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ABSTRACT

NEW METHODS FOR FIXED-MARGIN BINARY MATRIX SAMPLING, FRÉCHET

COVARIANCE, AND MANOVA TESTS FOR RANDOM OBJECTS IN MULTIPLE METRIC

SPACES

Many approaches to the analysis of network data essentially view the data as Euclidean and

apply standard multivariate techniques. In this dissertation, we refrain from this approach, ex-

ploring two alternate approaches to the analysis of networks and other structured data. The first

approach seeks to determine how unique an observed simple, directed network is by comparing it

to like networks which share its degree distribution. Generating networks for comparison requires

sampling from the space of all binary matrices with the prescribed row and column margins, since

enumeration of all such matrices is often infeasible for even moderately sized networks with 20-50

nodes. We propose two new sampling methods for this problem. First, we extend two Markov

chain Monte Carlo methods to sample from the space non-uniformly, allowing flexibility in the

case that some networks are more likely than others. We show that non-uniform sampling could

impede the MCMC process, but in certain special cases is still valid. Critically, we illustrate the

differential conclusions that could be drawn from uniform vs. nonuniform sampling. Second,

we develop a generalized divide and conquer approach which recursively divides matrices into

smaller subproblems which are much easier to count and sample. Each division step reveals in-

teresting mathematics involving the enumeration of integer partitions and points in convex lattice

polytopes. The second broad approach we explore is comparing random objects in metric spaces

lacking a coordinate system. Traditional definitions of the mean and variance no longer apply, and

standard statistical tests have needed reconceptualization in terms of only distances in the metric

space. We consider the multivariate setting where random objects exist in multiple metric spaces,

which can be thought of as distinct views of the random object. We define the notion of Fréchet

ii



covariance to measure dependence between two metric spaces, and establish consistency for the

sample estimator. We then propose several tests for differences in means and covariance matrices

among two or more groups in multiple metric spaces, and compare their performance on scenarios

involving random probability distributions and networks with node covariates.
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Chapter 1

Introduction

1.1 Preamble

In this dissertation we develop methods for two statistical problems: determining how notewor-

thy is an observed binary matrix, and comparing groups of random objects observed in multiple

metric spaces These seemingly distinct problems have a unifying theme: the analysis of networks.

Binary matrices are a popular representation of simple, directed networks, or equivalently simple,

undirected bipartite networks. On the other hand, if a set of networks is imbued with a dissimilar-

ity metric, then they can be viewed as random objects living in a metric space. These two views,

though being applied to the same class of objects, lead to vastly different approaches to analysis.

While every binary matrix can be viewed as a network, not all networks can be represented

as a binary matrix (e.g. networks with multiple or weighted edges). However, every collection

of networks can be viewed as objects in a metric space, but certainly not every metric space ob-

ject is a network. In this sense, the methods we develop for binary matrices (Chapters 3 and 4)

are more limited in their application compared to the methods we develop for random objects in

metric spaces (Chapter 5), which can be applied to any class of networks and extends well beyond

networks to any objects living in metric spaces.

With this framing in mind, we assert that both the binary matrix and random object views of

networks are actively taken by practitioners, motivating continued research in both. The remainder

of this chapter introduces in more detail the problems of sampling binary matrices with fixed

margins and the analysis of random objects in metric spaces, providing motivation and recent

developments for both.
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1.2 Random Sampling of Binary Matrices with Fixed Margins

A binary matrix has elements valued either zero or one, and we call the set of sums for each row

and column the marginal sums or margins. In general, several binary matrices may share the same

set of margins, and in many cases, we may be interested in sampling from the set of all matrices

satisfying a given set of margins in order to perform a data analysis.

1.2.1 Motivating Examples

Data in the form of binary matrices occur in a variety of disciplines. The matrices are typically

used to capture dyadic relationships between individuals, locations, or events in the rows and

columns. We begin by highlighting three scenarios which give rise to a binary matrix and to the

need to them with fixed margins.

Species Co-Occurrence

In 1975, Diamond [4] proposed rules which govern the combination of several bird communi-

ties on islands in New Guinea, such as “Some pairs of species never coexist, either by themselves

or as a part of a larger combination”. However, Connor & Simberloff [7] disputed these rules, sug-

gesting that the combination of species on the islands was not exceptionally different from random.

Aside from the ensuing feud within the ecological community [8, 9, 10, 11, 12, 13, 14], Connor &

Simberloff sparked interest in a novel form of “null model analysis” [15, 16], a general approach

which compares an observed matrix statistic to the distribution of that statistic under a null model.

The null model of choice in this case was the set of all random combinations of species on islands

satisfying the following three constraints:

• The number of species on each island matches the number observed.

• The number of islands inhabited by each species matches the number observed.

• Each species inhabits islands of comparable size to the islands on which it is observed.
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Connor & Simberloff reason that if the observed species combination is not substantially different

from the random combinations with respect to some statistic of interest, then it becomes difficult

to argue that the observed pattern is anything noteworthy.

To generate combinations which adhere to the above constraints, Connor & Simberloff rep-

resent the species / island combinations as a matrix, with rows representing species and columns

representing islands. The element in a particular row and column is set to one if the corresponding

species inhabits the corresponding island, and zero otherwise. In the matrix representation, the

first two constraints imply fixing the marginal sums of the matrix, while the third constraint limits

which elements are permitted to be one. Thus, the first step in the “null model” analysis is to gen-

erate a collection of matrices which possess the desired marginal sums and exclude the prohibited

ones.

Rasch Item Response Modeling

In 1960, Georg Rasch proposed a new “latent trait” model to explain the responses of a group of

individuals on a set of test questions (or “items”) [17, 9]. In this new Rasch model, each individual

i is assigned a latent ability parameter αi, and each test question j is assigned a difficulty βj . The

model assigns a probability that individual i correctly answers question j as

pij =
eαi−βj

1 + eαi+βj
. (1.1)

The results of an experiment in which each individual attempts each test question can be arranged

in a binary matrix, where each row represents an individual, each column represents a test question,

and an element is one if the individual responded correctly or zero if the individual responded

incorrectly.

Maximum likelihood methods exist for estimating the ability and difficulty parameters, and var-

ious statistical tests have been devised to assess lack of fit [18, 19]. One class of tests relies on the

fact that the row and column sums of the observed matrix are sufficient statistics for the ability and

difficulty parameters, and furthermore each binary matrix satisfying the given marginals is equally
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likely. Thus given a statistic of interest, a null hypothesis can be tested by sampling uniformly

from all matrices satisfying the margins, and deriving a rejection region from the sample [20].

Networks

A network is a collection of nodes representing entities, along with a set of edges describing

the relationships between pairs of entities. Mathematically, nodes can be represented as a set

V = vi
n
i=1, and edges as ordered or unordered pairs (vi, vi′) ∈ V × V , representing directed or

undirected relationships. A network can also be represented with a binary matrix, where a one in

the matrix represents an edge between the row node and the column node, and a zero represents

the lack of an edge. If the matrix is square, the rows and columns can be interpreted as describing

the same set of nodes, and the non-zero entries can be interpreted as undirected edges, if the matrix

is symmetric, or directed edges, in the general case. In this case the matrix is the adjacency matrix

of the network. If the matrix is non-square, then the rows and columns necessarily represent two

distinct sets of nodes. In this case the matrix is the bi-adjacency matrix of a bipartite network.

In the networks context, global statistics, such as degree assortativity, are commonly used to

characterize the structural characteristics of a given network [21]. Assortativity quantifies the

similarity in degree between connected node pairs, and is given by

r =

1
|E|

∑
(i,i′)∈E kiki′ − k̄2

s2k
, (1.2)

where |E| is the number of edges, ki is the degree of node i, and k̄ and s2k are the observed mean and

variance of the node degree, respectively. However, the interpretation of assortativity is challenging

because of its complex dependence on the network’s degree distribution. Hence it is common to

compare the observed assortativity to its distribution under a uniform sample of networks having

the same degree distribution, which is identical to the task of sampling binary matrices with fixed

margins.

In any of the above examples, we may wish that our sample satisfies statistical properties, for

example that each possible matrix has equal probability of being included in the sample. The
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discrete matrix elements, the margin constraints, and the statistical requirements collectively make

the sampling process challenging, and this challenge has led to a diversity of sampling approaches.

We introduce new sampling methods for this problem which expand the set of circumstances under

which sampling can be performed, and in keeping with the family of existing approaches, our

methods are similarly diverse.

1.2.2 Problem Variants

The binary matrix sampling problem has some variants which naturally arise in practice, and

are briefly listed here.

1. Nonuniform Sampling. In some scenarios, it may be desirable to consider some matrices

more important or more likely than others, so they have a higher probability of inclusion

in the sample. For example, Harrison & Miller [22] describe an extension to the Rasch

latent trait model which incorporates item-specific covariate effects. When conditioning on

the margins, the distribution is no longer uniform, but instead proportional to the product

of weights from a weight matrix. Matrices with ones in locations corresponding to higher

weight are more likely. Statistical testing under this model must take into account the non-

uniform conditional distribution when sampling a null distribution.

2. Structural Zeros. Depending on the data generating process, it may be impossible for specific

entries to be one. To reflect this in the analysis, we may wish to generate matrices while

enforcing certain elements to be zero. This variant is a special case of non-uniform sampling,

because some matrices are assigned probability zero. Specifically, some elements in the

matrix are not allowed to be one and are denoted structural zeros. This can arise in network

modeling if self-edges are not allowed, causing the diagonal of the adjacency matrix to be

structurally zero. Structural zeros are also imposed by the third modeling constraint outlined

by Connor & Simberloff when modeling species co-occurrence.

A related problem to sampling binary matrices is the sampling of positive integer valued ma-

trices with specified margins, motivated from the analysis of contingency tables [22, 23]. The
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problem is similar enough that methods that work for binary matrices can sometimes be adapted

to work for positive integer valued matrices [24, 22]. We do not consider integer valued matrices

in this work.

1.2.3 Brief History of Sampling Methods

Early interest in sampling binary matrices with fixed margins came from domain scientists,

and most early attempts lacked proof that they sample uniformly from the space of valid matrices.

These early attempts, however, inspired more carefully crafted algorithms which possessed nicer

theoretical properties. Generally, matrix sampling occurs either by starting with an matrix of all

zeros and incrementally filling in ones to satisfy the margins, or by starting with a matrix which

satisfies the given margins and repeatedly altering it while preserving the desired margins. We call

this first set of approaches fill methods and second set swap methods. Below we describe some

swap and fill methods which have arisen in the literature.

Early Heuristics

Connor & Simberloff [7] proposed both a fill and swap method when analyzing species co-

occurrence. The fill method involved sampling one row at a time, where sampling a row involved

randomly selecting from the eligible columns the correct number of elements to be set to one. The

column margins would then be updated and the sampling could proceed with the next row. Unfor-

tunately, this method would fail to complete successfully if, for example, a species would be forced

to inhabit the same island twice to satisfy the row and column margins, a so called “dead end”.

In light of this, they also use a swap method which “scans” the matrix for submatrices involving

a checkerboard (two opposing corners are one and the other corners are zero) and swapping the

zeros to ones and the ones to zeros, thus leaving the matrix altered but the margins unchanged:

1 0

0 1

0 1

1 0
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There is some ambiguity in Connor & Simberloff’s description of both methods, so the exact

properties of their sampling are unclear. Nevertheless these two attempts were the seeds of many

methods to come. Subsequent authors have proposed additional methods for generating the desired

matrices, which are generally either a fill [25, 10, 12, 14] or swap [9, 26, 10, 11, 27] type method.

Focus eventually shifted from whether to use these approaches to which method of producing

matrices is best [12]. This accompanied theoretical work in binary matrices with fixed marginal

sums [3] and Markov chain Monte Carlo (MCMC) sampling [9], paving the way for swap and fill

methods with proven statistical properties [28, 29].

