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ABSTRACT 

 

MICROPHYSICAL RETRIEVAL AND PROFILE CLASSIFICATION FOR GPM DUAL-

FREQUENCY PRECIPITATION RADAR AND GROUND VALIDATION 

The Global Precipitation Measurement (GPM) mission, planned as the next satellite mission 

following the Tropical Rainfall Measurement Mission (TRMM), is jointly sponsored by the 

National Aeronautic and Space Administration (NASA) of USA and the Japanese Aerospace 

Exploration Agency (JAXA) with additional partners, the Centre National d’Études 

Spatiales (CNES), the Indian Space Research Organization (ISRO), the National Oceanic and 

Atmospheric Administration (NOAA), the European Organization for the Exploitation of 

Meteorological Satellites (EUMETSAT), and others. The core satellite of GPM mission will be 

equipped with a dual-frequency precipitation radar (DPR) operating at Ku- (13.6 GHz) and Ka- 

(35.5 GHz) band with the capability to cover  65   latitude of the earth. One primary goal of the 

DPR is to improve accuracy in estimation of drop size distribution (DSD) parameters of 

precipitation particles. The estimation of the DSD parameters helps achieve more accurate 

estimation of precipitation rates. The DSD is also centrally important in the determination of the 

electromagnetic scattering properties of precipitation media.  The combination of data from the 

two frequency channels, in principle, can provide more accurate estimates of DSD parameters 

than the TRMM Precipitation radar (TRMM PR) with Ku- band channel only. In this research, a 

methodology is developed to retrieve DSD parameters for GPM-DPR. Profile classification is a 

critical module in the microphysical retrieval system for GPM-DPR. The nature of microphysical 

models and equations for use in the DSD retrieval algorithm are determined by the precipitation 

type of each profile and the phase state of the hydrometeors. In the GPM era, the Ka- band 
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http://www.noaa.gov/
http://www.eumetsat.int/
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channel enables the detection of light rain or snowfall in the mid- and high- latitudes compared 

to the TRMM PR (Ku- band only). GPM-DPR offers dual-frequency observations (measured 

reflectivity at Ku- band:  (  ) and measured reflectivity at Ka- band:   (  )) along each 

vertical profile, which provide additional information for investigating the microphysical 

properties using the difference in measured radar reflectivities at the two frequencies, a quantity 

often called the measured dual-frequency ratio (DFRm) can be defined (DFRm   (  )  

  (  ) ). Both non-Rayleigh scattering effects and attenuation difference control the shape of 

the DFRm profile. Its pattern is determined by the forward and backscattering properties of the 

mixed phase and rain media and the backscattering properties of ice. Therefore, DFRm could 

provide better performance in precipitation type classification and hydrometeor profile 

characterization than TRMM PR. In this research, two methods, precipitation type classification 

(PCM) and hydrometeor profile characterization (HPC), are developed to perform profile 

classification for GPM-DPR using the DFRm profile and its range variability. The methods have 

been implemented into the GPM-DPR day one algorithm. 

 

Ground validation is an integral part of all satellite precipitation missions. Similar to TRMM, the 

GPM validation falls into the general class of validation and integration of information from 

space-borne observing platforms with a variety of ground-based measurements. Dual 

polarization ground radar is a powerful tool that can be used to address a number of important 

questions that arise in the validation process, especially those associated with precipitation 

microphysics and algorithm development. Extensive research has also been done regarding 

accurate retrievals of rain DSDs as well as attenuation correction for dual-polarization ground 

polarimetric ground radar operating at a single frequency channel has limitation on DSD
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retrieval beyond rain region. A dual-frequency and dual-polarization Doppler radar (D3R) 

operating at the same frequency channels as GPM-DPR has been built. In this research, an 

algorithm is developed to retrieve DSD parameter for this D3R radar, which will serve as the 

GPM-DPR ground validation instrument. 
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CHAPTER 1 

 
INTRODUCTION 

 
1.1 INTRODUCTION 

 
Space-borne weather radar mounted on satellites provides a practical means to obtain useful 

regional as well as global precipitation measurements. The Tropical Rainfall Measuring Mission 

(TRMM), launched in 1997 jointed sponsored by National Aeronautic and Space Administration 

(NASA) of USA and the Japanese Aerospace Exploration Agency (JAXA), provided the first 

detailed and comprehensive dataset of rainfall within tropical areas across the globe (Iguchi et 

al., 2000). TRMM is a very successful mission and has provided the motivation to obtain broader 

coverage, both spatially and temporally, than what is provided by TRMM. The Global 

Precipitation Measurement (GPM) mission, also jointed sponsored by National Aeronautic and 

Space Administration (NASA) of USA and the Japanese Aerospace Exploration Agency 

(JAXA), is planned to be the next satellite mission to obtain global precipitation measurements. 

GPM is a science mission with integrated goals for advancing knowledge of the global 

water/energy cycle variability as well as improving weather, climate, and hydrological prediction 

capabilities through more accurate and frequent measurements of global precipitation. The GPM 

mission architecture consists of satellite instruments flying within a constellation to provide 

accurate precipitation measurements around the globe every two to four hours. The GPM core 

satellite will be in an inclined orbit of 65, allowing coverage up to 65 latitude and 

correspondingly greater coverage of the earth compared to the TRMM mission with its orbit of 

35. Compared to TRMM, GPM will add to the tropical measurements the ability to measure 

snow and ice precipitation in the higher latitudes. The core satellite will be equipped with a dual-
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frequency precipitation radar (DPR) operating at Ku- (13.6 GHz) and Ka- (35.5 GHz) band as 

well as a passive microwave imager (GMI) with the capability to cover  65   latitude of the 

earth. One primary goal of the DPR is to improve accuracy in estimating of drop size distribution 

(DSD) parameters of precipitation. The estimation of the DSD parameters of precipitation 

particles helps to achieve more accurate estimation of precipitation rate. The DSD is also 

centrally important in the determination of the electromagnetic scattering properties of 

precipitation media.  The combination of data from the two channels, in principle, can provide 

more accurate estimates of DSD parameters than the TRMM PR. A number of dual-frequency 

retrieval approaches have been proposed (Meneghini et al., 1992, 1997; Mardiana et al., 2004; 

Iguchi, 2005; Rose and Chandrasekar, 2006a; Meneghini and Liao, 2009; Le et al., 2009).  

 

Profile classification is an important module in the microphysical retrieval system for the GPM-

DPR. The module has two functions: precipitation type classification, which classifies stratiform, 

convective, and other rain types; and hydrometeor profile characterization, which identifies the 

phase state of hydrometeors. The nature of microphysical models and equations to use in the 

DSD retrieval algorithm are determined by the precipitation type of each profile and the phase 

state of the hydrometeors. In the TRMM mission, the vertical profile of reflectivity (VPR) at Ku- 

band is the main information used to perform profile classification (Awaka et al., 1997). In the 

GPM era, the Ka- band channel enables the detection of light rain or snowfall in the mid- and 

high- latitudes compared to the TRMM PR (Ku- band only) (Iguchi et al., 2002). GPM-DPR 

offers dual-frequency observations (measured reflectivity at Ku- band:  (  ) and measured 

reflectivity at Ka-band:   (  )) along the vertical profile. This allows us to investigate the 

microphysical properties using the difference between two frequency observations (or DFRm 
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  (  )    (  ) ). DFRm is also called the measured dual frequency ratio. Both the non-

Rayleigh scattering effect and attenuation difference control the shape of the vertical profile of 

DFRm. Its pattern is influenced by both the rain and ice portions of precipitation and the forward 

scatter and back scatter of the scattering mechanism. Le and Chandrasekar (2012) have 

developed methods to perform profile classification for GPM-DPR using characterization of the 

DFRm profile and its range variability. The methods have been implemented into the GPM day 

one algorithm. 

 

Ground validation is an integral part of all satellite precipitation missions. Ground validation 

helps to characterize errors, quantify measurement uncertainty, and, most importantly, provides 

insight into the physical basis of the retrieval algorithms. Similar to TRMM, the GPM validation 

falls in the general class of validation and integration of information from a variety of space-

borne observing platforms with ground-based measurements. Dual polarization ground radar is a 

powerful tool that can be used to address a number of important questions that arise in the 

validation process, especially those associated with precipitation microphysics and algorithm 

development (Chandrasekar et al., 2008). Extensive research has  been done regarding accurate 

rain DSD retrieval as well as attenuation correction for dual-polarization ground radar operating 

at S-, C- and X- band by using polarimetric measurements (Gorgucci et al., 2002a, 2008; Testud 

et al., 2000;  Bringi and Chandrasekar, 2001; Anagnostou et al., 2008). However, polarimetric 

ground radar operating at a single frequency channel has limitations on DSD retrieval beyond the 

rain region. A dual frequency and dual polarization Doppler radar (D3R) operating at the same 

frequency channels as GPM-DPR has been built.  A new DSD retrieval algorithm has been 

developed for this dual frequency and dual polarization ground radar, which will serve as GPM-
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DPR ground validation (Le and Chandrasekar, 2011). Le and Chandrasekar (2011) presented an 

algorithm tested for the rain region, and the algorithm has potential application for melting and 

ice particle retrievals.  

 

1.2   LITERATURE REVIEW 

 

1.2.1 Space-based dual-frequency precipitation radar and microphysics retrieval 

 

Unlike TRMM, GPM-DPR will provide two independent measurements of precipitation from 

two frequencies. Dual-frequency techniques will be used to improve the accuracy of the drop 

size distribution parameter as well as rainfall rate estimation. As mentioned earlier, there have 

been a number of dual-frequency methods proposed for GPM. They can be categorized into two 

types. One of the standard dual-frequency methods is based on the conversion of the differential 

attenuation to the rain rate (Eccles, 1979; Iguchi, 2005). This method requires one of the two 

assumptions to be valid: reflectivity at both channels are equal to Rayleigh scattering reflectivity 

or the rain is uniform. Either of these assumptions limits the application of the algorithm. 

Furthermore, the method is focused on the rain rate estimation rather than the drop size 

distribution parameters. Later, a two-scale DSD estimation procedure is generalized to dual-

frequencies, thereby, providing a two-parameter estimation of DSD at each range gate. The 

concept underlying the second method is that dual-frequency ratio DFR (describing the 

difference of the radar reflectivity at two frequencies in decibels) is the key parameter in DSD 

retrieval, which is proportional to median drop diameter (Do) when at least one of the 

frequencies falls into the non-Rayleigh scattering. This method has been widely used in dual-
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frequency space or airborne radar retrieval (Meneghini et al., 1997; Kozu et al., 1991; Liao et al., 

2008). According to the application of a downward looking space borne radar, the second 

method can be further divided into two approaches: the forward approach, where the DSDs are 

calculated at each radar bin starting from the top bin and moving down to the bottom; and the 

backward approach, where the algorithm begins at the bottom bin and moves upward to the top. 

The forward approach has limited application because of a tendency to diverge in regions of 

moderate-to-heavy rainfall (Liao and Meneghini, 2004). The backward approach (or surface 

reference technique, SRT) uses a backward calculation method that is more stable than the 

forward method but requires a priori knowledge of the total two-way path-integrated attenuation 

(PIA) for each ray or an ability to calculate it (Meneghini et al., 1997, 2002).  

 

Mardiana et al. (2002) proposed a non-SRT algorithm, which is a self-consistent algorithm 

wherein the total PIA for each frequency channel is first estimated using an initial guess, then 

optimized through an iteration process. However, these DSD retrieval algorithms suffer from the 

bi-valued problem for the rain region. (i.e., the non-uniqueness of median volume diameter Do 

retrieval from the DFR parameter (Meneghini et al.,1997)). Rose and Chandrasekar (2006a) 

proposed a supplementary method, using linear assumption of vertical profiles for Do  and Nw  

(equivalent intercept parameter (in log scale)) in the rain region to avoid the bi-valued problem.  

Later, a hybrid approach combining the advantages of the forward method and the recursive 

backward method was proposed by Le et al., (2009). The surface reference weak constraint 

(SRWC) method was proposed by Meneghini and Liao, (2009). This method belongs to the 

backward recursion with SRT approach, but uses a weak constraint by providing a group of 

possible combinations of solutions. Seto et al (2013) proposed an algorithm called HB-DFR 
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method combining the Histchfeld-Bordan’ attenuation correction method (Histchfeld and 

Bordan, 1954) and the dual-frequency ratio method (Meneghini et al., 1997). 

 

1.2.2  Stratiform/Convective rain type classification and melting region detection 

  

In the TRMM era, where only the Ku- band channel is available, rain type classification and 

hydrometor phase detection are mainly made based on a vertical profile of reflectivity (VPR) 

(Awaka, 1997) as well as temperature information. Stratiform and convective rain are the two 

main rain types in meteorology. Convective rain, in general, is defined as precipitation that has a 

strong vertical air motion and small (1-10 km horizontal dimension), intense, horizontally 

inhomogeneous radar reflectivity. In contrast to convective rain, stratiform rain is defined as 

precipitation that has a weak vertical air motion and produces a widespread, homogeneous layer 

of radar echo. Bright band (BB) is a radar signature and an indication of stratiform rain type. BB 

is denoted by a sharp increase of the vertical reflectivity profile caused by an increase of 

dielectric constant, and hence an increase in the backscattering cross section of melting particles.  

Extensive research has been done regarding the melting region detection using VPR. Tilford et 

al. (2001) used the gradient of reflectivity to detect the bright band top and bottom for stratiform 

rain type. The curvature of VPR was studied by Fabry and Zawadzki (1994) and was shown to 

be an indicator of melting region boundaries.  

 

When vertical pointing ground radar is available, auxiliary information can be used for 

hydrometeor phase detection—ice, melting ice, and rain— of a vertical profile. Smyth and 

Illingworth (1998) and Bandera et al. (1998) pointed out that the linear depolarization ratio 
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(LDR) is an important signature in melting phase detection, with certain thresholds determined 

for different hydrometeor particles. Baldini and Gorgucci (2006) mentioned that the sudden 

change of the hydrometeor fall velocity is an implication of the melting layer. The curvature of 

velocity was used by Zrnic et al. (1994) in characterizing the melting boundaries. Klaassen 

(1988) found that the melting layer bottom can be detected by maximum of velocity.  

 

In the GPM era, DPR on board the GPM satellite offers dual frequency observations along the 

vertical profiles that allow us to investigate the microphysics of precipitation using the difference 

between two frequency observations (or DFRm). There are two aspects that control the shape of 

the DFRm vertical profile: a) the non-Rayleigh scattering effect and b) the path integrated 

attenuation difference between two frequency channels. In the ice region, DFRm is mainly 

caused by the non-Rayleigh scattering effect while in the melting region; the change in dielectric 

constant due to the melting of the particles has different effects on Ku- and Ka- band (Bringi and 

Chandrasekar, 2001). Both non-Rayleigh scattering effects and attenuation difference play a role 

in the melting region. DFRm is strongly controlled by attenuation difference in the rain region. It 

was shown in Le and Chandrasekar (2012) that the shape of the DFRm profile is rich in 

information and its content is a good candidate for producing precipitation type classification and 

hydrometeor phase detection. Two models were developed based on DFRm for the GPM-DPR 

classification method. The first model is a precipitation type classification model (PCM) 

including stratiform, convective, and other rain types. The second model is the hydrometeor 

profile characterization (HPC) model which is used for melting region detection. Both models 

show good comparisons with TRMM-like algorithm and linear depolarization ratio (LDR) based 
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methods. The algorithm described in Le and Chandrasekar (2012) has been implemented in the 

GPM-DPR day one algorithm.  

 

1.2.3 Dual-polarization ground-based radar and microphysics retrieval 

 

Dual polarization ground radar is a very powerful tool in the space-borne radar validation 

system. Polarimetric radar provides accurate rain drop size distribution as well as rainfall rate 

estimation, and is capable of discriminating among phase-state and type of precipitation particles 

(Bringi and Chandrasekar 2001). The five basic polarimetric radar measurements are horizontal 

reflectivity (  ), differential reflectivity (   ), specific differential phase (   ), linear 

depolarization ratio (LDR), and correlation coefficient (   ). Extensive research has been done 

regarding accurate rain DSD retrieval as well as attenuation correction using dual-polarization 

ground radar operating at S-, C- and X- band by using polarimetric measurements. One popular 

approach is the algorithm developed by Gorgucci et al. (2006b, 2008) that takes advantages of 

the self-consistency between the radar parameters of reflectivity factor, differential reflectivity, 

and specific differential phase. The self-consistency (SC) principle was applied for attenuation 

correction at X- band and later adapted to a fully self-consistent (FSC) method.  The DSD 

parameters were retrieved in the literature (Gorgucci et al., 2008) based on the attenuation-

corrected radar parameter using parameterization proposed earlier by Gorgucci et al. (2006b). 

The SC and FSC methods rely on an optimization procedure that constraints the estimated and 

observed differential phase.  

However, polarimetric ground radar operating at a single frequency channel has limitations on 

DSD retrieval beyond the rain region. A dual frequency and dual polarization Doppler ground 
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radar operating at the same frequency channels as GPM-DPR has been built.  A new DSD 

retrieval algorithm has been developed for this dual frequency and dual polarization ground radar 

that will serve as GPM DPR ground validation (Le and Chandrasekar, 2011). Although in Le and 

Chandrasekar (2011), the algorithm is tested only for the rain region, the algorithm has potential 

application to melting and ice particle retrievals, as has been shown in Le et al. (2009). 

 

1.3   STATEMENT OF PROBLEM 

 

Dual-frequency precipitation radar (DPR) on board a GPM core satellite will be the first dual 

frequency space-borne radar to make new Ka- band observations. The dual frequency 

observations from Ku- and Ka- band provide an opportunity to estimate drop size distribution 

parameters and hence rainfall rate estimation more accurately. Extensive research work on dual-

frequency radar, including electromagnetic wave propagation characteristics from space and 

microphysics retrieval algorithms, are essential for system design and performance evaluation.  

Profile classification is an important module in the microphysical retrieval system for GPM-

DPR. The nature of microphysical models and equations for use in the retrieval algorithm are 

determined by the precipitation type and phase state of each profile.  

 

The GPM satellite won’t be launched till 2014. The present research work is based on dual 

frequency observations from either simulated theoretical profiles or dual frequency airborne 

radar data. Although theoretical simulations with simple microphysical models cannot provide 

realistic vertical profiles, they are essential in developing and evaluating algorithms with known 
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microphysical information. A second generation airborne precipitation radar (APR-2 radar) 

operating at Ku- and Ka- band was designed to emulate GPM-DPR and was deployed in several 

experiments including the Wakasa Bay Experiment in 2003, the NASA African Monsoon 

Multidisciplinary Analysis (NAMMA) experiment in 2006, and the Genesis and Rapid 

Intensification Processes (GRIP) experiment in 2010. APR-2 radar provides realistic dual 

frequency observations that help improve modeling of precipitation microphysics. 

 

Validation is an integral part of all satellite precipitation missions, and GPM validation falls in 

the general class of validation and integration of information from a variety of space-borne 

observing platforms with ground-based measurements. Dual polarization ground radar is a 

powerful tool that can be used to address a number of important questions arising in the 

validation process, especially those associated with precipitation microphysics and algorithm 

development. A dual frequency and dual polarization ground radar operating at the same 

frequency channels as DPR has been built to perform ground validation. Although extensive 

research work has focused on microphysical retrieval from dual polarization ground radar 

operating at single frequencies such as S-, C- and X-band, algorithms with higher accuracy and 

wider application are expected for the dual frequency and dual polarization ground radar. 

 

This research attempts to address the unique and specific problems that exist in the field of 

space-borne radar observations. In particular, it focuses on the dual-frequency retrieval 

algorithms as well as profile classification modeling for GPM-DPR. For GPM ground validation 

purposes, development of retrieval algorithms for a dual frequency and dual polarization ground 
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radar is also an effective part of this research.  

 

1.4   OBJECTIVE OF RESEARCH 

 

The following items summarize the objects of this research.   

 
 

 To develop a profile classification model for GPM-DPR. 

                     

        °   Study GPM, its overall mission goals and subsystems. 

        °   Study stratiform / convective rain type. 

        °   Study profile classification method for TRMM PR. 
 
        °   Examine different criteria used for melting region detection based on vertical 
profile. 
 
        °   Develop a profile classification model for GPM-DPR using airborne radar data. 
 
        °   Evaluate model performance and compare results with existing algorithms. 
 
        °   Implement the profile classification method into the GPM-DPR day one 
algorithm. 
 
 
 
      

 To develop microphysics retrieval algorithm for GPM-DPR. 
 
       °    Study drop size distribution parameters. 

                   °    Examine principles of dual frequency retrieval algorithms for GPM-DPR. 

                   °    Study the strengths and weaknesses of existing retrieval algorithms. 
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       °    Develop a hybrid dual frequency retrieval algorithm for GPM-DPR. 

 

       °    Evaluate the performance of the hybrid algorithm and compare it with existing   

algorithms. 

 

       °    Evaluate tropical storms using the hybrid method 

 

 

 To develop a retrieval algorithm for a dual frequency and dual polarization ground radar 
that will serve as GPM ground validation. 

 

                    °   Examine existing retrieval algorithms for dual-polarization ground radar 
operating     at a single frequency channel. 

 

                    °   Study fuzzy-logic algorithms to perform hydrometeor identification for dual-
polarization ground radar at S band.         

 

                    °   Simulate Ku- and Ka- band ground radar observations.  

 

                    °   Develop a retrieval algorithm for the dual frequency and dual polarization ground 
radar.  

