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ABSTRACT

CONTROL DESIGN FOR GENERATOR OF

NONLINEAR HIGH FREQUENCY PLASMA SYSTEM

This document aims to develop control systems for a generator of a nonlinear high frequency

plasma system. Initial modelling was done by Advanced Energy Industries, Inc. (AE) which was

passed on to Colorado State University environment for further research into developing controllers

for this special model. This thesis documents all the work done by Colorado State University till

Summer of 2020. The first phase of the collaboration included finding metrics for the feedback

system with the nonlinear load modelled by AE. The metrics serve for better understanding of the

modelling and also to generate effective control criteria suited to AE requirements. AE required

for the user defined wave-forms to be tracked in an average sense without significantly chang-

ing the real time tracking criteria. This tradeoff was also addressed while developing metrics. A

preliminary approach for control design was a PID controller to study its effects in a nonlinear

environment. A robust control approach called H∞ loop-shaping is the primary control design

developed by CSU for this specific application. The nonlinear system was approximated with

a transfer function and the controller developed for that approximation. The purpose of the ap-

proximation is to generate a controller that is highly robust considering the uncertainties in high

frequency plasma loads. The metrics discussed above are used for confirming the efficiency of the

controllers. Controller design was the second phase of the project. Finally, in phase three, Nelder-

Mead optimization was used to generalize the H∞ controller for various generator and set-point

specifications. A system identification processes was also developed consisting of curve fit models

for the nonlinear load. This was done with a view to the future for classifying different loads and

plasma to develop customised controllers.
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Chapter 1

Introduction

Advanced Energy (AE) has collaborated with Colorado State University (CSU) on a project

developing advanced control strategies for radio frequency power supplies. AE makes products

which deliver power to nonlinear plasma loads at high frequency. These power supplies typically

use a network to match the plasma load impedance so that the generators can efficiently deliver

power. The generator is modulated at a higher rate than the network used to match the impedance,

so as to cope with the variation in impedance, and at least keep the average impedance matched. A

Field-programmable gate array (FPGA) is used at very high frequency to keep up with the changes

in the power delivered to the load. A much slower microprocessor controls the overall system. The

plasma load can vary according to gas mixture, gas pressure and changes in the plasma apparatus

in the plasma chamber. The plasma generator has fast dynamics, allowing for quick and high-level

changes in the power setpoint. Note that the load impedance matched at the generator is a function

of the power delivered to the load. At the same time, the output power is a function of the matched

impedance. This inherent feedback loop in the system makes it an interesting and challenging

problem for control design.

1.1 Real-Time vs Average Tracking

Real-Time tracking of a control system corresponds to accurately track the given setpoint con-

sidering the transient overshoots and undershoots. Average tracking, according to the AE system,

corresponds to tracking of a power level on the whole as an average without considering the the

transient and steady state responses. As an example, if a particular response at any power level has

an overshoot and goes into a steady state that might be acceptable for real-time tracking but would

not be appropriate for the average tracking since the average power would not be not be minimised.
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1.2 Metrics

Phase 1 of the project aimed to develop metrics for the Advanced Energy (AE) system. The

metrics are based on errors generated between the setpoint and the power delivered to the load. The

metrics, having numerical values and graphical representation, are supposed to capture different

aspects of performance of the AE system. Most important of those aspects are real time tracking

and average tracking. The metrics used have been designed with absolute values and average

values of errors to focus on real time tracking and average tracking. These metrics are then stated

in the form of optimization problems to understand the goals that needed to be achieved while

designing a controller. The metrics were calculated after every design was implemented.

1.3 Control Design

H∞ loopshaping methodology was selected because of the high frequency of the plasma load

and the ease of implementation of the controller. This process was a part of the phase 2 of the

project which included controller design and implementation. This method solves an optimization

problem called ‘Normalised Coprime Factor H∞ robust stabilization problem’ and uses loopshap-

ing methods, both of which together guarantee closed loop stability at all frequencies. A PID

controller was also used as a preliminary control method to learn of its usefulness in a nonlinear

and high frequency environment. A simple system identification consisting of curve fitting was

done on the open loop plant containing the dynamics to generate a set a equations and visualize

the plant at various levels of power and voltage.

1.4 Optimization

The controller was designed for a special combination of a ’50Ω point’ (source impedance

for radio generator), Power Setpoint and Z_rotation (Cable length in terms of rotation angle).

The plasma and the generator system, however, cannot be of the same specifications with every

application. Hence, an optimization routine had to be devised for designing the controller for

a range of the specifications to generalize the controller. This part of the project was included
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in the Phase 3 of the project timeline. The optimization creates an optimal set of specifications

for the H∞ loopshaping controller and runs the optimal controller for the system keeping Power

Setpoint and 50Ω point as constants and varying Z_rotation. Parallel processing was used on CSU

linux servers to reduce simulation time. The Nelder-Mead optimization routine was used for this

purpose because of its easy and quick simplex calculations without the computation of gradients

and its capability to handle nonlinear and nonsmooth objective functions.

1.5 Thesis Structure

The thesis consists of the following structure:

• Chapter 2 consists of present and past literature for the project, specified control design and

optimization.

• Chapter 3 is an overview of the AE system.

• Chapter 4 discusses the shortcomings of the AE system that CSU needs to solve.

• Chapter 5 discusses the above theories CSU used for solving the problem.

• Chapter 6 describes the applications of these theories on the AE system and their simulation

studies.

• Chapter 7 includes conclusion and future work.
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Chapter 2

Literature Review

Two United States Patents registered by Gideon van Zyl serve as the basis of the project. The

patent published [1] in 2009 gives the idea inspiring the invention. It consists a method for modi-

fying the interactions between a power generator and a nonlinear load. The system described has a

control signal that serves as an input to the controller. The controller is supposed to deliver a con-

trolled signal to the nonlinear power load. The controlled signal is in the form of power, voltage

and current. Sensors measure the impedance and uncontrolled signals from the nonlinear load and

feed it back in the power generator for generating the controlled signal. The control signal drives

through the nonlinear load dynamics reducing the transient response as much as possible. The

publication gives a logical proof for the power that is generated by the generator changing the load

impedance and hence the load impedance in turn changing the power generated. It is also evident

in the publication that the sensitivity of the generator to small changes in load impedance reduces

when a resistive source impedance is matched to the load impedance.

The patent published [2] in 2017 describes a few aspects of adjusting the source impedance

of the generator as a better control approach. One method uses two signals that are generated

and combined using a multiplexer. The output of the multiplexer delivers a controlled output to a

plasma load. An isolated system is attached to the output of the combiner for adjusting the variable

impedance that is fed back to the generator. Another method describes the two signals with an

amplifier and then combined together. The multiplexer has output ports for first amplifier signal,

second amplifier signal, power delivered to the load and one for adjusting the variable impedance.

In the publication [3] by K.J. McLaughlin, T.F. Edgar and I. Trachtenberg, a process control

method is applied by the authors on a plasma etching system that analyses the system using Rela-

tive Gain Array and Signular Value Decomposition. A multivariable control design approach was

used with a block relative gain method by Manousiouthakis [4]. An online system identification

method was developed in [5] which uses a recursive parameter estimation method.
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The robust control strategy used in this project by CSU is the H∞ loopshaping design pro-

cedure by D. McFarlane and K. Glover [6]. It solves a particular H∞ optimization problem to

guarantee closed loop stability and robust stability at all frequencies. In the standard loopshap-

ing approach, the specifications of closed loop design are expressed as open loop gains (singular

values for MIMO) of the compensated system. Whereas in the H∞ loopshaping approach, the

specifications of the closed loop system are expressed as closed loop gains (singular values) of the

weighted transfer function and a specific optimization routine is used to obtain an optimal control

according to the specifications. The method uses loopshaping to give desired singular values of the

plant at low and high frequencies and the optimization problem shapes the plant.

The standard loopshaping approach requires for plant phase to be considered while designing.

This creates some limitations for the loop shape design which makes the design more involved.

Whereas in the H∞ loopshaping design approach, the phase is taken care of in the optimization

problem, making the design process easier at all frequencies. ‘The normalized coprime factor H∞

robust stabilization problem’ has been rigorously solved in [7] and [8].

The AE/CSU system requires for unconstrained optimization for genralizing the results. The

Nelder-Mead algorithm ( [9] and [10]) was used here for its direct numerical search techniques

without the use of gradients. This method uses the concept of simplex for searching. This method

is different than the popular Dantzig’s simplex algorithm [11] which is a method of linear program-

ming. Since there are not many past studies in this specific application, it becomes an interesting

study not knowing where the challenges occur. In this thesis, we describe in detail, the problem

that needs to be solved and the approaches that were used to solve the problem.
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Chapter 3

AE System Overview

3.1 System Overview

The overall system schematic is illustrated below in figure 3.1. We describe below the basic

function of each of the components below.

