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ABSTRACT 

 

FACTORS INFLUENCING THE HEALTH OF QUAKING ASPEN (POPULUS 

TREMULOIDES MICHX.) 

 

In Chapter 1 of this dissertation, we analyzed a series of increment cores collected from 

260 adult dominant or co-dominant quaking aspen (Populus tremuloides Michx.) trees from 

national forests across Colorado and southern Wyoming in 2009 and 2010. Half of the cores 

were collected from trees in stands with a high amount of crown dieback, and half from lightly 

damaged stands. We define the level of stand damage based on stand survey data, in which 

lightly damaged stands had average crown dieback of 16%, and heavily damaged stands 

averaged 41%. Upon analysis, two-thirds of the cores collected did not exhibit radial growth 

correlated with region-wide patterns (e.g. climate) and were classified as having a low cohesive 

response (LCR). The site variable most predictive of whether a stand exhibited high cohesive 

response (HCR) or low cohesive response was site elevation, followed by aspect, slope, and 

canopy closure. Sites with HCR stands were more likely to have aspen bark beetle damage, 

white rot, and Cryptosphaeria canker. We did not detect relationships between tree growth and 

summer precipitation from 1900-2008, but there was a relationship between growth and annual 

precipitation. A growth model included maximum May and July temperatures, as well as the 

current and previous year’s annual precipitation.  

Historically, Cytospora canker of quaking aspen was thought to be caused primarily by 

Cytospora chrysosperma.  However a new and widely-distributed Cytospora species on quaking 

aspen has recently been described (tentatively named Cytospora notastroma). In Chapter 2 of 
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this dissertation, we show the relative pathogenicity of both species. Small-diameter aspen trees 

were inoculated with one or two isolates each of C. chrysosperma and C. notastroma in a 

greenhouse, outdoor setting, and in environmental growth chambers. Results indicate that both 

species are pathogenic to drought-stressed trees and that C. chrysosperma was more aggressive 

than C. notastroma at both warm and cool temperatures. Neither species caused significant 

canker growth on trees that were not drought stressed. 

In Chapter 3, we investigated the abundance and frequency of C. notastroma, relative to 

C. chrysosperma. We wished to estimate the relative abundance of known Cytospora species on 

quaking aspen throughout portions of the Rocky Mountain region, and to construct species-level 

phylogenies based upon isolates obtained from infected aspen. We report that both C. 

chrysosperma and C. notastroma are quite common on quaking aspen, although we recovered C. 

chrysosperma slightly more often (48% of sequenced cultures) than C. notastroma (42 % of 

sequenced cultures). We also recovered a third, previously-described species, C. nivea in 9% of 

sequenced cultures. We also found that Cytospora species often co-occur on the same host tree 

(25% of trees sampled), and that evidence of recombination or possible hybridization between 

the species exists. 

The aspen bark beetle, Trypophloeus populi, is known as a stress-related damage agent 

on quaking aspen. In a previous study, we often found T. populi attacking host trees also infected 

with Cytospora canker. In Chapter 4 of this dissertation, we wished to determine whether T. 

populi is a potential vector of Cytospora canker, and whether Cytospora inoculum could be 

recovered from adult beetles or gallery tissues. We did not recover any Cytospora isolates from 

161 adult T. populi beetles cultured, and only two Cytospora isolates from 42 beetle galleries and 
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seven adult aspen. We suspect that these isolates, cultured from two trees, were a result of a 

previous infection, as both host trees had extensive cankers as well as Cytospora fruiting bodies. 
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CHAPTER 1 

INFLUENCE OF CLIMATE ON THE GROWTH OF QUAKING ASPEN ( POPULUS 

TREMULOIDES) IN COLORADO AND SOUTHERN WYOMING 

SUMMARY 

We analyzed a series of increment cores collected from 260 adult dominant or co-

dominant quaking aspen (Populus tremuloides Michx.) trees from national forests across 

Colorado and southern Wyoming in 2009 and 2010. Half of the cores were collected from trees 

in stands with a high amount of crown dieback, and half from lightly damaged stands. We define 

the level of stand damage based on stand survey data, in which lightly damaged stands had 

average crown dieback of 16%, and heavily damaged stands averaged 41%. Upon analysis, two-

thirds of the cores collected did not exhibit radial growth correlated with region-wide patterns 

(e.g. climate) and were classified as having a low cohesive response (LCR). The site variable 

most predictive of whether a stand exhibited high cohesive response (HCR) or low cohesive 

response was site elevation, followed by aspect, slope, and canopy closure. Sites with HCR 

stands were more likely to have aspen bark beetle damage, white rot, and Cryptosphaeria canker. 

We did not detect relationships between tree growth and summer precipitation from 1900-2008, 

but there was a relationship between growth and annual precipitation. 

Please note that this chapter has previously been published, and should be cited as: 

Dudley, M.M., Negron, J., Tisserat, N.A., Shepperd, W.D., Jacobi, W.R. 2015. Influence of 

climate on the growth of quaking aspen (Populus tremuloides) in Colorado and southern 

Wyoming. Can. J. For. Res. 45, 1546-1563. 
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INTRODUCTION 

 Quaking aspen (Populus tremuloides) is the primary pioneer tree species and one of a few 

hardwood tree species found in forests throughout the southern Rocky Mountain region 

(Mueggler 1985). Following a disturbance event, such as a stand-replacing fire, aspen colonize 

the area, either by seed or through sprouting from existing roots (Mueggler 1985; Barnes 1966). 

The success of this early-seral species is favored by widespread disturbance events, which often 

serve to reduce competing populations of late-seral conifer species (e.g. Kulakowski et al. 2013; 

Lankia et al. 2012; Krasnow and Stephens, 2015). Aspen produces high numbers of suckers 

following stand-replacing fire or other disturbances (Scheier, and Campbell, 1978; Perala, 1995; 

Romme et al. 1995), with sucker densities greatest following a complete removal of the 

overstory. However, regeneration still occurs (though at lower densities) as gaps in the canopy 

are produced (Shepperd, 1993; Shepperd & Smith, 1993; Shepperd et al. 2001). Studies indicate 

that, like most other tree species, growth rates of aspen are a function of climatic factors 

combined with various site and soil characteristics (Hogg, et al, 2008, 2013). The impacts of 

drought on P. tremuloides includes a decrease in leaf size, leaf area index (LAI), and alteration 

of root water flow properties (Greitner et al. 1994; Siemens and Zwiazek 2003; Krishnan et al. 

2006). Severely-stressed individuals display an inhibition of root hydraulic conductivity, as a 

result of an increase in the ratio of apoplastic to cell-to-cell water transport (Siemens and 

Zwiazek, 2003). Anderegg et al. (2013) showed that aspen that have undergone drought stress 

and air embolism are more prone to cavitation during subsequent drought episodes. 

The traditional view of aspen regeneration is that seeding events are rare, and that 

therefore, the majority of saplings were assumed to be vegetative ‘suckers’. This was mainly due 

to the physiology of aspen seed, and the specific conditions required for successful germination 
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and survival of young seedlings. McDonough (1979) documented the survival of aspen seedlings 

grown under a variety of temperature and moisture conditions. He concluded that in addition to 

requiring exposed mineral soil, aspen seedlings needed ample moisture (i.e. soil water potentials 

greater than -2.3 atm) for the first few weeks of growth in order for even a small percentage (i.e. 

< 10%) of the seedlings to survive (McDonough, 1979). Long and Mock (2012) note that there 

are numerous of examples of aspen regenerating by seed following a major disturbance event, 

such as the widespread and severe fires in Yellowstone National Park (documented by Kay, 

1993), and by genotypic evidence. It is also becoming apparent that the successional niche aspen 

has been placed in, as a pioneer species which cannot persist among conifers, may be inaccurate. 

Small stands of aspen may behave in a ‘gap-phase’ manner, and persist within conifer-dominated 

stands (Long and Mock, 2012, with unpublished data by Shaw, 2009).  Climate change presents 

a challenge to forest managers, and actions should be taken which aid a forest’s resilience to 

environmental change (Millar, et al, 2007). 

 Forest health researchers have documented stand mortality in southern Utah and Idaho 

(Stam et al. 2008; Guyon and Hoffman 2011), Arizona (Fairweather et al. 2008, Zegler et al. 

2012), the Pacific Northwest (Flowers and Kohler 2011), the Carson National Forest in New 

Mexico (J. Jacobs, personal communication, 2015) and the boreal aspen forests of Alberta and 

Saskatchewan (Brandt et al. 2003; Hogg et al. 2002 & 2008). Worrall et al. (2008) first observed 

rapid overstory dieback in Colorado during 2005, and coined the term ‘sudden aspen decline’ 

(SAD), based on the observation that stands with dying overstory lacked a significant 

regeneration response (Worrall et al. 2008). Based upon aspen health data from an extensive 

Colorado and southern Wyoming study (Dudley et al. 2015), we concluded that acute drought 

was most likely the inciting factor which caused a marked increase in select secondary damage 
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agents and overstory mortality. In that study, we found that heavily damaged stands with over 

38% over story mortality were consistently warmer and drier during the period directly 

preceding and during the episode of dieback, 2000-2006, than lightly damaged stands (Dudley et 

al. 2015). Trees growing on sites with sub-optimal growing conditions, such as those with 

shallow soils and drier sites, tend to be more responsive to climatic events than trees growing on 

more favorable sites (Fritts, 1976; Stokes and Smiley 1968). Chronologies from tree species 

closely related to quaking aspen (e.g. plains cottonwood) and from species with similar wood 

structure (e.g. Betula species) have demonstrated that these species respond to climatic events 

with increased or decreased radial growth (Edmondson et al. 2014; Levanic and Eggertsson 

2008). Further, previous studies on the impact of various environmental, site, and biotic agents 

on aspen growth indicate that drought, frost, defoliation (by forest tent caterpillar, Malacosoma 

disstria Hübner) and poor site conditions all have a negative influence on annual growth (Hogg 

et al. 2002 & 2008; Strain, 1966; Cooke and Roland, 2008; Ireland et al. 2014; Leonelli et al. 

2008). 

 To date, there are no chronologies available for Populus tremuloides from the 

International Tree Ring Data Bank (NOAA, ITRDB), but several studies have utilized aspen 

increment cores and cross-sections to age stands (Elliott and Baker, 2004) and to produce 

regional chronologies (Hogg and Schwarz, 1999; Hogg et al. 2005). Quaking aspen are often 

difficult to crossdate, due in part to the wood structure (diffuse-porous), which can make ring 

boundaries difficult to determine, as well as the formation of false rings, or complete lack of ring 

formation during some years (Speer 2010; P.M. Brown, personal communication, 2011). In this 

study, we examined a set of tree cores collected from 97 aspen stands throughout the 

mountainous regions of Colorado and southern Wyoming.  
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 The main questions we wished to answer included: (1) Are some aspen stands 

predisposed by site, stand, or geographic conditions to produce a highly cohesive radial growth 

pattern in response to changes in precipitation or temperature? (2) Are there differences in 

drought impacts on radial growth by region? (3) Do any variables have a larger impact on 

increment growth than others? (4) Can inferences be made about current and future aspen health 

(i.e. presence of various diseases and insects) from radial growth and site characteristics? 

 

MATERIALS AND METHODS 

Study Area  

In 2009 and 2010, we established 97 aspen health survey plots on five national forests to 

assess the impact of current and future disturbances by diseases, insects and climate (Figure 1.1; 

Table 1.S2). Approximately half of our survey plots were established in aspen stands classified 

as heavily damaged and half in lightly damaged stands (though not as a paired-plot design), 

based upon 2008-2009 U.S.F.S. aerial survey data. Aerial surveyors annually map four 

categories of aspen stand damage or dieback. These include: (1) aspen stands currently 

undergoing an apparent defoliation or foliage discoloration event; (2) stands with thinning 

crowns on at least 25% of adult aspen; (3) stands with moderate (< 50% of stems) levels of 

overstory mortality; or (4) stands with high (> 50% of stems) levels of overstory mortality (Krist, 

2005). We combined damage categories one and two into a ‘lightly damaged’ group, and 

categories three and four into a single category for placement of plots in heavily damaged stands. 

We later verified that heavily damaged stands had much higher rates of overstory dieback than 

lightly damaged stands (38% and 14%, respectively) (Dudley et al. 2015).  
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Plot selection 

Ranger districts were sampling units within each national forest, with one to four districts 

sampled per Forest. Districts were selected for sampling if they contained large areas of aspen-

dominated forests, as determined by examination of forest type data (based upon a remotely-

sensed vegetation data layer, http://ndis.nrel.colostate.edu/coveg/). All spatial data processing 

and extraction was performed using ArcGIS® 10.0 desktop software (ESRI, Redlands, CA 

USA). Potential survey points in lightly and heavily damaged stands were generated using the 

‘Create Random Points’ tool in ArcToolbox. Point locations greater than 1 km from a road were 

eliminated from consideration. Further, final plot locations were chosen from the remaining 

points to represent a wide range of aspen stands and elevations. Survey points were uploaded to 

handheld GPS units (Garmin eTrex® Legend, Garmin International, Ltd., Olathe, KS, USA). 

Potential survey stands were to consist of at least 50% aspen stems, and be at least 120 x 20 m in 

size, or another potential site was located. Each plot consisted of a 100 meter-long transect, 

which was established starting at the randomly-generated GPS point, and oriented in such a way 

roughly bisected the stand of interest. Three circular, fixed-area (201 m2) subplots with an 8 m 

radius were established along the 100 m transect by selecting three numeric locations from a list 

of randomly-generated numbers. One adult dominant or co-dominant tree was cored in each 

subplot, for a maximum of 3 increment cores per transect.  

Site and stand data 

Stand-level data recorded during core collection included: aspect, percent slope, 

elevation, stand structure, and percent live stems. In each subplot, the first ten adult aspen (≥ 12 

cm DBH) were assessed for percent crown dieback and disease and damage agents. We used 

morphological characteristics, such as the type of fruiting body and pattern of cankers on the 

stem to identify specific canker diseases, and morphology and placement of conks to identify 

http://ndis.nrel.colostate.edu/coveg/
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decay fungi. Likewise, we examined trees for general signs of wood borer attack (Saperda 

calcarata or Agrilus liragus), which included tunneling, exit holes, and brown stained bark. 

However, damage was not attributed to either species specifically. Presence of aspen bark beetles 

(Trypophloeus populi or Procryphalus mucronatus) was determined based on the presence of 

small (< 1 mm) exit holes on the bark, cracked bark over galleries, or both. 

Increment core sampling and preparation 

One adult dominant or co-dominant tree (≥ 12.0 cm) was cored using a 5-mm increment 

borer at breast height (1.4 m from the base of the tree) in each sub-plot for a total of 260 

increment cores. Trees selected for sampling were living, and either healthy or with mild to 

moderate evidence of disease or damage, but did not show signs or symptoms of white rot 

fungus (Phellinus tremulae), as cores from rotten trees would be unreadable. Some sub-plots 

(31) did not contain any adult aspen, and thus cores were not collected from these locations. 

Increment cores collected within the same national forest (and later grouped together as a 

chronology) were no more than 100 miles apart, and most were within 40 miles of each other. 

Although cored trees occurred on sites with varying elevation, aspect, and slope steepness, a 

previous analysis of aspen health, size, and mortality did not reveal major differences among 

these classifications, and thus we did not stratify our samples by elevation or aspect (Dudley et 

al. 2015). Cores were air-dried for one week before they were glued to wooden mounting blocks 

with the vascular tissue vertical. Cores were sanded progressively with 150 or 220 and then 400 

and 600-grit sandpaper to produce a smooth surface with cell and fiber structures clearly visible 

(Speer, 2010). A few cores were broken, discolored, or otherwise unreadable and were omitted 

from measurement and analysis. 
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Skeleton plot construction 

Cross-dating using the skeleton plot technique (Stokes and Smiley, 1968; Swetnam, 

1985), a graphical technique for comparing ring-width, was used to establish an accurate tree 

age. A master skeleton plot (tree ring chronology) representative of all cores within a sampling 

area (ranger district) was then constructed, which contained a series of reference years. This 

allowed the identification of missing rings and elimination of false rings (Stokes and Smiley, 

1968). 

Annual ring measurement 

Annual rings widths were measured using an increnometer (Velmex, Inc, Bloomfield, 

NY, USA), a digital counter, and associated software program (MEASURE J2X©, VoorTech 

Consulting, Holderness, NH, USA). The raw data was then checked and statistically crossdated 

using the software program COFECHA (Holmes, 1983; Grissino-Mayer, 2001), to first 

determine the correlation between three cores (series) collected within the same transect. These 

triplicates were then compared to others collected within the same ranger district. All raw core 

data were standardized using a segment length of 30-years, with 15 years overlap between 

increments. Core series with correlations of less than 0.42 were examined and corrected (using 

the software program EDRM (Grissino-Mayer, 2001)), or were placed in the low cohesive group 

(LCR) and were excluded from further climate-growth analysis if their correlations remained < 

0.42, or if they were responding to some growth driver (e.g. possible insect outbreaks or 

successional processes) other than climate. We are using the terms ‘low cohesive response’ and 

‘high cohesive response’ to describe groups of trees which respond together in a similar manner 

to climatic influences. We also examined each series’ mean sensitivity rating (msx) (Speer, 

2010), though this measure was not used in this study to divide series into high cohesive groups 

(HCR) (i.e. those trees responding to climate effects), and LCR groups (Table 1.A2). For each 
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national forest, the master chronology (i.e. a dataset which contains series with the highest 

possible correlations) represented samples within a distinct geographic area. Series collected 

from the Medicine Bow and Routt National Forests were combined into a single category, due to 

their relative proximity to each other, and to create a larger sample size.  

The final detrended chronologies for the (1) Medicine Bow and Routt, (2) Pike, and (3) 

San Isabel National Forest were produced using the program ARSTAN (Cook, 1985). A 25-year 

smoothing spline was used to remove autocorrelative influences on growth (i.e. non-climate 

related growth trends, such as tree age). This relatively short spline was chosen due to the 

relatively short lifespan of aspen; the chronology used in this study covers 108 years. A similar 

approach has previously been used to examine climatic influences on the growth a similarly 

short-lived species, Betula pubescens (Levanič and Eggertsson, 2008). The residual chronology, 

which contains no autocorrelation, was used in this analysis for each national forest, as it is most 

appropriate for regression analysis (Speer, 2010). An individual series’ inclusion in the final 

chronology was determined based upon the expressed population signal (EPS), an indication of 

whether an observed signal (i.e. trend) is stand- or single tree-dominated (Wigley et al. 1984) 

(Table 1.A2), as well as    (running r-bar), a measure of the common signal strength in a series 

(Table 1.A2) (Speer, 2010). Inclusion of any one series which resulted in an EPS value of less 

than 0.80 was excluded from the final chronology (Wigley et al. 1984; Youngblut and Luckman, 

2013). Chronologies for each national forest (Figure 1.A5-A7) were constructed by importing 

data into a single spreadsheet using the computer program YUX (Grissino-Mayer, 2001).  

Of the 260 cores collected, crossdated and measured, two-thirds were excluded (due to 

low series correlations in COFECHA) from the climate-growth analyses, due to lack of response 

to   clearly identifiable growth variable (i.e. climate). Only those cores designated as HCR were 
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used in analyses with climate variables. This included cores from 18 trees on the Medicine Bow 

and Routt National Forests, 21 trees on the Pike National Forest, and 30 trees on the San Isabel 

National Forest. Although sample depth for this study is lower than the average used in other 

dendroclimatological studies, it is comparable to other, recent dendroclimatological studies 

(Levanič and Eggertsson, 2008; Rayback et al. 2011; Decaulne et al. 2012; Dawadi et al. 2013).  

Maximum temperature and precipitation data 

All site-specific climate data used in this study were obtained from spatial PRISM 

(Parameter Regression Independent Slopes Model) datasets (Daly et al. 2002; Daly et al. 2008). 

Monthly and annual weather data over a time span of 109 years (1900-2008) were downloaded 

as a series of 800 m resolution grids from the PRISM climate group’s website 

(http://prism.oregonstate.edu). Site-specific weather data were extracted for each plot location 

using the Sample tool within ArcToolbox. Data for sample locations were selected and averaged 

together by national forest, in order to match the locations of cores included in the final three 

chronologies. Precipitation data were compiled and used in three ways: (1) an annual dataset 

from 1900-2008; (2) a monthly dataset from 1950-2008; (3) a three-month running average from 

1950-2008. We chose the time period 1950-2008 because our original analysis included El Nino 

Southern Ocean (ENSO) surface temperature data (NOAA, Climate Prediction Center) for this 

same time period. Maximum temperature data were compiled for the months of May, June, July, 

and August from 1900-2008.  

Soil and geologic data 

 Soil survey data for the four national forests included in the study was downloaded from 

the digital general soil map of the United States (STATSGO2) as statewide ESRI® shapefiles 

from the USDA Natural Resources Conservation Service, Geospatial Data Gateway site (USDA, 

NRCS). This dataset includes soil series associations for each polygon, as well as geologic data. 

http://prism.oregonstate.edu/
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Soil series and geologic formations of interest were selected by intersecting each layer with core 

collection plot locations, and then exporting the tabular data of the resulting shapefile. 

Characteristics of the dominant three soil series for each area were used in analyses, and included 

parent material, particle size class, mineralogy class, cation exchange capacity (CEC) class, 

depth of the ‘A’ horizon(s), and total soil depth.  

Statistical Analysis: Site and stand comparisons: HCR or LCR tree presence 

 All statistical analyses were performed using SAS© 9.4 and Jmp Pro© software packages 

(The SAS Institute Inc., Cary, NC). Stand and site conditions from HCR  and LCR core 

collection plots were first examined with the categorical regression tree (CRT) function within 

Jmp Pro© software. Potential variables for use in later logistic regression models were selected 

based on the LogWorth score (where LogWorth = –log (p-value)). The minimum LogWorth 

score accepted was 1.0, equal to a P-value of 0.10. Splitting values (nodes) were established to 

maximize LogWorth scores. A 0.10 P-value was chosen for this and other analyses in this study 

due to lack of significance of some measures at the P=0.05 level; thus, for the sake of continuity, 

we chose a cutoff of P=0.10. The likelihood of a stand containing HCR trees was also modeled 

as a logistic regression with a Spearman correlation coefficient of various site and stand variables 

of interest with the PROC LOGISTIC program.  

Statistical Analysis: Site and stand characteristics: stand structure and disease or insect presence 

 Site and stand descriptive data, including basal area ha-1, average stand health status score 

(an index value, where 1= completely healthy tree, 5= long-dead tree), percent dead crown, 

percent live adult aspen stems (≥ 12.0 cm DBH), and percent conifer encroachment were 

analyzed at the plot level. Additionally, the presence of several common canker diseases, such as 

Cytospora (Cytospora spp.), sootybark (Encoelia pruinosa), black (Ceratocystis fimbriata), and 
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Cryptosphaeria (Cryptosphaeria lignota) cankers, as well as white rot (Phellinus tremulae) 

disease were analyzed at the plot level, as well as two types of insect damage (wood borers and 

aspen bark beetles). All variables were analyzed as mixed linear models in PROC GLIMMIX. 

Least-squares estimates were calculated for each variable by ranger district within national 

forest, continental divide position (east or west), stand type (healthy or damaged), and tree 

response type (HCR or LCR). Means were considered significant if P ≤ 0.10. 

Statistical Analysis: Climatic comparisons: precipitation and maximum temperature  

The residual chronology was analyzed as annual incremental growth by maximum 

monthly temperature (May-August), total annual precipitation, and national forest. An initial 

examination of the data included simple Spearman correlation coefficients between increment 

and climate data, calculated in the PROC CORR program.  

