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ABSTRACT 

The phenomenon of one-dimensional flow of two immiscible fluids in porous media is studied 

both theoretically and experimental l y with particular emphasis on the infiltration probl em . The 

theoretical work is based on a differential equation derived by combining Darcy ' s law for both 

fluids with the equation of mass conservation. Experiments used in the study were designed to 

simulate field situations in which the resistance to flow of the displaced air significantly 

affects the flow of the liquid. 

The first portion of the study is the determination of criteria for the construction of 

simil ar physical systems when the f l ow phenomenon is that of two-immiscible f luids , one of which 

is compressible. Five criteria for similitude are recognized and discussed. The analysis 

presented shows that the construction of rigorously similar physical systems, in this case, is 

impractical except in some simple cases in which an artificially induced body-force field can 

be induced. 

A solution for the horizontal displacement of an incompressible non-wetting fluid by an 

incompressible wetti ng fluid under certain boundary conditions is derived. This solution is used 

as a starting point for the development of approximate analytical solutions for the vertical 

case. Predicted and experimental infiltration rates in Poudre sand agree quite wel l . 

Both a theoretical and experimental analysis of infiltration, subject to a "rainfall" 

boundary condition are presented. The effect of counter-flowing air is included. The factors 

affecting the t ime at which pending occurs are discussed . It is shown that the capillary pres­

sure at the surface of the porous medium approaches the value at which pending occurs almost 

asymptotically in time when the infiltration rate is near the unsaturated hydraulic conductivity. 

The surface value of capil lary pressure (or saturation) at which pending occurs is not the value 

predicted from a one-phase flow analysis. 

Experiments on infiltration into bounded columns show that the rate of infi ltration is 

significantly impeded by the compression of air in the closed column. The physics of this process 

is analyzed and discussed. 

viii 



INFILTRATION AFFECTED BY FLOW OF AIR 

by 

David B. McWhorter 

INTRODUCTION 

The objectives of this study were two-fold: 
l) To investigate the feasibility of con­

structing physical models to provide 
quantitative data applicable to pro­
totype systems in which the flow 
phenomenon is that of two immiscible 
fluids, one of which is compressible. 

2) To study the infiltration problem both 
theoretically and experimentally, by 
considering the probl em as one of two­
phase flow in a porous medium. 

Laboratory experiments have been used extensively 
to study the f low of fluids in porous media. The 
objectives of the experi ments often fall into one of 
two broad categories. The first category is con­
cerned with the acquisition of basic and fundamental 
knowledge of the process. The concern of the second 
category is to provide data which can be used to 
design and predict the behavior of systems which can­
not be conveniently tested in the laboratory. In the 
latter case, a method must be devised by which the 
differences in the physical and time scale between 
laboratory model and prototype are correctly taken 
into account . Usually, a solution to a mathematical 
model is the most desirable method for generalizing 
the results of such experiments. However, if the 
physical geometry and boundary conditions are suf­
ficiently complicated , an analytical or numerical 
solution to the mathematical model may be impractical . 
In such a case, i t is important to perform the experi­
ments on a model which is physically similar in all 
important respects to the particular prototype in 
question . The results of the experiment can then be 
generalized to predict, quantitatively, the behavior 
of the prototype . The first objective of this study 
was to determine the criteria for the proper con­
struction of such models. 

To realize this objective , the appropriate 
governing equations were scaled according to the 
procedures used by Brooks and Corey (3), Scott and 
Corey (29), Corey et al. (8), and McWhorter and Corey 
(14). The work of these investigators has shown that 
selecting the appropriate system parameters as the 
scale factors fo r the variables is important if the 
maximum generalization and the least restrictive 
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criteria for similitude are to be obtained. The 
selection of the appropriate scaling parameters is 
discussed. 

The second objective of this study falls into the 
first category discussed above. It was the intent to 
gain a further knowledge and understanding of two­
phase flow in porous media with particular emphasis on 
the infiltration problem. Infiltration is the name 
given to the phenomenon of liquid in-take by porous 
materials. A quantitative description of infiltration 
is particularly important to scientists and engineers 
interested in the replenishment of soil water, ground 
water r echarge, and infiltrating watersheds. 

In the infiltration process, liquid enters the 
porous mater ial under the influence of forces induced 
by gravity and capillarity. The occurrence of the 
phenomenon in the field always involves the displace­
ment of air by water and is, therefore, a two-phase 
flow problem. Experimental and theoretical work have 
established that the infiltration rate is very large 
at small times and decreases to a limiting value at 
large times. High initial rates are the result of 
large forces induced by capillarity which rapidly 
decrease as t he quantity of liquid in the porous 
material increases. As infiltration proceeds , the 
force induced by capillarity continues to be reduced, 
and ultimately the gravitational force becomes 
dominant. 

Experimental and analytical methods were employed 
to attack the infiltration problem. The similarity 
transformation used by Philip to reduce the Richards' 
equation for hor izontal flow to an ordinary 
differential equation was applied to the corresponding 
equations for two-phase flow. A:n approximate solution 
for vertical infiltration was derived. Experiments 
similar to those of Peck (17 , 18) were performed on 
columns of Poudre sand and Berea sandstone. 

The problem of constant rate infiltration was also 
studied . Measurements of both the liquid and air pres­
sure at various positions along the column as a func­
tion of time were made. A:n approximate solution for 
this case was derived. The solution elucidates the 
factors effecting the time at which ponding will occur. 



BACKGROUND 

The literature concerning the infiltration of 
liquids in porous media is but a small portion of that 
on f l ow in porous media in general. Even so, the 
literature dealing directly with the infiltration 
phenomenon is quite extensive. The author has chosen 
to divide the discussion of the literature concerning 
infil tration into three broad categories: 1) infiltra­
tion equations, 2) analyses based on the Richards' 
equation, and 3) analyses based on t he two-phase flow 
equations. Within this framework, significant experi­
mental works are cited. 

A large percentage of the previous work falls 
within the first two categories . Only in the past few 
years have investigators in the infiltration field 
addressed themselves to the studies indicated in the 
thi rd category. 

Infi l tration Equations 

Early attempts to quantify the infiltration 
process were, for the most part , formulas which •.;ere 
obtained empirical ly or derived from a limited physical 
basis. The formula of Green and ,\mpt (11) was derived 
from a simplified mode l of the infiltration process . 
These authors assumed that the saturation profile 
propagates as a distinct front, behind which the 
saturation distribution was uniform at the maximum 
value obtainable in the imbibition process . It was 
assumed that the saturation of the porous material 
at points ahead of the advancing front remained at a 
uniform initial saturation. Combining Darcy's law 
and the continuity equation for this particular model 
results in a simple differential equation which is 
easily i ntegrated to obtain: 

t 

where Q is the cumulative infi ltrati on, $ is the 
porosity , ht is the total head S

0 
is the maximum 

satuTation obtained on the imbibition cycle, Si is 

the initial saturation , C is the hydraulic conductiv­
ity at S

0 
, nnd t is the time. The total head ht 

is the sum of the capillary pressure head at the front 
and the depth of ponded liquid on the surface. 

Another example is the formula of Horton (13) : 

In this formula f is the infiltration rate at time 
t , f0 js the initial infiltration rate, fe is the 

limiting value of the infiltration rate, and a is a 
constant with little or no physical interpretation. 
Childs (6) reports that this infiltration equation 
can bes t be regarded as an intuitive formula . 

The above formulas are examples of algebraic 
equations derived from limited physical concepts . 
These equations are most often used by adjusting the 
parameters to fit a given set of data. In some cases , 
any physical significance of the various parameters is 
entirely lost. This is particularly true of the Green 
and Ampt formula. 
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Another infiltration formula commonly used is that 
proposed by Philip (22): 

Here q
0 

is the infiltration rate , t is time and 

S and B are constants which can be adjusted to give 
the best fit to measured infiltration rates . Philip 
proposed this equation after a detailed mathematical 
study of the physics of the infiltration process . 
This study will be discussed further in the next 
section . 

The formu l as given above do not constitute a 
complete list of such equations , but r ather serve as 
examples of the 140rk in this fie ld. 

Analyses Based on the Richards' Equation 

In 1931 , Richards published a mathematical model 
of the capillary conduction of liquids in porous media. 
The equation (now kno11•n as the Richards ' equation) has 
remained the basis for most of the 1•or k concerning 
infiltration since that time. 

Richards combined Darcy's law and the equat ion 
of mass conservation for the liquid to obtain: 

~z (c ~~) ac ao ·az·'5t 

In this equation, C is the hydraulic conductivity , 
e is the volametric moisture content, h is the 
capillary suc~ion head, and z and t are the space 
and time coordinates respectively . 

The Richards ' equation has been made more amenable 
to solution by converting it to an equation 14i th e 
as the only dependent variable or to a f orm with h 
as the only dependent variable. The former is known 
as the "d.iffusivity" or water content for m, and the 
latter is called the pressure head form. The conver­
sion to either the water content or pr essure head form 
is accomplished by the use of the functional relation­
ships among C , a , and h . The pressure head form 
is somewhat more general than the diffusivity form 
insofar as it can be applied in both sat urated and 
unsaturated domains . The diffusivity form yields no 
information in saturated regions because the relation­
ship between h and a is not single valued. 

The series of papers ( 19 through 25) by Philip 
remains today as the classical analysis of infiltration. 
Philip obtained an approximate solution to the 
Richards' equation under the boundary conditions of 
constant water content at the upper surface and also 
for a ponded water boundary condition . The initial 
condition treated by Philip was a uniform water con­
tent. The equation for infiltration rate derived from 
this analysis :s : 



A series of ordinary differential equations requiring 
numerical solution was presented from which each of 
the coefficients S, B, D, E and etc . can be 
calculated. The constant C is the hydraulic 

n 
conductivity associated with the i ni tial water content. 

The above series 
also proposed a large 
used for values of t 
diverges . 

diverges for large t . Philip 
time approximation which can be 
for which the above series 

Parlange (16) recently proposed another 
approximate solution to the Richards' equation using 
an approach quite different from that of Philip. After 
t~ansforming the diffusi vi ty equation to an equation 
Wlth z as the dependent variable , the unsteady term 
was neglected and a first approximation to the water­
content profil e was obtained by i ntegrat ion. Using 
this approximation, the unsteady t erm 1~as cal culated 
and reinserted in the differential equat ion. A second 
approximation was derived by again integrating the 
differential equation. Numerical agreement between 
the second approximation and the results of Philip's 
analysis was very good. 

Parlange's method does not require numerical 
solu~ion of ~rdinary differential equations, but does 
requ1re cons1derable numerical integration. An 
advantage of Parlange ' s method is that the solution is 
~al~d.for large times and the so-called profile at 
1n~1n~ty evolves naturally from his approximations. 
Th1s 1s true because the approximation makes use of 
the steady-state profi le which becomes the proper 
profile at i nfinity as the i nfiltration rate approaches 
tho unsaturated hydraulic conductivity . 

Analytical work such as that done by Philip and 
Parlange has contributed immeasureably to the under­
standing of the physics of infiltration. It is 
unfortunate that such work is invariably limited to 
systems with simple initial and boundary conditions, 
simple geomet r ies, and highly idealized media. Several 
investigators have used numerical techniques to solve 
these more difficult and more realistic problems. 
Among them are Hanks and Bowers (12) , Rubin and 
Steinhart (28), l'lhisler and Klute (32, 33) , and Smith 
(~1) . Whisler and Klute, for example, studied in­
flltration into s t ratified soils under conditions of a 
non-uniform saturation distribution and included the 
effect of hysteresis in their calculations . Smith 
numerically solved the Richards ' equat ion for condi­
tions of stratified soil and included the effect of a 
time varying boundary condition. 

Two- Phase Flow Analyses 

It has long been recognized that infiltration is 
a process of two-phase flow even though most of the 
previous work has been based on a one-phase equation . 
Neglecting the r esistance to flow of the ai r phase 
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has been justified by pointing to the small viscosity 
of air as compared to that of wat er. Free and Palmer 
(10) conducted experiments in 1940 which showed that 
infiltrat ion was significantly effected when the· air 
was not allowed to escape freely. In 1963, \1/ilson and 
Lut~in (35) reported the results of experiments 
des1gned to show how air compression ahead of a 
wetting front affected the imbibition rate. 

Youngs and Peck (36) discussed the effects of air 
compression on the imbibition rate f r om a physical 
point of view. Even though these authors mathematical 
analysis did not rigorously incorporate the effects of 
the air phase, their explanation of the physics of the 
phenomenon was quite detailed and did account for the 
effect of pore-air pressure in all important respects . 
Peck (17,18) r eported experimental result s of infiltra­
tion into bounded horizontal and vertical columns. 

Adrian and Franzini (1) were able to account for 
(~o some degree) the retarding effect of the compressed 
a1r . These authors ' model was essential ly t hat of 
Green and Ampt (11), except Adrian and Franzini in­
cluded the resistance caused by the air phase. Similar 
work was done by Dicker (9). 

Phuc (26) analyzed infiltration as a two-phase 
flow ~roblem by solving the appropriate equations 
numer1cally . Phuc's model is capable of handling 
realistic hydrologic boundary conditions including 
those imposed by rainfall hyetographs . In addition, 
hysteresis and compressibility are i ncorporated in 
this model. 

Brustkern and Morel-Seytoux (4) have used a uni­
que approach to the solution of the governing two­
phase flow equations. The method is pr incipally ana­
l~tic . To de~ermine the shape of the saturation pro­
flle at any t1me, these authors neglected capillary 
pressure gradients which results in an equation for 
the saturation profile which contains a known function 
of saturation and the so-called total velocity. The 
total velocity is t he algebraic sum of the flux of the 
liquid and air phases. The total velocity is calculat­
ed by integrating a form of Darcy 's la~oo• (into which has 
been i ncorporated the f l ow of both phases) over t he 
approximate profil e determined in the previous time 
s t ep . This int egration is carried out giving full 
consideration to both capil l ary and gravity forces. 
Using this value of the total velocity , the profile 
~or the next time step is calculated and t he process 
15 repeated. A significant aspect of these authors' 
wor k is that t heir solution is valid for large time 
as well as for small time. 

The solution method derived by these authors is 
sufficiently general to handle flow problems in finite 
as well as semi-infinite media. To date, this appears 
to be the most promising mode l available for the 
~ol~tion ?f two-phase infiltration problems when the 
1nf1ltrat1on rate is of primary i mportance. 



THEORETICAL ANALYSIS 

Presentation of Equations for the Flow of Two Fluids 
in Porous ~ledia 

The equations which describe the flow phenomenon 
are based on the following assumptions: 

(1) Darcy's law is valid and can be applied 
equally well to either the wetting or non­
wetting phase, 

(2) the physical properties of the porous medium 
are constant i n time and space, 

(3) t he porous medium is homogeneous and 
isotropic, 

(4 ) t he t wo flui ds ar e homogeneous and i mmiscible , 
and their viscosit ies are cons tant , 

(5) the wetti ng fluid is i ncompressi ble and the 
non-wetting fluid is compressible . 

The foregoing assumptions allow one t o wri te t he 
following expressions: 

-Kk 
qa • __.!!. ('lP + "a g) 

ua a 

-Kk rw {VP + ~'w g) q ·--w ~w w 

• as 
at 

+ v • ql< 0 

and 

where, 

k 

g • 
K 

r 

gravitational vector, 
saturated permeabil ity , 
r e lative permeabi lity - t he ratio of the 
effective permeabil ity to t he saturat ed 
permeabilit y , 

P ,. pressure , 
~ • volumetric flow rate per unit of ar ea, 
S saturation of the wett ing phase , 
t time 
t ,. porosity , 
p density , 
u dynamic viscosity , 

(1} 

(2} 

(3} 

(4 ) 

and the subscripts a and w refer to the non-wetting 
and t he wett ing fluids respectively. The pressures in 
equations (1} and (2) are measured relative t o an 
absol ute pressure of zero. 

Equations (1) and (2) are Dar cy's law wr i t ten for 
the non-wetting and the wetting phases respectively. 
Equation (3} is the expression for mass conservation 
of the incompressible wet ting f luid . The mat hemat ical 
expression for mass conser vat ion of t he compressible 
non-wetting phase is given in equation (4) . 

The capil lary pressure is defined as t he 
difference between the non-wetting f lui d pr essure and 
the wetting-phase pressure; that is 

p - p p 
c a w 

(5} 
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Additional independent relationships among the variables 
in the above equations are usually determined by 
experiment. These functional r elationships ar e 
represented by the following equations: 

k " k ra (S) ra 
k 

rw " k rw(S) 

p 
c "' Pc(S) 

(6) 

"a • "a(P a) 

The combination of equat ions ( 1} t hrough (6) 
constitute a set of simultaneous equat ions which can 
be sol ved in principle when t he appropr i ate initial 
and boundary conditions ar e specifi ed. 