Figure 3.1: Plasma Power Generator Schematic

The input to the system is a user defined waveform for the plasma load and a Virtual Front

Panel (VFP) provides for the user a GUI medium for setting in the desired setpoints, i.e., specify

the desired power waveform to be tracked. The Microcontroller Unit (MCU) is used for relatively

slow, high-level processing and complex algorithms. In contrast the Field Programmable Gate

Array (FPGA) has a very fast clock pulse and is well suited to fairly simple algorithms that need

to run quickly. This gives us the ability to have a two-loop control approach, with a fast inner

loop implementing simple control algorithms (FPGA), while at the same time more complex pro-

cesses run in the slower outer loop (MCU). The Electronics part of the ’Sensors and Electronics’

block consists of RF circuitry which matches the input and output impedance for maximum power

transfer between the generator and the nonlinear load. It also converts the digital signal from the
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FPGA to an analog signal which is then supplied to the power amplifier. Sensors provide analog

measurements of power, voltage, current and impedance from the plasma load. These signals then

pass through the analog to digital converter, and on to the feedback control loop.

The current AE control system architecture is shown below in figure 3.2. We now provide a

description of the basic control approach.

Figure 3.2: Plasma Power Generator Block

There are a few definitions that need to be addressed before the explanation of the AE system. A

power state according to the AE system is a predefined magnitude of power in Watts that constitutes

the setpoint defined by the user. For example 500W is a power state. A pulse cycle is a discrete

waveform generated by power states merging together that occur in real time. For example, one

pulse cycle can be assigned the power states 500W, 1000W, 800W, 500W, 700W and they form a

discrete waveform. There needs to be timing/duty-cycle data in addition to the power states. This

waveform is input by the user as setpoint. An averaging bandwidth is a set of samples in real time

over which the average is calculated.

The FPGA utilizes the real-time measurements to perform real-time setpoint tracking, in a

conventional control sense, constituting the fast inner loop of the feedback control system. At the

same time the FPGA performs averaging of the sensed delivered power. An averaging bandwidth

is used for calculating the average. The average is calculated in real time within the bandwidth as

a running average and reset after the bandwidth, and the averaging processes reset at each power
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state. The average values are passed back to the MCU. Also note that the average values at each

power state are calculated separately and stored for reuse.

The internal setpoint modifier constitutes the slow outer loop running on the MCU. It only

receives averaged measurements, and uses these to modify the user defined power setpoint values,

passing the modified setpoint (as a command) on to the FPGA control system. This setpoint

modification is continuously updated, with the goal of matching the average power delivered to the

original (user defined) power setpoint.

Note that each state is modelled separately in the setpoint modifier, and the modifier uses a

PID controller for estimating the setpoint. Furthermore the algorithm attempts to make the average

power track a second order critically damped system. This is to ensure there is no overshoot (or

undershoot) in the step response of the average power, which is an important goal for the control

design. Since the step inputs of power are huge in magnitude, the setpoint modifier attempts

to approximate the step input as a gradually increasing steps. This is done to reduce the high

magnitude step to small steps which avoids large overshoots in the controller and hence a better

response. It should also be noted that when a power state change (change in power magnitude)

occurs, the control signals of the previous power state are saved to avoid transient response when

that state appears again. Also, in order to avoid the transient dynamics of the plasma load, the

AE system has a provision to blank out all the samples that contribute to the transient dynamic

response, hence, minimizing the overshoots (or undershoots).

Within the FPGA, an algorithm for rail and phase voltage is implemented. The goal is to

minimize fluctuations in Vrail, while at the same time keeping the value as low as possible, subject

to keeping Vphase close to its desired reference value. The rail and phase voltage control signals

utilize integral control originally. Since Phase voltage output is used as an input for Rail voltage

the system can be reduced to a single input single output system.

These digital control signals are then passed through a DAC for conversion to analog sig-

nals, and then a Power Amplifier. Note also that in addition to the basic control running there
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are additional safety sensors and systems which may overrule the control system under certain

circumstances, to prevent the plasma system and the generator from damage.

Overall we see that the fast inner loop on the FPGA performs real-time tracking. However

the setpoint tracked may not be the original one provided by the user, but rather a modified one

provided by the slow outer loop on the MCU. The modification is done so that the average power

accurately tracks the original (unmodified) setpoint. The control system designed by AE is non-

conventional in the sense that it tracks average power with previous knowledge of the setpoint to

ensure average tracking.

Since the modelling was done based on average tracking, the system failed to deliver appropri-

ate real-time tracking. This trade-off is described in detail in the next chapter.
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Chapter 4

Discussions of Current Approach/Shortcomings

4.1 Average Tracking vs Real-Time Tracking

The averaging is performed by the FPGA since it requires fast processing. It utilizes a counter

for blankout time (as discussed in the previous chapter which blanks out the transient dynamics

and a counter for calculating the (length of the) average). For that reason, the averaging algorithm

blanks (i.e., ignores) the initial few samples to remove this transient behavior from the calculations.

The averages are calculated separately for each (power setpoint) power state.

The average of each state is the total sum of power delivery measurements, divided by the

counter (number of measurements), where the counter increments at the FPGA clock pulse rate.

Note that this average is not calculated for the blankout period, and resets for every state.

The appropriate bandwidth (number of samples) to utilize for averaging is a complex issue.

The entire system may become unstable when the averaging is done at an inappropriate bandwidth

(too low or too high), due to aliasing-type (oversaturation/undersaturation due to counting the

samples too many/little times) effects with respect to averaging. Hence there is a tradeoff between

‘goodness of filter’ and bandwidth. AE has developed tools to manage this tradeoff in such a way

as to minimize aliasing-type effects, whilst also maintaining ‘goodness of the filter’ with respect

to the number of samples used for averaging.

As discussed earlier the user setpoint data is modified before actual tracking. The modification

has the goal of providing more accurate tracking for the average power. In order to illustrate this,

consider the example tracking response in figure 4.1. Note in figures 4.1-4.4 the desired response

is shown in red and the actual (real-time) response is shown in brown.

It is apparent from figure 4.1 that the real-time tracking error is very poor for the vast majority

of the time. This control design would not be acceptable from a real-time tracking standpoint.

Note, however, that the average tracking error over the whole pulse is zero (ideal). Hence it is clear
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Figure 4.1: Example Real Time Tracking Response 1

that average tracking and real-time tracking are quite different goals, and this fact must be clearly

taken into account in the control system criteria and subsequent design.

Figure 4.2: Example Real Time Tracking Response 2

The discussion for figure 4.1 applies equally well to the situation shown in figure 4.2. How-

ever, whereas the response in figure 4.1 is acceptable under the current control scheme at AE, the

response in figure 4.2 is not. The reason is that if you calculate how the average proceeds over time

(i.e., as the counter increases across the width of the pulse), the average in figure 4.1 approaches

the setpoint from below, whereas the average in figure 4.2 approaches the setpoint from above. In

AE parlance the ‘average step response’ in figure 4.1 has no overshoot, whereas that in figure 4.2

does overshoot significantly. The current control approach at AE requires that the average step

response has no overshoot in addition to very little steady-state error. Figure 4.1 meets these goals
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whereas figure 2.4 does not (due to overshoot). Of course neither of figures 4.1, 4.2 would be

acceptable if we considered real-time tracking as a goal.

Figure 4.3: Example Real Time Tracking Response 3

Now consider the response in figure 4.3. From a real-time tracking viewpoint this looks very

good. It approaches the setpoint with no overshoot, and quickly settles to zero steady-state (real-

time) tracking error. However if we consider the average step response then although it has no

overshoot, it has a large steady-state error (average error is not minimized). This design would

be unacceptable from the (current AE) viewpoint of average tracking. Note also that in order

to achieve average tracking error of zero, then any time the real-time response spends below the

setpoint, must be balanced by some time above the setpoint. This is contrary to desired real-time

behavior where the real-time response spends as much time as possible at (or close to) the setpoint.

Hence real-time and average tracking are somewhat conflicting goals, and this tradeoff must be

managed in the control system design.

Of course at the end of the day tracking well is a common feature to both goals, and so it is still

possible to achieve high scores in both measures. For instance consider the situation illustrated in

figure 4.4 below.

In this case tracking is almost perfect, and the result would be excellent from either a real-time

or average tracking standpoint. In both cases there is almost no overshoot and almost zero steady

state error. Of course achieving tracking close to this performance may not be realistic, and hence
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Figure 4.4: Example Real Time Tracking Response 4

in practice it becomes a challenging problem to achieve acceptable performance for both real time

tracking and average tracking. Hence, practically, CSU aims to optimize both the requirements.

As we will observe in the subsequent chapters, by analysing the metrics on the original AE system,

the average tracking goal has been achieved to some extent but real time tracking goal is poor.