                    °   Evaluate the performance of the retrieval algorithm.  
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CHAPTER 2 

 
BACKGROUND 

 
2.1 MICROPHYSICAL MODEL FOR PRECIPITATION: DROP SIZE DISTRIBUTION 

 

Weather radar is an electromagnetic system for the detection of precipitation. It transmits energy 

into space and detects the echo signals reflected from the hydrometeor particles. Electromagnetic 

waves propagated through precipitation media and their scattering by precipitation particles are 

essential for understanding both space-borne and ground-based radar observations. The 

distribution of particle sizes drop size distribution as well as the particle scattering model are of 

central importance in determining the electromagnetic scattering properties of precipitation 

media. These effects, in turn, are embodied in radar parameters of interest here: the reflectivity 

factor (Zh); differential reflectivity (Zdr), which is the ratio of reflectivities at horizontal and 

vertical polarization states; specific attenuation (   ) and specific differential attenuation (   ), 

which is the difference of specific attenuation between horizontal and vertical polarization.  

 

Size distribution describes the probability density function of precipitation drop sizes. The 

estimation of the drop size distribution (DSD) parameters of precipitation particles helps to 

achieve more accurate estimation of precipitation rate. DSD is also centrally important in the 

determination of the electromagnetic scattering properties of precipitation media. The 

distribution of drop sizes contains a wide range of drop diameters and its evolution is determined 

by microphysical processes such as coalescence, collisional breakup, and evaporation. One of the 

scientific objectives of the dual frequency precipitation radar DPR on board the GPM core 
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satellite is to improve the accuracy of DSD parameters. Ulbrich (1983) showed that a gamma 

distribution model can adequately describe the natural variability in drop size distribution which 

can be expressed as  

                   ))(()( 13  mmmDfnDN Dc ,                                               (2.1) 

where )(DN is the number of raindrops per unit volume per unit size interval ( D  to D + D ), 

cn  is the number concentration, and )(Df D  is the probability density function with the gamma 

form  

              ,1,
)1(

)(
1





 









DeDf D
D                                            (2.2) 

where   and   are the parameters of the gamma probability density function (Bringi and 

Chandrasekar, 2001).  Any other gamma form, such as  

                                 ,)( 0
DeDNDN                                                         (2.3) 

can be derived from the fundamental notion of raindrop size distribution. No, , and   are three 

parameters and denote the intercept, the slope, and the shape of the gamma probability density 

function. The relation between Do,  , and  is given by  

                                ,67.30 D                                                          (2.4) 

Where Do is the median drop diameter defined as precipitation particles up to size Do which 

contribute half the water content. Using (2.4), )(Df D  in (2.2) can be expressed as  
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In order to compare )(Df D  in the presence of varying water contents, the concept of normalizing 

the DSD has been used by Testud et al. (2000). In this case, the normalized form of )(DN  can 

be expressed as                        

,)67.3(exp)()(
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Where Nw is the scaled version of No defined in (2.3), which could be interpreted as the 

intercept of an equivalent exponential distribution with the same water content, and Do as the 

gamma DSD (Bringi and Chandrasekar, 2001). 
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f  .                                            (2.8) 

when 0 , 1)( f , )(DN  becomes an exponential form. Three critical parameters of the 

hydrometeor size distribution, Nw, Do, and  , control the hydrometeor size distribution, and 

varying them over a wide range of naturally observed values yields a physically realistic 

simulation of derived parameters such as radar reflectivity and attenuation.  
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2.2 CONCEPT OF RADAR REFLECTIVITY AND ATTENUATION 

 

The loss of energy that a radar beam suffers as it passes through an area of precipitation is called 

attenuation. Attenuation is determined by the extinction cross-section (    ) of precipitation 

particles. The specific attenuation of a propagating wave through an area of precipitation can be 

expressed in an integral form of the extinction cross-section over DSD. The specific attenuation 

(  ) at two polarizations horizontal polarization (  ), and vertical polarization (  ), is given by 

     
D

extvh dDDND )()(10343.4 3
,        dB/km                                  (2.9) 

The specific differential attenuation     is defined as the difference of   between horizontal and 

vertical polarization.  

vhdp         dB/km                                                 (2.10) 

Radar reflectivity factor   is defined as: 


D

ext dDDND
K

Z )()(25

4




                                             (2.11) 

where    is the backscatter or radar cross-section.   is the wavelength and K is the dielectric 

factor of the particle. It is a measure of the efficiency of a radar target in intercepting and 

returning radio energy. In Rayleigh scattering, the reflectivity factor is an approximation of the 

sixth moment of DSD, and (2.11) can be simplified as 


D

dDDNDZ )(6                                                      (2.12) 

http://amsglossary.allenpress.com/glossary/search?id=radar1
http://amsglossary.allenpress.com/glossary/search?id=energy1
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However, in reality, radar measures the backscattered power from the precipitation, but not really 

sure what the hydrometeor type is, so the water equivalent radar reflectivity factor   .    is what 

we usually called radar reflectivity. The radar reflectivity at horizontal ( ) and vertical 

polarizations ( ) is given by  


D

ext
w

vh dDDND
K

Z )()(25

4

, 


                                         (2.13) 

where    is the dielectric factor of water. When the precipitation is rain, the radar reflectivity is 

the same as the radar reflectivity factor. The differential reflectivity     in the dB sense is 

defined as the ratio between reflectivity (in linear sense) at horizontal and vertical polarization. 

)(log10 10
v

h
dr Z

Z
Z                                                     (2.14) 

The measured reflectivity at range r from radar is    ( ). It can be expressed in terms of radar 

reflectivity and attenuation as 

)()(])(10ln2.0exp[)()(
0

rArZdssrZrZ e

r

em                         (2.15) 

A(r) is the two-way path integrated attenuation factor from radar up to range r.   Similarly, the 

measured differential reflectivity at range r can be expressed as: 

)()(])(10ln2.0exp[)()(
0

rArZdssrZrZ dpdr

r

dpdrdrm                   (2.16) 

where    (r) is the two-way differential path integrated attenuation factor. 
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2.3 STRATIFORM/CONVECTIVE RAIN TYPE 

 

Stratiform and convective rain are the two main rain types defined in meteorology. Convective 

rain, in general, is defined as precipitation that has a strong vertical air motion, small (1-10 km 

horizontal dimension), and intense, horizontally inhomogeneous radar reflectivity. In contrast to 

convective rain, stratiform rain is defined as precipitation that has a weak vertical air motion and 

produces a widespread, homogeneous layer of radar echo. The characteristics of stratiform and 

convective rain have received significant attention since TRMM PR was launched in 1997. At 

that time, global evaluation of different rain types was achieved for the first time within a 

tropical area. Studies using TRMM PR have discovered that stratiform rain accounts for around 

73% of the tropical area covered by rain and 40% of the total rain amount (Schumacher and 

House, 2003). However, the convective rain rate is around four times that of stratiform rain rate 

on average at TRMM PR horizontal resolution (~ 5km). 

 

The algorithm for classifying TRMM PR radar observations into convective and stratiform types 

was developed by Awaka et al. (1997). Two different methods are used for classifying rain type; 

one is the vertical profile method (V-method), and the other is the horizontal pattern method (H-

method).  Both methods classify rain into three categories: stratiform, convective, and other. The 

V-method detects the existence of bright band by peak search on a vertical profile of reflectivity. 

The H-method examines the horizontal pattern of Z at a given height. The “other” type is meant 

for cloud echoes and noisy observations. TRMM PR algorithms classify rain type using a 

combination of both the H- and V-methods.  
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2.4 SCATTERING MODEL FOR DIFFERENT PRECIPITATION TYPES 

 

To simulate what radar will “see” often require two parts. One part is the scattering calculation 

from single precipitation particle (radar cross-section); the other part is the drop size distribution 

information ( ( )) for the precipitation media of interest. In order to calculate scattering 

properties from a single hydrometeor particle, a scattering model must describe the size, shape, 

components, density and orientation of the hydrometeor particle. Moreover, for a melting 

particle, the scattering model also needs to describe different components (different phases) of 

the particle and their distribution. Normally, besides the scattering model, a meteorological 

melting layer model is needed to calculate scattering properties for a melting particle. The 

meteorological melting layer model describes the melting fractions and fall velocity of 

hydrometeors as a function of distance from the 0 degree isotherm. The melting layer model 

involves the single scattering model into a vivid melting procedure and determines the melting 

fraction according to different melting status. 

 

Table 2.1 lists some well-recognized scattering models and meteorological melting layer models 

for a single particle with different hydrometeor phases. The equilibrium shape of a raindrop can 

be regarded as an oblate spheroid (Green, 1975). Different raindrop models are represented by 

different relations between drop axis ratio (defined as b/a, with b being the semi-minor axis 

length and a the semi-major axis length) and volume-equivalent spherical drop diameter. The 

most popular raindrop shapes are the Beard and Chuang (BC) rain drop model (Beard and 

Chuang, 1987) and the Andsager and Beard Chuang (ABC) rain drop model (Andsager et al., 
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1999). Other models such as a linear model (Pruppacher and Beard, 1970), as well as 

experimental models (Thurai et al., 2007), are used in some instances in the literature. In this 

research, the BC and ABC raindrop models are used in simulation and algorithm evaluation. 

  

Hydrometeor types such as snow and graupel (densely-rimed snow (Zawadzki et al., 2005) are 

normally composed by two phases: air and ice. The shape of the snow varies greatly. Basically, 

there are several categories such as columns, plates, rosettes, and snowflakes. Although the exact 

shape of the snow is not easy to model, snow particles are prone to be aggregated when they fall 

and the aggregate is likely to be randomly oriented. Graupel is formed when water droplets 

condense on a snowflake, forming a ball of rime. Therefore, it is fair for both snow and graupel 

to be modeled as a sphere with the density of graupel larger than that of snow.  

 

Because of the complex nature of the melting process and lack of experimental data, 

computations of the scattering properties of melting hydrometeors rely on models, including a 

scattering model and a melting layer model. A melting particle is normally composed of three 

phases—air, water and ice. Two types of scattering model often appear in the literature; one is 

the uniformly mixed sphere model where the water fraction is constant (uniform mixture) 

throughout the particle, and another is the two-layer concentric-sphere model where the water is 

confined to the outer shell and snow to the inner core. The most commonly used formulas to 

calculate an effective dielectric constant for uniformly melting snow are those of Maxwell 

Garnett (1904) and Bruggeman (1935). Liao and Meneghini, (2005) proposed a stratified sphere 

melting particle model. The melting particle is modeled as a nonuniform mixture with a water 
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fraction that decreases toward the particle center. Due to the lack of knowledge of the true 

melting processes, it is hard to judge which scattering model is preferable.  For simplicity, the 

uniformly mixed sphere model is used in this research and Bruggeman’s (1935) equation is 

applied to calculate the dielectric constant of the mixture.  Besides the scattering model, a 

meteorological melting layer model is also important in calculating scattering properties of the 

melting layer. Some widely used melting layer models are found in Awaka et al. (2005), 

Yokoyama and Tanaka (1984), and Russchenberg and Ligthart (1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1. Scattering model and meteorological melting layer model for single hydrometeor 
particle.  

Hydrometeor 
Type 

Rain Snow/graupel Melted particle 

 
 
 
Scattering 

model 

 
 

shape 

Diameter  VS axis 
ratio relations: 

BC , ABC, linear, 
experiment 
models etc. 

Columns and 
plates; 

rosettes; sector 
snowflakes; 

dendrite 
snowflakes. 

 

Sphere; 
two-layer sphere; 
stratified sphere 

etc. 

 
       density 
           (𝜌) 

 
1.0 g/cm3 

 
0.05-0.55 g/cm3 

 
Vary with water 

fraction 

 
components 

 
water 

 
Ice and air 

 
Ice, water and air 

 
Meteorological melting 

layer model 

 
_ 

 
_ 

Awaka et 
al.(1985); 
Yokoyama and 
Tanaka (1984);  
Russchenberg and 
Ligthart (1996) 
etc. 
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2.5 SPACE-BORNE WEATHER RADAR 

2.5.1 Introduction 

Reliable global quantitative precipitation measurement is critically important for a variety of 

applications, including flood forecasting, numerical weather prediction, understanding the 

evolution of hurricanes and severe storms, and tracking long-term trends in global precipitation 

and water supply. Variability in the global distribution of precipitation is recognized as a key 

element in assessing the impact of climate change for life on earth. Before space-borne weather 

radar was available, the ground-based radar community including polarimetric radar, Doppler 

radar, and disdrometer measurements, played an important role in attempting to relate 

microphysical and resultant DSDs to local meteorological conditions. The Tropical Rainfall 

Measuring Mission Precipitation Radar (TRMM PR), launched in 1997, became the first space-

borne weather radar to measure global precipitation within tropical areas. Although TRMM PR 

has successful provided global precipitation information for more than 10 years, more coverage 

is needed both spatially and temporally. The Global Precipitation Measurement (GPM) mission 

is poised to be the next generation of observations from space after the TRMM mission, expected 

to be launched in 2014. One of its goals is to provide accurate precipitation measurement around 

the globe (±65º latitude) every two to four hours. The GPM mission is centered on the 

deployment of a core observatory satellite with an active dual-frequency radar DPR, operating at 

Ku- and Ka- bands. The Ka- band channel was added to help achieve more sensitivity to light 

rain and ice compared to the TRMM PR, where little DSD information could be achieved at low 

and moderate rain rates (10 mm/h or less). 
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2.5.2 TRMM-PR 

The Tropical Rainfall Measuring Mission (TRMM) was proposed as a joint project between the 

US National Aeronautics and Space Administration (NASA), Japan’s National Space 

Development Agency (NASDA) and Communication Research Laboratory (CRL). The 

precipitation radar (PR) on the TRMM satellite was developed by Japan and is the world's first 

space borne precipitation radar.  The TRMM satellite was launched in 1997 and has provided 

valuable global precipitation observations for more than 15 years. The TRMM-PR was designed 

to obtain three-dimensional maps of precipitation reflectivity. Such measurements yield 

information about the intensity and distribution of rain and its types, storm depth, and height of 

bright band, etc. This information contributes to investigations into climate systems, abnormal 

weather, and flood prediction to prevent disaster. 

 

2.5.3 GPM-DPR 

2.5.3.1 Introduction 

The Global Precipitation Measurement (GPM) mission is an international network of satellites 

that will provide next-generation global observations of rain and snow. Building upon the 

success of the Tropical Rainfall Measuring Mission, the GPM concept centers on the deployment 

of a “core” satellite carrying an advanced radar / radiometer system to measure precipitation 

from space and serve as a reference standard to unify precipitation measurements from a 

constellation of research and operational satellites. Figure 2.1 is a graphical illustration of the 

GPM system. Through improved measurements of precipitation globally, the GPM mission will 

help to advance our understanding of the earth's water and energy cycle, improve forecasting of 

http://pmm.nasa.gov/glossary/10#term212
http://pmm.nasa.gov/TRMM
http://pmm.nasa.gov/glossary/10#term246
http://pmm.nasa.gov/glossary/10#term201
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extreme events that cause natural hazards and disasters, and extend current capabilities in using 

accurate and timely information of precipitation to directly benefit society. GPM, initiated by 

NASA and the Japan Aerospace Exploration Agency (JAXA) as a global successor to TRMM, 

comprises a consortium of international space agencies, including the Centre National d’Études 

Spatiales (CNES), the Indian Space Research Organization (ISRO), the National Oceanic and 

Atmospheric Administration (NOAA), the European Organization for the Exploitation of 

Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory is scheduled 

for launch in early 2014. 

The GPM mission objectives are: 

• Advancing precipitation measurement capability from space 

• Improving knowledge of precipitation systems, water cycle variability, and fresh 

water availability. 

• Improving climate modeling and prediction. 

• Improving weather predication and 4-D climate reanalysis. 

• Improving hydrometeorological modeling and prediction. 

 

The GPM mission description is: 

• A constellation of spacecraft provides global precipitation measurement coverage. 

http://www.jaxa.jp/index_e.html
http://www.cnes.fr/
http://www.cnes.fr/
http://www.isro.org/
http://www.noaa.gov/
http://www.noaa.gov/
http://www.eumetsat.int/
http://www.eumetsat.int/
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• NASA/JAXA core spacecraft provides a microwave radiometer (GMI) and dual-

frequency precipitation radar (DPR) to cross-calibrate entire constellation – 65º 

inclination, 400 km altitude. 

• Partner constellation spacecraft (JAXA, DoD, NOAA, etc.) 

From (http://pmm.nasa.gov/GPM). 

 

 

 

 

 

 

 

2.5.3.2 GPM-DPR instrument 

The DPR consists of the Ku-band precipitation radar (henceforth KuPR) and the Ka-band 

precipitation radar (henceforth KaPR).  These earth-pointing KuPR and KaPR instruments will 

provide rain sensing over land and ocean both day and night. The KuPR and KaPR design 

specifications, with all active phased array elements functioning, are shown in table 2.2. Figure 

2.2 shows the DPR scan pattern. KuPR’s scan pattern is similar to that of the TRMM PR. It has 

49 footprints in a scan and the footprint size is about 5 km in diameter. The scan swath is 245 

 

Figure 2.1. Illustration of GPM system. 

 

http://pmm.nasa.gov/GPM
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km. The KaPR also has 49 footprints, but these are divided into two types of scan. In the first 

type of scan (Ka_MA), the beams are matched to the central 25 beams of KuPR, providing a 

swath of 120 km.  In the second type of scan (Ka_HS), the KaPR is operated in the high-

sensitivity mode to detect light rain and snow; in this case, its beams are interlaced within the 

scan pattern of the matched beams as shown in figure. 2.2. The KuPR and KaPR for the Ka_MA 

scan have the same range resolution (250 m), while the range resolution of data in Ka_HS is 

500m. In both cases, radar echoes are over-sampled at twice the rate of the corresponding 

resolution: 125 m for the matched beams and 250 m for the Ka_HS. Figure 2.3 shows the 

observation range. The DPR’s echo sampling is designed to cover a range that, at minimum, 

extends from the surface to 19 km above sea level (or from the ellipsoid). The pulse repetition 

interval is adjusted according to the satellite altitude and the angle of observation. As a result, the 

number of independent samples changes slightly as a function of the scan angle (from GPM-

DPR level 2 algorithm theoretical basis document (ATBD)). 

 

 

 

 

 

 

 

 

 

Figure 2.2. DPR scan pattern (from GPM-DPR level 2 algorithm theoretical basis 
document (ATBD). 
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2.6 GPM GROUND VALIDATION SYSTEM  

2.6.1 Introduction 

Over all, the GPM mission has defined a series of scientific objectives, including improvement in 

predicting terrestrial weather, climate, and hydrometeorology through a better observational 

understanding of the global water cycle. The purpose of the Global Precipitation Measurement 

(GPM) mission Ground Validation System (GVS) is rooted in the need for independent and 

objective evaluation of the precipitation products generated by the GPM mission. For its part, the 

GVS provides an independent means of evaluation, diagnosis, and ultimately improvement of the 

GPM space borne measurements and precipitation retrievals. These goals are more completely 

defined as follows: 

        • Evaluation—Quantify the uncertainties in GPM standard precipitation retrieval 

algorithms. 

 

Figure 2.3. DPR’s data sampling range (from GPM-DPR level 2 algorithm theoretical 
basis document (ATBD)). 
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Table 2.2. DPR design specifications (from GPM-DPR level 2 algorithm theoretical basis 
document (ATBD)). 

Item KuPR KaPR 
Swatch width 245 kilometers (km) 120 kilometers (km) 
Range resolution 250 meters (m) 250/500 meters (m) 
Spatial resolution 5.2 km (nadir at 407 km) 5.2 km (nadir at 407 km) 
Beam width 0.71 degree (center beam) 0.71 degree (center beam) 
Transmitter 128 solid state amplifiers 128 solid state amplifiers 
Peak transmitter power 1012.0 Watts (W) 146.5 Watts (W) 
Pulse repetition frequency 4000-4500 Hertz (Hz) 4000-4500 Hertz (Hz) 
Pulse width two 1.6 microseconds (µs) 

pulses 
two 1.6 microseconds (µs) 
pulses in  
matched beams 
two 3.2 microseconds (µs) 
pulses in  
interlaced scans 

Beam number 49 49 (25 in matched beams 
and  
24 in interlaced scans) 

Minimum measurable rain 
rate 

0.5 mm/hr 0.2 mm/hr 

Beam matching error Under 100 m Under 100 m 
Observable range  19 km to surface 19 km to surface 
Dynamic range From -5dB below the 

system noise  
level to +5dB above the 
nominal  
maximum surface echo 
level 

From -5dB below the 
system noise  
level to +5dB above the 
nominal  
maximum surface echo 
level 

Receiver power accuracy +/- 1dB +/- 1dB 
Scan angle ±17° Cross Track ±8.5° Cross Track 
Frequencies 13.597 and 13.603 GHz 35.547 and 35.553 GHz 
Bandwidth 14 MHz 14 MHz 
Max. mass 472  kilograms (kg) 336 kilograms (kg) 
Power (max) 446 W (orbit average) 344 W (orbit average) 
Science data rate max 109 kilobits per second 

(kbps) (The Total of KuPR 
and KaPR is 190 kbps) 

81 kilobits per second 
(kbps) (The Total of KuPR 
and KaPR is 190 kbps) 

Housekeeping  data rate 1 kilobits per second (kbps) 1 kilobits per second (kbps) 
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        • Diagnosis—Understand the time and space error characteristics of GPM precipitation 

products generated by these algorithms. 

 • Improvement—Contribute to the improvement of GPM precipitation retrieval algorithms 

throughout the mission. 

 

A Ground Validation System (GVS) consists of several system elements employed in the 

independent validation of the instruments on the GPM core satellite and the associated data 

products generated from them. The high-level roles within the GPM mission, and the GVS 

portions of them, are illustrated in figure 2.4 (Schwaller et al, 2006). 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. GPM mission architecture (Schwaller et al, 2006). 
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2.6.2 D3R radar overview 

A dual-frequency dual-polarized Doppler radar (D3R) was developed with funding from NASA's 

Global Precipitation Measurement (GPM) Project. The D3R is a fully polarimetric, scanning 

weather radar system operating at the nominal frequencies of 13.91 GHz and 35.56 GHz 

covering a maximum range of 30 km. The frequencies chosen allow close compatibility with the 

GPM Dual-frequency Precipitation Radar system. The D3R is the part of GPM ground validation 

activities. These activities support GPM pre-launch algorithm development and contribute to 

post-launch precipitation product validation. Pre-launch, the D3R provides an independent 

estimation of hydrometeor classification and drop size distribution retrievals. The radar thus 

offers an insight into the microphysical processes that dominate the retrieval (and associated 

measurement error) of precipitation types and rates from satellite data. While the GPM DPR 

radar presents a global picture of precipitation through observations at Ku- and Ka-band, the 

ground-based D3R yields detailed, fine-scale local statistics for the microphysical interpretation. 

