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ABSTRACT 

 

SYNTHESIS, CHARACTERIZATION AND CATALYTIC EVALUATION OF A ZIEGLER-

TYPE MODEL IRIDIUM HYDROGENATION CATALYST PLUS A NOVEL 

TETRAIRIDIUM TETRAHYDRIDE COMPLEX 

 

Following a critical review of the pertinent literature of Ziegler-type hydrogenation 

catalysts, the research presented herein is primarily focused on the synthesis, characterization 

and catalytic properties of a model Ziegler-type hydrogenation catalyst system made from 

[Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3.  The studies include: (i) a critical review of the relevant 

literature, (ii) ranking the activity, lifetime and thermal stability of the resulting Ir(0)n Ziegler 

nanoparticles; (iii) characterization of the true stabilizer species for Ir(0)n Ziegler nanoparticles 

as a function of the initial Al/Ir ratio; and (iv) the synthesis and characterization of a novel 

[Ir(1,5-COD)(µ-H)]4 complex considered as a plausible intermediate en route to Ir(0)n Ziegler 

nanoparticles. 

Studies evaluating and ranking the catalytic properties of Ziegler-type catalysts in the test 

reaction of cyclohexene hydrogenation reveal that the catalyst made with [Ir(1,5-COD)(µ-

O2C8H15)]2 plus AlEt3 is a highly catalytically active, long-lived and thermally unusually stable 

nanoparticle catalyst.  The catalytic lifetimes of the Ir(0)n Ziegler nanoparticles are higher than 

any known Ir(0)n nanoparticles in the extant literature.   

The nature of the stabilizer species in the Ziegler-type catalyst system made with [Ir(1,5-

COD)(µ-O2C8H15)]2 plus AlEt3 at Al/Ir ratios 1-3 is then investigated by comparing 1H, 13C, 27Al 

NMR and IR data of the catalysts with those of individually-synthesized standards such as 



 

 
iii 

AlEt2(O2C8H15), [(n-Bu)4N][AlEt3(O2C8H15)] and [(n-Bu)2Al(µ-OH)]3.  The results of the study 

shows that  (i) AlEt2(O2C8H15) (Al/Ir=1, 2 and 3) and (iii) free AlEt3 (Al/Ir=3) are present in the 

catalyst solution in this model Ziegler-type hydrogenation catalyst system made from [Ir(1,5-

COD)(µ-O2C8H15)]2 plus AlEt3. The spectroscopic and catalytic evidence provided in this study 

helps to rule out the initial hypotheses (iii) that anionic [AlEt3(O2C8H15)]- stabilizer exists and 

provides DLVO–type, Coulombic-repulsion stabilization.  Also ruled out is (iv) that the AlEt3-

derived stabilizers are Al-O-Al containing alumoxanes.   

In a separate study, a novel [Ir(1,5-COD)(μ-H)]4 complex is synthesized and 

characterized with the goal of (i) obtaining information on formation and stabilization 

mechanisms of Ziegler-type industrial hydrogenation model catalysts prepared from [Ir(1,5-

COD)(μ-O2C8H15)]2 plus AlEt3; and with the goal of (ii) understanding the stabilization efficacies 

of various Al-based cocatalysts in the absence of any added carboxylate.  The synthesis of the 

previously unavailable [Ir(1,5-COD)(μ-H)]4 complex in 55% recrystallized yield was 

accomplished starting with commercially available LiBEt3H and [Ir(1,5-COD)(μ-Cl)]2 in the 

presence of excess 1,5-COD in THF.  The resultant [Ir(1,5-COD)(μ-H)]4 was fully characterized 

by single-crystal XRD, XAFS, ESI-MS, UV-visible, IR, and NMR. 

In addition to the four main chapters, two appendix chapters (in which Isil K. Hamdemir 

has significant contributions) are included in the current dissertation due to their relevancy to the 

research presented herein.  The characterization studies showing the presence of Ir~4-15 

subnanometer clusters and Ir~40-150 nanoparticles, before and after catalytic hydrogenation, 

respectively, in the Ziegler-type catalyst system made from [Ir(1,5-COD)(μ-O2C8H15)]2 plus 

AlEt3 catalyst solution has been published (William M. Alley, Isil K. Hamdemir, Qi Wang, 

Anatoly Frenkel, Long Li, Judith C. Yang, Laurent D. Menard, Ralph G. Nuzzo, Saim Özkar, 
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Kimberly Johnson, Richard G. Finke, “Iridium Ziegler-Type Hydrogenation Catalysts Made 

from [(1,5-COD)Ir(μ-O2C8H15)]2 and AlEt3: Spectroscopic and Kinetic Evidence for the Irn 

Species Present and for Nanoparticles as the Fastest Catalyst”).  Additionally, a broad 

distribution of metal cluster sizes from subnanometer to nanometer scale particles was observed 

in industrial Ziegler-type hydrogenation catalysts made with Co(neodecanoate)2 or Ni(2-

ethylhexanoate)2 plus AlEt3 (William M. Alley, Isil K. Hamdemir, Qi Wang, Anatoly I. Frenkel, 

Long Li, Judith C. Yang, Laurent D. Menard, Ralph G. Nuzzo, Saim Özkar, Kimberly Johnson, 

Richard G. Finke, “Industrial Ziegler-type Hydrogenation Catalysts made from 

Co(neodecanoate)2 or Ni(2-ethylhexanoate)2, and AlEt3: Evidence for Nanoclusters and Sub-

Nanocluster or Larger Ziegler-Nanocluster Based Catalysis”).  These two studies were published 

as two chapters in the dissertation of, graduate student co-worker, William M. Alley, a 

dissertation which acknowledges Isil Kayiran Hamdemir’s (I.K.H.) contributions. 
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CHAPTER I 

INTRODUCTION 

 The broad theme of this dissertation is the synthesis, characterization and catalytic 

evaluation of model Ziegler-type cyclohexene hydrogenation catalyst made from [Ir(1,5-

COD)(μ-O2C8H15)]2 plus AlEt3.  This dissertation is written in the “journals-format” style (see 

Appendix A for a discussion of this type of dissertation).  It is based on four separate 

publications written in a format set by the American Chemical Society.  Additionally, a 

published literature review and a paper submitted for publication were written in the format of 

Journal of Molecular Catalysis A: Chemical (Elsevier).  Consistency of this dissertation as a 

single document is achieved by (i) this introduction, (ii) the use of bridging paragraphs at the 

beginning of each chapter, (iii) a final summary chapter and (iv) two appendix chapters 

consisting of published, co-authored papers, that are closely related to the main theme of this 

dissertation.  Detailed accounts of contributions from each individual to this dissertation are 

given at the beginning of each chapter.  A concise overview of each chapter’s contents is 

presented below. 

 Chapter II is a published literature review (W.M. Alley, I.K. Hamdemir, K.A. Johnson, 

R.G. Finke, J. Mol. Catal. A.: Chem. 315 (2010) 1-27) that critically analyzes the existing 

literature of Ziegler-type hydrogenation catalysts in the areas of (i) variables important in 

catalyst preparation, and (ii) the homogeneous versus heterogeneous nature of the active catalyst 

species.  Additionally, the literature review briefly reports literature findings on nature of the 

AlEt3-derived species. 

 Chapter III is a publication (I.K. Hamdemir, S. Özkar, S.; K.-H. Yih, J.E. Mondloch, 

R.G. Finke, ACS Catal. 2 (2012) 632-641) that demonstrates the high activity, long lifetime and 
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unusually high thermal stability of the hydrocarbon-soluble, isolable and then redissolvable 

Ziegler-type hydrogenation catalysts made from [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3 at Al/Ir 

ratios of 1-5.   

 Chapter IV is a paper submitted for publication to J. Mol. Catal. A: Chem that 

investigates the true nature of the AlEt3-derived stabilizer species in the Ziegler-type catalyst 

solution made with [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3 at Al/Ir ratios of 1-3.  This study 

reveals that AlEt2(O2C8H15) (Al/Ir=1, 2 and 3) and free AlEt3 (Al/Ir=3) are present in the Ziegler-

type hydrogenation catalyst solution starting with [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3.  The 

spectroscopic and catalytic evidence helps to rule out initial, literature-based, hypotheses (iii) 

that anionic [AlEt3(O2C8H15)]- stabilizer exists and provides DLVO–type, Coulombic-repulsion 

stabilization, or (iv) that the AlEt3-derived stabilizers are Al-O-Al containing alumoxanes. 

Chapter V is a publication (K.-H. Yih, I.K. Hamdemir, J.E. Mondloch, E. Bayram,  S. 

Özkar, R. Vasić, A.I. Frenkel, O.P. Anderson, R.G. Finke, Inorg. Chem. 51 (2012) 3186-3183) 

that describes the synthesis of the previously unavailable [Ir(1,5-COD)(μ-H)]4 complex in 78% 

initial, and 55% recrystallized, yield starting with commercially available LiBEt3H and [Ir(1,5-

COD)(μ-Cl)]2 in the presence of excess 1,5-COD in THF.  The resultant [Ir(1,5-COD)(μ-H)]4 

complex is fully characterized by single-crystal XRD, XAFS, ESI-MS, UV-visible, IR, and 

NMR spectroscopies. 

Chapter VI is a brief summary of the material presented in this dissertation. 

Two appendix chapters (Appendix E and Appendix F) are also included in this 

dissertation.  Appendix E is a publication (W.M. Alley, I.K. Hamdemir, Q. Wang, A.I. Frenkel, 

L. Li, J.S. Yang, L.D. Menard, R.G. Nuzzo, S. Özkar, K.A. Johnson, R.G. Finke,  Inorg. Chem. 

49 (2010) 8131-8147) that investigates the nature of the transition metal species in the catalyst 
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solution starting with [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3.  The results of this study show that 

the catalyst solutions contain Irn species ranging from mono-Ir compounds to Ir~4 to Ir~100 

clusters.  A transformation to Ir(0)~40-150 nanoclusters is observed in the [Ir(1,5-COD)(μ-

O2C8H15)]2 plus AlEt3 catalyst solution under catalytic cyclohexene hydrogenation conditions.   

Appendix F is a publication (W.M. Alley, I.K. Hamdemir, Q. Wang, A.I. Frenkel, L. Li, 

J.S. Yang, L.D. Menard, R.G. Nuzzo, S. Özkar, K.-H. Yih, K.A. Johnson, R.G. Finke, Langmuir 

27 (2011) 6279-6294) that reports studies determining the nature of the transition metal 

component in the industrial Co- and Ni-based Ziegler-type hydrogenation catalysts.  The results 

demonstrate that, both before and after catalytic cyclohexene hydrogenation, the species present 

comprise a broad distribution of metal cluster sizes from subnanometer to nanometer scale 

particles.  The estimated mean cluster diameter is about 1 nm (ca. Co~4 and Ni~4) for both Co- 

and Ni-based Ziegler-type catalysts. 
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CHAPTER II 

ZIEGLER–TYPE HYDROGENATION CATALYSTS MADE FROM GROUP 8–10 

TRANSITION METAL PRECATALYSTS AND AlR3 COCATALYSTS: 

A CRITICAL REVIEW OF THE LITERATURE 

 This dissertation chapter consists of a review article published in the Journal of 

Molecular Catalysis A:  Chemical 2010, 315, 1–27.  This chapter is a critical review of the extant 

literature on Ziegler–type hydrogenation catalysts in the main areas of the variables important in 

catalyst preparation, and the homogeneous versus heterogeneous nature of the active catalyst 

species.  Additionally, the literature review briefly reports literature findings on nature of the 

AlEt3-derived stabilizer species. 

 Contributions from each author to this review can be summarized as follows, details 

which agree with those given in Chapter II in the dissertation by William M. Alley: (i) the initial 

draft of the section on the homogeneous versus heterogeneous nature of Ziegler–type 

hydrogenation catalysts was written by Isil K. Hamdemir; (ii) the extant literature was compiled, 

the literature tables were prepared and then edited by both Isil K. Hamdemir and William M. 

Alley; (iii) permission to reprint figures and schemes from prior publications was obtained by Isil 

K. Hamdemir; and (iv) the figures and schemes were prepared by both Isil K. Hamdemir and 

William M. Alley.  The other sections of the manuscript and subsequent drafts of the complete 

manuscript were written by William M. Alley with editing by Isil K. Hamdemir, Kimberly A. 

Johnson, and relatively light edits by Richard G. Finke (16 hours according to Prof. Finke).   
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Synopsis 

 Ziegler–type hydrogenation catalysts (group 8–10 transition metal precatalysts plus AlR3 

cocatalysts) are one of the most important families of industrial hydrogenation catalysts, 

especially for polymer hydrogenation.  Despite their ~40 year history of industrial use, there is a 

need for improved fundamental understanding in order to make further, rationally directed 

improvements in these catalysts.  This review examines the existing literature on Ziegler–type 

hydrogenation catalysts, specifically: (i) the variables important to catalyst synthesis, (ii) the 

catalyst formation reaction mechanism, (iii) the compositional and structural nature of the active 

catalyst species, and (iv) the mechanism of catalytic hydrogenation.  This review also (v) 

discusses the current approaches to the homogeneous versus heterogeneous catalysis question, 

with the goal of identifying if Ziegler–type hydrogenation catalysts are homogeneous (e.g., 

monometallic) versus heterogeneous (e.g., nanoclusters) as the true catalyst(s).  A summary of 

the main insights from each section of the review is also given. 

1. Introduction 

In 1953, while studying the polymerization of ethylene using trialkylaluminum (AlR3), 

Ziegler and coworkers [1,2,3,4,5] discovered the “nickel effect”.  When one experiment gave a 

majority of butene instead of the expected higher molecular weight polyethylene, a search for the 

cause of this unanticipated result revealed that small amounts of residual nickel salts, mostly 

Ni(acac)2, were present from having cleaned the metal autoclave with sulfuric acid.  These nickel 

salts had reacted with AlEt3 to cause the observed change in catalysis, and the phenomenon was 

therefore termed the “nickel effect” [4].  These and other investigations into catalysts and 

polymerization products led to the 1963 Nobel Prize shared by Karl Ziegler and Giulio Natta [5].  
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The industrial and technological potential of Ziegler–Natta1 catalysts was subsequently realized 

with remarkable speed [5].  Interest in variations on these catalysts for their potential use in 

hydrogenation, particularly for polymer hydrogenation, was considerable (Appendix 2.A, Table 

2.A.1), and began in the early 1960s [2,6]. 

1.1. Polymer hydrogenation 

Diene polymers such as polyisoprene and polybutadiene, or styrenic block copolymers 

(SBCs, Scheme 2.1) that contain polyisoprene or polybutadiene blocks, have multiple 

commercial applications [6].  They possess the desired physical properties of high strength, wide 

range of hardness, and ease of processing.  The olefins in these polymers allow them to undergo 

post-polymerization modification (including crosslinking, isomerization, cyclization, and 

hydrogenation) to create new polymers possessing desired physical and chemical properties [7].  

Of the various desired types of modifications possible, hydrogenation is arguably the most 

important [6].  The primary purpose of polymer hydrogenation is to make the resultant polymer 

more resistant to the deleterious effects of thermal, oxidative, and ultraviolet radiation exposure.  

A main pathway for degradation of polymers containing olefinic groups occurs by autoxidation 

of allylic positions in the polymer to allylic –OOH groups and subsequent oxidation products [8].  

Non-hydrogenated SBCs with their unsaturated olefinic midblock regions are prone to these 

effects. 

SBCs were first produced in the early 1960s by Shell Chemical Co. with the trade name 

KRATONTM polymers [9].  Roughly one decade later, hydrogenated SBCs with improved 

thermal and oxidative stability were also being produced (see Appendix 2.A, Table 2.A.1).  

                                                
1 Early on, Karl Ziegler [5] referred to these catalysts generally as “organometallic mixed catalysts,” and preferred 
the specific title “Mülheim catalysts” because of where the original work was done.  Guilio Natta named them 
Ziegler catalysts [1,5].  They are usually now called Ziegler–Natta catalysts in the case of polymerization (as 
opposed to hydrogenation) catalysts. 
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Without selective hydrogenation of the olefinic blocks of SBCs, the polymers become yellow, 

brittle, and of little use in many applications where exposure to heat, air, and light are 

unavoidable.  Hydrogenated SBCs would have found wider application shortly after their 

introduction were it not for their relatively high cost due to the extra expense of the 

hydrogenation step [6].  Development of more economically favorable catalytic hydrogenation 

processes has, and continues to, alleviate this added expense.  The use of homogeneous 

(soluble)2 [10,11,12,13,14,15,16,17,18,19] hydrogenation catalysts has helped by allowing for 

more complete polymer hydrogenation [6].  Ziegler–type hydrogenation catalysts, the focus of 

this review, are one of the most important families of soluble catalyst commonly used for the 

purpose of polymer hydrogenation.  Consequently, the timeline for the industrial development of 

Ziegler–type hydrogenation catalysts mirrors that of hydrogenated styrenic block copolymers 

(SBCs) [9]. 

1.2. An Important Distinction: Ziegler–type hydrogenation catalysts vs. Ziegler–Natta 

polymerization catalysts 

A broad definition of Ziegler–Natta catalysts includes any catalyst formed by reaction 

between a transition metal compound precatalyst and a group 1, 2, 13 or 14 alkyl or aryl halide 

cocatalyst [6,20,21].  It is important to make a distinction between the late-metal Ziegler–type 

hydrogenation catalysts of interest herein versus the currently popular Ziegler–Natta 

                                                
2 See the references listed [10–19] for a more in-depth discussion of the terminology of “heterogeneous vs. 
homogeneous” catalysts, and the problem of distinguishing between the two.  Briefly, the classic use of the terms 
heterogeneous and homogeneous is in reference to the phase of catalyst and substrate.  If the substrate is in solution, 
as is typical for hydrogenation reactions such as polymer hydrogenation, a homogeneous catalyst would be soluble 
whereas a heterogeneous catalyst would not.  However, the true catalytically active species in catalyst systems 
formed of a transition metal complex under reducing conditions may be soluble metal complexes, films, powders, or 
nanoscale colloids formed in-situ [10].  The latter is soluble, but it shares characteristics with heterogeneous 
catalysts due to the heterogeneity in its active sites [11].  Such a catalyst is also sometimes called 
“microheterogeneous” [19].  For the sake of clarity in this review, the terms “soluble” and “insoluble” will hereafter 
refer to the phase of the catalyst.  The terms “homogeneous” and “heterogeneous” will refer to whether the catalyst 
species has, respectively, only one or multiple types of active sites [16]. 
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polymerization catalysts.  Classic Ziegler–Natta olefin polymerization catalysts are formed by 

the reaction between early metals such as TiCl3 plus Et2AlCl and are heterogeneous catalysts 

with active sites on TiCl3 crystallites [20,22].  Homogeneous variants of Ziegler–Natta 

polymerization catalysts have been developed using metallocene compounds such as [Cp2MX2] 

(Cp = cyclopentadiene, M = Ti or Zr, and X = Cl or CH3) [21,22,23,24,25,26].  At first these 

precursors were tested with AlR3 cocatalysts, but the discovery that small amounts of water had 

an activating effect led to their use with methylalumoxane (MAO), a historically enigmatic 

cocatalyst formed by incomplete reaction between AlMe3 and water 

[20,21,26,27,28,29,30,31,32,33,34,35].  Metallocene compounds of early transition metals 

dominate the field of homogeneous Ziegler–Natta polymerization catalysis, although rare-earth 

metals have been used as well [21,22,36].  The bulk of research on Ziegler–Natta catalysts has 

been focused on polymerization; the term “Ziegler–Natta catalyst” is, therefore, practically 

synonymous with “polymerization catalyst” [5,20]. 

However, herein we consider a different type of Ziegler-based catalyst made from non-

zero-valent group 8–10 transition metal (M) precatalysts plus AlR3 cocatalysts, and used for 

hydrogenations.  Therefore, for the purposes of this review, the term “Ziegler–type 

hydrogenation catalysts” will be reserved for catalysts prepared from group 8–10 transition 

metals plus AlR3.  Such Ziegler–type catalysts have found wide use [37], including the 

hydrogenation [38] of a variety of compounds such as olefins, aromatics [2,39], and diene-based 

polymers as already mentioned [6,9].  The catalysts most commonly used for such industrial 

hydrogenation reactions are derived from first row, group 8–10 transition metal compounds 

[6,9].  The most frequently encountered are Co or Ni chelate compounds such as the divalent 

acetylacetonate (acac) or carboxylate salts, combined with AlR3 cocatalysts.  It is reasonable to 
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suspect differences between this family of late transition metal Ziegler–type hydrogenation 

catalysts and the broader family of Ziegler–Natta catalysts based on early, high-valent transition 

metals [23,34], others having previously noted that the nature of these catalysts “probably is 

different when nickel salts, for instance, are replaced by titanium complexes or when AlEtCl2 is 

substituted for AlEt3” [40].  Furthermore, we have largely excluded from discussion herein those 

systems which contain additives or ligands that coordinate through P or N atoms such as PPh3 or 

[(CH3)2N]3PO [41,42,43,44,45].  Our focus herein is on what is understood, and especially on 

what remains unknown, about Ziegler–type hydrogenation catalysts based on a careful, critical 

examination of the existing literature. 

Scheme 2.1.  A Ziegler–type hydrogenation catalyst is formed by combination of a group 8–10 
transition metal precatalyst and a trialkylaluminum cocatalyst in a hydrocarbon solvent.  Ziegler–
type hydrogenation catalysts are employed for the hydrogenation of olefins, aromatics, and 
polymers, for example the industrially important process of selective styrenic block copolymer 
(SBC) hydrogenation shown here.  Ziegler–Natta or other polymerization catalysts are not a 
subject of this review. 

1.3. Overview of the main sections of this review 

Despite the history of the industrial application of Ziegler–type hydrogenation catalysts, 

opportunities remain for further improvements in hydrogenation rates, selectivity, stability, and 
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applicability in hydrogenation of a wider range of materials [2,6,46].  Surprisingly little 

fundamental understanding of Ziegler–type hydrogenation catalysts exists [9,37].  Increased 

fundamental understanding of Ziegler–type hydrogenation catalysts would allow for rationally-

directed improvements [9,37,47,48].  Consequently, increased knowledge of Ziegler–type 

hydrogenation catalysts is highly desirable [9,37]. 

Published research papers seeking greater knowledge of Ziegler–type hydrogenation 

catalysts have generally investigated one or more of four basic issues: (i) the variables important 

to catalyst synthesis and their effect on catalyst properties, particularly the catalyst’s 

hydrogenation activity; (ii) the reaction between the transition metal precatalyst and cocatalyst 

components; (iii) the compositional and structural nature of the active catalyst species; and (iv) 

the postulated mechanism of catalytic hydrogenation.  Our examination of the literature in this 

review is organized according to these four basic categories. 

The first section of this review examines the effects of variables in the preparation of 

Ziegler–type hydrogenation catalysts, especially in terms of how they influence the resulting 

catalyst activity.  The most important variables of catalyst preparation appear to be the:  (i) 

identities of the transition metal precatalyst and the AlR3 cocatalyst; (ii) ratio of these two 

components and the role of impurities, particularly H2O; (iii) solvent; (iv) identity of the 

substrate; (v) details of component addition (such as order and rate, presence of substrate, 

atmosphere, and temperature); and (vi) aging of the prepared catalyst before use in 

hydrogenation reactions. 

The second section of this review evaluates what is known about the reaction between the 

catalyst precursors, and whether the resulting catalysts are homogeneous (e.g., single metal 

organometallics) or heterogeneous (e.g., nanoclusters).  Specific questions in this regard include: 
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(i) how are the catalysts formed?; (ii) how many transition metal atoms constitute the active 

catalyst species?; (iii) what are their oxidation states?; (iv) what is the form and role of the 

cocatalyst?; and (v) what is known about the mechanism of the catalytic hydrogenations?  This 

second section which follows is divided into two parts; studies that support a homogeneous 

catalyst hypothesis are examined first, and those that support a heterogeneous catalyst hypothesis 

are examined second.  Many authors supporting a heterogeneous catalyst hypothesis have 

claimed formation of nanoclusters, for which we herein coin the term “Ziegler nanoclusters” 

[13,49,50].3 

The third section of this review is a discussion of the future outlook for additional 

fundamental studies of Ziegler–type hydrogenation catalysts.  Possible reasons why the desired 

depth of understanding of Ziegler–type hydrogenation catalysts has remained elusive—despite 

several decades of research on the topic—are presented, along with thoughts about and what can 

potentially be done to improve this situation and provide the desired, additional knowledge. 

2. Studies of Ziegler–type hydrogenation catalysts 

2.1. Effect of preparation variables on Ziegler–type hydrogenation catalysts 

Because of their rapid adoption by industry [5], research in Ziegler–type hydrogenation 

catalysts initially focused on optimization of the processes for which they were used [47,48].  

This included the catalyst synthesis step, for which a wide variety of possible starting 

components, methods, and conditions exist.  Many observations on how variables of catalyst 

synthesis affected the activity of the resulting hydrogenation catalysts were made early on.  

Table 2.1 contains a concise summary of the relevant literature, and gives an overview of the 

breadth of systems explored. 

                                                
3 See the references listed for a definition of the distinction between modern nanoclusters and traditional colloids 
[13,49,50]. 
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Catalyst preparation variables have not been exhaustively investigated despite their 

importance.  The paucity of “systematic order” in the literature [51]4 (i.e., which catalyst 

synthesis variables influence catalytic properties for which specific systems and why) is apparent 

in the many systems explored and the apparent contradictions among some of the findings (vide 

infra).  This was noted recently by Shmidt and coworkers [19]: “contradictory published data on 

the interaction of catalytic system components do not allow us to interpret reliably the general 

concepts of the effect of the composition of the system on the properties of catalysts.”  

Therefore, gaining a better understanding of how variables in catalyst preparation affect the 

resulting catalytic properties is the first major goal of the field of Ziegler–type hydrogenation 

catalysts.   

Table 2.1.  Catalyst Preparation Variables 

Authors Catalyst Systems Results Ref. 

Sloan, 

Matlack, 

and 

Breslow 

(1963) 

Acac salts of Fe(III), 

Co(II and III), Ni(II), 

Ru(III), or Pd(II) (also 

Cr(III), Cu(II), Mn(II 

and III), Mo(VI), 

V(V), or Zr(IV)) + 

1.2–12.6 Al(i-Bu)3, 

AlH(i-Bu)2,  or AlEt3 

Most active: Co(III) > Fe(III) > Cr(III).  Cu(II) salts fail to form 

effective hydrogenation catalysts.  Use of AlClEt2, BEt3 SnEt4, 

P(n-Bu)3, ZnEt2, or Mg(n-Bu)Br as cocatalysts results in either 

no reaction or an inactive ppt. at 30-50 °C and 3.7 atm H2.  

Ketones, aldehydes, nitriles, nitro compounds, azo compounds, 

and esters are not hydrogenated.  

57 

Lapporte 

and 

Schuett 

(1963) 

Ni(2-ethylhexanoate)2 

+ AlEt3, also Co, Fe, 

Cr, or Cu salts + AlEt3 

for arene hydrogenation 

The highest catalytic activity and amount of gas evolution (> 

95% ethane) is at Al/Ni = 3–4.  The activity for benzene 

hydrogenation decreases according to Ni ≥ Co > Fe > Cr > Cu.  

Catalytic activity is highly dependent on the anion of the Ni(II) 

precursor; carboxylates, especially 2-ethylhexanoate is good, 

but halides are poor.  Benzene hydrogenation is poisoned by 

PPh3. 

39 

                                                
4 We have found, paraphrasing what A.K. Galwey has written about a different area [51], that there is: little ability 
to carry out inductive prediction across ostensibly similar Ziegler–type hydrogenation catalyst systems, few 
established trends on which to expand, and therefore no coherent and generalized theory. 
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Authors Catalyst Systems Results Ref. 

Kroll 

(1969) 

Fe(acac)3, Co(acac)2 , 

or Ni(acac)2 + Al(i-

Bu)3 or a p-dioxane 

adduct of Al(i-Bu)3 

 Relative catalytic activities are Co > Fe > Ni.  The highest 

activities are achieved at Al/M = 6 for M(II), 8–10 for Fe(III).  

It is very difficult to properly adjust the Al/M ratio due to 

impurities such as oxygen and H2O always present, even after 

careful purification.  The poisoning action of excess Al 

cocatalyst can be overcome by making a p-dioxane adduct of 

Al(i-Bu)3 before catalyst synthesis.   Improved kinetics are 

observed when the catalyst is allowed to age overnight. 

75 

Lapporte 

(1969) 

2- ethylhexanoate salts 

of Ni, Co, Fe, Cr + 

AlEt3 

Activity order: Ni > Co > Fe > Cr.  The anion of the Ni salt has 

a significant effect on the activity: 2-ethylhexanoate > benzoate 

> acac > acetate > chloride, mirroring solubility. 

Activities are equal for Ni(2-ethylhexanoate)2 + AlEt3, Al(i-

Bu)3, or Al(C6H13)3 catalysts.  The highest catalytic activity is 

observed when Al/M=3–4 for M(II).  The olefin affects the 

hydrogenation rate: monosubstituted > unsymetrically 

disubstituted > cyclic > symmetrically disubstituted.  

Nitrobenzene and PPh3 act as catalyst poisons.   

58 

Shmidt 

et al. 

(1970) 

Co(C17H35CO2)2, 

Fe(C5H7O2)2, 

Ni(C5H7O2)2, 

Ni(C6H6NO)2, 

Ni(C7H6NO2)2, 

Ni(C9H6NO)2, 

Ni(C4H7N2O2)2, or 

Ni(NO3)2[P(C6H5)3]2  

(also Ti(C5H5)2Cl2 or 

Ti(OCH(CH3)2)4) + 

AlEt3  

Activity as influenced by precatalyst anion: acac > o-

aminophenoxide > salicylaldoximate > 8-quinolinoxide > 

dimethylglyoximate, the same as the decreasing order of the 

ligand dissociation equilibrium constant of the precatalyst.  

Catalytic activity is improved if the AlEt3 is “added to the 

precatalyst in the absence of the acetylenic hydrocarbon, and if 

the catalyst solution absorbs hydrogen beforehand.”  Various 

ligands are added to the prepared catalyst solutions. 

42 

Falk 

(1971) 

Co(2-ethylhexanoate)2 

or Ni(2-

ethylhexanoate)2 + 

AlEt3 or (n-Bu)Li, 

cyclopentyllithium, 

phenyllithium, 

ethyllithium, or (sec-

Bu)Li 

Catalyst prepared by slowly adding (over 90 min) the Co or Ni 

solution to a solution of AlEt3 in a N2 atmosphere.  Slight 

impurities affect activity and change the Al or Li(alkyl)/M 

ratios optimal for selectivity.  Li alkyls are generally inferior to 

AlEt3 as cocatalyst.  Catalyst solutions do not deteriorate after 

being stored for several months. 

79 
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Authors Catalyst Systems Results Ref. 

Esselin 

et al. 

(1986) 

Ni(acac)2, Fe(acac)3, 

Ni(octoate)2, or 

Co(octoate)2  + 1, 3, 

or, 6 AlEt3 or GaEt3 

Catalytic activity trends: Ni > Fe, and AlEt3 > GaEt3.  Optimal 

activity occurs at Al/M = 3 for Ni catalysts and at Al/M = 6 for 

Fe catalysts.  Catalyst preparation is done at room temperature.  

Ni(acac)2•2H2O dried to ≥ 80% to give, on average, 

(Ni(acac)2)3. 

40 

Reguli and 

Staško 

(1987) 

Ni(3,5-

diisopropylsalicylate)2, 

Ni(acac)2, Ni(stearate)2, 

or 

Ni(benzohydroxamate)2 

+ 1, 2, 3, 4, 5, or 6 

AlEt3, Al(i-Bu)3 or 

LiBu.   

Catalytic activity by precatalyst anion: diisopropylsalicylate > 

acac > stearate > benzohydroxamate, which correlates well 

with the solubility sequence of corresponding Ni salts (activity 

is also dependent on the solvent).  The Al/M ratio strongly 

influences activity, the optimum is 1.5–4 depending on the 

catalyst precursors.  Traces of O-containing compounds, 

especially those with acidic H, poison the catalysis, but could 

be partially offset by additional cocatalyst.  Ni precipitates in 

the presence of aromatic solvents resulting in loss of catalytic 

activity.  Order of addition: solvent, precatalyst, and then 

cocatalyst. Catalyst was prepared both in the presence and 

absence of cyclohexene substrate; the presence of cyclohexene 

increases the resulting catalytic activity when AlEt3 or LiBu are 

the cocatalysts used, but the opposite effect is observed with 

Al(i-Bu)3.  Temperatures from 20–45 °C during the catalyst 

preparation reaction have no effect on optimal Al/M.  The time 

of catalyst aging before use in hydrogenation, and Ar versus H2 

preparation atmosphere have no influence on activity. 

70 

Alvanipour 

and Kispert 

(1988) 

Co(stearate)2 + 2 AlEt3  Naphthalene, quinoline, isoquinoline, 6-methylquinoline and 2-

methylquinoline can be hydrogenated with the catalyst 

employed, but dibenzothiophene nitroquinolines and 4-chloro-

2-methylquinoline cannot.  Compounds containing sulfur, nitro, 

and chlorine groups act as poisons. 

67 

Barrault 

et al. 

(1994) 

Co(acac)2 + 0.5, 1.0, or 

1.5 AlEt3 

   

Higher Al/Co ratios give increased activity and lower 

selectivity.  The catalyst is ~3 times more active for the 

hydrogenation of cinnamaldehyde than for 2-pentyl-2-nonenal.  

For 2-pentyl-2-nonenal, the catalyst is more active, but less 

selective at a given conversion when pre-treated with CO2/H2 

(syngas) than with just H2.  “The final catalytic properties… 

depend on the activation process.” 

37 
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Authors Catalyst Systems Results Ref. 

James et al. 

(1998) 

Ni(OAc)2 + 0.5 

Zn(OAc)2 + 4.5 AlEt3  

Hydrogenation of 2-methoxy-4-propylphenol with the catalyst 

at 90 °C under 50 atm H2 for 24 h gives a 65.2% conversion 

with 92.2% of the product being 2-methoxy-4-

propylcyclohexanol.  The catalyst is poisoned by Hg(0). 

84 

Šabata and 

Hetflejš 

(2002) 

Ni(2-ethylhexanoate)2 

or Ni(acac)2 + “Li-

diene,” n-BuLi, or 

AlEt3 

Catalytic activity trends: Ni(2-ethylhexanoate)2 > Ni(acac)2, 

and “Li-diene” > BuLi, or AlEt3.  Catalytic activity depends on 

Li or Al/M ratio, temperature, and particular method used in 

catalyst formation, the optimal being: Li/Ni is 8–10, cocatalyst 

added rapidly to the Ni compound at 50 °C, and kept at that 

temperature for 10 min before allowing to cool.  Batches of 

catalyst prepared fresh daily to avoid changes in activity due to 

aging. 

69 

Nindakova 

et al. 

(2006) 

Co(acac)2•nH2O, n=0, 

0.5, or 1.5; or Co(acac)3 

+ 2, 4, 6, 8, 12, or 16 

AlEt3  

AlEt3 added to the Co salt dropwise under an atmosphere of H2 

before the introduction of substrate.  Using Co(acac)2•nH2O, 

the optimum Al/Co ratio depends on n:  n = 0, Al/Co = 3.5–4; n 

= 0.5, Al/Co = 8–10.  The n = 0.5 catalyst has a higher 

hydrogenation activity than the n = 0 catalyst.  As [Co] 

decreases the optimal Al/Co ratio increases.  Higher activities 

are achieved in heptane solvent than in toluene. 

19 

Belykh 

et al. 

(2006) 

Pd(acac)2 + 2, 4, 6, 8, 

10, 15, or 16 AlEt3  

 

AlEt3 is added dropwise under flowing H2 to Pd(acac)2 in the 

absence of substrate; the optimal Al/Pd is 4.  When H2O or O2 

traces are present, no decrease in activity at high Al/Pd is 

observed up to Al/Pd = 80.  Use of modifiers, such as PPh3, 

OPPh3, ethanol, the order of component addition, the substrate 

used, and catalyst loading affect the catalyst activity.  The 

effect of modifiers is dependent on Al/Pd. 

81, 

114 

Finke and 

coworkers 

(2009) 

[(1,5-COD)Ir(µ-

O2C8H15)]2, 

Co(neodecanoate)2, or 

Ni(2-ethylhexanoate)2 

+ AlEt3 

At room temperature, and under an N2 atmosphere, AlEt3 in 

cyclohexane is added to a cyclohexane solution of the transition 

metal precatalyst with 1000 rpm stirring in the absence of 

olefinic substrate.  However, simultaneous addition of 

Co(neodecanoate)2 and AlEt3, Al/Co = 2, results in higher 

hydrogenation activity.  Alternatively, the hydrogenation activity 

of the catalyst is independent of the order of addition for Al/Co = 

3.  The optimal Al/Ir is 1, Al/Ni is 2, and Al/ Co is from 2 to 4.  

AlEt3 was added rapidly to the Ir precatalyst and at rate of 1 drop 

every 5 sec for the Ni precatalyst.  Rigorous drying of glassware 

11, 

12, 

13, 

14, 

15 
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Authors Catalyst Systems Results Ref. 

and solvents was performed throughout these studies; however, 

for the Co system intentionally added H2O decreases 

hydrogenation activity.  The following catalyst preparation 

variables have, at most, minor effects on hydrogenation activity 

of the Co system: (i) AlEt3 vs. Al(t-Bu)3 cocatalyst; (ii) 

temperature during mixing of catalyst components (e.g., 30 °C 

vs. 60 °C); (iii) individual vs. batch preparation; and (iv) use of 

neat AlEt3 added at a slower rate. 

 

2.1.1. Identities of the precursors 

The first obvious variable in the synthesis of Ziegler–type hydrogenation catalysts is the 

identitiy of the specific transition metal precatalyst and AlR3 cocatalyst employed.  As expected, 

industry favors use of the inexpensive first row metals (Fe, Co, and Ni) rather than the more 

expensive second and third row metals in the same groups (i.e. Ru and Os, Rh and Ir, Pd and Pt) 

[2,6,22].  Early studies surveyed potential catalyst precursors to ascertain which were promising 

as useful catalysts resulting in similar sequences for the most active metals, Ni > Co > Fe > Cr > 

Cu [57,58].  Also, the catalytic activities of soluble Ni and Co Ziegler–type hydrogenation 

catalysts were found to be generally superior to pre-activated, supported Ni or Raney Co 

catalysts [58].  There is a lack of agreement about whether Ni or Co systems are the most active 

for polymer hydrogenation, a discrepancy caused at least in part by a lack of standardization in 

polymer feed quality [46], differences in properties of precursor solutions such as water content 

or level of acidity (which, of course, readily react with the AlR3 component, thereby indirectly 

influencing catalytic activity) [40], or both.  Whether the Ni and Co catalysts favored by industry 

have the absolute best activity, selectivity, and lifetime is arguable; however, the fact that they 
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are industrially favored signifies that they likely have an advantageous balance of low cost, ease 

of synthesis, and desirable catalytic properties. 

Another aspect of the precursor identity is the anion in the transition metal salt.  The 

literature has included claims of the use of alkoxides [59,60,61,62,63] or halides [43,44,45,64].  

However, a catalyst poisoning effect of halides has also been reported [65,66,67].  A few patents 

have claimed the usefulness of sulfur-containing anions such as sulfonate, salts of sulfur-

containing acids [60,68],  M(SOx)n (and partial esters thereof), and metal salts of sulfonic acids 

M(RSO3)n [62]; however, those patents do not report the control of comparing the activity of 

catalysts containing S-element anions to the activities of those made from the more common, 

generally favored anions acac and carboxylate.  Precatalyst compounds with inexpensive 2-

ethylhexanoate ligands, as well as the catalysts made from them, tend to be soluble in the 

hydrocarbon solvents typically used.  In one study, the anion in Ni salt precatalysts had a 

significant effect on the resulting catalytic activity in a sequence that corresponded to the 

solubility of the precatalysts: 2-ethylhexanoate > benzoate > acac > acetate > chloride [58].  

Similar findings correlating precursor solubility and catalytic activity have been made by others 

[69,70].  However, whether the increased catalytic activity is the influence of solubility, a result 

of the formation of different amounts of catalyst, or due to catalyst species with different 

activities, is not clear. 

The choice of alkyls in the AlR3 cocatalyst has also been of much interest.  In a 1968 

patent, Kroll [64] stated that it was generally agreed, even as of 1968, that the choice of 

cocatalyst does affect the catalyst activity.  Many studies appear to favor AlR3 with relatively 

short alkyl chains such as AlMe3 [71], AlEt3 [46,63,44,72,73,74], or Al(i-Bu)3 [57,70,75], but 

use of triarylaluminum [72,76,77] has also been reported.  Lapporte [58] found with Ni(2-
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ethylhexanoate)2 that AlEt3, Al(i-Bu)3, and Al(C6H13)3 were equivalent in the resulting catalytic 

activity of hydrogenation of a variety of substrates and at a variety of conditions.  Some patents 

have described the preferred cocatalyst as R3-nAlHn where n = 0–2 [59,45,65,66].  In general, the 

preferred cocatalyst appears to vary with the particular system; therefore, the need remains for 

studies elucidating the roles of the cocatalyst in both the catalyst formation and substrate 

hydrogenation processes. 

 

2.1.2. Molar ratio of the precursor components (precatalyst and cocatalyst) and the role of 

impurities, particularly H2O 

Several reports claim that the Al/M ratio (M = the transition metal of the precatalyst) was 

a key factor affecting the resulting catalyst [70,69,63].  It has been noted that when too little 

cocatalyst was used, it failed to adequately “activate” the catalyst, resulting in decreased activity 

[40].  On the other hand, it was also reported that when too much AlR3 cocatalyst was used, it 

acted as a catalyst poison [75].  Most reports agree that there is an optimum Al/M.  In general, 

the optimum Al/M seems to be highly dependent on the specific system used [57,78], and ranges 

from 1.5–4 are typical, at least with a Ni precatalyst [39,70]. 

The most important difficulty regarding optimization of Al/M appears to have been the 

presence of contaminants, especially those containing oxygen atoms, acidic protons, or both 

[75,79].  The most ubiquitous of these is almost surely H2O.  Despite the occasional claim that 

oxygen-containing species such as water were not important considerations in catalyst 

preparation [59,77], for most systems, water and other such species are generally thought to have 

a significant influence.  This is as expected for a system employing a water-sensitive, AlR3 

cocatalyst [80]. 
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The activity of Ziegler–type hydrogenation catalyst systems are often reduced by oxygen-

containing contaminants, with water being the prime example [40,63,70,72].  Reguli and Staško 

[70] found that this poisoning effect could be offset by the addition of more cocatalyst, the 

additional AlR3 ostensibly acting to scavenge contaminants.  Esselin and coworkers opted to use 

acac salts instead of M(“octoate”)2 (M is Ni or Co) because solubilization of the “octoate” 

compounds required a variable amount of free acid in the precatalyst solution (the term “octoate” 

is industry jargon for a C8 carboxylate, frequently 2-ethylhexanoate) [40].  Additional potential 

contaminants are residual polymerization catalyst and excess alcohol from termination of the 

polymerization reaction [65,73].  Overall, these studies report the effects of O-containing 

contaminants as detrimental to the activity of the Ziegler-type hydrogenation catalyst systems 

used. 

However, in other Ziegler–type systems the reaction of oxygen-containing species with 

the cocatalyst has been exploited to improve the catalytic system.  This has been done in two 

ways: (i) by simply stopping the poisoning effect of excess cocatalyst [64,75,77,81], or (ii) by 

actually increasing the activity of the resulting catalyst [19,61,78].  In US Patent 3,937,759, 

Baumgartner and Balas claim that addition of one mole of AlEt3 per mole of Ni to an active 

hydrogenation reaction will halt the reaction.  This effect was found to be reversible by addition 

of a sufficient amount of alcohol to react away the AlEt3 that had been added to stop the reaction 

[82].  In such cases where water is used, one might expect a reaction between H2O and the AlR3 

compound to form Al–O–Al bonded compounds known as alumoxanes [20,34,80].  Hoxmeier et 

al. [62], claimed that a catalyst prepared with alumoxanes was useful for hydrogenation 

reactions.  However, the complicated effects of the interaction of the catalyst components with 

H2O on the resulting catalyst properties is an important, yet still incompletely understood, aspect 
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of Ziegler–type hydrogenation catalysts, effects that depend on the AlR3/M ratio of the catalyst, 

as well as the amount of H2O (or ROH, etc.).  The effects of H2O, ROH, and other such 

compounds on Ziegler–type hydrogenation catalysts is another area that begs for a more detailed 

and fundamental understanding, one using carefully controlled conditions beginning from a 

definitively characterized precatalyst. 

 

2.1.3. Solvent 

Studies of Ziegler–type hydrogenation catalysts have tended to use inert hydrocarbons, 

mostly alkanes such as cyclohexane [70] or heptane [57], but also aromatic solvents like 

benzene, toluene, or xylenes [70].  Inert hydrocarbons are commonly used because they lack 

lone-pair electrons that would be reactive with the Lewis acidic AlR3 cocatalyst [58,70,72].  The 

relative merits of such solvents have elicited only a little discussion in the literature.  Catalytic 

activity is very dependent on solvent in the study by Reguli and Staško [70]; their NiL2 plus 

AlR3 or LiBu catalysts became less active in the order: cyclohexane >> xylene > toluene > 

benzene > chlorobenzene.  The aromatic solvents resulted in an inactive Ni precipitate being 

formed [70].  Shmidt and coworkers [19] reported that with their Co(acac)3 plus 50 AlEt3 

catalyst, activity for the hydrogenation of 1-hexene was 17-fold higher in heptane instead of 

toluene.  However, Sloan et al. [57] reported the hydrogenation of a wide variety of substrates 

with a wide range of catalysts in solutions of heptane or toluene, and made no mention of 

differences in hydrogenation rates or formation of precipitates based on which solvent was used.  

It is still unclear exactly how and why such prominent differences are seen with different 

solvents in some instances, but not others.  In short, a further examination of solvents under 
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carefully controlled conditions is another aspect of Ziegler–type hydrogenation catalysts that 

merits additional attention. 

2.1.4. Identity of the hydrogenation substrate 

Numerous substrates have been tested with Ziegler–type hydrogenation catalysts, from 

simple olefins to various polymers, even those with polar, acidic, or oxygen-containing 

functionalities [58,61,69,76].  However, not all hydrogenation attempts with a variety of 

substrates have been successful [57,67].  In a 1988 paper, Alvanipour and Kispert hydrogenated 

naphthalene and some quinolines using a Co(stearate)2 plus AlEt3 catalyst [67].  However, 

attempts to hydrogenate 4-chloro-2-methylquinoline, nitroquinolines, or dibenzothiophene failed 

[67].  They believed that substrates containing chloro, nitro, and sulfur groups acted as catalyst 

poisons by coordinating to the catalyst [67]. 

In general, and as one might expect, the rate of hydrogenation was found to have some 

dependence on the identity of the substrate [37].  Several reports revealed a decreasing 

hydrogenation rate with increasing substitution about the olefinic bond while using a variety of 

catalysts including Ni(2-ethylhexanoate)2 plus AlEt3 [58], Ni(3,5-diisopropylsalicylate)2 plus 

Al(i-Bu)3 [70], and a non-Ziegler–type, but related Cr(acac)3 plus Al(i-Bu)3 catalyst [57].  The 

known exception to this trend was reported by Sloan et al., namely that the diallyl olefin 

cyclohexene is among the most rapidly hydrogenated olefins [57].  Overall, the catalyst activity 

is dependent on the identity of the substrate as one might expect.  However, the details of the 

effects seen require further scrutiny and explanation, for example, what rate laws are seen for the 

different classes of olefins? 
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2.1.5. Other aspects of catalyst synthesis 

The catalyst component addition order, rate of component addition, and whether or not the 

substrate should be present during catalyst synthesis have been points of concern in the literature.  

There is wide disagreement on these issues between researchers, and among different systems, as 

to the effects, if any, of the above-noted variables on catalysis [45,64].  Various reports have 

stated preferences for: (i) slow addition of the precatalyst solution to the cocatalyst solution [79]; 

(ii) addition in the opposite order, but still slowly [77]; or (iii) keeping Al/M molar ratios 

essentially constant during the reaction, either by simultaneous addition or by rapid addition of a 

solution of the cocatalyst to a solution of the transition metal precatalysts [63]. Likewise, 

different reports have expressed, oppositely, the benefits of preparing the catalyst in the presence 

of substrate [68], or in the absence of substrate [62].  In 1987 Reguli and Staško [70] observed 

that the presence of cyclohexene during the catalyst synthesis reaction increased the 

hydrogenation activity of the resulting catalyst when AlEt3 or LiBu were used as cocatalysts, but 

that the presence of cyclohexene inexplicably had the opposite effect when Al(i-Bu)3 was 

employed as the cocatalyst. 

Another detail occasionally discussed is the gas present (i.e., N2, Ar, or H2) during 

catalyst synthesis.  Shmidt and coworkers [42] obtained a higher activity if “the catalyst solution 

absorbs hydrogen beforehand.”  However, Reguli and Staško [70] found that conducting their 

Ni(3,5-diisopropylsalicylate)2 plus Al(i-Bu)3 catalyst preparation in an atmosphere of either Ar 

or H2 ultimately had no influence on the resulting catalyst activity.  The question, then, is 

whether there is something special about using H2 as opposed to the inert gasses N2 or Ar (i.e., 

whether the key is just to provide an O2 and H2O-free atmosphere, or is H2 acting as a reductant 

during the catalyst preparation).  A subtlety here may be whether one is carrying out reactions in 
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solution under H2 gas with the first row group 8–10 metals versus those with second or third row 

transition metals, since only the latter are reduced to metal zero compounds under an atmosphere 

of hydrogen and standard conditions [83].5  Overall, it appears that the primary purpose of the 

atmosphere employed is to ensure conditions free of O2 and oxygen-containing impurities such 

as H2O. That said, reduction/activation of the catalyst when H2 is used has not been adequately 

tested via careful control experiments with and without H2 in Ziegler–type hydrogenation 

catalyst systems. 

The temperature of catalyst preparation is another variable occasionally mentioned in the 

literature [41], with different temperatures often being employed for different systems.  For 

example, temperatures reported for optimal catalyst preparation range from 50 °C (followed by 

holding the solution at that temperature for 10 min before being allowed to cool [69]), to heating 

the catalyst after the synthesis reaction at 90 °C under 1 atm of N2 for 2 hours [84].  In general, 

and despite various claims of reaction temperatures that lead to an optimal catalyst, activity as a 

function of reaction temperature has also not been systematically studied. 

The effects that temperature and other variables in catalyst preparation (order and rate of 

precursor addition, presence of substrate, and atmosphere) have on the activity of the resulting 

catalysts appear to depend on the individual system used.  It is clear that they have not been 

adequately studied, or even reported in some cases.  Additionally, how these and other variables 

influence catalyst activity will not be fully understood without studying how these variables are 

                                                
5 Standard reduction potentials (E°, 25 °C, 1 atm) vs. SHE in volts for Mn+ + ne-  M, where M is: Fe3+/Fe = –0.037, 
Fe2+/Fe = –0.447, Co2+/Co = –0.28, Ni2+/Ni = –0.257, Ru2+/Ru = 0.455, Rh2+/Rh = 0.600, Pd2+/Pd = 0.951, Ir3+/Ir = 
1.156, Pt2+/Pt = 1.18, and 2H+/H2 = 0.000.  The most commonly used precatalysts of first row group 8–10 transition 
metals Fe, Co, and Ni therefore have unfavorable potentials for reduction by H2 gas under standard conditions, 
unlike second and third row transition metals [83].  Hence, if a second or third row transition metal precatalyst was 
used, pretreatment by even 1atm of H2 at standard conditions could influence the catalyst formation reaction, at least 
from a thermodynamic perspective. 
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affecting first (i) the products of the catalyst synthesis reaction (i.e., the composition and 

structure of the resulting catalyst), and second (ii) the kinetics and mechanism of the catalysis. 

2.1.6. Aging of prepared catalyst 

Another factor that has garnered mention in the literature as potentially significant for the 

activity of Ziegler–type catalysts is the aging of prepared catalyst solutions.  The issues of 

whether or not prepared catalyst solutions have a significant “shelf-life” before deactivation or 

precipitation is related to this topic.  It has been noted for some systems that in the catalyst 

solution, a precipitate often formed if it was stored at a high temperature for long periods of time 

[68].  Šabata and Hetflejš [69] took the precaution of making fresh batches of catalyst daily to 

avoid changes in activity due to aging.  In contrast, others have allowed the prepared catalyst to 

age overnight [67,75], claiming that it improved reproducibility of the kinetic experiments [75].  

Reguli and Staško reported that the time of catalyst aging before use in hydrogenation had no 

influence on activity [70].  However, the actual experimental results, including what aging times 

were examined, were not reported [70].  Conclusions regarding the effects of catalyst aging 

cannot be drawn from this assortment of results for Ziegler–type hydrogenation catalysts as a 

group; the outcome is dependent on the individual system, requiring independent optimization of 

each set of conditions.  Without a more detailed understanding of the fundamental chemistry 

involved, the contradictory results prevent the ability to develop a consistent picture of the 

phenomenology of Ziegler–type hydrogenation catalyst aging. 

 

2.1.7. Conclusions for the section on catalyst preparation variables 

The above survey of variables makes apparent that there are many important details 

involved in preparation of Ziegler–type hydrogenation catalysts, specifically: the identities of the 
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transition metal precatalyst and the AlR3 cocatalyst; the ratio of these two components and the 

role of impurities, particularly H2O; the solvent; the identity of the substrate; the details of 

component addition such as order and rate, presence of substrate, atmosphere, and temperature; 

and any aging of the prepared catalyst before use in hydrogenation reactions.  Furthermore, the 

question of how these variables have the effects they do is an open one.  The ability to explain 

the effects of these variables in catalyst preparation is hampered by the fact that the effects 

themselves are often dissimilar for ostensibly similar, but ultimately somehow different, systems.  

Therefore, it is desired to perform studies of the catalysts under conditions that are either 

optimized, industrially relevant, or both if needed.  Since these catalysts are used industrially, 

and since faster, longer lifetime, and more selective catalysts are always of interest, there is an 

incentive for additional studies, along with a host of the necessary control experiments—for 

example, comparing the best or other’s catalysts to one’s own catalyst, all under identical 

conditions. 

When one considers the obstacles to understanding the effects of all possible variables in 

Ziegler–type catalyst preparation, it becomes easier to understand why this class of industrial 

catalysts has not been exhaustively investigated, and why contradictory data exist.  Isolation of 

any single variable for study is difficult because of how many variables there are (at least 11), 

the possibility that additional, still-unidentified variables exist, and the indication [58,70] that 

many variables may be correlated with one another.  A modern systematic and/or combinatorial 

study holds the potential of identifying superior industrial catalysts, for example. 

Furthermore, accurate evaluation of catalyst activity, the indicator most often used for the 

effect on the catalyst, may be hindered by an H2 gas-to-solution mass-transfer limitation (MTL) 
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[85,86,87,88].6  The presence of an H2 gas-to-solution MTL in hydrogenations using Ziegler–

type catalysts is especially likely because of their high catalytic activities—indeed, we have 

routinely run into such MTL issues in our own studies [55,56].  Additionally, when polymers are 

the substrate, adequate mixing is difficult to achieve in the viscous polymer solutions thereby 

increasing the chances that kinetics will be dominated by MTL.  Despite this, few studies 

discussed herein mentioned efforts to avoid MTL kinetics [41,57,69,75].  It is possible that many 

of the kinetic results reported for Ziegler–type hydrogenation catalysts are questionable because 

their studies have fallen victim to MTL effects.  Unless specifically ruled out, undetected MTL 

should be suspected for instances where there is disagreement about whether or not a given 

variable had any effect on the catalyst properties of a given system.  For these reasons, all 

research, both the patent literature assembled in Appendix 2.A, Table 2.A.1, and other published 

studies shown in Table 2.1, should, in our opinion, be viewed with a critical eye and with 

possible MTL effects in mind. 

Importantly, the effects that synthesis variables have on the catalytic properties of 

Ziegler-type hydrogenation catalysts (e.g., activity), are likely to be closely related to the effects 

of those variables on the homogeneous or heterogeneous nature of the catalysts.  When catalyst 

formation of a non-Ziegler–type hydrogenation catalyst is carried out in-situ, “the lesson is that 

the nature of the true catalyst can change with the reaction conditions” [16]; this may be just as 

true for Ziegler–type hydrogenation catalysts pre-formed by the addition of AlR3.  Therefore, a 

way to look for answers as to how catalyst synthesis variables affect catalytic activity would be 

                                                
6 See the references listed [85,86,87,88] for a more in-depth discussion of MTL effects and its consequences.  MTL 
should be a concern for one attempting to measure the kinetics of any solution phase reaction where one of the 
reactants (H2 in this case) is supplied as a gas.  If the hydrogenation reaction of interest is fast relative to the mass 
transfer of H2 gas into solution, then the overall reaction kinetics will be dominated by the slower mass-transfer step.  
In certain cases where there may be competing reactions, such as isomerization or olefin oligomerization [58] with 
Ziegler–type hydrogenation catalysts, the presence of significant MTL effects can also alter product ratios. 
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to study the composition and structure (i.e., the homogeneous or heterogeneous nature) of the 

resulting catalysts.  Connecting these aspects of Ziegler–type hydrogenation catalysts—namely 

synthesis variables, catalytic properties, and homogeneous or heterogeneous nature—remains a, 

if not the, significant challenge for the field. 

 

2.2. The nature and mechanism of formation of Ziegler–type hydrogenation catalysts 

Because of the desire to make rationally-directed improvements to Ziegler–type 

hydrogenation catalysts, important topics include: the reaction between the precatalyst and the 

cocatalyst; the true nature of the active catalyst; and the identity of the cocatalyst species in the 

resulting catalyst solution.  Specifically of interest are the homogeneous or heterogeneous nature 

of the true catalyst(s), the oxidation state of the transition metal, and the resultant form and role 

of the initially added, for example AlR3, cocatalyst species.  A detailed mechanism of the 

reaction between catalyst precursor components is also desired, one that includes the 

compositions and structures of all intermediate species and the kinetics of constituent elementary 

steps [89].  However, this level of detail is still unrealized with Ziegler–type hydrogenation 

catalysts. 

As noted above, a main question about Ziegler–type hydrogenation catalysts is whether 

they are homogeneous (e.g., single metal organometallics) or heterogeneous (e.g., nanoclusters).  

The patent literature (Appendix 2.A, Table 2.A.1) has given only cursory attention to the topic; 

uncertainty and disagreement exist [60,77,78].  This is understandable since determining the true 

nature of a catalyst is a classic, non-trivial problem [16,90].  A generalized methodology for 

addressing this problem does exist [12,13,14,15,16,17,18], and has been successful at 

distinguishing between heterogeneous and homogeneous catalysts; it has identified catalysts of 
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both types, even in a system where slight differences in conditions were a deciding factor [17].  

One of the main ideas behind this approach is (i) to first address the question of what species are 

present that could be catalysts—that is, what are the main, resting forms of the (pre)catalyst, and 

then (ii) to determine which species contribute to catalysis primarily via kinetic and quantitative 

poisoning experiments [12,13,14,15,16,17,18].  In studying Ziegler–type hydrogenation catalyst 

systems, nearly all workers have struggled to answer the difficult question of what species are 

present (i.e., what are the products and the catalyst formation reaction stoichiometry?).  The 

needed kinetic and poisoning experiments are only rarely present [57,58]; without definitive 

kinetic evidence, species identified in the following papers may or may not be related to the 

actual catalyst(s) [91].7  In many cases they might be “catalyst reservoir” species that actually are 

not in the catalytic cycle and therefore, may even detract from the overall rate.  The classic 

example of this is the “catalyst reservoir” of five observable species identified in Halpern’s 

studies of Wilkinson’s hydrogenation (pre)catalyst; only the spectroscopically invisible, 16-

electron RhClL2(solvent) and subsequent species contribute to the observed hydrogenation 

catalysis [10]. 

 

2.2.1. The “Ziegler–type catalysts are homogeneous” hypothesis. 

2.2.1.1.  Systems investigated by Wilke and coworkers [4]: Ni(acac)2 plus AlMe3, AlEt3, or Al(i-

Bu)3.  When Karl Ziegler and coworkers first discovered the “Ni effect” in 1953, it was assumed 

that the Ni in the complexes took the form of a metal colloid which, in attempted ethylene 

polymerizations, was responsible for chain cleavage after each insertion step [1,2,3,4,5].  Wilke 
                                                
7 This point is based on two basic principles in catalysis.  The first is that the majority, or even all, of the observed 
catalysis could be due to a minority, but highly active species [10].  The second is Bergman’s formulation, 
somewhat tongue-in-cheek, of “Halpern’s Rules” for catalysis, which state, “if you can isolate it, it is probably not 
the catalyst; if it is metastable and you can detect it, it could be the catalyst; and if it is highly unstable and 
undetectable, then it probably is the catalyst!” [91]. 
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and coworkers [4] have written that this assumption was based, at least in part, on the lack of 

knowledge at the time about metal π-complexes.  Consequently, the work of Wilke and 

coworkers [4,92,93,94,95,96] was carried out with the different hypothesis that the Ni species 

responsible may be π-complexes, and not colloidal Ni.  Wilke and coworkers [4] analyzed 

catalyst formation in two stages: (i) the reduction of the precatalyst by AlR3, and (ii) the 

subsequent reactions between the zero-valent transition metal, AlR3, and olefin. 

The reduction of Ni(acac)2 by AlMe3, which resulted in the formation of Ni(0), 

AlMe2(acac), and methane and ethane gases, was thought to proceed by “homolysis of the Ni–C 

bond of an intermediate dimethylnickel species” [4].  The presence of intermediate 

dimethylnickel species was based on the isolation of crystalline [(α,α’-bipyridyl)NiMe2] complex 

from a model system [4,94].  Methane and ethane formation were rationalized by homolysis of 

the Ni–C bond of the proposed NiMe2 complexes, followed by either H-abstraction from AlMe3 

(disproportionation) or radical combination [4].  The reduction of Ni(acac)2 by AlEt3 or Al(i-

Bu)3 was described as “homolysis giving alkyl radicals, which   H atoms, and the dimerization of 

alkyl groups, are accompanied by β–H elimination to give a Ni–H species and an olefin,” 

Scheme 2.2 [4].  Evidence for [(acac)Ni–H] was provided by the addition of 1,5-COD, then 

isolation and x-ray crystal structure determination of the 4-cyclooctenyl(acac)nickel formed [4].  

The second stage of catalyst formation consisted of the subsequent reactions of Ni(0) 

with AlR3 and olefin.  By analogy to reactions investigated in a variety of model systems, Wilke 

and coworkers suggested the formation of Ni–olefin π-complexes similar to Ni(0)(ethylene)3 

[4,97].  This and other complexes, such as allyl–Ni species, similar to the Ni–olefin π-

complexes, have been referred to as “bare” Ni atoms [93].   
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Scheme 2.2.  A reconstruction of a reaction scheme for Ni(acac)2 plus AlEt3 proposed by Wilke 
and coworkers [4].  Redrawn with permission. 

The !-complexes were thought to interact with AlR3 via multicenter bonds comprised of Ni(0) 

plus Al and a bridging C atom.  In Figure 2.1, from the work of Wilke and coworkers [4], one 

can see how the close proximity of the AlR3 %–H atom to the olefinic double bond could permit 

an electrocyclic reorganization to give the proposed active catalyst species.  A prominent feature 

of Wilke’s proposed catalyst is the absence of Ni–H.  Ni–olefin !-complexes were proposed as 

the active catalyst species in alkyl-olefin exchange reactions between Grignard reagents 

(RMgBr) and olefins by Marko and coworkers [98,99], in which H migration within the 

organonickel complex was suggested without formation of a definite Ni–H bond.  However, 

others have studied similar Ni plus AlR3 systems and their results do implicate Ni–H species as 

responsible for catalysis in olefin dimerization or oligomerization reactions [41,100].  It is 

important to emphasize that Wilke and coworkers were not investigating catalysts for 

hydrogenation reactions [4].  Hence, their postulation of an alkyl-olefin exchange reaction 
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without formation of Ni–H would seem to have little bearing on a mechanism of hydrogenation

with similar systems. 

Figure 2.1.  Ni(0) –olefin !-complexes proposed by Wilke and coworkers [4].  Interaction with 
AlR3 is depicted as occuring through Ni–C–Al multicenter bonds.  H migration is shown in a 
reorganization involving the AlR3 "–H atom, and without forming a definite Ni–H species.  
Reproduced with permission. 

Lardicci et al. [101], studied the effect of the transition metal precatalyst on the nature of 

the resulting catalyst.  Their observation of a difference in catalytic activity using two different 

precatalysts, Ni(acac)2 and Ni(N-alkylsalicylaldimino)2 (plus AlR3), lead them to the conclusion 

that the catalyst species formed are different in nature, thus ostensibly ruling out the “bare” Ni 

atoms concept [93]—that is, if the same “bare” Ni atoms were the catalyst in both systems, then 

the catalytic activity would have been the same, not different as observed.  However, the 

expectation that the same catalyst would form when two different precursors are used seems 

flawed because the anion of the Ni precatalyst is expected to affect the catalysis as discussed 

previously in section 2.1.1 of this review. 

Wilke and coworkers concluded that their true catalyst was likely a Ni(0) complex, 

although they did note that the colloidal catalyst hypothesis was impossible to disprove via their 

studies [4,102].  One of the important observations in the work of Wilke and coworkers [4] was 

that, “the extent to which a reaction follows a particular direction is dependent upon a number of 
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external factors (purity of Ni(acac)2, hydride content of the Al(C2H5)3, solvent, temperature, 

presence of ligands).”  For that reason, confirmation of reactions, products, and intermediates, 

under exact reaction conditions—and without the use of trapping agents or non-Ziegler-type 

model systems [103]8 —although difficult, would contribute considerably to our understanding 

of Ziegler–type hydrogenation catalyst formation and the nature of the true catalyst. 

2.2.1.2.  Systems investigated by Sloan et al. [57]:  M(acac)n plus AlEt3, Al(i-Bu)3, or AlH(i-

Bu)2; M =Fe(III), Co(II and III), Ni(II), Ru(III), or Pd(II).  Sloan et al. [57] tested a wide variety 

of systems for potential catalytic hydrogenation activity, and observed similarities between the 

catalytic behavior of these soluble catalysts and their insoluble, heterogeneous counterparts such 

as Raney Ni.  For example, Sloan et al. [57] reported kinetic experiments that indicated the 

reaction was first order in [H2,gas]1 and zero-order in [olefin]0, which “is the same rate behavior 

observed in many heterogeneous hydrogenations.”  As mentioned in the previous section, they 

also found that, like the effects observed in heterogeneous catalysts such as Raney Ni, greater 

degrees of substitution on olefinic carbons generally led to slower hydrogenation.  The research 

was conducted, in part, with the goal of being able to use soluble Ziegler–type and related 

hydrogenation catalysts as mechanistic models for heterogeneous hydrogenation by bulk or 

supported metal catalysts despite the author’s belief that the true catalysts are homogeneous 

[104]. 

In an effort to rule out either the homogeneous or heterogeneous catalyst hypothesis, the 

authors performed catalyst poisoning experiments—an important type of kinetics-based 

experiment.  They observed that the addition of ethanol or acetone to the catalyst systems under 

                                                
8 In the final analysis, the use of a model system that is available for study over another system rigorously only 
yields information about the model (as one would logically expect).  Another noteworthy general comment on 
models is that “all models are wrong, but some are useful,” a quote attributed to George E. P. Box [103]. 
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investigation killed the catalytic activity.  They concluded that colloidal metal must therefore be 

absent and the catalysts must be homogeneous.  However, another interpretation of this result is 

plausible, namely that the observed catalyst poisoning could be due to reaction of ethanol or 

acetone with the AlR3-derived components of the (heterogeneous) catalyst.  Furthermore the 

result itself has been contradicted (albeit with other systems): Kroll [75], using a Co(acac)2 plus 

Al(i-Bu)3–p-dioxane catalyst, found that the catalyst activity was decreased, but not killed by the 

addition of even a > 200 fold excess of butyl alcohol over the Al present.  Shmidt and coworkers 

[114], studying a Pd(acac)2 plus AlEt3 system (discussed below), found that the addition of 

ethanol either enhanced or decreased the catalyst activity depending on the specific Al/Pd and 

EtOH/Al ratios used.  Therefore, the Sloan et al. poisoning experiment alone cannot discern 

whether Ziegler–type hydrogenation catalysts are homogeneous or heterogeneous—they 

probably are reporting more on the AlR3-component of the catalyst than on the (metal)n 

nuclearity (n value) of the catalyst(s).   

Sloan et al. proposed a generalized mechanistic scheme, shown below in Scheme 2.3, 

starting with the precursor components, showing both catalyst formation and hydrogenation of 

olefins.  It was based on the concept that any such hydrogenation mechanism should be 

analogous to that of heterogeneous hydrogenation. This mechanistic scheme was noted by the 

authors as speculative and deliberately oversimplified, “since the structures of the various 

catalysts are largely uninvestigated” [57].  

In the generalized mechanistic scheme, the transition metal precatalyst is first alkylated 

by the organoaluminum cocatalyst.  Hydrogenolysis of the newly formed metal alkyl bond gives 

a metal hydride and an alkane.  The authors mentioned elimination from the metal alkyl as an 

alternative way to generate the transition metal hydride.  The reduction of transition metal and 
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the formation of transition-metal–Al and/or transition-metal–olefin complexes were given as 

other possibilities [38].9  The addition of the olefin substrate was shown as a single-step insertion 

into the Ni–H bond leading to a new metal alkyl, but it was mentioned that it is probably 

preceded by complex formation with the olefin π-bonded to the metal.10  Note that this 

equilibrium step (or steps) must lie to the far right in order to explain the observed zero-order 

olefin kinetics.  The catalytic cycle is completed in this mechanism by hydrogenolysis of the M–

R bond, either by molecular H2 or by another molecule containing hydride followed by 

reduction, to give the saturated olefin and regenerate the M–H catalyst species. 

The simple alternative explanation here is that the catalysts used by Sloan et al. are 

heterogeneous.  Evidence for this alternative hypothesis are the similarities in catalytic behavior 

to known heterogeneous catalysts and the likely alternative interpretation of their poisoning 

experiment given above (i.e., that additions of ethanol or acetone react with the AlR3-derived 

component).  In short, while an important and early effort, one that included kinetic and 

poisoning experiments, the homogeneous versus heterogeneous nature of the true catalysts is 

uncertain despite these early studies. 

2.2.1.3.  Systems investigated by Lapporte [58]:  M(2-ethylhexanoate)2 plus m AlEt3, M= Ni or 

Co, m=3–4.  Similar to the work of Sloan et al. [57], Lapporte [58] had observed that the rate 

behavior of his soluble catalysts bore similarity to heterogeneous catalysts.11  Lapporte pointed 

                                                
9 The timing of steps in a case like this is a standard mechanistic ambiguity; whether the addition of olefin occurs 
before or after H2 enters and the formation of the metal hydride is possible, but often difficult, to ascertain [38]. 

10 To test part of the proposed scheme, a solution of a Cr(acac)3 plus Al(i-Bu)3 catalyst with 2-methyl-2-butene as 
substrate was treated with D2 gas.  Analysis of the reaction products by MS showed mono-, di-, and trideuterated 
species, explained by reversible olefin migratory insertion to a M–D(H).   

11 One exception, however, was that nitrobenzene, which is easily hydrogenated using non-AlR3 containing 
heterogeneous Nin catalysts, showed only sparing conversion with the Ni Ziegler–type hydrogenation catalyst 
studied by Lapporte [58].  It is now known that nitrobenzene reduction is not a reliable indicator of heterogeneous 
catalysis [16]. 
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out that the diminished hydrogenation activity when NiCl2 was used as the Ziegler–type 

precatalyst was analogous to the diminished rate of hydrogenation when Cl– was present using a 

Raney Ni catalyst.  Also like Sloan et al., Lapporte was motivated by the prospect of using 

soluble Ziegler–type and related hydrogenation catalysts as models of heterogeneously catalyzed 

hydrogenation [104].  Therefore, it is no surprise that Lapporte gave a simplified mechanistic 

scheme (see Equations 6 and 9–11 detailed elsewhere [104]) that is quite similar to the scheme 

by Sloan et al. 

Scheme 2.3.  A reconstruction of a reaction scheme postulated by Sloan et al. [57].  The first step 
in this mechanism is alkylation of the transition metal precatalyst MXn by the aluminum alkyl.  
Hydrogenolysis forming a metal hydride and olefin coordination follow.  Elimination from the 
M–alkyl is shown as an alternative path to M–H formation (last line).  Hydrogenolysis to give 
saturated olefin is shown as possibly involving either H2 or another molecule of metal–hydride.  
Redrawn with permission. 
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One minor difference between the Sloan et al. and Lapporte schemes is that in the 

Lapporte scheme, reduction of the Ni(II) precatalyst with AlEt3 to Ni(0) was shown proceeding 

via the formation of Ni–Et.  Magnetic susceptibility measurements of the Al/Ni = 4 catalyst 

solutions at variable temperatures were interpreted as containing diamagnetic 3d10 Ni species, 

although binuclear Ni(I) species could not be ruled out.  Another difference is that Ni–H was 

shown as generated by elimination from the metal alkyl, and metal–olefin π-complex formation 

was depicted before insertion into the Ni–H bond.  Like Sloan et al., Lapporte observed substrate 

isomerization and carried out a deuterium labeling experiment.  It was noted that the observation 

of 1,2-dideuteroethylene and HD are consistent with Ni–ethylene π-complex and Ni–H 

intermediates, and reversible addition of the Ni–H species to the olefin double bond.  Further, 

more direct evidence for the presence of Ni–ethylene π-complex and Ni–H species was obtained 

from low temperature 1H NMR spectra [58].  However, it was found that these signals 

irreversibly disappeared upon warming of the catalyst solutions to room temperature.  The 

reasons and implications for this were not discussed, and it is not clear if the observed species are 

on, or off, the catalytically productive pathway.  Lapporte’s NMR observations are, however, a 

great lead for someone to pursue to see if the observed species do (or do not) show the kinetics 

of a catalytically competent intermediate. 

Lapporte also interpreted his observations in terms of the knowledge available at the 

time, that is, that the true catalyst was homogeneous.  Lapporte cited the “bare” Ni atoms idea of 

Wilke and coworkers [93] in proposing the catalysts could be mononuclear Ni(0) species 

solubilized by labile –H, –R, solvent, or Al(Et)2(2-ethylhexanoate) ligands that could be easily 

displaced by the unsaturated substrate.  Additionally, Lapporte observed that gas evolution, 

apparently the products of reduction of the Ni(II) precatalyst by AlEt3, was greatest at the same 
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Al/Ni giving optimal catalytic activity, ostensibly suggesting a Ni(0) catalyst.  However, like the 

work of Sloan et al., none of the results can be taken to rule out either homogenous or 

heterogeneous catalysts as the active species—indeed, we can be pretty sure now that it was 

pretty much impossible to solve the homogeneous versus heterogeneous catalysis question for 

these complex catalysts at that time [16].  The formation of a dark color upon hydrogenation of 

ketones to the corresponding alcohol was interpreted as “decomposition of at least some Ni to 

metal, albeit very finely dispersed” [58].  The black reaction mixture, though inseparable by 

ultracentrifugation, is consistent with Mn nanocluster formation [16], nanoparticles which are 

expected to be a potent hydrogenation catalyst in the presence of moderate amounts of AlR3 and 

in hydrocarbon solvents under H2. 

2.2.1.4.  System investigated by Klinedinst and Boudart [105]:  Fe(acac)3 plus 6 AlEt3.  

Klinedinst and Boudart sought to determine the nature of Ziegler–type hydrogenation catalysts of 

especially Fe using IR and Mössbauer spectroscopy.  An IR spectrum of the catalyst solution was 

similar to the superposition of spectra of AlEt3 and AlEt2(acac) obtained separately for the sake 

of comparison.  This qualitatively indicated that the catalyst formation reaction between 

precursor components involved the transfer of acac from Fe(acac)3 to the cocatalyst.  However, 

exchange of ethyl from Al to Fe could not be detected by IR because the band region 

characteristic of the C–H stretch in “FeEt2” was obscured by the same C–H stretch in AlEt3.   

The authors hoped that Mössbauer spectroscopy of the catalyst solutions would confirm 

the presence of metallic particles too small to be detected by X-ray diffraction.  Catalyst samples 

were prepared for Mössbauer spectroscopy in toluene at 190 K and then rapidly quenched to 77 

K.  The spectra obtained indicated that high spin Fe(II) were the only Fe species present.  A 

possible explanation offered was that the reaction of Fe(acac)3 with AlEt3 may be limited to a 
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one electron reduction at these temperatures.  This is depicted in Equations (1) and (2) below, 

reproduced from the original publication [105].  However, evidence for the gaseous products H2, 

ethane and/or ethylene was not provided as part of this study and would be useful for anyone 

interested in reinvestigating this Fe(acac)2 plus AlEt3 system. 

 

Fe(acac)3 + AlEt3  →    Fe(acac)2Et + Al(acac)Et2     (1) 

2 Fe(acac)2Et  →    2 Fe(acac)2 + H2 + 2 C2H4 [or C2H6 + C2H4]   (2) 

 

When the catalyst sample was warmed to room temperature and then re-quenched to 77 

K, it gave a Mössbauer spectrum identical to those of active catalyst samples prepared at room 

temperature.  These Mössbauer spectra of activated catalysts showed that further reaction of the 

high spin Fe(II) had taken place.  The most significant finding was that no metallic iron particles 

≥ 1.7 nm were detected, which was taken to be consistent with a homogeneous catalyst 

hypothesis.  The obvious alternative hypothesis is that the catalyst is heterogeneous, but consists 

entirely of particles smaller than 1.7 nm.  Another possibility is that the catalysts are 

heterogeneous, but do not display the hyperfine pattern in Mössbauer spectra characteristic of 

metallic iron because they are amorphous [106,107], or are amorphous until exposed to high 

pressure H2 [108] (these samples were not exposed to H2).  However, while it provides 

(negative) evidence against a crystalline heterogeneous Fen, catalyst of diameter ≥ 1.7 nm (which 

corresponds to Fe≥218 if it were close-packed Fe(0), [50]),12 even this clever study by Klinedinst 

                                                
12 The number (N) of atoms in a metal nanocluster of diameter (D) can be estimated according to the equation: N = 
(N0ρ(4/3)π(D/2)3)/M, where N0 = 6.022 × 1023 mol–1, ρ = the room temperature density of the pure bulk metal, and 
M = atomic mass [50].  For Fe: ρ = 7.87 g/cm3 and M = 55.845 g/mol [83]. 
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and Boudart was unable to answer the difficult homogeneous versus heterogeneous catalysis 

question. 

2.2.1.5.  System investigated by Alvanipour and Kispert [67]:  Co(stearate)2 plus 2 AlEt3.  

Alvanipour and Kispert [67] concluded that Ziegler–type hydrogenation catalysts are most likely 

homogeneous metal hydride or π-complexes.  Their basis for this conclusion is their own finding 

that “high speed” centrifugation was unable to induce a separation in a solution of the catalyst in 

their Co(stearate)2 plus 2 AlEt3 system, and the absence of other evidence of metallic particles.  

In addition, they cited the results of others that suggested Ziegler–type hydrogenation catalysts 

are homogeneous: Wilke’s isolated [(P(Ph)3)2Ni(C2H4)] complex [92], the diamagnetic 3d10 

Ni(0) catalyst species proposed by Lapporte [58], and the Mössbauer spectroscopy results of 

Klinedinst and Boudart [105].  However, their work did not include the kinetic studies required 

to identify the true catalyst(s). 

2.2.1.6.  Systems investigated by Reguli and Staško [70]:  NiL2 plus AlR3 or BuLi (L = 3,5-

diisopropylsalicylate, acac, stearate, or benzohydroxamate; R = Et or i-Bu).  The study by 

Reguli and Staško is noteworthy for its detailed examination of a range of variables in search of 

the optimum synthesis conditions for their Ziegler–type hydrogenation catalysts [70].  The 

authors also considered the nature of the catalyst preparation reaction and the resulting catalyst.  

In aliphatic solvent, EPR spectra indicated two paramagnetic species, interpreted as Ni(I), and 

ketylradicals (ArCO•-R), which were thought to form during the last stage of reaction between 

the precursors.  The (unquantitated) concentrations of these species increased with Al/Ni to a 

maximum at Al/Ni = 8–10, yet the catalytic activity was optimal at Al/Ni in the 2–4 range, 

providing an important disconnect between the EPR signals and the (kinetic) catalysis.  Based on 

this observation, the active catalyst species were thought to be diamagnetic species of Ni(II) 
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formed by alkylation of the precatalyst, although these results do not necessarily mean the 

catalyst must be a homogeneous Ni(II) complex, only that the catalyst is not likely a Ni(I) 

species.  A scheme depicting formation of the active catalyst species was proposed and is 

reproduced, Scheme 2.4. 

Scheme 2.4.  A speculative reaction scheme and structures proposed by Reguli and Sta"ko for 
Ni(diisopropylsalicylate)2 plus AlR3 [70].  Reproduced with permission. 
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2.2.1.7.  System investigated by Barrault et al. [37]:  Co(acac)2 plus AlEt3.  Studies by Barrault 

et al. investigated the catalyst formation reactions in a Co(acac)2 plus AlEt3 system using IR 

spectroscopy of the reaction solutions and GC analysis of the gas products.  IR spectra at 25 min 

and 18 hours indicated that the timescale of reaction at room temperature was rapid, and GC 

showed completion of gas production after only three min of mixing.  IR spectra were obtained 

at Al/Co = 0.5, 1.0, and 1.5.  At lower Al/Co ratios they showed formation of Al(acac)3.  At 

Al/Co = 1.5, formation of Al(Et)2(acac) and complete transfer of the acac ligands from the 

Co(acac)2 precatalyst was observed.  GC showing the production of ethane was interpreted as 

suggesting the disproportionation shown, Equation (3). 

2 C2H5 → C2H6 + C2H4        (3) 

However, the observed ethane fraction was > 96% of the gas composition, whereas according to 

Equation 3 the reduction of Co(II) to Co(0) is expected to produce equal amounts of ethane and 

ethylene.  Therefore, Barrault et al. postulated that either the disproportionation was not taking 

place, or that some of the ethylene was involved in π-binding interactions with soluble Co(0) 

complexes.  The IR spectra obtained are at least consistent with such π-bonded Co(0)–ethylene 

complexes. 

Carbonylation experiments were also carried out in which Al/Co = 1 catalyst samples 

were bubbled with a mixture of CO and H2 gases, and monitored by IR spectroscopy.  The 

highest v(CO) frequency observed indicated CO binding to Co(0) centers that were more 

electron-donating to the 2π* orbital of CO than what had been previously observed for CO 

surface-bound to Co(0) particles.  Mononuclear Co(0) species complexed by such ligands as π-

bound CH2=CH2 were expected to be more electron rich than exposed Co(0) on the surface of 

metal particles.  Therefore, this result was interpreted as evidence of such soluble mononuclear 
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species.  However, the authors were correct to conclude that, despite the fact that the 

carbonylation experiments showed the presence of complexed Co(0) species, neither these nor 

Co(0)n metal particles could be ruled out as the sole active catalyst. 

2.2.1.8.  Systems investigated by Shmidt and coworkers: AlEt3 plus Co(acac)2 [109], Co(acac)3

[110,111], Ni(acac)2 [42,111], Fe(acac)3, or Pd(acac)2 [111].  The reactions of AlEt3 with the 

above-listed metals and precursors were monitored using UV-Visible and IR spectroscopies.  

Transfer of acac ligands from the transition metal to Al was observed with the consequent 

formation of a mixture of Al(acac)3 and AlEt2(acac) for M = Fe, Co or Ni, and only AlEt2(acac) 

at various Al/M ratios for M = Pd.  Analysis of aromatic hydrocarbon solutions of the Co 

catalyst with EPR spectroscopy led the authors to propose a paramagnetic Co(0) complex as the 

active catalyst [109], which is shown in Figure 2.2; AlEt2(acac) is proposed as a ligand of the 

Co(0) complex along with a molecule of the arene solvent, and AlR3 bound through a carbon 

atom.  It is understood, however, that “Et2Al+” cations such as that in Figure 2.2 are normally 

stabilized through coordination by a Lewis base [112]. 

Figure 2.2.  A Co(0) complex suggested as a possible active Ziegler–type hydrogenation catalyst 
species by Shmidt and coworkers [109,110,111].  In later work and based on additional evidence 
(vide infra), this species, whose presence was identified spectroscopically, was reinterpreted as 
the precursor for the Co(0)n Ziegler nanoclusters now proposed as the active catalyst [113].  
Reprinted with permission. 

Magnetic measurements of the catalyst solutions appeared to confirm the reduction of 

transition metals to the zero-valent state.  However, as clearly mentioned by the authors, the 
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presence of low spin Co(II) or Ni(II) complexes exhibiting the same µeff as Co(0) and Ni(0), 

could not be ruled out [111].  Furthermore, quantitative analysis of these magnetic susceptibility 

studies showed that 3–8% of the Co in the sample exists in Co(0)n particles of up to 100 Å.  

Without further information, especially the necessary kinetic studies, it is entirely plausible that 

the observed Co(0)n particles are responsible for some or all of the observed catalysis. 

Shmidt and coworkers [42] proposed a simple mechanistic scheme for the hydrogenation 

of olefins using Ziegler–type catalysts.  This scheme was very similar to the Sloan et al. [57] and 

Lapporte [58] schemes, and is shown in Scheme 2.5.  The true catalyst was assumed to be a 

complex metal hydride.  The idea of initial reversible olefin π-complex addition was supported 

by the observation that these catalysts cause olefin isomerization.  The final step producing 

saturated hydrocarbon and regenerating the M–H catalyst was shown as hydrogenolysis of the 

metal–carbon bond as it was in the previous schemes [57,58].  It is shown in Scheme 2.5 as 

involving a molecule of H2, which was a common depiction at the time [38], a mechanism 

consistent with the kinetic observations that olefin isomerization occurred at a slower rate with 

increasing H2 pressure, and that the reaction is first order in H2 pressure (by both their and 

other’s data) [42,57,70]. 