Ring width indices (RWI) were also modeled with climatic data by year and national 

forest with the PROC MIXED and PROC REG programs. Maximum temperature was analyzed 

as monthly values (May-August) over 108 years (1900-2008) and precipitation as annual values 

for the same time period. In addition to the year-to-year RWI and temperature and precipitation 

analysis, we also modeled yearly RWI with the previous year’s total precipitation (i.e. ‘lagged’ 

precipitation). These models utilized categorical temperature and precipitation data. Categories 

were determined by calculating 1.67 and 2 standard errors from the mean (approximately 

equivalent to 90 and 95% confidence intervals, and to P-values of 0.10 and 0.05) based on 

precipitation and temperature means by national forest (Table 1.2). Values between the 90-95% 

CI represented the ‘mild’ categories (e.g. ‘mildly warm’ or ‘mildly dry’), and values beyond the 

95% CI represented the more severe category (e.g., ‘very warm or ‘very dry’). Values which fell 

within the 90 % CI limits were considered to be within the normal range. Variables included in 
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the random statement for all models performed were precipitation (current or lagged) by 

temperature (month) within year.  

Best subset regression analysis of increment data with maximum temperature current or 

lagged precipitation was performed using the GLMSELECT function in SAS. The model 

selection method used was stepwise, and selection criteria were based on AICc, an adjusted 

version of AIC (Akaike Information Criterion). 

Finally, we analyzed annual precipitation data by ten-year increments from 1900-2008 

for differences between HCR and LCR series, as well as between these series within healthy or 

heavily damaged stands, and by national forest. All means used were least-squares means, and 

significant differences were compared at the P = 0.10 level. 

 

RESULTS 

Site and stand comparisons: HCR versus LCR trees 

  Examination of ARSTAN output data indicated that the majority of cored trees did not 

respond uniformly to climatic influences over the 108 year period. After we had verified that 

there were no cross-dating or measurement errors, we examined which, if any, site factors 

contributed to this phenomenon. Most of the cores collected from sites on the White River 

National Forest were either LCR, or the standardized chronologies had expressed population 

signal (EPS) values of less than 0.80, and were excluded. Mean sensitivity rating was high (0.30-

0.37) for nearly all of the series examined, even when a series’ correlation coefficient was below 

the threshold level (0.42). Categorical regression analysis revealed four predictors of whether a 

site would produce a HCR or LCR tree. Regression tree nodes (splits) were based on (1) site 

elevation; (2) site percent slope; (3) site aspect; (4) canopy closure (Figure 1.2). Of these, site 

elevation was the single best predictor of whether a stand would produce a HCR or LCR tree (P 
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= 0.0003). Sites at high elevations (above 2836 meters) tended to have fewer LCR trees overall, 

and steep, high elevation sites with open canopies were significantly more likely to produce 

HCR trees, relative to similar sites with closed canopies (Figure 1.2). The second split, on slope 

category, indicated that HCR trees were not detected on sites with low percent slope (<6 %), and 

occurred on less than 40% of high elevation sites with steep slopes (P = 0.028) (Figure 1.2). Site 

aspect was also a significant predictor of response type; sites with LCR trees did not occur on 

sites with North-East, East, or South-East aspects (P = 0.078) (Figure 1.2). Sites with closed 

canopies were more likely to produce LCR trees (P = 0.023) (Figure 1.2).  

Site and stand characteristics: Stand structure and disease or insect presence 

We detected no meaningful differences in site or stand descriptive variables (basal area 

ha-1, health status score, percent dead crown, percent live stems, adult aspen stems ha-1, or 

percent conifer encroachment) among sites producing HCR trees and those producing LCR trees 

(Table 1.A1; Figure 1.A1-A4). We did detect differences in frequency of select damage agents 

between the two tree response types (Figure 1.3). White trunk rot, Cryptosphaeria canker and 

aspen bark beetles were more prevalent among sites with HCR trees than those with LCR trees 

(Figure 1.3).  

Climatic comparisons: precipitation and maximum temperature  

 There were significant relationships between three-month precipitation averages and 

RWI (based upon Spearman correlation coefficients), and this varied by national forest (Table 

1.2). Annual precipitation amounts generally decreased with latitude (i.e. Medicine Bow and 

Routt receive more precipitation than Pike and San Isabel National Forests) (Figure 1.4A).  

Correlations between precipitation and growth were positive and strongest for sites on the 

Medicine Bow and Routt and Pike National Forests for the precipitation three-month averages 
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for February-April, April-June, and for May-July. On the Pike National Forest, there were also 

significant, positive correlations between increment growth and the precipitation averages for 

March-May (Table 1.2). Among series collected from sites on the San Isabel National Forest, 

growth was negatively correlated with precipitation averages from August through October of 

the same year (Table 1.2). Negative correlations were detected between growth and maximum 

May and June temperatures for sites on the Medicine Bow and Routt National Forests, and 

maximum May temperatures for sites on the Pike National Forest (Table 1.3). 

The final model of RWI and climatic influences included both maximum temperature and 

precipitation (P = 0.0002) (Table 1.4). Maximum May and July temperatures, combined with 

both annual precipitation (of the same calendar year), and the annual precipitation of the 

previous year, were selected based on the AICc score (Table 1.4). When maximum monthly 

temperature was removed from both of the precipitation models, differences in RWI were 

predicted by forest and the current or previous year’s annual precipitation (Figures 5 and 6; 

Figures A5-A7). Trees on the Pike and San Isabel National Forests produced larger annual rings 

when either the current or previous year’s annual precipitation was above average, than during 

periods of normal or below-average precipitation. This pattern was not observed among cores 

taken from the Medicine Bow and Routt National Forests; average increment did not vary among 

the three precipitation classes (Figures 5 & 6; Figures A5-A7). We further noted that the standard 

error of annual growth for years with normal precipitation and monthly temperature was very 

small, relative to error values for growth under other conditions (Figures A8-A10). This pattern 

persisted across all three national forests, and ranged from 0.018-0.019, relative to the standard 

errors of other temperature and precipitation combinations (0.076-0.174).   
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Analysis of ten-year averaged annual precipitation by tree sensitivity (HCR or LCR), 

stand type (healthy or damaged) and national forest indicated pronounced differences (Figures 

A11-A15). We detected differences between LCR and HCR sites located within heavily 

damaged stands, but not between LCR and HCR sites located within lightly damaged stands 

(Figures A11-A12). There were marked differences between HCR and LCR sites on the 

Medicine Bow and Routt and San Isabel National Forests, but not between HCR and LCR sites 

on the Pike National Forest (Figures A13 & A14). HCR sites on the Medicine Bow and Routt 

National Forests consistently received significantly more annual precipitation for every decade 

since 1900 (Figure 1.A13). This pattern was reversed on the San Isabel National Forest, where 

HCR sites received less annual precipitation for every decade since 1900, except for 1910-1919 

(Figure 1.A15). 

 

DISCUSSION 

 In our analyses of site and stand characteristics of stands producing HCR or LCR trees, 

four tested variables stood out as predictors of tree sensitivity. The four main predictors of 

whether a site produces HCR or LCR trees were: site elevation, site slope, site aspect, and stand 

structure, all of which suggest the influence of water availability. We have previously described 

the differences between cores from the White River National Forest and the four other Forests 

surveyed. The conclusions reached by Hogg et al. (2013), based upon a soil moisture index 

(SMI) model, accurately predicted lags in tree growth occurring on sites with deeper soils. We 

suspect that a ‘hydrologic lag’ (Hogg et al. 2013) may be occurring on at least some of the sites 

with LCR trees. Sites on the White River National Forest occurred on soils with a mean 

epipedon depth of 65.8 cm, relative to 13-19 cm on the other four national forests (data not 
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shown). Increment cores from HCR trees clearly indicate key drought years and years of 

moisture surplus (e.g. 1924, 1939; 1957 & 1982) (Figure 1.4), but these patterns were largely 

absent among LCR cores across all national forests.  

The dramatic difference in responses of proximal trees to widespread drought events 

could also represent phenotypic differences in drought tolerance from one clone to another, as 

has been documented by Griffin et al. (1991). Mounting genetic evidence suggests that aspen 

stands are often not comprised of a single clone, but of many distinct individuals (DeWoody et 

al. 2009; Long and Mock, 2012). Based on this, some of the variability in drought response 

among trees growing near (i.e. within 100 meters) each other may be a reflection of varying 

drought tolerance among genotypes. This explanation is likewise applicable when examining the 

range of growth responses under conditions other than average maximum monthly temperature 

and precipitation. While sampled trees responded similarly to normal moisture and temperature, 

tree responses to weather conditions outside of average range varied considerably, although it is 

uncertain whether the apparent variability in drought tolerance present in these populations is 

sufficient to protect them from an increasingly warmer and drier habitat. Recently, a study of 

genetic variability of quaking aspen stands throughout North America indicated that in 

comparison to stands in the northern and eastern portions of its range, aspen stands in the south-

western US have lower within-population diversity (Callahan et al. 2013). Such decreased allelic 

richness, as postulated by Callahan et al. (2013) does not bode well for these populations, 

perhaps making them more vulnerable to the prolonged episodes of drought predicted for the 

southwestern United States under climate change.  

 We note that aspen stands on the White River National Forest, which were sampled and 

measured, but the increment data were not used in RWI analyses, differed from stands on other 
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national forests. Of the more than 40 increment cores collected from the WRNF, only about a 

dozen or so had sufficiently high correlation coefficients (in COFECHA). These were later 

excluded from the final chronologies due to their low EPS values (from ARSTAN). Key site 

differences are likely the reason that stands on the WRNF did not respond to climatic influence 

with the same consistent and stand-wide variations in growth. We suspect that the aspen stands 

on the WRNF are less likely to experience drought events than those on the other national forests 

we surveyed. This is likely in part due to the dramatically deeper surface soils which occur in the 

area, and in part to phenotypic differences in drought tolerance (discussed above). Measured 

frequency of Cytospora canker is a reasonable proxy for assessing drought stress in a stand, as 

the causal organism, Cytospora spp., successfully colonizes healthy tissue when the host tree is 

experiencing some environmental stressor, usually drought (Guyon et al. 1996; Christensen, 

1940). Surveyed adult aspen on the WRNF had very low levels of Cytospora canker, relative to 

the other national forests; in 2009-2010, we observed Cytospora canker on about 2% of adult live 

aspen stems, relative to 13-51% of adult live aspen elsewhere (data not shown) (Dudley et al. 

2015). 

 Our analyses of RWI and annual precipitation, (Figures 5 & 6), which includes the 

current or previous years’ annual precipitation, appears to be more applicable to the southerly 

locations of the study area. Trees on the Pike and San Isabel National Forests clearly responded 

favorably to years of above-average precipitation, but those on the Medicine Bow and Routt 

National Forests did not. It is important to note that the average annual precipitation range for the 

Medicine Bow and Routt National Forests is over 30% higher than for the Pike National Forest 

(Table 1.1A; Figure 1.4). This may be one reason that the trees on these northern forests do not 

respond as strongly to years of low precipitation. A dry year in the northern portion of the study 
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area could represent twice as much precipitation as is received in a dry year in the southern 

portion of the study area (Table 1.1A).  

The timing of precipitation over the course of a year also differs dramatically between 

forests in the north (White River and Medicine Bow and Routt National Forests) and the central 

and southern portions of Colorado (Pike and San Isabel National Forest) (Figure 1.A16). Both 

forests in the southern portion of the study area receive much of their annual precipitation 

between April and September, whereas the forests in the north receive most of their precipitation 

from September to April, and mainly as snowfall (Figure 1.A16). In addition to moisture content, 

snowpack also reduces environmental stress on aspen because it insulates the roots during freeze 

events, as was shown by Hogg et al. (2002) in the aspen parklands of Alberta, Canada. A recent 

study of aspen decline and climate factors indicated that a major driver of aspen mortality is 

precipitation received between April and September, paired with maximum summer 

temperatures, a result similar to the model produced from this study (Worrall et al. 2013).  

The negative correlation between RWI and the three-month precipitation average from 

August- October for sites on the San Isabel National Forest could be a reflection of the 

dependency of these stands upon monsoonal moisture. The monsoon season, which typically 

begins mid-July in Colorado, is often preceded by periods of hot, dry weather (Doeskin, 2003). 

Late monsoonal moisture could therefore, account for the negative correlation of August-October 

precipitation with RWI; the later the arrival of the summer storms, the more pronounced the 

drought in areas dependent upon these weather patterns.  

  We note that maximum temperatures during the spring (May) and mid-summer (July) 

have a significantly negative impact on the growth of trees on the Pike and Medicine Bow and 

Routt National Forests (Table 1.1B), independent of precipitation. This finding is similar to that 
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of Hanna and Kulakowski (2012) and Spond et al. (2014), who observed negative relationships 

between RWI of aspen and seasonal maximum temperatures. It is therefore likely that as the 

incidence of extreme heat events increase (as predicted by the most recent IPCC report for the 

coming century) (Stocker et al. 2013), aspen will continue to experience conditions which are not 

conducive to optimal growth (Rehfeldt et al. 2009). It should also be noted, however, that this 

relationship between drought and stem mortality isn’t always clear; a recent large-scale study of 

aspen stands throughout the western United States have shown that while aspen mortality is 

influenced by drought, these impacts can be obscured by stand dynamics and stand age (Bell et 

al. 2014). 

  It has been well documented that aspen stands experiencing environmental stress are 

highly prone to certain insects and diseases, such as wood borers, bark beetles, and (as noted 

above) Cytospora canker (Hogg et al. 2008; Marchetti et al. 2011; Worrall et al. 2008 & 2010; 

Guyon et al. 1996; Christensen, 1940). Drought, as well as secondary disease and damage agents 

and excessive browsing by ungulates, can result in stands with high levels of mortality and low 

levels of regeneration (Rogers et al. 2013; Hanna and Kulakowski, 2012; Worrall et al. 2008 & 

2010).  

 Maintaining aspen stands on western landscapes, especially under prolonged drought 

conditions, may require proactive  management actions, such as overstory removal (through 

mechanical or prescribed fire treatments) and ungulate exclusion (Rogers et al. 2013). We 

observed that stands which responded to drought conditions (i.e. HCR stands) were spatially 

distinctly located, and not randomly found across the aspen forest types. The series examined in 

this study also indicate that quaking aspen in Colorado and southern Wyoming have varying 

degrees of tolerance to drought, and this tolerance is likely the result of a complex of genotype 
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and site conditions. Based on the variation in spatial pattern and degree of drought tolerance, 

proactive management will need to be tailored to the stand or district level. 
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Figure 1.1. Survey area and increment core collection sites in Colorado and southern Wyoming, 
2009-2010. A high cohesive response (HCR) plot refers to whether one or more of the trees 
sampled per transect were responsive to region-wide climate signals. Low cohesive response 
(LCR) trees were not responsive to region-wide climate signals. 
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Figure 1.2. Categorical regression tree of plots containing likelihood of high cohesive response 
(HCR) or low cohesive response (LCR) series (i.e. increment cores) occurring in plots with 
various site, stand and soil characteristics. Grey and white bars indicate the proportion of 
transects (with up to three cores per transect) exhibiting LCR or HCR. N = 70, RSquare = 0.381, 
splits = 4.  
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Figure 1.3. Average occurrence of five common fungal diseases and two damaging insect groups on adult aspen, by low cohesive 
response (LCR) or high cohesive response (HCR) tree type as recorded in a stand health survey 2009-2010. All means are least-square 
means. Error bars represent LSD; bars which do not overlap are significantly different at p = 0.10. 

Damage agents included in the above categories are as follows: Cryptosphaeria canker- Cryptosphaeria lignyota; sootybark canker- Encoelia pruinosa; black 
canker- Ceratocystis fimbriata; Phellinus conk- Phellinus tremulae; Cytospora canker-Cytospora sordida and V. notastroma; wood borers- Agrilus liragus and 
Saperda calcarata; bark beetles- Trypophloeus populi and Procryphalus mucronatus. 
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Figure 1.4A. Annual average precipitation (mm) for four National Forests, 1900-2008. 

 

Figure. 1.4B. Average annual RWI of HCR trees from three national forests (in mm), 1900-2008. 
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Figure 1.5. Average annual RWI (mm) of adult aspen among three national forests and three moisture classes*, as modeled with the 
corresponding year’s total precipitation (by plot, averaged to National Forest), 1900-2008. All means are least-square means. Error 
bars represent LSD; bars which do not overlap are significantly different at p = 0.10. 

*Moisture classes are based on a 90% CI of annual precipitation data (1900-2008), where ‘normal’ includes years with precipitation amount within 90% range, 
and ‘dry’ and ‘wet’ years are those above or below range cutoff. RWI is represented based on 69 tree cores (18 MBRT, 21 Pike, 30 SI).  
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Figure 1.6. Average annual RWI (mm) of adult aspen among three national forests and three moisture classes*, as modeled with one 
year-lagged annual precipitation (by plot, averaged to National Forest), 1900-2008. All means are least-square means. Error bars 
represent LSD; bars which do not overlap are significantly different at p = 0.10. 
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Table 1.1A. Mild, severe, and normal annual precipitation values for three national forests from 1900-2008. Mild and severe 
categories represent 1.67 and 2 standard errors from the mean. 

   
Precipitation 

(mm)   

 
Very wet Mildly wet Normal Mildly dry Very dry 

MB & R * > 827 796-827 486-796 456-486 < 456 

Pike > 573 549-573 314-549 291-314 < 291 

San Isabel > 746 717-746 424-717 395-424 < 395 
*
Medicine Bow (MB) and Routt (R) National Forests 

Table 1.1B, top & bottom. Mild, severe, and normal maximum monthly temperature values for three National Forests from 1900-
2008. Mild and severe categories represent 1.67 and 2 standard errors from the mean. 

  
May 

  
June  

Temperature (°C) 

 

Very 
cool 

Mildly 
cool Normal 

Mildly 
warm 

Very 
warm Very cool 

Mildly 
cool Normal 

Mildly 
warm 

Very 
warm 

MB & R * < 9.8 9.8-10.4 10.4-17.0 17.0-17.6 > 17.0 < 16.0 16.0-16.5 16.5-22.1 22.1-22.7 > 22.7 

Pike < 7.8 7.8-8.5 8.5-15.5 15.5-16.2 > 16.2 < 14.5 14.5-15.1 15.1-21.0 21.0-21.6 > 21.6 
San 

Isabel < 9.8 9.8-10.5 10.5-17.0 17.0-17.6 > 17.6 < 16.3 16.3-16.9 16.9-22.4 22.4-22.9 > 22.9 

 

 
July August 

Temperature (°C) 

 

Very 
cool 

Mildly 
cool Normal 

Mildly 
warm 

Very 
warm Very cool 

Mildly 
cool Normal 

Mildly 
warm 

Very 
warm 

MB & R * < 20.2 20.2-20.6 20.6-24.9 24.9-25.3 > 25.3 < 19.4 19.4-19.8 19.8-23.4 23.4-23.8 > 23.8 

Pike < 19.0 19.0-19.4 19.4-23.9 23.9-24.3 > 24.3 < 18.4 18.4-18.7 18.7-22.5 22.5-22.9 > 22.9 
San 

Isabel < 19.9 19.9-20.3 20.3-24.6 24.6-25.0 > 25.0 < 18.7 18.7-19.1 19.1-23.0 23.0-23.4 > 23.4 
        *

Medicine Bow (MB) and Routt (R) National Forests 
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Table 1.2. Spearman correlation coefficients (top, each cell) and P values (bottom, each cell) for correlations between RWI (of HCR 
series) and three-month average precipitation values from 1950-2008, by National Forest. Means in bold indicate significance at p = 
0.10. n = 59 years. 

 
Dec-Feb 

Jan-
Mar 

Feb-Apr 
Mar-
May 

Apr-Jun May-Jul 
Jun-
Aug 

Jul-Sep Aug-Oct Sep-Nov Oct-Dec Nov-Jan 

MB & 
RT* 

0.07 0.16 0.22 0.16 0.24 0.21 0.15 0.08 0.03 0.05 0.10 0.07 

P-value 0.60 0.23 0.0971 0.22 0.0729 0.11 0.25 0.53 0.85 0.73 0.43 0.59 

Pike 0.02 0.12 0.36 0.35 0.41 0.30 0.16 0.07 -0.00 -0.04 0.012 -0.06 

P-value 0.90 0.36 0.0052 0.0121 0.0013 0.0196 0.22 0.62 0.98 0.74 0.93 0.65 

San 
Isabel 

0.02 0.14 0.19 0.10 0.09 -0.08 -0.04 -0.15 -0.23 -0.09 0.02 0.05 

P-value 0.89 0.28 0.14 0.47 0.51 0.55 0.76 0.25 0.0776 0.49 0.87 0.71 

n 58 59 59 59 59 59 59 59 59 59 59 59 
*Medicine Bow (MB) and Routt (R) National Forests 
 

Table 1.3. Spearman correlation coefficients and p-values of associations between RWI and maximum monthly temperatures, 1950-
2008. Bold figures indicate significant relationships at p = 0.10. n= 59 years. 

 
May June July August 

MB & RT* -0.1540 -0.2142 -0.1828 0.1054 
P value 0.2442 0.1034 0.1659 0.4267 
Pike -0.2795 -0.2022 -0.1725 0.1284 
P value 0.032 0.1247 0.1915 0.3325 
San Isabel -0.1047 0.0145 -0.0112 -0.1856 
P value 0.4299 0.9132 0.9328 0.1594 

*Medicine Bow (MB) and Routt (RT) National Forests  
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Table 1.4. Model selection of effects for the prediction of annual RWI of quaking aspen. Numbers 2 and 3 are included in the final 
model, which includes steps 1-4. Climate data are from 1950-2008. 

Step Effect entered Number 
Model R-

square 
Adjusted R-

square AIC AICC F Value Pr > F 
0 Intercept 1 0 0 -799.00 -798.97 0 1 
1 Maximum July 

Temp 
2 0.0322 0.0292 -807.61 -807.54 10.72 0.0012 

2 Annual 
Precipitation 

3 0.0629 0.057 -816.04 -815.92 10.5 0.0013 

3 Maximum May 
Temp 

4 0.0699 0.0612 -816.48 -816.29 2.42 0.1207 

4 Lagged Annual 
Precipitation 

5 0.0767 0.0651* -816.85* -816.58* 2.34 0.1272 

 
Final model 1-5 0.0767 0.0651 816.85 -816.58 6.62 0.0002 

*Indicates optimal criterion value. No effects were removed in this model selection. Final model P-value was calculated using the F-statistic (6.62), 
numerator degrees of freedom, k-1 (3), and the denominator degrees of freedom, N-k (320). 
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Figures 1.A1-A4. Characteristics of adult aspen (≥ 12.0 cm DBH) by National Forest, stand 
type, and tree response type, as recorded during a 2009-2010 aspen health survey. Data are 
averaged to the plot level, and designated HCR if at least one of the three cores was HCR. All 
means are least-square means. Error bars represent LSD; bars which do not overlap are 
significantly different at p = 0.05. 

Figure 1.A1. Basal area (m2) of adult aspen per hectare in Colorado and southern Wyoming 
surveyed in 2009-2010.  
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Figure 1.A2. Live adult aspen stems in Colorado and southern Wyoming surveyed in 2009-
2010.  
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Figure 1.A3. Average dead crown of adult aspen in Colorado and southern Wyoming 
surveyed in 2009-2010.  
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Figure 1.A4. Average health index score (1-3; 1=very healthy, 2= marginal, 3= dying) of 
adult live aspen in Colorado and southern Wyoming surveyed in 2009-2010.  
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Figure 1.A5. All four (stacked) chronologies of adult aspen from increment cores collected from 
the Medicine Bow and Routt National Forests, 2009-2010. 
 

Figure 1.A6. All four chronologies of adult aspen from increment cores collected from the Pike  
National Forest, 2009-2010. 
 

