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ABSTRACT 

Basic thermodynamic concepts are applied to the 

condensation of a vapor resulting in a general expression for the 

free energy change of the system for the formation of a nucleation 

embryo. No assumptions about the geometry of the embryo are 

made. Spherical approximation of the shape of the embryo leads 

to the usual free energy change expressions. 

A nonspherical embryo, the sessile drop, is inves-

tigated as a nucleation embryo. The surface areas and volume of 

the sessile drop are developed for use in the free energy change 

equation and are found to reduce to those of a spherical cap for 

limiting conditions of size, contact angle, and gravitational effect. 

Numerical computations of the free energy change 

for a sessile drop shaped embryo are made for water and for 

mercury. These computations demonstrate that the spherical cap 

approximation adequately describes the free energy change for the 

formation of an embryo shaped as a sessile drop. 

William Richard Barchet 
Atmospheric Science Department 
Colorado State University 
Fort Collins, Colorado 80521 
June, 1968 
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INTRODUCTION 

The phenomena of phase changes can be examined 

from several view points. Using statistical mechanics and molecular 

models, the physical mechanism of each step in a phase change can 

be theoretically described. A more general approach is to apply 

basic thermodynamic concepts to changes of phase. With the thermo­

dynamic approach only the initial and final states of the system are 

of importance. The actual physical mechanism of the change of the 

system is avoided in the thermodynamics. Using the basic principles 

presented by Gibbs (1906) and by Frenkel (1946) it is possible to 

derive an equation which describes the formation of the condensed 

phase in terms of the free energy change of the system. A particular 

feature of this derivation is that no assumption about the geometry 

of the condensed phase is necessary to obtain the free energy change 

expression. Mason (1957) and Fletcher (1962) present similar 

derivations of the free energy change for the system except that they 

assume the embryo of the condensed phase is spherical. 

The derivation of the free energy change of the system 

for the formation of an embryo of the condensed phase leads to the 

question about the effect of nonspherical shapes on the free energy 

change. The work of Bashforth and Adams (1883) on the shape of the 
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sessile drop is extended to provide information on the surface areas 

and volume of the sessile drop. Using this information the effect of 

a nonspherical embryo shape on the free energy change is compared 

to the free energy change using a spherical embryo for water and for 

mercury systems. 

For the convenience of the reader the definitions of 

the symbols used in the text are given below. Where several defini­

tions are used for the same symbol, the definitions are given in the 

order of occurrence in the text. Also, the page number on which the 

symbol first appears is given to the right of the definition. The con­

text in which such symbols are used thereafter should make the 

definition which applies obvious. 

A Surface area (6) 

6.A - Change in surface area (6) 

Ac - Surface area correction term (27) 

b - Radius of curvature at the vertex (21) 

i3 - Shape parameter for the sessile drop (21) 

d - 1) Differential operator (8) 

2) Density of sessile drop (20) 

6. - 1) Finite differential operator (7) 

2) Absolute error (27) 

o - 1) Variation differential operator (10) 

2) Relative error (28) 
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0 Partial differential operator ( 6) 

G Free energy ( 6) 

.6.G - Change in free energy ( 7) 

.6. G':' - Critical free energy change (17) 

g - 1) Number of molecules in embryo ( 5) 

2) Acceleration of gravity (20) 

i Summation index (6) 

M - Gram-molar weight of a substance (31) 

m - Number of moles of a substance (8) 

N - Number of molecules in the system (5) 

n - Number of molecules (6) 

p - Vapor pressure (6) 

poo - Reference vapor pressure (9) 

cj> - Angle parameter (19) 

R - 1} Universal molar gas constant (9) 

2) Principal radius of curvature (20) 

r - Radius (15) 

r':' - Critical radius (15) 

p - Meridional radius of curvature (20) 

L, V - Subscripts denoting the liquid-vapor interface (12) 

S, L - Subscripts denoting the solid -liquid interface (13) 

S, V - Subscripts denoting the solid -vapor interface (13) 

r: - Summation over values of i (7) 
i 

cr i-Surface free energy of the i. -th interface (6) 
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T - Temperature (6) 

e - Contact Angle (13) 

f.1. 0 - Standard state chemical potential (9) 

fJ. e - Chemical potential of a substance in the condensed 
phase (7) 

fJ.
v 

- Chemical potential of a substance in the vapor phase (7) 

v - Volume (8) 

V - Volume correction term (27) c 

A V - Change in volume (8) 

V ,V - Molar volume (8) 
m 

A V>l~ - Critical volume change (11) 

x - 1) Horizontal coordinate (19) 

- 2) Radius of embryo compared to critical radius (27) 

z - Vertical coordinate (20) 
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THE THERMODYNAMICS OF NUCLEA TION 

A physical description of the process by which a 

vapor condenses was given by Frenkel (1939) as an increase in the 

number and size of heterophase fluctuations within the vapor. A 

heterophase fluctuation in the vapor is an aggregation of molecules 

forming a small cluster, an embryo, resembling the condensed 

phase. When the temperature and pressure ~f the vapor approach 

the condition for condensation the number and size of these embryos 

increase. In a discussion of the thermodynamics of this process, 

the physical mechanism by which molecules collide and aggregate 

to form clusters is not of interest or importance. The system to 

which the following discussion applies contains molecules of one 

substance in the vapor state and in one embryo. The thermodyna­

mics of nucleation within this system is concerned only with the 

initial and final states of the system. 

Generalized Thermodynamics of Nucleation 

The system to be examined is a volume initially 

containing N molecules of one chemical substance as a vapor at 

a constant temperature and pressure. The total pressure on 

the system is the pressure of the vapor. By some unspecified 

process g molecules aggregate to form a single embryo within the 
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volume. The final state of the system is (N -g) molecules in the 

vapor phase and ~ molecules in the embryo, the condensed phase. 