 

The D3R, a relative compact, transportable system, takes advantage of several innovative 

technologies to achieve its design goals. Chief among these are the use of solid-state power 

amplifiers and a novel waveform composed of three consecutive, frequency modulated, 

frequency separated pulses. Using these methods, blind ranges and range side lobes are 

minimized, and the radar meets its sensitivity requirement of -10 dBZ at 15 km (clear air, single 

pulse, with 150 m range resolution). The design specifications and data products of D3R radar 

are shown in table 2.3 

 

http://pmm.nasa.gov/glossary/10#term252
http://pmm.nasa.gov/glossary/10#term202
http://pmm.nasa.gov/glossary/10#term212
http://pmm.nasa.gov/glossary/10#term215
http://pmm.nasa.gov/glossary/10#term253
http://pmm.nasa.gov/glossary/10#term254
http://pmm.nasa.gov/glossary/10#term214
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  Table 2.3. Design specifications and data products of D3R radar.  

SYSTEM 
Frequency Ku: 13.91GHz±25MHz  

Ka: 35.56 GHz±25MHz 
Minimal detectable signal (Ku,Ka) -10 dBZ at 15 km for a single pulse at 150m 

range resolution 
Minimal operational range 450 m 
Operational range resolution 150 m (nominal) 
Maximum range 30km 
Angular coverage 0-360°Az, -0.5-90° EI (full hemisphere) 

ANTENNA 
Parabolic reflector (diameter) 6ft/72in (Ku), 28in (Ka) 
Gain 44.5 dB (Ku, Ka) 
HPBW ~1° (Ku, Ka) 
Polarization Dual linear simultaneous and alternate (H 

and V) (Ku, Ka) 
Maximum side lobe level ~-25 dB (Ku, Ka) 
Cross-polarization isolation <-32 dB (on axis) 
Ka-Ku beam alignment Within 0.2° 
Scan capability 0-24°/s Az, 0-12°/s EI 
Scan types PPI sector, RHI, Surveillance, Vertical 

pointing 
TRANSMITTER/RECEIVER 

Transmitter architecture Solid state power amplifier modules 
Peak power/Duty cycle 160W (Ku), 40W (Ka) per H and V channel, 

Max duty cycle 30% 
Receiver noise figure 4.6 (Ku), 5.5 (Ka) 
Receiver dynamic range 90 dB (Ku, Ka) 
Clutter suppression GMAP 

DATA PRODUCTS 
Standard products Equivalent reflectivity factor Zh (Ku, Ka), 

Doppler velocity (unambiguous : 25 m/s) 
Dual-polarization products (Ku, Ka) (LDR 
only in alternate transmit mode) 

Differential reflectivity Zdr 
Differential propagation phase φdp 
Copolar correlation coefficient ρhv 
Linear depolarization ratios LDRh, LDRv 

Data format NetCDF 
  Source:  http://pmm.nasa.gov/science/ground-validation/D3R. 

http://pmm.nasa.gov/glossary/10#term252
http://pmm.nasa.gov/science/ground-validation/D3R
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2.7 SIMULATION METHOD FOR ALGORITHM EVALUATION 

For the purpose of radar system design and algorithm evaluation, it’s very useful to have true 

microphysics information. One effective way to develop a dataset is through theoretical 

simulation. By coupling information about the particle scattering model, the melting layer model, 

and drop size distributions, the backscattering intensities and attenuation coefficients can be 

computed from any location within the radar echo. An electromagnetic scattering method such as 

the T-matrix method (Waterman, 1965, 1971) or the DDA (discrete dipole approximation) 

method (Draine and Flatau, 1994) is used to calculate scattering properties. In conjunction with a 

gamma drop size distribution, radar observations can be simulated. A schematic plot of the 

simulation procedure is shown in Figure 2.5.  In this study, the drop size distributions used in the 

simulations are retrieved from real radar observations. The main reason for using this approach is 

to maintain the natural distribution of precipitation particles rather than base it on rough 

assumptions.  

 

 

 

 

 

 

 

 

 
 

Figure 2.5.   Schematic plot of radar simulation procedure. 
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Although the simulation concept and procedure are the same for space-borne and ground-based 

radar, they are based on different radar observations and the methods for preparing drop size 

distributions are not the same. In the sections below, the simulation steps are described 

separately for space-borne and ground-based radar. 

 

2.7.1 Simulation of space-borne radar observations  

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the DPR on board the GPM core satellite will be the first dual-frequency space 

precipitation radar operating at high frequencies, a simulation-based study is important for 

system design and algorithm development. In order to support the study of DPR observations, a 

                                         

 

Figure 2.6. A depiction of a downward-looking Dual-frequency precipitation radar on board 
GPM satellite. Dash lines represent the melting layer boundaries and solid lines are vertical 
profiles of radar reflectivity at Ku- and Ka- band. ( Senbokuya et al. (2004)) 

) 
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down-looking second-generation airborne precipitation radar (APR2) with the same frequencies 

channels (Ku and Ka band) was developed by NASA and JPL to emulate the DPR before it is 

launched. APR2 data has good range resolution, which provides a powerful means for improving 

our understanding of microphysical properties of vertical precipitation structure. In this study, 

DPR simulation is based on the observations of APR2 data. The scanning geometry of the APR2 

radar on the NASA DC-8 aircraft is shown in figure 2.7. The radar looks downward and scans its 

beams cross-track, with each scan beginning at 25 degree left of nadir and ending at 25 degrees 

right of nadir. The characteristics are shown in Table 2.4.  

 

 

 

 

 

 

 

 

 

Similar to figure 2.5, figure 2.8 shows the detailed procedure for DPR simulation based on 

airborne radar data. APR2 radar observations are from several field experiments such as the 

Wakasa Bay Experiment in 2003; the NASA African Monsoon Multidisciplinary Analysis 

 

Figure 2.7.   APR-2 scanning geometry on the NASA DC-8 aircraft. 
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 (NAMMA) experiment in 2006, and the Genesis and Rapid Intensification Processes (GRIP) 

experiment in 2010. Figure 2.9 shows an example of the APR2 data at nadir during the NAMMA 

experiment. Two typical profiles of stratiform and convective rain are shown in figure 2.10, 

marked as A and B in figure 2.9. With a vertical resolution of around 30m, APR2 profiles keep 

all detailed information especially within the melting layer. The linear depolarization ratio 

   Table 2.4.   APR-2 radar characteristics (Tanelli et al., 2004). 

Airborne Precipitation radar (APR2) characteristics 

Frequency 13.4 GHz 35.6 GHz 

Polarization HH,HV HH,HV 

Antenna diameter 0.4m 0.14m 

Antenna gain 34dBi 33dBi 

Antenna side lobe level -30dB -30dB 

Peak power 200W 100W 

Pulse width 10-40 µs 10-40 µs 

PRF 5 KHz 5 KHz 

Range bin spacing 30 m 30 m 

Horizontal resolution 400 m 500 m 

Ground swath 4.5 km 4.5 km 

Noise equivalent Ze 5 dB 5 dB 

Doppler precision 0.4 m/s 1 m/s 
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(LDR) as well velocity profile available for the APR2 radar helps determine the boundaries of 

rain, melting and ice regions.  

 

 

 

 

 

 

 

 

For a stratiform rain profile, as shown in figure 2.10 (a), there is a clear enhancement of 

reflectivity associated with particle melting (or bright band). The primary cause of enhancement 

is a rapid increase of dielectric constant associated with melting snow. After reaching a 

maximum, the reflectivity decreases because of an increase in particle velocities and a decrease 

in the effective particle size. 

 

Compared to a stratiform rain profile, a convective rain profile is characterized by stronger 

vertical motion. Updrafts take water drops above the melting layer and these drops condense on  

 

 

Figure 2.8. A schematic plot of simulation procedure for DPR observations from APR2 
radar. 
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Figure 2.9. Along-track observations at nadir of the APR2 radar in the NAMMA 
experiment (20060903_142134). (a) panel is reflectivity at Ku- band; the (b) panel is 
reflectivity at Ka- band; the (c) panel is the difference between reflectivity at Ku- and Ka- 
band; the (d) is LDR at Ku- band; the (e) panel is fall velocity at Ku- band. 
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Snowflakes, forming a ball of riming. Therefore, for convective rain, there exist high-density 

particles such as graupel. When high-density particles begin to melt, the shape and density do not 

change significantly, in other words, the melting procedure is slower. As a result, there is no 

large and obvious increase of reflectivity and the reflectivity remains close to peak value below 

the melting layer, as can be seen in figure 2.10 (b) (Zawadzki et al., 2005). Due to the different 

formation of stratiform and convective rain, two vertical scattering models are built for the 

simulation of stratiform and convective rain. The schematics of the models are shown in figure 

2.11.  

 

 

                    

                                             (a)                                                                        (b) 

Figure 2.10. (a) typical vertical profile of reflectivities (Ku- and Ka- band) and their difference 
(measured dual frequency ratio) for stratiform rain marked as A in figure 2.9.  (b) typical 
vertical profile of reflectivities and their difference for convective rain marked as B in figure 
2.9. 
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In order to prepare realistic DSDs for the DPR simulation, DSD profiles are retrieved using a 

combination of the forward method (Meneghini et al. 1992) and the DAD (difference of 

attenuation difference) method described in Iguchi, (2005). Although the method used to retrieve 

DSDs has some limitations such as the assumption of uniform rain, it provides a way to prepare 

realistic DSD information along the vertical profile for simulation purposes. Different 

microphysical models, as shown in figure 2.11, are applied in the DSD retrieval for stratiform 

and convective rain, respectively. The retrieved DSD profiles are used to simulate radar 

observations. It needs to be pointed out that these DSDs are regarded as “true” DSDs used for 

algorithm evaluation in Chapter 4. Considering the range resolution difference between APR2 

radar data (30m) and the DPR radar (250m), the simulated radar observations need to be re-

sampled to DPR resolution. Figure 2.12 (a) and (c) show the simulated DPR profile for the 

 

 

Figure 2.11.   Microphysical model developed for stratiform (left) and convective 
(right) rain simulation.  
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stratiform and convective rain profile from APR2 data as illustrated in figure 2.10 (a) and (b), 

respectively. Through the comparison between figure 2.10 and 2.12, the simulation procedure 

can capture the main characteristics of airborne observations and make the simulation data more 

realistic. Although simulation of DPR observations is the focus of this section, this simulation 

approach can be applied to other space-borne radars if needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        

    (a)                                                            (b) 

                   

                                            (c)                                                                   (d) 

Figure 2.12. Profiles of reflectivity and the measured dual frequency ratio for stratiform rain 
simulated from airborne radar profile marked as A in figure 4.6;(b) True DSD profiles for (a); 
(c) Same profiles for convective  rain simulated from airborne radar profile marked as B in 
figure 4.6; (d) True DSD profiles for (c). 
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2.7.2 Simulation of ground-based radar observations 

2.7.2.1 Simulation of Ku- and Ka- band observations from S-band dual-polarization radar 

observations. 

 

            

 

A dual-frequency dual-polarization ground radar has been built to perform ground validation 

with DPR on board the GPM satellite. Similar to DPR, this is the first ground radar designed to 

operate at Ku- and Ka- band. For system design and algorithm evaluation purpose, simulation 

plays a crucial role. Figure 2.13 is a schematic plot showing ground radar propagation through 

precipitation media. Unlike DPR simulation, the ground radar observations are simulated based 

on S-band dual-polarization ground radar. The reason to choose S-band (3GHz) dual-polarization 

radar observation is because 1) there have been algorithms in the literatures to retrieve rain DSD 

information from polarimetric parameters (Gorgucci et al., 2002, 2008; Testud et al., 2000) and 

2) S-band observations are not affected by attenuation effects. Figure 2.14 shows a schematic 

plot of a simulation procedure for rain and simulation details are described by Chandrasekar et 

al. (2006).  

 

Figure 2.13. Schematic of ground radar propagation through precipitation media.  
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Figure 2.15 is an example of the simulated Ku- and Ka- band PPI observation for rain based on 

the ground radar data collected by the CSU-CHILL radar during the Severe Thunderstorm 

Electrification and Precipitation Study (STEPS) project. The data used was collected  June 20, 

2000. In the figure, (a), (c), and (e) are the simulated intrinsic reflectivity at Ku-, Ka- band, and 

intrinsic differential reflectivity at Ku- band while (b), (d), and (f) are the corresponding 

attenuated values. It is obvious that attenuation at Ka- band is higher compared to Ku band. The 

data from the second column are regarded as the “true” observations in the microphysical 

retrieval algorithm evaluation; they are discussed in detail in Chapter 5.  

 

 

 

 

 

 

 

 

For regions beyond rain, there are no decent algorithms for retrieving DSD parameters from a 

dual-polarizations ground radar operating at a single frequency. An alternative approach, 

simulating an RHI scan of ground based radar operating at Ku- and Ka- band, is discussed in the 

next section.  

 

 

Figure 2.14. Schematic plot of the simulation procedure for ground radar observation 
within rain region. 
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2.7.2.2 Simulation of Ku- and Ka- band observations from airborne radar observations. 

 

Data from airborne precipitation radar (APR-2) provides us an approach for achieving more 

accurate 3D DSDs for rain, melting ice, and ice using dual frequency retrieval algorithms 

(Iguchi, 2005; Meneghini et al, 1997). However, simulating RHI observations of a ground radar  

requires a cartesian coordinate (APR-2 coordinate) to radar coordinate transition. The simulation 

procedure can be described briefly as follows: 1) 3D APR-2 radar data is interpolated to a finer 

resolution in order to meet the resolution requirement of the ground radar; 2) a virtual radar 

location is decided close to precipitation observed by APR-2 radar; 3) elevation and azimuthal 

angle are decided to calculate the Cartesian coordinate of each radar resolution volume center 

and radius. Finally, calculate the average value of Cartesian DSDs that drop into each radar 

resolution volume. Figure 2.16 shows a schematic plot of the setup for this simulation approach. 

Scattering models and a T-matrix method are applied to generate radar observations. Figure 2.17 

shows some sample RHI scans that are simulated from the APR-2 NAMMA 20060903-142134 

overpass using the method described above. 
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Figure 2.15. Simulated PPI scan of Ku- and Ka- band observations from S- band radar during 
STEPS project (20000620_012145 case). (a), (c), and (e): intrinsic reflectivity at Ku-, Ka- 
band and intrinsic differential reflectivity at Ku- band. (b), (d), and (f): attenuated reflectivity 
at Ku-, Ka- band and attenuated differential reflectivity at Ku- band. 
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Figure 2.16. Top row (from left): schematic plot of APR-2 radar; 3D data structure of APR-2 
radar; sample observations at Ku- and Ka- band at nadir angle. Middle row (from left): 
retrieved DSDs using dual frequency algorithm; virtual radar setup and coordinate transfer 
illustration. Bottom row (from left): DSDs mapped from Cartesian coordinate to radar 
coordinate. 
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Figure 2.17. Simulated RHI scan from APR-2 NAMMA 20060903-142134 overpass. Top row 
(from left): Zh(Ku); Zm(Ku). Middle row (from left): Zh(Ka); Zm(Ka). Bottom row (from left): 
Zdr(Ku); Zmdr(Ku). 
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CHAPTER 3 
 

PROFILE CLASSIFICATION METHOD FOR GPM-DPR 

 
3.1 INTRODUCTION 

 

Profile classification is an important module in the microphysical retrieval system for space 

precipitation radar. It classifies the storm type by looking at the existence of a bright band, the 

vertical profile and the horizontal distribution pattern of precipitation echoes in the vicinity of the 

pixel in question. The nature of microphysical models and equations to use in the retrieval 

algorithm are determined by the precipitation type and phase state of each profile. Profile 

classification module for the GPM-DPR includes two parts: 1) classification of precipitation type 

such as stratiform, convective, and other rain type: and 2) detection of the melting layer top and 

bottom boundaries. Figure 3.1 illustrates the basic structure of the GPM-DPR level 2 algorithm.  

 

 

 

 

 

 

 

 

Figure 3.1. Basic structure of GPM-DPR level algorithm (Iguchi et al. 2013). 
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This chapter starts with an introduction of the profile classification method used for TRMM-PR 

and its limitations. The characteristics of DFRm profile and its advantages in profile 

classification are described. Then, the profile classification method based on DFRm is developed 

for GPM-DPR using airborne radar data. The melting layer boundaries detected from the DFRm 

profile are compared to existing criteria in the literature. Off-nadir and smoothing effects for the 

method are described in detail. This chapter ends with the current status for implementating the 

method to the GPM-DPR day one algorithm. 

 

3.2 PROFILE CLASSIFICATION METHOD FOR TRMM-PR 

 

In the TRMM era, there is only one frequency observation available for TRMM-PR. TRMM-PR 

uses the vertical profile method (V-method) and the horizontal pattern method (H-method) to 

perform profile classification. Both methods classify rain into three categories: stratiform, 

convective, and other. The V-method classifies rain type by detecting the existence of bright 

band in the vertical profile. The H-method examines the horizontal pattern of the maximum 

reflectivity along the range for each antenna angle below freezing height. The results from both 

methods are combined to give the final rain type decision (Awaka et al. 1998). After rain type is 

classified, the melting layer region (top and bottom height) is defined as two range bins above 

and below the bright band peak if it is stratiform rain and three range bins above and below the 0 

degree isotherm if it is convective rain. Figure 3.2 illustrates the profile classification approach 

of TRMM-PR. The limited information determining the profile classification method for 

TRMM-PR is relatively rough.  



49 
 

 

 

 

 

 

 

 

 

3.3 AIRBORNE RADAR OBSERVATIONS 

 

As described in section 2.7, in support the NASA GPM mission, NASA JPL developed the 

second-generation Airborne Precipitation Radar (APR-2) as a prototype of an advanced dual-

frequency space radar which emulates DPR on board the GPM core satellite. APR-2 has 

collected data in several field campaigns that are used in this study. They are: 1) the NAMMA 

campaign (NASA African Monsoon Multidisciplinary Analysis), located 350 miles off the coast 

of Senegal in West Africa; 2) the Wakasa Bay campaign located in the sea of Japan, a region 

famous for very shallow rain; 3) the GRIP campaign located in the Gulf of Mexico and the 

Caribbean Sea with a major goal of being able to better understand tropical storms and 

hurricanes. GRIP is the most recent campaign of the three; It was conducted in the year 2010. 

Figure 2.9 shows a sample of APR-2 measurements at nadir during the NAMMA campaign and 

the characteristics of the APR-2 radar are summarized in table 2.4. Figure 3.3 shows the 

 

Figure 3.2. Schematic presentation of the profile classification approach in TRMM-
PR (Iguchi et al. 2000). 
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geolocations of the three field experiments. A sample plot of GRIP and Wakasa Bay data are 

shown in Figure 3.4. From top to bottom, the panels are measured reflectivity at Ku-, Ka- band 

and the measured dual-frequency ratio (DFRm). Due to the fine vertical resolution (~30m), the 

melting layer can be seen clearly in the reflectivity measurements. From figure 3.4 (a) and (b), 

melting layers are obvious at around 5 km and 2 km for GRIP and Wakasa Bay experiment 

areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 

 

Figure 3.3. Top left: Geolocation of NAMMA field experiment. Top right: Geolocation of 
GRIP field experiment. Bottom left: Geolocation of Wakasa Bay field experiment. 
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                       (a)                                                                        (b)  

Figure 3.4. (a) Overpass of GRIP data (100901_202048). Top: Zm(Ku); Middle: Zm(Ka); 
Bottom: DFRm. (b) Overpass of Wakasa Bay data (030123-075827). Top: Zm(Ku); Middle: 
Zm(Ka); Bottom: DFRm. 
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3.4 CHARACTERISTICS OF MEASURED DUAL-FREQUENCY RATIO (DFRm) 

 

GPM-DPR offers two independent observations at two frequency bands. The Ka- band 

observation of precipitation particles is in the non-Rayleigh scattering region. Measurements 

from both Ku- and Ka- band suffer from attenuation when a radar beam propagates through 

precipitation such as melting layer and medium to heavy rain (Bringi and Chandrasekar, 2001). 

However, attenuation from Ka- band is larger from Ku- band. This makes the difference between 

two DPR measurements a viable parameter to make inferences about the profile. DFRm (in dB 

scale) is defined as   

 

            (  (  ))         (  (  ))                                (3.1) 

 

   is the measured equivalent radar reflectivity factor in linear scale.    can be related to 

equivalent radar reflectivity factor    through  

 

                  

=                  (  ) ∫  ( )   
 

 
                                    (3.2) 

 

where A is the cumulative attenuation factor from radar to the bin of interest.    is related to the 

drop size distribution N(D) and the backscatter cross section    of the hydrometeors for a given 

wavelength    as  

 

   
  

  |  | 
∫  ( )  (   )  

 

 
                                         (3.3) 
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     is the dielectric constant of water and  |  |   0.93 (Battan,1973). The Natural variation of 

drop size distribution N(D) can be approximated by a gamma model (Ulbrich,1983) as 

 

 ( )     ( ) (
 

  
)
 

   [ (      )
 

  
]  

 ( )  
 

(    ) 
(      )   

 (   )
                                                   (3.4) 

 

where Do (  ) is the medium volume diameter, µ is a measurement of shape of drop size 

distribution and   (       ) is the normalized intercept parameter of an equivalent 

exponential distribution with the same water content and Do. 

