lower point becomes involved 

in the finite differencing fo r the point above it (in the normal 

direction). In essence, the lower boundary is independent of the 
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overlying values for Q but not the converse. This kind of approach 

stems from the fact that the grid spacing does not properly resolve the 

moisture behavior near the bottom boundary. 

An attempt to use the vanishing first derivative to define a 
11 virtual 11 point for the second derivative resulted in a persistent sink 

effect at the bottom boundary. Thus the second derivative was set 

equal to zero also but with the justification already mentioned. Better 

resolution using smaller grid spacing near the lower boundary, where 

th ings change rapidly with height, would improve the solution in regard 

to t he behavior of moisture. 

To apply the same method to ¢ as to Q on the lower boundary, 

i . e. solve the associated transport equation in reduced form, then 

solve for e as a function of ¢ and Q would be inappropriate. For 

one thing, it is not as easy to determine a viable boundary condition 

for ¢ at the lower boundary as it is for Q. In addition, entropy is 

a function of temperature in the strict sense, not vice versa. The 

behavior at the surface wo uld be erratic if e were given as a function 

of ¢ and Q (supposing t hat a reasonable lower boundary condition 

were available for ¢ ) because this would make 8 a transported 

variable at the surface, whereas the radiat ion process which controls 

surface temperature is not a t ransport phenomenon i n the advective and 

turbulent mixing senses. The method used, that of specifying the 

temperature at the lower boundary, acts as a constraint on the model. 

In essence it is assumed that the radiation balance maintains t i me 

independent temperatures at the lower boundary. 

A value for the eddy exchange coeffi cient is necessary at the lower 

boundary since it is used in the reduced equation for Q . Lumley and 
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Panofsky (1964) state that the eddy exchange coefficients (Viscosity, 

diffusivity) are zero at the earth's surface. For a neutrally stratified 

environment the coefficients vary linearly with height within the surface 

layer, which is anywhere from 20 to 200 meters deep. For the purposes 

of the eddy coefficient, it is assumed that the first interior grid 

points and the lower boundary points themselves both lie within the 

surface layer. The lapse rate in the model is close enough to neutral 

to assume a linear variation of the eddy coefficient within this layer. 

Assuming the bottom boundary to be ten meters above the earth's surface, 

the eddy coefficient is int erpolated between zero and the value one 

grid point above (in the normal direction). 

The vorticity is main t ained at zero along the lower boundary on 

both the slopes and level portions. This specification follows Orville 

(1965) who borrowed from Malkus and Witt (1959). The latter had found 

that the bot tom boundary condition for vorticity had no influence on the 

general character of their solution. (See sec. 4.2.2) 

There is evidence that the coupling, via equation (5), of vorticity 

and eddy exchange in the cloud model renders the present treatment 

of vorticity at the lower boundary inappropriate. Gradients in 

vorticity are artifically large near the bottom, causing the eddy 

exchange coeffi cient to behave erratically in that region. The dif-

ficulty i s not apparent when the space-averaged coefficient is used 

[equation (6)], but disporportionately large gradients in the coef-

ficient appear if the transport equations are solved in the form of 

equation (3a) in which the eddy coefficient is finite differenced. The 

boundary condition for the eddy exchange coefficient itself aggravates 
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this situation. A more detailed discussion will be given later. 

(sec. 5.4) 

4.4 The Velocity Components 

4.4.l Top boundary - Both velocity components are needed at the 

top boundary in order to compute and Q. The horizontal component, 

u , is constant for all time as has been discussed in section (4.2.3). 

The vertical component, w, is found in the usual way via equation 

(9). 

4.4.2 Lateral boundaries - Although the velocity components are 

not needed at the inflow and outflow boundaries they are calculated 

for inspection. U is calculated in the usual way, via equation (8), 

but w is gotten by non-centered differencing. 

4.4.3 Lower boundary - The normal component of velocity is con-

sidered vanishingly small near the lower boundary and, hence, set to 

zero. 

The tangential component, which is needed in the solution of Q 

at the lower boundary is computed by non-centered differencing. (See 

the discussion in section (4.2.2).) This manner in which slip is 

permitted at the lower boundary is somewhat lacking in rigor and may 

have serious dynamical implications on the model. 
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5.0 MODEL RESULTS AND DISCUSSION 

5.1 General Introduction 

The solution of the cloud model is time dependent, with each 

transport equation containing a ten~oral term. The equations of the 

model incorporate time variation from an initial state as a means of 

convergence to a possible steady state condition, although steady state 

is not required by the model. Recent evidence by Balick and Rasmussen 

(1972) suggests that a steady state orographic cloud may not occur in 

nature. In reality, then, one might expect the model to yield an 

initially quasi-steady state structure until which time cloud activity 

becomes pronounced. The length of simulation time that was performed 

with the model is insufficient to make a final judgment concerning 

stationarity of the solution. 

Two basic cases were perfo rmed: one in which the model top is 

rigid with a Dirichlet boundary condition on the stream function and 

the other in which a Neumann condition is applied as discussed in 

section 4.2.3. All other things are the same in these two cases, with 

both simul ating slightly over an hour of real atmospheric time. The 

Neumann case, which represents the culmination of all the efforts 

of development in the model thus far, was performed first. Afterwards, 

it was decided that a rigid lid case would serve as an interesting and 

perhaps enlightening basis for comparison. 

The essence of the two cases appears in Figures 5.1 through 5.10 

via the variables Q, e, wt , n and w . The figures are drafted 

duplications of the actual microfilm outputs. Each variable is depicted 

in six frames, the first corresponding to the initial state with each 
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ensuing frame representing a hundred (100) time step increment from the 

previous one. The only exception to this is the last frame which 

corresponds to the 480 time step or a little over an hour of elapsed 

atmos pheric time. 

A third case was explored in which the eddy exchange coefficient 

was f inite differenced in lieu of the space-averaged approach taken in 

the other two cases. (See the first part of section 2.2) Various sub-

cases evolved which suggested improvements in the lower boundary con-

diti ons for both the vorticity and the eddy exchange coefficient. This 

l ast case was not run as long as the other two cases because of 

diffi culties that developed at the lower boundary. 

5. 2 The Neumann Case 

In the Neumann case, the evolution of the stream function (Figure 

5.5) seems to indicate no sign of wave reflection off the top boundary. 

However, the wave structure of the model as a whole implies a transient 

nature, even in the last frame. 

A stationary gravi ty wave system, which is expected in the model, 

exhibits an upwind tilt al i gnment according to linear theory and 

field observation (Lilly, 1969, 1971, 1972). The model, however, shows 

a very definite downstream t i lt in the short, large amplitude wave 

immediately downstream of the mountain. This tendency lessens as t i me 

progresses but continues to persist. In addition, no periodic array of 

waves is established in the wake of the mountain although the incipience 

of a periodicity is apparent. Nothing so definite can be said about the 

tilt of the waves above the mountain top, but it is obvious that the 

wave amplitudes are not growing with height as occurs in the prototype 

atmosphere. This lack of amplitude growth is due to the fact that the 
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model's air density does not decrease with altitude, which is an 

attendent mechanism in the real atmosphere. 

The apparent transience of the solution, even by the 480 time 

step, may be rea l , but possibly misleading . Perhaps it is because 

enough time has not been modelled to achieve a steady state (or quasi-

steady state) condition. Another reason may be that the lateral 

boundaries are not far enough from the obstacle, perhaps permitting 

transient reflect ions. A third possibility may be the steepness of the 

leeward slope which acts to supply a large amount of momentum to the 

surface under the restoring action of gravity. This momentum should 

be counteracted by the opposing pressure gradient that develops to the 

lee of a mountain (Scorer, 1955), but since there is no surface friction 

in the mode l , some of the momentum may be reflecting upward, back into 

the solution. 

One thing that seems to justify the solution stationarity, 

however, is that the lenti cular cloud (Figure 5.3) which forms in the 

wave crests downstream of the mountain remains in one place. As i t 

grows, it does not shift position or advect out of the model as would 

a non -stationary cloud. (Cold orographic clouds are somewhat stationary 

in behavior.) 

The behavior of the cap cloud forming over the mountain crest, 

however, seems to indicate a shortcoming in the model. As the solution 

progresses from the starting conditions the isohumes of Q begin to 

pack together t oward the center of the upstream boundary. (It will be 

remembered that the upstream boundary is allowed to flux by linear 

extrapolation f rom interi or values at the end of each time step.) The 

upstream values of Q lose their linear variation with height. Larger 
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values near the bottom shift upward and lesser values at the top move 

downward. The resulting effect is to cause the cloud to form as far 

upstream as the boundary itself. The whole process seems to be a 

manifestati on of upstream influence, but it cannot be stated with 

certainty whether the disturbances which propagate upstream to alter 

the moisture profile are of a real or numeric mode. 

The same packing behavior occurs to and hence e since the 

latter is a function of and Q except on the lower boundary. (See 

section 2.7.4 and section 4.3.3.) It is likely that the proximity of 
the upstream boundary to the mountain barrier is partly or entirely 

responsible for the packing phenomenon. 

Since the upstream values of moisture and entropy are altered, 

this changes the forcing function of the modelled cloud system. The 

upstream alteration is unsteady so this would surely have some transient 

effect on the entire system. 

The cusp of the mountain appears to have an anomalous effect on the 

solution at the lower boundary, most visibly on the variable Q (Figure 

5.1). The anomaly is manifested in the break that occurs in the lowest 

isohume which then advects downstream, yet does not reconnect. This 

peculiar result originates at the cusp where condensation first takes 

place rather artificial ly. (The first runs of the model had less up-

stream moisture such that no condensation took place. The anomaly did 

not occur in those runs.) Naturally, all the variables receive 

unrealistic treatment at the mountain cusp which would indeed be a 

singular point in an analytical solution, and certainly does not have 

adequate spacial resolution in the numerical model. 
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The space-averaged eddy coefficient, K, does not strictly 

conserve the variables Q, , and which have associated transport 

equations. In the real atmosphere, what is lost due to mixing at one 

point is gained at another . In the model, however, local source or 

sink effects arise depending on the sign and magnitude of ai< and ax 
ai< az. These two factors are omitted as discussed in section 2.2 and if 

they are small or indeed vanish at each point in the model, the above 

variables are conserved i n the numerical scheme. Calculations indicate 

that the greatest discrepancies occur near the mountain boundary, but 

this does not seem to destroy the general structure of the solution. 

The relative importance of eddy exchange in a cold orographic 

cloud system is hard to evaluate in the actual atmosphere. This is one 

of the things that might be learned from a numerical model. For an 

environment whose bulk stratification is stable, turbulence can exist 

only at isolated localities in the cloud system. The overall effect 

of t his local turbulence may not be very important, but this consider-

ation is open for debate. 

The downstream boundary conditions appear adequate for all the 

variables. However, there is distance enough for only one or two 

waves to form downstream of the mounta i n. It would be desirable to 

extend the boundary far enough downstream to allow several waves to 

develop because this would certainly lend more validity to the 

solution. 

The variables seem well-behaved at the top boundary, where vertical 

mixing i s considered negligible . 

The method of handling the ten ''odd 11 points (see sec. 2.3) causes 

an unreasonable effect on t he vor ticity. This is most likely due to 
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the arbitrary zero specification of vorticity at the lower boundary 

which results in large gradients of vorticity near the boundary. The 

other variables show no difficulty in this regard. Also the degree of 

irregularity in the vorticity at these points seems to diminish with 

time (Figure 5.4). 

5.3 The Dirichlet Case 

The stream function in the Dirichlet case (Figure 5.10) shows a 

more exaggerated downstream tilt and greater wave amplitude leeward of 

the obstacle. The waves at the higher altitudes seem to be longer and 

certainly have less amplitude than the waves in the Neumann case. Wave 

energy cannot pass through the top as in the Neumann case. Also, there 

is evidence of the beginnings of blocking near the surface upwind of 

the mountain which does not happen in the Neumann case. 

The lenticaular cloud in the Dirichlet case (Figure 5.8) displays 

a highly transient behavior, shifting position toward the downstream 

face then retreating as time progresses. This serves to indicate the 

greater degree of non-steady behavior in the Dirichlet case as opposed 

to the Neumann case. 

The packing of the isohumes observed in the Neumann case also 

occurs in the Dirichlet case, but to a lesser extent. As a consequence, 

the cap cloud develops more realistically. 

The fact that the packing of and Q is more pronounced in 

the Neumann case offers a possible explanation for this phenomenon. 

Wong (1970) shows that the existence of lee waves has an upstream 

influence on upwind momentum in addition to the effect of blocking. 

This accompanying influence is dependent on the amplitude of the lee 

waves downstream and acts to distort the upstream wind profile at 
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altitudes above the obstacl e. In the Dirichlet case the amplitudes of 

the waves which lie higher than the mountain are less than for the 

Neumann case. Now although the upstream momentum is fixed at the 

upstream boundary in both cases, the larger amplitude l ee waves in the 

Neumann case send a stronger "signal" upstream. Thi s "signal" is 

manifested in and Q since the boundary values of t hese variables 

are allowed to flux each time step. Placing the upstream boundary 

further from the obstacle would most likely alleviate or certainly 

decrease the packing effect. One other remedy might be to allow the 

stream function itself to change upstream along with the other variables. 

The anomalous effect of the cusp on the variable Q is less 

extreme in the Dirichlet case than in the Neumann case and it seems 

that the effect is only a by-product of the initial "settling down" 

period in t he model. In time , the Neumann case would probably adjust 

this anomaly also. 

The same discussion of section 5.2 regarding the space-averaged 

eddy coefficient appl ies to the Di r ichlet case also. 

A comparison of the kinetic energies for the Neumann and Dirichlet 

cases shows that the Neumann case remains somewhat more stable after 

an initial hump in the energy curve. The energy in the Dirichlet case 

does not show as great a variation at first, but then displays a 

continuously increasing trend that becomes more extreme toward the end 

of the simulation time. (See Figure 5.11) 

5.4 The Finite-Differenced Case for the Eddy Exchange Coefficient, K 

A t hird case was performed in which the eddy exchange coefficient 

was finite differenced. This approach is more rigorous, mathematically 

speaking, than the space-averaged method. The Neumann condition 
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was placed on the stream function at the top boundary for this last 
,; 

case. 

In the first attempt the vorticity was maintained zero at the 

lower boundary as for the other cases. After only thirty time steps 

the solution demonstrated an unusual character near the cusp on the 

leeward side (Figure 5.12a). The situation grew worse with time. 

A detailed analysis of all the variables led to the suspicion that 

the problem resulted from the rather arbitrary specification of the 

bottom vorticity, which is linked to the eddy coefficient via equation 

(5). 

In the next attempt the condition a2 ~/an 2 = 0 was placed at the 

lower boundary (n denotes the normal direction). A 11 virtual 11 point 

was used to modify the analog of the first derivative, an/~n . Since 

motion in the normal direction becomes vanishingly small near the lower 

boundary, this condition can be shown (using equation (8) in a rotated 

form) to give second degree freedom to the tangential velocity at the 

lower boundary. In this new effort, the solution was much better 

behaved as seen in Figure 5.12b which corresponds to the hundredth time 

step. However, the solution is beginning to show signs of trouble 

at this point and eventually "blows up. 11 

The difficulty stems from the lower boundary condition on K. 
V 

(It will be remembered from section 4.3.3 that K at the boundary is 

found by linear interpolation in the normal direction between the 

value above and the zero value which lies ten meters below at the 

physical ground.) This condition causes excessively large gradients 

in the value of K near the lower boundary. In that region, the 

derivatives aK/ax and aK/az which can be grouped with -u and -w 
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by rearranging equation (3a), complete with these velocity components 

in their magnitude to the point of disrupting the solution. [Equation 

(3a) is used only to represent the differencing of K; the other 

variables, of course, have corresponding terms in their associated 

equation.] One possible improvement would be to incorporate the 

transformed analog of an/ an into equation (5) to obtain K at the 

boundary. This does not seem inconsistent with the present resolution 

of the lower boundary, which lies some unspecified distance above the 

physical surface. (See section 4.2.2 in regard to slip at the bottom 

boundary.) The best answer probably lies in better spatial resolution 

near the lower boundary. 

If a variable eddy exchange coefficient is to be considered, it is 

far more appropriate to finite difference the coefficient than to use 

the space-averaging technique. Otherwise, the transported variables 

are not properly conserved in the numerical scheme and physical 

significance is lost. 
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6.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 Summary and Conc l usions 

The knowledge gained during the development of the cold orographic 

cloud model offers hope and direction for an improved simulation. The 

realization of a viable dynamic system upon which to superimpose a 

microphysical ice process appears close at hand. 

The present technique for condensation, which approximates the 

actual microphysics by a parameterization, seems adequate. In general, 

condensation strongly depends on nucleating particles. Water vapor 

cools to a supercooled state without condensing if enough of these 

particles are not present in the actual atmosphere, whereas the model 

assumes condensation based only on the temperature criterion of the 

Clausius Clapeyron relationship. Cloud water appears at reasonable 

locations in the model even though this parameterization is used. 

By comparison, the Neumann boundary condition for the stream 

function at the upper boundary is superior to the Dirichlet condition, 

pending an improvement on the upstream boundary to alleviate the 

packing phenomenon of and Q . The basic philosophies behind all 

the other boundary conditions appear sound and seem reinforced by the 

results of the model. 

The numerical scheme, which enjoys a noncentered time-splitting 

process and fully displays all damping characteristics (there is no 

hidden or 11 psuedo 11 damping) has proved quite successful. Although 

the scheme is designed for equations with a constant turbulent mixing 

coefficient, it can also be used for the case of a nonconstant 
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coefficient by grouping the factors aK/ ax and aK/ az into the 

advective terms i.e. (-u + aK/ ax) and (-w + aK/ az). 

The method of initialization, which minimizes the adjustment 

period of the initial state, is one of the major accompli shments of the 

research. A variety of starting conditions and boundary condition 

experimentations can be attempted at reasonable computer expense. 

This offers an excellent benefit in that a series of boundary experi-

mentations and initial states would possibly lend increased under-

standing to the physical processes of a cold orographic cloud system. 

6.2 Recommendations 

One of the most obvious lessons gained from the model is that the 

boundaries should be extended for dynamical and microphysical reasons. 

This extension most certainly should be done for the lateral boundaries 

in order to lessen the upstream influence, to include several wave 

lengths downstream, and to allow a parcel enough time for significant 

ice growth. Perhaps the depth of the model can be left unaltered so 

that the equations themselves, which assume shallow convection, can be 

retained i n their present form. But maintaining the shallowness of 

the model may possibly preclude an important interplay between the 

upper and lower portions of the atmosphere, to the detriment of 

realism in the dynamic structure. 

The mountain shape itself is quite unrealistic in addition to the 

numerical difficulties it creat es at the cusp and at the ten 11 odd 11 

points (sec. 2.3). If the lateral boundaries were extended, more 

realistic mountain slopes could be depicted. Transforming the chosen 

shape into a straight line by one of many techniques found in the 

literature would solve many of the present numerical difficulties at 
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the lower boundary. Since a transformation would produce a rectangular 

grid domain, the solution of equation (7) for the stream function could 

be expedited by more sophisticated methods available for a rectangular 

shaped grid network. The transformation would also eli minate any "odd" 

points associated with the slopes. 

Better spatial resolution at the lower boundary would improve the 

solution. This refinement could be accomplished by an expanding grid 

spacing near the bottom of the grid network. Some mechanism of surface 

drag should also be included in lieu of the present method of slip at 

the lower boundary (see sec. 4.2.2). (At present, the numerical 

boundary is some unspecified distance above a non-slip surface.) 

The space-averaged turbulent mixing coefficient should certainly 

be replaced by the actual coefficient. Because of the bulk stability 

of the model (Richardson number of 14.2), turbulent mixing is signifi-

cant only near the mountain boundary, exactly where the present treat-

ment of mixing is least suitable. Using the actual coefficient implies 

using either an/ an= O or a2 n/ an2 = 0 at the lower boundary (see 

sec. 5.4). The better of the two conditions could be determined by 

experimentation. 

The turbulent mixing mechanism (equation (5)) which is coupled to 

vorticity is perhaps unsuitable for the cloud model, which is a meso-

scale simulation. The assumption of two-dimensional turbulence, upon 

which the present scheme is based, applies more rigorously to a synoptic 

scale volume in which the horizontal dimensions are much greater than 

the vertical dimension. A more appropriate characterization for 

meso-scale phenomena is suggested by Drake (1972). This method depends 



57 

uoon the local stabilities and the local dynamic deformations within 

the cloud system. 