Modern Swap Methods

At their heart, swap methods repeatedly perform constraint preserving operations which enable

a random walk in the space of valid binary matrices. The simplest and earliest form of operations

is the checkerboard swap described above, which involves identifying a 2 × 2 checkerboard (not

necessarily congruous) and swapping the ones and zeros. If checkerboards are randomly chosen

and swaps are performed with some probability less than unity, then the Markov chain comprised

of repeated swaps will sample from the desired space uniformly. To be a valid method of sampling,

it must be true that the Markov chain is irreducible and gives rise to a steady state corresponding to

the uniform distribution. Fortunately, Brualdi established the former [3] and Kannan the latter [28].

As for the initial state, margins are often derived from some observed matrix which is valid by

definition. However, if no such matrix is available, then one can be constructed using the shift

right algorithm of Fulkerson & Ryser [5]. An obvious advantage of swap methods is the preserved

satisfaction of the constraints, since the initial state is valid and the swaps leave margins unchanged.

Further, the stationary state of the underlying Markov chain is the uniform distribution, so MCMC

samples will approach the uniform distribution for long enough chains. A disadvantage is that for

reasonably large matrices, checkerboard swaps are small local changes in the matrix, resulting in

highly correlated samples. To address this problem, alternative swapping mechanisms involving

more than four elements have been proposed [30, 31], which help reduce the sample correlation.
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Modern Fill Methods

Fill methods construct each matrix de novo, so there is no correlation between subsequent

random matrices. In addition, whereas early methods sometimes encountered dead ends [7, 13]

that required backtracking or restarting, modern approaches are able to guarantee a valid matrix

every time. This has been made possible by one of two means: importance sampling or recursive

counts.

One way around the dead end problem of fill methods is to forfeit sampling from the desired

probability distribution in order to guarantee margin satisfaction. Chen & Small propose filling the

matrix by sampling one column (or row) at a time using the conditional Poisson distribution [32],

which happens to be the marginal distribution of a single column. To prevent dead ends, each

step of the sampling algorithm is accompanied by the checking of conditions which are necessary

and sufficient for the existence of a valid sampled matrix. This sampling scheme is guaranteed

to produce a valid matrix, however the resulting probability distribution over valid matrices is

not uniform. Therefore importance weights are used to adjust relevant estimators for the uniform

distribution and estimate standard errors. In a follow up paper, Chen [24] showed how to adapt the

sequential importance sampling approach to scenarios involving certain arrangements of structural

zeros without backtracking by checking additional conditions at each sampling step.

Inspired by the column-by-column approach of Chen, Harrison & Miller [22, 33] proposed a

fill method which also sampled one row (or column) at a time, but did so such that the resulting

distribution is guaranteed to be uniform. Their algorithm involves an initial counting phase where

for each possible choice of the first row, the number of valid matrices consistent with the choice

is computed. This counting phase heavily leverages symmetries associated with the choice of

row as well as with the counting of valid matrices, so that it is not necessary to enumerate all

valid matrices. In the sampling phase, each row is sampled by selecting from the possible choices

inversely proportional to the count associated with each. This approach enables fast (for moderate

sized matrices) exact sampling from the uniform distribution.
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1.2.4 Our Contribution

In this dissertation, we propose two novel approaches for sampling binary matrices with fixed

margins, one of them is a swap method, the other is a fill method. In Chapter 3, we develop an

adaptation to traditional swap methods in order to sample from the non-uniform model introduced

by Harrison & Miller [22], involving a matrix of weights defining the relative likelihood of the

corresponding elements in the binary matrix. We apply our adaptation to two existing MCMC swap

methods and prove that it samples from the desired non-uniform distribution. We then address the

natural consequence of non-uniform weights: structural zeros and matrices with probability zero.

We prove that in special cases, the Markov space is still connected and we can still sample correctly.

We investigate sampling efficiency under various configurations of weights and structural zeros,

and provide an example data analysis utilizing our method.

In Chapter 4, we generalize the the divide and conquer fill method of Miller & Harrison [33].

Instead of dividing the matrix into the first row and the rest of the matrix as with Miller & Harri-

son’s method, we allow dividing the matrix at an arbitrary point, resulting to two smaller matrices

with compatible margins. Our method repeats the division process recursively until each resulting

matrix is so small that sampling is trivially easy. In developing the algorithm, we solve the problem

of enumerating all possible divided matrices, which amounts to enumerating points in a convex in-

teger polytope, and enumerating the elements of an integer partition partial ordering associated

with each point in the polytope. We prove the correctness of our algorithm, and investigate its

runtime and space requirements through simulations.

1.3 Statistical Analysis of Random Objects in Metric Spaces

Virtually every introductory statistics course characterizes data as fundamentally categorical

or quantitative, with finer distinctions being made under each classification. This long established

taxonomy [34] has far reaching consequences in the appropriate summarization, visualization, and

statistical analysis for each type of data [35, 36, 37, 38, 39]. Methods for analyzing quantita-

tive, continuous data are particularly pervasive, owing to the ubiquity of multivariate numerical
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data sets, and the mature theory of multivariate normal distributions. Many multivariate data have

an imbued structure, e.g. time series, functional data, spatial data, or networks, which have led

to specialized methods which attempt to honor their structural characteristics and the statistical

implications therein (e.g. dependence, stationarity) [40, 41, 42, 43, 44]. These domain-specific

methods often avoid the curse of dimensionality which can arise when applying traditional multi-

variate methods. The common insight for these specialized approaches is that while observations

may consist of many numbers, they are not necessarily “high dimensional” when accounting for

the structure they contain.

The field of object oriented data analysis takes the view that while each observation in a data

set may be comprised of several continuous and categorical measurements, these measurements

ultimately represent a singular “object” with a certain structure. This approach ignores the classi-

cal distinction between categorical and continuous data, and instead seeks methods that properly

account for the structure of a data set. In doing so, object oriented data analysis draws on such

areas of mathematics as algebra, topology, and geometry [45, 46, 47, 48, 49].

1.3.1 Statistics In Metric Spaces

One popular approach to object oriented data analysis treats observations as living in a metric

space, where the pairwise distances among the observations play a fundamental role in the develop-

ment of statistical theory and methods [50, 51, 52, 53]. If we take this view, then we must consider

random objects in a metric space to develop a statistical theory and analysis methods. In general,

metric spaces lack a coordinate system, which proves quite inconvenient since all traditional mul-

tivariate methods rely on one. As a result, researchers have re-conceptualized statistical concepts

to work with random objects and observations in metric spaces, beginning with the Fréchet mean,

and re-building methods analogous to analysis of variance [50, 51] and regression [54, 55].

1.3.2 Our Contribution

In this dissertation we consider random objects being measured in multiple metric spaces,

which may arise when random objects may be measured in multiple distinct ways. In this new
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multivariate setting, define a Fréchet covariance and Fréchet correlation in two metric spaces, and

a Fréchet covariance matrix or Fréchet correlation matrix in an arbitrary number of metric spaces.

We prove consistency for the sample Fréchet covariance, and propose several tests to compare the

means and covariance matrices between two or more groups. Lastly, we investigate the power and

Type I error of each test under a variety of scenarios.
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Chapter 2

Mathematical Preliminaries

This chapter introduces various mathematical concepts which are invoked later in this disser-

tation, and also establishes notation for these concepts.

2.1 Binary Matrices and Margins

For Chapters 3 and 4 involving sampling of binary matrices, we let p and q be vectors contain-

ing row and column margins, respectively, where p has length m and q has length n. N(p, q) is

the number of valid matrices with row margins p and column margins q. N(p, q) is also called the

partition function, and the set of margins (p, q) is graphical if N(p, q) > 0. Given a set of margins

(p, q), we may say that a matrix is valid if it has margins (p, q), so that N(p, q) is also the number

of valid matrices with those margins. Let Ω(p, q) denote the space of binary matrices satisfying

margins (p, q) so that the cardinality |Ω(p, q)| = N(p, q). Matrix elements will be indicated with

subscripts, e.g. X1,2 indicates the element in row 1, column 2 of matrix X . A generic element is

given by either Xij or (i, j) if the matrix is obvious from context.

2.2 Integer Partitions and Compositions

Chapter 4 will reference compositions, and partitions. A composition of an integer n is an

ordered set of positive integers which sum to n. For example, (1, 3, 2), (3, 2, 1), and (1, 1, 2, 2)

are distinct compositions of 6. For our purposes, we will allow 0 to occur in a composition as

well, so (3, 2, 1, 0) will still be considered a composition, which is distinct from the examples

above. The purpose of the 0’s is to provide padding . A partition of an integer n is an unordered

set of positive integers which sum to n. (1, 2, 3) and (3, 2, 1) are indistinguishable as partitions,

but still distinct from (1, 1, 2, 2) By convention, partitions are listed in non-increasing order, as

(3, 2, 1) and (2, 2, 1, 1) for example. Partitions can be represented as Young diagrams [56], which
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are arrangements of boxes into rows, where each row is a part of the partition and the number of

boxes in each row equals the size of that part.

(3,2,1) (2,2,1,1)

Figure 2.1: Young diagrams for (3, 2, 1) and (2, 2, 1, 1), both partitions of 6.

Figure 2.1 shows the Young diagrams for a few example partitions. Note the boxes are left justified,

and all Young diagrams for an integer n will have exactly n boxes.

The Young diagram for x = (3, 3, 2, 1), is shown in Figure 2.2a, and the Young diagram of its

conjugate partition, x′ = (4, 3, 2), is just a diagonal reflection of the Young diagram for x, see

Figure 2.2b.

2.3 Majorization & The Gale-Ryser Theorem

Chapter 4 will make extensive use of the Gale-Ryser theorem to determine if there exists a

valid binary matrix corresponding to a set of margins. Published in the same year by Gale [57]

and Ryser [58], the Gale-Ryser theorem provides simple necessary and sufficient conditions for

(a) Young diagram for the partition x = (3, 3, 2, 1). (b) Young diagram for the partition x′ = (4, 3, 2).

Figure 2.2: Young diagrams for two partitions of 9, x = (3, 3, 2, 1) (left) and its conjugate x′ = (4, 3, 2)
(right). The Young diagrams are diagonal reflections of one another.
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(4,1)

�
(3,1,1)

�
(2,2,1)

�
(2,1,1,1)

Figure 2.3: Example of how partitions with “wider” Young diagrams (left) tend to majorize partitions with
“taller” Young diagrams.

margins to be graphical (i.e. they correspond to at least one valid binary matrix). There are several

equivalent ways to state the theorem, but here we choose the language of integer partitions and

majorization.

Let x and y be integer partitions of λ of length l, possibly with zero elements, and assume by

convention that x and y are sorted non-increasing. We say that x majorizes y and write x � y if
∑j

i=1 xi ≥
∑j

i=1 yi for all 1 ≤ j ≤ l. Further, denote the conjugate partition of x as x′, that is,

x′
j = |i : xi ≥ i|. Again, xi may terminate in a number of zero elements as necessary. When not

obvious from context, we will specify the length of partitions and their conjugates.

Theorem 1 (Gale-Ryser). Integer partitions x and y are graphical if and only if x′ � y, equiva-

lently, if y′ � x.

Incidentally, for integer partitions a and b satisfying a � b, then b′ � a′.

The concept of majorization can be loosely understood using Young diagrams as well: Gener-

ally, partitions with “wider” diagrams will majorize partitions with “taller” diagrams. See Figure

2.3 for a few examples. Majorization induces a partial order on the set of integer partitions of

integer λ, enabling Young diagrams can be arranged in a lattice, meaning any two elements have a

unique least upper bound and unique greatest lower bound.

2.4 Navigating the Young’s Lattice with Box Shifts

Since partitions of λ produce Young diagrams with λ boxes, any diagram may be turned into

any other by shifting the boxes. In fact, Goles et al. [2] describe two types of box shift, v and
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Figure 2.4: Example of a v shift followed by an h shift in a Young diagram, as described in [2]. These
shifts, and their reverse equivalents, enable full navigation of the Young lattice for a particular integer λ.

h, which can be repeatedly applied to reconstruct the lattice, as proven by Brylawski [59]. Given

partition x = (x1, x2, . . . , xs), consider shifting a box in the Young diagram from index i to j,

where one of the following conditions hold:

1. j = i+ 1 and xi − xj > 2 (v shift).