 

Take three log scale of both sides, (3.2) can be expressed as 

 

       (  )         (  )       (          (  ) ∫  ( )   )
 

 
        (  )                        

(3.5) 

where                                                                 ( )                                                   (3.6) 

 

    (in dB) is a positive number and denotes the two-way attenuation from radar to the bin of 

interest.   is specific attenuation in dB per kilometer. It is related to drop size distribution N(D) 

and extinction cross section      of the hydrometeors  

 

           ∫  ( )    (   )  
 

 
                                   (3.7) 
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Radar dual-frequency ratio (DFR) in dB, describing the difference of reflectivity factor between 

two frequency channels, is defined as 

 

           (  (  ))         (  (  ))                                 (3.8) 

 

Substituting (3.5) in (3.8) results in  

 

            (  (  ))         (  (  ))                            (3.9) 

                                               

 

       is the attenuation difference between Ku- and Ka- band expressed in dB scale. It is a 

positive number since Ka- band attenuation is larger than Ku- band attenuation. From (3.9), it is 

clear that DFRm is composed of two parts. The DFR part is caused by the non-Rayleigh 

scattering of precipitation particles; and        is responsible for the difference due to 

attenuation. 

 

Figure 3.5 shows a typical vertical profile of reflectivity and DFRm for stratiform and convective 

rain from APR-2 observation. The DFRm profiles for different rain types, as shown in figure 3.5 

(b) and (d), have some common features. At altitudes above about 5 km, DFRm values are small 

and increase slightly with the decrease of height. This can be explained through the non-

Rayleigh scattering effect on snow particles. Figure 3.6 (a) shows a theoretical simulation 

between DFR and median drop diameter (Do) for ice crystal distributions as a function of fixed 

densities. Figure 3.6 (b) shows similar relations with ice density as a function of size (Hogan et 
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al., 2002; Holroyd, 1973; Heymsfield et al., 2002).  Although in recent years, research work has 

shown that “sphere model” is not accurate enough to model ice crystals (Petty and Huang, 2010; 

Tyynelä et al., 2011), for illustration purpose only, the spherical model is used in the theoretical 

simulation of figure 3.6 with volume equivalent diameters of snow particles following an  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

                          

Figure 3.5. Typical vertical profile for stratiform (a)(b) and convective (c)(d) rain 
from NAMMA APR-2 data; (a)(c) Measured reflectivity at Ku- and Ka- band; 
(b)(d) DFRm. DFRm(max) and DFRm(min) marked on (b) and (d) are local max 
and min value. 
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exponential distribution ranging between 0.03 to 10 cm. The large value of Do indicates there are 

more particles with large sizes. It can be seen from both plots that the DFR is a monotonically 

increasing function of Do within a 0 to 5 mm range, which covers most of the snow particle 

sizes. The small values of      at top bins, as shown in Figure 3.5 (b) and (d), indicate that the 

snow particles are relatively small. The particles start to aggregate when they fall and this 

explains the slight increase of      with decrease of height. It should be noted that in the ice 

region, the attenuation difference      is negligible compared with DFR. Therefore, the shape 

of      is controlled by     in the ice region.  

     

                                   (a)                                                                       (b) 

Figure 3.6. (a) DFR versus D  for dry snow with snow density of 0.1, 0.2 and 0.4 g/cm3. 
(b) DFR versus D  for snow using different density versus size relations. 

 

𝐷
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Below 5 km, as in Figure 3.5 (b) and (d), the DFRm increases sharply until it hits a local 

maximum value, then it decreases with decreasing height until it reaches a local minimum value. 

This shape is associated with the precipitation process in the melting layer. For convenience of 

description, Figure 3.7 shows a schematic plot of a typical DFRm profile with key points A, B, 

C, and D marked. These key points are DFRm slope peak where the gradient of the DFRm 

profile reaches its maximum magnitude (point A); DFRm local maximum (point B); DFRm local 

minimum (point C); and DFRm value toward surface (point D). Within the melting layer, both 

DFR and      control the shape of the DFRm profile. In order to explain the shape of the DFRm 

within the melting layer, figure 3.8 (a) shows the theoretical relation of DFR versus Do for 

melting particles with three melting states. A spherical model is applied to the melting particles, 

which are composed of water, ice and air. There are other melting layer models such as two-layer 

coated model (Hardaker et al., 1995; Meneghini and Kozu, 1990) and a stratified sphere melting 

particle model proposed by Liao and Meneghini, (2005). Due to the lack of knowledge of true 

melting processes, it is hard to judge which scattering model is preferable.  For simplicity of 

analysis, a uniformly mixed sphere model is used in this study and the Bruggeman (1935) 

equation is applied to calculate the dielectric constant of the mixture. Gamma distribution is 

applied for melting particle sizes, with shape factor µ assumed to be 0. Different water fractions 

indicate different melting statuses within a melting process, and a bulk-averaged water fraction is 

used in this study. The solid line shows the relation of melting particles with a water fraction of 

0.01, which is the state very close to the dry snow particle. If we assume that the height of point 

A is where the melting layer starts, a water fraction of 0.01 could represent the melting status at 

point A. The dash-dot line shows the relation for melting particles with water fraction of 0.2. A 
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water fraction of 0.2 is associated with the melting state at point B in figure 3.8 (a) using Awaka 

et al.’s (1985) melting layer model. Figure 3.8 (b) shows the relation between water fraction and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Schematic plot of DFRm profile with key points A, B, C, and D. Point A: slope 
of DFRm has peak value. Point B: local maximum of DFRm. Point C: local minimum of 
DFRm. Point D: DFRm value near surface. 

 

                        

                                      (a)                                                                            (b) 

Figure 3.8. (a) DFR versus D  for melting particles of dry snow density of 0.1 g/cm3 and bulk 
averaged water fraction of 0.01, 0.2 and 0.99. Points A, B, and C (C’) correspond to the A, B, 
and C points in Figure 3.7. (b) Bulk averaged water fraction versus relative height to melting 
layer top (km) using Awaka et al. (1985) melting layer model.  
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relative height to the melting layer top applied in Awaka et al.’s model. The dashed line 

illustrates the same relation for melting particles with a water fraction of 0.99, and this is the 

state where the melting process ends (height of point C). To estimate Do ,      is assumed to be 

0.5 dB and 1 dB at points B and C, respectively, which is a reasonable value for a stratiform 

profile. The corresponding Do  retrieved from DFR from point A to B is increased from around 1 

mm to 1.5 mm. From point B to point C, Do decreases from 1.5 mm to either 0.6 mm or 0.9 mm 

(marked as point C and C’ in figure 3.8(a) where a double solution exists (Liao et al., 2003; 

Meneghini et al., 2002), possibly due to the “breakup” process. Melted Do is used in the 

simulation of figure 3.8(a).  

 

From around 4 km and below in figure 3.5 (b) and (d), the      profile continues to increase 

with decreasing height and this is the rain region. The     value doesn’t change much in the 

stratiform rain region due to balance in the various precipitation processes (Yokoyama and  

Tanaka, 1984). The increase of       below 4 km is mainly due to the attenuation difference. 

A theoretical relation of DFR versus Do using the Beard and Chuang (1987) rain drop model is 

shown in figure 3.9 (a). For convective rain, Do normally won’t exceed 2~3mm. It can be seen 

from figure 3.9 (a), that the contribution to the     value from Do is about 10 dB or less. Any 

     value beyond 10 dB, as shown in figure 3.5(d), is due to the attenuation difference      

accumulated from the storm top to the range of interest. The increase of the DFRm value in rain 

is obvious for both stratiform and convective rain. The slope of DFRm with respect to the height 

is much larger for convective than for stratiform rain. Figure 3.9(b) shows the theoretical relation 

of specific attenuation at Ku- ( (  ))and Ka- ( (  )) band as well as the specific attenuation 

difference    (= (  )   (  )) versus the rain rate. From the figure, a higher rain rate, which 
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is commonly associated with convective rain, corresponds to a larger specific attenuation 

difference. Since      is directly proportional to    , it will be larger in convective than in 

stratiform rain. Based on the analysis above, signatures on the DFRm profile such as DFRm local 

max and min value as well as the slope of DFRm profile imply hydrometeor phase transition 

from the frozen to the liquid region. These signatures, though they might be different in values, 

are common for different rain types.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

                                      (a)                                                                      (b) 

Figure 3.9. (a) Theoretical relation of DFR versus 𝐷  for rain using Beard and Chuang rain 
drop model with µ=0 and temperature of 10 ℃. (b) Theoretical relation of specific attenuation 
at Ku- and Ka- band versus rain rate using the same rain model as in (a). δ k is the differential 
specific attenuation. 
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3.5 PROFILE CLASSIFICATION METHOD FOR GPM-DPR 

 

3.5.1 Precipitation type classification method (PCM) 

 

As discussed in section 3.4, a      profile holds rich information for precipitation type 

classification. In order to quantify the features of     , a set of DFRm indices are defined. Let 

V1 be 

 

   
    (   )     (   )

    (   )     (   )
                                                    (3.10) 

 

DFRm(max) and DFRm(min) are shown in figure 3.5. Let V2 be the absolute value of the mean 

slope for DFRm below the local minimum point. The first several range bins above the surface 

are eliminated to avoid surface clutter contamination. 

 

      (    (          ))                                           (3.11) 

 

Both V1 and V2 are normalized values and not dependent on the height or depth of the melting 

layer. As discussed in section 3.4, V1 values are normally larger for stratiform than for 

convective rain and V2 values are larger for convective than for stratiform rain. To further 

enlarge the difference between stratiform and convective rain types, a third DFRm index V3 is 

defined as  

 

   
  

  
                                                                  (3.12) 
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The DFRm index V3 can be an effective parameter and provide a separable threshold for 

performing precipitation type classifications.  

 

To explore the capability of the DFRm index V3 in PCM, airborne radar data were used. In the 

analysis of PCM, all good datasets from the field experiments of NAMMA, GRIP, and Wakasa 

Bay were separated into model and test data. Then, both the TRMM-like method (Awaka et al., 

1997) and the Doppler velocity information were combined to separate APR-2 model data into 

stratiform, convective and other rain types. The logic for combining the classification type 

decisions from the TRMM-like method and the velocity information is shown in table 3.1. If 

updrafts could be found from the Doppler velocity profile with the threshold of mean absolute 

value larger than 1.5    , then this profile was classified as convective rain in this study. 

Otherwise, the rain type as decided by TRMM-like method was used. After the stratiform and 

convective rain model datasets were prepared, the      index V3 was calculated for each 

vertical profile.   

 

 

 

 

 

 

 

 

Table 3.1. Combined decision from TRMM-like method and velocity 
information. ‘S’,‘C’,’O’ represent stratiform, convective and other rain type. 
‘U’ and ‘no’ represent whether updraft exists or not respectively. 

TRMM-like Velocity Decision 
‘S’ ‘U’ ‘C’ 
‘C’ ‘U’ ‘C’ 
‘O’ ‘U’ ‘C’ 
‘S’ ‘no’ ‘S’ 
‘C’                 ‘no ‘C’ 
‘O’ ‘no’ ‘O’ 
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Figures 3.10 and 3.11 show histogram plots of the V3 value for stratiform and convective rain 

database, respectively, collected from the NAMMA campaign. The CDF (cumulative density 

function) of the V3 value is calculated for convective rain and the 90% confidence line gives the 

V3 value of C1. This means that 90% of the V3 values are smaller than C1 for convective rain. 

For stratiform rain, CDF’ (=1-CDF) is calculated and the 90% confidence line hits the value of 

C2, which indicates that 90% of stratiform rain has a V3 value larger than C2. The C1 and C2 

variables are 0.09 and 0.201, respectively. C1 value is smaller than C2. In other words, based on 

the 90% confidence line, The DFRm index V3 can separate stratiform and convective rain. 

Therefore, statistical evaluation of NAMMA data indicates there exists thresholds for PCM 

which can be summarized as follows: Stratiform: V3>C2; Convective: V3<C1; Transition type: 

C1<=V3<=C2.  “Transition” type is neither a stratiform, nor a convective rain type, but a type 

transitioning from stratiform to convective rain. The criteria above were applied to the test data 

and compared with the combined decision made from TRMM-like as well as velocity criteria. 

The percentage of the profiles with common classification is 83 % and 71 % for stratiform and 

convective rain, respectively. The evaluation procedure for PCM is shown in a block diagram in 

figure 3.12.  

 

A similar analysis was performed using GRIP and Wakasa Bay data, and table 3.2 shows the 

corresponding C1 and C2 values for all three campaigns. Table 3.2 illustrates that the      

index V3 can separate stratiform and convective rain, and the C2 values from three campaigns 

are very close. Considering that the NAMMA, Wakasa Bay, and GRIP campaigns were located 

in different geographic locations and conducted over a six year span of time, the robustness of 

this decision procedure is very good. The      index V3, defined in (3.12) yields normalized 
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values that are not dependent on the depth of the melting layer and the height of the melting layer 

top. This means that C2 might be a stable value for stratiform rain among different geographic 

locations around the globe. The index V3 carries important information and might be applied to 

perform precipitation type classification for DPR. The variability of C2 is fairly tight compared 

to C1 from different datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

Figure 3.10. Histogram of DFRm for stratiform rain database of NAMMA experiment. 

       

Figure 3.11. Histogram of DFRm for convective rain database of NAMMA experiment. 
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Figure 3.12. Flow chart of PCM analysis. 

Table 3.2. PCM criteria for NAMMA, GRIP and Wakasa Bay campaigns 
with 90% CDF threshold. 

90% 
CDF 

NAMMA GRIP Wakasa Bay 

C1 0.09 0.120 0.101 
C2 0.201 0.216 0.192 
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3.5.2 Hydrometeor profile characterization (HPC) method 

 

The hydrometeor profile characterization model (HPC) is used in profile classification for GPM-

DPR. It determines the phase state of the different sections of the range profile. It decides the 

melting layer top and bottom height of each vertical profile. Microphysical retrieval algorithms 

(solver module in Figure 3.1) rely on the HPC to decide what theoretical relations to apply. The 

vertical profile of the DFRm carries rich information on the hydrometeor phase state, including 

ice, melting ice, and rain, as discussed in section 3.4. To evaluate the capability of the DFRm to 

detect the hydrometeor phase, airborne radar data from APR-2 were used. 

 

The main parameter used in the HPC is the DFRm profile and its range variability. The criteria 

for the melting layer top in the HPC is defined as the height at which the slope of the DFRm 

profile hits a peak value. Similarly, the melting layer bottom is defined as the height at which the 

DFRm profile has a local minimum value. Figure 3.12 illustrates a sample APR-2 overpass from 

NAMMA experiment. The data details are discussed in Chapter 2. Figure 3.13 shows two sample 

profiles indicated as “A” and “B” in Figure 3.12. The “A” profile shows typical stratiform rain 

and “B” typical convective rain. The dashed lines in both cases are the melting layer top and 

bottom as defined in the HPC. 

 

To test whether the measured dual-frequency ratio (    ) vertical profile can be applied to 

detect the phase state of hydrometeors, we compared the criteria of     with other existing 

criteria. Different criteria are available in the literature regarding the melting region detection  
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Figure 3.13. Measurements of APR-2 NAMMA data at nadir. (a) Measured reflectivity at 
Ku band; (b) measured reflectivity at Ka- band; (c) measured dual-frequency ratio 
(DFRm); (d) linear depolarization ratio (LDR) at Ku- band; (e) Doppler velocity at Ku- 
band. 
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Figure 3.14. Top row: Profile (A) shown in figure 7. (a) Zm(Ku) and Zm(Ka); (b) DFRm; 
(c) LDR; (d) Velocity; Dashed lines are melting layer top and bottom decided by HPC. 
Bottom row: Profile (B) shown in figure 3.13. (a) to (d) are the same as in top row. 
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using different radar parameters. Tilford et al. (2001) used the gradient of reflectivity (  ) to 

detect the bright band top and bottom for stratiform rain type. The linear depolarization ratio 

(LDR) has been pointed out by many researchers as an important signature in melting phase 

detection, with certain thresholds determined for different hydrometeor particles (Smyth et al., 

1998; Bandera et al., 1998; Tan and Goddard, 1995; Hines, 1983). Typical vertical profiles of 

reflectivity as well as the corresponding velocity for stratiform and convective type were 

extensively studied by Fabry and Zawadzki, (1994). Baldini and Gorgucci (2006) mentioned that 

the rapid change of the hydrometeor fall velocity is an implication of the melting layer. The 

curvature of velocity was used by Zrnic et al. (1994) in characterizing the melting boundaries.  

Klaassen (1988) found that the melting bottom can be detected by maximum of velocity.   

 

The APR-2 collected simultaneous measurements of the linear depolarization ratio (LDR) and 

Doppler velocity, which are valuable for cross-validation of the HPC. A schematic diagram of 

the comparisons between the criteria used in HPC and the criteria mentioned above is shown in 

Figure 3.15 for both melting layer top and bottom. The data applied for comparison are profiles 

classified as stratiform rain using both a TRMM-like method and Doppler velocity information. 

Figure 3.16 shows the comparisons for the melting layer top between HPC criteria and the four 

methods listed in figure 3.15 (a) using NAMMA data. Normalized bias (NB) is defined as the 

difference between the mean estimate from one of the four criteria and the HPC criteria 

normalized to the HPC criteria, while normalized standard error (NSE) is the root-mean-square 

error normalized with respect to the HPC criteria. From figure 3.16 (a) and (b), it can be seen 

that the estimation from the HPC criteria is in between the     gradient estimation and the 
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   curvature estimation. The height of the melting layer top estimated by the HPC criteria is 

higher than the height detected by the     gradient method; normalized bias (NB) equals -2.6%. 

 

 

 

 

 

 

 

 

 

 

 

 

It agrees with the statement made by Fabry and Zawadzki (1994) that    gradient maximum 

height underestimates where the bright band starts. In figure 3.16 (c), the HPC criteria match 

best with the velocity curvature estimation showing normalized bias (NB) as small as -1.3%. 

Vertical Doppler velocity is not available for GPM-DPR, but it is an important parameter that 

indicates microphysics properties. The HPC criteria compare well with the LDR criteria, using a 

-28dB threshold for melting layer top estimation in figure 3.16 (d), and the bias between these 

two criteria is around -2.8%. A similar comparison for the melting layer bottom is summarized in 

table 3.3. Among the four comparisons of melting layer bottom, the HPC criteria show best 

matches with velocity curvature and velocity maximum estimations. The NB is as small as 2.2% 

                                   

                      (a)                                                           (b) 

Figure 3.15. Schematic plots of some current criteria for melting layer boundaries 
detection and their possible relations with HPC criteria: (a) melting layer top criteria; (b) 
melting layer bottom criteria. 
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and 1.6% respectively. Both    curvature and LDR estimations show slightly higher melting 

layer bottom than the HPC or the velocity curvature method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               

                                         (a)                                                                        (b) 

                             

                                          (c)                                                                      (d) 

Figure 3.16. Comparisons of the melting layer top between DFRm criteria and four 
existing criteria listed in figure 3.15(a).  (a) DFRm versus Zm gradient maximum; (b) 
DFRm versus Zm curvature maximum; (c) DFRm versus velocity curvature maximum; 
(d) DFRm versus LDR threshold. 
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Overall, the HPC method shows good agreement with velocity criteria for the estimation of both 

the melting layer top and bottom. Since GPM-DPR will not have Doppler velocity, the DFRm 

profile could be a good substitute to help with hydrometeor identification. LDR is also an 

effective parameter for detecting phase state since the increase of LDR is associated with melting 

particles. In the comparison, LDR with a threshold of -28 dB shows a narrower melting region 

than the DFRm detector, with NBs of -2.8% and 4.5% for melting layer top and bottom 

estimations. This might be caused by using a hard threshold of LDR or data quality. The same 

Table 3.3. Comparisons of melting layer boundaries between different criteria for NAMMA, 
GRIP and Wakasa  Bay data. Only stratiform profiles classified by TRMM-like method and 
Doppler velocity information are used in the comparisons. 

 Criteria 
DFRm slope peak  

(NAMMA) 

DFRm slope peak  

(GRIP) 

DFRm slope peak 

(Wakasa Bay) 

Melting layer 
top 

comparison 

Zm slope peak NB= -2.6%; NSE= 3.6% NB= -2.5%; NSE= 3.6%  NB= -4.9%; NSE= 6.6% 

Zm curvature peak NB= 1.6%;  NSE= 3.3%      NB= 1.5%;  NSE= 3.0% NB= 2.8%; NSE= 5.2% 

LDR NB= -2.8%; NSE= 4.5% NB= -3.3%; NSE= 4.2% NB= -6.0%; NSE= 7.2% 

Velocity curvature peak NB= -1.3%; NSE= 3.6% NB= -1.4%; NSE= 3.7% NB= -1.9%; NSE= 5.6% 

 Criteria 
DFRm local min  

(NAMMA) 

DFRm local min  

(GRIP) 

DFRm local min  

(Wakasa Bay) 

Melting layer 
bottom 

comparison 

Zm curvature peak NB= 4.3%; NSE= 5.5% NB= 3.7%; NSE= 5.0% NB= 4.3%; NSE= 6.9% 

LDR     NB= 4.5%; NSE= 5.9% NB= 4.0%; NSE= 5.4%   NB= 5.4%;  NSE= 11.2% 

Velocity curvature min NB= 2.2%; NSE= 4.9% NB= 1.7%; NSE= 4.4%      NB= -0.08%; NSE=7.0% 

Velocity max NB= 1.6%; NSE= 5.9%  NB= 1.9%; NSE= 4.3%  NB= -2.6%; NSE= 13.9% 
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analysis was performed using GRIP and Wakasa Bay data. Table 3.3 illustrates the results for all 

three campaigns and it is easy to see that similar conclusions can be made in each case. 