The model now assumes equality of eddy viscosity and eddy dif-

fusivity. It could be important to distinguish the two processes 

for increased realism in the solution, since the modelled system 

simulates a stably stratified environment in which eddy viscosity 

should dominate eddy diffusivity. 

One method to allow upstream influence may be to place the upstream 

boundary beyond the stagnation wedge which lies on the windward side 

of the mountain, while maintaining the present boundary conditions. 

This method could possibly prevent having to perform a synoptic scale 

balance for achieving the same result. 

Radiation should eventually be included in the model. A first 

step would be to do this implicitly rather than to invoke a complicated 

mathematical treatment. For the mountain surface, this could be done 

by superimposing a sinusoidal time variation of temperature to 

duplicate the diurnal cycles. Field data by Balick and Rasmussen 

(1972) implies an analogous time variation in the body of air above the 

atmospheric surface. Observat ions show that the lapse rate remains 

nearly constant but shifts toward colder temperatures toward the 

evening hours. This type behavior could easily be parameterized in 

the model. However, refinement of the radiation processes should be 

made in the final analysis. 

Several experiments with surface roughness, type of snow covering, 

vegetation covering, etc. shoul d eventually be made for the sake of 

gaining knowledge about their relative importance to the cloud system 

as a whole. 
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Inclusion of the precipitation process would be essential to 

complete the integrity of the model. 
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APPENDIX A 

A FLOWCHART OF THE MODEL AND FURTHER EXPLANATION CONCERNING 

THE NUMERICAL SCHEME 

A flowchart depicting the method of initializing the model 

(described in section 3.0) is shown in Figure Al. The layout of t he 

model itself (described in section 2.0) is given in the flowchart of 

Figure A2. Both flowcharts serve to supplement and reinforce their 

related discussions in the main text of the thesis. 

Section 4.2.2 explains how slip is allowed at the lower boundary 

and makes the claim that the uncentered diffe rencing of the stream 

function more correctly corresponds to the tangential velocity 

component half a grid spacing above the lower boundary rather than at 

the boundary itself. Consider first a single Taylor's series expan-

sion (in the vertical direction) at the lower boundary with j 

increasing upward (see Figure A3 as a guide) 

W·+l = w- + h(~ ). + o(h2) J J oZ J 
(Al) 

from which we obtain 

(A2) 

(remembering t hat = u as given by equation (8)) where U. is az J 

the tangential velocity component at the lower boundary and h is the 

grid spacing. Now consider the two expansions 

Wj+l = Wj+l/2 + h/2(* )j +l/2+(h~2) 2(: : ; )j+l/2+ (h~2) 3(: ; ; )j+l/2+o(h4) 
(A3) 
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= ~ ) (h/2) 2
( ~ ) Wj Wj+l/2-h/2(az j+l/2+ 2 az2 j+l/2 (h/2)·3 ( a3w). +o(h4) 

6 az3 J+l/2 
(A4) 

Subtracting equation (A4) from equation (A3) yields after rearranging 

W • 1 - w · (~ ) - U = J+ h J + o(h 2 ) az j+l/2 - j+l/2 (AS) 

where Uj+l/2 is the tangential velocity component one half a grid 

spacing above the lower boundary. One can see that equations (A2) 

and (AS) differ on their right hand sides only in the order of 

truncation error, equation (AS) having less error. Therefore the 

differencing 

more correctly represents the tangential velocity component Uj+l/2 
than Uj . (For this discussion, the series expansions were 

performed on the level portion of the lower boundary for convenience. 

The same argument holds for the slopes.) 
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Flowchart of Initializatio n of the Model 

( start } 

' initialize "1 by solving •:llJ,=77 const, 
based upon linear upstream shear 

i.e.77 is constant everywhere in the model 

I 

find initial values of u and w 
from initial 1J, 

' 
initialize Q, 8,cp as functions of height 
based upon the upwind soundings; 
w=O such that wv= Q; k=O since e l'v 771 = 0 at the start 

~store all initial / 
fields on tape 

11 

( stop) 

Figure Al . 
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Flowchart of the Model 

read parameters which limit the number of 
time steps to be computed and the t ime of computation 

read variables from 
·nitial tape that has 

een create 

read parameters that control 
frequency of printing 

and plotting 

perform first portion of the program 
which sets up arra s, constants, etc . 

read variables of the most 
ecent time step from 

the . storage 
tape 

t= t+b. t, 
increment time .,_._n.....;o_< 

step 

calculate 
Q and¢ 

calculate 

calculate 

calculate 
u,w,k,K 

yes 
plot variable 

yes . . b .;;>-~pnnt vana le 

go 
in sequence ( n= I, 2 ,3 ,4, 5) 

n 

5 
compute b.t for 

the next t ime step 

Figure A2. 
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lower boundary 

Figure ·A3. 
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APPENDIX B 

A SUMMARY OF THE BOUNDARY CONDITIONS 

WITH ADDITIONAL EXPLANATIONS 

This appendix presents a discussion concerning the application of 

boundary conditions in the model including a summary of the conditions 

used at each boundary. There are different ways an analytical 

boundary condition may be transformed into a numerical counterpart. 

Two methods are employed in the model: the "virtual" point method and 

the extrapolation method. For explanatory purposes we need consider 

only one boundary; the top boundary is chosen for convenience. At the 

top boundary l < i < I and j = J where i and j denote sub-

scripting in the x and z (horizontal and vertical) directions, 

respectively. 

Consider any variable ¢ and its associated transport equation 

a¢/ at = -u a¢ / ax - w a¢/ az + K a2¢/ax2 + K a2¢/ az2 (Bl) 

If we place the boundary condition a¢/ az = 0 at the top boundary, the 

"virtual" point method transforms the finite difference analog of 

a2¢/ az2 (see section 2.6 which describes the "virtual" point concept) 

so that we may re-represent equation (Bl) as 

a¢ / at = - u a¢/ ax + K a2¢/ ax2 + K( a2¢/ az2)transformed (B2) 

which is solved at the boundary along with equation (Bl) for the 

interior of the model. The extrapolation method, on the other hand, 

does not involve the transport equation at al l . A fin i te difference 

representation of a¢ / az at the top boundary may be given by 



<P J - <PJ-1 
acp/ az = --h--
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(B3) 

where h is the grid spacing. Setting this expressio n equal to zero 

we obtain 

(B4) 

Equation (B4) is applied at the end of a time step to obtain the 

boundary values from interior values. Now if we consider the boundary 

condition a2 cp/ az2 = 0 at the top boundary, the 11 virtual 11 point method 

yields 

acp / at = -u acp / ax -w( acp/ az)transformed + K a2cp/ax 2 (B5) 

and the extrapolation method yields 

(B6) 

In summary, the 11 virtual 11 point method involves solving a transformed 

transport equation at the boundary itself and the extrapolation 

method involves interior values at the end of a time step. 

The boundary condition sunmary of Figure Bl shows the analytical 

form of the boundary conditions for the variables of the model and the 

corresponding numerical form of these conditions. 



analytical form 

/o;a zSO j=J 

2 2 
LQ=O ~-o ox 2 ox2-

ao/an = lo;art= o i=I 

a~/a z2=O j=J 

l± a2cp 
2=0 c37=0 ax 

i=I 
cj,= cp (8,0) 

8=8 (<j,,O) j=J 

8=8(4>,O) 8= 8 (<j,,O) 

8=8 (z) 
i=I 

a.,.,/a z = o 
J=J 

o'l=o ax ~=O 
0 X 

i=I 
')= 0 

a I a z = u cons t j=J 

ij,= ,i,(z) 
a3,i, 
-=0 ax 3 

i =I 
,i,=O 

aii /oz =0 j=J 

oli =O ax 
dLo ax 

a Ii/a n2= o 
i =I 
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~ = 2 ~-4> 3 

8=8 (cp,O) 

'l,= .,.,2 

ij, = ljt(Z) 

k=k 

numerical f orm 

"virtuat" point method 
I = J 

__ _, ;,I 
solve s:mpl, f,ed transpor t eqJot,on 

0angentiol denvot ,ves only) 

"virtual" point method 
j = J 

,t,_ =2~-4' I -I I - 2 

i = I 
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8=8( cj, ,O) j = J 

8=8 (cp ,O) 

i=I 
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.,., =.,., 
J 1-1 j = J 

.,., =.,., 
I I -1 

')= 0 
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11 = ii J J. J j = J 

I 2 ii= ls 
I I -1 

~--...J ,=I 
linear interpolat ion between 
zero value IO meters below 
and the value ot the grid P()int 
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figure Bl. Schematic summary of the boundary conditions in the 
model. 
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APPENDIX C 

UNIQUEN ESS PROOF FOR POISSON'S EQUATION OF THE STREAM 

FUNCTION WITH THE IMPOSED BOUNDARY CONDITIONS 

OF THE CLOUD MODEL 

This appendix presents a proof of uniqueness of the equation 

v2w = - n (Cl) 

for the imposed boundary conditions of the cloud model. The classical 

method of energy conservation (Garabedian (1964)) is employed. 

Assuming two solutions, w1 , and w2 , which both satisfy equation 

(Cl), we may define 

such that 

Then we may also state t hat 

which may be reexpressed as 

(C2) 

by a well known vector i dentity. Equation (C2) is integrated over the 

entire area, A, of the model to give 

f f (C3) 
A 
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Gauss's divergence theorem is then used to transform the first integral 

on the right hand side of equation (C3) to yield 

I I v-~v~ dA = j ~v~ - n ds 
A s 

where n is the outward normal unit vector of the closed curve 

encompassing the cloud model and s is the arc length of that curve. 

Equation (C3) may be rewritten as 

I AI ~v 2 ~ dA = ! ~V~ •nds - I AI lv~l2 dA = O. (C4) 

Equation (C4) is used to construct the proof of uniqueness. 

Consider the four boundaries of the model as shown in Figure Cl: 

(a) left boundary 1/J2 = 1/J1 = 1/J(z); therefore = 1/J2 - 1/J 1 = 0 
a31/J2 a3lj! l 

( b) right boundary --=--= O; therefore = 0 
ax3 ax3 ax 3 

01/J2 01/J1 .£1 = (c) top boundary -=-= Uconst therefore 0 az az az 

(d) lower boundary 1/J2 = 1/Ji = O; therefore = 0. 

Using Figure Cl as a guide we have at the top boundary 

(.£.P..) = 0 for O < x < L az - -x,H 
from which it follows that 

( a .£.P..) -ax az x,H 
= ( .£1 ) 

ax2 az x,H 
= 0 , etc. for 0 < X < L 

(C5) 

i.e. all derivatives in the x-direction of .£1 az vanish at the top. 
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Since v2 ~ = O we may differentiate with respect to x to obtain 

L v 2 = a 3 + ..1.. a 2 = o ( C6 ) 
ax ax3 ax az2 

which holds everywhere in the closed region and on the boundaries of 

the model. But the right boundary condition of the model is 

such that equat i on (C6), as applied to the right boundary, becomes 

Therefore 

(axaz) L,z 

= 0 . 

= constant, C
0 

(Cl) 

but equation (C5) can be applied to the upper right hand corner of the 

model to yield 

(axaz) = 0 
L,H 

which shows that the constant C
0 

must be zero. Then equation (C7) 

is written as 

such that 

_ a ( a~ ) 
az ax L,z 

( li) = constant, c1 ax L,z 

= 0 

However, = li =ti = 0 at x = L and z = 0 by the same ax ax2 
reasoning used to obtain equation (C5) such that the constant c1 
also must vanish. We then have 
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(~) = 0 ax L ,z 

instead of (~) = 0 at the right boundary of the model, which is 
ax 3 L ,z 

a key result of the uniqueness proof. This result is based on corner 

arguments. Figure C2 summarizes the final boundary conditions on ¢ , 

which differ from the initial boundary conditions only at the right 

boundary. 

The line integral of equation (C4) has four contributions, one 

for each boundary of the model. That is, 

+ H L H L 
f ¢V¢• nds = J ¢( - * )dz + J ¢ * dx + J ¢ * dz + J ¢( - *)dx 
s O Left O Top O Right O Bottom 

But each contribution is zero because either ¢ = 0 or = 0 at an 
each boundary. Then equation (C4) reduces to 

f f ¢V 2¢ dA = - f J lv¢1 2 dA = o. (CB) 
A A 

This equation requires that 

because all the terms in the equation are non-negative. Therefore 

= = O or ¢=constant, c3 , ax az 
but the constant c3 must vanish because ¢ is zero at the left and 

lower boundaries. 

We may now state that the solution of v2~ = - n is unique, with 

no additive constant, for the given boundary conditions since ¢ = O 

such that ~ 2 = ~1 • 



"1="1 (z) 

<p = 0 
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8 

"'2 ) x H = Uconstant ;...1 ______ .=...;;;.___,,;_.~--------. z=H 

"1 =o 

cp =o 

(8~"1).=o w L,z 

---------~x x=L 

Figure Cl . 

(Sep)- o 
8 x L,z 

-------~ 
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Figure C2. 
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LISTINGS OF THE COMPUTER PROGRAMS FOR 

THE INITIALIZATION PACKAGE, THE CLOUD 

MODEL PACKAGE, AND THE PLOTTING PACKAGE 
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011'1:NSION AVQltl"I 
011'1:NSIOtl O 11 I 1,"I ,C 1111, 56 1 
COt")N Sll11,"I 
c~·ll,.OCIC4 , 0[LT. Tl1'1:,NSTCPS, I TCII, l', All,J'OII!" 
COt")N; ll,.QCIC15,·1'1L T 

C INIT IALIZt Tll'1: 

C 

O[LT-9,76 
Tl1'1:•0,0 
IISVS•0 
ITCll•0 

Ll'1L•51 
1'1LT•2S 
Lll•110 
L111•111 
1'1LB-" 
Cll'S•0,005 
V•10, 
JjalO 
0CLXZ•100, 
tU'I I TCll-600 
IICLF' •0 , 415 

0CL.XZ2•2. •OCLXZ 
OCLXZSa-oci..xZ••2 
C2•2,l5, 
.-.sc-o.oo,s 
OW)Z•-0,1571•JC-06 
TIICF"•271," 
T,€ Tll[F' • TIICf' 

- OICOZ•O. 00522 
OTOZ•-0,00976 
00•0.2•9 
PO•IOOO, 
T0•2N,O 
F"F'l•l. 7 
F"F'2•1,0'!, 
(Ofl,-1 .[-0'!, 
OCL.TA•O. 
(01,..0 . 7 
J°L. 'IL."60•.2 
F"L.J 'l-677,5 
F"u.J 1•79. 7 
Sl..l'u.l•0,57• 
F"u.lllOT•1'1. 7 
~P•0.240 
Pll[F'•?SO. 
')J'-0.00615 
,~. 000•. 00695, ?L.I' 
~-~.00976 
[., ... ,. 1' 0.295 
11'•0 .1161!15 7 
... ,.o. 110226 
r,-r.,·1L.1 1.,.,, : T,<Tll[F'.,2 1 I 

.:1 • t, t2.•Tt<TllltCr ; 
cz-r, 2. 
cs-1r• .. 21 . 2. 
c•-r••T>€TIICF'•II IC P•PPCr : 
CONl -11 . 111',•PIICF' I 
COtlo!aF'LI V 1llv•Tt€Tll[r .. 2 1 
CONJ-Cet.2• •2-2, 
rNO•O , l 
ltt<Ol•0,911 
COt .. -F"NO•ltt<OI . 5 , t.at!;i 
T,€-S,!klt-05 
C0t.&-F"LIV"2 . IIIV•T,€111'11 
CON7"6t ,[•0S• 11,-COll"I 
COt.9-F"L I v.-cll' 
COt,9A•COt,,9, T,<Tll[F' 
COl49-F"LLI t. ·cp 
CONI O•CII'• T,<Tll[r : F"L.•1.. 
CON1 t •Cl"• T,€ TIICF' 
1411 TC 1,,.1 F"•,CONI ,COtl2,COt'5,COt .. ,COl6 
1411 TC 16,51 CON7,C0t•,c0t•A,COl19, COl11 O, ::,,, ' ' 

• rQlll'1ATl1H0,,11 x,[15.~1 1 
5 F'Olll'1ATl1H0,, 11,,c1 5, 71. 

141ITC1,, 11 
7 F'Qlll'1ATl1H1 1 

141ITC1,,s1 
5 F'Qlll'1AT11HO,• Tll OCLC 

1 Pt;ll"lt l'IICS,l'e 
2SITIC 
~8 

~• •• J 

00 1 J•1,1'1LB 
.,J.,Ja.J.J-1 
F'L.LI IJI-F"LLIBOT-SL.ll'L.I..I•"-' 
W.IJl....,.SC•o.«lZ• 100•"-' 
Tll lJI •TIICF'-OUI• 100 •• _,_, 

. I 

w TP 
r2 

TIC IJI TOZ• 100, ,_,_, 
OCLCIJl•TIIIJl-275,1, 
TP!'IJI-OOCOZ•100.•"-' 
PHll"ltlJl•ITPl'IJI--COt,,9•W.IJIJ , T,<Tll[F" 
TPIJl•TPl'IJJ•T,<Tlt[F' 
Pl81Jl•1,-&Lll•100.•"-'• 1T,€TIICF'•TPl' IJI : 
PIIIIC 1Jl _.l81Jl••CxlC 
21'1-2456.S-100.•"-' 
PIICSIJl•1015.25•112N,1,-0Jl,:t11. 2fl. l6 1• •xPO 
IIHOA IJI •O. ooo,.,.,.,1'11(S IJI : Tll lJI 
11124 IJI• I ICOl .. 1"'<0&1JI 1 ••0.51 •rTl •rT2 
0 IF''JIJI • 100• I Tll IJI , TOI" 1 .III• IPOIPll[S IJI J 
Gl'IITCltN IJl -0 IF"'JIJI •COl6, 1Tll IJI ••21 
~1•17,27• 1TIC IJJ-275, 161 : ITICIJl-'5,10 1 
[SL.TICIJ l "6,11•[J<P l~1 1 
AltG2•21,l7• I TIC IJJ -275, 16 1. I TIC IJl-7 , 66 1 
CS I TIC IJI -6. 11 •CxP I AIIC.2 I 
WS I TtltN IJI -C0fl1 •CSlTIC IJI : P l 8'C !JI 
F' 1 IJI •C4•[SL. TIC IJJ : PJe,c !Jl 
f2 (..JJ •C t•C2•F'"l (..; ; 
F'22 IJJ -f'2 IJJ "2 
r5tJJ • C5•F'l lv'l 
F" 1COIII O IJJ aF' 1 IJJ • ~Oll!O 

P l8 
[Sl..~IC 

?St.)}• CPHIPP (.JJ -rLLI (.Jl •W. :..;1. '°'" t -r , ( .J j; •f5 t..iJ 422 :v J 
Jr t?S <J l .L.C.0.1 OS IJJ •0,0 
?5 IJJ • ISQltT t?S IJJ J - rz !JI I. 1'5 t~ l 
SAT-F"4•TP1'1J I 
WIS t .JJ _,. 1,:0,,1 : .. n • : 1 .•SA T•O.S•SA T• •2 J 
S& T~?f (l•Tll'll' t,;i 
141 ,.,, -ws1 Tt..,. 1.;1 , , , .•sAT•o.5,s,r .. z, 

00 
N 



C 

IIHOVIJI-IJl•IIHOA IJI 
c.,tl IJI • 10 trv IJI •IIHOV IJI . 11H) 11 . 11, •~T[ltl11.;1 •ltHQ•, 1~ ; : 
ava..1J1 •• ·•111241Jl•c.,,IIJI 
T?'PIJI.PIIIJl•~IJI 
lolllTC16,21 TIIIJl,0[LC IJl,16'1Jl,~IJl,~IJl,PIIIJ1,PIIIICIJ l , .... ll'ltiw 

11, ,tllS IJI, rtlJI, r21JI, r51JJ, [SLT1C 1.;1,[SITICIJI,~ 
2 r01114&T IIH0,211 x,r6, I I, I x,r6,5,2 I 1 x,r6, 11,911 , ,r9,51, 1, ,r9,5I 
I CONTIN.A: 

loll lTt16,III 
tt r01114&Tl , 1,.·: 1 

loll1Tt<6, 1011 
t O t r01114& T II HO, • WS I Ttltl1 

t r ICON! 0 IIMO& 
00 14 ..,.,,.,_, 
1,111 Tt 16·, 121 WSI ~IJI ,o 1rv1JI ,c.,,1Ttltl1 IJI ,,22 IJ I ,ricoM O IJI ,IIH)AIJ 

I 1,11124 (JI ,rLLI IJI 
12 r01114ATIIH ,111x,[t5,511 
14 CONTIN.A: 

loll1Tt16 , II I 
loll1Tt<6,t021 

102 r01114ATIIHO,• OS 

I '" 00 15 ..,.,,.,_, 

WSI ~- .. , 
loll1Tt<6,6&1 OSIJI ,WVSIJI ,WSI IJI ,IIHOV IJI ,~IJI ,&va., IJI, T,. IJI 

ii r01114ATIIH, 711x,[1',511 
15 CONT IN.A: 

C i.,tfT[ SIN!.LC 5'..eSCltl'T[D VAlll&LtS ON TAN: 

C 
C 

u,ot OVT<7,II 1WSITtltl1111,r515'11 
6 tr<l.t41T, 71 6,9, 7 
7 i.,tfT[<6,II 
I r01114&T IIHO, •0-0 ar TAN: [Jlltl)lt, , I 
9 CONTIN.A: 

DC>f'IL[ 7 
101""-111 
..Cl~ 

00 70 _,., ,l'\.I 
t>O 70 l•t,Lllt 
011,JJ•O.O 
[ 11,Jl•O,O 

70 Sll,Jl•O,O 
C 
C 
( 00'.AC Sl.8SCIIIPTCD &llltAfS NOW i.,tf TT[N ON TAP[ 

""'I 
Ca..L STt>IS,PHIPlt,101",...Cl",LJ\.I 
IVAll•I 
Ca..L l#T&PC1S,L.ltt,~1 

~.rora.. l'001S~...-C 
Ca..L STOIS,W..,101",...Cl",LJ\. I 
1·,&11•2 
Ca..L l#T&P[1S,Lllt,~1 

T,«T& l'ltl~ 
CAI.. sro1s.~.101",...Cl",LJ\.' 
l 'l&lt•I0 
(Al.., l#T6"; 1S,L.ltt,~l 

,. w,, .,.,,,, 

Ca..L STOIS,Moi,101",...Cl",LI\. I 
IVAll•9 
Ca..L i.,tT6"; IS,LIII ,1\.11 

C 
C ~.LIQUID 

00 '' ..,.,,.,_. 
00 61 1•1 ,LIii 

61 S11,Jl•O,O 
IVAII .. 
Ca..L i.,tT6"; IS,Llll ,1\.11 

C Ml, IC[ 
00 V.. _,., ,l'\.I 
00 V., l•I ,LIit 

65 S<l,Jl•O,O 
IVAll•7 
Ca..L i.,tf6"; 15,Llll ,l'\.II 

VOll••Vi 11'\. T•,.tjl 
00 25 ..,.,,.,_. 