However, it is now understood that such a hydrogenolysis is unlikely as an elementary 

mechanistic step, at least with late metal homogeneous catalysts.  Moreover, such a step is 

probably better depicted by reductive elimination involving M–H formed by a prior oxidative 

addition of H2 to the metal [10,89]. 
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Scheme 2.5.  A reproduction of the scheme for catalytic olefin hydrogenation using a Ziegler–
type hydrogenation catalyst from Shmidt and coworkers’ 1970 paper [42].  Used here with 
permission. 

2.2.2. The “Ziegler-type catalysts are heterogeneous” hypothesis 

2.2.2.1.  Systems investigated by Shmidt and coworkers: Co(acac)2,3 [19,113], or Pd(acac)2

[81,114] plus AlEt3.  In 2005 and 2006, Shmidt and coworkers replaced their earlier conclusion 

of a Co(0) complex catalyst [109,110,111] with a postulate of catalysis by Co(0)n nanoclusters 

[19,113].  The presence of nanoclusters is consistent with the observation that dark brown 

solutions formed in both Co and Pd systems upon combination of the precursor components [16].  

TEM images of Co samples demonstrated the presence of these clusters, and a particle size 

histogram displayed two maxima at 2.6 and 5.0 nm.  Larger particles of 10–50 nm were thought 

to be agglomerates of the smaller particles.  In the catalyst system prepared from Pd(acac)2, TEM 

images exhibited the presence of 4.2 nm particles when Al/Pd = 4.  Increasing the Al/Pd ratio to 

! 8 decreased the particle size to 1–2 nm [81,114]. 

The Co clusters were shown to be amorphous by XRD, but formed 10 nm crystalline 

particles after calcination at 450 °C for 4 hours.  The Co(0) complex previously proposed as the 

catalyst, and based on earlier UV-Visible and EPR spectroscopic results, Figure 2.2 

[109,110,111] (vide supra), was reinterpreted as being the precursor for the Co(0)n nanoclusters, 

something fully consistent with Halpern’s Rules (really guidelines) for catalysis [91].7  The 

finely dispersed component observed in the earlier studies was reinterpreted as the 10–50 nm 

agglomerates of the smaller Co(0)n nanoparticles [19,113].   
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Catalyst formation and the role of AlEt3 were studied using IR spectroscopy, and analysis 

of the gaseous and solid products.  A reaction scheme based on the IR results was proposed, 

which showed the reaction of Et2Al(acac) with excess AlEt3, Scheme 2.6.  The amounts of these 

species, the stability of the nanoclusters (as judged by the amount and time until precipitate was 

formed), and their catalytic activity were all found to depend on the Al/M ratio.  Activity and 

stability varied inversely to each other, again consistent with Halpern’s Rules, or guidelines, for 

catalysis [91],7 cited earlier.   

Scheme 2.6.  A scheme proposed for the reaction of Et2Al(acac) with excess AlEt3 based on the 
results of IR spectroscopy by Shmidt and coworkers [113].  Reprinted with permission. 

Based on their observations, Shmidt and coworkers proposed that the various Al-

containing species and arene solvent molecules act as the nanocluster catalyst stabilizers, Figure 

2.3.  Their difference in binding strengths to the nanocluster surface could explain the ease with 

which they are replaced by the olefin substrate molecules, and therefore the differences in 

catalyst stability and activity.  AlEt3 itself was thought to have the highest binding strength, 

which would explain the observation that increasing excesses of AlEt3 resulted in increasingly 

stable, yet decreasingly active catalysts. 
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Figure 2.3.  A cobalt nanoparticle and the associated organoaluminum stabilizer layer suggested 
by Shmidt and coworkers [113].  The gray circles in the center are Co atoms in an apparent 
crystalline array.  Reprinted with permission. 

The higher catalytic activity and immediate black precipitate formation when precatalysts 

with crystal H2O were used were explained by the formation of alumoxane (R2AlOAlR2) 

oligomers and their acac derivatives.  This requires the assumption of weaker coordination of 

alumoxane compounds to the nanocluster surface, and therefore less stabilization compared to 

the other proposed stabilizers AlEt2(acac), AlEt3, or their reaction products, a potentially 

important, more general conclusion.  The results from IR and elemental analyses on samples of 

catalyst precipitates showed the remaining Al compounds were a mixture of species including 

oligomeric alumoxanes with characteristic Al–O–Al bonding.  However, the catalyst precipitates 

had Al/Co ratios of 1.9–2.2 regardless of whether the initial Al/Co used in their preparation was 



 
 47 

2, 4, or 8.  The authors suggested that this result indicated that excess AlEt3 and AlEt2(acac) not 

bound to the catalyst surface were washed away by hexane during sample preparation.  However, 

it is not clear why the purported stronger binding AlEt3 and AlEt2(acac) would wash away 

instead of the supposed weaker binding alumoxane.  Not all aspects of the observed nanocluster 

and stabilizers from this important study are fully explained [113]. 

Gas analysis, deuterium labeling, and radical trapping experiments were carried out, the 

interested reader is referred to the details of those experiments elsewhere [19,113].  The general 

process of catalyst formation in these studies can be summarized as follows: (i) the anions of the 

transition metal precatalyst are replaced by R groups from AlR3, (ii) the M–alkyl intermediate 

decomposes during the reduction of M, specifically for Co, the Co(0) nanocluster precursor 

complex forms (i.e., the complex previously thought of as the catalyst), and (iii) M(0)n 

nanoclusters then form from that Co(0) precursor complex, and are stabilized by Al-containing 

compounds, the details and identities of which depend on the initial Al/M. 

This description still lacks a mechanism for formation of nanoclusters from M(0) 

complex intermediates.  Additionally, and importantly, in the absence of kinetic evidence, the 

simple observation of the presence of nanoclusters does not itself necessitate that they are the 

active catalysts—although it certainly opens up that hypothesis as a dominant one to try to 

disprove.  Schmidt and coworkers [113] observed Co concentration-dependent turnover 

frequencies (TOF = moles of product/(moles of catalyst × unit time) [115]), specifically lower 

Co concentrations giving higher TOFs.  Since the TOF would be [Co]-independent for a 

mononuclear homogeneous catalyst, this indicates that either a Co(0)nLx + mL  nCo(0)L(x/n+m) or 

related equilibrium is present (see p. 334 elsewhere [16]), that the catalysts are heterogeneous, or 

possibly some other explanation such as a competing, bimolecular catalyst deactivation pathway.  
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However, the explanation that catalyst solutions with lower [Co] make less-agglomerated 

catalysts, with higher TOF’s directly contradicts the observation [19,113] that catalyst solutions 

with more agglomeration give higher catalytic rates.  These studies do, however, identify kinetics 

as a function of metal/AlR3 concentrations as key experiments for future studies.  Such studies 

with a model Ir catalyst have recently been done [52,53,54], as will be briefly described (vide 

infra). 

 

2.2.2.2.  System investigated by Pasynkiewicz et al. [71]: Co(acac)3 plus 1 AlMe3 in benzene.  

The 1974 paper by Pasynkiewicz et al. investigated the possible reaction pathways and products 

of the catalyst formation reaction by IR spectroscopy of the reaction mixtures and MS analysis of 

the gas products.  They suggested the following reaction stoichiometry, Equation (4). 

 

3 Co(acac)3 + 3 (CH3)3Al → 3 Co(0) + 3 Al(acac)3 + [CH4 + C2H6 + C2H4]                    (4) 

 

The identity of Al(acac)3 was confirmed by IR, NMR, and elemental analysis.  The 

amount of each of the gaseous products was measured.  The yields of the gaseous products were 

60–70% based on the number of methyl groups, yet hydrolysis of the products did not result in 

further gas evolution, which was taken to mean that all the hydrolysable methyl groups had 

reacted.  This leaves 30–40% of methyl groups unaccounted for by the proposed stoichiometry, 

so that finding the rest of the organic products is a difficult but needed part of understanding 

Ziegler-type hydrogenation catalyst formation. 

Analysis of the solvent after the reaction led to the detection of small amounts of toluene.  

When benzene-d6 was used as the solvent 10% of the gas product was CH3D by MS.  These 
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observations suggested that multiple reactions are probably present (and that not all reactions are 

on the path to catalyst formation).  A mechanistic scheme was proposed containing the following 

steps: (i) migration of a CH3 group from Al to Co and simultaneous formation of Al(CH3)2(acac) 

and Co(acac)2CH3, (ii) complex formation between the Co(acac)2CH3 intermediate and another 

molecule of AlMe3, leading to (iii) nucleophilic substitution at hydrogen, carbon, or Co atoms, 

and (iv) further reaction of the intermediates, ultimately resulting in metallic Co(0)n thought to 

be the true catalyst. 

The evidence supporting the notion that metallic Co(0)n was the true catalyst consisted 

of: (i) the color of the reaction solution changed to black, (ii) the catalyst residue obtained from 

solvent evaporation reacted violently with air, methanol, or water, and (iii) reaction of this 

residue with HCl gave CoCl2 and H2.  The problem with this conclusion is that while these 

results suggest the presence of metallic Co(0) in the residue, they in no way definitively rule out 

homogeneous catalysis in solution.  The kinetic studies necessary to support or refute the Co(0)n 

catalyst hypothesis remain to be done for this system as well. 

2.2.2.3.  Systems investigated by Goulon and coworkers: M(2-ethylhexanoate)2 plus AlEt3 (M = 

Co or Ni) [40,116], or Ni(acac)2 or Fe(acac)3 plus AlEt3 [40].  Goulon and coworkers studied 

Ziegler-type hydrogenation catalysts and their precursors using EXAFS spectroscopy.  In their 

important 1984 paper, they had greater success using the Ni precatalyst than Co because spectra 

of the Co catalyst solutions were overly affected by their preparation and aging [116].  EXAFS 

spectra of the Ni catalyst solution obtained at a series of Al/Ni ratios demonstrated Ni-Ni first-

neighbors at distances equal to, or slightly larger than, those found in Ni foil.  Signals were also 

detected for Ni–X at shorter distances, where X is C or O.  The relative strength of these two 

signals varied with Al/M, but also with mode of preparation and aging, making truly definitive 
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conclusions difficult.  The Ni–Ni signals expected for the higher metal shells were not observed, 

arguing, according to one interpretation, against the presence of (extensive amounts of) Ni(0)n. 

These results were interpreted by Goulon and coworkers [116] as consistent with 

amorphous clusters, but could also have been explained by small Ni(0)n clusters, n ≈ 4-10, based 

on their reported Ni–Ni first shell coordination of 3.8 ± 1 [117,118].13  The detection of Ni–X 

signals by Goulon and coworkers [116] suggests the presence of ligands that may stabilize any 

small clusters present and is also consistent with the samples showing Ni–Ni distances slightly 

larger than those found in Ni foil [119,120].14 

A shift observed in the absorption edge supported the hypothesis that Ni species were 

zero-valent, but incomplete reduction could not be ruled out by EXAFS.  The authors pointed 

out that earlier magnetic susceptibility data, interpreted as ruling out the presence of metal 

clusters [116], may have been misleading.  In light of the definitive EXAFS evidence for the 

existence of close M–M interactions, the earlier lack of detected ferromagnetism expected for 

metal clusters could be explained if “carbonaceous ‘screens’…prevent magnetic coupling” 

[116]. 

In their subsequent study, Goulon and coworkers [40] used other catalyst precursors in 

an attempt to avoid the variability problems of the initial study.  They again observed EXAFS 

signals dominated by Ni–Ni first neighbors suggesting the presence of metal clusters.  The 

model of molecular “[Ni,Al]” complexes or clusters was ruled out by the similarity of spectra 
                                                
13 See the references cited [117,118] for an explanation on how the conversion between average coordination 
number and number of atoms in a cluster is carried out, which is closely related to the method used for estimating 
number of atoms in a metal cluster of a given diameter [50]. 

14 Goulon and coworkers tentatively discounted the data as indicative of small clusters because of the expectation 
that Ni–Ni distances would be shorter for metal clusters of less than about 10 atoms.  However, in a recent study of 
Rh clusters [119], contraction of M–M distances was expected for metal nanoclusters without ligands according to 
an approximate n-1/3 relationship (where n = the number of atoms) [120], whereas in experimentally observed 
clusters with ligands, larger Rh–Rh distances were observed.  This observation was explained by donation of M–M 
valence electrons to M–ligand bonds, thereby lengthening the M–M distance. 
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using GaEt3 as the cocatalyst, and by Ga K-edge spectra.  Interestingly, EXAFS spectra of the 

Fe(acac)3 plus 6 AlEt3 catalyst system were interpreted as ruling out the presence of small Fe 

metal particles, but were similar to the EXAFS spectra of amorphous iron carbide.  When the 

amorphous metal carbide model was used to fit the Ni sample spectra, the initial results were 

promising, but not definitive.  Formation of clusters in these systems is undeniable, but whether 

they are small ~4–10 atom clusters, amorphous M or M–carbide clusters, or some combination 

is still unclear.  Furthermore, the question of which species is the predominant catalyst remains 

open, kinetic studies being required to answer that question. 

 

2.2.2.4.  Systems investigated by Bönnemann and coworkers: Ni(acac)2 plus 3 Al(i-Bu)3 [121], 

Pt(acac)2 plus 4 AlMe3 [121,122,123,124,125], or [(COD)Pt(CH3)2] plus 10 AlEt3, or 

Al(C8H17)3 [126].  Bönnemann and coworkers have studied the reaction between Ziegler–type 

precursors and have worked on characterizing the products.  They observed that solutions turned 

brown or black upon precursor combination in the Ni(acac)2 plus 3 Al(i-Bu)3 and Pt(acac)2 plus 

4 AlMe3 systems, which is consistent with the formation of nanoclusters [16].15  In addition, 

TEM images of these systems revealed the presence of 3.2 ± 0.8 nm and 2.5 nm Ni and Pt 

nanoclusters respectively.  TEM images alone, however, can be misleading as (i) the technique 

has been shown to be sensitive to sample preparation, especially with samples of Ziegler–type 

systems [9], and also (ii) can cause particle formation and/or crystallization under the electron 

beam, especially for the lighter first and second row metals [17,127].  Unlike Shmidt and 

coworkers who used a minimal beam current and compared images from repeated beam 

                                                
15 Bönnemann and coworkers use the terms “colloidal nanometals,” “transition metal nanocolloids,” and “nanosized 
organosols” interchangeably for what we define herein as “Ziegler nanoclusters” (and only for cases where an AlR3 
component is present). 
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exposures [113], Bönnemann and coworkers [121,122,123,124,126] reported no attempt to rule 

out these potential TEM artifacts. 

Bönnemann and coworkers focused several of their subsequent studies on the Pt(acac)2 

plus 4 AlMe3 system.  A fit of the EXAFS spectrum taken of the isolated dried colloid gave a Pt–

Pt interaction with an average coordination number of 5.0 ± 0.5, and a lack of longer range Pt–Pt 

shells.  These two observations could be explained by the predominance of clusters with ~8–13 

atoms, nanoclusters with an amorphous structure, or a combination of the two.  High resolution 

TEM images and corresponding optical diffractograms showed 1.2 nm amorphous particles.  

Analysis of the samples by anomalous small-angle X-ray scattering (ASAXS) spectroscopy 

confirmed the presence of 1.2 nm amorphous nanoclusters.  The different sizes of nanoclusters 

observed in the Pt(acac)2 plus 4 AlMe3 system (2.5 nm by TEM vs. 1.2 nm by HRTEM and 

ASAXS) may be a result of the different methods used, differences in sample preparation, or a 

combination of the two. 

Formation of nanoclusters was monitored as a function of time with in-situ ASAXS, 

Figure 2.4 [124,125].  The clusters of final 1.2 nm diameter were observed within 1 hour of the 

start of the reaction, and stayed constant for at least 1000 hours.  The constant final size of the 

nanoclusters, and a fit of the data by an empirical [128], exponential model, Figure 2.4 (bottom), 

were interpreted as evidence for continuous “nucleation” or “agglomeration” of reduced Pt(0) 

atoms into 1.2 nm diameter, Pt(0)~55 nanoclusters,16 without any observable contribution from 

nanocluster “growth” [124].  The identity of the clusters as Pt(0)~55 is significant because 55 is 

the second of the “magic number” series of atoms for icosahedra with a full/closed outer shell, 
                                                
16 Bönnemann and coworkers discuss the clusters as being comprised of 53 Pt atoms based on an ideal icosahedral 
structural model and their experimentally determined 1.2 nm diameter.  This is actually an approximation since the 
techniques used show the clusters are amorphous (i.e., not ideally icosahedral) and that a distribution of cluster sizes 
exists.  The clusters have been written here as Pt(0)~55 to emphasize these facts according to a convention established 
in the literature for representing the approximate number of atoms in such (non-monodisperse) nanoclusters [50]. 
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and thus more stable than non-magic number clusters [129].  To the best of our knowledge, 

Bönnemann and coworkers’ study is the first that has successfully monitored the in-situ 

formation of nanoclusters from Ziegler–type precursors, an important contribution. 

Some confusion may be created by the terminology used by Bönnemann and coworkers 

for nanocluster formation [124], which is different than the terminology commonly used in the 

nucleation and growth literature [49,130,131,132].  In a range of systems, and according to a 

well-precedented nanocluster formation mechanistic model (nucleation A → B (rate constant k1), 

and autocatalytic growth A + B → 2B (rate constant k2) [130], the term “nucleation” refers only 

to the k1 step, which is typically followed by (autocatalytic surface) “growth”, the step with rate 

constant k2.  Subsequent increases in size could then proceed by either continued “growth” or by, 

mechanistically now precedented, particle “agglomeration” (the combination of nanoparticles to 

form larger agglomerates) [131].  However, in the work by Bönnemann and coworkers [124], 

“nucleation” is used to describe the formation of the final-sized 1.2 nm nanoparticles, 

“agglomeration” is used to describe a part of the “nucleation” process (the joining of single zero-

valent Pt atoms, the other part of the “nucleation” process being the initial precursor 

decomposition), and “growth” is used to describe an increase in size of the 1.2 nm nanoparticles 

after “nucleation” has taken place (presumably occurring via continued “agglomeration”).  In 

short, the mechanistic nomenclature used elsewhere [124] is inconsistent with the existing 

literature [49,130,131,132], and therefore confusing.  However, despite the above nomenclature 

issues, the relatively slow nanoparticle development observed for this system makes it 

promising—if catalytically competent for hydrogenation, as is expected—for further studies 

aimed at determining the true nature of the catalyst and the catalyst formation mechanism.  In 

addition, Bönnemann and co-workers’ studies, along with Goulon’s and co-workers’ efforts 
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nearly 20 years earlier [40], promise to be important classic studies in identifying what we term 

“Ziegler nanoclusters”. 

A similar system, Pt(acac)2 plus 4 AlEt3 ([Pt] = 1.2 mM, solvent = toluene, temperature = 

22.0 °C, initially 40.0 psig H2, stirring = 1000 rpm.), has been tested for its ability to catalytically 

hydrogenate cyclohexene.  The results of following the formation of a Ziegler–type 

hydrogenation catalyst from this system by the cyclohexene hydrogenation reporter reaction 

method [50,130,133] are shown here for the first time, Figure 2.5 (for complete experimental 

details see the Supporting Information).17  The hydrogenation curves show the production of 

active Ziegler–type hydrogenation catalysts after an induction period, but the curves end abruptly 

upon total consumption of cyclohexene, and do not have a truly sigmoidal shape.  The same, 

now well precedented nanocluster formation mechanistic model discussed above (nucleation A 

→ B (rate constant k1), and autocatalytic growth A + B → 2B (rate constant k2) [130]) was 

employed, but failed to produce good fits in the latter portions of the curves.  A representative 

hydrogenation curve is shown, and the fitting results are given, Figure 2.5.  The different systems 

and conditions used prohibit direct comparison between these experiments and the findings of 

Bönnemann and coworkers.  However, the use of slow-forming catalysts, even if such model 

systems are not what are desired industrially, appears to be one important way in which new 

insights could be gained.  Hence, the Pt(acac)2 plus AlR3 system is one of interest for further 

studies. 

 

                                                
17 Other systems surveyed for use as model Ziegler–type hydrogenation catalysts are [(1,5-COD)Ir(acac)], [(1,5-
COD)Rh(acac)], Rh(acac)3, Co(acac)2.  The results of these previously unpublished hydrogenation survey 
experiments are also given in the Supporting Information for the interested reader. 
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Figure 2.4.  The results of in-situ ASAXS to monitor the formation of Pt(0) nanoparticles by 
Bönnemann and coworkers [124].  The mean particle radius (top) remained essentially constant 
from the time particles were first detected, and up to 1000 hours attesting to particle stability 
(mean particle diameter = 1.2 nm).  The mass fraction (mparticle/mtotal) of Pt atoms in nanoparticles 
as a function of time (bottom) fit with an empirical exponential model.  Reprinted with 
permission. 

Bönnemann and coworkers reported the presence of a binuclear Pt complex Me4Pt(µ-

AlMe)2PtMe4 as an intermediate in the formation of Pt nanoparticles [122,123,124].  Its 

existence and structure were investigated using 1H and 13C NMR, MS, XPS and EXAFS studies.  

Decomposition of the binuclear platinum intermediate lead to “nucleation” of the 1.2 nm, Pt~55

nanoparticles.  From the in-situ ASAXS experiments, the rate of “nucleation” was found to be 

linearly proportional to the concentration of the binuclear intermediates.  Bönnemann and 

coworkers concluded, therefore, that the rate-determining step in nanocluster formation is the 

decomposition of the binuclear intermediate.  A word and picture mechanism of colloid 
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formation from the work of Bönnemann and coworkers [124] is reproduced below, Scheme 1.7.  

In the absence of excess AlMe3 or AlMe2(acac), an insoluble “Pt nanopowder” was observed 

made of 1.4 nm diameter clusters [123]. 

Figure 2.5.  A representative reaction of Pt(acac)2 plus 4 AlEt3 followed by the cyclohexene 
hydrogenation reporter reaction method [50,130,133] ([Pt] = 1.2 mM, solvent = toluene, 
temperature = 22.0 °C, initially 40.0 psig H2, stirring = 1000 rpm), and attempted fit of the data 
using the now well-established A & B (rate constant k1), A + B & 2B (rate constant k2) 
mechanistic model for nanocluster nucleation and autocatalytic growth [130].  The resulting rate 
constant values taken from 5 such runs are k1 = 0.004 ± 0.002, and k2 = 0.09 ± 0.03.  All the fits 
obtained were similarly poor in the last part of the curve, with a range of R2 values of 0.9491–
0.9954.

In the soluble, stabilized nanoclusters, the stabilizer layer has been referred to by 

Bönnemann and coworkers as an “organo-aluminum protecting shell” [121].  In-situ 1H NMR 

studies confirmed an exchange reaction between the methyl groups of AlMe3 and the acac 

ligands from Pt(acac)2, resulting in the appearance of AlMe2(acac) peaks [122,124].  

Protonolysis of a sample of the dry colloid allowed the calculation that 6 active Al–C bonds per 

Pt atom exist in the stabilizer of Pt nanoclusters.  The representation of the resulting stabilized 

cluster is shown, Scheme 1.7. 

Bönnemann and coworkers also analyzed the products formed upon the reaction of [(1,5-

COD)Pt(CH3)2] plus 10 AlEt3 or Al(C8H17)3 [126].  As with other systems studied, the solution 

became a brown/black color upon the addition of AlR3.  The presence of Pt(0)13 nanoclusters was 
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Scheme 2.7.  A depiction of Pt particle and colloid formation from the Pt(acac)2 plus 6 AlMe3
system proposed by Bönnemann and coworkers [124].  Decomposition of the dimeric, Al-
bridged Pt intermediate is thought to be the rate determining step.  Reproduced with permission. 

observed in TEM images showing 0.7 nm clusters.  This finding was supported by comparison of 

experimental XANES spectrum with theoretical model spectra of 1-shell and 2-shell clusters.  

The zero-valent state of Pt in the Pt(0)13 nanoclusters was confirmed by both XPS and XANES.  

Increasing the temperature during formation of the nanoclusters from room temperature to 60 ºC 

resulted in a slight increase in size from 0.7 nm to 0.82 ± 0.19 nm, which was interpreted as a 

contribution from Pt55 nanoclusters in addition to the major constituent, Pt13 clusters.  Such an 
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interpretation could be supported by a distinct bimodal size distribution obtained from TEM 

images.  However, this was not provided; the reported size and dispersity do not correlate well 

with truly monodisperse, precise 13 and 55 Pt atom particles as reported.  Truly monodisperse 

nanoparticle samples are rare: single crystals of thiol-protected Au102 nanoparticles are, for 

example, one case of a truly monodisperse nanoparticle sample [134]. 

The timescale of the reaction varied between 1 hour to more than one month depending 

on the temperature and whether Al(C8H17)3 or AlEt3 was used.  No color change was observed 

using AlMe3, implying the absence of nanoclusters in the resulting solution.  However, the 

authors did not mention the temperature or time allowed for observation, so that observation 

does not rule out possible nanocluster formation with AlMe3 as the cocatalyst.  Bönnemann and 

coworkers [126] believed that β–H elimination was rate-determining in nanocluster formation, 

yet that explanation is not necessarily consistent with the observation of cluster formation in their 

own Pt(acac)2 plus AlMe3 system [121-125], or with catalyst formation using AlMe3 in other 

systems [4,71].  Furthermore, if β–H elimination is rate-determining, one might have expected 

faster cluster formation with AlEt3 than with Al(C8H17)3, since the former has 50% more β–H’s 

(and if one assumes an equal amount of Al-alkyl is present in each case at the rate determining 

step).  Moreover, β–H elimination is typically very facile in organometallic chemistry and rarely 

a rate-determining step to our knowledge [10].  Clearly, there are many aspects of the 

mechanism of formation of Ziegler nanoclusters that require further explanation. 

Bönnemann and coworkers have several other, valuable publications dealing with 

interesting topics that are related to Ziegler–type hydrogenation catalysts. Other research on the 

Pt(acac)2 plus 4 AlMe3 system was focused on the characterization of networks formed by the 

nanoclusters [135,136].  Syntheses starting with Ni(COD)2 and AlEt3, and using high 



 
 59 

temperatures, resulted in the formation of NiAlx materials [137,138].  Another system gave ~10 

nm Co(0)n nanoclusters by the combination of Co2(CO)8 and AlR3 [139].  These studies, 

however, are beyond the scope of this review; the interested reader is referred to those original 

publications [135,136,137,138,139]. 

It is still unclear why cluster formation is relatively slow in both the Pt(acac)2 plus 4 

AlEt3 and [(COD)Pt(CH3)2] plus 10 AlEt3, or Al(C8H17)3 systems investigated by Bönnemann 

and coworkers, when catalyst formation is rapid in virtually all other systems explored [37].  

One possible explanation of this is that the heterogeneous component observed in some systems 

is the product of catalyst deactivation, as has been observed in a Ni(diisopropylsalicylate)2 plus 

AlR3 system with aromatic solvents [70].  Another conceivable explanation, in light of the 

studies of Shmidt and coworkers [19,81,113,114] (who showed the presence of nanoclusters in 

systems of active hydrogenation catalysts) and the results in Figure 2.5, vide supra, showing an 

induction period prior to the catalytic hydrogenation of cyclohexene using a similar Pt(acac)2 

plus 4 AlEt3 system, is that the slow cluster formation reaction is inherent to the use of these 

particular precursors, conditions, or both.  These studies serve to again illustrate the importance 

of kinetic experiments in studies attempting to determine the true catalyst.  Notable here is that 

the slow formation of these systems could be exploited in the pursuit of a more detailed 

investigation into the kinetics and mechanism of Ziegler–nanocluster formation, a key goal in the 

field of Ziegler–type hydrogenation catalysts. 

2.2.2.5.  Systems investigated by Alley, Hamdemir, Wang, Frenkel, Li, Yang, Menard, Nuzzo, 

Özkar, Johnson, and Finke: [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 [52,53,54], 

Co(neodecanoate)2 plus AlEt3 [55], and Ni(2-ethylhexanoate)2 [56] plus AlEt3.  Model and 

industrial Ziegler–type hydrogenation catalyst systems that have recently been under 
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investigation by the above-noted team include AlEt3 plus [(1,5-COD)Ir(µ-O2C8H15)]2 

[52,53,54], Co(neodecanoate)2 [55], or Ni(2-ethylhexanoate)2 [56]. Studies have been carried 

out using a variety of analytical methods including kinetic measurements, TEM, MALDI MS, 

EXAFS, XPS, and NMR.  Interestingly, the catalytic activity of the Ir model system varies 

inversely with Ir concentration, similar to the [Co]-dependent TOF results reported by Shmidt 

and coworkers using their Co(acac)2,3 plus AlEt3 system already discussed [113].  Some of the 

other key results thus far appear to be that the precatalyst plus cocatalyst reactions in these 

Ziegler–type catalyst systems produce a mixture of sub-nanometer and amorphous M(0)n 

nanoclusters, and that this result would have gone unrealized without using a combination of 

analytical methods.  This review is one of the necessary first steps of the studies in progress, 

work currently in various stages of preparation for publication [53,54,55,56]. 

The above group has also briefly investigated the mechanism of cyclohexene 

hydrogenation using a Ziegler–type hydrogenation catalyst made from Co(neodecanoate)2 plus 

AlEt3, Al/Co = 3.  A D2 labeling experiment was used to determine the location of the rate-

determining step with regard to the Shmidt mechanism shown back in Scheme 1.5.  Based on 

those results, reported here for the first time, an updated mechanistic scheme is proposed, 

Scheme 2.8.  A full description of the results and experimental details will be found by the 

interested reader in the Supporting Information.  Briefly, the Co-based Ziegler–type 

hydrogenation catalyst was prepared in cyclohexane, cyclohexene substrate was added, and the 

vessel containing the solution was pressurized with D2.  The amount of deuterium incorporation 

into the resulting hydrogenation product cyclohexane was analyzed by gas chromatography mass 

spectrometry, Figures SI-A6 and SI-A7, Supporting Information. The observation of a significant 

amount of cyclohexane containing > 2 deuterium atoms supports the precedented hypothesis, in 
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line with the accepted mechanism for heterogeneous transition metal catalyzed hydrogenations 

[140], that reductive elimination, as opposed to migratory insertion [42], is the rate determining 

step, with prior equilibria existing in the earlier step(s).  In fact, this updated mechanism, Scheme 

1.8, better explains the previous observation that the reaction becomes zero order in H2 at 

pressures above 1.5 atm [42].  A caveat on these studies is that they are not complete as of this 

writing, so that their full findings and resultant insights remain to be completed. 

2.2.2.6.  Conclusions for the section on the nature and mechanism of formation of Ziegler–type 

hydrogenation catalysts.  The following results appear to apply across different systems: (i) the 

exchange of ligands between AlR3 and the precatalyst has been established by IR and 1H NMR 

spectroscopy; (ii) for M(L)2 precatalysts plus AlR3, the resulting Al species present are AlR2(L), 

AlR(L)2, Al(L)3, or some combination of the three depending on the Al/M used, and the 

presence of additional impurities or additives such as H2O; (iii) the formation of alumoxanes 

(i.e., Al–O–Al complexes) and their contribution to the stabilizer layer of observed nanoclusters 

also has some precedent, but could still use additional study; and (iv) the most recent studies 

favor the hypothesis of M(0)n nanocluster catalysts.  In these cases AlR3 is generally believed to 

reduce the higher-valent transition metal from the precursor to the zero-valent state, and it or its 

reaction products are thought to ligate and stabilize the resulting M(0)n nanocluster catalyst.  

However, disagreement persists concerning the reaction forming Ziegler–type hydrogenation 

catalysts, and the nature of the catalysts themselves.  Whether or not the catalysts are 

homogeneous or heterogeneous is still a central remaining issue, as is the composition of the 

active catalyst(s).  In most cases, the kinetic studies required to answer the homogeneous versus 

heterogeneous catalysis question are lacking. 
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Scheme 2.8.  A schematic catalytic olefin hydrogenation mechanism (shown here for 
cyclohexene for convenience) using Ziegler-type hydrogenation catalysts.  The ball implies a 
transition metal nanocluster catalyst, but could also represent a monometallic catalyst.  The 
postulated steps are oxidative addition of H2, olefin addition, migratory insertion to form an alkyl 
hydride species, and irreversible, rate-determining reductive elimination yielding the saturated 
cyclohexane.  Evidence for reductive elimination being rate limiting is our observation of 
multiply deuterated (> 2 deuterium atoms) in the hydrogenation product of cyclohexene (the 
results and experimental details are given in the Supporting Information for the interested 
reader).  The actual timing of oxidative addition of H2 versus olefin addition steps is a standard 
mechanistic ambiguity [38], so that the H2 activation (first) pathway is shown only for the sake 
of illustration. 

Several factors conspire to make solving the homogeneous or heterogeneous catalysis 

question especially difficult for Ziegler–type catalyst systems.  The high sensitivity of Ziegler–

type hydrogenation catalyst systems to factors such as air and water complicates reproducible 

catalyst preparation, and has probably contributed to the occasional contradictory 
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characterization results seen for otherwise ostensibly similar systems.  There is also the 

possibility that some Ziegler–type catalyst systems are homogeneous and some are 

heterogeneous, especially when considering the identities of the catalyst precursor components 

in different systems.  This sentiment was expressed by Breslow and Newburg back in 1959 [23], 

“It is our belief that there is not one, but a family of Ziegler–type catalysts.”  Even given 

identical systems, the variables of the synthesis procedure affect catalyst activity and may lead 

to modifications in the nature of the resulting catalyst.  This was recognized by Barrault et al. 

[37], who noted that “the nature of these complexes is largely controlled by differences in 

preparation.”  In other words, despite the narrow definition used herein for Ziegler-type 

hydrogenation catalysts, the creation of fundamentally different catalysts from similar or even 

identical starting materials may occur because of differences in other variables in the catalyst 

preparation, or conditions employed during analysis [10,17].  This is a reflection of an insight of 

Halpern’s from the mechanistic study of organometallic systems [141,142], which “underlines 

the danger of assuming the mechanisms… or of extrapolating from one system or set of 

conditions to another (even closely related) one” [141].  Hence, it is certainly possible that small 

changes may alter the state of the transition metal from single metal complexes to multimetallic 

nanoclusters, which are quite different species and catalysts. 

Despite the conflicting reports that exist concerning the homogeneous or heterogeneous 

nature of Ziegler–type polymer hydrogenation catalysts, there is good reason to believe that, in 

many systems and under conditions commonly employed, there is at least a heterogeneous, 

nanocluster, or possibly sub-nanocluster component to the active catalysts [16].  That early 

researchers favored the conclusion that Ziegler–type hydrogenation catalysts are homogeneous 

makes perfect sense.  The prior lack of examples of organic-solvent-soluble nanoclusters, and 
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prior lack of knowledge of the kinetics and mechanism of formation of transition-metal 

nanoclusters, meant that it simply was not possible to routinely know when soluble nanocluster 

catalysts were both forming and then serving as the kinetically dominant catalyst [16].18  The 

recent observation of Ziegler nanoclusters in some systems is a direct result of characterizations 

using modern methods such as TEM, XAFS, and ASAXS.  The availability and improvement of 

other, advanced analytical methods may eventually assist in the disproof of the homogeneous or 

heterogeneous catalyst hypothesis for a given system and set of conditions.  Another reasonable 

hypothesis warranting disproof is that of the simultaneous existence of both homogeneous and 

heterogeneous active catalysts in a single system.  Additionally, results from studies under well-

documented conditions using well defined precursor materials (i.e., and in comparison to the 

common, but somewhat ill-defined, industrially used Ni and Co precursors) promises to allow 

generalization of any important findings [52].  Ideally, such studies would simultaneously be 

able to detect the effects of catalyst preparation variables on both catalyst properties and catalyst 

composition and structure (vide infra).   

2.3. A closer look at the more general homogeneous versus heterogeneous catalysis question 

2.3.1. The 1994 four-prong methodology 

Since it is central to the main unanswered question of industrial Ziegler–type 

hydrogenation catalysts, namely are they “homogeneous” or “heterogeneous” (or both), we 

conclude with a last section before the summary on the current methods and approaches to this 

historically challenging, if not perplexing, research question.  In 1994, a multi-pronged 

                                                
18 Ziegler–type M(O2CR)2/AlR3 catalysts were listed in our 2003 review [16] on the “is it homogeneous versus 
heterogeneous catalysis?” question as systems where heterogeneous catalysis is strongly suspected, but where 
studies confirming or refuting this suspicion are needed. 
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approach with kinetic studies at its heart19 was published [12].  That approach emphasizes using 

multiple analytical techniques and the requirement that any proposed explanation of the catalyst 

must satisfy all the data [13,16].  The approach has been shown to be successful in addressing 

the homogeneous versus heterogeneous catalysis question on at least four occasions 

[12,15,17,18].  The approach was the outgrowth of a painstaking, 5-year study that eventually 

identified novel, highly stabilized, as well as highly catalytically active P2W15Nb3O62
9- 

polyoxoanion-stabilized Ir(0)~300 nanoclusters as the true catalyst in hydrogenation systems 

beginning with [(1,5-COD)Ir• P2W15Nb3O62]8- as precatalyst under H2 and in the presence of 

cyclohexene, Figure 2.6. 

A more general solution to the homogeneous vs. heterogeneous catalysis problem, 

diagrammed in a simplified form, Figure 2.7, resulted from that work because the 

polyoxoanion-stabilized nanoclusters turned out to be the most highly anionically stabilized 

nanocluster known at the time, and thus very “homogeneous-like” [12].  This extreme-case-

developed methodology has since proven able to identify nanoparticle catalysts in at least 3 of 4 

systems previously believed to be homogeneous catalysis [12,15,17,18].  The methodology even 

detected both homogeneous and nanocluster heterogeneous catalysis derived from a Rh-system, 

                                                
19 Support for the central importance of kinetic experiments in catalyst studies comes from, as Halpern put it, “the 
fact that catalysis is, by definition, purely a kinetic phenomenon” [89]. 
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Figure 2.6.  The multi-step approach developed for distinguishing homogeneous from 
heterogeneous catalysis in acetone-soluble Ir(0)n nanocluster systems formed from a [(1,5-
COD)IrI•P2W15Nb3O62]8- catalyst precursor under H2 in acetone and in the presence of 
cyclohexene at room temperature [12].  Reprinted with permission. 

[Rh(C5Me5)Cl2]2, in which the nature of the catalyst changed depending on the conditions used 

[17].  Note that the goal is not to try the impossibility of “proving” that Ziegler–type 

hydrogenation catalysts are nanoclusters, but rather to have a way to rule out—that is to falsify, 

to disprove—all but one of the competing hypotheses for the nature of the true catalyst in a 

given system and for a specific set of conditions [143], leading to a set of data consistent with, 

and strongly supportive of, ideally one remaining hypothesis regarding the true catalyst(s).  

Figure 2.8 provides the most current, “6-prong approach” to the “is it homogeneous or 

heterogeneous catalysis?” question. 

Because this methodology ideally involves the use of all relevant techniques with the 

realization that a proposed answer must explain all the data for a given system, any interpretation 
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of the data is open to continued testing by use of new or improved analytical techniques.  Re-

interpretation would be necessary if new data is acquired that is inconsistent with the existing 

explanation for the nature of the catalyst.  There is an example of such an occurrence in the 

recent literature for researchers explicitly using the approach shown here [127,144], and a 

reexamination of the system using a different analytical technique, in this case XAFS [119,145].  

This example serves to illustrate the importance of using all relevant, plus also kinetic studies, 

and understanding that any viable explanation must account for all the data on a given system. 

Figure 2.7.  The 1994 four-prong generalized method for distinguishing homogeneous from 
nanocluster heterogeneous catalysts [12].  This scheme is a simplified version of the 12-step 
intellectual process and scheme shown in Figure 6 [12].  Reprinted with permission. 

2.3.2. Special challenges with (first row, Ni, Co, Fe) Ziegler–type hydrogenation catalysts 

There are special challenges to answering the homogeneous versus heterogeneous 

catalysis question for (especially the first row, Ni, Co, Fe) Ziegler–type hydrogenation catalysts.  
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These exist because Ziegler–type hydrogenation catalysts are: (i) notoriously sensitive to both 

the variables in their preparation (see section 2.1 above), and sensitive to conditions during 

characterization experiments; (ii) difficult to isolate for the needed kinetic studies; and (iii) prone 

to giving spurious results in poisoning experiments, especially since selective poisons for the 

AlR3-derived component and, separately, for the transition-metal components are needed, but do 

not exist at present.  Efforts to isolate Ziegler–type hydrogenation catalysts in their resting state 

have often met with failure (e.g., M(2-ethylhexanoate)2 plus m AlEt3, M = Ni or Co, m = 3–4, 

and Co(stearate)2 plus 2 AlEt3 systems)[58,67].  Early successful efforts required use of non-

Ziegler–type catalyst models such as [(α,α’-bipyridyl)NiMe2], [4] or experiments under atypical 

conditions such as low temperatures [4,58,105].  The 2005 and 2006 work of Shmidt and 

coworkers [19,81,113], and 1999-2005 work of Bönnemann and coworkers [121-124,126], 

reports successful isolation of the catalyst-related material, and nanocluster materials, 

respectively.  However, the handling procedures required for isolation of these materials, which 

often involves removal of the solvent under vacuum, washing the residue with hexane, and 

drying, may influence the nature of the material, the characterization results, or both [146].  This 

is especially true for the use of TEM, which despite some recent success [19,81,113,121-

124,126], has also given results that were highly dependent on the method of sample preparation 

in some Ziegler–type catalyst systems [9].  Furthermore, and as already mentioned, without 

checking for artifacts when using TEM (by control experiments and complementary 

characterization techniques), misleading change in, or damage to, the sample from the electron 

beam of the TEM may occur and go undetected [17,127].  This is especially true for TEM of 

Ziegler–type catalyst samples of the relatively light elements of Ni and Co, which are more 
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susceptible to certain types of TEM-beam-induced damage in addition to poor contrast and 

image quality [147]. 

Normally, quantitative catalyst poisoning experiments using established poisons such as 

CS2 have the potential to give definitive results [148].  Less than 1 equivalent of poison should 

be needed to completely kill catalyst activity if the catalyst is a particle with only a fraction of 

transition metal atoms on its surface.  However, if a full equivalent of poison is needed it may 

indicate a molecular homogeneous catalyst [16].  The use of such poisons with Ziegler–type  

hydrogenation catalysts is problematic because the Lewis acidic AlR3 component can be 

expected to compete with the transition metal for the poison—again, ideally two types of 

selective poisons are needed.  Attempts to use alcohol in catalyst poisoning led to contradictory 

results, as has already been discussed [57,75,114].  Poisoning Ziegler-type hydrogenation 

catalysts with Hg(0)—a (non-definitive, but often useful) test of heterogeneous catalyst 

formation—suffers from the possibility that Hg(0) might also poison homogeneous complex 

catalysts or catalyst precursors [16].  Difficulties with the Hg(0) poisoning test have been 

discussed elsewhere [90].  Additionally, control experiments to illuminate or rule out these 

effects would need to take into account the fact that most Ziegler–type hydrogenation catalysts 

are rapidly pre-formed before use in hydrogenation. 

Finally, the requirement that the correct explanation be consistent with all the data is an 

important, but tall order for Ziegler–type hydrogenation catalysts.  A lot of conflicting data on 

what appears to be comparable systems exists.  This requirement is, nevertheless, one that will 

have to be met before a systematic understanding of Ziegler–type hydrogenation catalyst systems 

is realized. 
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2.3.3. Conclusions for the section on the more general homogeneous versus heterogeneous 

catalysis question 

Despite the success of the 1994 approach in Figures 2.6 and 2.7, applying it toward 

determining the true nature of Ziegler–type hydrogenation catalysts is changing and upgrading 

that approach [53,54,55,56].  However, it must be remembered that the approach in Figures 2.6 

and 2.7 is nothing more than a guideline for one’s own, creative thinking and approach for the 

specific, “true catalyst determination” problem and catalyst at hand.  The central tenets of the  

methodology should still apply: (i) find what form or forms the precursor materials take in a 

sample of the resting state(s) of the catalyst; (ii) perform kinetic studies from resting state(s) to 

determine which are the kinetically competent/dominant species; (iii) use all available/applicable 

techniques; and (iv) eliminate all reasonable alternative hypotheses to arrive at, ideally, a unique 

catalyst formulation that accounts for all the data. 

The ideal goal in this updated approach to the “homogeneous versus heterogeneous 

catalysis” problem is the simultaneous spectroscopic and kinetic analysis of a catalyst at the 

desired or normal operating conditions, that is, via “operando” spectroscopy (the term 

“operando” is from the Latin for “working” or “operating”) [149,150,151,152].  This 

combination overcomes weaknesses of using either kinetic [89, 153] or spectroscopic analysis 

alone [152], especially if multiple spectroscopic techniques are simultaneously used [154].  

However, the use of operando spectroscopy requires overcoming difficult challenges in 

experiment and reactor cell design [154].  Considerable challenges are likely to be encountered 

in any attempt to analyze Ziegler–type hydrogenation catalysts by operando spectroscopy.  The 

use of an experimental setup, no matter how sophisticated, cannot supplant the importance of 

using Platt’s method of disproof of all reasonable alternative hypotheses [143]. 
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Figure 2.8.  The updated “six-prong” approach for distinguishing homogeneous from 
heterogeneous catalysis, updated to include operando spectroscopy.  The basic principles, 
however, remain the same: (i) find what form or forms the precursor materials take in a sample 
of the resting form(s) of the catalyst; (ii) perform kinetic studies from resting state(s) to 
determine which are the kinetically competent/dominant species; (iii) use all available/applicable 
techniques; and (iv) eliminate alternative hypotheses [143] to arrive at, ideally, a unique 
explanation that accounts for all the data. 

3.  Summary 

The key points from the introduction section are: 

• Ziegler–type hydrogenation catalysts made of group 8–10 transition metal precatalysts, 

particularly first row metal chelates or carboxylates, and AlR3 cocatalysts, are important 

for the industrial hydrogenation of a variety of unsaturated organic compounds, including 

diene polymers.  Ziegler–type hydrogenation catalysts should not be confused with 

Ziegler–Natta polymerization catalysts, which were not a part of this review. 
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• Despite their relatively long history of industrial use, there is a need for an improved 

fundamental understanding of Ziegler–type hydrogenation catalysts.  That improved 

understanding should, in turn, drive further rationally-directed synthetic, mechanistic, 

and industrial improvements. 

• The key general areas investigated in the literature can be categorized as: (i) the variables 

important to catalyst synthesis and their effect on catalyst properties, particularly 

hydrogenation activity, (ii) the reaction between the transition metal precatalyst and 

cocatalyst components, (iii) the compositional and structural nature of the active catalyst 

species, and (iv) the mechanism of catalytic hydrogenation. 

 

The main findings from the section on catalyst preparation variables are: 

• The most important variables of catalyst preparation appear to be:  (i) the identities of the 

transition metal precatalyst and the organometallic cocatalyst; (ii) the ratio of these two 

components and the role of impurities, particularly H2O; (iii) the solvent; (iv) the identity 

of the substrate; (v) the details of component addition (such as order and rate, presence of 

substrate, atmosphere, and temperature); and (vi) the aging of prepared catalyst before 

use in hydrogenation reactions. 

• Catalysts made from Ni or Co precursors are favored by industry.  They tend to have the 

highest activities, and have an advantageous balance of desirable properties, low cost, 

and relative ease of preparation. 

• The anions present are another important aspect of the identity of the precatalysts.  

Anions such as 2-ethylhexanoate and acac are the most popular for use and study.  The 

activity of catalysts made with these precursors appears to be positively correlated to 
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their solubility.  Some precatalyst anions, especially halogens, reduce catalyst activity, 

likely by acting as poisons. 

 

• Short chain AlR3 cocatalysts, particularly AlEt3, are most commonly used.  The preferred 

cocatalyst varies with the particular system. 

• One of the main variables appears to be the Al/M ratio.  Most studies seem to agree that 

there is an optimum Al/M ratio for most systems.  The optimum Al/M ratio has been 

reported to exist due to incomplete activation at too low Al/M and poisoning by excess 

AlR3 at high Al/M.  Water and other impurities have been reported to have both 

beneficial and detrimental effects, depending on the particulars of the system being 

studied, and appear to affect the optimum Al/M ratio.  The optimum Al/M ratio is one of 

the areas where a greater fundamental understanding of the nature of the catalyst for each 

given system could help to make sense of the range of results observed in the literature. 

• The other variables involved in catalyst preparation (the solvent, the substrate, the order 

and rate of component addition, the presence or absence of substrate, the atmosphere, the 

temperature, and catalyst aging before use) are not universally agreed to be important.  

However, in most cases, they have been reported as having an effect on the activity of the 

resulting catalyst, but generally less so than the identity of the catalyst precursors, the 

Al/M ratio, and the amount of H2O present.  Many variables are likely connected to each 

other in complicated ways, such as the Al/M ratio and the amount of H2O, but these 

relationships are incompletely understood. 
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• Mass transfer limitations should be suspected in many studies for these active catalysts, 

and unless the control experiments designed to rule out MTL were specifically done and 

reported in detail.  This is especially true for instances where reports claim that certain  

catalyst preparation variables were not important to catalytic activity, but other reports 

claim that they are. 

• The ability to explain the effects of variables in the preparation of Ziegler–type 

hydrogenation catalysts is hampered by the fact that the effects themselves are often 

dissimilar for ostensibly similar, but in fact different systems.  Answers as to how 

variables in catalyst synthesis affect catalytic activity are needed and are possible from 

studies of the ways in which each variable affects the mechanism of formation, 

composition, and resultant structure of the catalyst.  Ultimately being able to connect the 

variables to catalyst activity, composition, structure and formation mechanism remains a 

significant challenge. 

 

The main findings from the section on the nature and mechanism of formation of Ziegler–type 

hydrogenation catalysts are: 

• The most important unknowns in Ziegler–type hydrogenation catalysis are the reaction 

between the catalyst precursors, whether the resulting catalysts are homogeneous or 

heterogeneous, and the details of the mechanism of catalytic hydrogenation?  The most 

important of these questions is the nature of the true catalyst.  Specific questions in this 

regard include: (i) how is the catalyst formed, (ii) how many transition metal atoms 

constitute the active catalyst species, (iii) what are their oxidation states, and (iv) what is 

the composition, structure, and role of the cocatalyst? 
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• Ziegler assumed early on that the catalyst of the Ni effect took the form of colloidal Ni.  

Early efforts by Wilke and coworkers attempted to disprove this, and to show that the  

catalyst could be a homogeneous allyl-complex.  That classic work laid the groundwork 

for subsequent researchers of Ziegler–type hydrogenation catalysts to propose 

homogeneous catalysts for those systems.  More recent research, with the aid of much 

improved instrumentation technology and improved precedent for hydrocarbon-soluble 

colloids, has obtained results that suggest the true catalysts are heterogeneous, what we 

have termed herein as “Ziegler nanoclusters.” 

• Definitive kinetic evidence remains to be reported for many Ziegler–type hydrogenation 

catalyst systems.  Without that data, the homogeneous versus heterogeneous catalysis 

question cannot be answered. 

• It may be that no single type of catalyst results for Ziegler–type hydrogenation catalyst 

systems.  Small but important differences in outwardly similar systems may cause 

fundamental differences in the type(s) of catalyst(s) present.  This, in turn, reveals the 

importance of using well-defined catalyst precursors, and carefully controlled conditions, 

in the needed studies attempting to identify the true catalyst(s).  Additionally, some 

Ziegler–type hydrogenation catalyst systems may simultaneously contain catalytically 

active homogeneous and heterogeneous components.  If so, it will take an extraordinarily 

careful, comprehensive, and detailed effort, all on the right/“best” system, to definitively 

support this particular hypothesis. 

 

The key messages from the section taking a closer look at the more general homogeneous versus 

heterogeneous catalysis question are: 
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• A multi-pronged approach, demonstrated on multiple occasions to be successful, exists 

for distinguishing between homogeneous versus heterogeneous catalysis.  Explicit 

application of that approach in addressing the homogeneous versus heterogeneous 

catalysis question for Ziegler–type hydrogenation catalysts, is proving useful in work 

underway [53,54,55,56]. 

• There are special challenges to answering the homogeneous versus heterogeneous 

catalysis question for Ziegler–type hydrogenation catalysts: (i) they are typically very 

sensitive to both the variables in their preparation, and conditions during characterization 

experiments; (ii) they have been difficult to isolate for the needed kinetic studies; and (iii) 

poisons selective for each of the metal and Al-based components do not currently exist. 

• The multi-pronged approach to the homogeneous versus heterogeneous catalysis problem 

has been updated to include operando spectroscopy for catalyst characterization.

 

 We would like to end by noting that, despite the many challenges summarized in this 

review, Ziegler–type hydrogenation catalysts hold considerable promise for other applications.  

Ziegler-type hydrogenation catalysts are, despite the homogeneous versus heterogeneous 

catalysis question, largely unrecognized as hydrocarbon soluble, readily self-assembled catalysts 

with neutral charge, high activity, and long lifetime, at least in many of the cases examined 

herein.  Additional catalytic application, fundamental kinetic, spectroscopic, as well as other 

studies are strongly encouraged, regardless of whether Ziegler nanoclusters are the true catalysts 

in all, or even selected, cases. 
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4. Supplementary data 

 Supplementary data associated with this article can be found, in the online version, at doi: 

10.1016/j.molcata.2009.07.007. 

 

Supplementary Tables 2.A 

 See Tables 2.A.1–2.A.3. 

Table 2.A.1.  Patent Literature 
Authors (Year) Catalyst Systems Other Variables in Catalyst Synthesis Ref. 

Breslow 

and 

Matlack 

(1963) 

Ti(i-Pr)4, V(n-Bu)3, 

Cr(acac)3, 

MoO2(acac)2, 

Mn(acac)3, Ru(acac)3, 

Co(acac)3, Fe(acac)3, 

Ni(acac)2, or Pd(acac)2 

+ Al(i-Bu)3 

Solvent: n-heptane, or heptanes.  Hydrogenation 

Substrate: Cyclohexene, 1-octene, ethynylbenzene, 

polyisoprene rubber, 2-methylbutene-2, hexane-1, or 

tetramethylethylene.  Order of addition: cocatalyst added 

to the precatalyst in both the presence and absence of 

substrate.  Synthesis atmosphere: H2 gas at 50 psi, 43 psi, 

40 psig, 21 psig, or 35 psig.  Synthesis temp: room temp, 

40 °C, 50 °C, 30 °C. 

59 

Lapporte, S. 

(1965) 

Ni(acac)2, Fe(acac)2, 

Ni(benzoate)2, 

Ni(acac)2, Cr(acac)2, 

Co(acac)2, or Cu(acac)2 

+ 1–5, 8 or 30 AlEt3 or 

BEt3 

Solvent: Benzene.  Hydrogenation Substrate: Benzene, o-

xylene, 1,3-butadiene, 4-vinylcyclohexane, 1,5,9-

cyclododecatriene, naphthalene, methyl ethyl ketone, 

maleic anhydride, cinnamic acid, benzoic acid, dimethyl 

terephthalate, benzaldehyde, dimethylphthalate, phenol, 

nitrocyclohexane, isophthalonitrile, pyridine, aniline, 

nitrobenzene, 3-hexyne.  Order of addition: cocatalyst 

added to precatalyst in the presence of substrate.  

Synthesis atmosphere: N2; Synthesis temp: –50 °C to 200 

°C 

72 

Kroll 

(1968) 

Co(acac)2, Fe(acac)n, 

Ni(acac)n, Pt(acac)n, 

Cr(acac)n, V(acac)n
a + 

4, 6, 8, 10 or 35 Al(i-

Bu)3, AlEt2(n-BuO), 

AlMe2(acac), AlEt3, or 

AlH(i-Bu)2, Al(i-Bu)3-

Solvent: Heptane, dimethoxyethane, triethylamine, 

benzene, decane, p-dioxane, p-xylene, pentane, ether, 

dimethoxyethane.  Hydrogenation Substrate: 

Cyclohexene, cis, trans,trans-cyclododecatriene, 

benzonitrile, quinoline, cyclopentadiene, benzophenone, 

4-vinylcyclohexene, phenylacetylene, 1-hexene, n-

methylmorpholine, anisole, diphenylether, 

cyclododecatriene, octyne-4, dicyclopentadiene, 

64 
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Authors (Year) Catalyst Systems Other Variables in Catalyst Synthesis Ref. 

p-dioxane, 

AlEt2Cl/AlEtCl2 

cyclooctadiene, 3-methyl-1-butene, 2-methyl-2-butene.  

Order of addition: Precatalyst + cocatalyst (substrate is 

not mentioned).  Synthesis atmosphere: N2.  Aging: 

Overnight, or 5 min.  Additional notes: “The stability 

and/or activity of Ziegler-type catalysts is markedly 

improved by the addition of a third component, i.e., Lewis 

base such as p-dioxane or SEt2, weak organic acid such as 

n-butanol or t-butylalcohol, oxygen, to the catalyst 

system.”  

Yoshimoto 

et al. 

(1970) 

Ni naphthenate,  

Co(acac)n,a  Fe 

napthenate, bis 

(salicylaldehyde)Ni, Ni 

cyclohexylcarboxylate, 

Co octanoate, or Co 

naphthenate + 3, 4, or 

12 AlEt3, MgEt2, (n-

Bu)Li, or LiAlH4, Ni 

benzenesulphonate or 

Ni p-toluene sulfonate 

+ AlEt3 

Solvent: Toluene, hexane, tetrahydrofuran, or n-hexane.  

Hydrogenation Substrate: Butadiene units of styrene 

butadiene copolymer.  Order of addition: Precatalyst and 

cocatalyst are mixed in the presence of olefinically 

unsaturated hydrocarbon which does not act as 

hydrogenation substrate.  Synthesis atmosphere: N2 or H2.  

Synthesis temp: 30 °C, 29 °C, 28 °C, 80 °C, 50 °C, –78 

°C.  Aging: 5 min.  Additional notes: An olefinically 

unsaturated hydrocarbon such as cyclohexene, 1-heptene, 

dicyclopentadiene, styrene or 1,7-octadiene, is added to 

the reaction medium to form the, so called, “three 

components catalyst.”  The use of olefinically-unsaturated 

hydrocarbon becomes increasingly important to the 

production of an effective and stable catalyst as 

temperatures are increased from 0–100 °C.  Excess 

unsaturated hydrocarbon causes an, “undesirable 

induction period due to the auxiliary reaction in the 

catalyst formation.” 

68 

Yoshimoto 

et al. 

(1970) 

Ni naphthenate, Co 

naphthenate, 

bis(ethylacetoacetate) 

Ni, bis(acetylacetone) 

Ni, Fe naphthenate, Ni 

2-ethylhexanoate, or Co 

2-ethylhexanoate + 0.6, 

1.3, 2.7, 4.0, or 6.7 (n-

Bu)Li, or MgEt2 

Solvent: Toluene.  Hydrogenation Substrate: Styrene 

butadiene copolymer, or polybutadiene.  Order of 

addition: Substrate + H2 (gas) + precatalyst and cocatalyst 

(order of addition of precatalyst or cocatalyst is not 

given).  Synthesis atmosphere: H2.  Synthesis temp: 30 °C.  

Aging: 5 min.  Additional notes:  Presence or absence of 

polymer to be hydrogenated is not an important factor in 

catalyst preparation.  

 

60 
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Authors (Year) Catalyst Systems Other Variables in Catalyst Synthesis Ref. 

Wald and 

Quam 

(1971) 

Ni acac + 2 AlEt3 or 

Al(i-Bu)3 

Solvent: Cyclohexane.  Hydrogenation Substrate: 

Polystyrene-polyisoprene-polystyrene block copolymer.  

Synthesis temp: 40 °C.  Aging: >15 min.  Additional 

notes:  Selectively hydrogenates the diene portions of 

block copolymers without hydrogenating the vinyl 

aromatic portions thereby reducing oxygen sensitivity, 

and without “appreciable degradation” (chain scission).  

65 

Wald and 

Quam 

(1972) 

Ni octoate, or Ni acac + 

2, or 3 AlEt3  

Solvent: Cyclohexane.  Hydrogenation Substrate: 

Polystyrene-poly(styrene/isoprene) copolymer.  Order of 

addition: Substrate + H2(gas) + pre-prepared catalyst 

(order of addition of precatalyst and cocatalyst is not 

given), or  precatalyst + cocatalyst + substrate.  Synthesis 

temp: 250 °C.  Aging: 15 min.  Additional notes: Provides 

selectively hydrogenated block copolymers with 

improved processability with minimum degradation of the 

polymers in the form of chain scission by the 

hydrogenation catalyst.   

66 

De La Mare 

(1973) 

Ni(octoate)2 or Co(2-

ethylhexabunoate)2 + 

2.5 AlEt3  

Solvent: Isooctane/cyclohexane.  Hydrogenation 

Substrate: Butadiene-2-vinylpyridine copolymer.  Order 

of addition: Substrate + solvent + pre-prepared catalyst 

(order of addition of precatalyst and cocatalyst is not 

given) + H2(gas);  Synthesis temp: 25 °C, or 170 °C.  

Additional Notes: Treatment of copolymers containing 

blocks from polar monomers with 1–3 moles of a Lewis 

acid, preferably BF3, per polar group facilitates 

hydrogenation.  Without this treatment it is not possible to 

use these catalysts to hydrogenate polar copolymers. 

 

 

76 

Loveless et al. 

(1976) 

Ni acac, Ni 

naphthenate, or 

Fe(acac)3 + 0.8, 3.0, 

3.3, 6.0 or 10.0 (n-

Bu)Li 

Solvent: n-heptane, or cyclohexane.  Hydrogenation 

Substrate: Polyisoprene, sulfur vulcanizable elastomers, 

or 1-octene.  Order of addition: Precatalyst + substrate + 

H2(gas) + cocatalyst.  Rate of addition: Cocatalyst is 

slowly added (i.e. 250 mmoles of (n-Bu)Li is added over 

10 min).  Synthesis atmosphere: H2.  Synthesis temp: 

room temp.  Aging: 10 min.  Additional Notes: A phenolic 

77 
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Authors (Year) Catalyst Systems Other Variables in Catalyst Synthesis Ref. 

substance, such as p-nonyl phenol, is added to the 

precatalyst solution to produce soluble organometallic 

complex before the addition of other catalyst components.  

A claim is that this catalyst is superior to previous ones in, 

“degree and rapidity of hydrogenation which is possible.”   

There is no upper limit to the amount of cocatalyst that 

can be used, but there is no benefit to using more than the 

amount prescribed.  “The catalyst is not sensitive to small 

traces of impurities such as water.” 

Baumgartner 

and Balas 

(1976) 

Ni(2-ethylhexanoate)2 

+ 2.5 or 3.0 AlEt3 

Solvent: Cyclohexane.  Hydrogenation Substrate: 

Styrene-isoprene copolymer.  Synthesis temp: 80 °C.  

Additional Notes:  Excess AlEt3 was added after the 

reduction of the substrate was completed to some extent.  

This addition interrupted the hydrogenation.  The addition 

of 2-ethylhexanol after the interruption caused the 

hydrogenation to resume. 

82 

Ladenberger 

et al. 

(1980) 

Ni(acac)2 + Al(i-Bu)3 

 

Solvent: Toluene, hexane.  Hydrogenation Substrate: 

Butadiene-styrene copolymer.  Synthesis atmosphere: H2.  

Synthesis temp: 25 °C to 30 °C.  Additional Notes: A 

more active catalyst is achieved through the addition of 

H2O after reaction of the precatalyst, cocatalyst and the 

substrate.  H2 uptake frequently only starts after the H2O 

addition.  Aromatics are more readily hydrogenated if a 

high Al/M is used. 

78 

Durand et al. 

(1981) 

Two metal chelate 

compounds: the first of 

Co or Ni, and the 

second of another metal 

Fe, Zn, Zr, Mn, Mo (all 

preferably acac or 

carboxylates), + 1.5 to 

6 AlEt3, Al(i-Bu)3 or 

LiBu 

Solvent: Heptane, cyclohexanol, decahydronaphthalene, 

benzene, diisopropylether.  Hydrogenation Substrate: Bis 

phenol A, phenol, cyclododecatriene, benzene, 

propionitrile, oleonitrile, adiponitrile.  Order of addition: 

Substrate + pre-prepared catalyst (order of addition of the 

precatalysts and the cocatalyst is not given), or Substrate 

+ Catalyst 1 (precatalyst 1 + cocatalyst) + Catalyst 2 

(precatalyst 2 + cocatalyst).  Synthesis temp: 90 °C.  

Additional Notes: if the metal salts were reacted 

separately with the same cocatalyst, an inferior catalyst, or 

even non-active solution will result.  The mode of catalyst 

preparation is not critical, but is preferably carried out in 

155 
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Authors (Year) Catalyst Systems Other Variables in Catalyst Synthesis Ref. 

the absence of substrate in most cases. 

Willis et al. 

(1990) 

Ni 2-ethylhexanoate + 

6 or 2.3 (s-Bu)Li or 

AlEt3 

Solvent: Cyclohexane, tetrahydrofuran.  Hydrogenation 

Substrate: Two different styrene butadiene block 

copolymers.  Order of addition: Substrate + catalyst 

(order of addition of precatalyst and cocatalyst is not 

given).  Synthesis temp: 47 °C, room temp.  Additional 

Notes: Water should be present when the precatalyst and 

the cocatalyst are combined.  Catalysts so prepared are 

suitable for hydrogenating polymers containing acidic 

functionality when certain other procedures are followed.  

Without said procedures (the focus of the patent), acidic 

functional groups interfere with the hydrogenation 

reaction by catalyst deactivation and/or gelling of the 

polymer solution. 

61 

Abraham 

et al. 

(1991) 

Fe, Co or Ni halides, 

acetates, or acacs  

Co(neodecanoate)2 or 

Pd(PPh3)4, Pt(PPh3)4, or 

Rh(PPh3)3 + 4 AlR3 

where each R = alkyl 

has 1–4 C atoms 

Solvent: Toluene.  Hydrogenation Substrate: Butadiene-

methyacrylate copolymer.  Order of addition: Precatalyst 

+ cocatalyst added over substrate.  Synthesis atmosphere: 

N2.  Synthesis temp: room temp.  Aging: 1 h.  Additional 

Notes: The use of a complexing agent, such as phosphines 

(R3P) or phosphites ((RO)3P), is necessary in catalysis of 

hydrogenation of high MW nitrile-butadiene rubber 

(NBR) random copolymers.  Without the complexing 

agent, gelation occurs due to complexation of the 

transition metal catalyst to the polar groups on the 

polymer chains.   

44 

Hoxmeier 

and Slaugh 

(1991) 

Nickel 2-

ethylhexanoate + 1, 2, 

3, 4, 7, or 10 MAO 

(Methylalumoxane) or 

EAO 

(Ethylalumoxane), an 

equimolar blend of 

MAO/EAO, or AlEt3 

Solvent: Cyclohexane.  Hydrogenation Substrate: 

Polystyrene-polybutadiene-polystyrene tribock 

copolymer.  Order of addition: Substrate + catalyst (order 

of addition of precatalyst and cocatalyst is not given).  

Synthesis temp: 25 °C.  Aging: 30 min.  Additional Notes: 

0.5 equivalents of H2O is present in the precatalyst 

solution.  Catalysts made in this manner with MAO offer 

improved control over the extent of hydrogenation in 

polymers containing both ethylenic and aromatic 

unsaturation by an initially slower hydrogenation reaction, 

but compared to similar catalysts made with AlR3, retain 

62 
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Authors (Year) Catalyst Systems Other Variables in Catalyst Synthesis Ref. 

higher activities over longer time spans.  However, the 

catalyst formed with longer alkyl chain alumoxanes (C2–

C8) are more active for hydrogenation at all times than 

similar catalysts made with AlR3.   

Coolbaugh 

et al. 

(1991) 

Ni(octoate)2 or Ti(n-

Bu)4  + 3.6, 2.5, or 6.0 

AlEt3 

Solvent: Cyclohexane.  Hydrogenation Substrate: 

Isoprene-Butadiene-isoprene triblock copolymer.  Order 

and rate of addition: Precatalyst + cocatalyst, 20.80 mL 

of cocatalyst is added as qiuckly as possible (i.e. in 15 

sec); or solvent + precatalyst and cocatalyst 

simultaneously added over 25 min.  The catalyst solutions 

prepared as above are added over substrate.  Synthesis 

atmosphere: N2.  Aging: 10 min.  Additional Notes:  The 

molar ratio of the transition metal compound to the 

cocatalyst should be kept essentially constant by either 

simultaneous addition of solutions of the two, or by as 

rapid addition of the cocatalyst as possible.  If added over 

the course of more than about 15 min a less selective 

catalyst results, which may also ppt. from solution.  The 

reversal of the addition sequence is likewise detrimental.  

“Extreme care must be used to exclude air, moisture and 

other impurities capable of interfering with the delicate 

chemical balance involved in the synthesis of the 

catalyst.” 

63 

Gooodwin 

and Willis 

(1992) 

Ni(2-ethylhexanoate)2 

+ 2.6 AlEt3  

Solvent: Cyclohexane.  Hydrogenation Substrate: 

Polyisoprene, or polybutadiene.  Additional Notes: 

Complete hydrogenation of olefinic unsaturation in low 

molecular weight diene polymers, particularly those 

having terminal hydroxyl groups, is achieved (previously 

not possible using these catalyst systems) by removing 

fine particles of ionic Li residues such as LiOR and LiOH 

through filtering or decanting the polymer solutions prior 

to hydrogenation. 

 

73 

Hergenrother 

et al. 

(1994) 

Ni octoate + 3, 6, 7 

Al(i-Bu)3, or AlEt3 

 

Solvent: Hexane, toluene.  Hydrogenation Substrate: 

Polybutadiene.  Order of addition: Precatalyst + 

cocatalyst. The catalyst solution added over the substrate.  

45 
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Authors (Year) Catalyst Systems Other Variables in Catalyst Synthesis Ref. 

 Synthesis atmosphere: H2.  Synthesis temp: –25 °C, or 66 

°C.  Aging: 1 h.  Additional Notes: Cyclohexene is added 

to precatalyst solution before cocatalyst addition to 

stabilize the catalyst prior to hydrogenation.  

Hydrogenation saturation controlled by treating polymers 

with an arylphosphine in the presence of the 

hydrogenation catalyst.  The order of reagent addition is 

unimportant with either the precatalyst or the cocatalyst 

added incrementally throughout the hydrogenation 

reaction. 

 

Handlin et al. 

(1995) 

Ni 2-ethylhexanoate + 

2.6 AlEt3 

Solvent: Cyclohexane.  Hydrogenation Substrate: 

Polybutadiene.  Additional Notes: the catalyst is used to 

hydrogenate butadiene polymers having terminal 

functional groups to give low viscosity polymers. 

 

74 

Johnson 

et al. 

(2002) 

Co neodecanoate, or Ni 

octoate + 2.0, 2.2, or 

1.3 AlEt3 

Solvent: Cyclohexane, diethylether.  Hydrogenation 

Substrate: Linear triblock copolymer of styrene and 

ethylene/butadiene, polystyrene-polybutadiene-

polystyrene triblock copolymer, or linear polystyrene-

polyisoprene-polystyrene-polyisoprene block copolymer.  

Order and rate of addition: The catalyst is prepared by 

slowly adding cocatalyst over the precatalyst in the 

absence of substrate. 

46 

a The “n” values of the precatalyst components are not given; they may be the same or different 
in different transition metal precatalyst compounds. 
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Table 2.A.2.  Nature and Mechanism of Formation of the Catalyst – the “Ziegler-type Catalysts 
are Homogeneous” Hypothesis 

Authors 

(year) 

Catalyst Systems Results Ref. 

Wilke and 

coworkers 

(1973) 

 

Ni(acac)2 + AlMe3, AlEt3 or Al(i-

Bu)3 

A homogeneous Ni(0) complex formed as a result of 

the reaction of Ni–olefin π-complex with Al 

cocatalyst.  The resulting complex is proposed to 

contain multicenter bonds including C, Ni(0), and Al 

atoms. 

 

4 

Sloan et. al. 

(1963) 

Fe(acac)3, Co(acac)2, Co(acac)3, 

Ni(acac)2, Ru(acac)3, or Pd(acac)2 

+ AlEt3, Al(i-Bu)3, or AlH(i-Bu)2 

 

M–H species, given as MHXn-1, are claimed as the 

active catalyst.  The M–H species are proposed to 

form by alkylation and then hydrogenolysis of the 

precatalyst.  

 

57 

Lapporte 

(1969) 

Ni(2-ethylhexanoate)2, or Co(2-

ethylhexanoate)2 + 3–4 AlEt3 

 

Mononuclear H–M(0) –L species, L = labile –H, –R, 

solvent, olefin, or AlEt2(2-ethylhexanoate), is 

proposed as the catalyst.  However, binuclear M(I) is 

not ruled out. 

 

58 

Klinedinst 

and 

Boudart 

(1973) 

Fe(acac)3 + 6 AlEt3 Mössbauer spectroscopy shows that high spin Fe(II) 

are the only Fe species present at low temp.  Rules 

out catalysis by (crystalline) metallic Fe particles ≥ 

1.7 nm in diameter. 

 

105 

Alvanipour 

and Kispert  

(1988) 

Co(stearate)2 + 2 AlEt3 Homogeneous M(0) species are proposed to form via 

unstable ethyl–Ni (L3Ni–Et) and/or Ni–H (L2Ni–H-

C=C) where L: solvent, CH2=CH2 or RCO2AlEt2.  

67 

Reguli and 

Stasko 

(1987) 

Ni(3,5-diisopropylsalicylate)2, 

Ni(acac)2, Ni(stearate)2, or 

Ni(benzohydraxamate)2 +  AlEt3, 

Al(i-Bu)3, or BuLi 

 

Homogeneous diamagnetic Ni(II) formed by 

alkylation of the transition metal precatalyst is 

suggested as the active catalyst species.  Ni colloid 

formation is observed in the presence of aromatic 

compounds. 

70 

Barrault et 

al. (1994) 

Co(acac)2 + AlEt3 Co(0) clusters, and Co(0) complexes are 

simultaneously present, neither of which can be ruled 

out as active catalyst species. 

37 

Shmidt and Co(acac)2, Co(acac)3, Ni(acac)2, A paramagnetic homogeneous Co(0) complex, 42, 
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Authors 

(year) 

Catalyst Systems Results Ref. 

coworkers 

(1970, 

1979, 

1983) 

Fe(acac)3 or Pd(acac)2  + AlEt3, 

AlMe3, n-BuLi, n-PrMgBr or i-

PrMgBr 

stabilized by arene solvent, R of AlR3 and acac from 

the Co precatalyst is thought to be the active catalyst.  

Presence of low spin M(II) is not ruled out.  In 

addition, ≤ 100 Å M(0) particles are observed.  

109,

110,

111 
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Table 2.A.3.  Nature and Mechanism of Formation of the Catalyst – the “Ziegler-type Catalysts 
are Heterogeneous” Hypothesis 

Authors (year) Catalyst Systems Results Ref. 

Shmidt and 

coworkers 

(2005, 2006) 

Co(acac)2, Co(acac)3, or Pd(acac)2 

+ AlEt3 

Observe ferromagnetic β–Co(0)n or Pd(0)n 

nanoparticles 1–5 nm) apparently stabilized 

by AlEt3, and/or acetylacetone derivatives of 

AlEt3 including AlEt2(acac) or alumoxanes.  

The Co(0) complex proposed previously as 

the active catalyst is reinterpreted as the 

precursor to Co(0)n nanoclusters.  

19,113, 

81,114 

Pasynkiewicz 

et al. 

(1974) 

Co(acac)3 + 1 AlMe3 A mixture of Co(II), Co(I) complexes and 

metallic Co(0) are reported.  Suggest the true 

catalyst is metallic Co(0).  The other reaction 

products proposed: [Co(acac)2CH3], 

(CH3)2Al(acac), [(acac)Co=CH2], [Co(acac)], 

[(acac)Co(CH3)2]. 

71 

Goulon and 

coworkers 

(1984, 1986) 

Ni(acac)2, Ni(2-ethylhexanoate)2, 

Co(2-ethylhexanoate)2, or 

Fe(acac)3 + AlEt3 

M(0)n clusters are proposed as catalysts.  

However, whether they are small ~4–10 

atom clusters, amorphous M or M-carbide 

clusters, or some combination is unclear.   

40,116 

Bonnemann and 

coworkers 

(1999-2005) 

Ni(acac)2 + 3 Al(i-Bu)3, Pt(acac)2, 

+ 4 AlMe3, [(1,5-COD)Pt(CH3)2] 

+ 10 AlEt3 or Al (C8H17)3, and a 

variety of other systems 

M(0)n amorphous nanoclusters stabilized by 

an organoaluminum multilayer are observed.  

Catalytic activities are not tested.   

121, 122, 

123, 124, 

125, 126 
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SUPPORTING INFORMATION-A: 

ZIEGLER–TYPE HYDROGENATION CATALYSTS MADE FROM GROUP 8–10 

TRANSITION METAL PRECATALYSTS AND ALR3 COCATALYSTS: 

A CRITICAL REVIEW OF THE LITERATURE 

Hydrogenations using Pt(acac)2 plus AlEt3:  Using ASAXS spectroscopy, Bönnemann 

and coworkers observed the formation of 1.2 nm diameter nanoparticles from a Pt(acac)2 plus 

AlMe3 system [1].  The relatively slow nanoparticle development observed for this system makes 

it promising for following the kinetics of catalyst formation en route to determining the true 

nature of the catalyst.  However, in order to do this, it is first necessary to show that the system is 

indeed catalytically competent for hydrogenation, as expected (i.e., to see if the system forms a 

Ziegler–type hydrogenation catalyst, an important experiment not reported previously).  A 

similar system tested by us, Pt(acac)2 plus AlEt3, Al/Pt = 4, exhibits the ability to catalytically 

hydrogenate cyclohexene.  The results of following the formation of the Ziegler–type 

hydrogenation catalyst formed from Pt(acac)2 plus AlEt3, Al/Pt = 4, by the cyclohexene 

hydrogenation reporter reaction method [2,3,4] are reported below, Figure SI-A1. 

In the drybox, a 9.0 mM toluene solution of Pt(acac)2 precatalyst was prepared by 

dissolving 0.0668 g of Pt(acac)2 (Strem, 98%) in 18.87 mL of toluene (Aldrich, anhydrous, 

99.8%).  Using a procedure similar to that employed for the Co catalyst described below, the Pt 

catalyst solution was prepared in the drybox by adding, in the following order, 1.7 mL of toluene 

to a new 22 x 175 mm Pyrex borosilicate culture tube containing a new 5/8 x 5/16 inch Teflon-

coated magnetic stirbar, followed by 0.4 mL of the Pt precatalyst solution, and with 1000 rpm 

stirring, 0.4 mL of a 36.0 mM toluene solution of AlEt3, giving Al/Pt = 4.0.  No color change of 

the light-yellow solutions was apparent upon the addition of AlEt3.  Finally, 0.5 mM of 
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cyclohexene was added, and the tube was sealed in a Fisher–Porter (FP) bottle.  The 

hydrogenation procedure was also similar to that used for the Co catalyst described below, the 

only differences being the use of H2 (General Air, 99.5%) instead of D2, and the FP bottle was 

purged with 40 psig of H2 once every 15 seconds for 3.5 min (15 purges total).  The light-yellow 

solutions gradually changed color to brown during the hydrogenation runs.  After pressure data 

acquisition, data were converted to [cyclohexene] vs. time with MS excel according to the 

procedure employed with the cyclohexene hydrogenation reporter reaction method [2,3,4]. 
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Figure SI-A1.  Five catalytic cyclohexene hydrogenation runs using Pt(acac)2 + AlEt3, Al/Pt = 4, 
[Pt] = 1.2 mM, solvent = toluene, temperature = 22.0 °C, initially 40.0 psig H2, stirring = 1000 
rpm.  Solid lines show the attempted fits by the 2-step mechanism for nanocluster formation 
[3]consisting of nucleation (A ! B, rate constant k1) followed by autocatalytic growth (A + B ! 
2B, rate constant k2), giving mean values: k1 = 0.004(2) s-1, k2 = 0.09(3) M-1s-1, and a range of R2

values from 0.9491 to 9954. 

The near-sigmiodal-shaped curves, Figure SI-A1, were fit using Origin by the well-

precedented, 2-step mechanism of nanocluster formation consisting of nucleation (A ! B, rate 

constant k1) followed by autocatalytic growth (A + B ! 2B, rate constant k2) [3], giving mean 

values of k1 = 0.004(2) and k2 = 0.09(3).  The kinetic model fits the initial portions of the curves 

well, but not the later portions, which deviate from sigmoidal by abruptly ending at the point 

where all the substrate has been consumed.  This implies that changes involving the catalyst(s)—

specifically the evolution of a more active catalyst—is occurring.  These results show that this 

system, the very similar one investigated by Bönnemann and coworkers [1], or another 

comparable system, are of interest for studies aimed at the mechanism of formation of Ziegler–

type hydrogenation catalysts. 
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Other Survey Hydrogenations En Route to Potentially Useful Ziegler–type Hydrogenation 

Catalyst Model Systems 

A few other precursors were combined with AlEt3 and the resulting solutions tested for 

their ability to catalytically hydrogenate cyclohexene, specifically the precursors [(1,5-

COD)Ir(acac)], [(1,5-COD)Rh(acac)], Rh(acac)3, and Co(acac)2.  The results are shown below, 

Figures SI-A2–SI-A5.  Catalyst solutions were prepared similarly to as described above.  In the 

drybox, a 3.6 mM in [Ir] solution of [(1,5-COD)Ir(acac)] (Strem, 99%) was prepared by 

weighing out 0.0237 g of [(1,5-COD)Ir(acac)] and dissolving in 16.48 mL of cyclohexane.  The 

catalyst was prepared in a culture tube by adding in the following order 1.2 mL of cyclohexane, 

1.0 mL of the yellow [(1,5-COD)Ir(acac)] solution, and with 1000 rpm stirring, 0.3 mL of a 36.0 

mM AlEt3 solution in cyclohexane, making Al/Ir = 3.  For [(1,5-COD)Rh(acac)] (Strem, 98%), 

0.292 g were dissolved in 2.3 mL of cyclohexane in a culture tube.  Next, 0.20 mL of a 36.0 mM 

cyclohexane solution of AlEt3 was then added with 1000 rpm stirring, giving Al/Rh = 2.  For 

Rh(acac)3 (Aldrich, 97%), 0.267 g was dissolved in 16.68 mL toluene.  Then, 1.4 mL toluene, 

0.9 mL of the Rh(acac)3 solution, and afterwards, with 1000 rpm stirring, 0.2 mL of a 36.0 mM 

toluene solution of AlEt3 were added to a culture tube, giving Al/Rh = 2.  For 

Co(acac)2•0.34H2O (Strem; H2O determined by TGA), 0.0386 g were dissolved in 16.3 mL of 

toluene.  Next, 0.4 mL of this solution were added to a culture tube along with 1.7 mL of toluene, 

and then with 1000 rpm stirring, 0.4 mL of a 36.0 mM toluene solution of AlEt3 were added, 

making the Al/Co = 4.  Lastly in each case, 0.5 mL of cyclohexene was added.  The 

hydrogenation procedure, H2 gas purge cycle, data collection, data conversion, and fitting 

procedure were all performed the same as described above for experiments using the Pt(acac)2 

precursor.  (The data from the Co(acac)2 system was not converted from psig H2 to 
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[cyclohexene] nor fit.)  All of the precatalysts tested form active catalysts for the hydrogenation 

of cyclohexene.  However, the most promising Ziegler-type hydrogenation catalyst system for 

use as a model of industrial catalysts, besides the [(1,5-COD)M(m-O2C8H15)]2 (M = Rh or Ir) + 

AlEt3 systems reported elsewhere [5], is the Pt(acac)2 + AlR3 system described above. 
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Figure SI-A2.  Catalytic cyclohexene hydrogenation using a Ziegler-type hydrogenation catalyst 
made from addition of AlEt3 to [(1,5-COD)Ir(acac)], Al/Ir = 3, [Ir] = 1.2 mM, initially 40.0 psig 
H2, solvent = cyclohexane, temperature = 22.0 °C, stirring = 1600 rpm.  The solution changed 
from yellow to light brown during hydrogenation.  The data is reasonably well fit using the well-
precedented mechanism for nanocluster formation consisting of nucleation (A ! B, rate constant 
k1) followed by autocatalytic growth (A + B ! 2B, rate constant k2) [3], giving k1 = 0.0022(1) s-

1, k2 = 0.077(2) M-1s-1.  However, small amounts of a black solid, presumably bulk Ir metal, were 
deposited on the stirbar and sides of the culture tube.  The shape of the hydrogenation curve and 
apparently relatively slow catalyst formation show that this system has promise, but the 
formation of the insoluble black solid is an undesired feature of this system. 
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Figure SI-A3.  Catalytic cyclohexene hydrogenation using a Ziegler-type hydrogenation catalyst 
made from addition of AlEt3 to [(1,5-COD)Rh(acac)], Al/Rh = 2, [Rh] = 1.2 mM, initially 40.0 
psig H2, solvent = cyclohexane, temperature = 22.0 °C, stirring = 1600 rpm.  The data is 
moderately well fit using the well-precedented mechanism for nanocluster formation consisting 
of nucleation (A ! B, rate constant k1) followed by autocatalytic growth (A + B ! 2B, rate 
constant k2) [3], giving k1 = 0.0018(1) s-1, k2 = 0.130(4) M-1s-1.  However, the hydrogenation 
data contain several interesting and unexplained features not well accounted for by the 
mechanistic model used here, and as a comparison of the above data and solid fit line reveal.  In 
addition, small amounts of a black solid, presumably bulk Rh metal, deposited on the stirbar and 
sides of the culture tube.  The unexplained features of the hydrogenation curve make this system 
interesting, but the formation of the black solid is an undesired feature.  Also, the precatalyst 
[(1,5-COD)Rh(acac)] should be stored cold. 
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Figure SI-A4.  Catalytic cyclohexene hydrogenation using a Ziegler-type hydrogenation catalyst 
made from addition of AlEt3 to Rh(acac)3, Al/Rh = 2, [Rh] = 1.2 mM, initially 40.0 psig H2, 
solvent = toluene, temperature = 22.0 °C, and stirring = 1000 rpm. The data are poorly fit using 
the 2-step mechanism of nanocluster formation consisting of nucleation (A ! B, rate constant 
k1) followed by autocatalytic growth (A + B ! 2B, rate constant k2) [3]; the resulting k1 =
0.0038(6) s-1and k2 = 0.20(1) M-1s-1.  This system gives an unexplained, and interestingly-shaped 
hydrogenation curve, but was not pursued further. 
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Figure SI-A5.  Catalytic cyclohexene hydrogenation using a Ziegler-type hydrogenation catalyst 
made from addition of AlEt3 to Co(acac)2•0.34H2O, Al/Co = 4, [Co] = 1.2 mM, initially 40.0 
psig H2, solvent = toluene, temperature = 22.0 °C, and stirring = 1000 rpm.  No attempt was 
made to fit this irregular hydrogenation curve. 