 

Although the comparisons shown above are based on stratiform rain profiles, DFRm criteria used 

in HPC can be applied to profiles beyond stratiform rain as long as the DFRm local max and min 

are detectable. Here, we define the difference between max and min of the DFRm within an 

estimated melting height window larger than 1 dB (DFRm (max)-DFRm (min)>1 dB) as 

detectable. Table 3.4 shows the estimates between the HPC criteria and LDR as well as velocity 

criteria based on all DFRm profiles with detectable melting layer signatures. Except for a 

relatively larger NSE, the NB values shown in table 3.4 are very close to those shown in table 

3.3. Furthermore, it should be pointed out that, for NAMMA, GRIP and Wakasa Bay data, 

around 77.5%, 73.33%, and 88%, respectively, of convective and other type rain classified using 

a TRMM-like method and Doppler velocity information have a detectable melting layer 

signature on the DFRm profile. This means the HPC criteria are independent of stratiform and 

convective rain types.  
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3.5.3 Availability of the method to the DPR resolution 

 

In GPM/DPR Level 2 ATBD, DPR will have a Ku-/Ka- band matched beam vertical resolution 

of 250m. DPR echoes will also be oversampled at twice the rate of the matched beam: 125m. As 

mentioned in previous sections, APR-2 data has fine vertical resolution of around 30m. In order 

to evaluate the availability of a precipitation type classification model developed from APR-2 

data to DPR resolutions, APR-2 data were resampled to 250m and 125m vertical resolution. 

Similar classification procedures as discussed in sections 3.5.1 and 3.5.2, were performed on 

both the NAMMA and GRIP datasets.  Table 3.5 shows the PCM criteria based on resampled 

data. C1 and C2 values for both resampled cases are just slightly different as compared to the 

results before resampling. In both cases, C1 and C2 values can separate stratiform and 

convective rain based on 90% CDF, and the C2 value is very close for the NAMMA and GRIP 

cases indicating there might exist a common threshold for stratiform rain on the DFRm index V3 

Table 3.4. Comparisons between DFRm criteria and LDR, velocity criteria based on 
APR-2 data with detectable DFRm local max and min values along DFRm profile. 

Criteria DFRm criteria (NAMMA) DFRm criteria (GRIP) DFRm criteria (Wakasa Bay) 

LDR 
MLT: NB= -2.1%; NSE= 5.6% 

MLB: NB= 3.1%; NSE= 5.7% 

 MLT: NB= -2.9%; NSE= 4.5% 

MLB: NB= 2.9%; NSE= 5.6% 

MLT: NB= -4.9%; NSE= 9.8% 

 MLB: NB= 6.9%; NSE= 19.5% 

Velocity curvature 
MLT: NB= -1.2%; NSE= 4.3% 

MLB: NB= 1.9%; NSE= 5.6% 

MLT: NB= -1.4%; NSE= 4.3% 

MLB: NB= 1.5%; NSE= 5.2% 

MLT: NB= -1.6%; NSE= 9.5% 

  MLB: NB= -0.5%; NSE= 13.0% 

Velocity max MLB: NB= 1.0%; NSE= 6.4% MLB: NB= 1.5%; NSE= 6.0%  MLB: NB= -3.6%; NSE= 16.4% 
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in different geographic locations.  From the analysis above, it is evident that the profile 

classification method developed from the APR-2 data is applicable to GPM-DPR observations.  

 

 

 

 

 

 

 

 

The horizontal resolution difference between satellite radar and airborne radar is also a concern 

although it is not as critical as the vertical resolution difference. Nevertheless, in order to confirm 

this, that is, how well the algorithm performs for GPM-DPR horizontal resolution, APR-2 data 

within a ~5km (DPR horizontal resolution) was averaged and processed through the same 

algorithm and the results are summarized in table 3.6. Only profiles at nadir are considered in the 

analysis in this section. Comparing the results in table 3.6 and table 3.2, C1 and C2 values are 

stable for all three campaigns. C2 values for a coarser horizontal resolution are slightly smaller 

than the values for finer resolution, which might be caused by the averaging of vertical profiles.  

 

 

 

 

 

Table 3.5 PCM criteria for resampled NAMMA and GRIP data (DPR resolution) 
with 90% CDF threshold. 

90% 
CDF 

NAMMA 
(resample to 

250m) 

NAMMA 
(resample to 

125m) 

GRIP   
(resample to 

250m) 

GRIP  
(resample to 

125m) 
C1 0.093 0.092 0.13 0.13 
C2 0.210 0.20 0.20 0.199 
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In order to evaluate the suitability of the hydrometeor profile characterization model developed 

from the APR-2 data for the DPR resolution, the HPC criteria were applied to the under-sampled 

APR-2 profiles to detect the melting layer top and bottom height. Since the resolution of DPR is 

coarse compared to APR-2 data resolution, the under-sampled data are not ideal for calculating 

curvature estimations, as shpwm in figure 3.15. The comparison in figure 3.17 is between the 

HPC criteria estimation before and after resampling using the NAMMA data. The occurring 

frequency in figure 3.17 shows the data points are well aligned with NB: 0.8% and -2.3% for 

melting layer top and bottom estimation, respectively, using 250m resolution. Similar values can 

be found for the 125m resolution comparison. Both normalized bias and normalized standard 

error come from the resolution difference. The same conclusions could be made for the GRIP 

data. From the above analysis, it is evident that the HPC developed from the APR-2 data is 

applicable to GPM-DPR observations.  

 

 

 

 

 

Table 3.6.  PCM criteria for NAMMA, GRIP and Wakasa Bay campaigns with 90% 
CDF threshold using DPR horizontal resolution. 

90% CDF NAMMA GRIP Wakasa Bay 

C1 0.09 0.112 0.10 
C2 0.194 0.201 0.17 
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One major advantage of this profile classification method is its straightforwardness. It is based 

on radar observations and doesn’t require attenuation correction beforehand, a procedure that 

might involve some errors. In the next section, the performance of the analysis is evaluated for 

profiles that are off nadir in the next section. 

 

3.5.4 Availability of the method to off-nadir observations 

 

The DPR on board the GPM satellite will scan cross-track up to a ~245 km swath. Those off-

nadir beams will also provide useful information about precipitation. It is meaningful to check 

the availability of the PCM to off-nadir observations. Figure 3.18 shows a sample cross-track 

plot for a stratiform rain event. During the analysis, the off-nadir observation angle effect is 

          

                              (a)                                                                        (b) 

Figure 3.17. Scatter plots of melting layer top (a) and bottom (b) height detected by DFRm 
criteria before and after resampling to GPM-DPR resolution.  
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corrected when calculating the DFRm index C1 and C2. Off-nadir observations at 6, 12, 18 and 

22 degrees deviated from nadir are taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Top: Overpass of GRIP data 100901.202048 at nadir. Middle: Cross-track (Ray 
# 1 to 24 corresponds to off-nadir angle ± 25º) plot of Zm(Ku) at “A” profile shown in the 
top plot. Bottom: Cross-track plot of DFRm at “A” profile.  
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Table 3.7 illustrates the PCM thresholds for different off-nadir observations. For observations 

within 6 degree off-nadir angle, C1 and C2 value biases are within 12.5% and 5.6%, 

respectively. It is not hard to identify that, in general, the more the observation is off-nadir, the 

more the C1 and C2 thresholds deviate from at nadir values. The main reason is due to the off-

nadir data quality and it is not appropriate to give useful conclusions when the analysis is based 

on an unconvincing dataset. More detailed analysis will be performed after the off-nadir APR-2 

data are re-analyzed, which is part of our future work. 

 

3.5.5 Effect of data smoothing 

 

Both the PCM and HPC models are based on the detection of the DFRm local max and min 

values as well as the slope and derivatives. This requires a certain degree of data-smoothing to 

avoid the mis-catching of local max and min values. From equations (3.10) to (3.12), the DFRm 

Table 3.7. PCM criteria for off-nadir analysis using NAMMA, GRIP and Wakasa Bay 
data with 90% CDF threshold. 

 NAMMA GRIP Wakasa Bay 
@ nadir C1=0.090 

C2=0.201 
C1=0.120 
C2=0.216 

C1=0.101 
C2=0.192 

Off- nadir 6 degree C1=0.109 
C2=0.204 

C1=0.113 
C2=0.223 

C1=0.112 
C2=0.215 

Off- nadir 12 degree C1=0.120 
C2=0.220 

C1=0.106 
C2=0.221 

C1=0.111 
C2=0.225 

Off- nadir 18 degree N/A C1=0.100 
C2=0.210 

C1=0.105 
C2=0.250 

Off- nadir 22 degree N/A C1=0.009 
C2=0.220 

C1=0.108 
C2=0.225 
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index V1 is affected by the data-smoothing effect. The more the smoothing is performed, the 

smaller the DFRm(max)-DFRm(min) value becomes. The V2 index is not affected by smoothing 

since it is an average value itself. Therefore, DFRm index V3 is affected by the smoothing of 

data.  All the analyses shown in the previous sections are based on the moving average with 

window length of 5. The reason for choosing a window length of 5 is the height resolution of the 

DPR. If we take a window length of 5 as a reference, figure 3.19 shows the effect of data-

smoothing to C1 and C2 in a bias sense. As expected, both C1 and C2 values decrease when the 

smoothing window length increases. The HPC model detects the heights (melting layer top and 

bottom) where DFRm profile holds certain characteristics but not the DFRm value itself. 

Therefore, HPC won’t be affected much by the data smoothing. 

 

 

 

 

 

 

 

 

 

 

 

             

Figure 3.19. Bias of C1 and C2 thresholds for PCM due to the effect of data-smoothing. 
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3.5.6 Comparison with other approaches 

 

The profile classification method described in previous sections has been compared to other 

methods: 1) the Z-DFR plane analysis by Liao and Meneghini (2010); and 2) the classification 

method used by JPL (Jet Propulsion Laboratory) through the Bayesian approach for cross-

validation purpose. 

 

Liao and Meneghini (2010) presented a pixel-based method for classifying hydrometeor types 

for GPM-DPR using the     D   theoretical plane, assuming that snow follows the Gunn-

Marshall size distribution (1958) and rain follows the Marshall-Palmer size distribution (1948). 

Both     and D   are attenuation corrected values, which indicate that this method needs 

attenuation correction in advance and it might misclassify if the attenuation correction method is 

not proper. To verify the simulated results, Liao and Meneghini (2010) applied the method to an 

APR2 dataset from the Wakasa Bay experiment. The melting layer is detected by  D  in their 

study and from the results they concluded that snow can be easily distinguished from rain and 

mixed phase media. Rain, however, is not always separable from mixed phase in the         

theoretical plane. In order to make comparison, in this study, we map the attenuation-corrected 

NAMMA overpass data to the same simulated     D   plane to study whether similar 

conclusions could be made using a different dataset. The melting region used for the NAMMA 

data is detected by the HPC. 

 

Figure 3.20 indicates the mapping results, with the left top subplot the theoretical     D   

plane for rain (solid blue line) and snow with several fixed densities. The right top subplot shows 
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the 2D PDF contours of snow (left upper cluster) and rain (right lower cluster), which are 

completely separable according to the plot. For rain and melting snow, as shown in the right 

bottom subplot of figure 3.20, it is hard to separate the two since the trailing part of the melting 

layer yields a similar magnitude of DFR and reflectivity. This point was also concluded by Liao 

and Meneghini (2010). From the left bottom subplot, snow and melting snow have small 

overlaps, while Liao and Meneghini (2010) concluded that it is separable in the Wakasa Bay 

dataset. One possible reason for this difference is that the melting region top decided by the 

DFRm criteria is slightly higher than that using the LDR parameter which can be seen from 

figure 3.16 (d). Thus a part of the snow data is classified into the mixed-phase dataset and causes 

the overlap. Meanwhile, both     and D   used in the comparisons are all attenuation-corrected 

values; thus a different attenuation correction procedure may be responsible for the difference.  

 

The results of the HPC have been compared to the results from melting layer detection 

developed by JPL (Simone et al., 2004). The algorithm details can be described as below: the 

method operates iteratively as a 1-D (range) multi-parametric algorithm (ML1) and a 2-D (along-

track and azimuth) contiguity check (ML2). In ML1 the range profile of each parameter (down to 

the last range bin not affected by surface clutter) is first reduced into a piecewise linear curve 

(linearity is interrupted at the local maxima of the second derivative of the smoothed profile). 

The decision tree shown in figure 3.21 is applied to detect the presence of a melting layer of 

precipitation and its upper and lower boundaries. In the ML2 algorithm the result of ML1 for 

each radar beam is compared with the estimates for adjacent radar beams and with the general 

statistics of the melting layer boundaries. The result of ML2 for each radar beam is either a 

confirmation of ML1 estimates or a flag to discard that result and reprocess it. 
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The comparison is shown in figure 3.22 based on an NAMMA overpass (060903-142134) data. 

The melting top from both methods agree well. The melting bottoms estimated by JPL are higher 

on average based on the testing overpass. Scatter plots are shown in figure 3.23 with normalized 

bias NB =0.06 for the melting layer bottom comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

                                

Figure 3.20. Left top: theoretical relationships between DFR and reflectivity at Ku 
band for snow and rain (solid line). Right top: 2D PDF contours for snow (left upper 
cluster) and rain (right lower cluster); left bottom: contours for snow (left cluster) and 
melting snow (right cluster); right bottom: contours for rain (bottom cluster) and 
melting snow (upper cluster). 
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Figure 3.21 Diagram of decision tree used in the ML1 algorithm by JPL. 

 

Figure 3.22. NAMMA DFRm overpass (060903-142134) with melting layer top and bottom 
height detected by HIM criteria and JPL results. 
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3.6 Implementation of GPM-DPR day one algorithm 

 

The proposed profile classification method including precipitation type classification module 

(PCM) and hydrometeor profile characterization (HPC) module are being tested for the GPM-

DPR day one algorithm (Le and Chandrasekar, 2012). JAXA/NASA and CSU are working 

together to implement and test the algorithm. The profile classification method is being tested 

using synthetic DPR overpasses generated from TRMM overpasses through a Ka sampling 

experiment (Seto et al. 2013). Figure 3.24 illustrates the first orbit of synthetic DPR data (GPM 

DPR Level 2 ATBD). For robustness, constraint of DFRm V2 is added in PCM in order to avoid 

misclassification when “DFRm bump” is not due to melting process. The threshold of V2 are 

 

              

                                       (a)                                                                             (b)      

Figure 3.23. Scatter plot of melting layer top (a) and bottom (b) height between HPC 
criteria and JPL results. 
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generated based on 90% CDF of DFRm V2 database from the three APR-2 campaign datasets. 

Figure 3.25 illustrates a block diagram of PCM algorithm used in GPM day one algorithm. 

Figure 3.26 shows a sample plot of the preliminary test results using the data shown in figure 

3.24. The first column of figure 3.26 shows the classification results by PCM for over land and 

over ocean case. The second column shows the precipitation type with the “Transition” category, 

introduced by the DPR algorithm, merged into the large classification categories of “Stratiform”, 

“Convective”, and “Other” types in order to follow TRMM legacy. However, the precipitation 

type details will be kept in the DPR classification numbering system.  The third column of figure 

3.26 shows the classification results by TRMM-like method. A comparison of figure 3.26 (b) and 

(c) show overall good agreement between the classification methodology. The profile 

classification algorithm is undergoing comprehensive testing and the final version is expected to 

be submitted around September of 2013.  

 

 

Figure 3.24. Synthetic DPR overpass generated using TRMM Ka sampling experiment. 
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Figure 3.25. Block diagram of precipitation type classification model (PCM). Part with 
shadow is not implemented to the day one algorithm but will be included after the satellite is 
launched. 
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                                             (a)                               (b)                                (c) 

Figure 3.26. A preliminary comparison of DPR classification method (Le and 
Chandrasekar, 2012) and Ku-only method (Awaka et al., 1997) using the DPR synthetic 
data shown in figure 3.24. Column (a) Classification results by PCM criteria for over land 
and over ocean case. Column (b) PCM results merge into stratiform rain when H-method 
classification is stratiform. Column (c) Classification results by TRMM-like method. 
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CHAPTER 4 
 

PRINCIPLE OF SPACE-BORNE RADAR DUAL FREQUENCY RETRIEVAL ALGORITHM 

 
4.1 INTRODUCTION 

 

The TRMM-PR algorithms rely on the surface-reference technique (SRT) to estimate path 

attenuation and correct the measured Ku-band reflectivity measurements.   With the attenuation-

corrected reflectivities, a modified Hitschfeld-Bordan method (Hitschfeld and Bordan, 1954) is 

then used to retrieve limited drop-size-distribution (DSD) information and the rain rate (Iguchi et 

al., 2000).  One major disadvantage of single-frequency space radar like TRMM-PR is that only 

one of the three drop-size-distribution (DSD) parameters Do, can be retrieved, with two others 

  , and µ, being assumed. Therefore, k-Z and Z-R relationships, with their inherent 

assumptions, are used to estimate rain rate. In contrast, the proposed dual-frequency precipitation 

radar (DPR) on board the GPM core satellite will be equipped with two independent frequency 

channels. Two of the three parameters, Do and   , can be retrieved, with µ assumed. Using the 

DSD parameters directly is potentially a more accurate method for estimating rain rate than that 

used in TRMM-PR. 

 

This chapter begins with an introduction of the principles of the current dual-frequency retrieval 

algorithms. The advantages and disadvantages of these algorithms are discussed. The hybrid 

method, which could avoid the bi-valued problem in retrieval, is described and evaluated in 
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detail. Then the comparisons of the hybrid method to the SWRC and HB-DFR methods are 

performed. The chapter ends with an evaluation of Hurricane Earl using the hybrid method.   

 

4.2 PRINCIPLE OF EXISTING DUAL-FREQUENCY RETRIEVAL ALGORITHM 

 

Generally, there are two main types of dual-frequency algorithms that can be used within a 

downward-looking space radar: 1) the forward method, where the DSDs are calculated at each 

bin starting from the top bin and moving down to the bottom; and 2) the backward method, 

where the algorithm begins at the bottom bin and moves upward to the top (Rose and 

Chandrasekar, 2005). Figure 4.1 depicts the downward-looking GPM satellite and illustrates the 

forward and backward retrieval directions.  The two types are summarized in Figure 4.2. The 

forward method has limited application because of a tendency to diverge in regions of moderate-

to-heavy attenuation or moderate-to-heavy rainfall (Meneghini et al., 2002). Backward 

algorithms can be divided into three groups: 1) standard dual-wavelength (or DAD); 2) surface-

reference technique (SRT); and 3) iterative non-SRT.  

 

The basic principle of the standard dual-wavelength approach is to estimate the path attenuation 

and rain rate using the radar equation and the ratio of the returned power of both wavelengths. 

This method requires one of two assumptions: the rain rate must be uniform over the 

measurement interval; or the reflectivity factor must be wavelength independent, meaning 

Rayleigh scattering at both frequencies (Iguchi, 2005). The SRT method uses a backward 

calculation method that is more stable than the forward method but requires a priori knowledge 

of the total two-way path-integrated attenuation (PIA) for each ray, or an ability to calculate it 
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(Meneghini et al., 1997, 2002). The third method, the non-SRT algorithm, is a self-consistent 

algorithm wherein the total PIA for each frequency channel is first estimated using an initial 

guess then optimized through an iteration process (Mardiana et al., 2004).  

 

Except for the DAD method, which retrieves rain rate instead of DSDs, most of the dual-

frequency retrieval algorithms mentioned above rely on the DFR-Do (dual frequency ratio versus 

medium drop diameter) relation. However, the forward and backward methods both suffer from 

a bi-valued solution when retrieving median volume diameter Do from DFR for rain, as 

described in detail by Liao, L. (2003); Mardiana et al. (2004); and Meneghini et al. (2002). Rose 

and Chandrasekar (2005) pointed out that a backward-iteration algorithm is unable to correctly 

estimate DSD profiles for a significant portion of Do and    combinations in rain because of the 

bi-value solution space. A boundary line was given by Rose and Chandrasekar (2006) to 

quantitatively describe the correct and incorrect convergence regions. A supplementary method 

was proposed using a linear assumption of vertical profiles for Do and    (in log scale) in the 

rain region, which is a reasonable assumption for avoiding the bi-valued problem. (Chandrasekar 

et al., 2003a).   

 

Since the DFR versus Do relation is fundamental in dual-frequency retrieval, it deserves more 

detailed description. Figure 4.3 (a) shows a theoretical DFR versus Do relation for snow particles 

with fixed density. Snow particles are composed of ice and air. Figure 4.3 (b) shows similar 

relations with snow density as a function of size (Hogan et al., 2002; Holroyd, 1973; Heymsfield 

et al., 2002). A spherical model is used with volume-equivalent diameters of snow particles 

following an exponential distribution ranging between 0.03 to 10 cm in a theoretical simulation. 
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The large value of the medium volume diameter indicates there are more particles with large 

sizes. It can be seen from both plots that the DFR is a monotonically increasing function of Do 

within a 0 to 5 mm range, which covers most of the snow particle sizes. The sphere model is 

used in simulation for simplicity purpose. It is obvious that the relation is slightly sensitive to 

snow density changes. Figure 4.3 (c) illustrates the DFR versus Do relation for melting snow 

particle. A spherical model is applied to the melting particle, which is composed of water, ice 

and air. The Bruggeman (1935) mixing formula is used to calculate the dielectric constant of the 

mixture. Gamma distribution is applied for melting particle sizes, with shape factor µ assumed to 

be 0. Different water fractions indicate different melting statuses within a melting process, and a 

bulk-averaged water fraction is used in this study. The density of the melting snow is calculated 

using equation (4.1) with water fraction decided by the Awaka et al. (1985) model and ice 

fraction from the assumed snow density. The relation between bulk averaged water fraction and 

its relative height to the melting top, described by Awaka et al. (1985), is shown in Figure 4.3 

(d).  