This change of the system can be schematically written as 

N - r.t + (N - g) 
vapor °embryo vapor 

(1) 

where the subscripts refer to the phase in which the molecules are 

found. The relative probability that the system will undergo such a 

change is determined by the free energy change of the system. 

For a one component system the free energy per 

molecule in the vapor is given by the chemical potential of the sub-

stance in the system. The chemical potential of a substance in a 

one component system is defined as 

8G 
fl. = (8 n ) T, p, A 

The subscripts refer to quantities that are held constant during the 

differentiation. The free energy of the embryo is given by the sum 

of the bulk free energy of the substance in the embryo and the free 

energy due to the surface areas of the embryo. The bulk free 

energy is given by the product of the chemical potential and the 

amount of substance in the condensed phase. A surface free energy 

represents the work required to form an interface between two 

phases and is defined as 

cr, = (88A
G

) T A 
I "p, '../, 

I JT I 
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for a one component system. The subscript 1.. is used to allow for 

more than one interface and surface free energy to be associated 

with the embryo. The total free energy of the embryo is then 

fJ. g + L:a . .6A. 
e ill 

(2) 

where fJ. is the chemical potential of the substance in the condensed 
e 

phase. If more than one interface is present, the summation is over 

the total number of interfaces and M. is the change in surface area 
1 

of the i -th interface having a surface free energy of a .' With these 
- 1 

definitions the free energy change of the system from the initial to 

final state can be written as 

(3) 

The chemical potentials, as used in equation 3, are 

given on a per molecule basis. However, since thermodynamics is 

designed to deal only with macroscopic systems, the concept of 

molecules is irrelevant. Much discussion has been lavished on the 

problem of extending thermodynamics to deal with these microscopic 

systems by assuming the microscopic system has the properties of 

similar macroscopic systems. Stating that a cluster of g molecules 

has a surface energy equivalent to a macroscopic drop immediately 

raises the question of how many molecules are necessary to consti-

tute a new phase. It is difficult to assume that a cluster of three or 

four molecules has a surface free energy equal to that for the 
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condensed phase. This problem is avoided here by assuming that 

the final state of the system is such that the embryo is large enough 

to possess macroscopic properties. As stated by Guggenheim (1949), 

the embryo is assumed to constitute a condensed phase. Since 

thermodynamics deals only with the end states, the physical process 

of changing the system from one state to another does not enter the 

picture. Conclusions based on the thermodynamics must be made 

with the nature of this assumption in mind. 

The molecular concept can be abandoned in favor of 

molar quantities. Now the chemical potentials are given for one 

mole of substance and ~ is replaced by the volume change of the 

embryo divided by the molar volume of the condensed phase. The 

free energy change expression becomes 

IJ.G = (f.L - f.L ) IJ. V + 1:
1
, a l' IJ.A

1
, • 

e v Vm 
(4) 

Changes in volume and surface area of the embryo are used to 

represent the volume and surface areas so that growth of an embryo 

can be discussed later in the paper. In the process of formation of 

an embryo there is no difference between these two statements of 

the volume and surface areas. 

The differential change in free energy at constant 

temperature of a single component phase is 

dG = VdP + f.Ldm 
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where m is the number of moles of the substance. The differential 

dG is exact; therefore, cross-differentiation of the right- hand terms 

yields 

= v 
= V ( 5) 

m 

where V is the molar volume of the substance. Considering the 

vapor to behave as an ideal gas, equation 5 becomes 

or 

(~) = RT 
8p T, m p 

df1 = RT dp 
p 

Integrating equation 6 gives 

f1 = R T lnp + f1 0 

where f1 0 is an arbitrary constant evaluated at some standard 

( 6) 

pressure. Using this definition, the chemical potential of the sub-

stance in the embryo is 

(7) 

where poo is the vapor pressure of the condensed phase in equilibrium 

with its vapor, i. e., over a plane surface. The chemical potential 

f1v is given by the vapor pressure on the system, thus 

(8) 
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The difference between the chemical potentials defined in equations 

7 and 8 is 

IJ. - IJ. = - R TIn (p / poC> • 
e v 

(9) 

If the embryo-vapor system is considered to be in 

equilibrium with regard to a change in volume of the embryo, a 

volume variation of the free energy change yields 

o L~G) = o (.6. V) 
(10) 

or IJ. - IJ. e v 
= (11) 

Substituting equation 9 into equation 11 results in the Kelvin equa-

tion in a more general form than usually seen: 

(12) 

The Kelvin equation states that if the embryo-vapor system is to be 

in equilibrium, the chemical potential of the substance in the vapor 

must be larger than its chemical potential when in equilibrium with 

a large enough quantity of the condensed phase so that surface effects 

are negligible. The difference is due to the surface free energy 

and the curvature of the surface of the embryo. 

The free energy change of the system for the forma-

tion of an embryo becomes 

b.V 
b.G = - RTln(p/poo)-V + E (J. b.A. 

ill 
m 

(13) 
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When the ratio p/Poo is greater than unity, the inter-

action of the right-hand terms of equation 13 leads to a maximum 

value of b.G at some volume change, the critical change in volume, 

b. V':'. Differentiating equation 13 with respect to b. V and setting the 

differential to zero, evaluation at the critical volume Change yields 

= RT In (pjpoo) 
V m 

(14) 

That a maximum in b.G exists is significant. Once 

formed, an embryo must increase in volume to grow. If the 

volume of the embryo after it is formed, is less than the critical 

volume, growth would be accompanied by a positive change in the 

free energy of the system. However, a process for which the free 

energy of the system increases is not thermodynamically feasible 

in a statistical sense. But, if the volume of the embryo after it is 

formed is equal to or greater than the critical volume, growth would 

lead to a reduction in the free energy of the system. The critical 

volume is the lower size limit for embryos which may spontaneously 

grow into larger drops. The critical free energy is the energy 

barrier which must be overcome to form embryos of this size. 