2. j > i and xi − xj = 2 (h shift).

The resulting partition y = (x1, . . . , xi − 1, . . . , xj + 1, . . . , xs) is majorized by x and in fact, x

is a cover (direct ancestor) of y in the majorization lattice. Figure 2.4 shows an example of a v

shift (i = 1, j = 2), followed by an h shift (i = 2, j = 4) where the same box (marked with a

dot) is involved in both shifts. The v and h notation comes from Goles’ thinking of partitions as

sandpiles, which are rotated counter clockwise 90 degrees from how they are displayed here. In this

orientation a v shift would move a single box predominately vertically, and an h shift would move

a single box predominately horizontally. While v and h shifts will always “lower” the diagram in

the sense that the resulting partition is majorized by the starting partition, we can apply them in

reverse, which will always “elevate” the diagram to a more majorizing partition. Reverse v and h

shifts will be useful in the development of our divide and conquer algorithm in Chapter 4.

2.5 The Shift-Right Algorithm

In Chapter 4, we will require a way to produce an initial binary matrix which satisfies a given set

of graphical margins. This can be accomplished using the algorithm developed by Fulkerson and

15



Ryser [5]. The algorithm works by first ignoring the column constraints and placing the required

number of 1’s in each row, left justified, then selectively shifting 1’s to the right in order to satisfy

the column constraints, right to left.

Fulkerson and Ryser’s algorithm assumes the row margins are ordered non-increasing, from

top to bottom, and the column margins are ordered non-increasing, from left to right. This way,

the initial placement of 1’s resembles the structure of the Young diagram.

1 1 0 0

1 1 0 0

1 0 0 0

1 0 0 0

2

2

1

1

2 2 1 1

(a) (b)

Figure 2.5: Initial fill of the shift-right algorithm (a), which satisfies the row margins p, along with the
Young diagram for p (b).

For instance, given row and column margins p = q = (2, 2, 1, 1) the initial placement, along with

the Young diagram for p is given in figure 2.5. The algorithm proceeds by shifting 1’s to the right

in their respective rows in order to satisfy the columns margins, from right to left. Specifically, let

j denote the target column which 1’s are being shifted into. The 1’s which get shifted are those in

the rightmost column which is left of column j, which we call j∗. The lowest 1’s are shifted first,

and if column j∗ is exhausted of 1’s, then the column to the left of column j∗ becomes the new

column j∗.
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1 1 0 0

1 0 0 1

1 0 0 0

1 0 0 0

2

2

1

1

2 2 1 1

jj*

(a)

1 0 1 0

1 0 0 1

1 0 0 0

1 0 0 0

2

2

1

1

2 2 1 1

jj*

(b)

1 0 1 0

1 0 0 1

1 0 0 0

0 1 0 0

2

2

1

1

2 2 1 1

jj*

(c)

1 0 1 0

1 0 0 1

0 1 0 0

0 1 0 0

2

2

1

1

2 2 1 1

jj*

(d)

Figure 2.6: (a)-(d) show the shifting steps of the shift-right algorithm, in order, which produce a valid binary
matrix. Red arrows denote the moving of a 1 from the tail to the head. The target column whose margin is
being satisfied is marked with j, and the source column from which 1s are being shifted is marked with j∗.

Figure 2.6 shows the sequence of shifts which produce a binary matrix satisfying margins (p, q),

where column j and j∗ are annotated at each step.

2.6 Metric Spaces

Chapter 5 involves random objects existing in metric spaces. A metric on a set Ω (not to be

confused with Ω(p, q), the space of all binary matrices satisfying margins p and q) is a function

d : Ω× Ω → [0,∞) such that, for all ω1, ω2, ω3 ∈ Ω, d satisfies the following:

1. d(ω1, ω2) = 0 ⇔ ω1 = ω2

2. d(ω1, ω2) = d(ω2, ω1)
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3. d(ω1, ω2) ≤ d(ω1, ω3) + d(ω3, ω2).

A metric space is a non-empty set endowed with a metric. When there are multiple metric spaces,

we given them subscripts, for example Ω1, . . . ,ΩD.

Some well known metrics that we use in this dissertation include the Wasserstein metric be-

tween probability spaces, and the Frobenius metric between matrices. Consider the space M of

probability distributions for which every Borel probability measure on M is also a Radon measure,

and assume a metric d is defined for this space. Then let Pp(M) consist of all probability measures

on M with finite pth moment. The Wasserstein-p metric between two probability measures µ and

ν in Pp(M) is defined as

Wp(µ, ν) = inf
(
E[d(X, Y )p]1/p

)
, (2.1)

where the infimum is taken over all joint distributions of X and Y with marginals µ and ν, re-

spectively. For example, comparing univariate normal distributions with identical variance, say

X ∼ N(a, 1) and Y ∼ N(b, 1), the Wasserstein-2 metric is simply the absolute difference in their

means, |a− b|.

The Frobenius norm of a real valued m× n matrix A is

||A||F =

√√√√
m∑

i=1

n∑

j=1

a2ij =

√√√√
min(m,n)∑

i

λi, (2.2)

where λi are the eigenvalues of ATA. This norm admits a metric between two m × n matrices A

and B :d(A,B) = ||A− B||F .

2.7 Riemannian Manifolds

In Chapter 5 we propose comparing symmetric positive definite matrices using a distance on

a Riemannian manifold, which we introduce here, after some necessary preliminary definitions.
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A topological space is an ordered pair (X, τ) where X is a set of points and τ is a collection of

subsets of X satisfying:

1. X ∈ τ and ∅ ∈ τ ,

2. τ is closed under countable unions: that is, for A1, . . . ∈ τ ,
⋃

i Ai ∈ τ ,

3. τ is closed under finite intersections, that is, for A1, . . . , An ∈ τ ,
⋂

i Ai ∈ τ .

The collection τ is called a topology on X , and the elements of τ are called open subsets. A

homeomorphism between two topological spaces T1 and T2 is a function f : T1 → T2 such that

f is a bijection, f is continuous, and f−1 is continuous. Loosely speaking, the existence of a

homeomorphism implies that T1 can be continuously deformed into T2, and vice versa.

A manifold M is a topological space where for each point in the topology, there exists a local

neighborhood which is homeomorphic to an open subset of Rn for some n. Manifolds may be

described using a set of charts, A = {(Uα, φα)}α, each of which consists of an open subset Uα ∈

M and a homeomorphism φα from Uα to a subset of Rn. The subsets Uα cover M , that is,
⋃

α Uα =

M , and A is called an atlas. Where any two open subsets Uα and Uβ overlap, we can define the

transition map φα
β = φβφ

−1
α . An atlas where all transition maps are differentiable is called a

differentiable atlas. This means that overlapping charts have “similar” maps to R
n in their overlap.

A chart (U, φ) is compatible with a differentiable atlas if its inclusion in the atlas results in a

differentiable atlas, and a maximal differentiable atlas consists of all charts which are compatable

with the given atlas.

A differentiable manifold M is a topological space with three additional properties: it is Haus-

dorff, second countable, and possesses a maximal differentiable atlas. To be Hausdorff, any two

distinct points in M must have disjoint neighborhoods. To be second countable, the topology of

M must have a countable base; that is, there exists some countable collection {Ui}∞i=1 with Ui ∈ τ

such that any element in τ is a union of some set of Ui’s. Differentiable manifolds allow for the

construction of a calculus on the topological space, since each chart is homeomorphic to R
n and

all transition maps are differentiable as well. This leads to the idea of tangent vectors at a point on
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the manifold, and a tangent space at each point on the manifold, which is a vector space consisting

of all tangent vectors at that point.

A Riemannian manifold M is a differentiable manifold in which the tangent space at each point

p ∈ M is equipped with a positive definite inner product, and the inner product varies smoothly

with the point p. Any vector space with an inner product admits a norm and a corresponding metric,

so every tangent space in a Riemannian manifold is also equipped with a Riemannian metric that

smoothly varies with p ∈ M . If M is connected (i.e. it cannot be expressed as a disjoint union of

two nonempty open subsets), then it is possible to define the distance along a path between points

p, q ∈ M by integrating the Riemannian metric along that path. The shortest possible path length

is the geodesic, and defines a metric on M , so every connected Riemannian manifold is also a

metric space. Different choices of Riemannian metric (at a point p) will result in different metrics

on the space M .

The space of symmetric positive definite (SPD) matrices can be thought of as a cone in Eu-

clidean space, hence it is also a differentiable manifold. There are several choices for Riemannian

metric, and each metric gives rise to a different shortest path and shortest path length between two

symmetric positive definite matrices. Three common choices are the standard Euclidean metric

(Euc), the affine invariant Riemannian metric (AIRM), and the log-Euclidean Riemannian metric

(LERM) [60, 61, 62, 63]. The Euclidean Riemannian metric implies the distance between two

SPD matrices A and B is

dEuc(A,B) = ||A− B||F =

√∑

i

λ2
i (A− B), (2.3)

where || · ||F is the Frobenius norm. As noted in [60, 64], this metric can lead to determinant

swelling when used to compute means, that is, the Fréchet mean of a set of SPD matrices may

have determinant larger than any of the individual matrices. They also note that shortest paths

between two matrices of the same determinant will not necessarily preserve the determinant along
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the path. This is used to motivate the AIRM and LERM Riemannian metrics, which do not suffer

from the same defficiencies.

In the AIRM geometry, the distance between two SPD matrices A and B is given by

dAIRM(A,B) = ||Log
(
A−1/2BA−1/2

)
||F =

√∑

i

log2 [λi(A−1/2BA−1/2)], (2.4)

where Log denotes the principal matrix logarithm (the inverse of the exponential map). The affine

invariant naming comes from the fact that the underlying Riemannian metric is invariant to affine

transformations (see [60] for details). Note that because A−1/2BA−1/2 and A−1B are similar

matrices, they have the same eigenvalues, which allows us to avoid taking the square root of A−1

when computing dAIRM .

In the LERM geometry, the distance between two SPD matrices A and B is given by

dLERM(A,B) = ||Log(A)− Log(B)||F , (2.5)

which is simply the Euclidean metric after A and B are mapped to the set of symmetric matrices

via the principal matrix logarithm, hence the name.

2.8 Matrix Logarithm

The LERM and AIRM Riemannian metrics considered in Chapter 5 lead to distances on the

space of symmetric positive definite matrices which rely on the matrix logarithm. The exponential

map of an n× n matrix A is given by the power series

expA =
∞∑

k=0

Ak

k!
. (2.6)
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Matrix B is a matrix logarithm of A if expB = A. Since positive definite matrix A admits an

eigenvalue decomposition, A = UDUT , we can define the principal matrix logarithm as

Log(A) = ULog(D)UT , (2.7)

Where Log(D) is a diagonal matrix where each element is the (scalar) natural log of the corre-

sponding eigenvalue of A.
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Chapter 3

Non-Uniform Sampling of Fixed Margin Binary

Matrices

3.1 Introduction

In 1975, Diamond [4] proposed rules which govern the combination of several bird communi-

ties on islands in New Guinea, such as “Some pairs of species never coexist, either by themselves

or as a part of a larger combination”. However, Connor & Simberloff [7] disputed these rules, sug-

gesting that the combination of species on the islands was not exceptionally different from random.

Aside from the ensuing feud within the ecological community [8, 9, 10, 11, 12, 13, 14], Connor &

Simberloff sparked interest in a novel form of "null model analysis" [15, 16], a general approach

which compares an observed matrix statistic to the distribution of that statistic under a null model.

The null model of choice in this case was the set of all random combinations of species on islands

satisfying the following three constraints:

• The number of species on each island matches the number observed.