Scaling the Flow Equat ions 

The principle objective of scaling t he f l ow 
equations is to make t he particular solution to t he 
system of equations applicable to a larger class of 
problems than is the unseal ed version. The numerical 
value of constants and constant coeff i cients i n 
equations derived from physical principles almost 
always depends on the physical parameters of the 
problem. Unless all such constants and coefficients 
have the same value in two different situations, then 
the equations describing the two systems are different, 
even though the same physical phenomenon is occurring 
in both cases. In such a case , the solution obtained 
f r om one system is not applicable to t he second one . 

On the other hand, if by properly scaling the 
governing equat ions, all const ants and coefficients 
can be reduced to constants that are independent of 
the physical parameters, then the solution obtained 
for one system can be applied t o t he second one by 
simply using the values of scale factors appropriate 
for the second system. Of cour se , it is not always 
po.ssible t o reduce all t he cons tant s and coefficient s 
to const ant s independent of the sys tem parameter s . 
Usually , however , it is possibl e to r educe some of 
them and , t her eby, gain some generalit y . 

A scal ing theory proposed by Brooks and Corey (3) 
has been found to yield criteria f or simi lit ude which 
are easily satisfied in pract ical situat ions when the 
process is one of drainage of the wetting phase . 
McWhorter and Cor ey (14) ext ended t he t heory t o incl ude 
two-phase drainage problems in which both fluids are 
incompressible . The following work makes use of the 
approach used by these invest igat or s . 

Each variable in the flow equations must be 
scaled by some charact er istic par amet er of t he system. 
It is sufficient to designate these by: P

0 
, t

0 
, L

0
, 

p
0 

and q
0 

. The actual paramet er s to be used ar e 

selected so that the scaled equations provide a 
maximum gener ality and the cr i t er i a of s i militude ar e 
the least rest rict ive. 

Scal i ng equations (1) thr ough (4 } r esults i n: 

= - k ra 
(7) 



qo ~ u . p p 
w -Jc (v w 0 

~ 
. Pw g) K rw 

$ Lo as • v • 0 
to qo ~ at 

and 
-$ Lo a (6 a S) . 
to qo 

+ 17 (p a qJ a 0 
at 

The symbol " ' " refers to the s caled fo:rm of the 
variables and operators. 

(8) 

(9) 

(10) 

Although the saturation S is already dimension­
less, it is convenient to introduce the transformation: 

• s-si 
s = -­s -s. 

0 l 

(11) 

The significance of S
0 

and Si depends upon whether 

the process is one of drainage or of wetting. In 
drainage processes it has been found that the criteria 
of similitude are made less restrictive by introducing 
equation (11) with S

0 
• 1.0 and Si equal to the 

residual saturation. In imbibition or wetting 
processes, the maximum saturation of the wetting 
phase is usually less than unity due to the entrappment 
of the non-wetting phase in the wetted zone. S

0 
is 

the symbol given the maximum saturation obtained in 
the i mbibition process . The initial saturation is 
represented by si . 

Using equation (11) in equations (9) and (10) 
yields: 

and 
-~ Lo(So-Si) 

to qo at 

(12) 

(~ q ) = 0 (13) 
a a 

It has been found by Brooks and Corey (3) that the 
following relationships among the scale factors are 
appropriate: 

t " 0 

L
2 (S -S ) 
o 11a • o i 

K P
0 

(14) 

(15) 

(16) 

Substituting equations (14) through (16) into equations 
(7) , (8), (12), and (13) results in: 

s 

• - u a Jc cv p w • e3J ~:-
IJW l'W 

(18) 

as . + v • ~ .. 0 
at (19) 

. 
-a (pa S) 

+ v (p a qa) " 0 
at (20) 

where the symbol e3 is the unit vector parallel to 

the gravitational field. It should be noted that the 
constant density of the wetting fluid pw has been 

selected as the scale factor for the variable Pa . 

This selection was made because it automatically 
reduces the magnitude of the gravity term in equation 
(18) to unity. Therefore, the magnitude of this term 
no longer depends on any system parameter. 

The equations (6) can be rewritten as scaled 
functions of t he scaled variables: 

. 
krw • Jcrw (S) . . -

P c ,. P c (S) 

P a • P a (P a) 

Similitude for Flow of Two Fluids in Porous Media 

(21) 

The simultaneous solution of equations (17) 
through (21) will yield identical particular solutions 
for two different systems if t he following conditions 
are satisfied. These conditions constitute criteria 
for similitude. 

(1) The overall geometry of the two systems must 
be such that corresponding dimensions form 
identical ratios ·to P

0
/pwg. This is 

accompl ished if the systems are geometr ically 
similar. 

(2) The theory implicity requires the same 
orientation with respect to the gravitation­
al field. 

(3) Initial and boundary conditi ons must be 
identical when expressed in terms of the 
scaled variables . 

(4) The viscosity ratio 11a/1Jw must be identical 
in both systems. 

(5) The scaled functions represented by equations 
(21) must be identical. 



Experimental results from physical models in 
which the flow is rigorously described by equations 
(17) through (21) represent particular solutions to 
these equations. Therefore, the five conditions 
listed above are conditions for the construction of 
similar physical systems as well as mathematical 
models. The ease with which the five criteria of 
similitude can be satisfied in practical situations, 
largely depends on the selection of P

0 
• Specifying 

P determines the remaining scale factors because of 
0 

equations (14), (15), and (16). Before discussing the 
selection of P

0 
for imbibition processes, it is 

helpful to review the rationale used in the selection 
of P

0 
for drainage processes in which the non-wetting 

fluid can be considered incompressible . For this case, 
the density of the non-wetting phase p

8 
cance l s in 

equation (20) and the last of equations (21) can be 
disregarded. Furthermore, the first three of equations 
(21) are given by well estab lished empirical formulas. 
These are: 

2•l. 
• 2 . -.-k • (1- S) (1-S ) ra 

2•31. 

k 
rw 

.-.-.. s (22) 

p 
c 

• 5-10 .. p c ~ pb 

In equation (22), S is identical to the "effective 
saturation" as defined by Brooks and Corey (3) . The 
symbol A is the notation used by t hese authors to 
designate the pore-size distribution index . It is 
clear that, 1n any two systems for which A has the 
same value, equations (22) will be identical for both 
systems. It is important to note , however, that the 
last of equations (22) can be written in t hat parti­
cular form only because the bubbling pressure Pb was 

selected as the scale factor for pressure . 
tion of the unsealed relationship between 

that is, 

Examina-. 
P c and S, 

(23) 

shows that any scale factor for pressure must be 
proportional to Pb ; otherwise the scaled relati on-

ship will not be identical, even in two systems wit~ 
identical pore-size distributions. Since the bubbhng 
pressures of the porous media in the two systems are 
usually different, the scale factor for pressure must 
be different in each case. 

The important. conc!us!on to be drawn is that the 
requirement t~at Pc = Pc(S) be identical in two 

similar systems governs the selection of P
0 

in each 

case . Unfortunately, explicit formulas analogous to 
equations (22) are not known for the imbibition 
process . Nevertheless, the above conclusion applies 
to imbibition p:·ocesses as well as to drainage con­
ditions. 
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Of particular interest in this study is the 
situation in which the non-wetting fluid is a gas . 
The last of equations (21) is the ideal gas law in 
this case: 

p M 
= _o_ 

Pa p RT Pa (24) 
0 

where M is the molecul ar weight of the gas, R is 
the universal gas constant , and T is the absolute 
temperature. Condition 5 of the foregoing list implies 
that the coefficient P

0
M/pwRT must be identical in 

two similar systems. 

The requirement that P
0
M/pwRT be identical in 

similar systems can be satis fied in several ways. The 
results must remain consistent with the conditio·ns 
that ll/lJw be equal to the corresponding quantity 

in the second system. Two of the various methods which 
can be used to meet the criteria of similitude are 
discussed in the following paragraphs. 

Usually i t is convenient to use the same two 
fluids in both systems. In such a case the scale 
factor P must be the same in order t hat the 

0 

coefficient in equation (24) be the same value in each 
case. The requirement that P

0 
be the same ~n bo~h • 

systems conflicts with the requirement that Pc = Pc(S) 

be the same unless the same porous material is used. 
Using the same porous medi um and the same fluids in 
both systems also insures that the first three of 
equations (21) are identical in the two situations. 

The major disadvantage of using the same materials 
in both systems is that an artificial body- force field 
must be imposed on one system in order to gain a geo­
metrical size reduction and a change in the time scale. 
This is true because of equation (14). It is conceiva­
ble that certain sufficiently simple prototype systems 
could be modeled in this way. 

Practical prototype sys t ems exist for which t he 
construction of physical models in an artificially 
induced body-force field is not feasible. In this 
case the ratio P /p must be different in the two 

' 0 w 
systems. The requirement that P

0
/pw be different 

in turn implies that different gases must be used or 
that one system must be operated at a temperature 
different from the other. The latter possibility is 
impractical in view of the fact that the viscosity 
ratio IJ /IJ must remain identical in both systems . a w 
If different gases are used, the ratio of their 
molecular weights must be such that the coefficient in 
equation (24) is identical in both systems. So~e. 
difficulty in satis fying condition 4 can be ant1c1pated 
because, for many gases, the viscosity is direct ly 
proportional to the molecular weight . 

Even after the difficulties of using different 
fluids are overcome , there remains the problem of 
insuring that the first three of equations (21) are 
identical in both systems. When different fluids and 
different porous media are used, this is a formidable 
task. 



The analysis presented in this section shows 
that the construction of similar physical systems in 
whidl the flow phenomenon is described by equations 
(1) through (6) is impractical except in some simple 
cases in which an artificial body-force field can be 
induced. Nevertheless, the scaled form of the equa­
tions and variables derived in this section are used 
throughout the remainder of this paper because of the 
economy in notation, and because analytical results 
will be directly applicable to a larger class of 
problems. 

Derivat ion of Differential Equation of Flow 

The differential equation is derived by combining 
the appropriate equations presented in the previous 
section . The coordinate system i s selected so that 
the vertical coordinate z is positive downward. The 
volume flux of either phase is positive in the direc­
tion of increasing z . With this coordinate system 
and the assumption of incompressibility, t he funda­
mental flow equations (17) through (20) reduce to: 

( aP -~a ) q z - l --.!. a ra • az 
(25) 

u 

{~ a) q • a 
krw w u -

w Jz 

(26) 

Jqw 
- a~ . (27) 

'h at 

and aq 
~ as -
az Ot (28) 

The definition of capillary pressure in scaled form is: 

p = p - p 
e a w 

Differentiating equation (29) with respect to z 
gives: 

aP 
~= 
az 

aP a 

az 

aP 
w 

az. 

(29) 

(30) 

Solving equations (25) and (26) for the pressure 
gradients and substituting into equation (30) results 
in: 

3P <tv IJW qa e 
( 1 - oa) . .. 

krw 
- k -

az. lla ra 
(31) 

Subt racting qw/kra from both sides yields: 

. 
ape qw <tv IJW <~tw•qa) 

t.p . - ~ 
. 

"nta 
- k az ra 

(32) 

wher e Ap • 1 - p
8 
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A total velocity V is defined as the sum of the 
flux vectors of each fluid, 

v - (33) 

Adding equations (27) and (28) shows that V is 
independent of z and , therefore, a function of time 
only . 

Substituting equation (33) into equation (32), 
multiplying both sides by k and sol ving for qw ra 
results in: 

( 
1 )( ape k k - .-

ra 1 kra 11w az 

r w 11a 

<lw • v (t) ( 
1 

)· 
1+ kra 11w 

krw 11a 

+ ll~ }.(34) 

For incompressible fluids Ap is a constant, and 
it is logic~l to redefine p

0 
as p

0 
= pw - Pa . The 

constant Ap becomes unity. The following definitions 
simplify the notation: 

(35) 

and (36) 

Introducing equations (35) and (36) in equation 
(34) gives: 

V(t) fw(S) + E(S) 
ape 

E(S) Gw . + 
az 

Combining equation (37) with the mass conservation 
equation (equation (27)) yields: 

. } a · • 3Pe 
-::- {v (t) fw + E -.- + E = 
az. az 

as 

(37) 

(38) 

Equation (38) can be expressed with S as the only 
dependent variable by substituting the following 
expressions: 

ape . 
.. p' as 

az c az 
(39) 

aE E' 
as . . (40) 

az az 

and 
af as w f' . . . 
az w az 

(41) 



where the prime refers to the ordinary derivative with 
respect to S . The result is : 

a as 
....... " 
az 

as 

at 

It is convenient to introduce the definition: 

D(S) E p~ 

(42) 

(43) 

The negative sii" is included in equation (43) to 
insure that D(S) is pos1t1ve. Substitution of 
equation (43) into equation (42) results in the de­
sired form of the differential equation: 

a 
az 

- cv f I + E I) a~ .. a~ 
w az. at 

(44) 

For completeness the rtlationships of the scaled 
vari ables to the unsealed variables are repeated here: 

z. a z(pw-pa) g/po (45) 

Pc P/P0 (46) 

2 

t 
K { (pw-p

8
)gl t 

= 
4> (So-Si) ' ~a Po 

(47) 

q 
q~a 

K(pw ·Pa)g 
s-s. 

s 1 

s -s. 
0 1 

(48) 

The Functions fw(S) , E(S) , and D(S) 

From the definition of fw{S) , E(S) , D(S) 

(equations (35) , (36) and (43)), i t is noted that for 
any particular soil and fluid system the functions are 
dependent only on saturation. This is because k , 

• n 
krw , and Pc are functions of saturation only. It 

is pointed out in the section on similitude that the 
relationships kra(S) , krw(S) , and pc(S) are 

obtained from experiment. 

The function fw· has been called the fractional 

flow function i n the petroleum industry. The name is 
derived because of its physical interpretation in 
situations where the gradients of capillary pressure 
and the influence of gravity are negligibly small. 
In this case, fw can be interpreted as the ratio of 

the flux of the wetting phase qw to the total 

velocit y V . A typical example of fw is shown in 

Figure 1. . It is noted that fw (1. 0) l. 0 and that 

the cur ve approaches zero for small S . 

8 

1.0 

0.8 

0.6 

fw 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 

Saturation 

FIGURE 1 - Typical fw curve. 

The definition of E(S) shows the rel~tionship 
between E and fw At small values of S , 

kra : 1.0 and, therefore, E has about t he same shape 

as fw 

of S , 
in the low saturation range . At large values 

near 1. 0 , k approaches zero and, there fore, ra • 
E exhibits a maximum and decreases to zero at S = 1.0. 
A typical curve is shown in Figure 2. 

The function D(S) plays a similar role in two­
phase flow as the "diffusivi ty function" plays in one­
phase flow. The two functions are quite d;ssimilar, 
however. It is noted in Figure 2 that D(S) is zero 
at both ends of the saturation scale and exhibits a 
maximum value at a saturation between zero and one. 

4 X 10-3 ,...----------------, 

0 0.2 0.4 0.6 0.8 1.0 
Saturation 

FIGURE 2 - Typical curve showiQ& the 
dependence of E and 0 on S . 



The Boundary and Initial Conditions for Imbibition 
Processes 

The only initial condition considered in this 
study is S(z,O) = o . This condition implies that 
the unsealed initial saturation is Si (see equati on 

(11)). Throughout this paper it is assumed that 
Si is a small value at which krw is effectively 

zero. 

Boundary Condition I - The classical boundary con­
ditions studied by Philip in one-phase flow analysis 
are: 

~(0,~) = 1.0 } 

S(oo,t) " 0 
(49) 

These conditions require some explanation. 
Equation (39), used i n the derivation of equation (44), 
has meaning only when the capil lary pressure is a 
single-valued function of saturation. For some porous 
materials, there exists a r~ge of capillary pressures 
near zero t hroughout which S = 1 .0 . The capillary 
pressure at the upper limit of this range is the 
pressure at which the non-wetting phase becomes 
discontinuous in the imbibition process. The scaled 
value of.this capillary pressure is designated by the 
symbol Pd . For capillary pressures less than Pd , 

equation (39) does not apply. Therefore, throughout 
this work, the boundary condition S(O,t) 1.0 
implies that the capillary pressure at z = 0 is Pd 

unless stated otherwise. 