4.2 Integral Control

The AE system has obtained a working feedback control for the nonlinear plasma load which

consists of a setpoint reference input, rail and phase voltage controllers, plant (plasma) and mea-

surements. Other calculations consist of setpoint modifier and average calculations. Integral con-

trol is used by the AE system as the control strategy for rail and phase voltage. The voltage control

signals are then converted to a power signal that is delivered to the plasma load. The integrators

in both the rail and phase voltage use lookup tables for setting in the initial values and reset values

of the integrator at the start of each power state to generate the required control signal. With the

start of new power state, the previous power state’s settings are saved for reusing the control signal

when the same power state appears again. The disadvantage of such an approach is that the lookup

tables are prepared considering only a particular set of setpoint samples. For various plasma appli-

cations and plasma systems, this is not a practical way of approaching the problem. CSU aims to

eliminate this special approach and use a general approach which would be applicable for most of

the radio frequency plasma systems.
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Chapter 5

Theoretical Approach - Metrics, Control and

Optimization

5.1 Metrics

In order to capture and precisely quantify system tradeoffs for real time and average tracking

we need to develop some performance metrics. After studying a number of scenarios typical of

AE control situations, we have decided to use the following metrics in our analysis,

• Define the tracking error at each point as ei = (Pdel_setpointi − Pdeli). Note that in this

case negative values correspond to overshoot.

• Mean Absolute Error: MAE =
∑N

i=1
|ei|

N
. This metric calculates numerical values, and it

resets at each pulse cycle.

• Mean Error: ME =
∑N

i=1
ei

N
. This metric calculates numerical values, and it resets at each

pulse cycle.

• Note that the above two variations can be used for all the metrics involving tracking errors

to follow. In other words for any metric we can have the ‘Error’ version using ei and the

‘Absolute Error’ version using |ei|. In the interest of brevity we will only detail the ‘Error’

version for each metric from here on.

• Mean Accumulated Error: MAcEj =
∑j

i=1
ei

Nj
where Nj = j. This equation starts at

MAcE1 = e1, then adds the errors for the first two samples, takes an average, then adds

it to the error at the next sample, and takes another average and so on. This metric creates a

plot (time series), and it resets at each pulse cycle.

• Mean Moving Error: At each transition we start running a moving average calculation for

each point j as: MME =
∑j

i=Nstart
ei

Nlength
, where j = Nstart +Nlength. In order to initialize this
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calculation correctly at the start we first fix Nstart at Nstart = 1, and compute as above for

Nlength = 1, 2, ..., Naverage−end. At this point we then fix the value of Nlength at Nlength =

Naverage−end , and now carry on incrementing Nstart as Nstart = 1, 2, ... through to the

next transition, running the above calculation at each point j. Naverage−end is kept constant

throughout. This metric creates a plot (time series), and it resets at each transition.

Note that these metrics correspond to different aspects of the performance. For example sup-

pose we seek to minimize MAE. This will correspond to placing the focus on real-time tracking –

every large value for |ei| makes the metric worse, and high performance will correspond basically

to driving |ei| to a small number quickly. This metric does not care about the sign of ei.

Conversely if we utilize ME then it will minimize average tracking. Negative values for ei can

be balanced out by positive values for ei. The sign of ei is crucial and in general the average is

what matters. Note also that a negative value corresponds to average overshoot which is highly

undesirable.

Thus it is seen that ‘Absolute Error’ metrics tend to place emphasis on real-time tracking per-

formance, whereas ‘Error’ metrics tend to place emphasis on average tracking performance. In the

latter case the sign also informs us about potential overshoot.

5.2 PID Control

PID controllers constitute a very common control approach, widely used in industry, and with

a suite of compatible tools (e.g., anti-windup, bumpless transfer) and numerous design methodolo-

gies for tuning the controller gains KP , KI , KD.

K(s) = Kp +
KI

s
+KDs

They are very familiar to practicing engineers and can be implemented with a high degree of con-

fidence. Of course they do not afford the sophisticated robust stability and performance guarantees
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of more modern approaches such as H∞ Loopshaping. The PID controller was studied for the AE

system as a preliminary approach before starting the Robust Control (H∞ loopshaping) method.

5.3 H∞ Loopshaping Control Theory

The control problem presented here requires both stability and stringent tracking performance

for a plant with significant nonlinearities and a high degree of uncertain dynamics. Hence robust

performance is essential - although we have a plant model, the control approach cannot rely on it

too heavily because it is subject to so much variation for different systems and applications. At

the same time this robustness cannot come at the price of sluggish/poor performance – we require

extremely accurate steady-state tracking while at the same time looking for improvement in the

transient performance.

In order to deliver robustness we consider perturbations to our nominal model, and hence we

need to characterize not only the nominal model, but also these perturbations, which are typically

referred to as uncertainties. However we do not wish to utilize a complex uncertainty structure, as

this would require a rather precise characterization of said uncertainties, which is counter to our

original goal/problem statement. Rather we would like a fairly unstructured uncertainty descrip-

tion, which will afford a broad degree of robustness.

5.3.1 Uncertainty Descriptions

Linear system models often utilize a transfer function description of the form:

G(s) =
n(s)

d(s)

where n(s), p(s) are polynomials (in the Laplace variable s) which describe the system dynamics.

This SISO system description can be extended to MIMO systems via a transfer matrix description

of the form:

G(s) = [gij(s)] =

[

nij(s)

dij(s)

]
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where nij(s), dij(s) are again polynomials. However another option, which turns out to have

numerous useful properties (even in the SISO case) is to use a (right) coprime factor description:

G(s) = N(s)M−1(s)

where N(s), M(s) are themselves linear system descriptions (i.e., transfer functions/matrices).

Furthermore M(s) is square and invertible, and N(s), M(s) are coprime factors. This means that

N(s), M(s) are both stable systems, and they have no stable common factors. Note of course that

this does not restrict us to stable systems for G(s) = N(s)M−1(s) because M−1(s) may or may

not be stable. Hence this affords us another general way of describing (SISO or MIMO) systems

G(s).

Using this description effectively provides separate numerator and denominator dynamics (de-

scribed by N(s), M(s) respectively), each of which can be subject to a perturbation of the form ∆s

which is a stable dynamic system with bounded norm. This means that the set of perturbed plants

Gp(s) is of the form (we drop the explicit dependence on s where convenient to avoid notational

clutter):

Gp(s) = NpM
−1
p = (N +∆N)(M +∆M)−1

where ∆N and ∆M are stable systems with bounded H∞ norm:

∥

∥

∥

∥

∥

∥

∥







∆N(s)

∆M(s)







∥

∥

∥

∥

∥

∥

∥

∞

≤
1

γ

for some parameter γ (which characterizes the robustness level achieved). This type of uncertainty

description is referred to as Normalized Coprime Factor Uncertainty, and it is illustrated in standard

form in figure 5.1 below (with nominal system interconnect given by P (s)). It is an excellent

fit to our problem, for reasons described earlier (note that it does not require a precise a-priori

characterization of ∆N , ∆M ), and it will form the basis of our controller design approach described

in the next section.
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Figure 5.1: Normalised Coprime Factor Uncertainty Description

5.3.2 Robust Controller Design Algorithm

In order to tackle the robustness problem in figure 5.1, we employ the Normalized Coprime

Factor Synthesis approach, also known as H∞ Loopshaping. This controller is obtained as the

solution to a particular H∞ Optimal Control problem, which we will describe shortly. In so doing

it affords robust stability (of a certain level γ) against Normalized Coprime Factor Uncertainty, as

described above, and as illustrated in figure 5.1.

The H∞ Optimal Control performance specification is given as the H∞ norm of the gain from






w1

w2






to







z1

z2






in figure 5.2. This can be interpreted as tracking performance (w1 to z1) as well

as disturbance rejection (w2) and a penalty on control authority (z2). Note that by convention this

performance specification utilizes a positive feedback loop, but it is straightforward to modify it to

use a negative feedback loop, which we do for application to the AE systems.

There is another way to interpret the performance specification of this control design approach.

First note that the two loop gains illustrated in figure 5.3 are equivalent. Hence, as illustrated in

figure 5.3, we define the controller K and shaped plant GS as:

K = W1KSW2 GS = W2GW1
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Figure 5.2: Normalised Coprime Factor Synthesis H∞ Design Interconnect

then it is apparent that implementing controller K on plant G is equivalent to implementing con-

troller KS on plant GS .

Figure 5.3: Equivalent Loop Gains for Weighted Controller and Plant

The H∞ Optimal Controller Synthesis solution provides KS solving for the global minimum

of:

inf
KS

∥

∥

∥

∥

∥

∥

∥







I

KS






(I −GSKS)

−1(I GS)

∥

∥

∥

∥

∥

∥

∥

∞

= γ

and the resulting controller KS provides robust stability to coprime factor uncertainty for the

shaped plant GS , with robustness level γ. Furthermore, it can be shown that KS does not sub-

stantially affect the loop shape magnitude for frequencies where the gain of GS is either large or
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small. At the same time KS guarantees good stability margins (gain and phase) for GS in the

crossover region.

The net effect of the above is that one can think of choosing the weights W1,W2 so that the

shaped plant GS = W2GW1 has the desired loop shape magnitude. The controller KS will provide

good stability margins while keeping the loop shape magnitude as close as possible to the desired

specification. That means that the controller K = W1KSW2 will provide that same loop shape

magnitude and stability margins for the original plant G. Hence the term Loopshaping – one simply

chooses the desired loop shape magnitude and the H∞ Optimization solves for the controller that

delivers as close to that as it can, whilst still having good robust stability margins.