• The number of islands inhabited by each species matches the number observed.

• Each species inhabits islands of comparable size to the islands on which it is observed.

Connor & Simberloff reason that if the observed species combination is not substantially different

from the random combinations with respect to some statistic of interest, then it becomes difficult

to argue that the observed pattern is anything noteworthy.

To generate combinations which adhere to the above constraints, they represent the species/island

combinations as a matrix, with rows representing species and columns representing islands. The

element in a particular row and column is set to one if the corresponding species inhabits the cor-

responding island, and zero otherwise. In the matrix representation, the first two constraints imply
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fixing the marginal sums of the matrix, while the third constraint limits which elements are per-

mitted to be one. Thus, the aim in the "null model" analysis is to generate a collection of matrices

which possess the desired marginal sums and exclude the prohibited ones. Connor & Simberloff

propose two methods, one which begins with a matrix of all zeros matrix and sequentially fills in

ones in each row randomly, being careful to adhere to the constraints, and another which begins

with the observed matrix, and repeatedly swaps ones such that the constraints are maintained. Sub-

sequent authors have proposed additional methods for generating the desired matrices, which are

generally either a "fill" [25, 10, 12, 14] or "swap" [9, 26, 10, 11, 27] type method.

Early debates surrounding the use of this particular null model focused on the appropriateness

of imposing Connor & Simberloff’s constraints, the choice of statistic upon which to base compar-

ison, and the interpretability of null model tests [8, 26]. However, focus eventually shifted from

whether to use this approach to which method of producing matrices is best [12]. This accompa-

nied theoretical work in binary matrices with fixed marginal sums [3] and Markov Chain Monte

Carlo (MCMC) sampling [9], paving the way for swap and fill methods with proven statistical

properties [28, 29].

Generally speaking, sampling from a null model can be useful for quantifying the degree of

"non-randomness" in an observed matrix (although care should be exercised in the selection of a

test statistic and mechanistic interpretation of results). This approach has been used for testing for

significance of species co-occurrence [65], evaluating goodness of fit for the Rasch item-response

model [9, 29], and in the analysis of contingency tables [29].

In this chapter, we extend the capability of null model analysis by allowing for non-uniform

sampling. This permits the construction of more sophisticated “null” models corresponding to

non-uniform probability distributions.

3.1.1 Review of Sampling Methods

Here we briefly review the variety of existing swap and fill methods that have been employed

for sampling binary matrices with fixed margins. To highlight the contribution of this work, we
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point out that most efforts at sampling these matrices thus far have focused on uniform sampling,

where each matrix has an equal probability of being included in the sample. Early work gave little

attention to actually proving uniformity and few authors address situations in which some matrix

elements must be zero, so called structural zeros, with exceptions noted below.

As mentioned, these sampling methods can be categorized into fill and swap methods. Fill

methods are typically faster than swap methods, but risk hitting "dead ends", where the process

must restart or backtrack in order to avoid violating row and column margin constraints. Swap

methods, on the other hand, are arguably simpler to understand and implement, but rely on local

changes, so sampled matrices tend to be highly correlated. For both categories, initial methods

lacked much theoretical treatment, but more recent work has considered the statistical properties

of the algorithms.

Fill Methods

Fill methods begin with a matrix of all zeros, and randomly fill in ones in such a way that

adheres to the margin (row and column) constraints.

Connor & Simberloff [7] first placed the row sums in decreasing order and column sums in

increasing order (“canonical form”), then proceeded row by row, randomly selecting columns to

fill with ones, until the desired row sum is reached. If the column is already one, or it has met

its column sum, another random selection is made. If the procedure reaches a point where no one

can be placed without violating some constraint (a dead end), the process restarts with an empty

matrix. No mention is made of the probability of generating a particular matrix. In their “Milne

method”, Stone & Roberts [10] adapt the fill method of Connor & Simberloff to check whether the

proposed fill will lead to a dead end.

Sanderson et al. [12] propose a “knight’s tour” algorithm which randomly samples a row and

column index for filling, rather than filling one row at a time, and backtracks rather than restarts if

the algorithm reaches a dead end. They claim that since rows and columns are sampled randomly,

then each valid matrix occurs with equal probability. However, Gotelli & Entsminger show that

the “knight’s tour” algorithm does not sample uniformly, and propose a “random knight’s tour”
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which only samples a subset of available elements before backtracking, and backtracks randomly

rather than sequentially. They provide no proof of uniform sampling, instead showing on a small

example that a sample generated by the random knight’s tour does not reject a lack of fit test.

Chen et al. [29] propose a sequential importance sampling approach which randomly fills in

each row, according to a conditional Poisson proposal distribution that depends on the previously

filled rows. The matrices in the sample are then re-weighted to approximate a uniform distribution.

This method also approximates the size of the space of valid matrices.

Taking a different approach, Miller & Harrison [33] devise a recursive sampling algorithm

based on the Gale-Ryser Theorem to generate matrices from the uniform distribution exactly, and

compute the size of the space exactly. The recursion is over row and column sums, so this method

is limited to matrices of moderate size.

Finally, Harrison & Miller [22] adopt the sequential importance sampling approach of Chen

et al. for non-uniform sampling. This is, to our knowledge, the only work dedicated towards

deliberate non-uniform sampling. They propose a multiplicative weights model that forms the

basis of our weights model below, and permit specifying structural zeros by setting a corresponding

weight to zero.

Swap Methods

Swap methods have developed in parallel to fill methods, beginning with the original paper of

Connor & Simberloff [7]. These methods involve identifying “checkerboard” patterns of zeros and

ones in an existing valid matrix, and swapping the ones for the zeros to produce a new matrix which

still adheres to the constraints (see Figure 3.1). Repeated swaps result in a Markov chain Monte

Carlo algorithm that produces a dependent sample of valid matrices. Of particular importance is the

method used to identify potential swaps, and what happens if a proposed swap is invalid, which

have computational as well as theoretical implications. Initially, there was some question about

whether swapping methods could produce all possible valid matrices by starting at the observed

matrix; in other words, if the space of valid matrices is connected under checkerboard swaps.
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However, Brualdi [3] showed this to be true using elementary circuits. This paved the way for

more development in swap methods [10, 11].

As with fill methods, early swap methods gave no proof that matrices are sampled uniformly,

until Kannan et al. [28] proved this for the following procedure: Select two rows and two columns

uniformly at random. If they form a checkerboard, then perform a swap, and if not, keep the previ-

ous matrix. This result influenced the development of subsequent swapping algorithms. Gotelli &

Entsminger’s [14] version of the swapping algorithm importantly picks a swap randomly from the

set of eligible swaps with equal probability, not as prescribed by Kannan et al., and consequently

demonstrate that the resulting distribution which this samples from is not uniform. This approach

is also taken by Zaman & Simberloff [27], who correct for the imbalance by reweighting each ma-

trix when computing summary statistics. These approaches require identifying all possible swaps

at each step in order to sample uniformly from them, which is prohibitive for large matrices.

Finally, in the “curveball” algorithm proposed by Strona et al. [66] multiple swaps are per-

formed at once by first selecting two rows (or columns), and permuting the elements in their sym-

metric difference. Following the proof technique of Kannan et al., Carstens [30] proves that curve-

ball samples uniformly and demonstrates that multiple swaps can lead to faster mixing compared

to Kannan et al.’s algorithm.

3.1.2 Non-Uniform Sampling

Most existing null matrix sampling algorithms focus on the uniform distribution, the goal be-

ing to compare the observed matrix to other matrices with the same marginal properties, without

preference for particular matrices over others. We consider, however, that for some data analyses

we may wish to lend more importance to some matrices compared to others, when testing for a

specific effect. For instance, Diamond [8] mentions several factors which may give rise to certain

species combinations, such as resource overlap, dispersal ability, proneness to local extinction, and

distributional strategy, and criticised Connor & Simberloff [7] for not accounting for such “signif-
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icant structuring forces”. We argue that it may be possible to control for such external effects in a

modified null model, which does not give equal weight to all possible matrices.

Here we consider the task of non-uniform sampling of matrices in a general setting. Following

the formulation of Harrison & Miller [22], we assume the existence of a weight matrix indicating

the relative likelihood of a one in each element and define the probability of a matrix as a function

of these weights. Careful attention must be paid to the consequences of weights equal to zero,

which further restrict the set of matrices with positive probability, and affect the validity of the

proposed sampling methods.

In the rest of this chapter, we describe a weight-based probability model, then present a novel

MCMC checkerboard swap algorithm which incorporates the weights and samples according to

the given model. The weights introduce the notion of a structural zero, which can impact the

efficiency and even correctness of sampling. We then present a novel weighted curveball MCMC

algorithm, which in most circumstances is a faster alternative to the weighted checkerboard swap

algorithm. We investigate the correctness and efficiency under different weighting and structural

zero schemes via simulation. Finally, we revisit the bird species-island dataset first discussed by

Diamond [4] and Connor & Simberloff [7] and consider incorporating a weight matrix in the null

distribution to show the impact that non-uniform sampling can have on scientific conclusions.

3.2 Non-Uniform Sampling Of Binary Matrices

3.2.1 Probability Model

Let Ω(p, q) be the set of all m × n binary matrices satisfying row sums p = (p1, p2, . . . , pm)

and column sums q = (q1, q2, . . . , qn). Furthermore let W = (wij) ∈ [0,∞)m×n be a non-negative

weight matrix representing the relative likelihood of a one in element (i, j). Following Harrison &

Miller [22], define the probability of observed matrix A ∈ Ω(p, q) as

P(A) =
1

κ

∏

ij

w
aij
ij , κ =

∑

A∈Ω(p,q)

∏

ij

w
aij
ij . (3.1)
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j j′

i 1 0
i′ 0 1

−→
j j′

i 0 1
i′ 1 0

Figure 3.1: A 2 × 2 submatrix of A from rows i and i′, and columns j and j′. which are not necessarily
consecutive. Swapping the positions of ones and zeros preserves the row and column sums of A.

We call the set of elements {(i, j) : wij = 0} structural zeros, because any matrix with positive

probability must have aij = 0 if wij = 0. Let Ω′(p, q) = {A ∈ Ω(p, q) : P(A) > 0} be the set of

matrices with positive probability. We interpret the weights by considering the relative probability

between two matrices A,B ∈ Ω′(p, q):

P(A)

P(B)
=

∏

ij:
aij=1
bij=0

wij

∏

ij:
bij=1
aij=0

wij

, (3.2)

which is governed by the weights of the elements not shared between them. Furthermore, we can

write the conditional probability:

P(B|{A,B}) =

∏

ij:
bij=1
aij=0

wij

∏

ij:
aij=1
bij=0

wij +
∏

ij:
bij=1
aij=0

wij

. (3.3)

This forms the basis for the swapping probability defined in the next section.

3.2.2 Weighted Checkerboard Swap Algorithm

We propose a swapping algorithm similar to that of Brualdi [3], which identifies 2 × 2 sub-

matrices with diagonal ones and zeros, as in Figure 3.1, where the rows and columns are not

necessarily consecutive. The positions of the ones and zeros can be swapped without altering the

row or column sums. This swap operation produces a matrix B ∈ Ω(p, q) which differs from A

in four elements. In the uniform sampling case, all matrices have equal probability, so swaps are
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performed with a fixed probability. In our version, the swap is performed with probability

P(B|{A,B}) = wi′jwij′

wijwi′j′ + wi′jwij′
:= pij;i′j′ . (3.4)

This modification implies matrices with zero probability will be visited with probability zero.

In Algorithm 1, we present an MCMC procedure based on weighted checkerboard swap. As

with any MCMC algorithm, this algorithm can be modified to incorporate burn-in and thinning to

reduce autocorrelation between saved samples.