Boundary Conditions II - A second boundary condition 
of interest is the case of ponded water on the surface 
of the porous medium. This condition can occur in the 
field during intense rainfall or during flood irriga­
tion . Explicitly, boundary conditions II are: 

1.0 } 
~w(O:t) = constant 

S ("' ,t) = 0 

S(O,t) 

(SO) 

Boundary Conditions III - The boundary condition of 
constant flux at z = 0 is considered: 

~w(O:~) = constant } 

S(L,t) = 0 

q
8

(L,t) 0 

(51) 

These boundary conditions imply that the saturation at 
z = 0 is a function of time. In the field, this 
boundary condition can occur during constant rainfall 
of l ow intensity. 

Boundary Conditions IV - The final set of boundary 
conditions studied is for a finite medium. In this 
case , the conditions specified are constant liquid 
~res~ure at z = 0 and no flux across the plane at 
z = L . 

constant } 

= qa(L,t) "' 0 
(52) 
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Solution for the Horizontal Case 

The objective of the following analysis of 
horizontal imbibition is to gain further insight into 
the physics of two-phase f l ow in porous media. In 
particular, the intent is to investigate the influence 
that the displaced non-wetting phase exerts upon 
imbibition of liquids into porous media. The results 
of this section serve as a starting point for the 
analysis of vertical infiltration . 

Almost all theoretical investigations of the 
imbibition process existing at this time have used 
the Richards' equation as the starting point. The 
Richards' equation is derived upon the assumption that 
the resistance to the movement of t he non-wetting phase 
is negligible in comparison to the resistance to f l ow 
of the wetting phase. This assumption is, in turn, 
based on the condition that the viscosity of the non­
wetting phase is small compared to the viscosity of 
the wetting phase. However, situations exist in which 
the channels through which the non-wetting phase must 
move within the porous material become so small that 
the resistance to flow is significant in spite of the 
smal l viscosity value for the non-wetting phase. 

For horizontal imbibition equation (44) reduces 
to : 

- v f' •: 
w ax (53) 

in which the vertical coordinate z has been replaced 
by the horizontal coordinate x . 

There are two unknown dependent variables (S and 
V) in equation (53), and it is necessary to introduce 
a second independent equation in involving these two 
variables . Combining equations (37) , (39) , and (43) 
for the case of' horizontal flow yields: 

v f - o a~ 
w 

(54) 
ax 

Equation (54) 1S used to.relate the total velocity V 
to the imbibi tion rate q

0 
. Evaluation of equation 

(54) at x = 0 (at S 1.0) shows that: 

V(t) (55) 

where q
0 

is the imbibition rate. This is true 

because fw(l) = 1 and D(l) = 0 . The cumulative 

volume of imbibed fluid at any time is calculated by 
integrating the saturation profile . Since the imbibi­
tion rate is the time derivative of the cumulative 
volume, then the total velocity can be expressed by: 

V(t) d 

dt 1
1.0 • • 

X d$ 

0 

(56) 

Equations (53) and (56) are to be solved simultaneously. 

The Boltzman transformation of variables is 
introduced: 



(57) 

It is well known that the initial and boundary condi-
tions 

~(0,~) " 1.0} 
S(•,t) • 0 

S(x,O) = 0 
(58) 

are invariant under the transformat ion (57). It is 
assumed that the solution S(x,t) to the simultaneous 
equations (532 an~ (56) is transformed by equa~ion (57) 
to the form S = S (ljl) or equivalently .p = tji(S) . The 
assumption is valid if the.simul t aneous equations re­
duce to an equation with S and ljl the only 
variables. 

Solving equation (57) for x 
into equation (56) r esults in: 

and substituting 

~-~ !1.0 
V(t) • I ~ dS (59) 

0 

The integral in equation (59) is denoted by the 
const ant ~ . That is: 

!
1.0 

+ = 0 + dS (60) 

Substituting equation (59) i nto equation (53) results 
i n: 

. 
f, a~ • as 

w ax at 
(61) 

Making the transformation (57) in equat ion (61) yie l ds: 

i-1 L (o as) 
• ~"' dljl 

- ·-1 
- ~ 

2 

. 
f' ~ • ltt-1 
w dojl 

as 
"'~ 

(62) 

Explicit reference to t is eliminated from equation 
(62) by cancell ation, and since S and ~ are the 
only variables remaining, equation (62) becomes an 
ordinary differential equation : 

. 
d ( dS) 
doji D diP .. ~t a f ' -lj! ) ~ w alj! 

To summar ize, the solution of equation (53) 
-subject to conditions (58) is expressed by: 

where lji(S) satisfies 

(63) 

(64) 

(65) 
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subject to: 

s = 1; ojl " 0 

s " 0; 1/1 .... 
(66) 

Solution for Horizontal Case in Terms of Fractional 
Flow Function 

l t was pointed out in the discussion of fw 

that, when capillary gradients and gravitational forces 
are neglected, fw can be interprete~ as the ratio 

of qw to V . An analogous express ion can be 

defined for cases in which capillary (or saturation) 
gradients are retained: 

~ 
F wl " -;-

V 

as 0 (67) 
v ax 

Equation (67) follows immediately f r om equation (54) . 

It is of interest t o deri ve the solut ion to the 
hor izontal flow problem in terms of Fwl , because 

an integral equa.tion for Fwl which is relativel y 

easy to evaluat e can be derived from equation (65) . 
Furt hermore, the approximate solution for vertical 
infil t ration presented in the next section is most 
easily derived from Fwl . 

~laking the variab le transformation defined by 
equation (57) in equation (67) results in: 

dS 
dojl (68) 

It is noted from equation (68) that Fwl is a function 

of S only. Therefore , the equation of continuity 
(equation (27)), when wri tten i n t erms of Fwl , 

becomes: 

- dF 1 as as 
V - -w- .....,. •• 

dS ax at 
(69) 

The solution to equat ion (69) is of the form 
S = S(x,t) Calculat ion of the total differential of 
S gives: 

dS a a~ dx + a~ dt (70) 
ax at 

Equation (70) , when applied to a constant value of 
saturation sj r educes to the differential equation: 

as I . as I . ax s. dxj • ~ • dt = o 
J at s. 

J 

where x . is the coordinate of the plane whose 
J 

saturation is S. 
J 

(71) 



Solving equation (69) and (71) simultaneously 
yields: 

v 
d Fwl dx . . . 
dS dt (72) 

in which the j-subscript notation has been abandoned 
since the meaning of equation (72) is clear. Using 
equation (59) for V and integrating equation (72) 
subject to x = 0 at i = 0 , yields: 

X • 
- dFwl t-~ 
<jl-.-

dS 
(73) 

Equation (73) is the desired equation for the satura­
tion profile. The solution represented by equation 
(73) is similar to that obtained by Buckley and 
Leverett (S) who derived an expression of the same 
form in 1942. These investigators, however, neglected 
capillarity as a driving force . 

Equation (73) is only a formal solution so long 
as Fwl remains unknown. Equation (69) can be written 
as: 

_ dF wl = oJJ ds 
<P~ d<P (74) 

Integration of equation (74) results in the expression 
relating Fwl and "' : 

Fwl (S) 
1 

J: ojidS' 
"f 

(75) 

From the foregoing, it is clear that the solution 
represented by equation (64) and t hat by equation (73) 
are consistent formulations. In the case of the 
solution represented by equation (64), a differential 
equation for <j~(g) is known. The differential equa­
tion for "'(S) is easily converted to a differential 
equation for Fwl by using equation (75). The result 

is: 

2 O(S) 

"i2 (f -F 1) w w 
(76) 

An integral equation for Fwl is obtained by integrat­

ing equation (76). The result is: 

2 js j~.o 
F w1 (S) • ~ _ 

0 ~~ 

0 dS" dS' (77) 

A procedure for the solution of equat ion (77) has 
been worked out. The method consists of selecting a 
first approximation to Fwl and improving upon the 

i~itial estimate by iteration. The first estimate of 
Fwl should satisfy the properties which are deduced 

as follows: 

11 

Equation (75) implies that Fw1(1) = 1 and that 

Fw1(0) • 0 Thus , equation (75) establishes the end 

points of ~wl(S) . 
x = 0 at S = 1 . 0 

The boundary condition that 

requires that dFw1/dS be zero at 

S = 1.0 . In view of equatio~ (73), one can argue on 
physical grounds that dFwl/ dS is a monotonically 

decreasing function of S . Otherwise 1 equation (73) 
predicts that two distinct values of saturation exist 
at the same plane in the porous medium; a physical 
absurdity. One final property of Fwl should be 
noted . The value of F 

1 
must be greater than f w • w 

at all points on the open interval 0 < S < 1.0 

The properties of Fwl listed above allow one to 

make a rational first approximation to Fwl , which is 

then used to compute the integrals on the right side of 
equation (77) . Since Fw1(1) = 1 , the value of ~ 

can be computed. The next step is to calculate a new 
estimate of Fwl which is accomplished from equation 

(77). Using the second estimat e of Fwl , the process 

is repeated. Iteration is continued until the most 
recent estimate of Fwl is only negligibly different 

from the previous estimate. Numerical examples of 
this procedure nave been carried out and the method 
has been found to converge very rapidly. 

Solution for the Vertical Case - Boundary Conditions I 

The solution under boundary conditions I is de ­
rived first, and then extended for boundary condit ions 
II. 

The procedure used to derive an approximate 
solution to the infiltration problem is called the 
"method of undetermined functions" by Ames (2) . The 
differential equation of interest can be represented 
by: 

L U "' 0 (78) 

where L is a non- linear, partial-differential 
operator in general . The solution U of equation 
(78) is a functi on of the space coordinates and time, 
U = U(r,t) , where r is the position vector in the 
domai n R . When U(r,t) is an exact solution then: 

f. L Ut',<) ,£ • 0 (79) 

holds. When the exact solution is approximated by U , 
the integrand in equation (79) is not identically 
zero but is equal to a residual whtch is a function 
of r and t . Let U be of the form 

(80) 

where ~ and g are known functions and h(t) is to 
be determined so that the residual is small in some 
sense . The expression 

(81) 



is interpreted as meaning the average residual over 
the domain R. is zero. Furthermore, equation (81) 
is a differential equation for the undertermined 
function h(t) . 

There ar e several variations and generalizations 
of the technique outlined above , but the rather 
special case presented is sufficient to i ntroduce the 
development in the following pages. 

For the case of vertical flow, it is more 
convenient to work with equation (44) after it has 
been transformed so that i is the dependent variable. 
The formulas 

a~ = . . 
az az/aS 

(82) 

and 

as • az/dt . - -.--. (83) 
at az/aS 

when applied to equation (44), accomplish the desired 
transformation. The result is: 

• df v+ 
dS 

dE 

dS 
(84) 

In equation (84), t he variable z is anal agous to the 
so·lution U in the discussion of the method of un­
~etermined functions, and S plays the same role as 
r . 

Integrating equation (84) over S yields: 

] 

1.0 

a;~as 0 - j
l.O • 

- a~ ds 
at 0 (85) 

] 

1.0 ] 1.0 
V f - E = w 

0 0 

Since both D(S) and E(S) 
of the saturation scale and 

are zero at the end points 
fw(O) = 0 and fw(l) .. 1, 

equation (85) reduces to: 

j
l.O 

v (t) - 0 !;_ dS" 0 
at 

(86} 

Equation (86) is comparable to equation (79} in this 
case. 

The approximation to the exact solution is con­
structed from the general fractional-flow function for 
vertical flow; that is 

Fwz (S , t) 2 fw -~ 
V(t) 

as ..,... 
az 

+ ~(~) (87) 
V(t) 

Comparison of equation (87) with equation (67) shows 
that: 

" F + wl 
E(~) 

V(t) 
(88) 
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where Fwl is the general fractional-flow function 

for horizontal flow. At small times, when_ V(t) is 
large, Fwz : Fwl . Also, for values of S near 

1.0, E(S) ~ 0 . Therefore , near S = 1.0 , the 
vertical fractional-flow function is approximated by 
the horizontal f unction at al l times. For these 
reasons , Fwz is considered as a perturbation of 

Fwl for the purpose of constr ucting an approximation 

to the saturat ion profile. Based on this approxima­
tion, equation (87} becomes: 

o as E 
- ~ -:::- + ~ (89) 

v az v 

Solving equat ion (89) for 35/oz , applying 
equation (82), and integrating yields the following 
approximate sol ution: 

0 dS' 
(90) 

Equation (90) corresponds to the ~PRToximation given 
by equation (80). The function V(t) in equation 
(90) is the equivalent of h(t) in equation (80) . 

Substitution of equation (90) i nto equation (86) 
results in : 

V z- jl.O { ~ ~~ .0 0 dS' } 
-( f_w ___ F w..;:l_) ::.;V:--+ -E dS . (91) 

0 at s 

Interchanging the order of di{ferentiation and 
integration and integrating over S by parts yields: 

S D dS d (92) v - ....,... 
dt 

Carrying out the indicated differentiation and 
rearranging gives: 

J: 0 

. 
S D(Fw1-fw) 

E2 V 
dV/dt 

(
F 1-f • ) 2 
~V-1 

E 

dS z -1 , (93) 

which is a differential equation for V(t) The 
solution of equation (93} subject to 1/V = 0 at 
i "' 0 is: 



{
F _/ 
wl w 
-E-

dS 

V-1 

t (94) 

The function V(t) obtained from equation (94) 
is an approximation to the infiltration rate, and the 
saturation distribution is approximated by equation 
(90). 

Solution for the Vertical Case - Boundary Conditions II 

During vertical imbibition under boundary con­
ditions II, it is assumed that a zone in which 
S • 1.<0 moves into the medium. The coordinate of the 
plane between ~he region in which § = 1.0 .and the 
region where S < 1.0 will~be ~enoted by zf. 

Equation (53) applies for z ~ zf , and Darcy's 

equation in the form 

. . 
• "a ( i> .j, -i> 

1) qo(t) krw (l ) o ~ af + (95) 
llw zf 

applies for z ~ zf In equation (95), p 
.o is the 

scaled wetting-phase pressure at z = 0 , pd is the 

capillary pressure at z a :r, Paf is the non­

wetting phase pressure at zf , krw(l) is the rela­

tive eermeability to the wetting phase at s = 1.0 , 
and q

0
(t) is the infiltration rate. 

It is convenient to use a linear transformation 
of variable defined by 

(96) 

The following forurulas hold for any function of 
z and t : 

:! I~ . ., 1 3 
:, It 

(97) 
.~ t at 

and 

:~ '~ :~ I, dzf 
:, It - . (98) 

dt 

Applying these formulas to equation (44) results in: 

(99) 
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The associated boundary conditions are: 

s • 1.0 at 
' • 0 } (100) 

s • 0 at ' " .. 
Equation (99) can be expressed with t as the 
dependent variable by making use of equations (82) 
and (83). The result is: 

( 
D ) dE • dfw dzf 

as ac1as - ds - v ds • dt 
(101) 

at 

Integration of equation (101) over S yields: 

V - d:f = Jl. O 2,i dS 

dt 0 Clt 
(102) 

As i n the previous case, the infiltration rate 
is equal to the total velocity V . Therefore, the 
variables V and zf are related through equation 

(95) which, after rearrangement and differentiation 
becomes: 

dtf "w 
-d~- • - -'11 a;;.,.k_rw_(r.:l..-) . (103) 

The differentiation in equati~n (1Q3) w~s carried out 
assuming that t he quantity (P

0 
+ Pd- Paf) is a 

constant. This condition and its relation to experi­
ment is discussed in detail in a later section. 

Let 

(104) 

Using equation (104) in (103) and substituting into 
equation (102) yields: 

r A dV ~ 
. 

v + 
- 2 dS . (105) 

("w V-1) dt at 
IJ k (1) arw 

In the region in which the saturation s is less 
than unity the approximation 

(106) 

applies . 



Subs"i"ution of equation (106) into equation (105), 
integrating by parts over S , and differentiating 
with respect to time yields: 

• ) 2 
V-1/ ·/:' 

which is a differential equation for V 

• The solu;ion of equation (107) subject to 
1/V • 0 at t • 0 is: 

A { -u 
11-ik'-(n:') V -1 
arw 

= -1 

(107) 

(108) 

Solution for the Vertical Case - Boundary Conditions 
Ill 

The conditions specified in this case are con­
stant liquid flux at z = 0 . The situation to be 
studied is one of counter-curr ent flow. This means 
that the flux vectors qa and ~ are equal in 

magnitude and of opposite sense . Therefore, the total 
velocity V(t) is zero. Conditions of counter­
current flow can be caused by an impermeable boundary 
at some distance below the infiltrating surface . The 
displaced air escapes by flowing upward through the 
wetted zone. 