A Deuterium Labeling Experiment [6] with a Co(neodecanoate)2 plus AlEt3 Catalyst

leading to an Updated, Proposed Hydrogenation Mechanism for Ziegler–type 

Hydrogenation Catalysts 

A Ziegler–type hydrogenation catalyst made from combination of Co(neodecanoate)2 and 

AlEt3, Al/Co = 3, was used to catalytically hydrogenate cyclohexene in a pressurized, Fisher-

Porter reaction bottle.  When D2 gas was used, analysis of the resulting products by gas 

chromatography mass spectrometry (GC–MS) showed significant incorporation of multiple (i.e., 

> 2) deuterium atoms in the resulting cyclohexane, Equation S1.  As stated in the main text, this 

outcome supports the hypothesis that, at least according to a generally well-accepted mechanism 

for heterogeneous transition metal catalyzed hydrogenations [7], reductive elimination, as 
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opposed to migratory insertion [8], is the rate determining step, with prior equilibria existing in 

the earlier step(s). 

D2 +

Dx

x = 1-6
Catalyst

   (S1) 

Under an N2 atmosphere in a Vacuum Atmospheres drybox (O2 levels were maintained at 

≤ 5 ppm as monitored by a Vacuum Atmospheres O2-level monitor), an 18.0 mM in [Co] 

cyclohexane (Sigma-Aldrich, anhydrous, 99.5%) solution was prepared from a 

Co(neodecanoate)2  precatalyst solution (70% Co(neodecanoate)2, 30% mineral spirits) by 

adding 0.58 ± 0.01 mL to a 100 mL volumetric flask and diluting to the mark.  Catalyst solutions 

were then made individually before use by adding, in the following order, 2.0 ± 0.05 mL of 

cyclohexane to a new 22 x 175 mm Pyrex borosilicate culture tube containing a new 5/8 x 5/16 

inch Teflon-coated magnetic stirbar, followed by 0.200 ± 0.002 mL of the Co precatalyst 

solution, and with stirring at 1000 rpm, 0.30 ± 0.01 mL of a 36.0 mM cyclohexane solution of 

AlEt3 (Aldrich, 93%), giving a Al/Co = 3.0 catalyst.  AlEt3 was added rapidly resulting in a near 

instantaneous color change from the indigo Co precursor solution to dark brown.  Lastly, 0.50 ± 

0.01mL of cyclohexene (Aldrich, 99%, distilled over Na under an Ar atmosphere) was added to 

the culture tube.  The culture tube was then placed in a Fisher-Porter (FP) bottle, which was 

sealed and brought out of the drybox in order to attach it to the hydrogenation apparatus [3,4,9].  

The F–P bottle was placed in a 22.0 °C recirculating water bath (VWR Scientific) and connected 

to the apparatus using TFE-sealed Swagelock quick-connects.  D2 gas (Matheson, 99.5%) was 

purified by passing through an indicating moisture trap (Scott Specialty Gas), a disposable O2 

cartridge (Trigon), and an indicating O2 trap (Trigon).  Stirring at 1000 rpm was started, the 

bottle was purged with D2 gas at 40 psig a total 5 times (once every 30 s), set at 40 psig, and 
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pressure data acquisition was started by means of an Omega PX-624 pressure transducer 

interfaced to a PC running LabVIEW 7.0. 

Pressure in the FP bottle reached a minimum value after 12 min, and after observing a 

constant value for > 4 min, the sealed FP bottle was detached and brought back into the drybox.  

Inside the drybox, samples for analysis by GC–MS were prepared by taking 40 µL of the 

hydrogenation reaction solution in cyclohexane and diluting with 2 mL of acetone (Burdick and 

Jackson).  GC–MS analysis was performed on an Agilent 5973N/GC 6890 instrument equipped 

with a mass selective detector (70 eV) and an SPB-1, 30 m column.  Temperature program: 

initial temperature, 10 ºC (initial time 5.00 min); heating rate, 10.00 ºC/min; final temperature, 

100 ºC.  The results of analyzing the sample by GC–MS are shown below in Figure S6.  The 

majority of the deuterated product appears at the front of the broad peak in the GC portion (top) 

of Figure S6.  The MS portion (bottom) of Figure S6 is the segment of the GC peak at the 

retention time of 5.378 min. 
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Figure SI-A6.  GC MS of a sample from the deuteration of cyclohexene using a
Co(neodecanoate)2 plus AlEt3, Al/Co = 3.0, Ziegler-type hydrogenation catalyst.  GC (top) 
shows a single broad peak encompassing both undeuterated cyclohexane (the solvent) and 
deuterated cyclohexane, the catalytic reaction product.  The deuterated cyclohexane is 
principally found at the leading edge of the peak, evident as the tail on the left.  MS (bottom) 
taken at a retention time of 5.378 min contains significant amounts of multiply (> 2) deuterated
cyclohexane (m/z > 86). 

Peaks of m/z 84 (cyclohexane-d0) through m/z 88 (cyclohexane-d4) from individual mass 

spectra at close time intervals between 5.359min on the leading edge of the peak and the peak 

maximum at 5.411min were used to calculate the relative amounts of product deuteration, Figure 

S7.  (The m/z – extent of deuterium inclusion correlations were made without regard given to the 

1.1% natural abundance of 13C.)  On the front edge of the peak there is a significant presence of 

triply- and quadruply-deuterated cyclohexane (about 60% of the total at 5.359 min).  This result 

supports the hypothesis that reductive elimination is the rate determining step in the proposed 

cyclohexene hydrogenation mechanism, Scheme 8 of the main text.  If migratory insertion was 
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rate-determining [8], then a maximum of two deuterium atoms per cyclohexane should have 

been seen. 

 

Figure SI-A7.  Relative abundances, as a function of retention time, of cyclohexane-d0, m/z = 84 
(dark blue); cyclohexane-d1, m/z = 85 (red), cyclohexane-d2, m/z = 86 (green), cyclohexane-d3, 
m/z = 87 (purple), and cyclohexane-d4, m/z = 88 (light blue).  The natural 1.1% abundance of 
13C has been neglected in calculating these percentages.  Triply- and quadruply-deuterated 
cyclohexane together make up more than 60% of the cyclohexane in the sample at the retention 
time of 5.359 min, supporting reductive elimination as the rate determining step in the updated 
cyclohexene hydrogenation mechanism, Scheme 8 of the main text. 
 

Other Experimental Considerations 

 All materials were stored and used as received in the drybox unless noted otherwise.  All 

glassware was oven-dried at 160 °C overnight and cooled either under vacuum or an atmosphere 

of N2.  Caution!  Aluminum alkyls such as AlEt3 are toxic and pyrophoric and must therefore be 

handled accordingly [10]. 
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CHAPTER III 

HYDROCARBON-SOLUBLE, ISOLABLE ZIEGLER-TYPE Ir(0)n NANOPARTICLE 

CATALYSTS MADE FROM [(1,5-COD)Ir (μ-O2C8H15)]2 AND 2-5 EQUIVALENTS OF AlEt3: 

THEIR HIGH CATALYTIC ACTIVITY, LONG LIFETIME, AND AlEt3-DEPENDENT, 

EXCEPTIONAL, 200 °C THERMAL STABILITY 

 This dissertation chapter contains the manuscript of a paper published in the ACS Catal. 

2012, 2, 632-641.  This chapter demonstrates the high catalytic activity, long lifetime and 

unusually high thermal stability of the Ir(0)n Ziegler nanoparticles formed in the catalyst solution 

starting with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3.   

  All the experiments in the main text were performed by Isil K. Hamdemir.  The repeat 

hydrogenation runs for lifetime measurements were performed by Saim Özkar.  Control and 

survey experiments presented in the Supporting Information (Supporting Information_B) were 

performed by both Isil K. Hamdemir and Kuang-Hway Yih.  The initial complete draft of the 

paper, subsequent drafts including the final draft and preparation of the document for publication 

were performed by Isil K. Hamdemir with light editing by Prof. Saim Özkar, Dr. Kuang-Hway 

Yih, Joseph E. Mondloch and extensive editing by Prof. Richard G. Finke (a 48 hours total). 
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Synopsis 

Hydrocarbon-solvent-soluble, isolable, Ziegler-type Ir(0)n nanoparticle hydrogenation catalysts 

made from the crystallographically characterized [(1,5-COD)Ir(µ-O2C8H15)]2 precatalyst and 2-5 

equivs of AlEt3 (≥2 equivs of AlEt3 being required for the best catalysis and stability, vide infra) 

are scrutinized for their catalytic properties of: (1) their isolability and then redispersibility 

without visible formation of bulk metal; (2) their initial catalytic activity of the isolated 

nanoparticle catalyst redispersed in cyclohexane; (3) their catalytic lifetime in terms of total 

turnovers (TTOs) of cyclohexene hydrogenation; and then also and unusually (4) their relative 

thermal stability in hydrocarbon solution at 200 ˚C for 30 minutes.  These studies are of interest 

since Ir(0)n nanoparticles are the currently best-characterized example, and a model / analogue,  

of industrial Ziegler-type hydrogenation catalysts made, for example, from Co(O2CR)2 and ≥2 

equivalents of AlEt3.  Eight important insights result from the present studies, the highlights of 

which are that Ir(0)n Ziegler nanoparticles, made from  [(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3, are: 

(i) quite catalytically active and long-lived; (ii) thermally unusually stable nanoparticle catalysts 

at 200 ˚C, vide infra, a stability which requires the addition of at least 3 equivalents of AlEt3 

(Al/Ir=3), but where (iii) the Al/Ir=5 Ir(0)n nanoparticles are even more stable, for ≥30 minutes at 

200 oC, and exhibit 100 000 TTOs of cyclohexene hydrogenation.  The results also reveal that 

(iv) the observed nanoparticle catalyst stability at 200 oC appears to surpass that of any other 

demonstrated nanoparticle catalyst in the literature, those reports being limited to ≤130–160 oC 

temperatures; and reveal that (v) AlEt3, or possibly surface derivatives of AlEt3, along with 

[RCO2•AlEt3]- formed from the 1st equiv of AlEt3 per ½ equiv of [(1,5-COD)Ir(µ"O2C8H15)]2 are 

main components of the nanoparticle stabilizer system, consistent with previous suggestions 

from Shmidt, Goulon, Bönnemann and others.  The results therefore also (vi) imply that either 
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(a) a still poorly understood mode of nanoparticle stabilization by alkyl Lewis acids such as 

AlEt3 is present or, (b) that reactions between the Ir(0)n and AlEt3 occur to give initially surface 

species such as (Irsurface)x–Et plus (Irsurface)x–Al(Et)2Ir, where the number of surface  Ir atoms 

involved, x = 1-4; and (vii) confirm the literature’s suggestion that the activity of Ziegler-type 

hydrogenation can be tuned by the Al/Ir ratio.   Finally and perhaps most importantly, the results 

herein along with recent literature make apparent (viii) that isolable, hydrocarbon soluble, Lewis-

acid containing, Ziegler-type nanoparticles are an underexploited, still not well understood type 

of high catalytic activity, long lifetime and unusually if not unprecedentedly high thermal 

stability nanoparticles for exploitation in catalysis or other applications where their unusual 

hydrocarbon solubility and thermal stability might be advantageous. 

1. Introduction 

Ziegler-type, hydrocarbon-solvent-soluble hydrogenation catalysts are formed, by definition 

[1], from a non-zero valent group 8-10 transition metal precatalyst such as the industrial example 

[1,2] of Co(neodecanoate)2 plus a trialkylaluminum cocatalyst, for example AlEt3.  These 

catalysts are used industrially to produce hydrogenated styrenic block copolymers at a level of 

~1.7 × 105 metric tons/year [2,3].  Ziegler-type hydrogenation catalysts made from third-row 

elements of the same column metal (i.e., Ir as an analog of Co Ziegler-type hydrogenation 

catalysts) are also important,[1] such third-row metals allowing more robust, more easily 

characterized catalysts [4].  

We recently reported high activity Ziegler-type nanoparticle hydrogenation catalysts made 

from the crystallographically characterized [(1,5-COD)Ir(µ-O2C8H15)]2 precatalyst [3] plus AlEt3, 

Al/Ir=1, 2, 3 or 5 [4] , Scheme 3.1.  (An Al/Ir=1 catalyst means 1 equivalent of AlEt3 is added 

per Ir, i.e., 1 equivalent AlEt3 is added to 0.5 equivalent of the [(1,5-COD)Ir(µ-O2C8H15)]2 
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precatalyst dimer). Subsequent studies, using X-ray absorption fine structure spectroscopy 

(XAFS), Z-contrast scanning transmission electron microscopy (STEM) plus matrix assisted 

laser desorption ionization mass spectroscopy (MALDI MS), revealed that sub-nanometer 

particles of an estimated mean-size range of Ir(0)~4-15 are formed initially as a result of simply 

mixing [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 at Al/Ir=1, 2, 3 or 5 (Scheme 3.1, Equation 1).  

Regardless of the Al/Ir ratio examined (Al/Ir=1-5) or the initial [Ir] concentration ([Ir] = 1.0-7.0 

mM), the initially formed Ir(0)~4-15 particles were then shown to transform under H2/cyclohexene 

hydrogenation catalysis conditions (Scheme 3.1, Equation 2) [4], to Ir(0)~40–150 Ziegler-type 

nanoparticles [5,6,7,8] according to XAFS, STEM and MALDI MS characterization results—a 

new, hydrocarbon soluble, AlR3-dependent type of catalytically active nanoparticle [1,4], vide 

infra. Concomitant with this transformation to fcc Ir(0)~40–150 Ziegler nanoparticles, an increase in 

the catalytic activity in cyclohexene hydrogenation is observed [4].  The combined kinetic, plus 

XAFS, STEM and MALDI MS characterization, studies both before and after catalysis provide 

the best evidence to date that Ziegler-type Ir(0)n nanoparticles both exist and appear to be the 

fastest catalysts in Ziegler-type hydrogenations [1,4].  The finding of kinetically dominant 

catalysis by Ziegler nanoparticles is significant since it answers a 50-year old question about the 

nature of the true catalyst under Ziegler hydrogenation catalysis conditions [1].  Indeed, 

nanoparticles (or, when these catalysts were first discovered, 

“colloids”[9,10,11,12,13,14,15,16,17,18,19,20,21]) have been discussed as the possible true 

catalysts for 50 years now, but definitive demonstration that Ziegler nanoparticles are both 

present and are the most active catalysts in Ziegler-type hydrogenation catalysis [1,2] was 

previously lacking [1,4]. 
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aConditions for catalyst preparation (eq. 1) are: cyclohexane solvent, [Ir]=1.4 mM, 30ºC, N2
atmosphere. Conditions for cyclohexene hydrogenation (eqs. 2 and 3) are: cyclohexane solvent, 
[Ir]=1.2 mM (except where noted otherwise), [cyclohexene]initial=1.65 M, 22.0 ± 0.1 ºC, 40 ± 1 
psig H2.  The side products in Equation 1 include 1,5-COD, O2C8H15

-, and (n-m) AlEt3 (n!m) or 
their combinations.  

Scheme 3.1. Ziegler-type hydrogenation catalyst preparation, and subsequent cyclohexene 
hydrogenation, from [(1,5-COD)Ir(!-O2C8H15)]2 plus AlEt3, Al/Ir= 2, 3 or 5.a 

 

The Ziegler-type nanoparticle catalysts are unusual in that they are hydrocarbon soluble.  They 

are further unusual as at least ostensibly an example of “weakly ligated/labile-ligand 

nanoparticles”[5,6,7,22] in this case nanoparticles in which the only possible ligands are 

cyclohexane, AlEt3 Lewis acid (or its nanoparticle surface-derivatives), carboxylates such as 

C7H15CO2
- and H2 (and/or metal hydrides) plus cyclohexene.  All these are either relatively weak 

ligands, or the actual reagents of the desired reaction (H2 plus cyclohexene hydrogenations), 

other than the AlEt3 (and the combination [C7H15CO2•AlEt3]- for the first equivalent of AlEt3 per 

#[(1,5-COD)Ir(!-O2C8H15)]2, eq. 1, vide supra). Significantly, the high stability of the Ir(0)n

nanoparticles reported herein at ratios !2 of AlEt3 per #[(1,5-COD)Ir(!-O2C8H15)]2 would seem 

to indicate a robust interaction between the Ir(0)n nanoparticle and the AlEt3, vide infra. Restated, 

(Equation 2) 

[ Ir(0)~4-15/ m AlEt3]              [Ir(0)~40-150/ m AlEt3]        

 (Equation 1)

 [(1,5-COD)Ir(!-O2C8H15)]2+ n AlEt3                        [Ir(0)~4-15/ m AlEt3]  + side products    

  (Equation 3)     

               + H2   [Ir(0)~4-15/m AlEt3] initially  and then [Ir(0)~40-150/m AlEt3]                                                

 
22˚C, cyclohexane 

                                        
9 h stirring/N2 
30˚C, cyclohexane 

]           ]           
H2                      

22˚C, cyclohexane 
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Ziegler-type nanoparticles appear to be an unusual type of little recognized, and hence 

underexploited, nanoparticle catalyst, ones used industrially but hidden for a 50-year period due 

to a lack of knowledge of the probable true catalyst [1,2].  

It became, therefore, of significant interest to examine the catalytic activity, lifetime and 

thermal stability of these hydrocarbon soluble, Ir(0)n Ziegler-type nanoparticles, as a function of 

the Al/Ir molar ratio of the AlEt3 cocatalyst and Ir metal precatalyst [1].  Just how active, long 

lived and thermally stable are these unusual, hydrocarbon soluble, AlR3 containing 

nanoparticles?   Relevant here is the previously developed, so-called “five-criteria 

method”[23,24,25,26] to rank the formation and then stabilizing abilities of various anions, 

solvents, cations and polymers for catalytically active nanoparticles, a method developed 

specifically with Ir(0)n nanoparticles [27].  

Herein, a necessarily modified version [28] of the five-criteria ranking method 

[23,24,25,26,27] is developed and then used to evaluate the catalytic properties of the Ir(0)n 

Ziegler-type nanoparticle hydrogenation catalysts made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus 

AlEt3, as a function of Al/Ir ratios from primarily 2-5 (with 0-1 being examined in control 

reactions).  Those modified evaluation criteria used herein are: (i) the isolability and then 

redispersibility of the resultant nanoparticle catalyst without visible formation of bulk metal—

historically a demanding test of nanoparticle stability [23,24,25,26]; (ii) the initial catalytic 

activity of the isolated catalyst redispersed in cyclohexane; (iii) the catalytic lifetime; and then 

also (iv) the thermal stability of the catalyst solution as determined by the ability of the 

stabilizing species to keep the nanoparticles in solution at 200 ˚C for 30 minutes without the 

visible formation of bulk metal.  The enhanced (vide infra) thermal stability of the Ziegler 

nanoparticle catalyst solutions is important, since industrial applications of Ziegler-type 
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hydrogenation catalysts report catalyst preparation temperatures up to 250 ˚C, and then polymer 

hydrogenations up to 180 ˚C [1,29,30].  However, no prior study has examined the thermal 

stability of a firmly established Ziegler nanoparticle catalyst, in our case an Ir(0)n catalyst, under 

controlled conditions.  

2. Results and Discussion 

Ir(0)~40-150 “Ziegler Nanoparticle” Catalyst Synthesis and Cyclohexene Hydrogenation: Our 

review of the literature of Ziegler-type catalysis [1] reveals that the following variables have 

significant effects on the catalytic activity and other properties of the catalyst [4]: the Al/Ir ratio; 

the order and rate of addition of the precatalyst and cocatalyst; the solvent used; aging of the 

initial catalyst material; and whether or not the olefin substrate is present during the initial 

precatalyst and cocatalyst addition step.  Hence, and as detailed in the Experimental section and 

based on our published experience [4], the Ziegler type Ir(0)n/AlEt3 hydrogenation catalysts were 

prepared from [(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3, by adding quickly (over 2 sec) a 

cyclohexane solution of AlEt3 to a cyclohexane solution of [(1,5-COD)Ir(µ-O2C8H15)]2, all while 

vigorously stirring at 30 ˚C under N2.  This resultant solution was then aged [1,4] by further 

stirring for 9 h under N2 at 30 ˚C (Scheme 3.1, Equation 1).   

Cyclohexene hydrogenation was used as a test reaction to measure the activity and lifetime of 

[(1,5-COD)Ir(µ-O2C8H15)]2  plus AlEt3, Al/Ir=2, 3 or 5, catalysts, Scheme 3.1, eqs. 2, 3.  These 

catalysts were also tested for their thermal stability by first preparing the catalyst solution in 

dodecane solvent and then performing a cyclohexene hydrogenation at room temperature.  The 

resulting catalyst solution was then kept at 200 ˚C for 30 min, followed by a test of cyclohexene 

hydrogenation activity back at room temperature of the resultant, thermalized nanoparticles.  The 
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transmission electron microscopy (TEM) images of the post catalyst samples were also obtained, 

vide infra. 

 

Redispersibility, Catalytic Activity and Lifetime in Cyclohexane of Ziegler-type 

Hydrogenation Catalysts made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir = 2, 3 or 5: 

All three catalysts made from [(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3, Al/Ir=2, 3 or 5, are isolable 

as brown/black powders by evaporation of the volatiles under vacuum.  The isolated catalysts are 

then fully redispersible in cyclohexane hydrocarbon solvent without visible formation of bulk 

metal, Figure 3.1 (Table 3.1, entries 1-3, column 3) [31].  

For the redispersed catalysts (Al/Ir=2, 3 or 5), hydrogenations start immediately and continue 

in a slightly sigmoidal fashion until consumption of the cyclohexene is complete, Figure 2, with 

catalytic activities of 10(3), 7(2) and 3(1) mmol H2/h [32] for the Al/Ir=2, 3 and 5 catalysts, 

respectively (Table 3.1, entries 1-3, column 4).  The TEM results in Figure 3.1 show that the 

redispersed Ir(0)n Ziegler type catalysts for the Al/Ir=2 and Al/Ir=5 ratios are the same size 

within experimental error as those synthesized as described above and then used in cyclohexene 

hydrogenation [4].  The Al/Ir=2, 3 or 5 catalysts provide 180 000, 155 000 and 100 000 

turnovers over the course of 52 h, 144 h and 150 h, respectively, with average TOF (=TTO/total 

time before deactivation) of the rather high values of 3500, 1100 and 700 h-1, respectively, 

before deactivation (Table 3.1, entries 1-3, columns 5 and 6). 
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Figure 3.1. Representative TEM images for the Al/Ir=2, 3 and 5 catalysts taken from 
cyclohexane solutions of initially isolated, but then redispersed, catalysts prepared with [(1,5-
COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=2 (left), Al/Ir=3 (middle) and Al/Ir=5 (right).  The scale 
bar is 5 nm in each case.  The images show nanoparticles with equivalent average sizes within 
experimental error of: 1.4 ± 0.7 nm (left), 1.5 ± 0.5 nm (middle) and 1.7 ± 0.4 nm (right) for the 
respective Al/Ir=2, 3 and 5 catalysts. 

Comparison to Earlier Literature Ir(0)n Nanoparticle Catalysis Data:  The observed 

hydrogenation activities of the redispersed Al/Ir=2, 3 and 5 catalysts (Table 3.1, entries 1-3) are 

as high as (and in some cases higher than) any previously reported Ir(0)n nanoparticle catalysts 

(Table 3.2, Entries 1-6) [24,25,26,33,34], comparisons made under identical conditions of 

precatalyst and cyclohexene concentration as well as initial H2 pressure (but, necessarily, 

involving a solvent change from cyclohexane for the data in Table 3.1 vs acetone for the data in 

Table 3.2).  In addition, the lifetimes of catalysts made with Al/Ir=2 and Al/Ir=3, 180 000 and 

155 000 turnovers, respectively, are longer than those of all other Ir(0)n nanoparticle catalyst 

systems previously ranked via the five-criteria method (Table 3.2, Entries 1-6, column 5) 

[24,25,26,33].   In short, the Ziegler type hydrogenation catalysts made with 2, 3 or 5 equivalents 

of AlEt3 are high activity, and longer lifetime, Ir(0)n nanoparticle catalysts, in comparison to 

previously reported Ir(0)n nanoparticle catalysts.  
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Table 3.1. Compilation of data for the Ziegler-type hydrogenation catalysts made from [(1,5-
COD)Ir(µ-O2C8H15)]2 plus AlEt3.  Conditions for all hydrogenations are as follows: cyclohexane 
solvent; [Ir]=1.2 mM; [cyclohexene]initial=1.65 M; 22.0 ± 0.1 ºC; and 40 ± 1 psig H2, unless 
otherwise noted.  The catalytic activity data given in the table are the average of three separate 
hydrogenation runs carried out under identical conditions.  For the data shown in the format 
“x(y)”, x = the average of three separate runs, and y = the standard deviation (1σ) of those 3 
runs. 

Entry Al/Ir 
ratio 

Redispersibility 
in cyclohexanea 

Catalytic 
activity of 
the 
redispersed 
catalyst 
(mmol 
H2/h)b,c  

TTOb,d TOFave
b,d 

(TTO/time) 
(h-1) 

Appearance 
after heating 
at 200 ˚C 

Catalytic 
activity at 
22 ˚C after  
heating at 
200˚C 
(mmol 
H2/h)e,f 

Appearance 
after 
hydrogenation 
of the 200˚C 
treated catalyst 

1 2 Yes 10(3) 180 000 3500 Brown 
solution, 
black 
particles 

24(9) Brown solution,  

black particles 

2 3 Yes 7(2)  155 000 1100 Brown 
solution, 
brown 
particles 

5(4) Brown solution, 
black particles  

3 5 Yes 3(1) 100 000 700 Clear, brown 
solution 

6(4) Clear, brown 
solution 

Lower Al/Ir ratios—Controls Studying Less Stable Catalysts 
4 1 Partially 19(4) [370 

000]g 
3600 Colorless 

solution, 
black 
particles 

25(5) Gray solution, 
black particles 

5 0 No NDh [230 
000]g 

2600 ND ND ND 

a “Yes” means all the isolated material dissolved (i.e., no undissolved particles remained in the medium). “Partially” means 
some visually observable particles are present in the solution after redispersion.  b Measured in cyclohexane solvent.  The 
reported values are uncorrected for the number of surface atoms and, therefore, are lower limits to the true TTOs and TOFs per 
available surface active site.  c Initial rate.  d A 60-fold lower concentration of Ir ([Ir] = 0.02 mM was used for the TTO and 
TOFave measurements vs the [Ir] = 1.2 mM for catalytic activity or other measurements in columns 4, 7, 8 and 9). Hence, the size 
and n value of these Ir(0)n nanoclusters may be somewhat different than those in columns 4, 7, 8 and 9, although our prior work 
shows that concentrations from [Ir] = 1.0  to 7.0 mM yield Ir(0)~40-150 nanoparticles [4]. e Maximum catalytic rate observed during 
the corresponding hydrogenation. f Measured in dodecane solvent.  g The “partial” to “no” redispersibility for these control study 
entries with 0-1 equivalent of AlEt3 means that the TTO values are not just for nanoparticles (i.e., reflect significant contributions 
from bulk metal) and, therefore, are placed in [brackets].  h ND: Not determinable.  
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Table 3.2. A summary of key literature data for Ir(0)n nanoparticle catalysts in solution.   

 

 

 

 

 

 

aConditions for all hydrogenations are as follows: acetone solvent; [Ir]=1.2 mM; 
[cyclohexene]initial=1.65 M; 22.0 ± 0.1 ºC; and 40 ± 1 psig H2 initially.  PS: Proton Sponge, 1,8-
bis(dimethylamino)naphthalene.  TTO values given in [brackets] are upper limits to the TTOs 
due solely to nanoparticles because of the presence of bulk metal. 

Figure 3.2.  Plot of the H2 pressure vs time data for cyclohexene hydrogenations starting from 
[(1,5-COD)Ir(!-O2C8H15)]2 plus AlEt3, Al/Ir=2, catalyst after it was isolated and redispersed in 
cyclohexane.  Conditions for hydrogenations are as follows: cyclohexane solvent; [Ir]=1.2 mM; 
[cyclohexene]initial=1.65 M; 22.0 ± 0.1 ºC; and 40 ± 1 psig H2.   

 

Entry Catalyst System Redispersibility 
in acetone 

Catalytic activity 
of redispersed 
catalyst (mmol 
H2/h) 

TTO Ref 

1 [(1,5-COD)Ir(CH3CN)2]BF4 + [Bu4N]2HPO4 
+ 1 eq. PSa 

Yes 5(1) 53 000 25 

2 [(1,5-COD)Ir(CH3CN)2]BF4 + 
[Bu4N](8n+1)[P2W15(TiOH)3O59]n + 1 eq. PS 

Yes 2.3(2) 29 000 24 

3 [(1,5-COD)Ir(CH3CN)2]BF4 + [Bu4N]C2H3O2
 Partial 0.9(2) [81 000] 24 

4 [Bu4N]5Na3[(1,5-COD)Ir• P2W15Nb3O62]          
+1 eq. PS 

Yes 2.2(2) 68 000 24,33 

5 {[(1,5-COD)Ir•HPO4]}n + 1 eq. PS Yes 0.8(1) [150 000] 25 

6 [(1,5-COD)Ir(CH3CN)2]BF4 + 1 equiv 
[Bu4N]9{H[P2W17O61]} + 1 eq. PS 

Yes 0.6(1) 71 000 26 
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Thermal Stability in Dodecane at 200 ˚C:  The Ziegler-type hydrogenation catalysts made 

from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, prepared in dodecane [35] (boiling point: 215 ˚C) 

and aged in solution for 9 hrs, were tested for their stability against agglomeration at 200 ˚C for 

30 min (see the Supporting Information, Figure SI-B3, for a representative hydrogenation curve 

using the heat-treated catalyst) [36].  Importantly, using a high Al/Ir ratio up to 5 has a 

significant effect on the thermal stability of the resulting Ziegler-type hydrogenation catalyst, 

inhibiting agglomeration even after heating at 200 ˚C for 30 min.  In comparison, the Al/Ir = 2 

catalyst contained visually observable black bulk metal in a brown solution at the end of 30 min 

heating at 200 ˚C (Table 3.1, entry 1, column 7).  Cyclohexene hydrogenation [37] with that 

Al/Ir = 2, 200 oC thermally treated catalyst revealed a still brown solution, but visually 

observable black bulk (Table 3.1, entry 2, column 9) verified by TEM, Figure 3.3. Heating the 

Al/Ir=3 catalyst solution at 200 ˚C results in the appearance of brown Ir(0) particles (as verified 

by XPS, Figure SI-B5) in a brown solution (Table 3.1, entry 2, column 7), the brown particles 

being indicative of precipitated Ir(0)n nanoparticles [38,39].  At the end of the subsequent 

hydrogenation using the heat-treated Al/Ir=3 catalyst, black Ir(0) bulk is again visually 

observable in the solution (Table 3.1, entry 2, column 9), a product again verified by TEM, 

Figure 3.4.  

In contrast, the Al/Ir=5 catalyst remains clear brown both at the end of the 30 min at 200 ˚C 

and at the end of the subsequent hydrogenation (Table 3.1, Entry 3, columns 7 and 9, Figure 

3.5).  These observations are significant, as they reveal that at a Al/Ir=5 ratio, the AlEt3 stabilizer 

(i.e., plus any nanoparticle surface species derived from the AlEt3) are able to stabilize the Ir(0)n 

nanoparticles in solution sufficiently to prevent the formation of bulk metal even after 200 oC 

heating and subsequent hydrogenation catalysis. The results reveal the high thermal stability of at 
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least Ir(0)n Ziegler-type nanoparticle catalysts along with the key role of the higher Al/Ir ratio in 

achieving that stability.  Significantly, the Ir(0)n/AlEt3 nanoparticle catalysts appear to be more 

thermally stable [40,41] vs any demonstrated soluble nanoparticle catalyst that at least we can 

find in the current literature.  Previous reports of the highest thermal stability of solutions of 

claimed nanoparticle catalysts appear to be limited to the ≤130–160 oC range 

[42,43,44,45,46,47,48,49,50,51] —although it should be noted that those reports typically lack 

the type of strong evidence provided elsewhere that the Ir(0)n Ziegler-type nanoparticles studied 

herein are the true catalysts [4].  

      

 

Figure 3.3. A bright-field TEM image on a sample of the Al/Ir=2 Ziegler-type hydrogenation 
catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, heat-treated at 200 ˚C, and then a drop 
of solution was withdrawn from the reaction’s culture tube at the end of hydrogenation catalysis 
and placed on a TEM grid.  The image shows bulk Ir metal (note the 0.5 µm = 500 nm scale bar). 
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Figure 3.4.   A bright-field TEM image on a sample of the Al/Ir=3 Ziegler-type hydrogenation 
catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, heat-treated at 200 ˚C, and then a 
drop of solution was withdrawn from the reaction’s culture tube at the end of hydrogenation 
catalysis and placed on a TEM grid.  The image shows bulk Ir metal (note the 0.5 µm = 500 nm 
scale bar).   

 
Figure 3.5.  TEM image taken from a homogeneously appearing cyclohexane solution of 
catalyst prepared with  [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=5, after hydrogenation with 
heat-treated catalyst.  The image shows nanoparticles of 1.9 ± 0.3 nm, that is, on average Ir~250, 
with no evidence for bulk metal (the scale bar is 5 nm). 
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Control Studies with the Al/Ir = 1 and Al/Ir=0 Catalysts.  The following three observations with 

an Al/Ir=1 catalyst show that >1 equivalent AlEt3 per Ir is required to obtain a highly stable 

catalyst.  Specifically, for the Al/Ir=1 catalyst: (i) there are visually observable black particles of 

bulk Ir(0) in the brown solution and on the stirbar after cyclohexene hydrogenation; (ii) there is 

only a partial redispersibility in cyclohexane of the isolated catalyst (i.e., isolated by removing 

the volatiles under vacuum to give a brown suspension, but one with visually observable, bulk-

metal particles) (Table 3.1, entry 4, column 3); and (iii) there are visually observable black 

particles after 30 minutes of heating at 200 ˚C in dodecane, which also yields a colorless, and 

therefore nanoparticle-free, solution (Table 3.1, entry 4, column 7).  Furthermore, the presence of 

bulk metal in the post-catalysis solution of the Al/Ir=1 catalyst means that the relatively high 

TTO value of [370 000] over the course of 104 h at 22.0 ± 0.1 ˚C contains a significant 

contribution from bulk metal (see the Supporting Information for a more detailed discussion on 

the Al/Ir=1 catalyst).  Control experiments with the Al/Ir=0 catalyst confirms that the initially 

formed Ir(0)n nanoparticles are unstable against agglomeration in the absence of AlEt3: a clear, 

colorless, and therefore nanoparticle free solution with visually observable black bulk Ir metal 

results (see the Supporting Information for a more detailed discussion of the Al/Ir=0 catalyst).   

 The results make clear the stability enhancing effects of added AlEt3.  The ability of Lewis 

acids to stabilize nanoparticles has general, albeit not well understood, precedent in the studies of 

Shmidt [52,53,54,55], Goulon [56] and Bönnemann [57,58,59,60,61] as detailed on p. 13-17 of 

our 2010 review [1].  What remains poorly understood, in comparison to what is known in a 

review of nanoparticle stabilization [22], is why Lewis acids such as AlEt3—even if in 

combination with the RCO2
- component of the precatalyst to make the  anionic (i.e., DLVO-
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theory type [22]) stabilizer [RCO2•AlEt3]-—are any where near as effective a nanoparticle 

stabilizer as is observed.  

 The fact that the stabilization is highest at higher (e.g., 5:1) Al/Ir ratios (i.e., 4 equivalents 

beyond the 1 RCO2
- present, and thus beyond the consumption of 1 AlEt3, to make 1 equiv. of 

[RCO2•AlEt3]-) implies—significantly—the little appreciated hypothesis that the Lewis acidic 

AlEt3 alone appears to be a good stabilizer [62,63,64], although again Shmidt’s pioneering work 

[52,53,54,55] provides early evidence for this hypothesis if that work is carefully examined (see 

the discussion on p. 13 elsewhere [1]).  It is presently unknown whether the stability enhancing, 

concomitantly rate decreasing, effects of added AlEt3 are simply indicating that AlEt3 is binding 

at the catalytically active site [65], or if there is some other more complex phenomenon involved 

(e.g., some structural or compositional change, or both, induced by the added excess AlEt3 

[4,66,67]).  Noteworthy here is that one can envisage Irn:→AlEt3 species (where a Al–Et→Ir 

dative bond back to the Irn surface may be a key, additional component of that bonding).  Also 

conceivable are the formation of surface species such as (Irsurface)x-Et plus (Irsurface)x-Al(Et)2Ir 

where the number of surface Ir atoms involved could be x = 1, 2, 3 or 4, for example, as well as 

(Irsurface)x-H hydrides from β-H elimination from any putative (Irsurface)x-Et.  Hence, one important 

finding of the present work and the work of Shmidt [52,53,54,55], Goulon [56], Bönnemann 

[57,58,59,60,61] and others discussed elsewhere [1] is that future studies of AlR3-stabilized 

nanoparticles are of considerable interest.  The needed studies of the surface composition of 

Ziegler nanoparticles promise to be challenging, however.  

Reflection on the observations uncovered by this research suggests several hypotheses for 

future research, specifically: (i) that either the expected to be electrophilic, Lewis acidic Ir(0)n 

surface is much more strongly stabilized by the Lewis acidic AlEt3 than one might have first 
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expect; or possibly (ii) that reactions with the Ir(0)n surface and AlEt3 occur such as those 

suggested above.  It is also possible (iii) that the true catalyst is a fragment, for example a 

hydride species (at present we are investigating the catalysis of the combination of AlEt3 plus the 

previously unknown [68] [(1,5-COD)Ir(µ-H)]4).  Our recent XAFS plus kinetic studies argue 

fairly strongly against the “a fragment is the true catalyst” explanation, however, since faster 

catalysis is seen when larger Ir(0)n nanoparticles are being formed and fewer Ir4-sized sub-

nanometer particles can be detected [4]. Additional studies of these and other hypotheses are 

needed and promise to reveal novel insights about nanoparticle stabilization by added AlR3 or 

other Lewis acids. 

3. Summary and Conclusions 

The main conclusions of this study are as follows: 

(i) Hydrocarbon soluble, Ir(0)n Ziegler nanoparticles made from  [(1,5-COD)Ir(µ-O2C8H15)]2 

and AlEt3 are highly active, long-lived and thermally unusually stable—if not unprecedentedly 

stable—nanoparticle solution catalysts.  Their TTO lifetimes are higher than any known Ir(0)n 

nanoparticles, even those of the premier, P2W15Nb3O62
9- polyoxoanion, “electrosteric” stabilized 

[24,33] Ir(0)n nanoparticles. 

 (ii) Thermal stability at 200 ˚C requires addition of at least 3 equivalents of AlEt3 and the 

stability of the resulting catalyst increases at Al/Ir=5.  The addition of ≥2 equivalents AlEt3 is 

necessary in order to prevent agglomeration of the Ir(0)n Ziegler nanoparticles to bulk Ir(0) metal 

during room temperature cyclohexene hydrogenation catalysis. 

(iii) The Al/Ir=5 Ir(0)n nanoparticles are stable for ≥30 minutes at 200 oC, and exhibit 100 000 

TTOs of cyclohexene hydrogenation.  The observed nanoparticle catalyst stability at 200 oC 
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appears to surpass that of any other demonstrated nanoparticle catalyst that we can find, those 

literature reports being limited to ≤130-160 oC temperatures. 

(iv) The results strongly suggest that AlEt3, or possibly derivatives of it, are a main component 

of the stabilizer.  

(v) The results imply that either (a) a little understood mode of nanoparticle stabilization by 

alkyl Lewis acids such as AlEt3 is present (i.e., and in addition to the anionic, DLVO-theory type 

of stabilization expected for [RCO2•AlEt3]- formed from the first equivalent of added AlEt3), or 

(b) that reactions between the Ir(0)n and AlR3 occur to give species such as the (Irsurface)x–Et and 

(Irsurface)x–Al(Et)2Ir detailed earlier.  It is also conceivable that (c) some other species is the true 

catalyst in the reaction, possibly an iridium hydride fragment (which could, then, and for 

example have a Lewis base / Lewis acid interaction between the Ir-H and the AlEt3), although 

the evidence to date argues against this third possibility [4].  Additional studies are, however, 

warranted and promise to uncover new insights, most likely into the novel stabilization mode of 

Ziegler-type nanoparticles. 

(vi) The results confirm that the activity of Ziegler-type hydrogenation catalysts can be tuned 

by the Al/Ir ratio, a point apparent in the extant literature [1].  Our results show that, in addition 

to their catalytic activity, the catalytic lifetime and thermal stability of Ziegler-type 

hydrogenation catalysts are also strongly influenced by, and thus can be tuned by, the Al/Ir ratio. 

 (vii) Finally and most importantly, the valuable prior studies of Shmidt [52,53,54,55], Goulon 

[56], and Bönnemann [57,58,59,60,61] plus the results herein and our other, recent publications 

[4] and critical review [1], make apparent that hydrocarbon soluble, Lewis-acid containing, 

Ziegler-type nanoparticles are an underexploited type of highly active, long lifetime and 
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unusually high stability nanoparticle for use in catalysis or other applications where their unusual 

hydrocarbon solubility and thermal stability might be advantageous.  

Overall, the results help confirm the existence of Ziegler nanoparticles, highlight their 

hydrocarbon solubility, and highlight their high, Al/Ir ratio-tunable catalytic activities and 

lifetimes while also revealing their exceptionally high thermal stability at 200 ˚C.  It is hoped 

that these results will open the door to the other possible applications of Ziegler-nanoparticles in 

catalysis and, possibly, other areas. 

In our studies in progress we are concentrating on another historically difficult question in this 

area [1], namely precisely what happens to the AlEt3 after mixing [(1,5-COD)Ir(µ-O2C8H15)]2 and 

AlEt3,  as well as any insights that may give about the nature of the true catalyst(s).  We are also 

striving to bring to completion our multi-year studies of the precise form and catalytic properties 

of other Ziegler-type hydrogenation catalysts made from various combinations of industrial 

precatalysts [63] such as Co and Ni salts and commonly used cocatalysts such as AlMe3, Al(t-

Bu)3, or alumoxanes and their derivatives.  

4. Experimental 

Materials, Stock Solutions and Instrumentation. All manipulations were performed under N2 

in a Vacuum Atmospheres drybox (≤5 ppm O2 as monitored by a Vacuum Atmospheres O2-level 

monitor) or using a Schlenk line.  All glassware was dried overnight in an oven at 160 ˚C, cooled 

under vacuum in a desiccator and then transferred into the drybox while still in the desiccator 

and under vacuum, since H2O is known to be detrimental to Ziegler-type hydrogenation catalysts 

[1].  Cyclohexane (Sigma-Aldrich, 99.5 %, H2O < 0.001 %) and dodecane (Sigma-Aldrich, 

anhydrous, ≥99%, water content ≤0.003 %) were dried over activated molecular sieves for 2 

days prior to use.  Molecular sieves (Acros, 3 Å) were activated by keeping at 200˚C for 8 hours 
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under vacuum.  AlEt3 (Strem Chemicals, 93%, in 100 g steel cylinder) was used as received.  

Cyclohexene (Aldrich, 99%) was distilled over Na under N2(g) and transferred into the drybox 

under air-free conditions.  Silicone oil (Dimethyl Silicone, Thomas Scientific) was used as 

received.  Hydrogen gas (General Air, 99.5%) was passed through an indicating moisture trap 

(Scott Specialty Gas), a disposable O2 cartridge (Trigon), and an indicating O2 trap (Trigon) 

before use in hydrogenations.  [(1,5-COD)Ir(µ-O2C8H15)]2 was prepared by W. Morgan Alley in 

our labs following our previously published procedure [3].  It was characterized, and its purity 

checked, by 1H and 13C NMR that matched the literature [3].   

 1H NMR:  The spectra of sample solutions in benzene-d6 (Cambridge Isotope Laboratories, Inc., 

99.5%, w/o TMS) were taken on a Varian Inova 400 instrument and worked out with MestRec 

software when needed.  Observed chemical shifts were referenced to the proton resonance of the 

benzene-d6 solvent.   

TEM: Sample solutions for TEM were prepared at Colorado State University by first diluting 0.1 

mL of a catalyst solution to 0.6 mL using cyclohexane in a 5 mL glass vial.  TEM grids (ultrathin 

carbon film supported by a holey carbon film on a 400 Mesh copper grid, Ted Pella, Inc.) were 

then immersed into a sample solution, and dried under an N2 atmosphere in the drybox for ~1 

min.  The grids were then placed in 5-mL glass vials, double-sealed under N2 in the drybox, and 

then sent to Dr. JoAn Hudson at Clemson University for imaging at ≥ 0.5M magnification on a 

Hitachi H7600T operated at 120 kV.   

Procedures and Cautions for Handling the Pyrophoric AlEt3.  CAUTION: AlEt3 is a well-

known pyrophoric reagent.  AlEt3 ignites spontaneously when in contact with air.  It, as with all 

pyrophoric reagents, is more dangerous when flammable solvents are present (e.g., cyclohexane 

or dodecane, herein).  AlEt3 and solvents are even more dangerous the larger the amounts being 

employed!  
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Hence, the required safety considerations were carefully designed followed, including: (i) first 

reading the MSDS safety sheet on AlEt3; (ii) working with the minimal amounts of pyrophoric 

and flammable reagents possible; (iii) using the AlEt3 only in a drybox or in Fisher-Porter (F–P) 

bottle under N2 atmosphere.  The F-P bottle was sealed using Swagelock quick-connects before 

taking it out of the  drybox.  

AlEt3 stock solution (36 mM).    A stock solution was prepared in the drybox by adding neat 

AlEt3 (0.529 mL, 0.834 g/mL) using a 1.000 mL gas-tight syringe into 50 mL cyclohexane in a 

100 mL volumetric flask.  The resulting solution was diluted to 100 mL using cyclohexane. 

Hydrogenation Solution Preparation and Catalytic Cyclohexene Hydrogenation with As-

prepared Catalysts.  Catalyst solutions, 1.44 mM in Ir, were individually prepared in a drybox at 

30°C.  An example procedure follows for the preparation of catalyst solution with [(1,5-

COD)Ir(µ-O2C8H15)]2 and AlEt3, Al/Ir=1:  A 1.60 mg portion of [(1,5-COD)Ir(µ-O2C8H15)]2 was 

weighed into a 20 mL screw-cap glass vial and then dissolved in 2.4 mL of cyclohexane forming 

an orange-red solution.  A 5/8 ��5/16 inch Teflon-coated magnetic stir bar was then placed in the 

20 mL screw-cap glass vial and the solution was stirred for 1 min at 1.0 ��103 rpm as measured 

with a Monarch Instruments Pocket-Tachometer.  A AlEt3 solution (0.1 mL, 36 mM; CAUTION, 

PYROPHORIC MATERIAL!, vide supra, IN COMBINATION WITH FLAMMABLE 

SOLVENTS!) was then quickly added to the Ir(I) solution within 2 sec using a 0.5 mL gas-tight 

syringe while vigorously stirring [1].  The original orange-red color of the [(1,5-COD)Ir(µ-

O2C8H15)]2 solution changed to tawny yellow at the end of AlEt3 addition.  This tawny yellow 

solution was stirred under N2 in the drybox for 9 h.  At the end of 9 h, the solution appeared clear 

brown with no visually observable particles.  The solution was then transferred into a new 22 ��

175 mm Pyrex borosilicate culture tube containing a new 5/8 ��5/16 in. Teflon-coated magnetic 

stirbar.  Cyclohexene (0.5 mL) was added using a 1.0 mL gas-tight syringe and the resulting 
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hydrogenation solution (1.65 M in [cyclohexene] and 1.2 mM in [Ir]) was stirred for an 

additional 1 min.  

The procedure and apparatus used for catalytic hydrogenations of cyclohexene have been 

described in detail elsewhere [33,69,70]  Briefly, a culture tube containing the hydrogenation 

solution was placed in a Fisher-Porter (F–P) bottle, which was then sealed and brought out of the 

drybox.  The F–P bottle was placed in a bath set at 22.0 ± 0.1 °C.  Stirring was started at 1000 ± 

10 rpm using a Fauske Super magnetic stirplate and the F–P bottle was connected to a 

pressurized H2 line using TFE-sealed Swagelok quick-connects.  The F–P bottle was purged 15 

times (1 purge/15 sec) with H2 that has passed through an indicating moisture trap (Scott 

Specialty Gas), a disposable O2 cartridge (Trigon), and an indicating O2 trap (Trigon).  The 

pressure in the F–P bottle was then set to 40 psig, and then the data collection was initiated.  

Hydrogen pressure vs. time data was collected using a pressure transducer (Omega PX 624–100 

GSV) interfaced via an Omega D1131 analog to digital converter to a PC running LabVIEW 7.0.  

Data was subsequently handled using MS Excel.  The maximum hydrogenation rate of catalysts 

before and after catalyst isolation was calculated from each kinetic curve by a linear-least-

squares fits to the data points in the highest activity (highest slope) region (R2 ≥ 0.999 for the 

reported data).  The maximum hydrogenation rates of redispersed catalysts occur at the 

beginning of the hydrogenation (i.e., the  maximum rate equals the initial rate), so those 

(maximum) rates were calculated via linear-least-squares fits to the initial, linear regions of the 

redispersed catalysts hydrogenation curves (R2 ≥ 0.999 for the reported data).  

For hydrogenations with [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=2 , 3 or 5, orange-red 

[(1,5-COD)Ir(µ-O2C8H15)]2 (1.60 mg) was dissolved in a total of 2.3 mL, 2.2 mL or 2.0 mL 

cyclohexane, respectively.  Then, 0.2 mL, 0.3 mL or 0.5 mL, respectively, of a stock AlEt3 

solution (36 mM) was added using a 1.0 mL gas-tight syringe.  At the end of 9 h aging in the 
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drybox, all the catalysts made with 1, 2, 3 or 5 equivalents AlEt3 turn to brown without visually 

observable bulk metal.  At the end of cyclohexene hydrogenation, the catalyst solutions prepared 

with 2, 3 or 5 equivalents of AlEt3 are still brown with no visually observable particles in 

contrast to the Al/Ir=1 catalyst solution which did contain bulk metal particles in the solution and 

on the stirbar.  

Isolation and Redispersion Procedure and Hydrogenation Using Redispersed Catalyst.  

After hydrogenation, the F-P bottle was detached from the line and taken inside the drybox.  The 

catalyst solution and the stirbar were then transferred into a new 20 mL screw-cap glass vial.  

Volatiles were removed under vacuum to yield a black powder which was dried under vacuum 

for 2 h.  Cyclohexane (2.5 mL) was then added to this isolated, black powdered catalyst and the 

resulting solution was stirred for 2 min.  This solution was completely transferred (i.e.; without 

leaving any observable particles in the glass vial) into a new 22 ��175 mm Pyrex borosilicate 

culture tube containing a new 5/8 ��5/16 in. Teflon-coated magnetic stirbar.  Fresh cyclohexene 

(0.5 mL) was added using a 1.0 mL gas-tight syringe and the resulting hydrogenation solution 

(1.65 M in [cyclohexene] and 1.2 mM in [Ir]) was stirred for an additional 1 min. 

Catalytic Lifetime Measurements.  The catalytic lifetime measurements were performed 

according to a previously published procedure [23,26].  In the drybox, the orange-red crystals of 

[(1,5-COD)Ir(µ-O2C8H15)] (0.319 mg, 0.72 µmol) was weighed into a 20 mL screw-cap glass 

vial.  Then, AlEt3 (20 µL, 36 mM) was quickly added in one second using a 50 µL syringe.  The 

resulting solution was stirred for 30 min.  The catalyst solution was then diluted with 10 mL 

cyclohexene and transferred into a new 22 ��175 mm Pyrex borosilicate culture tube containing a 

new 5/8 �� 5/16 in. Teflon-coated magnetic stirbar using a disposable polyethylene pipette.  

Further cyclohexene (26 mL, to bring the total cyclohexene volume to 36 mL, corresponding to a 

total of 488 000 total turnovers) was added using a 10 mL syringe while vigorously stirring.  The 
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culture tube containing the hydrogenation solution was placed in a F–P bottle, which was then 

sealed and brought out of the drybox.  The F–P bottle was placed in a water bath set at 22.0 ± 0.1 

°C.  Stirring was started at 1000 ± 10 rpm using a Fauske Super magnetic stirplate and the F–P 

bottle was connected to a pressurized H2 line using TFE-sealed Swagelok quick-connects.  The 

F–P bottle was purged 15 times (1 purge/15 sec) with H2 that has passed through an indicating 

moisture trap (Scott Specialty Gas), a disposable O2 cartridge (Trigon), and an indicating O2 trap 

(Trigon).  A timer was started and the pressure in the F–P bottle was set to 40±1 psig.    

The reaction was monitored by periodically withdrawing 0.1 mL aliquots of the reaction 

solution and then analyzing that aliquot by 1H NMR spectroscopy.  The aliquots were taken from 

the reaction solution while the F-P bottle was connected to the H2 line as follows: the purge valve 

was opened to air while the H2 gas at 40 psig pressure was still flowing.  A gas-tight syringe with 

a ~25 cm needle was first purged with H2 gas by inserting the tip into flowing H2 gas between 

Swagelok quick-connects on brass pressure head of F-P bottle.  The syringe was filled with H2 

and then emptied while under H2.  This procedure was repeated five times to ensure exclusion of 

air when the tip of the needle was inserted into the reaction solution.  Then 0.1 mL of the 

reaction solution was withdrawn with the syringe and quickly transferred into an NMR tube 

including 1.0 mL C6D6.   

Thermal Stability Experiments.  Thermal stability experiments were carried out using 

dodecane as solvent due to its high boiling point (215 ºC vs 81ºC for cyclohexane).  The catalyst 

and hydrogenation solutions, except AlEt3 solution, were prepared in dodecane using the 

procedure detailed above when cyclohexane was used as the solvent and under the section 

heading “Hydrogenation Solution Preparation and Catalytic Cyclohexene Hydrogenations”.  The 

AlEt3 stock solution in cyclohexane (36 mM) (that is, not in dodecane) was used in the thermal 

stability experiments.  A cyclohexene hydrogenation (called initial cyclohexene hydrogenation 
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hereafter) was carried out as detailed above, but now in dodecane solvent.  At the end of the 

initial cyclohexene hydrogenation the 22 ˚C water bath was replaced with a silicone oil bath set 

at 200 ± 2ºC.  The H2 pressure in the F-P bottle was decreased to ~20 psig and the F-P bottle was 

placed in silicone-oil bath.  The pressure in the F-P bottle was continuously monitored during 

heating.  The solution in the F-P bottle was kept at 200 ˚C for 30 min and then cooled down to 

room temperature under H2.  The F-P bottle was then brought into the drybox and 0.5 mL 

cyclohexene was added.  Next, the F-P bottle was taken out of the drybox, connected to H2 line 

and purged 15 times (1purge/15 sec) with H2 that has passed through an indicating moisture trap 

(Scott Specialty Gas), a disposable O2 cartridge (Trigon), and an indicating O2 trap (Trigon).  A 

second cyclohexene hydrogenation was then carried out to test the activity of the 200 ˚C, 30 min, 

heat-treated catalyst.  

 

5. Supporting Information Available. Detailed experimental procedures for control studies 

(i) measuring the maximum rate of cyclohexene hydrogenation as a function of cycles of catalyst 

isolation and then redispersion, (ii) determining the effect of aging the Ziegler-type 

hydrogenation catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir = 2, in dodecane; 

and (iii) determining the effect of using Al/Ir=1 and Al/Ir=0 ratios on catalyst activity and 

stability.  Hydrogenation curves with heat-treated Ziegler-type hydrogenation catalyst made from 

[(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir = 2. Control hydrogenations determining the H2 

gas-to-solution, mass-transfer-limited (MTL) rate of the hydrogenation apparatus used in the 

present work.  High resolution XPS spectrum of Ir 4f peaks of brown particles from the Al/Ir = 3 

catalyst after heating at 200 oC for 30 min. 1H NMR spectrum of neat AlEt3 and that of catalyst 
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solution prepared with [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir= 5.  This material is 

available free of charge via the Internet at http://pubs.acs.org/.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

136 

REFERENCES 
 

 [1] W.M. Alley, I.K. Hamdemir, K.A. Johnson, R. G. Finke, J. Mol. Catal. A. Chem. 315 
(2010) 1-27. 

 
[2] K.A. Johnson, Polym. Prepr. 41 (2000) 1525–1526. 
 
[3] W.M. Alley, C.W. Girard, S. Özkar, R.G. Finke, Inorg. Chem. 48 (2009) 1114-1121. 
 
[4] W.M. Alley, I.K. Hamdemir, Q. Wang, A. Frenkel, L. Li, J.C. Yang, L.D. Menard, R.G. 

Nuzzo, S. Özkar, K.A. Johnson, R.G. Finke, Inorg. Chem. 49 (2010) 8131-8147.  
 
[5] E. Bayram, M. Zahmakiran, S. Ozkar, R.G. Finke, Langmuir 26 (2010) 12455-12464. 
 
[6] For definitions of “nanoparticles” vs “nanoclusters” and relevant prior literature discussing 

these terms see refs 5 and 7. 
 
[7] Consistent with those definitions [5,6] the nomenclature used herein is “nanoparticles” to 

define species for which (only) the size distribution is known, but the composition and structure 
of the nanoparticles are not known.  Alternatively, the term “nanocluster” is reserved for 
atomically precise, compositionally and structurally atomically characterized (nano)clusters. 

 
[8] The Ir(0)n nanoparticles studied herein begin in the Ir(0)~40-150 size range [4], and are a bit 

larger, Ir(0)~250  post the 200 oC heat treatment as demonstrated in Figure 3.5. 
 

   [9] R.G. Finke, In Metal Nanoparticles: Synthesis, Characterization, and Applications; 
Feldheim, D. L., Foss Jr. C. A.,  Eds.; Marcel Dekker, Inc.; New York, 2002; pp. 17.    
 
   [10] G. Schmid, M. Baumle, M. Geerkens, I. Heim, C. Osemann, T. Sawitowski, Chem. Soc. 
Rev. 28 (1999) 179-185.  
 
   [11] G. Schmid, L. F. Chi, Adv. Mater. 10 (1998) 515-526. 
 
   [12] J.H. Fendler, Y. Tian, In Nanoparticles and Nanostructured Films; Fendler, J. H., Ed.; 
Wiley-VCH: Weinheim, 1998; Chapter 18. 
 
   [13] A. Furstner, Ed. Active Metals: Preparation, Characterization, and Applications; VCH: 
Weinheim, 1996.  
 
  [14] J.S. Bradley, In Clusters and Colloids. From Theory to Applications; Schmid, G., Ed.; 
VCH: New York, 1994; pp 459-544.  
 
  [15] G. Schmid, Chem. Rev. 92 (1992) 1709-1727.  
 
  [16] G. Schmid, In Aspects of Homogeneous Catalysis; Ugo, R., Ed.; Kluwer: Dordrecht, 1990; 
Chapter 1.  



 

 

137 

 
   [17] R.P. Andres, R.S. Averback, W.L. Brown, L.E. Brus, W.A. III Goddard, A. Kaldor, S.G.  
Louie, M. Moscovits, P.S. Peercy, S.J. Riley, R.W. Siegel, F. Spaepen,Y. Wang, J. Mater. Res. 4 
1(989) 704-736.  
 
   [18] A.  Henglein, Chem. Rev. 89 (1989) 1861-1873. 
 
   [19] J.M. Thomas, Pure Appl. Chem. 60 (1988) 1517-1528. 
 
   [20] P. Jena, B.K. Rao, S.N. Khanna, In  Physics and Chemistry of Small Clusters; Plenum: 
New York, 1987. 
 
   [21] L.J. de Jongh, Ed. In Physics and Chemistry of Metal Cluster Compounds; Kluwer 
Publishers: Dordrecht, 1994. 
 
   [22] L.S. Ott, R.G. Finke, Coord. Chem. Rev. 251 (2007)1075-1100. 
 
   [23] S. Özkar, R.G. Finke, J. Am. Chem. Soc. 124 (2002) 5796-5810.  
 
   [24] S. Özkar, R.G. Finke, Langmuir 18 (2002) 7653-7662.   
 
   [25] S. Özkar, R.G. Finke, Langmuir 19 (2003) 6247-6260.  
 
   [26] C.R. Graham, L.S. Ott, R.G. Finke, Langmuir 25 (2009) 1327-1336. 
 
   [27] The original five-criteria method, developed and then applied to rank the efficacy of a 
given additive (e.g., anions, solvent, cations or polymers) to achieve the kinetically controlled 
formation and then stabilization and catalytic activity of the resultant nanoparticles, are: (i) the 
ability to exhibit high level of kinetic control as measured quantitatively by the k2/k1 ratio for the 
nucleation [A → B (rate constant k1)], then autocatalytic surface growth [A + B → 2B (rate 
constant k2)] mechanism of formation of transition metal nanoparticles under H2; (ii) the ability 
to form near-monodisperse (≤15% size dispersion) nanoparticles as evidenced by TEM; (iii) the 
ability to allow isolation from solution and then complete redispersion without visible formation 
of bulk metal—a telling test of nanoparticle stability; (iv) the ability of the isolated nanoparticles 
to exhibit high catalytic activity in cyclohexene hydrogenation once redispersed in the solution; 
and (v) the ability to allow long catalytic lifetime in the test reaction of cyclohexene 
hydrogenation as measured by the catalytic total turnovers (TTOs).    
 
   [28] The previous 5-criteria method [27] had to be modified somewhat for the present studies 
since the Ziegler nanoparticles examined herein are preformed quickly upon simple mixing the 
[(1,5-COD)Ir(µ-O2C8H15)]2 with the AlEt3. This, in turn, means that the kinetic criteria which 
ranks the ability of the various anions or other ligands and additives (such as polymers) to 
influence the nanoparticle formation kinetics is no longer readily measurable without, for 
example, stopped-flow kinetics (i.e., kinetic studies not important to the present work whose 
focal point is nanoparticle catalytic activity, thermal stability and lifetime). 
 



 

 

138 

   [29] D. Durand, G. Hillion, C. Lassau, L. Sajus, Process for Hydrogenating Unsaturated 
Compounds U.S. Patent 4,271,323, Jun. 2, 1981.   
 

[30] A patent [29] reports that a Ziegler-type hydrogenation catalyst made from Co(O2CR) and 
Zn(O2CR)2 plus AlEt3, prepared at temperatures of 0-200 ˚C, is a fast, highly efficient catalyst 
(the hydrogenation of 100 mL of propionitrile is reported to be complete in 11.5 h with a 99.5% 
conversion to propylamines) Although propionitrile hydrogenation at temperatures from 0 to 300 
˚C are claimed, the specific examples of hydrogenations (of various substrates) are at only 155, 
160 or 180 ˚C, and not up to 300 ˚C.  In addition, the nature of the active catalyst was not 
determined, so it is not clear what the true catalyst actually is at these temperatures and in this 
patent. 

 
[31]Control experiments were performed, on a Ziegler-type hydrogenation catalyst made from 

[(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3  (Al/Ir=2) in cyclohexane, to determine the effect of 
number of catalyst isolation and then redispersion cycles on the hydrogenation rate of the 
catalyst.  Interestingly, the catalyst appears to become slightly more active up to the third cycle 
of isolation and redispersion (5 ± 2, 8 ± 1, and 9 ± 1 mmol H2/h, respectively, for once-
redispersed, two-times-redispersed and three-times-redispersed catalysts), although the results 
are rigorously the same within a 2σ experimental error (i.e., at 2x the reported 1σ error bars just 
above).  The catalyst retains its activity (~9 mmol/h) after redispersion two through eight times 
(see the Supporting Information for additional details). 

 
[32] Original cyclohexene hydrogenation data is obtained in unit of loss of psig H2/h.  The data 

in unit of psig H2/h are then converted as follows to mmol H2/h using the ideal gas law formula 
(PV=nRT) and the necessary data for our apparatus:  P(psig H2)*0.0891*1000)/14.7 = n (mmol 
H2)*0.082*295 where R=0.082 L•atm/mol•K, T= 295 K and 1 atm=14.7 psi and V(volume of F-
P bottle used)=0.0891 L.   

 
[33] Y. Lin, R.G. Finke, Inorg. Chem. 33(1994) 4891-4910. 
 
[34] J. III Aiken, R.G. Finke, Chem. Mater. 1 (11999) 1035-1047. 
 
[35] Control experiments performed on Ziegler-type hydrogenation catalyst made from [(1,5-

COD)Ir(µ-O2C8H15)]2 plus AlEt3  (Al/Ir=2) in dodecane showed that aging the catalyst for 9 h at 
room temperature appears to decrease slightly the activity of the catalyst (although the results are 
the same within experimental error if the cited 1σ error bars are are expanded by 2x to 2σ 
values): the catalyst prepared in dodecane, and then immediately used for cyclohexene 
hydrogenation, exhibits a hydrogenation rate of 1.1 ± 0.1 mmol H2/h, whereas the catalyst aged 9 
h has a hydrogenation rate of 0.7 ± 0.1 mmol H2/h (see the Supporting Information for the 
corresponding hydrogenation curves).  In comparison, the catalyst prepared in cyclohexane and 
aged for 9 h at room temperature is a somewhat faster catalyst compared to the unaged, 
immediately prepared catalyst [4] (see also the Supporting Information provided with that paper 
[4]). 

 
[36] Initial survey experiments reveal that an active catalyst is obtained in dodecane: (i) when 

the 9 hr aged was thermally treated and then used for cyclohexene hydrogenation (i.e., without 



 

 

139 

performing a cyclohexene hydrogenation before the 200 ºC thermal treatment); (ii) when the as-
prepared catalyst was thermally treated and then used directly for cyclohexene hydrogenation 
(i.e., without the 9 hrs aging); and (iii) when the catalyst solution is prepared with cyclohexene 
added before the 200 ºC thermal treatment.  See the Supporting Information for additional 
details.  

 
   [37] The heat-treated catalyst with an Al/Ir ratio of 2 is highly active for cyclohexene 
hydrogenation with average maximum rate of 24(9) mmol H2/h (Table 1 and Figure S3).  A fast 
hydrogenation started immediately in that experiment, and continued with an almost linear rate 
until the consumption of cyclohexene was complete (Figure S4).  The observed linear 
hydrogenation kinetics reveal that the catalysis has reached the H2 gas-to-solution mass transfer 
limited (MTL) rate of even our well-stirred apparatus (~1000 r.p.m. stir-bar stirring)—that is, 
that H2 is consumed as fast as it is delivered from the gas phase to solution in our apparatus.  
Consistent with this interpretation, an independent determination of the H2 gas-to-solution MTL 
rate under our reaction conditions, stirring rate and for our specific apparatus revealed that H2 
gas-to-solution MTL occurs at ~20(5) mmol H2/h  for our apparatus (Figure S4).  Hence, the true 
activity of the heat-treated Al/Ir=2 catalyst is greater than or equal to the observed rate of 24(9) 
mmol H2/h.  
 

[38] J.D. Aiken III, R.G. Finke, J. Am. Chem. Soc. 121 (1999) 8803-8810 and references 
therein. 

 
[39] Somewhat analogously, a brown precipitate of Ir(0)n and Rh(0)n nanoparticles also settles 

out of solution during cyclohexene hydrogenation catalysis by Ir(0)~300 nanoparticles [38] formed 
by placing [Bu4N]5Na3[(1,5-COD)Ir•P2W15Nb3O62] or [Bu4N]5Na3[(1,5-COD)Rh•P2W15Nb3O62] 
and cyclohexene under 40 psig H2, a result that has been ascribed to the conversion of 
cyclohexene into the somewhat less polar cyclohexane as a result of the hydrogenation reaction.  
Note, however, that these polar polyoxoanion, P2W15Nb3O62

9- -stabilized nanoparticles are 
expected to have little solubility in non-polar solvents like cyclohexane, at least with Bu4N+ 
counter-cations. 

 
   [40] Y. Lin, R.G.  Finke,  J. Am . Chem. Soc. 116 (1994) 8335–8353. 
 

[41] For the case of either Ir(0)~300 [33] or Ir(0)~900 [40] nanoparticles stabilized by the 
“electrosteric”, premier / “Gold Standard” anionic [22], P2W15Nb3O62

9- polyoxoanion stabilizer 
[22,23,24,25,26] acetone solutions show limited stability and agglomeration to bulk metal above 
60 oC.  Hence, it is apparent that the thermal stability of Ir(0)n nanoparticles with added AlEt3 in 
hydrocarbon solvents at 200 oC exceeds that of at least these classic, anionically (DLVO-theory 
[22]) stabilized nanoparticles [33,40]. 

 
[42] M. Beller, H. Fischer, K. Kühlein, C.-P. Reisinger, W.A. Hermann, J. Organomet. Chem. 

520 (1996) 257-259. 
 
[43] Pd(0)n nanoparticles unstable at 130-140 oC have been reported [42], ones where 490,000-

500,000 TTOs of Heck reaction catalysis were obtained by adding preformed Pd(0)n slowly to 
the 130-140 oC reaction solution as a way to combat the nanoparticle instability at the 130-140 



 

 

140 

oC temperatures.  Note, however, that the actual catalyst in these reactions was not established 
and remains controversial.44   

 
[44] N. T. Phan, M. Van Der Sluys, C.W. Jones, Adv. Synth. Catal. 348 (2006) 609-679. 
 
[45] M.T. Reetz, G.  Lohmer, Chem. Comm. (1996) 1921-1922. 
 
[46] M.T. Reetz, R. Breinbauer,P. Wedemann, P. Bringer, Tetrahedron 54 (1998) 1233-1240. 
 

   [47] Two studies [45,46] report nanoparticles stable for at least some (generally unstated) 
numbers of catalytic turnovers in the 130-160 oC range, and which involve longer chain alkyl-
ammonium cations as part of the stabilization system.  However, the actual catalyst in these 
studies was not established. 
 

[48] S. Klingelhöfer, W. Heitz, A. Greiner, S. Oestreich, S. Förster, M. Antonietti, J. Am. 
Chem. Soc. 119 (1997) 10116-10120. 

 
[49] Pdn nanoparticle stabilities of up to 140 oC for 3 days while undergoing Heck coupling 

reactions using OAc– plus amphiphilic block copolymers, specifically polystyrene-block-poly-4-
vinlypyridine (PS-b-P4VP), have been reported [48].  Note, however, that Figures 2 and 3 in this 
paper show autocatalytic curves.  This means that either the PS-b-P4VP-stabilized Pdn 
nanoparticles are not the true catalyst or that a reaction by-product (the H+X– formed) is 
involved in the catalytic reaction (e.g., the H+X– by-product should protonate the pyridine in the 
PS-b-P4VP stabilizer, thereby causing it to decoordinate from the metal, in turn giving a more 
active catalyst, consistent with the observed reaction kinetics). 

 
   [50] J.P. Wilcoxon, R.L. Williamson, R. Baughman, J. Chem. Phys. 98 (1993) 9933-9951. 
 

[51] A report of Au(0)n nanoparticles prepared in the presence of various nonionic (such as 
ethoxylated alcohols), anionic (such as bir(2-ethylhexyl)sulfosuccinate) and cationic (such as 
didodecyldimethylammonium) surfactants and  stable to agglomeration up to 100 oC has 
appeared, but the Au(0)n nanoparticles were not shown to be catalysts [50].  

 
[52] L.O. Nindakova, F.K. Shmidt, V.V. Saraev,  B.A. Shainyan,  N.N. Chipanina, V.A. 

Umanets, L.N. Belonogova, D.-S.D. Toryashinova, Kinetics and Catalysis 47 (2006) 54-63.    
 

   [53] F.K. Shmidt, L.O. Nindakova, B.A. Shainyan, V.V. Saraev, N.N. Chipanina, V.A. 
Umanetz, J. Mol. Catal. A: Chem 235 (2005) 161-172.  
 
   [54] L.B. Belykh, T.V. Goremyka, N.I. Skripov, V.A. Umanets, F.K. Shmidt, Kinetics and 
Catalysis 47 (2006) 367-374.  
 
   [55] F.K. Schmidt, G.V. Ratovskii, T.V. Dmitrieva, I.N. Ivleva, Y.G. Borodko, J. Organomet. 
Chem. 256 (1983) 309-329. 
 



 

 

141 

[56] J. Goulon, E. Georges, C. Goulon-Ginet, Y. Chauvin, D. Commereuc, H. Dexpert, E. 
Freund, Chem. Phys. 83 (1984) 357-366. 

 
[57] H. Bönnemann, N. Waldofner, H.-G. Haubold, T. Vad, Chem. Mater. 14 (2002) 1115-

1120.   
 

   [58] K. Angermund, M. Buhl, E. Dinjus, U. Endruschat, F. Gassner, H.-G. Haubold, J. 
Hormes, G. Kohl, F.T. Mauschick, H. Modrow, R. Mortel, R. Mynott, B. Tesche, T. Vad, N. 
Waldofner,  H. Bönnemann,  Angew. Chem. Int. Ed. 41 (2002) 4041-4044.  
 
   [59] K. Angermund, M. Buhl, U. Endruschat, F.T. Mauschick, R. Mortel, R. Mynott, B. 
Tesche, N. Waldofner, H. Bönnemann, G. Kohl, H. Modrow, J. Hormes, E. Dinjus, F. Gassner, 
H.-G. Haubold, T. Vad, M.  Kaupp,  J. Phys. Chem. B 107 (2003) 7507-7515.   
 
   [60] H. Bönnemann, N. Waldofner, H.-G. Haubold, T. Vad, Revue Roumaine de Chimie 44 
(1999) 1003-1010.   
 
   [61] F. Wen, H. Bönnemann, R. Mynott, B. Spliethoff, C. Weidenthaler, N. Palina, S. 
Zinoveva, H. Modrow, Appl. Organomet. Chem. 19 (2005) 827-829. 
 

[62]  1H NMR confirms that intact AlEt3 (~3 equivalents per Ir) is present in the catalyst 
solution prepared with [(1,5-COD)Ir(μ-O2C8H15)]2 and AlEt3 when using Al/Ir=5 (see Figures S6 
and S7 of the Supporting Information for 1H NMR spectra of  catalyst prepared with [(1,5-
COD)Ir(μ-O2C8H15)]2 and 5 eq AlEt3 vs that of pure AlEt3.) 

 
[63] W.M. Alley, I.K. Hamdemir, Q. Wang, A. Frenkel, L. Li, J.C. Yang, L.D. Menard, R.G. 

Nuzzo, S. Özkar, K.-H. Yih, K.A. Johnson, R.G. Finke, Langmuir 27 (2011) 6279-6294. 
 
[64] Note here that care was taken to minimize the H2O level to minimize alumoxane (i.e.,  Al-

O-Al compound) production, and controls [63] show that added H2O to the Al/Co = 2 or 3 
catalyst solution prepared with Co(neodecanoate)2 and AlEt3 decreases the catalytic activity [63]. 
Prior studies by Shmidt and coworkers [52,53] show that presence of n = 0.5–1.5 equivalents 
(per Co) of water of crystallization in a Co(acac)2•n(H2O) plus AlEt3 catalyst system decreases 
the catalyst stability and increases the amount of precipitate seen attributed to the formation of 
alumoxanes and their derivatives. 

 
[65] A catalytic inhibiting effect has been observed when the precatalyst {[(1,5-

COD)Ir•HPO4]}n is examined in the presence of added [Bu4N]2HPO4.  The catalytic activity of 
precatalyst is 1.0(1) mmol H2/h before the catalyst was isolated and redispersed, while the 
addition of 1, and then separately [4], equivalents of [Bu4N]2HPO4 to the precatalyst {[(1,5-
COD)Ir•HPO4]}n lowers the catalytic activity to 0.20(5) and 0.10(5) mmol H2/h, respectively 
[25]. It was concluded that “…increasing the concentration of HPO4

2- results in a higher 
coverage of the Ir(0)n nanoparticle surface, thereby, inhibiting the catalytic reactions of the Ir(0) 
active sites…” [25]. 

 



 

 

142 

[66] An alternative hypothesis for the lower hydrogenation activity at higher AlEt3 
concentrations (i.e.; Al/Ir=2, 3 or 5 when compared to Al/Ir=1) is that a difference in size of the 
Ir(0)n nanoparticles is the main factor behind the different catalytic activities.  However, this 
alternative explanation can be ruled out since the same size nanoparticles are observed within 
experimental error for each of the Al/Ir=1, 2 and 5 catalysts [4](see also the SI for that paper [4]). 

 
[67] Reactions between AlEt3 and precatalyst components are known in the literature of 

Ziegler-type hydrogenation catalysts.  For example, when starting with M(acac)2, where acac: 
acetylacetonate and M: Co, Pt or Pd, and AlR3 (R: Me or Et) [54,57,58] the suggested products 
are: R2Al-O-C(CH3)=CH-C(Et)(CH3)-O-AlR2, and R2Al-O-C(Et)(CH3)-CH(AlEt2)-C(Et)(CH3)-
O-AlR2.  

 
[68] K.-H. Yih, I.K. Hamdemir, J.E. Mondloch, E. Bayram, S. Özkar, R. Vasic, A.I. Frenkel, 

O. Anderson, R.G. Finke, Inorganic Chemistry 51 (2012) 3186-3193. 
 
[69] M.A. Watzky, R.G. Finke, J. Am. Chem. Soc. 119 (1997) 10382–10400. 
 

   [70] J.A. Widegren, J.D. III Aiken, S. Özkar, R.G. Finke, R. G. Chem. Mater. 13 (2001) 312–
324. 
 



!

!

!
143 

SUPPORTING INFORMATION-B: 

HYDROCARBON-SOLUBLE, ISOLABLE ZIEGLER-TYPE Ir(0)n NANOPARTICLE 

CATALYSTS MADE FROM [(1,5-COD)Ir(µ-O2C8H15)]2 AND 2-5 EQUIVALENTS OF AlEt3: 

THEIR HIGH CATALYTIC ACTIVITY, LONG LIFETIME AND AlEt3-DEPENDENT, 

EXCEPTIONAL, 200 OC THERMAL STABILITY 

Control studies measuring the maximum rate of cyclohexene hydrogenation as a function of 

the cycles of catalyst isolation and then redispersion:  Control hydrogenations performed on 

Ziegler-type hydrogenation catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=2, 

showed that that the catalyst has the following rates of cyclohexene hydrogenation as it is re-

isolated and then re-dispersed for 3 cycles: (5 ± 2, 8 ± 1, and 9 ± 1 mmol H2/h, respectively, for 

once-redispersed,  twice-redispersed and three-times-redispersed catalyst).  The catalyst then 

retains its activity (~9 mmol/h) after the catalyst is redispersed up through its 8th redispersion.   

The Experimental Procedure is as follows; note that a different isolation and redispersion 

procedure is used in this set of experiments vs that given in Experimental section of the main 

text.  Therefore, the cyclohexene hydrogenation data obtained from this set of hydrogenations 

are not directly comparable to those mentioned in main text.  

Catalyst solutions, 1.44 mM in Ir, were individually prepared in a drybox at 30°C.  A 1.60 mg 

portion of [(1,5-COD)Ir(µ-O2C8H15)]2 was weighed into a 20 mL screw-cap glass vial and then 

dissolved in 2.3 mL of cyclohexane forming an orange-red solution.  A 5/8 ��5/16 inch Teflon-

coated magnetic stir bar was then placed in the 20 mL screw-cap glass vial and the solution was 

stirred for 1 min at 1.0 ��103 rpm as measured with a Monarch Instruments Pocket-Tachometer.  

The AlEt3 solution (0.2 mL, 36 mM) was then quickly added to the [(1,5-COD)Ir(µ-O2C8H15)]2 

solution within 2 sec using a 0.5 mL gas-tight syringe while vigorously stirring.  The resulting 
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tawny yellow solution was stirred under N2 in the drybox for 9 h.  At the end of 9 h, the solution 

appeared clear brown with no visually observable particles.  The solution was then transferred 

into a new 22 ��175 mm Pyrex borosilicate culture tube containing a new 5/8 ��5/16 in. Teflon-

coated magnetic stirbar.  Cyclohexene (0.5 mL) was added using a 1.0 mL gas-tight syringe and 

the resulting hydrogenation solution (1.65 M in [cyclohexene] and 1.2 mM in [Ir]) was stirred for 

an additional 1 min, all in a N2 atmosphere drybox.  

The procedure and apparatus used for catalytic hydrogenations of cyclohexene have been 

described in detail elsewhere.1 Briefly, a culture tube containing the hydrogenation solution was 

placed in a Fisher-Porter (F–P) bottle, which was then sealed and brought out of the drybox.  The 

F–P bottle was placed in a bath set at 22.0 ± 0.1 °C.  Stirring was started at 1000 ± 10 rpm using 

a Fauske Super magnetic stirplate and the F–P bottle was connected to a pressurized H2 line 

using TFE-sealed Swagelok quick-connects.  The F–P bottle was purged 15 times (1 purge/15 

sec) with H2 that has passed through an indicating moisture trap (Scott Specialty Gas), a 

disposable O2 cartridge (Trigon), and an indicating O2 trap (Trigon).  The pressure in the F–P 

bottle was then set to 40 psig, and then the data collection was initiated.  Hydrogen pressure vs. 

time data were collected using a pressure transducer (Omega PX 624–100 GSV) interfaced via 

an Omega D1131 analog to digital converter to a PC running LabVIEW 7.0.  Data were 

subsequently handled using MS Excel.  The maximum hydrogenation rate of catalysts before and 

after catalyst isolation was calculated from each kinetic curve by a linear-least-squares fits to the 

data points in the highest activity (highest slope) region (R2 ≥ 0.999 for the reported data).  The 

maximum hydrogenation rates of redispersed catalysts occur at the beginning of the 

hydrogenation (i.e., the  maximum rate equals the initial rate), so those (maximum) rates were 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1 (a) Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382–10400; (b) Widegren, J. 
A.; Aiken, J. D., III; Özkar, S.; Finke, R. G. Chem. Mater. 2001, 13, 312–324. 
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calculated via linear-least-squares fits to the initial, linear regions of the redispersed catalysts 

hydrogenation curves (R2 " 0.999 for the reported data).  

After hydrogenation, the F-P bottle was kept connected to the hydrogenation line and volatiles 

were removed under vacuum to yield a black powder.  The F-P was then taken inside the drybox. 

Cyclohexane (2.5 mL) was then added to this isolated, black powdered catalyst and the resulting 

solution was stirred for 2 min.  Fresh cyclohexene (0.5 mL) was added using a 1.0 mL gas-tight 

syringe and the resulting hydrogenation solution (1.65 M in [cyclohexene] and 1.2 mM in [Ir]) 

was stirred for an additional 1 min.  The F–P bottle was then sealed and brought out of the 

drybox.  The F–P bottle was placed in a bath set at 22.0 ± 0.1 °C.  A cyclohexene hydrogenation 

was started as detailed above.  This procedure was repeated eight times to obtain the 8-times-

redispersed catalyst. 

  

Figure SI-B1.  Comparison of the maximum hydrogenation rates of Ziegler-type hydrogenation 
catalyst made from [(1,5-COD)Ir(!-O2C8H15)]2 plus AlEt3, Al/Ir = 2, as a function of number of 
times the catalyst was isolated and then redispersed.  Note that we considered if H2 gas-to-
solution mass transfer limitations (MTLs) of our apparatus could be hiding a higher maximum 
rate and, thereby, hiding some loss of rate at the higher catalyst recycle values.  That alternative 
explanation can be ruled out, however, since the maximum rate of ~10 psig /h seen in Figure SI-
B1 above is a factor of ~8 lower than the MTL of ~80±20 psig/h of our apparatus when stirred at 
1000 rpm (see Figure SI-B4, vide infra).  
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Control studies to determine effect of aging (9 h at room temperature) the Ziegler-type 

Hydrogenation Catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir = 2, in 

Dodecane:  Control experiments, performed on Ziegler-type hydrogenation catalyst made from 

[(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 in dodecane, showed that aging the catalyst for 9 h at room 

temperature only has a modest effect on the activity of the catalyst.  The catalyst prepared in 

dodecane and then immediately used in cyclohexene hydrogenation exhibits hydrogenation rate 

of 1.1 ± 0.1 mmol H2/h whereas the catalyst aged 9 h has hydrogenation rate of 0.7 ± 0.1 mmol 

H2/h (Figure SI-B2), values that are not different at a 2σ (i.e., ±0.2) experimental error in each 

measurement. 

 

Figure SI-B2.  Plot of the H2 pressure vs time data for cyclohexene hydrogenations with the 

Ziegler-type hydrogenation catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=2, 

in dodecane solvent.  (left) Aged for 9 h at room temperature under N2 after it was prepared as 

detailed in experimental section, and (right) used immediately after its preparation.  [Ir]=1.2 mM; 

[cyclohexene]initial=1.65 M; 22.0 ± 0.1 ºC; and 40 ± 1 psig H2. 
 

Other Control or Survey Experiments.  The following were done as additional control or 

survey experiments; the specific experimental details for each are given below, as the 

experiments below deviate from the catalyst preparation experimental protocols used and 

reported in the main text in that the studies below do not perform a cycle of cyclohexene 

hydrogenation before the 200 oC thermal treatments (i.e., and as was done in the Experimental 



!