Throughout the derivation of equations 13 and 14 no 

reference is made to homogeneous or heterogeneous nucleation. 

These equations are completely general since no assumptions are 

made about the nature of the process or geometry of the embryo 
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other than that the embryo is an aggregation of molecules.. Assump-

tions have been made on the nature of the thermodynamic properties 

of the embryo such that these properties were taken to be the same 

as for the condensed phase. Two of the more common applications 

of equations 13 and 14 are presented below. These are by no means 

the only nucleation processes to which these equations can be applied. 

Nucleation at lattice step sites, on curved surfaces, nucleation of 

the solid phase, both homogeneous and heterogeneous, are some of 

the nucleation processes that are governed by these equations. 

Applying these equations to physical systems is possible only if 

information on the surface free energies is available. 

Homogeneous Nucleation 

The formation of an embryo in a system containing 

only one chemical species and, initially, only one phase is called 

homogeneous nucleation. In this case equation 13 becomes 

~G 
( 15) 

where the subscripts L, V denote the nature of the interface, i. e. , for 

the condensation of a vapor to the liquid, the liquid-vapor interface. 

The surface free energy of a liquid-vapor interface is identical to 

the surface tension. Only one surface area and surface free energy 

is involved in homogeneous nucleation. Equation 14 becomes 

= RT In (p!Poo) 
()" L, V Vm 

( 16) 
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Heterogeneous Nucleation 

If in the initial state of the system more than one 

phase is present, i. e., the pure vapor and a solid phase, the forma-

tion of an embryo on this solid is called heterogeneous nucleation. 

By assuming the solid has the form of a plane substrate, three 

surface areas and surface free energies are involved such that 

equation 13 becomes 

(17) 

where the subscripts, as above, refer to the nature of the interface. 

The surface areas involving the solid substrate are related such that 

Substituting this relation into equation 1 7 yields 

~G = - RT In(p/poo) ~: + (j L, v~AL, V + «(j S, L - (j S, v)~AS, L 

(18) 

The Young-Dupre equation gives the relation between the surface 

free energies used in equation 18 and the contact angle ~ of the bulk 

liquid on the solid substrate as 

(j S, V - (j S, L 

(j L, V 
= cos 9 
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Using this concept of contact angle, equation 18 becomes 

b..V 
b..G = - RTln(p/poo) V + CJ L, V (b..A L , V - cos 9b..A

S
, L) (19) 

m 

which is the free energy change for the formation of an embryo by 

heterogeneous nucleation on a plane substrate as given by Volmer 

(1939, and cited by Fletcher (1962». 

Proceeding in a similar fashion, equation 14 for 

heterogeneous nucleation becomes 

= RT In (p!Poo) 

CJ L , V Vm 
(20) 

if the contact angle is independent of the volume of the embryo. 
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SPHERICAL APPROXIMA TION OF THE EMBRYO SHAPE 

A natural choice for a first approximation to the 

shape of an embryo is a sphere. For homogeneous nucleation the 

embryo is assumed to be a sphere, while for heterogeneous nucle-

ation the embryo is taken to be a segment of a sphere. 

Homogeneous Nucleation 

The spherical embryo in the homogeneous case is 

assumed to have a radius.!:.. Substituting the volume and surface 

area of a sphere into equation 15 gives 

t:.G = / 
41T r3 2 

- R T In (p pool 3 V + 0" L, V 41T r 
m 

and equation 16 becomes 

or 

RT In (p!poo) 

0" L, VVm 

r~:{ = 20" L, vV m 

R Tln( p / poe) 

(21) 

(22) 

where r>:< is the critical radius. These equations are given by Gibbs 

(1906), Frenkel (1946), Volmer and Weber (1926) and cited by 

Fletcher (1962) and are most often derived in a less general manner 

by introducing the spherical shape into equation 4. 
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Heterogeneous Nucleation 

The embryo in heterogeneous nucleation is taken to 

be a spherical cap resting on a solid, plane, insoluble substrate as 

shown in figure 1. Adamson and Ling (1964) point out that the sur-

face of the substrate must be homogeneous if the embryo is to be a 

volume of revolution. The contact angle plays an important role in 

determining the volume and surface a~eas of an embryo of given 

radius of curvature. The volume and surface areas are found to be 

6.AL , V 
2 

cos 9) = 2rr r (1 (23a) 

2 2 
6.AS, L = rrr (1 - cos 9) (23b) 

3 
rrr 2 

6.V = -3- (2 + cos 9) (1 - cos 9) (23c) 

VAPOR 

Figure 1. The spherical cap heterogeneous nucleation embryo 
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Substituting equations 23 into equation 19 gives 

4'TT r 

( 

3 
.6.G = -RTln(p/p~) 3 + rr L, V 4" r2 ) f(e) (24) 

2 
where f(9) = (2 + cos 9) (1 - cos 9) /4. Notice that the free energy 

change for heterogeneous nucleation on a plane substrate differs 

from that for homogeneous nucleation only by the factor f (9) which 

is dependent on the contact angle alone. Using the spherical cap 

approximations equation 20 reduces to the same expression as given 

by homogeneous nucleation, 

r):~ = 20' L, V V m 
RTln(p/~) (25) 

Volmer (1939, and cited by Fletcher (1962» also 

arrives at equations 24 and 25 and concludes that the influence of 

an inert, plane substrate on nucleation is to reduce the free energy 

barrier to the formation of the critical embryo but not to Change the 

critical radius of the embryo. 