Equation (44) reduces to: 

(109) 

for counter-current infiltration. The liquid flux is 
given by a modified form of equation (37): 

· as 
~ • -O(S) ~ + E(S) 

az 
(110) 

Since the infiltration rate is constant, equation 
(110) evaluated at i • 0 is: 

(111) 

where S
0 

is the saturation at z = 0 . The 

resistance to flow tends to become larger as the wet­
ted zone grows. In order that q

0 
remain constant, 

14 

,• 

this tendency must be compensated by an increasing 
conductivity to the liquid in the wetted zone . There­
fore, S is an increasing function of time. The 

0 

primary interest in the solution to this problem is to 
ascertain S " S (t) . 

0 0 

The approach used to obtain an approximate solu­
tion for this case again involves a fractional flow 
function. Neither of the fractional flow functions 
already considered can be used here since V(£) = 0 
Instead the following function is defined: 

Fw3 qw/qo 
-D as E . + (112) 
qo az qo 

Introducing equation (112) into equation (109) 
results in: 

as (113) 
at 

Applying equations similar to equations (82) and (83) 
to equation (113), an equation with S and t as the 
independent vari ables is obtained: 

• a • • az q
0 
~ F 3 (S,t) = 
as w at 

Differentiating equation (114) with respect to S 
yields: 

a2 F w3 
qo - .-2--

as 

2" a z -.--. 
as at 

(114) 

(115) 

The derivatives on the right of equation (115) 
have a physical interpretation which lends its~lf.to 
experimental investigation . The derivative az/at 
can be regarded as the velocity of a particular 
saturation. The second derivative indicates ho~ the 
velocity of particular sat urations compare at any time. 
Experimental evidence (figure 29) indicates that the 
velocity of a particular saturation is approximately 
constant during constant infiltration. Even more 
important is the observation that part icular satura­
tions (capillary pressures) propagate at approximately 
the same velocity. This means that the right-hand 
side of equation (115) is approximately zero. There­
fore: 

• 0 (116) 

The conclusion that all saturations in the range 
characterized by large capillary gradients should 
propagate with the same velocity (not necessarily con­
stant) has been justified on analytic grounds by Lefur 
(see discussion in reference 15). For the case af 
constant infiltration , it appears that this approxima­
tion is valid even for saturations near the maximum 
saturation that can be obtained. 

Integration of equation (116) yields: 

FwJ • 4(t)S + ~(t) (117) 



where a and B are constants (with reseect to 
integra~io~. The conditions that Fw3 (0 ,t) = 0 

tha~ Fw3(S
0
,t) = 1 reduce ~quation (117) to: 

s 
~ -. - .-

S) of 
and 

(ll8) 

Substitution of equation {118) into equation 
(112) and rearrangement results in: 

oz 
as 

(119) 

Integration of equation (119) yields the equation 
for the saturation profile: 

z(S, t) J:' ~ dS ' (120) 
qo s 
. - E 
so 

The unknown S
0

(t) in equation (120) is deter­

mined by requiring that continuity be satisfied . That 
is: 

jso· o 
z dS 

(121) 

Substitution of equation (120) into equation (121) 
yields: 

J:' J:' 
0 dS' dS qo t 

qo s 
- E 

(122) 

s 
0 

Int egrating equation (122) by parts gives: 

qo t . J:· (;) s 0 dS 
qo s 
-.-- E 

(123) 

so 

-
Equa~ion (123) is the desired equation for S

0
(:) 

Computations are made by selecting a value of S
0 

computing the integrand and carrying out the indicated 
integration. The time corresponding t o the par t i cular 
value of S sel ected is computed by dividing equation 

0 

(123) by q
0 
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During,th~ early stages of constant infil tration , 
the term aS/oz I~ = 0 in equation (111) becomes less 

negative with increas;ng time and ultimately approaches 
zero. In this case q = E(S ) , and the saturation 

- 0 0 
at z = 0 becomes constant . When this condition 
occurs, the liquid conductivity has adjusted to the 
minimum value. which wi 11 permit infiltration to proceed 
at the rate q

0 
due to the driving force of gravity . 

The resistance to the escape of air is account ed for · 
because it has been incorporated into E(g) • There­
fore, the larger the applied infiltration rate. the 
larger E(§) must be for infiltration to persist at 
the same rate after capillary driving forces become 
negligibly small. Since E(S) exhibits a maximum, 
say at S , i t is concluded that any infi ltration 

• m • 
rate q

0 
greater than E(Sm) cannot continue 

indefinitely . This is because any i ncreased con­
~uctivity to liquid gained by a further increase in 
S

0 
is offset by a decreased conductivity to the 

escaping air. Since the system can no longer transmit 
liquid at the rate q when S • S , pending of the 

o o m 
liquid on the surface occurs. The boundary conditions 
change at this time. No attempt is made in this work 
to analyze the problem after pending occurs . 

Solution for Vertical Case - Boundary Conditions IV 

The final set of boundary conditions studied is 
the case in which liquid is provided at the surface 
at a constant positive pressure, and the air can escape 
through the upper surface of the medium only. In this 
case counter-current flow of the air phase does not 
begin immediately as in the case of constant liquid 
flux at the upper surface. This is because the air 
is trapped by the wetting front and compresses until 
the capillary pressure at the upper surface reaches a 
threshold value at which air begins to escape from the 
top of the column. 

Again it is assumed that a region in which 
S 1.0 developes in the medium. In the treatment of 
boundary conditions II, equation (108) was derived on 
the basis that the factor A defined in equation 
(104) is constant. Under the conditions of interest 
in this section, A is not constant because Paf 

increases as the air phase is compressed. Equation 
(108) can be used, however, by assuming that over a 
time period 6t , infiltration proceeds as if Paf 

were constant during that time period. 

The computational procedure is as follows. A 
family of cumulative infiltration curves is Erepared 
using equation ~108) for various values of Paf 

starting with Paf : 0 and increasing until A • 0 . 

Each curve represents the cumulatiye infiltration as 
a function of time assuming that Paf (i . e . A) is 

constant. An example family of curves are shown in 
Figure 3. 



~ 
e --r:: 

Time 

FIGURE 3 - Example curves showing the 
relationship between cumulative infil­
tration and t ime for var ious values of 
P af · 
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Neglecting gradients in the air phase, the ideal 
gas law is used to compute the c~lative infiltration 
corresponding to each value of Paf used in con-

structing the above family of curves. The relation­
ship is: 

'P vi - -.--.-
(P af+P) 

where Vi is the dimensionless air volume at the 

initial condition and P is the dimensionless 
atmospheric pressure. 

(124) 

It is assumed that each increment of infiltration 
takes place as if P f remains constant at the value • a 
of Paf obtained at the beginning of the increment. 

The t ime at which a given cumulative infiltration 
exists is obtained from the family of curves which 
have been constructed. 

The above procedure can be used only until the 
air pressure has built up to a value equal to P

0 
+ Pd. 

Therefore , the developments contained in this section 
a.re inadequate to predict the entire process. Further­
more, for many porous materials, the value of Pd may 

be zero or not well defined. In such cases the above 
method is of little use. 



EXPERIMENTAL PROCEDURES 

The infiltration phenomenon was studied 
experimentally by subjecting two different porous 
materials to i nfiltration tests. One of the materials 
used is a river sediment called Poudre sand. Poudre 
sand is an unconsolidated sand with a relat ively wide 
distribution of pore sizes and a permeability that is 
of the same order of magnitude as many soils. 

A consolidated sand known as Berea sandstone was 
selected as the second material. This material is 
relatively permeable when compared -to other naturally 
occurring consolidated materials and is very homo­
geneous i n the direction parallel to the bedding 
planes. 

The wetting fluid used throughout this study was 
a light hydrocarbon oil called Phillips core test 
fluid*. This fluid is referred to simply as "oil" in 
the following sections. 

~leasu.rement of Hydraulic Properties 

The functions Pc(S) and krw(S) , for uncon­

solidated materials, are often measured by using two 
different samples of the porous medium. On one sample 
the capillary pressure-saturation function is measured, 
and on the other, the relationship between Pc and 

krw is determined. By combining these two relation­

ships , the functional relationship between krw and 

S is deduced. This method has the distinct disadvan­
tage of requiring two samples which, in practice, are 
very difficul t to prepare so that they are very nearly 
identical. 

In this work, the functions Pc(S) and krw(S) 

for the Poudre sand were measured simultaneously on 
the same sample by utilizing gamma-ray attenuation 
equipment to determine the saturation. The technique 
used in this study to measure the capil l ary pressure 
and relative permeability has been described by 
various investigators (3,8, 29). In this case, however, 
the soil column was placed in a framework which sup­
ported the gamma-ray attenuation equipment. Measure­
ments of Pc , krw and S were taken at a series of 

steady states as described in the above references. 

The source of gamma radiation used was a 100 
millicurie Amer icium isotope . The radiation was 
directed through the test section of the soil column 
by means of a columnator. The columnator consisted of 
a lead column approximately six inches long constructed 
wi'th a 1/16" x 3/4" s lot through the center of the 
column. The long dimension of the slot was oriented 
parallel to the axis of the soil column. This was done 
so that the measurements obtained were representative 
of the bulk density of approximately 1/3 of the test 
section in the soil column. A columnator with a 
cylindrical cross-section of the same area would have 
resulted in measurements representative of the material 
in only a very small portion of the test section. 

Gamma radiation passing through the soil column 
was detected by a photomultiplier tube and read out on 
a portable scaler in units of counts per unit of time. 

The gamma-ray equipment was constructed so that 
the source and detector could be shifted laterally. 
In this way, a standard could be measured each time a 
reading on the soil column was taken. Adjustable 
stops were constructed to insure that the source and 
detector were r eturned to exactly the same position 
each time. A schematic diagram of the experimental 
set-up is shown in Figure 4. 

-.. ... -FIGURE 4 - Schematic diagr am of Gamma-ray 
attenuation equipment. 

Calibration of the equipment was made by taking 
a reading on the soil column when the soil was air dry 
and again after the soil had been vacuum saturated. 
This procedure estab l ished the end points of the 
calibration curve. It was observed i n preliminary 
tests that the number of counts per unit of time varied 
linearly with the degree of saturation for a 
particular soil. Therefore it was assumed that the 
calibration curve was a straight line joining the end 
points. The readings were plotted as percent of the 
standard reading in each case. After the completion 
of the experiment the test section was removed and the 
saturation determined gravimetrically as a check on 
the linear ity of the calibration curve. 

No attempt was made to measure the relative 
permeability to air as a function of saturation for 
the Poudre sand. 

The hydraulic properties of the Berea sandstone 
were measured using techniques that differ only slight­
ly from techniques described in previous investigations. 
In the case of consolidated materials , combining the 
Pc(S) and krw(Pc) curves to obtain the krw(S) 

relationship can be done with confidence because the 
same sample can be used for both experiments. There­
fore, the gamma radiation equipment was not employed 
to measure saturation. The relationship between krw 

and Pc was measured using techniques similar to 

those discussed. i n refer ences 8 and 29. 

Manufactured by Phill ips Petroleum Company, Special Products Division, Bartlesville , Oklahoma. 
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A technique for measuring Pc as a function of 

S on consolidated materials has been described by 
White (34). White's technique was modified during the 
early stages of the desaturation portion of the exper i­
ment. The leveling bottles which were used by White 
to determine the capillary pressure were replaced by 
a pressure transducer which sensed the pressure i n 
the core continuously. The capill ary pressure was 
increased by evaporating t he liquid from the core with 
a fan. At a particular value of capil l ary pressure , 
the correspondi ng saturation was determined by re­
moving the sandstone plug from t he capillary barriers 
and wei ghing it . Corey (3) in an unpublished study 
of this technique has concl uded that the method gives 
reliabl e results as long as the conductivity of the 
core does not become too low. The principal advan­
tage of the method is that i t is much faster than 
other methods . 

During the imbibition port ion of the experiment, 
evaporation from the sample was minimized by placing 
the apparatus i n an aluminum box . The bottom of the 
box was covered with approximately 1/8" of oil in an 
attempt to keep the air surroundi ng the core saturated 
with t he l iquid vapor. The top of the box was covered 
with a saran wrap which was easily removed when t he 
core was to be weighed. 

The technique reported by ll'hi te for determining 
when the core should be weighed at any particular 
capillary pressure does not apply 1vhen the experiment 
is one of imbibition . The interface in the observa­
tion tube continually moves after a step reduction 
in the capillary pressure. The rate of movement of 
the interface is large immediatel y following the 
change in capill ary pressure , but decreases to a smal l 
value which is representative of the evaporation rate 
from the sample . It was difficult to ascertain 
exactly lvhen the imbibition r ate was equal to the 
evaporation rate. Therefore, it was assumed t hat the 
imbibition and evaporat ion rates were equal when the 
movement of the int erface in the observation tube was 
apparently constant. The saturation of t he core was 
determined at t his time . To check t his assumpti on , 
the core was replaced after a particul ar measurement 
and a second measurement was taken approximately two 
hours later. The two weight determinations were found 
to agree . It is believed, however, that this technique 
can lead to significant error s unless the evaporation 
rate is kept quite small. 

Determination of the relative permeability to air 
as a function of saturation was accomplished by tech­
niques developed by Corey (7) . On the imbibition 
cycle, the saturation in the core sample was i ncreased 
by applying the oil on the lateral surface of t he core 
with a damp cloth. It was found that highly errati c 
measurements of air permeabili~ resulted if any ~il _ 
was applied to the ends of th~ core . After the l~qu~d 
appl ication, the core was alYowed to r emain in a weigh­
ing bottle until the oil was 1uniformly distributed 
throughout the core. During' the early stages of the 
experiment when the core wasl nearl y dry, measurements 
were made when the oil distribution in the core appear­
ed uniform to tne eye. When t he saturation had been 
increased to a value at which visual detection of a 
uniform oil distributi on was no longer possible, 
measurements were made after an arbitrary length of 
time . Several of these measurements were checked by 
repeating the reading at some later time before the 
next increment of liquid was appli ed . 
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Infiltration Subject to Boundary Conditions III 

Infiltration tests were made on columns subjected 
to boundary conditions II , III and IV. The experi­
mental procedures used for studying infil'trati on under 
condi ti ens II and IV liere quite simi 1 ar and wi 11 be 
discussed together . The procedures employed in the 
study of infi ltration subject to conditions III are 
sufficiently different to warrant a separate dis­
cussion . 

Of major interest in the study of constant-rate 
infiltration is the development of the capillary 
pressure or saturation pr ofile and the time at which 
pending occurs on the surface . All of the constant­
rate experiment s were performed under conditions of 
count er-cur rent flow of air. Under such conditions, 
the capillary pressure cannot be determined by measur­
ing the liquid pressure onl y , because it cannot be 
assumed that t he air pressure is atmospheric at all 
times. Therefore , the experiments were designed to 
measure both the air and liquid pressure at various 
positions in the column as functions of time . A 
schematic diagram of the experimental design is shown 
in Figure 5. 

FIGURE 5 - Schematic diagram of equipment 
setup for constant rate experiments. 

The column in which the Poudre sand was placed 
was constructed of short luci te sections sealed by 
rubber 0-rings between each secti on. The one­
centimeter sections in the upper portions of the 
column were designed so that both liquid and air 
pressure could be measured at the center of each 
section . In one-half of each section was a tensiometer 
which sensed the l iquid pressure . The air pressure 
was measured through an opening covered with a fine 
wire screen on the opposite half of each section. A 
total of sev·en such sections made up the upper portion 
of t he soil column. · The bottom of the column was 
sealed which forced the air to escape in a counter­
current direction . 

The pressure in both the liquid and the air were 
measured by means of a pressure transducer and a 
scanner valve. Leads from the l iquid and air taps for 
each measuring section were connected to adjacent ports 
i n t he scanner valve . The center port of the scanner 



was connected to the pressure transducer. By rotating 
the scanner valve, the pressure at each t ap was 
measured. The scanner valve was rotated at equal 
interV'als of time by means of a timing device which 
automatically opened and closed an electrical circuit 
at equal intervals of time. In addition to the pres­
sure at taps in the column, two calibration pressures 
were measured each time the scanner valve made a 
revolution. 

The pressure transducer conver ted the pressure 
to a voltage output which was digitized by a digit al 
volt meter and printed on paper tape. A large number 
of data points were generated during each experiment. 
Therefore, a digital computer was used to reduce the 
data. 

At the beginning of each experiment run, the 
tensiometers were vacuum saturated and then subj ected 
to a suction of approximately 100 em of oil. This was 
accomplished by "hanging" a 100 em column of oil in a 
Tygon tube from each tensiometer. The tubing was then 
clamped which caused the tensiometers to remain at 
the desired suction. Each section was then placed in 
its proper position in the columns . The next step was 
placing the Poudre sand in the column. This was done 
by adding the sand through a funnel with a long rigid 
s tem which reached to the bottom of the column. The 
column was made extra long so that when the desired 
bulk density was obtained the extra l ength of column 
coul d be removed. This procedure helped to insure 
that the properties of the soil immediately at the 
surface were as near like those of the rest of the 
column as possible. Even so, some disturbance of the 
soil at the top of the column always occurred. 