25 &VOIIIJl•VOll: 100, 
C VOIITICITT 

C 

Ca..L STO IS,&VOll,101",...Cl",Ll'\.I 
IVAll•l2 
Ca..L i.,tT.IN: 15,Lllt ,l'\.11 

Ca..L "&IIGO IV ,[PS,~r, LI'\.,!\. T, ..t4,Lll ,t,_..I T[II, VOit I 
JT~T•t 
~T-
1'\.1-..e•t 
i.,tlTt 16,241 
i.,tl TC 16, 1051 

Io, rOflN&T I IH0,57x, •STll[&l1 n.u:TION• ,·1 
24 

00 25 ..,.,,I'\. • 
l,,ltlTC<6,. I ISll,Jl ,1•1,LIIII 

"r01114&T1121ix,re.211 
l,,ltlft16,20 1 

20 r01114&T Ill 
25 CONTIN.A: 

C STll["'1 '1.H: Tl0t1 
IVAll•U 
Ca..L l#TAPCIS,L.ltt,~I 

C 
i.,tJT[ 16,241 

C 
C '.>-(~ w-Co,t> 

"'"' 00 16 1•2,LII 
[ II ,JI•· 1511•1,JJ•S I l•t ,JI I ,1)£1..XZ2 

16 011,JJ • ISII ,Jl•SI I I I ,1)[LXZ 
00 ti 1•2,LII 
00 11 -""2,1'\. T 
[ 1 l,Jl•· ISll•t ,JI •S I l•t ,JI I t00..xZ2 

11 C 11,JI • IS II ,J-11 •SI I l l IOCL.XZ2 
Ll"X~l'\.•20 
CO .JeJT, .Al 
Ll""~l1<••2 
00 1•2,LI"' 
[ II ,JJ •• ISi 1•1 ,Jl-S I 1-t ,JI I IOCL.XZ2 
0 I I ,JI• 1$ 1I ,J-1 I I IOCL.XZ2 
IL~•20 
co 27 ,JeJf .... 

co w 



11.•11..•1 
00 I? 1•11,,,1,,II 
t I I ,wl •• 1111•1 ,.ii •I I l•l ,,111 . ~Jt.:I 

21 011,wl•llll,.i-11•111,_,.111 ,«l..l\%2 
ll"-"-•1 .,,~ 
1""-•IO 
00111C•l,IO 
11•11•1 
11-11•1 .,,..,,_, 
0111,wll•llll,.l,.il 1•1111,.il•I 11 «., ,:, 
[ 111,wl I~ 111,.il I 
0 II l•I ,.ill• Ill 11•1 ,.ii•! I •1111 ,wl• I I I cZ,t•OlL•:1 
[ ,, ,.,,.,, 1-C II,.,,.,, I.,. 
[111,.ill-Slll•t,.ill 1)(..-:J 

11 0II,,.,11•11111,.it•I ••le I'.~• 11 cc .. ,:z 
C ,..,. 

01"'-•,0,.iT1-Sc1."-•IO,"- Tt CC..•: 
t 1"'-•,0,,1T t -0, 0 
00 I? l•I •"'-
t I I ,"'91 .. ,O 

J7 011,"'91-Sll,.et ~,: 
~-9'A.•JO 
00 • 1~11.IJI! 
tll,"'91 .. ,O 

• 0 ll,"'91-S1l,.e1 .11(L.,: 
00 17 .Jel , .. 
[II ,,11 IZ,,11 
t 11,Jtl ,,11 ~11,~1 
011,.i1-C 1Z,.i1 

17 011,Jtl ,,11-C c.,lt,,11 
.-1Tt1,,, ... 

ICM FQllll'IITll .. ,Qa,•V-C~• . 1 
00 Z9 .Jel ,"'9 
.-1Tt1&,a1 IOIJ,,11,1•1,i.1111 
... Tt ,,,,., 

29 Cat,TIN.£ 

'.rC~ 
1\1-IS 
C~ .. ?111(11),IJll,~1 

.. , Tt 11,2•1 

.. , Tt ,,. 1051 
105 FQllll'IITll .. ,Q,,•1rC~•.·1 

co J9 "91,~ 
.-1 Tt 11,a, ct <1,.i1. I•! ,.JI! 1 
.-1Tt1&,20 1 

H ~OUTIIU 

,. _..,:~ .. , ... ,, 
.-rllll1t,i.111.~1 , rt<., ·,1scos1 ,, 

00 200 .Jel ,"-9 
00 100 I•! ,L•I .n, s,,,.,,-o.o 
, ., ... ,1 

l#flll(IS,IJl1,~I 

[1£ 
~;TIii: !#TIii( 11,,i.111 , ~1 
~1.u,1011 1,1i.111,"'91 

c~oc«•10t1.T, TIIC,NSTtl'S, I Ttll, IVAll,.#01114 
ll,.f1'tll OVTI?, 11 10[1,,T, IVAIII 

, IF 11.til T, ?I 1,1, 7 
7 .-i1Tt11,11 
• FOIIN-TIIHO,•N ar T,l,t EIIIIOII IN .-iT«• n 
I ll,.f1'tll OVTI?, II IAII, II ,&IIJll,~I I 
9 IFIIMIT , ?1 9, 11, 10 

10 .-i1Tt11,11 
"CONTI....: 

IF IIV&ll,.[Q, 171 t~Fll.t 7 
11[1'\.flN 
N 
SIAIIQ./flt,I: STOIA,I, 101 .. ,..01 .. ,1."- I 
011QalON All01",..01"1 ,Ill I 
C~OCIC!llt\.T 
.A.I.-..Cl.._10 
.A.1 .. 1-.A.l"°I 
00 I .i-1 , '-'-I" 
00 1 1•1 .101 .. 
All , ,1141,11 
11..l""'-"-•ZO 
00 2 .i-.A.l"I ,..0 I" 
11..1 ... 11,,1 ... 2 
00 2 1•1, 11..1 .. 

2 All,w141wl 
11..l""'-"-•ZO 
00 J .i-.A.1"1,..01" 
11..1 ... 11..1 ... , 
00 S 1•11..1 ... 101 .. 

S A II ,,1141wl 
11[1'\.flN 
ENI 
SIAIIQ./T lt,I: l'UIIGO IV, ~.IICLI', I."-, P\. T, ~. LIi, - I Ttll, VOit I 
011CN510N 111:SIIOOI 
COl9'0N s1111,s, 
C0f910N191,.0CIC•lt>t.L.T , Tl"l,NS~. ITtll, IVollt,J'OIIN .,,..._,., ~· wfl-.iT•I 
Ull~•I 
l."-1""'-•1 
l."-1~•19 
XI-V/11~11•21 
00 2 .,.,.~ 
x2•1~,11 .. 2 
00 2 1•1,UII 
SIi ,wl•XI •X2•100 • 

2 CONTJN.£ 
1.1.""'-•20 
s11.1.,.iT1-o.o 
1111.-1.1. 
00 S .,_.,Tl • ..e 
1.1.-1.1.-2 
1111.•IIIL.•1 
00 S 1-U., IIIL. 
s11 • .i1•0.o 

5 C011TIIU 
'=•···/'· 
•1(111-w,ll• IOO. , ...... 
. .,.,,. "..e-o.s, ,v,,, ..e 
00 10 ,.,., ,,ui, Ttll 

c.o 
A 



C'lrr••1,,•10 
t14t., -0 Ir, 
ITtlt•l,1 
00 ,o val,"-f 
DO 10 1-1,1.lt 
lt•tltl•l , .. 11•11 l•l , ,11•l1 I ,.J-l t•l I t , .. •1 1 •4, •I I I , .;1 • •,0111 1 '"'"' 
tl4l~•t.14l,, t[!4t.,,ltt 
1 11,.Jl •l tl,..it•II 
,.._, I t I ,..it .. ,... .. ,, 
DI"'•"""'' 101rr,1111 

10 COtlTIN..t 
LI"-~"'-"-•10 
00 IS .i-..;T ,..e 
1.1~,, ...... , 
00 I I l-l,1.114, 
,._ tit l•l ,..il•Stl•l ,..ii •It I ,.J-1 I •I t I ,..i• I I •4, •I l I ,vi • •,01111 •lilt"' 
f""••-.\ I 1[14l,, It I 
Stl,.Jl•ltl,..;1.it 
..-.·s11,..i1 
..... tltl OI"'•"""•' 101rr,1t, 

11 COt-4TIN..t 

It• tStl•I ,.J1•4, •SI I ,..;-11 •S l I ,..ii • VOIII I • 14, •111t1,.r . I, 1 
CNx•""""' t[N,,lt1 
Stl,..il•Stl,..Jl-fl 
'""•'S t l ,JI 
1teaas111, 
01rr•""""'101rr,1111 

IS COt-4TIN..t 
11.,,,.•20 
00 12 ..,_..,T ,.Al 
IL•IL•I 
00 12 l•IL,1.11 
It• lSll-1 • .J»•Stl•t • .JI •Sll .'1"-1 l•S t 1 • ...,., 1-•• •S t I ,..JI •·.10,, J •111£.Lr 
CNx•"""'" t[Nx,111 
Sll,JI-Stl,Jl+II 

11•.IIIS 1111 
·0 lrT•&Nx I 10 IIT ,Ill 

12 CONTIN.C 
11£S I I TOtl-0 IIT 
00 9 1•2,LJI 

11 Sil,11~5•100 . •Sll,21 
tr 10IIT-£1'5121,21,20 

20 c01,r11u 
21 C011TJN.C 

00 19 ..,.1,..e 
111 S ILJl1,,JJ•5. •S tLJl,.;1-5, •SIL.II-I ,.JI +S tLll-2,.JI 

1411TC 16,141 
1411 TC 16,221 I TCP,RCLr 

22 rQ11N&T11,,,,,.,.. or ITCIIATI016-•,l4,2<,•RELA• AT IOl1 rACTOll••,rll.61 
141JT[ 16,141 

•• tQ11P1&T1 111 .... · 1 
1411TC 16,261 

l(; r~Tt1H0,501,•IICSl0'JAl..5 IPI P(lt([IITA(.[ CHAI,_[, , I 
1411 T[ 16,251 tllCS t 11, 1•1, I TCP I 
r~r11011,,r11.511 
II[ T•..-,, 
(1£ 

co 
u, 
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, . : •• : .. . -- - •;:- ,Po•:~.o·. ·2 
• 4~-..; ,• •• .l? ' •II 
,J : t:t'"O,l' , 

C 

PO ,.• ,i~4~ ~[. .. 
: : ''C' .S: J ". ro<[ : • :; . 
c: ~ ·.s:J!. '"':'r ·.,• · 
c:~ r, 9'.. X I(' ~ :r[~ . .56 : .::r· ... :.56 : ,JPO ""[o- . .56 . • 0 :e .5o . • r-22 St; .r- ·: 

' ;•,' ,56 J ,Fh<°A . '6 ; , ? t 2.S ; .56 ; , r -- ; :36 : ,f" '. .36 . • '°2 31; . ,r-3 56 
- ,;~•. a..oc «.:2 • ..... P . ... ~. : E .... •: ,Q(_r ,PH:: . ·--c·~rr-. ::>. : · . :2. : 3. : .:.E.0 

· s.r ... ,~ . .:JP~2. :H(. ·~s.·,_,.. : ""E? ,P·. :s. ·-tE- •.: 
: :~•. &.. .Xt<!J .... e . ...._a, .... 0 '. .:E .... ,:2 .:E .... • :s :. : :· ~. : :· ~- : :·. · ·. : :· .&. : :· .2 · 

. . r .:, ... ... 
: ;,"fl,r, BL:)(,:: J : E- • . 7; ~, • .S •[PS . : ·[o. ; ·. co . S ; .,.. 
::-l"MOf, , BLoc,::s . ,,,, • .56 : .e c,: · • .56 : .: .... .56 .. : .... .56 . • E ... . .56 

• · · · • .56 : • G '1 : : , .56 : • " : : . .• 56 : 
r : '""10,,. BLx o::- ,r ,zs :. : ·cE • :s· : 
'.Jl"l'10f • BLOC 0::8 :: : : ' : , .56 : 
: :~; a.o:ll'.':c !"."AP-P1. r 12. · - : . :r:~"' · ·2,3 : 
:;"""°! • BL. :>: I( :: ; r>,._ ;• • :PP~.• 
::'1'10!1. BL0CO:::;? · :~:...: :22 : 
'.)l1'10ll BLJ:,::•J 7 : • : : .r,:: :•c, .• :; p: o. :; o: ·. : ;o :; : . : ; o : e, :: o : 
:- J~.1. 8'..X«::~ S :::i...._ "." .':Si ": . :~P. ~;•.••. : :•.·2. ;.?4 .. : : . X ; rr- . 4 ·-. )P"'-. :,•ou 

7 ;~ _ ;!'1;7 : ·. sr: ,i c s AS s·.PP_ :£: e , ·.SCP :·: -ESS ·~ ... . : ·. _ ;-:· : •"'.: 
·_:.,17-~ 1: 
_; -S 7[P• 2Sl 

•1,~? : r r :-ES 
, ,- ; _[5• 15 

•c;.~s· · :~ s·[P •. ·.LP£ 

C PAP•~ ·[PS 7:: : E7[P,- :r£ MJ'~ - .... , 7; ~ s·[PS 8(r;)P[ P_ : .. :, ,;,F>O :·.·:•,; .[·: 
!P:..~.«• tO 
11"1> '. -«'.-S0 

C 
C 'l.111[? or _ ;,£s TO S,:: !P :,, PP ;r.r:, ,:; .• ..,. : &a.Es·: .'.#' Jf' "'Q'.1,·•:·. 

,. ___ :,£s AP[ PP ;r.7[: S7""7:,i; rPCIP' •:;p Jf' "'Q'.1 .·•:·. ::;wa..u:,:: ; 
. s,- :P•~ 

< .l~A<S P[P ~:• .c~."' MASS S":~PA~[ A!£ P~:~ -::~G £:C PR :~.-::~ G 
1#'1 ,, --... ; 
IM :2. •:,<, 
IM · 5 , •6'<'. 'XrA • 
1t1 ·4 . •6W'.'Xre· 
l t'\ ' S . •6W'.'XrA2 
, ,, ·6 . -.;..:xrez ,,, ·.-~.,..; 
11" 8 , -2-. ,,, ~---·. ,,, ·~--·><·• 
I I" . . , • ' >i. 
\ I" ·;- . -5,<·• 
( I" ., .--s: 
I" ·~ --4~•£~ 
I t" ·~, . -v4.-': 'l"'P 
l t"t 'I, . ~ ' ~,-. 
i ,., •4.-(:::." ,I"' ·~. •4.#'S;;-
j M " · •4~S; ' 
11"', i"~ - -••#-~; 4 .. ""'', . . ... . ; ,. 
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:T ,.,,,,A'f lt ,t5J•10t-i STR(.l~ 
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; ": IJIPAr 12, 14 1 • 1 Ot-f""P 
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C 
C 

~£L. ,:z•z. •OtL. ,: 
t'CL. -=so-oc...,:• •2 
.:Otl;!-fL.I V- (ltV•Tt«:Tll[r .. 2 : 
, Cli,. <COtll• •2 J. 2. 
('C'~41 t•CP•Tt-€:TRC.F" 
.: vt•-r-11. CP 
C~1-fL.A11•0CL.><:'.••3 
r•-fL. IIL. - (IIV• (Tt€rlt[r••2 J l 
..,. T..,.._ T• I 

IICAO )r,i; 111 51111,Lf SI.AISCIIIP TCC \ Alll"8LCS 
8(,fT[II )N ll.1 l lWS ) TClll'1 l1J ,r3 t3' l l 

26 )r tUI) T .II 26.zg,27 
2 7 l#ITCt6,211 
21 r~T l IHO. •tor OIi PAIi! r1 [FIIIOP : · , !'10CC..• 
211 COf,Tl~ 

ll'Jr[II IN ti. 1 I (\/(Of", vtor : 
10 tr tU.l T ,I I 10,12.14.12 
12 I# I TC t6,63J 

C.0 TO 31 
14 COtlTl~U 

1rtr-TIL.CS.CO.OI C.0 TO 119 
00 N OC•l,l#"IL.CS 

H CAL.L 5'Cf"L. t8 1 
119 COt•Tl~ 

C IICAO INc. PHI .o. Ti<T&.wv ,w....w l . voPr IC I TY , PS I •• ..,... , ,.. . w-CJtf .c:i: ' ·. : s.: o s :.' 
C 
C Pt<l.O. Tt«:TA,W'I .W...,Wl ,VOIIT)CI Tf 

CAL.L IIOAT& t A,1.111,1'\..BI 

C 
C 

C &L.L IIO&T A tC, I.II 1 • l'\..BJ 
CAL.L IIOATA <C, 1.111,1'\..BI 
C&L.L IIOAT&t0,1.111 ,l'\..BI 
C&L.L IIOAT&tr ,1.111,1'\..B J 
CAL.L IIOAT&tc.,1.111,1'\..BJ 
C&L.L IIOAT&tB,1.111 , 1'\..BI 

