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ABSTRACT

The phenomenon of one-dimensional flow of two immiscible fluids in porous media is studied
both theoretically and experimentally with particular emphasis on the infiltration problem. The
theoretical work is based on a differential equation derived by combining Darcy's law for both
fluids with the equation of mass conservation. Experiments used in the study were designed to
simulate field situations in which the resistance to flow of the displaced air significantly
affects the flow of the liquid.

The first portion of the study is the determination of criteria for the construction of
similar physical systems when the flow phenomenon is that of two-immiscible fluids, one of which
is compressible. Five criteria for similitude are recognized and discussed. The analysis
presented shows that the construction of rigorously similar physical systems, in this case, is
impractical except in some simple cases in which an artificially induced body-force field can
be induced.

A solution for the horizontal displacement of an incompressible non-wetting fluid by an
incompressible wetting fluid under certain boundary conditions is derived. This solution is used
as a starting point for the development of approximate analytical solutions for the vertical
case, Predicted and experimental infiltration rates in Poudre sand agree quite well.

Both a theoretical and experimental analysis of infiltration, subject to a '"'rainfall"
boundary condition are presented. The effect of counter-flowing air is included. The factors
affecting the time at which ponding occurs are discussed. It is shown that the capillary pres-
sure at the surface of the porous medium approaches the value at which ponding occurs almost
asymptotically in time when the infiltration rate is near the unsaturated hydraulic conductivity.
The surface value of capillary pressure (or saturation) at which ponding occurs is not the value
predicted from a one-phase flow analysis.

Experiments on infiltration into bounded columns show that the rate of infiltration is
significantly impeded by the compression of air in the clesed column. The physics of this process

is analyzed and discussed.

viii



INFILTRATION AFFECTED BY FLOW OF AIR

David B. McWhorter

INTRODUCTION

The objectives of this study were two-fold:

1) To investigate the feasibility of con-
structing physical models to provide
quantitative data applicable to pro-
totype systems in which the flow
phenomenon is that of two immiscible
fluids, one of which is compressible.

2) To study the infiltration problem both
theoretically and experimentally, by
considering the problem as one of two-
phase flow in a porous medium.

Laboratory experiments have been used extensively
to study the flow of fluids in porous media. The
objectives of the experiments often fall into one of
two broad categories. The first category is con-
cerned with the acquisition of basic and fundamental
knowledge of the process. The concern of the second
category is to provide data which can be used to
design and predict the behavior of systems which can-
not be conveniently tested in the laboratory. In the
latter case, a method must be devised by which the
differences in the physical and time scale between
laboratory model and prototype are correctly taken
intoe account. Usually, a solution to a mathematical
model is the most desirable method for generalizing
the results of such experiments. However, if the
physical geometry and boundary conditions are suf-
ficiently complicated, an analytical or numerical
solution to the mathematical model may be impractical.
In such a case, it is important to perform the experi-
ments on a model which is physically similar in all
important respects to the particular prototype in
question. The results of the experiment can then be
generalized to predict, quantitatively, the behavior
of the prototype. The first objective of this study
was to determine the criteria for the proper con-
struction of such models.

To realize this objective, the appropriate
governing equations were scaled according to the
procedures used by Brooks and Corey (3), Scott and
Corey (29), Corey et al. (8), and McWhorter and Corey
(14). The work of these investigators has shown that
selecting the appropriate system parameters as the
scale factors for the variables is important if the
maximum generalization and the least restrictive

criteria for similitude are to be obtained. The
selection of the appropriate scaling parameters is
discussed.

The second objective of this study falls into the
first category discussed above. It was the intent to
gain a further knowledge and understanding of two-
phase flow in porous media with particular emphasis on
the infiltration problem. Infiltration is the name
given to the phenomenon of liquid in-take by porous
materials. A quantitative description of infiltration
is particularly important to scientists and engineers
interested in the replenishment of soil water, ground
water recharge, and infiltrating watersheds.

In the infiltration process, liquid enters the
porous material under the influence of forces induced
by gravity and capillarity. The occurrence of the
phenomenon in the field always involves the displace-
ment of air by water and is, therefore, a two-phase
flow problem. Experimental and theoretical work have
established that the infiltration rate is very large
at small times and decreases to a limiting value at
large times. High initial rates are the result of
large forces induced by capillarity which rapidly
decrease as the quantity of liquid in the porous
material increases. As infiltration proceeds, the
force induced by capillarity continues to be reduced,
and ultimately the gravitational force becomes
dominant.

Experimental and analytical methods were employed
to attack the infiltration problem. The similarity
transformation used by Philip to reduce the Richards'
equation for horizontal flow to an ordinary
differential equation was applied to the corresponding
equations for two-phase flow. An approximate solution
for vertical infiltration was derived. Experiments
similar to those of Peck (17,18) were performed on
columns of Poudre sand and Berea sandstone.

The problem of constant rate infiltration was also
studied. Measurements of both the liquid and air pres-
sure at various positions along the column as a func-
tion of time were made. An approximate solution for
this case was derived. The solution elucidates the
factors effecting the time at which ponding will occur.



BACKGROUND

The literature concerning the infiltration of
liquids in porous media is but a small portion of that
on flow in porous media in general. Even so, the
literature dealing directly with the infiltration
phenomenon is quite extensive. The author has chosen
to divide the discussion of the literature concerning
infiltration into three broad categories: 1) infiltra-
tion equations, 2) analyses based on the Richards'
equation, and 3) analyses based on the two-phase flow
equations. Within this framework, significant experi-
mental works are cited.

A large percentage of the previous work falls
within the first two categories. Only in the past few
years have investigators in the infiltration field
addressed themselves to the studies indicated in the
third category.

Infiltration Equations

Early attempts to quantify the infiltration
process were, for the most part, formulas which were
obtained empirically or derived from a limited physical
basis. The formula of Green and Ampt (11) was derived
from a simplified model of the infiltration process.
These authors assumed that the saturation profile
propagates as a distinct front, behind which the
saturation distribution was uniform at the maximum
value obtainable in the imbibition process. It was
assumed that the saturation of the porous material
at points ahead of the advancing front remained at a
uniform initial saturation. Combining Darcy's law
and the continuity equation for this particular model
results in a simple differential equation which is
easily integrated to obtain:

h_#(5.-5.)
S e Wi
c T in |1l +

_“q_ds_) o
ht¢[50- i]

where Q is the cumulative infiltration, ¢ is the
porosity, ht is the total head S0 is the maximum

saturation obtained on the imbibition cycle, Si is

the initial saturation, C is the hydraulic conductiv-
ity at S0 ,and t 1is the time. The total head ht

is the sum of the capillary pressure head at the front
and the depth of ponded liquid on the surface.

Another example is the formula of Horton (13):
-at
Eag, % (£, ~%)e

is the infiltration rate at time
is the

In this formula f£
. fo is the initial infiltration rate, fe

limiting value of the infiltration rate, and o is a
constant with little or no physical interpretation.
Childs (6) reports that this infiltration equation
can best be regarded as an intuitive formula.

The above formulas are examples of algebraic
equations derived from limited physical concepts.
These equations are most often used by adjusting the
parameters to fit a given set of data. In some cases,
any physical significance of the various parameters is
entirely lost. This is particularly true of the Green
and Ampt formula.

Another infiltration formula commonly used is that
proposed by Philip (22):

Here 4 is the infiltration rate, t is time and

S and B are constants which can be adjusted to give
the best fit to measured infiltration rates. Philip
proposed this equation after a detailed mathematical
study of the physies of the infiltration process.

This study will be discussed further in the next
section.

The formulas given above do not constitute a
complete list of such equations, but rather serve as
examples of the work in this field.

Analyses Based on the Richards' Equation

In 1931, Richards published a mathematical model
of the capillary conduction of liquids in porous media.
The equation (now known as the Richards' equation) has
remained the basis for most of the work concerning
infiltration since that time.

Richards combined Darcy's law and the equation
of mass conservation for the liquid to obtain:

L[Cﬂ - 35 o 38
9z iz 3z

In this equation, C is the hydraulic conductivity,
8 is the volumetric moisture content, h is the
capillary suction head, and z and t are the space
and time coordinates respectively.

The Richards' equation has been made more amenable
to solution by converting it to an equation with 6
as the only dependent variable or to a form with h
as the only dependent variable. The former is known
as the '"diffusivity" or water content form, and the
latter is called the pressure head form. The conver-
sion to either the water content or pressure head form
is accomplished by the use of the functional relation-
ships among C , 8 , and h . The pressure head form
is somewhat more general than the diffusivity form
insofar as it can be applied in both saturated and
unsaturated domains. The diffusivity form yields no
information in saturated regions because the relation-
ship between h and @ is not single valued,

The series of papers (19 through 25) by Philip
remains today as the classical analysis of infiltration.
Philip obtained an approximate solution to the
Richards' equation under the boundary conditions of
constant water content at the upper surface and also
for a ponded water boundary condition. The initial
condition treated by Philip was a uniform water con-
tent. The equation for infiltration rate derived from
this analysis ’s:

q, = % i (C_+B) + % be¥s2p e, .



A series of ordinary differential equations requiring
numerical solution was presented from which each of
the coefficients S, B, D, E and etc. can be
calculated. The constant Cn is the hydraulic

conductivity associated with the initial water content,

The above series diverges for large t . Philip
also proposed a large time approximation which can be
used for values of t for which the above series
diverges.

Parlange (16) recently proposed another
approximate solution to the Richards' equation using
an approach quite different from that of Philip. After
transforming the diffusivity equation to an equation
with z as the dependent variable, the unsteady term
was neglected and a first approximation to the water-
content profile was obtained by integration. Using
this approximation, the unsteady term was calculated
and reinserted in the differential equation. A second
approximation was derived by again integrating the
differential equation. Numerical agreement between
the second approximation and the results of Philip's
analysis was very good.

Parlange's method does not require numerical
solution of ordinary differential equations, but does
require considerable numerical integration. An
advantage of Parlange's method is that the solution is
valid for large times and the so-called profile at
infinity evolves naturally from his approximations.
This is true because the approximation makes use of
the steady-state profile which becomes the proper
profile at infinity as the infiltration rate approaches
the unsaturated hydraulic conductivity.

Analytical work such as that done by Philip and
Parlange has contributed immeasureably to the under-
standing of the physics of infiltration. It is
unfortunate that such work is invariably limited to
systems with simple initial and boundary conditions,
simple geometries, and highly idealized media. Several
investigators have used numerical techniques to solve
these more difficult and more realistic problems.
Among them are Hanks and Bowers (12), Rubin and
Steinhart (28), Whisler and Klute (32,33), and Smith
(31). Whisler and Klute, for example, studied in-
filtration into stratified soils under conditions of a
non-uniform saturation distribution and included the
effect of hysteresis in their calculations. Smith
numerically solved the Richards' equation for condi-
tions of stratified soil and included the effect of a
time varying boundary condition.

Two-Phase Flow Analyses

It has long been recognized that infiltration is
a process of two-phase flow even though most of the
previous work has been based on a one-phase equation.
Neglecting the resistance to flow of the air phase

has been justified by pointing to the small viscosity
of air as compared to that of water. Free and Palmer
(10) conducted experiments in 1940 which showed that
infiltration was significantly effected when the air
was not allowed to escape freely. In 1963, Wilson and
Luthin (35) reported the results of experiments
designed to show how air compression ahead of a
wetting front affected the imbibition rate.

Youngs and Peck (36) discussed the effects of air
compression on the imbibition rate from a physical
point of view. Even though these authors mathematical
analysis did not rigorously incorporate the effects of
the air phase, their explanation of the physics of the
phenomenon was quite detailed and did account for the
effect of pore-air pressure in all important respects.
Peck (17,18) reported experimental results of infiltra-
tion into bounded horizontal and vertical columns.

Adrian and Franzini (1) were able to account for
(to some degree) the retarding effect of the compressed
air. These authors' model was essentially that of
Green and Ampt (11), except Adrian and Franzini in-
cluded the resistance caused by the air phase. Similar
work was done by Dicker (9).

Phuc (26) analyzed infiltration as a two-phase
flow problem by solving the appropriate equations
numerically. Phuc's model is capable of handling
realistic hydrologic boundary conditions including
those imposed by rainfall hyetographs. In addition,
hysteresis and compressibility are incorporated in
this model.

Brustkern and Morel-Seytoux (4) have used a uni-
que approach to the solution of the governing two-
phase flow equations. The method is principally ana-
lytic. To determine the shape of the saturation pro-
file at any time, these authors neglected capillary
pressure gradients which results in an equation for
the saturation profile which contains a known function
of saturation and the so-called total velocity. The
total velocity is the algebraic sum of the flux of the
liquid and air phases. The total velocity is calculat-
ed by integrating a form of Darcy's law (into which has
been incorporated the flow of both phases) over the
approximate profile determined in the previous time
step. This integration is carried out giving full
consideration to both capillary and gravity forces,
Using this value of the total velocity, the profile
for the next time step is calculated and the process
is repeated. A significant aspect of these authors'
work is that their solution is valid for large time
as well as for small time.

The solution method derived by these authors is
sufficiently general to handle flow problems in finite
as well as semi-infinite media, To date, this appears
to be the most promising model available for the
solution of two-phase infiltration problems when the
infiltration rate is of primary importance.



THEORETICAL ANALYSIS

Presentation of Equations for the Flow of Two Fluids
in Porous Media

The equations which describe the flow phenomenon
are based on the following assumptions:

(1) Darcy's law is valid and can be applied
equally well to either the wetting or non-
wetting phase,

(2) the physical properties of the porous medium
are constant in time and space,

(3) the porous medium is homogeneous and
isotropic,

(4) the two fluids are homogeneous and immiscible,
and their viscosities are constant,

(5) the wetting fluid is incompressible and the

non-wetting fluid is compressible.

The foregoing assumptions allow one to write the
following expressions:

(VPE " pa E) » [1)

by (VP" *ry, 2) 3 2)

(3)
and
R =0 (4}

where,

gravitational vector,

saturated permeability,

relative permeability - the ratio of the
effective permeability to the saturated
permeability,

pressure,

volumetric flow rate per unit of area,
saturation of the wetting phase,

time

porosity,

density,

dynamic viscosity,

and the subscripts a and w refer to the non-wetting
and the wetting fluids respectively. The pressures in
equations (1) and (2) are measured relative to an
absolute pressure of zero.

M o
n

Eoenngw

Equations (1) and (2) are Darcy's law written for
the non-wetting and the wetting phases respectively.
Equation (3) is the expression for mass conservation
of the incompressible wetting fluid. The mathematical
expression for mass conservation of the compressible
non-wetting phase is given in equation (4).

The capillary pressure is defined as the
difference between the non-wetting fluid pressure and
the wetting-phase pressure; that is

Pc = Pa - Pw

(5)

Additional independent relationships among the variables
in the above equations are usually determined by
experiment. These functional relationships are
represented by the following equations:

ra kra {S]
Ky = Kk (8)
c pC (S}

g, = na(Pa]

(6)

o
n

The combination of equations (1) through (6)
constitute a set of simultaneous equations which can
be solved in principle when the appropriate initial
and boundary conditions are specified.