                                           (    )                                                  (4.1) 

 

    represents density of a melting particle.    and    are density of water and ice.    and    are 

water fraction and ice fraction within a mixed phase particle. A theoretical relation of DFR-Do 

for rain is shown in Figure 4.3 (e). The Beard and Chuang (1987) rain drop model is used in 

simulation. When DFR is a negative value, Do cannot be unambiguously retrieved; this is the 

“bi-value” problem indicated early in this section. The bi-value phenomenon exists for most rain-

drop models, including the Andsager et al. (1999); the Pruppacher and Beard, (1970) models. 
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Figure 4.2. General types of dual-frequency retrieval algorithm (Rose and 
Chandrasekar, 2005). 

 

 

Figure 4.1. Part (a) shows a downward-looking GPM satellite.  The discs represent 
sampling volumes.  The forward method calculates DSD values starting at the top 
and moving to the bottom.  The backward method calculates from the bottom to the 
top. Part (b) shows how the bin nomenclature and specific attenuation are defined 
(Rose and Chandrasekar, 2005). 
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                                        (a)                                                                   (b) 

                     

                                       (c)                                                                   (d) 

                             

                                       (e)                                                                      

Figure 4.3. (a) DFR versus Do relation for snow particle at fixed density of 0.05, 0.1, 0.2, 0.4 
g/cm3. (b) Same relation for snow particle with density as a function of size. (c) DFR versus Do 
relation for melting particle with water fraction of 0.1, 0.2, 0.3 and 0.4. (d) Bulk averaged water 
fraction as a function of relative distance to melting layer top (Awaka et al. 1985). (e) DFR 
versus Do relation for rain particle with shape model of Beard and Chuang (1987).  
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4.3 HYBRID METHOD 

 

4.3.1 Algorithm description 

 

The word “hybrid” comes from the combination of the forward method and the linear constraints 

on Do and    (in log scale) profile for rain. The forward method is applied to the frozen and 

melting regions while the linear DSD assumption is applied to rain. As mentioned in section 4.2, 

two DSD parameters of the gamma distribution can be retrieved in each radar resolution, leaving 

the shape factor µ assumed to be a fixed number (  =0 is used in this study for simplicity 

purposes). It needs to be pointed out that DSD parameters in the retrieval are the un-melted 

DSDs if not explicitly explained. 

 

The hybrid method is a profile-based optimization procedure that can be described in three steps. 

First, estimate DSD from vertical profile using the hybrid method. Second, reconstruct     (refer 

to estimated   ̃ ) based on estimated DSD and the assumed scattering models. Third, optimize 

the residual of the difference between reconstructed and observed reflectivity measurements till 

it is minimized. The state vectors for the optimization process are Do and     (  ) at surface. 

Following commonly used notations in the literature (Meneghini et al., 1997; Bringi and 

Chandrasekar, 2001), the governing equations of the hybrid algorithm can be written as follows: 

Let  ̃  ( ) be the estimated measured reflectivity. A tilde (~) indicates it is an algorithm-derived 

value. The subscript ii( 1,2) represents the particular frequency (13.6 and 35.5 GHz, 

respectively).     is intrinsic reflectivity, while    is a two-way path-integrated attenuation 

factor. The measured reflectivity can be written in term of the intrinsic values and attenuation as: 
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where   is a complex refraction index of water. The specific attenuation  ̃  in (4.4) is defined as 
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                        .10343.4 3kiC                                                         (4.10) 

The estimated  ̃  and  ̃  used in (4.3) are derived using the hybrid method described in (4.11), 

(4.12), and (4.13) for the ice and melting ice regions. The dual-frequency ratio DFR in decibels 

has been defined in previous sections, but here the reflectivities are intrinsic values with 

attenuation corrected. The definition is shown in (4.11), describing the difference of radar 

reflectivity (in dB) between two frequencies. The linear constraints of the DSD profile are shown 

in (4.14) and (4.15) for the rain region.  
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“mlb” and “surf” in (4.14) and (4.15) represent melting layer bottom and surface, respectively. 

The function F in (4.12) represents the DFR versus Do relations for snow and melting snow 

particles, which are shown in figure 4.3 (a) and (c). This relation is fundamental to the dual-

frequency retrieval. 
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The residual of the difference between reconstructed and true observation is expressed as  

 

   ∑   ̃  (  )     (  ) 
    ̃  (  )     (  ) 

   
                             (4.16) 

 

The initial guesses of       
 and     (      

) are adjusted until the cost function (4.16) is 

minimized. Therefore, the DSD profiles are optimized, and concurrently, attenuations are 

corrected. The diagram of the hybrid method is shown in figure 4.4. The diamond block in figure 

4.4 classifies profiles, and its output is needed for DSD retrievals. The classification method 

developed in Chapter 3 could be one of the algorithms. In order to achieve simplicity, in a 

simulation-oriented evaluation, the threshold of LDR is used for the melting layer detection. 

 

4.3.2 Algorithm evaluation using APR-2 data 

 

The performance of the hybrid method  is evaluated using simulated DPR profiles from airborne 

radar data obtained during the NAMMA experiment (20060903_142134). The plot of the 

NAMMA overpass is shown in figure 4.5 (same as the plot shown in figure 2.9). The reasons for 

using simulation data and the details of the simulation procedure are discussed in Chapter 2.  
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Figure 4.6 (same as figure 2.10) shows typical stratiform and convective profiles from NAMMA 

data, marked as A and B in figure 4.5. Figure 4.7 (same as figure 2.12) shows the corresponding 

simulated DPR profile. Figure 4.7 (a) is the stratiform profile simulated from figure 4.6 (a) and 

figure 4.7 (b) shows the true DSD profile used in the simulation. Figure 4.7(c) is the convective 

profile simulated from figure 4.6 (b) and figure 4.7 (d) illustrates the true DSD used in 

simulation. Comparing figure 4.6 and 4.7, the simulated profiles can capture the characteristics 

of the airborne radar profile. The two profiles in figure 4.7 are used to estimate the hybrid 

method as a representative of stratiform and convective rain profiles. An LDR with a threshold 

 

           Figure 4.4. Diagram of the hybrid DSD retrieval algorithm for GPM-DPR. 
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of -28 dB is used to separate regions with different hydrometeor phase state. The initial guess for 

Do and log(Nw) is [3,3] in the retrieval. 

 

 

 

 

 

 

 

 

 

Figure 4.5. Along-track observations at nadir of the APR2 radar in the NAMMA 
experiment. The (a) panel is reflectivity at Ku- band; the (b) panel is reflectivity at Ka- 
band; the (c) panel is the difference between reflectivity at Ku- and Ka- band; the (d) 
panel is LDR at Ku- band; the (e) panel is fall velocity at Ku- band. 
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Figure 4.8 illustrates the evaluation of the retrieval using the same microphysical model in 

simulation as in retrieval. For both cases, as shown in figure 4.8 (a) and (c), the hybrid method 

illustrates good performance in the retrieval. Within the ice and melting ice regions, the forward 

method retrieves DSDs that match well with true DSDs. The difference in the rain region is 

caused by the deviation from the true DSDs to the linear assumption. 

 

 

       

                                    (a)                                                                          (b) 

Figure 4.6. (a) Typical vertical profile of reflectivities and the measured dual-frequency 
ratio for stratiform rain marked as A in figure 4.5.  (b) Typical vertical profile of 
reflectivities and the measured dual frequency ratio of convective rain marked as B in 
figure 4.5. 
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                                         (a)                                                                   (b) 

         

                                     (c)                                                                    (d) 

Figure 4.7. (a)  Profiles of reflectivities and the measured dual frequency ratio for 
stratiform rain simulated from airborne radar profile shown in figure 4.5 at profile “A”; 
(b) true DSD profiles for (a); (c) Same profiles for convective rain simulated from 
airborne radar profile shown in figure 4.5 at profile “B”; (d) true DSD profiles for (c). 
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                                (a)                                                                            (b) 

             

                                  (c)                                                                          (d) 

Figure 4.8. (a) Comparison between retrieved DSDs and simulation truth for stratiform 
rain. (b) Comparison between estimated reflectivity profiles and true observations. (c) and 
(d) are the same as (a) and (b), but for convective rain. 
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Figure 4.8 (b) and (d) are the estimated and the true reflectivities for the stratiform and 

convective profiles. The differences between the estimation and the observations are minimized 

to get optimized DSD retrievals. 

 

The hybrid method is applied to the entire overpass of the NAMMA data illustrated in figure 4.5. 

The retrieved DSDs are shown in figure 4.9. The blank regions in the figure represent either no 

data or the Ka- band signal becoming extinct at high altitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.9. Top panel: retrieved overpass of Do; middle panel: retrieved overpass of    
in log scale; bottom panel: retrieved DSD parameters at surface. 
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4.3.3 Stability test 

 

Although the density of snow is assumed in simulation, in reality, snow density is an unknown 

parameter that could involve error if the true value is different from the assumed value. 

Therefore, the sensitivity of the hybrid method to snow density change is worth studying. In 

order to test the sensitivity in simulation, the density of a snow particle is assumed as 0.1 g/cm3 

and 0.4 g/cm3 for stratiform and convective profiles respectively. In retrieval, snow densities of 

0.2 g/cm3 and 0.3 g/cm3 are used. The performance of the sensitivity test is shown in figure 4.10 

(a) and (b) for the stratiform and convective profiles. Both cases indicate that Do is not sensitive 

to the snow density change while log(Nw) is more sensitive. It shows around a 12% 

underestimation of log(Nw) in the frozen region for the stratiform profile.  

 

 

 

 

 

 

 

 

 

 

                 

                                      (a)                                                                    (b) 

Figure 4.10. (a) Comparison between retrieved DSDs and simulation truth for stratiform rain 
profile using snow density of 0.1g/cm3  in simulation while 0.2g/cm3 is used in retrieval. (b) 
Same comparison for convective rain profile using snow density of 0.4g/cm3, while 0.3g/cm3 
is used in retrieval. 
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Since the algorithm compares the estimates with true measurements, it is subject to system bias. 

Two bias scenario are tested. One is [1,0] with the first number to be the bias (in dB) of the Ku- 

band channel and second value to be the bias of the Ka- band channel. Figure 4.11 (a) and (b) 

show the retrieved DSDs versus true DSDs based on this bias scenario. As expected, Do is 

overestimated because of the bias. Correspondingly, Nw is underestimated in order to match 

estimated measurements. The second bias scenario of [1,1] is applied to vertical profiles and the 

estimation is shown in Figure 4.11 (c) and (d). From the figure, Do is not affected much from the 

system bias since the biases for both reflectivity channels are the same while Nw is affected. The 

reason is that Do is retrieved by DFR, where bias from the two channels cancels out, but Nw is 

retrieved using both retrieved Do and the reflectivity measurements.  

 

 

4.3.4 Considering attenuation from non-precipitation particles 

 

The analysis in the above sections uses the forward method with the assumption that there is no 

attenuation from non-precipitating particles. In other words, the evaluation doesn’t include the 

attenuation from cloud liquid water, water vapor, and oxygen. However, attenuations from non-

precipitating particles exist in the real environment and cannot be ignored. Therefore, it is useful 

to evaluate the impact of attenuation profiles from non-precipitating particles on the hybrid 

method. Figure 4.12 shows the same flow chart as figure 4.4, but considering attenuation profiles 

from non-precipitating particles. 
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       (a)                                                                 (b) 

                    

     (c)                                                              (d) 

Figure 4.11. (a) Comparison between retrieved DSDs and simulation truth for stratiform 
rain profile considering system bias scenario of [1,0]. (b) Comparison between estimated 
measurement and observations considering system bias scenario of [1,0]. (c) and (d) Same 
comparisons as (a) and (c) with system bias scenario of  [1,1]. 
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The evaluation procedure is the same as described in previous sections; the only difference is 

that attenuation profiles from non-precipitating particles are subtracted from the simulated 

measurements using true DSDs. Then, the retrieved DSDs are compared to the true DSDs to 

evaluate their influence. 

 

 

Figure 4.12. Flowchart of the hybrid method considering attenuation from non-
precipitating particles. 



109 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model from Gunn and East (1954) is used to calculate attenuation from cloud liquid water. 

Gaseous attenuations, including oxygen and water vapor, are calculated based on the model 

described in ITU-R (in ITU-R P.676-6 "Attenuation by Atmospheric Gases"). A sample plot of 

the attenuation profile from non-precipitating particles is shown in figure 4.13. Figure 4.13 (a) is 

 

                            (a)                                           (b)                                          (c) 

(d)                                           (e)                                         (f) 

Figure 4.13. Attenuation profile from non-precipitating particles. (a) Sample profile of 
measured reflectivity. (b) Temperature profile (°C). (c) Attenuation profile from cloud 
liquid water. (d) Attenuation profile from oxygen. (e) Attenuation profile from water vapor. 
(f) Total attenuation profile from cloud liquid water, oxygen and water vapor. 
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a vertical profile of stratiform rain with the dash line representing the melting layer top and 

bottom detected by the method described in Chapter 3. The temperature profile is shown in 

figure 4.13 (b) with 0 ℃ at melting layer top and 6 ℃ / km lapse applied. In Figure 4.13 (c), (d), 

and (e), the attenuation profile from cloud liquid water, water vapor, and oxygen are illustrated, 

respectively. Attenuation from cloud liquid water is only applied around the melting layer region 

and attenuations from oxygen and water vapor are applied for the whole profile. Figure 4.13 (f) 

is the attenuation profile at Ku- and Ka- band from the three non-precipitation sources and the 

one used in evaluation. 

 

The same vertical profile shown in Figure 4.7 (a) was tested considering the attenuation shown in 

figure 4.13 (f). The retrieved DSD profile was compared to the true DSDs. Figures 4.14 and 4.15 

show the results of comparison for each case. In order to show the impact from non-precipitating 

attenuation, the top and middle row in figures 4.14 and 4.15 indicate the comparison without and 

with the attenuation from non-precipitating particles. From the comparison, except for a slight 

increase of retrieved Do and corresponding Nw, no obvious difference can be found.  This 

indicates that the hybrid method can handle the non-precipitating attenuation. The bottom row in 

Figure 4.14 shows the attenuation from non-precipitating particles and from precipitation. At Ka- 

band, attenuation from non-precipitating particles is only around 10% of the attenuation from 

precipitation. Figure 4.15 shows the same comparison, but for the convective rain from Figure 

4.7 (b) and similar conclusions can be made. 
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Figure 4.14. Top row: Comparison between retrieved DSDs and simulation truth for 
stratiform rain profile with no attenuation from non-precipitating particles (same as top 
row of figure 4.8) Middle row: Same comparison as in Top row with attenuation from 
non-precipitating particles added. Bottom row: Attenuation profile from non-
precipitation particles used in retrieval (left); and true attenuation profile from 
precipitation in retrieval (right). 
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Figure 4.15. Top row: Comparison between retrieved DSDs and simulation truth for 
convective rain profile with no attenuation from non-precipitating particles (same as 
bottom row of figure 4.8) Middle row: Same comparison as in Top row with 
attenuation from non-precipitating particles added. Bottom row: Attenuation profile 
from non-precipitation particles used in retrieval (left); and true attenuation profile 
from precipitation in retrieval (right). 
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4.3.5 Comparison with the SRWC method 

 

The hybrid method described above falls into the general class of non-SRT (surface reference 

technique) iterative process. Meneghini and Liao (2009) proposed an algorithm for GPM-DPR 

called surface reference with weak constraint (SRWC). This method belongs to the backward 

recursion with SRT, but using a weak constraint. In this section, a comparison is performed 

between the hybrid method and the SRWC method. 

 

The advantage of the hybrid method is that the iterative process picks the optimized DSD values 

at the surface and avoids the ambiguity problem in the rain region. The limitation depends on to 

what extent the actual vertical profiles of DSD parameters for rain deviate from the linear model, 

although Chandrasekar et al. (2003a) pointed out that the profiles of both Do (drop median 

diameter) and log(Nw) (scaled number concentration in log scale) could be approximated in rain 

by a linear function. The SRWC method suggests an alternative to the SRT using the difference 

in the measured radar reflectivity DFRm near the surface. This difference, however, is a weak 

constraint in the sense that it is a function of one of the unknowns. Therefore, there are multiple 

solutions consistent with the constraint in the SRWC method. Some preliminary comparisons are 

made between these two DSD retrieval algorithms based on the same APR-2 NAMMA overpass 

data shown in figure 4.16. The markers A, B, and C show the location of the three vertical 

profiles used in the comparison.  
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The convention of drop size distribution parameters follows the definition in Meneghini and Liao 

(2009), where Do is defined as melted drop diameter (all Do outside of section 4.3.5 is un-melted 

Do) and Nt is the number concentration and can be connected to Nw, Do, and µ as  

 

   
   ( )  

   

    
                                                      (4.17) 

          

 

     

Figure 4.16. Overpass of NAMMA experiment at 20060901-142310. A, B, C 
indicate the location of the profiles for comparison purposes. 
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At markers B, and C in figure 4.16, where the stratiform profiles tend to be moderate to strong, 

the comparisons between the two methods are shown in figure 4.17, with the left column for the 

profile at marker B and the right column at marker C. The profile at marker B is a moderate 

stratiform profile. From the comparison shown in the left bottom subplot of figure 4.17, the black 

starred line, which is the result of the hybrid method, is close to at least one of the outputs of the 

SRWC methods and it tends to match with the larger branch of Do in the rain region. The profile 

at marker C is a strong stratiform profile; the deviation of the black starred line to the solutions 

of the SRWC method in the frozen and melting regions can easily be seen. The explanation 

could be that the hybrid method follows the forward method in these two regions, matching the 

red line, while the SRWC method applies backward recursion to the profile top; thus, errors in 

the retrieval might accumulate to the top. Furthermore, the mixed-phase particle microphysical 

models used in the comparison are different, which might cause the mismatch in the melting 

region comparison. 

 

At marker A in figure 4.16, which shows a very weak stratiform case, the hybrid method (black 

starred line) estimates a smaller Do than the outputs of the SRWC method in the rain region, as 

indicated in figure 4.18. One possible reason is that either the forward or the backward recursion 

method always picks the larger branch of Do in the rain region when a bi-valued problem occurs 

(Liao, L., 2003; Mardiana et al., 2004 and Meneghini et al., 2002). However, in the hybrid 

method, the iterative procedure automatically chooses the Do value that minimizes the difference 

between the estimates and the observations. In other words, the black starred line might reflect 

the truth although it deviates from other SRWC solutions. 
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                                   (a)                                                                  (b) 

   

                                    (c)                                                                  (d) 

Figure 4.17. (a)(c): Vertical profile at marker B in figure 4.16 and the comparison 
between hybrid method and the SRWC method. (b)(d): Vertical profile at marker C in 
figure 4.16 with the same comparison. Black star line indicates the hybrid method. Red 
solid line indicates the forward method. Other lines in the plot indicate the outputs of 
the SRWC method. X-axis in the figure is defined as the relative distance to the profile 
top in km. 
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(a) 

 

(b) 

Figure 4.18. (a) Vertical profile at marker A in figure 4.16. (b) the comparison 
between hybrid method and the SRWC method. Black star line indicates the hybrid 
method. Red solid line indicates forward method. Other lines in the plot indicate 
SRWC method. X-axis in the figure is defined as the relative distance to the profile 
top in km. 
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4.3.6 Comparison with HB-DFR method 

 

Seto et al. (2013) proposed an algorithm for GPM-DPR retrieval called the HB-DFR method, 

combining the Hitschfeld-Bordan attenuation correction method (Hitschfeld and Bordan, 1954) 

and the dual-frequency ratio method (Meneghini et al., 1997). HB-DFR is a profile based 

optimization algorithm, with the initial guess of k-adjustment coefficient ϵ, DSD parameters are 

first estimated and updated coefficient ϵ is generated at each range bin and each frequency. When 

difference between updated ϵ and initial ϵ are minimized, optimized DSDs are achieved. 

Algorithm details are in Seto et al. (2013). HB-DFR has the advantage of the consistency 

between single and dual-frequency algorithms which is desired for the DPR to produce a 

seamless three-dimensional field of the precipitation rate estimates. The HB-DFR algorithm is 

part of a baseline algorithm for the DPR standard algorithm. The potential disadvantage of HB-

DFR method is that Hitschfeld-Bordan attenuation algorithm is forwardly estimated and could be 

unstable for retrievals in strong precipitation, especially for Ka- band.  

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 4.19. Flowchart of HB-DFR algorithm (Seto et al., 2013). 
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(a) 

 

(b)                                                         (c) 

 

(d)                                                       (e) 

Figure 4.20 (a) GRIP overpass 100829-201850. (b) Comparison of DSDs 
between HB-DFR method and the hybrid method using profile (A) and (B) from 
(a). (c) Comparison of intrinsic  reflectivity retrieved from HB-DFR method and 
the hybrid method based on the same profiles as in (b).  
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In order to deal with that, a HB-DFR-SRT (HB-DFR-Surface reference technique) method is 

being developed. Figure 4.19 shows the flowchart of the HB-DFR method. In this section, the 

HB-DFR method is compared with the hybrid method using APR-2 observation. Two profiles 

are chosen from a GRIP overpass 100829-201850 during hurricane Earl as shown in figure 4.20 

(a). The details about Hurricane Earl are described in section 4.4.1. Figure 4.20 (b) shows the 

comparisons between DSDs retrieved from HB-DFR method and the hybrid method. In ice and 

melting regions, two methods match very well. In rain, HB-DFR method shows larger Do than 

hybrid method for both profile (A) and (B). Since HB-DFR method still picks larger value of Do 

when it suffers from dual-value problem in rain retrieval (Meneghini et al. 1997), it is very 

possible that HB-DFR method overestimates Do and underestimates corresponding Nw values in 

rain. Figure 4.20 (d) (e) show the comparison between intrinsic reflectivity at Ku- and Ka- band 

retrieved from HB-DFR method and hybrid method. The profile compares well including the 

rain region. More comprehensive study is needed and is a part of future work. 