( 1"1 Tl&LIZC TOTAL t10 IST'..IIE SC-
. 011,T1-o .o 

00 53 .J- 1 ,"-8 
00 53 1•1 ,I.Il l 

53 O)llTl•Otr1Tl•C t l, .JI 
OI IIT1•0111T 1 •0CL.I.ZSO 
l#ITC <f.,!>4 1 OIIIT1 

!,4 f"~T l 1HO,•TOT&L t10 IS T·.K AT IIIIT IA TI Ot.-•,r9. 1 1 

~ AL.L 81t&r.WT!l " l 1 1,A t l . t J . 1U0CS J 
': Au_ fll'1,,1£, !f l'f { 1 J I 
~ AL.L 111'&1.wT 111• 12 1 .c 1: . 1 1 ,ru,,;s ; 
~ AL... lll'M.COC (1" (2 1 I ,:~ .AI .... T (Pl"! t f ~ i , ':! t . ! ; . ! &,,111CS ; 
': '-L.L f#IIJ£1: ttl"l :t ~ ; J 
,: ~ f#IAI ... T [Pl1 !9 l ,.:, '.t . t ; ,. rl,,fltS : 
~- 111t&r.cn1" :w11 
': Au.. f#IM&.T 1'11 <1 1 ,.r I t• t l ,.PUIOS : 
' AL.L .. ..,t:,. 1rt• c1 ;; 
' A\.J. f#IM&.T tll"' : 7 , , '., : ! . t ; , tUll'tS l 
' AM. fl'All'.t' !fl"' '. 7 , : 

.: &L.L. 8'UU,.;T(tl"' (1 2 1. 8 i •. ! ; . r'-"'Cs ; 

.: a.L~ e,t&t.£1.'.ttl"' t tZ :: 

PS I , ~1- COt'P , w-COt1P ,COO Y ·• I s :os ; f 

CALL. ltOAT& tH, L.11 1,~81 
C&L.L POAT& tC ,;..1>1, ~ 8 1 
C&L.L IIOAT& tO,L.11 1 ,1'\..11 : 
CAL.L. IIOAT& tC.. L.1> 1 ,1'\..11 1 

srJ11 1r.c. v-cOt'P.w-c Ot'P ,u.c c ~: , ·. : s .:~s : r , 
( AL.L. llll&NWT 1111 ( 15 1 .c t 1 . 1 1 .ruic s , 
CAL.L Bll&NCOC t~ l 15 1 l 
C&L.L IIIIANWT , ~ , 16 1 .c,,.,, .1uics , 
C&L.L llll&NCOC 11-11 11 6 1 I 
C&L.L IIIIM.WT(~ (l7J , c.t1 . I J ,1UIC S ; 
CAL.L IIIIM.£1C l~ tl7 JJ 

co<.:oc r011 c~ti or r!L.C 
ll'Jrc11 tN11. 11 ,vtor.vtor , 

60 Ir lU.I T .81 60.62.64.62 
62 lolt)TCt6.UI 
63 r~T t !HO,•PAIII Tf [FIIIOP Ill !'10CE-• . 

C.0 TO 31 
64 C0t1T l~U 

C STOll lt.C. PS I UC) ltl l TI ALl : tr ,i; [ XTIIAP SCt«:l"C r:JP S'.JP 

CAL.L 8R»a.T1t11 1t 5 J. H t 1. tJ .r"4'CS l 
CAL.L B11&1-.COC lll' l l31 1 
C&L.L llll&NWT (~ ( I l l ,H ( 1. 1 I .ruios1 
C AL.L IIIIM.COC t~" t II I I 
C&L.L llll&NWT " " ' 1111 ... , I • 1 I . ruios , 
CAL.L llll&NCOCll" II II J I 
C&L.L llll&NWT (~(20 1 ,H ( I , I I ,ruios , 
CAL.L llll&I-.COClt" t20 11 

C :1,1TIALIZC L.AC.)IIT RC7JT l 1.C rOP Tl l"C : r,:P[~r,rs 
T II I -OC.. T 
co 22 oc-2.• 

22 Tt OC l •T tOC- 11-Tl!I 
C S TAIITIPII, T ll"C STEP 

11 .. A'15Tl'•O 

3, COt1T)rU 
TCHOC•T l l"Cf" tAPc; ;. 100C. 
1r t TCHOC.<;C. TL.l l" I T; C.0 TO 3 ! 
OC;..A-OCL. T 
T l l"C•T ll"C-CCL. T 
I 6 TCPS-t 6 T[l'S• I 
If" 11 6TCPS.-. T .L. )MS T[P ; -;c , • 3 ; 
I PL.? T '""lO 116 T[l'S, I PL.C HOC I 
IPl't 1T-tt:X, 116T[PS, I PP: HOC ; 

~ &L.L C )&r.C 
11.A'15 TP-t~TP• ! 
r,.c c11..l'STP 1 .,.,. 1,0, 
; r t lT[P,',(.11 .... )T[P l ,, ., 5 : 
1# ! TC <6,40 1 16TCPS 

, -:. ,. ,.,..,... r_t , ,,·, ,, . !H .• TH:S ;s r'}lf r,~ s~E.P•. :.t 
I# : T[ c,.~. CCL. A, r ll"C, I TCP,f"nro,.: IP~P 

.u; r.,......T \I HC,•OC .. T••.f"6.2,• Tll"C••.f"l.2,• : ·cP••, : ~.• c:•< ~: : 
• ( tU',f•• ,.[ 1 ! , 6 , • ': I P".:'~&T 1-:J;a• .r1 . , : ..- :r, !6,., 7J 't• -: . -: :P-: ·. -:t P-: :-:. . -: :P-: e 

00 
00 



.i· ro,tt1.a r11 H •• e, IJIEA••.r 1~.!.• ToP••.r ·:. ~ •• s ::Es••·""·:.·.• a :··: .. 
1 •• ,J" 10. 1 I 
""I TC ' '·"' 0L. T ,CL Tl",QIH ,OP:'><, ;TP, cri-, :x: :ff. :ii'•·:: 

.ie J"o,tt1.t,T , TH • •O. IPTL.Ol,,l••,rS).3,• 1'4 1 • l"~••.rs.3.• :.. , . ·r _;-...-•. J" S- .3. • 
! P1l .... lt4'••.r9.3. • o. ~oP-•,J"9.3.• ,.,: · :·.G••.J"S.3 .... •:..·c· : t-J.•t..[ 
~roP ,tJt(.&•• , r9.5.• PA TIO.AP[.& "."C -.-:·c :·.·tiPA-••,f'~.3 . 
""I TC 16,•lll OINTI ,OlllT2 

Jlf J"O'lt'IAT(tH. •0,TVTAl. AT PR[ '. 10'.'S ~1 !"1£ s•rc>•··""i.". • :..·:·,... • .... 
1 S TI~ STEP•• ,r9. 1 J 

a1t1T1•QINT2 
TOTl~•Tl~CHC 1221 ·Tl~CHC , TI 
J.411TEIG,••1 TOTI~ 

J4 rQll?1AT IIHO, •TOTAL Tl~ r()f> TI ~ STEP•• ,re.3 
.,.ITCl6,•1 l ITl ~CHC IIJ ,1•1,22 1 

JI r~T11011 ,, r,.3 , I 
00 6 1(•1,21 

45 TOF"IICl•Tl~CHCIK•l l·Tl~ CHC IIC ; 
>#ITCIG,•1 1 t TOr1.:1,1C•1,2 1: 
C.O TO 50 

31 CONTI"'-£ 
>#I TC 16,321 

32 r011?1ATIIHO,•K l! .C TIC tr.CIIC.Y r:,, AL.. T: ~ s r [PS• ; 
>#ITC 16,3!11 1rl([ tlCJ ,K•l ,tU<S TP : 

!l!I r011?1ATl10 11X ,E12.5ll 
>#JT[l6,!14l TLll"IT,L l l"ST[P,!,._...IT[II 

!14 r~TIIHO.• TI ~ L ll"IT••.r,., •• Tl ~ S~[P ~ : .. :r- •. :,.• :~[I>• ·::-. 
111"1 T••, l!l l 

TCHC•T 111[f" tAIICil / 1000 . 
>#I TC 16,,.;1 TCHC,NSTCPS. I T[J> 

,.; r~Tl1H ,•Tl~--.r,.,.• Tl ~ S ! EP••,13,• :rci>& rl0' '5••.:3 . 
[t() 
SIAlltOVT lt.c l>OATA tA,Ll>l ,!Ull 
01~.ISIOl'l AILl>l,l"LBI 
C°'""v11LOCK•lt)CL T, Tl~,t.lST[PS, I TEI>, I ',All,JO<>!" 
Bt.,rrtll ltHl,ll 10£LT,IVAll l 

1 trt\.flJT,ll 1,4,2 
2 i.,tJT[IG,!l l 
!I r~T t 1H0, •PAIi! TY [1111011 Jr, IIOATA OIi [Qr• . 
• Bt.,rr[I> ltl ll,11 IA(l, ll ,A ILl>l , !Ull l 

11 Jr l\.fll T,ll 11 , 14, 12 
12 J.411TCIG,!11 
14 .C0t1T1tU 

l'[T•..PI• 
[I() 

SI ... (! J T I I .C O I At.C 
C°'""v11l.OCK1 1wSJ TC"'1 1'6l ,C Jf"'.; 1'61 ,c.PIIT[lll" l!N. l ,PIB l!N. l ,r22 t!N. I ,r, : , °''' o t56 1 ,IIHOA t !N. 1 ,1>124 ' " ' ,ru.1 ' " ' ,n t!N. 1 .r2 ' " ' ,r!l1'61 
~'-"101•19..0CIC2t 1'1.. T ,...II ,L1'1...0C.. , .Z.IIO.r ,IIHO I. TH[~r , CP, C 1 , C2,C3, C4.CP 

t S,f'LAl",COtlU ,(HC ,PUIOS,!,._...I Ttll,IIVI S, '..0£.Lx;'. 
~')"10U/LOCK3, -Al,l"LB.Ll> 1 ,OC.. ,.~2. 0 CLx::sa. COt'2,CO!.!l,(OW I , (Of., (Of'21 

t ,J"4, JT 
~"'""V8l.OCK•10E1.. T, T 1~,PISTCPS, I TCI>, IVAll,JOll?1 
~~ v 11Lo,:,5, A 111 1,!N, ) ,B (111 ·"' ,c I 111 ·"' .o I I'' ·"' .c I I I I ,!JG : .r ; 

"1' 1 ,JG ) ,C,111 f ,5' J ,H {1 I 1 ,5' i 
~?09q,111Lo-:.:11,.,, ,25 ,. 11cc, ,5 1, 
~')09qll8l.Q".tf.l1Z1111,!N. 1 
~~ v a.o,:.-i 01 I TA~A Y12, I 7J , Jf'')lll'1A :2, !I ; 
'?'flll,18l.0,:, 1 t . JP;,.?T, JPlt!•T 
~'l"")I V8LO-:,t2r TJ~~HC 122 1 
":,• .. :JIVBl.O-:" • • T I I, l ,r.- :10,, ( JPCI>, C IPC T , ( JI>( I?. C 11>( 8, : II>( 
' ~ µ LC,,:1" 15 .' 'l. T ,'1/IT ,')TP, ')l"Tt, -:.1, ,r2.~• r: ? , X :rf" . 4 ·~.,,--. 
'?"")11111L'l..-ll, .NIP 

. .......................................................................... . ........................................................................ 
C • • •• • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • •• • • • • • • •• • • •• •• •• • • • ••• • • • • 
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THIS IS Tt< STAIIT or A ~w Tl~ ST[P 
T l ~ CHC t 1 l •T JP<f' IAIICil : 1000. 

C IICAO IN OLO VALi..£ or PHI At() a 
CALL 111Uffl0tt#1(1l,A il,ll,~Sl 
CALL 1111.INCIC 11#1 t 1 ll 
CALL 1111»110 lt#1t2l ,[ t 1, 1 I .~Sl 
CALL IIIANCIC 11#1121 l 

V IS IN C, w IN 0, COOT VI SCOSI TY Jt, Ci 

C SC T .-1 TO INITIALIZ'C OIITCIIOCC SCH[~ 
CALL 111»11011#111 l ,H I 1, 1 l .~Sl 

C 
C 

CALL IIIANCK 11#111 l l 
AO-oEL T , OCLxZ 
A I •AO I OCLXZ 

C C01'1PVTATJON or a At() PHI (Q IN[, PHI IN Al 
C r JPST HALf' or Tl~ STEP r011 TOP POIITIOt• 

00 I J•2,1'1..T 
00 I 1•2,LI> 
COCF' A 1 • t 1-C.C l • 1 ,JI +c; II· I ,JI l lt)[LXZ2•C t I ,JI I •AO 
COCF'II-COCF'A 1 •COCF'Al 12 . •C. (I ,JI •Al 
CO[f'AI-COCF'A 112. 
H( I ,JI •All ,Jl·COCF'Al • IAI J•l ,Jl •Al 1-1,Jl I +eocra, • ( A ( 1•1.~·1-z. •A t I ,J 

1 l•All•I ,JI l 
Zt I ,JJ-C ti ,Jl • COCF'AI • I[ 11 •1,JI-[ (I -( ,Jl I •cocra, • ([ (l • t , ~ ; - ;: _•[ I : . J 

11+£11•1 ,JI I 
I CONTltU 

C r !PST HALf' or Tl~ STEP r(Jlt TH[ L[f'T POIITIOt• 
Ll1'1X"\.l"L•20 
00 !I J-.JT ,..e 
Lll"X"\.ll"x-2 
00 !I 1•2,Lll"X 
COO"At•C t-GC l•1,.JJ •Gt J-1,.JJ J ,'0£L.XZ2•C < I ,JI J •.&0 
COCf'II-COCF'Al •COCF'AI 12.+C. (I ,JI •Al 
cocr A 1-cocr A, 12. 
Ht J ,JJ•&t 1,JJ-C0CF'A1 •<AI J•t ,JI-A< 1-t ,.JI J +COCF'8t • t i.I I•t , ..;J-2 . •A l I,..; 

t J•Atl-1 ,JI J 
ZI I ,JI-CI l,Jl •COCF'At • t[ 11•1,Jl •[ t 1·1 ,Jl I +COCFB1 • t[ I 1•1, .JJ -2. •C I I ,J 

11+£11·1,Jll 
!I COtffJIU 

f'IPST HALf' or TIP< STEP r011 l>Ji.t<T POIIT IOt• 
IL~•20 
00 5 .J-JT,..e 
IL•1L•1 
00 5 !•IL.LIi 
( O[rA1• I t-C.t l•t , JI •Cit l·l ,Jl I /t)[LAZ2•C I I ,JI I •AO 
,, l J ,[Q, ILi cocr&t• I( -~ t l•t ,J J ., , l ,JI., I 1-1 ,.J-1 ,-, t i ,..rt J: , 00..,.Z•C 

f ! J ,.JI J •AO 
( ?Ult •COCF'AI •(OU Al , 2.•C. 1 I , JI •A l 
(O[F A I "'.'.OU A 112, 
" ' I ,JI •A 11,JJ -,:?[.r At• !A I l•t ,..;J -A I J-t ,JJ I •COCFlt • t& I l•t ,..;J-2. •& t I ,...i 

! >•A t J-f ,.JI J 
z 1 J , .;1 -C , J,..;1-,:ocr,1 • ,c I J•t ,J1-c 11-1,..;11 •-:oc.r11 •cc,, . ,, ... , .. z. •C t 1, .... 

CX) 
I.O 



t J •C, 1 ... 1 . .... 1 1 
!> ~Jt.TIPU 

CAU. r11sT1AO,AII 

OC'O POINTS,[f,() or r!IIST -.r or r 1~ S~[P 
CALL OOOPTS IH,Lltl,1'.8 : 
CALL OOOPTS1:,Llll ,1'.8 I 

QIPlT2•0.0 
SCCOt.O -.r rQft TOP 

ro::sA\/C~ tl .. P1..•20,JT I 
Gt~•20 , "1Tl•<G<LMl..•21, .. : Tl • G: 1-.P1...• t ~ • • .; .,. l l 2. 
00 2 J•2,1'.T 
00 2 1•2,LII 
cocrA2• I,-, 1 l ,J-1 I•(;( I ,J•l I l .-C[L>-:'.2•C : : , _ :; -~: 
Cotr82-CotrA2•Cotr "2. 2.•(; 11 , .;: •A : 
cocrA2-cocrA2: 2. 
A, 1,"'1 -Ht 1 • ..;,-cocr1.2.- tt-t t 1 •• ) - 11 -H t 1 ,, ..;• !: 1 • : oc.F"e.z• (H i.: ..... 1, - z . .... :: . ... 

1 J•Ht J,,..J-11 J 
[ 11,.JJ•Zt I ,.JJ-COCrAZ• , : ; I , .J-11-: :: . ... . , : l • : xrez- ;: ; : . .... :-2.. •: : : . ... 

I J•Zll,..J-11 J 
QlNT2•QlNT2•[ 11, J I 

2 CONTlPA.C 
<. IL"-•20,JTJ-rO::SAV[ 

C SCCOPC -.r rOft L.CrT 
L l1<X-L1'.•2C 
00 4 J•JT ,...8 
Lll<X-Lll'1l<-2 
00 4 1•2,Ll"'X 
COCf"A.2• t t-<.-t J ,,..J-1 I •<i l I , .J• 1 J l , '00..X..."'7•0 t l , .J l I •AO 
If" t.J.[0."81 CCCf"&.2• ct -Ci t J , ..;-1 l •<i t i ... .n I . t)~ :...: +O t I , ..;JI •&0 
1r 11.[0.Lll<XI cocrA2- I 1-<.I 1 • ..;-1 I • (; l l , JI • (;( l - 1 • .;: - (;( 1- 1 ,J- !JI OC...>-: 

II ,JI I •AO 
COIJll2-COCJ'A2•COCr "2, 2. •<; 11 , JI •A 1 
c ocr "2-< ocr "2 .-2. 
& ( l ,"11 ..... , J,,.JJ-COCf".1.2• (H ( J , ...,-1 J -t-1 ( J • .;• ! J J • CXF"BZ• (H ( 1 • ..,., J-2 . •H l I ..... 

1 J •H ( J , .J-1 I J 
[ t I , "1 1 •Z I I ,JI - COCJ" &2• ~ t i • .• ;-1; - : I I ,..._,... , I J • : OC.f"82• 1: I I ,, ..;• 1 l -2. •: I ! , ...; 

' 11 •Z ll. J- lJJ 
QlllT2•QlllT2•C < I , JI 

4 (OIITIPA.C 

' se:itc -.r rQft Rl<iHT 
IL-L"-•20 
CO lo J•JT ,...8 
J1..•l1..• t 
C'j 6 l• h.,L.P 
-':" ?Cf"A2• I 1-<i t J ,.;-1 J •~ I : , .J•I J l . t I . ~J J•.&0 
I f 1..; ,[t;t • ...e1 1: 0Cf"&2• It -'#! : ,~ ,; • <i t : , J l i , 'OE.r.1'.M ll • ...;JJ ~ 
tr I I ,['l, IL J ( ?[f"&2• ! : - ~ '. J • •. ; -t i •~ i ! , ..;J •<i t l • t _,.., _;-• t _J,. t • ...; J l 

• ! 1 , ..;; I •AO 
-: xr12--:?CF 1.2• -: xr &2 . 2. •'i : 1 , .... ; •, 
~?Cr •z•-:ocr A2, 2. 
, : , , ...,) ~ t t ,..;1-i: ?Cr•2• <t-1 11 , ..;- t i -t-t , 1 • ..;• ,; 1 • :: xraz. t H ( l • ..J• t 1-2 ....... f"I......, 

• • •H : l ,.J- f ; ; 
C '. : , ,JJ •Z t J , .~i - "': ?[r&.2• c: 11 , ...;-' 1-: 1: ,.;• 1 J: • ': XF"82• 1: 11 . ..... , : - 2 . •: 1: . ... 

• , •l • J , .;- 1 J; 
,;, :Hf2•~1'if2•C ! : • • ,; 

I,. ' ~tTJ flA. 
•;.,.-,.....- ,5,.r l'"(:r :&P",, . '.~~~. 