Scaling the Flow Equations

The principle objective of scaling the flow
equations is to make the particular solution to the
system of equations applicable to a larger class of
problems than is the unscaled version. The numerical
value of constants and constant coefficients in
equations derived from physical principles almost
always depends on the physical parameters of the
problem. Unless all such constants and coefficients
have the same value in two different situations, then
the equations describing the two systems are different,
even though the same physical phenomenon is occurring
in both cases. In such a case, the solution obtained
from one system is not applicable to the second one.

On the other hand, if by properly scaling the
governing equations, all constants and coefficients
can be reduced to constants that are independent of
the physical parameters, then the solution obtained
for one system can be applied to the second one by
simply using the values of scale factors appropriate
for the second system. Of course, it is not always
possible to reduce all the constants and coefficients
to constants independent of the system parameters.
Usually, however, it is possible to reduce some of
them and, thereby, gain some generality.

A scaling theory proposed by Brooks and Corey (3)
has been found to yield criteria for similitude which
are easily satisfied in practical situations when the
process is one of drainage of the wetting phase.
McWhorter and Corey (14) extended the theory to include
two-phase drainage problems in which both fluids are
incompressible. The following work makes use of the
approach used by these investigators.

Each variable in the flow equations must be
scaled by some characteristic parameter of the system.

It is sufficient to designate these by: Po i Recy Lo'

s and q - The actual parameters to be used are

selected so that the scaled equations provide a
maximum generality and the criteria of similitude are
the least restrictive.

Scaling equations (1) through (4) results in:

. PP .
o 'k {v L * P P E) )
Ta Lo

(7
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The symbol """ refers to the scaled form of the
variables and operators.

Although the saturation S is already dimension-
less, it is convenient to introduce the transformation:

(11)

The significance of 50 and Si depends upon whether

the process is one of drainage or of wetting. In
drainage processes it has been found that the criteria
of similitude are made less restrictive by introducing
equation (11) with Su = 1.0 and Si equal to the

residual saturation. In imbibition or wetting
processes, the maximum saturation of the wetting

phase is usually less than unity due to the entrappment
of the non-wetting phase in the wetted zone. So is

the symbol given the maximum saturation obtained in
the imbibition process. The initial saturation is
represented by Si .

Using equation (11) in equations (9) and (10)
yields:

b Lol8iag,Y .2 g 8
%ﬁ+ 7eq =0
oqu at

(12)

and oy
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o % at

It has been found by Brooks and Corey (3) that the
following relationships among the scale factors are
appropriate:

LO = Polﬂw E » (14)
qn = K POID& LU » (15]
12 uy ¢(S,-S;)
t = 0 a o - [16)
o K PU

Substituting equations (14) through (16) into equations
(7), (8), (12), and (13) results in:

;a = ke @ i;a ' ;a 33} an

q =2 18
W Ky (VP +85) (18)
s A -

—_— " =

% Q=0 (19)
28 & o

TR e (20)

where the symbol E; is the unit vector parallel to

the gravitational field. It should be noted that the
constant density of the wetting fluid P has been

selected as the scale factor for the variable Py -

This selection was made because it automatically
reduces the magnitude of the gravity term in equation
(18) to unity. Therefore, the magnitude of this term
no longer depends on any system parameter.

The equations (6) can be rewritten as scaled
functions of the scaled variables:

krﬂ(S)
K (5)
P.(S)

=p,(P)

,r
-l

(21)
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Similitude for Flow of Two Fluids in Porous Media

The simultaneous solution of equations (17)
through (21) will yield identical particular solutions
for two different systems if the following conditions
are satisfied. These conditions constitute criteria
for similitude.

(1) The overall geometry of the two systems must
be such that corresponding dimensions form
identical ratios to Pofpwg. This is

accomplished if the systems are geometrically
similar.

(2) The theory implicity requires the same
orientation with respect to the gravitation-
al field.

(3) Initial and boundary conditions must be
identical when expressed in terms of the
scaled variables.

(4) The viscosity ratio ua/uw must be identical
in both systems.

(5) The scaled functions represented by equations
(21) must be identical.



Experimental results from physical models in
which the flow is rigorously described by equations
(17) through (21) represent particular solutions to
these equations. Therefore, the five conditions
listed above are conditions for the construction of
similar physical systems as well as mathematical
models. The ease with which the five criteria of
similitude can be satisfied in practical situations,
largely depends on the selection of Po . Specifying

Po determines the remaining scale factors because of

equations (14), (15), and (16). Before discussing the
selection of Po for imbibition processes, it is

helpful to review the rationale used in the selection
of Po for drainage processes in which the non-wetting

fluid can be considered incompressible.
the density of the non-wetting phase Pa

For this case,
cancels in

equation (20) and the last of equations (21) can be
disregarded. Furthermore, the first three of equations
(21) are given by well established empirical formulas.
These are:

2¢x )
et L Y
kpg = (1-8)° (1-8 )
2+3)
kK =52 y (22)
™™
B o eml/A
p S v B a By J

In equation (22), S is identical to the "effective
saturation" as defined by Brooks and Corey (3). The
symbol A is the notation used by these authors to
designate the pore-size distribution index. It is
clear that, in any two systems for which X has the
same value, equations (22) will be identical for both
systems. It is important to note, however, that the
last of equations (22) can be written in that parti-
cular form only because the bubbling pressure P, was

selected as the scale factor for pressure. Examina-,
tion of the unscaled relationship between P, and S,

that is,

ay=1/2
Pc = Pb(S] (23)

shows that any scale factor for pressure must be
proportional to Pb ; otherwise the scaled relation-

ship will not be identical, even in two systems with
identical pore-size distributions. Since the bubbling
pressures of the porous media in the two systems are
usually different, the scale factor for pressure must
be different in each case.

The important conclusion to be drawn is that the
requirement that Pc = ﬁc[s) be identical in two

similar systems governs the selection of P0 in each

case. Unfortunately, explicit formulas analogous to
equations (22) are not known for the imbibition
process. Nevertheless, the above conclusion applies
to imbibition processes as well as to drainage con-
ditions.

Of particular interest in this study is the
situation in which the non-wetting fluid is a gas.
The last of equations (21) is the ideal gas law in
this case:

x P M
0

‘a "5 RT P2 (24)

where M is the molecular weight of the gas, R is
the universal gas constant, and T is the absolute
temperature. Condition 5 of the foregoing list implies
that the coefficient PQM/prT must be identical in

two similar systems.

The requirement that POM/prT be identical in

similar systems can be satisfied in several ways. The
results must remain consistent with the conditions

that ua/uw be equal to the corresponding quantity

in the second system. Two of the various methods which
can be used to meet the criteria of similitude are
discussed in the following paragraphs.

Usually it is convenient to use the same two
fluids in both systems. In such a case the scale
factor Po must be the same in order that the

coefficient in equation (24) be the same value in each
case. The requirement that P0 be the same in both

systems conflicts with the requirement that Pc = PC(S)

be the same unless the same porous material is used.
Using the same porous medium and the same fluids in
both systems also insures that the first three of

equations (21) are identical in the two situations.

The major disadvantage of using the same materials
in both systems is that an artificial body-force field
must be imposed on one system in order to gain a geo-
metrical size reduction and a change in the time scale.
This is true because of equation (14). It is conceiva-
ble that certain sufficiently simple prototype systems
could be modeled in this way.

Practical prototype systems exist for which the
construction of physical models in an artificially
induced body-force field is not feasible., In this
case, the ratio Po/pw must be different in the two

systems. The requirement that Polpw be different

in tumn implies that different gases must be used or
that one system must be operated at a temperature
different from the other. The latter possibility is
impractical in view of the fact that the viscosity
ratio ua/‘ullr must remain identical in both systems.

If different gases are used, the ratio of their
molecular weights must be such that the coefficient in
equation (24) is identical in both systems. Some
difficulty in satisfying condition 4 can be anticipated
because, for many gases, the viscosity is directly
proportional to the molecular weight.

Even after the difficulties of using different
fluids are overcome, there remains the problem of
insuring that the first three of equations (21) are
identical in both systems. When different fluids and
different porous media are used, this is a formidable
task.



The analysis presented in this section shows
that the construction of similar physical systems in
which the flow phenomenon is described by equations
(1) through (6) is impractical except in some simple
cases in which an artificial body-force field can be
induced. Nevertheless, the scaled form of the equa-
tions and variables derived in this section are used
throughout the remainder of this paper because of the
economy in notation, and because analytical results
will be directly applicable to a larger class of
problems.

Derivation of Differential Equation of Flow

The differential equation is derived by combining
the appropriate equations presented in the previous
section. The coordinate system is selected so that
the vertical coordinate 2z is positive downward. The
volume flux of either phase is positive in the direc-
tion of increasing =z . With this coordinate system
and the assumption of incompressibility, the funda-
mental flow equations (17) through (20) reduce to:

AT . SO (25)
a ra| .7 a ’
. u ap
a W (26)
q = -2 g ‘ . )
W uw ™ ;}_:H 1 )
o, s @7
2z at J
and iq_g . a_é_
3z at ’ (28)

The definition of capillary pressure in scaled form is:

P

P.=P, ~P . (29)

Differentiating equation (29) with respect to 2z
gives:

ap ap 3P
il i Y

3z 2z 9z

(30)

Solving equations (25) and (26) for the pressure

gradients and substituting into equation (30) results

in:
Yol
9z k!l

=

=
W

%

s fxe0d . 3
K, S (31)

Subtracting aw/kra from both sides yields:

LR T "l . . (32)
3z E;; kru”a _kra

where 4Ap =1 - Py

A total velocity V 1is defined as the sum of the
flux vectors of each fluid,

= qu + El‘ ] (33}

-

Adding equations (27) and (28) shows that V is
independent of z and, therefore, a function of time
only.

Substituting equation (33) into equation (32),
multiplying both sides by kra and solving for q

results in:

’ - ap .
1 1 c
L ( w—_e i fra ( kra uw) w i ﬁnl[34)
1+ L ¥r——
krw Va krw Ma
For incompressible fluids Ap 1is a constant, and
it is logical to redefine P, W& D, wp, =B The
constant Ap becomes unity. The following definitions
simplify the notation:

2 1
) [ o
W k.. u
yoxa w (35)
Erw Ya
ssid E(S) = ko f, - (36)

Introducing equations (35) and (36) in equation
(34) gives:

a . " . ap
q, = V(t) £,(5) + E(S) ;;E + E(8) . (37

Combining equation (37) with the mass conservation
equation (equation (27)) yields:

B 4 ap A
ET{V(t]f“+E—,,E-+E . .38
az Iz It (38)

Equation (38) can be expressed with S as the only
dependent variable by substituting the following
expressions:

P, 28 (39)
—— Pc — »
3z 3z
EoLop B (40)
9 az
and
af ~
s
- = £ = , (41)
9z iz



where the prime refers to the ordinary derivative with
respect to § . The result is:

a g é 4 - -
- (E P, a.) + [V ¢ E'l ﬁ L ﬁ .
az az v iz at (42)

It is convenient to introduce the definition:
D“s- o
win B Pl (43)

The negative sign is included in equation (43) to
insure that D(S) 1is positive. Substitution of
equation (43) into equation (42) results in the de-
sired form of the differential equation:

3 28 ~ 3§ 08
o D s— = (V£ +E" e .
az 3z L. 3z ot (44

For completeness the relationships of the scaled
variables to the unscaled variables are repeated here:

t o= z(o70.) 8/py (45)
Pe = P./P, ) (46)
. K {(o -p MJZ t
t = _“—TTTW : , (47)
g By #0575,
% qua
T o
Ko, -0 )8
. S-S
» i . 48
S = (48)
0o 1

The Functions £,(S) , E(S) , and D(S)

From the definition of £,4S) , E(S) , D(S)

(equations (35), (36) and (43)), it is noted that for
any particular soil and fluid system the functions are
dependent only on saturation. This is because k. ,

krw , and p, are functions of saturation only. It

is pointed out in the section on similitude that the
relationships kra(SJ i krw{S) , and pc[S} are

obtained from experiment.

The function f;_ has been called the fractional

flow function in the petroleum industry., The name is
derived because of its physical interpretation in
situations where the gradients of capillary pressure
and the influence of gravity are negligibly small.
In this case, fw can be interpreted as the ratio of

the flux of the wetting phase q, to the total
velocity V . A typical example of fw is shown in
Figure 1. . It is noted that fw(l.G} = 1.0 and that
the curve approaches zero for small § .

s |
06

04 t

0 1 L " i
0 02 04 06 08 1.0
Saturation

FIGURE 1 - Typical fw curve.

The definition of E(S) shows the relationship
between E and fw . At small values of § ,
kra = 1.0 and, therefore,
as fﬁ in the low saturation range. At large values
of S, near 1.0, kra

E exhibits a maximum and decreases to zero at § = 1.0.
A typical curve is shown in Figure 2,

E has about the same shape

approaches zero and, therefore,

The function D(§) plays a similar role in two-
phase flow as the "diffusivity function' plays in one-
phase flow. The two functions are quite dissimilar,
however, It is noted in Figure 2 that D(S) is zero
at both ends of the saturation scale and exhibits a
maximum value at a saturation between zero and one.

4x1073

2x1073

0 L L i

0 02 04 06 08 1.0
Saturation

FIGURE 2 - Typical curve showing the
dependence of E and D on S .



The Boundary and Initial Conditions for Imbibition
Processes

The only initial condition considered in this
study is 5(z,0) = 0 . This condition implies that
the unscaled initial saturation is Si (see equation

(11)). Throughout this paper it is assumed that
Si is a small value at which krw is effectively

Zero.

Boundary Condition I - The classical boundary con-

ditions studied by Philip in one-phase flow analysis
are:

$(0,¢) = 1.0

S(e,t) = 0 (84)

These conditions require some explanation.
Equation (39), used in the derivation of equation (44),
has meaning only when the capillary pressure is a
single-valued function of saturation. For some porous
materials, there exists a range of capillary pressures
near zero throughout which S = 1.0 . The capillary
pressure at the upper limit of this range is the
pressure at which the non-wetting phase becomes
discontinuous in the imbibition process. The scaled
value of this capillary pressure is designated by the
symbol Pd . For capillary pressures less than )

equation (39) does not apply. Therefore, throughout
this work, the boundary condition §(0,t) = 1.0

implies that the capillary pressure at z =0 is d

unless stated otherwise.

Boundary Conditions II - A second boundary condition
of interest is the case of ponded water on the surface
of the porous medium. This condition can occur in the
field during intense rainfall or during flood irriga-
tion, Explicitly, boundary conditions II are:
S(0,t) = 1.0
Pw{ﬁ,tJ = constant (50)

S(=,t) = 0

Boundary Conditions III - The boundary condition of
constant flux at z = 0 1is considered:

q,(0,t) = constant

S(L,t)

0 (51)
0

q,(L,0)

These boundary conditions imply that the saturation at
z =0 is a function of time. In the field, this
boundary condition can occur during constant rainfall
of low intensity.