!

!
147 

section described in the main text).  A bottom line of the experiments that follow are that 

preadding cyclohexene, then heat treatment at 200 ˚C for 60 minutes (i.e., all without the 9 hrs of 

room temperature aging), also provides a high activity catalyst. 

(i) Testing the 9 hr aged, then 200 oC thermally, treated catalyst solution in a cyclohexene 

hydrogenation (i.e., the catalyst prepared without a cyclohexene hydrogenation run after the 9 hr 

aging, but before the 200 oC thermal treatment):  This survey experiment was performed on the 

Ziegler-type hydrogenation catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=2 as 

detailed below and without a cyclohexene hydrogenation run before the catalyst is thermally 

treated.  The results shows that the 9 hr aged, then thermally treated catalyst is active with a 

maximum cyclohexene hydrogenation rate of ~1 mmol H2/h.  

The Experimental Procedure is as follows:  A 1.60 mg portion of [(1,5-COD)Ir(µ-O2C8H15)]2 

was weighed into a 20 mL screw-cap glass vial and then dissolved in 2.3 mL of dodecane 

forming an orange-red solution.  A 5/8 �� 5/16 inch Teflon-coated magnetic stir bar was then 

placed in the 20 mL screw-cap glass vial and the solution was stirred for 1 min at 1.0 ��103 rpm 

as measured with a Monarch Instruments Pocket-Tachometer.  The AlEt3 solution (0.2 mL, 36 

mM, in cyclohexane) was then quickly added to the [(1,5-COD)Ir(µ-O2C8H15)]2 solution within 2 

sec using a 0.5 mL gas-tight syringe while vigorously stirring.  The resulting tawny yellow 

solution was stirred under N2 in the drybox for 9 h.  At the end of 9 h, the solution appeared clear 

brown with no visually observable particles.  The solution was then transferred into a new 22 ��

175 mm Pyrex borosilicate culture tube containing a new 5/8 ��5/16 in. Teflon-coated magnetic 

stirbar.  The culture tube containing the hydrogenation solution was placed in a Fisher-Porter (F–

P) bottle, which was then sealed and brought out of the drybox.  The F–P bottle was placed in a 

bath set at 200 ± 2 °C.  Stirring was started at 1000 ± 10 rpm using a Fauske Super magnetic 
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stirplate and the F–P bottle was connected to a pressurized H2 line using TFE-sealed Swagelok 

quick-connects.  The F–P bottle was purged 15 times (1 purge/15 sec) with H2 that has passed 

through an indicating moisture trap (Scott Specialty Gas), a disposable O2 cartridge (Trigon), and 

an indicating O2 trap (Trigon).  The pressure in the F–P bottle was then set to ~20 psig and 

continuously monitored during heating.  The solution in the F-P bottle was kept at 200 ˚C for 30 

min and then cooled down to room temperature under H2.  (Note that this procedure differs from 

that in the main text in that a cycle of cyclohexene hydrogenation was not done prior to the 200 

˚C thermal treatment.)  The F-P bottle was then brought into the drybox and 0.5 mL cyclohexene 

was added.  Next, the F-P bottle was taken out of the drybox, connected to H2 line and purged 15 

times (1purge/15 sec) with H2 that has passed through an indicating moisture trap (Scott 

Specialty Gas), a disposable O2 cartridge (Trigon), and an indicating O2 trap (Trigon).  A room 

temperature cyclohexene hydrogenation was then carried out to test the activity of the thermally 

treated catalyst. A maximum hydrogenation rate of ~1 mmol H2/h was observed. 

(ii) Testing a catalyst solution, prepared with only a 200 oC thermal treatment, in a 

cyclohexene hydrogenation (i.e., the catalyst prepared without 9 hrs of aging and without a 

cyclohexene hydrogenation run before the 200 oC thermal treatment): A survey experiment 

performed on the Ziegler-type hydrogenation catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus 

AlEt3, Al/Ir=2, but without the 9 hr aging step, show that the maximum hydrogenation rates are 

11.5 and 12.7 mmol H2/h for the catalysts kept at 200 ˚C for 15 or 60 min, respectively.  

The Experimental Procedure is as follows: A 1.60 mg portion of [(1,5-COD)Ir(µ-O2C8H15)]2 was 

weighed into a 20 mL screw-cap glass vial and then dissolved in 2.3 mL of dodecane forming an 

orange-red solution.  A 5/8 ��5/16 inch Teflon-coated magnetic stir bar was then placed in the 20 

mL screw-cap glass vial and the solution was stirred for 1 min at 1.0 ��103 rpm as measured with 
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a Monarch Instruments Pocket-Tachometer.  A AlEt3 solution (0.2 mL, 36 mM, in cyclohexane) 

was then quickly added to the [(1,5-COD)Ir(µ-O2C8H15)]2 solution within 2 sec using a 0.5 mL 

gas-tight syringe while vigorously stirring.  The solution was then transferred into a new 22 ��

175 mm Pyrex borosilicate culture tube containing a new 5/8 ��5/16 in. Teflon-coated magnetic 

stirbar.  The culture tube containing the hydrogenation solution was placed in a Fisher-Porter (F–

P) bottle, which was then sealed and brought out of the drybox.  The F–P bottle was placed in a 

bath set at 200 ± 2 °C.  Stirring was started at 1000 ± 10 rpm using a Fauske Super magnetic 

stirplate and the F–P bottle was connected to a pressurized H2 line using TFE-sealed Swagelok 

quick-connects.  The F–P bottle was purged 15 times (1 purge/15 sec) with H2 that has passed 

through an indicating moisture trap (Scott Specialty Gas), a disposable O2 cartridge (Trigon), and 

an indicating O2 trap (Trigon).  The pressure in the F–P bottle was then set to ~20 psig and 

continuously monitored during heating.  The solution in the F-P bottle was kept at 200 ˚C for 15 

or 60 min and then cooled down to room temperature under H2.  The F-P bottle was then brought 

into the drybox and 0.5 mL cyclohexene was added.  Next, the F-P bottle was taken out of the 

drybox, connected to H2 line and purged 15 times (1purge/15 sec) with H2 that has passed 

through an indicating moisture trap (Scott Specialty Gas), a disposable O2 cartridge (Trigon), and 

an indicating O2 trap (Trigon).  A cyclohexene hydrogenation was then carried out to test the 

activity of the thermally treated catalyst. The maximum hydrogenation rates are 11.5 and 12.7 

mmol H2/h for the catalysts kept at 200 ˚C for 15 or 60 min, respectively. 

(iii) Testing a catalyst solution prepared with cyclohexene added before the 200 oC thermal 

treatment (i.e., a catalyst prepared without the 9 hr aging and without a cyclohexene 

hydrogenation run before the 200 oC thermal treatment, but with cyclohexene added before the 

thermal treatment): A survey experiment was performed on the Ziegler-type hydrogenation 

catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=2, and as detailed below shows 
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that this specific catalyst, with cyclohexene added to the catalyst solution before it was thermally 

treated for 3, 15 or 60 min, is active with maximum hydrogenation rates of 15, 16 and 27 mmol 

H2/h, respectively.  

The Experimental Procedure is as follows:  A 1.60 mg portion of [(1,5-COD)Ir(µ-O2C8H15)]2 

was weighed into a 20 mL screw-cap glass vial and then dissolved in 2.3 mL of dodecane 

forming an orange-red solution.  A 5/8 �� 5/16 inch Teflon-coated magnetic stir bar was then 

placed in the 20 mL screw-cap glass vial and the solution was stirred for 1 min at 1.0 ��103 rpm 

as measured with a Monarch Instruments Pocket-Tachometer.  A AlEt3 solution (0.2 mL, 36 

mM, in cyclohexane) was then quickly added to the [(1,5-COD)Ir(µ-O2C8H15)]2 solution within 2 

sec using a 0.5 mL gas-tight syringe while vigorously stirring.  Cyclohexene (0.5 mL) was added 

using a 1.0 mL gas-tight syringe and the resulting hydrogenation solution (1.65 M in 

[cyclohexene] and 1.2 mM in [Ir]) was stirred for an additional 1 min.  The solution was then 

transferred into a new 22 ��175 mm Pyrex borosilicate culture tube containing a new 5/8 ��5/16 

in. Teflon-coated magnetic stirbar.  The culture tube containing the hydrogenation solution was 

placed in a Fisher-Porter (F–P) bottle, which was then sealed and brought out of the drybox.  The 

F–P bottle was placed in a bath set at 200 ± 2 °C.  Stirring was started at 1000 ± 10 rpm using a 

Fauske Super magnetic stirplate and the F–P bottle was connected to a pressurized H2 line using 

TFE-sealed Swagelok quick-connects.  The F–P bottle was purged 15 times (1 purge/15 sec) 

with H2 that has passed through an indicating moisture trap (Scott Specialty Gas), a disposable 

O2 cartridge (Trigon), and an indicating O2 trap (Trigon).  The pressure in the F–P bottle was 

then set to ~20 psig and continuously monitored during heating.  The solution in the F-P bottle 

was kept at 200 ˚C for 3, 15 or 60 min and then cooled down to room temperature under H2. A 

cyclohexene hydrogenation was then carried out. Maximum hydrogenation rates of 15, 16 and 27 

mmol H2/h were observed for the 3, 15 and 60 min thermally treated catalysts, respectively. 
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Hydrogenation with heat-treated Ziegler-type hydrogenation catalyst made from [(1,5-

COD)Ir(!-O2C8H15)]2 plus AlEt3, Al/Ir=2: 

 

Figure SI-B3. Plot of the H2 pressure vs time data for cyclohexene hydrogenations with heat-
treated Ziegler-type hydrogenation catalyst made from [(1,5-COD)Ir(!-O2C8H15)]2 plus AlEt3, 
Al/Ir=2, in dodecane solvent.  [Ir]=1.2 mM; [cyclohexene]initial=1.65 M; Hydrogenation 
temperature: 22.0 ± 0.1 ºC; and initial H2 pressure: 40 ± 1 psig. 
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Figure SI-B4.  Control hydrogenations catalyzed by Co(O2C10H19)2 plus AlEt3, Al/Co=2, catalyst, studies 
performed with this superior rate catalyst to determine the H2 gas-to-solution, mass- transfer-limited 
(MTL) rate of the hydrogenation apparatus used in the present work and under the specific, Standard 
Conditions employed (see below).  The maximum rates of hydrogenations were calculated as detailed in 
the main text by linear least-squares fits to the steepest regions of hydrogenation curves. Those maximum 
rates were then collected as a function of stirring rate (top), and as a function of the Co(O2C10H19)2
concentration at constant, 1000 ± 300 r.p.m., stirring (bottom). The MTL rate is a function of the 
hydrogenation apparatus used and the solvent, but will be independent of the metal used (i.e., the bottom 
of Figure S4). Hence, for the sake of convenience in achieving these fastest rates, the fast cobalt catalyst 
made from Co(O2C10H19)2 and AlEt3 was used.  The bottom curve reveals that ~100% MTL has been 
reached at ~80±20 psig/h=~20±5 mmol H2/h) when stirring our apparatus at 1000 ± 300 r.p.m.  The top, 
stirring rate studies confirm that MTL is present (i.e., a stirring rate dependence is seen).  The MTL limit 
is ~20 mmol H2/h (~80 psig H2/h) for our particular apparatus, and at the standard conditions used (i.e., 
for the conditions: solvent = cyclohexane, temp. = 22.0 °C, [Co] = 1.2 mM, [Cyclohexene]initial = 1.65 M 
and stirring = 1000 ± 300 r.p.m. as detailed in the main text Experimental section). 



!

!

!
153 

 

Figure SI-B5. High resolution XPS spectrum showing the Ir 4f peaks of brown particles 
observed for the Al/Ir=3 catalyst solution after heating at 200 ˚C for 30 min.  The peaks observed 
at 63.9 eV and 60.9 eV are assigned to Ir(0).    

Control Studies with the Al/Ir = 1 Catalyst.  While typical industrial conditions employ 

catalysts with Al/M ratios ≥2, reflection suggested that control experiments with the Al/Ir=1 (as 

well as the Al/Ir=0 catalyst, vide infra) would likely prove of interest in further revealing the 

effects of the Al/Ir ratio on the catalytic properties.  Hence, a control of hydrogenation catalysis 

using the Al/Ir=1 catalyst was performed.  

In that control experiment, the original tawny yellow solution obtained mixing [(1,5-COD)Ir(µ-

O2C8H15)]2 and AlEt3 at Al/Ir=1 changes to brown at the end of 9 h of stirring, indicating the 

presence of Ir(0)n nanoparticles initially.  But, after cyclohexene hydrogenation visually 

observable black particles of bulk Ir(0) are present in the brown solution and on the stirbar, 

indicating that the addition of just 1 equivalent AlEt3 per Ir is insufficient to protect against 
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agglomeration to bulk Ir(0) metal.  Consistent with this, the catalyst isolated by removing the 

volatiles under vacuum was only partially redispersible in cyclohexane (to give a brown 

suspension but with visually observable, bulk-metal particles, Table 3.1, entry 4, column 3).  

Further evidence for the limited thermal stability of the Al/Ir=1 catalyst is that 30 minutes of 

heating at 200 ˚C yields a colorless, and therefore largely nanoparticle-free, solution with 

visually observable black particles (Table 3.1, entry 4, column 7).  Use of this Al/Ir=1, 

thermalized catalyst for hydrogenation yields a gray, turbid solution with visually observable 

black particles at the end of the catalysis (Table 3.1, entry 4, column 9), and micrometer scale 

particles by bright-field TEM images, Figure SI-B6.  The presence of that bulk metal means that 

the relatively high TTO value of TTO = [370,000] over the course of 104 h at 22.0 ± 0.1 ˚C 

contains a significant contribution from bulk metal, why that TTO value is placed in [brackets] 

above and in Table 2.1—to indicate that it is an upper limit to the desired TTOs by any 

nanoparticle component.  Overall, this control experiment with the Al/Ir = 1 catalyst system 

fortifies the results presented in the main text by confirming that higher Al/Ir ratios are required 

for the most stable catalysts. 
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Figure SI-B6. A bright-field TEM image of the Al/Ir=1 Ziegler-type hydrogenation catalyst 
made from [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3.  The image, taken from the solution 
withdrawn from the culture tube at the end of cyclohexene hydrogenation catalyzed by the 200 
˚C-treated catalyst, reveals micrometer particles of bulk Ir metal (note the 0.5 µm = 500 nm scale 
bar). 

 

Control Studies with the Al/Ir = 0 Catalysts:  The Al/Ir=0 catalyst was also briefly examined 

as a control to reveal the effect of AlEt3 on the activity, lifetime and stability of the resulting 

hydrogenation catalyst (Table 3.1, Entry 5) that is formally not a Ziegler-type hydrogenation 

catalyst since it contains no AlEt3.  A clear, colorless, and hence largely nanoparticle free 

solution, with visually observable black bulk-metal, results at the end of hydrogenation starting 

with the [(1,5-COD)Ir(µ-O2C8H15)]2 complex with no added AlEt3.  (Immediately at the end of 

the hydrogenation when H2 consumption ceases, the catalyst solution is the orange, initial color 

of primarily the unreduced [(1,5-COD)Ir(µ-O2C8H15)]2 complex, but with visible black bulk 

metal on the walls of the culture tube and on the stirbar.  Keeping the catalyst solution for an 

additional ~15 min under H2 after complete cyclohexene consumption results in formation of the 

cited colorless solution with visually observable black bulk-metal.)  This Al/Ir=0 catalyst does 
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afford [230 000] turnovers of cyclohexene hydrogenation over the course of 90 h at 22.0 ± 0.1 ˚C 

(TOFave=3600 h-1) , but this TTO value reflects primarily the visually observable bulk Ir(0) metal 

that is present on the stir bar after just ~1300 turnovers (and, therefore, is again placed in 

brackets to remind us that the [230 000] is not reflective of just nanoparticle catalysis).  The 

Al/Ir=0 observations are, however, of use in confirming that the initially formed Ir(0)n

nanoparticles are unstable against agglomeration in the absence of AlEt3.

Figure SI-B7.  1H NMR spectrum of catalyst solution prepared with [(1,5-COD)Ir(!-O2C8H15)]2 
plus AlEt3, Al/Ir= 5, in benzene-d6.  The precatalyst and cocatalyst solutions were prepared 
under N2 in a drybox in benzene-d6 and then mixed in a sealed NMR tube.  The spectrum shows 
that the peaks assigned to unreacted AlEt3 at 0.26 ppm and 1.13 ppm (see Figure S4) are still 
present in the solution after mixing with the precatalyst [(1,5-COD)Ir(!-O2C8H15)]2.  Integration 
of the peaks at 0.26 ppm (assigned to methylene group in AlEt3) and 0.80 ppm (assigned to 
methyl in 2-ethylhexanaote of precatalyst) reveals that ~3 equivalents per Ir of AlEt3 remain 
intact. 
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Figure SI-B8.  1H NMR spectrum of pure AlEt3 in benzene-d6.  The peak at 0.24 ppm (quartet) 
and 1.08 ppm (triplet) are assigned to methylene and methyl signals. 
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CHAPTER IV 

EXCEPTIONALLY THERMALLY STABLE, HYDROCARBON SOLUBLE ZIEGLER-TYPE 

Ir(0)n NANOPARTICLE CATALYSTS MADE FROM [Ir(1,5-COD)(µ-O2C8H15)]2 PLUS AlEt3: 

TESTS OF KEY HYPOTHESES FOR THEIR UNUSUAL STABILIZATION 

 This dissertation chapter presents a manuscript submitted for publication to J. Mol. Catal. 

A: Chem. This chapter investigates the true nature of the AlEt3-derived stabilizer species in the 

Ziegler-type catalyst solution made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 using NMR and 

IR spectroscopic techniques plus catalytic evidence.  This study shows that AlEt2(O2C8H15) 

(Al/Ir=1, 2 and 3) and free AlEt3 (Al/Ir=3) are present in the catalyst solution made with [Ir(1,5-

COD)(µ-O2C8H15)]2 plus AlEt3.  In addition, experimental results of this study helps to rule out 

the initial, literature-based hypotheses that anionic [AlEt3(O2C8H15)]- stabilizer exists or that the 

AlEt3-derived stabilizers are Al-O-Al containing alumoxanes. 

 All the experiments given in the main text were performed by Isil K. Hamdemir.  The 

repeat 1H and 13C NMR experiments were performed by Saim Özkar.  The syntheses of Al(t-

Bu)3, [(t-Bu)2Al(µ-OH)]3 and [(n-Bu)4N](AlEt3O2C8H15) were designed in consultation with both 

Professors Saim Özkar and Richard G. Finke and were performed by Isil K. Hamdemir.  The 

27Al NMR spectra were obtained by Isil K. Hamdemir with assistance from Prof. Saim Özkar. 

The 1H NMR of the [Ir(1,5-COD)(µ-O2C8H15)]2 plus BEt3 solution was obtained by Saim Özkar.  

The published synthesis of [Ir(1,5-COD)(µ-H)]4 was performed by Kuang-Hway Yih after Isil K. 

Hamdemir showed that the material existed from an initial low (~1%) yield synthesis.  Control 

experiments starting with [Ir(1,5-COD)(µ-H)]4 presented in the Supporting Information 

(Supporting Information_C) were performed by both Isil K. Hamdemir and Kuang-Hway Yih.  

The FTIR data for modified-methyl alumoxane sample was obtained by Adam Crooks.  XAFS 
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data (given in Supporting Information (Supporting Information_C), previously published in 

dissertation by William M. Alley) was obtained, processed, and analyzed by William M. Alley 

with assistance from Qi Wang, Anatoly I. Frenkel, and Laurent D. Menard.  The initial draft of 

the paper, subsequent drafts including the final draft and preparation of the document in this 

chapter for publication were performed by Isil K. Hamdemir with light editing by Saim Özkar, 

and moderate editing by Richard G. Finke (38 hours). 
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Synopsis 

In recent work we showed that Ziegler-type nanoparticles made from [Ir(1,5-COD)(µ-O2C8H15)]2 

plus AlEt3 are an unusually thermally stable (≥30 min at 200° C), hydrocarbon-solvent soluble, 

high catalytic activity nanoparticle catalyst (I.K. Hamdemir, S. Özkar, K.–H. Yih, J.E. 

Mondloch, R.G. Finke, ACS Catal. 2 (2012) 632-641).  As such, they are analogous to—and 

currently the cleanest and best characterized model system for—Ziegler-type nanoparticles made 

from Co or Ni precatalysts plus AlEt3 which are used industrially to hydrogenate ~1.7 × 105 

metric tons of styrenic block copolymers per year (for a review of the area see: W.M. Alley, I.K. 

Hamdemir, K.A. Johnson, R.G. Finke, J. Mol. Catal. A.Chem. 315 (2010) 1-27).  The key 

question addressed in the present paper is “What is the nature of the AlEt3-derived stabilizer 

species?” for the unusually stable and active Ziegler-nanoparticles formed from [Ir(1,5-COD)(µ-

O2C8H15)]2 plus AlEt3.  Specifically tested herein are three primary hypotheses for the AlEt3-

derived stabilizer(s) in the Ir(0)n Ziegler-nanoparticle system: (i) that the key stabilizer is neutral 

aluminum alkyl carboxylates following precedent from the work of Shmidt and Bönnemann; (ii) 

that a key stabilizer is the AlEt3 which reacts with Ir(0)n nanoparticle surface; or (iii) that the 

dominant AlEt3-derived stabilizer is Al-O-Al containing alkylalumoxanes formed from any 

water present.   

1.  Introduction 

 Ziegler-type hydrogenation catalysts are formed, by definition [1], from a non-zero valent 

group 8-10 transition metal precatalyst plus a trialkylaluminum cocatalyst such as AlEt3.  These 

catalysts, such as the industrial example [1,2] of Co(neodecanoate)2 plus AlEt3, are used to 

hydrogenate the double bonds of ~1.7 × 105 metric tons/year of styrenic block copolymers, 

thereby removing any allylic C-H bonds greatly increases the stability of the resultant polymer 
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towards autoxidation [2,3].  A long standing question in this area had been what is the true 

catalyst when one mixes the precatalysts, such as Co(neodecanoate)2 or Ni(2-ethylhexanoate)2, 

with AlEt3 cocatalyst?   By employing a model, third-row Ziegler-type hydrogenation catalyst 

made from the crystallographically characterized [Ir(1,5-COD)(µ-O2C8H15)]2 precatalyst [3] plus 

AlEt3, Al/Ir = 1, 2, 3 or 5 [4], we were recently able to show that sub-nanometer, Ir(0)~4-15 

particles are formed initially from mixing [Ir(1,5-COD)(µ-O2C8H15)]2 plus 1, 2, 3 or 5 

equivalents of AlEt3 in cyclohexane.  We were also able to show, on the basis of X-ray 

absorption fine structure spectroscopy (XAFS), Z-contrast scanning transmission electron 

microscopy (Z-contrast STEM), plus matrix assisted laser desorption ionization mass 

spectroscopy (MALDI MS), that those initially formed Ir(0)~4-15 particles are then transformed 

under cyclohexene plus H2 hydrogenation catalysis conditions to fcc Ir(0)~40–150 nanoparticles as 

the faster catalysts—what we have termed “Ziegler nanoparticles” [1,4].  Post working out the 

needed methodology using the model Ir(0)~40–150 Ziegler nanoparticles, analogous studies were 

then published revealing that industrial Ziegler-type hydrogenation catalysts made from 

Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 plus AlEt3 [5] also yield Ziegler-type nanoparticles, 

but now a broad distribution of M≥4 (M = Co, Ni) sub-nanometer to larger particles with a mean 

diameter of ~1 nm. 

 In another recent publication, the model Ir(0)n Ziegler-type nanoparticles with an AlEt3 / Ir 

ratio of 5 were shown to be highly catalytically active, to exhibit good lifetimes of 100,000 total 

turnovers of cyclohexene hydrogenation, and to be stable for ≥ 30 min at 200 ° C [6].  The 

demonstrated nanoparticle catalyst stability at 200 °C appears to surpass that of any other 

nanoparticle catalyst in the literature [6].  It was concluded that Ziegler-type nanoparticles appear 

to be an unusual type of little recognized, and hence underexploited, hydrocarbon-soluble and 
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thermally unusually stable nanoparticle catalysts, ones largely hidden for a 50-year period due to 

a lack of knowledge that nanoparticles are the true catalyst [1-6].  

 The “What is the Nature of the Stabilizer?” Question.  An important, intriguing but presently 

ill-understood question is what is the precise nature of the stabilization—the unusually effective, 

higher temperature stabilization—in Ziegler-type nanoparticle catalysts derived, for example, 

from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3? The literature offers some important hints based 

especially on the pioneering work of Shmidt (aka Schmidt), as well as the valuable studies of 

Bönnemann and co-workers, who provided early evidence for nanoparticle formation, but where 

the nature of the best, fastest catalyst remained unclear [7,8,9,10,11,12,13,14,15,16,17].  Based 

on the results of characterization studies on Ziegler-type hydrogenation catalysts made with a 

metal acetylacetonate precursor M(acac)n (M: Fe, Ni, Co, or Pd) plus AlEt3 cocatalyst [7,8,9,10] 

(see also part C1.1.1 and Table SI-C1 in the Appendix C), Shmidt and coworkers have suggested 

a stabilizer layer containing individual molecules of AlEt2(acac) [8] as illustrated in Figure 4.1 

(and listed in Table SI-C1).  Bönnemann and coworkers [11,12,13,14] have analyzed the 

products formed upon the reaction of Pt(acac)2 with AlMe3 and have come to conclusion that an 

“organoaluminum protecting shell” [11] exists and acts as stabilizer around the Pt(0)n 

nanoparticles; they have drawn figures [12] that are largely analogous to that shown in Figure 

4.1.  The addition of excess amounts of AlEt3 to Co(acac)2-3 at large Al/Co ratios has been 

reported to result in the presence of detectable AlEt3 in the resulting Ziegler-type catalyst 

solution [8].  The AlEt3 has been suggested by Shmidt and coworkers as one of the main 

components of the stabilizer layer on the Ziegler-type nanoparticles catalyst as illustrated in 

Figure 4.1 [8,9].  In the same reports on Ziegler-type catalyst formed from Co(acac)2·1.8H2O and 

AlEt3 [8,9], Shmidt and coworkers suggest that alkylalumoxanes _(RAl-O)n-, acetylacetonate 
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derivatives of alkylalumoxanes ((acac)RAlOAlR(acac)), and their oligomers are formed in the 

presence of waters of crystallization of the precatalysts (see the Appendix C Section C1.1.2 for a 

short discussion and additional references on alumoxanes).  However, definitive evidence for, 

much less compositional and structural information about, the proposed alumoxanes is lacking. 

In short, and as the state of knowledge depicted in Figure 4.1 makes apparent, much remains to 

be learned about the precise nature of the stabilizer(s), and their bonding interactions with the 

surface of the nanoparticles, in Ziegler-type catalysts.  This “What is the nature of the 

stabilizer?” question takes on added significance given the high catalytic activity and exceptional 

thermal stability of Ziegler-type nanoparticles.  

 Hence, in the current study we strive to provide some additional insights into the question of 

“What is the nature of the AlEt3-derived stabilizer species?” for Ziegler-nanoparticles, in the 

present case for the system formed from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3.  Specifically, we 

test herein three key hypotheses for the AlEt3-derived stabilizer(s) in the Ir(0)n Ziegler-

nanoparticle system: (i) that the key stabilizer is neutral aluminum alkyl carboxylates following 

the Shmidt and Bönnemann precedents noted above; (ii) that a key stabilizer is the free AlEt3 that 

reacts with Ir(0)n nanoparticle surface, perhaps via Irsurface-Et or Irsurface-H groups present there or 

possibly via formation of Ir-Et and IrnAlEt2 species; or (iii) that the dominant AlEt3-derived 

stabilizer is Al-O-Al containing alkylalumoxanes.  While one does not expect to be able to write  

 



 

164 

 

Figure 4.1.  A depiction, proposed by Shmidt and coworkers [8], of Co(0)n nanoparticles stabilized by a layer of 
AlEt2(acac) and AlEt3 formed in the Ziegler-type catalyst system made with Co(acac)2-3 plus 2-8 equivalents AlEt3. 
Reprinted with permission. 

 

a precise compositional, much less bonding, picture at this time for these complex nanoparticles 

(and since even the average, complete composition including all the stabilizers is known for only 

a handful of transition-metal nanoparticles [29]), the results presented herein do show that (i) 

AlEt2(O2C8H15) exists in Ziegler-type hydrogenation catalyst solutions made from [Ir(1,5-

COD)(µ-O2C8H15)]2 plus AlEt3 in benzene-d6, and (ii) free AlEt3 is present in the highly 

thermally stable and long lifetime catalyst solutions at higher Al/Ir ratios (≥3 equivalents Al per 

Ir).  In addition, the spectroscopic and catalytic evidence (iii) helps to rule out presence of 

anionic [AlEt3(O2C8H15)]-, and (iv) shows that when H2O is deliberately added, to form 

alkylalumoxanes or further hydrolysis products from the AlEt3 present, a rate decrease is seen.  

Additionally, (iv) ethane, ethene and free and coordinated 1,5-COD are formed as detectable 

products upon mixing [Ir(1,5-COD)(µ-O2C8H15)]2 with AlEt3. 
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4. Discussion

The above information on the catalytically active species
formation in the system Et3Al-Co(acac)n (n = 2, 3) can be
summarized as follows.

Judged from the ESR data the interaction of the catalytic
system components in toluene in argon atmosphere leads
to Co(0) arene complexes in concentrations comparable to
that of the initial cobalt acetylacetonate. In the argon or
hydrogen atmosphere these complexes eventually give rise to
ferromagnetic structures as proved by appearing signal II in
the ESR spectrum. The TEM images of the catalytic system
prepared in argon show nanoparticles of 2.5–5 nm size,
which, in turn, agglomerate to form secondary structures. It
is reasonable to suggest that unstable arene Co(0) complexes
are the precursors of nanoparticles with the core consisting
most probably of cobalt atoms [47]. The largest of the
latters or their agglomerates are responsible for signal II in
the ESR spectrum. According to the ESR data, under the
conditions of hydrogenation the maximum concentration of
ferromagnetic cobalt is rapidly achieved.

Formation of ferromagnetic cobalt particles is apparently
caused by aggregation and ordering of paramagnetic cobalt
particles. The critical one-domain size for cobalt particles
with one-axis anisotropy is 20–25 nm [48]. The maximum
size of superparamagnetic Co particles determined by mea-
suring the saturation and residual magnetization in systems
containing particles of average size 10–15 nm is 6.4 nm [49].
In our case, the initially formed Co particles are of 2.5–5 nm
size. Apparently, the observed ferromagnetism in the system
is due to larger aglomerates of >10 nm size since the max-
imum intensity of signal II is followed by formation of a
precipitate.

The surface of nanoparticles is always coated by a shelter
of light atoms decreasing their surface energy and preventing
their instant agglomeration [50]. On the other hand, electro-
static stabilization of nanoparticles is achieved by coordina-
tion of anionic or basic neutral ligands to the coordinatively
unsaturated metal atoms on the surface of the metal particles
[32]. In our case the role of such ligands can be played by
chelate acetylacetonate derivatives of alkylaluminum, com-
pounds 4 and 1, and the products of their transformations,
as well as by toluene. This is supported by the fact that the
precursors of nanoparticles, Co(0) complexes, are stabilized
by the molecules of arene, 1 and 4 (see Section 3.2.2). The
structure of the colloidal particle can be conceived as a nu-
cleus of cobalt metal coated by molecules of toluene, 1, 4 and
the products of the reaction of the latter with 1, such as 5, 6 or
7 [as illustrated in Fig. 9 for AlEt3 and Et2Al(acac) ligands],
the ratio between the coating components being determined
by the excess of 1 in the system.

For Al/Co = 2, that is, when the catalyst is non-active
(Fig. 1), the IR spectroscopy data show the formation of 4,
which under the conditions of virtually complete absence of
free AlEt3, apparently, acts as a stabilizer of the colloidal
particles.

Fig. 9. Cobalt nanoparticle stabilized by organoaluminum coating.

Increase of Al/Co ratio to 4 results in coordination of
4 to the excess molecules of 1 to form 5 and 6, which
are less strongly bound to the surface of the particles.
Remarkably, it is with this Al/Co ratio when consolidation
of the colloidal particles in the system AlEt3-Co(acac)2
prepared in anhydrous solvents under dry argon occurs as a
result of a lower ability of the protecting coating to prevent
their aggregation. Simultaneously, it is with this Al/Co
ratio when the highest catalytic activity in hydrogenation
is observed (Fig. 1) since 5, 6 and 7 are easily replaced
by olefin. Thus, both the catalytic activity and aggregation
of particles are determined by the presence of molecules
weakly bound to the nucleus surface and readily replaced
by the olefin molecules. Probably, the ease of replacement
decreases in the order: arene > 7 > 6 > 5 > 4 > 1.

For large Al/Co ratios (≥8), no precipitate is formed even
after several weeks. In this case, the protecting coating con-
sists mainly of AlEt3 molecules, which, on the one hand, pre-
vent aggregation, and on the other hand, hamper coordination
of olefin leading to a sharp decrease or complete absence of
the catalytic activity (Fig. 1). That AlR3 molecules are apt
to strong binding with metal core is proved by Bönnemann
who elaborated the method of synthesis of nanoscale Co with
stable magnetic properties and narrow size distribution by
thermolysis of Co2(CO)8 in the presence of Al(i-Bu)3 [51]
and Pt nanoparticle networks by reduction of Pt(acac)2 with
AlMe3 [52].

Presence of crystallization water in the catalytic system
AlEt3-Co(acac)2·nH2O also changes the structure of the pro-
tecting coating. Part of Al C bonds in 1 and 4 is hydrolyzed
to form groups AlOH capable of hydrogen bonding, alumox-
anes R2AlOAlR2, or acetylacetonate derivatives of alkylalu-
moxanes (acac)EtAlOAlR(acac) and their oligomers. This
may facilitate aggregation of the nanoscale colloidal Co metal
particles into larger agglomerates. As a result, the amount of
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2. Results and Discussion 

The hypothesis that the AlEt3-derived stabilizers are neutral aluminum alkyl 

carboxylates: The Ziegler-type catalyst sample made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 

at Al/Ir ratios of 1, 2 or 3 were analyzed using 1H, 13C NMR and IR spectroscopies. A necessary 

change from the previous solvent of cyclohexane to d6-benzene was used and controls were 

performed to ensure that the catalyst is still formed and active in benzene (i.e., and as opposed to 

the cyclohexane solvent otherwise used in these and our prior studies).1  As detailed in the 

Experimental section, the Ziegler-type Ir(0)n hydrogenation catalysts were prepared for NMR 

analysis from [Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3, by adding quickly (over 2 sec) a benzene-d6 

solution of AlEt3 using a gas-tight syringe to a benzene-d6 solution of [Ir(1,5-COD)(µ-O2C8H15)]2 

(Al/Ir=1, 2 or 3) at 30 °C under N2.  The initial orange color of the [Ir(1,5-COD)(µ-O2C8H15)]2 

solution turns to dark-brown immediately after addition of the d6-benzene solution of AlEt3, 

indicating the formation of Ir(0)n nanoparticles.2  The dark-brown catalyst solution was then 

vigorously shaken for 1 min and then transferred to NMR instrument while still septum-sealed 

and under N2.  The NMR acquisition was started ca. 1 h after bringing the NMR tube out of the 

drybox. 

                                                
1 As shown in Figure SI-C1 of the Appendix C, a control experiment testing the catalytic activity 
of [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 in benzene solvent at the standard Al/Ir ratio of 2 
reveals an active catalyst with a maximum cyclohexene hydrogenation rate of 5 mmol/h.   
2 The observation of an immediate color change, in d6-benzene solvent for an [Ir] of 25 mM, 
from orange to dark-brown is different from the color change from orange to tawny-yellow we 
previously observed [5] for the [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 catalyst system at Al/Ir 
ratios of 1-5 in cyclohexane at an [Ir] of 0.6 mM.  Characterization in cyclohexane solvent using 
EXAFS, Z-Contrast STEM and MALDI MS on the tawny-yellow solution showed that the 
catalyst solution includes Ir~4-15 clusters at this stage.  The tawny-yellow catalyst solution in 
cyclohexane solvent changes its color to dark-brown under cyclohexene hydrogenation 
conditions.  The dark-brown solution contains Ir~40-150 as confirmed by EXAFS, Z-Contrast 
STEM and MALDI MS [4]. 
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Since experience shows that simple stoichiometry can be invaluable in comparison to 

even a host of most powerful physical methods in nano-materials syntheses [18,19,20,21,22], we 

started our studies by writing a plausible reaction stoichiometry based primarily on the extant 

literature (Tables SI-C2 and SI-C3) [8,9,10,11,12,14].  That minimal, working stoichiometry of 

catalyst formation is shown in Scheme 4.1 for [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 catalyst at 

an Al/Ir ratio of 1 (and a more speculative stoichiometry involving a possible [Ir(1,5-COD)H]4 

intermediate is given in Scheme SI-C2 of the Appendix C).  

 

 

Scheme 4.1.  A proposed, minimal working stoichiometry of catalyst formation based on extant 
literature and consistent with our experimental data (vide infra) for the Ziegler-type 
hydrogenation catalyst made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 at an Al/Ir ratio of 1.  

 

The comparison of 1H and 13C NMR spectra of Ziegler-type catalyst solution at Al/Ir 

ratios of 1, 2 and 3 (Figures SI-C1 - SI-C6) to that of independently-synthesized AlEt2(O2C8H15) 

(Figures SI-C7, SI-C8) clearly shows that AlEt2(O2C8H15) is present in the catalyst solutions.  

More specifically, the 1H NMR signals at 0.30, 0.80, 1.18, 1.39, 1.47, 1.57, 2.17 ppm and 13C 

NMR signals at -0.25, 8.94, 14.33, 23.49, 26.80, 30.10, 32.52, 33.21 and 184.00 ppm in the 

catalyst solution at Al/Ir ratio of 1 are assigned to AlEt2(O2C8H15).  Similar peaks are observed in 

1H and 13C NMR spectra at Al/Ir ratios of 2 and 3 (Figures SI-C3-SI-C6) [23].3  The 1H and 13C 

NMR spectra show the presence of additional AlEt3-derived species as minor products at Al/Ir 

ratios of 2 and 3.  Ethane, free and coordinated 1,5-COD are observed as additional products in 

                                                
3 An additional piece of evidence supporting the above peak assignments is the assignment, in a 
previous publication, of 1H NMR signals at 0.23, 0.86, 1.0-1.4, 1.30 and 2.03 ppm to 
AlEt2(octanoate) (i.e., to the octanoate-analog of our present AlEt2(2-ethylhexanoate)) [23]. 

[Ir(1,5-COD)(µ-O2C8H15)]2 + 2 AlEt3 2AlEt2(O2C8H15) + 2/n Ir(0)n + C2H4 + C2H6 + 2(1,5-COD)
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the NMR spectra upon mixing [Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3 at Al/Ir ratios of 1, 2 and 3, 

again in benzene-d6, (see Figures SI-C1-SI-C6 for detailed peak assignments).  Our previous 

XANES study (carried out in cyclohexane) [4] shows that the Ir centers are in zero-valent state in 

the dark-brown Ir~40-150 nanoparticle solution, consistent with Scheme 4.1.1  

We envisage that the proposed reaction in Scheme 4.1. likely proceeds via an “Ir(1,5-

COD)-Et” species (Scheme SI-C2).  In order to provide further information on the formation of 

the putative “(1,5-COD)Ir-Et” species, we performed a control experiment with [Ir(1,5-COD)(µ-

O2C8H15)]2 precatalyst, but now with BEt3, since BEt3 has a stronger B-Et bond than is present in 

AlEt3.  In this experiment, the addition of d6-benzene solution of BEt3 to originally orange-

colored [Ir(1,5-COD)(µ-O2C8H15)]2 solution did not result in any reaction as confirmed by 1H 

NMR spectra (Figure SI-C9).  Absence of a reaction between [Ir(1,5-COD)(µ-O2C8H15)]2 and 

BEt3 can be explained by the aforementioned, ~74% higher B-C bond dissociation energy (448 

kJ/mol) vs that in Al-C (258 kJ/mol) [24,25,26,27,28].  The suggested formation of a “(1,5-

COD)Ir-Et” species is consistent with the fact that AlEt3, but not BEt3, reacts with the [Ir(1,5-

COD)(µ-O2C8H15)]2 precatalyst.  Also relevant here in a general sense is that AlR3 compounds 

are known to be “R-“ donors to sufficiently strong Lewis acceptors, the crystallographically 

characterized [Me2Al(OEt2)2]+[MeB(C12F9)3]- from the work of Klosin, Roof and Chen being a 

compelling case in point [28]. 

Returning to the AlEt3 cocatalyst system, for catalyst solutions with Al/Ir ratios of 1, 2 

and 3 the 1H NMR spectra show very low intensity and sharp peaks between -6.3 and - 17.8 ppm 

(see the insets of Figures SI-C2, SI-C4 and SI-C6).  These peaks would appear to be hydride 

resonances, attributable to Ir-H groups of Ir clusters of presumably smaller, but rigorously 
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unknown size and nature [29,30,31,32,33].4  The narrow line widths of the experimentally 

observed peaks would seem to be inconsistent with their assignment to hydrides on the surface of 

larger Ir(0)n nanoparticles [34,35].5  IR bands characteristic of carboxylate groups (Figure SI-

C11) are observed at 1457 (strong) and 1560 (very weak) cm-1 in cyclohexane solutions of 

Ziegler-type catalysts at Al/Ir ratios of 1, 2 and 3.  Peaks characteristic of monodentate 

carboxylate groups (1570-1610 cm-1 and 1640-1680 cm-1) [36] are absent in the IR spectra of 

catalyst solutions in cyclohexane solvent at Al/Ir ratios of 1, 2 and 3.  Consequently, the 2-

ethylhexanoate group appears to be bidentate, bridging between two Ir, two Al, or Ir/Al metal 

centers.  

 An alternative hypothesis here is that anionic [AlEt3(O2C8H15)]- is formed and provides 

stabilization of the type known as DLVO (Derjaugin, Landau, Verwey, and Overbeek)–type, 

bound-anion-based, Coulombic-repulsion stabilization [37].   However, the comparison of 1H 

NMR spectrum of Ziegler-type catalyst made with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 in the 

                                                
4 The relevant literature precedent here would seem to be the observation of sharp hydride peaks 
in the 1H NMR spectrum of mononuclear (e.g., IrH2LL’, where L= P(C6H5)3 and L’= 
CH3COCHCOCH3) [29], binuclear [30], and tetranuclear [31,32] transition-metal hydride 
complexes.  In contrast, a broad hydride peak is reported for even the hexanuclear Rh cluster, 
[RhH2(i-Pr)]6

2+ [33]. 
5 Hydrides on the surface of transition-metal nanoclusters are reported to exhibit broad 1H NMR 
signals.  In a study [34] of a [Pd4phen(OAc)2H4]n (n≈100) nanocluster (where phen is 
phenantroline and OAc is acetate), the broad peak observed between -20 and -60 ppm has been 
assigned to hydrides on the Pd~400 nanocluster’s surface. Another study [35] reports that, for a 2-3 
nm Ru nanoparticles stabilized by hexadecylamine system, “A direct detection of hydrogen 
bound to Ru failed, probably, because of line broadening due to slow tumbling of the 
nanoparticles in solution.”  Hence, the observation of low intensity single and sharp resonances 
in the metal-hydride chemical shift region at Al/Ir ratios of 1, 2, and 3 is tentatively interpreted 
as Ir-H resonances due to trace, low nuclearity species.  Since our evidence indicates that Ir 
nanocluster, Irn-Et groups are formed that then should undergo facile β-H elimiation, we presume 
that surface hydrides are also present on the Ir(0)n nanoparticles, although direct evidence for 
their formation is lacking at present. 
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non-polar benzene-d6 solvent (Figure SI-C2) to that of independently synthesized [(n-

Bu)4N][AlEt3(O2C8H15)] solution (Figure SI-C12) shows that anionic [AlEt3(O2C8H15)]- does not 

exist in the catalyst solutions.  Hence, the possibility of DLVO-type, [AlEt3(O2C8H15)]- anion-

based stabilization of the Ir(0)n Ziegler nanoparticles can be ruled.  This by itself is an interesting 

and important result, one which shows that the stabilization mechanism(s) of Ziegler 

nanoparticles is novel in that they appear to lack the DLVO, anion-based stabilization that is very 

common for transition-metal nanoparticles [19].  The high solubility of the Ziegler-type 

nanoparticles herein in non-polar solvents such as cyclohexane is another, simple but telling 

piece of evidence arguing against the presence of charged, anionic stabilizers in the present 

Ziegler-type nanoparticles. 

The hypothesis that the AlEt3-derived stabilizer is AlEt3: The NMR spectra of the 

Ziegler-type catalyst sample at Al/Ir ratio of 3 in d6-benzene (Figures SI-C6, SI-C7) includes 1H 

NMR signals at 0.30, 1.11 ppm and 13C NMR signals at 1.00, 8.77 ppm that are assigned to free 

AlEt3 (0.33, 1.11 ppm in 1H NMR and 1.21, 9.44 ppm in 13C NMR, Figure SI-C13, SI-C14).  As 

we have previously reported [6] excess AlEt3 (Al/Ir ≥ 3) slows down the hydrogenation rate by, 

presumably, it or its derivatives binding close to or at the active site of the Ir(0)n Ziegler 

nanoparticles.  Furthermore, the NMR spectra (Figures SI-C6, SI-C7 and [6]), show presence of 

free AlEt3 in long-lifetime (≥100,000 total turnovers of cyclohexene hydrogenation) and highly 

thermally stable (stable for  ≥ 30 min at 200 °C) Ziegler-type catalyst solutions made with  

[Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3 at Al/Ir ratios of 3 and 5.  In short, the presence of 

detectable AlEt3, along with its hydrogenation-rate-inhibiting kinetic effect, would seem to 

provide incontrovertible evidence that AlEt3, or its products with the Ir(0)n nanoparticle surface, 

bind at or close to the catalytically active site.  As such, the evidence seems strong if not 
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compelling that AlEt3—and/or its possible reaction products with the Ir(0)n nanoparticle surface, 

such as Irn-Et and IrAlEt2—are important stabilizers of Ziegler-type nanoparticles.  

The hypothesis that the AlEt3-derived stabilizers are alumoxanes: The studies 

performed by Shmidt and coworkers [8,9] on Co(acac)2-3!1.8H2O plus AlEt3 catalyst system 

reveals that alumoxanes [38,39,40,41,42,43,44,45,46,47,48] are formed in the catalyst solution 

under the conditions those workers employed.  Importantly, for the Co(acac)2-3!1.8H2O plus 

AlEt3 system Shmidt and coworkers report an increased catalytic activity, and decreased 

stability, in the presence of water (added as n waters of crystallization) for their Ziegler-type 

hydrogenation catalysts made from Co(acac)2!nH2O (n: 0 or 1.8) and AlEt3 [8,9].  On the surface 

this would appear to be evidence that alumoxanes such as –[Al(Et)O]n– are not the best stabilizer 

of Ziegler-type nanoparticles in comparison to the parent AlEt3 Lewis acid co-catalyst. However, 

meriting mention here is that, in our hands (and analogous to the results reported below for the 

Ir(0)n Ziegler-nanoparticle system herein, vide infra), we previously reported [5] that increasing 

the amount of initially added water in Ziegler-type hydrogenation catalyst made with 

Co(neodecanoate)2 plus AlEt3 decreases the cyclohexene hydrogenation activity.  Open 

questions, then, regarding the Co system include: (i) if the Co(neodecanoate)2 vs Shmidt’s 

Co(acac)2-3!1.8H2O precursors are the source of the difference; (ii) if the different amounts, 

methods or timing of addition of the water in the two studies are the difference—a real 

possibility; or (iii) if some other, unknown variable or effect is present and the source of the 

ostensibly different results in the Co system.  

Returning to the Ir system of the present studies, since a version of the somewhat 

hydrophobic [Ir(1,5-COD)(µ-O2C8H15)]2 containing waters of crystallization is not known at 

present (as a arguably preferred way to selectively add H2O and form alumoxanes), we strove to 
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provide at least initial evidence for or against the role of alumoxanes in at least the fastest 

catalyst formed from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 by the addition of controlled 

amounts of H2O.  Added water is known to form alumoxanes rapidly when mixed with AlEt3 

[38,39,40,41,42,43,44,45,46,47,48], although a caveat here is that too much water will yield 

hydrolysis past the _(RAl-O)n- alumoxane stage to even Al2O3.  The evidence available at present 

on the effects of added water and any role of alumoxanes and other AlEt3 hydrolysis products is 

as follows: (i) the addition of 2-10 equivalents (per Ir) water, to the Ziegler-type catalyst made 

from [Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3 at Al/Ir ratios of 1 or 2, decreases the hydrogenation 

rate by ~2-10-fold (Figure SI-C15); (ii) the catalyst solution prepared in the presence of 2 equiv 

of water (per Ir) at an Al/Ir ratio of 1 appears dark-brown without visually observable particles—

that is, is still stable with respect to the formation of bulk Ir(0) metal.  Indeed, all of the catalyst 

solutions at an Al/Ir ratio of 2 prepared both without water, and in the presence of 4-10 equivs 

(per Ir) of water, appear dark-brown without visually observable particles—that is, appear stable; 

(iii) the formation of the expected Al-O-Al bond-containing products was confirmed by the 

observation of a broad band between 600-800 cm-1, although this weak band became clear only 

in the IR spectrum of the [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3 catalyst (Al/Ir ratio of 2) 

prepared with 10 equiv H2O per Ir (which equals 5 equiv of H2O per Al), Figure SI-C16 of the 

Appendix C, so that all this may really indicate is the formation of hydrolysis products beyond 

the _(RAl-O)n- alumoxane level.  (iv) A control IR study of commercial modified-

methylalumoxane did reveal a broad IR absorption band between 640-780 cm-1 (Figure SI-C17), 

but (v) the broad absorption between 600-800 cm-1 was not detectable in the IR spectrum (Figure 

SI-C16) of the [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3 catalyst prepared without deliberately 

added water.  On the surface, these added water studies would seem to require that AlEt3 plus 
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H2O hydrolysis products do yield a stable, albeit deactivated, Ir(0)n catalyst, although it seems 

likely that they may be telling us more about hydrolysis products closer to the final, Al2O3 stage 

of hydrolysis than the _(RAl-O)n- alumoxane level of hydrolysis. 

In order to probe the alumoxane hypothesis via a different approach employing discrete 

materials, we synthesized Barron’s well-characterized, discrete alumoxane (really a “hydroxyl, 

dialkyl-alumoxane analog”6), [(t-Bu)2Al(µ-OH)]3 [67], and tested it with [Ir(1,5-COD)(µ-

O2C8H15)]2.  Interestingly, (iii) the maximum catalytic activity of the catalyst made with [Ir(1,5-

COD)(µ-O2C8H15)]2 plus fresh-made [(t-Bu)2Al(µ-OH)]3 (Al/Ir=2) is ca. 6-fold lower (max rate 

of ~1 psig/h, Figure SI-C20) than that made with [Ir(1,5-COD)(µ-O2C8H15)]2 plus, now, the 

parent t-Butyl aluminum compound, Al(t-Bu)3 (Al/Ir=2) (max rate of ~6 psig/h, Figure SI-C20, 

Table SI-C4).  Perhaps more importantly, (iv) both catalyst solutions (i.e., that prepared with 

fresh-made [(t-Bu)2Al(µ-OH)]3 or with the parent Al(t-Bu)3) appear dark-brown without visually 

observable bulk Ir(0) particles indicating that stable Ziegler nanoparticles did form from these 

novel precatalyst systems.  TEM images (Figures SI-C21, SI-C23, SI-C24 and SI-C26) and 

MALDI MS spectra (Figure SI-C22 and SI-C25) of the catalysts made with [Ir(1,5-COD)(µ-

O2C8H15)]2 plus [(t-Bu)2Al(µ-OH)]3  or Al(t-Bu)3 both before and after cyclohexene 

hydrogenation catalysis show that the size of the Ir(0)n particles are the same (~1 nm pre-

catalysis and ~2.5 nm post-catalysis) in both catalyst solutions, Figures SI-C21-SI-C26.  These 
                                                
6 Note that while even the title of Barron’s paper refers to [(t-Bu)2Al(µ-OH)]3 as an “alumoxane”, 
it does not have the mono-alkyl composition characteristic of common _(RAl-O)n- alumoxanes. 
Hence,  [(t-Bu)2Al(µ-OH)]3 is probably better referred to as a “hydroxyl, dialkyl-alumoxane 
analog” so as to avoid confusion.  (We thank Prof. Eugene Chen at Colorado State University for 
a discussion of this point.)  However, note also that this does not detract at all from the interest in 
using [(t-Bu)2Al(µ-OH)]3 along with [Ir(1,5-COD)(µ-O2C8H15)]2 as catalyt precursors given: (a) 
the discrete nature of [(t-Bu)2Al(µ-OH)]3, plus (b) the fact that this “hydroxyl, dialkyl-alumoxane 
analog” contains a t-Bu- group for the reduction of the Ir(I) precatalyst as well as remaining t-Bu 
-group (i.e., enroute to the plausible –(t-BuAlO)- plus t-Bu• initial products one writes when 
considering plausible reaction stoichiometries here).  
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results provide the novel insight that Barron-type, discrete “hydroxyl, dialkyl-alumoxane 

analogs” can yield stable, reasonably active, ostensibly Ziegler-type Ir(0)n nanoparticle catalysts.7  

As such, the above experiments provide probably the best current evidence that alumoxanes, 

broadly construed, still merit serious consideration as stabilizers of Ziegler-type nanoparticles.  

For this reason, we have initiated a full, separate, detailed study of the “alumoxane stabilizers of 

Ziegler-nanoparticles” hypothesis and will report that needed, separate study in due course.  

X-Ray Absorption Fine Structure (XAFS) Evidence for an Ir-Al Interaction, at least, In 

the Smaller Ir~4 Subnanometer Clusters Formed Initially From [Ir(1,5-COD)(μ-O2C8H15)]2 plus 

AlEt3:  It is worth noting here that our recent XAFS studies [4] provided evidence for Ir-Al, 

possibly Ir-X-Al (X: H or Et), bonding at a distance from Ir of 2.49 (2) to 2.51(1) Å (Table SI-

C5) [4], at least in the case of the Ir~4 subnanometer clusters formed from just mixing [Ir(1,5-

COD)(μ-O2C8H15)]2 with AlEt3 at Al/Ir ratios between 1.5 and 5.0 and before cyclohexene 

hydrogenation.  Importantly, these Ir-Al distances are within the range of literature 

crystallographically-characterized Ir-Al distances in [Cp*(PMe3)IrH2]!AlPh3 (2.684 (2) Å) [49] 

and [Cp*Ir(PMe3)AlEt]2 (between 2.456 (1) and 2.459 (1) Å) [50].  Unfortunately, the EXAFS of 

the larger, on-average, Ir(0)~150 was unable to detect such Al-Ir interactions due to the stronger 

component of Ir-Ir scatterers in the larger nanoparticles which obscures any Ir-Al that are 

                                                
7 A control experiment was performed using MALDI MS with Barron’s well-characterized, 
discrete alumoxane, [(t-Bu)2Al(µ-OH)]3 [59] and the commonly used MALDI MS matrices, 
dithranol, 2’-4’-6’-trihydroxyacetophenone, 6-aza-2-thiothymine, and graphite.  Perhaps not 
unexpectedly, the spectra (Figure SI-C18) did not show any peaks attributable to [(t-Bu)2Al(µ-
OH)]3 or any of its plausible fragments, arguably due to reactions between these matrices and the 
[(t-Bu)2Al(µ-OH)]3.  Similarly, the MALDI MS spectra of MMAO in 2’-6’-
dihydroxyacetophenone or 2’-4’-6’-trihydroxyacetophenone matrices and using Na+ or Ag+ 
ionizing agents did not show any peaks that may be assigned to plausible fragments of MMAO.  
Hence and unfortunately, MALDI MS in at least the matrices tried is not a useful method to test 
for the presence of such discrete alumoxanes. 



 

174 

present.  However, one surmises that such Ir-Al and/or Ir-X-Al contributions are very likely 

present in the larger Ir(0)~150  nanoparticles as well based on the EXAFS of the smaller particles 

and the other evidence provided in this paper showing that the presence of AlEt3influences both 

the nanoparticle rate and stability.  One can also conclude that Al XAFS would be a useful, 

potentially valuable future study so that this, too, is under its own, separate full investigation. 

A Pictorial, Working Hypothesis for the Stabilization of Ziegler-type Ir(0)n 

Nanoparticles: Scheme 4. presents a minimalistic working hypothesis based on extant literature 

and experimental evidence (vide supra) for the stabilization of Ziegler-type catalysts made with 

[Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3.  The presence of AlEt3, AlEt2(O2C8H15) and bidentate 

carboxylates are consistent with the NMR and IR data obtained in the current study (vide supra) 

[31].8  The bidentate carboxylates may be (i) bridging two Al centers, (ii) two Ir atoms, or (iii) 

one Irsurface and one Al site.  In addition, presence of (i) surface species such as (Irsurface)x–Et plus 

(Irsurface)–Al(Et2)Ir (where x=1-4), and (ii) surface AlEt3, as well as –Et and –H bridging Irsurface 

and AlEt2-3 centers, are consistent with the rate-decreasing kinetic effects of added AlEt3 as well 

as the XAFS of at least the smaller, Ir~4 Ziegler nanoparticles. Hence, these structures are shown 

in Scheme 4.—which again, represents a working hypothesis.   

Three primary lines of evidence suggests that the Al centers interact with the Ir sites on 

the surface of the Ir(0)n Ziegler nanoparticle surface in Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 

catalyst: (i) the XAFS precedent for the Ir~4 clusters plus AlEt3 (Table SI-C5); and (ii) the 

observation that the cyclohexene hydrogenation activity of the Ziegler-type catalysts made with 

                                                
8 Interestingly, the solution prepared with the discrete Ir4H4 cluster, [(Ir(1,5-COD)(μ-H)]4, [31] as 
a precatalyst (Table SI-C6) plus premade AlEt2(O2C8H15) is clear and colorless with visually 
observable black particles at the end of a cyclohexene hydrogenation.  This observation shows 
that AlEt2(O2C8H15) alone is not a sufficient stabilizer of at least any of its nanoparticle products 
made from [(Ir(1,5-COD)(μ-H)]4. 
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[Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3 decreases ~30-fold with increasing Al/Ir ratio of 1 to 5 

(Table SI-C7) [4].  Note here that, as we have previously reported [4], the sizes of the Ir(0)n both 

in pre- and post-hydrogenation solutions are the same regardless of Al/Ir ratio.  Hence, a AlEt3-

derived component, and not a size change of the nanoparticles, has to be the main factor 

affecting the catalytic activity.  Furthermore, (iii) 27Al NMR spectra (Figure SI-C27) shows 

upfield shift from 170 ppm in neat AlEt3 sample to 0 ppm at Al/Ir ratio of 1 and at 80 ppm at 

Al/Ir ratio of 2.  These upfield shifts suggests interaction of Al centers with metallic Ir atoms on 

the surface of Ir(0)n nanoparticles [51,52,53,54,55,56,57,58,59].9,10,11  One should note here that 

Scheme 4. is admittedly still rather speculative in its structural details.  Hence, Scheme 4. is 

provided primarily as a pictorial hypothesis for future studies. 

                                                
9 The upfield or downfield shift in NMR lines in the presence of metallic species is a common 
phenomenon in the literature.  This type of shift is called “Knight Shift”.  Sinfelt and coworkers 
define the Knight shift as “In bulk metals, the polarization of the magnetic moments of 
conduction electrons gives rise to a shift of the NMR lines called a Knight shift.” [52].  Some 
references on experimental and theoretical aspects of Knight shift are the 
following:[53,54,55,56,57,58,59]. 
10 Similar upfield Knight shifts (153 and 193 ppm) have been reported previously in 27Al MAS 
NMR Cu0.33Al0.67 and Cu0.50Al0.50 alloys when compared to pure Al due to bonding to metallic Cu 
[53].  The 27Al NMR Knight shift observed from 1639 ppm in aluminum powder to 1486 ppm in 
Cu0.33Al0.67  (i.e., Al/Cu=2) and to 1446 ppm in Cu0.50Al0.50 (i.e., Al/Cu=1) alloys [53].  One 
should note, however, that the ppm values in the present work are from solution NMR studies 
and not solid-state, magic angle spinning (MAS) NMR. Another example is the observation of 
310 ppm downfield Knight shift in 13C NMR signal of CO chemisorbed on metallic Pd surface 
(i.e., Pd particles supported on η-alumina) when compared to metal carbonyl compounds [55].  
The shift was attributed in the original publication to “mixing of the Pd conduction band with the 
CO molecular orbitals.” [55]. 
11 Alternatively, the signals may be interpreted by considering the effect of coordination number 
on Al atoms.  The signal observed at 0 ppm in 27Al NMR spectrum of Ziegler-type catalyst 
sample made with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 at Al/Ir ratio of 1 (Figure SI-C21) may 
be due to hexacoordinate environment around Al (hexacoordinate region: -40–20 ppm [60]).  
The 27Al NMR signals are observed in tetracoordinate region (reported at 60-110 ppm and 140-
180 ppm [60] for the catalyst samples with Al/Ir ratios of 2 and 3 (80 and 170 ppm, respectively, 
Figure S27).  
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Scheme 4.2. Working hypothesis representation of Ir(0)n Ziegler nanoparticle catalysts formed 
from [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3.  The figure has been constructed in the light of 
extant literature and the experimental results of the present study (vide supra).  Not shown, but 
also possible, is an alumoxane component that contains the RCO2

- carboxylato- moiety.  As 
emphasized in the main test, this schematic is provided primarily as a pictorial working 
hypothesis to guide the needed future studies designed to further support, or refute, the stabilizers 
and surface ligands depicted. 

 

Scheme 4. is consistent with, and rationalizes, the hydrocarbon solubility of the Ir(0)n 

Ziegler nanoparticles; they are overall neutral, with neutral charge stabilizers, with the 

lipophilic 2-ethylhexanoate of the C7H15CO2
- moiety providing hydrocarbon solubility—as well 

as steric stabilization [29].  Surface H-, Et-, AlEt3 and –X-AlEt3 (X=H, Et) components, possible 

_(EtAl-O)n- alumoxane as well as possible Ir-bridging, Et2Al- surface species, would, then and in 

this working hypothesis, provide additional stabilization.  As mentioned in the figure caption, not 

shown, but also possible, is an alumoxane component containing the RCO2
- carboxylato- moiety, 

perhaps as a terminating group to an alumoxane chain.  We emphasize that this scheme is 

intended as a proposed working hypothesis for future study about how Ziegler nanoparticles 

achieve their unusual combination of high stability, hydrocarbon solubility, plus high activity.  
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A qualitative, but telling, test of Scheme 4.2 is whether or not it can explain why Ir(0)n 

Ziegler nanoparticles have the exceptional 200 °C, ≥30 minute stability in dodecane that is 

observed [6].  The surface ligands and species shown in Scheme 4.2 have the potential to explain 

the unusual thermal stability of Ziegler-type nanoparticles, perhaps especially the Ir-bridging 

Et2Al, any chelating _(EtAl-O)n- alumoxane present, the surface AlEt3 and the AlEt3 with H- or 

Et-bridging groups, plus all the steric stabilization [37] provided by all the bulky C8H15O2- 

groups.  That said, it is still by no means completely obvious why Ir(0)n Ziegler nanoparticles 

made from [Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3 in cyclohexane solvent have the thermal 

stability, yet high activity, that they do. Hence, additional tests and studies further testing and 

refining Scheme 4. are needed and can be anticipated, some of which are continuing in our own 

research group. 

 

3. Summary and Conclusions. 

The present study contributes to the area of Ziegler-type hydrogenation catalysts in that it (i) 

sheds some light on the intriguing but question of what is the nature of the stabilization, and (ii) 

provides evidence for the existence of AlEt2(O2C8H15) (Al/Ir=1, 2 and 3) and AlEt3 (Al/Ir=3) in 

the catalyst solution in the currently best-understood model Ziegler-type hydrogenation catalyst 

system, namely that  made from [Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3 in cyclohexane and used 

without aging.  In addition, the current spectroscopic results (iii) help to rule out the presence of 

anionic [AlEt3(O2C8H15)]- stabilizer, in turn revealing that classic DLVO–type, Coulombic-

repulsion stabilization [19] does not appear to be a major contributor to the high stability of these 

hydrocarbon soluble, high catalytic activity Ziegler-type nanoparticle catalysts.  The evidence 
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provided also (iv) points towards the possibility of alkylalumoxanes stabilizers formed under 

conditions where, for example, 1 equiv of water per otherwise intact AlEt3 is present.  The 

spectroscopic and catalytic results also (v) show that depending on the initial Al/Ir ratio, 

additional AlEt3-derived species, ethane, ethene, free and coordinated 1,5-COD are formed as 

minor products upon mixing [Ir(1,5-COD)(µ-O2C8H15)]2 and AlEt3;  and (vii) support the 

expected interaction between Ir(0)n Ziegler-nanoparticles with Al-centers in the resultant AlEt3-

derived species.  Furthermore, in the light of current experimental evidence, we (viii) have 

proposed a pictorial, working hypothesis for the stabilization of Ziegler-type Ir(0)n nanoparticles, 

namely that shown back in Scheme 4.2.  It is hoped that the results reported herein will stimulate 

further studies into the nature of the AlEt3-derived stabilizer component in especially the 

industrial Co- and Ni-based Ziegler-type hydrogenation catalysts as a function of the Al/M (M: 

Co or Ni) ratios and as a function of the precise experimental conditions.  

 

4. Experimental 

Materials. All manipulations were performed under N2 in a Vacuum Atmospheres drybox (≤5 

ppm O2 as monitored by a Vacuum Atmospheres O2-level monitor) or using a Schlenk line under 

pre-purified, dried Ar.  All glassware were dried overnight in an oven at 160 ˚C, then cooled 

under vacuum in the antechamber of the drybox.  NMR sample tubes were rinsed with nanopure 

water and then dried for two days in an oven at 160 °C.   They were then transferred into the 

antechamber of the drybox, cooled down under vacuum for 8 h and then stored in the drybox.  

Benzene-d6 (Cambridge Isotope Laboratories, Inc., 99.5%, w/o TMS) was used as received.  

Benzene (Sigma-Aldrich, anhydrous, 99.8%) was used as received.  Cyclohexane (Sigma-

Aldrich, 99.5 %, H2O < 0.001%) was dried over activated (vide infra) molecular sieves for 2 
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days prior to use.  Modified methylalumoxane (MMAO-3A, 2.2 wt% Al in heptane) was 

purchased from Akzo Nobel.  Heptane, (Anhydrous, Sigma-Aldrich, 99%) was degassed under 

Ar for 30 min before use.  Molecular sieves (Acros, 3 Å) were activated by keeping at 200 °C for 

8 hours under vacuum (≤10-2 mmHg).  AlEt3 (Strem Chemicals, 93%, in 100 g steel cylinder) 

and BEt3 (Strem Chemicals, 98%, in 100 g steel cylinder) were used as received.  See section 2.2 

of the Supporting Information for a detailed discussion of procedures and cautions for handling 

pyrophoric AlEt3, Al(t-Bu)3, (t-Bu)Li and BEt3.  The relatively volatile BEt3 seemed to be the 

source of spurious reduction chemistry observed for other research samples stored in the drybox, 

in particular the apparent “autoreduction” of (1,5-COD)IrCl•Al2O3 used in a different research 

project. Hence, the BEt3 was removed as soon as it was no longer in use (which, in turn, 

appeared to stop the spurious, otherwise unaccounted for, reduction of (1,5-COD)IrCl•Al2O3 

stored in the drybox).  Al(t-Bu)3 was synthesized as detailed in the Supporting Information.  Its 

purity was determined by 1H NMR (δ in ppm (multiplicity): 1.10 (s)).  Mineral oil (Heavy, 

Fisher Scientific) was dried under vacuum at 60 °C for 6 h before use.  The NaCl windows for 

solid sample preparation for IR were purchased from Sigma Aldrich (32 mm, round) and used as 

received.  Cyclohexene (Aldrich, 99%) was distilled over Na under N2(g) and transferred into the 

drybox under air-free conditions.  Hydrogen gas (General Air, 99.5%) was passed through an 

indicating moisture trap (Scott Specialty Gas), a disposable O2 cartridge (Trigon), and an 

indicating O2 trap (Trigon) before use in hydrogenations.  [Ir(1,5-COD)(µ-O2C8H15)]2 was 

prepared by W. Morgan Alley in our labs following our previously published procedure [3] and 

its purity was confirmed by 1H and 13C NMR spectra. Crystalline [Ir(1,5-COD)(µ-O2C8H15)]2 was 

used to prepare a 12.0 mM solution in cyclohexane or a 40.0 mM solution in benzene-d6. Pentane 

(Sigma-Aldrich, anhydrous, 99+%, 1 L) was distilled over Na and stored in a 100 mL-round-
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bottomed Schlenk flask in the drybox.  AlCl3 (Sigma-Aldrich, Reagent Plus, ≥ 99.9%, 1 kg) was 

sublimed at ~130 °C under Ar on a Schlenk line using a custom-made sublimation apparatus 

equipped with a side arm and containing a sublimation chamber for the crude AlCl3, plus a cold-

finger (i.e., one equipped with a cold water inlet and outlet) to collect the sublimed AlCl3.  The 

sublimation mixture was prepared using 40 g AlCl3, 4 g NaCl (Fisher, 3 kg) and 1 g Al powder 

(Al metal, Fisher, finest powder, 500 g) as detailed in the literature [60].  Pure AlCl3 (~7 g) was 

collected on the cold-finger after ~4.5 hours.  A 1.7 M pentane solution of (t-Bu)Li (Aldrich, 100 

mL brown glass bottle) was used as received.  Celite (Sigma, diatomaceous earth, non-washed, 

~90% SiO2) was dried by heating to 200 °C under vacuum for 8 h and cooled under vacuum.  

Ultrapure H2O was prepared using a Barnstead Nanopure system. 

 

Synthesis of AlEt2(O2C8H15): The synthesis was performed in the drybox under N2 according 

to a procedure published for AlEt2(acac) [61], but using a 6-fold lower concentration of the 

starting AlEt3 and HO2C8H15 solutions than that used in reference 55.  A 36 mM solution of AlEt3 

(5 mL) in cyclohexane was transferred using a 5.0 mL gas-tight syringe into a 25 mL glass vial 

equipped with a 5/8 ��5/16 in. Teflon-coated magnetic stirbar.  A 5 mL portion of a 36 mM 

HO2C8H15 (2-ethylhexanoic acid) was added dropwise (in ~10 min) to a AlEt3 solution in a 25 

mL glass vial using a 5.0 mL gas-tight syringe, all while vigorously stirring. Upon removal of 

the volatiles from the solution under vacuum (�10-2 mmHg) at 30 °C for 8 h, a clear and colorless 

gel-like liquid was obtained, yield: 0.020 g, 50%.  1H NMR in benzene-d6 (δ in ppm): 0.33, 0.80, 

1.18, 1.28, 1.39, 1.51, 2.17.  13C NMR in benzene-d6 (δ in ppm): -1.21, 1.08, 8.90, 13.81, 22.66, 

25.72, 29.84, 31.99, 50.21, 185.84. 
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Synthesis of Al(t-Bu)3: The synthesis of Al(t-Bu)3 was performed under Ar on a Schlenk line.  

The procedure was adapted from the procedure in a lab notebook provided courtesy of Professor 

A. R. Barron [62,63].12  Freshly sublimed pure AlCl3 (15 g) was transferred into a 500 mL round-

bottomed Schlenk flask equipped with a side arm and a 5/8 × 5/16 in. Teflon-coated magnetic sir 

bar under N2 in the drybox.  The 500 mL round-bottomed flask was sealed under N2 using two 

rubber septa, brought out of the drybox, and connected to Ar using a needle tip inserted through 

the rubber septum.  The 500 mL round-bottomed Schlenk flask was then connected a bubbler 

through its side arm.  A 120 mL portion of pentane was added using a cannula through the 

rubber septum to the 500 mL round-bottomed flask containing AlCl3, all while vigorously 

stirring.  A 250 mL dropping funnel equipped with a pressure-compensation tube and PTFE-plug 

was loaded with 200 mL (t-Bu)Li under N2 in the drybox.  The dropping funnel was sealed by 

closing the dropping valve below the liquid chamber and using a rubber septum to seal the glass 

joint at the top.  The dropping funnel was brought out of the drybox while still under N2 and 

connected to a flowing Ar stream using a needle tip inserted through the rubber septum.  The 

dropping funnel was left under a flow of Ar for 5 min.  The dropping funnel was connected 

under Ar to the 500 mL round-bottomed Schlenk flask containing AlCl3 under Ar.  The dropping 

valve of the dropping funnel was opened and (t-Bu)Li addition to the AlCl3 suspension was 

started while the white suspension of AlCl3 in pentane was vigorously stirred.  The (t-Bu)Li 

addition continued for 4 h.  CAUTION: AlCl3 plus (t-Bu)Li yields an exothermic reaction.  The 

(t-Bu)Li should be added dropwise while maintaining the solution at room temperature using an 

ice or cold-water bath as necessary.  The resulting bluish-white suspension was stirred for 30 min 

                                                
12 The original procedure for synthesis of Al(t-Bu)3 was published in an earlier article [57].  This original procedure 
by Lehmkuhl et al. was not useful, at least in our hands, since many necessary experimental details are not provided 
in the original publication.   
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under Ar.  CAUTION: A continous flow of Ar through the 500 mL round-bottomed Schlenk 

flask will result in evaporation of the pentane from the reaction flask due to its low boiling point 

(35 °C).  Therefore, the valve connecting the 500 mL round-bottomed Schlenk flask to Ar line 

should be opened once every ~5 min for 2-3 sec and then closed immediately to avoid a 

continous Ar flow.  The bluish-white suspension in the 500-mL round-bottom Schlenk flask was 

then allowed to sit without stirring for 30 min to allow solid LiCl to precipitate.  A reverse 

filtration (see Scheme SI-C3) [64]13 was then applied to separate the liquid portion containing the 

desired Al(t-Bu)3 from the gray LiCl precipitate using the following technique.  The top of a 

plastic pasteur pipette was cut and then the cut pipette was stuffed with cotton under air.  One 

end of a cannula was then inserted into the cotton layer through the other end of that cut pipette 

(i.e., the end not stuffed with cotton, see Scheme SI-C3).  The pasteur pipette with the stuffed 

cotton and the cannula attached was then inserted into the three-necked 500 mL round-bottomed 

flask containing Al(t-Bu)3 under Ar flow (Scheme SI-C3).  Separately, another 500 mL round-

bottom Schlenk flask equipped with a side arm was sealed under Ar flow using two rubber septa.  

The free end of the cannula (i.e., the end not inserted through cut pipette) was inserted through 

the rubber septum of the Ar filled but otherwise empty 500 mL round-bottomed Schlenk flask.  

The pasteur pipette was dipped into the cloudy white suspension and then a slight vacuum (≤10-2 

mmHg) was applied through the side arm of the empty 500 mL round-bottomed flask.  A clear 

solution was collected in the 500 mL round-bottomed flask.  The 500 mL round-bottomed flask 

containing the Al(t-Bu)3 solution in pentane was then evacuated, disconnected from the Schlenk 

line and brought inside the drybox while still under Ar.  Next, in the drybox the volatiles were 

                                                
13 Reverse filtration is defined in J. P. Cooke’s original publication [58] as “a process of filtration 
in which the liquid to be filtered is drawn upwards instead of flowing downwards in the usual 
way.” 
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removed under vacuum (≤10-2 mmHg) in the drybox and the resultant clear solution was 

transferred into a 100 mL round-bottomed flask with an O-ring joint on top and equipped with a 

5/8 × 5/16 in. Teflon-coated magnetic sir bar.  While still in the drybox, the 100 mL round-

bottomed flask equipped with an O-ring joint was connected using a T-shaped O-ring adapter 

(with two O-ring joints on sides and one valve on top) to a 50 mL round-bottomed flask 

equipped with an O-ring joint.  The two round-bottomed flasks and the T-shaped O-ring adapter 

were sealed by closing the valve on top of the T-shaped adapter and brought out of the drybox.  

The two round-bottomed flasks and the T-shaped adapter were attached to a Schlenk line using 

the valve on the T-shaped adapter.  The 100 mL round-bottomed flask with clear Al(t-Bu)3 

solution while under N2 was placed in an oil bath at 55 °C.  The empty 50 mL round-bottom 

flask was placed in dry ice/acetone bath at -78 °C.  If condensation on the vacuum line occured, a 

heat gun was used to slowly transfer the condensed liquid to 50 mL round-bottomed collection 

flask.  At the end of ~3 h, 20 mL clear, colorless Al(t-Bu)3 was obtained (~80 % yield).  Density: 

0.978 g/mL.  1H NMR in benzene-d6 (δ in ppm, (multiplicity)): 1.10 ppm (s). 

 

Synthesis of [(t-Bu)2Al(μ-OH)]3: This synthesis was performed under Ar on a Schlenk line 

and, separately, under N2 in a drybox according to the original published procedure [65], but at a 

smaller scale (~1/10 of original procedure).  Briefly, while still in the drybox, 1.59 mL of clear, 

colorless, liquid Al(t-Bu)3 liquid was transferred using a 2.50 mL gas-tight syringe into a 100 mL 

round-bottomed Schlenk flask equipped with a side-arm and a 5/8 × 5/16 in. Teflon-coated 

magnetic sir bar.  The 100 mL round-bottomed Schlenk flask was then sealed using a rubber 

septum and brought out of the drybox while still under N2.  The 100 mL round-bottomed Schlenk 

flask was then connected to a Schlenk line through its side arm.  Another 100 mL round-
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bottomed flask containing pentane distilled over Na was sealed using a rubber septum and 

brought out of the drybox.  A 30 mL portion of pentane was transferred into the 100 mL round-

bottomed Schlenk flask containing Al(t-Bu)3 via cannula through its rubber septum while stirring 

vigorously.  The 100 mL round-bottomed Schlenk flask was placed into an acetone/dry ice bath 

at -78°C and was let sit for 30 min to reach desired -78°C.  Ultrapure H2O, 97 ± 1 μL, was 

injected in 1 second to Al(t-Bu)3 solution in 100 mL round-bottom Schlenk flask through the 

rubber septum using a 100 μL gas-tight syringe.  The resulting clear, colorless solution was 

stirred for 1.5 h at -78° C using an acetone/dry ice bath and then for 2 h at 25 °C.  The solution 

was cooled for 8 h at -30 °C.  At the end of 8 h at -30 °C, white crystals were observed in the 

clear, colorless solution.  The white crystals were separated from the liquid portion by 

transferring the liquid into a different flask using a 1.0 mL gas-tight syringe.  The volatiles were 

removed under vacuum (≤10-2 mmHg).  The white crystals (~0.25 g, ~35% yield) were stored at 

-30 °C under N2.  1H NMR (benzene-d6) (δ in ppm, multiplicity, assignment): 1.10, s, C(CH3) of 

[(t-Bu)2Al(μ-OH)]3; 2.34, s, OH; 1.071, s, C(CH3) of Al(t-Bu)3.  13C NMR (benzene-d6) (δ in 

ppm): 24.69, 31.08. 

 

Synthesis of [Ir(1,5-COD)(μ-H)]4: The synthesis procedure for crystalline [Ir(1,5-COD)(μ-

H)]4 has been reported in an earlier publication [31].  The identity and the purity of the product 

was confirmed by 1H NMR in benzene-d6 (δ in ppm, (multiplicity, number of H)): -2.89 (s, 1), 

1.37 (m, 4), 2.09 (m, 4), 4.14 (m, 4) in line with the values given in earlier publication [31]. 
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Sample Preparation and Instrumentation. 

  1H, 13C and 27Al NMR:  NMR samples of the Ziegler-type catalyst solution made from [Ir(1,5-

COD)(μ-O2C8H15)]2 and AlEt3 with an Al/Ir ratio of 1.0 were prepared as follows: In the drybox, 

50 µL AlEt3 (340 µmol) was transferred from its stainless steel container using a 50 µL gas-tight 

syringe to a 2 dram glass vial containing 1.7 mL benzene-d6 (200 mM AlEt3 solution).  In 

another 2 dram glass vial, a solution 40 mM in Ir was prepared by dissolving 35.5 mg (80 µmol 

Ir) of [Ir(1,5-COD)(μ-O2C8H15)]2 in 2.0 mL benzene-d6.  A 0.5 mL aliquot of 40 mM [Ir(1,5-

COD)(μ-O2C8H15)]2 solution was transferred into a NMR sample tube (outer diameter: 5 mm) 

using a 1.0 mL gas-tight syringe.  Next, 0.2 mL of benzene-d6 was transferred into the same 

NMR sample tube using a 1.0 mL gas-tight syringe.  The NMR sample tube was then sealed by 

first inserting a precision-seal natural rubber septum (Sigma-Aldrich) through the top of the 

NMR tube and then folding its flexible sleeve over NMR tube.  The AlEt3 solution in benzene-d6 

(0.1 mL, Al/Ir=1.0) was then injected using a 0.500 mL gas-tight syringe into the septum-sealed 

NMR sample tube through its septum.  The original orange color of the solution in the NMR 

sample tube (characteristic of [Ir(1,5-COD)(μ-O2C8H15)]2) turned to dark-brown immediately 

after adding the AlEt3 solution.  The septum sealed NMR sample tube was shaken gently for five 

minutes and taken out of the dry box while still septum-sealed. 1H and 13C NMR spectra were 

taken on a Varian INOVA-400 spectrometer.  27Al NMR spectra were taken on a Varian 

INOVA-300 spectrometer. Observed 1H and 13C NMR chemical shifts were referenced to 

benzene-d6 solvent. The 27Al NMR spectra were taken by using 14.0 µs 90° pulse-width, 0.06 s 

relaxation delay and a frequency of 78.221 MHz. The 27Al NMR chemical shifts refer to the 

[Al(H2O)6]3+ ion in an external capillary containing 25 mM Al(NO3)3 in D2O by the substitution 

method.  MestReNova LITE-5.2 software was used for data processing.  
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NMR samples of the catalyst solution with a Al/Ir ratio of 2.0 were prepared following the 

same procedure as the one given above, but using 0.5 mL of a 40 mM [Ir(1,5-COD)(μ-

O2C8H15)]2 solution in benzene-d6, 0.2 mL of a 200 mM AlEt3 solution in benzene-d6, and 

additional 0.1 mL benzene-d6 to bring the total volume to 0.8 mL.  For the preparation of the 

catalyst solution with Al/Ir ratio of 3.0, 0.5 mL 40 mM [Ir(1,5-COD)(μ-O2C8H15)]2 solution in 

benzene-d6 and 0.3 mL 200 mM AlEt3 solution in benzene-d6 were combined without any 

additional benzene-d6.  An NMR sample of the AlEt3 solution was prepared using 0.1 mL 200 

mM AlEt3 solution in benzene-d6 plus 0.7 mL benzene-d6.  The total volume of the NMR sample 

solution was 0.8 mL in each case.   

 

IR: IR spectra were taken on a Nicolet Magna-760 FT/IR-Raman Spectrometer.  

(i) Preparation of Solution Samples:  The catalyst samples for IR analysis were prepared in the 

drybox using cyclohexane solutions of [Ir(1,5-COD)(μ-O2C8H15)]2 (72.0 mM in Ir) and 36.0 mM 

AlEt3 solution in cyclohexane.   The [Ir(1,5-COD)(μ-O2C8H15)]2 (72.0 mM in Ir) solution was 

prepared by first weighing 0.0319 g of solid [Ir(1,5-COD)(μ-O2C8H15)]2 using a weighing boat 

and then transferring into a 10 mL volumetric flask containing ~5 mL cyclohexane.  The 

resultant solution was diluted to the mark by adding cyclohexane.  A stock solution of AlEt3 in 

cyclohexane (36 mM AlEt3) was prepared in the drybox by adding neat AlEt3 (0.529 mL, 0.834 

g/mL) using a 1.000 mL gas-tight syringe into 50 mL cyclohexane in a 100 mL volumetric flask.  

The resulting solution was diluted to 100 mL mark by adding cyclohexane.  A 0.5 mL aliquot of 

72.0 mM [Ir(1,5-COD)(μ-O2C8H15)]2 solution was transferred using a 1.0 mL gas-tight syringe 

into a 4 dram glass vial containing a 5/16 ×5/16 in. Teflon-coated magnetic stir-bar.  Next, 36 

mM AlEt3 solution (0.1 mL, Al/Ir=1.0) was immediately added (in 1 sec) using a 0.5 mL gas-
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tight syringe while vigorously stirring.  The catalyst solution was then stirred for 30 min under 

N2.  The IR liquid cell with ZnSe windows was filled with the catalyst solution using a 1.0 mL 

gas-tight syringe in the drybox and sealed using TEFLON caps.  Then, the IR liquid cell was put 

in a jar, taken out of the drybox while still sealed with TEFLON caps in a jar and carried to the 

IR facility (~5 min).  

IR samples of the catalyst solutions with Al/Ir ratios of 2 and 3 were prepared following the 

same procedure as the one given above.  For the catalyst sample solution with Al/Ir3 ratio of 2, 

0.5 mL of a 72.0 mM [Ir(1,5-COD)(µ-O2C8H15)]2 solution and 0.2 mL of a 36 mM AlEt3 

solution were combined in a 4 dram glass vial.  The catalyst sample solution with Al/Ir ratio of 3 

was prepared by combining 0.5 mL of a 72.0 mM [Ir(1,5-COD)(µ-O2C8H15)]2 solution and 0.3 

mL of a 36 mM AlEt3 solution in a 4 dram glass vial, again all in the drybox.  IR sample of 360 

mM modified methylalumoxane solution was prepared in the drybox by transferring 96 µL of 

original commercial modified methylalumoxane (MMAO-3A) using a 100 µL gas-tight syringe 

to 1.5 mL heptane in a 5 mL glass vial.  