IPT~ow OVTY'LOW 90\.tCAlt l[S 
( AU. l~T l[ , Llt l ,1'.11 
CALL IPOJT IA,Llt l ,1'\..1 1 

,: II. ~. rQft Q »CJ l'Hl AT 000 POIP,~S.[P,C :,r sc-::i-c .,..._, :r ·:wc s•cp 
CALL OOOl'TS 1[,Llll ,1'.111 
CAu. OOOPTS IA, Lltl,1'.ll l 
Tl~CHK<41•Tl~r 1All<, 1 IO ~C. 

l"O I ST\IIC 91.LAN::C Tl4t0\,<;H 80'..tllAII ICS 
CILT•O,O 
QltT•0,0 
CL no-o.o 
QltTN-0 .o 

C l IPTLOW »CJ OVTY'LOWI 
00 11 .J-2,...8 
CL T-0.. T•C t 1 ,"11 •[ c 1 ,..J J 
QltT-QIIT-C CLlll ,JI •C ILlll ,.;1 
0L ™'"<IL Tl'O-<, CI ,JI• I[ 12, JI -[ l1 , .:I I 
Qlt~r,o.(; !LIii ,JI• I[ CLltl , .;1 -[ 1;.lt, .;:: 
QlNT2-0lNT2~ 11 ,JI , 2. 
QIPIT2•QlNT2•C CLIII ,JI 2, 

11 COl•TlN..C 
CILT-0..T•C II , 11 •CII • I J. 2. 

2 . 
0L T-0.. T•0CLT•OCLXZ 
QltT-QIIT-C 1L111, 1 I •C !LIii, l I . 2. 
QltT-QIIT-C CLIII ,PUii •C CLIII ,PUii . 2. 
Qlt T -all T •0CL T •0CLXZ 
0L ™'"<IL TN•OCL T 
Qlt~TN•OCL T 
Ql?•O.O 
Q~O.O 

,: t T'JP1 
00 12 1•2,LII 
QIPlT2-0lNT2•C l l, I I, 2. 
~TPl'loQ~ I l, 1 I• I[ II , 1 I -[ 11 ,2 I l 

~1?-0l?-011, 1 I •Cll, 1 J. AO 
Ql?-01?-0 II• I I•[ ll, 1 I . <2 . •AO : 
Ql?-01?-0 CLlll •II •C 1;.111 , 11. 12. •AO I 
Ql?-01?•0£.L T•0£LX: 
Q TPl'loO r,,<,0£.L T 
Qlt1T2-01PlT2•0CL, .:SQ 
,x. 1rr-011,T2-01,.T1 
'X, l 'l""JL T•QIIT•Ql?•QL 
-.....S-AeS lat 1 ·11 
1rc~.LT •• 001 1 'l01 ·,-o .~ : 1 
~•r:o--x1rr . -x. 1·, 

·..- :~ :.. :..J. • ~.v.u w1 r.-. r-< PJt,c•.1:r : :,,, T[Qfif tPft~:: 
• &ft, NI•-: f?IJ Pl.)I,. 
t,'j 10 ...-,.~. 
:,,, '~ : .. ,,..,, , 
, 'l , ,H -( !J , ,Jl 

I..O 
0 



10 HI I ,.JI •O.O 
C 
C 
C N:lW c~TC T,<TA,14.,»ll w,.· 
C WI IS ALl'CAOT IN H IWl-1 
C C~TC ING, WI/ INC, T,<T& IN 0 
C W IS IN r ~IICAOT,Q INC, WI IN H, PHI Ill A 
C 

Tll'l:CHCtil•Tl~IAltGI , 1000. 
C 
C IICAO IN 0LO V~\.CS r:,(' T>€TA 
C tTH lS IS TO GCT L.~ 110\.N)Allfl 

C 
C 

CALI.. 8"&MIIO tl-r!t 101,011, I I ,tulOSI 
CALI.. 8"ANC1Ctl-r!t!0 I I 

C TOP P'OllflON 
00 207 ~1,"-T 
00 207 1•1 ,L.111 
0 I I ,.JI •T,C:Tll[r •At I ,.J I -CONl•r 11 ,.JI 
OS-lid I ,.Jl-f'U..11.JI ,r I I ,.JI , CON11-n I.JI J •r5t.JI •r22 I.JI 
1r 1os1 15, 15, 1' 

15 OS•O.O 
16 OS• tSQltT IOSl-f'2 t.JII lf"5 I.JI 

tr 105-0 I I ,.JI I 26,26,27 
26 Gtl,.Jl-0.0 

C tl,.Jl-f"tl,.JI 
GO TO 207 

27 0 ti ,.JI -OS 
SAT-f"4•0l1,.JI 
CI I ,.Jl-f"1CON10 I.Jl • 11 .•SAT•0.5•SAT .. 2 l 
GI I ,.Jl-f" I I ,.JI-C tl ,.Jl 
1r1Gtt,.Jl.L.T.o.01 Cll,.Jl-f"ll,.Jl 

207 CONTI~ 
C L.CrT P'OIITI ON 

L.IP'X"""'-•21 
00 201 .i-.JT, ... 
L. IP'X-L. lltX-2 
00 20!5 1•1 ,L.1111. 
0 I I ,.JI •T,C:Tll[J"•A 11,.Jl-<'.ONl•r t I ,.JI 
OS-IA t I ,.Jl-f'U..11.Jl ,r I I ,.JI / CON11-f"1 I.JI I •r5t.JI -r22 I.JI 

· 1r 1os1 19, 19,20 
19 OS-0.0 
20 OS-tSQltTIOSl-f'21.JII lf"51.Jl 

tr 105-0 ti ,.Jll 51 ,51 ,Si! 
51 Gtl,.Jl•O.O 

C 11,.Jl-f" 1 I ,.Jl 
GO TO 20!5 

5Z Otl,.JI-OS 
su-r, 0 011,"1 
C I I ,.JI -r lC0,.110 I.JI• 11 .•SAT •0 .5•SA T • •21 
Gt I ,.JI -r ti ,.JI-CI I ,.Jl 
1rcc;11,.J1.L.T.o.01 Ctl,.Jl-f"ll,.JI 

205 (011TIIA.C 

.Jf • .J 
(Au,. Tot:TAt 11,.JI I 

nt (OUT 111..C 
DO 205 1•1 ,t.J'\. 

205 (Au.. Tot:TAtl,"-91 
' •1.,..r P'OIITIOII 

, .. ~•20 
c.o 209 Ja.JT,..e , ... , ... , 

11-1 .. -1 
1r1.J.GT • .JTI CALI.. T,C:TA tll ,.J I 
00 209 l•l.,,L.lt! 
0 I I ,.JI •T,C:Tll[r•A 11 ,.J l -CONl•r I I ,.JI 
OS• IA I I ,.J1-ru..l t.Jl ,r I I ,.JI , CON I !-rt I.JI I •r5 lvl •r22 I.JI 
1r1os1 25,25,2• 

25 OS•O.O 
2• OS• tSQltT 1051 -r2 I.JI 1, r5 I.JI 

Ir 105-0 I I ,.JI I 56,56,57 
56 Gll,.Jl•O.O 

CI I ,.JI of' I I ,.JI 
GO TO 209 

57 Otl,.Jl-0S 
s&r-r,,o 11,"1 
CI I ,.JI -r ICON! 0 I.JI• 11 .•SAT•0.5•SA T .. 21 
GI I ,.JI -r 11,.Jl -Ct I ,.Jl 
1r1Gtl,.JI.L.T.o.01 Ctl,.Jl-f"tl,.J l 

209 CONTI~ 
L."-1"50"""'-•50 
00 204 l"""'-P50,IJl1 

204 CALI.. T,C:TAll,l'Utl 

T 11'1:CHC I 71 •T 11'1:r IARGI / 1000. 

PL.OTTING~ PltlNTING PHI »IJ Q 
1r 11~1501,500,501 

500 IVAll•l 
JOl!t4a5 
CALI.. ~T IA,L.111,l'Utl 
IVAll•2 
C Au.. l"IOOPIINT I[, LJI 1 , "-81 

501 Ir IIPL.OTI 505,502,505 
502 IVAll•l 

CALI.. PIICPL.OTIA,L.111,l'Utl 
IVAll•2 
CALI.. PIICPL.OTt[,L.111,l'Utl 

505 CONTI~ 
Tll'l:CHC Ill •T ll'U' t.t.RGI , 1000. 
tr I IPL.OT.~. 01 Tll'l:CHC 191 •T 11'1:CHC Ill 

• IIC-STOIIC ""I 11,(J Q tlN a »ll C IICSPCCTl\l[L.11 
CALI.. 8"-Ttl-r!t!l,Al1 , 1l,~Sl 
C&u.. llltANCICIN11111 
cau.. 111t-111-r1121.c11.11,tu10s1 
C&u.. llltANCICll-rll2l l 

• PL.OTTll4G Al~ Pltl14Tlf,c, T,C:TA, WV, ~. WI 
I T,C:TA 114 0,Wv' IN C, 14.. 111 G, WI 111 H l 

tr I 1""4TI 501,500,501 
500 IVAll•lO 

J011f4a2 
C&u.. ~IT 10,L.111,l'Utl 
JOl!t4a5 
IVAll-9 
C AU. "'°°"" IT IC , LJt 1 , l'Utl 
~V•.M I" 
.Nl,.•1 ,.,.-.. 
(Au.. ~IT IG,L.Jtl ,l'Ut l 
.Ml,-•.JIO'SV 

IY,1 1r t lPL.OTJ!k15,502,505 
M2 1·,-•10 

ID 
-' 



C 

C 
C 
C 

TIP1:C.«t91•Tl~rt&IIGI , 1000, 

CALL l"IIC~OTc0,IJl1,"-t1 
IVAlt-9 
CALL l"IIC~OTCC,Lltl,"-tl 
IVAlt .. 
CALL l'IIC~OT IG,c.ltl ,"-ti 
IVAlt•7 
CALL l"IIC~OTtH,Lltl,"-81 

!>05 CONT IM..C: 

C C~TATION or GIIAVITr T[IIN r01t T~ VOltTICIT1 (!Pj [ I 
Tl~C.« IIOl•TI~ tAltGI , 1000. 

C 
1/f' T-9. 1•0£4. T IOELXZ2 
l/f'Tl•llf'T•2, 

C TOI' POltTION 
00 45 J-1,"-T 
00 45 1•2,LI' 
Ir tGtl•l ,.JI ,LT ,0,01 Gtl+l ,.JI •0,0 
1rtGtl-1,.Jl,LT,0,01 GCl-1,.Jl•0.0 
[II ,.JI •1/f'T• I 10 I l+l ,.Jl-0 I I-I ,.JI I / T~TIICJ'•,608• tC t 1•1 ,.JI-C C l-1 ,.; I 1-~ 

I 11•1,.JI •Gt 1-1 ,.JI-Htl•l ,.JI 1-1 ,.JI l 
45 CONTIM..C: 

C L[rT POltTION 
LIP1X~•21 
00 7S Ja.JT, "-8 
L IP1X"1.. IP1X-2 
00 1•2,LIP1X 
lrtGtl•l,.Jl,LT,O.Ol Gtl•l,.Jl•0.0 
1r1Gt1-l,.JJ.LT.O.Ol Gcl-1,.JJ•O.O 
C ti ,.JI -vf'T• I 10 I l•l ,.Jl-011-1 ,.JI I t T~TIICJ'•.608• CC t l•I ,.;J -C 11-1 ,.JI I - G 

I tl•l ,.JJ+G ti-I ,.JI-H C l•l ,.JI ,.Jl l 
CONTIM..C: 
[ILl1'1X•l,.Jl•llf'Tl•Cl0tLIHX•l,.Jl-01Ll1'1X,.Jll / T>€T111Cr•o.,o••tCcc.lP1X•l, 

7S CONTIM.£ 
C 1trGHT POltTION 

lc.~•20 
00 4 7 .Ja.JT, "'-8 
[ I IL,.Jl•llf'TI • I 101 IL•l ,.Jl-0 t lL,.Jl l I T~TIIC1'•0.608• CC I IL•l ,.Jl-C C IL,.Jl 

I l-Gt IL•l,.Jl•GCIL,.Jl-+<IIL•l,.JI-IIL,.Jl I 
IL•IL•I 
00 47 l•lc.,c.lt 
1r1Gtl•l,.Jl.c.T.o.01 Gtl•l,.Jl•O.O 
lrtGcl-1,.Jl,LT.O,Ol Gcl-1,.Jl•0,0 
[ ti ,.Jl-vf'T• I 10 11•1 ,.Jl-0 I 1-1,.JJ I t T,<TIIICr•.608• CC 11•1 ,.JI-CI 1-1 ,.Jl 1-G 

t CI• t .J> •(, c 1-1 • ..JJ -H l I• t .JJ..,.. c 1- t • ..JJ J 
47 C0t1T1PU 

' I lll'c.OW »~ OUTrLOWI 
00 40 Ja I ,"-8 
[ Cl ,.JI •1/f'TI • I 1012,.JJ-0 Cl ,.JI I 1T>€T111Cr•.608• IC 12,.JI -CI I ,.JI 1-G 12,.JI •G 

1 Cf .JJ-H(2 • .JJ ..... (1.JJJ 
[ Cc.Ill ,.JI r,lf'Tlo I 10 tlJII ,.JI -0 Cc.lt,.JI IIT.C:Tlttr•,608• CC tlJll ,.JI -C (L}l,.;J l -

I GCc.ltT • 
4? ~Ot1T Ill.£ 

1r1i,•11T1 901,900,901 
lo?O 1•1,llt•J 

J,...5 
'L l'Q)Plll1T t[,c.lt I ,"-81 

~01 CONT IN.< 

TIP1:C...Cllll•TIP1:r t AltG I, 1000, 
C 
C ltt-STOltt T~TA 

C 
C 
C 

CALL llt_,...Tt~IIOl,Otl,ll,P4410SI 
CALL llt&NCICl~tl01 I 

C ltCAO IN 1"51,CDOT VISCOSITT,V-C0f1t,».O W-COP'" 
CALL lltlHIO t~t 151 ,A 11, I I ,P4410SI 
CALL llt&NCIC1~115l l 
CALL lltlHIOt~tl71,Htl,1 1,P441051 
CALL lltANCICl~tl71 I 
CALL lltlHIO l~t 151 ,Ct l, I 1,P441051 
CALL lltANCICIN11151 I 
CALL lltlHIO CN1C 161 ,rt I, I I ,I-UIIOSI 
CALL lltANCICl~tl61l 

C ALSO ltCAO IN VOltTICITT f'ltOt1 PIICVIOUS Tl~ STEP 
CALL lltlHI01~112l ,llt I, I I ,I-UIIOSI 
CALL lltANCICl~tl2l l 

C SCT Z-CTA TO INI TIALIZC OlrrtlltNCt SC~ 
CALL lltlHI01~112l ,ZIT, I I ,I-UIIOSI 
CALL llltANCIC 1~11211 

C 
Tl~C...CCl2l•Tl~CAltGl t l000. 

C 
C C~Tt [TAX "" CTAZIIN O "" G ltt5'£CTIIICLTI 
C 
C TOI' 

C 

rlCSAIIC-HCLJ\.•20,.JT I 
H ILJ\.+20,.JT I• IHILJ\.•21 ,.JT I - tLJ\.• 19,.JT 11 , 2. 
00 97 J-2,"-T 
00 97 1•2,IJI 
0 I l ,,JJ •Al• CA (1+1,JJ-2. •& C l,Jl•ACl-1 ,JJ J • CH( 1•1,..JJ-2.•HC 1,.JJ ..,.., J-1, 

I.JI l lOCL.xZSO 
,, J ,JJ •&1 • (A(l ,J-1 ,-2 •• ,., I ,JJ •AC, ....... , I J • (H(J • ..r, J-2.•H( l,JJ<t+il l ,.J+ 

I I 11 •Al• IA tl•l ,->-II-A tl•l 1-A I 1-1,.rl J •At 1-1 I I • IH 
2 I I •I ,.J-1 I-HI l•T I I-HI 1-1,.rl I I-I 11 ; t 16, •OELX."'SOI 

97 C0t1TIM.£ 

C c.UT 
HCLJ\.+20,.JTJ-rlCSAIIC 
r1CSAIIC-HILJ\.-l,"'-8l 
HCLJ\.,-l ,"-81 •2, •HILJ\.-1,-.81-HILJ\.-l ,..e-1 I 
Ll1'1X~•l9 
00 99 Ja.JT,..e 
L IP1X"I.. IP1X-2 
00 91 1•2,LIP1X 
DI I ,.JJ•AI• (A I l•t ,JJ-2.•A< 1-1 ,JJ J • (H(J•t ,JJ-2. •H ! 1 ... ; J .... , 1-1, 

I.JI l lOCL.xZSO 
,, 1..1-..e1 192,190,190 '"° (,( I ,JI •&1• l&CJ•t ,.rt J-A I J-1,.rt J J • CH( J•t ,.rt J-H( 1-1 ... ;- 1 J+t,U : -1 .... ; J-

IHI l•I ,.JI 1114, •0£4.xZSOI 
o;Q TO 91 

t <;,2 Cl)IITIIU 
GI I ,.JI •&I• IA I I ,.>-I l-2, •Al l,.JJ•&tl J 1 • IHI l,.rl 1-2, •HI I ,.JI +Hll 

I I JI • (At l•l ,.rl 1-A I l•l I-All-I ,.rl l•Ac 1-1 I I• CH 
211•1,.J-1 I-HI l•l 11-H( I-I ,..>-I I 11 l I (16, •0£4.l<ZSQI 

lie ~OtlTIPU 
1"1..1"1•1 
t ( J ,.JI.,,• 1& 1 l•t • .JJ-2.•&C l 1-t • .JJ J. (H( l•t .JJ-2.•Hl l • .J1 .... , 1-1. 

I.JI J,WC.IZ50 



C,(I , .JJ •At• (Atl,..J-1 )-2.•A tl,.Jl J • IHIJ • ..;-tJ-Hll,..; J•Htl-1 ,..; J-Hlt-1.~, 
t I J . O[Lx:Sa-2. •At• l-2. •Al J ,..;I -& t 1-t ,.J•f )-& t J•1 ..... -, J .... , 1-t ,.JJ ... t ,., • 
iJI •At J ,..;-1 JI• l-H( I ,..JI-Hl 1-1,...,.t 1-Hll•t ,.J-1 J•2.•Htl-1 ,v J •H l J•t ,...;l..,. 
!I 11,.,-11-M11-1,,1-111 . <4. •on.x:s01 

CONTIM.C 
MIL.I'\.- I ,l'\.81 af'ICSAII[ 

C IIIGMT 
IL-l.l'\.•21 

C 

oo 100 ..,..,r,...e 
l•IL 
0 l I ,.Jl•A1• (A( 1•1 • ..JJ-2.•At l,..JJ J • (HtJ•t ,.JI-H ( l,"4·: •H ( :-, ,.;-I J-Ht J ,..;- t 

I J J . -OCL.XZSO 
GtJ ,..JJ•A1• lAI l ,.J-1 J-2.•All ,..JI I • (HlJ ,.J-1 )-H( I , .. :l •t•it ,., .~ , l-Mt l•t t"4 

I I I ,t)[L.XZSQ 
IL•IL.•1 
00 100 l•IL,LJI 
0 t 1, .. IJ•At • (At l•t ,..JJ-2. ,,., 1,..JJ•At 1-1 ,.JI I• (H ( l•T ,..JJ-2. •H t :, .... : ·••tt 1-1. 