 

 

 

 

4.4 EVALUATION FOR TROPICAL STORM 

 

4.4.1 Hurricane Earl 

 

Hurricane Earl developed out of a tropical wave west of Cape Verde Island on August 25, 2010. 

It strengthened into a tropical storm intensity when it continued across the Atlantic on August 29, 

and later a major hurricane on August 30. APR-2 participated in the GRIP experiment in August 

and September of 2010 and captured Earl from August 29 to September 2. Figure 4.21 illustrates 
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the geographic location of Earl and the GRIP experiment.  Figure 4.22 shows the GRIP overpass 

of 100829.201850 on August 29, 2010. In order to study the microphysics of Earl, the hybrid 

method described in section 4.3 was applied to the storm to perform a DSD retrieval. As 

mentioned in the previous section, the height of the melting layer should be known or assumed in 

advance. The hydrometeor profile characterization (HPC) method described in Le and 

Chandrasekar (2011) (see also in Chapter 3) is applied to detect the melting layer for Earl.  

 

Figure 4.23 (a) shows the same plot as in figure 4.22 (a) but with the black dashed line 

representing the melting layer top and bottom using the HPC method. Figure 4.23 (b) shows the 

LDR (linear depolarization ratio), available for APR-2 data, of the overpass which is a good 

indicator of the melting layer. The melting region detected by the HPC method shows a good 

match with the LDR with a threshold of -28 dB. The melting regions, where not detectable, are 

assigned a fixed value of melting top and bottom. Figure 4.23 (c) and (d) shows the retrieved Do 

and Nw (in log scale) values for Hurricane Earl using the hybrid method. The blank regions in 

the plots are either bad data or Ka- band signals extinct at high altitudes in convections. From 

figure 4.23 (c), Do values are small at high altitudes due to the small size of ice crystals and Do 

increases with the decreasing height since ice crystals aggregate when they fall. When entering 

the melting layer, Do values have the trend to increase in the early state of melting and then 

decrease in the bottom half of the melting layer. The shrinking of the particle is due to the 

increase of the density. In the rain region that is far from the storm’s eye, Do profiles are more 

constant along the height while entering the convection area adjacent to the storm eye, more 

variation can be seen from the retrieval. Accordingly, retrieved Nw (in log scale) values show 

complementary trends to Do which is reasonable. In figure 4.23 (c) and (d), retrieval is 
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performed only in regions with altitude above 1km in order to avoid clutter. The limitation of the 

hybrid method is that it doesn’t work when Ka- band reflectivity is extinct according to strong 

attenuation. The retrieval might not be accurate when the melting region cannot be detected 

properly, which happens in strong convections.   

 

 

 

 

 

 

 

 

 

 

 

 

Retrieval details of two sample profiles marked at “A” and “B” of GRIP overpass 100829-

201850 are shown in Figure 4.24. The four left subplots in figure 4.24 belong to profile A, which 

is a convective rain with a reflectivity peak value around 44 dBZ. “Retrieved measurement” 

indicates how well the optimization procedure works since the difference between “retrieved” 

and “real” measurements should be minimized in the hybrid method. “Intrinsic measurement” 

corrects the attenuation at Ku- and Ka- band, respectively. Attenuation correction is done within 

same optimization procedure as in the hybrid method. The four right subplots belong to profile 

                   

                                    (a)                                                                     (b) 

Figure 4.21. (a) Geographic location of Hurricane Earl. (b) Geographic location of 
APR-2 field experiment of GRIP. 
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B, which is a typical stratiform rain with bright band peak value smaller than 35 dBZ. A larger 

value of Do is retrieved for profile A than profile B; the corresponding Nw value is slightly 

smaller for profile A than for profile B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

              

         

             

Figure 4.22. GRIP overpass of 100829-201850 collected by APR-2 on August 29, 2010. Top 
to bottom panels are: Reflectivity at Ku- band; reflectivity at Ka- band; measured dual 
frequency ratio; linear depolarization ratio at Ku- band. 
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Figure 4.23. Top to bottom panels are: GRIP overpass of 100829-201850, reflectivity of Ku-
band (Black dashed lines are melting layer top and bottom detected using HPC method); LDR at 
Ku-band with white dashed line being the melting layer top and bottom detected using HPC 
method; retrieved    (in log scale) using the hybrid method; retrieved Do using the hybrid 
method. 
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4.4.2 Self-consistency check 

 

The true microphysics of Hurricane Earl are unknown. However, a self-consistency check 

provides an effective way to look into the rationality of the retrievals. Figure 4.25 (a) shows the 

 

    

Figure 4.24. Top panel: Same GRIP overpass of reflectivity at Ku-band with black dashed 
lines indicating melting layers and location of vertical profile “A” and “B”. Left bottom four 
subplots: real measurements and retrievals of profile “A”. Right bottom four subplots: real 
measurements and retrievals of profile “B”. 
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scatter plot between Do and     (  ). As expected, these two DSD parameters show 

complementary relations, with most Do values falling into 1~2.5mm and     (  ) in between 

2~4. These are reasonable values. In figure 4.25 (b), the relation between     (D ) and     (
   

  
) 

is plotted and the fitting equation is calculated. The coefficients of the fitting curve show good 

agreement with the theoretical relation, as shown in (14) in Chandrasekar et al. (2005). 

Histograms of Do and     (  ) are shown in Figure 4.25 (c) and (d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

                                 (a)                                                              (b)       

 

                                  (c)                                                              (d) 

Figure 4.25. (a) Scatter plot of Do versus    (  ) with occurring frequencyshown in 
color scale. (b) Relation of    (D ) versus    (

𝑍𝑘𝑢

𝑁𝑤
). (c) Histogram of Do. (d) 

Histogram of    (  ). 
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Stratiform and convective rain can be separated using the PCM method described in Chapter 3. 

Their corresponding DSDs are plotted in figure 4.26. Stratiform rain shows smaller Do than 

convective rain with the mean value around 1.3 mm. The corresponding mean value of log(Nw) 

for stratiform rain is around 3. Convective rain has a larger Do and smaller Nw in general. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

                                   (a)                                                                     (b) 

Figure 4.26. (a) Histogram of Do for stratiform, convective and total rain analyzed from 
GRIP 100829-201850 overpass. (b) Same analysis for    (  ). 
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CHAPTER 5 

 
DROP SIZE DISTRIBUTION RETRIEVAL ALGORITHM FOR DUAL FREQUENCY AND 

DUAL POLARIZATION DOPPLER (D3R) RADAR 

 
5.1 INTRODUCTION 

 

Ground validation is an integral part of all satellite precipitation missions. Ground validation 

helps to characterize errors, quantify measurement uncertainty, and, most importantly, provides 

insight into the physical basis of the retrieval algorithms. GPM validation falls in the general 

class of validation and integration of information from a variety of space-borne observing 

platforms with ground-based measurements. Dual-polarization ground radar is a powerful tool 

that can be used to address a number of important questions that arise in the validation process, 

especially those associated with precipitation microphysics and algorithm development 

(Chandrasekar et al. 2008).  

 

Estimation of the drop size distribution (DSD) parameters of precipitation particles helps to 

achieve more accurate estimations of precipitation rate. Simplified models have been used to 

obtain DSD from both space-borne radar and ground dual polarization radar (Meneghini et al., 

1992, 1997; Chandrasekar et al., 2005; Mardiana et al., 2004; Gorgucci et al., 2002a, 2008; 

Bringi et al., 2002). However, no retrieval algorithms currently exist for a dual-frequency, dual- 

polarization ground radar, which is the main focus of this chapter. The DSD retrieval algorithm 

developed in this chapter is applied to the Ku-/Ka- band dual-frequency and dual-polarization 
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Doppler (D3R) radar, which will serve as the GPM-DPR ground validation. Figure 5.1 shows a 

sketch of ground validation of the GPM-DPR with D3R radar. 

 

This chapter starts with a discussion of the principle of dual-frequency and dual-polarization 

retrieval. The DSD retrieval algorithm developed for D3R radar forms the main part of the 

chapter. Evaluations are focused on rain and some preliminary evaluations are performed for 

regions beyond rain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Illustration of ground validation of GPM-DPR with D3R radar. 
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5.2 PRINCIPLES OF DUAL-FREQUENCY AND DUAL-POLARIZATION RETRIEVAL 
ALGORITHM 

 

One of the standard dual-frequency methods used for space radar is based on the conversion of  

differential attenuation to the rain rate (Eccles, 1979; Iguchi, 2005). However, this method 

requires one of two assumptions to be valid: reflectivity at both channels is equal to Rayleigh 

scattering reflectivity or the rain is uniform. Either of these assumptions limits the application of 

the algorithm. Meanwhile, the method is focused on the rain rate estimation rather than the drop 

size distribution parameters. Then, a two-scale DSD estimation procedure is generalized to dual-

frequencies, thereby providing a two-parameter estimation of DSD at each range gate. This 

method has been widely used in dual-frequency space and airborne radar retrievals (Meneghini 

et al., 1997; Koze et al., 1991; Liao et al., 2008). The common concept within the second 

approach that has been proposed for dual-frequency radar is that the dual-frequency ratio DFR 

(describing the difference of the radar reflectivity at two frequencies in decibels) is the key 

parameter in DSD retrieval and is proportional to median drop diameter when at least one of the 

frequencies falls into non-Rayleigh scattering.  

 

However, these DSD retrieval algorithms suffer from the bi-valued problem for the rain region. 

(i.e., the non-uniqueness of median volume diameter 0D  retrieval from DFR parameter 

(Meneghini et al. 1997)). Chapter 4 contains a detailed discussion of dual-frequency retrievals. 

Extensive research has been done regarding accurate DSD retrieval as well as attenuation 

correction for dual-polarization ground radar operating at S-, C- and X- band  using polarimetric 

measurements (Testud et al., 2000; Gorgucci et al., 2002a, 2008; Bringi and Chandrasekar, 



131 
 

2001). The five basic polarimetric radar measurements are: horizontal reflectivity (  ), 

differential reflectivity (   ), specific differential phase (   ), linear depolarization ratio (LDR), 

and correlation coefficient (   ). One of the popular approaches is the algorithm developed by 

Gorgucci et al. (2006b, 2008), which takes advantage of the self-consistency between the radar 

parameters of reflectivity factor, differential reflectivity, and specific differential phase. The self-

consistency (SC) principle is applied for attenuation correction at X- band and later adapted to a 

fully self-consistent (FSC) method. The DSD parameters are retrieved (Gorgucci et al., 2008) 

based on the attenuation-corrected radar parameter using parameterization proposed earlier by 

Gorgucci et al. (2002a). The SC and FSC methods rely on an optimization procedure that 

constraints the estimated and observed differential phases.  

 

In this chapter, a new DSD retrieval algorithm is presented with the retrieval philosophy based 

on combining the attributes of DFR, historically used in space-borne radar techniques, and dual-

polarization approach     used in ground radar algorithms. As mentioned in Chapter 4, retrieval 

of Do from DFR suffers from a bi-valued solution for rain, as can be seen in figure 5.2 (a). The 

DSD retrieval algorithm introduced in this chapter mitigates this problem by adding a constraint 

to the Do retrieval from differential reflectivity ( drZ ). Figure 5.2 shows theoretical simulation of 

DFR versus Do and     versus Do relation for rain drop using the Andsager et al. (1999) model. 

The widely varying DSDs used in the simulation are generated by randomly varying   , Do, 

and µ over the following ranges: 

 

                                                                  (       )  



132 
 

                                                                         (  ) 

                                                                                                                         (5.1) 

These two relations are fundamental to the retrieval and will be discussed in detail in the 

following section. 

 

 

 

 

 

 

 

 

 

 

 

5.3 DROP SIZE DISTRIBUTION RETRIEVAL ALGORITHM FOR D3R 

 

5.3.1 Algorithm description 

 

The dual-frequency and dual-polarization retrieval algorithm developed for D3R radar is a ray- 

based, self-consistent optimization procedure. The two frequencies considered for the dual- 

frequency radar are Ku- and Ka- band. The method adjusts the estimates of the cumulative 

                  

Figure 5.2. (a) DFR versus Do for rain, with , using the Andsager et al. (1999) 
rain drop model. (b) 𝑍𝑑𝑟 versus Do for rain using the same rain drop model. The curves in 
both plots are the mean fit. 
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attenuations at Ku- and Ka- band and cumulative differential attenuation at Ku- band at the 

farthest range of each beam iteratively until these estimates retrieve the reflectivity and 

differential reflectivity factors that best match the measurements. The state vectors are optimized 

when the retrievals converge within a given tolerance; concurrently with the DSD values at each 

bin. Attenuation correction is achieved within the same optimization process. 

 

Following commonly used notations in the literature (Bringi and Chandrasekar, 2001) the 

governing equations of dual-polarization, dual-frequency observations from precipitation can be 

written as follows: Let )(, rZ im  and )(, rZ idrm  be the measured reflectivity and differential 

reflectivity in linear sense at a specified range r . The subscript ii( 1, 2) represents the 

particular frequency (13.6 (Ku) and 35.5 (Ka) GHz, respectively).  )(, rZ ie  and )(, rZ idr  are the 

intrinsic reflectivity and differential reflectivity in a linear sense while )(rAi  and )(, rA idp  are 

the two-way path-integrated attenuation and differential attenuation factors from the radar to 

range  . When these variables are used with a tilde (~), it implies these are algorithm-estimated 

values. The attenuated reflectivity and differential reflectivity in rain can be written in term of 

the intrinsic values and attenuation as  

                               )()()( ,, rArZrZ iieim  ,                                                         (5.2) 

                                              )()()( ,,, rArZrZ idpidridrm  ,                                                    (5.3) 

where the intrinsic values can be related to the DSD parameters as  

                                         )()()()( 0,0, DIDfrNrZ ihbwie
  ,                                           (5.4) 
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                                                 )()( 0,, DIrZ idbidr  .                                                        (5.5)    

ihbI ,    and  idbI .  are both function of 0D  which can be expressed in the form of 
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                                       )(/)()( 0,0,0, DIDIDI ivbihbidb  .                                             (5.8) 

b  is the backward scattering cross section and   represents wavelength. wK  is defined as  
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m
mKw ,                                                             (5.9) 

with m  representing the complex index of refraction of water.       represents the integrated 

scattering  parameter at horizontal polarization, while ivbI .  has the same definition as (5.6), but 

with b  at the vertical polarization. The two-way attenuation factor and differential attenuation 

factor can be expressed using specific attenuations as 
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where specific attenuation ih,  and specific differential attenuation idp.  are related to DSD 

parameters as 
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                                        )()()( 0,0, DIDfNr ihtwih
   ,                                            (5.12)                              

                                        )()()( 0,0, DIDfNr idtwidp
  ,                                            (5.13) 

where  

                                        


D

D
itkiiht dDeDDCDI  )()( ,0, ,                                          (5.14)       

                                         )()()( 0,0,0, DIDIDI ivtihtidt  ,                                              (5.15) 

                                                  310343.4 kiC .                                                          (5.16) 

t  is the extinction cross section.       represents the integrated scattering parameter at 

horizontal polarization while ivtI ,  has the same definition as in (5.14), but with t  at the vertical 

polarization. j  in (5.10) and (5.11) represents the number of gates and   is the range resolution 

of the radar beam. The radar dual frequency ratio (DFR) in decibels, describing the difference of 

the radar reflectivity at two frequencies, is defined as 

  
)./(log10 2,1,10 ee ZZDFR                                                  (5.17) 

The proposed retrieval algorithm falls into the general class of self-consistent optimization 

procedures. Within each iteration, this radar beam-based DSD retrieval algorithm can be 

separated into two steps. The first step is the backward retrieval. The “backward” direction 

means starting from the farthest detectable bin of each beam and moving closer to the radar. In 

this step, the DSD parameters Do and Nw are retrieved bin by bin using the combined estimate. 
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The combination comes from the parameter of DFR and attenuation-corrected drZ  at Ku- band. 

The combined estimate can be expressed as 

                                                             ),( 1,

~

0 drZDFRfD                                                      (5.18) 

Figure 5.2 (a) and (b) shows the simulated theoretical relation of DFR versus Do and drZ (in 

decibels) versus Do for rain. When the DFR versus Do relation falls into the bi-solution region, 

where Do is approximately smaller than 1.2 mm according to the mean fit curve in figure 5.2 (a), 

the 1,drZ  versus Do relation is used to get 
~

0D . Otherwise, the mean value of estimated Do from 

(a) and (b) is taken as 
~

0D . Then, wN  at the same bin is calculated based on 
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 ,                                              (5.19) 

where imZ ,  represents the observation of reflectivity. Since DFR and drZ  used in retrieving Do 

are both attenuation-corrected values, the backward retrieval corrects attenuation concurrently 

with the initial guess of the cumulative two-way attenuations    and differential attenuation     

at the farthest detectable bin, also known as state vectors. Then the attenuation corrected for the 

second farthest bin is calculated based on the DSD parameters retrieved at the farthest bin 

described in (5.10)-(5.16). This process continues bin by bin until it reaches the closest bin to 

radar.     and     are related to the attenuation factors described in (5.10) and (5.11) by  

                                                    
),(log10 10, NiiH rAA 

                                                 
(5.20)

  

  
),(log10 1,101, NdpDP rAA 

                                              
(5.21)
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where    represents the farthest detectable bin from radar. The initial guesses of      and       

are from the approximately linear relation between differential phase    versus      and     

versus       for rain (Bringi and Chandrasekar, 2001). These relations are calculated with 

widely varying DSDs using the Andsager et al. (1999) rain model. The widely varying DSDs are 

generated by randomly varying   , Do,  and µ over the ranges in (5.1). The initial guess of      

is calculated from its approximately linear relation with DAD (difference of attenuation 

differences) (Iguchi, 2005).   

 

The second step is the forward estimation. The “forward” direction means starting from the bin 

closest to the radar and moving away until it reaches the farthest detectable one. In this step, 

     ,      and        at each bin are estimated based on the DSD parameters retrieved in the 

first step using (5.2)-(5.16). The measurements for the first bin are estimated without attenuation 

correction. Then the two-way attenuations at the second bin are estimated based on the DSD 

parameters retrieved in the first one and are subtracted from the estimated intrinsic values to get 

the estimated measurements. This process continues until it reaches the farthest detectable bin. 

Figure 5.3 shows the schematics of the backward and forward directions in the proposed D3R 

DSD retrieval algorithm. 

 

 

 

 
 

Figure 5.3. Schematics of forward and backward steps in the D3R DSD retrieval. 
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Then, the minimization function is formulated using the estimated measurements from step two 

and the observations as 
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for the complete beam. 321 ,, WWW  represent the weighting function of each term calculated 

based on the normalized ratio defined as                                            
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Reflectivity and differential reflectivity in (5.23) are intrinsic values in decibels calculated from 

(5.4) and (5.5). The symbol “ ¯  ” in (5.23) indicates the mean value. 

 

The state vectors are adjusted until the difference between the estimations and observations are 

minimized within the given tolerance. Therefore, the optimized Do and     are achieved at each 

bin and the attenuations are corrected within the same procedure. The flow diagram of the 

algorithm is summarized in figure 5.4.  
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5.3.2 Algorithm evaluation for rain observation 

 

 

The DSD retrieval algorithm described in the previous section is evaluated for rain observation 

based on simulation data. S-band (3 GHz) PPI (Plan Position Indicator) scan observations from 

the Severe Thunderstorm Electrification and Precipitation Study (STEPS) project collected by 

CSU-CHILL radar in 2000 (www.nssl.noaa.gov/observations/projects/steps.html) are used to 

generate Ku- and Ka- band observations for algorithm evaluation. A low elevation angle (1.4 

degrees) PPI scan of S band data is chosen to make sure the region of interest is dominated by 

rain. The reason and the procedure for using simulation data are discussed in Chapter 2.  

 

Figure 5.4. Flowchart of DSD retrieval algorithm for D3R radar. 

http://www.nssl.noaa.gov/observations/projects/steps.html
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Figure 5.5 shows the evaluated DSD parameters from the S- band dual-polarization radar 

observations (Gorgucci et al., 2002a; Bringi et al., 2002). Figure 5.6 illustrates the simulation 

data at Ku- and Ka- band using the DSDs shown in Figure 5.5. Figure 5.6 (a), (c) and (e) are the 

simulated intrinsic reflectivity at Ku-, Ka- band and intrinsic differential reflectivity at Ku- band 

while (b), (d), and (f) are the corresponding attenuated values. It is obvious that attenuation at 

Ka- band is higher compared to Ku- band. The data from the second column will be regarded as 

the true observations in the algorithm evaluation. Figure 5.6 was shown in chapter 2 (figure 2.15) 

and is shown in this chapter for ease of reference. 

 

 

 

 

 

 

 

 

The performance of the retrieval algorithm is illustrated in the scatter plot in figure 5.7 using the 

same raindrop model in simulation as in the retrieval. The algorithm retrieved Do and Nw  (in 

log scale) parameters are compared to the simulation “truth”. Normalized bias (NB) is defined as 

the difference between the mean estimated and true values normalized to the mean true, while 

                         

Figure 5.5. Retrieved  and (in log scale) from S band dual-polarization ground radar 
observations during STEPS project (20000620_012145). 