(ii) Preparation of Solid Samples: The solid catalyst sample at Al/Ir ratio of 2 and with 10 eq 

of deliberately added water was prepared in the drybox by first removing volatiles under vacuum 

at 30 °C.  The resulting black powder was further dried under vacuum for 8 h.  At the end of 8 h, 

the black powder was transferred on a mortar and ground using a pestle.  Next, two drops of 

mineral oil were added to the fine catalyst powder to obtain a paste.  The mineral oil plus black 

catalyst paste was then transferred onto a polished NaCl plate and the second NaCl plate was 

placed on top of the first plate with care to keep the paste sandwiched between the two NaCl 

plates while manually smearing the past into a thin film between the two NaCl plates.  The 

assembled NaCl plates were then placed into a glass vial and selaed under N2, and the glass vial 
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in turn place into a desiccator which was sealed, brought out of the drybox and transferred to the 

IR instrument.  Next, the N2 flow feature for the sample holder compartment of the IR was 

turned on.  After ~5 min of N2 flow through the sample holder compartment, the glass vial was 

trasferred into the sample holder compartment which was now under a N2 atmosphere.  The 

sealed glass vial was then opened and the NaCl plate assembly placed onto a sample holder.  The 

door of the compartment was immediately closed and IR spectrum accumulation was started.  

This procedure was designed to ensure as air- and oxygen-free transfer of catalyst sample to the 

IR instrument as possible. 

 

TEM, MALDI MS and XAFS:  The details of sample preparation and data collection 

procedures and the instrumentation have been published previously [4].  The Ir-Al bond 

distances determined by XAFS are reproduced for the interested reader in Table S5. 

 

Hydrogenation Solution Preparation and Catalytic Cyclohexene Hydrogenations.  

Catalyst solutions, 1.44 mM in Ir, were individually prepared in a drybox.  An example 

procedure follows for the preparation of catalyst solution with [Ir(1,5-COD)(µ-O2C8H15)]2 and 

AlEt3 with Al/Ir ratio of 1:  A 2.1 mL portion of cyclohexane was transferred into a new 22 ��175 

mm Pyrex borosilicate culture tube containing a new 5/8 �� 5/16 in. Teflon-coated magnetic 

stirbar.  Cyclohexane solution of [Ir(1,5-COD)(µ-O2C8H15)]2 (0.3 mL, 12 mM in [Ir]) was 

transferred into the culture tube using a 1.0 mL gas-tight syringe forming an orange-red solution.  

The resultant solution was stirred for 1 min at 1.0 �� 103 rpm as measured by a Monarch 

Instruments Pocket-Tachometer.  A AlEt3 solution (0.1 mL, 36 mM)—CAUTION, 

PYROPHORIC MATERIAL!, vide supra, IN COMBINATION WITH FLAMMABLE 

SOLVENTS!—was then added quickly (within 2 sec) to the orange-red solution using a 0.5 mL 
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gas-tight syringe while vigorously stirring.  The original orange-red color of the [Ir(1,5-COD)(µ-

O2C8H15)]2 solution changed to tawny yellow at the end of AlEt3 addition.  Cyclohexene (0.5 mL) 

was added using a 1.0 mL gas-tight syringe and the resulting hydrogenation solution (1.65 M in 

[cyclohexene] and 1.2 mM in [Ir]) was stirred for an additional 1 min.  

The procedure and apparatus used for catalytic hydrogenations of cyclohexene have been 

described in detail elsewhere [66,67].  Briefly, a culture tube containing the hydrogenation 

solution was placed in a Fisher-Porter (F–P) bottle equipped with Swagelok quick connects, 

which was then sealed and brought out of the drybox.  The F–P bottle was placed in a bath set at 

22.0 ± 0.1 °C.  Stirring was started at 1000 ± 10 rpm using a Fauske Super magnetic stirplate and 

the F–P bottle was connected to a pressurized H2 line using TFE-sealed Swagelok quick-

connects.  The F–P bottle was purged 15 times with H2 (1 purge/15 sec) that has passed through 

an indicating moisture trap (Scott Specialty Gas), a disposable O2 cartridge (Trigon), and an 

indicating O2 trap (Trigon).  The pressure in the F–P bottle was then set to 40 psig, and then the 

data collection was initiated.  Hydrogen pressure vs. time data was collected using a pressure 

transducer (Omega PX 624–100 GSV) interfaced via an Omega D1131 analog to digital 

converter to a PC running LabVIEW 7.0.  Data was subsequently handled using MS Excel.  The 

maximum hydrogenation rate of catalysts was calculated from each kinetic curve by a linear-

least-squares fits to the data points in the highest activity (highest slope) region (R2 ≥ 0.999 for 

the reported data). 

For hydrogenations with [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir=2, 3 or 5, orange-red 

[Ir(1,5-COD)(µ-O2C8H15)]2 solution (0.3 mL, 12.0 mM) was combined with a  total of 2.0 mL, 

1.9 mL or 1.7 mL cyclohexane, respectively.  Then, 0.2 mL, 0.3 mL or 0.5 mL, respectively, of 

36 mM AlEt3 solution was added using a 1.000 mL gas-tight syringe.  The hydrogenation 

solution with only-precatalyst was prepared by mixing 0.3 mL of [Ir(1,5-COD)(µ-O2C8H15)]2 
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solution (12 mM in [Ir]) with 2.2 mL cyclohexane without any AlEt3.  For hydrogenations with 

[Ir(1,5-COD)(μ-O2C8H15)]2 plus�Al(t-Bu)3 or [(t-Bu)2Al(μ-OH)]3, 0.2 mL of 36 mM solutions of 

Al(t-Bu)3 or [(t-Bu)2Al(μ-OH)]3 in cyclohexane were used.  At the end of cyclohexene 

hydrogenation, the catalyst solutions prepared with 2, 3 or 5 equivalents of AlEt3, or 2 

equivalents of Al(t-Bu)3 or [(t-Bu)2Al(μ-OH)]3, were still brown with no visually observable 

particles.  The precatalyst-only solution and the catalyst solution at AlEt3/Ir ratio of 1 appeared to 

be clear colorless with visually observable black bulk metal particles in the solution and on the 

stirbar.  For hydrogenations in benzene solvent, a 1.60 mg crystalline [(1,5-COD)Ir(µ-O2C8H15)]2 

was dissolved in 2.3 mL benzene in a 20 mL glass vial.  The resulting orange-red solution was 

transferred using a 2.5 mL gas-tight syringe into a new 22 ��175 mm Pyrex borosilicate culture 

tube containing a new 5/8 ��5/16 in. Teflon-coated magnetic stirbar.  A 0.2 mL portion of 36 mM 

AlEt3 in benzene (Al/Ir=2) was then added quickly (within 2 sec) to the orange-red solution 

using a 0.5 mL gas-tight syringe while vigorously stirring.  The original orange-red color of the 

[Ir(1,5-COD)(µ-O2C8H15)]2 solution changed to tawny yellow at the end of AlEt3 addition.  

Cyclohexene (0.5 mL) was added using a 1.0 mL gas-tight syringe and the resulting 

hydrogenation solution (1.65 M in [cyclohexene] and 1.2 mM in [Ir]) was stirred for an 

additional 1 min.  The hydrogenation was carried out using the procedure given above for 

cyclohexane solvent. 

 

Hydrogenation Solution Preparation with Added H2O:  For hydrogenations performed with 

[Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 at Al/Ir ratio of 2 in the presence of 2, 4 or 10 equivalents 

H2O (per Ir), the catalyst solutions were prepared in 20 mL batches with an [Ir] of 1.44 mM.  

First, 16.4 mL of cyclohexane was transferred into a 20 mL glass vial containing a 5/8 × 5/16 in. 

Teflon-coated magnetic stir bar.  Next, 2.0 mL of a [Ir(1,5-COD)(μ-O2C8H15)]2 solution in 
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cyclohexane (14.4 mM) was added.  A 2.1, 3.2 or 5.2 μL portion of H2O was added using a 10 

μL gas-tight syringe to the catalyst solutions with H2O/Ir ratios of 2, 4 and 10, respectively.  

Stirring (1000 ± 200 rpm) was started, and then 1.6 mL of AlEt3 solution in cyclohexane (36 

mM) was added rapidly (over 2 seconds).  The resulting catalyst solution was stirred for 5 min.  

A 2.5 mL portion of the catalyst solution was transferred using a 2.5 mL gas-tight syringe into a 

new 22 × 175 mm Pyrex borosilicate culture tube containing a new 5/8 × 5/16 in. Teflon-coated 

magnetic stirbar.  Cyclohexene (0.5 mL) was added using a 1.0 mL gas-tight syringe and the 

resulting hydrogenation solution (1.65 M in [cyclohexene] and 1.2 mM in [Ir]) was stirred for an 

additional 1 min.  All the catalyst solutions at H2O/Ir ratios of 2, 4 or 10 appeared dark brown 

without visually observable black particles both before and after cyclohexene hydrogenation. 

Supporting Information-C. Literature tables and related discussion on (i) the nature of AlEt3-

derived stabilizer of Ziegler-type hydrogenation catalysts, (ii) gaseous side products, and (iii) the 

stoichiometry of the catalyst formation reaction.  Detailed experimental procedures and cautions 

for handling the pyrophoric AlEt3, Al(t-Bu)3 and (t-Bu)Li.   Experimental procedures for 

synthesis of [(t-Bu)4N](O2C8H15) and [(t-Bu)4N](AlEt3O2C8H15).  Detailed procedures for 

preparing catalyst solutions starting with the precatalyst [Ir(1,5-COD)(μ-H)]4 and AlEt3 or 

AlEt2(O2C8H15).  The 1H, 13C, 27Al NMR and IR spectra for the Ziegler-type catalyst samples 

made with [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3.  A more detailed scheme leading to proposed, 

working stoichiometry of catalyst formation involving a possible [Ir(1,5-COD)H]4 intermediate. 

Cyclohexene hydrogenation curves with Ziegler-type [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3 plus 

H2O catalysts.  Control hydrogenations with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 or Al(t-Bu)3 

or [(t-Bu)2Al(OH)]3 and precatalyst [Ir(1,5-COD)(μ-H)]4 and AlEt3 catalysts as a function of the 

Al/Ir ratio. TEM images and MALDI MS spectra of [Ir(1,5-COD)(μ-O2C8H15)]2 plus [(t-

Bu)2Al(μ-OH)]3 or Al(t-Bu)3 catalysts.  Table of XAFS-determined Ir-Al distances of Ziegler-
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type hydrogenation catalysts made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3.  A schematic 

representation of the reverse filtration technique.  This material is available free of charge via the 

Internet at http://pubs.acs.org. 
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Ziegler-type Hydrogenation Catalysts 
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C1. Review of the Extant Literature on Ziegler-type Hydrogenation Catalysts  

C1.1.  A summary of the Literature Relevant to the Nature of the AlEt3-derived Stabilizer 

of Ziegler-type Hydrogenation Catalysts 

 The question of “What is the nature of the stabilizer species?” in Ziegler-type 

hydrogenation catalysts is of significant interest for the reasons mentioned in the main text and 

discussed in a review [1].  A detailed and intended to be critical analysis of the extant literature 

on the nature of the AlEt3-derived stabilizer species is provided in the following paragraphs for 

the interested reader.   

 C1.1.1. Aluminum Alkyl Carboxylates Hypothesis:  Many studies (Table SI-C1) on Ziegler-

type hydrogenation catalysts provide spectroscopic evidence that ligand exchange reaction 

occurs between M(acac)n (acac: acetylacetonate) precatalysts and the cocatalyst, AlR3.  The 

result of the ligand exchange reaction is an aluminum alkyl acetylacetonate complex.  The 

composition of the resulting aluminum alkyl complex has been found to depend on Al/M ratio 

initially employed.  At Al/M<n (where n is the formal oxidation state of the M), Al(acac)3 is 

formed as the main AlEt3-derived product in catalysts made from M(acac)n (n=3 for M:Fe, n=2 

for M:Ni and n=3 for M:Co) and AlEt3 [2,3].  In these studies, IR bands at 1261, 1288, 490 and 

425 cm-1 are assigned to Al(acac)3.  Furthermore, similarity of UV-Visible spectrum of catalyst 

solutions to that of separately-synthesized Al(acac)3 standard suggests the presence of Al(acac)3 

in the catalyst solutions.  At Al/M equals n (n=3 for M:Fe, n=2 for M:Ni,  n=3 for M:Co, n=3 for 

M:Cr and n=2 for M:Pd), the only observed reaction product is AlEt2(acac) in catalyst solutions 

made from M(acac)n and AlEt3.  The presence of AlEt2(acac) is evident by the comparison of the 

UV-Vis spectrum of the catalyst solutions to that of an individually synthesized Et2Al(acac) 
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standard [2].  In the presence of additional AlEt3 (i.e., at Al/M>n), further reactions are proposed 

between R2Al(acac) and AlR3, R: Et or Me [4,5,6,7,8,9,10,11,12]).  These further reactions form 

additional products, ones denoted in the original publications as AlEt2(acac)!AlEt3, AlEt2(acac-

Et)-AlEt2 and AlEt2(Et-acac(AlEt2)-Et)-AlEt2.  An FTIR band at 1056 cm-1 was assigned to Al-

O-C group of the structure AlEt2(acac-Et)-AlEt2 [4].  However, unequivocal evidence for the 

composition or structure of AlEt2(acac-Et)-AlEt2 or other AlEt2(acac)-derived products  is often 

lacking as Table S1 details [4,5,6,7,8,9,10,11,12] despite considerable effort from the authors.   
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Table SI-C1.  Literature Table Detailing the Proposed AlEt3-derived products in various Ziegler-
type Hydrogenation Catalysts  

  

 

Catalyst System Proposed Nature of the AlEt3-derived Species and 
Characterization Methods 

Ref. 

Ni(acac)2 + (0.5-15.0) eq AlEt3 AlEt2(acac) and Al(acac)3 by UV-Visible 2 

Co(acac)2-3 + (2-16) eq AlEt3 AlEt2(acac)  and Al(acac)3 are observed by UV-Visible and IR; 
AlEt2(acac) exists as a dimer as suggested by cryoscopic 
measurements.  Further reaction between AlEt2(acac) and AlEt3 is 
also proposed with a product of Et2Al-O-C(CH3)=CH-C(Et)(CH3)-
O-AlEt2. 
The FTIR peaks at 600-800 cm-1 are assigned to Al-O-Al bond of 
alumoxanes with a degree of oligomerization of 4 to 5. 

4,5 

Pd(acac)2 + n eq. AlEt3, n=1-10 FTIR bands at 1587, 1525, 1284, 1183, 1104, 1047 and 1010 cm-1 
are assigned to AlEt2(acac).  These bands are observed in a FTIR 
spectrum of separately synthesized AlEt2(acac). 

The broad NMR signals at 1.45 and 0.40 ppm are assigned to 
Et2Al-O-C(CH3)=CH-C(Et)(CH3)-O-AlEt2. 

6 

Pt(acac)2 + 4 eq AlMe3, Ni(acac)2 + 3 
Al(i-Bu)3 

AlR2(acac) is suggested by IR band at 1600 cm-1.  
Products of further reaction between AlMe3 and AlMe2(acac), such 
as R2AlOC(R)2C(AlR2)C(R)2OAlR2, are also proposed. 

8,10 

Co(acac)2 + (0.5-1.5) eq AlEt3 IR spectra of catalyst samples suggest the presence of Al(acac)3 
(1533, 1289, 490 cm-1), AlEt2(acac) (1450, 1295, 1227, 1160, 988, 
951 and 905 cm-1). 

13 

Co(acac)3 + 1 AlMe3 Al(acac)3 is confirmed by elemental analysis of the solid obtained 
after removing solvent and obtaining the IR of the catalyst solution 
(1288, 1261, 490 and 425 cm-1).   
AlMe2(acac) is also suggested, although evidence for it is not 
provided in the original publication. 

12 

Fe(acac)3 + 6 eq AlEt3 IR bands observed for AlEt2(acac) and AlEt3 are observed in the 
catalyst solution. Peaks at 1289 and 472 cm-1 are assigned to 
Al(acac)3. 

14 

Co(acac)2-3 + (2-16) eq AlEt3 The authors suggest that, at Al/Co ratios ≥8, the stabilizer layer 
consists mainly of AlEt3.  No evidence is provided, however. 

4,5 

Co(acac)2-3 + (2-16) eq AlEt3 Alkylalumoxanes (R2Al-O-AlR2), acetylacetonate derivatives of 
alkylalumoxanes ((acac)RAlOAlR(acac)), and their oligomers are 
suggested as the AlEt3-derived stabilizer species on the basis of the 
IR absorption band at 600-800 cm-1 (Al-O-Al bond) and the 
similarity of elemental analysis results to that of oligomeric 
alumoxanes. 

4,5!
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C1.1.2. Alumoxanes and Their Derivatives:  A Short Review on the Relevant Alumoxane 

Literature  

The term “alumoxane” is used to describe a molecular species containing at least one oxo 

group (O2-) bridging (at least) two aluminum atoms, that is, a compound or compounds 

containing an Al-O-Al subunit [15].  More specifically, a formula of [(P)Al(O)]n is often used in 

the literature to denote alumoxanes, where P is the pendant group bonded to aluminum atom and 

n is the number of repeating units.  Alkylalumoxanes, in which the pendant group is an alkyl, 

[(R)Al(O)]n, are the alumoxanes most commonly employed in the literature.  The combination of 

alumoxanes with metallocenes result in highly active, well-known catalysts used industrially for 

the polymerization of ethylene and propylene [16,17].   

Alumoxanes are synthesized by the reaction of trialkylaluminum compounds (AlR3) with 

H2O (Scheme SI-C1) or species containing reactive oxygen such as CO2, PbO, or R4B2O (where 

R is –Et or 1,5-cyclooctadienyl) [18].  Alumoxanes easily undergo: (i) association reactions, 

yielding di-, tri-, tetra- and oligoalumoxanes [19]; (ii) dissociation reactions, in the presence of 

strong donors such as 1,4-dioxane or tetrahydrofuran [20,21]; or (iii) disproportionation 

reactions, in the presence of, for example, excess AlMe3 [22,23] or at high temperatures [24,25].  

The highly reactive and complex nature of (mixtures) of alumoxanes has resulted in 

inconsiderable difficulty historically in attempts to purify, isolate or characterize alumoxanes.  

Alumoxanes, specifically methylalumoxane, has been called a “black box” [15] due to long-

lasting lack of understanding of its precise structure(s) and composition(s).  

Barron and coworkers, however, have recently achieved successful isolation and 

crystallographic characterization of various discrete t-butylalumoxanes [15,26], so that these 
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molecular complexes (in some cases better described as “hydroxy-alumoxanes”; see the 

discussion of this point in the main text) were exploited as part of the present work.  

n  AlR3  +  n  H2O [R2Al(µ-OH)]n  +  n  RH

[R2Al(µ-OH)]n [RAlO]n  +  n  RH
 

Scheme SI-C1. Stoichiometry for the formation of, first, [RAl(μ-OH)]n and then [RAlO]n 
oligomeric alumoxanes starting from AlR3 and H2O.  

The trimeric t-butylalumoxane, [(t-Bu)2Al(μ-OH)]3 (or, again, perhaps better denoted 

“hydroxy-alumoxane”) was first synthesized by Barron and coworkers [25] via the temperature-

controlled reaction of Al(t-Bu)3 with H2O.  In that study, the crystal structure of [(t-Bu)2Al(μ-

OH)]3 was determined by X-ray crystallography [25].  Further characterization was performed 

with 13C (31.14 ppm), 1H NMR (2.02 and 1.10 ppm) and IR (3584, 1362, 1043, 998, 936, 815, 

635, 506 cm-1) spectroscopies as detailed in the original publication [25].   

C1.2.  Gaseous Side Products and Stoichiometry of the Catalyst Formation Reaction 

in Ziegler-type Hydrogenation Catalysts 

Mixing transition-metal precatalysts and AlR3 cocatalyst en route to Ziegler-type 

hydrogenation catalysts results in production of gaseous products in addition to the Mn 

nanoparticle.  The alkyl group of the cocatalyst (R) determines the nature of the gaseous side 

products.  The major gaseous products obtained are ethane, methane or i-butane when R is Et, 

Me or i-Bu, respectively (Table SI-C2) [4,13,22].  The amount of ethane formed is reported to be 

in the range of 58.0-98.7% of the 1.0 equivalent (100%) expected stoichiometrically for the 

reaction between AlEt3 and a Ziegler-type precatalyst such as Co(acac)2 [4,13], Co(acac)3 [27], 

Fe(acac)3 [28] or metalhalides (MXa) such as CoCl2, CoBr2, CuCl, CuCl2, NiCl2, FeCl3 or AgCl 

[29] in non-polar toluene, benzene or cyclohexane solvents.  In these catalyst solutions ethylene 
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is produced at lower amounts (0.3-42.0%) [4,6,13,27,28].1  The ratio of ethane to ethylene 

depends on: (i) the initial Al/M ratio [4,13,27,29], (ii) the solvent used [29] and (iii), specifically 

for MXa, the anion (X) of the MXa precatalyst [29].  In most of the Ziegler-type hydrogenation 

catalyst systems the ethane to ethylene ratio is larger than 1.  In addition to ethylene, butane and 

butylenes gases are detected in minor amounts (0-2.4%) in some Ziegler-type hydrogenation 

catalyst systems starting with AlEt3 cocatalyst [4,6,27,29].   

A complete and stoichiometrically balanced chemical reaction for formation of any Ziegler-
type nanoparticle catalysts is not yet available. Obtaining one will requires the use of a 
precise composition precatalyst plus detailed knowledge of the nature and composition of 
the resulting transition metal component, the AlEt3-derived stabilizer species and all other 
products.  In the extant literature of Ziegler-type hydrogenation catalysts, many attempted 
formation stoichiometries contain incompletely characterized and, therefore, vague 
compounds (e.g., the “Me-Al(acac)-CH2–“ in entry 1,  

Table SI-C3).  In many cases, numerous products are proposed without definitive evidence 
(e.g., Et2AlCH2CH2AlEt2 or AlEt2(acac)•AlEt3 as in entry 2,  

Table SI-C3).  In addition, ambiguity still remains currently on the nature and the 
stoichiometry of the gaseous products formed for many Ziegler-type catalyst systems.  For 
example, Bönnemann’s early studies completely exclude gaseous products from their 
suggested stoichiometry (entry 5,  

Table SI-C3), although this seems unlikely.  Some studies include radicals, putatively 
formed during some intermediate step(s), in their suggested overall reaction stoichiometry 
(entries 3, 4, 8,  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!(a) An important point worth mentioning here is that the nature of the major and minor gaseous products is also 
strongly affected by the solvent used.  Ethane is the major gaseous product when the catalyst is formed in most 
common Ziegler-type catalyst solvents such as benzene, toluene or cyclohexane (vide supra).  One study, however, 
reports that ethylene is formed at higher amounts (52.0-77.5 %) in less commonly used catalyst systems prepared 
from CoCl2 precatalyst plus AlEt3 in the less common solvents 1-hexene, 1-octene, 1-decene or α-methylstyrene 
[29]. (b) One exception is that ethane is reported [6] in toluene solvent when starting with Pd(acac)2 plus AlEt3.  The 
gaseous products in the Pd(acac)2 plus AlEt3 catalyst contain equimolar amounts of ethane and ethylene as evident 
by 1H NMR and gas-liquid chromatography data [6].!
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Table SI-C3).  Early studies by Pasynkiewicz and colleagues provide stoichiometrically 

unbalanced reactions, probably due to lack of information on the AlEt3-derived and other 

gaseous products.  In short, the extant literature on Ziegler-type hydrogenation catalysts—

including the present study—lack a complete, and stoichiometrically balanced chemical reaction 

including definitive information on the nature and composition of transition metal, AlEt3-derived 

component and other gaseous reaction products.  Hence, an important goal of future work is to 

achieve a completely balanced stoichiometry for a well-defined system, for example for the 

precise composition [Ir(1,5-COD)(μ-O2C8H15)]2 precatalyst plus AlEt3 Ziegler nanoparticle 

system.  Scheme SI-C2 which follows details a working hypothesis for that stoichiometry, one 

intended solely as a guide to assist the needed, additional studies.   
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Table SI-C2. Literature Table Summarizing the Gaseous Products of the Reaction between 
Precatalyst and Cocatalysts en route to Ziegler-type Hydrogenation Catalysts 

Catalyst System Side Products of the Reaction between precatalyst and 
cocatalyst 

Ref. 

Co(acac)2,3 + (2-16) eq AlEt3 Ethane (76%), ethylene (22.3%), butane (1.1%) and 
isomeric butenes (0.6%) are formed in Al/Co = 4 catalyst 
solution.  An Al/Co ratio of 4 is the most active catalyst. 

More than 2 mols of gaseous products per 1 mol of Co are 
observed.  The authors state, therefore, that the reaction 
between the components is NOT a“…simple reduction of 
Co(+2) to Co(0)…”   

The amount and ratios of gases formed depends strongly on 
the Al/Co ratio. 

4,5 

Pd(acac)2 + n eq. AlEt3, n=1-10 Ethane and ethylene, in equimolar amounts, are observed 
by NMR and GLC 

6 

Pt(acac)2 + 4 eq AlMe3 Methane (>90%), ethylene and ethane are observed.   7,10 

Co(acac)2 + (0.5-1.5) eq AlEt3 Ethane (>96%) is the main product as analyzed by GC.  
Other side products mentioned in the study are: ethylene, 
methane and higher hydrocarbons (C3-C5).  

The ethylene produced in the medium is believed to 
coordinate to the Co atoms.    

The ratio of the gaseous products depends on the Al/M ratio.   

13 

Co(acac)3 + 1 AlMe3 Mixtures of methane (72%), ethane (26%) and ethylene 
(2%) are formed by mass spectrometry.  

 The ratio of the gaseous products depends on the Al/Co 
ratio. 

3 
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Table SI-C3.  Literature Table of the Proposed Stoichiometries of Catalyst Formation in Ziegler-
type Hydrogenation Catalyst Systems 

 

 

Entry Catalyst 
System 

Proposed Stoichiometry (as given in the original 
publication) 

Notes Ref 

1 Ni(acac)2 + 2 
AlMe3 

Ni(acac)2 + 2 AlMe3 → Ni + [0.25 C2H6  
                                      + 0.5 AlMe2(acac)]  
                                      + [1.5 CH4  
                                      + 1.5 Me-Al(acac)-CH2-] 

(None) 28 

2 Co(acac)2,3 + 
(2-16) eq AlEt3 

4 Co(acac)2 + 16 AlEt3 + C7H8 → 4 Co(0)  
                                                  + 3 AlEt2(acac)  
                                                  + 5AlEt2(acac)•AlEt3                                                 
                                                  + AlEt2C7H7  
                                                  + Et2AlCH2CH2AlEt2  
                                                  + 6 C2H6 + 4 C2H4 

C7H8: Toluene solvent 
“…the whole process 
cannot be described by a 
unified, stoichiometrically 
balanced reaction.”  The 
net reaction  “…does not 
come to simple reduction 
of Co(II) to Co(0).” 

4 

3 Co(acac)2 + 2 
AlEt3 

The authors mention that “…the reaction cannot be 
brought to the reduction of Co2+ to Co(0) in 
accordance with the (following) equation…” 
Co(acac)2 + 2 AlEt3 →  Co(0) + 2 AlEt2(acac)  
                                      + C2H6 + C2H4" 

“…the (catalyst 
formation) process 
occurred without radical 
escape into the bulk.” 
It is not clear what 
“C2H4"” is. 

5 

4 Pd(acac)2 + (1-
10) eq. AlEt3 

Pd(acac)2 + 2 AlEt3  → Pd(0) + 2 AlEt2(acac)  
                                      + C2H4 +  C2H6" 

It is not clear what 
“C2H6"” is. 

6 

5 Ni(acac)2 + 4 
Al(i-Bu)3 and  
Pt(acac)2 + 4 
AlMe3   

Ni(acac)2 + 4 Al(i-Bu)3 →  Nicoll + Al(i-Bu)2(acac) 
Pt(acac)2 + 4 AlMe3 →  Ptcoll + AlMe2(acac) 

The reactions provided are 
not balanced.   
 

7 

6 Pt(acac)2 + 4 
eq AlMe3 

2 Pt(acac)2 + 6 AlMe3 → [Me4PtAl(Me)]2  
                                        + 4 AlMe2(acac)   

The reaction provided 
yields the formation of 
[Me4PtAl(Me)]2, not a 
Pt(0)n nanoparticle. 

8 

7 Co(acac)3 + 1  
AlMe3 

3 Co(acac)3 + 3 AlMe3 ! 3 Co(0) + 3 Al(acac)3  
                                          + [CH4 + C2H6 + C2H4] 

The reaction provided is 
not balanced. 
“…reaction proceeds by 
more than one route.” 

3 

8 Co(acac)3 + 
0.5-2.5 AlEt3 

Co(acac)3 + AlEt3 ! Co(acac)2 + AlEt2(acac) + "Et 
2 Co(acac)3 + AlEt2(acac) ! 2 Co(acac)2  
                                               + Al(acac)3 + 2 "Et 
Co(acac)2 + AlEt2(acac) ! Al(acac)3 + Co(0)  
                                            + 2 "Et 

The overall stoichiometry 
is not given in the original 
publication. 

27 

9 Fe(acac)3 + 6 
eq AlEt3 

Fe(acac)3 + AlEt3 → Fe(acac)2Et + Al(acac)Et2  
Fe(acac)2Et  →  2Fe(acac)2 + H2 + 2 C2H4  
                          [or + C2H6 + C2H4] 

“…the reaction of 
Fe(acac)3 with AlEt3 is 
limited to a one-electron 
reduction process.” 

14 
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C2.  Additional Experimental Details  

C2.1. Materials.  All manipulations were performed under Ar using a Schlenk line or under 

N2 in a Vacuum Atmospheres drybox (≤5 ppm O2 as monitored by a Vacuum Atmospheres O2-

level monitor).  All glassware was dried before they were used in an oven at 160 ˚C, for 5 days, 

cooled down to room temperature under vacuum or Ar flow on a Schlenk line or in the 

antechamber of the drybox. Precatalyst [Ir(1,5-COD)(μ-Cl)]2 (an orange powder, Strem 

Chemicals, 99%), LiBEt3H [as a colorless solution in 1.0 M tetrahydrofuran (THF), Aldrich], 

1,5-COD (Aldrich, 99%), toluene (Aldrich, 99.8%, anhydrous), and benzene-d6 (Cambridge 

Isotope Laboratories, Inc., 99.5%, w/o tetramethylsilane (TMS)) were used as received. THF 

(Mallinckrodt Chemicals AR ACS, 500 mL) and n-hexane (Sigma-Aldrich, Reagent Plus, 99%, 

500 mL) were distilled over sodium/benzophenone under N2(g) and transferred into the drybox 

under air-free conditions. Acetone (Burdick and Jackson, >99.9% purity, 0.44% water) and H2O 

(Nanopure ultrapure H2O system, D4754) were degassed by connecting to a Schlenk line and 

then passing Ar for 5 min through the solution.  The [(t-Bu)4N]OH (Acros Organics, 1 M 

solution in methanol) and 2-ethylhexanoic acid (Aldrich, 99+%) and AlEt3 (Strem Chemicals, 

93%, in 100 g steel cylinder) were used as received. 

C2.2. Procedures and Cautions for Handling the Pyrophoric AlEt3, Al(t-Bu)3, (t-Bu)Li 

and BEt3:  CAUTION: AlEt3, Al(t-Bu)3, (t-Bu)Li and BEt3 are pyrophoric reagents which ignite 

spontaneously when in contact with air or water.  They, as with all pyrophoric reagents, are more 

dangerous when flammable solvents are present (e.g., the cyclohexane used herein).  

Combination of pyrophoric reagents and flammable solvents are of course even more dangerous 

the larger the amounts being employed.  Therefore, the amounts used were minimized where 
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possible and air-free Schlenk [30] and drybox techniques were used in all steps requiring these 

pyrophoric reagents. 

The required safety considerations were carefully designed and followed in Finke Lab [31]2, 

including: (i) first reading the MSDS safety sheet, if available; (ii) working with the minimal 

amounts of pyrophoric and flammable reagents possible; and (iii) using the pyrophoric reagents 

only under inert atmosphere such as Ar or N2 in a drybox or on a Schlenk line.  In addition, (iv) 

once the pyrophoric reagents are outside of the drybox, using them only behind a lowered hood 

sash all while wearing approved goggles and a face-shield, a flame-resistant lab coat, and proper 

gloves and shoes (no sandals).  A fire extinguisher was placed in close, known proximity (a dry-

powder fire extinguisher rather than regular water or air-pressurized water extinguishers; water-

based fire extinguishers can make matters worse in a fire involving pyrophoric reagents.).  An 

emergency shower was also available within a ≤5 second, brisk walk.  In addition, (v) the use of 

pyrophoric reagents was performed only when another experienced researcher was present who 

knew both about the chemistry being done, and about the handling of the pyrophoric reagents, so 

that help would be immediately available if needed. 

The use and handling of AlEt3 and Al(t-Bu)3 with air-free Schlenk techniques for any non-

experienced users was overseen directly by the two most experienced researchers (RGF and SÖ). 

First, RGF helped design and approved via a walk-through the precise glassware, syringe, and all 

other steps of the method. Then, a second experienced researcher (SÖ) looked at those steps and 

procedures, made any comments or suggestions, and the final procedure was then approved by a 

final walk-through with the first, experienced user (RGF).  A key safety rule—the “Think it 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Working with pyrophoric reagents requires extreme caution and numerous safety considerations.  Failing the 
required safety rules and regulations can result in serious accidents.  One example of a serious laboratory accident 
happened in 2009 at the University of California Los Angeles in which the research scientist died from injuries 
incurred during a fire initiated by (t-Bu)Li [31]. 
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through ≥twice, one final time just before you start” rule of one of us (RGF)—was emphasized 

and followed: namely, that just before one is about to start the procedure, think it through once 

more. Are you completely comfortable with the procedure?  Is all safety equipment in place, and 

are all safety rules being followed?  Or, is there some part that you forgot to take care of; some 

part that means you need to stop, and first do or rethink and redesign some part of the procedure 

that needs revision to be safe? This simple, but powerful, rule is no different—and no less 

powerful and important—than looking once more, before crossing the street, to be sure that no 

oncoming traffic is visible!   

In the specific case of AlEt3, the following methods and safety precautions were also used:  (i) 

AlEt3 was stored and transferred only in a drybox under N2;  (ii) transfer to hydrogen line was 

done under N2 in a F–P bottle sealed using Swagelock quick-connects before taking out of the 

drybox; (iii) transfer to the NMR instrument was done using a NMR sample tube sealed by first 

inserting a precision-seal natural rubber septum through the top and then folding its flexible 

sleeve over NMR tube; and (iv) transfer to the XPS instrument was done using a desiccator and a 

portable glovebag.  The catalyst solution including AlEt3 was transferred onto a sample holder 

placed in a desiccator.  The desiccator was then sealed in the drybox while under N2 and brought 

out of the drybox.  The desiccator was placed in a glovebag that was already under Ar.  The 

glovebag was then sealed using a sealant tape to the sample exchange window of the XPS 

instrument and purged three times with Ar.  The sample holder was then transferred to the XPS 

instrument under flowing Ar.  (v) The IR liquid cell (ZnSe cell) was filled with the catalyst 

solution including AlEt3 using a 1.0 mL gas-tight syringe in the drybox and sealed using 

TEFLON caps. Then, the IR liquid cell was put in a jar, taken out of the drybox while still sealed 

with TEFLON caps in a jar and carried to the IR facility.  
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In the specific case of (t-Bu)Li,  this pyrophoric reagent was transferred from its original 

container into a dropping funnel with pressure compensation tube and PTFE-plug while still in 

the drybox under N2.  The dropping funnel was sealed by (i) first closing the dropping valve 

below liquid chamber, and then (ii) placing a rubber septum for glass joint at the top.  The 

dropping funnel was brought out of the drybox while still under N2 and connected to Ar using a 

needle tip inserted through the rubber septum.  Pressure compensation tube on the side of the 

dropping funnel provided the required vent path; therefore, additional connection to a bubbler 

was unnecessary.  Next, (t-Bu)Li was added dropwise to the AlCl3 solution in 4 h.  This 

procedure avoided any contact with adventitious air or water.   

In the case of Al(t-Bu)3, the synthesis was performed under Ar on a Schlenk line or under N2 in 

the drybox.  All the synthesis steps used either Schlenkware or vacuum flasks with O-ring joints.  

Transfer of reagents was done either in the drybox or using cannula (double-tipped needle) 

technique.  See the specific synthesis procedure for (t-Bu)Li (vide infra) for more detail.   

C2.3.  Synthesis of [(n-Bu)4N](O2C8H15): In the drybox the colorless solution of (n-Bu)4NOH 

(3mL) was transferred using a 1.0 mL gas-tight syringe into a 20 mL glass vial equipped with a 

5/8 by 5/16 in. Teflon-coated magnetic stirbar and stirred for 5 min.  Next, 0.476 mL of neat 2-

ethylhexanoic acid was added to the vial using a 0.500 mL gas-tight syringe.  The resulting 

colorless solution was stirred for 10 min.  The solution was then kept under vacuum at 30 °C for 

24 h.  A clear, colorless gel was obtained.  Yield (0.950 g): 95%.  1H NMR in benzene-d6 (δ in 

ppm, (multiplicity)): 3.18 (t), 2.57 (m), 2.17 (m), 1.77 (m), 1.56 (m), 1.36 (m), 1.05 (t), 0.93 (t).  

C2.4.  Synthesis of [(n-Bu)4N](AlEt3O2C8H15): In the drybox, 50 µL AlEt3 (340 µmol) was 

transferred from its stainless steel container using a 50 µL gas-tight syringe to a 2 dram glass vial 

containing 1.7 mL benzene-d6 (200 mM AlEt3 solution).  In another 2 dram glass vial, a 200 mM 
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[(n-Bu)4N](O2C8H15) solution was prepared by dissolving 46.3 mg (120 μmol) [(n-Bu)4N] 

(O2C8H15) in 0.6 mL benzene-d6.  A 0.1 mL aliquot of 200 mM [(n-Bu)4N](O2C8H15) solution was 

transferred using a 1.0 mL gas-tight syringe into 3 mL benzene-d6 in an 10 mL glass vial 

equipped with a 5/8 by 5/16 in. Teflon-coated magnetic stirbar.  The resulting solution was 

stirred for 2 min and then transferred into an NMR tube using a pipette. 1H NMR in benzene-d6 

(δ in ppm, (multiplicity)): 2.72 (t), 2.60 (m), 2.00 (m), 1.85 (t), 1.73 (t), 1.45 (m), 1.15 (m), 1.01 

(q), 0.85 (t), 0.53 (q). 

C2.5. Hydrogenation Solution Preparation and Catalytic Cyclohexene Hydrogenations 

with [Ir(1,5-COD)(μ-H)]4 plus AlEt3 or AlEt2(O2C8H15):  For the catalysts made with Ir(1,5-

COD)(μ-H)]4 plus AlEt3, the same procedure was used for the hydrogenation solution 

preparation and catalytic cyclohexene hydrogenation as given in main text.  The only difference 

was the use of 12 mM [Ir(1,5-COD)(μ-H)]4 instead of Ziegler-type precatalyst [[Ir(1,5-COD)(µ-

O2C8H15)]2.  Likewise, for the catalyst made with Ir(1,5-COD)(μ-H)]4 plus AlEt2(O2C8H15), the 

same procedure was used for the hydrogenation solution preparation and catalytic cyclohexene 

hydrogenation as given in main text was used.  The only two differences were the use of 12 mM 

[Ir(1,5-COD)(μ-H)]4 instead of Ziegler-type precatalyst [[Ir(1,5-COD)(µ-O2C8H15)]2 and 36 mM 

AlEt2(O2C8H15) instead of AlEt3.  
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C3.  Experimental Data and Related Discussion 

 

Figure SI-C1.  Representative cyclohexene hydrogenation curve (Pressure vs Time) starting 

with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 catalyst in benzene solvent at Al/Ir ratio of 2.  The 

catalyst was prepared as detailed in the main text.  Conditions for hydrogenations are as follows: 

[Ir]=1.2 mM, benzene solvent, [cyclohexene]initial = 1.65 M, 22.0 ± 0.1 °C and 40 ±1 psig H2.  The 

key point is that the Ziegler-type catalyst made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3

catalyst is active (maximum hydrogenation rate= 5 mmol/h) for cyclohexene hydrogenation in 

benzene solvent (a control performed since a several of the NMR investigations were performed 

in (d6-) benzene solvent) .   



213!

Figure SI-C2.  1H NMR spectrum of Ziegler-type hydrogenation catalyst made with [Ir(1,5-

COD)(!-O2C8H15)]2 plus AlEt3 at Al/Ir=1 in benzene-d6.  The peaks at 0.30, 0.80, 1.18, 1.39, 

1.47, 1.57, 2.17 ppm are assigned to AlEt2(O2C8H15).  The broad peak between 2.3-2.7 ppm and 

the peak at 5.65 ppm are due to uncomplexed, free 1,5-COD.  The olefinic H’s of coordinated 

1,5-COD groups are observed at 4.33 ppm.  The peak at 0.80 ppm may have some contribution 

from ethane.  Inset: A close-up version of Figure S1 showing Ir-H region.  The narrow peaks 

observed at -6.31, -8.42, -9.62, -9.85, -12.57 and -15.88 ppm are tentatively assigned to hydrides 

bonded to Ir atoms in presumably smaller, but rigorously unknown size and nature, Ir clusters 

(see the main text for additional discussion and references on this point). 
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Figure SI-C3. 13C NMR spectrum of Ziegler-type hydrogenation catalyst made from [Ir(1,5-

COD)(μ-O2C8H15)]2 plus AlEt3 at Al/Ir=1 in benzene-d6.  The peaks at -0.25, 8.94, 14.33, 23.49, 

26.80, 30.10, 32.52, 33.21 and 184.00 ppm are assigned to AlEt2(O2C8H15).  The peak at 130.15 

ppm is due to uncomplexed, free 1,5-COD.  The coordinated 1,5-COD groups are observed at 

50.00 and 65.01 ppm.  The peak at 7.50 ppm is attributed to ethane.   
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Figure SI-C4. 1H NMR spectrum of Ziegler-type hydrogenation catalyst made with [Ir(1,5-

COD)(!-O2C8H15)]2 plus AlEt3 at Al/Ir=2 in benzene-d6.  The peaks at 0.30, 0.80, 1.18, 1.39, 

1.45 and 2.17 ppm are assigned to AlEt2(O2C8H15).  The peaks at 0.53, -0.21 and -0.51 ppm are 

attributed to an Al(L2)-CHx-CH2- moiety (L: other ligands present in the medium such as 

O2C8H15
- or –CH2– or –CH3, x: 1 or 2) moiety.  The signals at 2.35 and 5.65 ppm are due to 

uncomplexed, free 1,5-COD.  The olefinic H’s of coordinated 1,5-COD groups are observed at 

4.24 ppm.  The peak at 0.80 ppm may have some contribution from ethane.  The peak at 5.25

ppm is assigned to ethylene.  Inset: A close-up version of Figure S3 showing the putative Ir-H 

region.  The narrow peaks observed at -8.42, -9.87 and -15.88 ppm are tentatively assigned to 

hydrides bonded to Ir atoms in presumably smaller, but rigorously unknown size and nature, Ir 

clusters (see the main text for additional discussion and references on this point). 

1
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Figure SI-C5. 13C NMR spectrum of Ziegler-type hydrogenation catalyst made from [Ir(1,5-

COD)(μ-O2C8H15)]2 plus AlEt3 at Al/Ir=2 in benzene-d6.  The peaks at -0.20, 8.98, 14.32, 23.485, 

26.80, 30.10, 32.52, 33.21 and 185.97 ppm are assigned to AlEt2(O2C8H15).  The peak at 130.18 

ppm is due to uncomplexed, free 1,5-COD.  The coordinated1,5-COD groups are observed at 

50.28 and 65.83 ppm.  The peak at 7.28 ppm is attributed to ethane.  The peak at 122.79 ppm is 

assigned to ethylene.   
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Figure SI-C6. 1H NMR spectrum of Ziegler-type hydrogenation catalyst made from [Ir(1,5-

COD)(!-O2C8H15)]2 plus AlEt3 at Al/Ir=3 in benzene-d6.  The peaks at 0.30, 0.80, 1.19, 1.39 and

2.21 ppm are assigned to AlEt2(O2C8H15).  The peaks at 0.53, -0.22 and -0.51 ppm are attributed 

to an Al(L2)-CHx-CH2- moiety (L: other ligands present in the medium such as O2C8H15
- or –CH2–

or –CH3, x: 1 or 2).  The peak at 1.11 ppm is attributed to uncomplexed, free AlEt3.  The signals 

at 2.35 and 5.65 ppm are due to uncomplexed, free 1,5-COD.  The olefinic H’s of coordinated 

1,5-COD groups are observed at 4.24 ppm.  The peak at 0.80 ppm may have some contribution 

from ethane.  The peak at 5.25 ppm is assigned to ethylene.  Inset: A close-up version of Figure 

S5 showing the putative Ir-H region.  The narrow peaks observed at -7.67, -8.55, -16.34, -16.68, 

and -17.63 ppm are tentatively assigned to hydrides bonded to Ir atoms in presumably smaller, 

but rigorously unknown size and nature, Ir clusters (see the main text for additional discussion 

and references on this point). 
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Figure SI-C7. 13C NMR spectrum of Ziegler-type hydrogenation catalyst made from [Ir(1,5-

COD)(μ-O2C8H15)]2 plus AlEt3 at Al/Ir=3 in benzene-d6.  The peaks at -0.20, 8.77, 13.80, 22.729, 

25.79, 29.63, 32.06 and 185.97 ppm are assigned to AlEt2(O2C8H15).  The peaks at 1.00 and 8.77 

ppm are attributed to free AlEt3.  The peak at 130.23 ppm is due to uncomplexed, free 1,5-COD.  

The coordinated 1,5-COD groups are observed at 50.28 and 65.81 ppm.  The peak at 7.50 ppm is 

attributed to ethane.  The peak at 122.80 ppm is assigned to ethylene. 
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Figure SI-C8. 1H NMR spectrum of independently synthesized AlEt2(O2C8H15) in benzene-d6.  

The peaks at 0.325 and 1.283 ppm are assigned to Et- groups.  The peaks observed at 0.79, 1.18, 

1.39, 1.51 and 2.17 ppm are due to the 2-ethylhexanoate moiety (O2C8H15).   
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Figure SI-C9. 13C NMR spectrum of independently synthesized AlEt2(O2C8H15) in benzene-d6.  

The peaks at -1.21 and 8.90 ppm are assigned to Et- groups.  The peaks observed at 13.81, 22.66, 

25.72, 29.84, 31.99 and 185.84 ppm are due to the 2-ethylhexanoate moiety (O2C8H15). 
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(a + 2b) [ 1/2 [Ir(1,5-COD)(O2C8H15)]2  +  AlEt3 "(1,5-COD)Ir-Et"  + AlEt2(O2C8H15)]

(a+ 2b)  "(1,5-COD)Ir-Et" a C2H4  +  a/4 [Ir(1,5-COD)(H)]4

b C2H4 + b C2H6 + 2b/n Ir(0)n 

+ 2b (1,5-COD)

(a+2b)/2 [Ir(1,5-COD)(O2C8H15)]2 + (a+2b) AlEt3 (a+ 2b)AlEt2(O2C8H15)+ 2b/n Ir(0)n

+ a/4[Ir(1,5-COD)H]4 + (a+b) C2H4 

+ b C2H6  + 2b (1,5-COD)  

Scheme SI-C2. A proposed, working hypothesis for the stoichiometry of catalyst formation for 
the Ziegler-type hydrogenation catalyst made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 at an 
Al/Ir ratio of 1.  The scheme shows two proposed individual steps including a plausible “Ir(1,5-
COD)-Et” intermediate and a net reaction (bottom).  As noted earlier in this supporting 
information, the purpose of this hypothesis is to help guide the needed, future studies to 
unequivocally establish such stoichiometries for the formation of Ziegler-type nanoparticle 
catalysts from a precise composition precatalyst such as [Ir(1,5-COD)(µ-O2C8H15)]2.  Note that 
H2 as an initial product, from possible reductive elimination from “Ir4H4”or other “IrxHy” 
intermediates, is also possible but has not been included in Scheme S2 simply to keep the 
scheme below relatively simple.  If formed, then possible follow-up reactions of H2 with olefins 
like ethylene or 1,5-COD would further complicate the observed stoichiometry. !

 

One positive to date from writing this stoichiometry is that we did predict [Ir(1,5-

COD)H]4 should exist, and subsequently were able to synthesize it in high yield and crystalline 

form, followed by its complete and unequivocal characterization [32]. 
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Figure SI-C10. 1H NMR spectra of (top) Ziegler-type hydrogenation precatalyst, [Ir(1,5-

COD)(μ-O2C8H15)]2; (bottom) the catalyst solution made from [Ir(1,5-COD)(μ-O2C8H15)]2 plus 

BEt3 at Al/Ir=1 in benzene-d6.  The very close correspondence of the two spectra shows that the 

[Ir(1,5-COD)( μ-O2C8H15)]2 precatalyst and BEt3 cocatalyst do not react to any appreciable 

extent.  
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Figure SI-C11.  IR spectra of precatalyst, [Ir(1,5-COD)(μ-O2C8H15)]2, (bottom) and [Ir(1,5-

COD)(μ-O2C8H15)]2 plus AlEt3, n=Al/Ir, Ziegler-type catalysts in cyclohexane solvent.  Spectra 

show (i) that the 2-ethylhexanoate group appears to be bidentate, bridging between two Ir, or Al, 

or Ir/Al metal centers; and (ii) that detectable alumoxanes do not exist in the solution, at least, in 

quantities detectable by IR (at 630-780 cm-1) and under our conditions.  See results and 

discussion section of main text for more information.!
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Figure SI-C12. 1H NMR spectrum of individually-synthesized [(n-Bu)4N][AlEt3(O2C8H15)] in 

benzene-d6.  Dissimilarity of this spectrum, to that of Ziegler-type catalyst made from [Ir(1,5-

COD)(m-O2C8H15)]2 plus AlEt3 at Al/Ir ratio of 1 (Figure SI-C2), rules out the hypothesis that the 

AlEt3-derived stabilizer is anionic [AlEt3(O2C8H15)]- . 
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Figure SI-C13.  1H NMR spectrum of commercially-available neat AlEt3 (93% purity) in 

benzene-d6.  The peaks at 0.33 and 1.11 ppm are assigned to –CH2– and –CH3, respectively. 
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Figure SI-C14. 13C NMR spectrum of commercially available neat AlEt3 in benzene-d6.  The 

peaks at 1.21 and 9.44 ppm are assigned to –CH2– and –CH3, respectively. 
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Figure SI-C15.  Representative cyclohexene hydrogenation curves (Pressure vs Time) starting 

with [Ir(1,5-COD)(µ-O2C8H15)]2 plus 1 (top) or 2 (bottom) equivalents AlEt3 (per Ir) in the 

presence of 2-10 equivalents of H2O (per Ir) added to the cyclohexane solution of [Ir(1,5-

COD)(µ-O2C8H15)]2 before AlEt3 was added. The hydrogenation solutions were prepared in 20 

mL batches according to the procedure given in detail in Experimental section of main text under 

the heading “Hydrogenation Solution Preparation with Added H2O”.  Conditions for 

hydrogenations are as follows: [Ir]=1.2 mM, cyclohexane solvent, [cyclohexene]initial = 1.65 M, 

22.0 ± 0.1 °C and 40 ±1 psig H2.  The results demonstrate rather clearly the rate inhibiting effect 

of added H2O and, therefore and presumably, AlEt3 loss and alumoxane formation (plus any 

higher hydrolysis products, especially at the higher equivalents of water such as 10 equivs). 
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Figure Si-C16.!!IR spectra of (i) (top) Ziegler-type precatalyst prepared from [Ir(1,5-COD)(!-
O2C8H15)]2 plus AlEt3 at an Al/Ir ratio of 2 prepared in the presence of 10 eq water (per Ir), and 
(ii) (bottom) the precatalyst prepared from [Ir(1,5-COD)(!-O2C8H15)]2 plus AlEt3 also at an Al/Ir 
ratio of 2 prepared without water. The weak absorbance observed in the presence of 10 eq water 
(top) at  600-800 cm-1 is consistent with the presence of Al-O-Al slumoxane groups (see also 
Figure S17).  The absence of a similar absorption band at 600-800 cm-1 suggests the absence of 
IR detectable alumoxanes in the precatalyst, [Ir(1,5-COD)(!-O2C8H15)]2 plus AlEt3 solution 
prepared with an Al/Ir ratio of 2. 



 

 229!

Wed Oct  17 22:27:29 2012 (GMT-06:00)

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

ABSORBANCE

5006007008009001000110012001300 1/CM

360mMsample2diff.JDX 10/18/12 12:27 AM JSpecView 2.0.2

 

Figure Si-C17. IR spectrum of modified methylalumoxane solution (360 mM in heptane).  The 

broad absorption band observed at 630-780 cm-1 in modified-methylalumoxane solution (right) is 

due to Al-O-Al groups. 
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Figure SI-C18. MALDI MS of (top) 36 mM  [(t-Bu)2Al(OH)]3 in cyclohexane taken using 

dithranol as the matrix and Na+ as the ionizing agent and (bottom) dithranol matrix. The 

observed isotope peak distribution of m/z=476.977 Da peak does not match with the theoretical 

isotope distribution of [(t-Bu)2Al(μ-OH)]3.  The fragment reported at 417 Da in chemical 

ionization mass spectrum [33] is absent in the MALDI MS of [(t-Bu)2Al(OH)] 3.  Therefore, one 

can conclude that MALDI MS is unsuccessful in characterization of at least this discrete 

alumoxane while using a dithranol matrix.  Similar results were obtained using other commonly 

used matrices, namely, 2’-4’-6’-trihydroxyacetophenone, 6-aza-2-thiothymine, and graphite.  

The details of experimental procedure for sample preparation and instrumentation are given in an 

earlier publication [34].  
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Figure SI-C19.  MALDI MS of (top) 2’-6’-dihydroxyacetophenone (DHAP) matrix and 

(bottom) 36 mM MMAO in cyclohexane taken using DHAP as the matrix and Na+ as the 

ionizing agent. The isotope peak distributions of the observed peaks did not match any plausible 

MMAO fragments.  Therefore, one can conclude that MALDI MS is unsuccessful in 

characterization of MMAO while using a DHAP matrix.  Similar results were obtained using 

combination of another commonly used matricies, namely, 2’-4’-6’-trihydroxyacetophenone, and 

the ionizing agent, Ag+.  The details of experimental procedure for sample preparation and 

instrumentation are given in an earlier publication [35]. 
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Figure SI-C20. Representative cyclohexene hydrogenation curves (Pressure vs Time) starting 

with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 (diamonds), Al(t-Bu)3 (squares) and [(t-

Bu)2Al(OH)]3 (triangles) catalysts at Al/Ir ratio of 2. The hydrogenation solutions were prepared 

individually (in 2.5 mL portions) according to the procedure given in detail in Experimental 

section of main text under the heading “Hydrogenation Solution Preparation and Catalytic 

Cyclohexene Hydrogenations”.  Conditions for hydrogenations are as follows: [Ir]=1.2 mM, 

cyclohexane solvent, [cyclohexene]initial = 1.65 M, 22.0 ± 0.1 °C and 40 ±1 psig H2.  A key 

observation is that the Ziegler-type catalyst made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus [(t-

Bu)2Al(OH)]3 is less active than those made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus Al(t-Bu)3  or 

AlEt3. 
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Table SI-C4.   Maximum rates of cyclohexene hydrogenation using [Ir(1,5-COD)(µ-O2C8H15)]2 

plus Al(t-Bu)3 Ziegler-type catalysts at Al/Ir ratios of 1-5. The hydrogenation solutions were 

prepared individually (in 2.5 mL portions) according to the procedure given in detail in 

Experimental section of main text under the heading “Hydrogenation Solution Preparation and 

Catalytic Cyclohexene Hydrogenations”.  Conditions for hydrogenations are as follows: [Ir]=1.2 

mM, cyclohexane solvent, [cyclohexene]initial = 1.65 M, 22.0 ± 0.1 °C and 40 ±1 psig H2. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Al/Ir  Maximum Rate (mmol H2/h) 

1 12 ± 5 

2 6 ± 2 

3 2 ± 1 

5 2 ± 1 
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Figure SI-C21.  TEM image and corresponding particle size histogram of the Ziegler-type 

hydrogenation catalyst sample made with [Ir(1,5-COD)(μ-O2C8H15)]2 plus [(t-Bu)2Al(μ-OH)]3 

at Al/Ir = 2 before the catalyst was used in cyclohexene hydrogenation.  The scale bar is 10 

nm.  Mean diameter from measurement of 30 nanoparticles is 1.1 ± 0.2 nm, corresponding on 

average to Ir~50. 
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Figure SI-C22.  MALDI-TOF MS of the Ziegler-type hydrogenation catalyst made with [(1,5-

COD)Ir(μ-O2C8H15)]2 plus [(t-Bu)2Al(μ-OH)]3 at Al/Ir = 2 before the catalyst was used in 

cyclohexene hydrogenation.  Using the assumptions (i) that the observed broad peak is 

composed of only Ir atoms [36,37,38], and (ii) that the ionic charges are +1 [34,36,39], the 

corresponding diameter for the Irn cluster is 0.8 ± 0.3 nm, that is, Ir~20 on average. The details of 

experimental procedure for sample preparation and instrumentation are given in an earlier 

publication [33]. 
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Figure SI-C23.  TEM image and corresponding particle size histogram of the Ziegler-type 

hydrogenation catalyst sample made from [Ir(1,5-COD)(!-O2C8H15)]2 plus [(t-Bu)2Al(!-OH)]3

at Al/Ir = 2 after the catalyst was used in cyclohexene hydrogenation.  The scale bar is 20 nm.  

Mean diameter from measurement of 65 nanoparticles is 2.6 ± 1.0 nm, corresponding on average 

to Ir~650. 

!  

Figure SI-C24.  TEM image and corresponding particle size histogram of the Ziegler-type 

hydrogenation catalyst sample made from [Ir(1,5-COD)(!-O2C8H15)]2 plus Al(t-Bu)3 at Al/Ir = 

2 before the catalyst was used in cyclohexene hydrogenation.  The scale bar is 5 nm.  Mean 

diameter from measurement of 64 nanoparticles is 1.2 ± 0.2 nm correspond on average to Ir~60. 
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Figure SI-C25.  MALDI-TOF MS of the Ziegler-type hydrogenation catalyst made from [(1,5-

COD)Ir(μ-O2C8H15)]2 plus Al(t-Bu)3 at Al/Ir = 2 before the catalyst was used in cyclohexene 

hydrogenation.  Using the assumptions (i) that the observed broad peak is composed of only Ir 

atoms [34,35,36], and (ii) that the ionic charges are +1 [34,36,37], the corresponding diameter 

for the Irn cluster is 0.8 ± 0.3 nm, corresponding on average to Ir~20. The details of experimental 

procedure for sample preparation and instrumentation are given in an earlier publication [33]. 
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Figure SI-C26.  TEM image and corresponding particle size histogram of the Ziegler-type 

hydrogenation catalyst sample made from [Ir(1,5-COD)(!-O2C8H15)]2 plus Al(t-Bu)3 at Al/Ir = 

2 after the catalyst was used in cyclohexene hydrogenation.  The scale bar is 10 nm.  Mean 

diameter from measurement of 166 nanoparticles is 2.3 ± 0.6 nm, corresponding on average to 

Ir~450. 
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Table SI-C5. Ir-Al bond distances of Ziegler-type hydrogenation catalysts made with [Ir(1,5-

COD)(µ-O2C8H15)]2 (Ir2) plus AlEt3. R: Experimentally determined interatomic distance for the 

Ir-Al single scattering path, σ2:The mean square variation in R due to static and dynamic disorder 

(Debye-Waller factor), N: Number of Ir or Al atoms in the first single scattering shell 

 

 

 

 

 

 

 

*For this sample, this RIr-Al parameter was not varied in the fit.  

!

!

!

!

!

!

!

!

!

!

!

Sample name RIr-Al (Å) NIr-Al σ2
Ir-Al × 103 

(Å2) 

Ir2 + 1.5 AlEt3 2.49 ± 0.02 1.0 ± 

0.9 

7 ± 5 

Ir2 + 2.0 AlEt3 2.51 ± 0.01 1.7 ± 

0.8 

8 ± 3 

Ir2 + 2.5 AlEt3 2.51 ± 0.01 2 ± 1 8 ± 2 

Ir2 + 3.0 AlEt3 2.51 ± 0.0 3 ± 1 8 ± 3 

Ir2 + 5.0 AlEt3 2.5045* 3 ± 2 8 ± 4 
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Table SI-C6. Compilation of visual observations at the end of cyclohexene hydrogenations with 

[Ir(1,5-COD)(µ-O2C 8
H15)]2 or [Ir(1,5-COD)(µ-H)]4 plus AlEt3 catalysts at Al/Ir ratios 0-5.  The 

catalysts were used in cyclohexene hydrogenation immediately after they were prepared in 

cyclohexane solvent.   

Initial Catalyst Components Observations at the End of the 

Cyclohexene Hydrogenation 

Implied Form of the Metal 

[(Ir(1,5-COD)(µ-H)]4
 
+ 1 or 2 AlEt

3
 Clear, colorless solution with 

visually observable black 

particles 

Bulk Ir(0) metal 

[(Ir(1,5-COD)(µ-H)]4
 
+ 3 or 5 AlEt

3
 Clear, brown solution with 

visually observable black 

particles 

Irn nanoparticles plus  

Bulk Ir(0) metal 

[Ir(1,5-COD)(µ-H)]4 Clear, colorless solution with 

visually observable black 

particles 

Bulk Ir(0) metal 

[(Ir(1,5-COD)(µ-H)]4
  

+ 1 AlEt
2
(2-ethylhexanoate) 

Clear, colorless solution with 

visually observable black 

particles 

Bulk Ir(0) metal 

[Ir(1,5-COD)(µ-O2C
 
8H15)]2 Orange solution* with visually 

observable black particles 

Bulk Ir(0) metal* 

[Ir(1,5-COD)(µ-O2C8H15)]2+ 1 AlEt3 Clear, colorless solution, 

visually observable black 

particles 

Bulk Ir(0) metal 

[Ir(1,5-COD)(µ-O2C
 
8H15)]2

 
+ 2, 3 or 5 

AlEt3
 
  

Clear , brown solution Irn nanoparticles 

* The orange color of the solution implies that there is some unreacted [Ir(1,5-COD)(µ-O2C
 
8H15)]2 precatalyst in the 

catalyst solution. 

!

!

!
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Table SI-C7. Maximum cyclohexene hydrogenation rates of the Ziegler-type hydrogenation 

catalysts prepared with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 at Al/Ir ratios of 1-5 and used in 

cyclohexene hydrogenation immediately after mixing [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3  (i.e., 

the catalysts are not aged before their use in hydrogenation).3  The hydrogenation solutions were 

prepared individually (in 2.5 mL portions) according to the procedure given in detail in 

Experimental section of main text under the heading “Hydrogenation Solution Preparation and 

Catalytic Cyclohexene Hydrogenations” 

Al/Ir ratio Maximum Hydrogenation Ratea 
(mmol/h) 

1 28 ± 5 
2 7 ± 4 
3 1 ± 1 
5 1 ± 1 

      a The H2 gas-to-solution mass transfer limited rate (MTL) for our apparatus, at 22.0 ± 0.1 °C and 1000 ± 10 rpm 
stirring rate (see the Experimental section entitled “Hydrogenation Solution Preparation and Catalytic Cyclohexene 
Hydrogenations” in the main text) is approximately ~80 psig/h (20 mmol/h) under the conditions of these 
experiments.  Therefore, the maximum hydrogenation rate for Al/Ir ratio of 1 is under MTL. 

 

!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Similar hydrogenations with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3, Al/Ir=0-5, were previously published 

[33].  There are some differences in the maximum hydrogenation rates obtained in current study vs those reported 
previously [33].  Observed differences in catalyst activity are, probably, due to differences in catalyst preparation 
and hydrogenation procedures used in this study vs those used in previous studies. The catalyst solutions in this 
study are prepared with [Ir] of 1.2 mM and are immediately used in cyclohexene hydrogenation without aging.  In 
comparison, the catalyst solutions in the previous studies were prepared with Ir concentration of 0.6 mM and were 
aged for 9 h under N2 atmosphere [33].  The catalyst solutions were prepared individually in this study whereas 
some of the catalyst solutions were prepared in larger batches (~9-10 times larger in volume) in previous studies. 
The catalyst preparation procedure and variables are carefully chosen to be as close as possible to those used for 
NMR characterization studies.  However, regardless of the differences between two sets of hydrogenations in this 
study and those published previously, all the catalysts prepared with [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 at Al/Ir 
ratios of 0-5 are active in cyclohexene hydrogenation. 
 

!
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Figure SI-C27. 27Al NMR spectra [Ir(1,5-COD)(!-O2C8H15)]2 plus AlEt3, n=Al/Ir, Ziegler-type 

catalysts in benzene-d6 solvent.  The results show that the signal at 170 ppm in neat AlEt3 sample 

shifts to 0 ppm at Al/Ir ratio of 1 and at 80 ppm at Al/Ir ratio of 2.  These upfield shifts suggest

interaction of Al centers with metallic Ir atoms on the surface of Ir(0)n nanoparticles as discussed 

briefly in the main text.   
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Scheme SI-C3.  A schematic representation of the reverse filtration technique.   A reverse 
filtration was applied to separate the liquid portion containing the desired Al(t-Bu)3 from the 
bluish-gray LiCl precipitate.  The top of a plastic Pasteur pipette was cut and then the cut pipette 
was stuffed with cotton under air.  One end of a cannula was then inserted into the cotton layer 
through the other end (i.e., the end not stuffed with cotton) of that cut pipette.   The Pasteur 
pipette with the stuffed cotton and the attached cannula was then inserted into the three-necked 
500 mL round-bottomed flask containing Al(t-Bu)3 all while under Ar flow.  Separately, another 
500 mL round-bottom Schlenk flask equipped with a side arm was sealed under Ar flow using 
two rubber septa.  The free end of the cannula (i.e., the end not inserted through cut pipette) was 
inserted through the rubber septum of the Ar filled but otherwise empty 500 mL round-bottomed 
Schlenk flask shown on the left above.  The Pasteur pipette was dipped into the cloudy white 
suspension in the right round bottomed flask and then a slight vacuum (≤10-2 mmHg) was 
applied through the side arm of the empty 500 mL round-bottomed flask.  A clear solution was 
collected in the 500 mL round-bottomed flask. 

!

!
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4. Additional Control Experiments Performed with the Ziegler-type Catalyst Made with 

[Ir(1,5-COD)(!-O2C8H15)]2 or [Ir(1,5-COD)(!-H)]4 plus AlEt3 (Figure SI-C25, SI-C27, SI-

C28, Table SI-C8) or Al(t-Bu)3 (Figure SI-C26) 

 

Figure SI-C28. Representative plots of H2 pressure vs time data for cyclohexene hydrogenations 

starting with [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 catalysts with Al/Ir=0-5 (n=Al/Ir ratio). The 

hydrogenation solutions were prepared individually (in 2.5 mL portions) according to the 

procedure given in detail in Experimental section of main text under the heading “Hydrogenation 

Solution Preparation and Catalytic Cyclohexene Hydrogenations”.  Conditions for 

hydrogenations are as follows: [Ir]=1.2 mM, cyclohexane solvent, [cyclohexene]initial = 1.65 M, 

22.0 ± 0.1 °C and 40 ±1 psig H2 [40].  The catalyst solution appears clear with visually 

observable black Ir(0) bulk particles at the end of hydrogenation at Al/Ir ratios of 0 and 1.  A 

clear and dark-brown solution is obtained at the end of hydrogenation at Al/Ir ratios of 2, 3 or 5 

indicating Ir(0)n nanoparticle formation (Table SI-C7). 



244!

Figure SI-C29. Representative cyclohexene hydrogenation curves (Pressure vs Time) starting 

with [Ir(1,5-COD)(µ-O2C8H15)]2 plus Al(t-Bu)3 catalysts at Al/Ir ratios of 0-5 (n=Al/Ir ratio).  

Conditions for hydrogenations are as follows: [Ir]=1.2 mM, cyclohexane solvent, 

[cyclohexene]initial = 1.65 M, 22.0 ± 0.1 °C and 40 ±1 psig H2.  The catalyst solution appears clear 

with visually observable black Ir(0) bulk particles at the end of hydrogenation at Al/Ir ratios of 0 

and 1.  A clear and dark-brown solution is obtained at the end of hydrogenation at Al/Ir ratios of 

2, 3 or 5 indicating Ir(0)n nanoparticles.  These observations are similar to those obtained for the 

catalyst made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 (Figure SI-C25 and Table SI-C7).   
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Figure SI-C30.  Representative cyclohexene hydrogenation curves (Pressure vs Time) starting 

with [(1,5-COD)Ir(µ-H)]4 plus AlEt3 catalysts at Al/Ir ratios of 1-3 and precatalyst ([(1,5-

COD)Ir(µ-H)]4). Conditions for hydrogenations are as follows: [Ir]=1.2 mM, cyclohexane 

solvent, [cyclohexene]initial = 1.65 M, 22.0 ± 0.1 °C and 40 ±1 psig H2.  A clear and colorless 

solution with visually observable black particles, indicative of Ir bulk, is observed at the end of 

hydrogenation, separately, with the precatalyst and also at Al/Ir ratios of 1 and 2.  The catalyst 

solution appears clear and brown with visually observable black particles at the end of 

hydrogenation at Al/Ir ratios of 3 or 5.  This observation indicates presence of Irn nanoparticles in 

addition to some Ir bulk in the post-catalysis solution at Al/Ir ratios of 3 or 5 (Table SI-C6).  The 

observation of some bulk Ir(0) metal does not rule out [Ir(1,5-COD)H]4 as a competent 

intermediate in the formation of Ir(0)n nanoparticles.  In fact, it probably argues the opposite 

since Ir(0) is so quickly formed from this potential intermediate (i.e., the issue then possibly 

being one of the relative kinetics of Ir(0)n nanoparticle stabilization vs agglomeration to bulk 

Ir(0) metal formation.   
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Figure SI-C31. Expanded version of the first 1.5 hours of Figure SI-C25 (above).  

Representative cyclohexene hydrogenation curves (Pressure vs Time) starting with [(1,5-

COD)Ir(µ-H)]4 plus AlEt3 catalysts at Al/Ir ratios of 1-2 and precatalyst, [(1,5-COD)Ir(µ-H)]4.  

Conditions for hydrogenations are as follows: [Ir]=1.2 mM, cyclohexane solvent, 

[cyclohexene]initial = 1.65 M, 22.0 ± 0.1 °C and 40 ±1 psig H2.  
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Table SI-C8.! ! Maximum rates of cyclohexene hydrogenation using [(1,5-COD)Ir(µ-H)]4 plus 

AlEt3 Ziegler-type catalysts under standard conditions of catalyst preparation and hydrogenation. 

Al/Ir ratio 
Max Hydrogenation Rate of As-Prepared 
Catalyst (psig/h) 

0a,d 60 ± 6 

1a 46 ± 5 

2a 19 ± 2 

3b 2 ± 1 

5b 3 ± 3 

10, 15 or 20° 0 

a A clear and colorless solution with visually observable black particles, indicating bulk Ir is observed at the end of 
hydrogenation at these Al/Ir ratios (see also Table SI-C5). 
b The catalyst solution appears clear and brown with visually observable black particles at the end of hydrogenation 
at these Al/Ir ratios.  This observation indicates presence of Irn nanoparticles in addition to some Ir bulk (see also 
Table SI-C5). 
c The control experiment with [(1,5-COD)Ir(µ-H)]4 plus AlEt3 at Al/Ir ratio of 15 is performed once.  The H2(g) 
pressure stayed constant at ~40 psig for 10 h.   
d  The H2 gas-to-solution mass transfer limited rate for our apparatus, at 22.0 ± 0.1 °C and 1000 ± 10 rpm stirring 
rate (see the Experimental section entitled “Hydrogenation Solution Preparation and Catalytic Cyclohexene 
Hydrogenations” in the main text) is approximately ~80 psig/h under the conditions of these experiments. 
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CHAPTER V 

SYNTHESIS AND CHARACTERIZATION OF [Ir(1,5-CYCLOOCTADIENE)(μ-H)]4: A 

TETRAMETALLIC Ir4H4-CORE, COORDINATIVELY UNSATURATED CLUSTER 

This dissertation chapter contains the manuscript of a paper published in the Inorg. 

Chem. 2012, 51, 3186-3193.  This chapter describes (i) the synthesis of the previously 

unavailable [Ir(1,5-COD)(μ-H)]4 complex in 78% initial, and 55% recrystallized, yield starting 

from commercially available LiBEt3H and [Ir(1,5-COD)(μ-Cl)]2 in the presence of excess 1,5-

COD in THF; and (ii) the characterization of the resultant black crystal of [Ir(1,5-COD)(μ-H)]4 

using single-crystal XRD, XAFS, ESI-MS, UV-visible, IR, and NMR. 

The initial synthesis attempts resulting in the desired dark-green powder of [Ir(1,5-

COD)(µ-H)]4, in low yield (~1%), were performed by both Isil K. Hamdemir and Ercan Bayram.  

The black crystal of [Ir(1,5-COD)(µ-H)]4 in 78% initial, and 55% recrystallized, yield was 

obtained by Kuang-Hway Yih.  The sample of black crystal of [Ir(1,5-COD)(µ-H)]4 was prepared 

and then submitted to X-Ray crystallography structure determination were done by Kuang-Hway 

Yih.  The XRD data was interpreted by Isil K. Hamdemir in consultation with Oren P. Anderson.  

The sample preparation and submission to XAFS analysis were performed by Kuang-Hway Yih.  

The XAFS data was collected by Relja Vasić and interpreted by Isil K. Hamdemir in consultation 

with Anatoly I. Frenkel.   Additional characterization data (ESI-MS, UV-Visible, IR and NMR) 

on a black crystal were obtained by Kuang-Hway Yih and interpreted by Isil K. Hamdemir.  

Initial characterization studies on the initial, ~1% yield dark-green powder using ESI-MS, NMR, 

IR, UV-Visible and XPS (given in Supporting Information) were performed by Isil K. Hamdemir 

and were the key results which showed that the desired [Ir(1,5-COD)(µ-H)]4 had been prepared, 

albeit in low yield. Control experiments (given in Supporting Information_D), performed to 
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obtain higher purity and yields were performed by Kuang-Hway Yih.  The initial draft of the 

paper, subsequent drafts including the final draft and preparation of the document for publication 

were performed by Isil K. Hamdemir with light editing by Saim Özkar, Kuang-Hway Yih, Joseph 

E. Mondloch and moderate editing by Richard G. Finke (ca. 33 hours). 
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Synopsis 

Reported herein is the synthesis of the previously unknown [Ir(1,5-COD)(µ-H)]4 (where 1,5-

COD = 1,5 cyclooctadiene), from commercially available [Ir(1,5-COD)Cl]2 and LiBEt3H in the 

presence of excess 1,5-COD in 78% initial, and 55% recrystallized, yield plus its unequivocal 

characterization via single crystal X-Ray diffraction (XRD), X-ray absorption fine structure 

(XAFS) spectroscopy, electrospray/atmospheric pressure chemical ionization mass spectrometry 

(ESI MS) and UV-Visible (UV-Vis), infrared (IR) and nuclear magnetic resonance (NMR) 

spectroscopies. The resultant product parallels—but the successful synthesis is different than, 

vide infra—that of the known and valuable Rh congener precatalyst and synthon, [Rh(1,5-

COD)(µ-H)]4.  Extensive characterization reveals that a black crystal of [Ir(1,5-COD)(µ-H)]4 is 

composed of a distorted tetrahedral, D2d symmetry  Ir4 core with two long (2.90728(17) and 

2.91138(17) Å) and four short Ir-Ir (2.78680 (12)-2.78798(12) Å) bond distances.  One 1,5-COD 

and two edge-bridging hydrides are bound to each Ir atom, the Ir-H-Ir span the shorter Ir-Ir bond 

distances.   The XAFS provides excellent agreement with the XRD-obtained Ir4 core structure, 

results with both provide considerable confidence in the XAFS methodology and set the stage for 

future XAFS in applications employing this Ir4H4 and related tetranuclear clusters.  The [Ir(1,5-

COD)(µ-H)]4 complex is of interest for at least five reasons, as detailed in the Conclusions 

section. 

1. Introduction 

Molecular metal clusters [1] containing four metal atoms, M4, are an interesting, increasingly 

important and evolving area of inorganic, organometallic, catalytic and related sciences.  

Tetrametallic clusters of Ru, Os, Rh or Ir have been synthesized, fully characterized and used as 

precatalysts for the catalytic hydrogenation of alkenes, arenes, CO, aldehydes and ketones as 
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well as in hydroformylation, cyclooligomerization, cyclization and polymerization  reactions [2].  

Known tetrametallic complexes of group 9 metals including Rh, Ir and Co, and which contain a 

[M(µ-H)]4 core, include [Rh(1,5-COD)(µ-H)]4 [3], [Ir(CO)(µ-H)H(PPh3)]4 [4], [Ir(η5-C5Me5)(µ-

H)]4(BF4)2 [5], [Co(η5-C5H5)Co(µ-H)]4 [6] and [Co(η5-C5Me4Et)(µ-H)]4 [7]. 

From the above known [M(µ-H)]4 core complexes, the tetrarhodium complex, [Rh(1,5-

COD)(µ-H)]4, is  particularly relevant to the present work.  This [Rh(1,5-COD)(µ-H)]4 complex 

was first synthesized by Muetterties and coworkers starting with the commercially available 

[Rh(1,5-COD)(µ-Cl)]2 complex and K[HB(O-i-Pr)3] as detailed in Scheme 5.1 [3] 

Scheme 5.1.  A balanced reaction stoichiometry and the reaction conditions for the synthesis of 
[Rh(1,5-COD)(µ-H)]4 (adapted from reference 4).  

 

A single crystal structural investigation revealed the Rh4 core, with 2 long and 4 short Rh-Rh 

distances. In that publication, hydrides were located using difference Fourier techniques in 

between two Rh atoms connected by short Rh-Rh distances [3].  The assignment of four short 

bonds to Rh-H-Rh groups is consistent in a general way with the prior literature [8]. The 

[Rh(1,5-COD)(µ-H)]4 proved to be a good precatalyst for the hydrogenation of toluene in 

cyclohexane-d12 [9] and the hydrogenation of carbon dioxide [9]. The active catalyst species is 

claimed to be rhodium metal under toluene hydrogenation conditions.  Kinetic studies performed 
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on catalytic carbon dioxide hydrogenation system suggested a neutral rhodium(I)hydride species 

([Rh(H)(Ph2P(CH2)4PPh2)]x, where x=1 or 2-4) as the active catalyst [9c].  

Somewhat surprisingly, the Ir-analogue of the above Rh complex, [Ir(1,5-COD)(µ-H)]4, has 

not been previously described, mostly likely because attempted syntheses, analogous to that of 

the Rh congner, fail (yields ≤1%, vide infra). The net 56 total electron [Ir(1,5-COD)(µ-H)]4 

complex has a formal 17 electron count at each Ir, and thus is coordinatively unsaturated.  

Our recent work on Ir-based models of Ziegler-type industrial hydrogenation catalyst prepared 

from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3 revealed that Ir4 species are a dominant, initial form 

of Ir present. [10] Hence, [Ir(1,5-COD)(µ-H)]4 with its Ir4H4 core (vide infra) is of interest as a 

new precursor for testing the formation and stabilization mechanisms of such Ziegler-type 

hydrogenation catalysts [10,11].  More specifically, the new complex [Ir(1,5-COD)(µ-H)]4 is of 

value as a fully compositionally and structurally characterized Ir4 analog of the on average Co4-

based, subnanometer clusters identified by XAFS as a dominant species in Co-based Ziegler-

type industrial hydrogenation catalysts. Such Ziegler-type industrial hydrogenation catalysts [12] 

are used industrially to produce styrenic block copolymers at a level of ~1.7 × 105 metric 

tons/year [13].  In addition, [Ir(1,5-COD)(µ-H)]4 is of considerable interest as a possible, Ir-H 

containing, tetrametallic Ir4H4 intermediate in the nucleation and growth of Ir(0)n nanoclusters 

starting with (COD)Ir+ precatalysts [14] and with stabilizers such as [P2W15Nb3O62]9-, HPO4
2-, and 

AlEt3 [10,11,12,15]. Whether or not such polymetallic metal-hydride (M-H)n species are key 

intermediates in M(0)n nanoparticle formation—rather than the presently assumed M(0)n 

intermediates—remains controversial. The availability of precatalysts and possible intermediates 

derivable from [Ir(1,5-COD)(µ-H)]4 opens up the possibility of QEXAFS and other direct-

method tests with such discrete, fully-characterized, Ir4H4 core complexes [14]. 
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Herein, we report (i) the 78% initial, and 55% recrystallized, yield synthesis of the previously 

unknown [Ir(1,5-COD)(µ-H)]4 starting from commercially available precursor [Ir(1,5-COD)Cl]2 

and LiBEt3H in which added, excess 1,5-COD is one key to the improved yield (vs <1% by the 

literature routes for the Rh congener, vide infra), and then (ii) the complete characterization of 

the resultant pure, crystalline product by single crystal XRD, XAFS, ESI MS, UV-vis, IR and 

NMR. There are at least 5 reasons (a couple of which are given above) as to why the present 

complex is of interest, a full list of which is given as part of the Summary and Possible Future 

Directions. 

 

2. Experimental.   

Materials.  All manipulations were performed under N2 in a Vacuum Atmospheres drybox (≤5 

ppm O2 as monitored by a Vacuum Atmospheres O2-level monitor) or, where noted, using a 

Schlenk line.  All glassware was dried overnight in an oven at 160°C, cooled under vacuum in a 

desiccator and then transferred into the drybox while still in desiccator and under vacuum.  [(1,5-

COD)Ir(µ-Cl)]2 (an orange powder, Strem Chemicals, 99%), LiBEt3H (as a colorless solution in 

tetrahydrofuran, 1.0 M, Aldrich), toluene (Aldrich, 99.8%, anhydrous) and benzene-d6 

(Cambridge Isotope Laboratories, Inc., 99.5%, w/o TMS)  were used as received.  

Tetrahydrofuran (THF, Mallinckrodt Chemicals AR ACS, 500 mL), n-hexane (Sigma-Aldrich, 

Reagent Plus, ≥99%, 500 mL) and cyclohexane (Sigma-Aldrich, 99.5 %, H2O < 0.001 %) were 

distilled over Na/benzophenone under N2(g) and transferred into the drybox under air-free 

conditions.  Acetone (Burdick and Jackson, >99.9% purity, 0.44% water) and H2O (Nanopure 

ultrapure H2O system, D4754) were degassed by connecting to a Schlenk line and then passing 

Ar through the solution for five minutes before transferring into the drybox. 
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Synthesis of [Ir(1,5-COD)(µ-H)]4:  In the drybox the orange powdered [Ir(1,5-COD)Cl]2  

(1.3434 g, 2 mmol) was weighed out and then transferred into a 100 mL round-bottom Schlenk 

flask equipped with a side arm and a 5/8 by 5/16 in. Teflon-coated magnetic stirbar.  The flask 

was sealed, removed from the drybox, and placed on a Schlenk line under Ar via its side arm.  

Next, 70 mL of room temperature THF was added to the flask using a cannula forming an orange 

solution with some undissolved orange powder.  The flask containing the orange solution of 

[Ir(1,5-COD)Cl]2 was placed in an acetone/dry ice bath at -78°C and stirred for 15 min.  A 2.5 

mL gas-tight syringe was purged three times with Ar using a Schlenk line and then used to 

measure out 4 mL (4 mmol) of LiBEt3H.  The LiBEt3H was then added dropwise to the orange 

[Ir(1,5-COD)Cl]2 solution under an Ar atmosphere while vigorously stirring.  The original 

orange color of the solution changed to dark-brown upon the dropwise addition of the LiBEt3H.  

The resulting solution was stirred at -78°C for an additional 10 min and then warmed to room 

temperature.  The solution slowly turned from dark-brown to dark-green within 10 min of 

additional stirring at room temperature.  1,5-COD (12.3 mL, 25 eq per Ir) was measured out with 

a 20 mL gas-tight syringe purged with Ar, and then added over 5-10 min to the dark-green 

solution.  The resulting bright-green solution was stirred at room temperature for 24 h and then 

concentrated to ~5 mL under vacuum at room temperature using Schlenk line.  A visually 

apparent black powder was formed in the bright-green solution.  The black powder was 

separated from bright-green solution under Ar using a medium porosity glass-frit of ca. 16 

microns pore size.  The open end of the glass-frit was sealed by a rubber septum.  The black 

powder collected on top of the glass-frit was washed with degassed H2O (5 mL�2) and then 

degassed acetone (5 mL�3) using a gas-tight syringe that was previously purged with Ar.  The 

black powder was then dried overnight under vacuum at room temperature resulting in black 
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powder (0.471 g, 78% yield) that was transported to the drybox and stored in the glass-frit sealed 

from the drybox atmosphere via a rubber septum. 

Crystallization was accomplished by weighing out 92 mg of the black, powdered [Ir(1,5-

COD)(µ-H)]4 in the drybox and transferring it into a 15 mL Schlenk tube. The Schlenk tube was 

then sealed, removed from the drybox, and placed on a Schlenk line under Ar.  Next, 2.0 mL of 

room temperature, n-pentane/THF (20/1) mixture was measured out using a gas-tight syringe and 

then added to the tube.  The stopper in the Schlenk tube containing the black powder and THF 

was black-taped to secure it.  The contents of the Schlenk tube were heated to approximately 66 

˚C using a heat gun while the taped-stopper was held manually to secure it during boiling the 

minimal boiling.  The resulting solution was clear, bright-green and homogeneous with no 

observable solid or particulate mass. The Schlenk tube was then placed in a –20 oC freezer.  