 

Figure 1.A7. Three chronologies and the raw ring width values of adult aspen from increment 
cores collected from the San Isabel National Forest, 2009-2010. 
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Figure. 1.A8. Modeled RWI among series on the Medicine Bow and Routt National Forests (MBRT), with monthly maximum 
temperature and either the current or lagged annual precipitation. Precipitation and maximum temperature categories are identical to 
those listed in Tables 1A & 1B. Error bars represent LSD; bars which do not overlap are significantly different at P=0.10.   
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Figure. 1.A9. Modeled RWI among series on the Pike National Forest, with monthly maximum temperature and either the current or 
lagged annual precipitation. Precipitation and maximum temperature categories are identical to those listed in Tables 1A & 1B.Error 
bars represent LSD; bars which do not overlap are significantly different at P=0.10.  
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Figure. 1.A10. Modeled RWI among series on the San Isabel National Forest (SI), with monthly maximum temperature and either the 
current or lagged annual precipitation. Precipitation and maximum temperature categories are identical to those listed in Tables 1A & 
1B.Error bars represent LSD; bars which do not overlap are significantly different at P=0.10. 
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Figure 1.A11. Average annual precipitation (mm) by decade among HCR and LCR sites within lightly damaged stands. Means are 
least-square means. Error bars represent LSD; bars which do not overlap are significantly different at P=0.10.  

 
Figure 1.A12. Average annual precipitation (mm) by decade among HCR and LCR sites within heavily damaged stands. Means are 
least-square means. Error bars represent LSD; bars which do not overlap are significantly different at P=0.10.  
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Figure 1.A13. Average annual precipitation (mm) by decade among HCR and LCR sites within the Medicine Bow and Routt National 
Forests. Means are least-square means. Error bars represent LSD; bars which do not overlap are significantly different at P=0.10.  

Figure 1.A14. Average annual precipitation (mm) by decade among HCR and LCR sites within the Pike National Forest. Means are 
least-square means. Error bars represent LSD; bars which do not overlap are significantly different at P=0.10. 
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Figure 1.A15. Average annual precipitation (mm) by decade among HCR and LCR sites within the San Isabel National Forest. Means 
are least-square means. Error bars represent LSD; bars which do not overlap are significantly different at P=0.10. 
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Figure 1.A16. Three-month running averages of precipitation (mm), by National Forest from 1950-2008. Error bars represent LSD; 
bars which do not overlap are significantly different at P=0.10.  
*MB & RT = Medicine Bow and Routt National Forests 
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Table 1.A1. Descriptive statistics of the residual chronologies used in RWI analyses from the output of two software programs 
(ARSTAN and COFECHA) from tree cores collected from adult quaking aspen on five National Forests in Colorado and southern 
Wyoming in 2009-2010.  

 
Residual Chronologies (ARSTAN) 

Raw Chronologies- 
(COFECHA) 

 
Running r-bar 

   
      

National 
Forest 

Year 
interval 

No. 
series  rbar EPS Years 

Total No. 
series 

Mean, mm 
(SE) 

Mean 
Sensitivity SIC† 

Medicine 
Bow & Routt 

1890-1940 15 0.253 0.832 
1883-
2008 21 1.00 (0.158) 

0.318 0.428 

1915-1960 20 0.208 0.838           

Pike  
1860-1910 14 0.307 0.856 

1857-
2008 18 1.00 (0.205) 

0.373 0.45 

1885-1935 17 0.300 0.878           

1910-1960 18 0.311 0.888           

San Isabel 
1860-1910 19 0.390 0.922 

1856-
2008 30 0.992 (0.177) 

0.365 0.467 

1885-1935 25 0.260 0.898           

1910-1960 29 0.302 0.925           

White River* 
1910-1960 7 0.353 0.801 

1906-
2008 8 0.99 (0.344) 

0.326 0.362 

 

*Series not used in RWI analysis 
†Series intercorrelation coefficient 
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Table 1.A2. Site and stand characteristics of healthy and damaged aspen stands on eleven ranger districts and five national forests. 
Estimates are least-squares means. Superscript letters indicate significance differences between the means at p ≤ 0.10. Means in the 
same column with the same letter are not significantly different from each other. 

Forest 
Stand 
type 

Site 
typex 

Elevation 
(m) 

Aspect 
(degrees) 

% 
Slope 

% Conifer 
Encroachment 

Depth 
'A' 

horizon 

Stems 
ha-1 

(adults) 
Stems ha-1 

(understory) 

Basal 
area ha-1 

(m2) 
(adults) 

QMD† 
(cm) 

(adults) 

% Live 
stems 

(adults) 

% Live 
stems 

(understory) 

% Dead 
Crown 
(adults) 

Medicine 
Bow & 
Routt 

Healthy LCR*  2559a 155bc 11.8a 10.5b 16.4a 2446b 
10612b 

108.2c 23.8bc 85.4bc 93.0cd 22.3ab 

 
HCR*  2641a 112ab 14.3a 7.8ab 19.9a 2178b 9750b 89.5bc 24.5bc 82.5bc 91.1cd 25.9b 

Damaged LCR 2580a 162c 12.6a 5.2a 19.8a 2103b 9689b 79.4bc 23.1bc 61.3a 92.9cd 47.7c 

  HCR 2712b 204c 23bc 0.5a 21.3a 1792ab 6854bc 81.9bc 24.4bc 63.3a 91.6bcd 48.6c 

Pike 

Healthy LCR 2921bc 175bc 6a 5.5ab 14a 1200ab 3854a 19.9a 17.2ab 50.0a 95.0bcd 50.6c 

 
HCR 3069c 187bc 12.3ab 0.4a 14.5a 1800ab 4625abc 80.2b 21.4ab 79.5bc 64.2a 7.9a 

Damaged LCR 3077c 185bc 23bc 4.7a 13.6a 1864ab 4083ab 50.0ab 17.0a 63.6a 75.1abc 39.4c 

  HCR 3040c 43a 8a 4.7a 13a 2425ab 4035ab 75.1abc 20.1ab 62.8ab 92.9bcd 44.6bc 

San 
Isabel 

Healthy LCR 2678ab 162bc 30.2c 7.0ab 15.3a 2042ab 
5166ab 

63.6ab 20.7ab 81.7bc 77.1abc 18.6a 

 
HCR 2941c 181c 18.8ab 7.8ab 13.7a 2025ab 4725abc 61.4ab 20.1ab 82.0bc 73.5abc 23.8ab 

Damaged LCR - - - - - - - - - - - - 

  HCR 2914c 133b 18.1ab 10.6b 15a 2036b 6172abc 52.4a 18.1ab 65.2a 76.3abc 44.0c 

White 
River 

Healthy LCR 2693ab 228c 26.6bc 6.9ab 65.6b 2121b 
4350ab 

82.8b 22.2b 89.1bc 74.3abc 13.9a 

 
HCR - - - - - - - - - - - - 

Damaged LCR 2660ab 229c 31.6c 1.5a 66b 1233a 4883ab 62.8ab 26.0c 67.6a 96.0d 45.7c 

  HCR - - - - - - - - - - - - 
* Low (LCR) and high (HCR) cohesive response types. †QMD: quadratic mean diameter. QMD=                       
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Table 1.S1A. Specific site data for each core sampling plot within the Medicine Bow and Routt 
National Forests used in dendroclimatic analyses.  
 
 

National 
Forest 

Plot 
number 

No. 
cores  Elevation Aspect 

Slope 
position 

% 
Slope 

Other tree 
species 

Dominant 
plants 

Medicine 
Bow & 
Routt 
N.F. 

BCD1 3 2552 173 Backslope 38 Pinus contorta 
Carex sp., 
Geranium sp. 

BCH1 2 2680 170 Backslope 10 
Abies 
lasiocarpa 

Carex sp., 
Lupinus sp. 

BCH4 1 2680 154 Backslope 6 

Abies 
lasiocarpa, 
Pinus flexilis 

Lupinus sp.,  
Symphoracarpus 
sp. 

HPD2 3 2660 330 Toeslope 10 
P. tremuloides 
only Lupinus sp. 

HPH2 3 2400 40 Backslope 25 
Picea 
engelmanii Monarda sp. 

YAD1 2 2912 240 Toeslope 36 
P. tremuloides 
only 

Pastinaca sp., 
Delphinium sp. 

YAD3 1 2715 160 Backslope 18 
P. tremuloides 
only 

Pastinaca sp., 
Delphinium sp. 

YAH1 3 2766 100 Backslope 11 

Pinus contorta, 
Picea 
engelmanii 

Pastinaca sp., 
Veratrum sp. 

YAH4 2 3013 156 Backslope 10 

Picea 
engelmanii, 
Abies 
lasiocarpa 

Fragaria sp., 
Wyethia sp. 
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Table 1.S1B. Specific site data for each core sampling plot within the Pike National Forest used 
in dendroclimatic analyses. 
National 
Forest 

Plot 
number 

No. 
cores  Elevation Aspect 

Slope 
position 

% 
Slope 

Other tree 
species 

Dominant 
plants 

Pike 
N.F. 

SPD1 1 3183 279 Backslope 20 
Picea 
engelmanii 

Fragaria sp., 
Rosa sp. 

SPD3 2 3123 45 Backslope 6 

P. 
tremuloides 
only 

Arctostaphylos 
sp. 

SPD4 2 2957 40 Backslope 10 

P. 
tremuloides 
only 

Rosa sp., 
Thermopsis 
sp. 

SPD7 2 3100 170 Backslope 20 

P. 
tremuloides 
only Poa spp. 

SPH2 3 3000 20 Summit 13 

P. 
tremuloides 
only Juniperus sp. 

SPH3 3 3060 159 Backslope 15 

P. 
tremuloides 
only Poa spp. 

SPH4 3 3020 147 Backslope 8 

P. 
tremuloides 
only Juniperus sp. 

SPH6 2 3137 301 Backslope 11 
Picea 
engelmanii 

Fragaria sp., 
Lupinus sp. 
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Table 1.S1C. Specific site data for each core sampling plot within the San Isabel National Forest 
used in dendroclimatic analyses. 

National 
Forest 

Plot 
number 

No. 
cores  Elevation Aspect 

Slope 
position 

% 
Slope 

Other tree 
species 

Dominant 
plants 

San 
Isabel 
N.F. 

SAD1 2 2973 110 Backslope 30 Pinus ponderosa 
Juniperus sp., 
Rosa sp. 

SAD2 1 2776 10 Backslope 10 Picea engelmanii 

Arctostaphylos 
sp., Juniperus 
sp. 

SAD3 1 2877 204 Backslope 10 
P. tremuloides 
only 

Ribes sp., 
Thermopsis sp. 

SAD4 2 2984 45 Backslope 10 

Abies 
lasiocarpa, 
Picea engelmanii 

Thermopsis 
sp., Iris sp. 

SAD5 3 2982 270 Backslope 11 Picea engelmanii 
Artemesia sp., 
Thermopsis sp. 

SAD6 2 2932 170 Backslope 15 
P. tremuloides 
only 

Lupinus sp., 
Rosa sp. 

SAD7 3 3006 48 Backslope 17 
P. tremuloides 
only 

Thermopsis 
sp., Eriogonum 
sp. 

SAD8 3 3034 214 Backslope 5 
P. tremuloides 
only 

Thermopsis 
sp., Geranium 
sp. 

SAH2 1 3118 180 Backslope 35 
P. tremuloides 
only Poa spp. 

SAH3 2 2836 345 Toeslope 13 

Abies 
lasiocarpa, 
Picea engelmanii Acer sp. 

SAH6 3 3010 48 Backslope 14 Picea engelmanii 
Thermopsis 
sp., Lupinus sp. 

SAH7 3 2907 71 
Valley 
bottom 8 Picea engelmanii 

Thermopsis 
sp., Juniperus 
sp. 

SCD1 1 2445 116 Backslope 27 Pinus ponderosa 
Poa spp., 
Thermopsis sp. 

SCD2 1 2951 146 Summit 18 

Pinus edulis, 
Pseudotsuga 
menziesii 

Artemesia sp., 
Eriogonum sp. 

SCD3 1 3156 28 Backslope 65 Picea engelmanii 
Thermopsis 
sp., Rosa sp. 

SCH1 1 2980 110 Backslope 17 

Picea 
engelmanii, 
Pinus flexilis 

Pastinaca sp., 
Ribes sp. 

SCH2 1 2695 329 Toeslope 26 

Picea 
engelmanii, 
Pinus ponderosa 

Fragaria sp., 
Juniperus sp. 
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Table 1.S2. Increment core collection site locations used in this study.   

Plot name UTM, Easting UTM, Northing 
ASD06 302968.9 4333840.9 
ASD07 302915.2 4341742.2 
ASH06 296896.4 4364379.2 
RID01 261907.0 4409443.7 
RIH01 267115.2 4410244.0 
SCD03 446913.1 4217969.8 
SCH01 490202.4 4123126.2 
SCH03 489489.9 4212748.6 
SCH04 441219.1 4233311.4 
YAD01 347853.4 4446339.5 
ASD01 323321.4 4368330.3 
ASD02 355434.0 4363062.0 
ASD03 361506.7 4352074.8 
ASD04 320266.1 4344812.4 
ASD05 343649.4 4326412.2 
ASH01 327775.1 4373695.8 
ASH02 358239.3 4360189.0 
ASH03 351338.2 4331725.7 
ASH04 328034.7 4340693.3 
ASH05 330751.1 4328836.1 
SCD01 490219.8 4220510.1 
SCD02 485636.8 4198899.6 
YAD03 365115.1 4469252.6 
YAD02 366275.1 4432525.5 
YAD04 307019.3 4444652.6 
YAH01 364894.9 4436663.5 
YAH02 365725.0 4468970.2 
YAH03 312373.6 4454103.4 
YAH04 328281.5 4434662.2 
YAH05 325894.5 4448819.0 
BLD02 271669.7 4448902.4 
BLH03 278179.8 4434469.6 
BLD03 303707.4 4435629.3 
BLH04 300199.7 4438553.3 
BLH06 295514.8 4438082.0 
BLH01 308000.0 4432352.5 
BLH05 293184.6 4431318.4 
BLD05 284884.1 4437876.8 
BLD06 276941.0 4418036.5 
BLD01 254956.4 4415416.9 
BLH02 256603.1 4409264.6 
BLD04 283510.1 4418310.4 
HPD02 294672.5 4515795.8 
HPD01 294659.6 4521540.7 
HPD03 306570.4 4519745.7 
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HPH03 306758.7 4523487.6 
HPH01 320758.6 4520019.1 
HPH02 323140.2 4516454.6 
HPH04 363956.3 4472872.4 
SPD01 447092.5 4300274.0 
SPH01 456224.6 4329026.2 
SPH02 447437.5 4302032.1 
SPD04 410266.9 4322323.6 
SPD05 466391.6 4327784.5 
SPD06 419834.5 4355886.3 
SPD07 415313.3 4348309.1 
SPD03 408116.2 4334529.0 
SPH06 443070.6 4293541.5 
SPD02 431745.2 4364322.1 
SPH03 435144.2 4363217.0 
SPH04 436941.1 4358524.2 
SPH07 447748.7 4346356.3 
SPH05 408703.3 4319654.2 
SAD02 398955.0 4277701.1 
SAD04 409072.7 4310590.3 
SAD05 419397.4 4302439.3 
SAH07 418499.2 4292680.3 
SAD06 419557.8 4295488.5 
SAD07 419165.2 4286537.9 
SAD08 419148.5 4282656.9 
SAH05 398458.0 4254223.5 
SAH06 417050.5 4303573.2 
SAD03 407883.1 4307614.8 
SAH01 390470.5 4286082.3 
SAH03 390972.4 4293957.6 
SAH02 382800.7 4291891.8 
SAH04 391876.6 4272116.1 
SAD01 394942.8 4295194.9 
YAD05 322520.5 4434960.0 
DOD01 458318.0 4679403.0 
DOD02 457354.0 4674913.0 
DOH01 445366.0 4690422.0 
LAD02 472883.0 4561898.0 
LAH02 466252.0 4556893.0 
LAH01 463409.0 4566839.0 
LAD01 472334.0 4570564.0 
LAD03 467864.0 4560941.0 
LAH03 467987.0 4562645.0 
BCH03 317819.0 4549730.0 
BCD04 321287.0 4547852.0 
BCD01 318951.0 4554172.0 
BCH01 324273.0 4571358.0 
BCD02 313493.0 4574912.0 
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BCH02 313781.0 4561531.0 
BCD03 310327.0 4552837.0 
BCH04 340699.0 4560114.0 
SCH02 456259.5 4204016.7 
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CHAPTER 2 
 

PATHOGENICITY OF TWO SPECIES OF CYTOSPORA TO QUAKING ASPEN 

(POPULUS TREMULOIDES MICHX.) 

 
 

SUMMARY 

Historically, Cytospora canker of quaking aspen was thought to be caused primarily by 

Cytospora chrysosperma.  However a new and widely-distributed Cytospora species on quaking 

aspen has recently been described (tentatively named Cytospora notastroma). Here, we show the 

relative pathogenicity of both species. Small-diameter aspen trees were inoculated with one or 

two isolates each of C. chrysosperma and C. notastroma in a greenhouse, outdoor setting, and in 

environmental growth chambers. Results indicate that both species are pathogenic to drought-

stressed trees and that C. chrysosperma was more aggressive than C. notastroma at cool 

temperatures. Neither species caused significant canker growth on trees that were not drought 

stressed. 

 

INTRODUCTION 

Quaking aspen (Populus tremuloides Michx.) is one of the few native hardwood species 

found in the Rocky Mountain region of western North America (Little, 1971). Although quaking 

aspen is widely distributed across the continent, in the western half of the United States, it thrives 

best in montane environments, where summer temperatures are cool, and moisture is plentiful 

(Little, 1971). When grown on marginal sites, such as the dry, eastern front range of the Rocky 

Mountains in Colorado, aspen is prone to damage by stress and subsequent impact by insects and 
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diseases (Hinds, 1985). Foremost among these is Cytospora canker, caused by at least two 

Cytospora species.  

Cytospora has been described as a wound parasite, a stress-related pathogen, and an 

opportunistic saprophyte (Sinclair and Lyon 2005; Hinds, 1985). It is not considered to be an 

aggressive pathogen of most host trees unless drought or another stressor prevents the host from 

successfully limiting fungal colonization (Hubert 1920). Cytospora species invade host tissue 

through wounds or other openings in the bark (Long, 1918; Hinds, 1985). Worrall et al. (2010) 

showed that Cytospora umbrina is present in asymptomatic cambial tissue of alder (Alnus incana 

ssp. teniufolia), and could be isolated from host tissues for up to 5 cm from canker margins. 

Conversely, McIntyre et al. (1996) examined healthy quaking aspen for presence of Cytospora 

species, but not did recover any isolates from asymptomatic phloem tissues. The same study also 

showed, however, that Cytospora could be consistently isolated from surface bark of aspen trees 

from June-November (McIntyre, et al. 1996). In some Cytospora host species, excessive gum 

and starch production at the site of infection appear to be a major cause of vessel occlusion and 

tissue death (Banko and Helton, 1974). Host wound response intensities, with and without 

Cytospora infections, have been investigated in various host tree species, including quaking 

aspen and a poplar hybrid (Bloomberg and Farris, 1963; Banko and Helton, 1974; Bertrand and 

English, 1976; Biggs et al. 1983; Wisniewski et al. 1984; Biggs, 1984; Biggs, 1986; McIntyre, et 

al. 1996). Drought-stressed quaking aspen trees have been shown to remain susceptible to 

infection by Cytospora species for more than a week; McIntyre et al. (1996) showed that aspen 

exposed to drought conditions remained susceptible to infection up to ten days post-wounding, 

relative to four days post-wounding in watered trees. Bloomberg and Farris (1963) showed that 

poplars wounded by scorching of the bark produced tannins and lignin at the wound site, and 
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when wounds were inoculated with an isolate of C. chrysosperma, levels of both defensive 

compounds were greatly increased. Canker growth varied inversely with the amount of tannin 

produced, both in terms of numbers of tanniferous cells, and the size of the tanniferous zone 

(Bloomberg and Farris, 1963). 

Biggs et al. (1983) described the histopathology of C. leucostoma in peach. Infection 

begins with large-diameter, wedge-shaped hyphae that grow into the bark components of 

periderm, cortex, and phloem tissues, killing host cells as they advance (Biggs et al. 1983). This 

disruption of host tissue is followed by inter- and intra-cellular growth by smaller-diameter 

hyphae (Biggs et al. 1983). The fungus invades xylem tissues and moves faster longitudinally, 

via pits in cell walls, or through direct attack with penetration pegs, giving the disease its typical 

elongated shape (Biggs 1984). Host tissues respond by producing necrophylactic periderm or 

non-suberized impervious tissue, although the presence of pathogen mycelium inhibits the host’s 

ability to form these defensive structures (Biggs 1984). Biggs (1986) identified a critical period 

of 10-14 days post-wounding for the host to prevent widespread colonization by the fungus. A 

thickness of only three cells of phellem tissue in the phloem is sufficient to halt the spread of the 

pathogen (Biggs 1986).  

The phylogeny of the Cytospora species that occur on hardwoods, including quaking 

aspen, has historically been complicated and confusing. Spielman (1985) clarified much of the 

confusion in a monograph of the Valsa (Cytospora) genus, in which she noted that nearly every 

morphological characteristic was highly variable. Thus, many isolates previously described as 

individual species were likely variants of half a dozen species (Spielman, 1985). Adams et al. 

(2005) noted that many additional Cytospora species were described based on the host on which 

they were found, although now it is known that a single Cytospora species can infect multiple 



 

60 
 

hosts. Adams et al. (2006) also described the worldwide distribution of Cytospora and its species 

complexes based on the characteristics of anamorphic and teleomorphic fruiting body structure. 

Based on these and observations by Spielman (1985) and others, both Adams et al. (2005) and 

Kepley and Jacobi (2000) stated that the four teleomorphic genera historically associated with 

Cytospora canker (Leucostoma, Valsella, Valseutypella, and Valsa) should be condensed into 

one genus. As Spielman, Adams, and others have observed, the wide range of variability in 

morphological characteristics is likely due to environmental and host conditions, in addition to 

various phenotypic differences (Spielman, 1985; Adams et l. 2005 & 2006; Kepley and Jacobi 

2000). 

Kepley et al. (2015) have recently described a new species of Cytospora in quaking aspen 

based on analysis of morphological, isozyme, and genetic marker sequences. This new species, 

named C. notastroma, often forms pycnidia and perithecia over layers of dark stromatal tissue, 

resulting in a target-shaped ring surrounding the ostiole (Kepley and Jacobi 2000; Kepley, et al. 

2015; Figure 2.. 1). However, the pathogenicity of this species to quaking aspen has not been 

examined.  

Past inoculation studies, ostensibly using C. chrysosperma, examined various 

environmental stressors on host trees and the extent to which these stressors impacted canker 

development (Burks, 1994; McIntyre et al.; Guyon et al. 1996). Deficiencies of certain 

macronutrients, including plant available nitrogen and iron, resulted in larger cankers (Burks, 

1994). Guyon et al. (1996) examined the effect of drought, flooding, and defoliation on the 

expansion of Cytospora canker on aspen and cottonwood. Drought and severe (75-100%) 

defoliation had the greatest influence on canker growth; cankers on severely defoliated trees 

were much larger than non-defoliated control trees or trees with 50% defoliation (Guyon et al. 
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1996). Further, canker size was inversely related to tree water potential when it dropped below 

(i.e. became more negative than) -1.6 MPa (Guyon et al. 1996). 