There are several features of this approach that are highly desirable. Firstly, as mentioned,

even though we are using a sophisticated H∞ optimization approach (which guarantees to find

the global optimum controller), the design specification is simply based on familiar loop gain

attributes. Secondly there is no detailed a-priori uncertainty characterization required, and yet the

controller delivers guaranteed robustness against coprime factor uncertainty. Finally note that the

controller is calculated as K = W1KSW2, so that the weights W1, W2 are specifically included in

the controller. This means that any specific desired features in the controller (e.g., notches, integral

action), can be enforced simply by directly incorporating these features in the design weights W1,

W2.

Note also that the H∞ Loopshaping optimization is highly numerically robust (e.g., allows for

pure integrators in the loop) and it runs in seconds even on moderate computational resources.

Finally, note that for SISO systems all transfer functions commute, and hence we can easily re-

arrange to GS = W2GW1 = GW2W1 = GW (with W = W2W1) for which the corresponding

controller is simply K = WKS . Thus in the SISO case we need only design a single weight W so

that GW has the desired loopshape magnitude.
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5.4 Nelder-Mead Simplex Optimization

In order to characterize robust stability properties from the controller design, an approach for

stability region calculation was developed in collaboration with AE. The idea was to generate a

grid of Power Setpoint (and 50 ohm points) versus the cable length Zrotation angle. This grid

shows the stability regions through colors. We chose the unstable regions per row optimize the

controller weights till the controller is stable for that particular configuration and move on towards

the right till the end of the row. The optimization used here is the Nelder Mead Simplex method.

5.4.1 Nelder-Mead Algorithm

This algorithm minimizes a nonlinear function without the use of derivatives which falls under

direct search methods. This method minimizes a function f(x) ∈ Rn. We require four coeffi-

cients that are needed to be provided to define this approach, namely reflection(ρ), expansion(χ),

contraction(γ), and shrinkage(σ), where ρ > 0, χ > 1, 0 < γ < 1 and 0 < σ < 1.

The default values are ρ = 1, χ = 2, γ = 1
2

and σ = 1
2
. At any iteration k, a simplex ∆k is

given with vertices labeled as x
(k)
1 , x

(k)
2 , ..., xk

n+1. We order these vertices such that f
(k)
1 ≤ f

(k)
2 ≤

... ≤ f
(k)
n+1. Where f

(k)
i is the function of xi we want to minimize. Since f

(k)
1 is the lowest, x1 is

considered to be the ‘best point’ and the point at f
(k)
n+1 as the ‘worst point’. The following describes

the flow of one iteration:

• Order: Order the vertices to follow the function order mentioned above.

• Reflection: Calculate the reflection point using the formula, xr = x0 +α(x0 − xn+1), where

x0 is the centroid of all points except xn+1. The iteration is complete if xr is the new ’best

point’. If it is not the ’best point’, we replace the ’worst point’ by the reflected point and

continue with the first step.

• Expansion: If the reflected point is the ’best point’, calculate the expansion point by the

formula, xe = x0+γ(xr −x0). If this point is better than the reflection point, we replace the

’worst point’ by expansion point. If not we replace it with the reflected point.
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• Contraction: If f(xr) ≥ f(xn), calculate the contraction point by the formula, xc = x0 +

ρ(xn+1 − x0). If this point is better than the ’worst point’, we replace the ’worst point’ by

contracted point.

• Shrink: Replacing all the points except the ’best point’ by the formula, xi = x1+σ(xi−x1).

To terminate the iterations, we may select a tolerance level or use a default tolerance level. The

implementation of this optimization method is via MATLAB ‘fminsearch’ command.
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Chapter 6

Application to AE System and Results

6.1 Metrics

6.1.1 Implementation

As discussed earlier that development of metrics was essential to quantify the tradeoffs between

average and realtime tracking. These metrics provide a numerical confirmation of the tradeoffs and

the efficiency of the controllers. This section deals with generating metrics for the AE system and

in the following sections, these metrics will be generated for every controller CSU developed

within the AE system.

Matlab scripts have been developed to interface with the existing AE simulation tools and

calculate these metrics for desired scenarios. The metrics define the relation between the power

setpoint and power delivered. Note that the metrics are calculated after the simulation ends. In

the scripts the following variations for numerical metrics have been implemented (together with

corresponding notation):

i ‘Mean Absolute Error Unmodified’ corresponds to MAE when the setpoint modification algo-

rithm is inactive.

ii ‘Mean Absolute Error Modified’ corresponds to MAE when the setpoint modification algo-

rithm is active.

iii ‘Mean Real Error Unmodified’ corresponds to ME when the setpoint modification algorithm

is inactive.

iv ‘Mean Real Error Modified’ corresponds to ME when the setpoint modification algorithm is

active.

In each of these metrics, we’re calculating metrics with respect to ‘e’ whether or not the internal

setpoint is modified, i.e., the error is always with respect to the user-defined setpoint.
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Note that for the plots there are also some additional variations, and corresponding notation:

i ‘Mean Accumulated Error’ corresponds to MAcE.

ii ‘Mean Accumulated Error with Blanks’ corresponds to MAcE where blanking is implemented

for the first few samples (makes the smaller errors more visible).

iii ‘Mean Accumulated Abs Error’ corresponds to absolute values of MAcE.

iv ‘Mean Accumulated Error Pre Blank’ corresponds to MAcE but the blanking is implemented

before the error calculation. This makes the errors more visible and smooths out the sharp

transitions seen in ‘Mean Accumulated Error with Blanks’.

v ‘Moving Mean Error’ corresponds to MME.

6.1.2 Simulation Studies

AE has developed a detailed simulation environment for the plasma-power supply system (see

figure 3.1), including their full control system implementation (see figure 3.2). This simulation tool

runs in the Matlab/Simulink environment, and the overall top-level model is shown in figure 6.1.

In this thesis, we use the simulation model provided by AE as the plant - and take data from that.

However, in practice this could all be done with experimental data from a real physical system.

Figure 6.1: AE Plasma-Power Supply System Simulink Simulation Tool

24



We now consider several representative scenarios, all using this AE system, and analyze the

performance of the system using, among other things, some of the metrics discussed earlier. Note

that the focus of the current AE control approach is average tracking without average overshoot

(and with acceptable control effort). Their controllers are designed with this in mind and are not

attempting to deliver real-time tracking as a priority.

Simulation Results for Ideal Case

Figure 6.2: Real-Time Tracking Performance for Ideal Case

The ideal case is the AE system with the load having no dynamic impedance and matched

impedance with the generator. This response should be ideal for this system.

The power setpoint profile is provided by AE and designed to test out the controller perfor-

mance over a wide variety of conditions (large and small signals, low and high duty cycles, slow

and fast variations). Figure 6.2 shows real time tracking response of the ideal case. The overall

performance in this case appears to be very good. Figure 6.3 shows average tracking response of

the ideal case. The average tracking locks in on the correct values with high accuracy and without
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Figure 6.3: Average Tracking Performance for Ideal Case

overshoot. This usually happens fairly quickly but it can be seen (around 94ms and again around

490ms) that sometimes the average tracking is slower to converge, and you can see the correspond-

ing errors in the real-time tracking during these periods. It appears that this often occurs when Vrail

is slow to transition to the correct value for that state.

This system was simulated both with and without setpoint modification algorithms active, and

the (numerical) metrics in table 6.1 were calculated for these scenarios.

Table 6.1: Numerical Tracking Metrics for Ideal Case

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 0.23285 1.35895 0.23268 -0.07826

2 32.48597 34.45961 30.09951 28.60247

3 0.64017 7.27334 0.19296 1.00059

4 0.45103 2.25952 -0.15003 0.35116

5 0.12803 0.49109 0.12784 -0.12074

6 35.07161 35.51380 31.85883 32.28396

7 1.80869 3.55465 0.56000 -0.81988

8 0.47146 1.91627 -0.17043 -0.55379
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Upon examining these metrics, a comparison of the ‘error modified’ to ‘error unmodified’

columns shows that the setpoint modification algorithm in this case offers an improvement ver-

sus the unmodified setpoint for some pulse cycles (but not all). This means that it may offer an

improvement in average tracking for some cases. However, when we make this comparison for

the ‘absolute error’ columns, we see that the absolute errors are not minimized when the setpoint

modification algorithm is added. This shows that the current controller does not emphasize the

optimization of real time tracking.

Now consider the evolution of the error over time. This can be seen for a variety of metrics in

figure 6.4. The top plot shows the actual vales of Pdeli and Pdelsetpointi, together with various

metrics (including ‘Error’ and ‘Absolute Error’ metrics) on the same scale. Once again the perfor-

mance is pretty good across the board, though the (inevitable) sharp transitions that occur without

blanking are apparent. In figure 6.5, we zoom in at one of the transitions of a pulse cycle. Mean

Accumulated Error with Blanks corresponds to calculation of the metrics and equating the met-

rics in the blanking range to zero, Mean Accumulated Error corresponds to calculation of metrics,

Mean Accumulated Abs Error corresponds to calculation of metrics with absolute errors, Mean

Accumulated Error Pre Blank corresponds to calculation of metrics where we blank first and then

calculate the metrics.