Nonspherical Shapes 

Examination of equation 16 gives some insight on the 

effect of a nonspherical shape of the embryo on the results obtained 

by the spherical approximation for homogeneous nucleation. It is 

well known that the differential (aA/av) is a minimum for a sphere 

and that all other shapes give rise to values of(aAj aV) larger than 
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that for the sphere. Therefore, to obtain the same critical volume 

at the same temperature the ratio p/poo must be larger for non­

spherical embryo shapes. 

Such an easy analysis for the heterogeneous case is 

not possible since more information on the surface area-volume 

relations is needed. The next section will investigate a more realis­

tic shape for the embryo in the process of heterogeneous nucleation 

on a plane substrate. By comparing the free energy change expres­

sions for the nonspherical embryo to that for the spherical capas 

shown in equation 24, the accuracy of the spherical cap approxi­

mation can be determined. 
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THE SESSILE DROP 

To investigate the influence of a nonspherical drop 

shape on nucleation consider a sessile drop resting on top of a plane, 

horizontal, insoluble homogeneous substrate under the action of 

gravity and in equilibrium with its vapor. Bashforth and Adams 

(1883) point out that the differential equation describing the shape 

of the sessile drop as a function of the size and surface tension of 

the drop has been derived by Laplace. Gauss, and Young by very 

different approaches. each resulting in the same set of equations. 

A straightforward derivation on the basis of mechanical statics 

alone with no inference as to the origin of the surface tension of the 

liquid-vapor interface follows. 

By symmetry the drop surface will be a surface of 

revolution about a vertical axis, parallel to the action of gravity. 

A vertical section through the axis of revolution is presented in 

figure 2 with the contact angle exaggerated. The principal radii of 

curvature are given by...E.. in the plane of the paper and by xl sinq, 

normal to the plane of the paper. The angle! varies from zero at 

the vertex to ,!!. the contact angle of the liquid on the substrate. 

By the Young- Laplace equation the difference in 

pressure across a curved fluid surface is 
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bop = a (1 + 1 ) (26) 
L, V Rl R2 

where Rl and R2 are the principal radii of curvature. Because of 

the action of gravity a hydrostatic pressure within the drop contri-

butes to the pressure difference such that 

bop = gdz + C (27) 

where .Q. is the density, ~ the acceleration of gravity and C an arbi-

trary constant. Equating equations 26 and 27 and substituting for· 

the principal radii yields 

(28) 

VAPOR 
z 

LIQUID 
'l----- X ----....... "" 

x 
SIN f> 

Figure 2. The sessile drop 



21 

A t the origin the two radii of curvature are equal to 

the radius of curvature at the vertex, l2., i. e. , 

lim p = 
z-o 

x 
lim 
z-o sin q, 

This fixes the value of C such that 

= b. 

(29) 

By dividing the variables~, ~, and p by the parameter l2., equation 

29 is nondimensionalized to 

1 
+ sincp 2 + {3 z (30) = 

p x 

where 

{3 = 
gdb

2 

a L , V 

Equation 30 gives the shape of the sessile drop in terms of three 

nondimensional coordinates~, ~J and E.. and the shape parameter {3. 

A differential equation involving only ~ and ~ can be 

obtained by substituting the differential forms for E.. and sin q, 

to yield 

P = (I + (~f)7:) 
sin~ = =~/(I + (~~ 2 (2 
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( 
2) (2) 3/2 

1 + (~~) ~ ~~ := (2 + $ z) 1 + (~~) (31) 

Equation 31 is a non-linear, second degree and order two differ-

ential equation; a closed form solution is impossible. This 

differential equation along with the equations 

dx := p cos <P d <P 

dz = p sin <p d <p 

form a set of differential equations describing the sessile drop 

which can be solved by series techniques. 

Bashforth and Adams (1883) obtained solutions for 

the variables x, z, p, and lip as power series of the variables <p - - - - -
and Ii. These solutions are given in Appendix I. From these 

solutions, which are exact provided that! and Ii are small so that 

the series converge rapidly, the surface areas and volume needed 

in equation 19 can be derived. 

The area of the interface between the substrate and 

( 
1 + 13 + 35 2 + 217 3) 8 + ( 2 + 311 + 2029 2 

- 315 960$ 576$ 4608$ 9 14175 120960$ 138240$ 

+ 4597 3+ 3043 4) 10 ( 2 + 437 + 1997 2 
138240 $ 122880 $ 9 - 467775 2419200 $ 96768013 

+ 15841
13

3 + 35927134+ 306703 $5)912 ... J 
1658880 184320 22118400 + . 

(32 ) 
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The area of the liquid-vapor interface is given by the 

integral 

which leads to 

9 

AAL , V = f 21T xpd.p 
o 

A = b
2 

[9
2 

- (~+ ~(3) 9
4 

+(_1_+ ~(3 + ~(32) 96 
b. L, V 1T 12 4 360 24 192 

( 
1 + 1 + 109 2 + 217 3) 8 + ( 1 + 17 

- 20160 320{3 4608{3 4608{3 9 181440 120960{3 

+ 379 2 + 1993 3 + 3043 4) 10 ( 1 + 31 
138240{3 138240{3 122880{3 9 - 239500800 7257600{3 

757 2 + 1853 3 + 67633 4 306703 5) 12 + ] 
+ 3870720{3 829440{3 7372800 {3 + 22118400 {3 9 . • . . 

(33) 

The volume of the sessile drop can be found by 

differentiating equation 30 to give 

{3 dz = ~ + cos¢ d~ sin¢ d 
2 x - 2 x . 

p x 

For a volume of revolution, a volume element can be represented as 

dV 
2 = 1T X dz 

thus 
2 

dV = ; - x 2 dp + x cos .pd.p - sin .pdx 
p 

(34) 

Integrating by parts and using the differential relation 

dx = p cos .pd.p 
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the volume is found to be 

(35) 

Algebraically combining the series forms of the terms in equation 35, 

the volume of the sessile drop becomes 

( 
41 + 23 f3 + 157 2 + 271 3) 10 (671 + 479 

- 30240 2304 5760 f3 10240 f3 9 + 7257600 362880 f3 

+ 7771 f32 + 9157 f33 + 131329 (34)912 - .•. ] 
1105920 552960 8847360 . 