I.JI I /OCLXZSQ 
Jr I.J-...411 1116, 194, 194 

194 Ci I I ,.JI •Al• lA l l•t ,.J-t I-A t l-1 • .J-1 I I• (Ht 1•1,.J-11-Nl 1-1,.J-1 , ..,. , l-1,...,J -
lMl l•I ,.JI l / (4.•0[LXZSQ J 

GO TO 100 
I 116 CONTI MA: 

Ci CI ,..JI •At• CA t l ,'-1-11-2. •Al J ,..;J •At 1,...,.1 I J • (Ml I ,.J-1 J-2. •H l 1 ,.JJ •H t 1,...,. 
11 J J IOCLXZS0..2. •A 1 • CACI+ t ,.J- f I -At I• 1,...,. 1 l -A t 1-t ,..;- 1 I •A t 1-1 ,._,. t J l • tH 
211•1 ,.J-1 I -t<( 1•1,_,. I 1-+<ll-1 ,..>-I l-1 J-1,_,.111 , 116. •0£4.X:S'll 

1 00 CONTI MA: 

C NOW COPt'VTt: VOltTICITY r()(II TMIS TIP< STt:P 
C <AOO GIIAVI TY TUlt'1 Ill 1ST M.11..F' OF TIP< STCP I 

CIIIC•O.O 
C 
C r 111ST H&Lr OF TIP< STEP r()(II TOP P()(IITION 

00 48 ..i-2,1'\. T 
00 48 1•2,LJI 
CO[H,1• 12 , • I-+<! 1•1 ,.Jl-11-1,.JJ I '1>CU<Z2•C I I ,.JI I •AO 
C0Cf'91-COCJ'At•COCJ'A 1l 2.•Mll ,.JI •A l 
CO[F'A1-COCJ'A 112. 
ZII 0 .11-ell ,.JI-COCF'A1•1811•1,.JJ-iSll-1,.JI • 18<1• 1 ,.JJ-2.•8! l,.J 

I l•[ I I ,.Jl--0 I I ,.JI 
48 CONTIM.C 

C 
( r 111ST M.11..r F'()(II L.UT 

Llffi<~•20 
00 50 .Ja.JT,...41 
Llffi<-l. l"'x-2 
00 50 : •2,L lffi< 
COCJ'A1 • 12, • I-+<! l•I ,.Jl-11-1,.Jl l ll ,.JI I •AO 
COCF'81-COl7A1 •COCJ'At 12.•M( I ,.JI •Al 
cocrA1-cocr,. 112. 
Z< 1,.,,-e, 1,.11-cocrAI • 1811•1 ,,11-ell -1 ,.,, , •cocr91 • <8< 1•1,,11-2. •8< 1 • ., 

1 1-1,,11 l•E <l,.Jl--0 <l,.Jl 
50 (011T11U 

' , lltST H&Lr r()(II ltlGMT 
IL.~•20 
C? 52 .,_.,T,.11 
11.•IL.•I 
00 52 l•IL,Llt 
'=?tl'Af• <2.• ,.,.., 1•1 • ..11 ..,. , l-1,..;J I /OCl..xl2•C t l • .JJ J •A°' 
1, II ,[Q, IL.l CO[TA1• I (-Mil• 1 ,.,, •Mil ,.JI_ , 1-1,..>-1 l -H( I ,.J-1 I l 0£4.X:•C t 

1 l,,JI l •&0 
''ll'81 el'.O[r&I •(Qtf Al 12. •H ( I ,.Jl •'1 

cocr,1-cocr,1 . 2. 
: I I ,.JI -8< I ,.J l-COCr&1 • !Ill 1•1,.Jl-811-1,vl I •(O[rllt • 181l•1,vl - 2. •II < I,, 

1 i•Bll-1,.JI I•[ I I ,.Jl-0 I I ,.JI 
!!oZ CONTIM.C 

C 
C I TOP L.l"LI 

00 !>4 1•2,Llt 
:,1.11-:11,21 

S4 CONTIM.C 
CALL [TAI !&0,All 

C 
C 000 POINTS,[N) OF r!IIST M.11..r OF TIP< STEP 

CALL OOOPTS !Z,L.111,~I 
C 
c sec~ H&Lr r()(II TOP 

C 

rKSAV[-Hl~•20,.JTl 
M(~•20,.JTl•IHl~•21,.JTl-!L.l'\.•19,~T ll . 2, 
00 49 .Ja2,"-T 
00 49 1•2,LJI 
COCr.12• <2. • I-Ml I ,.J-1 l-( I 1 I L'OCL.x:Z•r I I ,.J l l •AO 
cocraz-cocr.12°cocr .12.,2. •M, 1 ,.,, •A 1 
cocr.12-cocr.1212. 
8 1 I ,.Jl •Z < I ,.JI-COCF'A2• ,z, I ,.J-1 l -ZI I ,.J•1 l I •COITB,2• ,:, I,.,., l -2. ·=·I • ..; 

1 l •ZI I ,.J-11 l-G !I ,.Jl 
C IIIC-C I I ,.Jl 

49 CONTIM.C 
H1~•20,.JTJ-rlCSAII[ 

C SCCOt«l H&Lr F'()(II L.CrT 
Llt1X-l.l'\.•20 

C 

00 51 .Ja.JT, ..Al 
Llffi<-l.l,..X-2 
00 51 1•2,L l"'X 
COCJ'.t.2• 12, • 1-t<t I ,.J-1 l-! I ,_,.Ill I I ,.JI I •AO 
Jr I.J,[0, ..el COCF'.12• I!-+< I I ,.J-1 l -11 ,.Jl I I ,.JI l •AO 
IF' II .[0.Llffi<l COCF'A2• I I-Hll ,..>-11 _, I ,.Jl l-1,.Jl-+<11-1,.J-1 l L 'OCl.X: 

COCJ112-COCJ'A2•COCF'A212.•H !l,.J1•&1 
C OC1' .12-COCF' .t.212. 
1111 ,.Jl•ZI I ,.Jl-COCF'A2• <ZI I ,.J-1 l-ZI I ,.J•1 l l IZII •:< I ,.J 

1 l•ZI I ,..>-11 l-Gll ,.Jl 
C IIIC-C < I ,.Jl 

5 1 COtlTIIU 

C SCCOt«l HALF' F'a,t IIIGMT 
IL.~•20 

C 

00 55 .Ja.JT ,..Al 
IL•IL.•1 
DO 55 l •IL. ,LJI 
COUA2• 12. •(-+<(I ,.J-1 l -( 1,.,.1 l l I I ,.Jl l •l,Q 
1r ,.,.c0 . .a1 coc.r.12-, , .... , 1,..>-11-11,,11 i 1,.,, i •AJ 
1r 11 .ca. lL.i cocr.12•, , .... , 1,.r 1, - , 1,,11 _, 1 •, ,.,.1 i-+<ll•t ,,11 i ,"On.xz..-

1 I I ,.JI l •AO 
cocraz-cocraz,cocr,.z12.•" ' 1,.,, •A 1 
((][r .12-cocr&212 . 
• , 1,.Jl •Z < I ,.JI-COCF'A2• <Z< I ,.J-1 ,-z, I,.,., I l •cocrw, <Zll l-2. •: 1 I ,.J 

I l•Z I l,.J-1 l l-G<l ,.JI 
lltC-( I I , .Jl 

55 ~l)flTIII.< 

( ' f'11' L llt: I 
er,~ 1-2.~ 
a,1,1 1 .. ,1.21 
'llt".el'. I I, I l , 2. 

I.O w 



M CONTlr-,.,.c 
CALL [T&21&0,&11 

C I IIIILOW »Cl OVff"LOWI 
DO !,7 -,.1 ,"-I 
e,1,.,,-e,z,.,, 

C 

C IIIC-C IIIC<OCl..4"50•111 ,.JI . 2. 
l1Llt1,..JJ-91Lll,..JI 
C IIIC-C IIIC--0CL4--SQ•I ILll1,..JJ. 2. 

!,7 CONTlr-,.,.c 

c 000 l'OINTS,O() or SCCOI() HALF' or Tl~ STEP 
CALL ~TSll,Lltl,"-91 

C 
Tl~C..Cl1Sl•Tll"Cf'l~l t 1000. 

C 
C 11[&0 IN OLD VALi.CS or Tt< S TIICloN FU C Tl 01, 

C 
C 
C 
C 

CALL lltlN'IOIN111Sl,&11,1J,N,IIOSJ 
CALL llt.lNCIC IN111SII 

DO !le IC•1,S 
LelC 
IF' IIC.[Q.SI L•7 
N&P.:1-120•LI 
CALL 11t1N101......:1,C 11 • 11 ,J\UIOSI 
CALL llt.lNCIC INAK 11 
N&P.:2-121--te• 
CALL •-Tl~.c 11, 1 I ,J\UIOSI 
CALL llt.lNCICl~I 
Tl5-tel•T"--te• 

!le CONT) N.C 
Tl11•Tl11-o[LT 

C 
C 
C F' J~T GI..CSS J'(III "51 IN SOlt lZM:l DCC. [ xTll&l'Q.&Tlllf, IN Tl ~ I 

CALL L&c.lNT 

C r l!ll TE D IF'J"CJID,C[ CONSTANTS CAN IC DCSTIIOYCO IC ,D , F' ,C. I 
,: 
C 
C 
C 
C lolOW T,< 5(111 IIOUTIPL TO SOI..VC J'Olt T,< SflllC.111 F''..N:TIOI• 

( 

': S!.-T Of JT[lt&Tl0f4 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

00 70 l->-1 ,,,_,.1 V 
CIN'••l,[•10 
IV•I..J 

T.,.. ~Tlllf• 
CO M ->-2,"-T 
DOM 1•2,L.lt 
•• t&t J•t • ..,J•A<l•t ••. JJ •At J • ..J-t J+& t 1 • ..,., J-4.•& l l • ..;J ~~x:SO•B t l . '-'> J •• 

1W 
Al I ,.JI •Al I ,.JI._ 
11 .. t &ll,.JI .... , .. 
c1,r-.iN,1101rr,111 

C 
C L[f'T ,oltTION 

Ll"""'-•20 
00 K .J<VT,_. 

C 

LI"""- 1""•2 
00 • l~.LI"" 
ll-1& 11•1,.J••&ll•1,.J••&ll ,.J-1 1•&1 I •·•••&11,.J• ~4'"SQ•ll l ,.;1 I •II 

1n.r 
a 11,.J• •Al I,..,. ,...,.,,,,.,. .... , .. 
D1rr-&NX1101rr ••• 

• CONTINA: 

'"''""·' 11-1&11•1 •&l I ,.J-1 •&I I II , .J I 1 •CS•IIC.LF' 
&1 I • .J•a&1 I 
""4111&1 I • .J• .... , •. 
D1rr-&NX1101rr,tt• 

K CONTINA: 

C 11l~T l"GIITION 
IL"'-•20 
0067~ .... 
IL•IL•1 
00 67 l•IL.LII 
11-1& 11•1 ,_,. •&11•1,.JJ•&I I ,.J-1 I •&l I 1 ••••&II ,.i• «LxZSQ•I I I ,.JI • •II 

ICU' 
.. ,.,.., .... 
""'411& 11,.J• .... , .. 
O1rr•-x1101rr ,111 

67 CONTIN.C 
C 
C TcP IOIH)&ltf rm,, STIICM' F'\H:TION I~ CCH)ITIONI 

00 U •~.LIi 
U A 11, I• "'I.CCL.xZ•& l I ,2• 

C 
ar 1O1rr-cPS• 11, 11, 10 

70 CONTll'U 
C DC) '1T ITPATI~ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

71 CONTIN..€ 
C l)QY4nio,. I.C. F'(III "51 

00 M .>-1,~ 
M AIL.Ill ,.Jl•S, •A ILJl,.J•·S. •& IIJl·I ,.J••& 1Lll·2,.JI 

Tl~Co«11S••Tl,U-1~• 1 1O00. 
C l'LOTTING -c> l'ltlNTING VCltTICITT 

IV--12 
IF' I IPIINTJ 601,600,601 

600 .., ... , 
CALL PlllOl'IINT 11,LJII ,"-11 

601 COflTl,U 
Tl~C..Cl16J•TlfU'l~J t lOOO. 
ar I ll'LOTJ60S,MZ,60S 

602 CALL "'IPLOT ll,LJll ,"-91 
605 COflTIIU 

Tl~Co«l17J•Tl,U-1~•11000. 
( l'LOTTIIG -~ l"IIIIITIIG STIICM' F'\H:TIOf• 

IVMt•1S 
ar IIPIINT I 701,700, 70 I 

1,0 J'Oll,lo1 
'-ALL PlllOl'IINT 1&,L.111 , ~I 



~01 1r 111'\.0TI 705,702,705 
~O;! CALL PIICl'\.OT IA,Llll ,l'\.111 
~05 CONT l"--C 

T 1..:c...: 11 ll •T 1..:r I AIIG J. -1000. 
C t,OW C~TC V-COl'f',i..-COl'f',Ar-«) CODY VISCOSI Tr 
C 
C 

r1Cll€N-O,O 
\.t10•-1,C•IO 
AN.tv.Xa\.t\lX 

C TOI' POllflON 
00 90 .J-2,1'\.T 
00 90 1•2,l.lt 
C 11,,/l •IA 11,.J-l l-A I l , -OCI.K.."2 
flC 11€N-f"ICIIILN"C 11,.Jl .,2 
UAIIS-.t.85 IC 11 ,.JI l 
lt1AX•-X1 IU'UX,UA8SJ 
0 l l ,.Jl•IAI 1-1,.JJ-A 11•1,.JJ J , -0£LXZ2 
r,c 11€N-f"ICll,CNoO l l ,.Jl • •2 
GI I ,.JI• I 1811•1,.Jl-811-1,.Jl l /OCI.XZ2l "2• I 18 1 I I -81 I ,.rt J J ·OCL>:2 

I J ••2 
G 11,.JJ -Cllte1 •SQIIT 1G I I ,.JI J 
1r1G11,.i1.,T.11111s1 "1,.i1-«v1s 
AN.tv.X•-X1 IAN.tv.X,(;( I ,.JI J 

90 CONTlM.£ 
C SCT coor VISCOSITY AT TOI' COUAI.. TO rUIST IP•TClllOII GlllO V&L\.C 

00 15 1•2,l.lt 
15 (;(l,tl~ll,21 

C 
C I.CrT POIITION 

Ll1'1X"\.l'\.•20 
00 91 ..i-.iT,..,e 
Ll1'1X"\.11'1X-2 
00 19 l•2,Ll1'1X 
CI l ,.JJ•IAll ,.J-1 J-A J l/0£1.XZ2 
flCll€N-f"1Cl!ILN-C 11,.Jl "2 
U.185-.185 IC I l ,.JI l 
\.11AX•-X111.A'UX,UAIISJ 
0 l l ,.Jl •IAI 1-1,.JJ-A I 1•1,.Jl J/0£LXZ2 
flC11€N-f°ICll,CNo() 11,.Jl "2 
(;( I ,.JI• I 1111 l•t ,.JJ-811-t ,.JI l IOCI.XZ2l • •2• I 181 l J-8 I l ,.J-1 l J , OCI.XZ2 

t J ••2 
GI I ,.JI -Cllte1 •SQIIT 1G I I ,.JI l 
lflGll,.Jl,GT,11\/lSl (;(J,.il-4'1VlS 
AN.NX•M1AX I CIII..IUX.C. ( J ."1J J 

19 COIITlM.£ 
( CCOf VISCOSITY ON SI.Ol'CS,1.lt£JJI VAlllATlOt1 ltl T,«: ~,:)flt1AL. Ol!ICCT lOtl 
( 000 POIPITS All£ GOTTCt1 Br Sl1'11LAII SCt<K: 

GI It ,.JJ•10. • IGI I I ,.rt J•GI 11-1 ,.rt I l / 12,25'•0CLXZ•20. l 
Gil t-1,.JJ•IGI 11-2,.JJ•(;(l t ,.J-tl l / 4. 

"' (0t1TIPL€ 
( 

C U POJ11TS "I> SI.OPCS fOII •JC..OCITlCS 
1-..1\.-1 
12-..1\.•,0 

00 92 lC•1,9 
1•1•2 
12•12-t 
.,..,.. t 
( 11,.JJ • IA I l ,.J-t l •A I I ,.J I J ,'"OCI..XZ2 
rr11L1,-,rl1Lli-( I J ,.Jl ••2 

C'll,, •l •A ll-1 , .Jl oc .. ,:2 
l,.il "2 

, 11•1,.Jl•l&ll•l,.J-IJ•All,.J-ll l 12,&•t'C.•:1 
,112,,JJ•IAl12•1,.;J+&ll2,.;-1JI 0[1.,:2 
011•1,.iJ-Cll+l,.J l 2, 
0112,.JJ •-C 112,.Jl 
C lllC .. C IIIC9•A I I.,,.,.. 1 l •A 11 ,.;- I l 
C IIIC .. C IIICll•A 112• I ,.ii •&I 12,.;- t J 

ii2 CONTIN..C 
C 1TOI' 000 POINTI 

C 11•2,.;-1 J• (At 1•2,.;-21•A 11•2,..;-1 J J . cc .. , :2 
0 t 1•2,.;-1 l•A t l•l ,.i-t l, 0c .. ,=2 

IIIGHT POIITlON 
lL"\.l'\.•20 
00 9' ..i-.iT,..e 
IL•IL•1 
00 95 l•IL,LII 
Ct I ,..JI •tAtl ..... , 1-At I l J , oc .. ,=2 

U.185-.185 tC t I ,.JI l 
\.11AX•-X 1 (\.A'UX,U.185) 
0 t I ,.JJ • tAtl-1 ,.ii-At l•l ,.Jl l. 0£LK..'7 
f1Cll€Naf'ICll€No0 t I ,.11 "2 
(;( I ,.Jl •t tlltl•I ,.JJ-1111-1 ,.JI l ,-OCLx:21 .,z• t 1111 I , .;•I l -8 1 l ,.;- ' l l OC;.•.:2 

1 J ••2 
C. t I ,.Jl-Clltet •SQIIT tC. t; ,.JI l 
lflGll,..Jl,C.T.IIVISJ (;(l,.il-llVlS 
..,,_..,.X•AP1AX1 (AN.,t'II.X,C.11,.Jl l 

95 CONTlM.£ 
C. t IL-1 ,..Jl •10. • t(;( IL-I ,.J-1 l •C. IIL,.Jl J , It .414•0£Lx:•20, I 

9' CONTIN..C 
C IC\JSPI 

Cl~•20,.JTl•ICII.P\.•t9,.JTJ•CILl'\.•21,.JTJl , 2. 
01~•20,..JTl•O.O 
(;(~•20,..JTI •10, •(;(~•20,1'\.TI . tDn.x:•t0, I 

C 
Tl..:CHIC 1191 •Tl..:r tAllc.l, t 000, 

C 1117.Al)Allf V&Ll.£5 r011 V-COl'f',....COl'f',&P4) coor ·• lSCOSl Tf 
C t TOI' 1101.f()AIIY r01t U &P4) WI 

ClllCT•O.O 
00 1M 1•2,LII 
Ct 1, 1 l • tAI I, t l -Al I ,21 l /OCLXZ 
ClllCT-ClllCT-Ctl,t>•OCLXZ 
r,c t I ,.JI • •2 
0 I I, t l •tAI 1-1, 11-A 11•1, t l l ,"OCI..K..'7 
r,c ltO,-,,c l1€No0 II ,.JI "2 

1M C011TULC 

( L[rT LC•~ POIITl0t1 
OIIC .. 0.0 
00 15 1•2,V,.. 
Ct I ,P\.ll •At I ,..All IOCLXZ 
C lllCe-t l l ,P\.81 •CCL,.: 
011,P\.ll•O,O 

15 ', i l,l'\.lll•10,•Gil,v9l / 10[L.<Z•t0,l 
' ., l ,,_.T L[',/[L PO,lflOtl 

LP\.P,0-..1\.. 50 
C? 17 l-u\J>,0,1.11 
( ! l ,P\.ll •A 11,..e> /OC..1Z 
( 111(1-". 11,P\.IIJ ,cc..,: 

! 1,1'\.l l•O,O 
., 'i ! l,""'-1)•10.,•'i <l,AI / !C[L-IZ•t,. J 

I.O 
CJ1 



C 

C 
C 

C lltC 10•0.0 
('O Ill& .i-t,~ 
C 11 ,.JI -C 12,.JI 
C IL.It! ,.JI-C IL.lt,.JI 
011,.JI-012,.JI 
C lite 10-C lite 10-0 11 ,..ii •OE..l<Z 
OIL.ltl,.JI-OIL.lt,..il 
ClltelO-ClltelO~IL.Jtt,..it•Ot.., : 
G 11,.JI-G 12,.JI 
GIL..l,.JI-GIL..,.JI 

II& C ONfl!IU: 

C lltC•-C lite, IC llteT•C lite lO•C lltCII 

C SNOOTHING o,otATQlt ON ED()f COU,ICltNT IWO li¼TJ 
00 150 .,.Z,~T 
00 150 1-Z,L.Jt 
[ ll.Jl •0.l•G CI • ..11•.0S• C<. t 1•1 ,.JJ•Gt 1-1 , ..;J•G (: •"',. , l •G c J ,..,_., l l 

150 CONTINL 
L.IP1X-v\.•20 
00 152 ..i-vT,..e 
L. IP1X~ IP1X-2 
00 151 1-Z,L.l">l 
C 11,.Jl-0,l•Gll,..il•.OS• IG 11•1 1-1,.il •GI I l •G I I ,..;-111 

t51 CONTINL 
[IL.l">l•2,.JI-GIL.l">l•2,..it 
[ IL.l">t•I ,.JI-G IL.l">t• I ,.JI 

152 CONTINL 
IL.-V...•20 
00 155 ..i-vT, ...e 
[ 1 IL. ,.JI -G I IL.,.Jl 
IL.•IL.•t 
00 t55 l•IL.,L.lt 
[ II ,.JJ •0,l•G I I ,.JI •.OS• !GI l•l ,.Jl l-1,.Jl•G I I l •GI I ,.J-11 I 

155 CONTINL 
00 t!W 1•2.L.• 
Cll ,11 -Cll,21 

t!W Cll,"-lll-Gll,"-111 
00 I !55 _,. I ,"-8 
,[II ,.Jl-C 12,.Jl 

1!55 [IL.ltl,.Jl-CIL.Jt,.;J 
C 
C STORING lrC~,W-C~,[DOf VISCOSITY 

CAL.L. llt-11~1151 ,CI I, I l ,~SJ 
CAL.L. llt.lNOC 1~1151 I 
CAL.L. llt-11~1161 ,0 I I, I 1,tUt!)SI 
CAL.L. lltlNCIC:1~11611 
CAL.L. •-r lf .. l 171 ,[ 11, 11,tUIOSI 
CAL.L. •11.cic: 1~1171 l 

Tl~Ct« 120l•TI~ 1~1 , 1000. 