Boundary Conditions IV - The final set of boundary

conditions studied is for a finite medium. In this
case, the conditions specified are constant liquid

pressure at z =0 and no flux across the plane at
z =1L,

Pw[O,tJ = constant

3,00 = 4,08 = 0 L

Solution for the Horizontal Case

The objective of the following analysis of
horizontal imbibition is to gain further insight into
the physics of two-phase flow in porous media. In
particular, the intent is to investigate the influence
that the displaced non-wetting phase exerts upon
imbibition of liquids into porous media. The results
of this section serve as a starting point for the
analysis of vertical infiltratiom.

Almost all theoretical investigations of the
imbibition process existing at this time have used
the Richards' equation as the starting point. The
Richards' equation is derived upon the assumption that
the resistance to the movement of the non-wetting phase
is negligible in comparison to the resistance to flow
of the wetting phase. This assumption is, in turn,
based on the condition that the viscosity of the non-
wetting phase is small compared to the viscosity of
the wetting phase. However, situations exist in which
the channels through which the non-wetting phase must
move within the porous material become so small that
the resistance to flow is significant in spite of the
small viscosity value for the non-wetting phase.

For horizontal imbibition equation (44) reduces

to:
& (D 21 - o 2 2R (53)
- W
0xX ax ax at

in which the vertical coordinate z
by the horizontal coordinate x .

has been replaced

o There are two unknown dependent variables (S and
V) in equation (53), and it is necessary to introduce
a second independent equation in involving these two
variables. Combining equations (37), (39), and (43)
for the case of horizontal flow yields:

v .2
W
ax

8 - (54)

W

Equation (54) 1s used to relate the total velocity V
to the imbibition rate qq - Evaluation of equation

(54) at X =0 (at § = 1.0) shows that:

o, = Ve, (55)

where 9 is the imbibition rate. This is true

because fw(l} =1 and D(1) =0 .

volume of imbibed fluid at any time is calculated by
integrating the saturation profile. Since the imbibi-
tion rate is the time derivative of the cumulative
volume, then the total velocity can be expressed by:

The cumulative

1.0

vy = 4 % (56)

Equations (53) and (56) are to be solved simultaneously.

The Boltzman transformation of variables is
introduced:



b= xtd (57)

It is well known that the initial and boundary condi-
tions

S(0,t) = 1.0
?(‘::t) =0 (58)
S(x,0) =0

are invariant under the transformation (57). It is

assumed that the solution S(x t} to the simultaneous
equations [531 and (56) is transformed by equatlon (57)
to the form (¥) or equivalently 3 = y(§) .
assumption is vnlld if the simultaneous equations re—
duce to an equation with § and ¥ the only
variables.

Solving equation (57) for x and substituting
into equation (56) results in:

- [1-0
v = 3 v ds (59)
0
The integral in equation (59) is denoted by the
constant ¢ . That is:
1.0
V= ¥ ds 60)
0
Substituting equation (59) into equation (53) results
in:
3—A(n§-':i] - g BB e
ax ax ax at

Making the transformation (57) in equation (61) yields:

LA {DM T o LIS (62)

Explicit reference to t is eliminated from equation
(62) by cancellation, and since S and ¢ are the
only variables remaining, equation (62) becomes an
ordinary differential equation:

d ds 5
g@;[o ~’:(€f¢-¢.1§§- (63)
To summarize, the solution of equation (53)
-subject to conditions (58) is expressed by:
x = ¢(8) t* (64)
where w(g) satisfies
ds 9 ds
(D'a-‘;—r = ’if;fw"") av ' (65)
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subject to:

(7

=1; =0
(66)

w

=0; p » =

Solution for Horizontal Case in Terms of Fractional
Flow Function

It was pointed out in the discussion of fw

that, when capillary gradients and gravitational forces

are neglected, fw can be interpreted. as the ratio
of q  to V. An analogous expression can be

defined for cases in which capillary (or saturation)
gradients are retained:

wls?—‘i=f"-5-9~§- : (67)
v vV ax

Equation (67) follows immediately from equation (54).

It is of interest to derive the solution to the
horizontal flow problem in terms of Fi because

an integral equation for le which is relatively

easy to evaluate can be derived from equation (65).
Furthermore, the approximate solution for vertical
infiltration presented in the next section is most
easily derived from le =
Making the variable transformation defined by
equation (57) in equation (67) results in:

x 2 2D dS
Fp (S) = £,(5) - _-(—l & (68)

It is noted from equation (68) that F is a function

wl

of S only. Therefore, the equation of continuity
(equation (27)), when written in terms of le 3
becomes :
el R (69)
ds ax at

The solution to equation (69) is of the form

S = S(x t) Calculation of the total differential of
S gives:
S8 5. B g (70)
ax it

Equation (70), when applied to a constant value of
saturation Sj reduces to the differential equation:

s | . 3 3s "
i;)s.d*ﬂ“—- dt = 0 : (71)
j at s,
]
where x. is

the coordinate of the plane whose
saturation is Sj ‘



Solving equation (69) and (71) simultaneously
yields:

L dF -
¥ i o 22

dt

ds (72)

in which the j-subscript notation has been abandoned
since the meaning of equation (72) is clear. Using
equation (59) for V and integrating equation (72)
subject to x =0 at t =0 , yields:

% dF
x i
ds

vi 5 (73)

Equation (73) is the desired equation for the satura-
tion profile. The solution represented by equation
(73) is similar to that obtained by Buckley and
Leverett (5) who derived an expression of the same
form in 1942. These investigators, however, neglected
capillarity as a driving force.

Equation (73) is only a formal solution so long

as le remains unknown. Equation (69) can be written
as:
h.del dé

L i ‘ (74)

Integration of equation (74) results in the expression
relating le and ¢ :

%, 2
F.q (8) =2 yast . (75)

0

From the foregoing, it is clear that the solution
represented by equation (64) and that by equation (73)
are consistent formulations. In the case of the
solution represented by equation (64), a differential
equation for ¥(8) is known. The differential equa-
tion for ¥(S) 1is easily converted to a differential

equation for le by using equation (75). The result
is:
2 5
4" F 2 D(5)
ol -2 N 76
ds v (£,F,) (76)

An integral equation for F , 1is obtained by integrat-

1

ing equation (76). The result is:

s (1.0
2 2 D
F, (5) = ds" ds' (77)
wl ’_‘ﬁ i ;' ile-E"i

A procedure for the solution of equation (77) has
been worked out. The method consists of selecting a
first approximation to F_, and improving upon the

initial estimate by iteration, The first estimate of

le should satisfy the properties which are deduced

as follows:

11

Equation (75) implies that lefl} = 1 and that
lefo] =0, Tﬁus, equation (75) establishes the end
goints of Ewl(S} . The boundary conditien that
x=0 at S =1.0 requires that deI/dS be zero at

§=1.0. In view of equation (73), one can argue on
physical grounds that del/dS is a monotonically
decreasing function of S . Otherwise, equation (73)
predicts that two distinct values of saturation exist
at the same plane in the porous medium; a physical
absurdity. One final property of F should be
noted. The value of F must be greater than £

wl
at all points on the open interval 0 < § < 1.0 .

The properties of le listed above allow one to
make a rational first approximation to le , which is

then used to compute the integrals on the right side of
equation (77). Since le(lj = 1 , the value of

can be computed,
estimate of le

(77). Using the second estimate of le , the process

The next step is to calculate a new
which is accomplished from equation

is repeated. Iteration is continued until the most
recent estimate of le is only negligibly different

from the previous estimate. Numerical examples of
this procedure have been carried out and the method
has been found to converge very rapidly.

Solution for the Vertical Case - Boundary Conditions 1

The solution under boundary conditions I is de-
rived first, and then extended for boundary conditions
II.

The procedure used to derive an approximate
solution to the infiltration problem is called the
"method of undetermined functions" by Ames (2). The
differential equation of interest can be represented
by:

Lu

g ’ (78)

where L 1is a non-linear, partial-differential
operator in general. The solution U of equation
(78) is a function of the space coordinates and time,
U=U(r,t) , where 1 is the position vector in the

domain R . When U(r,t) is an exact solution then:
L U(%,t) dF = 0 (79)
R
holds. When the exact solution is approximated by U ,

the integrand in equation (79) is not identically
zero_but is equal to a residual whifch is a function
of r and t . Let U be of the form

u=u [g{r,h(t]}] g (80)
where U and g are known functions and h(t) is to
be determined so that the residual is small in some
sense. The expression

LU [s{?.h(t}}] dFr =« 0 (81)

R



is interpreted as meaning the average residual over
the domain R is zero. Furthermore, equation (81)
is a differential equation for the undertermined
function h(t) .

There are several variations and generalizations
of the technique outlined above, but the rather
special case presented is sufficient to introduce the
development in the following pages.

For the case of vertical flow, it is more
convenient to work with equation (44) after it has
been transformed so that z is the dependent variable.
The formulas

BB o i (82)
9z 3z/38

and
8, ot i

at 2z/3S

when applied to equation (44), accomplish the desired
transformation. The result is:

. df 2
L .“.' st v BB 5 B (84)
3s 3z/asS ds ds it

In equation (84), the variable z is analagous to the
solution U in the discussion of the method of un-
determined functions, and § plays the same role as
#.

Integrating equation (84) over S yields:

1.0 1.0 1.0 1.0 .
K. .] - VE ] -E ] - = 248 .
az/a8 0 0 0 0 it

(85)
Since both D(S) and E(S) are zero at the end points
of the saturation scale and fw{O) = (0 and fw(l} = 1,

equation (85) reduces to:

1.0 .
V(t) - 22 4sa=0 (86)
0 it

Equation (86) is comparable to equation (79) in this
case,

The approximation to the exact solution is con-
structed from the general fractional-flow function for
vertical flow; that is

Fop 5it) = £, - 28 38
v(t) dz

Elgl

V(t)

(87)

Comparison of equation (87) with equation (67) shows
that:

F.. = F EGS),
v(t)
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where le is the general fractional-flow function

for horizontal flow. At small times, when. V(t) is
large, sz B le . Also, for values of S near

1.0, E[é} = 0 . Therefore, near S = 1.0 , the
vertical fractional-flow function is approximated by
the horizontal function at all times. For these

reasons, F__ is considered as a perturbation of

le for the purpose of constructing an approximation

to the saturation profile.
tion, equation (87) becomes:

Based on this approxima-

o
0

(89)

L]
-
1]
<o
+
<>|m

a
T

Solving equation (89) for 35/3; , applying
equation (82), and integrating yields the following
approximate solution:

1.0 -
D dS'

,é (fH-FHl) VB

(90)

Equation (90) corresponds to the approximation given
by equation (80). The function V(t) in equation
(90) is the equivalent of h(t) in equation (80).

Substitution of equation (90) into equation (86)
results in:

1.0 =
D ds'

S ds . (o1)
(£,-F, ) V +E

Interchanging the order of differentiation and
integration and integrating over S by parts yields:

1.0 ...
e .5Dds (92)
dt |0 (FF, ) VE

Carrying out the indicated differentiation and
rearranging gives:

1.0 & W
S D[F-wl‘fw) dv/dt %
2 ds = -1 » (93)
EZ v F .-f . 2
wl “w
0 [—E—-» V-l}

V(t) . The
1/ =0 at

which is a differential equation for
solution of equation (93) subject to
t=0 is:



1.0

S B(F,, 1) 1
2 F-f
E wl 'w
0 S v
+v.n1-—---.f'__J 4 = t (94)
F -£)

The function ﬁ(;) obtained from equation (94)
is an approximation to the infiltration rate, and the
saturation distribution is approximated by equation
(90).

Solution for the Vertical Case - Boundary Conditions II

During vertical imbibition under boundary con-
ditions II, it is assumed that a zone in which
= 1.0 moves into the medium. The coordinate of the
plane between the region in which S = 1.0 and the
region where S < 1.0 will be denoted by Zp -

Equation (53) applies for z > z. , and Darcy's
equation in the form

P u P +I; -I.?'
qo(t) W u_a k., (1) ("_E_i....Lf_ E 1) (95)
Ll z
f
applies for z < Zg . In equation (95), PD is the
scaled wetting-phase pressure at z =0 , P, is the

d

capillary pressure at z = g Paf is the non-

wetting phase pressure at Zg krw[l) is the rela-
tive permeability to the wetting phase at § = 1.0 ,
and qo(t} is the infiltration rate.

It is convenient to use a linear transformation
of variable defined by

En i i) (96)

5 The following formulas hold for any function of
z and t :

ol w2 B8, ’ (97)
at 't az 't °% 3 1y
and
S . 1 = ffﬁ 2 (98)
T at g dat %6 g

Applying these formulas to equation (44) results in:

- . of dz, - :
a(Das v-2. 28 , _£ 23 _ 3 (99)

U el - el
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The associated boundary conditions are:

W
n
[
=
H

: (100)

W
n
L=
-
-

Equation (99) can be expressed with £ as the
dependent variable by making use of equations (82)

and (83). The result is:

. df dz
3—.(-‘-‘—;]--“—§~—v-—#+-,—f--3—":- . (101)
as \ag/as ds ds dt at

Integration of equation (101) over § yields:

-

1.0
dz "
v £ j % a8

dt 0 it

(102)

As in the previous case, the infiltration rate
is equal to the total velocity V . Therefore, the
variables V and zp are related through equation

(95) which, after rearrangement and differentiation
becomes:

(§o+§d_§af)

¥ oAl -
—
“a ™

The differentiation in equation (103) was carried out
assuming that the quantity (P0 + I":1 - Paf) is a
constant. This condition and its relation to experi-
ment is discussed in detail in a later section.

d; ) "akrutlj s

. (103)

Let

Iulw - - -
Nty [P+ By Pl - (108)

Using equation (104) in (103) and substituting into
equation (102) yields:

. 1.0
ge—— S % s
("u v-x)z dt 0o Ot
I 3 ili
arw

In the region in which the saturation S is less
than unity the approximation

- £105)

1.0 .
D(S) ds'
s (B Fy) VE

(106)

applies.



Substitution of equation (106) into equation (105),
integrating by parts over S , and differentiating
with respect to time yields:

1.0

A - SD dS C LA
o " - 32 G lf -F ] G+E = dt
Viu 1 V—{} 0 w o wl
arw (107)
which is a differential equation for Q .
. The solution of equation (107) subject to
1/V=0 at t=0 is:
in
A "El— A (1 o a——) +
W # ok (1) V
T T V-1 W TW
Ha rw
1.0 &
SD(F ,-f ) & %
w; ) {F -fl — & En(l £ ..\ ds=t
0 . ¥y Pt V]
(108)

Solution for the Vertical Case - Boundary Conditions
111

The conditions specified in this case are con-
stant liquid flux at z = 0 . The situation to be
studied is one of counter-current flow. This means
that the flux vectors q, and E; are equal in

magnitude and of opposite sense. Therefore, the total
velocity V(t) is zero. Conditions of counter-
current flow can be caused by an impermeable boundary
at some distance below the infiltrating surface. The
displaced air escapes by flowing upward through the
wetted zone.