(36) 

As they now stand, equations 32, 33, and 36 do not 

give any insight into the departure from sphericity of the surface 

areas and volume of the sessile drop without a more detailed exam i-

nation of the spherical cap. However, by expanding equations 23 as 

power series in 9, the surface area and volume of the spherical cap 

become 

( ) 
_ 2 [2 .!. 4 + 2 6 _1_ 8 2 10 

~AS,L s -1Tr 9 - 3 9 45 9 - 315 9 + 14175 9 

2 912 + ... ] 
467775 

(37) 

( ) 
_ 2 [2 1 4 + _1_ 6 1 8 1 10 

~AL, V s - 11" r 9 -!'29 360 9 - 20160 9 + 181440 9 

1 12 ] 
- 239500800 9 + ... (38) 

( ) _ 3[.!. 4 _ ~ 6 + ~ 8 41 10 671 12 J 
f-V s - 11" r 4 9 12 9 960 9 - 30240 9 + 7257600 9 -' .. 

( 39) 
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where the subscript ~ refers to the spherical cap. Comparing equa­

tions 32 and 37, 33 and 38, and 36 and 39 it is apparent that the 

sessile drop shape can be represented as a spherical cap plus cor­

rection terms to account for the departure from a spherical shape. 

When the parameter .§ or the contact angle becomes small the 

sessile drop reduces to a spherical cap. f3 becomes small for small 

drops or in the absence of gravity since.§ is really a measure of the 

hydrostatic pressure within the drop that causes the departure from 

sphericity. 
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THE SESSILE DROP AS AN EMBRYO 

The series forms for the surface areas and volume 

of the sessile drop are substituted into equation 19 to give the free 

energy change of the system for the formation of an embryo shaped 

as a sessile dropo By writing the volume and surface areas as a 

sum of the corresponding spherical cap term and series correction 

terms the free energy change becomes 

~G. = -RTln(p!poo} {f~v) -(3b
3 

a
6 [2.. -f.6

3
4 + 1

7
53

7
6(3)a2 

sessIle drop V s 48 \ 
m 

+ (23 + 157 (3 + 271 (32) 4 (479 + 7771 9157 2 
2304 5760 10240 e - 362880 1105920 (3 + 552960(3 

+ 131329 (33)e6 + 00 oJ) + {(,A A ) (3b2 e 4 [1 (1 
8847360 (j L, V f L, V s - 4" - 24 

+ 1~~ (3 ) e
2 

+ (3~0 + 416~~ (3 + 4~~~ (32) e
4 

- (12~~60 + 1:;;40 (3 

+ 1~~~!0 (32 + 1~~:~0 (33 )e
6 

+ (725
3
7
1
600 + 38~~~20 (3 + 8~:!!0 (32 

+ 67633 (33 + 306703 (34)e8 - .0.]1 f() 
7372800 22118400 - (j L, Vcos e l.~As, L s 

- (3b 2 e4 [1. -(1: + ~(3) e 2 + (~ + ~(3 + ~(3 2)e4 _f. 311 
4 8 192 960 576 4608 \120960 

+ 2029 (3 + 4597 (32+ 3043 3) 6 (437 1997 
138240 138240 122880 (3 e + 2419200 + 967680(3 

+ 15841 (32 + 35927 (33 + 306703 (34)e8 - .. oj} 
1658880 184320 22118400 . (40) 
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The spherical cap terms may be combined as in equation 24 and the 

series terms for the surface area corrections may be combined to 

give 

b.G 01 d seSSl e rop 
= b.G 0 - b. 

spherlcal cap 
(41) 

In assuming the free energy change for the spherical cap is that 

for the sessile drop, the error is 

where 

6 4 4 
b. = TT gd e r~c x (- xV + A ) 

c c 

b 
x = 

r~c 

2<7 L, VV m 
r~c = 

RTln(p/poc) 

= 5 (3 + 154 (3) 2 + (23 + 157 271 2) 4 
Vc 24 - 32 1536 e 1152 2880f3 + 5120f3 e 

(
479 + 7771 f3 + 9157 Q 2 131329 3) 6 

- 181440 552960 276480 fJ + 4423680 f3 e + ... 

and 

A - 5 (3 + 133(3)e2 +( 23 107 2172) 4 
c - 24 - 32 1536 1152 + 2304 f3 + 5120 f3 9 

( 
479 + 2189 f3 + 3581 2 33473 3) 6 

- 181440 18432 138240 f3 + 1474560 f3 e + ..• . 

(42) 

(43) 

(44) 

The term containing V gives that portion of b. which is due to the 
c -

difference in volume between the spherical cap and the sessile drop 

while the term containing A gives that portion of b. due to the sur-c -

face area differences. 
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Equation 42 may be further simplified by noting that 

V is always larger than A , thus 
c c 

b. = 1T gd96 r*:4 x4[(1-X)A + xf3 9
2 

(A - V)] 
c c c 

where 

7 (~ + ~ ) 2 +f. 301 + 133 f3 
(Ac - V c) = 512 - 3840 2560 f3 9 \13824 18432 

+ 3091 f3 2)94 -
442368 

(45) 

(46) 

The term (1 - x)A represents the interaction of the volume and sur­
c 

face area differences between the spherical cap and sessile drop. 