The relative pathogenicity, abundance, and phylogeny of C. chrysosperma and C. 

notastroma on quaking aspen are unknown. The objectives of this study are: (1) is C. notastroma 

pathogenic to quaking aspen? (2) Are there differences in pathogenicity between C. 

chrysosperma and C. notastroma on quaking aspen? (3) Do the two species behave similarly 

under different temperature ranges on quaking aspen? To address these questions, we conducted 

a series of inoculation trials with two phylogenetically distinct isolates each of C. chrysosperma 

and C. notastroma on seedling (< 1.4 m tall) and sapling-sized aspen trees (1-2 cm DBH) in the 

greenhouse, outdoor, and growth chamber settings to simulate various light and temperature 

combinations 

 

MATERIALS AND METHODS 

Fungal cultures 

 Two C. chrysosperma isolates (‘BDSR 1.2’, ‘D 11A’) were cultured from quaking 

aspen bark collected in the Red Feather Lakes, Colorado, area (N40.752976, W-105.498122), 

and from the Dadd Gulch trailhead (N40.682286, W-105.642762), Poudre Canyon, Colorado, 

respectively. The C. notastroma isolate RCKEP3A was originally collected by J. Kepley, from 

quaking aspen bark collected from the Roaring Creek campground (N40.714227, W-

105.734967) in the Poudre Canyon in October of 2002, and represents the holotype of this 

species. The C. notastroma isolate SW8C was collected from a quaking aspen in the Denver 

suburb of Aurora, Colorado (39.728981, -104.813863).  The single-spore isolates were identified 

to species level by morphological characteristics of the pycnidia and perithecia in bark, colony 
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appearance and color on Leonian’s modified growth medium (Leonian, 1921), and later by 

sequence comparisons of their rDNA internal transcribed spacer (ITS) regions. 

Aspen nursery stock 

 Seedling-sized quaking aspen were obtained from the Fort Collins Wholesale Nursery in 

Fort Collins, CO, in 2012. Aspen were grown in standard potting mix and planted in number 1 

plastic nursery containers. Seedling-sized trees (2-2.5 m tall) were obtained from the Little 

Valley tree nursery in Brighton, CO, in the spring of 2013. Trees were grown in standard potting 

mix and planted in number 2 plastic nursery containers.  

Leaf water potential measurements 

Drought stress was induced and measured by determining pre-dawn water potential levels 

of fully-formed leaves. Water potential was measured on trees in growth chambers after at least 

six hours on the ‘dark’ cycle.  Measurements were taken using a Scholander-type pressure 

chamber (PMS Instruments, Albany, OR) daily until levels reached drought stress levels, 

approximately -1.5 MPa. Once drought stress was induced, water potential was measured twice 

weekly, and small amounts of water (25-250 ml) were added periodically to maintain stressed 

conditions and to keep the trees alive for the duration of the experiment.  

Growth chamber inoculation trials 

Eight, 65-90 cm-tall seedling-sized aspen were placed in a diurnal growth chamber, with 

temperatures set to fluctuate in a cool environment, from 15 °C during the light cycle and 12 °C 

during the dark cycle, or a warm environment, from 32 °C during the light cycle to 25 °C during 

the dark cycle. We used two different growth chambers during this experiment; a Caron® (model 

6340-1) (Marietta, OH) growth chamber was used for the cool temperature trials, and a 

Percival® (model E-54U) (Perry, IA) was used the warm temperature trials. Both growth 
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chambers used fluorescent lights. Measurements of the light intensity of the two chambers were 

taken using an Apogee Instruments® Quantum meter (model MQ-100) (Logan, UT) placed on 

the tier below the light source. The light intensity of the Caron® growth chamber averaged 75 

μmol-2m-2s-1 and the Percival® chamber averaged 28 μmol-2m-2s-1. Two inoculation trials of eight 

drought-stressed trees each were conducted for each of the two temperature ranges, plus two 

watered control trees for a total of 34 seedling-sized aspen trees. Three wound sites were placed 

at 10 cm intervals along the stem, and surface-sterilized prior to wounding by rubbing the bark 

surface with 70% ethanol. Wounds were produced along the tree stem using a 7-mm cork borer 

to remove the bark. A plug of half-strength potato dextrose agar (1/2 PDA) of the same diameter, 

or a ½ PDA plug colonized with either a single isolate of C. chrysosperma or C. notastroma was 

inserted into the wound. The wound was then sealed by wrapping the stem with a 2 cm-wide 

strip of Parafilm®. 

Greenhouse and outdoor inoculation trials 

Thirty-two sapling-sized aspen trees in standard potting mix and five-gallon plastic pots 

were placed on benches in July 2013 in a Colorado State University greenhouse and three-

quarters of the trees were drought stressed until water potentials reached approximately -1.5 

MPa, and the remaining one quarter were watered daily. Greenhouse lights remained off for the 

duration of the experiment. Drought-stressed trees were given 100-250 ml water whenever pre-

dawn water potentials exceeded -2.0 MPa, in order to keep the trees alive for the duration of the 

experiment. After trees had been stressed for one week, each was inoculated  as previously 

described with two isolates each of C. chrysosperma and C. notastroma, plus a control plug of 

sterile media (1/2 PDA) for a total of five inoculations per tree. Temperature data was recorded 

hourly using a Watchdog® (Spectrum Technologies, Inc., Plainfield, IL) temperature recorder.  



 

64 
 

In mid-September, a second, identical, inoculation trial was initiated, this time outdoors. 

Rainwater was excluded from the drought treatment group by clear plastic sheeting attached to 

the tree base with parafilm or electrical tape and covering the pot, and drought was induced to -

1.0 to -1.5 MPa. In both trials, canker size was measured one week after inoculation, and again 

every 2-3 days afterwards until nighttime temperatures dropped low enough to initiate tree 

dormancy. Hourly weather data for the outdoor trial site was obtained from the Colorado Climate 

Center’s weather station, located on the Colorado State University campus 

(http://ccc.atmos.colostate.edu/~autowx/fclwx_access.php) (Table 2.S1). 

Canker measurements 

 Canker size was first assessed one week after inoculation. At that time, Parafilm® was 

removed and initial canker length and width were recorded in millimeters. Canker boundaries 

were determined as the edge of the discolored bark tissue, and were re-measured on all trees for 

all trials (i.e. growth chamber, greenhouse, and outdoors) at least once, and were re-measured 

every other day following the initial measurements for the greenhouse and outdoor trials. The 

total number of measurements varied by trial, with a maximum of seven measurements of 

cankers on trees in the greenhouse, three measurements on trees outdoors, and two 

measurements on trees in the growth chamber setting. The number of measurements taken for 

each trial was dependent upon tree health, and in the case of the outdoor trial, the onset of 

autumn.   

Statistical analysis 

Analysis of the growth chamber trials data included the log-transformed sum of canker 

area, calculated as the area of an ellipse, where ellipse area = ((canker length/2)*(canker 

width/2)*π). Statistical analyses were performed using SAS© 9.4 software (SAS Institute, Cary, 

http://ccc.atmos.colostate.edu/~autowx/fclwx_access.php
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NC).  All four temperature trials (i.e. two high, two low) were combined and analyzed together. 

Growth chamber data were analyzed as a mixed linear model with temperature, treatment, 

isolate, measurement time, as well as the temperature, isolate, treatment interaction within 

measurement date. The random variables included tree within temperature, and position by 

isolate by position interaction within temperature. We obtained 95% confidence intervals for 

canker size for each isolate-temperature combination, and intervals for each combination were 

considered significant at P ≤ 0.05. Water potential data were analyzed (as the average of two 

water potential readings per tree) as a repeated measures mixed linear model. Average water 

potential was analyzed as treatment type by measurement date interaction.  Least-squares means 

were obtained and were considered to be significantly different at the P ≤ 0.05 level. We dropped 

drought treatment as a variable from the final analysis once we had confirmed that cankers did 

not form on watered trees. 

The greenhouse and outdoor inoculation trial data were analyzed together and separately 

from the four growth chamber inoculation trials. Because some of the cankers on trees in the 

greenhouse trial coalesced after two weeks, we used canker size at twelve days post-inoculation 

for both trials in our analyses. Canker area was analyzed as a mixed linear model with treatment 

(i.e. drought stressed or watered), isolate, setting (greenhouse or outdoor), inoculation position 

(five per tree), and average water potential. Random effects were trees within treatment, as well 

as the isolate by tree interaction within treatment type. Least-squares means were obtained for all 

main effects and interactions of interest. Means were considered to be significantly different at 

the P ≤ 0.05 level. Position (i.e. placement of the inoculum along the stem) was initially included 

in the analysis, but was later removed due to non-significance.  
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RESULTS 

Growth chamber inoculation trials 

Drought stressed trees averaged -1.0 and -0.9 MPa in the warm and cool temperature 

growth chambers respectively, whereas watered trees averaged -0.7 and -0.45 MPa in the warm 

and cool growth chambers (Figure 2.2).  

Watered trees inoculated with one isolate each of C. chrysosperma and C. notastroma 

species did not develop cankers in either temperature treatment (Table 2.1). Among the seedling-

sized aspen inoculated with an isolate of either C. chrysosperma or C. notastroma or one of each, 

drought-stressed trees in the cool temperature trial and inoculated with C. chrysosperma 

displayed expanded mean canker growth in comparison with the control and the  C. notastroma 

inoculated sites (Table 2.1, Figure 2.3). Both Cytospora species caused canker formation on trees 

in the warm temperature trial, relative to the control wound (Table 2.1, Figure 2.3). Wound sites 

amended with ½ PDA developed small areas of bark discoloration, but did not develop cankers. 

Such discoloration was distinguishable from cankers based on tissue color and the shape of the 

margin of the discolored area, and was due to drying of the bark. However, not all wound sites 

inoculated with the two Cytospora species developed cankers; the inclusion of the non-cankered 

wounds in the analysis strongly influenced mean canker size illustrated in Figure 2.3 and Tables 

2.1 and 2.2.  For example, of the16 drought-stressed trees (and 48 wound sites) inoculated and 

placed in the cool temperature growth chamber, 21 sites inoculated with a C. chrysosperma 

isolate (‘D 11A’) formed cankers, compared with 16 sites inoculated with a C. notastroma 

isolate (‘RCKEP3A’) (Table 2.2). Mean canker size formed by C. chrysosperma among all 

drought-stressed trees used in the growth chamber trials was 64 mm2 and was significantly larger 

than cankers formed by the C. notastroma isolate (54 mm2) (Table 2.2).   
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Greenhouse inoculation trials 

Water potential data indicated that drought-stressed trees in the greenhouse averaged -

1.11MPa (Figure 2.4). Watered trees in the greenhouse averaged -0.7 MPa. Over time, trees 

reached a maximum water potential deficit of -1.55 MPa twelve days into the experiment (Figure 

2.5). The effect on mean water potential can be seen in Figure 2.5. 

Wound sites that were not inoculated with a Cytospora isolate developed small areas of 

bark discoloration approximately two weeks after inoculation, but did not develop cankers, 

except for sites on two trees, which we determined were previously infected with C. 

chrysosperma. Areas of discoloration due to drying of the bark were distinguishable from 

discolored areas caused by cankers based on bark tissue color and the shape of the discolored 

area. None of the inoculation sites on watered trees formed cankers larger than the control, and 

even sites inoculated with C. notastroma isolate RCKEP3A on drought- stressed trees did not 

produce cankers larger than the watered controls (Table 2.1; Figure 2.6). The largest cankers 

were formed on drought-stressed trees at sites inoculated with C. chrysosperma isolate DG11A 

(Table 2.1 Figure 2.6 and 2.9). However, there was no difference in canker area between the two 

C. chrysosperma isolates, and cankers formed by the second C. chrysosperma isolate, BDSR12, 

were not larger than those formed by C. notastroma isolate SW8C (Table 2.1; Figures 2.6 and 

2.9).  When considering only sites where cankers were observed, both C. chrysosperma isolates 

and C. notastroma SW8C had larger areas of discoloration than those observed at wounds in the 

non-inoculated sites (Table 2.2) The combined range in canker sizes among infected aspen (i.e. 

those trees on which cankers formed) in the greenhouse and outdoor trials was 38-6,927mm2 for 

the C. chrysosperma isolates, and 38-6024 mm2 for the C. notastroma isolates (Table 2.1). Four 

of the drought-stressed aspen trees did not develop any cankers at all. 
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Outdoor inoculation trial 

Drought-stressed trees in the outdoor trial averaged -0.9 MPa at the time of inoculation 

and for the remainder of the experiment, whereas watered trees averaged -0.3 MPa (Figure 2.4). 

The only significant difference in canker sizes was between drought-stressed trees inoculated 

with C. chrysosperma isolate BDSR12, which formed cankers larger than control sites, but not 

larger than either of the two C. notastroma isolates (P=0.0597), or the second C. chrysosperma 

isolate on drought-stressed or watered trees (Table 2.1; Figures 2.8, 2.11 and 2.12).  

 

DISCUSSION 

 The results of the inoculation trials conducted in this study strongly indicate that although 

Cytospora notastroma is pathogenic on quaking aspen, C. chrysosperma is the more aggressive 

species, particularly among trees experiencing some degree of drought stress. Cankers caused by 

C. chrysosperma developed at a faster rate and were larger overall than either isolate of C. 

notastroma. In a concurrent study of the relative distribution and frequency of these species, we 

observed (as have Kepley et al. 2015) that the two species are often found infecting the same 

host, sometimes directly adjacent to each other. We speculate that C. chrysosperma may further 

weaken host trees, perhaps making colonization by C. notastroma easier. Further, in the 

greenhouse portion of the study, we observed that C. notastroma cankers did not dramatically 

expand until the conclusion of the trial, when host trees were near death, and C. chrysosperma 

cankers had already thoroughly colonized the bark tissue.  

 Guyon et al. (1996) noted that the peak susceptibility of aspen and cottonwood trees to 

canker formation by Cytospora was at -1.6 MPa. The water potential values in this study were 

largely lower than this amount, and therefore it is possible that greater drought stress could have 
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resulted in greater canker growth of either or both species. We note that C. chrysosperma isolates 

formed cankers that grew substantially, even when water potential values were less severe, as in 

the outdoor portion of this study, where values of drought-stressed trees averaged -0.9 MPa 

throughout the experiment. 

 When we compared the effects of temperature on canker development we observed 

significantly less canker growth of C. chrysosperma at high temperatures, based on infected 

aspen (i.e. those trees on which cankers formed). Interestingly, we observed no effect of 

temperature on the growth of cankers produced by C. notastroma. This was contrary to our 

initial hypothesis, in which we assumed that drought stress combined with high temperatures 

would result in larger and more rapid canker expansion. We note that studies of other 

phytopathogenic fungal species, including Geosmithia morbida, and the bluestain fungus 

Ophiostoma clavigera, have demonstrated that these pathogens cause more extensive disease 

development under cooler (i.e. 25°C and below) conditions (Freeland et al. 2011; Solheim and 

Krokene, 1998). At least two Cytospora species occurring on stone fruit trees have been shown 

to have differential responses to temperature (Hildebrand, 1947; Wensley, 1964; Bertrand and 

English, 1976). Studies by Hildebrand (1947), Wensley (1964), and Bertrand and English (1976) 

demonstrated that C. leucostoma was more pathogenic (i.e. caused larger cankers) on orchard 

trees under warm temperatures than C. cincta; C. cincta was more pathogenic than C. 

leucostoma on trees under lower temperatures.  

Our results indicate that Cytospora chrysosperma is able to cause canker formation on 

drought-stressed host trees under both warm and cool conditions, although it was less aggressive 

under warm conditions. It seems possible that this is one reason why C. chrysosperma is such an 

effective pathogen of stressed host trees. Earlier studies of temperature and Cytospora canker 
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growth on other host species were based on seasonal observations, with C. leucostoma isolates 

producing large, or rapidly-expanding cankers during the warmest months of the year, whereas 

C. cincta produced cankers only during the late-autumn or spring (Hildebrand, 1947; Wensley, 

1964; Bertrand and English, 1976). Thus, C. chrysosperma may be somewhat unique in that it 

can cause disease on aspen throughout the growing season and beyond.  

The stark phenotypic differences among quaking aspen clones’ morphological 

characteristics and drought and disease resistance have been and continue to be intensively 

studied (e.g. Griffin, et al. 1991; DeWoody et al. 2009; St. Clair, et al. 2010; Long and Mock, 

2012; Callahan, et al. 2013). We observed, especially in the greenhouse portion of this study, that 

some of the aspen did not develop cankers at all, in spite of showing high vapor pressure deficits, 

thus were clearly experiencing drought stress. It has been established that significant phenotypic 

differences in resistance to herbivory (Stevens, et al. 2007; Lindroth and St Clair, 2013) as well 

as disease resistance (Copony and Barnes, 1974; Holeski, et al. 2009). Based on this, it seems 

very likely that at least some of the variability in canker development we observed over the 

course of these experiments may be a reflection of varying disease resistance among aspen 

genotypes. Also noted in many previous studies of aspen and other Populus species (St. Clair, et 

al. 2010; Kanaga, et al. 2008; Marron, 2006), phenotypic traits are often influenced by 

environmental conditions; Kanaga, et al. (2008) and Marron (2006) describe the interaction 

between environment and phenotype as a cause of significant phenotypic plasticity. In this study, 

we examined only the variation in disease development from the perspective of the pathogen; we 

note that an examination of disease resistance on the part of the host will further clarify the 

precise cause of variation in disease development from one tree to another, and one clone to 

another.  
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FIGURES AND TABLES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. Cytospora chrysosperma and C. notastroma in culture and on inoculated aspen trees. 
Top: cultures of C. notastroma (left) and C. chrysosperma (right) on modified Leonian’s 
medium, after two weeks’ growth at 25 °C. Bottom row, from left: canker formation with 
pycnidia and cirri on aspen following inoculations with C. notastroma (left two photos), and C. 
chrysosperma (right two photos). Photos: M. Dudley 
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Figure 2.2. Mean pre-dawn water potentials for drought-stressed or watered quaking aspen trees 
placed in growth chambers at two different day/night (12 hour cycle) temperature regimes, high 
(32 °C day, 25 °C night), and low (15 °C day, 12 °C night) cycles  Error bars represent standard 
error; bars which do not overlap are significantly different P ≤ 0.05. Water potential mean for 
watered trees do not include error bars because only one watered tree per temperature treatment 
was used in this portion of the experiment. 

 
Figure 2.3. Mean canker size on small quaking aspen trees in a growth chamber setting four 
weeks after inoculation with a Cytospora chrysosperma or C. notastroma isolate under drought 
stress. Growth chamber temperature ranges were low (15/12 °C) or high (32/25°C), in 12-hour 
cycles. Means are least-squares, and dashed lines represent upper and lower limits of a 95 % 
confidence interval, and those that do not overlap are significant at P=0.05. Data are based upon 
two trials per temperature range.   
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Figure 2.4. Mean pre-dawn water potentials for drought-stressed or well-watered aspen trees 
placed in a greenhouse or outdoor setting. Error bars represent standard error; bars which do not 
overlap are significantly different P ≤ 0.05. 
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Figure 2.5. Mean pre-dawn tree water potential measurements in a greenhouse on eighteen days 
from mid-July to mid-August, 2013. Blue line represents pre-dawn water potential of watered 
trees; red line represents pre-dawn water potential of drought-stressed trees. Trees were 
inoculated on 23 Jul. 

 

Figure 2.6. Canker size in quaking aspen at 12 days following inoculation with four Cytospora 
isolates under drought-stressed (left) and well-watered (right) conditions in a greenhouse. 
Wounds in control trees were amended with ½-strength potato dextrose agar. Means are least-
squares, dashed lines represent upper and lower limits of a 95 % confidence interval, and those 
that do not overlap are considered significant at P=0.05. 
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Figure 2.7. Mean pre-dawn tree water potential measurements in an outdoor setting on sixteen 
days from late August to late September, 2013. Blue line represents well-watered trees, red line 
represents drought-stressed trees. Trees were inoculated on 19 Sep. 

 

Figure 2.8. Canker size in quaking aspen at 12 days following inoculation with four Cytospora 
isolates under drought-stressed (left) and well-watered (right) conditions in an outdoor setting. 
Wounds in control trees were amended with a ½-strength potato dextrose agar plug. Means are 
least-squares, dashed lines represent upper and lower limits of a 95% confidence interval. Lines 
which do not overlap are significant at P=0.05. 
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Figure 2.9. Canker development in drought-stressed quaking aspen over 12 days following 
inoculation (on 7/30/13) with two Cytospora chrysosperma (BDSR1.2 and DG11A) and two C. 
notastroma (RCKEP3A and SW8C) isolates in a greenhouse. Wounds in control trees were 
amended with a ½ strength potato dextrose agar plug. Means are least-squares, lines represent 
upper and lower limits of a 95% confidence interval. Lines which do not overlap are significant 
at P=0.05. 

 
Figure 2.10. Canker development in watered quaking aspen during a two week period following 
inoculation (on 7/30/13) with two Cytospora chrysosperma (BDSR1.2 and DG11A) and two C. 
notastroma (RCKEP3A and SW8C) isolates in a greenhouse. Wounds in control trees were 
amended with a ½stregth potato dextrose agar plug. Means are least-squares, lines represent 
upper and lower limits of a 95% confidence interval. Lines which do not overlap are significant 
at P=0.05. 
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Figure 2.11. Canker development in drought-stressed quaking aspen over 8 days following 
inoculation (on 9/18/13) with two Cytospora chrysosperma (BDSR1.2 and DG11A) and two C. 
notastroma (RCKEP3A and SW8C) isolates in an outdoor setting. Wounds in control trees were 
amended with a ½ PDA plug. Means are least-squares, lines represent upper and lower limits of 
a 95% confidence interval. Lines which do not overlap are significant at P=0.05. 

 
Figure 2.12. Canker development in watered quaking aspen over 8 days following inoculation 
with (on 9/18/13) two Cytospora chrysosperma (BDSR1.2 and DG11A) and two C. notastroma 
(RCKEP3A and SW8C) isolates in an outdoor setting. Wounds in control trees were amended 
with a ½ PDA plug. Means are least-squares, lines represent upper and lower limits of a 95% 
confidence interval. Lines which do not overlap are significant at P=0.05. 
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Table 2.1. Mean canker areas for those sites where cankers formed 12-14 days following inoculation with either Cytospora 
chrysosperma or C. notastroma in a low or warm temperature growth chamber, a greenhouse, and an outdoor setting.  

   Canker area (mm2) 

Species Isolate Treatment 

Growth chamber, 
Cool Temp1, 2, 3 

(n=48) 

Growth chamber, 
Warm Temp1, 2, 3 

(n=48) 
Greenhouse 

Trial 3, 4 (n=160) 
Outdoor Trial 3, 4 

(n=158) 
C. chrysosperma DG11A Drought 78 (9, 10)c 50 (6, 6) b 357 (64, 78)c 91 (9, 10)ab 

  
Watered 49* 25 110 (32, 45)ab 60 (11, 13)ab 

 
BDSR12 Drought - - 241 (43, 53)c 81 (7, 7)b 

  
Watered - - 109 (32, 45)ab 53 (9, 11)ab 

C. notastroma RCKEP3A Drought 52 (6, 7) b 56 (6, 7) b 110 (20, 24)a 70 (7, 8)ab 

  
Watered 25 32 88 (26, 36)a 54 (9, 11)ab 

 
SW8C Drought - - 160 (29, 35)b 67 (7, 7)ab 

  
Watered - - 96 (28, 39)a 61 (11, 13)ab 

Control Agar Drought 46 (5, 6) b 34 (4, 4) a 107 (19, 23)a 61 (6, 7)a 

  
Watered 48* 26 90 (26, 37)a 52 (9, 11)ab 

1Watered trees in the growth chamber trials do not include statistics because there was only one watered tree per temperature trial.2 Comparisons are among all isolates in 
both warm and cool trials.  3Numbers in parentheses are upper and lower confidence interval values, from the mean. 4 Greenhouse and outdoor means comparisons are by 
trial. ‘n’ is the number of inoculation sites. * A slightly larger-diameter cork-borer was used to inoculate these trees; means thus do not represent cankered area, but a 
larger wound. 