During the packing procedure the tensiometers 
were in contact with the dry soil. However, because 
the liquid pressure in the tensiometer was m~intained 
at a negative pressure head of about 100 em of oil, 
imbibition into the soil was very slight . 

The timing device was st arted simultaneousl y with 
the introduction of liquid at a predetermined constant 
rate at the top of the column. In some cases, the 
rate of air outflow was measured during the experiment 
by means of a soap-film flow meter. 

Infiltration Subject to Boundary Conditions II and IV 

Columns of both Poudre sand and Berea sandstone 
were subjected to i nfiltration tests during this 
portion of the study. The column on which the Poudre 
sand tests were made was a continuous lucite tube. An 
end plate was cemented to the bottom of the column 
which kept the sand in place. 

The sand was placed in the column with the funnel 
already described and packed to the desired bulk 
density. The degree of homogeniety of the packing was 
determined by measuring the air-pressure head at a 
number of points along the column while flowing air 
at a constant rate through the column. Typical re­
sults are shown in Figure 6. 
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FIGURE 6 - Typical curve showing the degree of 
homogeniety obtained in the Poudre sand columns. 

A perfectly homogeneous packing would have 
resulted in all the pressure-head measurements lying 
on a straight line. This ideal situation could not 
be realized, however. Therefore, the columns were 
considered to be satisfactoril y homogeneous if the 
head-loss distribution was comparable to that shown 
in Figure 6. It was found that, when the columns 
were packed to the proper bulk density and the degree 
of homogeniety was satisfactory, the maximum deviation 
in air permeability was 4 . 3 percent of the average of 
11 samples. On 6 samples, the permeability to oil at 
the maximum saturation on the imbibition cycle was 
determined. It was found that the ratio of air 
permeability to this value of oil permeability was very 
nearly constant . The maximum deviation of this ratio 
from the average was 1.9 percent of the average. 

After it was determined that a particular column 
was properly packed, two col umn secti ons were attached 
to the top of the column which were used in the 
application of the oil during the test . The first was 
a section, 1 em in height , which was sealed to the top 
of the column by an 0-ring. A thin rubber membrane 
was stretched over the top of this section and held in 
place with a second section by clamping the two to­
gether. A predetermined quantity of oil ~~as placed in 
the upper column section, and ~Vas retained by the 
membrane . A constant head burette was attached to the 
upper section which maintained the oil at the desired 
level. To begin the experiment, the membrane was 
pierced with a sharp object which allowed the oil to 
infiltrate the soil. Piercing the tightly stretched 
membrane caused it to practically disintegrate. The 
cumulative volume taken up by the soil was recorded 
as a function of time. 

The semi-infinite case ~Vas simul ated using the 
column described above which was 25.4 em long by allow­
ing the displaced air to escape freely from the bottom 
of the column. The validity of simulating a 



semi-infinite medium in this manner is discussed i n the 
following section of this work. 

Infiltration tests into finite media were con­
ducted using similar experimental procedures. Finite 
media of different lengths were simulated by using 
the 25.4 em col"Ulllll to which was attached an air tank. 
The volume of air in the tank was varied to represent 
different lengths of column. The pressure in the air 
was monitored t hrough a pressure tap by means of a 
pressure transducer and a brush recorder. In these 
experiments, no attempt was made to measure the 
capillary pressure distribution . Figure 7 is a 
schematic diagram of the experimental apparatus for 
the infiltration experiments. 

Experiments on the Berea sandstone differed only 
slightly from those on the Poudre sand column. The 
sandstone column was a core,- 2 inches in diameter, 
which was cut parallel to natural bedding planes. The 
lateral surface was sealed with an epoxy paint manu­
factured by the Carboline Company. Holes were drilled 
in the coating at intervals along the column to which 
pressure taps were cemented. Lucite sections of a 
design similar to those used for t he Poudre sand were 
attached to the ends of the column. 
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FIGURE 7 - Schematic diagram of equipment 
setup for infiltration experiments. 



RESULTS AND DISCUSSION 

It was pointed out in the first section of this 
pa·per that most of the theoretical work done on the 
imbibition of liquids into porous media has been 
carried out assuming that the resistance to flow of 
the air phase is negligible. It is appropriate, 
therefore, to discuss t he significant results of the 
two-phase flow analysis with respect to the conclu­
sions of a one-phase flow analysis wherever possible. 
Experimental results are discussed concurrently. 

The limiting value of the infiltration rate V 
t becomes large is given by: 

Imbibition in Semi-infinite Media 1.0 

The imbibition of l iquid into porous materials 
is many times referred to as a "diffusion" phenomenon. 
This terminology arises because the Richards' equation, 0.8 
when expressed in terms of saturation, is the same 
form as the classic diffusion equation. The diffusion 
coefficient or "diffusivity" is highly dependent on 
the degree of saturation. 0.6 

When the problem of horizontal imbibition is 
analyzed from the standpoint of two-phase flow, it is 
found that the shape of the saturation profile and 
therefore the rate of imbibition is a function of the 
behavior of the in~egrand of equation (77), particular­
ly for values of S near 1.0. 

0.4 

0.2 

limit V limit 

5•1.0 

E 
i'=r wl w 

as 

(125) 

It is noted that the integrand in equation (77) 
is indetermi nant at S = 1.0 . The author has not 
been successful to date in attempts to evaluate this 
function in the limit as S approaches 1.0 except for 
the case when k;a (1.0) r 0. However, numerical OL-_ _ ,___ __ ,___ __ .~..-__ J.__--J 

calculations indicate that the integrand is not a 
monotonically increasing function of g , but instead 
reaches a maximum value near g a 0.98 and then 
decreases to some limiting value as S approaches 
1.0. 

A maximum of the integrand in equation (77) at , 
say, S : S. means that there exists an inflection 

J 
point in the satur~tio~ profile at Sj . The satura-

tion profile for S > S. is essentially the Buckley-
J 

Leverett profile which is obtained by neglecting 
capillary gradients. This is in agreement wi th the 
work of Brustkern and Morel-Seytoux (4). 

The saturation profile predicted from the solu­
tion of the Richards' equation has no inflection point 
near S z 1.0 . It should be pointed out that it 
would be very difficult to detect the inflection in 
the profile experimentally with the present methods 
of measuring saturation under dynamic conditions. 
Figure 8 is an example of the saturat.ion profile 
calculated from equation (73) in which Fwl was com-

puted from equation (77). The Fwl curve is shown 
in Figure 9. 

It is noted that the inflection is so subtle that 
it cannot be observed on a graph of this scale . The 
point is not entirely academic, however, because it 
has a bearing on the limiting value approached by the 
infiltration rate during vertical imbibition . 

Equation (94) is the approximate solution derived 
for infiltration into a semi-infinite medium subject 
to the boundary condition that S v 1.0 at z • 0 . 

21 

0 2 4 6 8 

x r··L1o2 

FIGURE 8 - Example saturation profile for 
horizontal imbibition. 
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FIGURE 9 - Fwl and fw curves used for 

calculation of the profile in Figure 8. 
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For the case when k~a(l.O)~ 0 , the above limit is 

equal to ~a krw(l)/~w which is the scaled value of 

the hydraulic conductivity at S 
limiting value of the infiltration 
the Richards' equation . Numerical 
dicate that for the case in which 

1.0 and the 
rate predicted from 
calculations in­
k~a(l.O) = 0 the 

limit in equation (125) is a value somewhat smaller 
than ~akrw(l)/~w , although this cannot be concluded 

with certainty. Brustkern and Morel-Seytoux (4) found 
the limiting value of the infiltration rate to be less 
than that predicted from the Richards' equation. 

Morel-Seytoux (15) has shown that, in the limit 
as time becomes very large, the actual fractional 
flow Fw2 _must approach a curve defined by 

fw + E (S) /V as modified by the l~elge tangent con­

struction. The reader is referred to this reference 
for a lucid discussion of this result. The approxima­
tion used in the present work does not satisfy this 
requirement except near S • 1.0 . Therefore, the 
saturation profile at large times predicted in the 
present analysis is not correct throughout the entire 
range of saturations. The major result of the in­
correct saturation profile at large times is to over­
estimate the influence of gravitational forces on the 
infiltration phenomenon. This results in predicted 
infiltration rates which are too high when the 
gravitational forces become significant relative to 
the capillary driving forces. The magnitude of the 
error in predicted infiltration rates has not been 
definitely established. 

In the derivation of equation (108) for infiltra­
tion subject to a ponded-liquid boungary condition, 
it is assumed that a zone in which S = 1.0 develops 
in the porous medium . This was done as a convenient 
approximation. From a rigorous theoretical standpoint 
such a zone does not occur. This is concluded from 
the fact that D(S) is zero at S = 1.0 . From the 
definition of E(S) and 0(~) (equations (36) and 
!43)) it is evident that D(S) approaches zero at 
S = 1.0 as a result of kra approaching zero at that 

saturation. This in turn implies that t he resistance 
to flow of the air becomes infinite as S approaches 
1.0 . Therefore, it is concluded that all of the 
continuous air phase is never displaced from the 
material. In fact , this conclusion is related to the 
fact that the saturation profile exhibits an inflec­
tion near S • 1.0 

The result of this approximation is that equation 
(108) is not ent irely consistent. This is evident 
because the first term in brackets predict s the limit­
ing value of the infiltration rate to be ~ k (1)/k a rw ra 

. and the second term in brackets predicts the limiting 
value to be that given in equation (125) . Because the 
difference between these two limiting values is small , 
the effect on numerical calculations is insignificant 
except at very large times. A comparison between 
calculated and measured infiltration for the Poudre 
sand is shown in Figure 10. 

The calculations for the Poudre sand were made 
from the data shown in Figures 11 and 12. It is 
observed in Figure 12 that 5

0 
for the Poudre sand 

is 0.91. The initial condition was the air-dry sand 
for which Si = 0. Using these values the measured 
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. 
data were replotted in terms of S The result is 
shown in Figu.res 13 and 14. The relative permeability 
to air for the Poudre sand shown in Figure 13 is not 
measured data. This curve was calculated from formulas 
given by Brooks and Corey. The capillary pressure 
curve in Figure 14 was idealized sligh~ly by making 
the straight-line extrapolation from S = 0.9 to 
S = 1.0 as shown. This resulted in a value of 
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FIGURE 10 - Comparison of theory and experiment 
for infiltration in Poudre sand. 

Pd/Pg of 22 em of oil. Experimental data presented 

in the next section provides a justification for ~his 
modification of the measured data. 

It was pointed out in the derivation of equation 
(108) that the factor A defined by equatlon (104) 
was assumed constant. This implies that Paf is 

constant. For infiltration into semi~infinite media, 
the assumption further implies that Paf is zero . 

Experimental measurements of the pressure in the air 
phase in Poudre sand near the upper surface of the 
medium were made in order to check this assumption . 
These results are shown in Figure 15. In these 
experiments the air was allowed to escape freely from 
the bottom of the column. It is noted that the 
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l ength of column has a marked effect on the air pres­
sure buildup. This is due, of course, to the increased 
resistance to flow ~n the longer column. In view of 
these results, air taps along the column of Poudre 
sand were left open to the atmosphere so that the air 
could more readily escape and the infiltration experi­
ments were repeated . The infiltration data from these 
experiments on the 25 .4 em columns of Poudre sand 
agreed with that from columns in which the air could 
escape only from the bottom to the same degree that 
a given data set could be reproduced. It was not 
possible to detect a difference in the infiltration 
data that could be directly attributed to air pres­
sure buildup. 

It should be emphasized that the above conclu­
sions are based on observations taken from a column 
of Poudre sand 25 . 4 em long. It is expected that 
these conclusions cannot be extrapolated to columns 
which are much longer because a significant air pres­
sure buildup persisted in the 51 em column for up to 
3 minutes. 
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infiltration in Berea sandstone. 

Figure 16 is a comparison of experimental data 
with calculations from equation (94) for the Berea 
sandstone . There is considerable discrepancy between 
the calculated and measured values in this case. The 
calculated curve is displaced from the measured one 
by an approximately constant factor. This indicates 
that the calculated curve has the correct shape . 
Therefore the fact that the influence of gravity is 
over-estimated i n equation (94) does not appear to 
explain the discrepancy. The calculation is very 
sensitive to.the s lope of the capillary pressure 
curve near S = 1.0 , and small errors in this curve 
could produce the observed difference. The data from 
which t hese calculations were made are shown in 
Figures 17 and 18. 
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FIGURE 17 - Relative permeability as a funct ion 
of saturation for Berea sandstone . 
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Infi l trati on in Finite Media 

The procedures discussed in t he sect ion entitled 
Boundary Conditions IV were employed to comput e the 
solid curves shown in Figure 19 for Poudr e sand. The 
value of Pd/pg used in these calcul ations is 22 . 0 em. 
The points shown in this graph are measured cumulative 
infi ltration data for various effective column lengths. 
Apparently the calculation procedure for finite media 
is adequate to predict the cumulative infiltration as 
a function of time until the air pressur e head has 
increased t o Pd/pg + P

0
/ pg (equal to 23 . 6 em in t his 

case). The calculation procedure cannot be c~rried 
beyond this point. 
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FIGURE 19 - Comparison of theory and experiment 
for i nfiltration in finite columns of Poudre sand . 
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The data from infiltration tests into finite 
media are shown in Figures 20 t hrough 24 . The i nfil ­
t ration rates plott ed on al l graphs were cal culated 
from the cumulative infiltration curves by the 
formula : 

(126) 

where (q)t is the infiltration rate at time t . 

This procedure provides some smoothi ng of t he cal cu­
l ated i nfil t rat ion r ates . This was necessary because 
the volume of oil in the constant head burette used to 
measure the cumulative infiltration changed in dis­
cr ete i ncrements r ather than continuously. At any 
particular time , the volume of oil in the burette 
could be det ermined to within tO . l cm3 , but the 
volume of oil in t he porous medium could differ from 
the determined value by an ad9itional !0.2 cm3 , which 
was the volume of discret e ·c1ianges i n t he burett e . . I 

It is observed that in each of the Figures 20-24 
t hat t he infi l tration rat e decreased,to a value lower 
than t he hydr aulic conductivity at S • 1.0 . I t is 
interesting to note , however, that the pressure head 
in the air phase (when the infiltrat ion rat e was equal 
to the hydraulic conducti vity at S = 1. 0) was 
approximately 24 em of oil in each case. The range 
was fr om 26 em to 22 em f or the 5 dif ferent cas es . 
Based on t he assumption t hat a zone in which S = 1 . 0 
developes in t he medium, one would expect t he infil­
tration rate t o be equal to the hydraul ic conduct ivity 
when t he air pressure head is equal to 23.6 em (see 
equation (95)) . This observation provides some 
justification for t he assumption that such a zone 
developes. I t should be remembered, however, that 
this assumption was made as a convenient approximation 
to the actual situation . 

The Figures 23 and 24, it is seen that a sharp 
decrease in t he air pressure head and a corresponding 
increase in t he infiltration rate occurred after the 
air pressure head reached a value of about 33 em of 
oil. Escape of the air from the top of the column was 
observed a few seconds before the beginning of the 
pressure decrease . In the case of 990, 670 and t he 
393-cm columns, the wetting front reached the bottom 
of the column before the air pressure buildup was 
sufficient to allow the air to escape . In addition , 
there ar e indications of an air leak in the 393-cm 
column . 

The fact t hat the air pressure head builds up to 
values significantly higher than 23 . 6 em before air 
begins to escape i s evidence that the saturation in a 
portion of t he column near the surface decreases. 
Initially, the air pressure is zero i n the £Olumn and 
near t he top of the column the saturation S is very 
near 1.0. Before the air can escape , the saturation 
must decrease 'tO pr ovide ai·r permeability . The i n­
crease in capillary pressure associat ed with the 
decrease in sat urat ion t akes pl ace along t he dot ted 
curve shown in Figure 12 r ather t han t he primary 
i mbibition loop . Therefore, the increase in capi l lary 
pressure near t he sur face necessary to provide t he 
air permeabi l ity r equir ed for ai r escape i s consider­
ably great er t han would be predicted f r om the primary 
imbibition loop . Since the liquid pressure at t he 
surface is constant , the i ncrease i n capillary pr es ­
sure must be provided by an increase in air pressure. 
The infiltr at ion r at e decreases to val ues less than 
t he hydraul i c conduct i vi ty at S = 1.0 because t he 
air pressure bu ildup represents a retarding for ce and 
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causes a reduced permeability to liquid by increasing 
the capillary pressure. 