Now the effect of blanking is clearly apparent in terms of avoiding very large transitions caused

by the initial transients (note that the error is bound to be almost 100% for the first few samples

after a sharp transition).

Simulation for a system with aliasing

Here we change the averaging bandwidth and enable old averaging systems which has the

effect of causing an aliasing-type response in the system performance. Old averaging system is

similar to the one described in the ideal case. Although in this case, the software interrupt time

(8ms) goes slower than the FPGA sampling time (80ns) and so the average is not calculated in

time. This leads to slower response time as long as the average is concerned.
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Figure 6.4: Moving Average Errors for Ideal Case

Figure 6.5: Zoomed In Moving Average Errors for Ideal Case

Examining the plots in figures 6.6, 6.7 the performance is seen to be markedly worse overall.

Real-time tracking (in figure 6.6) can be seen to be somewhat worse at many points in the plot.

However, average tracking performance (in figure 6.7) is dramatically worse and does not really

deliver acceptable average tracking performance at all. As a result looking at the metrics in table

6.2 they can be seen to be worse across the board versus the ideal case in figure 6.1. Comparing
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Figure 6.6: Real-Time Tracking Performance for System with Aliasing

Figure 6.7: Average Tracking Performance for System with Aliasing

’mean_absolute_error_unmodified’ to ’mean_absolute_error_modified’, we find that the modifica-

tion does not improve real time tracking but does well for the average tracking (’mean_real_error’).
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Table 6.2: Numerical Tracking Metrics for System with Aliasing

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 0.23285 29.94002 0.23268 -29.65120

2 32.48597 68.70882 30.09951 -6.49359

3 0.64017 19.55861 0.19296 -13.08889

4 0.45103 31.04547 -0.15003 -15.78391

5 0.12803 12.48896 0.12784 -3.03751

6 35.07161 54.69414 31.85883 12.12480

7 1.80869 15.95196 0.56000 -13.56417

8 0.47146 7.42021 -0.17043 -3.72718

The inferior performance can also be seen in the time series plots of the metrics shown in figure

6.8.

Figure 6.8: Moving Average Errors for System with Aliasing
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Simulation Results for an Unstable System

Here we take the previous system and now limit the maximum value of Vrail to 120V (140V

was used for the previous cases). This pushes the system out of its stability region and an unstable

system response results.

Figure 6.9: Real-Time Tracking Performance for an Unstable System

The real time tracking performance (see figure 6.9), and the average tracking performance (see

figure 6.10) are both very poor. The corresponding numerical metrics in table 6.3, and the time-

series plots in figure 6.11, also indicate very poor performance, so that again a decision based on

these metrics would reject this control design.
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Figure 6.10: Average Tracking Performance for an Unstable System

Table 6.3: Numerical Metrics for Unstable System

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 0.23285 29.94002 0.23268 -29.65120

2 174.91792 190.43936 173.6272 155.70524

3 0.62724 19.57364 0.12977 -13.15205

4 0.45104 36.49415 -0.15001 -21.31691

5 0.12803 12.67792 0.12784 -3.22647

6 178.20187 98.85725 175.87878 155.13668

7 1.77832 15.94393 0.48292 -13.68088

8 0.47146 11.46205 -0.17043 -7.76907

6.1.3 Discussion

The metrics are calculated as (Pdelsetpoint - Pdel). Thus, negative error corresponds to over-

shoot which is highly undesirable. Whichever metrics we choose to use, a good controller should

have errors close to zero, and must have few negative errors. However there are many choices

for implementing controller tradeoffs subject to these basic requirements. For example we could

consider controllers designed based on any of the following optimizations:

32



Figure 6.11: Moving Average Errors for Unstable System

i Minimize |ME|, subject to ME ≥ −ε1 and MAcEj ≥ −ε2∀j

ii Minimize MAE, subject to maxi|OSi| ≤ ε1and maxi|USi| ≤ ε2

iii Minimize MAcE, subject to e → 0 and e ≥ −ε

iv Minimize MME, subject to e → 0 and e ≥ −ε

where each ǫi ≥ 0 and OS and US denote overshoot and undershoot respectively. Each of these

approaches would yield a different controller design. For instance option i) is essentially the current

AE approach, which focuses solely on the average tracking performance (as discussed earlier). On

the other hand option ii) would focus on real-time tracking alone and not consider average tracking.

One could then contemplate blended approaches which attempt to achieve some reasonable level of

performance for both average and real-time tracking. One could also consider variations on these

metrics as in options iii) and iv) (where the metrics for MAcE and MME also give a graphical

representation of the error mismatch to be minimized).
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6.2 PID Control Results

Our first observation is that since the existing AE control scheme is (reset) integrator based,

then we can consider this as the integral portion of a PID controller. Simply wrapping a PD

controller in parallel with this existing AE integrator affords a PID controller. This is illustrated in

the Vphase controller subsystem in figure 6.12 below. Note that in practice you would also need

to change the anti-windup scheme for output limiting the integrator, since the PD portion of the

controller now affects the overall output. We are not suggesting PID control as our recommended

approach in the long run, and so we do not bother to do this here. However, we note there are

a number of available approaches to implement this augmented anti-windup for output limiting,

which could readily be adapted to fit this application if desired.

Figure 6.12: PID Controller in Vphase Subsystem
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Next we observe that the Vrail control scheme also has a reset integrator at its heart. Hence

this same reasoning can be applied there too. The implementaion of PID control in the Vrail

subsystem (via PD control in parallel with the AE integrator) is illustrated in figure 6.13 (again we

do not bother implementing the enhanced anti-windup here but it could be done).

Figure 6.13: PID Controller in Vrail Subsystem

These PID controllers were implemented with gains tuned as:

Vphase PID gains: KP = 3.57× 10−8, KI = 4, KD = 5× 10−8

Vrail PID gains: KP = 1.043× 10−6, KI = 15, KD = 6.26× 10−10

Note that here the values of KP and KD are percentages of the overall gain from the setpoint error

to the Vphase/Vrail outputs. Using these controllers results in the real-time tracking shown in

figure 6.14, and the average tracking shown in figure 6.15. The corresponding metrics are shown

in table 6.4.

It can be seen that the real-time tracking converges quickly due to the faster Vrail convergence,

which may or may not be desirable from the AE hardware viewpoint. However there are some
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Figure 6.14: Matched Impedance Setpoint Tracking for PID Control Scheme

Figure 6.15: Matched Impedance Average Setpoint Tracking for PID Control Scheme

oscillations in the response and this is even clearer in the unmatched impedance case shown in

figures 6.16 and 6.17, with the corresponding metrics shown in table 6.5.
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Table 6.4: Metrics for PID Control in Matched Impedance Case

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 0.0573 1.1896 0.0528 -0.2561

2 2.9939 5.6478 1.6931 -0.4837

3 0.3052 6.9227 0.1460 0.9049

4 0.1434 1.9751 0.0244 0.5237

5 0.0719 0.4333 0.0091 -0.2394

6 10.6200 11.6219 2.5923 3.5377

7 1.4954 3.3317 0.4785 -0.9071

8 0.2496 1.6905 -0.0139 -0.3961

Figure 6.16: Unmatched Impedance Setpoint Tracking for PID Control Scheme

Table 6.5: Metrics for PID Control in Unmatched Impedance Case

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 1.0343 2.1372 0.0039 -0.3026

2 174.6634 177.5027 155.7579 157.2271

3 16.8323 22.9285 15.3770 16.5507

4 0.5723 2.0761 0.1399 0.4336

5 1.7339 2.0076 0.3427 0.0937

6 217.2014 217.4469 188.9153 188.8889

7 36.4584 38.4644 31.1528 29.9012

8 3.6026 4.7425 0.5573 0.0622

37



Figure 6.17: Unmatched Impedance Average Tracking for PID Control Scheme
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6.3 H∞ Loopshaping Control

6.3.1 Implementation

The current AE control strategy consists of a Vphase and a Vrail controller. The Vrail con-

troller is a heuristic design, which takes into account a number of specific desirable features and

constraints for Vrail. The Vrail controller takes the Vphase command and then adjusts Vrail until:

i The power setpoint is reached.

ii Vphase does not exceed the upper limit (4.8volts).

iii Vrail is as small as possible (subject to the above).

iv Vrail does not adjust too quickly or too often.

These properties are ensured by a set of heuristics for the Vrail controller, which have been devel-

oped by AE over the years. Note that this means that essentially Vrail is just a function of Vphase,

so that the heart of the control approach is to design a good controller for Vphase. Note further that

this means that we have a SISO control problem for Vphase, since the Vrail controller effectively

just becomes part of the open-loop plant (simply a function of Vphase). Our focus then is to design

a robust/optimal control approach for Vphase.

This reset scheme has advantages and disadvantages. It has been quite successful in delivering

accurate average power tracking for periodic waveforms. However the transient response is not

always very good and a more sophisticated approach might deliver better transient performance.