 



141 
 

normalized standard error (NSE) is the root-mean-square error normalized with respect to the 

mean true value. Good agreement can be found with an NB of -0.35%, NSE of 1% for 0D  

comparison and NB of 0.74%, NSE of 1.47% for wN10log  comparison as shown in (a) and (b) 

of figure 5.7. The evaluation shown in (a) and (b) of figure 5.7 doesn’t include the impact of 

backscatter differential phase (δ). However, the backscatter differential phase is not negligible 

for large rain drop volume at Ku- band. In order to evaluate that, the backscatter differential 

phase simulations were included in the dp  profiles that were used in the calculation of the state 

vectors. The corresponding retrievals are shown in figure 5.7 (c) and (d). The NB and NSE are -

0.37% and 1.2% for Do comparison, and 0.71% and 1.5% for Nw comparison. It is clear that the 

backscatter differential phase doesn’t affect the performance of the algorithm since it only affects 

the values of the initial guess, which could be automatically adjusted within an iterative process.  
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Figure 5.6. Simulated PPI scan from S- band observations during STEPS project 
(20000620_012145 case). (a), (c) and (e): intrinsic reflectivity at Ku-, Ka- band and intrinsic 
differential reflectivity at Ku- band. (b), (d) and (f): attenuated reflectivity at Ku-, Ka- band 
and attenuated differential reflectivity at Ku- band. 
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Figure 5.7. Scatter plot of the algorithm retrieved  and  versus the 
simulation truth using the same raindrop model in simulation as in retrieval. (a) and 
(b): no backscatter differential phase is added. (c) and (d): backscatter differential 
phase is added. 
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5.3.3 Error analysis 

 

The error structure of the proposed algorithm depends on many aspects such as prevailing 

raindrop model, measurement error, as well as the uncertainties of temperature and shape factor 

µ. The self-consistency algorithm imposes the internal consistency of the reflectivity and 

differential reflectivity estimates with respect to variability in DSD as well as variability in 

raindrop shape model. In the literature, there are many raindrop models besides the Beard and 

Chuang (1987) rain model (the BC model) such as the linear model, the Andsager et al. (1999) 

model (ABC model), and other raindrop models from experiments (Pruppacher and Beard 1970; 

Thurai et al. 2007). However, the variability of shape model within a storm is not clearly known. 

To evaluate the error due to drop shape variability, Ku- and Ka- band data generated from S- 

band are based on the raindrop model given by the BC model, while the ABC model was used in 

the algorithm retrieval. Figure 5.8 shows a scatter plot of the comparison between the algorithm 

retrieved Do, Nw and the simulation truth using the BC rain drop model in simulation but the 

ABC model in retrieval. The influence of the model change can be seen in the corresponding NB 

values for    and    which equal 8.77% and -7.35% while the corresponding NSE values are 

9.68% and 7.74% respectively. These results indicate that the algorithm is sensitive to the 

raindrop model change. A reasonable explanation is that the dual polarized parameter     is the 

parameter affected by different drop axis ratio versus drop size relations. However, the NB and 

NSE values for both Do and Nw are still good for these two commonly recognized raindrop 

models. 
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The impacts of the measurement errors, including measurement fluctuation and radar system bias 

to the algorithm, were tested. Random signal fluctuation was generated that reflectivity and 

differential reflectivity measurement errors correspond to 1 dB and 0.2 dB, respectively. Figure 

5.9 shows the scatter plot of the comparison between the algorithm retrieved Do, Nw and the 

simulation truth when only system noise is considered. The analysis illustrates a good agreement 

for Do comparison with a small NB of 1.70% and an NSE of 11.3%. Similar conclusions are true 

for Nw comparison with an NB of -1.11% and an NSE of 15.1%. The scatter plot clearly 

indicates that most of the points are well aligned with true values.  

 

Since the proposed algorithm compares estimated measurements to the observations, it is subject 

to bias errors in reflectivity and differential reflectivity. Assuming the bias errors in reflectivity 

and differential reflectivity are within 1 and 0.2 dB, respectively, table 5.1 lists the four system 

          

Figure 5.8. Scatter plot with the occurrence frequency shown in the color bar. Comparison 
between the algorithm retrieved Do, Nw and the simulation truth using the BC rain drop 
model in simulation but the ABC model in retrieval. 
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bias types applied in the test. Bias type 1 corresponds to [1,1,0] and the three values in order are 

the biases in reflectivity measurements at Ku-, Ka- band and the bias in differential reflectivity 

measurement at Ku- band. Bias types 2,3,4 are [1,-1,0], [1,1,0.2], and [1,-1,-0.2], as shown in 

table 5.1. The effects from bias errors are tested based on the four bias types, and the NB and 

NSE are calculated and summarized in table 5.2.  It is not difficult to see that the attribute of the 

combined method helps balance the biases from different parameters. For example, comparing 

the results with noise only and bias type 2 ([1,-1,0]) in table 5.2, the bias caused by DFR 

overestimates Do with NB increases from 1.70% to 4.82%. However, in bias type 4 ([1,-1,-0.2]), 

the same value decreases to -1.44% since the negative bias applied to     measurement helps 

balance out the positive bias in DFR. The backscatter differential phase and noise are also added 

to the measurements in the bias test.  

 

                  

 

Table 5.1. System bias scenario for the two-frequency formulation test. 

Bias scenario: Zm(Ku) dBZ Zm(Ka) dBZ Zdrm(Ku) dB 

Type 1 1 1 0 

Type 2 1 -1 0 

Type 3 1 1 0.2 

Type 4 1 -1 -0.2 
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The shape factor µ in the gamma distribution could extend over a wide range; most of the 

literature studied the variability in the -0.99 to 5 (Ulbrich 1983). The variability of µ affects the 

performance of the algorithm. In order to quantify the error caused by this parameter, µ=3 is 

used in the simulation, while µ=0, 1, 2, 3, 4, 5, 6 is applied in the algorithm retrieval, 

respectively. Other error sources are not included in this evaluation. Figure 5.10 shows 

normalized bias of Do and Nw in the algorithm evaluation with respect to different µ values 

assumed in retrieval. It is shown that the performance of the algorithm is affected by different 

shape factor µ. If exponential distribution is assumed in retrieval, NB is around -17% and 15% 

for Do and Nw estimation. However, the magnitude of NBs for both parameters decrease when 

the   assumed in retrieval increases from 0 to 3. Both NB values approach 0 when µ used in 

retrieval is the same as in the simulation (=3). The magnitude of NBs starts to increase when 

retrieved deviates µ from 3. It needs to be pointed out that the NBs with retrieved µ around its 

true value have opposite signs. In reality, shape factor   is not a fixed number but within a range. 

In order to test the algorithm in a varying µ condition, µ is randomized between 0 to 5 for each 

gate in the retrieval and µ=3 is kept in the simulation. The bias is around -2.28% and 2.66% for 

Do and Nw estimation. These values are small indicating that randomized µs average the biases 

with opposite signs. Therefore, the proposed algorithm is not significantly affected by the 

sensitivity of the shape factor µ considered in realistic situations. Temperature is another 

variability source in the error analysis. The sensitivity of temperature affects the initial guess of 

state vectors, which cannot be ignored. However, the optimization procedure can adjust the state 

vectors within the iterative process.  
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Table 5.2. Normalized bias and normalized standard error in the comparison of the 
retrieved DSD and the truth for two-frequency formulation test. 

      

    Case  

                    log10( )  

  NB  

  (%)  

    NSE 

     (%)  

   NB  

   (%)    

    NSE  

     (%)  

 noise only    1.70                  11.3    -1.11           15.1  

noise+bias(type1)    4.53                   12.4    -2.52           15.4  

noise+bias(type2)    4.82                   12.9    -2.87          16.1  

noise+bias(type3)    14.9                   18.9    -12.2          17.8  

noise+bias(type4)   -1.44                   13.6     3.80          19.9  

 

              

Figure 5.9. Scatter plot with occurrence frequency shown in the color bar. Comparison 
between the algorithm retrieved Do and the simulation truth considering system noise.  
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5.3.4 Applicability of the algorithm when Ka- band signal is extinct 

 

Weather radar operating at Ku- and Ka- band suffers from attenuation when propagating through 

precipitation media like medium to heavy rain (Bringi and Chandrasekar, 2001). Compared to 

the Ku- band channel, the Ka- band channel suffers larger attenuation, and has a greater chance 

of becoming extinct. Under this condition, a dual frequency procedure is not useful and a Ku- 

band only retrieval is presented. The DSD retrieval algorithm proposed in previous sections is 

referred to as a two-frequency formulation in this section. 

 

The Ku- band formulation retrieves Do from attenuation-corrected differential reflectivity 1,drZ   

 

Figure 5.10. Normalized bias NB (%) of Do and Nw in the evaluation with 
respect to different µ values in retrieval when µ=3 is used in simulation.  
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After estimating Do and Nw at each bin backwardly, attenuated reflectivity and differential 

reflectivity at Ku- band are estimated in the forward direction. The minimization function is 

formed as 
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Compared to (5.25) and (5.26), all the symbols and the interpretations are the same but with the 

Ka- band information removed. The state vectors become cumulative attenuation and cumulative 

differential attenuation at Ku- band. Although Do is retrieved from 1,drZ , cumulative attenuation 

at Ku- band is needed to estimate Nw which can be seen from (5.21).  

 

Figure 5.11 shows the performance of the Ku- band only retrieval when the same raindrop model 

was used and the backscatter differential phase was included. The NB and NSE of both Do and 

Nw estimations illustrate good performance with similar orders of the performance for the two 

frequency formulations, as described in detail in section 5.3.1. The impact of the raindrop model 

is studied in this section. In order to do that, the BC model is applied in the simulation while the 

ABC model is used in the algorithm retrieval. Figure 5.12 shows a scatter plot of the comparison 

between the algorithm retrieved Do, Nw and the simulation truth using the BC rain drop model 

in simulation but the ABC model in retrieval. As expected, the performance of the Ku- band only 

retrieval is affected by the raindrop model change. Figure 5.13 shows the sensitivity of the 

    D   curve to different raindrop model. Comparing the results from figures 5.11 and 5.12, 
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NB of Do estimate increases from negative to positive value because the curve of     D  

using ABC model overestimates the Do value in the retrieval. However, the NB and NSE values 

give similar orders as in the same sensitivity test for the two-frequency formulations which is 

satisfactory. 

 

Figure 5.14 shows a scatter plot of the comparison between the algorithm retrieved Do, Nw and 

the simulation truth with random error. The performance is characterized by the following 

quantitative parameters: NB of 1.31%, NSE of 12.2% for Do estimation, and NB of 0.281%, 

NSE of 15.8% for Nw estimation, which is fairly good. When adding system biases, the mean 

value of NSE for Do and Nw estimations using Ku band only retrieval are approximately 6% and 

3% worse than the two frequency formulation, while the NBs are about 1%-4% worse. The 

values for each bias scenario can be found in tables 5.3 and 5.4. The combined method used in 

the two-frequency formulation helps to balance the biases and performs better than Ku- band 

only retrievals.  
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Figure 5.12. Scatter plot of the algorithm retrieved Do and Nw versus the simulation truth 
using the BC model in simulation but the ABC model in retrieval based on Ku- band 
formulation. 

   

                
Figure 5.11. Scatter plot of the algorithm retrieved Do and Nw versus the simulation truth 
using the same raindrop model in simulation as in retrieval considering backscatter 
differential phase based on Ku- band formulation. 
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Figure 5.13.  𝑍𝑑𝑟 versus Do relation for three commonly recognized rain drop 
models with shape factor µ fixed at 3 and temperature fixed at 20 degrees. ABC 
refers to the Andsager and Beard Chuang raindrop model; BC refer to the Beard 
and Chuang rain drop model; TB refer to the rain drop model developed by Thurai 
et al. (2007). 
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Figure 5.14. Scatter plot with occurrence frequency shown in the color bar. Comparison 
between the algorithm retrieved DSD parameters Do and Nw and the simulation truth 
using Ku- band formulation. Radar system noise is considered. 

Table 5.3. System bias scenario for Ku- band only retrieval test. 

Bias scenario: Zm(Ku) (dBZ) Zdrm(Ku) (dB) 

Type 1 1 0 

Type 2 0 0.2 

Type 3 1 0.2 

Type 4 1 -0.2 
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5.3.5 Algorithm evaluation for a complete region including rain, melting layer and ice 

 

The algorithm described and evaluated in the previous sections can also be applied to 

observations beyond the rain region, say the melting and frozen regions. The simulation data 

preparation is described in section 2.7.2.2. From figure 5.3, we know that the DFR is a 

monotonically increasing function of Do for melting and ice particles. In the evaluation of the 

complete region, for each ray beyond rain, only DFR-Do is used in retrieval. The initial guess of 

the farthest bin should include the attenuation from melting and ice region. However, there are 

no decent algorithms available for accurate evaluation of the attenuation from the melting layer 

and ice, although the attenuation from the latter part can be ignored. In this section, the initial 

Table 5.4.  Normalized bias and normalized standard error in the comparison of the 
retrieved DSD and the truth for Ku- band only retrieval test. 

    

    Case  

                   

  NB  

  (%)  

    NSE 

     (%)  

   NB  

   (%)    

    NSE  

     (%)  

 noise only    1.31                 12.2           0.28             15.8  

noise+bias(type1)    6.69                 18.5          -0.11             17.1 

noise+bias(type2)    8.51                 15.6          -12.5             19.5  

noise+bias(type3)    14.9                 21.4         -12.5            19.6  

noise+bias(type4)    1.31                 25.8           11.7             24.1 

 



156 
 

guess of attenuations    and differential attenuation     still come from (5.20) and (5.21). 

Figure 5.15 shows the simulated RHI scan from APR-2 data NAMMA 20060903-142134 (same 

plot of figure 2.17 (b)) with circled “1” and “2” representing the profiles to perform DSD 

retrieval. 

 

 

 

 

 

 

 

 

       

          

            

 

Figure 5.16. Profile at “1” with elevation of 20 degrees. Top panel: range profile of 
reflectivity measurements, measured dual frequency ratio, and attenuation-corrected 
reflectivity. The dot-dash line represents the melting layer boundary decided using the 
HPC method. Second panel: retrieved DSDs with true DSDs. Third panel: retrieved 
attenuation at Ku- and Ka- band with simulation truth. Bottom panel: retrieved 
differential attenuation at Ku- band with simulation truth. 
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Figure 5.17. Profile at “2” with elevation of 40 degree. Top panel: range profile of 
reflectivity measurements, measured dual frequency ratio, and attenuation corrected 
reflectivity. The dot dash line represents the melting layer boundary decided using the 
HPC method. Second panel: retrieved DSDs with true DSDs. Third panel: retrieved 
attenuation at Ku- and Ka- band with simulation truth. Bottom panel: retrieved 
differential attenuation at Ku- band with simulation truth. 
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Figures 5.16 and 5.17 show the details in retrieval for profile at circled “1” and “2” in Figure 

5.15. The top panel of figure 5.16 illustrates reflectivity measurements and retrievals of 

attenuation corrected reflectivity. The dot-dashed lines are the measured dual-frequency ratio 

retrievals rely on. The vertical dashed lines indicate the melting layer boundary detected using 

the HPC method. Retrieved DSDs and true DSDs are shown in the second panel. As expected, 

they match perfectly since the microphysical model is the same in retrieval as in simulation. The 

bottom two panels are the comparison of retrieved attenuation and the true attenuation at Ku- and 

Ka- band. They all match well.  

 

Sensitivity of snow density to algorithm is tested using snow density of 0.1 g/cm3 in simulation 

but 0.2 g/cm3 in retrieval. Figure 5.18 shows the effect of the retrieval caused by the density 

change. We find that, for both profile “1” and “2”, Do is a parameter that is not very sensitive to 

snow density change, while Nw is more sensitive. Nw in log scale shows about 20% 

underestimation for profile “1” and slightly more than 20% for profile “2”. Figure 5.19 shows 

the effect of snow density change on the attenuation retrieval. Both attenuation and differential 

attenuation are affected by the snow density change. Differential attenuation is affected more 

since they have small values. Comparing profiles “1” and “2”, profile “2” is more affected by the 

snow density change in a general sense. This is because of the reflectivity of profile “2” is lighter 

compared to profile “1”, especially in the melting and ice region, which indicates that the 

retrieval algorithm might be more stable for a heavy storm case. More extensive study is needed 

before confident conclusions can be made. Another point that needs to be clarified is that only 

snow density is changed (melting particle density changes accordingly), which is why 

divergence can only been seen in the melting and ice regions. The rain model is the same in 
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retrieval as in simulation in this preliminary study since the sensitivity test of the rain model was 

studied in figure 5.8 of section 5.3.3. 

 

      

     

    

      

Figure 5.18. Top two panels: profile “1” in figure 5.15 with elevation of 20 degree. 
Comparison of retrieved DSDs and true DSDs using the same microphysical model in 
retrieval as in simulation. Same DSD comparison with snow density of 0.1 g/cm3 in 
simulation while 0.2 g/cm3 in retrieval. Bottom two panels: same comparison for profile 
“2” in figure 5.15 with elevation of 40 degree.  
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Figure 5.19. Top two panels: profile “1” in Figure 5.15 with elevation of 20 degrees. 
Comparison of retrieved attenuation and true attenuation using the same microphysical 
model in retrieval as in simulation. Same attenuation comparison with snow density of 
0.1 g/cm3 in simulation, while 0.2 g/cm3 in retrieval. Bottom two panels: same 
comparison for profile “2” in figure 5.15 with elevation of 40 degrees.  
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CHAPTER 6 

 
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK 

 
6.1 SUMMARY AND CONCLUSIONS 

 

The primary goal of this research is to develop algorithms to perform microphysics retrieval and 

profile classification for GPM-DPR and the ground validation D3R radar. The profile 

classification method developed in this work is being implemented as the day one algorithm for 

DPR classification and implementation into the level two DPR algorithm. The DSD retrieval 

algorithms for DPR and D3R are candidate algorithms that have a direct impact on the 

evaluation and development of dual-frequency retrievals that are designed for DPR and D3R. In 

this study, an array of relevant results has been obtained toward this goal. 

 

The profile classification method developed here classifies precipitation type and identifies 

hydrometeor phase state through the precipitation type classification (PCM) model and the 

hydrometeor profile characterization (HPC) model. The measured dual-frequency ratio DFRm 

profile and its range variability are used to generate criteria for both models. Airborne radar 

observations, which can emulate what the DPR will “see”, are used for validation purposes. 

Studies show that a DFRm index exists and can effectively separate stratiform and convective 

rain types. In particular, the melting layer boundaries detected from HPC are compared to other 

criteria such as LDR and velocity widely used in the literature. Good agreement is found, 

especially from comparisons with velocity criteria. The profile classification algorithm 

developed in this study illustrates reasonable comparisons with the pixel- based algorithm 
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developed by Liao and Meneghini (2010) and the bayesian approach by JPL. The algorithm was 

also evaluated for GPM-DPR vertical resolution. The results show that the method is stable for 

data resolution change from 30m to 250m (125m).  Off-nadir and smoothing effects are also 

studied. Considering that DFRm criteria are based on measurements and no attenuation 

correction is required in advance, this approach is straightforward and efficient.  

 

The algorithm developed in Chapter 4 is a candidate algorithm for obtaining DSD retrieval and 

attenuation correction using dual-frequency observations from GPM-DPR. The hybrid method 

combines the forward method and the linear assumption to avoid the dual-valued problem in the 

dual-frequency retrieval. The optimization procedure minimizes the difference between 

estimated reflectivity measurements and true observations based on a cost function formulated as 

a determined non-linear least square problem. The estimation of the algorithm is based on the 

simulated DPR observations using airborne radar. The limitation of the algorithm comes from 

the discrepancy between true profiles and linear assumptions in rain, although it is a reasonable 

assumption (Rose and Chandrasekar 2006). For cross validation purposes, the proposed retrieval 

algorithm is compared to the SRWC (surface reference with weak constraint) method proposed 

by Meneghini and Liao (2009) and the standard DPR level 2 algorithm developed by Seto et al. 

(2013). Profiles in heavy rain tend to show better agreement while for very light rain, the hybrid 

method tends to choose a smaller Do compared to the SRWC method, and the latter method 

always chooses the larger Do in rain if retrieval falls into the dual-valued region. The proposed 

algorithm is evaluated adding the impact of attenuation from non-precipitation media such as 

cloud liquid water, water vapor, and oxygen. The results show that the hybrid method can handle 

the attenuation from non-precipitating particles well. 
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A DSD retrieval algorithm for a dual-polarization, dual-frequency Doppler ground radar (D3R) 

operating at Ku- and Ka- band is proposed in Chapter 5. This ground radar has been built to 

perform ground validation with the GPM-DPR after it is lunched. The retrieval philosophy is to 

combine attributes of the dual-frequency ratio (DFR) normally applied in space radar retrieval 

and the dual-polarization parameter (   ) commonly used for dual-polarization ground radar. 

The algorithm is evaluated for rain region and shows promising results. Errors from rain drop 

shape, µ, and measurement errors are analyzed separately. In particular, the combined method 

can easily be adapted to Ku- band retrieval in case Ka- band signal is extinct during moderate to 

heavy rain. The evaluation for the complete profile including rain and ice is performed using 

simulated data obtained based on airborne radar observations. Melting boundaries are detected 

using the HPC method described in Chapter 3. Preliminary results show the    retrieval is 

sensitive to snow density change while Do is more stable. 

 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

 

When the GPM satellite is launched, there will no doubt be various aspects of the system that 

will require fine-tuning. Within that content the following is a list of some specific suggestions. 

 

 Profile classification method for GPM-DPR classification module 

 
 
---Extensive testing of the PCM is needed for various storm types and geographic 

regions. PCM and HPC models need to be compared to TRMM-like results using 

synthetic data.  
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---Off-nadir observations from APR-2 experiments need to be further studied when data 

quality is improved after re-processing. 

 

--- Adjustments of the thresholds for the PCM model might be necessary when more 

global observations are available.  

 

 
 DSD retrieval algorithm for GPM-DPR  

 

---Detailed comparison of the hybrid method to the HB-DFR standard method is needed, 

especially after the HB-DFR-SRT method is developed. 

 

---Assumptions for non-precipitation particles such as cloud liquid water, water vapor 

and oxygen need to be evaluated using realistic profiles from TMI (TRMM Microwave 

Imager).  

 

 
 DSD retrieval algorithm for dual frequency and dual polarization Doppler ground 

radar for GPM-DPR validation 

 

 

---This technique has not been evaluated with in-situ verification. Such a study is very 

important and should be pursued.  
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