Black crystals of [Ir(1,5-COD)(µ-H)]4 were obtained in the tube after 4 h at -20 o.  At the end of 

4 h, the Schlenk tube containing crystals was connected to a Schlenk line, and the liquid portion 

was removed using a cannula.  The tube containing black [Ir(1,5-COD)(µ-H)]4 crystals (64 mg, 

55% overall yield) was kept under vacuum overnight.  The crystalline material was then 

transported back into the drybox and stored in a 2 mL vial.  The [Ir(1,5-COD)(µ-H)]4 complex is 

air-stable in crystalline form.  Anal. calcd for C32H52Ir4 (mol. wt. 1205.64 g/mol):  C, 31.88; H, 

4.35%.  Found:  C, 31.74; H, 4.28%.  ESI MS peaks (m/z in Da, assigned ion):  

1205.2478,[C32H51Ir4]+; 1507.3229 [C40H66Ir5]+.  UV-Vis peaks (nm): 476, 626.  IR bands (cm-1):  

697.90, 766.66, 815.67, 859.46, 866.74, 994.42, 1072.04, 1146.95, 1167.72, 1203.64, 1233.36, 

1295.73, 1320.87, 1423.13, 1437.37, 1469.38, 2818.14, 2867.42, 2907.91, 2936.42, 2985.69.  1H 

NMR in benzene-d6 (δ in ppm, (multiplicity, number of H)): -2.89 (s, 1), 1.37 (m, 4), 2.09 (m, 4), 

4.14 (m, 4).  13C NMR in benzene-d6 (δ in ppm):  68.64, 33.29.      
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Instrumentation and Sample Preparation.   

X-Ray Diffraction.  Single crystals of [(1,5-COD)Ir(µ-H)]4 suitable for X-ray diffraction 

analysis were grown by recrystallization from 20/1 n-pentane/THF using the crystallization 

procedure detailed above.  Diffraction data were collected at 120 K on a a Bruker Kappa Apex II 

diffractometer equipped with graphite-monochromatic Mo Kα (l = 0.71073 Å) radiation. A 

suitable single crystal of [Ir(1,5-COD)(µ-H)]4 was mounted on a Cryoloop in Paratone-N oil.  

Initial lattice parameters were determined from 452 reflections harvested from 36 frames.  Cell 

constants and other pertinent crystallographic information is reported in Table S3-S7.  The raw 

intensity data were integrated and corrected for Lorentz and polarization effects; an absorption 

correction was applied to the data using the program SADABS from the Apex II [16] software 

package.  The structure was solved by direct methods and refined using the SHELXTL 

[17] software package.  The non-hydrogen atoms were refined with anisotropic atomic 

displacement parameters.  Hydrogen atoms bound to carbon were included in their idealized 

positions and were refined with a riding model using isotropic thermal parameters 1.2 times 

larger than the Ueq value of the atom to which they were bonded.  The two unique hydride 

atoms of the molecular core were located straightforwardly in the difference electron density 

map and were refined with isotropic atomic displacement parameters. 

XAFS Spectroscopy:  XAFS experiments were performed at beamline X-19A at the National 

Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.  Energy was swept from 

150 eV below to 1528 eV above the Ir L3 edge (edge energy=11 215 eV) for [Ir(1,5-COD)(µ-

H)]4 sample.  The X-ray absorption coefficient was measured in transmission mode by 

positioning the sample between the incident beam and transmission beam detectors.  Ir(0) black 

was used as a reference for the X-ray energy calibration and data alignment. The Ir(0) sample 
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was positioned between the transmission and reference beam detectors, and measured 

simultaneously with the main sample. The X-ray detectors were gas-filled ionization chambers.  

A sample solution of initially crystalline [Ir(1,5-COD)(µ-H)]4 was freshly synthesized at CSU.  

The black crystal was transferred into a 5 mL glass vial in a N2-filled Vacuum Atmospheres 

drybox (≤5 ppm O2).  The glass vial was then double-sealed under N2 gas and transported to the 

National Synchrotron Light Source (NSLS).  At the NSLS, the vial was opened in a N2-filled 

MBraun glovebox and in the solution was transferred into a custom-designed airtight 

XAFSsample holder composed of a stainless steel frame made to press Kapton film windows 

onto a Teflon block with a ~1.5 cm3 sample cavity. 

The data processing and analysis was performed using the IFEFFIT package [18].  The 

EXAFS analysis was done by fitting the theoretical FEFF6 signals to the experimental data in r-

space.  Theoretical contributions included only the first (Ir-C) and second (Ir-Ir) nearest 

neighbors (1NN).  The passive electron factor, S0
2, was found to be 0.84 by fits to the standard 

Ir(0) black, and then fixed for further analysis of the [Ir(1,5-COD)(µ-H)]4. The parameters 

describing the electronic properties (correction to the photoelectron energy origin) and local 

structure environment (coordination numbers N, bond lengths R and their mean squared disorder 

parameters σ2) around the absorbing atoms were varied during the fitting.  There were the total 

of 13 relevant independent data points and 7 variables in the fit. 

 

3. Results and Discussion 

Initial Controls and Attempted Syntheses Based on the Literature 

 Initially, to calibrate our hands, the known tetrametallic hydride [Rh(1,5-COD)(µ-H)]4 was 

synthesized in two different experimenter’s hands using Muetterties’ original procedure [3], or 
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Bonnemann’s slightly revised version [3] of Muetterties’ original procedure (see the Supporting 

Information-D for details) [19]. Pleasingly, dark-red crystals of the [Rh(1,5-COD)(µ-H)]4 

complex were obtained in a 50% yield using both procedures in our hands [20]. 

Next, the obvious experiments were performed in which we attempted to prepare [Ir(1,5-

COD)(µ-H)]4 using each of three slightly different procedures published for the [Rh(1,5-

COD)(µ-H)]4 analog by Bönnemann [3c], Hampden-Smith [3b]  and Muetterties [3a] (see the 

Supporting Information-D for the details of these failed syntheses) [21]. A tiny amount of dark-

green powder was obtained in all three trials.  The trace, dark-green, Ir-product powder from 

adapting Muetterties’ Rh-congener procedure to the Ir case was characterized using ESI MS, 

NMR, IR, UV-vis and XPS spectroscopies (as detailed in the Supporting Information-D, results 

that encouraged us to pursue the superior synthesis reported herein.  However, the yield in each 

case using the adapted literature procedures was extremely low (~1%)—even though we were 

able to prepare the [Rh(1,5-COD)(µ-H)]4 congener in 50% yields (that matched the literature 50-

60% yields, vide infra) prior to the attempted Ir congener syntheses and as control experiments.  

Moreover, crystallization attempts failed using the small amounts of dark-green, Ir-product 

powder obtained from each of the three, Muetterties, Bönnemann or Hampden-Smith adapted 

syntheses. Specifically, solutions cooled down slowly from room temperature to -76 ºC in 

hexane, acetone, or ethanol, or cooled from room temperature to 10 ºC in 

cyclohexane:dichloromethane (1:1) failed to produce single crystals.  In addition, dissolving the 

complex (0.4 mg) in pentane (0.5 mL), adding acetone (pentane:acetone =1:1 by volume) and 

keeping the resultant slightly cloudy solution at -78 ºC for 10 h failed to provide single crystals. 

(The reverse order of solvent addition was also tried.) These initial crystallization studies were 
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undoubtedly limited by the small amounts of Ir product available from the initial, ~1% yield 

syntheses. Hence, development of a higher yield synthesis became the next order of business. 

 

Successful Synthesis and Stoichiometry of Formation of [(1,5-COD)Ir(µ-H)]4:  After some 

trial and error, the successful synthesis of [Ir(1,5-COD)(µ-H)]4 was discovered, a key of which is 

the use of excess 1,5-COD that was added based on the hypothesis that it might stabilize the 

product. The successful synthesis is carried out starting with THF solutions of LiBEt3H [22] and 

[Ir(1,5-COD)IrCl]2 at -78˚C (Scheme 5.2).  Excess 1,5-COD [23]  (25 equivs/equiv Ir) is added 

slowly over 5-10 minutes post the main reaction and at room temperature, resulting in a solution 

color change from dark-green to a bright-green (the latter being the characteristic color of 

solutions when the black-appearing crystals of [Ir(1,5-COD)(µ-H)]4 are dissolved in THF, for 

example, vide infra). The resulting black powder is obtained in 78% yield.  Following 

crystallization a n-pentane/THF (20/1) solution at -20 ˚C, a 55% yield of black, crystalline, 

[Ir(1,5-COD)(µ-H)]4 was obtained. The black, crystalline [Ir(1,5-COD)(µ-H)]4 complex 

dissolves in THF and benzene and is also slightly soluble in diethylether, n-pentane, n-hexane, 

acetone, methanol and acetonitrile. 

 

 

Scheme 5.2.  The balanced reaction stoichiometry and reaction conditions of the successful 
synthesis of [Ir(1,5-COD)(µ-H)]4. 
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Single Crystal X-Ray Crystallography Structure:  The single-crystal X-ray diffraction 

structure of [Ir(1,5-COD)(µ-H)]4 and the resulting  atomic numbering scheme are shown in 

Figure 5.1.  The space group is Pbcn and the lattice constants are a = 12.5628(3) Å, b = 

18.4647(5) Å and c = 12.3963(3) Å.  The [Ir(1,5-COD)(µ-H)]4  molecule is a diamagnetic, 56 

total electron cluster, with formally 17 electrons at each Ir atom (i.e., and unless one would 

choose to count the two longer Ir-Ir bonds as Ir=Ir double bonds as one way to achieve 18 

electron counts at each Ir). The  [Ir(1,5-COD)(µ-H)]4 molecule is composed of a distorted 

tetrahedral Ir4 core of D2d geometry.  Each Ir center is bonded to two olefinic groups of one 1,5-

COD moiety plus two edge-bridging (vide infra) hydrides. The resulting Ir4H4 core exhibits S4 

geometry.  The molecule possesses a crystallographic two-fold symmetry (i.e., the molecule 

resides on a crystallographic two-fold axis that connects the two halves of the molecule, Ir1 and 

Ir1A, for example). Selected bond lengths and bond angles are given in Table 5.1 and Table 5.2, 

respectively.  Two Ir–Ir distances are long (2.90728(17) and 2.91138(17) Å) and four Ir–Ir 

distances are short (2.78680 (12)-2.78798(12) Å) [24].  A residual electron-density analysis 

strongly suggests that the hydrides are located in between two Ir atoms (i.e., are edge-bridging 

hydrides) connected by short Ir–Ir distances. The hydride positions, from refining the hydride 

atoms using the procedure detailed in Experimental section, appear reasonable, but may be 

influenced by Fourier termination errors emanating in the Ir atoms.  Hence, a neutron-diffraction 

experiment is needed to reveal the true positions of the hydrides and is planned. That said, the 

observed short Ir–Ir bond distances are within the range of that of Ir–Ir bonds containing edge-

bridging hydrides [4,25].  The longer Ir–Ir bonds correspond to Ir–Ir bonds without bridging 

hydrides (Ir1–Ir1A and Ir2–Ir2A in Figure 5.1).  These long Ir–Ir distances are slightly longer 

than the literature values for singly bonded Ir–Ir distances (2.65-2.73 Å) [4,2j].  The observed Ir–
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H, Ir–C and C–C bond distances in [Ir(1,5-COD)(µ-H)]4 are (1.67 (3) and 1.82 (3) Å, 2.116(2)-

2.182(2) Å and 1.407(3) – 1.424(3) Å, respectively) consistent with earlier literature [4,11,26].  

The Ir–Ir–Ir angles vary between 58.50 and 62.86˚ confirming the distorted tetrahedral shape of 

the Ir4 core [27].  The H–Ir–H angles (108.2(16)-108.5(15)˚) and C–Ir–C angles (88.85(9)-

96.88(9)˚) are consistent with those previously reported for similar complexes [4].  

XAFS Characterization: EXAFS and XANES were collected for two reasons: first, to test 

whether a minor Ir5 species, detected by ESI-MS early in the characterization of the crystalline 

complex, Figure SI-D5 of the Supporting Information, was present in the bulk sample of the 

crystalline material (i.e., and in addition to a most abundant peak expected for the Ir4 species, 

vide infra). Or, as we suspected, is the ESI MS observed Ir5 species actually formed during the 

ESI-MS process, and thus an artifact of the ESI MS? Second, EXAFS and XANES were 

collected on the parent [Ir(1,5-COD)(µ-H)]4 complex since these spectroscopies—and, hence, 

the present study—are expected to be quite valuable in providing a baseline / background study 

for XAFS characterization of this previously unknown complex in future applications in catalysis 

and other areas. 

 

Figure 5.1.  Single crystal X-ray structure and atomic numbering scheme for [Ir(1,5-COD)(µ-
H)]4 at 50% probability.  
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Table 5.1.  Selected bond lengths (Å) in [Ir(1,5-COD)(µ-H)]4 crystal obtained by XRD structural 
refinement 

Bond Bond Length Bond Bond Length 

Ir1-Ir2 2.78680 (12) Ir1-C7 2.116 (2) 

Ir1-Ir2A 2.78798 (12) Ir1-C8 2.156 (2) 

Ir2-Ir1A 2.78797 (12) Ir2-C11 2.155 (2) 

Ir1-Ir1A 2.90728 (17) Ir2-C12 2.186 (2) 

Ir2-Ir2A 2.91138 (17) Ir2-C15 2.128 (2) 

Ir1A-Ir2A 2.78680 (12) Ir2-C16 2.158 (2) 

Ir1-H1 1.71 (3) C3-C4 1.407 (3) 

Ir1-H2 1.82 (3) C7-C8 1.424 (3) 

Ir2-H2 1.67 (3) C11-C12 1.405 (3) 

Ir1-C3 2.156 (2) C15-C16 1.419 (3) 

Ir1-C4 2.187 (2)   

 

Table 5.2.  Selected bond angles (˚) in [Ir(1,5-COD)(µ-H)]4 crystal 

Bond Bond Angle Bond Bond Angle  

Ir1-Ir2-Ir2A 58.537 (3) H1-Ir1-H2 108.5(15) 

Ir2-Ir1-Ir1A 58.586 (3) H2-Ir2-H1A 108.2(16) 

Ir2-Ir1-Ir2A 62.966 (4) C3-Ir1-C7 96.88 (9) 

Ir2A-Ir1-Ir1A 58.547 (3) C4-Ir1-C8 88.85 (9) 

Ir1-Ir2-Ir1A 62.867 (4) C11-Ir2-C15 96.77 (9) 

Ir1A-Ir2-Ir2A 58.497 (3) C12-Ir2-C16 87.98 (9) 

 

Hence, a bulk sample of crystalline [Ir(1,5-COD)(µ-H)]4 was examined by EXAFS and 

XANES spectroscopies.  The EXAFS spectrum was analyzed only in the first nearest neighbor 
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range.  Fourier transform (FT) magnitudes of k3-weighted Ir-L3 EXAFS data of the [(1,5-

COD)Ir(µ-H)]4 complex, and its fit using Ir–Ir and Ir–C first nearest neighbor contributions, are 

shown in Figure 5.2.  Two distinct peaks (uncorrected for the photoelectron phase shift) at 

around 2.5 Å and 1.7 Å are due to the Ir–Ir and Ir–C scattering contributions, respectively. Their 

real space distances are 2.80 ± 0.01 Å and 2.15 ± 0.01 Å for Ir–Ir and Ir–C, respectively. The Ir–

Ir coordination number (NIr–Ir) of [(1,5-COD)Ir(µ-H)]4 complex is 3.0 ± 1.2, as expected for an 

Ir4 core.  The Ir–C coordination number (NIr–C) in [(1,5-COD)Ir(µ-H)]4 crystal is 4.2 ± 0.7, as 

expected from one COD attachment to each Ir center. The Ir–Ir and Ir–C bond distances obtained 

using EXAFS (2.80 ± 0.01 Å and 2.15 ± 0.01 Å, respectively) are consistent with those 

determined using XRD (2.78680(12)-2.91138(17) Å and 2.116(2)-2.182(2) Å, respectively).  

The lack of higher order contribution beyond Ir–Ir scatterer at 2.80 Å attests to the homogeneity 

of the samples and the lack of larger Ir clusters. 

 

Figure 5.2.  FT magnitudes of Ir-L3 edge EXAFS data for [(1,5-COD)Ir(µ-H)]4 complex (black) 

and its associated fit using Ir–C and Ir–Ir contributions (red). 

 

The XANES spectrum of [Ir(1,5-COD)(µ-H)]4 was obtained and compared to the XANES of 

both Ir(0) black and crystallographically and EXAFS-characterized [12,10] [Ir(1,5-COD)(µ-

O2C8H15)]2, Figure 5.3.  The position and height of the main absorption peak (white line) at the 
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Ir-L3 edge are similar for [Ir(1,5-COD)("-H)]4 and Ir(0) black samples. On the other hand, the Ir-

L3 edge white line is shifted to higher energy and reaches higher normalized absorption 

coefficient values in [Ir(1,5-COD)("-O2C8H15)]2 when compared to that of [Ir(1,5-COD)("-H)]4

both of which contain formally IrI.  This observation indicates a higher positive charge on Ir 

atoms in [Ir(1,5-COD)("-O2C8H15)]2 complex compared to [Ir(1,5-COD)("-H)]4.  Restated, there 

is greater charge transfer from Ir to surrounding ligands in [Ir(1,5-COD)("-O2C8H15)]2 in 

comparison to [Ir(1,5-COD)("-H)]4, so that  the XANES-determined, “effective” oxidation state 

of [(1,5-COD)Ir("-H)]4 is arguably closer to that of bulk Ir0 than the formally IrI in [Ir(1,5-

COD)("-O2C8H15)]2. However, the overall shape of the XANES spectrum (past the white line) of 

[Ir(1,5-COD)("-H)]4 is quite similar to that of [Ir(1,5-COD)("-O2C8H15)]2.  Both [Ir(1,5-

COD)("-H)]4 and [Ir(1,5-COD)("-O2C8H15)]2 spectra lack the post-edge oscillatory behavior 

seen in the bulk Ir(0) consistent with the small coordination numbers of Ir atoms in both 

complexes.   

 

Figure 5.3.  XANES of [Ir(1,5-COD)(µ-H)]4 complex and reference compounds used of 

formally Ir0 black and formally IrI [(1,5-COD)Ir(µ-O2C8H15)]2 [11].
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Additional Characterization using ESI MS, UV-Vis, IR and NMR. The ESI MS [28] of the 

black [Ir(1,5COD)(µ-H)]4 crystals dissolved in dichloromethane exhibits a most abundant peak 

located at 1205.2478 Da (Figure SI-D3, SI-D4 and SI-D5).  The experimentally observed isotope 

peak distribution pattern matches the simulated isotopic distribution for [C32H51Ir4]+, formulated 

as [Ir4(1,5-COD)4(µ-H)3]+.  The UV-vis spectrum of the dark-green powder of [Ir(1,5-COD)(µ-

H)]4 dissolved in THF shows absorption bands at 476 and 626 nm (Figure SI-D6).  Of interest is 

that the experimental observation of two absorption maxima at 476 and 626 nm for [Ir(1,5-

COD)(µ-H)]4 differ significantly from the UV-vis spectra of formally Ir(0)-containing 

tetrairidium complexes such as Ir4(CO)11[(OPr)3(OCH2PPh2)] (278 and 326 nm) [2] or various 

Ir4(CO)12 clusters (278, 326 and 430 nm) [29].  Furthermore, the UV-vis spectrum of [Ir(1,5-

COD)(µ-H)]4 is different from that of formally Ir(I)-containing [Ir(1,5-COD)(µ-O2C8H15)]2 (486 

nm), [(1,5-COD)Ir(µ-pyrazole)]2 (498, 585 nm) and [(1,5-COD)Ir(µ-6-methyl-2-

hydroxypyridine)]2 (484 nm) [11,30].  In short, computational assistance will be required before 

the observed bands at 476 and 626 nm in UV-Vis spectrum of [Ir(1,5-COD)(µ-H)]4 can be 

assigned with confidence.  

The IR spectrum of the [Ir(1,5-COD)(µ-H)]4 complex is, as expected, similar to that of the 

well-characterized Rh-analogue (Figure SI-D7) [3].  The 1H NMR spectrum of crystalline 

[Ir(1,5-COD)(µ-H)]4 dissolved in benzene-d6 (Figure SI-D8) shows a signal at -2.89 ppm and has 

the proper integration for the four, Ir–H hydrides [31].  The signals at 4.14, 2.09, and 1.37 ppm 

are assignable to the olefinic and methylene hydrogen atoms, respectively.  The 13C NMR 

spectrum of crystalline [(1,5-COD)Ir(µ-H)]4 dissolved in benzene-d6 shows signals at 68.64 and 

33.29 ppm for the COD ligands (Figure SI-D9), consistent with literature values for similar Ir-
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COD complexes (i.e. and within the ranges of 52.6 – 92.6 ppm and 27.0 – 33.4 ppm, 

respectively) [32]. 

 

4.  Summary and Possible Future Directions 

The synthesis of the previously unavailable [Ir(1,5-COD)(µ-H)]4 complex in 78% initial, and 

55% recrystallized, yield was accomplished starting with commercially available LiBEt3H and 

[Ir(1,5-COD)Cl]2 in the presence of excess 1,5-COD in THF.  The resultant [Ir(1,5-COD)(µ-H)]4  

was fully characterized by single-crystal XRD, XAFS, ESI MS, UV-visible, IR and NMR.  The 

[Ir(1,5-COD)(µ-H)]4 crystal structure shows distorted tetrahedral, D2d Ir4 core with one 1,5-COD 

and what appear to be two edge-bridging hydrides bound to each Ir center.  The Ir–Ir, Ir–H, Ir–C 

distances and Ir–Ir–Ir, H–Ir–H and C–Ir–C bond angles are within the range of those for similar 

complexes from the extant literature.  The EXAFS-determined Ir–Ir and Ir–C bond distances are 

in good agreement with the XRD results and validate and benchmark EXAFS as a useful method 

for characterization the Ir(1,5-COD)(µ-H)]4 complex in future applications.  The EXAFS results 

also are of value in that they demonstrate a high degree of homogeneity of the bulk Ir(1,5-

COD)(µ-H)]4 sample. 

As alluded to in the Introduction, there are at least 5 reasons why the previously unknown, 

tetranuclear, coordinatively unsaturated [Ir(1,5-COD)(µ-H)]4 cluster is of interest, the first of 

which is (i) that [Ir(1,5-COD)(µ-H)]4 holds promise of serving as a multipurpose, coordinatively 

unsaturated, Ir4-based precatalyst and organometallic synthon, just as it Rh congener [Rh(1,5-

COD)(µ-H)]4 has. Our own efforts are focused on employing [Ir(1,5-COD)(µ-H)]4: (ii) as a 

XAFS model/standard and possible Ir4H4 intermediate in nucleation and growth studies of Ir(0)n 

nanoclusters starting form (1,5-COD)Ir+-based precatalysts—the role of polynuclear MaHb 
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species (M  metal), as opposed to just polynuclear M(0)n species, in nanocluster nucleation and 

growth being an important by controversial point at present [14,15]; This new, tetrametallic 

cluster is also of interest (iii) as a discrete, precise composition tetrametallic Ir4H4 complex for 

possible use in preparing both homogeneous as well as supported, heterogeneous sub-nanometer 

Ir4H4 based catalysts; (iv) as a new precursor for testing the formation and stabilization 

mechanisms of Ir-based, so-called Ziegler-type industrial hydrogenation model catalysts 

prepared from (1,5-COD)Ir+-based precatalysts and AlEt3 [10], and (v) as a fully compositionally 

and structurally characterized Ir4 analog of the (on-average) Co4-based, subnanometer clusters 

identified by XAFS as a dominant species in Co-based Ziegler-type industrial polymer 

hydrogenation catalysts [15]. Also noteworthy in conclusion is that the Co member of this class 

of tetranuclear clusters, [M(1,5-COD)(µ-H)]4 (M = Ir, Rh, Co) may be preparable as well, 

although it remains to be synthesized, isolated and unequivocally characterized. Hence, it is 

hoped that the present synthesis and characterization, of the previously unavailable  [Ir(1,5-

COD)(µ-H)]4 will be of value for the above, as well as other, future studies. 

5. Supporting Information-D. Instrumentation for, and the experimental procedures behind, the 

ESI MS, Uv-vis, IR and NMR spectroscopic studies.  Literature tables for Ir–Ir bond distances 

and Ir–Ir–Ir bond angles of similar compounds.  Crystal data and structure refinement tables with 

bond distances, bond angles, anisotropic and isotropic displacement parameters, cif file 

containing the crystal structure data.  ESI MS, UV-vis, IR and NMR spectra.  Detailed 

experimental procedures for (i) successful syntheses of [Rh(1,5-COD)(µ-H)]4, (ii) initial, low 

yield synthesis attempts for [Ir(1,5-COD)(µ-H)]4 while following literature procedures for the 

Rh-congener; and (iii) control experiments performed to decrease the amount of a 1H NMR-

detected impurity.  This material is available free of charge via the Internet at http://pubs.acs.org. 
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1. Literature Tables 

Table SI-D1.  Literature table of Ir-Ir bond distances in various Ir4 complexes  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Garlaschelli, L.; Greco, F.; Peli, G.; Manassero, M.; Sansoni, M.; Gobetto, R.; Salassa, L.; 
Pergola, R. D. Eur. J. Inorg. Chem. 2003, 2108-2112. 
2 Xu, Y.; Celik, M. A.; Thompson, A. L.; Cai, H.; Yurtsever, M.; Odell, B.; Green, J. C.; Mingos, 
D. M. P.; Brown, J. M. Angew. Chem. Int. Ed. Eng. 2009, 48, 582-585. 
3 Bau, R.; Chiang, M. Y.; Wei, C. Y.; Garlaschelli, L.; Martinengo, S.; Koetzle, T. F. Inorg. 
Chem. 1984, 23, 4758-4762. 
4 Silva, N.; Solovyov, A.; Katz, A. Dalton Trans. 2010, 39, 2194-2197.   
5 Stuntz, G. F.; Shapley, J. R.; Pierpont, C. G. Inorganic Chemistry 1978, 17, 2596-2603. 
6 Li, F.; Gates, B. C. J. Phys. Chem. B 2004, 108, 11259-11264. 
7 Argo, A. M.; Odzak, J. F.; Gates, B. C. J. Am. Chem. Soc. 2003, 125, 7107–7115. 

Author, year Complex Ir-Ir distances (Å) Method used 
Garlaschelli, 20031 Ir4H8(CO)4(PPh3)4 2.925 (1) 

2.916 (1) 
2.906 (1)  
2.931 (1)  
2.721 (1) 
2.732 (1) 

XRD 

Brown, 20092 [Ir4H10(PCy3)4(C9H11N)2]2+ 2.7703 (6) 
2.6241 (4) 

XRD 

Brown, 20092 [Ir4H11(PMe3)4(C5H5N)]+ 2.6758 (4) 
2.7421 (4) 
2.7748 (4) 
2.7281 (4) 
2.7785 (4) 
 

XRD 

Bau and Koetzle, 19843 [HIr4(CO)11]- 2.712 (1) - 2.800 (1) 
2.703 (2) – 2.795 (2)  

ND and XRD 

Katz, 20104 (OPr)3(OCH2PPh2)-Ir4(CO)11 2.708 (1) – 2.786 (1) XRD 
Pierpont, 19785 Ir4(CO)5(C8H12)2(C8H10) 2.695 (1) – 2.741 (1) XRD 
Gates, 20046 Ir4(CO)12 in zeolite NaY25 2.71 (1) XAFS 
Gates, 20037 Ir4 supported on γ-Al2O3 2.65 XAFS 
Finke, 2012 
(This work) 

[(1,5-COD)Ir(µ-H)]4 2.7869 (2) 
2.7881 (2) 
2.7881 (2) 
2.7869 (2) 
2.9072 (3) 
2.9112 (3) 

XRD 

Finke, 2011 [(1,5-COD)Ir(µ-H)]4 2.80 (1) XAFS 
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Table SI-D2.  Literature table of Ir-Ir-Ir bond angles in various Ir4 and Rh4 complexes
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Author, year Complex Metal core 
structure 

Ir-Ir-Ir bond 
angles (Å) 

Method 
used 

Maitlis, 1984 [(C5Me5)Rh(µ3-H)]4
2+ Tetrahedral 54.93(11)  

62.53(5) 
ND 

Brown, 2009 [Ir4H10(PCy3)4(C9H11N)2]2+ Butterfly 56.17 (2) XRD 
Brown, 2009 [Ir4H11(PMe3)4(C5H5N)]+ Butterfly 57.98 (1) 

58.18 (1) 
119.70 (1) 
122.77 (1) 

XRD 

Pierpont, 1978 Ir4(CO)5(C8H12)2(C8H10) Butterfly 58.45 (2) 
58.70 (2) 
59.73 (2) 
59.81 (2) 
61.49 (2) 
61.82 (2) 
91.99 (2) 
91.88 (2) 

XRD 

Finke, 2011 [(1,5-COD)Ir(µ-H)]4 Tetrahedral 62.69 (1) 
58.59 (0) 
58.55 (0) 
62.86 (1) 
58.54 (0) 
58.50 (0) 

XRD 
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2. Experiments Determining Conditions Which Decreased the Amount of the 1H NMR-

Detected, 12.82 ppm Impurity: 

2.1. Washing the Black Powder with Acetone: The impurity/hydride ratio decreased from 

1:4 to 1:8 when the black powder was washed with 10�25 mL acetone; see the 

Experimental Section at the end of this Supporting Information for the details of this 

specific experiment.   (The impurity is labeled an “acid”, but this is not known for 

certain so that this early / historical experimental nomenclature should be replaced by the 

more accurate “1H NMR-Detected, 12.82 ppm Impurity”.) 

 

 

Figure SI-D1.  1H NMR spectra of the black [Ir(1,5-COD)(µ-H)]4 powder in benzene-d6 
(left) and that (right) from a separate synthesis, but in the right-most figure after washing the 
black powder with 10�25 mL = 250 mL of acetone.   
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2.2.  Passing a concentrated THF solution of [(Ir(1,5-COD)(µ-H)]4 through a glass filter 

(i.e., without the addition of 15 mL acetone):  The impurity/hydride ratio decreased 

from 1:4 to 1:12 when the concentrated THF solution of [(Ir(1,5-COD)(µ-H)]4 (without 

adding 15 mL acetone) was passed through a glass filter (see the Experimental section  

towards the end of this Supporting Information for details).   

 

!

Figure SI-D2.  1H NMR spectrum in benzene-d6 of (left) the black [Ir(1,5-COD)(µ-H)]4 powder 
obtained by first concentrating the bright-green solution (after excess COD was added) to 5 mL 
under vacuum, and then adding 15 mL acetone before filtration.   In a separate synthesis, the 
bright-green solution was first concentrated to 5 mL under vacuum and then the resulting 
resulting mixture was filtered through a glass filter (without addition of acetone), and then (right) 
its 1H NMR spectrum in benzene-d6 was obtained.  The spectrum on the left is a reproduction of 
Figure S1(left) provided for the sake of an easy comparison of the two 1H NMR spectra. 
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3.  Crystal Structure Data and Tables 

3.1.Table SI-D3.  Crystal data and structure refinement for [Ir(1,5-COD)(µ-H)]4. 
Empirical formula  C32H52Ir4 

Formula weight  1205.54 

Temperature  120(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbcn 

Unit cell dimensions a = 12.5628(3) Å a= 90° 

 b = 18.4647(5) Å b= 90° 

 c = 12.3963(3) Å g = 90° 

Volume 2875.55(12) Å3 

Z 4 

Density (calculated) 2.785 Mg/m3 

Absorption coefficient 18.473 mm-1 

F(000) 2208 

Crystal size 0.08 x 0.08 x 0.08 mm3 

Theta range for data collection 3.19 to 33.17° 

Index ranges -19 ≤ h ≤ 19, -2 ≤ k ≤ 28, -19 ≤ l ≤ 18 

Reflections collected 74947 

Independent reflections 5503 [R(int) = 0.0370] 

Completeness to theta = 33.17∞ 99.9 %  

Absorption correction None 

Max. and min. transmission 0.3196 and 0.3196 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5503 / 0 / 171 

Goodness-of-fit on F2 1.110 

Final R indices [I>2sigma(I)] R1 = 0.0151, wR2 = 0.0312 

R indices (all data) R1 = 0.0183, wR2 = 0.0318 

Largest diff. peak and hole 1.226 and -0.620 e/Å-3 
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3.2.  Table SI-D4.  Atomic coordinates ( x 104) and equivalent isotropic displacement 
parameters (Å2x 103) for [(1,5-COD)Ir(µ-H)]4.  U(eq) is defined as one third of the trace of the 
orthogonalized Uij tensor. 

 x y z U(eq) 

Ir(1) 115(1) 1977(1) 8667(1) 9(1) 

Ir(2) 1153(1) 959(1) 7384(1) 9(1) 

C(3) 1445(2) 2713(1) 8760(2) 13(1) 

C(4) 1441(2) 2295(1) 9709(2) 14(1) 

C(5) 1094(2) 2580(1) 10807(2) 18(1) 

C(6) -88(2) 2439(1) 11022(2) 17(1) 

C(7) -742(2) 2401(1) 9993(2) 15(1) 

C(8) -722(2) 2939(1) 9170(2) 14(1) 

C(9) -19(2) 3611(1) 9243(2) 16(1) 

C(10) 1060(2) 3492(1) 8697(2) 15(1) 

C(11) 1167(2) 271(1) 5980(2) 15(1) 

C(12) 2121(2) 667(1) 5985(2) 16(1) 

C(13) 3188(2) 331(1) 6278(2) 20(1) 

C(14) 3463(2) 468(2) 7461(2) 21(1) 

C(15) 2482(2) 478(1) 8171(2) 15(1) 

C(16) 1652(2) -43(1) 8125(2) 13(1) 

C(17) 1652(2) -691(1) 7361(2) 16(1) 

C(18) 1090(2) -520(1) 6286(2) 17(1) 

________________________________________________________________________________
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3.3.  Table SI-D5.   Bond lengths (Å) for [(1,5-COD)Ir(µ-H)]4

Ir1-H1 1.71(3) 

Ir1-H2  1.82(3) 

Ir1-C7  2.116(2) 

Ir1-C8  2.156(2) 

Ir1-C3  2.156(2) 

Ir1-C4  2.187(2) 

Ir1-Ir2  2.78680(12) 

Ir1-Ir2A  2.78798(12) 

Ir1-Ir1A 2.90728(17) 

Ir1-H1 1.71(3) 

Ir1-H2 1.82(3) 

Ir2-H2  1.67(3) 

Ir2-H1A  1.74(3) 

Ir2-C15  2.128(2) 

Ir2-C11  2.155(2) 

Ir2-C16  2.158(2) 

Ir2-C12  2.186(2) 

Ir2-Ir1A 2.78797(12) 

Ir2-Ir2A  2.91138(17) 

Ir2-H2 1.67(3) 

C3-C4  1.407(3) 

C3-C10  1.520(3) 

C3-H3A  0.9800 

C4-C5   1.524(3) 

C4-H4A  0.9800 

C5-C6  1.532(3) 

C5-H5A 0.9700 

C5-H5B  0.9700 

C6-C7   1.519(3) 

C6-H6A  0.9700 

C6-H6B  0.9700 

C7-C8   1.424(3) 

C7-H7A  0.9800 

C8-C9   1.525(3) 

C8-H8A 0.9800 

C9-C10  1.530(3) 

C9-H9A  0.9700 

C9-H9B  0.9700 

C10-H10A  0.9700 

C10-H10B 0.9700 

C11-C12  1.405(3) 

C11-C18  1.511(4) 

C11-H11A  0.9800 

C12-C13  1.521(3) 

C12-H12A 0.9800 

C13-C14 1.528(4) 

C13-H13A  0.9700 

C13-H13B 0.9700 

C14-C15  1.515(4) 

C14-H14A  0.9700 

C14-H14B  0.9700 

C15-C16  1.419(3) 

C15-H15A  0.9800 

C16-C17  1.526(3) 

C16-H16A  0.9800 

C17-C18  1.540(3) 

C17-H17A  0.9700 

C17-H17B  0.9700 

C18-H18A  0.9700 

C18-H18B  0.9700 

 

 



!

! 285 

3.4. Table SI-D6. Bond angles (°) for [(1,5-COD)Ir(µ-H)]4 

Ir1-H1-Ir2A          108.07(18) 

Ir1-H2-Ir2            106.1(17) 

Ir2-H1A-Ir1A        108.1(19) 

Ir1A-H2A-Ir2A      106.1(17) 

H1-Ir1-H2 108.5(15) 

H1-Ir1-C7 78.0(11) 

H2-Ir1-C7 125.7(10) 

H1-Ir1-C8 78.3(12) 

H2-Ir1-C8 162.9(10) 

C7-Ir1-C8 38.93(9) 

H1-Ir1-C3 152.5(12) 

H2-Ir1-C3 96.5(10) 

C7-Ir1-C3 96.88(9) 

C8-Ir1-C3 80.99(9) 

H1-Ir1-C4 157.3(11) 

H2-Ir1-C4 79.2(10) 

C7-Ir1-C4 80.20(9) 

C8-Ir1-C4 88.85(9) 

C3-Ir1-C4 37.80(9) 

H1-Ir1-Ir2 98.6(12) 

H2-Ir1-Ir2 35.1(10) 

C7-Ir1-Ir2 158.65(7) 

C8-Ir1-Ir2 161.65(6) 

C3-Ir1-Ir2 95.36(6) 

C4-Ir1-Ir2 99.30(6) 

H1-Ir1-Ir2A 36.3(12) 

H2-Ir1-Ir2A 75.0(10) 

C7-Ir1-Ir2A 108.75(6) 

C8-Ir1-Ir2A 114.33(6) 

C3-Ir1-Ir2A 153.24(6) 

C4-Ir1-Ir2A 153.08(6) 

Ir2-Ir1-Ir2A 62.966(4) 

H1-Ir1-Ir1A 70.4(11) 

H2-Ir1-Ir1A 93.3(10) 

C7-Ir1-Ir1A 136.25(7) 

C8-Ir1-Ir1A 103.84(6) 

C3-Ir1-Ir1A 97.51(6) 

C4-Ir1-Ir1A 131.57(6) 

Ir2-Ir1-Ir1A 58.586(3) 

Ir2A-Ir1-Ir1A 58.547(3) 

H2-Ir1-H1 108.5(15) 

C7-Ir1-H1 78.0(12) 

C8-Ir1-H1 78.3(12) 

C3-Ir1-H1    152.5(12) 

C4-Ir1-H1    157.3(11) 

Ir2-Ir1-H1      98.6(12) 

Ir2A-Ir1-H1      36.3(12) 

Ir1A-Ir1-H1      70.4(11) 

H1-Ir1-H2    108.5(15) 

C7-Ir1-H2    125.7(10) 

C8-Ir1-H2    162.9(10) 

C3-Ir1-H2      96.5(10) 

C4-Ir1-H2      79.2(10) 

Ir2-Ir1-H2      35.1(10) 

Ir2A-Ir1-H2      75.0(10) 

Ir1A-Ir1-H2      93.3(10) 

H1-Ir1-H2    108.5(15) 

H2-Ir2-H1A    108.2(16) 

H2-Ir2-C15      78.5(11) 

H1A-Ir2-C15    125.8(11) 

H2-Ir2-C11    154.0(11) 

H1A-Ir2-C11     95.4(11) 

C15-Ir2-C11     96.77(9) 

H2-Ir2-C16 80.1(11) 

H1A-Ir2-C16 162.0(11) 

C15-Ir2-C16 38.67(9) 
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C11-Ir2-C16 80.57(9) 

H2-Ir2-C12 156.9(11) 

H1A-Ir2-C12 78.5(11) 

C15-Ir2-C12 79.88(9) 

C11-Ir2-C12 37.75(9) 

C16-Ir2-C12 87.98(9) 

H2-Ir2-Ir1 38.8(11) 

H1A-Ir2-Ir1 73.5(11) 

C15-Ir2-Ir1 112.76(7) 

C11-Ir2-Ir1 149.61(6) 

C16-Ir2-Ir1 118.11(6) 

C12-Ir2-Ir1 151.60(6) 

H2-Ir2-Ir1A 101.3(11) 

H1A-Ir2-Ir1A 35.6(11) 

C15-Ir2-Ir1A 160.77(7) 

C11-Ir2-Ir1A 91.44(6) 

C16-Ir2-Ir1A 160.56(6) 

C12-Ir2-Ir1A 96.54(6) 

Ir1-Ir2-Ir1A 62.867(4) 

H2-Ir2-Ir2A 73.3(11) 

H1A-Ir2-Ir2A 93.5(11) 

C15-Ir2-Ir2A 137.33(7) 

C11-Ir2-Ir2A 95.04(6) 

C16-Ir2-Ir2A 104.29(6) 

C12-Ir2-Ir2A 129.22(7) 

Ir1-Ir2-Ir2A 58.537(3) 

Ir1A-Ir2-Ir2A 58.497(3) 

H2-Ir2-H2 0(2) 

H1A-Ir2-H2 108.2(16) 

C15-Ir2-H2 78.5(11) 

C11-Ir2-H2 154.0(11) 

C16-Ir2-H2 80.1(11) 

C12-Ir2-H2 156.9(11) 

Ir1-Ir2-H2 38.8(11) 

Ir1A-Ir2-H2 101.3(11) 

Ir2A-Ir2-H2 73.3(11) 

C4-C3-C10 124.2(2) 

C4-C3-Ir1 72.27(13) 

C10-C3-Ir1 110.28(15) 

C4-C3-H3A 114.2 

C10-C3-H3A 114.2 

Ir1-C3-H3A 114.2 

C3-C4-C5 123.9(2) 

C3-C4-Ir1 69.93(13) 

C5-C4-Ir1 113.76(16) 

C3-C4-H4A 113.9 

C5-C4-H4A 113.9 

Ir1-C4-H4A 113.9 

C4-C5-C6 111.95(19) 

C4-C5-H5A 109.2 

C6-C5-H5A 109.2 

C4-C5-H5B 109.2 

C6-C5-H5B 109.2 

H5A-C5-H5B 107.9 

C7-C6-C5 112.7(2) 

C7-C6-H6A 109.1 

C5-C6-H6A 109.1 

C7-C6-H6B 109.1 

C5-C6-H6B 109.0 

H6A-C6-H6B 107.8 

C8-C7-C6 124.0(2) 

C8-C7-Ir1 72.07(13) 

C6-C7-Ir1 113.22(16) 

C8-C7-H7A 113.6 

C6-C7-H7A 113.6 

Ir1-C7-H7A 113.6 

C7-C8-C9 122.3(2) 

C7-C8-Ir1 69.00(13) 

C9-C8-Ir1 113.85(15) 
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C7-C8-H8A 114.5 

C9-C8-H8A 114.5 

Ir1-C8-H8A 114.5 

C8-C9-C10 111.73(19) 

C8-C9-H9A 109.3 

C10-C9-H9A 109.3 

C8-C9-H9B 109.3 

C10-C9-H9B 109.3 

H9A-C9-H9B 107.9 

C3-C10-C9 113.25(19) 

C3-C10-H10A 108.9 

C9-C10-H10A 108.9 

C3-C10-H10B 108.9 

C9-C10-H10B 108.9 

H10A-C10-H10B 107.7 

C12-C11-C18 123.8(2) 

C12-C11-Ir2 72.33(13) 

C18-C11-Ir2 111.48(15) 

C12-C11-H11A 114.0 

C18-C11-H11A 114.0 

Ir2-C11-H11A 114.0 

C11-C12-C13 122.8(2) 

C11-C12-Ir2 69.92(13) 

C13-C12-Ir2 113.68(16) 

C11-C12-H12A 114.3 

C13-C12-H12A 114.3 

Ir2-C12-H12A 114.3 

C12-C13-C14 111.2(2) 

C12-C13-H13A 109.4 

C14-C13-H13A 109.4 

C12-C13-H13B 109.4 

C14-C13-H13B 109.4 

H13A-C13-H13B 108.0 

C15-C14-C13 112.1(2) 

C15-C14-H14A 109.2 

C13-C14-H14A 109.2 

C15-C14-H14B 109.2 

C13-C14-H14B 109.2 

H14A-C14-H14B 107.9 

C16-C15-C14 124.5(2) 

C16-C15-Ir2 71.79(13) 

C14-C15-Ir2 112.14(16) 

C16-C15-H15A 113.7 

C14-C15-H15A 113.7 

Ir2-C15-H15A 113.7 

C15-C16-C17 123.8(2) 

C15-C16-Ir2 69.54(13) 

C17-C16-Ir2 114.04(15) 

C15-C16-H16A 113.9 

C17-C16-H16A 113.9 

Ir2-C16-H16A 113.9 

C16-C17-C18 112.10(19) 

C16-C17-H17A 109.2 

C18-C17-H17A 109.2 

C16-C17-H17B 109.2 

C18-C17-17B 109.2 

H17A-C17-H17B 107.9 

C11-C18-C17 112.7(2) 

C11-C18-H18A 109.0 

C17-C18-H18A 109.0 

C11-C18-H18B 109.0 

C17-C18-H18B 109.0 

H18A-C18-H18B 107.8 
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3.5.  Table SI-D7. Anisotropic displacement parameters (≈ 2 x 103) for [Ir(1,5-COD)(µ-H)]4.  
The anisotropic displacement factor exponent takes the form: -2∏2[ h2a*2U11 + ... + 2 h k a* b* 
U12 ] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

Ir(1) 8(1)  9(1) 9(1)  -1(1) 0(1)  -1(1) 

Ir(2) 8(1)  9(1) 9(1)  1(1) 1(1)  1(1) 

C(3) 10(1)  14(1) 16(1)  -1(1) 0(1)  -3(1) 

C(4) 13(1)  15(1) 15(1)  -2(1) -5(1)  -1(1) 

C(5) 23(1)  17(1) 13(1)  -2(1) -5(1)  -4(1) 

C(6) 24(1)  18(1) 10(1)  -2(1) 1(1)  -3(1) 

C(7) 14(1)  16(1) 13(1)  -4(1) 4(1)  -1(1) 

C(8) 13(1)  13(1) 16(1)  -4(1) 0(1)  1(1) 

C(9) 19(1)  12(1) 18(1)  -2(1) -2(1)  1(1) 

C(10) 16(1)  14(1) 16(1)  1(1) -2(1)  -5(1) 

C(11) 18(1)  18(1) 10(1)  -2(1) 0(1)  5(1) 

C(12) 17(1)  16(1) 14(1)  2(1) 7(1)  6(1) 

C(13) 15(1)  15(1) 29(1)  5(1) 9(1)  4(1) 

C(14) 10(1)  18(1) 34(1)  4(1) 0(1)  1(1) 

C(15) 12(1)  17(1) 17(1)  1(1) -3(1)  3(1) 

C(16) 15(1)  14(1) 12(1)  4(1) 1(1)  3(1) 

C(17) 15(1)  13(1) 19(1)  2(1) 3(1)  2(1) 

C(18)     18(1)  15(1)         18(1)      -6(1)             0(1)             2(1)
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3.6. Table SI-D8.   Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 
103) for [Ir(1,5-COD)(µ-H)]4. 

                                    x                     y                      z      U(eq) 

H(3A) 2028 2599 8263 16 

H(4A) 2015 1936 9743 17 

H(5A) 1229 3097 10840 21 

H(5B) 1515 2349 11365 21 

H(6A) -162 1986 11411 21 

H(6B) -367 2823 11477 21 

H(7A) -1443 2178 10093 17 

H(8A) -1405 3017 8807 17 

H(9A) 93 3733 9996 20 

H(9B) -379 4015 8902 20 

H(10A) 1005 3632 7945 18 

H(10B) 1583 3805 9035 18 

H(11A) 665 418 5416 18 

H(12A) 2162 1043 5429 19 

H(13A) 3740 535 5823 24 

H(13B) 3163 -187 6146 24 

H(14A) 3943 91 7711 25 

H(14B) 3830 928 7523 25 

H(15A) 2612 668 8897 18 

H(16A) 1314 -139 8823 16 

H(17A) 1295 -1095 7706 19 

H(17B) 2380 -834 7216 19 

H(18A) 1406 -810 5719 20 

H(18B) 346 -654 6343 20 

H(1) -1170(30) 1767(19) 8330(30) 28(9) 

H(2) 900(30) 1148(18) 8670(30) 21(8) 
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"#!!Further Characterization Data for [Ir(1,5-COD)(µ-H)]4 crystal!

Figure SI-D3.  The positive ion ESI MS (counts (y-axis) vs mass-to-charge ratio in Da (x-
axis)) of a black [(1,5-COD)Ir(!-H)]4 crystal dissolved in dichloromethane.  The peak cluster at 
1205.2478 Da is assigned to [C32H51Ir4]+ (Figure S2).  The peak cluster at 1507.3229 Da is 
assigned to the Ir5 species, [C40H66Ir5]+.  The absence of an Ir5 component in XRD or EXAFS 
analyses (see the main text) rules out the hypothesis that Ir5 species are present in the initial 
crystal.  Instead, the evidence provided in the main text argues that the Ir5 species is an artifact of 
the ESI-MS analysis. 
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Figure SI-D4.  The positive ion ESI MS ((counts (y-axis) vs mass-to-charge ratio in Da (x-axis)) 
of a black [Ir(1,5-COD)(!-H)]4 crystal dissolved in dichloromethane (top), and most abundant 
peak at 1205.2478 Da and the simulated isotope peak distribution ((abundance (y-axis) vs mass-
to-charge ratio in Da (x-axis)) for [C32H51Ir4]+ (bottom).  A good match is apparent between the 
experimental (top) and simulated (bottom) spectra. 
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!

Figure SI-D5.  The positive ion ESI MS of a black [Ir(1,5-COD)(µ-H)]4 crystal dissolved in 
dichloromethane (top) with its most abundant peak at 1507.3229 Da, and (bottom) the simulated 
isotope peak distribution for [C40H66Ir5]+.  Again, a good match between the experimental (top) 
and simulated (bottom) spectra is apparent. 

!

!
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Figure SI-D6.  UV-Vis spectrum of crystalline [(1,5-COD)Ir(µ-H)]4 dissolved in THF. 
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!

Figure SI-D7.  Infrared spectrum of a black [(1,5-COD)Ir(µ-H)]4 crystal as a KBr pellet.  The 
observed peaks in cm-1 are: 697.90, 766.66, 815.67, 859.46, 866.74, 994.42, 1072.04, 1146.95, 
1167.72, 1203.64, 1233.36, 1295.73, 1320.87, 1423.13, 1437.37, 1469.38, 2818.14, 2867.42, 
2907.91, 2936.42, 2985.69.  For comparison, the signals in IR spectrum of the [(1,5-COD)Rh(µ-
H)]4 complex (see Duan, Z., Hampden-Smith, M. J.; Sylwester, A. P. Chem. Mater. 1992, 4, 
1146-1148) are observed at: 682.5 cm-1, 753.8 cm-1, 811.8 cm-1, 861.6 cm-1, 880.5 cm-1, 986.0 
cm-1, 1072.0 cm-1, 1149.5 cm-1, 1171.0 cm-1, 1210.5 cm-1, 1234.2 cm-1, 1298.3 cm-1, 1326.1 cm-1, 
1426.7 cm-1, 1447.4 cm-1, 1473.6 cm-1, 2819.9 cm-1, 2867.3 cm-1, 2908.2 cm-1, 2925.5 cm-1, and 
2993.0 cm-1. 

 

!
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!

Figure SI-D8.  1H NMR spectrum of crystalline [Ir(1,5-COD)(µ-H)]4 dissolved in benzene-d6.  
The signal at -2.89 ppm is assigned to the 4 hydrides based on its proper integration as 4 H.  The 
signals at 4.14, 2.09, and 1.37 ppm are assigned to the 1,5-COD olefinic and methylene 
hydrogen atoms, respectively.!!!
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!

Figure SI-D9.! The 13 C NMR spectrum of crystalline [(1,5-COD)Ir(µ-H)]4 dissolved in 
benzene-d6.  The signals at signals at 68.64 and 33.29 ppm are assigned to the 1,5-COD ligands. 
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5. Experimental. 

Instrumentation and Sample Preparation:  

(i) ESI MS: The mass spectra were taken on a 2001 Agilent GC/MS system consisting of a 

5973N Mass Selective Detector, a 6890 Plus Gas Chromatograph, a 7683 Autoinjector and a PC-

based data system.  The source was operated in mixed mode allowing simultaneous electrospray 

and atmospheric pressure chemical ionization.   The data acquisition and peak assignments were 

performed using Agilent Mass Hunter Workstation Data Acquisition software.  Approximately 

0.1 mg of sample was dissolved in 1 mL of dichloromethane and then 0.2 µL of the dissolved 

sample was analyzed by flow injection with HPLC grade methanol as the carrier solvent.  Using 

a fragmentation voltage of 180 V, the positive ion mass spectrum was recorded.   

(ii)  UV-Visible: The spectra were taken at CSU on a Hewlett-Packard 8452A diode-array 

spectrophotometer.  The sample solutions (in THF) for UV-Visible analysis were prepared in air-

free, 3x1x1 cm3 glass UV-Visible cuvettes and loaded under N2 atmosphere either inside the 

drybox or using a Schlenk line.  The blank solution was prepared using only THF.  The sample 

solutions were taken from the reaction vessels (3.0 mL, 4x10-4 M in [Ir]).  The pure [(1,5-

COD)Ir(µ-H)]4 sample solution (4x10-4 in [Ir]) was taken from the pure, dark-green powdered 

[(1,5-COD)Ir(µ-H)]4 synthesized without using any additional free 1,5-COD.  (iii) IR 

spectroscopy:  The spectra was taken on a Nicolet Magna-IR 760 ESP FT-Raman spectrometer 

that uses a 1064nm Nd:YVO4 excitation laser, a XT-KBr beam splitter, a He-Ne laser for sample 

alignment and a InGaAs detector.  Samples were prepared in the drybox as KBr pellets, and 

placed in a ring-shaped steel IR sample holder.  Next, the sample holder was placed in a glass 

vial and sealed under N2.  The sealed glass vial was then placed in a dry-seal vacuum desiccator 

and the desiccator was sealed under N2.  The desiccator with its thereby double-sealed, glass vial 
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sample was then brought out of the drybox and quickly transferred (i.e., with ~1 sec of air 

exposure) into the N2 atmosphere of the IR instrument.  (iv) NMR:  The spectra (1H and 13C) of 

sample solutions in benzene-d6 were taken on a Varian Inova 400 instrument and analyzed with 

MestRec software.  Observed chemical shifts were referenced to the proton impurity resonance 

of benzene-d6 solvent.  Spectral parameters for 1H NMR (25ºC, 400 MHz): Pulse, 31.0 degrees; 

acquisition time, 2.291 s; relaxation delay, 0.0 s; sweep width, 28000 Hz.  Spectral parameters 

for 1H NMR (-60ºC, 400 MHz): Pulse, 34.0 degrees; acquisition time, 2.728 s; relaxation delay, 

1.0 s; sweep width, 24000 Hz.  Spectral parameters for 13C NMR (25ºC, 100 MHz): Pulse, 44.5 

degrees; acquisition time, 0.533 s; relaxation delay, 1.7 s; sweep width, 30000 Hz.   

 

Control Experiment Synthesizing [Rh(1,5-COD)(µ-H)]4 using Muetterties’ procedure:  In 

the drybox, an orange powder of [Rh(1,5-COD)Cl]2 (0.735 g, 1.49 mmol) was dissolved in 50 

mL THF in a 100 mL round-bottomed Schlenk flask equipped with side arm and a 5/8 ×5/16 in., 

Teflon-coated magnetic stirbar.  LiBEt3H (3 mL, 3 mmol) was measured out with a 5 mL syringe 

and transferred into a 50 mL, side-arm-equipped Schlenk flask.  Both flasks were then sealed 

with a septum and brought out of the drybox. The 50 mL flask containing LiBEt3H solution was 

attached to the Schlenk line through its side arm and N2(g) was passed over the flask for 20 min.  

The 100 mL round-bottomed Schlenk flask was attached to the Schlenk line through its septum.  

N2(g) gas was passed through the flask for 5 min as visually monitored via a bubbler connected 

through its side arm.  The flask containing the orange [Rh(1,5-COD)Cl]2 solution was placed in 

an acetone/dry ice bath at -78 °C and stirred for 15 min.  The LiBEt3H solution was then added 

dropwise to the orange [Rh(1,5-COD)Cl]2 solution via a cannula under N2(g). The color of the 

solution changed to dark-brown immediately after the addition of the first few drops of the 
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LiBEt3H solution.  The resulting solution was stirred at -78 °C for an additional 10 min and then 

at room temperature for 4 h.  The solution slowly turned from dark-brown to dark-red after 1 h of 

stirring at room temperature.  The volatiles were then removed under vacuum to yield a black 

residue.  The reaction flask was then brought into the drybox and dissolved in 10 mL hexane.  

Activated silica gel column (height: ~4 cm, diameter: ~2 cm) was prepared in a Pyrex coarse 

fritted flask using hexane as the solvent. The black extract was passed through activated silica 

gel column. The dark-red solution (~150 mL) was collected, placed under vacuum and the 

volatiles removed, all while still at ca. room temperature.  Dark-red crystals were obtained in a 

50% yield. 1H NMR in d8-THF (ppm): 4.6 (singlet, 4H), 2.2 (multiplet, 4H), 1.7 (multiplet, 4H), 

-11.9 (quintet, 1H). 

 

Control Experiment Synthesizing [Rh(1,5-COD)(µ-H)]4 using Bönnemann’s procedure (but 

at a smaller scale, starting with 2 mmol of [Rh(1,5-COD)Cl]2 vs 12.2 mmol of Rh-dimer in 

Bönnemann’s publication):  In the drybox, orange powdered [Rh(1,5-COD)Cl]2 (1.002 g) was 

completely dissolved in 33 mL THF in a 100 mL round-bottomed Schlenk flask equipped with 

side arm and a 5/8 ×5/16 in., Teflon-coated magnetic stirbar.  A 10.0 mL portion of NaBEt3H 

(Aldrich, 1.0 M solution in THF) solution was diluted with THF to 50 mL using a volumetric 

flask to obtain a 0.2 M solution.  Dilute NaBEt3H solution (0.2 M, 19 mL) was then transferred 

into a 50 mL dropping funnel.  The dilute NaBEt3H solution was added dropwise over 80 min to 

the orange [Rh(1,5-COD)Cl]2 solution at room temperature, all while still in the drybox.  The 

color of the solution changed to dark-red immediately following the addition of first few drops of 

NaBEt3H.  The resulting solution was stirred at room temperature under N2 for 8 h.  The volatiles 

were then removed under vacuum leaving a dark-red residue in the flask.  The dark-red residue 
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was dried at 40 ºC for 10 h.  The residue was then extracted with 10 × 10 mL pentane.  The dark-

red extract was filtered through a medium porosity, 10 mL Pyrex fritted filter.  A dark-red 

solution was collected in a 100 mL round bottomed flask.  The volatiles were removed under 

vacuum at room temperature, and black crystals formed.  1H NMR in d8-THF (ppm):  4.577, 

3.561, 2.441, 2.181, 1.731, -12.073. 

Attempted synthesis of [Ir(1,5-COD)(µ-H)]4 using Bönnemann’s Rh-congener procedure:  In 

the drybox, orange powdered [Ir(1,5-COD)Cl]2 (1.00129 g, 1.5 mmol) was completely dissolved 

in 25 mL THF in a 200 mL round-bottomed Schlenk flask equipped with side arm and a 5/8 

×5/16 in., Teflon-coated magnetic stirbar.  A 10.0 mL solution of NaBEt3H (Aldrich, 1.0 M 

solution in THF) was diluted with THF to 50 mL using a volumetric flask.  A portion of this 

diluted NaBEt3H solution (0.2 M, 14 mL) was then transferred into a 25 mL dropping funnel.  

The dilute NaBEt3H solution was added dropwise within 1 h to the orange [Ir(1,5-COD)Cl]2 

solution at room temperature, all while still in the drybox.  The color of the solution changed to 

dark-brown immediately following the addition of first few drops of NaBEt3H.  The resulting 

solution was stirred at room temperature under N2 for 8 h.  The volatiles were then removed 

under vacuum leaving a black residue in the flask.  The black residue was dried at room 

temperature for 2 h and then at 40 ºC for 7 h.  The residue was extracted with 6 × 10 mL pentane.  

The dark-green extract and black solid on the bottom of the glassware were filtered through a 

medium porosity 10 mL Pyrex fritted filter.  A dark-green solution was collected in a 100 mL 

round-bottomed flask.  The volatiles were removed under vacuum at room temperature; a thin 

layer of black powder formed on the walls of the flask.  1H NMR in d8-THF (ppm):  4.184, 

3.560, 2.214, 1.708, 1.538, 1.354, 0.932, 0.087, -3.1333, -7.191. 
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Attempted Synthesis of [Ir(1,5-COD)(µ-H)]4 using Hampden-Smith’s Rh-congener 

procedure:  In the drybox, orange powdered [Ir(1,5-COD)Cl]2 (0.67171 g, 1 mmol) was 

dissolved in 38 mL THF in a 100 mL round-bottomed Schlenk flask equipped with side arm and 

a 5/8 ×5/16 in., Teflon-coated magnetic stirbar.  LiBEt3H (2 mL, 1.0 M, 2 mmol) was measured 

out with a 1 mL syringe and transferred into a 3 mL, side-arm-equipped Schlenk flask.  Both 

flasks were then sealed with septa under N2 and brought out of the drybox.  The 3 mL flask 

containing the LiBEt3H solution was attached to the Schlenk line through its side arm and N2(g) 

was passed over the solution for 20 min.  The 100 mL round-bottomed Schlenk flask was 

attached to a Schlenk line through its septum. Nitrogen gas was passed through the solution for 5 

min as visually monitored using a bubbler connected through a side arm.  The flask containing 

the orange solution of [Ir(1,5-COD)Cl]2 was placed in ice bath at 0 °C and stirred for 15 min.  

The LiBEt3H solution was then added dropwise to the orange [Ir(1,5-COD)Cl]2 solution with a 

cannula under N2(g).  The color of the solution changed to dark-brown upon addition of the first 

few drops of the LiBEt3H solution.  The resulting solution was stirred at room temperature for an 

additional 4.5 h.  The dark-brown solution was then brought into the drybox and concentrated to 

~10 mL under vacuum at room temperature.  An activated silica gel column (height: ~5 cm, 

diameter: ~2 cm) was prepared in a Pyrex, coarse-fritted filter using pentane as the solvent.  The 

dark-brown solution was passed through the activated-silica-gel column.  A dark-green solution 

was collected in a 100 mL round-bottomed flask.  The volatiles were then removed under 

vacuum at room temperature; a thin layer of dark-green powder formed on the walls of the flask.  

1H NMR in d6-benzene (ppm):  4.132, 2.100, 1.500, 1.370, 0.935, 0.412, 0.295, -2.884.   

Attempted synthesis of [(1,5-COD)Ir(µ-H)]4 using Muetterties’ original Rh-congener 

procedure: In a drybox, orange powderd [Ir(1,5-COD)Cl]2 (0.67171 g, 1 mmol) was dissolved in 
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38 mL THF in a 100 mL round-bottomed Schlenk flask equipped with side arm and a 5/8 ×5/16 

in., Teflon-coated magnetic stirbar.  LiBEt3H (2 mL, 2 mmol) was measured out with a 1 mL 

syringe and transferred into a 3 mL side-arm-equipped Schlenk flask.  Both flasks were then 

sealed with septa and brought out of the drybox. The 3 mL flask containing the LiBEt3H solution 

was attached to the Schlenk line through its side arm and N2(g) passed over the solution for 20 

min.  The 100 mL round-bottomed Schlenk flask was attached to a Schlenk line through its 

septum.  Nitrogen gas was passed through the solution for 5 min as visually monitored via a 

bubbler connected through the side arm.  The flask containing the orange solution of [Ir(1,5-

COD)Cl]2 was placed in an acetone/dry ice bath at -76°C and stirred for 15 min.  The LiBEt3H 

solution was then added dropwise to the orange [Ir(1,5-COD)Cl]2 solution via a cannula under 

N2(g).  The color of the solution changed to brown/black upon the addition of the LiBEt3H.  The 

resulting solution was stirred at -78°C for an additional 10 min, and then at room temperature for 

4 h.  The volatiles were then removed under vacuum and the reaction flask was taken into the 

drybox.  The residue was extracted with 6 × 10 mL hexane.  The black extract was concentrated 

to ~10 mL under vacuum at room temperature.  An activated-silica-gel column (height: ~4 cm, 

diameter: ~2 cm) was prepared in a Pyrex coarse fritted filter using hexane as the solvent.  The 

black extract was passed through the activated-silica-gel column using a total of ~450 mL 

hexane.  A dark-green solution (~150 mL) was collected and concentrated to ~10 mL under 

vacuum.  The resulting solution was kept over dry ice at -76°C for 10 h.  The volatiles were then 

removed under vacuum; a small layer of dark-green powder formed on the walls of the flask.  

Yield: ~1% based on the starting [Ir(1,5-COD)Cl]2.  ESI/APCI MS (peak m/z, assigned ion-) in 

toluene using MeOH as a mobile phase: 1221.2411 Da, [(1,5-COD)4Ir4H3O]-; 933.1572 Da, 

[(1,5-COD)4Ir3O2]-. 1H NMR (in C6D6) (δ in ppm, number of H): 4.144, 4; 2.112, 4; -2.882, 1. 13C 
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NMR (in C6D6) (δ in ppm): 68.112, 32.768.  IR (cm-1): 486.18, 592.92, 696.76, 815.49, 858.90, 

887.15, 955.64, 994.30, 1072.16, 1146.70, 1167.61, 1233.69, 1261.98, 1296.02, 1320.26, 

1423.05, 1437.08, 1469.13, 2817.63, 2866.76, 2908.11, 2929.64, 2985.81.  UV-Visible peaks 

(nm): 476, 622. 

Characterization of the dark-green powder of [Ir(1,5-COD)(µ-H)]4 synthesized in ~1% yield 

using Muetterties’original Rh-congener procedure:  

 The ESI-MS and other characterization results which follow were on our earliest, ~1% 

yield sample produced by Mutterties’ Rh-congener procedure.  In that sense, the results which 

follow are not crucial to the main text or the conclusions therein. However, the results below 

have been recorded here for the sake of completeness, and since the unexpected ESI-MS results 

which follow, in which an O atom is seen in the product, may be of some use to others in the 

future.  

(i) ESI MS: The negative-ion ESI MS of the dark-green, powdered, ostensibly [Ir(1,5-

COD)(µ-H)]4 dissolved in toluene, with MeOH used as mobile phase, exhibits a most abundant 

peak located at 1221.2411 Da (Figure SI-D8).  The experimentally observed isotope peak 

distribution pattern matches exactly the simulated isotopic distribution for an [C32H51Ir4O]- anion 

(Figure SI-D8)—note the presence of the O in this formula.  This peak cluster is assigned to 

[(1,5-COD)4Ir4H3O]- anion.  A fragment ion, with a most abundant peak located at 933.1572 Da, 

is also observed in the ESI MS (Figure S9) of this material. This peak cluster at 933.1572 Da was 

assigned to a [(1,5-COD)3Ir3O2]- fragment.  The presence of O in the above mentioned anionic 
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formulas is essential for obtaining a good match between he experimental and simulated mass 

spectra.8   

Attachment of O atom(s) to the observed Ir4 and Ir3 species have, presumably, occurred 

during ionization process and accompanied by loss of one or more hydride(s) from the parent 

molecule.9  Presence of O atom in the molecular formulas of detected [(1,5-COD)4Ir4H3O]- and 

[(1,5-COD)3Ir3O2]- anions raises the question if O is originated from the original sample or if O 

became attached to the detected anions during the ionization, desorption process in the ESI 

MS—that is, is the initial compound from the Mutterties’ procedure [Ir(1,5-COD)(µ-H)]4, or 

conceivably something like [(1,5-COD)4Ir4(µ-H)3(OH)] (with one H+ added to the ESI MS-

detected [(1,5-COD)4Ir4H3O]- anion) or, possibly, some other molecule containing an Ir4 core and 

an O atom?  The presence of O in the original, putative [Ir(1,5-COD)(µ-H)]4, at least in the form 

of OH or CO and within detection limit of the methods used, is ruled out by 1H, 13C NMR and IR 

spectra.10  Despite the fact that the real source of O atom(s) is unknown, the similarity between 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 Attachment of a Cs atom to an Ir4 cluster has been reported in ESI MS analysis of tert-
butylcalix[4]arene(OPr)3(OCH2PPh2)-Ir4(CO)11

1a, but we were not able to find a prior example of attachment of an O 
atom to an Ir4 cluster as a result of ESI-MS.  (a) Silva, N.; Solovyov, A.; Katz, A. Dalton Trans. 2010, 39, 2194-
2197. 

9 The O transferred to the [(1,5-COD)Ir(µ-H)]4 molecule has two possible sources that we can see. (i) First,  
superoxide anion radical, O2

-•, produced from atmospheric O2 is common in APCI sources due to the high electron 
affinity of O2 (EA= 0.448 ± 0.06 eV),2a which in turn means that O2

-• often exists in atmospheric pressure ion 
sources of APCI MS.2b.2c (ii) Alternatively, OH- anion produced from MeOH used as mobile phase is a second, at 
least conceivable source of the observed O atom.  Anion attachment has been observed in the literature when anions 
such as Cl-, NO3

-, NO2
-, acetate, formate or propionate were added to the mobile phase.2b,2d,2e  The use of such anion 

additives, in analysis of compounds that possess low gas-phase acidities or negative electron affinities, have resulted 
in attachment of one or more anion(s) to the parent or fragment molecules. (a) Ervin, K. M.; Anusiewicz, W.; 
Skurski, P.; Simons, J.; Lineberger, W. C. J. Phys. Chem. A 2003, 107, 8521-8529.  (b) Song, L.; Wellman, A. D.; 
Yao, H.; Bartmess, J. E. J. Am. Soc. Mass Spectrom. 2007, 18, 1789-1798.  (c) Kostiainen, R.; Kauppila, T. J. J. 
Chromatogr. A 2009, 1216, 685-699 and references (151-154) therein.  (d) Tannenbaum, H. P.; Roberts, J. D.; 
Dougherty, R. C. Anal. Chem. 1975, 47, 49-54. (e) Pan, X.; Tian, K.; Jones, L. E.; Cobb, G. P. Talanta 2006, 70, 
455-459. 

10 This alternative hypothesis of O present as OH or CO in the original material is ruled out by five lines of 
evidence from 1H, 13C NMR and IR studies: (i) the absence of a signal in –OH region (~3100-3650 cm-1)10 in the IR 
spectrum of powder of ostensibly [(1,5-COD)Ir(µ-H)]4 (Figure SI-D12) provides evidence against the presence of –
OH.  In addition, (ii) signals characteristic of –OH groups of carboxylic acids (~10-12 ppm) or alcohols (R-OH, ~1-
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experimentally recorded peak clusters and the simulated isotope peak distributions provides clear 

evidence for the [C32H51Ir4O]- and [C24H36Ir3O2]- anions.  These O-containing anions observed by 

ESI-MS are, therefore and presumably, formed from [Ir(1,5-COD)(µ-H)]4.  That said, simple 

control experiments, in which authentic [Ir(1,5-COD)(µ-H)]4 was re-examined by ESI-MS and 

under the precise toluene/MeOH conditions used above, can be easily done by anyone interested 

in further insights into the source of O seen in these ESI-MS. These results are, again, included 

here only for the sake of completeness in reporting even our earliest results en route to the final 

synthesis and characterization of [Ir(1,5-COD)(µ-H)]4± reported in the main text. 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 ppm) are absent in the 1H NMR spectrum of the powdered product (Figure SI-D7).  (iii) Integration of 1H NMR 
signals shows the theoretically expected atomic ratio (i.e.: olefinic –H on COD (4.144 ppm): Other –H on COD 
(2.112 ppm): Hydride (-2.882 ppm) = 4:4:1).  (iv) The IR spectrum of [(1,5-COD)Ir(µ-H)]4 complex lacks any peak 
in carbonyl region (1550-1820 cm-1)10, arguing against the presence of –O in the form of a carbonyl, CO, ligand. 
Furthermore, (v) 13C NMR spectrum (Figure SI-D13) rules out presence of aldehyde, ketone, carboxylic acid or ester 
carbonyls confirmed by the absence of peaks between 160-200 ppm region.  (a) Socrates, G. In Infrared and Raman 
Characteristics Group Frequencies: Tables and Charts, 3rd Ed.; John Wiley and Sons, Ltd.: New York, 2006.  (b) 
Coates, J. In Encyclopedia of Analytical Chemistry; Meyers, R. A., Ed.; John Wiley and Sons Ltd.: Chichester, 
2000.  
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Figure SI-D10. The negative ion ESI/APCI MS, of the powder of [(1,5-COD)Ir(µ-H)]4 from  
Mutterties’ procedure, exhibiting a most abundant peak at 1221.2411 Da when in dissolved in 
toluene and using MeOH as a mobile phase (top), and simulated isotope peak distribution for 
[C32H51Ir4O]- anion (bottom).  Note the good match (with a 2.76 ppm mass error as confirmed by 
Agilent MassHunter software) between the experimental (top) and simulated (bottom) spectra. 

!



!

! 307 

!

!

Figure SI-D11.  The negative ion ESI MS of the dark-green powder, of [(1,5-COD)Ir(µ-H)]4 
from Mutterties’ procedure, dissolved in toluene with MeOH as a mobile phase exhibiting a 
abundant peak at 933.1572 Da peak (top), and simulated isotope peak distribution for a 
[C24H36Ir3O2]- anion (bottom).  Note the good fit (i.e.; 1.53 ppm mass error calculated by Agilent 
MassHunter software) between the experimental (top) and simulated (bottom) spectra. 
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(ii) 1H NMR: 1H NMR spectrum of the dark-green powder, of [(1,5-COD)Ir(µ-H)]4 from  
Mutterties’ procedure, (Figure S12) shows a signal at -2.88 ppm attributed to the hydride, and 
signals at 4.14, 2.11, and 1.37 ppm assigned to the olefinic and methylene hydrogen atoms, 
respectively.  The signals at 1.37 ppm and 0.300 ppm are due to silica-gel column employed for 
purification of this low-yield product in the case of the Mutterties procedure.  Integration reveals 
a ratio of peaks of: olefinic –H on COD (4.14 ppm): other (saturated) –H on COD (2.11 ppm): 
hydride (-2.88 ppm) = 4:4:1 (vs expected 4:8:1). 

!

Figure SI-D12. 1H NMR spectrum of dark-green powder, of [(1,5-COD)Ir(µ-H)]4 from  
Mutterties’ procedure, in benzene-d6 and integration values (below the spectrum) of selected 
peaks.   

(iii) 13C NMR:  13C NMR spectrum of dark-green powdered [(1,5-COD)Ir(µ-H)]4 exhibiting 
signals at 68.11 and 32.76 ppm for the COD ligands (Figure S13).   

 

 

Figure SI-D13.  13C NMR spectrum of dark-green powdered [(1,5-COD)Ir(µ-H)]4 from 
Mutterties’ procedure in benzene-d6.   

!

!
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(iv) IR Spectrum: The IR spectrum of dark-green powdered [(1,5-COD)Ir(µ-H)]4 from  
Mutterties’ procedure (Figure SI-D14). 

 

!

Figure SI-D14.  Infrared spectrum of the [(1,5-COD)Ir(µ-H)]4 powder (KBr pellet).  The peaks 
are observed at 486.18 cm-1, 592.92 cm-1, 696.76 cm-1, 815.49 cm-1, 858.90 cm-1, 887.15 cm-1, 
955.64 cm-1, 994.30 cm-1, 1072.16 cm-1, 1146.70 cm-1, 1167.61 cm-1, 1233.69 cm-1, 1261.98 cm-1, 
1296.02 cm-1, 1320.26 cm-1, 1423.05 cm-1, 1437.08 cm-1, 1469.13 cm-1, 2817.63 cm-1, 2866.76 
cm-1, 2908.11 cm-1, 2929.64 cm-1, 2985.81 cm-1.  
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(v) UV-Visible:   

Figure SI-D15. UV-Vis spectra of dark green powder of [Ir(1,5-COD)(µ-H)]4 from  Mutterties’ 
procedure.  
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(vi) XPS:   

            

Figure SI-D16. High resolution XPS spectrum of dark-green powder of [Ir(1,5-COD)(µ-H)]4 
from  Mutterties’ procedure deposited on a C-film (left).  The Ir 4f peaks peaks are located at 
64.2 eV and 61.4 eV.  Comparison of these peak positions to those of commercially available 
Ir(0)n bulk sample (right) (63.9 eV and 60.9 eV) is consistent with the presence of formally Ir(I) 
in [Ir(1,5-COD)(µ-H)]4 (see, however, the XANES results and discussion in the main text).   
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Control Experiments Performed to Determine the Best Conditions to Decrease the Amount of 

1H NMR-Detected, 12.82 ppm Impurity: 

 

Control Experiment #1 - Washing the black powder with larger amount (250 mL) of 

acetone:  In the drybox, orange powdered [Ir(1,5-COD)(µ-Cl)]2  (0.5 mmol) was weighed out 

and then transferred into a 100 mL round-bottomed Schlenk flask equipped with a side arm and a 

5/8 by 5/16 in., Teflon-coated magnetic stirbar.  The flask was sealed, removed from the drybox, 

and placed on a Schlenk line under Ar via its side arm.  Next, 20 mL of room temperature THF 

was added to the flask using a cannula to form an orange solution with some undissolved orange 

powder.  The flask containing the orange solution of [Ir(1,5-COD)(µ-Cl)]2 was placed in an 

acetone/dry ice bath at -78°C and stirred for 15 min.  A 2.5 mL gas-tight syringe was purged 

three times with Ar using a Schlenk line.  The gas-tight syringe was then used to measure out 

LiBEt3H (2.0 mmol).  The LiBEt3H was then added dropwise to the orange [Ir(1,5-COD)(µ-Cl)]2 

solution under an Ar atmosphere with stirring, during which time the solution changed to dark-

brown.  The resulting solution was stirred at -78°C for an additional 10 min and then warmed to 

room temperature.  The solution slowly turned from dark-brown to dark-green within 10 min of 

additional stirring at room temperature.  Next, 1,5-COD (12.3 mL, 25 eq per Ir) was measured 

out with a 20 mL gas-tight syringe purged with Ar, and then added over 5-10 min to the dark-

green solution.  The resulting bright-green solution was stirred at room temperature for 30 min 

and then concentrated to ~5 mL under vacuum at room temperature by attachment to a Schlenk 

line. A visually apparent black powder was formed in the bright-green solution upon evaporation 

of the volatiles under vacuum.  A 15 mL portion of acetone was added using a 20 mL gas-tight 

syringe to the mixture resulting in a black powder plus a bright-green solution.  The black 
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powder was separated from bright-green solution under Ar using a glass-frit-filter Schlenk 

apparatus in which the open end of the glass filter was sealed by a rubber septum.  The black 

powder collected on top of the glass-frit was washed with degassed H2O (5 mL�2) and 

degassed acetone (25 mL�10) using a gas-tight syringe that had been previously purged with 

Ar.  The black powder was then dried overnight under vacuum at room temperature resulting in 

black powder that was transported to the drybox and stored in the glass-frit-filer Schlenk 

apparatus sealed via a rubber septum.  The black powder was then dissolved in benzene-d6 for 1H 

NMR (Figure S1(right), vide supra). 

In a control synthesis, 1 mmol of [(Ir(1,5-COD)(µ-Cl)]2 (i.e., twice the scale of the above 

procedure) was used along with the same procedure as above up to the step of washing the black 

precipitate (except for 2-fold scaling where necessary).  More specifically, the orange powdered 

[Ir(1,5-COD)(µ-H)]4 was dissolved in 40 mL of THF.  The orange solution was mixed with 4.0 

mmol LiBEt3H and then 24.6 mL 1,5-COD (25 eq per Ir) using the same procedure as given 

above.  Then, the black powder was washed with degassed H2O (5 mL�2) and then degassed 

acetone (5 mL�3) (i.e., a total of 15 mL acetone in this synthesis vs 250 mL in the above 

synthesis).  The resultant black powder was then dissolved in benzene-d6 for H NMR (Figure 

S1(left), vide supra). 

 

  Control Experiment #2 - Increasing the stirring time after addition of excess COD: In the 

drybox orange powdered [Ir(1,5-COD)(µ-Cl)]2  (0.5 mmol) was weighed out and then transferred 

into a 100 mL round-bottomd Schlenk flask equipped with a side arm and a 5/8 by 5/16 in., 

Teflon-coated magnetic stirbar.  The flask was sealed, removed from the drybox, and placed on a 

Schlenk line under Ar via its side arm.  Next, 20 mL of room temperature THF was added to the 
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flask using a cannula forming an orange solution with some undissolved orange powder.  The 

flask containing the orange solution of [Ir(1,5-COD)(µ-Cl)]2 was placed in an acetone/dry ice 

bath at -78°C and stirred for 15 min.  A 2.5 mL gas-tight syringe was purged three times with Ar 

using a Schlenk line.  A gas-tight syringe was then used to measure out LiBEt3H (2.0 mmol).  

The LiBEt3H was then added dropwise to the orange [Ir(1,5-COD)(µ-Cl)]2 solution under an Ar 

atmosphere with stirring, during which the original orange color changed to dark-brown.  The 

resulting solution was stirred at -78°C for an additional 10 min and then warmed to room 

temperature.  The solution slowly turned from dark-brown to dark-green within 10 min of 

additional stirring at room temperature.  1,5-COD (12.3 mL, 25 eq per Ir) was measured out with 

a 20 mL gas-tight syringe purged with Ar, and then added over 5-10 min to the dark-green 

solution.  The resulting bright-green solution was stirred at room temperature for 24 h and then 

concentrated to ~5 mL under vacuum at room temperature by attachment to a Schlenk line.  A 

visually apparent black powder was formed in the bright-green solution upon evaporation of the 

volatiles under vacuum.  A 15 mL portion of acetone was added to the mixture using a 20 mL 

gas-tight syringe to obtain a black powder plus a bright-green solution.  The black powder was 

separated from bright-green solution under Ar using a glass-frit-filter in which the open end of 

the glass-frit-filter Schlenk was sealed via a rubber septum.  The black powder collected on top 

of the glass-frit was washed with degassed H2O (5 mL�2) and then degassed acetone (5 mL�3) 

using a gas-tight syringe that had been previously purged with Ar.  The black powder was then 

dried overnight under vacuum at room temperature resulting in black powder that was 

transported to the drybox for storage still in the glass-frit filter apparatus.  The black powder was 

then dissolved in benzene-d6 for H NMR (Figure S2 (right), vide supra). 
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Control Experiment #3 - Passing the concentrated [(Ir(1,5-COD)(µ-H)]4 solution in THF 

through a glass filter (i.e., without addition of 15 mL of acetone): In the drybox, orange 

powdered [Ir(1,5-COD)(µ-Cl)]2  (0.5 mmol) was weighed out and then transferred into a 100 mL 

round-bottomed Schlenk flask equipped with a side arm and a 5/8 by 5/16 in., Teflon-coated 

magnetic stirbar.  The flask was sealed, removed from the drybox, and placed on a Schlenk line 

under Ar via its side arm.  Next, 20 mL of room temperature THF was added to the flask using a 

cannula to form an orange solution with some undissolved orange powder.  The flask containing 

the orange solution of [Ir(1,5-COD)(µ-Cl)]2 was placed in an acetone/dry ice bath at -78°C and 

stirred for 15 min.  A 2.5 mL gas-tight syringe was purged three times with Ar using a Schlenk 

line.  A gas-tight syringe was then used to measure out LiBEt3H (2.0 mmol).  The LiBEt3H was 

then added dropwise to the orange [Ir(1,5-COD)(µ-Cl)]2 solution under an Ar atmosphere with 

stirring, during which the original orange color changed to dark-brown.  The resulting solution 

was stirred at -78°C for an additional 10 min and then warmed to room temperature.  The 

solution slowly turned from dark-brown to dark-green within 10 min of additional stirring at 

room temperature.  Next, 1,5-COD (12.3 mL, 25 eq per Ir) was measured out with a 20 mL gas-

tight syringe purged with Ar, and then added over 5-10 min to the dark-green solution.  The 

resulting bright-green solution was stirred at room temperature for 30 min and then concentrated 

to ~5 mL under vacuum at room temperature by attachment to a Schlenk line.  A visually 

apparent black powder was formed in the bright-green solution upon evaporation of the volatiles 

under vacuum.  The black powder was separated from bright-green solution under Ar using 

aglass-frit-filter Schlenk apparatus in which the open end of the glass-frit-filter was sealed via a 

rubber septum..  The black powder collected on top of the glass-filter was washed with degassed 

H2O (5 mL�2) and degassed acetone (5 mL�3) using a gas-tight syringe that had been 
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previously purged with Ar.  The black powder was then dried overnight under vacuum at room 

temperature resulting in black powder that was transported to the drybox and stored in the glass-

frit-filter apparatus.  The black powder was then dissolved in benzene-d6 for H NMR (Figure S3 

(right), vide supra). 

 

Unsuccessful synthesis of [(1,5-COD)Ir(µ-H)]4 starting with [(1,5-COD)Ir(µ-Cl)]2 and EtLi: 

In the drybox, orange powdered [(1,5-COD)Ir(µ-Cl)]2 (1.0 g, 1.49 mmol) dissolved in 500 mL 

diethylether in a 1000 mL round-bottom Schlenk flask equipped with side arm and a 5/8 ×5/16 

in., Teflon-coated magnetic stirbar. The flask was then sealed with septum and brought out of the 

drybox.  The 1000 mL round-bottomed flask was attached to Schlenk line through its side arm 

and was purged with N2(g) gas for 5 min.  The flask was then placed in an acetone/liquid N2 bath 

at -76°C and stirred for 30 min.  EtLi (5.96 mL, 2.98 mmol) solution was measured out with a 10 

mL syringe, and transferred into a 25 mL side arm equipped Schlenk flask sealed with a septum.  