Algorithm 1: Sampling Via Weighted Checkerboard Swaps

1 Let A(0) be the observed matrix;
2 for k in 1:N do

3 Set A(k) = A(k−1);
4 Sample two elements (i, j) and (i′, j′) uniformly at random from the non-zero

elements of A(k);

5 if A
(k)
i′j = 1 or A

(k)
ij′ = 1 then

6 next k (no checkerboard);
7 end

8 Sample s ∼ Bernoulli(pij;i′j′);
9 if s = 1 then

10 set A(k)
ij = A

(k)
ij = 0 and A

(k)
i′j = A

(k)
ij′ = 1 (perform swap);

11 end

12 end

If all weights are positive, then we have the following result:

Theorem 2. Given binary matrix A and weight matrix W with wij > 0, then Algorithm 1 generates

a Markov chain with stationary distribution given by (3.1).

Proof of Theorem 2 is given in Appendix A. If weights are allowed to equal zero, the Markov

chains may mix more slowly and even become reducible as we demonstrate in the next section.
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A =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

B =

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

Figure 3.2: Matrices A and B sharing the same margins and structural zeros, with structural zeros shaded
grey. The difference A − B has a single elementary circuit and the hamming distance between A and B is
6, so Brualdi’s method [3] gives a maximum of 2 swaps to transition between A and B. While this is true
in the absence of structural zeros, this example demonstrates that structural zeros can cause the bound to be
violated, as seven swaps are required to transition between A and B while honoring the structural zeros.

3.2.3 Structural Zeros

As mentioned, structural zeros have received little attention since originally introduced by Con-

nor & Simberloff [7]. We show here that structural zeros can be problematic for swapping algo-

rithms, first addressing sampling efficiency then correctness.

Structural zeros can result in some checkerboard swaps having zero probability, which removes

transitions from the Markov chain. This can increase the number of swaps necessary to transition

between two states, in turn reducing the sampling efficiency, and is reflected in a larger diameter

of the Markov state space. Here we show that Brualdi’s [3] upper bound on the diameter of the

Markov space no longer holds with structural zeros.

Given matrices A,B ∈ Ω(p, q) the upper bound on the maximum number of swaps required

to transition from one matrix to the other is given by dH(A,B)/2 − k, where dH(A,B) is the

Hamming distance between A and B, and k is the largest number of non-overlapping “elementary

circuits” in A−B, which we briefly explain here. Consider A−B as a weighted adjacency matrix

of a bipartite graph, where the rows and columns form separate partitions of a vertex set. Suppose

an entry of +1 indicates an edge from the row vertex to the column vertex, and an element of −1

indicates an edge from column vertex to the row vertex. An elementary circuit is then defined as a

cycle of edges in this graph.

To show how the bound can be violated, consider the matrices in Figure 3.2, which have unit

row and column sums and we have indicated structural zeros using grey fill. The Hamming distance
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A =
0 1 0
0 0 1
1 0 0

B =
0 0 1
1 0 0
0 1 0

.

Figure 3.3: Matrices A and B sharing the same margins and structural zeros, with structural zeros shaded
grey. No sequence of checkerboard swaps which honor the structural zeros can transition from A to B,
demonstrating that structural zeros can render the Markov state space is reducible.

between them is dH(A,B) = 6 and there is a single elementary circuit, giving a bound of 6
2
−1 = 2.

However, seven swaps are required to transition from A to B, which can be described as a sequence

of column pairs, since there is only one one per column: ((1, 2), (1, 3), (1, 4), (1, 5), (1, 2), (2, 3)).

Additionally, the example in Figure 3.3 illustrates how structural zeros can render it impossi-

ble to transition between two matrices via checkerboard swaps. Because no sequence of swaps

transforms A into B, the Markov chain described in Algorithm 1 is reducible and hence there is no

unique stationary distribution.

In many cases, the presence of a few structural zeros will not result in a reducible chain, but

in the general case structural zeros can be fatal to checkerboard swap based MCMC sampling

algorithms. However, let us consider a special case where they are not problematic, specifically

where structural zeros satisfy the following:

Definition 3.2.1. The structural zeros of a matrix A are monotonic if there exists a permutation of

the rows and columns of A, such that wij = 0 implies wi′j = wij′ = 0 for i′ < i, j′ < j.

This situation can arise when the rows and columns reflect different moments in time. For

example, let A represent a citation network among academic papers, where a one indicates that the

row article cites the column article. Suppose the rows and columns are arranged chronologically

with increasing row/column index. Clearly, articles cannot cite into the future, so we prohibit some

ones using structural zeros. In this example, the upper triangle (including the diagonal) of A are

structural zeros. Furthermore these structural zeros are monotonic as A will satisfy the definition

if the order of the columns of A are reversed.
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When structural zeros are monotonic, Algorithm 1 produces a valid sampler, formalized in the

following theorem.

Theorem 3. Given binary matrix A and weight matrix W where any structural zeros are mono-

tonic, then Algorithm 1 generates a Markov chain with stationary distribution given by (3.1).

The only modification of the proof for Theorem 2 needed to prove Theorem 3 is to show

irreducibility of the chain given structural zeros (see Appendix A).

3.2.4 Weighted Curveball Algorithm

Strona et al. [66] proposed a faster version of checkerboard swapping called the curveball,

which imagines two rows trading their ones like baseball cards. Two rows are randomly selected,

and the ones in their symmetric difference become candidates for the trade, where several ones may

move between rows in a trade. In the uniform setting, the proposed trade is always performed. In

the non-uniform setting, we modify the algorithm in the same way as for weighted checkerboard

swapping, and introduce a probabilistic trade, with probability dependent on the weights of the

elements involved in the trade. The entire procedure is presented in Algorithm 2.

Carstens [30] proves that the unweighted curveball algorithm can be used to sample uniformly,

and we contribute the following theorem for the weighted case:

Theorem 4. Given binary matrix A and weight matrix W where any structural zeros are mono-

tonic, then Algorithm 2 generates a Markov chain with stationary distribution given by (3.1).

In Appendix A, we provide a proof of this theorem when there are no structural zeros and

extend to the case where monotonic structural zeros are present.

3.3 Simulations

We performed simulations to investigate the behavior of the weighted swap and weighted

curveball algorithms. In the first simulation, we verify the weighted checkerboard swap algorithm

samples correctly from a non-uniform distribution for a small example. In the second simula-

tion, we compare the mixing performance of both algorithms for different weighting and structural
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Algorithm 2: Sampling Via Weighted Curveball

1 Let A(0) be the observed matrix;
2 for k in 1:N do

3 Set A(k) = A(k−1);
4 Sample two rows i and i′ (such that i 6= i′) uniformly at random from the non-zero

elements of A(k−1) ;
5 Let Ai\i′ = {j : Aij = 1, Ai′j = 0, wi′j > 0} ;
6 Let Ai′\i = {j : Ai′j = 1, Aij = 0, wij > 0} ;
7 if |Ai′\i| = 0 or |Ai\i′ | = 0 then

8 next k (no trade);
9 end

10 Let C be the ordered list resulting from concatenating Ai\i′ and Ai′\i ;
11 Permute the elements of C uniformly at random ;
12 Let Bi\i′ be the first |Ai\i′ | elements of C, and let Bi′\i be the last |Ai′\i| elements of C

;
13 Let ji = {j : j /∈ Ai\i′ , j ∈ Bi\i′ } (0 to 1 in row i) ;
14 Let ji′ = {j : j /∈ Ai′\i, j ∈ Bi′\i } (0 to 1 in row i′) ;

15 Compute pii′ =

∏

j∈ji

wij

∏

j∈ji′

wi′j

∏

j∈ji

wij

∏

j∈ji′

wi′j +
∏

j∈ji

wi′j

∏

j∈ji′

wij

;

16 Sample s ∼ Bernoulli(pii′);
17 if s = 1 then

18 Set A(k)
ij = 1 and A

(k)
i′j = 0 for j ∈ j ;

19 Set A(k)
ij = 0 and A

(k)
i′j = 1 for j ∈ j’ ;

20 end

21 end
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A =
1 0 0
0 1 0
0 0 1

W =
1 2 1
2 1 2
1 2 1

. (3.6)

Figure 3.4: Example binary matrix A and weight matrix W . There are six binary matrices with the same
row and column margins as A, shown in Figure 3.5

zero schemes. Finally, we investigate the effect of different weighting schemes on the resultant

sampling distribution of a summary statistic.

For the second and third simulations, we will make use of a global statistic termed diagonal

divergence, which quantifies how far the ones of a square (n× n) matrix A are from its diagonal:

T (A) =
1

|A|n
∑

ij

|i− j|I(Aij = 1) (3.5)

where |A| is the number of ones in A and I(·) is the indicator function.

3.3.1 Small Example

We first consider a small example, such that every Markov state can be enumerated and exact

probabilities can be computed.

Consider the binary matrix A, and weight matrix W shown in Figure 3.4. Including A, there

are six possible states with row and column sums equal to one (see Figure 3.5). Under a uni-

form distribution, all matrices would have probability 1
6
. W induces a non-uniform probability

distribution among the matrices (see Table 3.1), where matrices A and D have lower probability

because their non-zero elements correspond to ones in the weight matrix. We compare the true

distribution to the distribution of a sample produced by weighted swapping. To sample, we used

a burn-in of 10, 000 swaps before retaining every 10, 000th matrix, to generate a sample of 1, 000

matrices. Table 3.1 shows agreement between the true and empirical probability distributions. The

KL-Divergence between the empirical and true distributions is 9.0× 10−4.
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A =
1 0 0
0 1 0
0 0 1

B =
0 1 0
1 0 0
0 0 1

C =
1 0 0
0 0 1
0 1 0

D =
0 0 1
0 1 0
1 0 0

E =
0 1 0
0 0 1
1 0 0

F =
0 0 1
1 0 0
0 1 0

Figure 3.5: All 3× 3 matrices with row and column sums equal to one.

State Probability
Empirical

Probability
A 0.056 0.051 (+/- 0.007)
B 0.222 0.237 (+/- 0.013)
C 0.222 0.217 (+/- 0.013)
D 0.056 0.058 (+/- 0.008)
E 0.222 0.222 (+/- 0.013)
F 0.222 0.215 (+/- 0.014)

Table 3.1: Theoretical vs. empirical probabilities for matrices in Figure 3.5 with binary matrix and weight
matrix as defined in (3.6). Empirical probabilities also show Tukey-Hanning [1] MCMC standard errors.

3.3.2 Mixing Performance

In MCMC sampling, efficient mixing is desirable in order to maximize inferential capability

and minimize computation time. Due to autocorrelation in sequential observations, the precision

of a statistic from MCMC sampling is less than it would be for independent, identically distributed

(iid) sampling. The difference in precision can be measured by effective sample size (ESS), which

gives the number of iid samples required to match the precision of the MCMC sample [67]. We

simulated matrices using weighted checkerboard swapping and weighted curveball under different

weight schemes and structural zero configurations in order to assess their impact on mixing, as

measured by ESS. ESS was computed for the diagonal divergence statistic using the coda pack-

age [68].

To assess the impact of weights, we constructed 20×20 weight matrices by sampling each ele-

ment independently from one of the distributions: Exponential(1), Uniform(0,1), and Uniform(0.5,

1), and also a weight matrix of all ones, corresponding to uniform sampling. After constructing the

weight matrices, we introduced structural zeros with one of two methods. The first method was to
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randomly set elements equal to zero with fixed probability p, where p was either 0.1, 0.25, or 0.5.

The resulting matrices will likely correspond with irreducible Markov chains, given the relatively

small probabilities. The second method was to designate a lower triangular region of the weight

matrix as all zeros, so that they would be monotonic. Triangles covered either 10%, 25%, or 50%

of the weight matrix. We generated a 20× 20 starting binary matrix by setting each element to one

independently with probability 0.25, resulting in a density of 23.5% before enforcing structural

zeros.

For each combination of weights and structural zeros, we ran each sampling algorithm for

10,000 iterations (with no burn-in or thinning). Figure 3.6 shows ESS for the different conditions,

where each line is the average over ten individual chains with different random seeds. For illus-

tration, Figure 3.7 shows ESS for all chains for the condition in the bottom-right panel of Figure

3.6.