Equation (44) reduces to:

a—.(n -3-5)
9z 4z

for counter-current infiltration. The liquid flux is
given by a modified form of equation (37):

s
az

£
at

E' (109)

&' =-n(s) 25 4 g
dz

(110)

Since the infiltration rate is constant, equation
(110) evaluated at 2z = 0 is:

<l 35
q, = ‘D(SOJ b

+ EGS)
3z s

R (111)
z=0

where So is the saturation at z = 0 . The

resistance to flow tends to become larger as the wet-
ted zone grows, In order that 9, remain constant,
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this tendency must be compensated by an increasing
conductivity to the liquid in the wetted zone. There-
fore, 50 is an increasing function of time. The

primary interest in the solution to this problem is to
ascertain So = So(t} ‘

The approach used to obtain an approximate solu-
tion for this case again involves a fractional flow
function. Neither of the fractional flow functions
already considered can be used here since V(t) =0 .
Instead the following function is defined:

A D 3 . E
Fus = /% = — = - (112)
R 93 9%

Introducing equation (112) into equation (109)
results in:

o ] e Bé
g LB . (zig) ol (113)
o 5y W At

Applying equations similar to equations (82) and (83)

to equation (113), an equation with S and t as the
independent variables is obtained:
L g L on
q. —= F . (5t) = = . (114)
0 . w3 5%

Differentiating equation (114) with respect to §

yields:

w3 322

2 - - -
35 at

9 P (115)

The derivatives on the right of equation (115)
have a physical interpretation which lends itself to
experimental investigation. The derivative &z/3t
can be regarded as the velocity of a particular
saturation. The second derivative indicates how the
velocity of particular saturations compare at any time.
Experimental evidence (figure 29) indicates that the
velocity of a particular saturation is approximately
constant during constant infiltration. Even more
important is the observation that particular satura-
tions (capillary pressures) propagate at approximately
the same velocity. This means that the right-hand

side of equation (115) is approximately zero. There-
fore:
aZFw3
e B 0 (116)

The conclusion that all saturations in the range
characterized by large capillary gradients should
propagate with the same velocity (mot necessarily con-
stant) has been justified on analytic grounds by Lefur
(see discussion in reference 15). For the case of
constant infiltration, it appears that this approxima-
tion is valid even for saturations near the maximum
saturation that can be obtained.

Integration of equation (116) yields:

Fog = a(t)S + B(D) (117)



where o and § are constants (with respect to §)of
integration. The conditions that Fws[o,t) =0 and

that Fws(so,t) = 1 reduce equation (117) to:
FaS,t) o 3 (118)
w3t A
5,(t)

Substitution of equation (118) into equation
(112) and rearrangement results in:

SR . ./ B— (119)
a E(S)-qQS/SB(t]

Integration of equation (119) yields the equation
for the saturation profile:

S
26 = | ds" ; (120)

o

2 q
L
SO

The unknown §°(£J in equation (120) is deter-

mined by requiring that continuity be satisfied. That
is:
s
& O ca
= ds .
%t ' (121)
0

Substitution of equation (120) into equation (121)
yields:

5 S
w o o W ol
q ¢ = —2 as' as . (122)
- q. S
# 8 2 .p
5
o
Integrating equation (122) by parts gives:
L 5,(t) z X
q,t = ds ) (123)
0 L5 .
T .
%

Equation (123) is the desired equation for §o(;) 5
Computations are made by selecting a value of Sy

computing the integrand and carrying out the indicated
integration. The time corresponding to the particular
value of So selected is computed by dividing equation

(123) by ao .
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During_the early stages of constant infiltration,
the term asfaz|; =0 in equation (111) becomes less

negative with increasing time and ultimately approaches
zero. In this case q = E(SO) , and the saturation

at z =0 becomes constant. When this condition
occurs, the liquid conductivity has adjusted to the
minimum value which will permit infiltration to proceed
at the rate 4, due to the driving force of gravity.

The resistance to the escape of air is accounted for-
because it has been incorporated into E[Q) . There-
fore, the larger the applied infiltration rate, the
larger E($) must be for infiltration to persist at
the same rate after capillary driving forces become
negligibly small. Since E(S) exhibits a maximum,
say at Sm , it is concluded that any infiltration

rate q = greater than E(Sm} cannot continue

indefinitely. This is because any increased con-
ductivity to liquid gained by a further increase in
SD is offset by a decreased conductivity to the

escaping air. Since the system can no longer transmit
liquid at the rate 4, when QQ = Sm , ponding of the

liquid on the surface occurs. The boundary conditions
change at this time. No attempt is made in this work
to analyze the problem after ponding occurs.

Solution for Vertical Case - Boundary Conditions IV

The final set of boundary conditions studied is
the case in which liquid is provided at the surface
at a constant positive pressure, and the air can escape
through the upper surface of the medium only. In this
case counter-current flow of the air phase does not
begin immediately as in the case of constant liquid
flux at the upper surface. This is because the air
is trapped by the wetting front and compresses until
the capillary pressure at the upper surface reaches a
threshold value at which air begins to escape from the
top of the column.

M Again it is assumed that a region in which

§ = 1.0 developes in the medium. In the treatment of
boundary conditions II, equation (108) was derived on
the basis that the factor A defined in equation
(104) is constant. Under the conditions of interest
in this section, A 1s not constant because Paf

increases as the air phase is compressed., Equation
(108) can be used, however, by assuming that over a
time period At , infiltration proceeds as if Paf

were constant during that time period.
The computational procedure is as follows. A

family of cumulative infiltration curves is prepared
using equation (108) for various values of Palf

starting with paf = 0 and increasing until A = 0 .

Each curve represents the cumulative infiltration as
a function of time assuming that Paf (i.e. A) is

constant. An example family of curves are shown in
Figure 3.



Infiltration

Cumulative

Pot =0

paf =02
ﬁuf =04

Time

FIGURE 3 - Example curves showing the
relationship between cumulative infil-

tration and time for various values of

Paf .
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Neglecting gradients in the air phase, the ideal
gas law is used to compute the cumulative infiltration
corresponding to each value of Paf used in con-

structing the above family of curves. The relation-
ship is:

- Fvi
Q= Vi - — ’ [124)
{Pa£+P)

where Vi is the dimensionless air volume at the

initial condition and P is the dimensionless
atmospheric pressure,

It is assumed that each increment of infiltration
takes place as if Paf remains constant at the value

of Paf obtained at the beginning of the increment.

The time at which a given cumulative infiltration
exists is obtained from the family of curves which
have been constructed.

The above procedure can be used only until the _

air pressure has built up to a value equal to Po + Pd.

Therefore, the developments contained in this section
are inadequate to predict the entire process. Further-
more, for many porous materials, the value of Pd may

be zero or not well defined. In such cases the above
method is of little use.



EXPERIMENTAL PROCEDURES

The infiltration phenomenon was studied
experimentally by subjecting two different porous
materials to infiltration tests. One of the materials
used is a river sediment called Poudre sand. Poudre
sand is an unconsolidated sand with a relatively wide
distribution of pore sizes and a permeability that is
of the same order of magnitude as many soils.

A consolidated sand known as Berea sandstone was
selected as the second material. This material is
relatively permeable when compared to other naturally
occurring consolidated materials and is very homo-
geneous in the direction parallel to the bedding
planes,

The wetting fluid used throughout this study was
a light hydrocarbon oil called Phillips core test
fluid*. This fluid is referred to simply as "oil" in
the following sections.

Measurement of Hydraulic Properties

The functions Pc(S} and krw(S) , for uncon-

solidated materials, are often measured by using two
different samples of the porous medium. On one sample
the capillary pressure-saturation function is measured,
and on the other, the relationship between P, and
krw is determined.
ships, the functional relationship between krw and

§ 1s deduced. This method has the distinct disadvan-
tage of requiring two samples which, in practice, are
very difficult to prepare so that they are very nearly
identical.

By combining these two relation-

In this work, the functions PC(S) and krw{S}

for the Poudre sand were measured simultaneously on
the same sample by utilizing gamma-ray attenuation
equipment to determine the saturation. The technique
used in this study to measure the capillary pressure
and relative permeability has been described by
various investigators (3,8,29). In this case, however,
the soil column was placed in a framework which sup-
ported the gamma-ray attenuation equipment. Measure-

ments of PC 5 kw| and S were taken at a series of

steady states as described in the above references.

The source of gamma radiation used was a 100
millicurie Americium isotope. The radiation was
directed through the test section of the soil column
by means of a columnator. The columnator consisted of
a lead column approximately six inches long constructed
with a 1/16" x 3/4" slot through the center of the
column. The long dimension of the slot was oriented
parallel to the axis of the soil column. This was done
so that the measurements obtained were representative
of the bulk density of approximately 1/3 of the test
section in the soil column. A columnator with a
cylindrical cross-section of the same area would have
resulted in measurements representative of the material
in only a very small portion of the test section,

Gamma radiation passing through the soil column
was detected by a photomultiplier tube and read out on
a portable scaler in units of counts per unit of time.

The gamma-ray equipment was constructed so that
the source and detector could be shifted laterally.
In this way, a standard could be measured each time a
reading on the soil column was taken. Adjustable
stops were constructed to insure that the source and
detector were returned to exactly the same position
each time. A schematic diagram of the experimental
set-up is shown in Figure 4.
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FIGURE 4 - Schematic diagram of Gamma-ray
attenuation equipment.

Calibration of the equipment was made by taking
a reading on the soil column when the soil was air dry
and again after the soil had been vacuum saturated.
This procedure established the end points of the
calibration curve. It was observed in preliminary
tests that the number of counts per unit of time varied
linearly with the degree of saturation for a
particular soil. Therefore it was assumed that the
calibration curve was a straight line joining the end
points. The readings were plotted as percent of the
standard reading in each case. After the completion
of the experiment the test section was removed and the
saturation determined gravimetrically as a check on
the linearity of the calibration curve.

No attempt was made to measure the relative
permeability to air as a function of saturation for
the Poudre sand.

The hydraulic properties of the Berea sandstone
were measured using techniques that differ only slight-
ly from techniques described in previous investigations.
In the case of consolidated materials, combining the
Pc[s} and er(Pc) curves to obtain the krw(S)

relationship can be done with confidence because the
same sample can be used for both experiments. There-
fore, the gamma radiation equipment was not employed
to measure saturation. The relationship between km

and Pc was measured using techniques similar to

those discussed. in references 8 and 29.

-
Manufactured by Phillips Petroleum Company, Special Products Division, Bartlesville, Oklahoma.



A technique for measuring P, as a function of

5 on consolidated materials has been described by
White (34). White's technique was modified during the
early stages of the desaturation portion of the experi-
ment. The leveling bottles which were used by White
to determine the capillary pressure were replaced by

a pressure transducer which sensed the pressure in

the core continuously. The capillary pressure was
increased by evaporating the liquid from the core with
a fan. At a particular value of capillary pressure,
the corresponding saturation was determined by re-
moving the sandstone plug from the capillary barriers
and weighing it. Corey (3) in an unpublished study

of this technique has concluded that the method gives
reliable results as long as the conductivity of the
core does not become too low, The principal advan-
tage of the method is that it is much faster than
other methods.

During the imbibition portion of the experiment,
evaporation from the sample was minimized by placing
the apparatus in an aluminum box. The bottom of the
box was covered with approximately 1/8" of oil in an
attempt to keep the air surrounding the core saturated
with the liquid vapor. The top of the box was covered
with a saran wrap which was easily removed when the
core was to be weighed.

The technique reported by White for determining
when the core should be weighed at any particular
capillary pressure does not apply when the experiment
is one of imbibition. The interface in the observa-
tion tube continually moves after a step reduction
in the capillary pressure. The rate of movement of
the interface is large immediately following the
change in capillary pressure, but decreases to a small
value which is representative of the evaporation rate
from the sample. It was difficult to ascertain
exactly when the imbibition rate was equal to the
evaporation rate. Therefore, it was assumed that the
imbibition and evaporation rates were equal when the
movement of the interface in the observation tube was
apparently constant. The saturation of the core was
determined at this time. To check this assumption,
the core was replaced after a particular measurement
and a second measurement was taken approximately two
hours later. The two weight determinations were found
to agree. It is believed, however, that this technique
can lead to significant errors unless the evaporation
rate is kept quite small.

Determination of the relative permeability to air
as a function of saturation was accomplished by tech-
niques developed by Corey (7). On the imbibition
cycle, the saturation in the core sample was increased
by applying the oil on the lateral surface of the core
with a damp cloth. It was found that highly erratic
measurements of air permeability resulted if any oil
was applied to the ends of the’core. After the liquid
application, the core was allowed to remain in a weigh-
ing bottle until the oil was'uniformly distributed
throughout the core. During the early stages of the
experiment when the core was nearly dry, measurements
were made when the oil distribution in the core appear-
ed uniform to the eye. When the saturation had been
increased to a value at which visual detection of a
uniform oil distribution was no longer possible,
measurements were made after an arbitrary length of
time. Several of these measurements were checked by
repeating the reading at some later time before the
next increment of liquid was applied.
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Infiltration Subject to Boundary Conditions III

Infiltration tests were made on columns subjected
to boundary conditions II, III and IV. The experi-
mental procedures used for studying infiltration under
conditions II and IV were quite similar and will be
discussed together. The procedures employed in the
study of infiltration subject to conditions III are
sufficiently different to warrant a separate dis-
cussion.

Of major interest in the study of constant-rate
infiltration is the development of the capillary
pressure or saturation profile and the time at which
ponding occurs on the surface. All of the constant-
rate experiments were performed under conditions of
counter-current flow of air. Under such conditioms,
the capillary pressure cannot be determined by measur-
ing the liquid pressure only, because it cannot be
assumed that the air pressure is atmospheric at all
times. Therefore, the experiments were designed to
measure both the air and liquid pressure at various
positions in the column as functions of time. A
schematic diagram of the experimental design is shown
in Figure 5.
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FIGURE 5 - Schematic diagram of equipment
setup for constant rate experiments.

The column in which the Poudre sand was placed
was constructed of short lucite sections sealed by
rubber O-rings between each section. The one-
centimeter sections in the upper portions of the
column were designed so that both liquid and air
pressure could be measured at the center of each
section. In one-half of each section was a tensiometer
which sensed the liquid pressure. The air pressure
was measured through an opening covered with a fine
wire screen on the opposite half of each section. A
total of seven such sections made up the upper portion
of the soil column.  The bottom of the column was
sealed which forced the air to escape in a counter-
current direction.

The pressure in both the liquid and the air were
measured by means of a pressure transducer and a
scanner valve. Leads from the liquid and air taps for
each measuring section were connected to adjacent ports
in the scanner valve. The center port of the scanner



was connected to the pressure transducer. By rotating
the scanner valve, the pressure at each tap was
measured. The scanner valve was rotated at equal
intervals of time by means of a timing device which
automatically opened and closed an electrical circuit
at equal intervals of time. In addition to the pres-
sure at taps in the column, two calibration pressures
were measured each time the scanner valve made a
revolution.