Table 2.2. Canker formation by two isolates each of Cytospora chrysosperma and C. notastroma two weeks post-inoculation. Sites 
were considered to have cankers if the discolored area around the inoculation site of each isolate was greater than the discolored area 
surrounding the site amended with ½ PDA on each tree.  

Species Isolate 
Percent of inoculation sites developing 

cankers* N 
Mean and range ( ) of canker 

area(mm2)‡ 
C. chrysosperma DG11-A† 61% 98 64 (50-77); 173 (38-6,927) 

 BDSR1-2§ 50% 64 135 (38-5,342) 
C. notastroma RCKEP3A† 41% 98 54 (50-56); 80 (38-377) 

 SW8C§ 41% 64 294 (38-6,024) 
*Three (growth chamber trials) or five (greenhouse and outdoor trials) inoculation sites per tree, depending on trial environment and tree size. †Isolates D 11-
A and RCKEP3A were used in all trials. Means and ranges of isolates DG11A and RCKEP3A are listed as the combined mean of four growth chamber trials 
(first group) and the combined mean of the greenhouse and outdoor trials (second group). §Isolates BDSR1-2 and SW8C were used only in the greenhouse and 
outdoor inoculation trials. ‡Canker means for the greenhouse and outdoor trials are based on measurements taken 14 days after inoculation. ‘n’ is the number of 
inoculation sites. 
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Table 2.3. Mean diurnal temperature ranges and precipitation for the outdoor location used in 
this study. Greenhouse trial was conducted July-August, 2013; the outdoor trial was conducted 
September-early October, 2013; growth chamber trials were conducted at various four-week 
intervals between May 2013 and October 2014. 

  

Mean daytime 
temperature 

(°C) 
Mean nighttime 
temperature (°C) 

Mean daily 
precipitation 

(mm)* 
Greenhouse & 
outdoor trials 

Greenhouse 24.8 20.4 - 
Outdoor 17.3 12.8 5.6 

Growth 
chamber trials 

Warm 
cycle 32.1 26.0 - 

Cool cycle 15 (+-3) 12 (+-3) - 
*Outdoor setting only. 
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CHAPTER 3 

THE DISTRIBUTION OF TWO CYTOSPORA SPECIES ON QUAKING ASPEN 

(POPULUS TREMULOIDES MICHX.) IN SELECTED REGIONS OF THE ROCKY 

MOUNTAINS AND MINNESOTA IN THE UNITED STATES  

 

SUMMARY 

Cytospora canker of quaking aspen was thought to be caused primarily by Cytospora 

chrysosperma. Recently, a new and purportedly widely-distributed Cytospora species on quaking 

aspen has recently been described (Cytospora notastroma Kepley & F.B. Reeves,). Although we 

have previously established that the newly-described species is pathogenic, the abundance and 

frequency of C. notastroma, relative to C. chrysosperma, is unknown. Thus, we wished to 

estimate the relative abundance of known Cytospora species on quaking aspen throughout 

portions of the Rocky Mountain region, and to construct species-level phylogenies based upon 

isolates obtained from infected aspen. Here, we show: that both C. chrysosperma and C. 

notastroma are quite common on quaking aspen, along with a third, previously-described 

species, C. nivea; that Cytospora species often co-occur on the same host tree, and that evidence 

of recombination or possible hybridization between the species exists. 

 

INTRODUCTION 

Cytospora canker is a common fungal disease of many woody species throughout 

temperate regions of the globe (Adams et al. 2005; Sinclair and Lyon, 2005; Spielman, 1983; 

Hubert, 1918). Host genera known to be susceptible include Populus, Acer, Salix, Prunus, 

Malus, Sambucus, and Sorbus, as well as many conifer species, including those in the Abies, 
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Larix, Picea, Juniperus, Cedrus, Pseudotsuga, Tsuga, Thuja, and Chamaecyparis genera 

(Hubert, 1918; Sinclair and Lyon, 2005). Cytospora species are ubiquitous, and most exist as 

weak saprophytes on bark surface, causing damage only when the host experiences stressful 

environmental conditions (Sinclair and Lyon, 2005). When such favorable conditions do exist, 

Cytospora rapidly kills cambial tissue, effectively girdling and killing the host tree over months 

or years (Bloomberg, W.J., 1962a; Bloomberg, W.J., 1962b). Roughly 400 species of Cytospora 

have been described worldwide (Adams et al. 2005), although the disposition of species within 

the genus has been complicated and confusing (Long, 1918; Hubert, 1918; Christensen, 1940; 

Guyon, et al. 1996; Adams et al. 2005).  

Recently, the teleomorph genus Valsa has been eschewed in favor of the more 

commonly-used genus Cytospora (Rossman et al. 2015) Fruiting bodies produced by distantly-

related Cytospora species may appear identical, although conidial stromata width and branching 

of conidiophores has been shown to be reliable for the identification of Cytospora species 

occurring on Eucalyptus (Adams et al. 2005). Adams et al. (2005) noted that although the 

morphology of many Cytospora species is highly variable, certain species respond to particular 

cultural conditions (e.g. tolerance of high temperatures, media amended with cyclohexamide).  

Historically, the causal organisms of Cytospora canker on Populus trees have been 

described as Cytospora chrysosperma (Pers.:Fr.) Fr (formerly Valsa sordida) or C. nivea 

(formerly Valsa nivea) (Sinclair and Lyon, 2005; Bloomberg 1962a & 1962b) and it has been 

generally assumed that the main species attacking quaking aspen is C. chrysosperma (Sinclair 

and Lyon, 2005). However, Kepley et al. (2015) have recently described a genetically- and 

morphologically- distinct Cytospora species named C. notastroma (Kepley & F.B. Reeves) 

(Kepley, et al. 2015), from isolates cultured from diseased quaking aspen (Populus tremuloides 
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Michx.) in northern Colorado.  The distribution and abundance of this species on quaking aspen 

has not yet been determined.   

The pathogenicity of Cytospora canker to quaking aspen and other host species also 

experiencing some environmental stress has been well-established (Long, 1918; Hubert, 1918; 

Christensen, 1940; Guyon et al., 1996; Sinclair and Lyon, 2005). When trees are drought-

stressed, Cytospora canker develops very quickly, and may girdle a small diameter trunk or 

branch (through death and blockage of the vascular tissues) within weeks or months of 

inoculation (Hubert, 1918; Bloomberg, W.J., 1962a; Bloomberg, W.J., 1962b; Biggs et al. 1983). 

However, healthy trees grown under non-stressed conditions show little apparent damage from 

Cytospora (Hinds, 1985; Biggs, 1986; Guyon, et al. 1996; Dudley, 2015). Cytospora nivea (syn. 

Leucostoma niveum, Valsa nivea) has been documented as a canker-causing fungus, including on 

quaking aspen in northern British Columbia (Sinclair and Lyon, 2005; Hutchison, 1999). 

Recently, the pathogenicity of C. notastroma has been demonstrated. In a previous study, we 

showed that although both C. chrysosperma and C. notastroma are capable of forming cankers 

on drought-stressed aspen, C. chrysosperma is the more pathogenic species under warm or cool 

conditions, based on rate of canker formation, as well as final canker size (Dudley, 2015).  

Throughout western North America, recent episodes of widespread aspen mortality and 

dieback linked to drought have been well-documented (Hogg, et al. 2002; Worrall, et al. 2008; 

Worrall, et al. 2010; Anderegg, et al. 2013; Worrall, et al. 2013; Dudley, et al. 2015a & 2015b). 

Projections for many areas currently suited to quaking aspen indicate drier conditions, and an 

overall reduction in suitable aspen habitat throughout western North America (Rehfeldt, et al. 

2009). Such conditions will be favorable for the development and spread of Cytospora canker (as 

well as other stress-related damage agents, such as aspen bark beetles and wood-boring insects) 
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and thus this disease is likely to continue to be prevalent in quaking aspen stands in the future 

(Marchetti, et al. 2011). Based upon the work of Kepley et al. (2015) and our previous studies, 

we wished to determine (1) the relative abundance of the two Cytospora species most commonly 

occurring on quaking aspen, C. chrysosperma and C. notastroma; (2) whether there are other 

species of Cytospora occurring on quaking aspen throughout Colorado and elsewhere.  

 

MATERIALS AND METHODS  

Sample areas 

 We sampled infected quaking aspen trees from three distinct categories (1) four urban 

areas throughout Colorado (Fort Collins, Denver, Glenwood Springs, and Meeker); (2) from 

forest settings areas outside of Colorado and southern Wyoming, including Utah (the Ashley and 

Dixie National Forests), northwestern Montana (adjacent to highway 89, near Babb, MT), and 

east-central Minnesota (Chisago County); (3) four national forests throughout Colorado and 

southern Wyoming (Medicine Bow, White River, Pike, and San Isabel National Forests). For a 

previous study, in 2009-2010, we established 97 aspen health monitoring plots on five National 

Forests in Colorado and southern Wyoming to assess the impact of various damage agents on 

aspen health in stands designated as healthy or damaged (see Dudley, et al. 2015). In this study, 

we revisited a subset of the healthy and damaged plots to collect aspen stems with Cytospora 

canker. The National Forests sampled are mainly east of the Continental Divide (the Pike, San 

Isabel, and the Medicine Bow N.F.), with one sampled forest west of the Divide (the White River 

N.F.). These forests contain large and widespread quaking aspen components; the Pike N.F. 

contains roughly 45,600 ha (487 km2) of aspen stands, the San Isabel N.F. has about 77,800 ha 

(779 km2), the Medicine Bow N.F. has 25,900 ha (389 km2) and the White River N.F. has 
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136,500 ha (2264 km2) of aspen stands, and the Routt National Forest (Yampa and Hahn’s Peak 

Ranger Districts) with 113,100 ha (985 km2).  

Sample collection 

 Up to two ranger districts were sampled within each national forest. Within each ranger 

district, one plot in a healthy stand and one in a damaged stand were selected based on whether 

Cytospora canker was detected on adult or immature aspen during the 2009-2010 survey. We 

navigated to the center of each selected plot using a GPS unit (Garmin® eTrex Legend). At the 

center of the plot, we randomly selected a bearing, and established a 10-meter transect along the 

bearing. The first ten aspen trees with Cytospora canker were sampled, and infected tissue (bark 

or stems, or both) were placed in paper bags, labeled, and stored in a laboratory. We eventually 

cultured a minimum of three trees per plot, and three cultures per tree. Sample locations outside 

of national forests in Colorado and Wyoming were also included. We collected infected aspen 

tissue from various urban areas throughout Colorado, from two national forests in Utah, as well 

as individual trees in Montana and Minnesota, for a total of 410 samples from 110 trees (Table 

3.1, Figure 3.1; Table 3.A2). 

Culture of infected tissues 

A minimum of three separate Cytospora cultures were obtained from at least three trees 

per plot. Cultures were selected arbitrarily for further study. All cultures were grown on ½ -, or 

¼ strength potato dextrose agar (PDA), and a subset were grown on Leonian’s modified medium 

(Leonian, 1921). Plates were stored at room temperature (25 °C) in sterile plastic bins. Spores 

were extracted from fruiting bodies using a procedure developed by J. Kepley: bark surface was 

first sprayed with a 75% ethanol/ water solution and allowed to dry; locule chambers were 

exposed by aseptically slicing off thin layers of the fruiting body to expose chamber entrance, 
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and a droplet of sterile water was pipetted onto the exposed locule chamber, from which a spore 

mass emerged (Kepley, 2009). A metal streaking loop was used to streak the spore mass onto a 

plate of media. In the case that fruiting bodies were not present on the surface of bark tissue, 

small (2-3 mm diameter) pieces of bark were excised from canker margins and partially 

submerged in the agar. Plates were sealed with Parafilm®, and checked daily. Once single-spore 

colonies, or mycelial growth resembling Cytospora were evident, the colony or hyphal tip was 

transferred to a fresh plate and further incubated for 7-10 days.  After cultures had attained a size 

of at least 3cm diameter, approximately a dozen pieces of the culture margin were cut (2 mm 

square), transferred to a liquid medium (potato dextrose broth), and placed in a rotating growth 

chamber for up to 6 days at 25 °C. Additional pieces of the culture were placed in glycerol and 

stored at -80°C, and in ½-strength potato dextrose agar sealed glass slants and stored at 4°C. The 

tissue samples in liquid medium were grown to 1-2 cm in diameter, and after 5-6 days were 

extracted using a centrifuge or vacuum extractor. Samples were then placed in 2 mm plastic 

vials, and stored in a -20 °C freezer prior to DNA extraction. 

DNA extraction and primer amplification 

DNA extraction was performed using the Invitrogen DNA extraction kit. Following 

extraction, nucleotide concentration of the samples was assessed using a Nanodrop© 2000 sensor 

(Nanodrop Products, Thermo Scientific, Wilmington, DE). Samples that contained at least 15 

ng/µl of purified DNA were then used for polymerase chain reaction (PCR), using a MyCycler 

™ Thermal Cycler (Bio-Rad Laboratories, Inc. Hercules, CA). Markers used in this included 

5.8S subunit of the rDNA (ITS) (with primers ITS1 and ITS4) and a portion of the β-tubulin (Bt) 

gene (using primers Bt2a and Bt2b) (Carbone and Kohn, 2001). We also attempted and obtained 

some level of amplification of the following markers: a portion of the elongation factor 1-α gene 
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(primers EF728F/EF986R, as well as EF526F /EF1567R) (Carbone and Kohn, 2001; Rehner, 

2001); calmodulin (CAL-228F/CAL-737R) (Carbone and Kohn, 2001); methionine 

aminopeptidase (MAP), as used by Zerillo et al. (2014). We also attempted amplification for 

single-copy markers MS456 (primers McM7-709 and McM7-1348) (Schmitt, et al. 2009); 

MS204 (Walker et al. 2012); FG1093 (Walker et al. 2012). In addition, we attempted 

amplification with a variety of makers developed for Fusarium solani: FsGPD; FsACC; FsICL; 

FsHMG; FsSOD; FsMPD; FsUGP1; FsTOP (Debourgogne et al. 2010). Successful PCR 

products were purified using a Roche High Pure PCR Product Purification Kit (Roche 

Diagnostics Corp., Indianapolis, IN), and DNA concentrations were again assessed using the 

Nanodrop© sensor.   

Fragment sequencing and alignment 

Approximately half of the samples were sent for sequencing to the Colorado State 

University Proteomics and Metabolomics Facility, and half to the University of Arizona Genetics 

Core facility (Tucson, AZ). The CSU Proteomics and Metabolomics Facility uses an Applied 

Biosystems® 3130xl Genetic Analyzer (Life Technologies, Grand Island, NY). The Arizona 

facility uses multiple Applied Biosystems® 3730 Genetic Analyzers (Life Technologies, Grand 

Island, NY). Chromatogram files were examined using software program Sequence Scanner v 

1.0 (Applied Biosystems®, Foster City, CA). Base pairs with quality scores of less than 20 were 

examined for errors, and the sequences overall quality scores, start and end points, and location 

and nature of ambiguous base pairs were recorded and annotated in an Excel® spreadsheet 

(Microsoft Corp., Seattle, WA). ITS and β-tubulin sequences were aligned and trimmed using 

the software program Mega5.2 (Tamura, et al. 2011) with the ClustalW® alignment technique 

option. Marker sequences were concatenated and isolates with identical concatenated sequences 
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were placed into haplogroups by species. Haplogroups, as well as individual isolates not 

matching any haplogroup sequence, were combined and exported to .mas, .fas, .meg, and .nexus 

files. In addition, separated ITS and β-tubulin sequences for all haplogroups and individual 

isolates  as well as references sequences from NCBI database (www.ncbi.nlm.nih.gov) and 

outgroup (Cryptosphaeria pullmanensis) were exported into fasta and nexus file formats for later 

use. SNPs occurring in only one sample were checked by examining the trace files, and edits 

were made to sequences where appropriate.  

Phylogenetic analysis 

DNAsp5 (Rozas et al. 2003) was used to estimated genetic diversity parameters for each 

locus and the combined dataset, ITS and Bt for each species group (NO, NI and CH) and the 

total population. For each locus, for haplotype diversity ( hD), nucleotide diversity (π), selection 

(Tajima’s D, Fu and Li’s F), recombination were estimated. Linkage disequilibrium was also 

tested for the combined ITS and Bt dataset.  

We conducted phylogenetic analyses of Cytospora sequences using maximum parsimony 

and Bayesian analyses (BA) on each locus independently and also on the combined dataset of the 

internal transcribed spacer (ITS) region of the 5.8 subunit of the rDNA, and region 2 of the β-

tubulin locus.  Reference and outgroup sequences used in this analysis included Cytospora nivea 

(NCBI accession numbers KF294008.1 (ITS) and EU219135.1 (Bt)), C. chrysosperma 

(JX438635 (ITS) and KT590414 (Bt)), C. notastroma (JX438627 (ITS)), C. cypri (DQ243801 

(ITS) and KM034893 (Bt)) and a Crytosphaeria pullmanensis isolate we cultured previously 

from quaking aspen. A partition homogeneity test was implemented in using the software 

package PAUP*4a146 to test for congruence between the two loci (Swofford, 2002). DT-Modsel 

(Minin, et al. 2003) was used to identify the best suited evolutionary model for each locus. BA 
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tree selection were conducted using Markov-Chain Monte Carlo (MCMC) analysis in software 

program BEAST, with 1,000,000 independent runs (i.e. chains) and sampling every 1,000 runs 

(Drummond et al. 2012). Data files were converted to .xml format using BEAUTi (Drummond et 

al. 2012). Again, substitution models were previously identified by DT-ModSel. Tracer (v1.2) 

(Drummond et al. 2012) was run on the parsimony trees produced by BEAST to assess the 

quality of each BA run.  If all Effective Sample Size (ESS) values were confirmed to be greater 

than 200, then enough MCMC runs were presumed. Tree Annotator v1.8.2 (Drummond et al. 

2012) was used to summarize trees compiled by BEAST in a single tree. The evolutionary 

models selected by DT-ModSel were TIMef+I+G for the ITS-based tree, and TrNef+G for the β-

tubulin-based tree. Partition homogeneity tests confirmed incongruence of the two markers, and 

so separate trees were assembled for ITS and Bt. A web-based version of the software PhylML 

(http://www.hiv.lanl.gov/content/sequence/PHYML; Guidon and Gascuel, 2003) was used to 

assemble maximum parsimony phylogenies of each maker sequence, with 500 bootstrap 

replicates and TN93 substitution model.  

Genetic Distance & Principle Components Analysis 

Trimmed, concatenated ITS and beta-tubulin sequences for all haplogroups of each 

Cytospora species (16 total) were uploaded to ClustalOmega (Sievers, et al., 2011; 

www.ebi.ac.uk), where an alignment file was obtained, including annotation of SNP locations. 

The alignment was edited and manipulated in Microsoft Excel. The Excel add-in program 

GenAlEx 6.5 (Peakall and Smouse, 2006 & 2012) was used to calculate genetic distance and 

conducted a principle components analysis based upon the genetic distance results. Genetic 

distance and PCA calculations were performed for the three combined Cytospora species (C. 

chrysosperma, C. notastroma, and C. nivea) and by species. 

http://www.hiv.lanl.gov/content/sequence/PHYML
http://www.ebi.ac.uk/
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RESULTS 

Frequency and distribution of Cytospora species 

Of the 110 diseased quaking aspen trees sampled, all had evidence of Cytospora canker, 

with or without fruiting bodies present. The presence of a particular Cytospora species was 

confirmed on 71 of the sampled trees. We initially attempted to differentiate C. notastroma from 

C. chrysosperma and other possible Cytospora species by the presence of a prominent olive-

black to black conceptacle that delimited the stroma as described by Kepley et al. (2015).  

However, this characteristic was variable and sometimes absent in the stroma of C. notastroma 

depending on bark thickness and the color of the bloom (i.e. periderm) (see Figure A3.1). 

Therefore, isolates were cultured from pycnidia as previously described. We putatively identified 

366 of the 410 cultured isolates as Cytospora species based on production and morphology of 

pycnidia and conidia in culture, or the growth rate and color of isolates when grown on ¼ or ½-

strength potato dextrose agar or on Leonian’s modified media (Table 3. 1; Table 3.A1). When 

grown on Leonian’s media, Cytospora notastroma had a dark colony appearance with appressed 

hyphae growing into the agar whereas C. chrysoperma had a light tan or buff-colored colony 

appearance, as previously described (Figure A3. 2) (Kepley et al, 2015; Kepley, 2009). 

Cytospora nivea was variable in color when grown on Leonian’s media, and ranged from light 

tan to dark brown, although not as dark in color as C. notastroma (Figure A3.3).    

To validate our morphological identifications, the ITS and β-tubulin sequences of 67 and 

45 isolates, respectively, were compared (Figures 3.S1 and 3.S2).  There was strong (100%) 

support for differentiation between C. chrysosperma, C. notastroma and C. nivea isolates based 

on ITS sequences (Figure 3.3). Analysis of a β-tubulin-based tree also supported separation 
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between the three species (Figure 3. 4).  This sequence data also corroborated our species 

identification based on morphological features, except that most of the isolates tentatively 

identified as an unknown Cytospora species were in fact C. nivea. In a separate analysis, three 

unknown Cytospora isolates grouped with C. chrysoperma based on ITS sequences, and were 

grouped with C. notastroma based on their β-tubulin sequence. 

Of the 190 isolates collected, 48 % were C. chrysosperma, 42 % were C. notastroma, and 

9 % were C. nivea (Table 3.1; Table 3.A1). We detected both C. chrysosperma and C. 

notastroma in each of the three main regions sampled (Table 3. 1). Cytospora nivea was only 

detected in western and south-central Colorado, as well as central Utah (Table 3.1).  Only C. 

notastroma was found in eastern Minnesota, northern Montana, and the Poudre Canyon in 

northern Colorado (Table 3.1). We isolated more than one Cytospora species from a quarter of 

the trees sampled (18/71) from each of the three of the broad regions of Colorado, Wyoming, and 

Utah that were sampled most intensively. Five of these featured C. chrysosperma and C. 

notastroma, as well as three trees with C. chrysosperma and C. nivea. 

Phylogenetic analysis: posterior probability & bootstrap analyses 

We constructed a BA-based phylogenetic tree of the concatenated sequences of 16 

haplogroups and 13 individual isolates (Figure 3. 4). Partition homogeneity    revealed high 

support for three species groups (CH, NO, NI), and supported—to a limited extent—intraspecific 

clades (Figure 3. 4). Posterior probability values supported three possible clades within C. 

notastroma, two within C. chrysosperma, and two within C. nivea (Figure 3.4). Probability 

values were not sufficiently high (51%) to parse C. chrysosperma from C. cypri (NCBI). 

Analysis of 67 ITS sequences based on a posterior probability phylogeny indicated strong 

(100%) support for differentiation between each of the three Cytospora species, and was 
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suggestive of intra-specific clades within each species (Figure 3. 2). The maximum parsimony-

based ITS tree supported only two broad groups among the isolates; the first representing a 

portion (38) of the C. chrysosperma isolates, and the second representing all C. notastroma, C. 

nivea, and the remaining portion (45) of the C. chrysosperma isolates (Figure 3.A5) A posterior 

probability phylogeny based on the 45 Bt sequences also supported three distinct species groups, 

as well strong support for the possibility of intra-species clades within C. notastroma, C. nivea 

and C. chrysosperma (Figure 3.3). Bootstrap values of a maximum parsimony phylogeny did not 

support any distinction between the three species of interest (Figure 3.A6).  