Furthermore, the use of switched integrators can raise stability concerns, so it is not clear that it

is a good strategy in the long run, particularly if one wants robustness to afford applicability to a

wide variety of systems, applications, and operating conditions.

We have developed a control approach based on H∞ Loopshaping for AE systems. The first

part of the approach is to develop a simplified model of the open-loop AE system (figure 6.18),

which for reasons discussed earlier includes the (heuristic) Vrail controller. This simplified model
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will only be used for controller design purposes – we will still use the full accurate nonlinear

simulation model for all controller testing.

Figure 6.18: Open Loop Plant Model (includes Vrail Controller)

From this open loop model there are a number of different System Identification approaches

that are viable. The Linear Analysis tool in Matlab/Simulink was used which allows for linear

model extraction about different setpoints for nonlinear systems. These models were confirmed

via step responses from Vphase input to Pdel (power delivered) output. It turns out that a very

simple model of the form (for appropriate open-loop plant parameters CP , TP ):

G(s) =
CP

1 + sTP

is sufficient to describe the open-loop dynamics for the H∞ Loopshaping controller design ap-

proach. It remains to (determine the parameters CP , TP and) design appropriate alternatives for

40



the loopshaping weight W (s). One set of designs we carried out considered weights of the form:

W (s) = Ck

(

1

1 + sTK

)2 (

KP +
KI

s

)

Note that this shapes the DC gain (via CK), the bandwidth (via TK), and also incorporates a

Proportional-Integral (PI) controller for low frequency and steady state tracking. The proportional

and integral gains (KP , KI) determine how aggressively the tracking is pursued.

Recall that this weight will be included in the controller K(s), and hence we guarantee that our

controller includes integral action. Furthermore note that we can rewrite this weight as:

W (s) = Ck

(

1

1 + sTK

)2 (
KP s+KI

s

)

=

(

CK(KP s+KI)

(1 + sTK)2

)(

1

s

)

= Wnoi(s)

(

1

s

)

where Wnoi(s) is a proper transfer function. Hence the final controller design (which includes this

weight) can be implemented in the following form:

K(s) = Knoi(s)

(

1

s

)

where Knoi(s) is a proper controller, as illustrated in figure 6.19.

This affords us implementation options. To be specific we can either:

1. Implement the H∞ Loopshaping controller K(s) as shown in figure 6.19 in place of the

existing AE control scheme. Note that we can utilize output limits with anti-windup on the

integrator to limit V phase as desired (0-5volts).

2. Utilize the current AE reset-based control scheme for the integrator portion of the above

controller. In this case the H∞ Loopshaping controller Knoi(s) acts as a prefilter to the

existing control scheme.
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Figure 6.19: H∞ Loopshaping Controller as Cascade of Proper Filter and Integrator

As mentioned earlier there are pros and cons to utilizing the integrator reset-based AE control

strategy and so we will investigate both of the above options. Note in either case we will transform

the controller from continuous-time K(s) to digital K(z) via a Bilinear Transformation, operating

at the usual sample period for the AE system (Tsample = 640ns).

6.3.2 Simulation Studies

In this section we develop some specific controller designs using the processes we have devel-

oped. As discussed earlier the designs are split into two broad groups, depending whether or not

we incorporate the existing AE integrator reset-based control scheme.

H∞ Loopshaping Controller with AE Reset Integrator

Here the H∞ Loopshaping controller acts as a prefilter to the AE integrator scheme. The im-

plementation in the Simulink model is illustrated in figure 6.20. The input to the H∞ Loopshaping

controller is the ‘Setpoint_Error’ as expected by the control design.
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Figure 6.20: H∞ Loopshaping Controller Placement for System with AE Reset Integrator

For these designs, we utilize a linear approximation of the plasma system. The controller was

designed using this approximate plant, chosen as

G(s) =
86400

6× 10−6s+ 1

The high DC gain of the plant comes from the FPGA gain block in the ‘Setpoint_Error_Select’

block which increases the overall gain of the loop. The open loop weighting transfer function was

chosen as:

W (s) =
1.1574× 107(s+ 105)

s(s+ 106)2

Note that this includes rolloff and a PI stage as discussed earlier. Note also that the high loop gain

pointed out above was compensated by choosing an appropriate weight. As discussed earlier we

keep the existing AE heuristic Vrail algorithm. Since Vphase is used to generate Vrail, this makes

the system SISO and allows us to also look at traditional loop gain measures of performance,

stability and robustness (in addition to the rigorous Normalized Coprime Factor analysis presented

earlier). The results from the controller design algorithm are discussed below. First the design

plots are shown in figures 6.21 – 6.24. It can be seen that the controller delivers close to

the desired loop gain (figure 6.22) while at the same time having good gain and phase (stability)

margins (figure 6.24). Note that in Figure 6.23, the step response is generated directly from the

43



Figure 6.21: H∞ Loopshaping Bode Plots for Discrete Weight, Plant and Controller

optimization algorithm and includes only the approximate linear plant G(s) described above. The

following simulation studies utilize the full nonlinear Simulink model of the AE system, together

with the test pulse sequence provided by AE. Figures 6.25, 6.26 show the real-time and average

setpoint tracking for the AE system using this controller and the AE test pulse setpoint sequence.

Note here that controller was simulated for both matched impedance (between load and generator)

and unmatched impedance.

We now calculate the metrics defined above. In each of these metrics, we’re calculating metrics

with respect to ‘e’ whether or not the internal setpoint is modified, i.e., the error is always with

respect to the user-defined setpoint. The results for the control design simulations in figures 6.25,

6.26 are shown below in table 6.6.
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Figure 6.22: H∞ Loopshaping Achieved and Desired Loop Gains

Table 6.6: Metrics for Matched Impedance Case for H∞ Controller with Reset Integrator

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 0.2258 1.3478 0.2256 -0.0862

2 32.5394 34.5219 29.9085 28.4117

3 0.6408 7.2503 0.2063 1.0156

4 0.4474 2.2474 -0.1339 0.3702

5 0.1241 0.4872 0.1239 -0.1247

6 35.0602 35.4454 31.6689 32.0989

7 1.8142 3.5490 0.5779 -0.8093

8 0.4679 1.9124 -0.1543 -0.5379

This controller delivers a high level of performance here. A more challenging environment

is provided by the unmatched impedance case. In this case the AE system is tending towards

instability, and it is very hard to get any kind of acceptable performance. The results for this
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Figure 6.23: H∞ Loopshaping Step Response of the Closed Loop System with Approximate Plant

controller design approach (H∞ Loopshaping Controller with Reset Integrator) are shown in tables

6.27 – 6.7. The onset of instability is clear in the simulations, although for the most part the

controller does contain this instability and still deliver some level of tracking performance from

the AE system, even in the unmatched impedance case.

For comparison purposes, the values of these metrics are shown for the original AE reset-based

integral controller. The exact same simulation package was used (though we don’t bother to show

the simulations themselves). The matched impedance case metrics are shown in table 6.8 and the

unmatched impedance case in table 6.9 (both for the original AE reset-based integral controller).
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Figure 6.24: H∞ Loopshaping Gain and Phase Margins

Table 6.7: Metrics for Unmatched Impedance Case, H∞ Controller with Reset Integrator

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 1.9810 2.9003 0.5807 0.1477

2 166.8230 168.0620 159.0081 159.3952

3 11.3014 16.9728 7.0122 8.2255

4 0.7035 2.2718 -0.0003 0.3852

5 1.8502 2.1423 0.7514 0.5016

6 271.7687 272.5597 232.5557 235.2705

7 40.1076 42.1279 32.1629 30.7269

8 3.1558 4.4529 0.6071 0.2165

Comparing tables 6.6 and 6.8 (matched impedance cases), we see that the H∞ Loopshaping

Controller (with reset integrator) does improve the performance verses the original AE reset based
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Figure 6.25: Matched Impedance Setpoint Tracking with the H∞ Controller with Reset Integrator

Figure 6.26: Matched Impedance Average Tracking with the H∞ Controller with Reset Integrator

pure integral controller. However, the new control approach only offers fairly small improve-

ments, as the performance was already high in this case. On the other hand, comparing tables 6.7

and 6.9, we find that the new controller brings down the metrics significantly in this (unmatched
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Figure 6.27: Unmatched Impedance Real Time Tracking, H∞ Controller with Reset Integrator

Figure 6.28: Unmatched impedance Average Tracking, H∞ Controller with Reset Integrator

impedance) case, due to the reduced oscillations afforded by the higher stability margins (though

the performance is still not good for this case).
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Table 6.8: Matched Impedance AE Reset Integral Controller

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 0.23285 1.35895 0.23268 -0.07826

2 32.48597 34.45961 30.09951 28.60247

3 0.64017 7.27334 0.19296 1.00059

4 0.45103 2.25952 -0.15003 0.35116

5 0.12803 0.49109 0.12784 -0.12074

6 35.07161 35.51380 31.85883 32.2836

7 1.80869 3.55465 0.56000 -0.81988

8 0.47146 1.91627 -0.17043 -0.55379

Table 6.9: Unmatched Impedance AE Reset Integral Controller

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 1.9895 2.9052 0.6564 0.2182