The infi ltration rates in Figures 23 and 24 show 
that afCer counterflow of air begins, a sharp in­
crease in infiltration rate occurs. The rate in­
creases to a peak and then declines to a valu~ below 
the hydraulic conductivity corresponding to S = 1 . 0 
The limiting value of the infiltration rate is lower 
in t he finite columns than in those open at the bottom 
because of the resistance to the counterflowing air. 
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FIGURE 24 - Infiltration in a column of Poudre sand -
185 em equivalent length. 

Simultaneously with the observation of t he 
counter flow of air a s light di sturbance of the surface 
of the Poudre sand was noticed. The air escaped near 
this contact area in small bubbles through small holes 
1~hich were formed in the sand . It is believed that 
the formation of the worm-like holes by the escaping 
air is the reason for t he sharp pressure decrease 
observed shortly af ter counterflow began. This could 
account for the increase in infiltration rates to 
values higher than hydraulic conductivity at S = 1.0 

To test this theory, a Berea sandstone co lumn 
was subj ected to the sume test . The results are 
shown in Figure 25 . 
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FIGURE 25 - Infiltration in a column of Berea 
sandstone- 17 .4 em equival ent length. 
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The decrease in pressure associated with the 
begi nning of counterflow observed for t he Poudre sand 
did not occur in the Berea . The slight decline in 
pressure near the termination of the experiment is 
believed to be due to the development of an air leak . 

The count erflowing air was observed to be con­
centrated at two points on the surface of the sand­
stone. Although the Berea is very homogeneous 
paral l el to its natural bedding pl anes, the presence 
of the bedding planes makes it quite anisotropic. 
This fact could explain the escape of the air being 
concentrated in two places. 

Constant Rate Infiltration 

Columns of Poudre sand were subjected to constant 
rate infiltration t est s with the objective of observ­
i ng the development of the capillar y pressure pr of ile 
and the factor s affecting the time at which pending 
on the surface occurs . 

The capillary pressure head as a function of 
time at seve·n positions in the column of Poudre sand 
are shown in Fi gure 26 . 
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FIGURE 26 - Capillary pressure head as a function of 
time and position during constant rate infi ltra~ion. 

. The progress of the "wetting front" is readily 
observed from this figure. An important feature of 
the curves in this graph i s the rapid decrease i n the 
capil l ary pressure when the "wetting front" reaches a 
particular point fol l owed by a much s lower decline . 
It is noticed that after the wetting front has passed , 
the rate of decline of capillary pr essure is least for 
points nearest the upper surface . It is not possible 
to measure the capillary pressure immediately a t the 
surface, but it can be concluded that, after the 
initial wetting, the rate of decl ine of capillary 
pressure at the surface was less than that measured at 
tap (1). The significance of this observation is that 
the capillary pressure at the surface of the soil 
appr oaches the capillary pressure at which ponding 
occurs almost asymptotically. Therefore, the ·t ime at 
which pending occurs is very sensitive to the pro­
perties of the porous medium. The properties of the 
porous medium at the surface are especially important. 



Attempts to reproduce the pending time observed in a 
particular experiment verified this conclusion. 

In view of the difficulty exper ienced in reproduc­
ing the experimental data, no attempt was made to make 
numerical comparisons between experimental data and 
the theoretical developments for the constant rate 
boundary conditions . The theoretical results are use­
ful because the factors affecting the phenomenon can 
be determined easi ly; at least in a qualitative sense. 
Figure 27 shows an example of the predicted variation 
in the capillary pressure at the surface. Note that, 
qualitatively, this curve agrees with the measured 
curves in Figure 25 . 
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FIGURE 27 - Calcul ated capillary pressure as a 
function of time at the surface . 

Figure 28 shows how the ponding time varies with 
the application rate. For this examp!e, scaled 
application rates l ess than 2.4 x 10- j wi ll n~t re~ 
sult in pending. It is observed that the pond1ng tlme 
becomes very sensitive to the infiltration rate for 
rates near 2.4 x lo- 3 . This trend was verified 
experimentally by determining the ponding time at 
various application rates . The results are shown in 
Table 1. 
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FIGURE 28 - Calculated relat ionship between infiltra­
tion rate and ponding time. 
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TABLE 1 - Observed Dependence of Pending Time on 
Infiltrat ion Rate 

Infiltration 
Rate 
em/min. 

0.154 
0 . 103 
0 . 076 
0.074 

Pending 
Time 
min . 

35 
62 

218 

From the data in Figure 26, plots of the 
capillary pressure profiles at various times were 
constructed. These are shown in Figure 29 . From 
these curves, it is observed that to some degree 
of approximation, different values of capillary 
pressure propagate with the same velocity at any 
particular time . It is on this approximation that 
equations (120) and (123) are based. 
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FIGURE 29 -Measured capillary pressure profiles 
during constant rate infiltration. 
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The ponding time for the experiment from which 
the data in Figures 26 and 29 were taken was observed 
to be 62 minutes from the time of application of 
the constant rate. The capillary pressure at tap 1 
began to decrease sharply at about this time . This 
is explained by the fact that, just prior ·to pending, 
the saturation at points near the surface was near 
5 = 1.0 . A f urther increase in S resulted in a 
sharp decline i n capillary pressure because Pc 
decreases very rapidly with increasing saturation in 
this range (see Figure 12) . The incre·a~e in satura­
tion beyond the saturation at which E(S) reaches a 
maximum (see the discussi on following the derivation 
of equation (123) ) occurs because the air is com­
pressible . It 1vas observed that the counterflow of 
air ceased when ponding occurred and the air was com­
pressed until the pressure increased to a value at 
which it again escaped from t he top of the column. 



CONCLUSIONS k~D RECOMMENDATIONS 

The phenomenon of one-dimensional flow of two 
immiscible fluids in porous media was studied both 
theoretically and experimentally, with particular 
emphasis on the infiltration problem. The theoretical 
work was based on a differential equation der ived by 
combining Darcy's law for both fluids with the equa­
tion of mass conservation. Experiments used in the 
s t udy were designed to simulat e fie l d sit uations in 
which t he resistance to flow of the displaced air 
significantly affects the flow of the liquid. 

The following conclusions were drawn as a result 
of this study. 

1) The construction of similar physical systems 
in which the flow phenomenon is that of an in­
compressible wetting fluid displacing a com­
pressible non-wetting fluid is i mpractical in 
all but a few simple cases. Five criteria for 
the construction of similar physical systems 
were recognized. These are: 

a) The overall geometry of the two systems 
must be such that corresponding dimen­
sions form identical ratios to P

0
/pwg 

P
0 

is the scale factor for pressure. 

b) The theory implicitly required the same 
orientation with respect t o the gravita­
tional field. 

c) Initial and boundary conditions must be 
identi cal when express ed i n terms of the 
scaled variables . 

d) The viscosit y ratio ~a/~w must be 

identical in both systems . 

e) The functions of scaled variables listed 
below must be identical; 

. 
k ra " kra(S) . 
k rio/ krw (S) 

p 
c Pc(S) . 

Pa P a (P a) 

2) The di fferential equation describing one­
dimensional horizontal displacement of an 
incompressible non-wet ting fluid by an 
incompressible wetting fluid in a semi­
infinite medium subject to t he conditions 
of constant saturation at x = 0 and 
uniform initial saturation can be reduced 
to an ordinary differential equation by 
the Boltzman similarity transformation. 

3) Theoretically, a zone in which the capillary 
pressure is less than that value at which 
the air ph~se becomes discontinuous (a zone 
in which S = 1.0) does not develop in t he 
porous medium. This is true even under pond­
ed liquid conditions. This conclusion im­
plies that the governing equations (expressed 
with saturation as the dependent variable) 
are valid even under conditions of ponded 
liquid. 
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4) The saturati~n profile contains an inflection 
point near S = 1.0 which is the result of 
the large resistance to flow of the air at 
these saturations. This is in agreement with 
the Buckley- Leverett profile obtained by 
neglecting capillary pressure gradients 
(Brustkern and Morel-Seytoux (14)). 

5) The limiting value approached by the 
infiltration rate (scaled) in a semi­
infinite medium is: 

6) 

limit 
s .... Lo 

E(S) 

For the case in which dk /dSIS=l.O # 0 ra 
the above limit is equal to lllrw(l ) / ll"' 

which is the scaled value of the hydraulic 
conductivity at S • 1.0 . If k' (1.0) 0 ra 
i t is believed that the limit ing value of 
q is somewhat less than ll k ( 1 )/~ , o a rw w 
although this was not definitel y proven. 

Calculation of the infiltration into Poudre 
sand from equation (108) agrees well with 
experiment. This equation overestimates the 
effect of gravitational forces to an unknown 
degree. 

7) The rate of infiltration into columns con­
$tructed so that the air cannot escape from 
the bottom is significantly sl owed by the re­
s i stance to the flow of tho air under certain 
conditions . The infiltration rate is, initial­
l y , very high but decreases rapidly to a mini­
mum value well below the hydraulic conductivi­
ty at S = 1.0 . The pressure in the air is 
increased because it is compressed by the in­
filtrating liquid. Air begins to escape from 
the top of the column when the capillary pres­
sure at the surface has reached some threshold 
value. The value of the capillary pressure 
at which air begins to escape is considerably 
higher than would be predicted from the prima­
ry imbibition capillary pressure-saturation . 
curve. These conclusions are in agreement 
with those of Young and Peck (36). 

When air begins to escape from the 
column, the infiltration rate increases . In 
the case of Poudre sand, the infil tration 
rate increased to a peak and again declined 
to a v~lue somewhat below the hydraulic 
conductivity at S • 1.0 . It is believed 
that the increase in the infiltration rate 
to values higher than the hydraulic con­
ductivity at S = 1.0 is the result of a 
disturbance in the Poudre sand near the 
surface caused by t he escaping air. 

8) Theoretical results for the case of constant 
rate infilt ration with air counterflow show 
that ponding will occur if the scaled value 
of the appli~ation rate exceeds the maximum 
value of E(S) . 



9) Both theoretical and experimental results 
show that the capillary pressure (or satura­
tion) at the surface approaches the value at 
which ponding occurs at a rate which depends 
upon the application rate. The critical 
~alue of capillary pressure (or saturation) 
~s approached almost asymptotically in time 
wh~n the scaled application rate is only 
sl;ghtly larger than the maximum value of 
E(S) . Therefore ponding time is large. For 
larger application rat~s. ponding will occur 
more quickly. The relative magnitude of 
these changes can be predicted from the 
theory. The theory can be used (in a 
~uali~ative sense) to determine how the pond­
lng tlme depends on the hydraulic properties 
of the porous medium. 

Several aspects of the work in this paper are 
incomplete and require further study. The degree to 
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which Fwl depends upon kra(S) near S = 1.0 

should be studied in more detail. In conjunction with 
~uch a_study, an experiment should be designed t o 
~nvest1gate,the shape of the saturation profile of 
values of S near 1.0. 

The degree to which gravitational forces are 
overestimated by equation (94) and (108) should be 
determined. This could be accomplished by comparisons 
with other solutions. 

The solution procedure for problems of infiltra­
tion into finite media is not sufficiently general to 
predict all of the important aspects of this 
phenomenon. Efforts should be made to either extend 
the present method or develop a new procedure. 

Finally, a simple routine method for measuring 
the relative permeability to air as a function of 
saturation for unconsolidated materials should be 
developed. 
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APPENDIX A 

HYDRAULIC PROPERTIES OF POROUS MEDIA 

TABLE A-1 CAPILLARY PRESSURE - RELATIVE PERMEABILITY 
SATURATION DATA FOR POUDRE SAND 

Drainage Imbibition 

P/llg k rw s Pe/Pg k rw s 
em em 

23.0 1. 000 1. 00 73.6 0 . 001 0. 32 
29.3 1 . 000 1. 02 56. 8 0. 004 0 . 38 
33.7 1.000 1 . 01 50.7 0 . 006 0 .40 
36 . 8 0.904 1. 00 45. 0 0 . 013 0 .44 
39.1 0 . 750 0 .97 38.9 0 .036 0.47 
40.8 0.578 0.90 34.6 0.096 0.62 
42.9 0.422 o. 87 32.0 0 . 118 0 . 64 
4 5.7 0.240 0 . 78 28 . 9 0.204 0. 72 
48.3 0.143 0.68 25.6 0.362 0.81 
50.8 0 . 094 0 . 61 19.0 0 . 690 0 . 89 
56 .4 0.036 0. 51 12 . 7 0.800 0 . 91 
59 . 9 0.026 0 .47 7.2 0 . 816 0.90 
63.3 0 . 016 0.44 
66 . 3 0.010 0 .42 
75.9 0.003 0.35 
84. 9 0.001 0.29 

K • 2. 52 X 10 
- 8 em 2 

• <!> .. 0.396 

TABLE A-2 RELATIVE PERMEABILITY - SATURATION DATA 
FOR B~REA SANDSTONE - IMBIBITION 

k ra s krw s 

1. 000 o. o 0 . 002 * 0. 40 
0.986 0.079 0.016* 0 .50 
0 . 9 43 0. 148 0 . 154 0 . 648 
0.806 0.260 0.237 o. 715 
0.669 0.325 0.262 0.750 
0 . 566 0 . 377 0.290 0.761 
0 .457 0.419 0.320 0. 770 
0.347 0.460 0 . 353 0.776 
0.169 0 . 539 
0 . 090 0.574 0 . 400 0.780 
0.051 0.605 
0.028 0.619 *From drainage curve 
0 . 021 0.628 -8 2 
0.004 0.651 K • 0.384xl0 em 

~ '"' 0 . 201 

TABLE A-3 CAPILLARY PRESSURE - SATURATION DATA FOR 
BEREA SANDSTONE 

Drainage Imbipition 

P/pg s Pc/Pg s 
em em 

10.0 1. 000 164.5 0.279 
20 . 0 1.000 149.2 0.293 
33 . 5 1.000 141. 0 o. 29 8 
40.0 0.978 124.5 0 . 305 
48 . 0 o. 977 108 . 3 o. 321 
49.5 0 .976 93.9 0. 34 2 
51.0 0 .940 81.6 0 . 356 
53 . 0 0 .896 68. 4 0 . 395 
54. 5 0 .859 58 . 2 0.428 
58 . 0 0 . 767 49 .2 0 . 474 
60 . 0 o. 720 39 . 3 o. 549 
62. 0 0 .674 33.3 0 . 614 
70.6 0.549 29 . 3 0 . 674 
75.8 0 . 502 23.6 o. 712 
80 . 8 0 .470 19.1 0 . 735 
85 .6 0 .44 2 12.2 0. 758 
93 . 5 0 . 405 9.6 0 . 763 

103. 8 0 .377 
113.3 0 . 342 
128.3 0 . 326 
148.3 0. 293 
178. 4 0. 274 
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APPENDIX 8 

INFILTRATION DATA FOR SH1ULATED SEMI-INFINITE COLUMNS 

TABLE B-1 INFILTRATION DATA FOR SIMULATED SEMI- TABLE B-2 INFILTRATION DATA FOR SIMULATED SEMI-
INFINITE COLUMN OF POUDRE SAND INFINITE COLUMN OF BEREA SANDSTONE 

Cumulative Infiltration Time Cumulative Infiltration Time 
Infiltration Rate Infiltration Rate 

em em/min Min em em/min Min 

0.55 1. 58 0.25 0 . 048 0.147 0 .25 
0 . 79 0.86 0 . 50 0.073 0.090 0 . 50 
0.98 0.65 0.75 0.093 0 . 066 0.75 
1.12 0.56 1.00 0 . 106 0.052 1.00 
1. 25 0.52 1.25 0.133 0.044 1.50 
l. 77 0.42 2.50 0.150 0.039 2.00 
1.95 0.35 3.00 0.172 0. 034 2 . 50 
2 .13 0.32 3.50 0.184 0 . 028 3.00 
2.27 0.27 4.00 0.215 0.028 4.00 
2 . 53 0 . 26 5.00 0.241 0.024 5.00 
2.79 0.24 6 . 00 0.263 0.022 6.00 
3.02 0 . 22 7 . 00 0.284 0.021 7.00 
3 . 23 0.22 8.00 0.306 0.020 8.00 
3 . 50 0 . 21 9.00 0 . 323 0.018 9.00 
3 . 65 0.20 10.00 0.341 0.016 10.00 
3.85 0.20 11.00 0.371 0.015 12 . 00 
4.23 0.17 13.00 0.401 0.015 14 . 00 
4 . 40 0.17 14.00 0.429 0.014 16 .oo 
4.57 0.17 15.00 0.455 0 . 012 18.00 
4 . 74 0.16 16.00 0 . 479 0 .012 20 . 00 
5.07 0.16 18.00 0 . 505 0.012 22.00 
5 . 37 0.15 20.00 0.529 0.012 24.00 
5 .66 0.14 22.00 0.553 0.011 26 .00 
5.94 0 .14 24.00 0.575 0 . 010 28.00 
6.21 0.14 26 . 00 0. 594 0.010 30.00 
6 . 49 0.13 28.00 0 . 646 0.010 35.00 
6 . 74 0 . 13 30 . 00 0 . 696 0.009 40.00 
7.42 0 . 13 35 .oo. 0.739 0.009 45.00 
8.00 0.11 40.00 0 . 783 0 . 009 so .00 
8 . 55 0.11 45 . 00 0 . 826 0.009 55 . 00 

0.868 0.008 60.00 

Column Area = 
2 0.396, I( = 2.41 Col~ Area = 20.65 em 2 

~ = 0 . 201, K = 0.384 7.892 em , ~ = ' x Io-8 em2 x 10- em2 
Ponded liquid depth s 1.6 em Ponded Liquid Depth = 0.8 em 
Temperature = 23 . 4°C. Temperature = 22.5°C. 
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APPENDIX C 

INFILTRATION DATA FOR FINITE COLUMNS 

TABLE C-1 INFILTRATION DATA FOR COLUMN OF POUDRE SAND TABLE C-2 INFILTRATION DATA FOR COLUMN OF POUDRE SAND 
990 em Equivalent Length 670 em Equivalent Length 

Cumulative Infiltrat ion Air Press . Ti!lle Cunulat ive Infiltration Air Press. Tine: Infiltration Rate Head Infiltration Rate Head em . cni/Min em . of oil Min. em. em/Min . em . of oil Min. 