The pressure transducer converted the pressure
to a voltage output which was digitized by a digital
volt meter and printed on paper tape. A large number
of data points were generated during each experiment.
Therefore, a digital computer was used to reduce the
data.

At the beginning of each experiment run, the
tensiometers were vacuum saturated and then subjected
to a suction of approximately 100 cm of oil. This was
accomplished by '"hanging'" a 100 cm column of oil in a
Tygon tube from each tensiometer. The tubing was then
clamped which caused the tensiometers to remain at
the desired suction. Each section was then placed in
its proper position in the columns, The next step was
placing the Poudre sand in the column. This was done
by adding the sand through a funnel with a long rigid
stem which reached to the bottom of the column. The
column was made extra long so that when the desired
bulk density was obtained the extra length of column
could be removed. This procedure helped to insure
that the properties of the soil immediately at the
surface were as near like those of the rest of the
column as possible. Even so, some disturbance of the
soil at the top of the column always occurred.

During the packing procedure the tensiometers
were in contact with the dry soil. However, because
the liquid pressure in the tensiometer was maintained
at a negative pressure head of about 100 cm of oil,
imbibition into the soil was very slight.

The timing device was started simultaneously with
the introduction of liquid at a predetermined constant
rate at the top of the column. In some cases, the
rate of air outflow was measured during the experiment
by means of a soap-film flow meter.

Infiltration Subject to Boundary Conditions II and IV

Columns of both Poudre sand and Berea sandstone
were subjected to infiltration tests during this
portion of the study. The column on which the Poudre
sand tests were made was a continuous lucite tube. An
end plate was cemented to the bottom of the column
which kept the sand in place,

The sand was placed in the column with the funnel
already described and packed to the desired bulk
density. The degree of homogeniety of the packing was
determined by measuring the air-pressure head at a
number of points along the column while flowing air
at a constant rate through the column. Typical re-
sults are shown in Figure 6.
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FIGURE 6 - Typical curve showing the degree of
homogeniety obtained in the Poudre sand columns.

A perfectly homogeneous packing would have
resulted in all the pressure-head measurements lying
on a straight line. This ideal situation could not
be realized, however. Therefore, the columns were
considered to be satisfactorily homogeneous if the
head-loss distribution was comparable to that shown
in Figure 6. It was found that, when the columns
were packed to the proper bulk density and the degree
of homogeniety was satisfactory, the maximum deviation
in air permeability was 4.3 percent of the average of
11 samples. On 6 samples, the permeability to oil at
the maximum saturation on the imbibition cycle was
determined. It was found that the ratio of air
permeability to this value of oil permeability was very
nearly constant. The maximum deviation of this ratio
from the average was 1.9 percent of the average.

After it was determined that a particular column
was properly packed, two column sections were attached
to the top of the column which were used in the
application of the oil during the test. The first was
a section, 1 cm in height, which was sealed to the top
of the column by an O-ring. A thin rubber membrane
was stretched over the top of this section and held in
place with a second section by clamping the two to-
gether. A predetermined quantity of oil was placed in
the upper column section, and was retained by the
membrane. A constant head burette was attached to the
upper section which maintained the oil at the desired
level. To begin the experiment, the membrane was
pierced with a sharp object which allowed the oil to
infiltrate the soil. Piercing the tightly stretched
membrane caused it to practically disintegrate. The
cumulative volume taken up by the soil was recorded
as a function of time.

The semi-infinite case was simulated using the
column described above which was 25.4 cm long by allow-
ing the displaced air to escape freely from the bottom
of the column. The validity of simulating a



semi-infinite medium in this manner is discussed in the
following section of this work.

Infiltration tests into finite media were con-
ducted using similar experimental procedures. Finite
media of different lengths were simulated by using
the 25.4 cm column to which was attached an air tank.
The volume of air in the tank was varied to represent
different lengths of column. The pressure in the air
was monitored through a pressure tap by means of a
pressure transducer and a brush recorder. In these
experiments, no attempt was made to measure the
capillary pressure distribution. Figure 7 is a
schematic diagram of the experimental apparatus for
the infiltration experiments.

Experiments on the Berea sandstone differed only
slightly from those on the Poudre sand column. The
sandstone column was a core, 2 inches in diameter,
which was cut parallel to natural bedding planes. The
lateral surface was sealed with an epoxy paint manu-
factured by the Carboline Company. Holes were drilled
in the coating at intervals along the column to which
pressure taps were cemented., Lucite sections of a
design similar to those used for the Poudre sand were
attached to the ends of the column.
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FIGURE 7 - Schematic diagram of equipment
setup for infiltration experiments.



RESULTS AND DISCUSSION

It was pointed out in the first section of this
paper that most of the theoretical work done on the
imbibition of liquids into porous media has been
carried out assuming that the resistance to flow of
the air phase is negligible. It is appropriate,
therefore, to discuss the significant results of the
two-phase flow analysis with respect to the conclu-
sions of a one-phase flow analysis wherever possible.
Experimental results are discussed concurrently.

Imbibition in Semi-infinite Media

The imbibition of liquid into porous materials
is many times referred to as a "diffusion" phenomenon.
This terminology arises because the Richards' equation,
when expressed in terms of saturation, is the same
form as the classic diffusion equation. The diffusion
coefficient or "diffusivity" is highly dependent on
the degree of saturation.

When the problem of horizontal imbibition is
analyzed from the standpoint of two-phase flow, it is
found that the shape of the saturation profile and
therefore the rate of imbibition is a function of the
behavior of the integrand of equation (77), particular-
ly for values of § near 1.0.

It is noted that the integrand in equation (77)
is indeterminant at S = 1.0 . The author has not
been successful to date in attempts to evaluate this
function in the limit as S approaches 1.0 except for
the case when k;a (1.0) # 0. However, numerical

calculations indicate that the integrand is not a
monotonically increasing function of § , but instead
reaches a maximum value near § = 0.98 and then
decreases to some limiting value as S approaches
1.0.

A maximum of the integrand in equation (77) at,
say, S = Sj means that there exists an inflection

point in the saturation profile at S, The satura-

tion profile for S > 5, is essentially the Buckley-

Leverett profile which is obtained by neglecting
capillary gradients. This is in agreement with the
work of Brustkern and Morel-Seytoux (4).

The saturation profile predicted from the solu-
tion of the Richards' equation has no inflection point
near S = 1.0 . It should be pointed out that it
would be very difficult to detect the inflection in
the profile experimentally with the present methods
of measuring saturation under dynamic conditions.
Figure 8 is an example of the saturation profile
calculated from equation (73) in which le was com-

puted from equation (77). The le curve is shown
in Figure 9.

It is noted that the inflection is so subtle that
it cannot be observed on a graph of this scale. The
point is not entirely academic, however, because it
has a bearing on the limiting value approached by the
infiltration rate during vertical imbibition.

Equation (94) is the approximate solution derived
for infiltration into a semi-infinite medium subject
to the boundary condition that S = 1.0 at z =0 .
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The limiting value of the infiltration rate V as
t becomes large is given by:

limit V = limit ~ (125)
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FIGURE 8 - Example saturation profile for
horizontal imbibition.

FIGURE 9 - FH
calculation of the profile in Figure 8.
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For the case when k;atl.u)# 0 , the above limit is
equal to Ha km(l)/uw which is the scaled value of

the hydraulic conductivity at S = 1.0 and the
limiting value of the infiltration rate predicted from
the Richards' equation. Numerical calculations in-
dicate that for the case in which k;s{l.ﬂj = 0 the

limit in equation (125) is a value somewhat smaller

than uakrw(l)/u" , although this cannot be concluded

with certainty. Brustkern and Morel-Seytoux (4) found
the limiting value of the infiltration rate to be less
than that predicted from the Richards' equation.

Morel-Seytoux (15) has shown that, in the limit
as time becomes very large, the actual fractional
flow F, must approach a curve defined by

fw + E(S)/V as modified by the Welge tangent con-

struction. The reader is referred to this reference
for a lucid discussion of this result. The approxima-
tion used in the present work does not satisfy this
requirement except near S = 1.0 . Therefore, the
saturation profile at large times predicted in the
present analysis is not correct throughout the entire
range of saturations. The major result of the in-
correct saturation profile at large times is to over-
estimate the influence of gravitational forces on the
infiltration phenomenon. This results in predicted
infiltration rates which are too high when the
gravitational forces become significant relative to
the capillary driving forces. The magnitude of the
error in predicted infiltration rates has not been
definitely established.

In the derivation of equation (108) for infiltra-
tion subject to a ponded-liquid boundary condition,
it is assumed that a zone in which S = 1.0 develops
in the porous medium. This was done as a convenient
approximation. From a rigorous theoretical standpoint
such a zone does not occur, This is concluded from
the fact that D(§) is zero at § = 1.0 . From the
definition of E(S) and D(S) (equations (36) and
(43)) it is evident that D(S) approaches zero at
§=1.0 as a result of kra approaching zero at that

saturation., This in turn implies that the resistance
to flow of the air becomes infinite as approaches
1.0 . Therefore, it is concluded that all of the
continuous air phase is never displaced from the
material. In fact, this conclusion is related to the
fact that the saturation profile exhibits an inflec-
tion near 8§ = 1.0 .

The result of this approximation is that equation
(108) is not entirely consistent. This is evident
because the first term in brackets predicts the limit-

ing value of the infiltration rate to be “akrwcl)/kr

and the second term in brackets predicts the limiting
value to be that given in equation (125). Because the
difference between these two limiting values is small,
the effect on numerical calculations is insignificant
except at very large times. A comparison between
calculated and measured infiltration for the Poudre
sand is shown in Figure 10.

a

The calculations for the Poudre sand were made
from the data shown in Figures 11 and 12. It is
observed in Figure 12 that S0 for the Poudre sand

is 0.91. The initial condition was the air-dry sand

for which Si = 0. Using these values the measured
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data were replotted in terms of S . The result is
shown in Figures 13 and 14. The relative permeability
to air for the Poudre sand shown in Figure 13 is not
measured data, This curve was calculated from formulas
given by Brooks and Corey. The capillary pressure
curve in Figure 14 was idealized slightly by making

the straight-line extrapolation from § = 0.9 to

8§ = 1.0 as shown. This resulted in a value of
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FIGURE 10 - Comparison of theory and experiment
for infiltration in Poudre sand.

Pd/Dg of 22 cm of oil. Experimental data presented

in the next section provides a justification for this
modification of the measured data.

It was pointed out in the derivation of equation
(108) that the factor A defined by equation (104)
was assumed constant. This implies that Paf is

For infiltration into semi-infinite media,
P is zero.
af

Experimental measurements of the pressure in the air
phase in Poudre sand near the upper surface of the
medium were made in order to check this assumption.
These results are shown in Figure 15. In these
experiments the air was allowed to escape freely from
the bottom of the column. It is noted that the

length of column has a marked effect on the air pres-
sure buildup. This is due, of course, to the increased
resistance to flow in the longer column. In view of
these results, air taps along the column of Poudre
sand were left open to the atmosphere so that the air
could more readily escape and the infiltration experi-
ments were repeated. The infiltration data from these
experiments on the 25.4 cm columns of Poudre sand
agreed with that from columns in which the air could
escape only from the bottom to the same degree that

a given data set could be reproduced. It was not
possible to detect a difference in the infiltration
data that could be directly attributed to air pres-
sure buildup.

constant.
the assumption further implies that

It should be emphasized that the above conclu-
sions are based on observations taken from a column
of Poudre sand 25.4 cm long. It is expected that
these conclusions cannot be extrapolated to columns
which are much longer because a significant air pres-
sure buildup persisted in the 51 cm column for up to
3 minutes.
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Figure 16 is a comparison of experimental data
with calculations from equation (94) for the Berea
sandstone. There is considerable discrepancy between
the calculated and measured values in this case. The
calculated curve is displaced from the measured one
by an approximately constant factor. This indicates
that the calculated curve has the correct shape.
Therefore the fact that the influence of gravity is
over-estimated in equation (94) does not appear to
explain the discrepancy. The calculation is very
sensitive to_the slope of the capillary pressure
curve near S = 1.0 , and small errors in this curve
could produce the observed difference. The data from
which these calculations were made are shown in
Figures 17 and 18.
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FIGURE 17 - Relative permeability as a function
of saturation for Berea sandstone.
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Infiltration in Finite Media

The procedures discussed in the section entitled
Boundary Conditions IV were employed to compute the
solid curves shown in Figure 19 for Poudre sand. The

value of Pd}pg used in these calculations is 22.0 cm.

The points shown in this graph are measured cumulative

infiltration data for various effective column lengths.

Apparently the calculation procedure for finite media
is adequate to predict the cumulative infiltration as
a function of time until the air pressure head has

increased to Pd/pg + Po/pg (equal to 23.6 cm in this

case). The calculation procedure cannot be carried
beyond this point.
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FIGURE 19 - Comparison of theory and experiment
for infiltration in finite columns of Poudre sand.
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The data from infiltration tests into finite
media are shown in Figures 20 through 24. The infil-
tration rates plotted on all graphs were calculated
from the cumulative infiltration curves by the
formula:

i

!Quat'qt.] /8% ¢ [Qt'Qt-atJ

2

/bt
(126)

(q), =

where (q)t is the infiltration rate at time t .

This procedure provides some smoothing of the calcu-
lated infiltration rates. This was necessary because
the volume of oil in the constant head burette used to
measure the cumulative infiltration changed in dis-
crete increments rather than continuously. At any
particular time, the volume of oil in_the burette
could be determined to within 20.1 cm® , but the
volume of 0il in the porous medium could differ from
the determined value by an additional £0.2 cm® , which
was the volume of discrete'dﬂ%?ges in the burette.

It is observed that in each of the Figures 20-24
that the infiltration rate decreased to a value lower
than the hydraulic conductivity at S = 1.0 . It is
interesting to note, however, that the pressure head
in the air phase (when the infiltration rate was equal
to the hydraulic conductivity at § = 1.0) was
approximately 24 cm of oil in each case. The range
was from 26 cm to 22 cm for the 5 different cases.
Based on the assumption that a zone in which § = 1.0
developes in the medium, one would expect the infil-
tration rate to be equal to the hydraulic conductivity
when the air pressure head is equal to 23.6 cm (see
equation (95)). This observation provides some
justification for the assumption that such a zone
developes. It should be remembered, however, that
this assumption was made as a convenient approximation
to the actual situation.

The Figures 23 and 24, it is
decrease in the air pressure head
increase in the infiltration rate occurred after the
air pressure head reached a value of about 33 cm of
0il. Escape of the air from the top of the column was
observed a few seconds before the beginning of the
pressure decrease. In the case of 990, 670 and the
393-cm columns, the wetting front reached the bottom
of the column before the air pressure buildup was
sufficient to allow the air to escape. In addition,
there are indications of an air leak in the 3§3-cm
column.

seen that a sharp
and a corresponding

The fact that the air pressure head builds up to
values significantly higher than 23.6 cm before air
begins to escape is evidence that the saturation in a
portion of the column near the surface decreases.
Initially, the air pressure is zero in the column and
near the top of the column the saturation S is very
near 1.0. Before the air can escape, the saturation
must decrease to provide air permeability. The in-
crease in capillary pressure associated with the
decrease in saturation takes place along the dotted
curve shown in Figure 12 rather than the primary
imbibition loop. Therefore, the increase in capillary
pressure near the surface necessary to provide the
air permeability required for air escape is consider-
ably greater than would be predicted from the primary
imbibition loop. Since the liquid pressure at the
surface is constant, the increase in capillary pres-
sure must be provided by an increase in air pressure.
The infiltration rate decreases to values less than
the hydraulic conductivity at S = 1.0 because the
air pressure buildup represents a retarding force and
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causes a reduced permeability to liquid by increasing

the capillary pressure.