Physical interpretation of this term for x < 1 is that the difference 

in surface area between the sessile drop and spherical cap plays 

the major role in the error while for values of x> 1 the difference 

in volume plays the greatest role. The remaining term, 

xf3 92
(A - V ), indicates that the volume difference always plays a 

c c 

role in b. and is the residual error when x = 1. 
- ----

By writing the free energy change for the spherical 

cap, equation 24, as 

b.G h . 1 sp erlca cap (47) 

the relative error in assuming the free energy change for the 

sessile drop to be given by that for the spherical cap is 

6 = 
b.G h . 1 sp erlca cap 



6 2 = gd9 r~( 

a L, Vf(9) 

where 
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2 
x 

2 
(1 - -x) 

3 

[ (1 - x)A + K (A - V ) x
3

] 
c c c 

2 2 
K = gd9 r* 

a L, V 
= 

2 2 
4gda L, V9 V m 

[RTln(p/poO) ]2 

(48) 

Use of equation 48 is limited to values of x<3/2 since at this value ~ 

becomes infinite. 

Examination of the equations for!::l. and 6 indicates - -
that a maximum for each should occur at some value of x. These 

maxima are found by differentiating equations 45 and 48 with respect 

to .!' setting the differentials to zero and solving for!.. By assuming 

Ii. to be small the terms V and A can be considered independent 
c c - -

of x. The value of ~ for a maximum in ~ is given by 

(A V ) 
4 - 5x + 7 K c';' c 

c 

3 
x = 0 

while that for a maximum in £. is given by 

(A - V) ( ) 
6 -llx+4x2 +K c

A 
c 15x3 - 8x4 = 0 

c 

(49) 

(50) 

For most real systems the value of K is much less than unity so 

that equations 49 and 50 can be written as 

4-5x = 0 
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for D. and 
max 

2 
6 - llx + 4x = 0 

for 0 or 
max 

x 
D. 

= .8 
max 

XeS = .75 
max 

Because the term (1 - x)A
c 

changes sign as ~ increa­

ses beyond unity both ~ and.£. must have zeros at some value of ~. 

Setting the bracketed factor in equation 48 to zero gives 

(A - V) 3 
1-K c c x 

A 
= X (51) 

c 

and for K < 1 as discussed above the zero must be very near to but 

just slightly greater than X = 1. Thus D.G. is an over-
spherIcal cap 

estimation of D.G '1 d for values of x< 1 and an underestima-
seSSl e rop 

tion for x> 1. 

The dependence of ~ and.£. on the physical parameters 

temperature, supersaturation, contact angle, denSity, and surface 

tension can be seen by examining the coefficients of the terms in ~ 

of equations 45 and 48 

D. = • oJ 4S6 
'IT gl..r-,c g(x, S, /3) 

2 6 
() = 

gdr~:< S 
h(x,S,/3) 

(J L, Vf(S) 
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where g(x, 9, {3} and h(x, 9, {3} are given in equations 45 and 48. 

Substituting for r~:' these equations become 

b.. = 

o = 

446 
16'TTgM O'L, V 8 

3 4 
d RT In(p/poo) 

2 6 
4gM 0' L, V 8 

g(x,8,{3) 

[RT In(p/pOO> ]2df(8) 
h(x,8,{3) 

( 52) 

( 53) 

where M is the gram-molar weight and clearly shows how ~ and £. 

depend on the physical parameters. Since Ii is defined as 

then 

{3 = gdb
2 

0' L, V 

2 
gdr>:' 2 = - x 
0' L, V 

Both ~ and £. approach zero as {3 >:c, ~, or g become small. This 

result agrees with the behavior of the volume and surface areas of 

the sessile drop at small values of Ii, ~, and g; they reduce to the 

spherical cap values and so does the free energy change for the 

formation of an embryo. 
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NUMERICAL COMPUTATIONS 

Using the computer program presented in Appendix II 

numerical values of the error in assuming the free energy change of 

the system for the formation of a sessile drop embryo is given by 

the free energy change for a spherical cap were computed for two 

contrasting systems: water and mercury. Since surface tension 

data is readily available for water the errors were computed at two 

temperatures. However, only one value of the surface tension of 

mercury was found in the literature. Errors were computed for 

supersaturations ranging from O. 1 to 1000 percent, for contact 

angles from 11. 5 to 57.3 degrees, and for values of x from 0.05 to 

1. 5. 

Figure 3 illustrates the variation of ~ with~ and 

clearly shows the maximum occurring at x = O. 8. As equation 52 

indicates, a higher temperature gives smaller errors. This trend 

is seen throughout the remaining graphs. At a given supersaturation, 

contact angle, and~, say at the maximum, equation 52 can be modi-

fied to give the relationship between the Do's at two different temper-

atures as 

(54) 
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For water the constants are 

2 
a L, V 1 = 71. 97 erg/cm , 

2 
a = 74.92 erg/cm , 

L,V
2 

3 
d

1 
= 0.99987 gm/ cm 

3 
d

2 
= 0.9970 gm/cm 

and the ratio 6.
1

/6.
2 

= 0.605, which is equal to that using the computed 

data. 

The variation of the relative error with size is shown 

in figure 4 for O. 1 percent supersaturation and a contact angle of 

34.4 degrees. As with~, £. has a maximum at the predicted value, 

x = O. 75. Higher temperatures reduce the relative error. Using 

equation 53 in a modified form the relationship between () 's at 

different temperatures for a given supersaturation, contact angle, 

and~, again taken for the maximum.2..., is 

(55) 

Using the values given above for water the ratio (; 1/(; 2 = 0.809 which 

is the same as that given by the computed data. The ratios 6.
1 

/ ~ 

and (; 1/(; 2 are valid only when g(x, 9,13) and h(x, 9, 13) are not nearly 

zero, i. e., x «1 or x» 1 but not x ;- 1. 