Comparing the weighted swap algorithm to the weighted curveball algorithm, we see that the

curveball algorithm tends to mix more rapidly. This reflects the fact that weighted curveball can

perform multiple trades simultaneously, whereas weighted swap only swaps two ones at a time,

increasing the autocorrelation between sequential observations. This difference is less pronounced

for the Exponential(1) and Uniform(0,1) weighting schemes compared to the Uniform(0.5, 1) and

“All ones” weighting schemes. This is because the former weight schemes contain weights near

zero, making one in the corresponding position of A possible but unlikely. Since curveball attempts

to make several trades simultaneously, this increases the chances of attempting to trade a one

into an unlikely position. This makes the trade itself unlikely, so fewer trades take place overall,

removing the advantage that weighted curveball has over weighted swap. The latter two weight

schemes do not produce weights near zero (ignoring structural zeros), so more curveball trades

are successful, restoring the ESS gap between the algorithms. One instance where weighted swap

may have an advantage over weighted curveball is in sparse matrices with weights near zero. The

sparsity would limit the ability of weighted curveball to perform multiple trades, and the low

weights would favor the “smaller steps” taken by weighted swap.
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Comparing random structural zeros to monotonic structural zeros, we see little difference for

the top two weighting schemes. As mentioned before, these two schemes already tend to pro-

duce matrices with weights near zero, so setting some elements equal to zero does not change

the weight matrices much, whether done randomly or monotonically. However, the bottom two

weight schemes produce weights away from zero, so setting some as structural zeros is a bigger

change. In these cases, mixing is better when structural zeros are monotonic compared to ran-

dom, with the difference being more pronounced when there are more structural zeros. This is

unsurprising given the discussion in section 3.2.3 showing that structural zeros may give rise to

reducible chains, whereas for monotonic structural zeros irreducibility is preserved, and the space

has bounded diameter (see Appendix A).

Finally, we acknowledge that “well mixing” may be a questionable label for any of the scenar-

ios shown, since ESS is relatively paltry compared to the number of iterations. In practice, this is

ameliorated by careful algorithm implementation (which we do not discuss here) and aggressive

thinning.

3.3.3 Effect of Heterogeneous Weights

The matrix W adds flexibility to the sampling algorithms by allowing for non-uniform station-

ary distributions, however it is unclear how much influence W has over the resultant sample given

the fixed row and column margins. To investigate this issue, we compare the sampling distribution

for a statistic under different “strength” weight matrices, which are constructed by taking the ele-

ments of a base weight matrix to a positive or negative power. In this case, we let A have dimension

50× 50, and define the base weight matrix as:

Wij =
100− |i− j|

100
, (3.7)

which has value one on the diagonal and value near 0.5 in the corners (see Figure 3.8). Sampling

proceeded with a burn-in period of 5, 000 proposed swaps, before retaining every 1, 000th matrix,

to generate a sample of 5, 000 retained matrices.
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Figure 3.6: Average effective sample size for the simulations described in Section 3.3.2, for varying weight-
ing schemes and percentage of structural zeros, where structural zeros are either randomly placed (blue), or
arranged monotonically (red). Each line represents the average ESS from ten separate chains using the same
starting matrix.
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Figure 3.7: Detailed view of effective sample size for the simulations described in Section 3.3.2, using a
weight matrix of all ones and with 50% structural zeros. Average ESS is shown in bold, with each iteration
shown partially transparent.

(a) Initial matrix, A (b) Base weight matrix, W

Figure 3.8: Initial binary matrix A and base weight matrix W for the simulation described in Section 3.3.3.
Both use a shading scale where white denotes zero and black denotes one. The minimum value in W is 0.5,
achieved in the top-right and bottom-left most elements. Note the unfavorable state of A, since it contains
ones corresponding to lower weighted regions of W .
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Figure 3.9: Sampling distribution of the diagonal divergence statistic, under different weighting matrices,
defined by raising the base weight matrix to the power p.

Figure 3.9 shows the approximate sampling distributions of the diagonal divergence T for

selected powers of the weight matrix. Since W favors matrices with ones near the diagonal, larger

powers of W favor lower values for T , and negative powers of W favor higher values for T . Larger

values of |p| emphasize having ones close to the diagonal (p positive) or packed in the corners (p

negative), where there are relatively few distinct matrices, and there is a corresponding decrease in

the variance of the samples in those cases. This figure illustrates how vast the space Ω′(p, q) is as

there is virtually no overlap in the sampling distributions under different weighting schemes.

3.4 Example: New Hebrides Bird Species

We revisit the original Vanuatu (formerly New Hebrides) bird species data provided by Di-

amond in 1975 [4], to illustrate the impact weighting can have on the analysis of real data. Of

interest is whether or not there exists competitive exclusion between different bird species, or

groups of species, on these islands. That is, do certain species or groups exclude one another from

islands due to competition over resources? The data are represented in a matrix A, where rows

are species, and columns are islands (see Figure 3.10a). The elements of the matrix are one if the

corresponding species is found on the corresponding island, and zero otherwise. If a checkerboard

pattern exists between two species on two islands, this can indicate competitive exclusion (see
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[26]). Accordingly, Stone & Roberts [10] propose the C-score to measure competitive exclusion

by counting how many checkerboards exist between species pairs in the matrix:

C(A) =
2

m(m− 1)

m∑

j=2

∑

i<j

(pi − Sij)(pj − Sij). (3.8)

Here, Sij is the number of shared islands between species i and j, pi is the number of islands

inhabited by species i, and m is the number of species. A high C-score is interpreted as evidence

of competitive exclusion. We will analyze the data using a null model analysis twice, once with

equal weights (as has been done historically), and once with heterogeneous-weights Though we

are using real data, this is an illustrative example only and we select a weight matrix to that end.

We define a weight matrix W to encode the hypothesis that island preference by species is

higher for certain islands than others (see Figure 3.10b). This could result, for example, from

several environmental and biological factors. We then proceed, as did Connor & Simberloff [7],

to generate a sample of matrices under the null distribution, assuming equal weights (all ones) and

then under W . We generate 5, 000 samples from each weighting regime, after a burn-in of 1, 000,

and thinning of 500, using the weighted curveball algorithm.

The resulting distributions of C-scores are shown in Figure 3.11, along with the empirical

upper-tailed p-values of the observed matrix under each model. We see significance at the α = 0.05

level under uniform sampling, but not after accounting for the weights. The blocked structure of

species-island preferences represented in W favors more checkerboard structures between species

in the top half and bottom half, such that the observed matrix no longer appears so exceptional. The

lesson here is that by incorporating more information about the bird species into our null model, the

evidence in favor of competitive exclusion changes, and thus researchers should carefully consider

the appropriate weight matrix when performing such analyses.
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(a) Species-Island occurrence, A

(b) Weight matrix, W

Figure 3.10: Observed New Hebrides bird species combination A [4], and non-uniform weight matrix W

for the data analysis described in Section 3.4. For A, white denotes zero and grey denotes one. For W , light
grey denotes one and grey denotes 15. With higher values indicating species (rows) preference for certain
island (columns) habitats.
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Figure 3.11: Sampling distribution of the C-score statistic, under uniform (red) and non-uniform (blue)
weights. The empirical p-value under non-uniform weights is no longer significant, demonstrating how in-
corporating species habitat preference could impact whether the observed combination is relatively unlikely.

3.5 Conclusions

Given the healthy debate surrounding the appropriate use of null matrix model analysis meth-

ods, we recommend that the practitioner weigh this approach against their particular situation and

needs. One advantage of this approach is that by constraining, equivalently conditioning on, the

row and column sums of the matrix, we remove the need to explicitly model them. However, with-

out an estimation procedure for the weights, these values must be specified a priori, and reasonable

sensitivity analyses are warranted. Fixing row and column sums is only one way to perform null

model analysis, and as Gotelli stated [13]: "There is great value in exploring the results of several

null models that incorporate different degrees of randomness”. These types of null models pro-

vide information about mechanism through the careful consideration of a summary statistic, but

it often can be difficult to argue for the correspondence between mechanism and statistic directly.

Therefore, if mechanism is of importance, a direct modeling approach may be more appropriate.
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We have introduced weighted versions of the checkerboard swap and curveball algorithms,

which extend binary matrix sampling to non-uniform probability distributions. Simulations demon-

strate that the choice of weight matrix can impact the efficiency of sampling. In fact, when weights

are equal to zero, this can slow the mixing process of the MCMC chain, or even prohibit sam-

pling from the desired distribution. However, monotonic structural zeros can arise in time-evolved

networks and are better behaved.

Both the weighted swap and weighted curveball algorithms rely on local changes to perform

an MCMC walk, which has implications for sampling efficiency (as seen in Figure 3.6). An un-

avoidable consequence is that large numbers of swaps are required to generate near independent

samples. Of course, the computational cost of each swap is very small, and several chains can be

run in parallel to produce larger samples. In general, the weighted checkerboard swaps is preferred

when the matrix is very sparse or very dense, and weighted curveball is preferred when the matrix

is closer to 50% dense (which will produce the most trade candidates). The choice of summary

statistic also has implications for mixing. A single “global” statistic, like the C-score, mixes faster

than a local statistic, like, for example, the marginal probability for an element of the matrix.

Another possible area of application is directed graphs, which are naturally represented as

square binary adjacency matrices. Fixing marginal sums of these matrices is equivalent to fix-

ing in-degree and out-degree for each vertex. Unweighted checkerboard swapping has been used

to sample uniformly for vertex-labelled networks with self-loops, also known as the Configura-

tion Model [21]. However, we know of no implementation of graph sampling where edges are

weighted, as in this chapter.

In this work, we do not address how to select appropriate weights, as this should be informed

by the scientific setting and specific hypothesis being tested. However, the following observation

may help guide the construction of W . Consider binary matrices A and B which differ only by a

checkerboard swap in rows i and i′, and columns j and j′:

P(A)

P(B)
=

wijwi′j′

wi′jwij′
. (3.9)
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The ratio of weights communicates the relative probability of the differing elements of two matri-

ces, conditioning on all other elements. Therefore eliciting or estimating the relative propensity of

matrix elements could inform the weights specification.

Classic (unweighted) checkerboard swapping and curveball trading, while intuitive and simple

to implement, lack the ability to incorporate heterogeneity of probabilities when sampling, render-

ing them useless in situations where such heterogeneity is known to exist. With our contribution,

these algorithms are now equipped to incorporate easy to interpret weights, and to consider more

plausible null models, which provides a valuable new tool for matrix analysis.
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Chapter 4

A Divide and Conquer Algorithm for Exact Uniform

Sampling of Matrices with Fixed Margins

4.1 Introduction

In this chapter we introduce an approach to uniform sampling of matrices with fixed margins,

driven by the intuition that smaller matrices are easier to sample than larger matrices. For small

matrices it is often possible to enumerate all matrices satisfying the margins, and so uniform sam-

pling is trivial. Indeed, if all matrices can be enumerated, then moments, distributions, and p-values

can all be computed exactly. However the number of feasible matrices increases dramatically as

the matrix size increases (factorial in the worst case), consider the following examples:

Row Margins - p Column Margins - q Number of Matrices - N(p, q)

(1) (1) 1

(1, 1) (1, 1) 2

(2, 2, 1) (2, 1, 1, 1) 12

(5, 5, 4, 4, 3, 3, 2, 2, 1, 1) (5, 5, 4, 4, 3, 3, 2, 2, 1, 1) ≈ 2× 1013

(1, 1, . . . , 1) (k times) (1, 1, . . . , 1) (k times) k!

The approach of this chapter is to sample arbitrarily sized matrices by recursively dividing them

into smaller matrices until sampling is trivial. The challenge in developing such a method is in the

mechanics of the division process and careful bookkeeping when doing so. Before describing our

method in detail, we first describe a related method which partially inspired ours, and of which our

method can be viewed as a generalization.
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4.2 Miller & Harrison’s Exact Sampling

Miller & Harrison [33] devised a method that samples a matrix one row at a time, similar to the

importance sampling in [29]. Instead of approximating the row’s distribution with a conditional

Poisson as in [29], however, they are able to sample from the target distribution exactly, facilitated

by an initial recursive counting step.