The flask containing EtLi solution was attached to the Schlenk line through its side arm and 

N2(g) was passed for 5 min.  The EtLi solution was then added dropwise to orange [(1,5-

COD)Ir(µ-Cl)]2 solution via a cannula under N2(g). The color of the solution darkened upon 

addition.  The resulting solution was stirred at -76°C for an additional 3 h and then at room 

temperature for 4 h.  The volatiles were removed under vacuum and the reaction flask was taken 

into the drybox.  The residue was extracted with 6 × 10 mL hexane.  An activated silica gel 

column (height: ~4 cm, diameter: ~2 cm) was prepared in a Pyrex coarse fritted filter funnel 

using hexane solvent.  The black extract was passed through activated silica gel column using 

hexane.  A dark brown solution was collected into a 250 mL round-bottomed flask.  The brown 

color of the filtrate—which is not the expected dark green characteristic of [(1,5-COD)Ir(µ-



!

! 317 

H)]4—confirms that [(1,5-COD)Ir(µ-H)]4 is not the predominant product when EtLi is utilized as 

the reductant for [(1,5-COD)Ir(µ-Cl)]2 and according to the above procedure. 
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CHAPTER VI 

SUMMARY 

This dissertation has focused on synthesis, characterization and catalytic evaluation of 

what is now the currently best-understood Ziegler-type hydrogenation catalyst system, one made 

from [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3.  The critical analysis of extant literature, in Chapter 

II, reveals that the nature of the active catalyst species, and the true nature of the AlEt3-derived 

stabilizer species in Ziegler-type catalyst systems, has a strong dependency on the specific 

variables of the catalyst system.  In Chapter III the high catalytic activity, long lifetime and 

unusually high thermal stability of the Ir(0)n Ziegler nanoparticles formed from [Ir(1,5-COD)(μ-

O2C8H15)]2 plus AlEt3 are demonstrated. The results of this study, then, raises the intriguing 

question of what is the true nature of the apparently unusual, AlEt3-derived stabilizer(s) in 

Ziegler-type nanoparticle catalysts made from [Ir(1,5-COD)(µ-O2C8H15)]2 plus AlEt3?  Chapter 

IV investigates the nature of the AlEt3-derived stabilizer species using spectroscopic techniques 

and catalytic evidence.  The results show that AlEt2(O2C8H15) (Al/Ir=1, 2 and 3) and free AlEt3 

(Al/Ir=3) are present in the catalyst solution made with [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3.  

In addition, experimental results of this study helps to rule out the initial, literature-based 

hypotheses that anionic [AlEt3(O2C8H15)]- stabilizer exists.  Lastly, in Chapter V, a novel [Ir(1,5-

COD)(μ-H)]4 complex is synthesized in 55% recrystallized yield from commercially available 

LiBEt3H and [Ir(1,5COD)(μ-Cl)]2 in the presence of excess 1,5-COD in THF.  The resultant 

[Ir(1,5-COD)(μ-H)]4 was then fully characterized by single-crystal XRD, XAFS, ESI-MS, UV-

visible, IR, and NMR. 

 There are several potential avenues for future research related to the studies presented 

herein.  For example, useful studies could include: (i) further testing of the catalytic activity, 
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lifetime and thermal stability of the commercial Co- and Ni-based industrial Ziegler-type 

hydrogenation catalysts; and (ii) Al XAFS of the stabilizers made in the Ir, Co and Ni catalysts.  

Also of interest would be (iii) ranking the stabilizing abilities of various Al-containing species, in 

combination with the [Ir(1,5-COD)(μ-H)]4 complex, including separately synthesized 

Al(O2C8H15)3, molecular t-butylalumoxanes, commercially available alumoxanes (such as 

methylalumoxane or ethylalumoxane) and Barron’s carboxylatoalumoxanes.  Further studies 

could also include (iv) investigating the true nature of the stabilizer species in the industrial 

Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 plus AlEt3 Ziegler-type catalysts using the methods 

detailed herein.  Last, (v) the synthesis, isolation and characterization of the Co analogue of the 

tetrahydride Ir4 cluster (i.e., [Co(1,5-COD)(μ-H)]4) is another promising area for future research. 
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APPENDIX A 

IRIDIUM ZIEGLER-TYPE HYDROGENATION CATALYSTS MADE FROM [(1,5-

COD)Ir(µ-O2C8H15)]2 AND AlEt3: SPECTROSCOPIC AND KINETIC EVIDENCE FOR THE 

Irn SPECIES PRESENT AND FOR NANOPARTICLES AS THE FASTEST CATALYST 

This dissertation chapter contains a paper published in Inorganic Chemistry 2010, 49, 

8131–8147 that investigates the nature of the transition metal species in the resulting catalyst 

solution in the model [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3 Ziegler-type catalyst system.  The 

results of multiple analytical techniques used in this study show that the catalyst solutions 

contain Ir~4-15 species before the catalyst was used in hydrogenation.  A transformation to Ir(0)`40-

150 nanoclusters is observed in the [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3 catalyst solution under 

catalytic cyclohexene hydrogenation conditions.   

 MALDI MS data was obtained by Isil K. Hamdemir, and interpreted by both Isil K. 

Hamdemir and William M. Alley.  The sample preparation and submission to high resolution and 

bright field TEM, and electron diffraction imaging were performed by Isil K. Hamdemir.  High 

resolution and bright field TEM, and electron diffraction images were obtained by JoAn Hudson 

of Clemson University.  The bright field TEM images were analyzed by Isil K. Hamdemir.  

Interpretation of the electron diffraction image was performed by William M. Alley.  XPS 

spectrum was obtained and analyzed by Isil K. Hamdemir.  The control experiment with isolated 

and redispersed catalyst in cyclohexene was performed by Isil K. Hamdemir.  The [Ir(1,5-

COD)(µ-O2C8H15)]2 used in these studies was synthesized by William M. Alley. The sample 

preparation and submission to Z-contrast STEM imaging were performed by William M. Alley.  

The Z-contrast STEM images were obtained by  collaborator Long Li.  The XAFS data was 
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obtained and interpreted by William M. Alley with assistance from Qi Wang, Anatoly I. Frenkel, 

and Laurent D. Menard.  All other kinetics experiments were performed by William M. Alley. 

 The complete manuscript was written by William M. Alley using an earlier incomplete 

draft written by Isil K. Hamdemir which included a detailed analysis of the work she performed. 

The other coauthors edited and proofread the manuscript.  The manuscript was prepared for 

publication by William M. Alley with moderate editing (43 hours) from Richard G. Finke. The 

above list of contribution from each coauthor to this chapter agrees well with that given in the 

dissertation by William M. Alley.  A supporting information file is available online for the 

interested reader at http://pubs.acs.org. 
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Synopsis 

Ziegler-type hydrogenation catalysts, those made from a group 8–10 transition metal precatalyst 

and an AlR3 cocatalyst, are often used for large scale industrial polymer hydrogenation; note that 

Ziegler-type hydrogenation catalysts are not the same as Ziegler–Natta polymerization catalysts.  

A review of prior studies of hydrogenation catalysts (Alley et al. J. Mol. Catal. A: Chem. 2010, 

315, 1–27) reveals that a ~50 year old problem is identifying the metal species present before, 

during, and after Ziegler-type hydrogenation catalysis, and which species are the kinetically best, 

fastest catalysts—that is, which species are the true hydrogenation catalysts. Also of significant 

interest is whether what we have termed “Ziegler nanoclusters” are present and what their 

relative catalytic activity is.  Reported herein is the characterization of an Ir Ziegler-type 

hydrogenation catalyst, a valuable model (vide infra) for the Co-based industrial Ziegler-type 

hydrogenation catalyst, made from the crystallographically characterized [(1,5-COD)Ir(µ-

O2C8H15)]2  precatalyst plus AlEt3.  Characterization of this Ir model system is accomplished 

before and after catalysis using a battery of physical methods including Z-contrast scanning 

transmission electron microscopy (STEM), high resolution (HR)TEM, and X-ray absorption fine 

structure (XAFS) spectroscopy.  Kinetic studies plus Hg(0) poisoning experiments are then 

employed to probe which species are the fastest catalysts. The main findings herein are that (i) a 

combination of the catalyst precursors [(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3 gives catalytically 

active solutions containing a broad distribution of Irn species ranging from monometallic Ir 

complexes to nanometer scale, noncrystalline Irn nanoclusters (up to Ir~100 by Z-contrast STEM) 

with the estimated mean Ir species being 0.5–0.7 nm, Ir~4–15 clusters considering the similar, but 

not identical results from the different analytical methods; furthermore, (ii) the mean Irn species 

are practically the same regardless of the Al/Ir ratio employed, suggesting that the observed 
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changes in catalytic activity at different Al/Ir ratios are primarily the result of changes in the 

form or function of the Al-derived component (and not due to significant AlEt3-induced changes 

in initial Irn nuclearity).  However, (iii) during hydrogenation, a shift in the population of Ir 

species toward roughly 1.0–1.6 nm,  fcc Ir(0)~40–150, Ziegler nanoclusters occurs with, 

significantly, (iv) a concomitant increase in catalytic activity.  Importantly, and although 

catalysis by discrete subnanometer Ir species is not ruled out by this study, (v) the increases in 

activity with increased nanocluster size, plus Hg(0) poisoning studies, provide the best evidence 

to date that the approximately 1.0–1.6 nm,  fcc Ir(0)~40–150, heterogeneous Ziegler nanoclusters are 

the fastest catalysts in this industrially related catalytic hydrogenation system (and in the 

simplest, Ockham’s Razor interpretation of the data).  In addition, (vi) Ziegler nanoclusters are 

confirmed to be an unusual, hydrocarbon-soluble, highly coordinatively unsaturated, Lewis-acid 

containing, and highly catalytically active type of nanocluster for use in other catalytic 

applications and other areas. 

1. Introduction 

Ziegler-type hydrogenation catalysts prepared, by definition, from a nonzero valent, group 8–10 

transition metal precatalyst combined with an AlR3 cocatalyst, such as triethylaluminum (AlEt3), 

account for much of the worldwide industrial hydrogenation of styrenic block copolymers 

(SBCs) [1].  According to one estimate, hydrogenated SBCs are produced at a rate in excess of 

1.7 × 105 metric tons annually worldwide [2].  The literature concerning Ziegler-type 

hydrogenation catalysts has recently been critically reviewed by us [3], leading to the following 

insights:  (i) Improved fundamental understanding of Ziegler-type hydrogenation catalysts is 

needed so that rationally directed catalyst improvements can be made.  (ii) Multiple variables are 

important in catalyst synthesis, including the specific components used, the cocatalyst/transition 
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metal ratio (Al/M), the amount of H2O present (widely observed to be connected to the amount 

of cocatalyst), and the order of addition of the catalyst components, and (iii) these variables 

influence the nature of the resulting catalysts and their catalytic properties.  Other insights [3] are 

(iv) a central, unanswered question in the area of Ziegler-type industrial hydrogenation catalysts 

is whether the true catalyst is a homogeneous (e.g., single metal organometallic) or 

heterogeneous (e.g., polymetallic M(0)n nanocluster) catalyst [4], and that (v) the most recent, 

especially noteworthy prior work—that of Shmidt and co-workers [5] and Bönnemann and co-

workers [3,6]—is starting to suggest that Ziegler-type hydrogenation catalysts are transition 

metal nanoclusters, what we have coined in our review as “Ziegler nanoclusters” [3].  However, 

(vi) compelling or even highly suggestive evidence concerning the homogeneous versus 

heterogeneous catalysis question for Ziegler-type hydrogenation catalysts has remained elusive 

due to the use of often poorly defined precursors or the lack of application of the best current, 

previously successful approaches for addressing the historically perplexing “is it homogeneous 

or heterogeneous catalysis?” question [7].  Absent in particular are definitive kinetic studies 

connected to knowledge of the dominant form(s) of the transition metal catalyst.  On the basis of 

our review of the literature, we reasoned, therefore, that (vii) the use of a well-characterized 

precatalyst as a model for the industrially favored, but often less well- (or clearly) characterized, 

Co and Ni precatalysts might allow new insights into Ziegler-type hydrogenation catalyst 

systems, and (viii) that our previously successful, multipronged, kinetic-containing approach for 

addressing the homogeneous versus heterogeneous catalysis problem [3,4b,7,8]  should be 

applied to Ziegler-type, industrially relevant hydrogenation catalysts.  In addition, (ix) we 

reasoned that the use of the third row transition metal Ir, where strong Ir–Ir bonds, and for 

example Ir(0)n nanoclusters that typically stable under characterization conditions [7a] might 
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prove very useful—if not necessary—in allowing identification of the dominant species present 

before and after catalysis without significant artifacts due to the use of ex situ or even in situ (as 

opposed to the ideal operando [9]) methods. 

 Herein, we report the characterization of iridium model Ziegler-type hydrogenation 

catalysts made from the crystallographically characterized precatalyst, [(1,5-COD)Ir(µ-

O2C8H15)]2 [2], plus AlEt3 under carefully controlled conditions.  The resultant pre- and 

posthydrogenation catalyst materials are characterized by a variety of analytical techniques 

including Z-contrast scanning transmission electron microscopy (STEM), high resolution 

(HR)TEM, X-ray absorption fine structure (XAFS) spectroscopy, and matrix assisted laser 

desorption ionization mass spectrometry (MALDI MS) [10].   The needed kinetic and Hg(0) 

poisoning studies round out the work reported herein.  The main findings are (i) that combining 

the catalyst precursors [(1,5-COD)Ir(µ-O2C8H15)]2  and AlEt3 gives catalytically active solutions 

containing Irn clusters with a range of sizes from monometallic Ir complexes to nanometer scale, 

noncrystalline Irn nanoclusters with an estimated mean 0.5–0.7 nm, Ir~4–15 cluster (considering the 

similar, but not identical results obtained from the different analytical methods), but (ii) that 

during the hydrogenation process, the development of roughly 1.0–1.6 nm, fcc Ir(0)~40–150 

nanoclusters occurs, and (iii) that kinetic studies indicate, importantly, a concomitant increase in 

catalytic activity as the size of the Irn nanoclusters increases.  In addition, we find (iv) that this 

size–activity correlation, plus Hg(0) poisoning studies, suggest (as the simplest, “Ockham’s 

razor” interpretation of the data) that the fastest, kinetically competent catalysts are the larger, 

roughly 1.0–1.6 nm, Ir(0)~40–150 nanoclusters rather than the monometallic complexes and 0.5–0.7 

nm, Ir~4–15 clusters initially present (the homogeneous catalyst component alone appears to have 

about 5% of the activity of the overall catalyst solution, vide infra). 
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 The results are significant in comparison to even the ~50 year history of Ziegler-type 

hydrogenation catalysts [3] (a) in being the first to show that the transition metal component of 

the initial catalyst formation reaction is, at least for the present Ir model system, a broadly 

disperse mixture ranging from mono-Ir complexes to noncrystalline nanoscale clusters, with the 

estimated mean Irn species being 0.5–0.7 nm, Ir~4 – 15 clusters; (b) in being the first report of the 

explicit application of an established, previously successful, multiprong approach for addressing 

the homogeneous versus heterogeneous catalysis problem in a Ziegler-type hydrogenation 

catalyst system [3,4b,7,8];  and (c) in providing evidence consistent with and highly supportive 

of the now dominant hypothesis for future research in the area, namely, that Ziegler nanoclusters 

appear to be the kinetically dominant catalysts—although we note that the true catalyst in the 

industrially fastest Co/AlR3 system remains to be identified and is under investigation.  As such, 

the findings reported herein are both believed to be important fundamentally and are expected to 

result in practical implications due to the large-scale industrial utilization of Ziegler-type 

hydrogenation catalysts [11,12,13,14]. 

 

2. Results and Discussion 

 A key insight from our review of the literature of Ziegler-type hydrogenation catalyst [4] 

is that their catalytic hydrogenation activity is quite sensitive to a number of variables, including 

the specific conditions and details under which the catalysts are synthesized. Therefore, 

preliminary catalytic studies were carried out in order to determine appropriate, representative 

conditions for reliable and reproducible catalyst preparation and subsequent catalytic use as well 

as to ensure the broadest applicability of the results of the studies which follow. 
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 Catalyst Preparation.  Catalyst samples used in olefin hydrogenation were prepared by 

a combination of [(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3, with Al/Ir ratios of 1.0, 2.0, 3.0, and 5.0.  

We previously reported the control experiment of using [(1,5-COD)Ir(µ-O2C8H15)]2 for catalytic 

cyclohexene hydrogenation without AlEt3 [2].  The resulting black, Ir(0) precipitate formed 

during hydrogenation indicates that the AlEt3 component is crucial for the stability of the catalyst 

(and nanoclusters, vide infra).  A brief summary of those hydrogenation results without AlEt3 is 

provided in the Supporting Information (available online at http://pubs.acs.org) for the interested 

reader. 

 In light of what is known from the literature [, all catalyst solutions were prepared using 

the same materials from the same sources.  Also, the procedures described below and in the 

Experimental Section were followed exactly for repeat kinetic runs.  Specifically, an 18.0 mM 

cyclohexane solution of AlEt3 was rapidly added to a cyclohexane solution of the precatalyst, 9.0 

mM in [Ir], without the presence of the olefinic substrate, which has been reported to influence 

these specific catalyst formation reactions in some cases [3].  The addition of AlEt3 to the 

cyclohexane solution of [(1,5-COD)Ir(µ-O2C8H15)]2 resulted in an immediate change in color 

from orange to tawny yellow, regardless of whether an Al/Ir ratio of 1.0, 2.0, 3.0, or 5.0 was 

used.  Catalyst solutions were then used for the catalytic hydrogenation of the model olefin, 

cyclohexene, as depicted in Scheme A.1. 
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Scheme A.1.  Catalyst Preparation and Hydrogenation of Cyclohexene Plus (shown to the right) 
the Single-Crystal X-Ray Diffraction Determined Structure of the [(1,5-COD)Ir(µ-O2C8H15)]2
Precatalyst (adapted from ref 4, copyright 2009, American Chemical Society). 

Cyclohexene Hydrogenation Curves and Catalyst Aging.  Example cyclohexene 

hydrogenation curves obtained by following H2 pressure loss, and using the [(1,5-COD)Ir(µ-

O2C8H15)]2 plus AlEt3 catalysts with Al/Ir ratios of 1.0, 2.0, and 3.0, are shown in Figure A.1.  In 

each case, the Ir/AlEt3-based catalysts exhibit immediate activity, but the maximum rate is 

attained later as the reaction proceeds, Figure A.1a and b—that is, either more catalyst or a better 

catalyst is being formed as the reaction proceeds. 

A key factor in the preparation of the catalyst is the time elapsed between mixing the 

[(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3 components prior to use of the resultant solution for the 

test reaction of cyclohexene hydrogenation, hereafter referred to as the aging time.  Despite the 

initial reaction between the Ir precatalyst and AlEt3, hydrogenation activity approaches a 

maximum value if the initially prepared catalyst solutions are allowed to age by stirring under an 

atmosphere of N2 for about 8–24 h before being placed under H2 (Figure S2, Supporting 

Information, (available online at http://pubs.acs.org)); maximum rates of aged catalysts are ~2–7-

fold greater than the maximum rates of their nonaged counterparts, depending on Al/Ir.  Without
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aging catalyst solutions before their use, the resulting hydrogenation curves exhibit a more 

distinct transition from a less active—but longer-persisting—initial stage to their maximum rate 

stage, especially at the Al/Ir ratio of 5.0 (Figure S3, Supporting Information (available online at 

http://pubs.acs.org)). However, even 33 h of aging does not completely eliminate the slower 

initial rate (Figure S2b of the Supporting Information (available online at http://pubs.acs.org)). 

The maximum rates are ~2–10 times the initial rates in each case, depending on Al/Ir and 

whether or not catalyst solutions were aged.  A table giving the mean initial and maximum rates 

from multiple runs of both aged and nonaged catalysts samples, and at various Al/Ir ratios, is 

given in the Supporting Information (available online at http://pubs.acs.org).  Clearly, evolution 

of the catalyst is occurring, so that it became important to determine the nature of that evolution, 

vide infra. 
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Figure A.1.  Catalytic cyclohexene hydrogenations using [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3
catalysts that were (a) used immediately after preparation or (b) first aged for nine h with stirring 
under a N2 atmosphere.  Note the ca. 10-fold reduced timescale axis in part b versus that in part 
a—that is, the aged catalyst is about 2- to 7-fold more active, depending on the Al/Ir ratio, on the 
basis of the maximum hydrogenation rate achieved.  In each case, the reaction is fastest just 
before the end of the catalytic run, despite the normal, rate-slowing decrease in the olefin 
concentration and H2 pressure (the max rate is ~2–10 times the initial rate of a given run).  Also,
the effect on the initial rate of the Al/Ir ratio is significantly less when the catalyst solutions are 
aged before use. Reactions were performed in cyclohexane solutions, 0.6 mM in [Ir], initially 
1.65 M in cyclohexene, at 22.0 °C, and stirred at 1000 ± 10 rpm. Additional catalytic 
hydrogenation curves, attained using catalysts with an Al/Ir ratio of 5.0, are shown in Figure S3 
of the Supporting Information (available online at http://pubs.acs.org) of current publication. 

As expected from the literature [3], catalyst activity is dependent on the Al/Ir ratio.  

However, the magnitude of the effect of the Al/Ir ratio on the catalyst activity is diminished 

when the catalysts are aged.  Interestingly, even 33 h of aging of the catalyst solutions does not 
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result in further color change; yet, in all cases, the reaction solutions change color during 

hydrogenation (i.e., under H2 and cyclohexene) to darker brown, results that are consistent with 

further catalyst development to larger Ir(0)n nanoclusters that have been identified by several 

physical methods, vide infra.  Catalyst solutions sometimes give a dark brown/black precipitate 

within a few days of hydrogenation if the catalyst solution is transferred to a N2 atmosphere 

shortly after complete consumption of the substrate.  However, a dark brown/black precipitate 

(Ir(0) by XPS) plus a clear, nearly colorless solution always results if the solutions are left under 

pressurized H2 for extended amounts of time after complete consumption of the cyclohexene 

substrate.  The observations of brown-black catalyst solutions plus metal(0) precipitates are 

strongly suggestive, but by themselves not definitive, evidence for heterogeneous (e.g., 

nanoparticle) catalysis [4b]. Overall, the increased catalytic activity, color changes, and 

occasional bulk Ir(0) precipitate after the reaction require at least one transformation processes 

of the catalyst, or possibly parallel development of different catalysts, during both the aging 

stage and the hydrogenation catalysis.  Nanocluster development is strongly implicated by just 

the color change, although verification of that by several independent methods quickly became 

the next objective.  

 The specific objectives for what follows, then, are (i) to determine the nuclearity of the Irn 

species initially present and (ii) to determine the Irn species present after the catalyst has entered 

the maximum rate regime.  Those studies presented next comprise the first necessary step en 

route (iii) to determining the nature of the active catalyst during both the initial and the 

maximum rate regimes.  An important additional goal is to (iv) determine to what extent the rate 

effect of different Al/Ir ratios is due to AlEt3-induced changes in the initial Ir component of the 

catalyst (e.g., does Al/Ir influence initial Irn nuclearity?) versus changes in just the AlEt3-derived 
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component.  Additional studies concerning the challenging problem of the form(s) of the AlEt3-

derived species at varying Al/Ir ratios and their role in catalysis are necessarily addressed 

elsewhere [13]. 

 Tabulation of the Key Pre- and Posthydrogenation Catalyst Characterization.  It 

will be easier to read what follows if we first summarize in Table A.1 the key results from Z-

contrast STEM, XAFS, and MALDI MS, both pre- and postcatalytic hydrogenation runs.  The 

key findings will be that (i) a combination of the catalyst precursors [(1,5-COD)Ir(µ-O2C8H15)]2 

and AlEt3 gives catalytically active solutions containing a broad range of Irn species spanning 

from monometallic Ir complexes to noncrystalline Irn nanoclusters, with estimated mean 0.5–0.7 

nm Ir~4–15 clusters.  However, (ii) after a catalytic run, the population of Irn shifts considerably 

toward the form of approximately 1.0–1.6 nm, fcc Ir(0)~40–150, Ziegler nanoclusters. 

 Nuclearity of the Irn Species in Aged AlEt3/Ir Catalyst before Hydrogenation:  Z-

contrast Microscopy.  A selected Z-contrast STEM image of a [(1,5-COD)Ir(µ-O2C8H15)]2 plus 

AlEt3, Al/Ir = 2.0, catalyst sample, aged ≥ 2 days and analyzed before hydrogenation, shows 

clusters with a range of diameters, Figure A. 2.  The size distribution histogram, also Figure A.2, 

was constructed by measuring the full width at half-maximum (FWHM) of the intensity profile 

across 600 particles from images at the same levels of magnification and contrast.  Most of the 

clusters counted in such images are subnanometer in scale.  The mean cluster size is 0.5 ± 0.2 nm 

(a cluster 0.5 nm in diameter corresponds approximately to a theoretical tetrahedral Ir4 cluster).  

The smallest Ir species observed appear to be mono-Ir complexes (diameter of Ir in a 

monometallic compound < 0.3 nm) [15], and the histogram tails off toward larger Ir clusters 

present in much lower abundance, the largest observed being 1.4 nm in diameter (Ir~100) 

[16,17,18]. 
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Table A.1.  Observed Irn Cluster Diameters in the [(1,5-COD)IrO2C8H15]2 Catalyst Both Pre- and 
Post-Catalytic Runs by Three Different Analytical Methods. 
 precatalysis postcatalysis 
analytical 
method 

range 
(nm) 

mean 
(nm) 

mean Irn 
nuclearity 

range 
(nm) 

mean 
(nm) 

mean Irn 
nuclearity 

Z-Contrast 
STEM 0.2–1.4 0.5 ± 0.2 Ir~4 0.4–1.9 1.0 ± 0.3 Ir~40 

XAFS NAa 0.5 Ir~4 NAa 1.6 Ir~150 
MALDI 
MS 0.5–1.1 0.7 ± 0.2b Ir~15

b 0.6–1.4 0.8 ± 0.2b Ir~20
b 

a Determination of the range of Irn clusters present is not possible by this method.  b An underestimate due to the 
irregular shape of the peak, which includes a high m/z tail (vide infra).  See the discussion which follows for issues 
with the less reliable MALDI-MS in comparison to the Z-Contrast STEM and XAFS.  
 

 An Ir model Ziegler-type hydrogenation catalyst was chosen for the present studies in 

part because prior TEM experiments and controls have shown that the (third-row metal) Ir 

nanoclusters and precursor compounds generally have greater stability than lighter transition 

metal nanoclusters or precursors in TEM electron beams [19,20,21].  Moreover, it has been 

observed previously that at least first-row metal, Ni Ziegler-type hydrogenation catalysts are 

highly sensitive to sample preparation required by electron microscopy, specifically, the drying 

of catalyst samples on grids [1].  Z-contrast STEM cannot overcome the issue of sample drying 

but does offer the benefit of scanning TEM, so that potential sample damage can be minimized 

by using a small electron probe, low beam current, and minimum time of sample exposure to the 

electron beam [22].  In this case, the sizes and shapes of Ir spots in the images were continually 

monitored during image acquisition; no evidence of artifacts or modification of the sample as a 

result of the microscopy itself was observed, as expected for the third-row Ir system chosen in 

part for such superior TEM properties [7a,16].  In addition, the greater resolving power of the Z-

contrast method over conventional bright field TEM has permitted detection of the subnanometer 

clusters [22,23,24,25], which are important results.  To summarize, Z-contrast microscopy 

indicates that aged catalyst samples before hydrogenation consist of a broad distribution of Irn 
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species ranging from mono-Ir complexes to 1.4 nm, Ir~100 Ziegler nanoclusters.  Significantly, 

subnanometer Irn clusters are the most abundant species present, and the mean Ir cluster diameter 

of 0.5 ± 0.2 nm corresponds to Ir~4 cluster compounds. 

Figure A.2.  Representative Z-contrast STEM image of a [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 
catalyst sample with an Al/Ir ratio of 2.0.  Ir appears as white spots on a dark background.  A 
diameter measurement of 600 clusters gives an overall distribution ranging from monometallic 
Ir complexes to 1.4 nm, Ir~100, clusters and a mean cluster diameter of 0.5 nm (Ir~4) ± 0.2 nm. 

Identification of the Ir-Containing Species in Aged AlEt3/Ir Catalyst before 

Hydrogenation:  XAFS Spectroscopy.  XAFS data were first acquired for four reference 

samples: (i) an Ir black standard, (ii) HPO4-stabilized fcc Ir(0)n nanoclusters [26], (iii) Ir4(CO)12, 

and (iv) the precatalyst [(1,5-COD)Ir(µ-O2C8H15)]2.  XAFS data were then acquired for seven 

different samples of the initial, [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst solutions aged " 2 

days, and before their use in hydrogenation: catalysts prepared with Al/Ir ratios of 0.5, 1.0, 1.5, 

2.0, 2.5, 3.0, and 5.0.  Six main results from the XAFS spectroscopy of aged catalyst samples 

before hydrogenation are that (i) all samples lack longer-range coordination shells (in r-space) 

that are characteristic of ordered nanoclusters.  (ii) Spectra from the Al/Ir # 1.0 samples are 
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satisfactorily fit using a composite model created from an Ir–first-nearest-neighbor (hereafter 

1NN) path from [(1,5-COD)Ir(µ-O2C8H15)]2 and the Ir–Ir first-nearest-neighbor (1NN) single 

scattering path (hereafter SS1) from bulk Ir, but (iii) modeling the Al/Ir ≥ 1.5 samples requires 

incorporating the contribution of the Ir–Al path, an important finding.  In addition, (iv) small 

Ir–Ir 1NN coordination numbers (N; roughly in the range of 2–3, vide infra) correspond to 

subnanometer Ir cluster sizes.  (v) Ir–Ir 1NN distances longer than expected for bulk Ir or 

ordered Ir nanoclusters indicate valence-electron sharing with ligands, consistent with small, 

ligated molecular Ir clusters, and (vi) XANES spectra of the Ir catalyst samples differ from bulk 

Ir but are similar to the precursor [(1,5-COD)Ir(µ-O2C8H15)]2 and Ir4(CO)12, suggesting formally 

Ir(I)n or Ir(0)n molecular clusters of few Ir atoms ligated by relatively strongly electron-

withdrawing groups.  The only sources of ligands in the system other than the weakly 

coordinating cyclohexane solvent are AlEt3, C7H15CO2
–, and possibly Ir–H (given that the 1,5-

COD is hydrogenated to cyclooctane in the reaction), so that the list of possible, dominant 

species present that could be ligands is actually rather short, primarily, AlEt3, C7H15CO2AlEt3
–, 

and possibly Ir–H–AlEt3 (among a few others such as any Al–O–Al containing alumoxanes 

formed by trace water present, water that our experimental efforts and conditions have strived to 

minimize; see the Experimental Section).  In short, the XAFS studies reveal that initial catalyst 

solutions lack ordered Ir(0)n nanoclusters and contain, on average, molecular Ir~4, 0.5 nm 

clusters ligated by electron-withdrawing groups that are likely derived from the short list of 

ligands listed above. 

 Fourier transform (FT) magnitudes of the background-subtracted XAFS signals for the 

Al/Ir-dependent sample series are shown in Figure A.3.  FT magnitude data of selected 

reference samples and a catalyst sample with an Al/Ir ratio of 2.0 are shown together in Figure 
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A.4.  For single scattering paths (SS1, SS2, etc.), the positions of isolated peaks in FT plots 

correspond to the distance between the absorber and its neighbors, albeit shorter than the actual 

distances due to the photoelectron phase shifts [27,28,29].  The first important observation is 

that in the FT magnitude sample spectra, Figure A.3, there is a lack of distinct peaks in the 3–6 

Å range expected for SS2–5 paths, whereas such peaks are visible in the FT magnitude plots of 

Ir black, Figure A.4 and Figure S10, Supporting Information (available online at 

http://pubs.acs.org).  The lack of these peaks indicates that before hydrogenation there is not an 

appreciable amount of Ir nanoclusters with ordered, periodic, atomic structures in the catalyst.  

Restated, the aged catalyst samples before hydrogenation lack the XAFS longer r-range 

contribution expected if ordered nanoclusters were present.  Hence, the relatively few 

nanometer-sized clusters that are present before hydrogenation according to Z-contrast STEM 

(as well as bright field TEM; see the Supporting Information (available online at 

http://pubs.acs.org)) appear to have significantly disordered atomic structures (this finding and 

its significance are discussed in further detail below) [30,31,32,33,34,35,36,37]. 
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Figure A.3.  A k3-weighted FT magnitude plot of a series of catalyst samples made from the 
combination of [(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3 (Al/Ir = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0) 
before their use in hydrogenation.  The lack of peaks in the 3–6 Å region indicates the absence 
of crystalline Ir particles.  The large peak on the left at ~1.8 Å represents Ir–C and/or Ir–O 
backscattering contributions (hereafter, “Ir–X”, since XAFS cannot distinguish between C and 
O backscatterers in catalyst samples, vide infra).  The shoulder at ~2.2 Å on the right of the 
larger, Ir–X peak that grows in with increasing Al/Ir ratio is well-modeled by single scattering 
due to Al atoms.  The narrow peak at ~2.7 Å represents single scattering from the first Ir–Ir 
nearest neighbor shell.  R values are uncorrected for photoelectron phase shifts. 

Figure A.4.  A plot of FT magnitude of the k3-weighted XAFS data for Ir black (scaled by $ for 
ease of comparison), Ir4(CO)12 (scaled by % for ease of comparison), [(1,5-COD)Ir(µ-
O2C8H15)]2, and a catalyst sample, with an Al/Ir of 2.0, for comparison.  The peaks in the 3–6 Å 
range, seen here only in the spectrum of Ir black, are diagnostic of an ordered Ir phase. 

Fitting Results for Catalyst Samples before Hydrogenation.  XAFS spectra of Ir black, 

HPO4-stabilized fcc Ir(0) nanoclusters, Ir4(CO)12, and [(1,5-COD)Ir(µ-O2C8H15)]2 were fit using 
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theoretical models based on the crystal structures of bulk fcc Ir, Ir4(CO)12 [38], and [(1,5-

COD)Ir(µ-O2C8H15)]2, respectively [2].  Fits of these standards and reference compounds are 

shown in Figures S10–S14, Supporting Information (available online at http://pubs.acs.org), and 

the fitting results are summarized in Tables S2–S5, Supporting Information, for the interested 

reader.  The peaks in the spectra of Ir4(CO)12, and [(1,5-COD)Ir(µ-O2C8H15)]2 at about 1.6 Å and 

1.8 Å, Figure A.4, correspond to Ir–C and Ir–X first nearest neighbors (again abbreviated 1NN), 

respectively (X represents both C and O atoms, which were nondistinguishable by XAFS in 

[(1,5-COD)Ir(µ-O2C8H15)]2, Figure S13, Supporting Information (available online at 

http://pubs.acs.org), and in the catalyst samples).  The peaks in the spectra of Ir black, HPO4-

stabilized Ir nanoclusters and Ir4(CO)12 at about 2.5 Å correspond to Ir–Ir 1NN positions.  

Comparing the spectra in Figures E.3 and E.4, the peaks in the catalyst samples near 1.8 Å and 

2.7 Å correspond, roughly, to scattering contributions from Ir–X and Ir–Ir, respectively.  

Therefore, scattering paths for Ir–X and Ir–Ir were used to model the catalyst sample data. 

 Fits of the catalyst sample data using a model created from the Ir–X path in [(1,5-

COD)Ir(µ-O2C8H15)]2 and the Ir–Ir SS1 path in Ir black gave physically reasonable results only 

for the Al/Ir = 0.5 and 1.0 samples.  For the Al/Ir ≥ 1.5 samples, the model was adapted by 

taking into account backscattering by Al atoms in close proximity to the absorbing Ir.  This 

modified model better accounted for the shoulder on the right side of the leftmost (Ir–X) peak 

that grows in with the 1.5 and higher Al/Ir ratio samples, Figure A.3.  However, attempts to use 

the model incorporating Al to fit the Al/Ir = 0.5 and 1.0 sample data gave unreasonable results.  

Fits to the Al/Ir = 1.0 and 2.0 sample data using the model that neglects Al and the model that 

incorporates Al, respectively, are shown in Figure A.5.  The fitting results for all samples are 
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summarized in Table A.2.  Additional spectra of the data and theoretical fits are shown in 

Figures S15–S21, Supporting Information (available online at http://pubs.acs.org). 

Figure A.5.  FT magnitude spectra and fits for the Al/Ir = 1.0 (a) and 2.0 (b) catalysts.  The 
model used to fit the Al/Ir = 1.0 sample was created from the Ir–X path in [(1,5-COD)Ir(µ-
O2C8H15)]2 and the Ir–Ir SS1 path in Ir black.  The Al/Ir = 2.0 sample was fit by the same model 
but modified to account for backscattering by Al atoms in close proximity to the absorbing Ir. 
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Table A.2.  Fitting Results for the [(1,5-COD)Ir(µ-O2C8H15)]2 Plus AlEt3 Catalyst Samples 
before Their Use in Hydrogenation. 
sample 
Al/Ir 

Ir 
black 0.5 1.0 1.5 2.0 2.5 3.0 5.0 

NIr–Ir 12c 1.8 ± 0.4 2.8 ± 0.6 2.1 ± 0.6 3 ± 1 3 ± 1 3 ± 1 3 ± 3 
NIr–X  6.0 ± 0.6 5.8 ± 0.6 5.4 ± 0.8 5.0 ± 0.7 4.7 ± 0.8 4.8 ± 0.8 5 ± 1 
NIr–Al    1.0 ± 0.9 1.7 ± 0.8 2 ± 1 3 ± 1 3 ± 2 

RIr–Ir (Å)a 2.711± 
0.001 

2.799 ± 
0.005 

2.797 ± 
0.005 

2.803 ± 
0.007 

2.826 ± 
0.007 

2.84 ± 
0.01 

2.849 ± 
0.008 

2.86 ± 
0.02 

RIr–X (Å)a  2.149 ± 
0.007 

2.162 ± 
0.008 

2.18 ± 
0.01 

2.19 ± 
0.01 

2.19 ± 
0.02 

2.19 ± 
0.01 

2.20 ± 
0.03 

RIr–Al (Å)a    2.49 ± 
0.02 

2.51 ± 
0.01 

2.51 ± 
0.01 

2.51 ± 
0.01 2.5045c 

σ2
Ir–Ir (Å2)b 3.5 ± 

0.1 5.2 ± 0.7 7.0 ± 0.7 7 ± 1 10 ± 1 10 ± 2 10 ± 2 11 ± 4 

σ2
Ir–X (Å2)b  6.4 ± 0.9 8 ± 1 7 ± 1 7 ± 1 8 ± 2 8 ± 1 9 ± 3 

σ2
Ir–Al (Å2)b    7 ± 5 8 ± 3 8 ± 2 8 ± 3 8 ± 4 

a R is the experimentally determined interatomic distance for the Ir–X, Ir–Al, and Ir–Ir single 
scattering paths.  b σ2, the Debye-Waller factor, is the mean square variation in R due to static 
and dynamic disorder.  The values shown are × 103.  c For this sample only, this parameter was 
defined to be the value shown and not varied in the fit. 
 

 From the fit of the Al/Ir = 2.0 sample data, the 1NN Ir–Ir N of 3 ± 1 indicates an Ir~4 

cluster, which, in turn, corresponds to an Ir cluster roughly 0.5 nm in diameter.  Results for 

catalyst samples at all AlEt3/Ir ratios tested are similar, giving subnanometer, Ir~4, clusters.  

Significantly, XAFS and Z-contrast microscopy fortify one another in finding the same mean 

cluster size within experimental error.  Recall that Z-contrast STEM also reveals a broad 

dispersity of Ir cluster sizes in catalyst samples before hydrogenation.  XAFS, on the other 

hand, gives ensemble-average results for local structure; it does not provide information 

regarding distribution of Ir cluster sizes [35].  In light of the larger clusters observed by electron 

microscopy (the tail in the histogram of Figure A.2 showing some Irn clusters with nanometer 

scale diameters), possible explanations for the XAFS results are that the nanoscale Ir clusters 

could (i) have considerably disordered structures [31], (ii) actually be groups of tightly 

associated Ir~4 clusters that also exist in solution [36,37], or (iii) simply be artifacts brought 

about by the ex situ technique itself, with the ex situ observed clusters not existing in the 
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solutions used in cyclohexene hydrogenation and examined by XAFS spectroscopy.  However, 

the similar Ir cluster sizes and distributions obtained by both Z-contrast STEM and MALDI MS 

(vide infra), and the XAFS-determined Ir–Ir bond lengths and bond length disorders larger than 

those observed in bulk Ir (see Table A.2, and the text below), make the presence of highly 

disordered nanoscale Ir clusters—along with a majority of subnanometer, Ir~4 clusters—a 

preferred explanation.  The key finding by XAFS, then, is that initial, precatalytic 

hydrogenation solutions are composed, on average, of Ir~4 , 0.5 nm clusters. 

 Significantly, the R values for Ir–Ir 1NNs in all samples are larger than the theoretical 

values from bulk Ir, Table A.2.  If transition metal nanoclusters were the dominant species 

present, then the M–M distances should have been smaller (and as we will see 

posthydrogenation, vide infra), distances contracted in order to minimize the surface free energy 

(the surface free energy of small metal clusters is elevated due to the unsatisfied bonding 

requirements and too-low coordination number of the surface metals) [31,39].  However, the 

observed, longer Ir–Ir distances are fully consistent with subnanometer, Ir~4 cluster compounds 

[36,40,41,42] coordinated to any available ligands such as those listed earlier, namely, AlEt3, 

C7H15CO2AlEt3
–, and possibly Ir–H–AlEt3.  The possibility of Ir–Al bonding (or possibly Ir–X–

Al, X = H or Et, bonding) is consistent with the XAFS data; fits of samples with Al/Ir ratios 

from 1.5–3.0 reveal Al at a distance from Ir of 2.5 Å, which is within the range found for γ-

Al2O3-supported Ir4 and Ir6 clusters [43]. Additionally, the Ir to Al atom-pair distance of ca. 2.5 

Å obtained by XAFS is close to crystallographically determined distances 2.456(1) Å and 

2.459(1) Å in (Cp*(PMe3)IrAlEt)2, which possesses an Ir–Al–Ir bridging motif but is shorter 

than the Ir–H–Al bond distance of 2.684(2) in Cp*(PMe3)Ir(H)2AlPh3 [44].  These results are of 
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considerable significance in addressing likely ligands derived from the AlEt3 and C7H15CO2
– 

components of the catalyst, and under the reaction conditions [13].  

 The three main results from fitting the XAFS spectra, then, are (i) samples with Al/Ir 

ratios ≥ 1.5 are best fit using a model incorporating backscattering from Al; (ii) low Ir–Ir first-

nearest neighbor coordination numbers imply, on average, Ir~4, 0.5 nm clusters; (iii) Ir–Ir 

distances longer than expected for bulk Ir were found, consistent with Ir ligated by the ligands 

present in species such as Ir–X–Al or possible direct Ir–Al interaction.  Significantly, the Z-

contrast STEM and XAFS results are consistent, giving Ir~4 , 0.5 nm clusters as the mean Irn 

clusters.  The identical mean cluster size results from Z-contrast STEM and XAFS argue 

strongly against artifacts introduced by either method, including the ex situ STEM, which in 

turn suggests that the Ir~4 , 0.5 nm clusters are, as the Z-contrast STEM reveals, a major part of 

a broad distribution of Irn clusters. 

 The X-ray absorption near-edge structure (XANES) was used to probe the oxidation 

state of the initial catalyst solutions.  The XANES regions of Ir black, Ir4(CO)12, and [(1,5-

COD)Ir(µ-O2C8H15)]2 are shown in Figure A.6 alongside those for the Al/Ir = 1.0 and 2.0 

catalyst samples before hydrogenation.  The XANES spectra of the catalyst samples are similar 

to the [(1,5-COD)Ir(I)(µ-O2C8H15)]2 precursor and Ir(0)4(CO)12 standard (formally Ir(I) and 

Ir(0), respectively) but unlike the Ir(0) black standard.  This is the case regardless of the Al/Ir 

ratio of the sample and suggests that the Ir species present are formally Ir(I) or Ir(0) ligated by 

the previously listed ligand possibilities. 
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Figure A.6.  XANES portions of the normalized µ(E) spectra for Ir black (black line), Ir4(CO)12 
(red), the [(1,5-COD)Ir(µ-O2C8H15)]2 precatalyst (green), and the AlEt3/Ir = 1.0 and 2.0 samples 
before hydrogenation (blue and light blue).  The catalyst samples before hydrogenation are 
comparable to the formally Ir(I) and Ir(0) [(1,5-COD)Ir(µ-O2C8H15)]2 precatalyst and Ir4(CO)12 
standard, respectively. 

A sample of the [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst, Al/Ir of 2.0, was 

analyzed by XPS to distinguish whether the Ir species in the catalyst before hydrogenation are 

Ir(I) or Ir(0); experimental XPS spectra and literature reference data are given in the Supporting 

Information (available online at http://pubs.acs.org).  The Ir 4f peak positions at 64.30 and 61.33 

eV in the experimental XPS spectrum can be attributed to Ir(I) [45] but are also consistent with 

(i.e., indistinguishable from) Ir(0)n Ziegler nanoclusters exhibiting a final-state relaxation effect 

[46,47,48,49,50,51,52,53].  Therefore, both XANES and XPS results of catalyst samples before 

their use in hydrogenation are consistent with Ir(I) species as well as Ir(0)n Ziegler nanoclusters 

(or both), but cannot unambiguously distinguish these. 

To summarize the observations from XAFS spectroscopy on the aged catalyst samples, 

but before hydrogenation, (i) longer range scattering peaks, expected for ordered nanoclusters, 

are not seen; (ii) successful fitting of the Al/Ir " 1.5 catalyst sample spectra requires a model 

that includes the backscattering from Al atoms in close proximity to Ir atoms; (iii) small Ir–Ir N 
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values are obtained that correspond to subnanometer cluster sizes; (iv) Ir–Ir bonds longer than 

expected for bulk or Ir(0)n nanoclusters, but consistent with ligated Ir~4 subnanometer clusters, 

are seen; (v) XANES spectra are different than those of bulk Ir but are comparable to the [(1,5-

COD)Ir(µ-O2C8H15)]2 precursor and Ir4(CO)12.  These observations suggest that the initial 

catalyst samples, regardless of the Al/Ir ratio, are composed on average of Ir(I) or Ir(0) 

subnanometer, molecular Ir~4 clusters shielded from agglomeration by coordinated ligands 

[54,55,56,57,58,59].  The observations made here by XAFS on catalyst solutions are also fully 

consistent with and supported by the results from (the ex situ, solid state) Z-contrast STEM, 

which indicates that catalyst samples before hydrogenation are composed of a broad range of 

cluster sizes from mono-Ir molecules to nanometer scale noncrystalline Irn clusters, the most 

abundant being subnanometer Ir clusters, and the mean clusters being Ir~4, 0.5 nm.  The use of 

these complementary methods and their agreement is important; the results argue strongly 

against significant sample preparation and method-specific (and ex situ versus in situ) artifacts.  

The results confirm our design criteria of using the more-stable, third-row Ir precatalyst (i.e., 

with its stronger Ir–Ir bonds and resultant greater cluster and nanocluster stability) as a needed, 

but previously little investigated, Ziegler-type hydrogenation catalyst model system. 

 Nuclearity of the Irn Species in AlEt3/Ir Catalyst before Hydrogenation:  MALDI 

MS.  Despite the agreement between the Z-contrast STEM and XAFS results, an additional 

method was used in order to further probe the Irn cluster size and distribution—as well as to 

“calibrate” that matrix assisted laser desorption ionization mass spectrometry (MALDI MS) 

method in this instance; is this ex situ method reliable? Initial catalyst samples, before their use 

in hydrogenation but without aging, were analyzed.  The experimental methods are discussed in 

greater detail in the Supporting Information (available online at http://pubs.acs.org)  for the 
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interested reader, and spectra are shown there as well.  Briefly, the ex situ MALDI MS on dried, 

solid samples reveals a broad Ir-containing peak centered at about 2800 m/z.  The FWHM 

ranges from 1000–5000 m/z, and the peak tails off towards the higher m/z values.  With the 

necessary assumptions that the broad peak observed in the full mass spectrum is composed of 

only Ir atoms [60,61,62] and that the ionic charges are +1 [60,62,63], the peak maximum 

corresponds to Ir~15, 0.7-nm-diameter clusters [18].  Likewise, the FWHM of the peak 

corresponds to Ir~5–26, 0.5–0.9-nm-diameter clusters (used to estimate the mean Irn cluster size at 

0.7 ± 0.2 nm), and the high m/z tail gives indication of larger clusters present in relatively few 

numbers.  The high m/z tail at one-fourth maximum intensity of the broad peak is positioned at 

6000 m/z, which corresponds to Ir~30, 0.9–1.0 nm clusters.  The high m/z region of the spectrum 

continues to tail off indicating the presence of Ir nanoclusters, but in a much lower abundance—

for example, Ir~50, 1.1 nm-diameter-clusters at one-eighth the maximum peak intensity (and used 

as the maximum range limit reported in Table A.1). 

 The quite different MALDI MS method proved useful in that it provides independent 

evidence for similar (albeit not identical) sizes and size distributions of Irn clusters.  The 

difference between the estimated mean Ir~15, 0.7 nm clusters from MALDI MS and the mean 

Ir~4, 0.5 nm clusters indicated by both Z-contrast STEM and XAFS may be the result of (i) 

factors due to the differences of the methods, (ii) imperfection in the assumptions necessary for 

this interpretation of MALDI MS, (iii) the fact that the sample analyzed by MALDI MS was not 

aged whereas the Z-contrast STEM and XAFS samples were aged, or (iv) some combination 

thereof.  Regardless, the significance here is that MALDI MS confirms, in general, the results of 

Z-contrast STEM by giving independent evidence that the [(1,5-COD)Ir(µ-O2C8H15)]2 plus 

AlEt3 catalyst sample, with an Al/Ir ratio of 2.0, before hydrogenation, is composed of a broad 
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distribution of Irn clusters, which are primarily subnanometer Irn clusters, but include, to a lesser 

extent, Irn nanoclusters.  The generally similar results argue against significant artifacts caused 

by these three very different physical methods.  The main point is that in catalyst samples 

before hydrogenation there is a distribution in Irn species centered on subnanometer Irn clusters, 

and that the estimated mean cluster sizes are 0.5–0.7 nm, Ir~4–15. 

Identification of the Ir-Containing Species in the AlEt3/Ir Catalyst after 

Hydrogenation:  Z-Contrast and HRTEM Microscopy.  The size and size distribution of Ir 

clusters, in a [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst sample with an Al/Ir ratio of 2.0 and 

after its use for cyclohexene hydrogenation, were analyzed using Z-contrast microscopy.  

Sample Z-contrast images and a histogram are shown in Figure A.7.  Measurement of 635 Ir 

clusters resulted in a mean diameter of 1.0 ± 0.3 nm, with observed Irn cluster diameters 

spanning from 0.4 to 1.9 nm (two additional Ir nanoclusters, with larger diameters of 3.1 and 

3.8 nm, were also observed). 



 

 

340 

 

 

Figure A.7.  Example Z-contrast images of the [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir = 
2.0, catalyst sample after hydrogenation.  The Ir cluster histogram from the diameter 
measurement of 635 Ir clusters is also shown. The mean Ir cluster diameter is 1.0 ± 0.3 nm, 
which corresponds to Ir(0)~40 clusters. Two larger Ir nanoclusters with diameters of 3.1 and 3.8 
nm are also observed, presumably the result of well-precedented nanocluster aggregation 
processes [64,65]. 
 

 Also obtained were HRTEM images of [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst 

samples after hydrogenation, with Al/Ir ratios of 1.0, 2.0, and 5.0 [66].  An example HRTEM 

image of the sample with an Al/Ir ratio of 2.0, Figure A.8, shows distinct lattice fringes in the Ir 

particles.  This result is general to all Al/Ir ratios tested; crystalline Ir Ziegler nanoclusters are 

observed in all HRTEM images obtained for the samples with Al/Ir ratios of 1.0, 2.0, and 5.0 

(other images are shown in Figures S27–S30, Supporting Information (available online at 

http://pubs.acs.org)).  Electron diffraction shows that these Ziegler nanoclusters after 

hydrogenation are fcc Ir, at least under the conditions of the electron beam (Figure S31, 

Supporting Information (available online at http://pubs.acs.org)).  The key result, then, of the 

combined Z-contrast and HRTEM microscopy is that the mean Irn clusters postcatalysis are 
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larger, crystalline 1.0 ± 0.3 nm, Ir~40 nanoclusters. 

 

  
Figure A.8. An example HRTEM image of the [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst, 
Al/Ir is 2.0, after its use in cyclohexene hydrogenation (scale bar is 2 nm).  The distinct lattice 
fringes show that the Ir particles after use in hydrogenation possess a crystalline structure under 
the HRTEM observation conditions.  Crystalline particles are observed for all Al/Ir values 
tested, 1.0, 2.0, and 5.0. 
 

 Identification of the Ir-Containing Species in the AlEt3/Ir Catalyst after 

Hydrogenation:  XAFS Spectroscopy.  A of the [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 

catalyst, with an Al/Ir ratio of 1.0, after its use in cyclohexene hydrogenation was analyzed by 

XAFS spectroscopy.  Peaks in the 3–6 Å range of the FT magnitude spectrum reveal that the 

sample is composed of Irn particles with ordered internal atomic structures, Figure A.9, 

consistent with the microscopy results (vide supra).  A fit of the Fourier transform magnitude 

spectrum, also shown in Figure A.9, gives an Ir–Ir 1NN coordination of 9.0 ± 0.4.  The mean 

coordination number, obtained from fitting the Ir–Ir 1NN contribution, was used to estimate 

cluster sizes using a theoretical mean coordination number–particle diameter correlation curve 

[16,27,67] (Supporting Information, available online at http://pubs.acs.org).  An Ir–Ir 1NN 

coordination of 9.0 ± 0.4 according to XAFS corresponds to, on average, 1.6 nm, crystalline fcc 
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Ir(0)~150 clusters.  Additionally, the Ir–Ir 1NN distance of 2.688 ± 0.001 Å is now shorter than 

that in bulk Ir, as one would expect for nanometer-sized, contracted surface clusters.  Full fitting 

results are given in Table S.8, Supporting Information (available online at http://pubs.acs.org). 

The XANES portion of the sample spectrum is essentially identical to the XANES 

spectra of Ir black, Figure A.10.  This shows convincingly that the oxidation state of the Ir in 

the sample is Ir(0).  XPS confirms the predominance of Ir(0) in a catalyst sample with an Al/Ir 

ratio of 2.0, after hydrogenation.  Additionally, the XANES result, especially with corroboration 

by XPS independently performed on a different sample (Supporting Information (available 

online at http://pubs.acs.org)), shows definitively that the sample analyzed by XANES and 

XAFS was not contaminated by atmospheric oxygen.  In short, the XAFS plus XANES and 

XPS of post hydrogenation catalyst samples shows the presence of, on avergage, approximately

1.6 nm, fcc Ir(0)~150, nanoparticles. 

Figure A.9. Fourier transform (FT) magnitudes of the data (black curve) and fit (red) of a 
powder sample of the Al/Ir = 1.0 catalyst after its use in hydrogenation.  The longer range 
scattering peaks in the 3–6 Å range are expected for Ir nanoclusters with ordered internal 
structures.  The Ir–Ir 1NN coordination number obtained from the fit, 9.0 ± 0.4, corresponds to, 
on average, approximately 1.6 nm, crystalline fcc Ir(0)~150 clusters, according to XAFS.  The FT 
magnitude spectrum of the Ir black reference, scaled by one-fourth, is shown for comparison 
(blue). 
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Figure A.10.  XANES spectra of Ir black (black line), the precatalyst [(1,5-COD)Ir(µ-
O2C8H15)]2 (red), the initial [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst (green), and the same 
catalyst sample after its use in the catalytic hydrogenation of cyclohexene (blue).  The similarity 
of the Ir black and after-hydrogenation catalyst curves is compelling evidence for an Ir(0) 
oxidation state in the after-hydrogenation catalyst. 

The difference in mean Ir cluster sizes measured by Z-contrast STEM versus those 

approximated by XAFS spectroscopy for the after-hydrogenation samples is possibly due to the 

XAFS data being collected on a powder sample.  In a control experiment, precipitated catalyst 

material was collected after an initial cyclohexene hydrogenation run and isolated as a powder.   

It was then redispersed in cyclohexane, cyclohexene was added, and run in a second 

hydrogenation (see the Experimental Section for more details).  Catalytic cyclohexene 

hydrogenation begins immediately using redispersed precipitate for a second run, Figure A.11, 

and at a similar rate to the maximum rate achieved toward the end of an initial run, Figure A.1.  

In short, this control experiment confirms that a highly active hydrogenation catalyst is retained 

following the procedures used to analyze the catalyst sample by XAFS and XANES.  Add to 

this the observation, mentioned previously, that catalyst solutions sometimes precipitate after a 

cyclohexene hydrogenation run under standard conditions, and the combined results argue 

strongly that the postcatalysis Ir cluster characterization results from XAFS are representative of 
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the nature of the Ir species postcatalysis (although analysis of the precipitate, likely the result of 

well-precedented nanocluster aggregation processes, probably gives a larger Ir particle size than 

what exists in solution before precipitation occurs).  The key point is that fcc Ir(0)n Ziegler 

nanoclusters are increasing in size and abundance postcatalysis.  Moreover, they likely are the 

fastest, best catalysts in this system (on the basis of the results of this control experiment, the 

increase in the rate of cyclohexene hydrogenation as catalysis proceeds, Figure A.1, and also 

based on catalyst poisoning studies, vide infra). 

Figure A.11.  A second cyclohexene catalytic run following collection and isolation of a 
precipitate from a first run, and redispersion of it in cyclohexane.  The initial hydrogenation rate 
in this experiment is 47 psig/h, and the maximum rate is 50 psig/h.  Both rates are similar to the 
maximum hydrogenation rate observed from aged catalyst solutions during an initial run.

Identification of the Ir-Containing Species in the AlEt3/Ir Catalyst after 

Hydrogenation:  MALDI MS.  The [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3, Al/Ir =  2.0, 

catalyst, after its use in cyclohexene hydrogenation, was analyzed using MALDI MS (the 

spectrum is shown in the Supporting Information (available online at http://pubs.acs.org)).  

Similar to the MALDI MS results from the sample analyzed before hydrogenation, a broad peak 

representing a range of Irn species exists in the " 1000 m/z region, with a maximum at about 
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3000 m/z corresponding to Ir~16, approximately 0.8-nm-diameter clusters.  However, this 

posthydrogenation peak has a significant shoulder at about 5500 m/z, which indicates Ir~30, 0.9 

nm clusters, and the FWHM of the peak corresponds to Ir~8–40, 0.6–1.0 nm diameter clusters (the 

FWHM was used to estimate mean cluster diameter, Table A.1, although it is an 

underestimation even more so than with the prehydrogenation sample because of the irregular 

peak shape).  In addition, the curve tails off toward higher m/z values considerably less steeply 

than in the prehydrogenation sample spectrum—it reaches one-quarter max intensity at about 

11500 m/z, which corresponds to Ir~60, 1.2 nm clusters (nearly double the ~6000 m/z at one 

quarter intensity in the prehydrogenation spectrum, vide supra), and falls to one-eighth the 

maximum intensity at ~19500 m/z, which corresponds to Ir~100, 1.4 nm clusters (again, about 

double the m/z value at one-eighth maximum intensity in the prehydrogenation sample that 

corresponds to Ir~50, 1.1 nm clusters). 

 A broad range of Irn cluster sizes is again observed using MALDI MS, but compared to 

the prehydrogenation sample, the posthydrogenation catalyst includes even larger Irn 

nanoclusters, and a significantly greater quantity of these larger Irn species.  Again, MALDI MS 

gives results that are similar, but not identical, to those from Z-contrast STEM; the possible 

reasons may be any combination of the factors listed previously, and an additional factor may 

be the difference in transit time between completion of a catalytic run and analysis of the 

sample [68]. The key point that remains, regardless of the differences in Irn cluster sizes 

obtained using the three methods, is that Z-contrast STEM, XAFS, and MALDI MS all show a 

distinct trend toward a greater population of larger, nanoscale Irn clusters in the 

posthydrogenation catalyst sample.  On the basis of the combined results of these three methods 

(Z-contrast giving mean 1.0 ± 0.3 nm, Ir~40 clusters; XAFS indicating mean 1.6 nm, Ir~150, 
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clusters; and MALDI MS also showing a shift in the population if Irn species towards larger, 

nanometer scale clusters) we refer to these nanoscale, crystalline Ir(0)n clusters herein as fcc 

Ir(0)40–150 Ziegler nanoclusters. 

 The Before-Hydrogenation-to-After-Hydrogenation Changes of Aged Catalysts:  A 

Summary.  The first step in the approach used herein to address the “is it homogeneous or 

heterogeneous catalyst?” question for the present catalyst system [3,4b,7,8], is identification of 

the form(s) (e.g., Irn cluster nuclearity) that the observable catalyst mass takes.  A combination 

of analytic techniques has revealed that catalyst solutions before their use in hydrogenation 

contain a broadly dispersed range of Irn clusters extending from mono-Ir compounds to Irn 

nanoclusters with significantly disordered internal atomic structures, and with an estimated 

average of 0.5–0.7 nm, Ir(0)~4–15 clusters.  The Irn species present are nearly the same regardless 

of the Al/Ir ratio employed, an important finding in its own right which, in turn, suggests that 

the observed changes in catalytic activity at different Al/Ir ratios are primarily the result of 

changes in the form and function of the Al-derived component(s) of the catalyst (i.e., the Al/Ir 

ratio not causing significant changes in the Irn nuclearity) [13].  During the use of these 

solutions in hydrogenation, a conversion toward roughly 1.0–1.6 nm, fcc Ir(0)~40–150 Ziegler 

nanoclusters takes place [69], consistent with the color change of the catalyst solutions from 

tawny yellow to darker brown as hydrogenation proceeds and the precipitation often seen a few 

days after the conclusion of a catalytic run.  The conversion toward these 1.0–1.6 nm, Ir(0)~40–150 

Ziegler nanoclusters is independently evidenced by the results of Z-contrast STEM, XAFS 

spectroscopy, and MALDI MS, which show shifts in the range of Irn clusters present toward 

larger Irn clusters and increases in the mean observed clusters sizes and mean Irn nuclearities.  A 

key to obtaining these insights is our use of a third-row Ir system where, the evidence argues, its 
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more stable Ir–Ir bonds mitigate against artifacts due, for example, to sample preparation and ex 

situ Z-contrast STEM. 

 Additional Kinetics-Based Experiments Probing the Active Catalyst.  Kinetics data 

are key to determining whether the observed catalytic activity using [(1,5-COD)Ir(µ-O2C8H15)]2 

plus AlEt3 catalysts is homogeneous (e.g., defined here as proceeding via mono-Ir compounds 

or subnanometer Ir~4–15 cluster catalysts) or heterogeneous (e.g., defined here as proceeding via 

Ir(0)~40–150 Ziegler nanoclusters) [3,4b,7,8].  We have already shown that catalytic cyclohexene 

hydrogenation curves obtained using the [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst with an 

Al/Ir ratio of 2, both with and without prior aging of the catalyst solutions for 9 h, give a 

maximum hydrogenation rate (–d[H2]/dt) that is not the initial rate (i.e., that is faster than the 

initial rate).  Instead, the hydrogenation rate increases concomitant with the increase in cluster 

size (and corresponding structural change) from Ir~4–15 to fcc Ir(0)~40–150.  This rate increase is 

quite pronounced when using catalyst solutions immediately after their preparation (see the 

switch in activity at ~2 h in Figure A.12b) but is more modest when the catalyst solutions have 

been aged, Figure A.12a.  The observed increase in the rate of hydrogenation during catalysis, 

plus the above studies showing (i) the presence of larger Ir(0)~40–150 Ziegler nanoclusters post 

catalysis and also (ii) high catalytic activity when these nanoparticles are collected as a 

precipitate, redispersed in cyclohexane and used for a second catalytic run, strongly suggests, in 

the simplest (Ockham’s razor) interpretation of the data, that the fastest, best catalysts are the 

larger fcc Ir(0)~40–150 Ziegler nanoclusters. 

 To further test this hypothesis that the larger fcc Ir(0)~40–150 Ziegler nanoclusters are the 

kinetically dominant catalyst, Hg(0) poisoning experiments were utilized (Hg(0) being known 

to poison most heterogeneous catalysts [3,4b,70,71,72]).  Specifically, Hg(0) was added to the 
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catalyst solutions after the cyclohexene consumption had proceeded about halfway (i.e., and 

once the catalytic rate had entered the maximum activity regime).  The catalysis was poisoned 

immediately and completely by the Hg(0) addition, regardless of whether the initial catalyst 

solution was aged for 9 h prior to use (Figure A.12a) or used immediately without aging (Figure 

A.12b).  This result provides additional evidence that the catalyst at the most active stage is 

what we defined earlier as heterogeneous—that is, due to the fcc Ir(0)~40–150 Ziegler nanoclusters 

observed post hydrogenation. 

Figure A.12. Cyclohexene hydrogenation curves for [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3
catalysts with Al/Ir ratios of 2.0, for (a) catalyst solutions aged 9 h, or (b) not aged, alongside 
hydrogenation runs poisoned by addition of Hg(0) under otherwise identical conditions.  The 
variation in the hydrogenation runs prior to Hg(0) addition is typical for this system.  For runs 
poisoned by Hg(0), the catalytic hydrogenation of cyclohexene was allowed to proceed until the 
maximum rate regime was reached.  Then, the solution was transferred to the drybox where " 
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300 equivalents of Hg(0) per Ir was added and allowed to stir at 1000 rpm before putting it back 
on the hydrogenation line.  The subsequent part of the hydrogenation curve shows immediate 
and total poisoning of the catalyst. 
 As a control experiment, Hg(0) was added to catalyst solutions, both with and without 

aging, before the start of catalytic cyclohexene hydrogenation (i.e., before being exposed to H2 

gas).  Near-immediate poisoning of the catalyst, Figure A.13, suggests that the kinetically 

competent, fastest catalysts, even at the initial stage, are heterogeneous (i.e., larger Irn 

nanoclusters, not the initially present mono-Ir complexes and Ir~4–15 clusters, although one 

cannot rule out that Hg(0) is poisoning active Ir~4–15 subnanoclusters).  However, and 

interestingly, although ~95% of the activity is poisoned, there is ~5% activity initially, non-

Hg(0)-poisoned activity that implies a residual, apparently homogeneous catalyst, albeit one 

that accounts for only ~5% of the catalysis [73].  Whether Hg(0) will or will not poison 

subnanometer, molecular Irn clusters remains an open question, one that will require the 

synthesis and characterization of, for example, authentic Ir4 clusters and attempts to poison their 

expected catalysis with Hg(0).  If, for example, the present prehydrogenation Ir clusters are 

actually of nominal composition Ir(I)4H4 (i.e., Ir(I)4 and not Ir(0)4), then that would be one 

possible explanation for their insensitivity to Hg(0).  Nevertheless, the Hg(0) poisoning 

experiments provide additional support for the hypothesis—now the dominant hypothesis for 

further studies in the area of Ziegler-type hydrogenation catalysis—that the most active, 

kinetically competent catalysts at the point of the maximum hydrogenation rate are 

heterogeneous Ziegler nanoclusters analogous to the present Ir(0)~40–150.  This is an important, 

previously unavailable finding.  It presages an area of catalysis by hydrocarbon-soluble, Lewis-

acid-containing, and thus presumably unusually coordinatively unsaturated—and certainly 

extremely catalytically active, industrially utilized—“Ziegler nanocluster” catalysts. 
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Eigure A.13.  Near-immediate poisoning of the catalyst.  Hg(0), " 300 equivalents per Ir, was 
added to the catalyst solution after its preparation and 9 h of aging in the drybox.  Sufficient 
mixing was ensured by stirring of the Hg(0)-containing catalyst solution for 24 h at 1000 rpm.  
Poisoning is 95% complete, but a small, residual, ca. 5% activity (i.e., 5% of the H2) is still 
consumed, mostly early in the experiment.

3. Summary 

The main findings of this study, then, are as follows: 

• The initial [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 Ziegler-type hydrogenation catalyst 

solutions, before-hydrogenation, are (by Z-contrast STEM, XAFS, and MALDI MS) a broad 

range of Irn complexes from mono-Ir compounds to noncrystalline Irn Ziegler nanoclusters, with 

the estimated mean Irn clusters being 0.5–0.7 nm, Ir~4–15 subnanometer clusters.  The agreement 

among the results, regardless of whether ex situ solid state Z-contrast imaging or in situ, 

solution XAFS/XANES is employed, argues against artifacts caused by these methods or the 

associated sample handling or preparation.  Our use of MALDI MS as an additional method 

yielded estimated mean Ir cluster size and nuclearity results that are similar to those obtained by 

Z-contrast STEM and XAFS, but not identical—results that we view as a calibration of the less 
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useful MALDI-MS method in the present case.  Nevertheless, the results all yield a consistent 

picture of the catalyst before hydrogenation as consisting of a broad range of Irn species 

dominated by subnanometer Irn clusters. 

• According to XAFS, the Irn nuclearity results are largely unchanged regardless of the 

Al/Ir ratio employed.  This important observation indicates that differences in catalytic activity, 

as a function of Al/Ir ratios, must be due just to the form or function of the Al-derived 

component(s) [13], and not to any Al/Ir- controlled or -dependent nuclearity of the initial Irn 

species present. 

• At the end of their use in hydrogenation, the population of Irn clusters in the samples has 

shifted toward larger, 1.0–1.6 nm, fcc Ir(0)~40–150 Ziegler nanoclusters.  The average sizes of 

these larger nanoclusters, as determined by Z-contrast STEM, HRTEM, and XAFS/XANES, are 

similar, but not identical, depending on the technique (and associated sample preparation) used.  

However, the trend toward larger, Ir(0)~40–150 Ziegler nanoclusters in posthydrogenation samples 

is verified by each method (i.e., is method-independent). 

•  Significantly, the development of fcc Ir(0)~40–150 nanoclusters correlates with both a 

change in solution color (that also signals nanocluster formation) and an increase in the rate of 

cyclohexene hydrogenation.  Furthermore, a precipitate can be collected from the catalyst 

solutions and, when redispersed in cyclohexene, displays immediate high activity for the 

hydrogenation of cyclohexene comparable to the maximum activity observed toward the end of 

an initial cyclohexene hydrogenation run.  The evidence is consistent with and highly 

supportive of the now-dominant hypothesis for future research in the area, that the larger fcc 

Ir(0)~40–150 Ziegler nanoclusters are the fastest Ziegler-type hydrogenation catalysts attained in at 

least the present Ir Ziegler-type catalyst system.  That said, catalysis of a ~2- to 10-fold slower 
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rate (depending on the Al/Ir ratio and whether an aged or nonaged catalyst was used) is seen 

initially, when the estimated mean Ir species present are 0.5–0.7 nm, Ir~4–15 clusters. 

• Consistent with the above “Ziegler nanocluster catalysis hypothesis”, Hg(0) added to 

catalyst solutions after the catalysts have entered their maximum rate regime stops the catalytic 

activity immediately and completely.  This further supports evidence that the fastest catalysts 

found in this system are the fcc Ir(0)~40–150 Ziegler nanoclusters (i.e., that “heterogeneous 

catalysis” [3,4] is present).  However, it is worth noting that in solutions with Hg(0) added at the 

prehydrogenation stage, residual catalysis, presumably effected by unpoisoned homogeneous 

catalyst(s) such as monometallic Ir complexes or 0.5–0.7 nm, Ir~4–15 clusters, results in ~5% of 

the normal total H2 consumption.  Although significant catalysis by discrete subnanometer Ir 

species is not unequivocally ruled out by this study, the overall simplest interpretation of the 

data is that the larger, fcc Ir(0)~40–150  nanoclusters are the more effective catalysts. 

• Successfully investigating the problem of the composition and structure of a Ziegler-

type hydrogenation catalyst has depended on the approach used herein: (a) the use of a third-

row Ir-system with its strong Ir–Ir bonds and, therefore, more robust Irn species that are less 

sensitive to various analytical methods and associated sample preparations, (b) the development 

[2] and use of the well characterized [(1,5-COD)Ir(µ-O2C8H15)]2 precatalyst, and (c) the use of a 

combination of multiple, complementary analytical techniques and kinetic studies plus 

poisoning studies.  That said, additional, ideally operando studies are desirable in this area [3,9], 

and it is now possible to design them rationally and effectively. 

• To our knowledge, this is the first report for a Ziegler-type hydrogenation catalyst where 

identification of the Irn species present using multiple complementary techniques has been 

coupled to kinetic evidence to show that the best, fastest catalysts are, in all probability 
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[20,74,75] the larger, fcc Ir(0)~40–200 Ziegler nanoclusters.  Nor has evidence been previously 

reported that a Ziegler-type hydrogenation catalyst can initially contain a homogeneous 

component (ca. 5% of the activity) and transition to heterogeneous catalysis during 

hydrogenation.  That said, we wish to emphasize once again (vide supra; the Introduction) the 

important, recent contributions of, especially, Shmidt [5] and co-workers and Bönnemann and 

co-workers [3,6] that also provide evidence for the presence of  nanoclusters under Ziegler-type 

hydrogenation catalysis conditions. 

• Further investigation of this prototype Ir Ziegler-type hydrogenation system through 

additional kinetic studies [12], and evidence for the forms and roles of the AlR3-derived 

component of the catalyst, will be reported elsewhere [13].  Those studies include an interesting 

inverse relationship between the maximum TOF and [Ir] concentration, intriguing findings 

which have required their own, separate study [12].  In addition, the results of studies analogous 

to those herein using the Co and Ni systems commonly employed by industry for olefin and 

polymer hydrogenation will be reported in due course [14].  

 

 Our comprehensive review of the literature of Ziegler-type hydrogenation catalyst [4] 

shows the above insights (i.e., into the products of the precatalyst and cocatalyst reaction, how 

those products develop with use in a hydrogenation reaction, and the relative activities of those 

(metal)n products) are at the state-of-the-art for a Ziegler-type hydrogenation catalyst—despite 

the industrial use of Ziegler-type hydrogenation catalysts for ~50 years to hydrogenate, 

currently, around 1.7 × 105 metric tons of styrenic block copolymers annually [2].  One of our 

hopes is that the present demonstration, that at least Irn “Ziegler-type nanoclusters” both exist 

and are also the kinetically dominant, highly active catalysts, will prompt the community to 
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begin to make use of these and other highly coordinately unsaturated, relatively “weakly 

ligated/labile ligand” [76], hydrocarbon-soluble nanoclusters.  Such Ziegler-type nanoclusters 

are unusual in that RCO2
– from the starting material, hydrocarbon solvent, and Lewis acidic 

AlEt3 (plus their expected adducts, e.g., RCO2AlEt3
– and any Al–O–Al-containing alumoxane 

from trace H2O) are the only possible (weakly ligating) ligands present, undoubtedly one reason 

for the high, industrial-level catalytic activity of Ziegler nanoclusters. 

 

4. Experimental Section 

 Materials.  Unless stated otherwise, all materials were handled and stored under N2 in a 

Vacuum Atmospheres drybox, with O2 levels continuously maintained at ≤ 5 ppm according to 

a Vacuum Atmospheres O2-level monitor.  All solution measurements and additions done in the 

drybox at Colorado State University (CSU) utilized gastight syringes.  Glassware was dried in 

an oven at 160 °C for ≥ 12 h and cooled under a vacuum or dry N2.  Cyclohexane (Sigma-

Aldrich, 99.5 %, H2O < 0.001 %) was kept over activated molecular sieves for ≥ 2 days prior to 

use.  Molecular sieves (Acros, 3 Å) were activated by heating at 200 °C for 6 hours under 

vacuum.  The precatalyst [(1,5-COD)Ir(µ-O2C8H15)]2 was prepared as described [4] and used 

herein as a solution in cyclohexane, typically 9.0 or 12.0 mM in [Ir].  AlEt3 (Strem Chemicals, 

93%) was also used as a cyclohexane solution, typically 18.0 or 36.0 mM. 

 Caution!  Alkylaluminums are pyrophoric and should be handled with care using air- 

and moisture-free techniques [77]. 

 Cyclohexene (Aldrich, 99%) was distilled over sodium under argon.  Both Ar and H2 

gases were passed through moisture (Scott Specialty Gases) and oxygen traps (Trigon 

Technologies) prior to use.  Ir black and Ir4(CO)12 (Strem, 98%) were used as received.  HPO4-
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stabilized fcc Ir(0)n nanos were synthesized as previously described (details are provided in the 

Supporting Information (available online at http://pubs.acs.org)) [26].  

  

 Catalyst Solution Preparation.  Catalyst solutions were prepared in the drybox at CSU 

both in batches and in smaller volumes for individual hydrogenation use (the temperature in the 

drybox was between 25 and 30 °C).  For example, a 20 mL, [Ir] = 1.44 mM, batch of catalyst 

with an Al/Ir ratio of 2 was prepared by first adding 15.2 mL of cyclohexane to a 20 mL glass 

vial containing a 5/8 × 5/16 in. Teflon-coated magnetic stir bar.  Next, 2.4 mL of a cyclohexane 

solution of [(1,5-COD)Ir(µ-O2C8H15)]2, 12.0 mM in [Ir], was added, making an orange/light red 

solution.  Stirring (1000 ± 200 rpm, measured with a Monarch Instruments Pocket-Tachometer 

100) was started, and 1.6 mL of a 36.0 mM AlEt3 solution was added rapidly. 

 

 Catalytic Cyclohexene Hydrogenations.  All catalyst solutions for cyclohexene 

hydrogenation were prepared individually in 22 × 175 mm Pyrex culture tubes containing a new 

5/8 × 5/16 in. Teflon-coated magnetic stir bar (both rinsed three times with ultrapure water prior 

to drying).  For example, a 0.6 mM in [Ir], Al/Ir = 2.0, catalyst solution was prepared by adding 

0.20 ± 0.01 mL of a 9.0 mM in [Ir] cyclohexane solution of [(1,5-COD)Ir(µ-O2C8H15)]2 to a 

culture tube followed by 0.200 ± 0.002 mL of 18.0 mM AlEt3 in cyclohexane, added rapidly 

with 1000 ± 200 rpm stirring to make Al/Ir = 2.0.  Cyclohexane was added to bring the total 

volume to 2.5 mL, and then 0.5 ± 0.01 mL of cyclohexene was added, making 3.0 mL of a Al/Ir 

= 2 catalyst solution, 0.6 mM in [Ir] and 1.65 M in [cyclohexene]. 

 The procedure and apparatus used for catalytic hydrogenations of cyclohexene were 

described in detail elsewhere [7a, 78, 79].  Briefly, once the hydrogenation reaction solution 
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was prepared, the culture tube was placed in a Fisher–Porter (F–P) bottle, which was then 

sealed.  The solution was then allowed to stir at 1000 rpm in the sealed F–P bottle in the drybox, 

typically for 9 h (see Figure S2, Supporting Information (available online at 

http://pubs.acs.org)).  At the end of the aging period, if any, the F–P bottle was then brought out 

of the drybox and placed in a bath set at 22.0 ± 0.1 °C.  Stirring was started at 1000 ± 10 rpm 

employing a Fauske Super Magnetic Stirrer, and the F–P bottle was connected to a pressurized 

H2 line using Swagelock quick-connects.  The F–P bottle was purged 15 times (1 purge/15 sec).  

The pressure in the F–P bottle was set to 40 psig, and data collection was initiated at 4 minutes 

after the first purge.  Hydrogen pressure vs time data were collected using a pressure transducer 

(Omega PX 624–100 GSV) interfaced via an Omega D1131 analog-to-digital converter 

connected to a PC running LabView 7.0.  Data were subsequently handled using MS Excel and 

Origin 7.  In order to quantitatively compare hydrogenation rates, and because of their shapes 

(i.e., more rapid H2 pressure loss later in the hydrogenation, as opposed to initially), the initial 

and maximum rate portions of the curves were fit separately by polynomial and linear 

expressions, respectively (for an example, see Figure S1 of the Supporting Information 

(available online at http://pubs.acs.org)). 

 

 Catalyst Poisoning by Hg(0).  All catalyst solutions were first prepared in the drybox 

as described above with [Ir] = 0.6 mM, Al/Ir = 2.0, and an initial cyclohexene concentration of 

1.65 M.  Each poisoning experiment used ≥ 300 equivalents of Hg(0) per Ir added in the 

drybox.  Thorough contact of the insoluble Hg(0) and the catalyst in solution was ensured by 

stirring at 1000 rpm in the sealed FP bottle in the drybox for 24 h.  For poisoning after a 

partially completed hydrogenation run, the hydrogenation reaction was quenched by filling and 
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purging with 40 psig of Ar gas five times (once every five seconds).  The FP bottle was then 

transferred back into the drybox where Hg(0) was added.  After the 24 h mixing period, the 

sealed FP bottle was again removed from the drybox, and hydrogenation was resumed 

according to the procedure already described.  Time and pressure values then collected have 

been corrected to fit with the initial portion of the data, Figure A.12.  Control experiments show 

that 24 h of mixing the catalyst solution with Hg(0) is necessary and sufficient for catalyst 

poisoning (Figure S35, Supporting Information (available online at http://pubs.acs.org)) and that 

the experimental procedure itself is not the cause of the loss of catalytic activity.  Another 

control experiment showed that, for poisoning of the initial catalyst, before a hydrogenation run 

was started, removal of the Hg(0) from the catalyst solution made no difference in the result. 

 

 Z-Contrast Microscopy.  Samples of the [(1,5-COD)Ir(µ-O2C8H15)]2 plus AlEt3 catalyst 

(3.00 mL, 1.00 mM in [Ir], with an Al/Ir ratio of 2.0) were collected for Z-contrast microscopy 

both before and after use in cyclohexene hydrogenation, double-sealed airtight, and shipped to 

the Center for Microanalysis of Materials (CMM), University of Illinois at Urbana–Champaign 

(UIUC) for imaging.  Grid preparation for Z-contrast microscopy was conducted in a glovebag 

filled with dry N2 at > 1 atm and located in the TEM room.  The solution sample was diluted 

with cyclohexane to twice its original volume.  Next, 2–3 drops were dispersed onto a TEM grid 

with an ultrathin carbon film on a holey carbon support (Ted Pella, Inc.) and dried at room 

temperature under N2 for ≥ 10 min. Once dried, a TEM grid was transferred quickly into the 

TEM column to reduce oxidation of the sample.  Images were acquired using a field-emission 

JEM 2010 (scanning) transmission electron microscope operated at 200 kV.  The samples were 

first treated with a high-intensity electron beam (electron beam shower) for ~15 min each time 
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in the TEM column (with vacuum better than 3 × 10–6 Torr) to assist in high quality imaging.  

The high-angle scattering electrons were collected with a JEOL ADF detector at a camera 

length of 8 cm, with a 0.2 nm (nominal) diameter probe.  High-angle annular dark-field 

(HAADF) images were collected at 2 M (million) magnification and were 1024 × 1024 pixels in 

dimension.  Cluster diameters were measured at the full width at half-maximum (FWHM) of the 

intensity profile across ≥ 600 clusters from images at the same levels of magnification and 

contrast (an example intensity profile is shown in the Supporting Information (available online 

at http://pubs.acs.org)). 

 

 XAFS Spectroscopy.  Sample solutions were prepared at CSU in 6.0 mL batches at 5.0, 

6.0, or 7.2 mM in [Ir].  Containers were double-sealed airtight and transported to the National 

Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), Upton, NY (two 

days transit time).  At the NSLS, all catalyst samples were handled and stored in a N2 

atmosphere glovebox maintained at ≤ 10 ppm O2.  Solution samples were loaded into a custom-

designed airtight sample cell composed of a stainless steel frame made to press Kapton film 

windows onto a Teflon block with a ~1.5 mL sample cavity.  The samples were loaded using 

glass pipettes into threaded ports in the Teflon block, which were then sealed using Teflon 

screws.  Airtight seals in the threaded ports and windows were ensured by using Kalrez o-rings. 

 A portion of the Al/Ir = 1.0 catalyst sample was used for catalytic hydrogenation of 

cyclohexene and then collected for XAFS analysis.  The brown solution had precipitated as a 

dark brown powder in transit to the NSLS where the XAFS experiments were performed.  This 

is not unusual however because, as already noted, catalyst solutions kept in the drybox 

sometimes precipitate within a few days after completion of a catalytic run.  The powder was 
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isolated by centrifugation followed by evaporation in vacuuo.  The powder was then brushed 

onto the adhesive side of a strip of Kapton tape.  The tape was then folded repeatedly and held 

in place with additional Kapton tape to ensure an airtight seal.  Reference samples of Ir black 

and Ir4(CO)12 powders were prepared in this manner; however, preparation of Ir black was done 

outside the drybox.    As already mentioned, a lack of contamination by atmospheric O2 during 

posthydrogenation XAFS analysis was confirmed from the XAFS, XANES, and independently 

performed XPS results, all showing that the sample consisted of Ir(0).  Control experiments 

were performed to test whether the treatment of catalyst material necessary for analysis by 

XAFS and XANES after use in cyclohexene hydrogenation affects its activity.  Samples of the 

catalyst after their use for cyclohexene hydrogenation were collected by bringing the F–P bottle 

back into the drybox after the H2 consumption had ceased and removing the cyclohexane 

solvent under a vacuum.  This provided isolated catalyst powder analogous to that analyzed by 

XAFS and XANES.  The powder was then redissolved in 2.5 mL of cyclohexane and 

transferred into a new culture tube in a F–P bottle followed by 0.5 mL of cyclohexene.  A 

second cyclohexene hydrogenation performed following this treatment gave the activity results 

shown in Figure S.11. 