,: PL?TTJP£ MC ..,,,,,ru,; v-c""'· ...-COP'P, Al,{) [D0f COCF' 
,,. ll"""IT1 101.eoo,101 

800 , .,,., .. ,5 
..1~2 

AU. "°°"" IT IC , L.lt I , P\.al 
l '1Ml•l6 
~AU. ~IT 10,L.ltl ,"-81 
, .,,,.., 7 ..,~, 
AU. "°°"" IT I[ ,L.lt I , "-81 

l? l ~?flfllli 

Tl~0:>« 12ll•Tl~r1 ARG1 1000, 
1r , 1~0T1eos,102,1os 

10.? I\ AR•IS 
CAL.L. l"lt[~OT IC ,L.•t ,l'\.11 
l\·AR•16 
CAL.L. ~~OT 10,L.•1 ,~II 
l'•Alt•I -;t 
CAL.L. ~~OT 1t,1.•1 ,~I 

105 CONT 111«.C: 
c , ~T&TION or Tlte lt4Clt[t1:tlT ,011,c, T Tlte ST[JII 

OCL. T•AN..tV,i,• 10[L.>:• •2 1 •I'~&,• •2 1 
0[1.T•I-AN..Ni,•SQIIIT10[L.TI I , ll.fU A"2l 

, STOit[ Sflt[&N r1.U:Tl0t1 VOIITICITf 
CAL.L. llt&NoiT 1,.. 1191 ,Al I, I I ,tUtOSI 
C AL.L. lltlNCK ,,.. II 9 l I 

C 
C 
C 

C 

CAL.L. llt&NoiT 1,..1121 ,I 11, I J ,tUtCS I 
CAL.L. lltlNCIC: ,,.., 121 l 

Tlt1:CHCl221•Tltef'l~I. 1000, 
Ct() or Tlte STtl"• • • • • • • • ....................... 

C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •• •••• 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •••••••• • •••••••••• 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

lt[f!,ltN 
[N) 
SIAltOVTII\€ Tt<TAI I 1,..i1 I 
COf9QVILocic:11WS1 TCllt41S1,01rv 1si ,Gl"IITCJlt4 15'1 •"'"'" ' ,r2.? :'4. · ,ri: 

IONIO 1961 ,IIHOAISI ,•12"9'1 , f'L.L.I IS ·: ,rt 15'1 ,f'2 1'4il ,f'S15'1 
C~11Locic:2,,,,_T , L.Jt.~,O[LXZ,RE..r ,IIHOI, Tt<Tll[f' ,Cl", :, .c2. : ,. : ol,[P 

IS,f'I.AN,COtel,CHC,NollOS,N.NITtlt,RVIS,I..OCL..;: 
COf9QVILOCKS, ...e,P\.8,L.ltl ,O[LXZ2,l)[j_XZSQ,COl~.CONS,C0f41 t ,COl.,cOl'1 t 

1,F'.,.JT 
COl'9Qv9L.OCG, a 1111,s, ,I 1111,5'1 .c 1111,5'1,011 t I .5'1 ,[ 111 I ,5' ; .r : 

11 11,5'1,(;1111,9'1 ,H Iil I ,9'1 
C Tt<T& ltl 0,14. IN G,WV l t1 C,W ltl f' ,WI II• H,l"HI lt1 &,Q 111 [ 

1•11 
.i-..it 

( MC) Wl•O 
r11,..i1-c11,.i1 
Hll,..iJ•O.O 
SAT-r4•011,.JI 
IUS-f'ICOUIO I.JI• 11, •SAT•0.5•S&T"21 
,,.,,.,1,..i1-w.-s1 ,,,,.,,. 

55 C1J,..i1-r11,.i1 
'- t J : .JJ•0.0 
& I I ,'..i1 • 10 II ,.;1 • COl-• C 11 , .,;J J . Tt<TRCr 
~ - TO 95 

94 ( 11:,.JI -..,5 
r. t f:..J J < l ,JJ-,: <1.JJ 
~.,. <1 • .JJ 
14" 1'14., 96,57.57 

96 .. o.o 
(1l,.;1-r11,.JJ 

5~ ~?t1T Ill.< 
& ( J ,.JJ •CC < 1 . J; •0:?P,1•1: < I , .JI •,-1..L. l (.Jl •W.. , CP J. Tt<Ttter 

.,., ~?t1T 111i 
Ill( T• '°'' (tC, 
Sl_.'1,T ltf'. ?OC,l"TS 1&,i, 1 ,t\.11 
::.1~t6l?11 &ti,t,l'\.l l 



c~. LOCIC2, l'\.T,1,.lt,1.l'\.,DtL.KZ,1tt1.r,1tHOt,T,<Tll[r ,cP,Cl,:2.C,,C,,tl' 
1 S,f1,.U4,CON22,CHC ,'61105,1011 Ttlt,ltVI S,\..Ct1.•Z 

1-i.l'\.• 1 -~· 002991C•l,10 
1•1•2 
,.Ja..J-1 
• 1 I ,..JI• IAI I• 1 ,..JI•• I I•! ,..JI I, 2, 

299 CONTI N.A: 
lt[T\AIN 
OC) 
SIA!tOVTII-L INOVTIA,1.ltl,1'\.111 
0111:NSION •11.ltl,l'\.II 
~lt1•1 
00 I ..J91,l'\.I 
Al I ,..Jl-2, •• 12,..JI •• 15,..JI 
Al~! ,vi •2, •All.l,..JI •• 11.1• 1,..JI 
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CO!ftlN,kOCKl/ %11 I I•"' 
CO!ftlNILOCKl•/ &rLO 1171,&rHI 1171 ,&r IN: 1171, I T&llll&fl2, 171 
COlt40WILOCKIS/ LIII ,~ 
C~OCKl6,'1'4XI ,1'4l12,1'4f2,11J<S,NTI ,Nf2 

C N.teCII r,r rlLCS TO IC SICIMO 
tEILCS•O 

C 
CISICI" SIN!.L[ s,..esc111,TCO V&lll&a.CSI 

C~ SICrLIII 
C 

IT&llll&Tll,ll•IOH " 
IT&llll&Tl2,ll•IOHHI 
IT&llll&Tll,2l•IOH Q,TOT&L 
IT&llll&T12,2l•l~ISTIJIC 
I T&llll&T 11,51 •I OHVQIIT IC I TT 
IT&llll&Tl2,51•10H,IIOO\JCTION 
IT&llll&TCl,7l•IOH WI, 
I T&llll&T 12, 71 •IOHIC[ 
IT&llll&fll,ll•IOH ~.LI 
IT&llll&Tl2,ll•IOHQUIO 
IT&llll&Tll,91•10H WV,V 
IT&llll&Tl2,91•1°"""°" 
I T&llll&T II, 101 •IOt< T.C: 
IT&llll&Tl2,IOJ•l0t<T& 
IT&llll&Tll,111•1~,S&T Vll'O 
IT&llll&Tl2,IIJ•IOHII LIO 
IT&llll&T II , 121 •IOt< VOii 
IT&llll&fl2, 121•10t<TICITT 
IT&llll&Tll,15J•IOH S'111[&11 
IT&llll&Tl2,151•1~1KTION 
I T&llll&T II. lei •IOt< TC 
IT&llll&Tl2,1•1•I~ 
IT&llll&fll,15J•IOH V-CO 
IT&llll&fl2,151•1~ 
I T&llll&T Cl, 161 •IOH W--CO 
IT&llll&Tl2,16J•I~ 
IT&llll&TCl,111•10H [l)Of VI 
I T&llll&fl2, 111 •IOHSCOSI Tf 
&l'LOlll•0.055 
&I" IPC I I I •0.0025 
&l'HI 111•0.0'-> 
&l'LO 121 •0. 00 OS 
&I' 11,: 121 •0.00025 
&l'HI 12 I •0. 0095 
&l'LOl71•0,0 
&l'JPC 171•0.0 
&l'HJl71•0.0 
Al'LO Ill •0.00005 
&l'JPC lll•0,00005 
"'"' 111 •o.ooo.s 
&l'LO 191 •0,0005 
&I'"'- 191 -o. 00025 
&l'HI 191•0.005!5 

&rLOl 101•1,0 
&r INC 1101-.z. 
&rHI 1101•15. 
&rLOll21••0,0IO 
&rlNC1121-0,005 
&rHI 1121-0 , 010 
&rLOIISJ•IOO. 
&rlNC1151•100, 
&rHI 1151•1000. 
&rLOIISl-2,0 
&rlNCIISl-2, 
&rHI IISl•IO, 
&rL01161•0,0 
&rlNC 1161-0.0 
&rHI 1161•0.0 
ArL0117140, 
&rlNC I 17140, 
&rHI 1171-250, 
L.1'.•51 
Llll•I I I 
"-T-.zll 
"-9-" 
~I 
Lll"I.Jll•I 

C ll&STOII ,c)INTS r011 IO.t4T&IN SHA,[ Tl TL[ l'OSI TIONS 
'L"-"-"-

C 
C 

, ....... 
rLll-ut 
"'-T~T 
11Xl-$1,+lrL1'.-l,1•922./1'LII 
11X2-Sl.•1~•19,1•922,/rLII 
1'4T2-5 I • •9220. /1'LII 
11X.9-51.•1rL1'.•29.1•922./1'LII 
NTl•II0.+r..e•t122./rL11 
NT2-tn I •IO 

C SICII' rtL.CS &S Sl'CCtru;o IT 161LCS 
C 

trltEILCS,[Q.01 <.o TO 9 
00 I Nal ,tEIL.CS 
C~ SICrLIII 

I CONTIN.C 
9 CONTIN.C 

00 51 I T•I ,26 
IIIJT[l6,'51 

95 rOIIPl&Tl//// /1 
00 10 K•l,5 
C~ IIOV&II 
C~ '1001'LOT 

10 CONTIN.C 
C~ IIOV&II 
00 12 K•I ,2 
C~ IIOV&II 
C '1001'LOT 

12 COPITIPI-< 

,: 'J-':OW' 
C~ IIOV&II 
C AU. '1001'LOT 

w,.~o,t> 
C AU. IIOV&II 

'toC,f CO[l'rJClf•iT 

..... 
0 
N 



C 

CAL.L. IIOVAII 
CAL.L. ~OT 

IIIIT[l&,JII NSTtl'S,TI~ 
9' rOfl!VoTIIH ,•THIS IS rOII Tl~ STtP•,I•.• TOTAL IICAL Tll'€••,r1.211 

"-"'tit INll,11 1vtor,vtor1 
IS tr 1'-"il T ,11 IS. 1&,21, 1& 1, 1111 Tt ... 1'71 
17 rOIIIVoT ""°· •NO tor OIi ""'I TT tllltOII IN DOTTI[• / I 
21 IIIITtl&,291 
2t r0111Vo T 11 "°, •tor o«:or..NTtlltD • , 1 
SO CONTI I«.< 
51 CONTI!«.< 

0() 
-..OVTINE IIOVAII 
OIICNSION Allll,9'1 
COttQl/kOCIC•IOn.T, Tl~,NSVS, ITEll, IVAll,JOlll'I 
COttQllkOCICltZ llll,9'1 
C~OCICIStlJII .IUI 
"-"'tit INll,11 IOCLT.IV&IIJ 

S tr l\.t,Jlf .II S.I,& 
& IIIITte&. 71 
7 rOlil'ATIIHO.•tor OIi "AIIITY tllllOII IN IIOVAII• , 1 
I ll6ftlt INCi.ii 1•11,11.•uJtl.lUIJI 
9 tr CU.IT .11 • • 12. 10 

10 1111 T[ "· 71 
12 CONTI!«.< 

"-"''~· 00 I Jal.lUI 
00 I 1•1 .1,,111 

I Zct.J•••II•"-"''-.,• 
ll['ll,IIN 
0() 
-..OVTINE f10011\.0T 
OIICNSION ITITLtc2•.ISTITLt121 

• Tl~.NSVS. I TDt. IVAII.J~ 
C~OCICltZllll,JIJ 

,&ntl 1171 ,WIN: 1171, IT&lllt&112. 171 
.COfflOWLOCICIS/1,,111.IUI 

,l'lll2,"12,l"IX5,NYl ,Nf2 
I Tl TL[ II I •IT&lllt&fl I. lvAII• 
ITI TL[ 121 •I T&lllt&112, IVAIII 
CALL .. TIONIO. I .o.o, II 
CALL F'IISTl'T lf1XI .511 
CALL vtCT0111t1X2."121 
CALL vtCTOll cl"IXS.51 • 
0.CODC 114. 100. ISTI TLt1NSVS 

100 tOlil'ATl•TJ,-: Sftl'••l•1 
CALL ,wtTC295.m1.1sT1TLt .... 1.01 
0.CODC 110.101.1sT1 TL[JO(LT 

101 tOlil'ATl•OCLT••f"5,21 
CALL ,wtT .. 75,1-111, ISTI TL.£, 10, 1,01 
CH:ODCll2, 102, ISTI TLt1 Tl..: 

102 r-...rc•Tl..:••t7,21 
CALL ,wtT1&19,NYl,ISTITL[,12,l,OJ 
It IIV&a-151 10,9, 10 

9 CH:ODC 19,105, ISTI TLCI I TEii 
!OJ r-...Tl•ITDt••l•l 

CALL ,wtf1T12,flfl,IST1TL[,9,l, 01 
10 CONTIN.C 

CALL ,wtf 1'8il,flf2, I Tl fLt,20,2,01 
'LO-.LO I IV&al 
,.,, • .,..,,11v&a1 
, 11c•• 1•c 11v•1 

TCHIC•T IIC1' IAIIGI I 000, 
IIIITtl&. 141 ITITL.£. TCHC 

,. rOfl!VoTCIH ,•STAIITINI. Tl..: ro11e,1 x. 2&10 , 5x,r7.51 
Ir IIV&ll• ISi 25,2,,25 

2• CALL UCOtt' 
GO TO 2' 

25 CONTI I«.< 
CAL.L. CALCNflZ.LJll,IUl,rLo.rw1,r1NC,o,-1. 01 

2' CONTIN..< 
1r11v&11.to.11 CALL CLO\.() 
TCHIC•T IICP' IAIIGI I 000. 
IIIITtl&,151 ITITL.£,TCHC 

15 rQIIPIATIIH ,•rtNISHINI. Tl..: ro1t.,2&10,5x,r7 • .5, I 
1r IIV&11•151 20, 1&,20 

1& rLo-5000, 
rHt•17000 , 
rtNC .. 000, 
CALL CALCNTIZ,IJl l, IUl,rLo,rw1,r1NC .2,-1,01 
TCHIC•T IICP' IAIIGI 000. 
IIIITtl&,151 lflTLt,TCHIC 

20 CONT II«.< 
CALL rll&..: 
0() 

C Ta,> 

SAIIOUTI N: C1.0I.() 
COfflOWLOCIC211'.T,LJl,Ll\.,OCLXZ,11CL.r,ilHo1,THtTll[T,C",C1,c2.c,.c,.tl' 

1s.r1.M4.CONl.2.CHIC,Nolll)S,N.t11TDt 

COfflOWLOCIC15t LJll,IUI 

00 10 Jall ,IUI 
00 10 1•1 .L.111 
Ir IZl I ,JI ·0,0000201 10,1,1 

I x•I .,.., 
CALL "SffllX,T,IH,,0,0,IJ 

10 CONflN.C 
CI.UT 

Llf1X~"--2 
00 20 Jal, 11 
Llf1X~lf1X•2 
00 20 l•I ,Ll'1Jt 
1r1z11,,11-o.0000201 20,11,11 

II X•I ,.., 
CALL "5ffllX, ,. lw •• o.o. 11 

20 CONT II«.< 
C ltlc.Hf 

IL~•JI 
00 ,0 Jal, 11 
IL•IL-1 
00 50 l•IL,L.111 
It lll I ,Jl-0,0000201 .50,21,21 

21 X•I , . ., 
CALL "Sffllx,r,1w,,O,O,ll 

.50 COM'IPU 
II[~ 
[I~ 
-..OUT It« UC:Ott' 
C °"°"1LOCIC211'. T, LJI, LI\., OCLXZ, IICI.I", IIHO I , To< Tlltr •'"•Cl • C2, C 5, C •• ti' 

IS,rl.Ml,Co,G,C,_ ,t.-OS,N.t11 f[Jt 
COf90vtLoC,CltZllll,5'J 
C°"°"1LOCICl5tLJII ,"-8 
~I 

0 w 



•• ,,11 ,.~ 
,2., •• 0.,. x••o.oe 
Ll'\.20,"-•20 
L"-'°'"-•,O c~ KT 10.oe,0.11,0.oe. ,z •• ,2.0, 12.0. t,, , •• t I 
c~ ,ctllNIL.,O ... ,o, 
Al""-" 
00 100 1•1,L.t,10 
&T•l•t 
t.l•&Tt,19 
xctN1't-.O,t•t.t•0,0• 
Xl•X~NTtlt-0,0. 
xZ•xctNTP•o.o• 
,AOT•I 
1rll,GT.~.».O. l,LE.~I ..-OT•ll•L"-1. Z•t 
1r11,GT.~o.».O. I.LT.~I ..-OT•ll•l~l'\.20 
C~ S[TIXI ,112,0,0., T2,•12,0, 12,0, t., '4, t I 
TO-...OT 
c~ r111TPT10.o,,01 
IOASH-17779 
C~ OU.U.1 IOt.SHI 
00 '50 "'""90T , "-9 
x•Zll,.JI ,.., 
C~ vtCTOltll<,fl 

!IO CONTIN.€ 
c~ r1t1TPT10.o,1•1 
I0ASH-1450I 
C~ 0U.U.II0t.SHI 
C~ vtCTOltlO,O, TOI 

t 00 CONTIN.€ 
IICTI.IIN 

s.ellOVTIIC C.ILCNT IAl'l,l'!ll,N'f ,rLo,H• .r .NC,NKT ...... ,P4)0TI 
0ttCNS•ON Al'lll'!ll,N'fl 
COt9QVCONT""1' ,NT, •x,. f, •ox, .OT, •ss,11',CV,~T ,ASH, .NJ< 111, .Nflll, 

1•~T15,51,LE~IIIJ,IICCIIOOJ,NQ 
CONl'IINIILOCIC2"'-T,IJl,L"-,0C.LXZ,11CL.r,11HO•.T.«:TIICF,C~.c1.c2.c,.c •• CP 

1s,rL.Al'l,CONZ2,CHC,NollOS,N..f'.Ttlt 
CONl'IINIILOCK4/0Ci..T,T•~.NS~,.T[lt,.V&ll,JOIIP1 
COt9GVC.IL. NI JILK., XL"-50 