Principle Components Analysis 

A PCA of all concatenated sequences from two genetic markers indicate a distinct 

grouping of the three described Cytospora species, which is consistent with the concatenated 

BA-based tree (Figure 3.5; Figure 3.2). Analyses of principle components by species group 

indicated that the C. chrysosperma haplogroups recovered in this study form three clusters 

(Figure 3. 6), as do the C. notastroma haplogroups (Figure 3.7). The clustered hapogroups do not 

share geographic similarities, at least based upon the ITS-Bt sequences used. An additional six 

C. nivea isolates were included in the species-level PCA, as well as haplogroup 1 (Figure 3. 8).  

Tests for neutrality, recombination, and linkage disequilibrium 

Tests of haplotype diversity indicated high levels of diversity for each of the species 

tested (Table 3. 2). Nucleotide diversity was greatest for beta tubulin sequences, especially 

among C. notastroma isolates. Neutrality tests indicated that the loci are neutral (Table 3.2). 

Linkage disequilibrium tests were not significant (Table 3. 2). Recombination occurred at both 

loci, but was greater for beta tubulin (Table 3.2).  
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DISCUSSION 

The causal agent of Cytospora canker on quaking aspen has been called a species 

complex (Kepley et al. 2015; Kepley, 2009), and our results support such a description. Both of 

the ITS and Bt phylogenies indicate strong support for three species groups, and a Principle 

Components Analysis of the concatenated ITS-Bt sequences supports this. Phylogenetic trees 

assembled based on posterior probability indicate the existence of intra-specific clades, and this 

was supported by species-wise PCA.  

As Spielman (1985) and others (Kepley et al. 2015; Kepley, 2009; Adams, 2006; Hubbes, 

1960) have observed, the morphological features of Cytospora are highly variable, and this is 

true of fruiting body formation on a host, as well as cultured isolates (Spielman, 1985). Spielman 

(1985) noted that because of this degree of variability, additional species have been described 

(incorrectly) based on particular isolates over the years, further complicating the phylogeny of 

this genus. We also observed considerable variability in the morphology of fruiting bodies we 

sampled in this study. Specifically, the dark stromatal tissue layer attributed to C. notastroma 

was not always clearly visible. Kepley et al. (2015) note that C. translucens also sometimes 

produces a dark conceptacle-like ring surrounding the pycnidium. It seems possible that some of 

the variation in fruiting body morphology may be due to phenotypic differences among 

individual host trees. Aspen stands are now known to be much less clonal than previously 

thought, and large, continuous stands may in fact be a conglomeration of many genotypes 

(DeWoody, 2009; Long and Mock, 2012).  Phenotypic variations in resistance to herbivory 

(Stevens, et al. 2007; Lindroth and St Clair, 2013) and disease (Copony and Barnes, 1974; 

Lindroth and Hwang, 1996; Holeski, et al. 2009) have been extensively documented. Also 

documented is the coloration and apparent thickness of the ‘bloom’ on aspen trunks (Pearson and 
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Lawrence 1958). Pearson and Lawrence (1958) reported that differences in bloom properties 

varied from stand to stand, and were related to site elevation. We observed that the dark 

stromatal tissue layer surrounding pycnidia was sometimes obscured by particularly opaque layer 

of periderm (Figures A3. 1 & A3.4). Finally, it seems possible that some differences in pycnidia 

formation observed in this study may be attributed to growth phase of the fungus; if the dark 

stromatal layer of tissue characterisitic of C. notastroma only forms at maturation, then perhaps 

some of the pycnidia later attributed to C. notastroma but lacking the dark basal tissue disk 

simply had not yet matured. 

In a previous study, we confirmed the pathogenicity of C. notastroma, and compared it to 

C. chrysosperma (Dudley, et al. 2015). Both species caused cankers to form on drought-stressed 

aspen trees, but C. chrysosperma consistently formed larger cankers under different ambient 

temperatures (Dudley, et al. 2015). In spite of being a weaker pathogen, we observed similar 

frequencies of C. notastroma and C. chrysosperma. We did not discriminate between tree size 

classes when we sampled infected aspen for Cytospora canker, and so we cannot make any 

inferences as to whether one species is found more frequently on a particular tree size than 

another. However, further study could investigate whether the two species fill different niches in 

aspen stands; does one species occur more frequently on shade-weakened understory trees than 

the other? Are lethal cankers more likely to have been caused by one species over another?  

We did not detect differences in haplogroup composition by geographic region. This was 

somewhat surprising, but could be explained by one or two factors. First, only two markers were 

used in this study, and thus we cannot make any statements about intra-species populations. 

Additional data would certainly help to clarify relationships within species groups. Perhaps the 

selection of a marker whose sequence is less conserved (i.e. greater variability, more SNPs) than 
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the two used here would allow for identification of geographic differences. A second (and less 

likely) possibility explaining why we did not detect geographic differences in haplogroup 

composition is that there could be more movement (and therefore an admixture of genetic 

sequences) of Cytospora inoculum or of greater distances than previously thought. Kaczynksi et 

al. (2014) examined sapsuckers (Sphyrapicus nuchalis Baird) as a possible vector of Cytospora 

chrysosperma, which was implicated in years-long decline of riparian willow (Salix spp.) in 

Rocky Mountain National Park, Colorado. Roughly one-third of the birds sampled carried 

Cytospora inoculum on either their beaks or feet, or both, and thus sapsuckers were confirmed as 

a means of pathogen spread from one host to another (Kaczynski et al. 2014). Based on these 

findings, it seems possible that Cytospora inoculum is spread by birds, flying insects, or other 

vectors.  

We observed evidence that could indicate hybridization between the Cytospora species 

examined in this study (or other Cytospora species). Our results show that recombination readily 

occurs at both ITS and Bt loci for all three identified species. Further, at least ten isolates 

recovered from infected aspen could not be identified to the species level. In a previous 

phylogenetic (BA) analysis, three of these isolates were alternately grouped with C. nivea, C. 

notastroma, or C. chrysosperma, depending upon which locus the phylogeny was based. Kepley 

et al. (2015) observed that ‘intermediate isolates’ existed which could not be distinguished, based 

upon ITS and Elongation Factor 1-a (EF1a) sequences, between C. nivea and C. translucens 

(which has also been reported on quaking aspen). Finally, we observed that fully 25% of the 

trees sampled were infected with more than one Cytospora species. This could in fact be much 

higher; we sampled material that could be reached from the ground, and rarely sampled cankers 
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from entire adult aspen trees. Because we did not sample all cankers on all trees, it is possible 

that observed cankers could be a patchwork of different causal species.  
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Figure 3.1. Map of sample locations used in this study. Materials were collected June 2012-Sept 
2014.  
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Figure 3.2. Phylogenetic tree based on ITS sequences of 67Cytospora isolates collected from 
quaking aspen throughout Colorado, southern Wyoming, Utah, northern Montana, and east-
central Minnesota, plus outgroups Cytospora cypri and Cryptosphaeria pullmanensis. Posterior 
probability (BA) values are included at the node junctions.  
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Figure 3.3. Phylogenetic tree based on Bt sequences of 45Cytopsora isolates collected from 
quaking aspen throughout Colorado, southern Wyoming, Utah, northern Montana, and east-
central Minnesota, plus outgroups Cytospora cypri and Cryptosphaeria pullmanensis. Posterior 
probability (BA) values are included at the node junctions. 
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Figure 3.4. Phylogenetic tree assembled using posterior probability analysis, representing the 
concatenated ITS-Bt sequences of 34 Cytospora isolates collected from quaking aspen 
throughout Colorado, southern Wyoming, Utah, northern Montana, and east-central Minnesota, 
plus an outgroup (Cryptosphaeria pullmanensis). 
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Figure 3.5. Principle Component Analysis (PCoA) of genetic distances representing 101 isolates of Cytospora chrysosperma, C. 
notastroma, and C. nivea isolated from quaking aspen throughout Colorado, southern Wyoming, Utah, northern Montana, and east-
central Minnesota, using concatenated ITS and beta-tubulin regions. 
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Figure 3.6. Principle Component Analysis (PCoA) of genetic distances representing 47 isolates of Cytospora chrysosperma, isolated 
from quaking aspen using concatenated ITS and beta-tubulin regions.   



 

105 
 

 

Figure 3.7. Principle Component Analysis (PCoA) of genetic distances representing 47 isolates of Cytospora notastroma, isolated 
from quaking aspen using concatenated ITS and beta-tubulin regions.   
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Figure 3.8. Principle Component Analysis (PCoA) of genetic distances representing 47 isolates of Cytospora nivea, isolated from 
quaking aspen using concatenated ITS and beta-tubulin regions. 
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Table 3.1. Numbers of fungal isolates cultured from cankers on quaking aspen included in this study, by geographic region and 
Cytospora species. 

Region 
No. 

Isolates 
No. 

Trees 
No. CH 
isolates* 

No. NO 
isolates 

No. NI 
isolates 

Eastern CO (urban) 36 10 21 15 0 
Northern CO 16 6 13 3 0 

Northwestern CO 20 10 13 6 1 
Poudre Canyon 11 5 0 11 0 

South-central CO 26 16 12 8 6 
Western CO 28 8 11 7 10 

Southern WY 23 8 16 7 0 
Central UT 17 6 6 9 2 

Eastern MN 9 1 0 9 0 
Northern MT 4 1 0 4 0 

Total 190 71 92 79 19 
Sampled, all 410 110 

   Total Cytospora 366 106 
   Percent of total 

  
48.4% 41.6% 8.9% 

*NO: Cytospora notastroma; CH: Cytospora chrysosperma; NI: Cytospora nivea 
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Table 3.2. Haplotype and nucleotide diversity measures, with tests for neutrality of individual and combined species of Cytospora 
using two genetic markers and the concatenated sequence. 

Marker Species Diversity Fu_Li† Tajima† 

  

hD nucl F* F D 

ITS NO 0.920 0.00609 1.45 1.43 0.87 

  CH 0.783 0.00844 1.81 1.67 1.88 

  NI 0.917 0.00912 -0.24 0.23 0.09 

  All 0.925 0.04109 2.01 2.64 1.57 

B-tubulin NO 0.932 0.04311 -0.67 -0.30 -0.10 

  CH 0.879 0.03111 1.33 2.31 1.68 

  NI 0.944 0.02289 -0.58 -0.22 -0.34 

  All 0.963 0.11697 -0.52 0.31 0.26 

Concatenated NO 0.967 0.0191 1.21 1.25 1.18 

  CH 1.000 0.01934 0.91 1.42 1.19 

  NI 0.964 0.01485 -0.03 0.05 0.19 

  All 0.991 0.08833 -2.69 -3.11 -1.64 

. † None of the measures shown were significant at P=0.10. 
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Table 3.3. Test results for evidence of recombination events, gene flow, and linkage disequilibrium based on ITS, beta-tubulin or the 
combined (concatenated) ITS-Bt sequences, by Cytospora species, or averaged over all isolates. 

Marker Species 
Gene_flow(Nei) Recombination, by species 

Recombination, across 

Cytospora species Linkage disequilibrium† 

Gst Nm Sk^2 

Avg 

distance Rm Sk^2 

Avg 

distance Rm ZnS Za ZZ Wall'sB Wall'sQ 

ITS NO* 

  

3.78 437 3   

 

    

   

  

  CH‡ 

  

7.89 439 0   

 

    

   

  

  NI‡ 

  

4.96 432.67 1   

 

    

   

  

  All 0.11 4.12       118 437 12   

   

  

B-tubulin NO 

  

81.15 341.55 4   

 

    

   

  

  CH 

  

47.05 342 2   

 

    

   

  

  NI 

  

21.79 337 0   

 

    

   

  

  All 0.05 10.36       437 340. 21   

   

  

Concatenated NO     78.89 779.44 3         

   

  

  CH 

  

103.97 782.14 1   

 

    

   

  

  NI 

  

48.92 770.38 2         

   

  

  All 0.03 18.45       2564 778 31 0.38 0.64 0.26 0.59 0.60 

*NO: Cytospora notastroma; ‡CH: Cytospora chrysosperma; ‡NI: Cytospora nivea. † Not significant at P=0.10. 
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Table 3.4. All isolates used in analyses in this study, by species and haplogroup. 
A. Cytospora chrysosperma. 

Species 

ITS 
Haplogrp 

name 

Bt 
Haplogrp 

name 

No. 
Isolates/Haplogr

oup Isolate ID Tree No. Site Name 

C. chrysosperma CH_H01 CH_H01 18 ANF2C ANF2 ANF 

    
ASD1F ASD1 ASD 

    
BDSR1-2 BDSR1 BDSR 

    
BLD1G BLD1 BLD 

    
BLD4F BLD4 BLD 

    
BLD4I BLD4 BLD 

    
GW2D1 GW2 GW 

    
LAD3B LAD3 LAD 

    
LAD3D LAD3 LAD 

    
LAH1D LAH1 LAH 

    
LAH1E LAH1 LAH 

    
LAH1H LAH1 LAH 

    
LAH2A2 LAH2 LAH 

    
LAH2A3 LAH2 LAH 

    
SAH3C SAH3 SAH 

    
SAH3D SAH3 SAH 

    
SPD4F SPD4 SPD 

    
SPD4H SPD4 SPD 

 
CH_H02 CH_H02 10 BLD2A BLD2 BLD 

    
BLD2E BLD2 BLD 

    
BLD4E BLD4 BLD 

    
DL1C DL1 DL 

    
DL1E DL1 DL 

    
DL1H DL1 DL 

    
DL1I DL1 DL 

    
GW2A GW2 GW 

    
GW2B GW2 GW 

    
GW2C GW2 GW 

 
CH_H03 CH_H03 9 ASH3I ASH3 ASH 

    
BLH6C BLH6 BLH 

    
DG1-1B DG1 DG 

    
DG1-2A DG1 DG 

    
FC4A FC4 FC4 

    
FC6 FC6 FC6 

    
FC61B FC6 FC6 

    
FC63 FC6 FC6 
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MKR22 MKR2 MKR 

 
CH_H04 CH_H04 4 LAH1B LAH1 LAH  

    
LAH2B LAH2 LAH 

    
SPH2B SPH2 SPH 

    
SPH2C SPH2 SPH 

 
CH_H05 CH_H05 3 LAH6G LAH6 LAH 

    
LV1G LV1 LV 

    
LV2B LV2 LV 

 
CH_H06 CH_H06 3 BLD2J BLD2 BLD 

    
FC1A FC1 FC1 

    
FC2B FC2 FC2 

 
CH_H07 CH_H07 1 EP1I EP1 EP 

 
CH_H08 CH_H08 1 ANF2B  ANF2 ANF 

 

CH_H09 - 1 ANF3E ANF3 ANF 

 
CH_H10 - 1 EP1A EP1 EP 

 
CH_H11 - 1 EP1F EP1 EP 

 
CH_H12 - 1 EP1J EP1 EP 

 

CH_H13 - 1 SW6D SW1 SW 

 
CH_H14 - 1 MKR2A MKR2 MKR 

 
CH_H15 - 1 ANF2F ANF2 ANF 

 
CH_H16 - 1 DL1G DL1 DL 

 

CH_H17 - 1 DL1F DL1 DL 

 
CH_H18 - 1 LAD3I LAD3 LAD 

 
CH_H19 - 1 LAD3J LAD3 LAD 

 
CH_H20 - 1 SAH6B SAH6 SAH 

 

CH_H22 - 1 LV1A LV1 LV 

 
CH_H23 - 1 LV1B LV1 LV 

 
CH_H24 - 1 LV1C LV1 LV 

 
CH_H25 - 1 LV1D LV1 LV 

 

CH_H26 - 1 LV1F LV1 LV 

 
CH_H27 - 1 LV2A LV2 LV 
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B.  Cytospora notastroma 

Species 

ITS 
Haplogrp 

name 

Bt 
Haplogrp 

name 

No. 
Isolates/Haplogrp 

Isolate ID Tree No. Site Name 

C. notastroma NO_H01 NO_H01 9 BDSR2-2 BDSR2 BDSR 

 
   DL3D DL3 DL 

 
   DL3E DL3 DL 

 
   FC2A FC2 FC2 

 
   FC62 FC6 FC6 

 
   MN1A MN1 MN 

 
   MN1B MN1 MN 

 
   MN1C MN1 MN 

 
   MN1E MN1 MN 

 
NO_H02 NO_H02 7 NL3B NL3 NL 

 
   SW5B SW1 SW 

 
   SW6P3 SW1 SW 

 
   SW6P4 SW1 SW 

 
   SW6P5 SW1 SW 

 
   SW7C SW1 SW 

 
   SW8P1 SW1 SW 

 
NO_H03 NO_H03 6 LAD3A LAD3 LAD 

 
   SW6P2 SW1 SW 

 
   SW7C1 SW1 SW 

 
   SW7D SW1 SW 

 
   SW8A SW1 SW 

 
   SW8C SW1 SW 

 
NO_H05 NO_H05 9 AC 3-1 AC3 AC 

 
   AC 3-3 AC3 AC 

 
   ASD4B ASD4 ASD 

 
   BLD3B BLD3 BLD 

 
   BLD3I BLD3 BLD 

 
   SRES2 SRES2 SRES 

 
   WLGL1 WLGL1 WLGL 

 
   WLGL2 WLGL1 WLGL 

 
   WLGL3 WLGL1 WLGL 

 
NO_H06 NO_H06 4 FC3B FC3 FC3 

 
   RCKEP1A RCKEP1 RCKEP 

 
   RCKEP2A RCKEP1 RCKEP 

 
   RCKEP3A RCKEP1 RCKEP 

 
NO_H07 NO_H07 3 PF1 PF1 PF 
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   PF2 PF1 PF 

 
   PF3 PF1 PF 

 
NO_H08 NO_H08 3 LAH6B LAH6 LAH 

 
   NL4B NL4 NL 

 
   SCD2F SCD2 SCD 

 
NO_H09 NO_H09 2 NL4C NL4 NL 

 
   NP1 NP1 NP 

 
NO_H10 NO_H10 3 ANF1F ANF1 ANF 

 
   GW2F GW2 GW 

 
   SRES4C SRES4 SRES 

 
NO_H11 NO_H11 1 ASD4C ASD4 ASD 

 
NO_H12 NO_H12 1 ASD4H ASD4 ASD 

 
NO_H13 NO_H13 1 NP3 NP3 NP 

 
NO_H14 NO_H14 1 YA1B YA2 YA 

 
NO_H15 NO_H15 1 SAD3E SAD3 SAD 

 
NO_H16 NO_H16 1 SAD3H SAH3 SAH 

 
NO_H17 NO_H17 1 YA1-4 YA1 YA 

 
NO_H18 - 1 MNIJ MN1 MN 

 
NO_H19 - 1 LAD8B LAD8 LAD 

 
NO_H20 - 1 AC 4-1 AC4 AC 

 
NO_H21 - 1 ANF1E ANF1 ANF 

 
NO_H23 - 1 LAH6I LAH6 LAH 

 
NO_H24 - 1 LAH8F LAH8 LAH 

 
NO_H25 - 1 MN1K MN1 MN 

 
NO_H26 - 1 MN1F MN1 MN 

 
NO_H27 - 1 MN1H MN1 MN 
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C. Cytospora nivea 

Species 

ITS 
Haplogrp 

name 

Bt 
Haplogrp 

name 
No. 

Isolates/Haplogroup Isolate ID Tree No. 
Site 

Name 
C. nivea NI_H01 NI_H01 8 ASD1B ASD1 ASD 

    
ASD1H ASD1 ASD 

    
ASD2C ASD2 ASD 

    
ASH10B ASH10 ASH 

    
ASH10E ASH10 ASH 

    
DNF1B DNF1 DNF 

    
DNF1C DNF1 DNF 

    
SPD4D SPD4 SPD 

 
NI_H02 NI_H02 1 ASD2A ASD2 ASD 

 
NI_H03 NI_H03 1 BLD1A BLD1 BLD 

 
NI_H04 NI_H04 1 SAH5B SAH5 SAH 

 
NI_H05 NI_H05 1 SCH7E SCH7 SCH 

 
NI_H06 NI_H06 1 SCH7J SCH7 SCH 

 
NI_H07 NI_H07 1 SPD3J SPD3 SPD 

 
NI_H08 NI_H08 1 SPD5I SPD5 SPD 
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D. Cytospora species 

Species 

ITS 
Haplogrp 

name 

Bt 
Haplogrp 

name 

No. 
Isolates/

Haplogrp 
Isolate 

ID  Tree No. Site Name 
Cytospora 

sp. 
CS_H01 CS_H01 

1 ANF2D ANF2 ANF 

 
CS_H03 CS_H03 1 ASH3E ASH3 ASH 

 
CS_H26 - 1 ASH3F ASH3 ASH 

 
CS_H27 - 1 BLD3D BLD3 BLD 

 
CS_H28 - 1 BLD3E BLD3 BLD 

 
CS_H24 - 1 LAD7J LAD7 LAD 

 
CS_H25 - 1 LAH3E LAH3 LAH 

 
CS_H05 - 1 MKR2E MKR2 MKR 

 
CS_H20 - 1 SAD1A SAD1 SAD 

 
CS_H04 - 1 SAD1E SAD1 SAD 

 
CS_H33 - 1 SAD3D SAD3 SAD 

 
CS_H06 CS_H06 1 SAH6J SAH6 SAH 

 
CS_H21 - 1 SCD2C SCD2 SCD 

 
CS_H22 - 1 SCD2D SCD2 SCD 

 
CS_H29 - 1 SCH10C SCH10 SCH 

 
CS_H23 - 1 SCH8E SCH8 SCH 

 
CS_H30 - 1 SCH8H SCH8 SCH 

 
CS_H31 - 1 SPD5F SPD5 SPD 

 
CS_H32 - 1 SPH3B SPH3B SPH 

 
CS_H02 CS_H02 1 SPH4H SPH4 SPH 
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Figure 3.A1. Examples of pycnidia (showing whole and excised) of two Cytospora species. Top 
row: C. chrysosperma. Bottom row, left: C. notastroma. Bottom row, right: branch with both 
species present. Here, the bloom thickness and color make distinguishing one species from 
another difficult.  
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Figure 3.A2. Fifteen isolates each of Cytospora notastroma (top) and C. chrysosperma, on 
Leonian’s modified medium, approximately two weeks after plating. Photos: Ian Dudley 
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Figure 3.A3. Four isolates of Cytospora nivea on Leonian’s modified medium, approximately 
two weeks after plating. Photos: Ian Dudley.  
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Figure 3.A4. An aspen trunk infected with Cytospora canker. Note the variable morphology of 
pycnidia formed on the same stem.  
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Figure 3.A5. A maximum parsimony (MP) phylogenetic tree, based on ITS sequences 
representing 67 isolates. Values are bootstrap values, with a maximum of 500 (100%). 
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Figure 3.A6. A maximum parsimony (MP) phylogenetic tree, based on Bt sequences 
representing 45 isolates. Values are bootstrap values, with a maximum of 500 (100%). 
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Table 3.A1. All likely Cytospora isolates recovered from infected quaking aspen trees, collected 
from five states in the U.S.A. 