The infiltration rates in Figures 23 and
that after counterflow of air begins, a sharp
crease in infiltration rate occurs.
creases to a peak and then declines to a value below
the hydraulic conductivity corresponding to S = 1.0 .
The limiting value of the infiltration rate is lower
in the finite columns than in those open at the bottom
because of the resistance to the counterflowing air.

The rate

24 show

in-
in-

80 i 32
.
.
28
O g Be YR : =
(-] - - - ¥ ” o
- 13 . . o ® 2%
!!. . . . " ‘ £
A |= o a® 20 -
£f | 13
£ . Colamn Langth 185 cm .
i3, . o Cumaiate nfiltraton i
- " infitirahon Rate 2
f 3 = * & Presssre Heod iz &
E! - ~= Myt Conduchwty ot § 10 3
3 o
5 ‘f’
20k, .6 8
TSR l.
5 "y
B ccehan M A immee e s seeu e vaea s st ansansnes na s anenses ]
‘q L] % % & 4 = e & = 4 4
° 2het cx. St °
6 10 L 0 % W & W™ 8 0 00 120

Time | minates

FIGURE 24 - Infiltration in a column of Poudre sand -

185 cm equivalent length.

The decrease in pressure associated with the
beginning of counterflow observed for the Poudre sand
did not occur in the Berea. The slight decline in
pressure near the termination of the experiment is
believed to be due to the development of an air leak.

The counterflowing air was observed to be con-
centrated at two points on the surface of the sand-
stone. Although the Berea is very homogeneous
parallel to its natural bedding planes, the presence
of the bedding planes makes it quite anisotropic.
This fact could explain the escape of the air being
concentrated in two places.

Constant Rate Infiltration

Columns of Poudre sand were subjected to constant
rate infiltration tests with the objective of observ-
ing the development of the capillary pressure profile
and the factors affecting the time at which ponding
on the surface occurs.

The capillary pressure head as a function of
time at seven positions in the column of Poudre sand

are shown in Figure 26.
40
o
36
32

Simultancously with the cobservation of the
counterflow of air a slight disturbance of the surface
of the Poudre sand was noticed. The air escaped near
this contact area in small bubbles through small holes
which were formed in the sand. It is believed that
the formation of the worm-like holes by the escaping
air is the reason for the sharp pressure decrease
observed shortly after counterflow began. This could
account for the increase in infiltration rates to
values higher than hydraulic conductivity at

To test this theory, a Berea sandstone column
was subjected to the same test. The results are

§=1.0.

~
a2

@

Capillary Pressuwe Heod , cm of Oil
8

0 10

Y

shown in Figure 25.

28

Cumulgtg  Inflilirangn , om

0 4 L] 2 L] 20 24 28 2 3% *
Time , minutes

&
Air Pressure Heod , om ol Ow

FIGURE 25 - Infiltration in a column of Berea

sandstone - 17.4 cm equivalent length.
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FIGURE 26 - Capillary pressure head as a function of
time and position during constant rate infiltration.

. The progress of the "wetting front" is readily
observed from this figure. An important feature of
the curves in this graph is the rapid decrease in the
capillary pressure when the '"wetting front'' reaches a
particular point followed by a much slower decline.

It is noticed that after the wetting front has passed,
the rate of decline of capillary pressure is least for
points nearest the upper surface. It is not possible
to measure the capillary pressure immediately at the
surface, but it can be concluded that, after the
initial wetting, the rate of decline of capillary
pressure at the surface was less than that measured at
tap (1). The significance of this observation is that
the capillary pressure at the surface of the soil
approaches the capillary pressure at which ponding
occurs almost asymptotically. Therefore, the time at
which ponding occurs is very sensitive to the pro-
perties of the porous medium. The properties of the
porous medium at the surface are especially important.



Attempts to reproduce the ponding time observed in a
particular experiment verified this conclusion.

In view of the difficulty experienced in reproduc-
ing the experimental data, no attempt was made to make
numerical comparisons between experimental data and
the theoretical developments for the constant rate
boundary conditions. The theoretical results are use-
ful because the factors affecting the phenomenon can
be determined easily; at least in a qualitative sense.
Figure 27 shows an example of the predicted variation
in the capillary pressure at the surface. Note that,
qualitatively, this curve agrees with the measured
curves in Figure 25.
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FIGURE 27 - Calculated capillary pressure as a
function of time at the surface.

Figure 28 shows how the ponding time varies with
the application rate. For this example, scaled
application rates less than 2.4 x 10-3 will not re-
sult in ponding. It is observed that the ponding time
becomes very sensitive to the infiltration rate for
rates near 2.4 x 10-3 ., This trend was verified
experimentally by determining the ponding time at
various application rates. The results are shown in
Table 1.
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FIGURE 28 - Calculated relationship between infiltra-
tion rate and ponding time.
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TABLE 1 - Observed Dependence of Ponding Time on
Infiltration Rate

Infiltration Ponding
Rate Time
em/min. min.
0.154 35
0,103 62
0.076 218
0.074 -—=

From the data in Figure 26, plots of the
capillary pressure profiles at various times were
constructed. These are shown in Figure 29. From
these curves, it is observed that to some degree
of approximation, different values of capillary
pressure propagate with the same velocity at any
particular time. It is on this approximation that
equations (120) and (123) are based.
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FIGURE 29 - Measured capillary pressure profiles
during constant rate infiltration.

The ponding time for the experiment from which
the data in Figures 26 and 29 were taken was observed
to be 62 minutes from the time of application of
the constant rate. The capillary pressure at tap 1
began to decrease sharply at about this time. This
is explained by the fact that, just prior to ponding,
the saturation at points near the surface was near
§=1.0. A further increase in S resulted in a
sharp decline in capillary pressure because Pc

decreases very rapidly with increasing saturation in
this range (see Figure 12). The increase in satura-
tion beyond the saturation at which E(S) reaches a
maximum (see the discussion following the derivation
of equation (123)) occurs because the air is com-
pressible. It was observed that the counterflow of
air ceased when ponding occurred and the air was com-
pressed until the pressure increased to a value at
which it again escaped from the top of the column.



The phenomenon of one-dimensional flow of two
immiscible fluids in porous media was studied both
theoretically and experimentally, with particular
emphasis on the infiltration problem.
work was based on a differential equation derived by
combining Darcy's law for both fluids with the equa-
tion of mass censervation.
study were designed to simulate field situations in
which the resistance to flow of the displaced air
significantly affects the flow of the liquid.

The following conclusions were drawn as a result
of this study.

1)

2)

3)

CONCLUSIONS AND RECOMMENDATIONS

The theoretical

Experiments used in the

The construction of similar physical systems
in which the flow phenomenon is that of an in-
compressible wetting fluid displacing a com-
pressible non-wetting fluid is impractical in
all but a few simple cases. Five criteria for
the construction of similar physical systems
were Tecognized. These are:

a) The overall geometry of the two systems
must be such that corresponding dimen-
sions form identical ratios to Pofpwg i

Po is the scale factor for pressure.
b) The theory implicitly required the same

orientation with respect to the gravita-
tional field.

¢) Initial and boundary conditions must be
identical when expressed in terms of the
scaled variables.

d) The viscosity ratio ua/uw must be
identical in both systems.

e) The functions of scaled variables listed
below must be identical;

k a’ kra(sJ

T
Ky = Ky S)
P = P_(S)

o, = p ()

The differential equation describing one-
dimensional horizontal displacement of an
incompressible non-wetting fluid by an
incompressible wetting fluid in a semi-
infinite medium subject to the conditions
of constant saturation at x = 0 and
uniform initial saturation can be reduced
to an ordinary differential equation by
the Boltzman similarity transformation.

Theoretically, a zone in which the capillary
pressure is less than that value at which

the air phase becomes discontinuous (a zone
in which § = 1.0) does not develop in the
porous medium. This is true even under pond-
ed liquid conditions. This conclusion im-
plies that the governing equations (expressed
with saturation as the dependent variable)
are valid even under conditions of ponded
liquid.
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4)

5)

6)

7)

8)

The saturation profile contains an inflection
point near S = 1.0 which is the result of
the large resistance to flow of the air at
these saturations. This is in agreement with
the Buckley-Leverett profile obtained by
neglecting capillary pressure gradients
(Brustkern and Morel-Seytoux (14)).

The limiting value approached by the
infiltration rate (scaled) in a semi-
infinite medium is:

linit q_ = limit PESEEE .. e
toben S5+1.0 le[Sl - waS]

For the case in which dk__/dS[S=1.0 # 0
the above limit is equal to 1.131&:1_‘«(1),"%‘r

which is the scaled value of the hydraulic
conductivity at § = 1.0 ., If ki, (1.0) =0

it is believed that the limiting value of
q, is somewhat less than uakrw(l)!uw .

although this was not definitely proven.

Calculation of the infiltration into Poudre
sand from equation (108) agrees well with
experiment. This equation overestimates the
effect of gravitational forces to an unknown
degree.

The rate of infiltration into columns con-
structed so that the air cannot escape from
the bottom is significantly slowed by the re-
sistance to the flow of the air under certain
conditions. The infiltration rate is, initial-
ly, very high but decreases rapidly to a mini-
mum value well below the hydraulic conductivi-
ty at S = 1.0 . The pressure in the air is
increased because it is compressed by the in-
filtrating liquid. Air begins to escape from
the top of the column when the capillary pres-
sure at the surface has reached some threshold
value, The value of the capillary pressure

at which air begins to escape is considerably
higher than would be predicted from the prima-
ry imbibition capillary pressure-saturation
curve. These conclusions are in agreement
with those of Young and Peck (36).

When air begins to escape from the
column, the infiltration rate increases, In
the case of Poudre sand, the infiltration
rate increased to a peak and again declined
to a value somewhat below the hydraulic
conductivity at S = 1.0 ., It is believed
that the increase in the infiltration rate
to values higher than the hydraulic con-
ductivity at S = 1.0 is the result of a
disturbance in the Poudre sand near the
surface caused by the escaping air,

Theoretical results for the case of constant
rate infiltration with air counterflow show
that ponding will occur if the scaled value
of the application rate exceeds the maximum
value of E(S) .



9) Both theoretical and experimental results
show that the capillary pressure (or satura-
tion) at the surface approaches the value at
which ponding occurs at a rate which depends
upon the application rate. The critical
value of capillary pressure (or saturation)
is approached almost asymptotically in time
when the scaled application rate is only
slightly larger than the maximum value of
E(S) . Therefore ponding time is large. For
larger application rates, ponding will occur
more quickly. The relative magnitude of
these changes can be predicted from the
theory. The theory can be used (in a
qualitative sense) to determine how the pond-
ing time depends on the hydraulic properties
of the porous medium.

Several aspects of the work in this paper are
incomplete and require further study. The degree to
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which le depends upon kra(SJ near S = 1.0

should be studied in more detail. In conjunction with
such a study, an experiment should be designed to
investigate the shape of the saturation profile of
values of S near 1.0,

The degree to which gravitational forces are
overestimated by equation (94) and (108) should be
determined. This could be accomplished by comparisons
with other solutions.

The solution procedure for problems of infiltra-
tion into finite media is not sufficiently general to
predict all of the important aspects of this
phenomenon. Efforts should be made to either extend
the present method or develop a new procedure,

Finally, a simple routine method for measuring
the relative permeability to air as a function of
saturation for unconsolidated materials should be
developed.
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APPENDIX A

HYDRAULIC PROPERTIES OF POROUS MEDIA

TABLE A-1 CAPILLARY PRESSURE - RELATIVE PERMEABILITY TABLE A-3 CAPILLARY PRESSURE - SATURATION DATA FOR

SATURATION DATA FOR POUDRE SAND BEREA SANDSTONE
Drainage Imbibition Drainage Imbibition
Pcfog krw S Pc/og K o S pc,r,g S -—/pc g s
cm cm cm cm
10.0 1.000 4.5 0.279
23.0 1.000 1.00 73.6 0.001 0.32 20.0 1.000 139.2 0.293
29,3 1.000 1.02 56.8 0.004 0.38 33.5 1.000 141.0 0.298
33.7 1.000 1.01 50,7 0.006 0.40 40.0 0.978 124.5 0.305
36.8 0.904 1.00 45.0 0.013 0.44 48.0 0.977 108.3 0.321
39.1 0.750 0.97 38.9 0.036 0.47 49.5 0.976 93.9 0.342
40.8 0.578  0.90 34.6 0.096 0.62 51.0 0.940 81.6 0.356
42:9 0-422 0.37 33,00 O0.118 8.54 53.0 0.896 68.4 0.395
45.7 0.240 0.78 28.9 0.204 0.72 54.5 0.859 58.2 0.428
50.8 0.094 0.6l 19.0 0.690 0.89 60.0 0.720 39.3 0.549
56.4 0.036 0.51 127 0.800 0.91 62.0 0.674 33.3 0.614
59,9 0.026 0.47 7.2 0.816 0.90 20. 6 0.540 29.3 0.674
63.3 0.016 0.44 75.8 0.502 23.6 0.712
66.3 0.010 0.42 80.8 0.470 19.1 0.735
75.9 0.003  0.35 85.6 0.442 12.2 0.758
84.9 0.001 0.29 93.5 0.405 9.6 0.763
= z 0.377
K =2.52x 10 cm? , ¢ = 0.39 Hen e
128.3 0.326
TABLE A-2 RELATIVE PERMEABILITY - SATURATION DATA 148.3 0.293
FOR BEREA SANDSTONE - IMBIBITION 178.4 0.274
Kin 8 Krw S
1.000 0.0 0.002% 0.40
0.986 0.079 0.016* 0.50
0.943 0.148 0.154 0.648
0.806 0.260 0.237 0,715
0.669 0.325 0.262 0.750
0.566 0.377 0.290 0.761
0.457 0.419 0.320 0.770
0.347 0.460 0.353 0.776
0.169 0.539
0.090 0.574 0.400 0.780
0.051 0.605
0.028 0.619 *From drainage curve
0.021 0.628 S
0.004 0.651 K = 0.384x10 - cm
¢ = 0.201
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APPENDIX B