 XAFS experiments were performed on a bending magnet beamline, X18b of the NSLS, 

which uses a Si(111) channel-cut monochromator.  X-ray absorption data were collected at 

room temperature.  Samples were mounted and positioned at 45° in the beam path with the help 

of a motorized sample stage.  Gas ion chamber detectors were used for incident, transmitted, 

fluorescence, and reference channels.  Absorption edge calibration was performed prior to 

XAFS scans using an Ir black standard, for which energy was swept from 150 eV below to 1800 

eV above the Ir L3 edge (11215 eV).  Energy was swept from 150 eV below to 2000 eV above 

the Ir L3 edge for all other samples, except in the case of data collection on the [(1,5-COD)Ir(µ-
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O2C8H15)]2 precatalyst, when the energy was swept to 1800 eV above the L3 edge.  Reference 

spectra were obtained simultaneously in the transmission mode for all sample scans using the Ir 

black standard.  The number of scans performed was 2, 29, 6, and 9 for Ir black, HPO4-

stabilized Ir nanoclusters, Ir4(CO)12, and [(1,5-COD)Ir(µ-O2C8H15)]2, respectively.  For the Al/Ir 

= 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 catalyst samples before hydrogenation, 5, 5, 10, 10, 10, 3, 

and 6 scans were performed, respectively.  Three scans were performed on an Al/Ir = 10.0 

sample, but the data were excessively noisy (Figure S22, Supporting Information (available 

online at http://pubs.acs.org)), precluding reliable analysis and fitting.  For the Al/Ir = 1.0 

sample after hydrogenation, 17 scans were performed.  Fluorescence data were deemed inferior 

in quality to the transmission data and therefore disregarded. 

 Data processing was accomplished using IFEFFIT [80].  The reference spectra were 

used for scan alignment.  The threshold energy (E0) was assigned a value that corresponded to 

approximately half the normalized edge step, 11213 eV, and multiple scans of a single sample 

were merged (averaged).  The range of data deemed to have a sufficient signal-to-noise ratio 

was selected using a Hanning window function for Fourier transforms (FTs), Figures S10–S21 

of the Supporting Information (available online at http://pubs.acs.org). 

 A drift in the scans of the Al/Ir = 1.5, 2.0, and 2.5 catalysts before hydrogenation was 

observed, Figure S24, Supporting Information (available online at http://pubs.acs.org).  A 

control experiment performed in an attempt to rule out possible sample damage caused by the 

X-ray beam suggests that no beam damage was occurring, Figure S25, Supporting Information 

(available online at http://pubs.acs.org).  The reason for the observed drift is not apparent, but to 

lessen its effect on the analysis, the first two scans in each case were merged, and the others 

were discarded. 
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 5. Supporting Information Available:  Additional experimental information and 

control experiments for cyclohexene hydrogenations.  Bright-field TEM images, corresponding 

particle size histograms, and images from TEM and HRTEM control experiments.  MALDI 

mass spectra and results of associated control experiments.  XAFS spectra with fits, tables of 

fitting results, and associated XAFS control experiments.  Survey and high-resolution XPS 

spectra.  HR and other TEM images of catalysts after hydrogenation.  XAFS-determined 

coordination number-particle diameter correlation curve.  Hg(0) poisoning control experiments.  

A full list of the authors of reference 6d.  This material is available free of charge via the 

Internet at http://pubs.acs.org. 
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APPENDIX B 

INDUSTRIAL ZIEGLER-TYPE HYDROGENATION CATALYSTS MADE FROM 

Co(neodecanoate)2 OR Ni(2-ethylhexanoate)2, AND AlEt3: EVIDENCE FOR 

NANOCLUSTERS AND SUB-NANOCLUSTER OR LARGER ZIEGLER-NANOCLUSTER 

BASED CATALYSIS 

This dissertation chapter contains a paper published in Langmuir 2011, 27, 6279-6294.  

This chapter reports studies aimed at determining the nature of the transition metal component in 

the authentic industrial Co- and Ni-based Ziegler-type hydrogenation catalysts.  The results 

demonstrate that, both before and after catalytic cyclohexene hydrogenation, the species present 

comprise a broad distribution of metal cluster sizes from subnanometer to nanometer scale 

particles.  The estimated mean cluster diameters is about 1 nm for both Co- and Ni-based 

Ziegler-type catalysts. 

   The initial control experiments testing the variables of catalyst formation and catalytic 

cyclohexene hydrogenation were carried out by both Isil. K. Hamdemir and William M. Alley.  

MALDI MS spectra were obtained by Isil K. Hamdemir, and interpreted by both Isil K. Hamdemir 

and William M. Alley.  TEM images including high resolution and bright field TEM were obtained 

by either JoAn Hudson of Clemson University or Long Li. The sample preparation and submission 

to high resolution and bright field TEM imaging were performed by Isil K. Hamdemir or William 

M. Alley, respectively.  The bright field TEM images were analyzed by Isil K. Hamdemir.  The 

sample preparation and submission to Z-contrast STEM imaging were performed by William M. 

Alley.  The Z-contrast STEM images were obtained by Long Li. The XAFS data was obtained and 

interpreted by William M. Alley with assistance from Qi Wang, Anatoly I. Frenkel, and Laurent D. 

Menard.  All other kinetics experiments were performed by William M. Alley. 
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 The complete manuscript was written by William M. Alley using an earlier incomplete 

draft written by Isil K. Hamdemir which included a detailed analysis of the work she performed. 

The other coauthors edited and proofread the manuscript.  The complete manuscript was written 

prepared for publication by William M. Alley with light editing (9 hours) from Richard G. Finke.  

The above list of contribution from each coauthor to this chapter agrees well with that given in 

dissertation by William M. Alley.  A supporting information file is available online for the 

interested reader at http://pubs.acs.org. 
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Synopsis 

Ziegler-type hydrogenation catalysts are important for industrial processes, namely the large 

scale selective hydrogenation of styrenic block copolymers.  Ziegler-type hydrogenation 

catalysts are composed of a group 8–10 transition metal precatalyst plus an alkylaluminum 

cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts).  However, for 

~50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of 

the metal species present after catalyst synthesis, and whether the species primarily responsible 

for catalytic hydrogenation activity are homogeneous (e.g., mono-metallic complexes) or 

heterogeneous (e.g., Ziegler nanoclusters defined as metal nanoclusters made from combination 

of Ziegler-type hydrogenation catalyst precursors).  A critical review of the existing literature 

(Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1–27) and a recently published study using an Ir 

model system (Alley et al. Inorg. Chem. 2010, 49, 8131–8147) help to guide the present 

investigation of Ziegler-type hydrogenation catalysts made from the industrially favored 

precursors Co(neodecanoate)2 or Ni(2-ethylhexanoate)2, plus AlEt3.  The approach and methods 

used herein parallel those used in the study of the Ir model system.  Specifically, a combination 

of Z-contrast scanning transmission electron microscopy (STEM), matrix assisted laser 

desorption ionization mass spectrometry (MALDI MS), and X-ray absorption fine structure 

(XAFS) spectroscopy are used to characterize the transition metal species both before and after 

hydrogenation.  Kinetic studies including Hg(0) poisoning experiments are utilized to test which 

species are the most active catalysts.  The main findings are that, both before and after catalytic 

cyclohexene hydrogenation, the species present comprise a broad distribution of metal cluster 

sizes from subnanometer to nanometer scale particles, with estimated mean cluster diameters of 

about 1 nm for both Co and Ni.  The XAFS results also imply that the catalyst solutions are a 

mixture of the metal clusters described above, plus unreduced metal ions.  The kinetics-based 
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Hg(0) poisoning evidence suggests that the Ziegler nanoclusters (i.e., ≥ M4) are the most active 

hydrogenation catalysts in the Ni system; the Hg(0) poisoning tests in the Co system proved 

inconclusive.  Overall, the novelty and primary conclusions of this study are: (i) this study 

examines Co and Ni-based catalysts made from the actual industrial precursor materials, which 

make catalysts that are notoriously problematic regarding their characterization; (ii) the Z-

contrast STEM results reported herein represent, to our knowledge, the best microscopic analysis 

of the industrial Co and Ni Ziegler-type hydrogenation catalysts; (iii) this study is the first 

explicit application of an established method, using multiple analytical methods and kinetics-

based studies, for distinguishing homogeneous from heterogeneous catalysis; and (iv) this study 

parallels the successful study of an Ir model Ziegler catalyst system, thereby benefiting from a 

comparison to those previously unavailable findings, although the greater M–M bond energy, 

and tendency to agglomerate, of Ir versus Ni or Co are important differences to be noted.  

Therefore, the leading hypothesis to try to refute in future work is that Ziegler-type sub-(i.e., M4) 

to larger nanoclusters are the dominant, industrial, Co- and Ni- plus AlR3 catalysts. 

1. Introduction 

Ziegler-type hydrogenation catalysts are, by definition, formed from a non-zerovalent 

group 8–10 transition metal (M) precatalyst such as Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 

plus a trialkylaluminum cocatalyst such as triethylaluminum (AlEt3).  Ziegler-type hydrogenation 

catalysts should not be confused, however, with Ziegler–Natta or other common polymerization 

catalysts, which are not a subject of this study.  The relatively inexpensive Co- or Ni-based 

catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2, respectively, are very 

significant industrially as they are used in the production of ~1.7 × 105 metric tons of 

hydrogenated styrenic block copolymers per year [1].  Several important fundamental questions 

about Ziegler-type hydrogenation catalysts persist despite the use of these catalysts for five 
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decades [1,2,3].  One of the most important remaining questions is the ~50 year old problem of 

whether the true nature of Ziegler-type hydrogenation catalysis is homogeneous (e.g., single 

metal organometallic) versus heterogeneous (e.g., nanoclusters) [1,3,4,5,6].  

A recently published critical review of Ziegler-type hydrogenation catalysts includes an 

examination of the prior evidence concerning their homogeneous versus heterogeneous nature, 

and finds that the reasons for the longevity of this problem in this class of catalysts include their 

sensitivity to variables and conditions in their preparation and use, and their resistance to 

characterization by physical methods and isolation for kinetic studies [2,3].  The literature review 

[3] led to the suggestion that answering the homogeneous versus heterogeneous catalysis 

question for Ziegler-type hydrogenation catalysts could be facilitated through the use of a well 

characterized, third-row transition-metal precatalyst in combination with a multi-pronged, 

previously successful approach to solving the homogeneous versus heterogeneous catalysis 

problem in a variety of other catalyst systems [3,6,7,8,9,10,11,12,13,14,15].  The central 

concepts of this multi-prong approach towards answering the homogeneous versus 

heterogeneous catalysis question are (i) identification of the potential catalyst species using 

multiple complementary techniques, and then (ii) kinetic studies to determine the catalytic 

competency of those species. 

Such studies using a Ziegler-type hydrogenation catalyst made from the 

crystallographically characterized precatalyst, [(1,5-COD)Ir(µ-O2C8H15)]2, plus AlEt3 have been 

recently published [14].  Among the multiple analytical methods used were Z-contrast scanning 

transmission electron microscopy (STEM), matrix assisted laser desorption ionization mass 

spectrometry (MALDI MS), and X-ray absorption fine structure (XAFS) spectroscopy [14].  

Since “catalysis is, by definition, a wholly kinetic phenomenon” [16], kinetic studies were 
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performed as a necessary component of addressing the homogeneous versus heterogeneous 

catalysis question [3,14].  Those studies revealed that after the initial catalyst preparation (i.e., 

after the addition of AlEt3 to [(1,5-COD)Ir(µ-O2C8H15)]2 in cyclohexane), but before use for 

catalytic cyclohexene hydrogenation (i.e., before exposure to pressurized H2 gas), the catalyst 

solutions contain a wide range of Ir species from mono-Ir complexes up to structurally-

disordered Ir~100 Ziegler nanoclusters, with an estimated mean of 0.5–0.7 nm, Ir~4–15 clusters [14].  

However, after using catalyst solutions for cyclohexene hydrogenation, the Ir present was in the 

form of fcc Ir(0)~40–150 Ziegler nanoclusters [14].  Moreover, poisoning and other kinetic studies 

suggested that the fcc Ir(0)~40–150 Ziegler nanoclusters are the fastest catalysts [14]. 

The goal of the present study is to repeat the analyses performed on the Ir model Ziegler-

type hydrogenation catalyst system with Co- and Ni-based catalysts made from the authentic 

Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 precursor materials used for industrial polymer 

hydrogenation.  As such, this work not only expands on our own previous study using the Ir 

model system [14], but also on the results of others—notably the valuable studies by Schmidt 

and co-workers [17], and Bönnemann and co-workers [18] that suggest transition metal 

nanoclusters are the catalysts in the Ziegler-type systems studied by them.  Our main hypotheses 

for the present work are (i) that the approach that proved useful with the homogeneous vs 

heterogeneous catalysis question in the Ir system [14] will be applicable to the industrial Co- and 

Ni-based systems, and (ii) that the results will be similar in that the fastest catalysts will be 

revealed to consist of Co or Ni Ziegler nanoclusters, even if as small as Co4 or Ni4.  Many of the 

same analytical techniques are employed herein, namely, Z-contrast STEM, MALDI MS, XAFS 

spectroscopy (through its two complementary modifications, x-ray absorption near edge 

structure, or XANES, and extended XAFS, or EXAFS), and Hg(0) poisoning kinetics studies.  
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Analogous to the previous study on the Ir model system [14], the specific objectives entail (i) 

determining the nuclearity of the Mn species present initially (M is Co or Ni), (ii) establishing 

what Mn species are present directly after use of the catalysts for cyclohexene hydrogenation, and 

(iii) using Hg(0) poisoning as a kinetics-based test of the homogeneous vs heterogeneous nature 

of the active catalyst [3].  The challenging, yet crucial issues of the form(s) taken, and role(s) 

played by the AlEt3 component in Ziegler-type hydrogenation catalysts are currently being 

investigated, and will be reported in due course elsewhere [19]. 

Before the use of catalyst solutions for cyclohexene hydrogenation, the Z-contrast STEM 

and MALDI MS results, which follow reveal that Mn clusters with a wide range of sizes are 

obtained from combining Co(neodecanoate)2 or Ni(2-ethylhexanoate)2, and AlEt3, and the 

average cluster sizes are between 0.9 and 1.4 nm in diameter.  The results of the Z-contrast 

STEM herein are, to our knowledge, the best existing microscopic analysis of industrial Co and 

Ni Ziegler-type hydrogenation catalysts.  The XANES spectroscopy results suggest that a 

combination of nanoclusters and unreduced metal ions exists, with the ratio of the two phases 

depending, as one might expect, on the Al/M ratio.  EXAFS spectroscopic analysis of both Co 

and Ni catalyst samples gives mean 1NN coordination number (N) values for both metals in the 

3–4 range.  The most plausible, self-consistent interpretation of the evidence from multiple, 

complementary techniques is that the transition metal contents of the catalyst solutions are a 

combination of disordered nanoclusters and unreduced, mono-metallic species.  In addition, Z-

contrast STEM, MALDI MS, and XAFS all show that the transition metal species in catalyst 

solutions remain essentially unchanged by their use for cyclohexene hydrogenation.  

Furthermore, Hg(0) poisoning studies  with the Ni system suggest that catalysis is heterogeneous 

(i.e., occurs via the observed Ni nanoclusters), but the Hg(0) poisoning experiments are 

inconclusive for the Co catalyst.  Through the use of an established approach to distinguish 



 

 
 

384 

homogeneous from heterogeneous catalysis [3,6-15], and with the additional advantage of now 

being able to compare the results to those from a parallel study of an Ir model system, this study 

provides the best existing evidence suggesting catalysis by what appear to be Ziegler 

nanoclusters (i.e., ≥ M4) in Ziegler-type hydrogenation catalysts made from the actual industrial 

Co and Ni precatalyst materials.  Noteworthy here is that since control experiments (vide infra 

and in the Supporting Information) show that AlEt3 is required to generate an active catalyst (that 

XANES shows is reduced from Co(II)), species like Co–Et that can β–hydrogen eliminate to 

ethylene plus Co–H, and thus plausible species such as Co4H4, all become candidates for the true 

catalyst. 

2. Experimental 

Materials and Instruments.  Material sources used to prepare catalyst solutions were 

kept consistent in order to obtain reproducible results (vide infra).  All materials were stored and 

handled under a N2 atmosphere in a Vacuum Atmospheres drybox, unless stated otherwise.  

Drybox O2 levels were continuously monitored via a Vacuum Atmospheres O2-level indicator 

and maintained at ≤ 5 ppm.  Gastight syringes were used to carry out all solution measurements 

and additions done in the Finke group drybox at Colorado State University (CSU).  Procedures 

used to control the amount of H2O present were followed consistently to ensure reproducibility 

(vide infra); glassware was rinsed with nanopure water, dried overnight at 160 °C, and cooled 

under a vacuum or N2 atmosphere.  Cyclohexane (Sigma-Aldrich, 99.5 %, H2O < 0.001 %) was 

kept over molecular sieves (Acros, 3 Å, activated by heating at 200 °C for 6 hours under 

vacuum) for ≥ 2 days prior to use with the Co catalyst, but used as received with the Ni catalyst 

(vide infra).  Cyclohexene (Aldrich, 99%) was distilled over Na under argon.  Precatalysts were 

obtained from OMG, as solutions in mineral spirits, Co(neodecanoate)2, 12% wt. Co, and Ni(2-
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ethylhexanoate)2, 8% wt. Ni  (product names: 12% Co ten-cem and 8% Ni hex-cem).  The 

industrial precatalyst sources of Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 are neither 

relatively pure nor well-characterized structurally compared to the Ir model [(1,5-COD)Ir(2-

ethylhexanoate)]2 precatalyst, which was characterized via single crystal X-ray diffractometery 

and used as the pure crystalline starting material for the preparation of catalyst solutions.1,14  

These Co(neodecanoate)2 and Ni(2-ethylhexanoate)2 precatalyst solutions were used after 

diluting with cyclohexane to 12.0 mM in [M].  AlEt3 (Strem Chemicals, 93%) was used as a 

solution in cyclohexane.  Both Ar and H2 gases were passed through moisture (Scott Specialty 

Gases) and oxygen traps (Trigon Technologies) prior to use.  THAP (2’-4’-6’-

trihydroxyacetophenone, Aldrich, 98%), used in the MALDI MS experiments as a matrix, was 

stored and used outside of the drybox, and applied as an aqueous solution. 

Catalyst Solution Preparation and Catalytic Cyclohexene Hydrogenations.  Previous 

investigation into both the existing literature [3], and the Ir model system [14] have made it clear 

that Ziegler-type hydrogenation catalysts are sensitive to the conditions and procedures used in 

their synthesis.  We therefore carried out a variety of initial control experiments—testing the 

effects of catalyst aging, the Al/M ratio, the volume and concentration of catalyst solution 

prepared, the amount of H2O present, temperature, concentration of AlEt3 used, and order and 

rate of precursor component combination—all with the goal of ensuring that the characterization 

results obtained herein would be both reproducible and representative of active Ziegler-type 

hydrogenation catalysts.  The results from these control experiments are summarized here and 

given in greater detail in the Supporting Information (available online at http://pubs.acs.org) for 

the interested reader.  One of the important findings from these control experiments is the 

presence of gas-to-solution mass transfer limitation (MTL) effects in our current hydrogenation 

apparatus, which limits the measureable hydrogenation uptake rate to the rate of H2 gas transfer 
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into solution where the catalytic reaction takes place [20].  However, we have used catalyst 

preparation methods and conditions for this study that (i) result in catalytic cyclohexene 

hydrogenation rates that are at least as rapid as we can observe due to the MTL effects present, 

(ii) are consistent with the most favorable methods and conditions described in the majority of 

the literature [3], and (iii) are similar to, or the same as those used for the model Ir Ziegler-type 

hydrogenation catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 and AlEt3 [1,14].  In short, the 

MTL kinetics present for these exceptionally active, industrial Ziegler-type hydrogenation 

catalysts did not preclude our determination of conditions and procedures for catalyst synthesis 

necessary to give results that are both reproducible and representative of active Ziegler-type 

hydrogenation catalysts standardized to that MTL limit. 

Once established, the procedures for preparing and using catalyst solutions (referred to 

hereafter as the standard conditions) were followed consistently for repeat experiments unless 

specified otherwise.  Control experiments demonstrate that the presence of (deliberately added) 

water during catalyst synthesis negatively affects the cyclohexene hydrogenation activity of the 

resulting catalysts.  Therefore, all glassware was carefully dried as was the cyclohexane solvent 

for use with the Co-based catalyst (cyclohexane drying was not beneficial for the Ni catalysts, 

see the Supporting Information (available online at http://pubs.acs.org)).  The catalyst solutions 

were made under a N2 atmosphere by combination of a 36.0 mM cyclohexane solution of AlEt3 

with a 12.0mM Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 precatalyst stock solution.  The 

ratios Al/Co = 3 and Al/Ni = 2 were used for the standard conditions on the basis of control 

experiments testing catalysts prepared with a range of Al/M values.  Control experiments were 

performed with an Al/M ratio of zero for both Co and Ni, and it was found that no H2 gas uptake 
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occurred without added AlEt3, which shows the importance of the alkylaluminum cocatalyst in 

making active Ziegler-type hydrogenation catalysts. 

Synthesis of catalyst solutions in batches up to 20 mL, as opposed to the 2.5 mL of 

catalyst solution prepared for use in a single hydrogenation run, had no observable effect on 

catalyst activity.  Likewise, batch catalyst preparation at 7.2 mM in [M] had no observable effect 

on catalyst activity in comparison to the 1.44 mM in [M] catalyst solutions prepared for use in a 

single hydrogenation run (diluted after preparation to 1.2 mM in [M] with the addition of 0.5 mL 

of cylcohexene).  Therefore, it was possible to prepare catalyst solutions either individually or 

batchwise as necessary, and at concentrations necessary for the subsequent type of analysis.  

Catalyst synthesis carried out with solutions heated to 60 °C resulted in catalyst solutions with 

lower cyclohexene hydrogenation activity (Supporting Information (available online at 

http://pubs.acs.org)); hence, catalyst synthesis at the ambient drybox temperature of ~25 °C was 

established as a standard condition.  For the sake of consistency, and unless noted otherwise, 

catalyst solutions were prepared by adding the AlEt3 solution to either the Co(neodecanoate)2 or 

Ni(2-ethylhexanoate)2 solution dropwise but rapidly (at a rate ≥ 1 drop every 5 sec), and with 

1000 ± 200 rpm stirring (measured with a Monarch Instruments Pocket-Tachometer 100).  As an 

example of batch catalyst preparation, 20 mL of catalyst solution was prepared by first adding 

16.8 mL of cyclohexane to a 20 mL glass vial containing a new 5/8 × 5/16 inch Teflon-coated 

magnetic stir bar.  Next, 1.6 mL of a 12.0 mM cyclohexane solution of Ni(2-ethylhexanoate)2 

was added.  Stirring was started, followed by addition of 1.6 mL of a 36.0 mM AlEt3 solution.  

Stirring in the drybox was continued for 30 minutes, after which aliquots of the catalyst solution 

were taken for analysis or transferred to a new 22 × 175 mm Pyrex borosilicate culture tube 

containing a new 5/8 × 5/16 inch Teflon-coated magnetic stir bar for kinetic studies via use in 

cyclohexene hydrogenation.  Since, as noted above, volume and concentration had no effect on 
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hydrogenation, catalyst solutions were also prepared directly in the culture tubes for individual 

hydrogenation runs by, for example, first adding 1.9 mL of cyclohexane to a culture tube 

followed by 0.3 mL of a cyclohexane solution of Co(neodecanoate)2, 12.0 mM in [Co].  Stirring 

was started and then 0.3 mL of the 36.0 mM AlEt3 solution in cyclohexane was added.  

Cyclohexene, 0.5 mL, was added last.  In general, the procedures used in this study were very 

similar to, and in a number of cases the same as, those used previously for the Ir model system 

[14].  

After combination of the precursor components, cyclohexene was added to catalyst 

solutions used for catalytic hydrogenation runs.  Control experiments show that aging prepared 

catalyst solutions resulted in decreased catalyst activity (Supporting Information (available 

online at http://pubs.acs.org)), so catalysts were used for hydrogenation or otherwise analyzed as 

soon as possible after preparation.  The procedure and apparatus used for catalytic cyclohexene 

hydrogenation have been described in detail elsewhere [21].  Briefly, the culture tube containing 

the catalyst solution was placed in a Fisher-Porter (F–P) bottle, sealed, and transferred out of the 

drybox.  The F–P bottle was placed in a temperature regulating bath, stirring was begun, and the 

F–P bottle was connected to a pressurized H2 line using Swagelock quick-connects.  The F–P 

bottle was purged 15 times (1 purge/15 s) before setting the pressure to 40 psig.  Data collection 

was then started at 4 min after the first purge.  H2 pressure data as a function of time was 

collected using an Omega PX 624–100 GSV pressure transducer, which was connected to a PC 

running LabView 7.0 by an Omega D1131 analog-to-digital converter.  Data was subsequently 

handled using MS Excel and Origin 7.  Standard conditions for hydrogenation runs are: solvent = 

cyclohexane, [M] = 1.2 mM, initial [cyclohexene] = 1.65 M, temp = 22.0 °C, initial H2 pressure 

= 40 psig, and stirring rate = 1000 ± 10 rpm.  The main point is that in both catalyst synthesis 

and subsequent hydrogenations, variables with the potential to influence the resulting catalytic 
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activity have been tested and optimized (to the MTL limit), thereby allowing the development of 

standard conditions for the preparation and use of the highly active Ziegler-type hydrogenation 

catalysts used herein.  This in turn ensures that the subsequent analytical results should be both 

reproducible and representative of active Ziegler-type hydrogenation catalysts. 

Z-Contrast STEM.  Catalyst samples were prepared according to standard conditions as 

described and collected for Z-contrast microscopy both before and after use in cyclohexene 

hydrogenation.  Sample solutions were double-sealed air-tight, and shipped to the University of 

Pittsburgh for imaging (2–3 days between preparation and analysis).  Preparation of samples on 

TEM grids was carried out in a glove-bag filled with dry N2 at >1 atm, and located in the TEM 

room.  Sample solutions were diluted with cyclohexane to twice their original volume, and 2–3 

drops were dispersed onto a TEM grid with an ultrathin carbon film on a holey carbon support 

(Ted Pella, Inc.).  These were dried at room temperature under N2 for ≥10 minutes before being 

transferred into the TEM instrument.  Transfer was done quickly to reduce possible oxidation of 

the sample.  Samples were first treated with a high-intensity electron beam (electron beam 

shower) for ~15 minutes each time in the TEM column (with vacuum better than 3 × 10-6 Torr).  

Images were acquired using a field-emission JEM 2010 (scanning) transmission electron 

microscope operated at 200 kV.  The high-angle scattering electrons were collected with a JEOL 

ADF detector at a camera length of 8 cm, with a 0.2 nm (nominal) diameter probe.  High-angle 

annular dark-field (HAADF) images were collected at 2M (million) magnification, and were 

1024 × 1024 pixels in dimension.  Cluster diameters were measured manually at the full width at 

half maximum (FWHM) of the intensity profile across ≥ 600 clusters from images at the same 

levels of magnification and contrast using Gatan Digital Micrograph. 

Control experiments were performed to determine whether the metal clusters observed 

were artifacts of the microscopy itself.  Co(neodecanoate)2, without added AlEt3, was deposited 
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on a TEM grid (ultrathin carbon film supported by a lacey carbon film on a 400 Mesh copper 

grid, Ted Pella), and imaged following the methods noted above (i.e., including the electron 

beam shower).  No Co clusters could be observed suggesting that neither sample preparation 

procedures nor Z-contrast STEM conditions are responsible for creating the observed clusters in 

catalyst samples.  No Co clusters were observed when this same control experiment was carried 

out using high resolution (HR)TEM.    (The fact that Co in Co(neodecanoate)2 could not be 

observed in Z-contrast STEM images without Co cluster formation has a bearing on the 

interpretation of the EXAFS results, vide infra, specifically it leaves open the possibility that 

mono-metallic, unreduced metal ions are present.)  Additionally, Co(neodecanoate)2, without 

added AlEt3, was deposited on special TEM grids with 25 nm thick SiO2 windows (Dune 

Sciences) [22].  However, for this sample on the special SiO2 grids, imaging using bright field 

TEM, Z-contrast STEM, and HRTEM all revealed the presence of nanometer-scale clusters, 

ostensibly the result of Co cluster formation under the TEM beam.  These control experiments 

suggest that the clusters observed using Z-contrast STEM to image catalyst samples deposited on 

ultrathin carbon grids, and measured to construct the cluster size histograms, are not artifacts 

resulting from the required sample handling or microscopy itself.  Images from control 

experiments and additional microscopy are provided in the Supporting Information (available 

online at http://pubs.acs.org) for the interested reader. 

MALDI MS.  Catalyst samples were prepared for analysis by MALDI MS in a manner 

almost identical to that described previously using the Ir model system [14].  A 0.5 μL, 100 mM 

aqueous NaI ionizing agent solution was hand-spotted on a steel MS sample plate and air-dried, 

which was followed by 1 μL of 2’-4’-6’-trihydroxyacetophenone (THAP) over the same spot and 

then also air-dried.  The plate was then transferred into the drybox where sample solutions (1 μL, 

[M] = 1.44 mM) were applied onto the spot of deposited ionizing agent and matrix.  The plate 
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was then covered with its plastic capping plate and placed into a desiccator, which was sealed 

and removed from the drybox.  The plate was transferred in air (exposure of ~30 sec) from the 

desiccator to the vacuum of the MALDI MS instrument, and MALDI MS spectra were taken 

immediately thereafter.  Mass spectra were obtained at CSU on a Bruker Ultraflex TOF-TOF 

instrument in linear mode, with acceleration voltage at 25 kV, and in positive ion mode.  A 

nitrogen laser (λ = 337 nm) with a 3 ns pulse width was focused over a 1 mm diameter spot.  

Data were collected with the highest laser power possible, for a higher S/N, but which still 

maximized resolution and avoided sample fragmentation.  Calibration was done using 

Bradykinin, Angiotensin_I, Angiotensin_II, Substance_P, Bombesin, Renin_Substrate, 

ACTH_clip and Somatostatin (purchased as a mixture of all these peptides from Bruker-

Daltonics). 

XAFS.  Procedures for XAFS spectroscopy herein are similar to those used previously 

for the analysis of the Ir model system [14].  Solution samples of Co(neodecanoate)2, Ni(2-

ethylhexanoate)2, and catalysts made from these plus AlEt3 were prepared at Colorado State 

University, in 6.0 mL batches at 7.2 mM concentration in [M].  Aliquots of catalyst samples 

were used for cyclohexene hydrogenation in order to obtain both pre- and posthydrogenation 

catalyst samples.  All samples were then sealed air-tight, and transported to the National 

Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), Upton NY (2 

days transit).  At the NSLS, catalyst samples were handled and stored in an N2 atmosphere 

glovebox maintained at ≤ 10 ppm O2.  Catalyst samples were loaded, via glass pipette, into a 

custom-designed, airtight, ~1.5 mL capacity, solution sample cell composed of a stainless steel 

frame made to press Kapton film windows onto a Teflon block.  Threaded ports in the Teflon 

block allow for sample loading, which were then sealed using Teflon screws.  Airtight seals in 

the threaded ports and windows were ensured by using Kalrez o-rings.  XAFS experiments were 
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performed at room temperature either on beamline X18b or X11a, which are sourced by bending 

magnets, and employ Si(111) channel-cut monochromators.  Samples were loaded into an 

airtight sample cell, then mounted and positioned at 45° in the beam path.  Three 30 cm long ion 

chambers filled with suitable gas mixtures were employed to record in transmission mode the 

incident, transmitted, and reference beam.  A Lytle detector was used to measure fluorescence 

data simultaneously with transmission, but the fluorescence spectra were deemed of inferior 

quality to the transmission spectra and not used in the analysis.  Co or Ni foils were used both for 

absorption edge calibration of the Co (7709 eV) and Ni (8333 eV) K edges prior to XAFS scans.  

Co and Ni foils were also used to obtain reference spectra simultaneously in transmission mode 

for all sample scans.  Six to eight scans were typically performed for each sample, and during 

data processing, multiple scans of a single sample were merged (averaged). 

Data processing was accomplished using IFEFFIT [23].  For background removal, 

threshold energy values (E0) for both Co and Ni were assigned values corresponding to the 

inflection point in the normalized absorption edges.  A Hanning window function was used to 

select data ranges in k-space with sufficient signal to noise ratio for Fourier Transforms (FTs), 

Supporting Information (available online at http://pubs.acs.org).  The passive electron reduction 

factors (S0
2) for Co and Ni were acquired from fitting the Co and Ni foil standards, respectively 

(Supporting Information (available online at http://pubs.acs.org)).  Parameters including the 

coordination numbers (N) bond lengths (R) and their disorders (σ2) were varied in the fitting of 

catalyst sample spectra, as well as the correction to the photoelectron energy origin (ΔE0).  

Details of fitting EXAFS spectra are given in the Supporting Information (available online at 

http://pubs.acs.org). 
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Hg(0) poisoning.  Catalyst solutions for use in Hg(0) poisoning experiments were first 

prepared in the drybox according to the standard conditions as described with [M] concentration 

of 1.2 mM (M is Co or Ni), an Al/Co ratio of 3.0, or an Al/Ni ratio of 2.0, and initial 

cyclohexene concentrations of 1.65 M.  Hg(0) was added to the catalyst solutions before 

cyclohexene hydrogenation catalysis was started and allowed to mix for the specified time.  The 

bottle containing the catalyst solution and Hg(0) was then transferred to the pressurized H2 to 

collect pressure data using normal procedures. 

In another version of the Hg(0) poisoning experiment, a standard conditions 

hydrogenation using the Ni catalyst was stopped after about half the cyclohexene had been 

consumed by filling and purging the F–P bottle five times with Ar gas pressurized to 40 psig.  

The F–P bottle was then transferred back into the drybox where the Hg(0) was added.  The F–P 

bottle was then reconnected to the hydrogenation line, refilled with H2 gas using the standard 

procedure and data acquisition was restarted.  Time and pressure values collected after Hg(0) 

addition were corrected to fit with the data collected before Hg(0) addition. 

The results of Hg(0) poisoning control experiments are shown in the  (available online at 

http://pubs.acs.org) for the interested reader.  Control experiments using various quantities of 

Hg(0) added to prepared catalyst solutions followed by various mixing times before their use in 

hydrogenation show that a procedure using ≥ 300 equivalents of Hg(0) per Ni and ≥ 1.5 hours of 

stirring (at 1000 rpm in a sealed FP bottle in the drybox) is adequate to thoroughly contact the 

Hg(0) with all of the Ni catalyst in solution; this procedure was then strictly followed. 

In the case of the Co catalyst, control experiments showed that using even ~1770 

equivalents of Hg(0) per Co, plus 24 h of 1000 rpm stirring, are insufficient to completely and 

immediately poison all of the Co catalyst in solution.  Additionally poisoning results are 

irreproducible (Supporting Information (available online at http://pubs.acs.org)).  This implies 
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that the Hg(0) poisoning results with the Co catalyst cannot be interpreted in terms of catalyst 

homo- or heterogeneity; they are inconclusive.  Other control experiments show that both the Ni 

and Co catalyst solutions retain catalytic activity when subjected to the handling procedures 

required for Hg(0) addition, but in the absence of Hg(0).  Restated, those additional controls 

show that it is the Hg(0) itself, and not the procedures, that poison the catalysis. 

 

3. Results and Discussion 

Initial Observations, Plus an Overview of the Key Pre- and Posthydrogenation 

Characterization Results.  As noted in a review of the literature of the homogeneous versus 

heterogeneous catalysis problem [6], initial observations of the catalyst solutions alone make 

industrial Ziegler-type catalysts candidates for study regarding the homogeneous vs. 

heterogeneous catalysis question.  Specifically, dark brown or black solutions are frequently 

observed in literature catalyst systems now known to involve heterogeneous (e.g., nanoparticle) 

catalysis, making such an observation, by itself, suggestive of heterogeneous catalysis [6].  In the 

present study, there are several noteworthy observations from the synthesis of the industrial Co- 

and Ni-based catalysts, especially in comparison with the observations from the Ir model system 

[14].  For example, addition of the clear and colorless solution of AlEt3 to the clear, deep-blue 

Co(neodecanoate)2 solution results in an immediate change to a dark brown, almost black 

solution.  Likewise, addition of the AlEt3 solution to the clear, light-green solution of Ni(2-

ethylhexanoate)2 causes an immediate change to a dark brown solution (but one that is a lighter 

shade of brown than the Co/AlEt3 catalyst solution).  Unlike with the [(1,5-COD)IrO2C8H15]2 plus 

AlEt3 catalyst system, which is a much lighter, yellow-brown after addition of AlEt3 but darkens 

during a cyclohexene hydrogenation run, and will occasionally precipitate a dark brown powder 

a few days after the completion of a hydrogenation run [14], these industrial Co- or Ni-based 
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catalysts do not exhibit observable color change or insoluble particle formation upon use for, or 

post, hydrogenation.  Using the Ir model catalyst, it was found that H2 uptake begins initially at a 

slower rate, then accelerates to achieve its maximum rate after the start of hydrogenation (i.e., 

the initial rate is not the maximum rate) [14].  Furthermore, this increase in cyclohexene 

hydrogenation rate during the hydrogenation itself observed using the model Ir catalyst is 

accompanied by the observation of, on average, Ir~4–15 clusters prehydrogenation, but fcc Ir(0)~40–

150 clusters posthydrogenation. 

In contrast, with the industrial Co-, or Ni-based catalysts, H2 uptake begins immediately 

at the apparent H2 gas-to-solution MTL rate (~80 ± 20 psig/h at 1000 rpm stirring,  (available 

online at http://pubs.acs.org)) or at ~30% of the apparent H2 gas-to-solution MTL rate 

respectively, Figure B.1.  This implies that in the industrial Co- or Ni-based catalysts, very active 

catalyst species are present initially (or possibly are formed essentially immediately) upon the 

introduction of H2 gas.  In short, the initial observations from catalyst preparation alone are 

consistent with the presence of Co and Ni Ziegler nanoclusters in catalyst solutions both initially, 

and throughout, the hydrogenation process.  

These initial observations of just the dark colors of the catalyst solutions explain why the 

specific objectives herein necessarily entail: (i) determining the nuclearity of the Mn species 

present initially, and (ii) establishing what Mn species are present directly after use of the 

catalysts for cyclohexene hydrogenation.  These are the necessary first steps in probing the 

homogeneous versus heterogeneous nature of the most active catalyst in these industrial systems. 
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Figure B.1.  General steps for the synthesis of Co- or Ni-based Ziegler-type hydrogenation 
catalyst solutions.  M(O2CR)2 is either of the authentic industrial precatalysts, Co(neodecanoate)2
or Ni(2-ethylhexanoate)2.  Catalyst solutions were made by combining a cyclohexane solution of 
one of the precatalysts, 12.0 mM in [M], with a 36.0 mM cyclohexane solution of AlEt3.  
Example catalytic cyclohexene hydrogenation curves using standard conditions of solvent = 
cyclohexane, [M] = 1.2 mM, initial [cyclohexene] = 1.65 M, temp = 22.0 °C, and stirring rate = 
1000 ± 10 rpm are shown.  The apparent MTL value, depicted here as a black line, is ~80 ± 20
psig/h in this apparatus and at these conditions (e.g., the 1000 ± 10 rpm stirring rate). 

A summary of the results obtained from the analysis of catalyst samples pre- and 

posthydrogenation by Z-contrast STEM and MALDI MS is given in Table B.1 alongside the 

results from the Ir model system for comparison.  The key findings for both the Co- and Ni-

based catalysts are (i) Z-contrast STEM and MALDI MS reveal nanometer-scale clusters for 

both Co and Ni samples, both before and after hydrogenation, and (ii) the XAFS data indicate

that unreduced metal ions are present in solution, depending on the Al/M ratio, with the 

nanometer-scale Con or Nin clusters present.  In addition, the XAFS shows those Con and Nin

clusters possess disordered atomic structures.  In short, disordered transition metal Ziegler 

nanoclusters appear to be the predominant clusters formed by the industrial Co- and Ni-based 

precatalysts upon addition of AlEt3, both before and after hydrogenation, yet monometallic 

(homogeneous) species appear to be present as well.  In addition, the ability to directly compare 
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the results obtained herein to the results from the prior, analogous study of the model Ir system 

[14], is a valuable, unique feature of the present study. 

 

Table B.1.  Summary of results from investigation of metal cluster sizes using Z-contrast STEM 
and MALDI MS for industrial Ziegler-type hydrogenation catalysts made from 
Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 plus AlEt3 (Al/Co is 3.0, Al/Ni is 2.0), and for 
comparison an Ir Ziegler-type hydrogenation catalyst made from [(1,5-COD)Ir(µ-O2C8H15)]2 
plus AlEt3 (Al/Ir is 2.0), both before and after use for cyclohexene hydrogenation. 
  precatalysis postcatalysis 
 analytical method range 

(nm) 
averagea 
(nm) 

averagea Mn 
nuclearity 

range 
(nm) 

averagea 
(nm) 

averagea Mn 
nuclearity 

Co Z-contrast STEM 0.6–3.3 1.4 Co~130 0.5–2.5 1.4 Co~130 
MALDI MS 0.8–1.8 1.2 Co~80 0.8–1.8 1.1 Co~60 

        

Ni Z-contrast STEM 0.4–3.5 1.3 Ni~100 0.6–4.0 1.4 Ni~130 
MALDI MS 0.8–1.7 0.9 Ni~34 0.8–1.6 0.9 Ni~34 

        

Irb Z-contrast STEM 0.2–1.4 0.5 Ir~4 0.4–1.9 1.0 Ir~40 
MALDI MS 0.5–1.1 0.7 Ir~15 0.6–1.4 0.8 Ir~20 

a The average values are calculated mean cluster diameters from Z-contrast STEM, and estimated mean nuclearities 
from MALDI MS.  Explanations for how these values were determined and how the cluster diameter-nuclearity 
conversion is performed are given below.  b Results from a previously published study [14], provided here for 
comparison. 

 

Nuclearity of Mn Species before Hydrogenation:  Z-Contrast STEM.  Samples of the 

Co(neodecanoate)2 plus AlEt3 catalyst, with an Al/Co ratio of 3.0, before use for cyclohexene 

hydrogenation were imaged using Z-contrast STEM.  Measurement of 604 clusters shows a 

range of Co cluster sizes from 0.6 to 3.3 nm in diameter, with a mode and median of 1.3 nm 

clusters, and a mean Co cluster diameter of 1.4 ± 0.4 nm.  These cluster diameters correspond to 

cluster nuclearities with a range from Co~10 to Co~1700, a mode and median of Co~100, and a mean 

of Co~130 [24,25,26].  Figure B.2 shows an example image and the histogram. 

Samples of the Ni(2-ethylhexanoate)2 plus AlEt3 catalyst, with an Al/Ni ratio of 2.0, 

before use for cyclohexene hydrogenation were also imaged using Z-contrast STEM.   An 

example image and the histogram are shown in Figure B.3.  Measurement of 650 clusters in Z-

contrast STEM images reveals a range of Ni cluster sizes from 0.4 nm to 3.5 nm in diameter.  
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The mode, median, and mean Ni cluster diameters are 1.1 nm, 1.2 nm, and 1.3 ± 0.5 nm, 

respectively.  These diameters correspond to cluster nuclearites ranging from Ni~3 to Ni~2050, the 

mode, median, and mean being Ni~60, Ni~80, and Ni~100, respectively [24,25,26]. 

For both Co and Ni samples, Z-contrast STEM shows the presence of metal clusters with 

a broad distribution of sizes ranging from sub-nanometer to several nanometers in diameter.  

Cluster diameter measurements were made using the full width at half-maximum (FWHM) of 

line intensity profiles across individual clusters.  These Z-contrast microscopy results by 

themselves should not be considered absolutely definitive, however, due to the possibility that 

the observed clusters are artifacts of the microscopy itself, especially given that lighter (first-

row) transition metal clusters and precursors are known to be less stable in TEM electron beams 

than their heavier (third-row) analogs—a key reason we began our studies with our now-

published third-row metal, Ir-model system [14,27,28,29].  More specifically, Ni Ziegler-type 

hydrogenation catalysts have been observed to be sensitive to electron microscopy sample 

treatment processes, namely, drying of the Ni catalyst solution on TEM grids [2]. However, the 

possibility of artifactual results is mitigated herein by the use of scanning TEM [30], which 

diminishes the potential for beam-induced sample damage via a small electron probe, low beam 

current, and minimal beam exposure time [31].  The images herein were watched during image 

acquisition for signs of the influence of the TEM beam on the catalyst sample, and no changes in 

cluster size or shape were observed.  In addition, control experiments (described in the 

Experimental Section, images shown in the Supporting Information (available online at 

http://pubs.acs.org)) suggest that the clusters observed using Z-contrast STEM, and measured to 

construct the cluster size histograms, are not artifacts.  To summarize, Z-contrast microscopy 

shows that Co and Ni catalyst samples, before hydrogenation, each contain a wide range of Mn 

clusters, 1.4 ± 0.4 nm, Co~130, and 1.3 ± 0.5 nm, Ni~100, being the mean cluster size and nuclearity 
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in each case respectively.  To the extent of our knowledge, the results of the Z-contrast STEM 

herein are the best existing microscopic analysis of industrial Co and Ni Ziegler-type 

hydrogenation catalysts. 

Nuclearity of Mn Species before Hydrogenation:  MALDI MS.  Samples of the 

Co(neodecanoate)2 plus AlEt3 catalyst, with an Al/Co ratio of 3.0, were also analyzed using 

MALDI MS before their use in cyclohexene hydrogenation.  A broad peak is observed with a 

maximum intensity at ~4500 m/z (Figures are shown in the  (available online at 

http://pubs.acs.org)).  With the assumptions that the ions forming the broad peaks are composed 

of only Co atoms [32,33,34], and that the ionic charge is +1 [14,32,34,35], the maximum 

intensity of the MALDI MS peak at ~4500 m/z corresponds to Co~80 clusters. This, in turn, 

corresponds to a diameter approaching ~1.2 nm (used as an estimate of the average Co clusters 

reported in Table B.1).  Furthermore, the broad MALDI MS peak also indicates a wide size 

dispersity of the Co clusters present, similar to the wide size dispersity of the Co clusters 

observed using Z-contrast STEM.  The FWHM of the broad, asymmetrically shaped MALDI MS 

peak is from ~2000–9000 m/z, and tails off towards higher m/z values.  The peak reaches one-

fourth maximum intensity at ~12000 m/z, and one-eighth maximum intensity at ~16000 m/z; 

these m/z values correspond to approximately Co~30–150, Co~200, and Co~270 clusters, respectively, 

which in turn correspond to approximately 0.9–1.5, 1.6, and 1.8 nm Co clusters, respectively. 
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Figure B.2.  Example Z-contrast STEM image of the Co(neodecanoate)2 plus AlEt3 catalyst, 
with an Al/Co ratio of 3.0, and before its use for cyclohexene hydrogenation.  The histogram 
from measuring 604 Co clusters reveals an overall range of Co clusters observed from 0.6 to 3.3 
nm in diameter, which correspond to Co~10 to Co~1700 clusters.  The Co clusters measured have a 
mode and median of 1.3 nm, and a mean diameter of 1.4 ± 0.4, corresponding to Co~100 and 
Co~130 clusters, respectively [24,25,26]. 
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Figure B.3.  Example Z-contrast STEM image of the Ni(2-ethylhexanoate)2 plus AlEt3 catalyst 
with an Al/Ni ratio of 2.0, and before use for cyclohexene hydrogenation.  The histogram made 
from measurement of 650 Ni clusters shows Ni cluster sizes ranging from 0.4 to 3.5 nm in 
diameter, which correspond to Ni~3 to Ni~2050 clusters.  The Ni clusters measured have a mode of 
1.1 nm, a median of 1.2 nm, and a mean diameter of 1.3 ± 0.5 nm, corresponding to Ni~60 , Ni~80, 
and Ni~100, respectively [24,25,26]. 

Samples of the Ni(2-ethylhexanoate)2 plus AlEt3 catalyst, with an Al/Ni ratio of 2.0, were 

also analyzed using MALDI MS before their use in cyclohexene hydrogenation.  A broad peak is 

observed with a maximum intensity at m/z of 2000.  However, the presence of Ni atoms in 

species below 1500 m/z is ruled out by the absence of characteristic Ni isotope peak distributions 

in that region.  In a control experiment, the MALDI MS of a blank sample containing only the 
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matrix, trihydroxyacetophenone (THAP), and ionizing agent, NaI contains peaks in the 0–1500 

m/z range (Supporting Information (available online at http://pubs.acs.org)).  Therefore, the 0–

1500 m/z range was excluded from the mass spectrum region used to calculate number of 

transition metal atoms (M) in the Mn clusters, and corresponding diameters, for both Co and Ni 

catalyst samples; the m/z values of 1500–16000 for Co, and 1500–13500 for Ni were used to 

calculate the cluster diameter ranges reported in BF.1.  Using the same assumptions employed 

for the Co system above, as well as previously in the literature [14,32,33,34,35], the maximum 

intensity of the broad peak at m/z of ~2000 indicates Ni~34 clusters, corresponding to ~0.9 nm 

diameter Ni nanoclusters, (used as an estimate of the average Ni clusters reported in Table B.1).  

Much like the MALDI MS peak of the Co catalyst (and of the Ir model system [14]), the broad, 

asymmetrically shaped peak of the Ni catalyst also tails off towards higher m/z values reaching 

~6000 m/z at half maximum intensity, ~9000 m/z at one-fourth maximum intensity, and ~13500 

m/z at one-eighth maximum intensity, which correspond to approximately Ni~100, Ni~150, and 

Ni~230, respectively.  These nuclearities correspond, in turn, to approximately 1.3, 1.5, and 1.7 nm 

Ni nanoclusters, respectively. 

Somewhat as an aside, but interestingly, this study, and the previous one of the Ir model 

system [14], are unique tests of the value of MALDI MS as an analytical method for measuring 

the size and size distribution of transition metal nanoclusters in that the obtain MALDI MS data 

on systems where Z-contrast STEM (and XAFS, vide infra) data are available for comparison.  

Overall, the MALDI MS-determined nanocluster sizes and size distributions for both Co and Ni 

prehydrogenation catalysts are generally consistent with those determined using Z-contrast 

STEM in showing cluster sizes in the range of 0.8–1.8 nm for Co, and 0.8–1.7 nm for Ni are 

present. 
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Nuclearity of Mn Species before Hydrogenation:  XAFS (i.e., XANES plus EXAFS) 

Spectroscopy.  The XANES spectra of both Co and Ni catalysts are compared to those of the 

corresponding metal foils and catalyst precursors in B.4.  In each case, the XANES spectra of the 

catalyst solution becomes less like the precursor solution and more like the metal foil with higher 

Al/M ratios.  This suggests that, in terms of composite average formal oxidation state, the Co or 

Ni metals in catalyst solutions become progressively less like their M(II) precatalysts, and 

progressively more resembling of M(0), as the Al/M ratios increase from 1.0 to 3.0.  These 

results imply that unreduced metal ions are likely present in catalyst solutions in amounts that 

decrease with additional AlEt3.  Given the Mn nanoclusters observed using both Z-contrast 

STEM and MALDI MS, these results suggest that catalyst solutions contain a combination of Mn 

clusters with a wide range of diameters and unreduced metal ions, with the proportion of M 

atoms in the cluster versus ion phases depending on the Al/M ratio used in catalyst preparation. 

The potential of EXAFS spectroscopy for the characterization of Ziegler–type 

hydrogenation catalysts, especially the industrially favored Co and Ni catalysts, was made 

apparent to us by the valuable prior studies of Goulon and co-workers [36].  Specifically, those 

authors found Ni–Ni first nearest neighbors indicating the presence of Ni metal clusters [36].  

However, additional study using modern EXAFS analysis methods that use ab initio theory for 

the quantitative modeling and analysis of experimental EXAFS spectra proved worthwhile [37], 

especially when considered alongside results of complementary Z-contrast STEM and MALDI 

MS techniques used herein, the Hg(0) poisoning studies, and the now possible comparison to the 

results obtained from the Ir model system [14]. 
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Figure B.4.  (a) XANES spectra of Co foil (black) the Co(neodecanoate)2 catalyst precursor 
without added AlEt3 (blue), and Co(neodecanoate)2 plus AlEt3 catalysts with Al/Co ratios of 1.0 
(red) and 3.0 (green).  (b) XANES spectra of Ni foil (black), the Ni(2-ethylhexanoate)2 catalyst 
precursor without added AlEt3 (green), and Ni(2-ethylhexanoate)2 plus AlEt3 catalysts with Al/Ni 
ratios of 1.0 (pink) and 3.0 (blue). In each case, with additional AlEt3, the XANES spectra of the 
catalyst solution becomes less like the precursor solution and more like the metal foil. 

First, EXAFS data were collected separately for Co and Ni foils, and cyclohexane 

solutions of the Co(neodecanoate)2 and Ni(2-ethylhexanoate)2 precatalysts, without added AlEt3, 

for use as reference samples (see the Supporting Information (available online at 

http://pubs.acs.org) for the full results, including fits to the data).  Solution samples of the 

catalysts prepared by addition of AlEt3, but before their use in cyclohexene hydrogenation, were 

then analyzed by EXAFS.  Spectra were collected for catalyst samples with Al/M ratios of 0.5, 
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1.0, 1.5, 2.0, 2.5, 3.0, and 5.0.  However, the EXAFS spectra of many of these samples were of 

sufficiently poor quality to make fitting and interpretation unreliable.  The highest quality spectra 

were obtained for the Al/M = 1.0 and 3.0 samples; therefore, the spectra and fitting results of the 

Al/M = 1.0 and 3.0 samples are shown here, but the spectra and fitting results from samples 

prepared at other Al/M ratios are shown in the Supporting Information (available online at 

http://pubs.acs.org) [38].  For both Co and Ni catalysts, sample spectra show peaks that 

correspond to the first nearest neighbor (1NN) M–O peak in the precatalyst spectra, and to the 

1NN M–M peak in the M foil spectra, Figure B.5.  This is analogous to the catalyst spectra of the 

Ir model catalyst system [14], and so the fitting strategy used herein for the Co- or Ni-based 

catalysts is analogous to the one employed to fit the EXAFS spectra of the Ir model catalyst 

samples [14].  The Co and Ni catalyst spectra were fit using composite models created from the 

1NN M–O path of the precatalyst and the 1NN M–M path of the bulk metal.  Examples of fitting 

results are shown in Figure B.6, and given in Tables B.2 and B.3. 
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Figure B.5.  (a) Fourier transform magnitudes of the k2-weighted EXAFS spectra of Co metal 
foil (black), the Co(neodecanoate)2 precatalyst without added AlEt3 (blue), and a sample of the 
Co(neodecanoate)2 plus AlEt3 catalyst with an Al/Co ratio of 1.0 before its use for hydrogenation 
(red).  (b) Fourier transform magnitudes of the k2-weighted EXAFS spectra of Ni foil (black), the 
Ni(2-ethylhexanoate)2 precatalyst without added AlEt3 (green) and a sample of the Ni(2-
ethylhexanoate)2 plus AlEt3 catalyst with an Al/Ni ratio of 1.0 before its use for hydrogenation 
(pink).  Upon addition of AlEt3, the Co and Ni catalyst samples still show a peak corresponding 
to the 1NN, M–O peak of the Co(neodecanoate)2 and Ni(2-ethylhexanoate)2 precatalysts, 
respectively, but also display a peak corresponding to the 1NN, M–M peak from the spectrum of 
the bulk metal.  Also, and significantly, catalyst samples lack peaks in the 3–6 Å range 
characteristic of ordered, metallic structure.  Spectra for Co and Ni foils are shown at one-fourth 
intensity scale for the purpose of comparison. 
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Figure B.6.  Data and fits for (a) Co(neodecanoate)2 plus AlEt3 catalyst, and (b) Ni(2-
ethylhexanoate)2 plus AlEt3 catalyst, with an Al/M ratio of 1.0 in each case.  The highest quality 
spectra were obtained for the Al/M = 1.0 and 3.0 samples; the experimental spectra and fits to 
the Al/M = 1.0 data are shown here as examples—spectra and fitting results from samples 
prepared at other Al/M ratios are shown in the Supporting Information (available online at 
http://pubs.acs.org). 

Table B.2.  Fitting results from EXAFS spectroscopic analysis of Co reference samples and 
Co(neodecanoate)2 plus AlEt3 catalyst samples before hydrogenation. 

Sample 
Al/Co 

Co foil Co(O2CR)2
a Co catalyst 

1.0 
Co catalyst 
3.0 

NCo–Co  12d   3 ± 2 3.9 ± 0.4 
NCo–O    4.7 ± 0.4 3.5 ± 0.9 3 ± 2 
RCo–Co (Å)b 2.492±0.002  2.51 ± 0.02 2.432 ± 0.009 
RCo–O (Å)b  1.959±0.005 1.95 ± 0.02 1.86 ± 0.02 
"2

Co–Co (Å2)c 6.7 ± 0.3  15 ± 6 12 ± 1 
"2

Co–O (Å2)c  4.6 ± 0.7 7 ± 3 20 ± 7 
a Co(O2CR)2 is the catalyst precursor Co(neodecanoate)2 without added AlEt3.  The full analysis of 

Co(neodecanoate)2 is given in the Supporting Information (available online at http://pubs.acs.org).  b R stands for the 
interatomic distance corresponding to the single scattering paths.  c "2 represents the mean square variation in R due 
to both static and dynamic disorder (also known as the EXAFS Debye-Waller factor), and values shown are " 103.  d

For Co foil, this parameter was defined as the value shown (i.e., not varied in the fit). 
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Table B.3.  Fitting results from EXAFS spectroscopic analysis of Ni reference samples and 
Ni(2-ethylhexanoate)2 plus AlEt3 catalyst samples before hydrogenation. 

Sample 
Al/Ni 

Ni foil Ni(O2CR)2
a Ni catalyst 

1.0 
Ni catalyst 
3.0 

NNi–Ni 12d  3 ± 1 4.4 ± 0.3 
NNi–O  5.8 ± 0.3 2.8 ± 0.5 1.2 ± 0.3 
RNi–Ni (Å)b 2.490±0.003  2.51 ± 0.02 2.447±0.006 
RNi–O (Å)b  2.035±0.005 2.00 ± 0.02 1.85 ± 0.01 
σ2

Ni–Ni (Å2)c 6.9 ± 0.5  13 ± 4 12.4 ± 0.8 
σ2

Ni–O (Å2)c  7.4 ± 0.7 8 ± 3 14 ± 5 
a Ni(O2CR)2 is the catalyst precursor Ni(2-ethylhexanoate)2 without added AlEt3.  The full analysis of Ni(2-

ethylhexanoate)2 is given in the Supporting Information (available online at http://pubs.acs.org).  b R stands for the 
interatomic distance corresponding to the single scattering paths.  c σ2 represents the mean square variation in R due 
to both static and dynamic disorder (also known as the EXAFS Debye-Waller factor), and values shown are × 103.  d 
For Ni foil, this parameter was defined as the value shown (i.e., not varied in the fit). 
 

The main results from EXAFS are as follows: (i) peaks in the 3–6 Å range in the R-space 

EXAFS spectra (indicative of ordered metallic structures and evident in the Co and Ni foil 

reference spectra, Figure B.5), are absent for both Co and Ni catalyst samples.  This same result 

was also obtained from previous EXAFS analysis of the Ir model system [14] and the lack of the 

large distance peaks observed here suggests that Co and Ni catalyst samples are either (a) 

composed of metal species such as sub-nanometer metal clusters too small to have contributions 

to that interatomic distance range (b) composed of larger metal nanoclusters with a high degree 

of atomic disorder, or (c) some combination of the two.  (ii) Spectra are fit reasonably well using 

a composite model analogous to the one employed for the Ir model system [14].  Significantly, 

and unlike in the Ir model system, the catalyst samples with an Al/M ratio of 3.0 did not require 

incorporating a backscattering contribution from M–Al into the model.  Furthermore, the spectra 

themselves, Figure B.6, lack the feature observed in the spectra of the Ir model system that 

“grew in” with successively greater Al/M ratios.  From fitting the data, (iii) the 1NN M–M 

coordination numbers observed for Co and Ni samples are, like those observed in the Ir model 

system studied previously [14], roughly in the 3–4 range, and could point towards the 

predominance of, on average, sub-nanometer, M~4–6, metal clusters in catalyst solutions before 
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hydrogenation [39].  Alternatively, low 1NN M–M coordination numbers could signify large 

degrees of structural disorder in relatively large metal nanoclusters [14,40].  The σ2
M–M values of 

the catalyst samples are approximately twice the experimentally determined bulk metal values 

(Tables B.3 and B.4), which is also suggestive of disordered nanoclusters.  Another possibility is 

that the metal species in catalyst solutions exist as some combination of disordered clusters, and 

unreduced metal ions. 

An additional main result from EXAFS, (iv) the closest M–M distances, given by 1NN 

RM–M values, overlap within experimental error with the corresponding bulk metals for both Co 

and Ni samples with Al/M ratios of 1.0, but are shorter than the bulk metal M–M distances for 

both Co and Ni Al/M = 3.0 samples.  M–M distances in nanometer scale metal particles with a 

bulk-like atomic structure are expected to be shorter on average than the corresponding bulk M–

M distances due to M–M bond contraction required to counteract (i.e., decrease) the high surface 

free energy of the small metal clusters [40a-d,41].  Therefore, the implication is that the Co or Ni 

catalyst materials are becoming structurally more like nanoscale metal particles with increasing 

amounts of AlEt3, but not to the point that the 1NN NM–M values increase significantly or long 

range metallic order becomes apparent in the 3–6 Å range in the R-space EXAFS spectra (which 

is also consistent with the changes in the XANES spectra given above). 

Interpretation of the EXAFS results from the Co and Ni samples must be carried out in 

light of the Z-contrast STEM, MALDI MS, and XANES results.  For example, the 1NN NM–M 

values from EXAFS of roughly 3–4 seem, at first take, to imply on average M~4–6 clusters 

analogous to the Ir results, but Z-contrast STEM reveals mean Co or Ni cluster diameters of 1.4 

or 1.3 nm, respectively, that is M~130 to M~100 clusters.  Therefore, the most plausible explanation 

of the results from combining the Z-contrast STEM, MALDI MS, and XAFS (i.e., XANES and 
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EXAFS) spectroscopy appears to be that a combination of nanoclusters (which are structurally 

disordered resulting in the absence of peaks at larger distances in the R-space EXAFS spectra, 

and distorted 1NN NM–M values from fits of the EXAFS spectra [42]) and unreduced metal ions 

are present, with these two phases of M species both contributing to the mean NM–M value 

[40i,43].  The possibility of mono-metallic, unreduced metal ions being present is supported by 

the control experiments for Z-contrast STEM in which no Co was observable when only 

Co(neodecanoate)2, without AlEt3, was on the sample grid.  In other words, the metal-containing 

species in Co and Ni catalyst solutions appear to consist of disordered metal clusters with a broad 

distribution of sizes, the mean diameters of which are given by Z-contrast STEM and MALDI 

MS, plus some mono-metallic complexes present as unreduced metal ionic species. 

 

Nuclearity of Mn species after hydrogenation:  Z-contrast STEM.  The 

Co(neodecanoate)2 plus AlEt3 catalyst, with an Al/Co ratio of 3.0, and after its use for 

cyclohexene hydrogenation was imaged using Z-contrast STEM.  Measurement of 614 clusters 

shows a range of Co cluster sizes 0.5–2.5 nm in diameter.  The mode, median, and mean Co 

cluster diameters are 1.3, 1.4, and 1.4 ± 0.3 nm, corresponding to Co~100 and Co~130, accordingly.  

Figure B.7 shows an example image and the histogram. 

The Ni(2-ethylhexanoate)2 plus AlEt3 catalyst, with an Al/Ni ratio of 2.0, after its use for 

cyclohexene hydrogenation was also imaged using Z-contrast STEM.  Measurement of 650 

clusters in Z-contrast STEM images reveals a range of Ni cluster sizes 0.6–4.0 nm in diameter.  

The mode and median Ni cluster diameter is 1.4 nm and the mean is 1.4 ± 0.4 nm.  These 

diameters correspond to Ni~130.  An example image and the histogram are shown in Figure B.8. 

Z-contrast STEM shows that using these Co and Ni Ziegler-type hydrogenation catalysts 

for cyclohexene hydrogenation does not induce a change in the sizes of the metal cluster species 
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present in either Co or Ni catalyst samples, at least under the conditions used herein.  Although 

this differs from the distinct increase in metal cluster size and change in structure exhibited by 

the Ir model system [14], it is consistent with the lack of changes in catalyst solution color, no 

observation of precipitates in post-hydrogenation solutions (unlike the Ir model system [14]).  In 

short, catalytic cyclohexene hydrogenation induces essentially no changes in size or size 

distribution of the Co or Ni clusters observed by Z-contrast STEM. 

Nuclearity of the Mn species after hydrogenation:  MALDI MS.  Samples of the 

Co(neodecanoate)2 plus AlEt3 catalyst, with an Al/Co ratio of 3.0, were analyzed using MALDI 

MS after their use in cyclohexene hydrogenation (Figures are shown in the Supporting 

Information (available online at http://pubs.acs.org)).  MALDI MS of the Co catalyst results in a 

broad peak with maximum intensity at ~3500 m/z (reported as the average Co cluster in Table 

B.1), and a shoulder at ~6000 m/z.  Using the same necessary assumptions as before, that the 

broad peaks are composed of only +1 charged ions [14,32,33,34,35], the peak at ~3500 m/z 

indicates Co~60 clusters, corresponding to a diameter of ~1.1 nm.  The peak of the post-

hydrogenation Co catalyst tails off toward higher m/z values; FWHM of the peak is from ~1500–

9500 m/z, the peak reaches one-fourth maximum intensity at ~12000 m/z, and one-eighth 

maximum intensity at ~17000 m/z (1500–17000 is used to report the range of Co clusters in B.1), 

which correspond to 0.8–1.5 nm, Co~25–160; 1.6 nm, Co~200; and 1.8 nm, Co~290 clusters, 

respectively—essentially the same as the prehydrogenation results. 
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Figure B.7.  Example Z-contrast STEM image of a Co(neodecanoate)2 plus AlEt3 catalyst 
sample after its use in hydrogenation.  The histogram shows the results from measuring the 
diameters of 614 Co clusters in such images; measured cluster diameters range from 0.5 to 2.5 
nm, which correspond to Co cluster nuclearities from Co~6 to Co~740.  The mode, median, and 
mean diameters of Co clusters are 1.3, 1.4, and 1.4 ± 0.3 nm, corresponding to Co~100 or Co~130
accordingly. 
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Figure B.8.  Example Z-contrast STEM image of a Ni(2-ethylhexanoate)2 plus AlEt3 catalyst 
sample after its use in hydrogenation.  The corresponding histogram shows the results from 
measuring the diameters of 650 Ni clusters in such images, and reveals a range of Ni clusters 
with diameters from 0.6 to 4.0 nm, corresponding to Ni~10 to Ni~3060.  The mode and median 
diameters are 1.4 nm, and the mean is Ni 1.4 ± 0.4 nm, corresponding to mean Ni~130 clusters. 

 

The Ni(2-ethylhexanoate)2 plus AlEt3 catalyst, with an Al/Ni ratio of 2.0, was also 

analyzed using MALDI MS after it had been used for cyclohexene hydrogenation, giving a 

broad peak with a maximum intensity at ~2000 m/z, which again indicates Ni~34 clusters, 

corresponding to ~0.9 nm diameter Ni nanoclusters (reported as the average cluster size in Table 

B.1).  (As in the catalyst sample before hydrogenation, the presence of Ni atoms in species below 
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1500 m/z is ruled out by the absence of characteristic Ni isotope peak distributions in that 

region.)  The broad, asymmetrically shaped MALDI MS peak of the catalyst sample after 

hydrogenation also tails off towards higher m/z values, but isn’t completely identical to the peak 

of the sample before hydrogenation; the post-hydrogenation peak displays two slight shoulders at 

~3000 and ~6000 m/z.  Nevertheless, the broad peak in the sample after hydrogenation reaches 

~6500 m/z at half maximum intensity, ~8500 m/z at one-fourth maximum intensity, and ~11000 

m/z at one-eighth maximum intensity (1500–11000 m/z is used to report the range of Ni clusters 

in Table B.1), which correspond to 1.3 nm, Ni~110; 1.5 nm, Ni~145; and 1.6 nm, Ni~190, respectively.  

These Ni cluster size and nuclearity values are very similar to those from the prehydrogenation 

sample.  In short, the MALDI MS-determined sizes and size distributions of both Co and Ni 

clusters in post-hydrogenation samples (i) agree closely with the analysis of posthydrogenation 

catalyst samples using Z-contrast STEM, and consistent with the Z-contrast STEM, (ii) indicate 

no significant change in the sizes of the metal clusters present upon their use for the catalytic 

hydrogenation of cyclohexene. 

 

Nuclearity of Mn species after hydrogenation:  XAFS (i.e., XANES and EXAFS) 

Spectroscopy.  Solution samples of both Co(neodecanoate)2 plus AlEt3, and Ni(2-

ethylhexanoate)2 plus AlEt3 catalysts, with Al/M ratios of 1.0, were analyzed using XAFS after 

their use in hydrogenation reactions.  The XANES spectra of the Co and Ni catalyst solutions 

posthydrogenation are nearly the same as their prehydrogenation counterparts.  XANES spectra 

collected after hydrogenation are shown and compared to the prehydrogenation spectra in the 

Supporting Information (available online at http://pubs.acs.org) 

 for the interested reader.  For both Co and Ni catalysts, the EXAFS spectra after 

hydrogenation also appear very similar to the sample spectra before hydrogenation.  The spectra 
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are fit using the same models employed for fitting the catalyst samples before hydrogenation.  

The results are shown in Figure B.9 and summarized in Table B.3.  Complete fit information and 

additional spectra are in the Supporting Information (available online at http://pubs.acs.org). 

Figure B.9. Data and fits of (a) the Co(neodecanoate)2 plus AlEt3 catalyst, Al/Co ratio of 1.0; 
and (b) the Ni(2-ethylhexanoate)2 plus AlEt3 catalyst, Al/Ni ratio of 1.0, both after use for the 
catalytic hydrogenation of cyclohexene. 

The most plausible interpretation of the EXAFS spectra and fitting results is essentially 

the same for the catalyst samples after hydrogenation as for the samples before hydrogenation.  

The lack of peaks in the 3–6 Å range implies that no Co or Ni species with ordered metallic 

structures on that scale are present, and 1NN single scattering NM–M values of ~3 were obtained 

for both Co and Ni catalysts. Additionally, the RM–M values from both Co and Ni samples 

posthydrogenation are the same as their prehydrogenation counterparts within experimental 
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error, and are very close to the experimental bulk metal values (within ≤ 0.03 Å).  Recall from 

the discussion of the prehydrogenation XAFS results that bulk metal-like RM–M values are in 

contrast to the larger RM–M values expected for subnanometer Mn clusters ligated by Lewis acid 

species (i.e., AlEt3 and its derivates).  Lastly, the σ2
M–M values of the catalyst samples are again 

roughly twice the experimentally determined bulk metal values.  Considered in light of the 

posthydrogenation Z-contrast and MALDI MS results, which reveal a predominance of 

nanometer scale clusters as part of wide size distributions, the self-consistent interpretation of all 

measurements (made already for the prehydrogenation samples) is that a combination of 

disordered nanoclusters and unreduced, mono-metallic species are present in catalyst solutions 

posthydrogenation.  In short, both the XANES and EXAFS spectra confirm that use of catalyst 

solutions for cyclohexene hydrogenation has a negligible effect on the oxidation state and form 

of the transition metal catalyst material. 

Table B.3.  Summary of fit results for posthydrogenation Co and Ni catalyst spectra. 
Sample Co Ni 
NM–M 3 ± 2 3 ± 1 
NM–O 3 ± 1 2.7 ± 0.4 
RM–M (Å)a 2.48 ± 0.02 2.52 ± 0.01 
RM–O (Å)a 1.96 ± 0.02 2.02 ± 0.01 
σ2

M–M (Å2)b 15 ± 7 13 ± 3 
σ2

M–O (Å2)b 7 ± 4 7 ± 2 
a R stands for the interatomic distance corresponding to the single scattering paths.  b σ2 represents the mean square 
variation in R due to both static and dynamic disorder (the EXAFS Debye-Waller factor), and values shown are × 
103. 
 

 

Kinetics Studies: Hg(0) catalyst poisoning.  The observation of Mn clusters before and 

after catalysis does not necessitate that these species are the active hydrogenation catalysts—

kinetic studies are required to determine the most active catalyst(s) from sample solutions.  

Catalyst poisoning by Hg(0) is a useful kinetics-based test for distinguishing homogeneous from 

heterogeneous Ziegler–type hydrogenation catalysis, as has been shown previously [14].  Hence, 
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Hg(0) poisoning experiments were utilized to test whether the observed catalytic activity of the 

industrial Ziegler–type hydrogenation catalysts made from Ni(2-ethylhexanoate)2 or 

Co(neodecanoate)2 and AlEt3 is “homogeneous” (e.g., via single metal organometallic) or 

heterogeneous (e.g., via small M4 or larger nanoclusters), Figure B.10.  (Due to the outcomes of 

the Hg(0) poisoning experiments, the results for Ni are discussed here before those for Co.)  One 

benefit of using Hg(0) poisoning in this case is that the results are not affected by MTL kinetics 

(vide supra, and in the Supporting Information (available online at http://pubs.acs.org)).  Hg(0) 

addition to the Ni catalyst prior to the start of cyclohexene hydrogenation poisons catalysis 

immediately and completely, Figure B.10.  When Hg(0) is added to the Ni catalyst solution after 

about half the cyclohexene had been consumed, the Hg(0) also poisons the catalysis immediately 

and completely.  These results suggest that catalysis in the Ni Ziegler–type hydrogenation 

system, made from authentic industrial Ni(2-ethylhexanoate)2 precatalyst plus AlEt3 is 

heterogeneous (i.e., via the observed sub (~M4) to larger nanoclusters).  

It is known that one potential difficulty with Hg(0) poisoning experiments is that it may 

be difficult to thoroughly contact the Hg(0) with all of the catalyst in solution due to the 

insolubility of Hg(0) [44]. Control experiments with the Ni system allowed the determination 

that a procedure using ≥ 300 equivalents of Hg(0) per Ni and ≥ 1.5 hours of 1000 rpm stirring is 

adequate to thoroughly contact the Hg(0) with all of the Ni catalyst in solution.  However, 

control experiments show that the degree of poisoning with the Co catalyst is with regard to the 

amount of Hg(0) used and the length of time it is mixed with the catalyst solution prior to data 

acquisition, is irreproducible (Experimental Section and Supporting Information (available 

online at http://pubs.acs.org)).  Unfortunately, then, the Hg(0) poisoning experiments with the Co 

catalyst proved inconclusive.  Nevertheless, the Hg(0) poisoning results suggest catalysis with 
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the Ni system is heterogeneous (i.e., proceeds via the observed Ni Ziegler sub-to-higher 

nanoclusters). 

Figure B.10.  Poisoning experiments using the Ni(2-ethylhexanoate)2 plus AlEt3 catalyst with an 
Al/Ni ratio of 2.0 are shown next to standard example cyclohexene hydrogenation runs for 
comparison (black curve).  Immediate and complete poisoning of catalysis by addition of Hg(0) 
after preparation of the catalyst, but before hydrogenation is begun (blue), and partway through a 
catalytic run (red), suggests that catalysis in the Ni catalyst system is heterogeneous (i.e., via the 
observed Ni nanoclusters). 

 

 

4. Conclusions and Needed Future Studies.   

Catalysts made from either of the industrial precursors Co(neodecanoate)2 or Ni(2-

ethylhexanoate)2, plus AlEt3, were analyzed by Z-contrast STEM, MALDI MS, XAFS (i.e., 

XANES and EXAFS), and Hg(0) poisoning studies, producing the following observations: (i) Co 

and Ni Ziegler-type hydrogenation catalyst solutions turn dark brown upon the initial 

combination of the Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 precatalyst solutions with the 

AlEt3 solution, and not during hydrogenation catalysis; and (ii) hydrogenation proceeds 

immediately with the start of data acquisition at, or very near, the maximum observable rate.

(iii) Z-contrast STEM reveals, for the prehydrogenation Co sample, a 0.6–3.3 nm range of 

particle diameters with a mean of 1.4 ± 0.4 nm, which corresponds to Co~130.  For the 
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prehydrogenation Ni sample, Z-contrast STEM reveals a 0.4–3.5 nm range of particle diameters 

with a mean of 1.3 ± 0.5 nm, which corresponds to Ni~100.  (iv) MALDI MS is used to estimate, 

for the prehydrogenation Co sample, a 0.8–1.8 nm range of particle diameters and an average of 

1.2 nm, which corresponds to Co~80.  For the prehydrogenation Ni sample, MALDI MS is used to 

estimate a 0.8–1.7 nm range of particle diameters and an average of 0.9 nm, which corresponds 

to Ni~34.  (v) XANES spectra show that the Co or Ni metals in prehydrogenation catalyst 

solutions become progressively less like their M(II) precatalysts, in terms of composite average 

formal oxidation state, and progressively more like the M(0) metal foils as the Al/M ratios 

increase from 1.0 to 3.0, implying that unreduced metal ions are present in catalyst solutions in 

amounts that decrease with additional AlEt3.  (vi) EXAFS spectroscopic analysis of 

prehydrogenation samples reveals a lack of the R-space peaks in the 3–6 Å range indicative of 

ordered metallic structures.  Fitting the spectra of both metals using composite models analogous 

to that used for the Ir model system [14], gives mean 1NN M–M coordination numbers in the 3–

4 range.  Fitting the EXAFS spectra also gives 1NN RM–M values that overlap, within 

experimental error, with the corresponding bulk metals for both Co and Ni samples with Al/M 

ratios of 1.0, but 1NN RM–M values that are shorter than the bulk metal M–M distances for both 

Co and Ni Al/M = 3.0 samples.  Fitting the EXAFS spectra also reveal σ2
M–M values that are 

approximately twice the experimentally determined bulk metal values, indicative of disordered 

metal clusters.  In addition, (vii) the Z-contrast STEM, MALDI MS, and XAFS results all show 

that cyclohexene hydrogenation does not significantly change the transition metal contents of the 

catalyst solutions.  Finally, (viii) Hg(0) poisons the Ni catalyst immediately and completely, 

regardless of whether the Hg(0) is added before, or in the middle of a hydrogenation run. 
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The self-consistent interpretation of all results from the complementary techniques used 

herein is that the transition metal components of catalysts made from either of the industrial 

precursors Co(neodecanoate)2 or Ni(2-ethylhexanoate)2, plus AlEt3, consist of a combination of 

Mn clusters with a broad range of sizes and a large degree of structural disorder, and unreduced, 

mono-metallic species, the distribution between the two phases depending on the Al/M ratio.  

Furthermore, the Hg(0) poisoning in particular suggests that Ziegler nanoclusters are the most 

active catalysts in the industrial Ni Ziegler-type hydrogenation catalyst system (i.e., that the 

catalysis is heterogeneous, and if one includes ≥ Ni4 within the definition of heterogeneous).  

This work expands on the results of others—notably the important studies by Schmidt and co-

workers [17], and Bönnemann and co-workers [18] which suggest transition metal nanoclusters 

are the catalysts in the Co, Pd, Ni, and Pt Ziegler-type systems they studied.  The combined 

results present the best evidence to date consistent with the “Ziegler nanocluster hypothesis” as 

the correct answer to the ~50 year old problem of what is the true nature of the industrial Ni-, 

and presumably also Co-based catalysts.  Hence, the notion that industrial Ziegler-type 

hydrogenation catalysis proceeds via Ziegler nanoclusters is the leading hypothesis going 

forward to try to disprove. 

Much remains to be done, however.  Operando spectroscopy studies of both the 

formation of, and catalysis by, both the Ni and Co industrial catalyst systems remain to be 

accomplished [45].  A full kinetic study and rate law determination under non-MTL conditions 

also remain to be done, and promises to be challenging due to the high rates of these superior 

catalysts.  In addition, the differences regarding the backscattering contribution from M–Al 

between the EXAFS spectra of the Ir model system (which show the presence of Al) [14], and 

those of the industrial Co and Ni-based catalysts studied herein (which do not show the presence 

of Al), are surprising and remain to be explored—could a M4H4 type catalyst explain this 
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discrepancy, for example?  Another important difference between the Ir and Co, Ni catalysts is 

that catalyst aging slows the rates for the Co, Ni catalysts, opposite to what is seen for Ir, so that 

future studies characterizing the aged Co and Ni catalysts is another, important future objective.  

Furthermore, specific determination of the form(s) taken, and role(s) played by the AlEt3 

component, both in the initial synthesis of the catalyst and during catalytic cyclohexene 

hydrogenation, remain to be fully understood [19]. 

Despite the work remaining to be done, this investigation of the homogeneous versus 

heterogeneous nature of Ziegler-type hydrogenation catalysts is significant for at least four 

reasons: (i) this study examines Co and Ni-based catalysts made from the actual industrial 

precursor materials, which make catalysts that are notoriously problematic regarding their 

characterization [2,3]; (ii) the Z-contrast STEM results reported herein represent, to our 

knowledge [3], the best microscopic analysis of the industrial Co and Ni Ziegler-type 

hydrogenation catalysts; (iii) this study is the first explicit application of an established method, 

using multiple analytical methods and kinetics-based studies, for distinguishing homogeneous 

from heterogeneous catalysis [3,6-15]; and (iv) this study parallels the successful study of an Ir 

model Ziegler catalyst system, thereby benefiting from a comparison to those previously 

unavailable findings [14], although the greater M–M bond energy, and tendency to agglomerate, 

of Ir versus Ni or Co are important differences to be noted [46].  Overall, the leading hypothesis 

to try to refute in future work is that Ziegler-type sub-(i.e., M4) to larger nanoclusters are the 

dominant, industrial, Co- and Ni- plus AlR3 catalysts. 

 

6. Supporting Information Available.  Experimental information and results of control 

experiments for cyclohexene hydrogenations used to help establish standard conditions for 

catalyst preparation and use; additional TEM images; figures showing the MALDI MS results; 
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EXAFS spectra with fits; Hg(0) poisoning control experiments; and a full list of the authors of 

reference 18d.  This material is available free of charge via the Internet at http://pubs.acs.org. 
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APPENDIX G 

GENERAL STATEMENT ON “JOURNALS-FORMAT” THESES 

(Written by Professor Richard G. Finke) 

 The Graduate School at Colorado State University allows, and the Finke Group in 

particular encourages, so-called journals-format theses.  Journals-format theses, such as the 

present one, consist of a student written and lightly edited literature background section, chapters 

corresponding (in the limiting, ideal case) to final-form papers either accepted or at least 

submitted for publication, a summary or conclusions chapter, and short bridge or transition 

sections between the chapters as needed to make the thesis cohesive and understandable to the 

reader.  The “bridge” sections and summary are crucial so that the thesis fulfills the requirement 

that the thesis be an entity (an official requirement of most Graduate Schools).  All chapters 

(manuscripts) in a journals-format thesis must of course be written initially by the student, with 

subsequent (ideally light) editing by the Professor, the student’s committee, and even the 

student’s colleagues where appropriate and productive. 

 The advantages for doing a journals-format thesis are several-fold and compelling.  

Specifically, some of the major advantages are: the level of science (i.e., of refereed, accepted 

publications) is at the highest level; the student and Professor must interact closely and 

vigorously (i.e., to bring both the science and the writing to their highest level), hence the student 

is getting the best education possible and is being at least exposed to (if not held to) the highest 

standards; the needed clean-up or control experiments that invariably come up have all been 

identified and completed before the student leaves; there are no further time demands once the 

student has left the University (since all publication are at least submitted; it is terribly inefficient 

to try to complete either writing or often specialized experiments once the student has left); and 
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the American tax payers, who ultimately pay the bill for the research, are getting their money’s 

worth since all the research is published and thus widely disseminated in the highest form, as 

refereed science.  Professorial experience teaches that a student who has achieved a journals-

format thesis has indeed received a better education and has learned critical thinking and clear 

writing skills that will serve them well for a lifetime. 

 Experience also teaches, however, that much more than light editing is often needed in at 

least some student theses; it follows, then, that considerable professorial writing and editing 

might be needed for at least the initial chapters of most journals-format thesis.  Indeed, a 

journals-format thesis is not recommended (and may not even be possible) for less strong 

students.  Hence, the issue arises of exactly how much of the science and the writing, in the final 

(or submittable) chapters, is due to the student vs. the Professor and whether or not this level of 

contribution constitutes that acceptable of a new Ph.D. and independent investigator. 

 To deal with this issue, several recommendations are made.  The recommendations are: 

 (i) That the present pages be enclosed in the thesis until such a time as it is no longer 

needed (i.e., when the policies and procedures for journals-format theses become routine); 

 (ii) That for each chapter it is detailed, and to the satisfaction of the committee and the 

advisor, who made what contributions, both of intellectual substance and writing.  [Substantial 

contributions of other students or Professors should of course be acknowledged.  In the case of 

disagreements, the various drafts (i.e., as their electronic files) can be examined by the 

committee (in light of a knowledge of who wrote which draft) to easily determine who 

contributed what.  In possible borderline or controversial cases it may even be advisable to keep 

all (electronic) drafts of the papers as a record]; 
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 (iii) That it be specifically stated whether or not all the experimental work is the Ph.D. 

candidate’s [as is usually the case, although the increasing (desirable) collaboration among 

scientists worldwide makes this a non-trivial point]. 

 (iv) Furthermore, it is recommended that allowances be made for the expectation that a 

greater degree of involvement of the professorial advisor is likely in a journals-format thesis than 

in a traditional thesis.  That this is reasonable follows from the fact that some Professors write 

100% of all their papers; this, unfortunately, robs the student of the valuable experience of 

participating in the science and the end product as practiced at the highest levels.  It also creates 

an unmanageable writing burden for Professors involved in all but the narrowest of research 

areas or for Professors involved in more than one competitive research area; 

 (v) Notwithstanding (iv), there needs to be ideally no more than ca. 40% Professorial 

writing contribution in a given early chapter in the thesis, and there should be a clear evolution in 

the thesis of a decreasing professorial involvement to, say, a 10-20% direct contribution in the 

last chapter or two. 

 (vi) As a further aid towards separating out the candidate’s and the professorial (and 

other) contributions, it is recommended that the Introductory (usually literature background) 

chapter(s) and at least the final chapter be lightly edited only, so that authentic examples of the 

student’s contributions are documented in an unambiguous form. 