Culture ID Species ITS 
β-

tubulin 
Concateted 
Haplogroup 

ITS 
Haplogrp 

name 

Bt 
Haplogrp 

name Tree ID 
Site 
ID State 

AC 3-1 C. notastroma X X CN_H05     AC3 AC CO 

AC 3-3 C. notastroma X X CN_H05     AC3 AC CO 

AC 4-1 C. notastroma X     NO_H20   AC4 AC CO 

ANF1B C. notastroma X X [Removed]     ANF1 ANF UT 

ANF1D C. notastroma X X [Removed]     ANF1 ANF UT 

ANF1E C. notastroma X     NO_H21   ANF1 ANF UT 

ANF1F C. notastroma X X CN_H10     ANF1 ANF UT 

ANF2B  
C. 

chrysosperma 
X     CH_H08   

ANF2 
ANF 

UT 

ANF2C 
C. 

chrysosperma 
X X CC_H01     

ANF2 
ANF 

UT 

ANF2D Cytospora sp. X X   CS_H01 CS_H01 ANF2 ANF UT 

ANF2F 
C. 

chrysosperma 
X     CH_H15   

ANF2 
ANF 

UT 

ANF3B C. notastroma X X Ambig bp     ANF3 ANF UT 

ANF3C C. notastroma X X       ANF3 ANF UT 

ANF3E 
C. 

chrysosperma X     CH_H09   ANF3 ANF UT 

ANF3F 
C. 

chrysosperma   X     CH_H08 ANF3 ANF UT 

ASD1A 
C. 

chrysosperma X X       ASD1 ASD CO 

ASD1B C. nivea X X CY_H01     ASD1 ASD CO 

ASD1D C. nivea   X     NI_H09 ASD1 ASD CO 

ASD1F 
C. 

chrysosperma 
X X CC_H01     

ASD1 
ASD 

CO 

ASD1G C. nivea X X       ASD1 ASD CO 

ASD1H C. nivea X X CY_H01     ASD1 ASD CO 

ASD2A C. nivea X X   NI_H02 NI_H02 ASD2 ASD CO 

ASD2C C. nivea X X CY_H01     ASD2 ASD CO 

ASD2G 
C. 

chrysosperma 
X X [Removed]     

ASD2 
ASD 

CO 

ASD2H 
Likely 

Cytospora sp.           
ASD4 

ASD 
CO 

ASD4B C. notastroma X X CN_H05     ASD4 ASD CO 

ASD4C C. notastroma X X   NO_H11 NO_H11 ASD4 ASD CO 

ASD4F 
Likely 

Cytospora sp.           ASD4 ASD CO 

ASD4H C. notastroma X X   NO_H12 NO_H12 ASD4 ASD CO 

ASD4J 
Likely 

Cytospora sp.           
ASD4 

ASD 
CO 

ASD5H 
Likely 

Cytospora sp.           
ASD5 

ASD 
CO 

ASD6I Likely           ASD6 ASD CO 
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Cytospora sp. 

ASD7A 
Likely 

Cytospora sp.           
ASD7 

ASD 
CO 

ASD7D 
Likely 

Cytospora sp.           
ASD7 

ASD 
CO 

ASD7G 
Likely 

Cytospora sp.           
ASD7 

ASD 
CO 

ASD7I 
Likely 

Cytospora sp.           
ASD7 

ASD 
CO 

ASD9B 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASD9C 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASD9D 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASD9E 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASD9G 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASD9H 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASD9I 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASD9J 
Likely 

Cytospora sp.           
ASD9 

ASD 
CO 

ASH10B C. nivea X X CY_H01     ASH10 ASH CO 

ASH10C C. nivea X X       ASH10 ASH CO 

ASH10E C. nivea X X CY_H01     ASH10 ASH CO 

ASH10G 
Likely 

Cytospora sp.           
ASH10 

ASH 
CO 

ASH2I C. nivea X X       ASH2 ASH CO 

ASH3D 
Likely 

Cytospora sp.           
ASH3 

ASH 
CO 

ASH3E Cytospora sp. X X   CS_H03 CS_H03 ASH3 ASH CO 

ASH3F Cytospora sp.   X       ASH3 ASH CO 

ASH3I 
C. 

chrysosperma 
X X CC_H03     

ASH3 
ASH 

CO 

ASH5C 
Likely 

Cytospora sp.           
ASH5 

ASH 
CO 

ASH5D C. notastroma X X [Removed]     ASH5 ASH CO 

ASH5F C. notastroma X X [Removed]     ASH5 ASH CO 

ASH5H C. notastroma X X [Removed]     ASH5 ASH CO 

ASH7I 
Likely 

Cytospora sp.           
ASH7 

ASH 
CO 

ASH9A 
Likely 

Cytospora sp.           
ASH9 

ASH 
CO 

ASH9B 
Likely 

Cytospora sp.           
ASH9 

ASH 
CO 

ASH9H 
Likely 

Cytospora sp.           
ASH9 

ASH 
CO 

BDSR1-2 
C. 

chrysosperma 
X X CC_H01     

BDSR1 
BDSR 

CO 

BDSR2-2 C. notastroma X X CN_H01     BDSR2 BDSR CO 

BDSR2-3 
Likely 

Cytospora sp.           
BDSR2 

BDSR 
CO 
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BLD1A C. nivea X X   NI_H03 NI_H03 BLD1 BLD CO 

BLD1F 
C. 

chrysosperma 
X X       

BLD1 
BLD 

CO 

BLD1G 
C. 

chrysosperma 
X X CC_H01     

BLD1 
BLD 

CO 

BLD1H 
Likely 

Cytospora sp.           
BLD1 

BLD 
CO 

BLD2A 
C. 

chrysosperma 
X X CC_H02     

BLD2 
BLD 

CO 

BLD2E 
C. 

chrysosperma 
X X CC_H02     

BLD2 
BLD 

CO 

BLD2J 
C. 

chrysosperma 
X X CC_H06     

BLD2 
BLD 

CO 

BLD3B C. notastroma X X CN_H05     BLD3 BLD CO 

BLD3D Cytospora sp.   X       BLD3 BLD CO 

BLD3E Cytospora sp.   X       BLD3 BLD CO 

BLD3I C. notastroma X X CN_H05     BLD3 BLD CO 

BLD3J 
Likely 

Cytospora sp.           
BLD3 

BLD 
CO 

BLD4A 
Likely 

Cytospora sp.           
BLD4 

BLD 
CO 

BLD4B 
Likely 

Cytospora sp.           
BLD4 

BLD 
CO 

BLD4C 
Likely 

Cytospora sp.           
BLD4 

BLD 
CO 

BLD4E 
C. 

chrysosperma 
X X CC_H02     

BLD4 
BLD 

CO 

BLD4F 
C. 

chrysosperma 
X X CC_H01     

BLD4 
BLD 

CO 

BLD4G 
Likely 

Cytospora sp.           
BLD4 

BLD 
CO 

BLD4I 
C. 

chrysosperma 
X X CC_H01     

BLD4 
BLD 

CO 

BLD4J 
Likely 

Cytospora sp.           
BLD4 

BLD 
CO 

BLH2C 
Likely 

Cytospora sp.           
BLH2 

BLH 
CO 

BLH2D 
Likely 

Cytospora sp.           
BLH2 

BLH 
CO 

BLH2E 
Likely 

Cytospora sp.           
BLH2 

BLH 
CO 

BLH2F 
Likely 

Cytospora sp.           
BLH2 

BLH 
CO 

BLH2G 
Likely 

Cytospora sp.           
BLH2 

BLH 
CO 

BLH2J 
Likely 

Cytospora sp.           
BLH2 

BLH 
CO 

BLH3A 
Likely 

Cytospora sp.           
BLH3 

BLH 
CO 

BLH3G 
Likely 

Cytospora sp.           
BLH3 

BLH 
CO 

BLH4A 
Likely 

Cytospora sp.           
BLH4 

BLH 
CO 

BLH4E 
Likely 

Cytospora sp.           
BLH4 

BLH 
CO 

BLH3B 
Likely 

Cytospora sp.           BLH3 
BLH 

CO 
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BLH3D 
Likely 

Cytospora sp.           BLH3 
BLH 

CO 

BLH3E 
Likely 

Cytospora sp.           BLH3 
BLH 

CO 

BLH5A 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5B 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5C 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5D 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5E 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5F 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5G 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5H 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5I 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH5J 
Likely 

Cytospora sp.           
BLH5 

BLH 
CO 

BLH6C 
C. 

chrysosperma 
X X CC_H03     

BLH6 
BLH 

CO 

BLH6E 
C. 

chrysosperma 
X X [Removed]     

BLH6 
BLH 

CO 

DG1-1A 
C. 

chrysosperma 
X X [Removed]     

DG1 
DG 

CO 

DG1-1B 
C. 

chrysosperma 
X X CC_H03     

DG1 
DG 

CO 

DG1-2A 
C. 

chrysosperma 
X X CC_H03     

DG1 
DG 

CO 

DL1C 
C. 

chrysosperma 
X X CC_H02     

DL1 
DL 

CO 

DL1E 
C. 

chrysosperma 
X X CC_H02     

DL1 
DL 

CO 

DL1F 
C. 

chrysosperma 
X     CH_H17   

DL1 
DL 

CO 

DL1G 
C. 

chrysosperma 
X     CH_H16   

DL1 
DL 

CO 

DL1H 
C. 

chrysosperma 
X X CC_H02     

DL1 
DL 

CO 

DL1I 
C. 

chrysosperma 
X X CC_H02     

DL1 
DL 

CO 

DL2B 
Likely 

Cytospora sp. 
          

DL2 
DL 

CO 

DL3D C. notastroma X X CN_H01     DL3 DL CO 

DL3E C. notastroma X X CN_H01     DL3 DL CO 

DNF1B C. nivea X X CY_H01     DNF1 DNF UT 

DNF1C C. nivea X X CY_H01     DNF1 DNF UT 

EP1A 
C. 

chrysosperma 
X     CH_H10   

EP1 
EP 

CO 

EP1B 
Likely 

Cytospora sp. 
          

EP1 
EP 

CO 

EP1C 
Likely 

Cytospora sp.           
EP1 

EP 
CO 
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EP1E 
Likely 

Cytospora sp.           
EP1 

EP 
CO 

EP1F 
C. 

chrysosperma 
X     CH_H11   

EP1 
EP 

CO 

EP1I 
C. 

chrysosperma 
X X   CH_H07 CH_H07 

EP1 
EP 

CO 

EP1J 
C. 

chrysosperma 
X     CH_H12   

EP1 
EP 

CO 

FC11 
Likely 

Cytospora sp.           
FC1 FC1 CO 

FC1A 
C. 

chrysosperma 
X X CC_H06     

FC1 FC1 CO 

FC1C 
Likely 

Cytospora sp.           
FC1 FC1 CO 

FC2A C. notastroma X X CN_H01     FC2 FC2 CO 

FC2B 
C. 

chrysosperma 
X X CC_H06     

FC2 FC2 CO 

FC3B C. notastroma X X CN_H06     FC3 FC3 CO 

FC4A 
C. 

chrysosperma 
X X CC_H03     

FC4 FC4 CO 

FC6 
C. 

chrysosperma 
X X CC_H03     

FC6 FC6 CO 

FC61 
Likely 

Cytospora sp.           
FC6 FC6 CO 

FC61A 
C. 

chrysosperma 
X X [Removed]     

FC6 FC6 CO 

FC61B 
C. 

chrysosperma 
X X CC_H03     

FC6 FC6 CO 

FC62 C. notastroma X X CN_H01     FC6 FC6 CO 

FC63 
C. 

chrysosperma X X CC_H03     FC6 FC6 CO 

FR1A 
Likely 

Cytospora sp.           
FR1 FR CO 

FR1B 
Likely 

Cytospora sp.           
FR1 FR CO 

FR1D 
Likely 

Cytospora sp.           
FR1 FR CO 

GW2A 
C. 

chrysosperma 
X X CC_H02     

GW2 GW CO 

GW2B 
C. 

chrysosperma 
X X CC_H02     

GW2 GW CO 

GW2C 
C. 

chrysosperma 
X X CC_H02     

GW2 GW CO 

GW2D1 
C. 

chrysosperma 
X X CC_H01     

GW2 GW CO 

GW2D2 
C. 

chrysosperma 
X X [Removed]     

GW2 GW CO 

GW2E 
C. 

chrysosperma 
X         

GW2 GW CO 

GW2F C. notastroma X X CN_H10     GW2 GW CO 

LAD10E 
Likely 

Cytospora sp.           
LAD10 LAD WY 

LAD10E 
Likely 

Cytospora sp.           
LAD10 LAD WY 

LAD10J 
Likely 

Cytospora sp. 
          

LAD10 LAD WY 

LAD1D 
Likely 

Cytospora sp.           
LAD1 LAD WY 
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LAD2C 
Likely 

Cytospora sp.           
LAD2 LAD WY 

LAD2J 
Likely 

Cytospora sp.           
LAD2 LAD WY 

LAD3A C. notastroma X X CN_H03     LAD3 LAD WY 

LAD3B 
C. 

chrysosperma 
X X CC_H01     

LAD3 LAD WY 

LAD3C 
Likely 

Cytospora sp.           
LAD3 LAD WY 

LAD3D 
C. 

chrysosperma 
X X CC_H01     

LAD3 LAD WY 

LAD3E 
Likely 

Cytospora sp.           
LAD3 LAD WY 

LAD3F 
Likely 

Cytospora sp.           
LAD3 LAD WY 

LAD3G 
Likely 

Cytospora sp.           
LAD3 LAD WY 

LAD3H 
Likely 

Cytospora sp.           
LAD3 LAD WY 

LAD3I 
C. 

chrysosperma 
X     CH_H18   

LAD3 LAD WY 

LAD3J 
C. 

chrysosperma 
X     CH_H19   

LAD3 LAD WY 

LAD7C 
Likely 

Cytospora sp.           
LAD7 LAD WY 

LAD7I 
Likely 

Cytospora sp.           
LAD7 LAD WY 

LAD7J Cytospora sp. X         LAD7 LAD WY 

LAD8B C. notastroma X     NO_H19   LAD8 LAD WY 

LAD8E 
Likely 

Cytospora sp.           LAD8 LAD WY 

LAD8I C. notastroma X     NO_H29   LAD8 LAD WY 

LAH10D 
Likely 

Cytospora sp.           
LAH10 LAH WY 

LAH10F 
Likely 

Cytospora sp.           
LAH10 LAH WY 

LAH10G 
Likely 

Cytospora sp.           
LAH10 LAH WY 

LAH10I 
Likely 

Cytospora sp.           
LAH10 LAH WY 

LAH1A 
C. 

chrysosperma 
X X [Removed]     

LAH1 LAH WY 

LAH1B 
C. 

chrysosperma 
X X CC_H04     

LAH1 LAH WY 

LAH1C 
Likely 

Cytospora sp. X         
LAH1 LAH WY 

LAH1D 
C. 

chrysosperma 
X X CC_H01     

LAH1 LAH WY 

LAH1E 
C. 

chrysosperma 
X X CC_H01     

LAH1 LAH WY 

LAH1H 
C. 

chrysosperma 
X X CC_H01     

LAH1 LAH WY 

LAH1I 
Likely 

Cytospora sp.           
LAH1 LAH WY 

LAH1J 
Likely 

Cytospora sp. 
          

LAH1 LAH WY 

LAH1J 
Likely 

Cytospora sp.           
LAH1 LAH WY 
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LAH2A1 
Likely 

Cytospora sp.           
LAH2 LAH WY 

LAH2A1 
Likely 

Cytospora sp.           
LAH2 LAH WY 

LAH2A2 
C. 

chrysosperma 
X X CC_H01     

LAH2 LAH WY 

LAH2A3 
C. 

chrysosperma 
X X CC_H01     

LAH2 LAH WY 

LAH2B 
C. 

chrysosperma 
X X CC_H04     

LAH2 LAH WY 

LAH3E Cytospora sp. X         LAH3 LAH WY 

LAH4F 
Likely 

Cytospora sp.           
LAH4 LAH WY 

LAH4G 
Likely 

Cytospora sp.           
LAH4 LAH WY 

LAH5C 
Likely 

Cytospora sp.           
LAH5 LAH WY 

LAH5J 
Likely 

Cytospora sp.           
LAH5 LAH WY 

LAH6B C. notastroma X X CN_H08     LAH6 LAH WY 

LAH6D 
Likely 

Cytospora sp.           
LAH6 LAH WY 

LAH6F C. notastroma X X   NO_H28   LAH6 LAH WY 

LAH6G 
C. 

chrysosperma X X CC_H05     LAH6 LAH WY 

LAH6H 
Likely 

Cytospora sp.           
LAH6 LAH WY 

LAH6I C. notastroma X     NO_H23   LAH6 LAH WY 

LAH6J 
C. 

chrysosperma 
X     CH_H28   

LAH6 LAH WY 

LAH7B 
Likely 

Cytospora sp.           
LAH7 LAH WY 

LAH8F C. notastroma X     NO_H24   LAH8 LAH WY 

LAH9C 
Likely 

Cytospora sp.           
LAH9 LAH WY 

LAH9F 
Likely 

Cytospora sp.           
LAH9 LAH WY 

LAH9G 
Likely 

Cytospora sp.           
LAH9 LAH WY 

LAH9J 
Likely 

Cytospora sp.           
LAH9 LAH WY 

LV1A 
C. 

chrysosperma 
X     CH_H22   

LV1 LV CO 

LV1B 
C. 

chrysosperma 
X     CH_H23   

LV1 LV CO 

LV1C 
C. 

chrysosperma 
X     CH_H24   

LV1 LV CO 

LV1D 
C. 

chrysosperma 
X     CH_H25   

LV1 LV CO 

LV1F 
C. 

chrysosperma 
X     CH_H26   

LV1 LV CO 

LV1G 
C. 

chrysosperma 
X X CC_H05     

LV1 LV CO 

LV2A 
C. 

chrysosperma 
X     CH_H27   

LV2 LV CO 

LV2B 
C. 

chrysosperma 
X X CC_H05     

LV2 LV CO 
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LV2C 
C. 

chrysosperma 
  X     CH_H09 

LV2 LV CO 

LV2D 
Likely 

Cytospora sp.           
LV2 LV CO 

MKR1A 
Likely 

Cytospora sp.           
MKR1 MKR CO 

MKR1B 
Likely 

Cytospora sp.           
MKR1 MKR CO 

MKR1C 
Likely 

Cytospora sp.           
MKR1 MKR CO 

MKR22 
C. 

chrysosperma 
X X CC_H03     

MKR2 MKR CO 
MKR22_E

L 
C. 

chrysosperma 
X         

MKR2 MKR CO 

MKR2A 
C. 

chrysosperma 
X     CH_H14   

MKR2 MKR CO 

MKR2B 
Likely 

Cytospora sp.           
MKR2 MKR CO 

MKR2D 
Likely 

Cytospora sp.           
MKR2 MKR CO 

MKR2D 
Likely 

Cytospora sp.           
MKR2 MKR CO 

MKR2E Cytospora sp.   X     CS_H05 MKR2 MKR CO 

MM1A 
C. 

chrysosperma 
  X     CH_H11 

MM1 MM CO 

MM1B 
C. 

chrysosperma 
X X [Removed]     

MM1 MM CO 

MM1E 
C. 

chrysosperma 
X X [Removed]     

MM1 MM CO 

MN1A C. notastroma X X CN_H01     MN1 MN MN 

MN1B C. notastroma X X CN_H01     MN1 MN MN 

MN1C C. notastroma X X CN_H01     MN1 MN MN 

MN1D C. notastroma   X     NO_H18 MN1 MN MN 

MN1E C. notastroma X X CN_H01     MN1 MN MN 

MN1F C. notastroma X     NO_H26   MN1 MN MN 

MN1G 
Likely 

Cytospora sp. X         
MN1 MN MN 

MN1H C. notastroma X     NO_H27   MN1 MN MN 

MN1K C. notastroma X     NO_H25   MN1 MN MN 

MNIJ C. notastroma X     NO_H18   MN1 MN MN 

NL2B 
Likely 

Cytospora sp.           
NL2 NL UT 

NL3B C. notastroma X X CN_H02     NL3 NL UT 

NL4B C. notastroma X X CN_H08     NL4 NL UT 

NL4C C. notastroma X X CN_H09     NL4 NL UT 

NP1 C. notastroma X X CN_H09     NP1 NP CO 

NP2 
Likely 

Cytospora sp.           
NP1 NP CO 

NP3 C. notastroma X X   NO_H13 NO_H13 NP1 NP CO 

PF1 C. notastroma X X CN_H07     PF1 PF CO 

PF2 C. notastroma X X CN_H07     PF1 PF CO 
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PF3 C. notastroma X X CN_H07     PF1 PF CO 

RCKEP1A C. notastroma X X CN_H06     RCKEP1 RC CO 

RCKEP2A C. notastroma X X CN_H06     RCKEP1 RC CO 

RCKEP3A C. notastroma X X CN_H06     RCKEP1 RC CO 

SAD10E 
Likely 

Cytospora sp.           
SAD10 SAD CO 

SAD10F 
Likely 

Cytospora sp.           
SAD10 SAD CO 

SAD1A Cytospora sp. X         SAD1  SAD CO 

SAD1C 
Likely 

Cytospora sp.           
SAD1 SAD CO 

SAD1E Cytospora sp.   X     CS_H04 SAD1 SAD CO 

SAD1F 
Likely 

Cytospora sp.           
SAD1 SAD CO 

SAD1H 
Likely 

Cytospora sp.           
SAD1 SAD CO 

SAD3A 
Likely 

Cytospora sp.           
SAD3 SAD CO 

SAD3D Cytospora sp.   X       SAD3 SAD CO 

SAD3E C. notastroma X X [Removed] NO_H15 NO_H15 SAD3 SAD CO 

SAD3H C. notastroma X X [Removed] NO_H16 NO_H16 SAD3 SAD CO 

SAD5B 
Likely 

Cytospora sp.           
SAD5 SAD CO 

SAD5F 
Likely 

Cytospora sp.           
SAD5 SAD CO 

SAD5H 
Likely 

Cytospora sp.           
SAD5 SAD CO 

SAD5J 
Likely 

Cytospora sp.           
SAD5 SAD CO 

SAD9H 
Likely 

Cytospora sp.           
SAD9 SAD CO 

SAH3B 
Likely 

Cytospora sp.           
SAH3 SAH CO 

SAH3C 
C. 

chrysosperma 
X X CC_H01     

SAH3 SAH CO 

SAH3D 
C. 

chrysosperma 
X X CC_H01     

SAH3 SAH CO 

SAH3F 
C. 

chrysosperma 
  X     CH_H12 

SAH3 SAH CO 

SAH3H 
C. 

chrysosperma 
  X     CH_H13 

SAH3 SAH CO 

SAH3J 
C. 

chrysosperma 
X X [Removed]     

SAH3 SAH CO 

SAH5B C. nivea X X   NI_H04 NI_H04 SAH5 SAH CO 

SAH5E 
Likely 

Cytospora sp.           
SAH5 SAH CO 

SAH5H 
Likely 

Cytospora sp.           
SAH5 SAH CO 

SAH6B 
C. 

chrysosperma 
X     CH_H20   

SAH6 SAH CO 

SAH6J Cytospora sp.   X   CS_H06 CS_H06 SAH6 SAH CO 

SAH7E 
Likely 

Cytospora sp.           
SAH7 SAH CO 

SCD2C Cytospora sp. X X       SCD2 SCD CO 
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SCD2D Cytospora sp. X X       SCD2 SCD CO 

SCD2E 
Likely 

Cytospora sp.           
SCD2 SCD CO 

SCD2F C. notastroma X X CN_H08     SCD2 SCD CO 

SCD2J 
Likely 

Cytospora sp.           
SCD2 SCD CO 

SCD5B 
Likely 

Cytospora sp.           
SCD5 SCD CO 

SCH10C Cytospora sp. X X       SCH10 SCH CO 

SCH10D 
Likely 

Cytospora sp.           SCH10 SCH CO 

SCH10F 
Likely 

Cytospora sp.           SCH10 SCH CO 

SCH6C 
Likely 

Cytospora sp.           SCH6 SCH CO 

SCH6H 
Likely 

Cytospora sp.           
SCH7 SCH CO 

SCH7A 
Likely 

Cytospora sp.           SCH7 SCH CO 

SCH7B 
Likely 

Cytospora sp.           SCH7 SCH CO 

SCH7C 
Likely 

Cytospora sp.           SCH7 SCH CO 

SCH7E C. nivea X X   NI_H05 NI_H05 SCH7 SCH CO 

SCH7H 
Likely 

Cytospora sp.           
SCH7 SCH CO 

SCH7J C. nivea X X   NI_H06 NI_H06 SCH7 SCH CO 

SCH8D 
Likely 

Cytospora sp.           
SCH8 SCH CO 

SCH8E Cytospora sp.           SCH8 SCH CO 

SCH8H Cytospora sp. X X       SCH8 SCH CO 

SPD1B 
Likely 

Cytospora sp.           SPD1 SPD CO 

SPD2C 
Likely 

Cytospora sp.           SPD2 SPD CO 

SPD2I 
Likely 

Cytospora sp.           
SPD2 SPD CO 

SPD2J 
Likely 

Cytospora sp.           
SPD2 SPD CO 

SPD3J C. nivea X X   NI_H07 NI_H07 SPD3 SPD CO 

SPD4A 
Likely 

Cytospora sp.           
SPD4 SPD CO 

SPD4B 
Likely 

Cytospora sp. 
          