INFILTRATION DATA FOR SIMULATED SEMI-INFINITE COLUMNS

TABLE B-1 INFILTRATION DATA FOR SIMULATED SEMI- TABLE B-2 INFILTRATION DATA FOR SIMULATED SEMI-
INFINITE COLUMN OF POUDRE SAND INFINITE COLUMN OF BEREA SANDSTONE
Cumulative Infiltration Time Cumulative Infiltration Time
Infiltration Rate Infiltration Rate
cm em/min Min cm cm/min Min
0.55 1.58 0.25 0.048 0.147 0.25
0.79 0.86 0.50 0.073 0.090 0.50
0.98 0.65 0.75 0.093 0.066 0.75
1.12 0.56 1.00 0.106 0.052 1.00
1.25 0.52 1.25 0.133 0.044 1.50
1.77 0.42 2.50 0.150 0.039 2.00
1.95 0.35 3.00 0.172 0.034 2.50
2.13 0.32 3.50 0.184 0.028 3.00
2.27 0.27 4.00 0.215 0.028 4,00
2.53 0.26 5.00 0.241 0.024 5.00
2.79 0.24 6.00 0.263 0.022 6.00
3.02 0.22 7.00 0.284 0.021 7.00
3.23 0.22 8.00 0.306 0.020 8.00
3.50 0.21 9.00 0.323 0.018 9.00
3.65 0.20 10.00 0.341 0.016 10.00
3.85 0.20 11.00 0.371 0.015 12,00
4.23 0.17 13.00 0.401 0.015 14.00
4.40 0.17 14,00 0.429 0.014 16.00
4.57 0.17 15.00 0.455 0.012 l18.00
4,74 0.16 16,00 0.479 0.012 20.00
5.07 0.16 18.00 0.505 0.012 22.00
5.37 0.15 20.00 0.529 0.012 24.00
5.66 0.14 22.00 0.553 0.011 26.00
5.94 0.14 24.00 0.575 0.010 28.00
6.21 0.14 26,00 0.594 0.010 30.00
6.49 0.13 28.00 0.646 0.010 35.00
6.74 0.13 30.00 0.696 0.009 40.00
7.42 0.13 35.00 0.739 0.009 45.00
8.00 0.11 40.00 0.783 0.009 50.00
8.55 0.11 45.00 0.826 0.009 55.00
0.868 0.008 60.00

Column Area = 7.892 cmz, 4 = 0.396, K= 2.41 Colu.m& Area = 20.65 |::|112 , ¢ =0.201, K= 0.384
x 10'8 cm? x 107° cm
Ponded liquid depth = 1.6 cn Ponded Liquid Depth = 0.8 cm
Temperature = 23.4°C. Temperature = 22.5°C.
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APPENDIX C

INFILTRATION DATA FOR FINITE COLUMNS

TABLE C-1 INFILTRATION DATA FOR COLUMN OF POUDRE SAND TABLE C-2 INFILTRATION DATA FOR COLUMN OF POUDRE SAND
990 cm Equivalent Length 670 cm Equivalent Length
Cumulative Infiltration Air Press. Time Cumulative tnfileration Air Press. Time
Infiltration Rate Head Infiltration Rate Head
cm. cm/Min cm. of oil Min. ol
cm. cm/Min, cm. of oil Min.
0 ——— 0 0 0.0 - 0 0.00
.48 1.43 .8 0.25 .50 1.47 17 0.25
+ 71 0.81 lal 0.50 .74 0.84 2.8 0.50
1.04 0.58 1.5 1.00 91 0.61 3.5 0.75
1.17 0.47 1.7 1.25 1.04 0.51 4.0 1.00
1.28 0.41 1.9 1.50 1.17 0.48 4.5 1.25
1.37 0.43 2,0 1.75 1.28 0.46 4.9 1.50
1.50 0.39 2.1 2,00 1.39 0.41 5.1 1.75
1.57 0.30 - 2,25 1.48 0.37 5.5 2,00
1.65 0.31 - 2,50 1.67 0.30 6.3 2.50
L.72 0.36 - 2.75 1.79 0.24 6.9 3.00
1.82 0.34 -an 3.00 1.91 0.24 T 5 3.50
1.96 0.26 ——— 3.50 2.02 0.23 8.0 4,00
2.09 0.25 — 4,00 2.14 0.20 8.3 4.50
2.22 0.24 s v 4.50 2.23 0.19 8.6 5.00
2.33 0.22 SR 5,00 2.33 0.20 9.1 5.50
2.45 0.20 i 5.50 2.52 0.15 9.8 6.50
2.53 0.19 = 6.00 2.57 0.15 10.1 7.00
2.65 0.21 loy 6.50 2.67 0.18 10.6 7.50
2.75 0.20 i 7.00 2.75 0.15 11.0 8.00
2.84 0.16 — 7.50 2.83 0.14 11.3 8.50
2,90 0.16 — 8.00 2.89 0.14 11.5 9.00
2.99 0.16 = 8.50 2.96 0.13 11.9 9.50
3,07 0.15 —— 9.00 3.02 0.12 12.3 10.00
3.14 0.15 - - 9.50 3.15 0.14 ' 12.9 11.00
321 0.16 9.3 10.00 3.29 0.12 13.3 12.00
3.29 0.17 - 10.50 3.39 0.11 13.5 13.00
3.38 0.15 10.0 11.00 3.51 0.11 14.0 14,00
3.45 0.12 10.2 11.5¢ 3.62 0.11 14.6 15.00
3.51 0.12 10.5 12.00 3.72 0.10 15.1 16.00
3.62 0.13 10.8 13.00 3.92 0.10 16.1 18.00
3.75 0.13 11.3 14.00 4.40 0.09 17.5 22.00
3.88 0.13 11.5 15,00 4.45 0.05 18.4 24,00
4.00 0.12 12.0 16.00 4.59 0.08 19.0 26.00
4.22 0.11 12.5 18.00 4.73 0.07 19.3 28.00
4.33 0.11 13.0 19,00 4.85 0.06 20.0 30.00
4.48 0.11 13.3 20.00 5.14 0.05 21.6 35.00
4.65 0.11 14.0 22.00 5.41 0.04 22.8 40.00
4.88 0.11 14.%5 24.00 5.65 0.05 24.5 46.00
5.03 0.10 15.2 26.00 5.11 0.03 25.8 55.00
5.22 0.09 15.8 28.00 6.34 0.03 26.8 63.00
5.37 0.08 16.3 30.00 6.41 0.03 27.2 65.00
5.78 0.08 17.5 35.00 6.55 0.04 28.4 70.00
614 0.08 18.8 40.00 6.73 0.03 28.5 75.00
6.51 0.07 19.8 45,00 6.85 0.03 29,5 80.00
6.84 0.07 21.0 50.00 7.01 0.03 30.0 86.00
7.18 0.06 22.3 56.00 7.11 0.02 30.5 90.00
7.41 0.06 23.0 60.00 7.22 0.02 31.0 95.00
7.70 0.06 24,0 65.00 7.33 0.02 31.5 100.00
7.89 0.05 24.5 70.00 7.47 0.02 31.6 106.00
8,20 0.05 25.2 75.00 7.56 0.02 32.0 110.00
B.43 0.05 26.0 80.00 7.65 0.02 32.5 115.00
TaitB 0.02 33.0 120.00
Atmospheric Pressure = 1182 cm. of oil Atmospheric Pressuge = 1106 cm. of oil
Temperature = 23.0°C Temperature = 22.9°C.
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TABLE C-3 INFILTRATION DATA FOR COLUMN OF POUDRE SAND TABLE C-4 INFILTRATION DATA FOR COLUMN OF POUDRE SAND
393 cm Equivalent Length 233 cm Equivalent Length
Summiiative Infiltration Air Press. Time Cu@ulati?e Infiltration Air Press. Time
Infiltration Rate Head Infiltration Rate Head ) )
p om/min cm. of oil Min cm. cm/Min cm. of oil Min.
0.00 —— 0.0 0 ——— 0 0
0.56 1.54 2.5 0.25 0.60 1.40 - 0.25
0.77 0.71 4.3 0.50 0.70 0.46 - 0.50
0.91 0.56 ——— 0.75 0.82 0.48 ——— 0.75
1.05 0.48 6.5 1.00 0.94 0.40 — 1.00
1.15 0.43 —-_— 1.25 1.03 0.30 IL.5 1.25
1.27 0.41 8.0 1.50 1.09 0.25 - 1.50
1.36 0.33 —— 1.75 115 0.25 ———— 1.75
1.43 0.30 - 2 2.00 I 0.24 - 2.00
1.58 0.25 10.6 2.50 1.33 0.20 16.0 2.50
1.69 0.22 11l.5 3.00 1.42 0.15 ———— 3.00
1.80 0.22 12.4 3.50 1.48 0.14 — 3.50
1.90 0.20 13.0 4.00 1.56 0.13 - 4.00
2.00 0.18 13.8 4.50 1.61 0.10 —— 4.50
2.08 0.14 14.5 5.00 1l.66 0.09 21.0 5.00
2.14 0.15 15.0 5.55 1.70 0.09 . 5.50
2.23 0.14 15.5 6.00 1.75 0.09 i 6.00
2.28 0.14 16.1 6.50 1.82 0.07 e 7.00
2.37 0.15 16.6 7.00 —_—— ——m 23,8 7.50
2.43 0.11 17.0 7.50 1.89 0.06 s 8.00
2.48 0.10 17.5 8.00 1.95 0.05 ——— 9.00
2.58 0.10 18.2 9.00 2.00 0.04 26.0 10.00
2.69 0.10 19.0 10.00 2.04 0.05 P 11.00
2.77 0.09 19.6 11.00 2.09 0.04 = 12.00
2.86 0.08 20.4 12.00 2.15 0.03 ——— 14.00
2.94 0.08 20.9 13.00 — —_— 28.6 15.00
3.02 0.07 21.4 14.00 2.20 0.03 - 16.00
3.10 0.07 b 15.00 2.25 0.03 -— 18.00
3.15 0.06 22.5 16,00 2.30 0.02 30.6 20.00
3.28 0.06 23.3 18.00 2.34 0.02 ——— 22.00
3.40 0.05 24.0 20.00 2.39 0.02 31.8 25.00
3.50 0.05 s 22.00 2,46 0.01 33.0 30.00
3.59 0.04 25.2 24.00 2.50 0.02 - 33.00
3.67 0.04 25.6 26.00 2.51 0.04 m——— 33.50
3.74 0.04 i 28.00 2.53 0.04 -_—— 34.00
3.83 0.04 26.5 30.00 2.55 0.03 - 34,50
3.90 0.04 - 32.00 2.57 0.05 30.0 35.00
4.02 0.03 27.4 35.00 2.61 0.06 - 36.00
4.16 0.03 28.2 40.00 2.64 0.51 ——— 36.50
4.29 0.03 28.8 45.00 2.66 0.51 —— 37.00
4.43 0.03 290 50.00 2.69 0.08 23.5 37.50
4.56 0.03 29.2 55.00 2.74 0.10 ———— 38.00
4.68 0.02 29.7 60.00 2.79 0.09 ——— 38.50
4.79 0.02 30.0 65.00 2.83 0.09 ——— 39.00
4.89 0.02 30.1 70.00 2.88 0.14 —— 39.50
5.00 0.02 30.2 75.00 2,91 0.13 21.5 40.00
5.21 0.02 30.5 85.00 2.99 0.07 -—— 41.00
5.30 0.02 30.5 90.00 3.05 0.08 ———— 42.00
5.40 0.02 30.5 95.00 3.14 0.08 — 43.00
5.57 0.03 30.5 106.00 3.22 0.08 _—— 44.00
5.78 0.02 30.86 110.00 3.29 0.07 21.8 45.00
3.36 0.06 - 46 .00
3.42 0.06 - 47.00
Atmospheric Pressugre = 1098 cm. of oil 348 %08 e 4809
Temperature = 22.8°C 3.61 0.06 23.0 50.00
*Possible air leak 488 904 2w 3300
4.13 0.05 24.3 60.00
4,37 0.05 ——— 65.00
4.60 0.04 24.5 70.00
5.04 0.04 24.7 80.00
5.46 0.04 25.5 90.00
5.87 0.04 —— 100.00
6.28 0.04 S 110.00
6.49 0.04 —— 115.00
6.68 0.04 —_—— 120.00
Atmospheric Pressure = 1206 cm. of oil

Temperature = 23.0°C
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TABLE C-5 INFILTRATION DATA FOR COLUMN OF POUDRE SAND

185 cm Equivalent Length

Cumulative Infiltration Air Press. Time
Infiltration Rate Head
cm. cm/Min. cm. of oil Min.
0 0.00
0.57 1.47 - 0.25
0.73 0.46 10 0.50
0.80 0.53 - 0.75
1.00 0.58 - 1.00
1.09 0.28 i8.1 1.25
1.14 0.25 —— 1.50
1.22 0.23 ———— 1475
1.25 0.18 — 2.00
1.36 0.19 20.4 2.50
1.44 0.11 ——— 3.00
1.47 0.06 ———— 3.50
1.51 0.09 ———— 4.00
1.56 0.06 ———— 4.50
1.57 0.05 25.0 5.00
1.65 0.06 —— 6.00
1.69 0.04 ——— 7.00
———— — 27.2 7.50
1.74 0.04 -—— 8.00
1.77 0.03 ———— 9.00
1.80 0.03 29.0 10.00
1.85 0.02 30.2 12.00
1.89 0.02 ——— 14.00
——— ———— 31.3 15.00
1.93 0.03 ———— 16.00
—— ———— 3l.5 16.50
1.96 0.06 47.5 17.00
—— —-—— 25.0 17.50
2.05 0.10 —— 18.00
———— _—— 22.0 18.75
2.:15 0.11 _—— 19.00
- ) 0.10 20.7 20.00
2.36 0.09 20.7 21.00
2.45 0.09 22.0 22,00
2.53 0.08 —— 23.00
2.61 0.06 ———— 24.00
2.67 0.08 22.8 25.00
2.75 0.05 ———— 26.00
2.80 0.06 ———— 27.00
2.86 0.07 —-—— 28.00
3.00 0.06 23.4 30.00
3.32 0.06 -—— 35.00
3.62 0.06 23.6 40.00
——— 0.06 25.2 50.00
4.37 0.05 — 55.00
4.57 0.04 26.0 60.00
5.07 0.04 ——— 70.00
e ——— 26.4 73.00
5.13 0.04 -———- 75.00
5.30 0.04 27.0 80.00
5.47 0.03 ——— 85.00
5.64 0.03 273 90.00
5.79 0.03 —-—— 95,00
5.97 0.03 27.3 100.00
6.12 0.03 ———— 105.00
6.27 0.03 27.3 110.00
6.45 0.03 -—— 115.00
6.60 0.03 27.3 120.00

Atmospheric Pressu
Temperature = 23.0°C

58 = 1181 cm of oil
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TABLE C-6 INFILTRATION DATA FOR COLUMN OF BEREA

SANDSTONE

17.4 cm Equivalent Length

Cumulative Air Press. Time
Infiltration Head

cm. cm. of oil Min.
0.069 22.4 1.0
0.090 30.2 2.0
0.102 34.6 3.0
0.112 37.5 4.0
0.117 ——— 4.5
0.121 39.9 5.0
0.127 ——— 6.0
0.131 43.4 7.0
0.136 ——— 8.0
0.138 —— 8.5
0.138 45.3 9.0
———— 45,7 10.0
0.145 45.7 11.0
0.149 45.7 12.0
0.158 45.4 14.0
0.166 45.4 16.0
0.173 45.2 18.0
0.182 45.3 20.0
0.188 45.2 22.0
0.199 44.5 25.0
0.216 44.5 30.0
0.234 43.6 35.0