The key insight is to recognize that specifying the first row of elements results in a smaller (by

one row) version of the same problem, where the margins are dependent on the selection for the

first row. Since there are generally multiple ways of specifying the first row, there are multiple

smaller versions of the problem. Summing over all possible choices for the first row, one is able to

equate the number of valid matrices for the full problem with the number of valid matrices across

the smaller versions after specifying the first column. The simplest form of the recurrence relation

is

N(p, q) =
∑

u∈{0,1}n

N(Lp, q − u) =
∑

u∈{0,1}n:{ui≤qi∀i,
∑

i ui=p1}

N(Lp, q − u), (4.1)

where the vector u with ui ∈ {0, 1} represents the selection of the first row, and Lp = (p2, p3, . . .)

represents the "left shifted" version of p, that is, p with the first element removed. N(Lp, q − u)

is the number of matrices in the reduced problem, where the first row has been removed, and

the column margins have been updated to account for the choice of u. The first expression in (4.1)

sums over all 2n possible choices of u , but the summand will be zero whenever u is not compatible

with the margins q and p1. The second term excludes these zero terms by restricting the sum to only

those u such that ui is not larger than the column margin qi for each i, and u sums to the required

row margin p1. Even after this restriction, some terms may be zero if the associated choice of u

cannot lead to a valid binary matrix, that is, if (Lp, q − u) is not graphical (see Chapter 2).

Initially, this recurrence relation is of little use, as blindly expanding it would result in enumer-

ating all valid matrices, which is undesirable. Thankfully, the choices of u can be grouped into

equivalence classes with the summand being identical for all u in that class. To see how, imag-
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ine q is sorted non-increasing, so that it can be divided into contiguous blocks of constant value.

When specifying u, placing a one into any position of a block results in the same margin q − u,

just permuted. For example, if q = (2, 2, 1, 1), then u = (1, 0, 1, 0) results in the updated column

margins q − u = (1, 2, 0, 1), whereas the choice u∗ = (0, 1, 0, 1) results in q − u∗ = (2, 1, 1, 0).

Importantly, N(Lp, q− u) = N(Lp, q− u∗), so we may group these terms together. If block i has

ri elements and fi elements are placed into it, then there are
∏

i

(
ri
fi

)
placements of ones giving the

same count. Accounting for permutations within each block gives an alternate recurrence relation

with fewer terms:

N(p, q) =
∑

uf

∏

i

(
ri
fi

)
N(Lp, q − uf ), (4.2)

where uf is now a single representative from each equivalence class, ri determines the size of

block i in q, fi is less or equal to ri, and f (the vector of fis) sums to p1. One more version of the

equation is possible: since the equivalence classes are distinguished only in how they allocate ones

to the blocks of q, one can deal with the blocks directly. Defining N̄(p, r) = N(p, q) where r is

the vector of ris, then the sum can be written as

N̄(p, r) =
∑

f∈C∗

∏

i

(
ri
fi

)
N̄(Lp, r − f + Lf), (4.3)

where C∗ is the set of vectors f such that fi ≤ ri for all i and
∑

i fi = p1. Note that in (4.3) the

u’s need not be specified explicitly.

The recurrence relation in (4.3) allows for N(p, q) to be computed using dynamic program-

ming, where summands which arise several times when expanding the recurrence only need to be

computed once and stored in a lookup table to avoid redundant computation. Because each com-

bination of (p, r) corresponds with multiple distinct matrices, the count can be produced without

enumerating all valid matrices. The lookup table of counts can then be employed in sampling each

row, by first selecting an equivalence class f with probability 1
N(p,q)

∏
i

(
ri
fi

)
N̄(Lp, r − f + Lf),
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then selecting one of the u in the equivalence class uniformly at random, and repeating until all

rows have been sampled.

4.3 Divide and Conquer Counting

The approach of Miller & Harrison can be viewed as a division of the matrix into two parts:

the top row, and the remaining matrix (or equivalently, the left column, and the remaining matrix,

if sampling one column at a time). In this chapter, we generalize this process so division can take

place at any row or column in the matrix. Without loss of generality, we consider dividing the

columns of the matrix into a left part and right part, though the same procedure can be applied if

dividing the rows into a top part and bottom part.

Dividing the matrix amounts to selecting an integer k with 1 < k ≤ n which divides the

column margins q into a left part ql = (q1, . . . , qk−1) and a right part qr = (qk, . . . , qn). We call

(ql, qr) a division. The associated row margins pl and pr are undetermined, but their sums must

agree with the sums of ql and qr, respectively, and they must add together to produce the original

row margins p. We also restrict pl and pr to be graphical, since non-graphical margins contribute

nothing to the partition function. These considerations imply the following conditions:

m∑

i=1

pli =
k−1∑

i=1

qli := nl (4.4)

m∑

i=1

pri =
n∑

i=k

qri := nr (4.5)

pl + pr = p (4.6)

pl
′ � ql (equivalently ql

′ � pl) (4.7)

pr ′ � qr (equivalently qr ′ � pr), (4.8)

Where we introduce nl and nr as the number of ones in the left and right part respectively, with

nl + nr. Conditions (4.7) and (4.8) require that the left and right sets of margins each satisfy the

Gale Ryser condition, ensuring that both the left and right submatrices are valid. This gives rise to
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the recurrence relation

N(p, q) =
∑

(pl,pr)∈C

N(pl, ql)N(pr, qr), (4.9)

where C is the class of pairs (pl, pr) which satisfy (4.4)-(4.8). Recursive counting and sampling

is conceptually similar to the approach of Miller & Harrison [33], where counts are stored in a

lookup table for later use when sampling. As in the previous section, some terms in (4.9) will be

zero, but in this case if either the left margins or the right margins are not graphical, the summand

will be zero. The central challenge in this divide and conquer approach is in the enumeration of all

terms in the set C, which we call margin spreading, while referring to a single proposed (pl, pr) as

a spread. We will discuss this task in more detail in the next section.

4.3.1 Margin Spreading

Requiring that a spread (pl, pr) satisfies (4.4) restricts pl to the set of length m compositions

of nl (allowing the composition to include zeros). Similarly, (4.5) restricts pr to the set of length

m compositions of nr, permitting zeros in both compositions (again with zeros). Constraint (4.6)

resembles a NP-hard 3D-matching problem, where some permutation of vectors x and y must sum

to vector z. In our case the matching is even more difficult since pl and pr are initially unknown.

Appendix B outlines an approach to margin spreading using 3D-matching, however it turns out that

spread enumeration can be reduced to enumerating lattice points in a convex polytope (described

below), which avoids the matching problem.

Enumerating Valid Spreads

To enumerate all margin spreads which satisfy (4.4)-(4.6), we begin by trivially considering

one valid spread, and applying iterative changes to enumerate all the other valid spreads. This

avoids any matching, and as will be shown, avoids considering many non-graphical spreads.

First we produce an initial spread using the canonical matrix resulting from Fulkerson &

Ryser’s shift-right algorithm [5] (see Chapter 2 for more details), then observe the implied margins
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for each part in the division. As an example, consider the margins p = q = (2, 2, 1, 1). Applying

the shift-right algorithm produces the left matrix shown in Figure 4.1.

1 0 1 0

1 0 0 1

0 1 0 0

0 1 0 0

2

2

1

1

2 2 1 1

division point (k=3)

q

p

1 0

1 0

0 1

0 1

1

1

1

1

2 2

ql

pl

1 0

0 1

0 0

0 0

1

1

0

0

1 1

qr

pr

Figure 4.1: Creating an initial margin spread. The initial margins p and q are used by Fulkerson & Ryser’s
shift-right algorithm [5] to produce an initial matrix (left) left). The matrix is then divided at the division
point (determined by k = 3 in this example), and the initial margin spread, pl and pr, are just the row
margins of the left and right parts (right).

If we choose the center as the division point (k = 3), the left two columns imply pl = (1, 1, 1, 1),

ql = (2, 2) and the right two columns imply pr = (1, 1, 0, 0), qr = (1, 1). The (pl, pr) spread can

be visualized using the Young diagram for p (see Chapter 2 for more details on Young diagrams),

as in Figure 4.2,

Figure 4.2: Using the Young diagram for p = (2, 2, 1, 1) to visualize the margin spread (pl, pr) =
((1, 1, 1, 1), (1, 1, 0, 0)). The thick border line separates the boxes belonging to pl on the left from those
belonging to pr on the right.
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where the thick border line divides the boxes belonging to pl on the left from those belonging to

pr on the right. Now imagine moving the border so that boxes are exchanged between the left and

right sides, where the number of boxes on either side is unchanged, i.e. nl and nr are held constant,

as shown in Figure 4.3.

Figure 4.3: Creating a new margin spread from an existing one by moving the border line in the Young dia-
gram for p. The initial border corresponding to (pl, pr) = ((1, 1, 1, 1), (1, 1, 0, 0)) (left) is moved according
to the arrows to produce a new border line (right) without changing number of boxes to its left and right.
The shifted border corresponds to the new margin spread (pl, pr) = ((2, 1, 1, 0), (0, 1, 0, 1)).

This produces an alternative spread, pl = (2, 1, 1, 0), pr = (0, 1, 0, 1). Repeating the process

creates a third spread, shown in Figure 4.4, where pl = (2, 2, 0, 0), pr = (0, 0, 1, 1).

Figure 4.4: Creating a new margin spread from an existing one by moving the border line in the Young dia-
gram for p. The initial border corresponding to (pl, pr) = ((2, 1, 1, 0), (0, 1, 0, 1)) (left) is moved according
to the arrows to produce a new border line (right) without changing number of boxes to its left and right.
The shifted border corresponds to the new margin spread (pl, pr) = ((2, 2, 0, 0), (0, 0, 1, 1)).

The general idea of this approach is to enumerate all valid spreads by moving the border in this

way. Ideally, we would do so using the fewest number of border moves. For this purpose, we

decompose the enumeration process by partitioning the space of spreads into fills (analogous to f

from Miller & Harrison’s method). We then enumerate margin spreads within each fill which are
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unique up to permutation (analogous to Miller & Harrison’s us), and account for the permutations

allowed for each spread. First, we describe the partitioning of margins into fills.

Partitioning Margins Into Fills

As in [33], we segment the elements of p into b blocks (s1, . . . , sb) such that si = {j : pj =

i} for i ∈ (1, . . . , b) gives the index location of all elements in p which are equal to i, where

b = maxi(pi). Each block represents a level set of p, within which permutations can be easily

counted. Define the b-dimensional left fill vector f l such that f l
i is the number of boxes in the

Young diagram in the ith block that are left of the border, in other words, f l
i =

∑
j∈si

plj . Define

the b-dimensional right fill vector analogously as f r
i =

∑
j∈si

prj , the number of boxes to the right

of the border. Figure 4.5 continues the above example, showing the blocks associated with p along

with the elements of the fill vectors f l and f r.

1

1

2

2

p

s2 = {1, 2}

s1 = {3, 4}

b = maxi(pi) = 2 Young diagram for p

f l
2 = 2

f l
1 = 2 f r

1 = 0

f r
2 = 2

Figure 4.5: Left: the row margin p = (2, 2, 1, 1) contains as elements either two or one, so there are two
blocks. The indices of block 1 are s1 = {3, 4}, and the indices of block 2 are s2 = {1, 2}. Right: The left
fills f l

1 and f l
2 correspond to the number of boxes in blocks 1 and 2 respectively that are left of the border

line in the Young diagram, so f l
1 = f l

2 = 2. Similarly, the right fills f r
1 and f r

2 are the number of boxes in
blocks 1 and 2 respectively that are right of the border line in the Young diagram, so f r

1 = 0 and f r
2 = 2. f r

1

can also be deduced from f l
1, since the total number of boxes in this block is 1× |s1| = 2, so we only need

to keep track of f l
1.