0 0 0 0.0 0 0 . 00 
.48 1.43 .8 0.25 . so 1.47 1.7 0 . 25 
.71 0.81 1.1 0 .50 .74 0 . 84 2. 8 0 . 50 

1.04 0.58 1.5 1.00 . 91 0.61 3 . 5 0.75 
1.17 0 . 47 1.7 1. 25 1.04 0.51 4. 0 1.00 
1.28 0. 41 1.9 1.50 1.17 0 . 48 4. 5 1. 25 
1.37 0 . 43 2.0 l. 75 1. 28 0.46 4. 9 1. 50 
1.50 0. 39 2.1 2 . 00 1. 39 0.41 5 . 1 1. 75 
1.57 0.30 2.25 1.48 0.37 5.5 2.00 
1.65 0.31 2 . 50 1.67 0.30 6. 3 2.50 
l. 72 0.36 2.75 l. 79 0.24 6.9 3 . 00 
1.82 0 . 34 3 . 00 1.91 0 . 24 7.5 3 . 50 
l. 96 0 . 26 3 .50 2.02 0.23 8.0 4.00 
2.09 0.25 4. 00 2.14 0 . 20 8.3 4. 50 
2.22 0 . 24 4.50 2.23 0 . 19 8.6 5 .00 
2.33 0 . 22 5 .00 2 . 33 0 . 20 9.1 5 . 50 
2.45 0.20 5 .50 2.52 0 .15 9.8 6.50 
2 . 53 0.19 6 . 00 2.57 0. 15 10 . 1 7.00 
2 .65 0.21 6.50 2.67 0. 18 10.6 7.50 
2.75 0 .20 7 . 00 2.75 0 . 15 11.0 8 . 00 
2 . 84 0.16 7.50 2.83 0 .14 11.3 8 . 50 
2.90 0.16 8.00 2.89 0.14 11. 5 9.00 
2 .99 0 . 16 8 . 50 2.96 0 . 13 11.9 9.50 
3 .07 0 . 15 9 . 00 3 . 02 0. 12 12 . 3 10.00 
3.14 0 .15 9 .50 3 . 15 0. 14 12. 9 11.00 
3 .21 0 .16 9.3 10.00 3 . 29 0 . 12 13 . 3 12 . 00 
3.29 0 . 17 10 . 50 3.39 0.11 13 . 5 13.00 
3 .38 0 .15 10.0 11.00 3.51 0.11 14.0 14.00 
3.45 0 . 12 10 .2 11 .5C 3.62 0 . 11 14 . 6 1 5 . 00 
3.51 0 . 12 10 . 5 12 . 00 3. 72 0.10 15 . 1 16 . 00 
3 .62 0.13 10.8 13 .00 3 . 92 0.10 16 . 1 18.00 
3 . 75 0 . 13 11 . 3 14 . 00 4.40 0.09 17 . 5 2 2 . 00 
3 . 88 0.13 11 . 5 15 . 00 4.4 5 0.05 18. 4 24.00 
4.00 0 . 12 1 2 . 0 16 . 00 4 . 59 0 . 08 19. 0 26.00 
4.22 0 . 11 12 . 5 18 . 00 4.73 0 . 07 19.3 28.00 
4.33 0.11 13.0 19 . 00 4. 85 0 . 06 20.0 30.00 
4. 48 0 . 11 13 . 3 20 .00 5.14 0 . 05 21.6 3 5 . 00 
4 . 65 0 . 11 14 . 0 22 . 00 5 . 41 0 . 04 22. 8 40.00 
4.88 0 . 11 14 . 5 24.00 5 . 65 o.os 24. 5 46 . 00 
5 .03 0.10 15 . 2 26 . 00 5 . 11 0 . 03 25 . 8 55 . 00 
5 . 22 0 . 09 15 .8 28.00 6 . 34 0 . 03 26. 8 6 3 . 00 
5.37 0 . 08 16 . 3 30.00 6.41 0.03 27.2 65 .00 
5 .78 0.08 17 . 5 35 . 00 6 . 55 0 . 04 28.4 70.00 
6.17 0 . 08 18.8 40 .00 6. 73 0 . 03 28 . 5 7 5 .00 
6.51 0 . 07 19.8 45 .00 6 . 85 0.03 29. 5 80.00 
6.84 0.07 21.0 50 . 00 7.01 0 . 03 30 . 0 86 . 00 
7 .18 0 . 06 22. 3 56 .00 7.11 0.02 30. 5 90.00 
7 . 41 0.06 23.0 60.00 7. 22 0.02 31.0 95 . 00 
7.70 0 . 06 24.0 65 . 00 7 . 33 0 . 02 31.5 100 . 00 
7 .89 0 .05 24.5 70 . 00 7.47 0.02 31.6 10 6 . 00 
8 .20 0.05 25 .2 75 .00 7. 56 0.02 32 .0 110 . 00 
8.4 3 0.05 26 . 0 80 . 00 7 . 65 0 . 02 32 . 5 115 . 00 

7.75 0 . 02 33.0 120.00 

Atmospheric Pressure .. 1182 em. of oil Atmospheric Pr essube 1106 em . of oil 
Temperature = 23 . o0 c Tempera ture = 22 . 9 c. 
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TABLE C-3 INFILTRATION DATA FOR COLUMN OF POUDRE SAND 
393 em Equivalent Length 

Cumulative Infiltration Air Press . Time 
Infiltration Rate Head 

em/min em . of oil Min em 

0 . 00 o.o 
0.56 1.54 2 . 5 0 . 25 
o. 77 0 . 71 4.3 0 . 50 
0.91 0.56 0 . 75 
1. OS 0 .48 6.5 1.00 
1.15 0.43 1.25 
1. 27 0.41 8 . 0 1.50 
1. 36 0.33 1. 75 
1. 43 0.30 9.5 2 . 00 
1. 58 0.25 10.6 2.50 
1. 69 0.22 11.5 3. 00 
1. 80 0.22 12 .4 3 . 50 
1. 90 0.20 13.0 4. 00 
2 .00 0.18 13 .8 4. 50 
2 . 08 0.14 14.5 5 . 00 
2.14 0 .15 15 . 0 5.55 
2.23 0 .14 15.5 6 . 00 
2 .28 0 .14 16 .1 6.50 
2.37 0.15 16.6 7.00 
2 . 4 3 0.11 17 .0 7 . 50 
2.48 0 . 10 17.5 8.00 
2.58 0 .10 18.2 9.00 
2.69 0 . 10 19 . 0 10.00 
2 . 77 0 . 09 19.6 11.00 
2.86 0 . 08 20 .4 12 . 00 
2 . 94 0.08 20.9 13.00 
3 . 02 0 .07 21. 4 14.00 
3.10 0 . 07 15.00 
3.15 0 .06 22 . 5 16.00 
3 . 2Fl 0 . 06 23 . 3 18.00 
3.40 0.05 2 4.0 20.00 

3 . 50 0.05 22.00 
3 . 59 0.04 25.2 24.00 
3 .67 0 . 0 4 25.6 26 . 00 
3 . 7 4 0.04 28 . 00 
3 . 83 0.04 26.5 30 . 00 
3.90 0 . 04 32 . 00 
4.02 0 . 03 27 .4 35.00 
4.16 0.03 28 . 2 40.00 
4 .29 0.03 28 .8 45 .00 
4.43 0.03 29.0 50 . 00 
4.56 0 . 03 29 . 2 55.00 
4.68 0 . 02 29 . 7 60.00 
4 . 79 0 . 02 30 .0 65 . 00 

4.89 0.02 30. 1 70 . 00 
5 .00 0.02 30 . 2 75 . 00 
5.21 0 . 02 30 . 5 85.00 
5 . 3 0 0.02 30.5 90.00 
5 . 40 0.02 30 . 5 95 . 00 
5 . 57 0.03 30.5 106. 00 
5 . 78 0.02 30.6 110.00 

Atmospheric Pressuse . 1098 of oil em. 
Temperature = 22 .8 c 
*Possible air l eak 
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TABLE C-4 INFILTRATION DATA FOR COLUMN OF POUDRE SAND 
233 em Equivalent Length 

Cumulative Infiltration Air Press. Time 
Infiltration Rate Bead 

em . em/Min em. of oil Mi n. 

0 0 0 
0 . 60 1. 40 0.25 
0.70 0 .46 0 . 50 
0.82 0 .48 0. 7 5 
0.94 0.40 1. 00 
1.03 0.30 11 .5 1. 25 
1.09 0.25 1 . 50 
1.15 0.25 1. 75 
1.22 0.24 2.00 
1.33 0.20 16 . 0 2.50 
1.42 0 . 15 3 .00 
1.48 0 . 14 3 . 50 
1.56 0 . 13 4 . 00 
1.61 0 .10 4 . 50 
1.66 0 . 09 21.0 5 .00 
1. 70 0 .09 5 .50 
1. 75 0 . 09 6.00 
1.82 0 .07 7.00 

23.8 7 . 50 
1.89 0 . 06 8 .00 
1. 95 0 . 05 9 .00 
2.00 0 . 04 26.0 10.00 
2 . 04 0.05 11.00 
2.09 0 . 04 12.00 
2.15 0 . 03 14.00 

28 .6 15.00 
2.20 0 . 03 16 . 00 
2.25 0 . 03 18.00 
2.30 0 . 02 30 .6 20.00 
2. 3 4 0.02 22 .00 
2.39 0.02 31.8 25.00 
2.46 0 .01 33 .0 30 .00 
2 . 50 0 . 02 33 . 00 
2.51 0 . 04 33.50 
2 . 53 0.04 3 4. 00 
2 . 55 0.03 34. 50 
2.57 0 .05 30 . 0 35 . 00 
2.61 0.06 36 .00 
2.64 0.51 36.50 
2 . 66 0 . 51 37 . 00 
2.69 0 .08 23.5 37.50 
2 .74 0 . 10 38 .00 

' 2 . 79 0.09 38. 50 
2 . 83 0 .09 39.00 
2 . 88 0 . 14 39.50 
2.91 0. 13 21.5 40.00 
2.99 0 .07 41.00 
3.05 0.08 42. 00 
3.14 0 . 08 4 3 . 00 
3.22 0.08 44.00 
3.29 0.07 21.8 4 5.00 
3 . 36 0.06 46.00 
3.42 0 .06 47 . 00 
3 . 48 0 . 06 48.00 
3.61 0 . 06 23.0 50 . 00 
3.88 0 .05 55 . 00 
4.13 0.05 24 . 3 60.00 
4 . 37 0.05 65.00 
4 . 60 0.04 24 . 5 70.00 
5 . 04 0 . 04 24 . 7 80 . 00 
5.46 0.04 25.5 90.00 
5.87 0 . 04 100.00 
6.28 0 . 04 110.00 
6.49 0.04 115.00 
6 . 68 0 . 04 120 . 00 

Atmospheric Pressure • 1206 em. of oil 
Temperature ~ 23 .0°C 



TABLE C· S INFILTRATION DATA FOR COL~W OF POUDRE SAND 
185 em Equivalent Length 

Cumulative Infiltration Air Press . Time 
Infiltrati on Rate Head 

em . em/Min . em . of oil Min . 

0 o.oo 
0 . 57 1.4 7 0.25 
0 . 73 0 . 46 10 0.50 
0.80 0.53 0.75 
1.00 0.58 1.00 
1.09 0.28 15.1 1.25 
1.14 0.25 1.50 
1.22 0.23 1. 75 
1.25 0 . 18 2 . 00 
1.36 0 . 19 20 . 4 2. 50 
1.44 0.11 3 . 00 
1.47 0.06 3 . 50 
1.51 0 . 09 4. 00 
1.56 0.06 4 .50 
1.57 0 . 05 25.0 5 . 00 
1 . 65 0 . 06 6 . 00 
1.69 0.04 7 . 00 

27.2 7.50 
1 . 74 0 . 04 8 . 00 
1. 77 0.03 9.00 
1.80 0 .03 29 . 0 10 . 00 
1.85 0.02 30.2 12.00 
1.89 0 . 02 14 .oo 

31.3 15 . 00 
1 . 93 0 . 03 16 . 0 0 

31.5 16 . 50 
1.96 0.06 27.5 17.00 

25 . 0 17.50 
2 . 05 0.10 18.00 

22 . 0 18.75 
2.15 0 . 11 19 . 00 
2 . 27 0 . 10 20 . 7 20.00 
2 . 36 0.09 20.7 21.00 
2.45 0 .09 22 . 0 22.00 
2 . 53 0.08 23 . 00 
2.61 0.06 24 . 00 
2 . 67 0.08 22.8 25.00 
2.75 0 . 05 26 . 0 0 
2 . 80 0 . 06 27.00 
2 . 86 0 . 07 28 . 00 
3 . 00 0 . 06 23.4 30 .00 
3 . 32 0.06 35 . 00 
3 . 62 0.06 23.6 40.00 

0.06 25 . 2 50.00 
4 . 37 0.05 55 .00 
4. 57 0.04 26.0 60.00 
5 . 07 0 . 0 4 70.00 

26.4 73.00 
5 . 13 0 . 04 75.00 
5 . 30 0.0 4 27.0 80 . 00 
5.47 0 . 03 85.00 
5.64 0.03 27.3 90 . 00 
5 . 79 0 . 03 95 . 0 0 
5 . 9 7 0 . 03 27 . 3 100 . 00 
6.12 0 . 03 105.00 
6 . 27 0 . 03 27 . 3 110 . 00 
6 . 45 0.03 115 . 00 
6.60 0 . 03 27 . 3 120 . 00 

Atmospheric Pressu~e • 1181 em of oil 
Temperature = 23.0 c 
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TABLE C-6 INFILTRATION DATA FOR COLUMN OF BEREA 
SANDSTONE 
17.4 em Equivalent Length 

Cumulative Air Press . Time 
Infiltration Head 

em. em. of oil Min. 