Atmospheric Pressure = 1149 cm. of oil
Temperature = 22.8°C



APPENDIX D

AIR PRESSURE BUILD-UP DATA FOR COLUMNS OF POUDRE SAND

TABLE D-1 AIR PRESSURE BUILD-UP IN COLUMNS OF POUDRE SAND
WITH OPEN LOWER END

50.8 cm column 25.4 cm column
Time Air Press. Time Air Press.
Head Head
Sec cm of oil Sec cm of oil
6 9.6 3.5 7.2
11 7.9 4 71
16 6.5 9 4.5
21 LT 14 3.4
26 4.9 19 2.8
31 4.5 24 2.4
36 4.1 29 5 |
41 3.8 34 2.0
46 3.6 39 1.8
51 3.4 44 1.8
56 3.2 49 1.6
61 3.1 54 1.6
66 3.0 59 1.6
71 2.8 64 15
76 2.7 69 535
81 2.6
86 2.6
91 2.5
96 2.4
101 2.3
121 2l
141 2.1
161 2.0
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APPENDIX E

CONSTANT RATE INFILTRATION DATA

TABLE E-1 TAP 1 - 2.30 cm FROM SOURCE

Time 0il

Min. Press. Head
cm. of oil

Air

Press. Head
cm. of oil

Capillary
Press. Head
cm. of oil

1.3 -134.1

2.3 -110.7

4.5 -104.8

6.1 - 95.6

7.1 - 54.9

9.3 - 23:7
10.9 - 21.4
14.1 - 19.4
15.7 - 19.0
18.9 - 18.5
20.5 - 18.2
23.7 - 17.7
25.3 -.17.6
28.5 - 17.3
30.1 - 17.0
33.3 - 16.7
34.9 - 16.4
38.1 = 161
38.7 - 16.0
42.9 - 15.7
44.5 - 15.6
47.7 - 15.4
49.3 - 15.2
52.5 - 14.9
54.1 - 14.7
55.1 - 13.9
57.3 - 13.8
58.9 - 12.8
59,9 «:11.6
62.1 - 9.9
63.7 - 4.0
64.7 - 1.8
66.9 1.6
68.5 2.3
69.5 2.7
71.7 2.9
73.3 3.2
76.5 3.2
78.1 2.9
79.1 3.1
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13.4
13.7
13.7
13.6

134.1
110.7
105.0
95.5
54.8
23.8
21.2
19.4
18.7
18.5
18.2
17.8
17.7
17.4
16.8
17.0
16.2
16.3
15.9
16.1
15.6
15.8
15.2
15.2
14.9
13.9
14.2

10.5

*Constant infiltration rate = 0.813 cma/min.
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TABLE E-2 TAP 2 - 3.81 cm FROM SOURCE

Time 0il Air Capillary
Min Press. Head Press. Head Press. Head
cm. of oil em. of oil cm. of oil
1.2 -82.2 - 82.2
2.4 -78.5 0.1 78.6
4.4 =-79.9 0.1 80.0
6.0 -79.4 -0.1 9.5
9.2 -79.9 0 79.9
10.8 -76.1 0 76.1
12.0 -34.9 -0.2 34.7
14.0 ~25,2 0 25.2
15.6 -23.2 -0.3 4.9
18.8 -21.0 -0.1 20.9
20.4 -20.6 -0.1 20.5
23.6 ~-19.6 0.2 19.8
25.2 -19.2 -0.1 19.1
28.4 -18.6 0.1 18.7
30.0 -18.2 -0.1 18.1
33.2 ~-17.7 0.2 17.9
34.8 -17.3 0 17.3
38.0 -16.9 0.3 17.2
39.6 -16.7 0.3 17.0
42.8 -16.4 0.4 16.8
44.4 -16.2 0.4 16.6
47.6 -15.8 0.5 16.3
49.2 -15.6 0.5 161
52.4 -15.2 0.5 15.7
54.0 -14.9 0.7 15.6
592 -14.1 0.8 14.9
57.2 -13.8 1.2 15.0
58.8 -12.5 Y7 14.2
60.0 -11.4 2.6 14.0
62.0 - 9.6 5.4 15.0
63.6 - 4.6 8.8 13.4
64.8 = .l 14.3 14.4
66.8 2.3 17«5 15.2
68.4 3.1 19.2 16.1
69.6 3.6 19.9 16.3
71.6 3.6 20,2 16.6
73.2 37 20.7 17.0
76.4 3.8 20.9 17,1
78.0 3.7 20.9 b By
79.2 3.7 20.8 7.k




TABLE E-3 TAP 3 - 5.32 cm FROM SOURCE TABLE E-4 TAP 4 - 6.83 cm FROM SOURCE
Time 0il Alr Time 0il Air Capillary
Min Press. Head Press. Head Press. Head Min Press. Head Press. Head Press. Head
cm. of oil cm. of oil cm. of oil cm. of oil cm. of oil cm. of oil
1.1 -155.0 155 .0 -146.8 0 140.8
2.5 -142.4 - 0.1 142.3 é.s -136.6 -0.2 136.4
4.3 -139.9 0.1 140.0 1.2 -134.3 “0.2 134.1
5.9 -138.0 0.1 138.1 5.8 -133.3 0 133.3
7.3 -130.5 - 0.3 130.2 7.4 -131.9 0 131.9
10.7 -130.6 0.1 130.7 9.0 -131.8 0 131.8
13.9 -121.8 - 0.1 121.7 10.6 -131.0 -0.3 130.7
15.5 -100.0 0 100.0 12.2 -128.7 -0.1 128.6
16.9 - 28.0 0 28.0 13.8 ~128.9 -0.1 128.8
18.7 - 25,1 0 25.1 15.4 -127.6 -0.1 127.5
20.3 - 23.4 - .1 23.3 18.6 ~120.1 0 120.1
25.1 - 20.2 0 20.2 20.2 -119.1 0 119.1
28.3 - 19.3 <A 19.6 21.8 - 55,2 -0.2 55.0
29.9 - 18.8 .3 19.1 23.4 - 26.7 0.1 26.8
33.1 - 18.0 .5 18.5 25.0 - 24.0 0.2 24.2
34.7 - 17.5 .5 18.0 28.2 - 21.4 0.2 21.6
37.9 - 17.1 .6 17.7 29,8 - 20.6 0 20.6
39.5 - 16.8 -7 17.5 33.0 - 19.4 0.5 19.9
42.7 - 16.3 -9 17.2 34.6 - 18.9 0.6 19.5
44.3 - 16.2 1.0 17.2 39.4 - 17.9 0.8 18.7
47.5 - 15.8 1.1 16.9 42.6 - 17.2 1.0 18.2
49.1 - 15.6 1.2 16.8 44.2 s 151 1.1 18.2
52.3 - 15.0 1.3 16.3 47.4 - 16.6 1.3 17.9
53.9 - 14.7 1.5 16.2 49.0 - 16:3 1.4 17.7
55.3 - 14.0 1.8 15.8 50. 6 - 15.8 1.5 17.3
57.1 = 134 2.6 16.0 52.2 - 15.6 1.6 17.2
58.7 - 12.0 3.4 15.4 53.8 - 15.2 1.7 16.9
60.1 - 11.0 4.6 15.6 55.4 - 14.4 1.9 16.3
61.9 = 8,1 6.7 15.8 57.0 - 13.8 2.8 16.6
64.9 B 15.2 15.1 58.6 - 12.3 3.9 16.2
66.7 2.7 18.9 16.2 60.2 - 11.0 5.2 16.2
68.3 3.6 20.3 16.7 61.8 - 9,2 7.0 16.2
69.7 4.0 21.2 17.2 65 0.4 16.4 16.0
71.5 4.1 21.7 17.6 66.6 2.8 18.9 16.1
73.1 4.5 21.9 17.4 68.2 4.8 20.8 17.2
74.5 4.6 22.0 17.4 69.8 4.3 21.7 17.4
76.3 4.6 22.0 17.4 71.4 4.6 22.3 17.6
77.9 4.6 21.9 17.3 73.0 4.6 22.4 17.8
76.2 4.6 22.6 18.0
77.8 4.5 22.4 17.9

40



TABLE E-5 TAP 5 - 8.55 cm FROM SOURCE TABLE E-6 TAP 6 - 10.16 cm FROM SOURCE

Time 0il Air Capillary Time 0il Air Capillary

Min Press. Head Press. Head Press. Head Min Press. Head Press., Head Press. Head

cm. of oil cm. of oil cm. of oil cm. of oil em. of o0il cm. of oil
0.9 -139.5 0 139.5 0.8 -156.6 0 156.6
2.7 =135.2 0 135.2 2.8 -149.1 0 149.1
4.1 -133.6 0.2 133.8 4.0 -142.0 0 142.0
5.7 -133.0 0.1 133.1 5.6 -137.0 -0.1 136.9
7.5 -132.5 0 132.5 7.6 -137.4 =0.1 137.3
8.9 ~131.9 0 131.9 8.8 =132.0 =0.1 131.9
10.5 -130.8 0 130.8 10.4 -128.0 -0.1 128.9
12:3 -130.1 -0.1 130.0 12.4 -129.1 =0.2 128.9
13.7 =129.2 -0.1 129.1 13.6 -124.0 -0.2 123.8
15.3 -128.4 =0.3 128.1 15.2 =120.9 -0.2 120.7
17.1 -126.6 =0.2 126.4 18.4 -118.4 =02 118.2
19.5 -126.0 =0.2 125.8 20.0 -115.2 =0.1 115.1
20.1 -124.9 0 124.9 23.2 -112.7 =0.1 112.6
21.9 =117.7 =0.2 117.5 24.8 -109.6 0.1 109.7
23.3 ~-117.6 0.1 117.6 26.8 -109.3 0.2 109.5
26.7 - 97.6 0.3 97.9 28.0 -105.5 0.2 105.7
28.1 - 43.4 0.4 43.8 29.6 -101.5 0.2 105.7
29.7 - 25.9 0.5 26.4 31.6 - 93.6 0.5 94.1
32.9 - 22,1 0.6 22.7 32.8 - 68.4 0.5 68.9
34.5 - 20.9 0.7 21.6 34.4 - 30.7 0.5 31.2
37.7 - 19.7 0.9 20.6 36.4 - 24.3 0.6 24.9
39.3 = 19.0 1.0 20.0 37.6 - 23.6 0.7 24.3
42.5 - 18.2 $.2 19.4 39.2 - 22.2 0.9 23.3
44.1 = 178 1.3 19.1 41.2 = 21.1 1.0 22.1
45,9 - 17.4 1.4 18.8 42.4 - 20.4 1.1 21.5
47.3 - 17.2 1.6 18.8 44.0 - 19.9 13 21.2
48.9 - 16.7 1.6 18.3 46.0 - 19.2 1.6 20.8
50.7 - 16.2 1.8 18.0 47.2 - 18.8 1.8 20.6
52.1 - 15.9 2.0 17.9 48.8 = 18.0 1.8 19.8
53.7 ~-15:2 2.2 17.4 50.8 - 17.4 2.0 19.4
55.5 - 14.2 2.7 16.9 52.0 ~ 16.8 2,2 19.0
56.9 = 13.6 3.3 16.9 53.6 - 15.9 2.5 18.3
58.5 - 11.9 4.5 16.4 55.6 - 14.9 3.1 18.0
60.3 - 10.5 Lo 16.0 56.8 = 13.9 3.8 177
61.7 - 8.8 6.5 15.3 58.4 = 12.2 4.9 17.1
63.3 - 6.1 10.8 16.9 60.4 - 10.7 6.6 17.3
65.1 1.0 17.4 16.4 6l.6 - 8.8 8.1 16.9
66.5 3.3 19.6 16.3 63.2 - 6.2 11.2 17.4
68.1 4.4 21.4 17.0 65.2 1:1 18.0 16.9
69.9 5.1 22.4 17.3 66.4 3.6 20.6 17.0
71.3 5.3 22.8 17.5 68.0 4.8 22.0 17.2
72.9 5.4 22.8 17.4 70.0 5.4 22.9 17.5
76.1 5.4 22.9 17.5 Ti.2 5.9 23.2 17.3
TT7 5.4 22.9 17.5 72.8 5.8 23.4 17.6
74.8 5.9 23.6 17.7
77.6 5.9 23.5 17.6
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TABLE E-7 TAP 7 - 11.76 cm FROM SOURCE

Time 0il Air Capillary
Min Press., Head Press. Head Press., Head
cm, of oil cm. of oil cm, of oil

0.7 -128.6 0 128.6
2,9 =129.6 0.1 129.7
3.9 =113.0 0.1 113.1
5.5 -103.6 =-0.1 103.5
T:7 -111.2 =-0.1 1111
8.7 - 98.5 -0.1 98.4
10.3 - 91.9 =-0.1 91.8
13.5 - 89.8 -0.2 89.6
15.1 - B85.2 -0.1 85.1
18.3 - 85.0 -0.2 84.8
19.9 - B0.8 -0.2 80.6
23k - 81,1 0 Bl.1
24.7 « PTad 0.2 77.4
27.9 - 78.0 0.2 78.2
29.5 - 74.2 0.4 74.6
32.7 - 74.0 0.4 74.4
34.3 - 70.4 0.6 71.0
36.5 - 71.1 0.6 T1.7
37.5 - 63.4 0.7 64.1
39.1 - 30.9 1.0 31.9
41.3 - 24.7 1.1 25.8
42.3 = 22.5 1.2 23.7
43.9 - 20.9 1.3 22.2
46.1 - 20.3 1.5 21.8
47.1 - 18.7 l.8 20.5
48.7 - 17.9 2.1 20.0
50.9 - 17.8 2.4 20.2
51.9 - 16.5 2:7 19.2
53.5 = 15,3 3.6 18.9
56.7 - 13,2 5.5 18.7
58.3 - 11.4 7.0 18.4
61.5 - 7.9 10.4 18.3
63.1 - 5.5 12.4 17.9
65.3 1.7 19.3 17.6
66.3 4.5 22.5 18.0
67.9 6.1 24.6 18.5
71.1 o 26.3 19.1
72.7 72 26.3 19.1
175 7.4 26.4 19.0
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APPENDIX F
PHYSICAL PROPERTIES OF CORE TEST FLUID

TABLE F-1 PHYSICAL PROPERTIES OF CORE TEST FLUID

Tgmp. Viscosity Density
c Poise gm/ml
20.0 0.01589 0.7582
2.0 0.01555 0.7576
22.0 0.01524 0.7569
23.0 0.01494 0.7562
24.0 0.01468 0.7556
25.0 0.01440 0.7549
26.0 0.01414 0.7542
27.0 0.01388 0.7536
28.0 0.01362 0.7529
29.0 0.01337 0.7522
30.0 0.01337 0.7515
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