Since the relative error is perhaps the more useful 

measure of the error made by using the free energy change for the 

spherical cap as that for the sessile drop figures 5, 6, 7, and 8 
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show how 2- varies with supersaturation and contact angle at the 

maximum and at the critical radius. The small circle and triangle 

at the vertex of the aOc and 25°C curves in figure 4 are placed at 

the corresponding points on the other curves. Figure 5 clearly 

shows how small the maximum relative error is and that 2- decreases 

rapidly with increasing supersaturation, The relative error at the 

critical radius is shown in figure 6 and is several orders of magni-

tude smaller than the maximum relative error. Curves at other 

contact angles are parallel to the curves in figures 5 and 6. Figure 

7 shows that the maximum relative error vanishes for small contact 

angles and that in the range of contact angles for which this study is 

valid the maximum relative error is negligibly small. At the criti-

cal radius the relative error as a function of contact angle is shown 

in figure 8. Curves for other supersaturations are parallel to the 

curves of the relative error in figures 7 and 8. 

In order to find a substance which would serve as a 

comparison to water equations 52 and 53 were manipulated to give 

the ratios of ~ and 2.. for different substances at the same temperature, 

supersaturation, contact angle, and size as 

= 
(

CJL'V1Ml)

4 

CJ L, V 2 M2 
( 56) 

and 
(57) 
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Comparing substances of known surface tension to water, mercury 

was found to give the largest ratios. The data for mercury that were 

used in the computations are for a temperature of 25
0 

C: 

M
Hg 

= 200. 61 gm/mole, 
2 

0' = 484. 0 erg/ cm , 
L, V

Hg 

d
Hg 

= 13. 534 gm/ cm 
3 

. 

Using these values the ratio b.
H 

/ b. H 0 = 
g 2 

4 
1. 27 x 10 and 

A graph comparing ~ for water and mercury is found 

to be impractical because of the very large difference in magnitude 

of the errors. However, a graphical comparison of £. is feasible 

and is shown in figure 9. Using the computed data the ratios 

b.
H 

/ ~ 0 and {; H / {; 0 agree very closely with the values 
g 2 g H2 

presented above. By virtue of the logarithmic presentation a com-

parison of the maximum relative error for water and for mercury is 

much more descriptive of the great difference in error as shown in 

figure 10 as a function of the supersaturation. This figure again 

points out the very negligible error even for the worst system inves-

tigated. Figure 11 compares the contact angle dependence of £. for 

mercury and water and again emphasizes the great difference be-

tween the two systems. The small circle and triangle at the 
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maximum of each curve in figure 9 are located at corresponding 

points in figures 10 and 11. 

The computer generated data used for drawing these 

graphs is presented in tabular form in Appendix III. 
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CONCLUDING REMARKS 

A direct application of thermodynamics to the nuclea­

tion of a condensed phase leads to free energy change equations that 

are not based on a specific embryo geometry. Spherical approxima­

tion to the shape of the embryo results in the equations generally 

seen in texts on nucleation. In such texts, however, the problem of 

nonspherical embryos is generally avoided. A conclusion based on 

equation 16 is that for homogeneous nucleation a spherical embryo 

has the lowest free energy change of formation. 

The effect of a nonspherical embryo on heterog~neous 

nucleation is investigated using a sessile drop as the embryo. 

Series equations describing the volume and surface areas of the 

sessile drop are derived. These equations are then substituted into 

the general free energy equation. The result is that the free energy 

change of the system for the formation of a sessile drop embryo can 

be expressed as the free energy change of the system for the forma­

tion of a spherical cap embryo plus a small correction term. 

Because the correction term is small, an expression for the rela­

tive error is also derived. The behavior of these two errors is 

investigated for maxima, zeros, and dependence on physical param­

eters. From equations 52 and 53 a general set of comparison ratios 

can be derived that allow a comparison of errors for different 



systems or sets of parameters; 

{) 1 

{) 2 
= 

(J 
L,V

1 
(J 

L,V
2 
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In (p / poe) 2) 2 
In (p/poe) 1 

( 58) 

(59) 

These ratios are valid only if ~ is ,much different from unity and 

taken to be the same value in each system. With equations 58 and 59 

it is possible to evaluate the errors for any system or conditions if 

the values of the error are known for one set of data. By using the 

following hypothetical data a set of errors is computed and pre-

sented in figures 12 and 13: 

T = 1, - 1 
(J L, V - , In(p/poo) = 1, M = 1, d = 1, e = 1. 

Values of the error presented in these figures as a function of ~ can 

be used along with equations 58 and 59 to give the errors for any 

real system, (except near the critical radius). 

The magnitude of the error for real systems dis-

cussed in the last section and presented in figures 3 to 11 indicates 

that these errors are negligible from an experimental view point. 

A relative error of 10 -7, the maximum relative error for mercury, 

is probably beyond the limit of detectability. At the critical radius 

the relative error is several orders of magnitude smaller than the 
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maximum error. These results, therefore dispell the uncertainty 

of using the spherical cap model in heterogeneous nucleation on 

a plane, horizontal surface. While only computations for the 

sessile drop are made, it seems reasonable to extend this general 

conclusion to other shapes such as pendent drops or drops on non­

horizontal surfaces. However, as pOinted out by Fletcher (1962) 

and Turnbull (1950) nonplanar surfaces have a large influence on 

the energetics of nucleation. 
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APPENDIX I 

SERIES SOLUTIONS FOR SESSILE DROP SHAPE 

Series solutions to the equations describing the 

sessile drop developed by Bashforth and Adams (1883) are based 

on the following equations 

(I -1) 

dx = p cos q, dz (I -2) 

dz = p cos q, dz . (I -3) 

A series solution to E. is assumed to be of the form 

(I-4) 