0.069 22.4 1.0 
0.090 30.2 2 .0 
0.102 34.6 3 . () 
0.112 37 .5 4.0 
0.117 4 .5 
0.121 39 . 9 5 . 0 
0 . 127 6 . 0 
0.131 4 3 .4 7.0 
0 . 136 8 . 0 
0 . 138 8 . 5 
0 . 138 45 . 3 9 . 0 

45 . 7 10.0 
0.145 45.7 11. 0 
0.149 45.7 12.0 
0 . 158 45. 4 14.0 
0 . 166 45. 4 16.0 
0 . 173 45 . 2 18 . 0 
0 . 182 45.3 20.0 
0 . 188 45.2 22 . 0 
0.199 44.5 25.0 
0.216 44.5 30 . 0 
0 . 234 43 . 6 35 . 0 

Atmospheric Pressu~e = 1149 em. of oil 
Temperature .. 22.8 c 
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APPENDIX D 

AIR PRESSURE BUILD-UP DATA FOR COLUMNS OF POUDRE SAND 

TABLE D-1 AIR PRESSURE BUILD-UP IN COLUMNS OF POUDRE SAND 
WITH OPEN LOWER END 

50 . 8 em column 25. 4 em column 

Time Air Press . Time Air Press. 
Head Head 

Sec em of oil Sec em of oil 

6 9 . 6 3 . 5 7 . 2 
11 7. 9 4 7 . 1 
16 6.5 9 4 . 5 
21 5 . 5 14 3 . 4 
26 4 . 9 19 2.8 
31 4 . 5 24 2 .4 
36 4 . 1 29 2 . 1 
41 3 . 8 34 2 . 0 
46 3 . 6 39 1.8 
51 3 .4 44 1.8 
56 3 .2 49 1.6 
61 3 . 1 54 1.6 
66 3 . 0 59 1.6 
71 2 . 8 6 4 1.5 
76 2 . 7 69 1.5 
81 2 . 6 
86 2. 6 
91 2.5 
96 2 .4 

101 2 . 3 
121 2 .2 
141 2.1 
161 2 . 0 
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APPENDIX E 

CONSTANT RATE INFILTRATION DATA 

TABLE E-1 TAP 1 - 2. 30 em FROM SOURCE TABLE E-2 TAP 2 - 3.81 em FROM SOURCE 

Time Oil Air Capillary Time Oil Air Capillary 
Min. Press . Head Press. Head Press . Head Min Press. Head Press . Head Press. Head 

em. of oil ern . of oil ern. of oil em. of oil em. of oil ern. of oil 

1.3 -134.1 0 134.1 1.2 -82.2 82.2 
2.3 -110.7 0 ll0.7 2.4 -78.5 0.1 78 . 6 
4.5 -104.8 0 . 2 105.0 4.4 -79.9 0.1 80 . 0 
6.1 - 95.6 -0 . 1 95.5 6.0 -79.4 - 0 .1 79 . 5 
7.1 - 54.9 - 0.1 54.8 9 . 2 -79.9 0 79.9 
9.3 - 23.7 0.1 23.8 10.8 -76.1 0 76.1 

10.9 - 21.4 -0 .2 21.2 12.0 -34.9 -0.2 34.7 
14.1 - 19.4 0 19.4 14.0 -25.2 0 25.2 
15.7 - 19.0 -0 . 3 18.7 15.6 -23.2 -0.3 22.9 
18.9 - 18.5 0 18.5 18 . 8 -21 .0 -0.1 20.9 
20.5 - 18.2 0 18.2 20.4 -20 .6 -0.1 20.5 
23 . 7 - 17.7 0.1 17 . 8 23 . 6 -19.6 0.2 19 .8 
25 .3 - 17 .6 0 . 1 17.7 25.2 -19.2 -0.1 19.1 
28.5 - 17.3 0.1 17 .4 28.4 -18.6 0.1 18.7 
30.1 - 17.0 -0.2 16.8 30.0 -18.2 -0.1 18.1 
33 . 3 - 16.7 0.3 17.0 33.2 -17.7 0 . 2 17.9 
34.9 - 16 .4 -0.2 16.2 34.8 -17.3 0 17 . 3 

38.1 - 16.1 0.2 16 . 3 38.0 -16.9 0.3 17 . 2 
39.7 - 16 . 0 -0 . 1 15.9 39.6 -16.7 0.3 17.0 
42.9 - 15.7 0.4 16.1 42 . 8 -16.4 0 . 4 16.8 

44.5 - 15.6 0 15.6 44.4 - 16.2 0 . 4 16.6 

47.7 - 15.4 0.4 15.8 47 .6 -15.8 0.5 16.3 
49.3 - 15.2 0.0 15.2 49.2 - 15.6 0.5 16 .1 
52.5 - 14.9 0.3 15 . 2 52.4 -15.2 0 .5 15 .7 
54 .1 - 14.7 0.2 14 . 9 54.0 -14.9 0.7 15 . 6 

55.1 - 13.9 0.0 13.9 55.2 - 14.1 0.8 14 . 9 
57.3 - 13.8 0.4 14.2 57.2 -13.8 1.2 15.0 
58.9 - 12.8 0.4 13 . 2 58 . 8 -12 . 5 1.7 14.2 
59 . 9 - 11.6 0 . 1 11.7 60 . 0 -11.4 2.6 14.0 
62.1 9.9 0.4 10.3 62.0 - 9.6 5.4 15.0 

63.7 4.0 5.8 9.8 63 . 6 - 4.6 8.8 13.4 

64.7 1.8 7.7 9.5 64.8 .1 14.3 14.4 

66 . 9 1.6 10.4 8 . 8 66.8 2.3 17.5 15.2 

68 . 5 2.3 11.3 9.0 68.4 3.1 19.2 16.1 

69 . 5 2 .7 11.8 9 . 1 69.6 3.6 19.9 16 . 3 
71.7 2.9 12.8 10.0 71.6 3.6 20.2 16.6 
73.3 3.2 13.4 10.2 73 . 2 3.7 20.7 17.0 

76.5 3 .2 13.7 10. 5 76.4 3.8 20 . 9 17.1 

78.1 2.9 13.7 10.8 78.0 3.7 20.9 17.2 
79.1 3 .1 13.6 10.5 79 . 2 3.7 20 .8 17.1 

*Constant infiltration rate • 0 . 813 cm3/min. 
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TABLE E-3 TAP 3 - 5.32 em FROM SOURCE TABLE E-4 TAP 4 - 6.83 em FROM SOURCE 

Time Oil Air Time Oil Air Capillary 
Min Press . Head Press. Head Press. Head ~lin Press . Head Press .• Head Press. H'.;!ad 

em. of oil em. of oil em. of oil em. of oil em. of oil em. of oil 

1.1 -155.0 155 1.0 -146 .8 0 140.8 
2 .. 5 -142.4 - 0.1 142.3 2.6 -136.6 - 0 .2 136. 4 
4. 3 -139.9 0.1 140 . 0 4.2 -134.3 -0 . 2 134.1 
5.9 -138.0 0.1 138.1 5.8 -133.3 0 133.3 
7..3 -130 . 5 - 0.3 130.2 7.4 -131.9 0 131.9 

10.7 -130.6 0.1 130.7 9.0 -131.8 0 131.8 
13. 9 -121.8 - 0.1 121.7 10 . 6 -131.0 - 0.3 130 . 7 
15. 5 -100.0 0 100 . 0 12 . 2 -128.7 -0.1 128.6 
16. 9 - 28.0 0 28 . 0 13.8 -128.9 -0.1 128.8 
18.7 - 25.1 0 25 .1 15.4 -127 .6 -0.1 127.5 
20.3 - 23 . 4 .1 23.3 18 . 6 -120 .1 0 120.1 
25.1 - 20.2 0 20.2 20.2 -119.1 0 119 . 1 
28. 3 - 19.3 .3 19.6 21.8 - 55.2 -0 . 2 55 . 0 
29 . 9 - 18 . 8 . 3 19.1 23.4 - 26 . 7 0.1 26 . 8 
33 . 1 - 18.0 . 5 18.5 25 . 0 - 24 . 0 0.2 24 . 2 
34 . 7 - 17.5 . 5 18 . 0 28 . 2 - 21.4 0.2 21.6 
37.9 - 17.1 . 6 17.7 29.8 - 20.6 0 20.6 
39 . 5 - 16 . 8 .7 17.5 33 .0 - 19. 4 0.5 19.9 
42. 7 - 16.3 . 9 17 .2 34.6 - 18.9 0 . 6 19.5 
44.3 - 16 .2 1.0 17.2 39.4 - 17.9 0.8 18.7 
47. 5 - 15.8 1.1 16.9 4 2 . 6 - 17.2 1.0 18.2 
49. 1 - 15.6 1.2 16 . 8 44.2 - 17.1 1.1 18.2 
52.3 - 15.0 1.3 16.3 47.4 - 16.6 1.3 17.9 
53.9 - 14.7 1.5 16.2 49.0 - 16.3 1.4 17.7 
55.3 - 14.0 1.8 15.8 50.6 - 15.8 1.5 17.3 
57.1 - 13.4 2.6 16.0 52.2 - 15.6 1.6 17.2 
58.7 - 12.0 3.4 15 .4 53.8 - 15.2 1.7 16.9 
60.1 - 11. 0 4.6 15.6 55.4 - 14. 4 1.9 16 . 3 
61.9 9.1 6.7 15.8 57.0 - 13.8 2.8 16.6 
64. 9 .1 15.2 15.1 58.6 - 12.3 3 .9 16.2 
66 .7 2.7 18.9 16.2 60.2 - 11.0 5 . 2 16.2 
68.3 3.6 20.3 16.7 61.8 9.2 7.0 16 .2 
69.7 4.0 21.2 17 . 2 65 0.4 16.4 16.0 
71.5 4. 1 21.7 17 . 6 66.6 2 . 8 18.9 16.1 
73.1 4. 5 21.9 17 . 4 68 . 2 3 .6 20.8 17.2 
74.5 4. 6 22 . 0 17 .4 69.8 4. 3 21.7 17 .4 
76.3 4 . 6 22 .0 17 . 4 71. 4 4.6 22.2 17 . 6 
77 . 9 4 . 6 21.9 17.3 73.0 4.6 22.4 17 . 8 

76.2 4. 6 22.6 18.0 
77.8 4.5 22. 4 17.9 
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TABLE E-5 TAP 5 - 8. 55 em FROM SOURCE TABLE E-6 TAP 6 - 10.16 em FROM SOURCE 

Time Oil Air Capillary Time Oil Air Capillary 
Min Press. Head Press. Head Press. Head Min Press. Head Press. Head Press. Head 

em. of oil em. of oil em. of oil em. of oil em. of oil em. of oil 

0.9 -139.5 0 139.5 0.8 - 156.6 0 156.6 
2 .7 -135.2 0 135. 2 2.8 -149.1 0 149 . 1 
4 . 1 -133 . 6 0 . 2 133 . 8 4.0 -142.0 0 142. 0 
5.7 -133.0 0 . 1 133 . 1 5.6 -137.0 -0.1 136 .9 
7.5 -132.5 0 132 . 5 7.6 -137.4 -0.1 137.3 
8 . 9 -131. 9 0 131.9 8.8 -132.0 -0.1 131 . 9 

10. 5 -130.8 0 130.8 10.4 -128.0 -0.1 128.9 
12.3 -130.1 - 0.1 130.0 12.4 - 129.1 -0.2 128.9 
13.7 -129.2 -0.1 129 . 1 13.6 -124.0 -0.2 123.8 
15. 3 -128.4 -0.3 128.1 15.2 -120.9 -0.2 120.7 
17.1 -126.6 -0 . 2 126.4 18.4 - 118.4 -0.2 118.2 
18 . 5 -126.0 -0.2 125.8 20 . 0 -115.2 -0.1 115.1 
20 . 1 -124 . 9 0 124. 9 23 . 2 - 112.7 -0.1 112.6 
21.9 -117.7 -0.2 117 . 5 24.8 -109 .6 0.1 109.7 
23.3 -117 . 6 0.1 117 .6 26 . 8 -109 . 3 0 .2 109.5 
26.7 - 97.6 0.3 97.9 28 . 0 - 105.5 0.2 105. 7 
28.1 - 43.4 0. 4 43.8 29.6 -101.5 0 .2 105.7 
29.7 - 25 . 9 0.5 26.4 31.6 - 93.6 0.5 94.1 
32. 9' - 22.1 0.6 22.7 32.8 - 68. 4 0.5 68.9 
34.5 - 20.9 0.7 21.6 34 . 4 - 30.7 0.5 31. i 
37.7 - 19.7 0 . 9 20.6 36.4 - 24. 3 0.6 24.9 
39 . 3 - 19 . 0 1.0 20.0 37.6 - 23.6 0 . 7 24. 3 
42.5 - 18.2 1.2 19.4 39 . 2 - 22.2 0 .9 23 . 1 
44 . 1 - 17.8 1.3 19.1 41.2 - 21.1 1.0 22.1 
45.9 - 17.4 1. 4 18.8 42. 4 - 20.4 1.1 21.5 
47.3 - 17.2 1.6 18.8 44.0 - 19.9 1.3 21.2 
48.9 - 16. 7 1.6 18.3 46 . 0 - 19.2 1.6 20 . 8 
50.7 - 16.2 1.8 18.0 47. 2 - 18.8 1.8 20 . 6 
52.1 - 15.9 2.0 17.9 48 . 8 - 18.0 1.8 19.8 
53 . 7 - 15. 2 2 . 2 17.4 50.8 - 17. 4 2.0 19. 4 
55 . 5 - 14.2 2.7 16.9 52.0 - 16.8 2.2 19.0 
56.9 - 13.6 3.3 16.9 53.6 - 15.9 2 . 5 18.3 
58.5 - 11.9 4.5 16 .4 55 . 6 - 14.9 3.1 18.0 
60.3 - 10 . 5 5.5 16 . 0 56.8 - 13.9 3 . 8 17.7 
61.7 8 . 5 6.5 15.3 58. 4 - 12.2 4.9 17.1 
63.3 6.1 10.8 16 . 9 60 .4 - 10.7 6.6 17.3 
65 . 1 1.0 17. 4 16 . 4 61.6 8.8 8.1 16.9 
66.5 3.3 19 . 6 16 . 3 63 . 2 6.2 11.2 17.4 
68.1 4.4 21.4 17 . 0 65.2 1.1 18 . 0 16. 9 
69.9 5.1 22 . 4 17.3 66. 4 3.6 20 . 6 17.0 
71.3 5.3 22 .8 17.5 68.0 4.8 22 . 0 17.2 
72 .9 5 . 4 22.8 17.4 70.0 5. 4 22.9 17.5 
76 .1 5. 4 22.9 17.5 71.2 5 . 9 23.2 17. 3 
77 . 7 5 . 4 22.9 17.5 72.8 5.8 23 . 4 17.6 

74.8 5 .9 23 .6 17.7 
77.6 5.9 23.5 17.6 
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TABLE E-7 TAP 7 - 11.76 em FROM SOlJRCE 

Time Oil Air Capillary 
Min Press . Head Press. Head Press . Head 

em . of oil em. of oil em . of oil 

0.7 -128.6 0 128.6 
2.9 - 129 . 6 0.1 129.7 
3.9 - 113.0 0.1 113 . 1 
5.5 -103 . 6 -0 .1 103.5 
7.7 -111.2 - 0.1 111.1 
8.7 - 98.5 -0.1 98 .4 

10.3 - 91.9 - 0 .1 91.8 
13 . 5 - 89 .8 - 0 .2 89.6 
15.1 - 85 . 2 -0.1 85 . 1 
18.3 - 85.0 - 0 .2 84. 8 
19.9 - 80.8 -0 .2 80 . 6 
23.1 - 81.1 0 81.1 
24 .7 - 77.2 0.2 77.4 
27.9 - 78.0 0.2 78.2 
29.5 - 74.2 0. 4 74. 6 
32. 7 - 74.0 0 . 4 74.4 
34.3 - 70. 4 0.6 71.0 
36 . 5 - 71.1 0.6 71.7 
37. 5 - 63.4 0. 7 64 .1 
39. 1 - 30.9 1.0 31.9 
41. 3 - 24.7 1.1 25.8 
42.3 - 22 . 5 1.2 23.7 
43 . 9 - 20.9 1.3 22.2 
46.1 - 20 . 3 1.5 21.8 
47.1 - 18 . 7 1.8 20.5 
48.7 - 17 . 9 2 .1 20 . 0 
50 .9 - 17.8 2 .4 20 . 2 
51.9 - 16 . 5 2.7 19.2 
53 . 5 - 15. 3 3.6 18. 9 
56.7 - 13.2 5 . 5 18 . 7 
58. 3 - 11. 4 7 . 0 18 . 4 
61.5 7.9 10.4 18.3 
63.1 s.s 12. 4 17 . 9 
65.3 1.7 19 . 3 17 . 6 
66 . 3 4. 5 22 . 5 18.0 
67.9 6.1 24.6 18.5 
71.1 7.2 26 . 3 19 . 1 
72 . 7 7.2 26.3 19 . 1 
77.5 7.4 26. 4 19 . 0 
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APPENDIX F 

PHYSICAL PROPERTIES OF CORE TEST FLUID 

TABLE F-1 PHYSICAL PROPERTIES OF CORE TEST FLUID 

T8mp . Viscosity Density 
c Poise gm/ml 

20.0 0.01589 0 .7582 
21.0 0 . 01555 0.7576 
22.0 0.01524 0 . 7569 
23.0 0. 01494 0.7562 
24.0 0.01468 0.7556 
25.0 0.01440 0.7549 
26.0 0.01414 0.7542 
27 . 0 0.01388 0.7536 
28 . 0 0.01362 0.7529 
29.0 0 . 01337 0.7522 
30.0 0.01337 0.7515 
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