SPD4 SPD CO 

SPD4C 
Likely 

Cytospora sp.           
SPD4 SPD CO 

SPD4D C. nivea X X CY_H01     SPD4 SPD CO 

SPD4F 
C. 

chrysosperma 
X X CC_H01     

SPD4 SPD CO 

SPD4H 
C. 

chrysosperma 
X X CC_H01     

SPD4 SPD CO 

SPD4I 
Likely 

Cytospora sp.           
SPD4 SPD CO 

SPD4J 
Likely 

Cytospora sp.           
SPD4 SPD CO 
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SPD5F Cytospora sp. X X       SPD5 SPD CO 

SPD5I C. nivea X X   NI_H08 NI_H08 SPD5 SPD CO 

SPD7A 
Likely 

Cytospora sp.           
SPD7 SPD CO 

SPD7A 
Likely 

Cytospora sp.           
SPD7 SPD CO 

SPH2B 
C. 

chrysosperma 
X X CC_H04     

SPH2 SPH CO 

SPH2C 
C. 

chrysosperma 
X X CC_H04     

SPH2 SPH CO 

SPH3B Cytospora sp. X         SPH3 SPH CO 

SPH4C 
Likely 

Cytospora sp.           SPH4 SPH CO 

SPH4D 
Likely 

Cytospora sp.           SPH4 SPH CO 

SPH4E 
Likely 

Cytospora sp.           
SPH4 SPH CO 

SPH4F 
Likely 

Cytospora sp.           SPH4 SPH CO 

SPH4G 
Likely 

Cytospora sp.           SPH4 SPH CO 

SPH4H Cytospora sp. X X   CS_H02 CS_H02 SPH4 SPH CO 

SPH4J 
Likely 

Cytospora sp.           
SPH4 SPH CO 

SPH5I 
C. 

chrysosperma 
  X     CH_H10 

SPH5 SPH CO 

SPH6D 
Likely 

Cytospora sp.           
SPH6 SPH CO 

SPH6J 
Likely 

Cytospora sp.           
SPH6 SPH CO 

SPH7I 
Likely 

Cytospora sp.           
SPH7 SPH CO 

SPH7I 
Likely 

Cytospora sp.           
SPH7 SPH CO 

SRES2 C. notastroma X X CN_H05     SRES2 SRES CO 

SRES4C C. notastroma X X CN_H10     SRES4 SRES CO 

SW2P1 
Likely 

Cytospora sp.           
SW1 SW CO 

SW5B C. notastroma X X CN_H02     SW1 SW CO 

SW6D 
C. 

chrysosperma 
X     CH_H13   

SW1 SW CO 

SW6P2 C. notastroma X X CN_H03     SW1 SW CO 

SW6P3 C. notastroma X X CN_H02     SW1 SW CO 

SW6P4 C. notastroma X X CN_H02     SW1 SW CO 

SW6P5 C. notastroma X X CN_H02     SW1 SW CO 

SW7C C. notastroma X X CN_H02     SW1 SW CO 

SW7C1 C. notastroma X X CN_H03     SW1 SW CO 

SW7D C. notastroma X X CN_H03     SW1 SW CO 

SW8A C. notastroma X X CN_H03     SW1 SW CO 
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Table 3.A2. Collection locations of Cytospora isolates included in this study. 

Site 
name 

UTM, 
Easting 

UTM, 
Northing 

LAD 472334.0 4570564.0 
LAH 466252.0 4556893.0 
MM 454539.8 4516146.8 
BLD 271265.4 4451436.4 
BLH 284246.0 4415173.0 
DL 453162.3 4516086.7 
ASD 343811.7 4326303.5 
ASH 327989.8 4373583.0 
SAH 390930.2 4293937.7 
SAD 419397.4 4302439.3 
SCD 446913.1 4217969.8 
SCH 489489.9 4212748.6 
SPH 447516.7 4301889.5 
SPD 431745.2 4364322.1 
BDSR 455823.8 4510856.2 
SW 506267.1 4427201.7 
FC 490496.1 4488533.0 
FC 492362.9 4488272.9 
FC 490619.1 4489467.5 
FC 491143.9 4488214.7 
RC 434456.2 4504205.5 
AC 443265.3 4505539.1 
DG 452653.4 4505719.7 
FC 492152.6 4488363.5 
EP 451597.6 4471953.1 
LV  513507.0 4420844.1 
SRES 337400.1 4446646.4 
GW 298028.7 4381952.2 
MKR 251878.0 4436740.9 
NP 414451.5 4481497.5 
PF 431237.9 4501222.4 
YA 320137.3 4450162.0 
ANF 90405.1 4520231.6 
NL -202946.1 4191778.6 
DNF -202946.1 4191778.6 
WLGL -66743.7 5424446.1 
MN 1456060.3 5102951.6 
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CHAPTER 4 

THE ASPEN BARK BEETL E, TRYPOPHLOEUS POPULI, AS A POTENTIAL VECTOR 

OF CYTOSPORA CANKER (CYTOSPORA SPP.) ON QUAKING ASPEN (POPULUS 

TREMULOIDES MICHX.) 

 

SUMMARY 

The aspen bark beetle, Trypophloeus populi, is known as a stress-related damage agent 

on quaking aspen. In a previous study, we often found T. populi attacking host trees also infected 

with Cytospora canker. We wished to determine whether T. populi is a potential vector of 

Cytospora canker, and whether Cytospora inoculum could be recovered from adult beetles or 

gallery tissues. We did not recover any Cytospora isolates from 161 adult T. populi beetles 

cultured, and only two Cytospora isolates from 42 beetle galleries and seven adult aspen. We 

suspect that these isolates, cultured from two trees, were a result of a previous infection, as both 

host trees had extensive cankers as well as Cytospora fruiting bodies. 

 

INTRODUCTION 

In the western United States, two species of bark beetles (Solytinae) are known to attack 

quaking aspen (Populus tremuloides): Trypophloeus populi and Procryphalus mucronatus (Petty, 

1977). Both are of the Cryphalini tribe, and are phloeophagus and monogamous (Wood, 1982). 

Identifying these insects generally requires a microscope. T. populi averages 1.5-2.1 mm and P. 

mucronatus averages 1.8-2.2 mm in length. A reliable feature for telling the two apart is the 

length of the antennal funicle and the shape of the antennal club; T. populi have a five-segmented 
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funicle, and a slender antennal club, the apex of which is narrowed. Members of P. mucronatus 

have a distinctly rounded antennal club (Wood, 1982).  

Weakened or stressed aspen are preferred hosts of T. populi, although apparently healthy 

trees have also been reported to be mass-attacked by this insect (Petty, 1977; Stewart et al. 

1979). Adults emerge in July-August and fly to new host trees, attacking the main stem and 

branches of the host from the lower bole to the crown (Petty, 1977; Stewart et al. 1979). Female 

beetles begin to excavate a cave type primary gallery and as the females emerge to remove 

boring dust, males copulate with them. The male may then either move on or follow the female 

into the gallery (Petty, 1977; Stewart et al. 1979). Territorial behavior occurs between males and 

females: a female searching for a potential gallery site may displace another female already 

constructing her primary gallery; any male protruding above a primary gallery entrance is a 

potential target for other, mate-less males (Petty, 1977; Stewart et al. 1979). Upon completion of 

the primary gallery, females lay an average of fourteen eggs either in a single mass or in two to 

three separate lobes in the primary gallery directly below the paper-thin outer bark (Petty, 1977; 

Stewart et al. 1979). Petty (1977) hypothesized that such a placement aids larval development, as 

heat from the sun could aid incubation, or allow air flow around the egg masses, preventing 

bacterial or fungal infestation. First-instar larvae construct meandering feeding tunnels, and pass 

through a second and third instar before excavating a frass-free pupation niche. Newly formed 

adults emerge and seek a new host tree (Petty, 1977; Stewart et al. 1979). All instar phases may 

overwinter, however Petty (1977) observed that survival was greater for second- and third- 

instars. Former brood trees can be identified by the characteristic cracking of the thin bark 

covering the primary and larval feeding galleries (Petty, 1977; Stewart et al. 1979).  



 

140 
 

A tree that has been host to Trypophloeus populi may weeks later become attacked by 

Procryphalus mucronatus, which is noted by Petty (1977). Unlike its cousin, P. mucronatus 

targets recently-killed host trees, particularly those with spongy, fermenting bark (Petty, 1977; 

Stewart et al. 1979). Host selection and mating behaviors are very similar to T. populi, with the 

exception that male P. mucronatus beetles help the females excavate the primary gallery, which 

is slightly larger (14 mm average length, vs 10 mm) than T. populi. Females lay an average of 16 

individual eggs in niches along the primary gallery, and then cover each with boring dust. Larvae 

feed in a meandering pattern, and pass through two instar phases before pupating. All life stages 

except pupae and eggs may overwinter. Adults that have overwintered may emerge as early as 

April and May to search for new hosts. Procryphalus mucronatus produces 1.5- 2 generations 

per year (Petty, 1977; Stewart et al. 1979). 

A third bark beetle known to occur on Populus tremuloides, though not in Colorado, is 

Trypophloeus thatcheri. Like T. populi, this species attacks bark tissue of dying aspen or black 

cottonwood (Populus trichocarpa) (Wood, 1982). Incidence of this beetle has been reported 

along the Pacific coast, from British Columbia to California (Wood, 1982).  Another 

Trypophloeus species found in North America, T. striatulus (Mannerheim) occurs primarily in 

the boreal zone from Alaska to Nova Scotia and feeds on felt leaf willow (Salix alexensis 

(Andersson) Coville) (Furniss, 2004). Furniss frequently observed Cytospora cankers on stems 

infested by T. striatulus, although he found no evidence that the beetles vectored the fungus 

(Cytospora sp.) (2004). 

Three other beetles often found on quaking aspen in Colorado include an ambrosia beetle, 

Trypodendron retusum, and two wood borer species, Saperda calcarata (Cerambycidae) and 
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Agrilus liragus (Buprestidae). The widely distributed aspen ambrosia beetle, Typodendron 

retusum (Cucurlionidae), attacks weakened aspen trees (Hinds & Davidson, 1972). 

Petty, Stewart, and others in their investigations of T. populi (Petty, 1977; Stewart et al. 

1979), observed that trees recently attacked by these beetles often displayed areas of orange 

tissue surrounding entrance holes. He successfully cultured the fungus, but did not identify it. 

This work, coupled with an aspen health survey conducted 2009-2010, in which we observed 

that aspen that had been attacked by bark beetles also had Cytospora canker, led us to speculate 

that T. populi is a vector for at least one species of Cytospora. The questions we wished to 

answer were: (1) do adult T. populi beetles carry spores or hyphae of one or more Cytospora 

species? (2) Does one or more Cytospora species occur in T. populi egg galleries? 

 

MATERIALS AND METHODS 

Emergence cages 

  Eight dying adult aspen trees having a DBH of 12.0 cm or greater were collected from 

five locations in Fort Collins, Colorado, and from a single location on the Pike National Forest in 

central Colorado. Three of the trees selected showed evidence of past beetle activity, such as 

minute exit holes (< 1 mm diameter), and small (2-3 cm) diameter patches of dead bark, which 

when removed revealed meandering feeding galleries. Potential source trees were identified and 

felled between June of 2012 and April 2014. Emergence boxes used in this study were 

constructed from wooden oriented strand board (OSB), and measured approximately 90cm on 

each side. The front of each box was covered with bronze screen, and a square piece of black 

woven weed barrier to exclude daylight. A glass mason jar was affixed over a circular hole over 

the bottom of each box, and was the sole source of light into each emergence box. Two to three 
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logs from the same tree were placed in each emergence box, and jars were checked for beetles 

weekly for a period of 6-8 months. Emerged beetles were placed in sterile, 1.0 mL plastic vials 

and stored in a -20 C freezer. All beetles were examined under a dissecting microscope to 

confirm the species, and tallied based on date of emergence and source tree. Other insects 

emerging from the source trees were noted, but not tallied. 

Feeding Assay 

 Adult beetles were collected daily as they emerged, and were immediately placed in a 

paper bag with freshly-cut sections of young aspen (2-3 cm dbh), and the bag was then placed 

inside of a clear plastic box (45 cm x 25 cm x 20 cm). A dozen beetles were placed in each box, 

with a total of six boxes of beetles and aspen branches. Boxes were stacked out of direct sunlight 

in a laboratory at ambient (25 °C) conditions, and checked daily for evidence of beetle feeding.  

Trapping Assay  

 It is unknown whether T. populi respond to a particular hormone lure, so we utilized three 

different lure types (ambrosia beetle lure, turpentine beetle lure, or none) placed in Lindgrenn 

funnel-type traps at two sites on the Pike National Forest in central Colorado in June, 2012. The 

two sites were selected based upon a previous study, conducted in 2009-2010 that indicated 

presence of dying trees and aspen bark beetles (Dudley, et al. 2015). At each site, a 278-meter 

(900 ft) transect was established, and one trap hung from the nearest adult aspen tree every 46 

meters (150 ft) along the transect. For each trap placed along the transect, two more traps were 

established ten meters from the first trap, at an angle of 60° between them (Fig 1). A total of 

twenty-one traps were established at each of the two sites, in seven clusters of three traps. Each 

cluster included one trap without a lure (“none”), one trap with an ambrosia beetle-type lure 

(Gnathotrichus sulcatus), and one trap with a turpentine beetle-type lure (Dendroctonus valens). 



 

143 
 

Beetle lures were obtained from Synergy Semiochemicals Corporation (Burnaby, BC, Canada). 

No killing agent or liquid was used in collection cups. All traps were checked weekly for beetles 

June-September, 2012. 

Isolation of beetles and beetle parts 

A series of isolations were made from various beetle parts using frozen T. populi adult 

beetles obtained from emergence boxes. Either ½-strength potato dextrose agar (PDA) or ¼-

strength PDA amended with two antibiotics (streptomycin and chlorothalonil at 100 mg/L) was 

used in all isolations. A variety of aseptic isolation techniques were utilized, including: whole 

beetle maceration; whole beetle maceration with surface disinfestation (using either a 10% 

bleach solution, or 70% ETOH); direct plating of beetle elytra (6 beetles); streaking of a plate 

with beetle elytra (6 beetles); vortex and streaking of an intact beetle in sterile water (50 beetles); 

maceration and plating of the macerate (50 beetles). In combination with these techniques, we 

also vortexed some whole adult beetles in sterile water and in a solution of sterile water and 

Tergitol™ 15-S-9 surfactant (The Dow® Chemical Company, Midland, MI), or sterile water and 

mild liquid castile soap (Dr Bronner’s® Magic Soaps,  ista, CA). Three concentrations of 

Tergitol® were tested, including a 1:50 (0.02x) surfactant:sterile water solution (36 beetles), as 

well as a 1:10,000 (0.00001x) solution (18 beetles) and1:12,500 (0.000008x) surfactant:sterile 

water solution (24 beetles). Three concentrations of Dr Bronner’s ® soap were tested, including 

a 1:50 (0.02x) sufactant:sterile water solution (24 beetles), a 1:100 (0.01x) sufactant:sterile water 

solution (14 beetles), and a 1:200 (0.005x) sufactant:sterile water solution (14 beetles); plating of 

beetle head capsule following immersion and vortexing in a 0.01x solution of castile soap in 

sterile water (8 beetles); plating of beetle head capsule following immersion and vortexing in a 

0.005x solution of castile soap in sterile water (8 beetles) For each surfactant solution, one beetle 
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was placed in a sterile 1.2 mL screw-top microcentrifuge vial and placed in a shaker for 45 

seconds, then a centrifuge for 30 seconds in order to dissipate excessive foam. The contents of 

each vial was streaked onto a plate of ½-strength potato dextrose agar (PDA), sealed with 

Parafilm M ® (Bemis Company, Inc. Oshkosh, WI), and placed in an incubation chamber at 25 

°C for a period of up to three weeks. Cultures were examined for presence of Cytospora species, 

and a few non-Cytospora single-spore isolates were transferred to a 250-mL beaker with liquid 

media (potato dextrose broth). Beakers were placed in a shaking incubator for 5-6 days at 25 °C.  

Once fungal tissue samples had grown to about 2 cm in diameter, they were extracted 

from the liquid medium using a centrifuge, placed in 2 mL plastic vials, and stored in a -4 °C 

freezer. DNA extraction was performed using the Invitrogen DNA extraction kit (Life 

Technologies, Grand Island, NY). Following extraction, nucleotide concentration of the samples 

was assessed using a Nanodrop© 2000 sensor (NanoDrop Products, Thermo Scientific, 

Wilmington, DE). Samples that contained at least 15 ng/µl of DNA were then used for 

polymerase chain reaction (PCR), using a MyCycler ™ Thermal Cycler (Bio-Rad Laboratories, 

Inc. Hercules, CA). Primers used in this study included ITS1 and ITS4, for the amplification of 

the 5.8S rDNA subunit. Successful PCR products were purified using a Roche High Pure PCR 

Product Purification Kit (Roche Diagnostics Corp., Indianapolis, IN), and DNA concentrations 

were again assessed using the Nanodrop© sensor.  Approximately half of the samples were sent 

for sequencing to the Colorado State University Proteomics and Metabolomics Facility, and half 

to the University of Arizona Genetics Core facility (Tucson, AZ). All sequences were identified 

using the standard nucleotide BLAST Sequence Analysis Tool (Altschul, et al. 1990).  

Isolation of gallery tissues 
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 A series of isolations were conducted using discolored bark tissue in and around beetle 

galleries. Six individual galleries from seven of the eight attacked aspen trees (previously placed 

in emergence cages) were selected, and four pieces of bark tissue (1-2 mm2) were removed from 

each gallery and plated onto a single plate of ½-strength potato dextrose agar (PDA). All forty-

two plates were incubated in a laboratory under ambient conditions (25 °C) for a period of three 

weeks, during which they were examined for evidence of Cytospora species.  

 

RESULTS 

Emergence cages, feeding and trapping assays. 

 We collected 830 adult T. populi beetles and 450 adult P. mucronatus beetles from eight 

adult aspen trees over a period of eight to twelve months. The emergence period for T. populi 

lasted from May-July, and peaked in May (Figure 2). The emergence period for P. mucronatus 

lasted from June- August, and peaked in July (Figure 2). Under the artificial conditions in the 

lab, T. populi appeared to either undergo a second emergence period in the autumn, with 2 

beetles emerging as late as January (Figure 2), or some of the adult beetles that emerged earlier 

in the spring may have tunneled back into the logs still in the cages and produced a second, false, 

emergence. 

 Of the 72 adult T. populi beetles placed in bins with freshly-cut aspen branches, only a 

single beetle appeared to feed on the aspen branches. All others died without feeding or 

producing entrance holes in the bark. 

 A single adult T. populi beetle was captured over the summer of 2012. A variety of 

insects were trapped each week, but none of them pertained to the focus of this study.  
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Isolation from beetle parts and plant tissues surround galleries. 

Overall, 76% the 214 plates (representing 161 bark beetles) produced no fungi, and very 

little bacteria (Figure 2). No Cytospora isolates were recovered from any of the plates. The non-

Cytospora fungal cultures obtained included Chaetomium globosum and Clonostachys rosea.  

Of the seven aspen trees and 42 galleries examined and cultured, we recovered two 

Cytospora isolates from two galleries in two trees. These isolates were identified by morphology 

to be C. chrysosperma. 

 

DISCUSSION 

The results of this study suggests that the aspen bark beetle, T. populi, does not vector 

Cytospora species, or if it does, it is a poor vector. Although we recovered Cytospora isolates 

from tissues surrounding galleries on two aspen trees, we suspect that these trees were 

systemically infected with the fungus, as cultures were also made from numerous fruiting bodies 

found in clusters over most of the bark surface. Worrall et al. (2010) successfully isolated C. 

umbria from symptomless alder (Alnus incana ssp. tenuifolia) tree tissues, and thus it is possible 

that the Cytospora we isolated were, at that time, existing epiphytically. 

Petty (1977) described an orange-colored canker on the aspen trees from which he 

collected T. populi. Although he did not identify the fungus, it seems likely that the canker he 

was describing was Cytospora. However, it is important to note that both T. populi and 

Cytospora spp. are secondary damage agents to quaking aspen, and generally only successfully 

colonize hosts trees experiencing some form of environmental stress (Bloomberg, 1962a & 

1962b; Petty, 1977; Guyon, et al. 1996; Marchetti, et al. 2011). Cytospora is nearly ubiquitous in 

quaking aspen stands, especially those undergoing extensive dieback and mortality (Worrall, et 
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al. 2008; Marchetti et al. 2011; Dudley, et al. 2015). Thus, it may have been coincidental that the 

dying aspen on which the Petty’s (1977) description of T. populi was based also had Cytospora 

canker. Alternatively, the beetles could also provide entry points to infection by Cytospora from 

the feeding and egg gallery construction. 

We note that Furniss (2004) also hypothesized that T. striatulus (found on Salix alaxensis 

Colville) carried Cytospora, as he described frequently finding the two together on the same 

host. Upon examination with electron microscopy, however, Furniss showed that the few 

conidiospores present on T. striatulus adults were far too large (with a diameter of 8 μm) to be 

Cytospora conidia (approximately 3 μm) (Furniss, 2004). We did not investigate the possibility 

that Cytospora species could produce volatile compounds as it attacks a host tree, which could 

serve as an attractant to T. populi. This idea was likewise suggested by Furniss (2004) to occur 

between S. alaxensis and T. striatulus. However, because we could not consistently isolate 

Cytospora from the majority of host tissues (or adult beetles), an investigation of the purported 

semiochemicals found such a relationship would have to include those compounds produced by 

drought-stressed or otherwise dying quaking aspen trees. 

In summary, we did not detect Cytospora on any of the adult aspen bark beetles we 

attempted isolations from, and recovered only two Cytospora isolates overall from gallery tissue, 

and which we suspect were a result of a previously-infected host tree. Thus, although multiple 

aspen health surveys have detected high incidence of both Cytospora canker and evidence of 

aspen bark beetles, the relationship between the two (if one exists) remains unclear. 
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FIGURES AND TABLES 

Figure 4.1. Schematic of Lindemann funnel traps placed at two sites on the Pike National Forest 
in central Colorado, June-September 2012. Yellow stars represent traps placed along the transect; 
red stars represent two additional traps placed 10 meters from the first trap. Each of the three lure 
treatments were assigned randomly to each triplet of traps. 

Figure 4.2. Numbers of adult Trypophloeus populi and Procryphalus mucronatus bark beetles 
emerging from eight adult (> 12 cm DBH) aspen trees placed in emergence cages, from June 
2012-November 2014. Autumn includes the months September-November; Winter includes the 
months December-January. Monthly counts represent up to three years’ worth of data. 
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Figure 4.3. Clockwise, from top left: Bark beetles that occur on quaking aspen (left) 
Procryphalus mucronatus and (right) Trypophloeus populi; Right: frass at gallery entries on a 
quaking aspen; a close-up of the head capsule of an adult Trypophloeus populi (note the 
elongated antennal club); adult T. populi beetles. 
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Figure 4.4. Photograph of isolates obtained from adult T. populi beetles, vortexed with 50 uL 
sterile water and streaked onto ¼-strength potato dextrose agar plus antibiotics. 
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