2 288.6988 264.1721 232.1695 203.5750

3 26.6183 32.2055 16.0240 16.9788

4 0.9645 2.3354 0.1267 0.4183

5 2.0212 2.2987 0.7561 0.5062

6 340.2521 342.4215 264.5478 268.9389

7 43.1863 44.9203 33.6613 32.0185

8 3.4661 4.7285 0.5572 0.1716
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H∞ Loopshaping Controller without AE reset Integrator

Here, we remove the existing AE reset-based integrator completely from the Vphase controller,

and replace it with the H∞ Loopshaping Controller standalone as shown in figure 6.29. Looking

Figure 6.29: H∞ Controller Replaces Reset Integrator Block

under the mask of the ‘Hinf Control System’ block we see in figure 6.30 that the full controller

is implemented standalone, but still as a cascade of a proper controller and an integrator. The

integrator block implements output limits (0-5volts) with anti-windup (clamping). We run the

Figure 6.30: H∞ Controller Standalone Implemented under ‘Hinf Control System’ Mask

same simulation tests and metrics on this controller (H∞ Loopshaping Controller without Reset

Integrator). First the simulation runs for the matched impedance case are shown in figures 6.31
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(real-time tracking) and 6.32 (average tracking). The corresponding metrics are shown in table

6.10.

Figure 6.31: Matched Impedance Setpoint Tracking for the H∞ Controller without Reset Integrator

Table 6.10: Metrics for H∞ Controller without Reset Integrator for Matched Impedance

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 0.5630 1.6825 0.2256 -0.0787

2 32.5935 34.5321 30.9734 29.4985

3 1.1463 7.7550 0.0214 0.7896

4 0.9560 2.7579 -0.2323 0.2519

5 5.0137 5.2671 0.1239 -0.1238

6 48.9144 49.3828 32.7771 33.1875

7 13.2742 15.0508 0.0106 -1.3482

8 8.2675 9.5368 -0.2468 -0.6281

This controller is able to deliver close to the same performance, without the reset integrator.

This would not be possible utilizing simple integral control – the pure integrator control approach

fundamentally relies on the reset scheme to deliver any acceptable level of performance.
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Figure 6.32: Matched Impedance Average Tracking for the H∞ Controller without Reset Integrator

Finally we look at the unmatched impedance case for the H∞ Loopshaping Controller without

Reset Integrator. The real-time tracking performance is shown in figure 6.33, and the average

tracking performance is shown in figure 6.34. The corresponding performance metrics are shown

in table 6.11.

Table 6.11: Metrics for Unmatched Impedance for H∞ Controller without Reset Integrator

Pulse

Cycle

Mean Absolute

Error Unmodified

Mean Absolute

Error Modified

Mean Real Error

Unmodified

Mean Real Error

Modified

1 2.1084 3.0535 1.1795 0.7492

2 166.0600 194.1123 159.6441 185.8936

3 11.4935 17.3940 6.5712 7.9302

4 1.5573 3.1354 -0.1528 0.2128

5 11.7252 11.8455 0.3204 0.0736

6 267.6528 267.2916 245.1357 244.1282

7 47.4188 49.0603 29.0263 27.5043

8 15.2950 16.3851 -0.1805 -0.5560

Once again we observe that the new controller approach manages to minimize the metrics and

deliver a decent level of performance without the resetting integrator algorithm.
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Figure 6.33: Unmatched Impedance Setpoint Tracking for H∞ Controller without Reset Integrator

Figure 6.34: Unmatched Impedance Average Tracking for H∞ Controller without Reset Integrator

The H∞ controller was also tested out with the PID scheme developled earlier. For instance one

could utilize the PID based controller for Vrail (resulting in a faster Vrail response) and combine

that with the H∞ Loopshaping Controller for Vphase (with or without the AE reset integrator).
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We implemented such a scheme and the response for the matched impedance case is shown in

figures 6.35 and 6.36. It is seen that we obtain very high performance for real-time tracking using

this combined approach. However, as mentioned earlier, the faster Vrail response may not be

acceptable on the AE system for hardware reasons.

Figure 6.35: Matched Impedance Setpoint Tracking for the H∞ Controller with Vrail PID

Figure 6.36: Matched Impedance Average Tracking for the H∞ Controller with Vrail PID
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6.4 Optimization

6.4.1 Stability Region Calculation

In order to characterize the robust stability properties of any particular controller design, an

approach for stability region calculation was developed in collaboration with AE which is briefly

described here. The idea is to first generate a grid of Power Setpoint (and 50Ω point) versus Cable

Length Zrotation Angle. For example let’s say the Power Setpoint varies from 0 - 1,350 (Watts),

and the Zrotation Angle from 0 - 360 (degrees). The source impedance (50Ω point) is kept equal

to the Power Setpoint throughout the simulations. We generate a grid of these values and at each

grid point we run a simulation as described below.

The Zrotation Angle is a free parameter which we simply assign in the simulation model.

The Power Setpoint determines the input to that simulation. For example let’s suppose the Power

Setpoint for the current grid point is 800W. Then we generate a waveform as shown in figure 6.37.

Figure 6.37: Power Level Steps for 800W Setpoint Test

Consider the plot, and note that this input consists of a series of steps, both up and down, to

800W. We are essentially testing the step response to 800W, and calculating the average tracking

error. If this average response settles within a specified error (usually 10%), within a specified

time interval, then the response is deemed stable. The use of a series of steps allows time for the

controller to learn (due to averaging, setpoint modification and reset integral), and we includes
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steps from both above and below to test for both rising-edge and falling-edge stability. In this way

we thoroughly examine the controller response (even if it includes reset-type control).

In this way we determine stability (as defined by AE) for each of the grid points. This deter-

mines the stability region and an example plot, for the existing AE reset-integrator control scheme,

is shown in figure 6.38

Figure 6.38: Rising Edge Stability Region for Current AE Controller

We only show the rising-edge stability region here, but the falling-edge stability region looks

very similar. The Power Setpoint (Watts) is shown on the Y-Axis, and the Cable Length Zrotation

Angle (degrees) is shown on the X-Axis. For each grid point we simply label it as stable (red) or

unstable (blue), where the definition of stability used was given above. Note that this definition is
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simulation-based, and may be quite different from many textbook definitions of stability, but it is

tailored to AE’s needs. The resulting contour map shown in figure 6.38 clearly shows the stability

region(s) for this controller.

6.4.2 Parallel Simulations

The plot in figure 6.38 was generated using 27 different power states (one per 50W), and 73

different Zrotation angles (one per 5 degrees). This results in a grid of 27x73 = 1,971 simulations.

In order to facilitate faster processing, the Matlab parsim command was used, which allows for

parallel processing of multiple simulations at the same time. An example of a parsim run (in

progress) is shown in figure 6.39.

Figure 6.39: Parallel Simulation Processing via Matlab parsim Command
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This figure shows the process of the 1,971 simulations (note that here Power Setpoint is on the

X-Axis, Zrotation Angle is on the Y-Axis and is in radians). Completed simulations are in green

(any completing with errors would be in red), those in progress are in blue, and those remaining

to start are in grey. It can be seen we are about 33% of the way through (and no simulations have

errors). Note also that the six blue dots indicate we are running 6 simulations (workers) in parallel.

The use of this parallel approach speeds up the stability region calculation significantly.

6.4.3 Stability Region Size

The Stability Region Size (SRS), which will form the main objective function for our optimiza-

tion approach, can again be defined in a variety of ways. Once again our definition is tailored to

the needs of AE, and is specified as follows.

First we decide on an appropriate Power Setpoint of interest. In our case 800W was chosen as

a test point. Then we consider the region, from 0 upwards, of the Zrotation Angle for which the

system is stable. Once the first unstable point is encountered, the stability region is deemed to be

ended.

This is easy to visualize on the plot from figure 6.39. Start at the point (0,800) on the Y-Axis.

Draw a horizontal line in the red (stable) region until you first encounter a blue (unstable) point.

The Stability Region Size is the length of that line (in this case 60 degrees). The SRS calculation

is illustrated below in figure 6.40 (same contour map as in figure 6.38).

Note that there are other ways to define the Stability Region Size. For example, one could

combine the rising-edge and falling-edge values. One could also consider the total amount of

stable values across the entire horizontal line (our definition ignores the second stability region

around 245-305 degrees). Any of these would work with our approach. We chose this particular

definition, in consultation with AE, as just one example of the process (noting that many other

choices are valid and will work with this same process).
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Figure 6.40: Stability Region Size Definition for 800W Power Setpoint (Current AE Controller)

6.4.4 Controller Optimization

We now turn our attention to implementing and tailoring the control approach for AE systems.

Our H∞-Loopshaping control design approach is already designed specifically for the AE system

under consideration, and it delivers both high performance and robust stability. The question now

is whether we can tailor the controller to a particular AE system, with a specific set of design

considerations/metrics that we wish to optimize?