•11•T•.1L•ZC 
XL"-"'-
XL"-50"'-. 50 
Jr INKTII0,11 

10 NQ-UaS INKTI 
GO TO 12 

II 10-1 
12 C014T.IU 

Jr 1•v&11,[0, 151 GO TO II 
•L"'-•1 
••"'-•50 
00 10 "'91,10 
•L••L•2 ••·••·I M'I .L,.JI •5, •Al'II •L• I ,.JI •5, •Al'II •L•2,.JI •Al'II •L-5,.JI 
Al"I 1•,JJ•5.•M1< lft• 1,JJ-5. •ll'fC Jtt•2,.JJ •"1< JR•5,..JJ 
•r1.J,[Q,I01 GO TO 10 
.Ll••L•I 
••1•1•-1 
Olff•.11'1 J•,.Jl •M'I .L,.JI 
OIV•lll·•L 
00 9 l••Ll, •• I 

t &111l,.J1•&11IIL,,J1-o•rr• 1•••._1 . o• v 
tO CONT•N..C 
I I CONT.N..C 

NT-t'IX 
NTaNT 
c••T•t,. 
Jr lr!NC,LT,0,1 Clt•T•·rlllC 
rt.NC.,..NC 
GLO.,.LO 
Ht.oot4. 
~T•2 
•ot.5"ot.OOT 
•r1P4>0T,co.01 •o•sw-177711 
.'111 •I, .. 
.~Tll ,21•1 
!'Tit ,51•2 
1'Tl2, II •7 
1'T12,51•5 .,r 15, I 1-5 
•~T 15,21-!I •~re,,,, .. 
.NXlll••I 
.NXl21•·1 
.NXl51•0 
.NXl41•1 
.NXl51•1 
.NJ< 151•1 
INX 171 •0 
.NXlll•·I 
.NT 111 •0 
.NT 121 •I 
.Nfl51 ••I 
.Nfl41••1 
.NTl51•0 •m 161 ••1 
.N'fl71••1 
.NT Ill •·I 
Jr I IGLO,[Q,0.1 ,AMl, IHt.,[Q,0,1 l!I0,52 

50 GLO-l ,[100 
Ht.••GLO 
00 !15 K•I ,NT 
00 !I& «•I ,PIT 
GLo-1'1.NI IAl'IIKK,Kl,GLOI 
Ht.-XI IAl'IIKK,KJ,Ht.l 

!15 CONT I N..C 
52 •r lr&NC,L[,0.1 r&NC • 

51 CONTIIU 
1r , ..... 155,55,5' 

5'--
., 1.195 IGLOl,GT,A85 IHt.llAHA-<iLO 
CNCOOCll,100.•s•o&HA 

100 r()IINTICl,11 
0[(00[ II, 101, ISt<I IH 

101 r()IINT ISXl51 
l[xP•2••H 
•s--1 o ... •c"" s, •r1NS[T,IL,OI GO TO 2, , . .,.,, ,..,,r 
Jr 1"1-IIT121 ,21 ,22 

21 r2 •,I& 
,2. ,,,11•1•.eo•.ois 

SC.INO!ZO 
SC.IN0550 
SC.INOS40 
SC.INOS!IO 
SC.IN05'0 
SC.IN0570 
scANO,eo 
SC.IN0590 
SC.IN0400 
SC.IN0410 
SC.IN0420 
SC.IN0450 
SC.INOUO 
SCANO.so 
SC.IN0450 
SC.IN0470 
SCAN0410 

SCANO!IOO 
SC.INOSIO 
SCAN0520 
SC.INOSSO 
SCANO!MO 



GO TO 25 
22 x2 • .9!1 

T2 • u•, x•1 •.90•.0!I 
25 CAU. S[T l,O!l,x2 .. 0!I, T2, 1 .,x•. I., T•, 11 

CAU. l"t~IHIHT•1,0,NT·1,0I 
2• CONTIN..€ 

1r1NSCT.c0.2, GO To 2!1 
[NCOO[ 1101,201,L[GCN)I GLO,HA,rlNC,A5H,AH12, 2 1 

201 rOlll'IATl!Sl<ONTOUt F'1'0l1 [11.•,•H TO [11 ,.,IIH COfjTQUt l,jT[lt\lAL [11, 
1•,12" SCALINI.-Cl ,1,9H "T12,21-C11,s1 
CAU. Ol"TIONI 0,1,1,01 

-" _,o, 
1r1NSCT,LT,0 1 -22 
CAU. l'WITl!I0,1'91,LCGCN>.-.0 .01 

2!I CONTIN..€ 
CAU. Ol"TION I0, 1,0,01 

C 0CTC~Hlt€ CUlltCNT LCIICI. TO K CONTOUt[O 
C 

cv~o-r,u: 
120 cv-cv•r,u: 

C CAU. OASHL.NI IOASHI 
C 

CAU. 5CANIAH,HT ,NT I 
C 
C TCST r~ AU. U:IICI.S CONTO\JICO, INCltCPOlT If' ~T 
C 

C 

Ir IHol-CVI l!IO, 1!IO, 120 
l!IO CONTIN..€ 

C C AU. OASHL.N Cl 777'11 
If 1~11s1 ,SZ,D 

S2 CAU. HILO IAN,HT ,NTJ 
St MTl.tlN 
,S CAU. "fVALVIAH,HT ,NTJ 

MT\IIN 
0.0 
Sl.allOVTI~ SCANIAH,H,NI 
OIIOSION "'IH,Nl 
COftQvCONT/HT ,NT, IX, IT, IOx, IOT, ISS,lll',CV,11#4T,ASH, IN>< 111, INT 111, 

1 '"T 15, 51 ,U:GO,O I l 11 .~c 1100 I ,NQ 
111'-0 
00 !II .,., ,100 

!le MCI.Jl•O 
ISS-0 

2 HT1"'"1'·1 
00 I 10 l•I ,HTI 
Jr 1"'11,11-cv1 ss,110,110 

!11!1 Ir C"'Cl•l,IJ•CVI 110,!17,!17 
!17 IX•l•I 

IT• I 
IOx•-1 
IOT•0 
CALL. Ll~Alt ' "'• HT,IITI 

1 IO COflT IN.A: 
"1'1-t4T·I 
00 20 1•1 ,NTI 
1r ,,,.,m, 1,-cv1 l!l,20,20 

l!I Ir l#HHT,l•IJ·CVI 20 ,17,17 
17 1•""1 

lf•l•I 
10.--0 
10,--1 
CALL. LIILAlt '"'• Hf,Pjfl 

OCNTO!l1 0 

SCAN0250 
SCAN0!170 
SCANO!Sl0 
SCANO!IOO 
SC».00 
SC».10 
SC».20 
SC».50 
SC,.,_.0 
sc.woeo 
SCAN0&6Q 
SC».70 

SC».90 
SCAN0700 
SCAN0710 
SCAN0720 
SCAN0750 
SCANOU0 
SCANO'l'!IO 
SCANO~O 
SCAN0770 

20 CONTIN..€ 
22 00 ,0 l•l,HTI 

HT2-t1T •I• I 
1r IAHIHT2,NTI-CVI 2!1,,0,,0 

2!I Ir IAHIHT2- I ,NTI-CVI 50,27,27 
27 I x-t1T2- I 

I Tef4T 
IOX•1 
IOT•O 
CAU. Ll~Alt ''"· HT,NTI 

,0 CONTIN..€ 
00 •O l•I ,NTI 
NT2'"'4T•1·1 
Ir IANll ,NT2l·CVI '5,•o.•0 

'5 Ir IAHll,NT2•1l-CVl •0.,1.,1 
57 IX•I 

I Tef4T2·1 
IOX•O 
IOT•I 
CAU. Ll~Alt CAH, HT,NTI 

•o CONTIN..€ 
ISS-1 
NTl-t4T·I 
HTl-t1T·1 
00 10 .Je2,NTI 
00 10 l•I ,HTI 
Ir CANC I ,.11-CVI !I , 10, 10 

!I Ir IAHll•l,.Jl•CVl 10,7,7 
7 COH • 100• 11•1 , • ., 

Ir 1111'1 12,11,12 
12 00 9 10• 1,111' 

Ir IMC I l0l •COl1 I 9, 10,9 
9 CONTIN.C 

11 IX• l•I 
IT.., 
IOx•-1 
IOT•O 
CAU. L l~Alt '"'• HT ,NTJ 

10 CONTIN.C 
~Tl.tlN 
0.0 
SAIIOVTI~ Ll~AltlAH, IOIH,-.()IHI 
COPtOVCONT/HT,NT, IX, IT, IOX, IOT, ISS,lll',CV,11#4T ,ASH, INXlll, INT Ill, 

1 l"Tcs.,1 .u:GO.O, 111 .~c 11001 .NO 
COftQvC AL IN/ XU\., XU\.,O 
OIIOSION ,.,.,IOIH,JllHI 
h-0 
IX0•1X 
1,0-1, 
ISx•JOx •2 

IS-IPT I ISx , ISTJ 
ISO•IS 
Ir 1150-11 1, 1, 17 

17 150•1S0-I 
I Ir llOn 10,2, 10 
2 • •I x 

Z•IT 
IT2•JT•l0f 
OT•IOT 
, • ,o, • z 
GO TO 

I ? T•J T ... ,, 

SC&N0790 
SC&NOl00 
SC&NOl10 
SCANOe20 
SC&NOl,0 
SC&NOl40 
SC&NOl!IO 
SC&NOl60 
SCAl'.0170 

SC&NOl90 
SC&N0900 
SCAN0910 
SC&NOQ20 
SC&N09,0 
sc~o 
SCAN09!IO 
SC&N0960 
SCAN0970 

SC&N0990 
SCANIOOO 
SCAN1010 
SCANl020 
SCAN10,0 
SCANIO•O 
SCANIO!IO 
SCANI060 

SCANIOIO 
SCAN1090 

SCANl I 10 
SCAN1120 
SCAN! 1,0 
SCAN! 1•0 
SCAN1150 

SCANll 70 
SCANl 110 
SC.INl 190 

TIIAC01I0 
TIIAC0190 
TIIAC0200 
TIIAC02l0 
TIIAC0220 
TIIAC0250 
TIIAC0250 

TIIACOZ70 
CALC0150 

CALCOl 70 
CALC01 I0 
CALC0190 
C 

CALC02,0 

__, 
0 
u, 



OX•IOX 
IX2•1X•IOX 
x • 1CM'lllx,1,1-cv111..,.11x,1Y1•'"1IX2,1,111 •Ox ... 

M 1r I IS,[Q, I I JOl,•9 '°' .,..,.., 
lllCl.,l•IOO•IX•IT 

•9 IS-11•1 
9 IF 111•91 I, 7,7 
7 IS-11·1 
I IOX•INII 1111 

IDT• INT Cl SI 
1112-IX•IOX 
ITI-IT•IOT ./Tea.I.,.., 
IFINl7J,,7 ,1 CONTINA: 
CA&.L. r1t1ff'T IX, Tl 
Xl•X 
Tl•T ... , 
GO TO SI 

7J CONTINA: 
1rnt,Gt,ll,,IN),T,G[,ll,1 GO TO. 
JCL.rTt•ICL1'.•2,• ITl•I, I 
JCL.rT•XU...Z, • IT• I , I 
JdlMT 1 •JCL1'.,IO• I Tl• I , I 
JdlMT•xu..50• IT• I , I 
IF 1111 ,U:,lll.l'TI ,IN),11,U:,lll.l'TI GO TO N 
IF1111,Gt,Jellt4Tl,IN),11,Gt,..,.1 GO TON 
IFllll,LT,lll.l'Tl,IN),11,GT,lll.l'TI GO TO 1Z 
1r111l,GT,.-cTl,IN),11,LT,..,.1 GO TO 15 

IO CONTINA: 
IF 1111 ,LT ,Jellt4T1 ,IN),11.GT, JdlHTJ GO TO 14 

II CONTINA: 
1r111t,GT,lll.l'Tl,IN),X,LT,lll.l'TI GO TO 15 
GO TO 17 

IZ CA&.L. LINEINTcx,T,Xl,Tl,xO,T0,11 
CA&.L. vtCTOIIIXO,TOI 
GO TO IO 

85 CA&.L. LINE INT IX, T ,x I, Tl ,xO, T0,21 
CA&.L. vtCTOllcxo,,01 
GO TO 81 

.. CALL LINEINTIX,T,Xl,Tl,XO,T0,21 
CALL f'IISTl"T1xo,,01 
GO TON 

85 CALL LINEINTIX,T,xl,Tl,xO,T0,11 
CALL f'IISTl"T1xo,,01 
GO TON 

87 CALL ntSTl"T IX, Tl 
GO TON 

N CONTINA: 
CALL VCCTOllcx. Tl 

N CONTINA: ., .. ,,., 
s1 1r c 111120.• 
20 IF Clx-11101 12,21, 12 
21 IFIIT•lfOI 12,22,12 
22 1r,1s-1so, 12,25,12 
25 1, 111.co.11 501,,, 

507 .,..,.., 
lllC lf#'I •I 00• Ix• If 

" IF IIOn !12,S5,W ., ..... 

CALCOZ•O 
CALC0250 

TltAC0810 
TltACOWO 
TltACOJ90 
TltAC0,10 
TltACO,ZO 
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TltACO..O 
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TltACO.O 
TltAC0,70 

TltACO!IIIO 
TltACONO 
TltACOS70 

1'11AC0890 
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:'•IT 
IT2•1HIDT 
DT•IDY 
T • IIAl'111X,lfl-CVI/CAl1CIX,lfl-A111IX,IT2111 •OT. z 
1rcr1,G[,11 .. ~.T.G[,ll,I c;o TO 91 
JCL.rTl•IIL."-•2, •CTl•l,1 
XLrT•XL"-•2, • If• I, I 
xllHTl•IIL."-50•1Tl•l,J 
xllHT•XL"-50• If• I, I 
1r1xl,L[,11L.rT1.~.x.LC,lll.l'TI c;o TO 91 
1rix1 ,G[,Jellt4TI .~.x.GC,JdlHTI GO TO 91 
1r IXI ,LT ,lll.l'TI .~.x.c;T, lll.l'TI c;o TO 92 
1r1x1,c;T,IIIIHTl.~.x.LT,JdlHTJ c;o TO 95 

90 CONTINA: 
1r1xl,LT,IIIIHTl.~.x.C.T,1111HT1 c;o TO 9' 

91 CONTINA: 
1rcxt.C.T,11L.rTl,~.x.LT,lll.l'TI c;o TO 11& 
GO TON 

92 CALL LINEINTcx,T,xl,fl,xO,T0,11 
CALL lltCT0111xo,TOI 
GO TO 90 

95 CALL LINEINTIX,T,Xl,fl,XO,T0,21 
CALL lltCTOII cxO, TOI 
GO TO 91 

9' CALL LINEINTcx,T,Xl,fl,xO,T0,21 
CALL r1t1ff'T1xo,To1 
GO TON 

SI& CALL LINEINTCX,T,Xl,Tl,XO,T0,11 
CALL r1t1ff'T C XO, TO I 

N CONTINA: 
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N CONTINA: 
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100 CONTINA: 
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101 CONTINA: 
1rcx1.c.T . XLrT1,M(). x,LT.XLrTI GO TO 105 
GO TO 109 

102 CALL LINEINTCx,f,Xl,fl,xO,T0,1 1 
CALL V[CT01t1xo,,01 
GO TO 100 

105 CALL LINE INT ex, f ,xi, Tl ,xO, T0,21 
CALL ll(CTOllcxo,,01 
GO TO 101 

10• CALL LINElt1T1x,f,xl,T1,xO,Y0 , 21 
CALL FltSTl"T IKO, TOI 
GO TO 109 

105 CALL LINElt'1' Cx,,,,1,T1,xO,TO,ll 
CALL FltSTl"T IXO, TOI 
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C&u. vtCTOII Ix, YI 
109 CONTltU: 
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Figure 2.1 The grid network for the cloud model. 
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Figure 2.2 The ten 11 odd 11 points on the windward slope. 



Figure 4. 1 Stagnat ion region on windward side of a mountain obstacle 
for a stably stratified atmosphere. 
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Figure 4.2 The stream function using the downstream condition = 0; 
ax2 

the horizontal extent is 7 kilometers which was 
then increased to 11 kilometers, the depth is 3.5 kilometers. 
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After 250 time steps. 

F===========r 17000-------=============t 
1-------- 13000 
t------9000--------
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After 290 time steps. 

Figure 4.3 The stream function using the downstream condition 

= 0 ; the horizontal extent has been increased 
ax2 

to 11 kilometers, depth is 3.5 kilometers . 
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Figure 4.4 The stream function for a homogeneous atmosphere using Roache's 
::i2 ,1, downstream boundary condition of = 0 ; after 300 time 

steps. ax2 
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Figure 4.5 Detail of downstream boundary for explaining boundary 

condition on ~; (~) 0 ax 3 I-1 1/2 = • 
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cp, Entropy 
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Figure 4.6 The results of specifying the thermodynamic variables as invariant in time at the inflow 
boundary; the horizontal extent is 7 kilometers, depth is 3.5 kilometers; represents 100 
time steps for all variables. 
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Figure 5.1 Neumann case; the evolution of the total moisture field, Q . The isohumes represent grams 
per kilogram, moisture to dry air. Time in real seconds. 



Time Step =0 Time=0.00 Time Step=300 Time= 2418.63 
I. 

---------~0----------------l 
-------7.0----------------1 
------5.0------------------1 

Time Step=IOO Time=833.99 Time Step=400 Time=3180.27 .---- ----

Time Step=200 Time=l625.45 Time Step=480 Time= 3790.07 

Figure 5.2 Neumann case; the evolution of the potential temperature deviation, e . Isotherms correspond 
to degrees Kelvin. Time in real seconds. 



Figure 5.3 

Time Step=O Time=0.00 Time St = 300 Tlme=2418.63 

0 

Time Step=tOO Time=833.99 Time Ste =400 Time= 318027 

Time Step=200 Time=l625.45 Time Step=480 Time=3790.07 

0 Q 
Neumann case; 
is 0.05 grams 
per kilogram. 

the evolution of liquid (cloud) water, wi. The threshold value for plotting 
per kilogram, moisture to dry air; the maximum value of wi reaches 0.468 grams 
Time in real seconds. 
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Time Step=0 Time=0.00 Time Ste =300 Time=2418.63 

Time Step= 100 lime=833.99 Time Step=400 Time=3180.27 

Time Step=200 Time= 1625.25 Time Step=480 Time=3790.07 

Figure 5.4 Neumann case; the evolution of the vorticity field, n . Values range from -0.0200 sec-l 
to 0.0107 sec-l. Time in real seconds. 
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Time Step=200 Time=l625.45 Time Step=480 Time=3790.07 

Figure 5.5 Neumann case; the evolution of the stream function, ~ . Dimensions are m2 sec-1. 
Time in real seconds. 
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Time Step=I00 Time=821 .81 lime Step=400 Time= 3114. 2 4 
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Figure 5.6 Dirichlet case; the evolution of the total moisture field, Q . The isohumes represent grams 
per kilogram, moisture to dry air. Time in real seconds. 
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ILO 
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Time Step=200 Time=l603.12 Time Step=480 Time=3708 .96 

Figure 5.7 Dirichlet case; the evolution of the potential temperature deviation, e . Isotherms 
correspond to degrees Kelvin. Time in real seconds. 
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Time Step=O Time=0.00 Time Step=300 Time= 2371.32 

Time Step=IOO Time=821.81 Time Step=400 Time=3114.24 

Time Step=200 Time=l603 .12 Time Ste =480 rme= 3708.96 

Figure 5.8 Dirichlet case; the evolution of liquid (cloud) water, wt . The threshold value for plotting 
is 0.05 grams per kilogram, moisture to dry air; the maximum value of wt reaches 0.474 
grams per kilogram. Time in real seconds. 
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Time Step=IOO Time=82l.81 Time Step=400 Time=3114.24 

Time Step=200 Tlme=l603.1 2 Time Step=480 Time=3708.96 

Figure 5.9 Dirichlet case; the evolution of the vorticity field, n . Values range from -0.0127 sec-1 
to 0.0075 sec-l. Time in real seconds. 
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Figure 5.10 Dirichlet case; the evolution of the stream function, . Dimensions are m2 sec-1 
Time in real seconds. 
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Figure 5.11 Comparison of kinetic energies for the Neumann and 
Dirichlet cases. 
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(a) Ti me Step= 30 Time=228.52 
17000 -------------===-

L---------13000-------------------t 
L--------9000---------------------4 

L----- 5000---------------------1 

(b) Time Step= 100 Time=847.80 
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t----------13000-------------7 
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Figure 5.12 The stream function for the· case where K is finite 
differenced. (a) after 30 time steps with n = 0 at 
lower boundary; (b) after 100 time steps with 
a2 n 
- = 0 at the lower boundary. Time in real seconds. 
an2 
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