Using the series expansions for sinq, and cos p equations 1-2 and 

1-3 can be integrated to give ~ and ~ as power series in!2... The 

coefficients of the powers of!2.. are functions of b
2

, b
4

, b
S

' "', 
- --

etc. By generating the inverse of p and sin pIx as power series, 

equation 1-1 is used to obtain expressions for b
2

, b 4' b
S

' ... , 

etc. in terms of {3 

Substituting for the coefficients of !! found for the 

variables ~, ~, p, and!i..Jd results in the following series in! and ~ 
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17 2+ 1517 3+ 7409 4+ 522091 5) 10 
725760{3 2211840 {3 2764800{3 88473600{3 } <b 

(I - 8) 

The coefficients of the powers of <b are exact. These 

.scrLes solutions give the exact value of the variables~, ~'2., and 

0. provided that Ii and!! are small so that the series converge. 
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APPENDIX II 

COMPUTER PROGRAM 

The data for the curves in figures 3 to 13 were com­

puted by using the modified Fortran IV program presented in figure 

14 on the CDC 6400 computer at Colorado State University. This 

program was a simplification of the program used to generate most 

of the data and was modified by removing DO loops that previously 

incremented the values of supersaturation and contact angle. 

Numerical values printed by the computer include the 

free energy change of the system for the formation of both the spher­

ical cap and sessile drop embryo, the error~, the relative error ~ 

and the critical radi.us of the spherical cap embryo. The error and 

relative error were computed from equations 42 and 48, respectively. 

The free energy change for the sessile drop case was computed as in 

equation 41. 

Only four Significant figures were used in the output 

since the magnitude of the error was much smaller than the free 

energy changes and could have only been detected by using double 

precision computations. A larger number of significant figures 

would not have added appreciably to the value of this study. 
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Figure 14. The computer program for computing 
the free energy change 
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APPENDIX III 

TABULATED DATA 

A summary of the numerical computations involved in 

producing figures 3 to 13 is given in the following tables. Table 1 

gives the values of the physical parameters used as input data to the 

computer program presented in Appendix II. 

Table 2 summarizes the variation of the errors, ~ 

and E., as a function of x. The units of the error, ~, are ergs, 

while () is nondimensional. 

Table 3 summarizes the variation of the maximum 

relative error, () and the relative error at the critical radius, 
max 

() r*' as a function of the supersaturation at a constant contact angle 

of 34. 4 degrees. 

Table 4 summarizes the variation of the maximum 

relative error and the relative error at the critical radius as a 

function of the contact angle at a constant supersaturation of O. 1 

percent. 



TABLE 1 

INPUT DATA 

T O"L,V d 

oK erg/cm 
2 

gm/cm 
3 

WATER 273 74.92 0.9970 

298 71. 97 0.99987 

MERCURY 298 484. 13.534 

HYPOTHETICAL 1 1. 1. 

M 9 

gm/mole degrees 

18.0 11. 5 

18.0 to 

200.61 57.3 

1. 57.3 

p/Poo 

1.001 

to 

11.00 

2. 718 

CJ1 
co 



X 

0.10 

0.20 

0.30 

0.40 

O. 50 

0.60 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1. 05 

1. 10 

1.15 

60 

TABLE 2 

THE ERROR AND RELATIVE ERROR 

AS A FUNCTION OF X 

€I = 34.4° (p/poo - 1) x 100 = 0.1 

T = O°C T = 25°C 

WATER WATER MERCURY 

A x 10
17 

() x 1010 
A x 10

17 
() x 10

10 
A x 10 

8 

0.03 0.44 0.05 O. 54 0.27 

0.39 1. 68 0.65 2.08 1. 04 

1. 74 3.5R 2.88 4.44 2.21 

4. 72 5.97 7.80 7.38 3.67 

9. 60 8. 54 15.90 10. 57 5.26 

15.92 10.89 26.31 13.53 6.73 

22.12 12.56 36. 56 15.54 7.73 

24.29 12.82 40.15 15.85 7.88 

25. 16 12.50 41. 58 15.46 7.69 

24.04 11.40 39.74 14.10 7.01 

20.15 9.23 33.30 11. 41 5.68 

12.51 5.61 20.67 6.94 3.45 

-18.66 -8.37 -30.85 -10.36 -5.15 

-44.96 -20.68 -74.31 -25.58 -12.72 

-80.56 -38.75 - -47.92 -23.83 

HYPOTHETICAL 

A x 1030 
() x 1015 

0.01 0.43 

0.17 1. 64 

0.77 3.49 

2.09 5.80 

4.24 8.31 

7.04 10.64 

9.78 12.22 

10.74 12.47 

11.13 12.16 

10.63 11.09 

8.91 8.98 

5.53 5.46 

-8.25 -8.14 

-19.88 -20. 11 

-35.63 -37.68 



TABLE 3 

DEPENDENCE OF THE RELA TIVE ERROR 

ON THE SUPERSA TURA TION 

Q = 34.4° 

T = 0 °c T = 25°C 

WATER WATER MERCURY 

X = 0.75 X=1.0 X = 0.75 X=1.0 X = 0.75 

(p/Poo - 1) x 100 {) {) {) {) 
r* 

{) 
max r~( max max 

0.1 1. 585 x 10 
-9 

8.633 x 10 
-17 

1. 282 x 10 
-9 

5.644 x 10-17 
7.885 x 10 

-8 

1.0 1. 600 x 10-11 
8.790x10- 21 1. 293 x 10- 11 5. 747 x 10 -21 7.956x10 

-10 

10. 1. 743 x 10 
-13 

1. 057 x 10 -24 1. 410 x 10- 13 6. 932 x 10- 25 8.671x10- 12 

100. 3.296 x 10-15 
6.231 x 10-28 

2.665 x 10-15 6.480 x 10 -28 1. 639 x 10-13 

1000. 2. 7 54 x 10 -1 6 2.348 x 10 -29 2.227 x 10-16 1. 858 x 10-29 
1. 622 x 10 

-14 
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