In order to develop such a process, note that our controller design process utilizes a number of

free parameters, which the designer selects when tuning the controller. For example, referring to
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our earlier discussion of H∞-Loopshaping design, we see that the design weight W(s) is a function

of four design parameters: CK , TK , KP , KI – which are all free for the design engineer to choose.

These parameter choices result in different H∞-Loopshaping controller designs.

The idea now is to allow an optimization process to vary these parameters, and search for the

‘best’ design. Of course deciding which is the ‘best’ design amounts to choosing system perfor-

mance metrics. We developed a number of such metrics in earlier work, and also, in consultation

with AE, developed the notion of Stability Region Size in the previous sections. The process

would work with almost any choice of metric but, in consultation with AE, the SRS was chosen.

The overall optimization approach is shown in figure 6.41 below.

Figure 6.41: Controller Optimization Approach

The scheme runs as follows. The optimization utilizes the Nelder-Mead search algorithm, as

implemented by the Matlab fminsearch command. The Nelder-Mead approach is chosen for a

number of reasons, including the fact that it does not rely on the computation of gradients. As such

it can handle nonlinear and nonsmooth objective functions. Section 5.4 describes this algorithm in

detail.

The fminsearch command provides updated parameter values for CK , TK , KP , KI (after the

initial guess or previous iteration). These in turn determine the weight W(s) for H∞-Loopshaping

controller design (via the Matlab ncfsyn command). The resulting controller K(s) is then used as

the basis for controller simulations (via the Matlab parsim command) to determine the Stability

Region Size. This proceeds until it is determined to have converged (or failed) resulting in a

controller whose SRS has been optimized.
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Note that here we are describing a general process to implement an optimized controller on an

AE system. This particular solution is just one example of applying that process. For example, we

chose the SRS as our objective function but there are many other choices for metrics, including the

ones we developed in earlier work. In addition, there are other possibilities for the free parameters

and the parameterized weights used in the H∞-Loopshaping controller design approach.

Furthermore, one can also consider controller design choices other than H∞-Loopshaping, and

even consider search algorithms other than Nelder-Mead. Hence, it is important to consider the

work described here as the development of a general process, and the results in the next section are

just one particular example of applying that process.

6.4.5 Simulation Studies

The tools described in the preceding section were implemented with the goal of optimizing

the Stability Region Size for a controller design on a particular AE system.. We chose a Power

Setpoint level of 800W for this example (though of course you could choose any desired value).

As a baseline consider the current AE control approach. The stability contour plot for this

controller is shown in figure 6.38. The SRS is calculated to be 60 degrees for the current AE control

approach (see also figure 6.40 which illustrates the SRS calculation for this stability contour plot

for a Power Setpoint level of 800W).

In order to compare with the new approach we design an initial controller. In our case this

amounts to the design engineer making an initial choice for the weight parameters CK , TK , KP , KI

and then designing the corresponding H∞-Loopshaping controller. The resulting stability contour

plot is shown in figure 6.42. The SRS (at 800W) for this initial controller design is calculated to

be 70 degrees.

We can see the H∞-Loopshaping design approach already has some improved stability proper-

ties versus the current AE approach (compare figures 6.38 and 6.42). This results in an increased

SRS (70◦ versus 60◦). However we now consider this as just an initial guess and implement the

controller optimization scheme outlined figure 6.41.
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Our first attempt at running this optimization, using the above initial guess, did not yield any

improvement in the SRS, and in fact did not alter the controller design at all. This is entirely possi-

ble. In the first place, the optimization algorithm can only ever guarantee to find local minima for

nonconvex problems. In the second place, it is quite possible that we started out the optimization at

one such local minimum (by tuning our controller design). Hence the search algorithm effectively

did not move from the initial starting point.

Figure 6.42: Stability Region for Initial H∞-Loopshaping Controller

In order to alleviate the problem described above, and further examine the solution space,

we randomly varied the initial guess for the parameter starting point, and again implemented the
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controller optimization scheme, with the objective of maximizing the SRS at 800W. The resulting

contour plot is shown in figure 6.43.

It can be seen the SRS at 800W is dramatically improved, to a value of 305 degrees (versus 70◦

for the initial starting point). The optimization scheme has done as asked, and maximized the SRS

at 800W. Note that the SRS (at 800W) has improved from:

- Original AE Controller SRS: 60◦

- H∞-Loopshaping Initial Controller SRS: 70◦

- H∞-Loopshaping Optimized Controller SRS: 305◦

This is a clear illustration of the power of the proposed optimization approach, which has delivered

the desired maximized SRS at 800W.

There are, however, further considerations. Optimization schemes only optimize what they are

told to do by the objective function. Indeed, comparing figures 6.43 and 6.42, it is apparent that

the optimized controller stability contour plot is worse in some regions than the initial starting

point (for example there is no stable region for power levels below 250W in figure 6.43, whereas

figure 6.42 has some stable regions all the way down to 50W). Again this is entirely possible.

The optimized controller may sacrifice performance/stability in some measures/regions in order to

improve those values that matter to the objective function. In fact it has clearly done that here.

Recall that this is just one particular example of the proposed process, and it certainly illustrates

that it works. However, in practice one will need to make a very careful choice of objective

function. One needs to ensure that it accurately captures all of the desired features of the control

design, so that the resulting optimized controller has desirable properties in all aspects of stability

and performance that matter to AE.
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Figure 6.43: Stability Region for Optimized (at 800W) H∞-Loopshaping Controller
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Chapter 7

Conclusion and Future work

In this thesis, a nonlinear high frequency plasma load was studied, controllers were developed

for the generator and the results were optimised for a range of parameters. Metrics were first

developed as a way of quantizing the AE simulation for generating specific goals that AE was in-

terested in. Average and real time tracking were differentiated according to the AE system keeping

in mind the tradeoffs between the two. These metrics were used for checking the performance of

the controllers developed later in the project. These metrics can be used further in the project for

developing specific optimal controllers according to the user specifications.

H∞ loopshaping approach was successfully implemented as a feedback control strategy for

the nonlinear load. As described in section 4.2, the integral control of the AE system uses lookup

tables for initial value and reset operations. The use of lookup tables for a specific plasma model

implies special treatment and such a system would not work for other plasma models with different

parameters. The new controller successfully eliminated the use of lookup tables in the original

reset integral control. Alternatively, a PID approach was also implemented successfully on the AE

system. There are a few other methods that can be used in the future like adaptive control methods

and learning control methods. A wide range of these controllers could be designed depending

upon some classification criteria for the load and can be used in commissioning for getting the best

control option.

The plasma model in the AE Simulink model has an interpolation algorithm for Output Power,

Current and Voltages. The interpolation is based on appropriate data that is generated experimen-

tally from an actual plasma system. This data is used to generate appropriate equations for Power

Output and can be thought of as calibration data that could be generated for each system/application

as required during commissioning.

In order to identify this we remove the controllers from the Simulink model to leave the open

loop system. We then manually generate Vrail and Vphase as a series of step inputs. Initially, Vrail
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is kept constant, with a series of Vphase step inputs divided equally throughout the range. The open

loop simulation data is saved. We then increase Vrail, with the same set of Vphase inputs, again

saving the open loop data. This process continues until Vrail reaches the maximum of its range.

We continue the same cycle with Vphase as a constant input, and Vrail as a set of varying step

inputs. We record all the steady state power outputs. This open loop recorded data is then used in

a curve fit algorithm (MATLAB cftool, Polynomial curve fitting) to generate a three-dimensional

surface and an approximate second order polynomial relating Power to Vrail and Vphase.

Pdel = 843.4−21.82V rail+0.099V rail2−586.9V phase+64.87V phase2+9.479V railV phase

The equation describes the relationship of Pdel to Vrail and Vphase for the plasma model

described in the Simulink model (and based on experimental data). It is illustrated in figure 7.1

below, showing both the data and the fitted surface.

Figure 7.1: Polynomial Data Fit for Pdel, Vrail and Vphase

There are a couple of potential uses for this data-fit model. One option we tested was to replace

the interpolation algorithm in the Simulink model by the above data-fit equation to test out control

algorithms for faster processing. This affords a significant speedup and could be used in a rapid
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prototyping approach for controller design (although the final controller would still be tested on

the full Simulink model using interpolation data for most accurate results).

Another potential use would be to utilize an automated version of the above procedure for other

plasma models (the second order fit serving as a prototype). The idea is to then use an approximate

(static nonlinear) inverse to this equation in the controller design and implementation, so as to get

the best controller, custom designed for a specific plasma model. The commissioning/calibration

scheme would be done on-site for each system/application. Another idea would be the use of black

box system identification methods and estimation methods. They could be used for online/offline

system identification and would give a better idea about the load for choosing the best controller.

Nelder-Mead optimization approach was executed for a range of hardware and software param-

eters (source impedance, power setpoint and cable length) that require new controller designs for

every combination of these parameters. This algorithm allows for a more general approach, since

we are generating optimal controllers for every combination. These controllers can be used in a

classification criteria and the best controller can be selected during commissioning of the generator.
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