Note that the left and right fills for a given block must together account for all of the ones in that

block, that is, f l
i+f r

i = |si|×i. In other words, the value of f r
i can be deduced knowing the value of

f l
i , so we need only consider unique values of f l

i . There may be several margin spreads consistent

with a specified fill. Continuing the example, we have b = 2, s1 = {3, 4} and s2 = {1, 2}. The
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shift-right construction produced the left fill f l = (2, 2), and there are three candidate left margin

spreads pl consistent with this fill: (1, 1, 1, 1), (2, 0, 1, 1), and (0, 2, 1, 1), see Figure 4.6.

pl

1

1

1

1

pl

1

1

0

2

pl

1

1

2

0

Figure 4.6: The only three left margins (pl) which are consistent with the fill f l = (2, 2). Each margin is
shown alongside the Young diagram for p with a thick border separating the boxes belonging to pl on the
left and pr on the right.

These margin spreads are candidates because the Gale-Ryser conditions (4.7) and (4.8) have not

yet been checked. Checking the conditions for each candidate spread involves sorting pl descend-

ing and checking that its conjugate majorizes ql, then doing the same for pr and qr. The sorting

step means that the second and third candidates can be checked at the same time, since their pls

(respectively prs) are permutations of each other. Furthermore, these permutations don’t affect the

number of valid binary matrices, so we only have to consider margin spreads which are unique

up to permutation within each block (permuting between blocks may change the fill, f l, but since

we already intend to sum over all possible f l, we restrict permutations to within each block), and

account for the number of permutations separately. In the language of group theory, we consider

the group action of permuting the elements of pl within each block, resulting in a space of orbits,

with each member of an orbit sharing the same number of valid binary matrices.

Let τ(pl) represent the orbit of pl under the group action of permuting within the blocks of p.

We may also refer to the orbit of a margin spread, τ(pl, pr), where for each point in the orbit, the

same permutation is applied to both pl and pr. We also extend the notation to incorporate majoriza-

tion, so that τ(a) � τ(b) means that a majorizes b after both have been sorted non-increasing. The

sorting step implies that the relationship holds irrespective of which representatives from τ(a) and

τ(b) are considered. Furthermore, if the Gale-Ryser conditions hold for any members of τ(pl, pr),
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then they hold for all members in the orbit, so it is necessary only to check the Gale Ryser condition

once per orbit.

Let T (f l) be the class of orbits consistent with fill f l which satisfy the Gale-Ryser condition

in both the left and right parts. In the example, there are two orbits consistent with f l = (2, 2),

represented by (pl, pr) =
(
(1, 1, 1, 1), (1, 1, 0, 0)

)
and (pl, pr) =

(
(2, 0, 1, 1), (0, 2, 0, 0)

)
. Spread

enumeration proceeds by carefully enumerating fills f l for which T (f l) is non-empty, then enu-

merating the orbits of each fill class and accounting for permutations. To determine if a fill class is

non-empty, it is sufficient to check only the minimum orbit (by majorization) from the class against

the Gale-Ryser condition, since orbits can be partially ordered by majorization. The existence of

the minimum is guaranteed by the following lemma:

Lemma 1. Given fill f l, assume T (f l) is non-empty. Then there exists a unique minimum orbit

τ(pl∗, p
r
∗) ∈ T (f l) such that τ(pl∗) � τ(pl) and τ(pr∗) � τ(pr) for all τ(pl, pr) ∈ T (f l)

Proof of Lemma 1 is given in Appendix A. An immediate consequence of Lemma 1 is that if

any orbit τ(pl, pr) satisfies the Gale-Ryser conditions, τ(pl∗, p
r
∗) will also, so non-emptiness of

T (f l) can be checked by checking the Gale-Ryser condition on only τ(pl∗, p
r
∗). Moreover, the

minimum element can be trivially found by arranging boxes as flat as possible within each block,

that is, consider the integer partition of each block separately, and take the minimum partition (by

majorization) for each one. In the example of this section, the minimum element corresponding

with f l = (2, 2) is τ ((1, 1, 1, 1)).

It turns out that enumerating the set of f l with non-empty T (f l) amounts to local search. We

will show that these fills are arranged in a convex integral polytope in dimension b, and that the

spread orbit implied by the shift-right canonical matrix provides an appropriate starting point for

enumerating all points in the polytope.

The vector f l exists in Z
b
≥0 and we have the constraint

∑
i f

l
i = nl, since the left part must

contain nl ones, which restricts the set of f l to a hyperplane of dimension b − 1. Each f l
i is non-

negative, 0 ≤ f l
i , and each block of p defines a maximum capacity for fi: fi ≤ |si| × i. The

intersection of these half space constraints is convex, so the hyperplane is restricted to a (convex)
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integral polytope. Applying similar constraints for the right side produces another (convex) integral

polytope. Let F ⊂ Z
b
≥0 be the intersection of the left and right polytopes, so F is also convex.

Even though we are applying constraints to the left and right sides, recall that a fill pair (f l, f r) is

fully specified with just f l or f r, and we use f l by convention.

Consider fill f l, and spread orbit τ(pl, pr) ∈ T (f l). Define sets F1 ⊆ F and F2 ⊆ F according

to the following:

1. f l ∈ F1 if and only if τ(pl, pr) satisfies the left Gale-Ryser condition.

2. f l ∈ F2 if and only if τ(pl, pr) satisfies the right Gale-Ryser condition.

Theorem 5. F1

⋂
F2 is convex.

The proof of Theorem 5 is in Appendix A. For the purposes of enumerating all f l with non-

empty T (f l), the important implication of Theorem 5 is that the space is connected, and hence

can be enumerated using local search. Convexity is not required for enumeration, but does make

the process simpler. Essentially, the shift-right construction provides an initial margin spread, and

hence an initial non-empty T (f l) (which satisfied the Gale-Ryser conditions by construction). The

remaining fills can be found by expanding outward from the initial lattice point in b dimensions,

checking for non-emptiness at each point using Lemma 1.

In our example, this process starts with the initial fill f l = (2, 2) produced by the shift-right

construction. We can explore locally to find other fills, while keeping the constraint f l
1 + f l

2 = 4

to ensure f l ∈ F . The neighboring point (3, 1) doesn’t work because f l
1 = 3 exceeds the space

available in block 1, given by |s1| × 1 = 2. That is, (3, 1) /∈ F . Further in the same direction

is the point (4, 0), but Theorem 5 guarantees the space of valid fills is convex, so we don’t need

to continue in that direction after finding an invalid fill. Exploring in the opposite direction, we

consider the point f l = (1, 3), which does satisfy the block size constraints, so (1, 3) ∈ F . The next

step is to check whether the minimum spread orbit in this fill satisfies the Gale-Ryser conditions

for the left and right margins. The minimum orbit is the flattest configuration of boxes on left

and right sides: τ(pl, pr) = τ ((2, 1, 1, 0), (0, 1, 0, 1)), and inspection shows that both the left and

57



right sides satisfy the Gale-Ryser conditions, so (1, 3) ∈ F1

⋂
F2, and T ((1, 3)) is not empty. The

next possible point is f l = (0, 4), with minimum element τ(pl, pr) = τ(((2, 2, 0, 0), (0, 0, 1, 1))

that still satisfies the Gale-Ryser conditions. So (0, 4) ∈ F1

⋂
F2, and T ((0, 4)) is not empty. We

cannot continue in that direction anymore, so the search has stopped, giving us the convex integral

polytope {(2, 2), (1, 3), (2, 4)} which exists on a one-dimensional hyperplane embedded in Z
2
≥0.

Next we enumerate all valid spread orbits within each fill class. In the example above where

f l = (2, 2), the shift-right canonical matrix produced spread (pl∗, p
r
∗) = ((1, 1, 1, 1), (1, 1, 0, 0)),

which is the flattest configuration of boxes in each block of p, so τ(pl∗, p
r
∗) is the minimum orbit.

To find other orbits, we will “elevate” the left and right margins using the v and h shifts described

in [2] (more detail in Chapter 2), without changing fill. Preserving the fill requires that each shift

take place entirely within a block. Within the ith block, permutations are ignored (and accounted

for separately), so we only need to enumerate the unique integer partitions within that block, for

the left and right parts. The block size implies the partitions can have no more than |si| “parts” (in

the partition sense of the word) and no part can exceed i. New candidate orbits can be constructed

by picking one partition from each block to form a spread (pl, pr), and each candidate can be

checked against the Gale-Ryser conditions to see if the margins are graphical. Figure 4.7 shows

how this step would look for our example. Block 1 cannot be elevated at all, so the only option is

to elevate in block 2, taking the left partition from (1, 1) to (2, 0), producing the new spread orbit

τ(pl, pr) = τ ((2, 0, 1, 1), (0, 2, 0, 0)), which upon inspection satisfies the left and right Gale-Ryser

conditions. No further elevation can take place, so we have found all spread orbits consistent with

fill f l = (2, 2). Repeating this process for the other fills produces all possible spread orbits for this

division.
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f l = (2, 2)

pl = (1, 1, 1, 1)

split blocks elevate recombine

left partition: (1,1) left partition: (2,0)

pl = (2, 0, 1, 1)

Figure 4.7: Finding a new margin spread candidate for the fill f l = (2, 2). An initial margin spread
pl = (1, 1, 1, 1), in this case produced from the shift-right canonical matrix, is split into individual blocks.
The top block is selected for “elevation”, meaning the left partition (1,1) is transformed into the partition
(2,0) which is higher in the Young’s lattice partial order. By elevating only within this block, we maintain
the same fill, f l = (2, 2). The blocks are recombined resulting in the left margin spread pl = (2, 0, 1, 1).
The new margin will always majorize the starting margin, so we must check that the Gale-Ryser condition is
still satisfied (for both pl and pr). Repeating this process systematically to each block for each new margin
until margins are no longer graphical allows every valid margin within fill f l to be enumerated.

Since the partitions within each block can be partially ordered by majorization, then there exists

a partial order on the spread candidates. Checking candidates in accordance with the partial order

prevents checking too many non-graphical spreads, since once a non-graphical candidate is found,

no subsequent candidates in the ordering need be considered. The following lemma summarizes

this process and guarantees its success.

Lemma 2. Given fill class T (f l) and minimum spread orbit τ(pl∗, p
r
∗), all valid spread orbits in

T (f l) can be enumerated using sequences of reverse v and h shifts within the blocks of p.

Proof of Lemma 2 is in Appendix A.

The last step is to account for the allowed permutations within each block of p (that is, the

number of spreads in the orbit τ(pl, pr)), which we denote with σ(pl, pr). This number depends on

the number of distinct elements of pl (or pr) within each block of p and is easy to compute. For the

spread orbit τ((2, 0, 1, 1), (0, 2, 0, 0), there are two permutations in block 1 and two permutations

in block 2, giving σ((2, 0, 1, 1), (0, 2, 0, 0)) = 4. Since the permutations don’t affect the number
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of consistent binary matrices, we only have to consider one representative from each orbit when

recursing in the algorithm. Using the approach to enumerating margin spreads outlined above, we

revise the recurrence relation one more time:

N(p, q) =
∑

{f l:|T (f l)|>0}

∑

{τ(pl,pr)∈T (f l)}

σ(pl, pr)N(pl, ql)N(pr, qr) (4.10)

This final version can be used to compute the partition function for any set of margins (p, q), which

can be stored along with all the intermediate counts in a lookup table to be used for sampling,

analogous to Miller & Harrison [33]. Before formally outlining the algorithm in full, we will

briefly discuss the base cases.

4.3.2 Base Cases

The recursion terminates when one of two base cases is encountered. The first case is when

the margins fully define the matrix, and the count is one. This occurs when either p or q (or both)

have length one, or the margins are all zero. The second case is when the count is not necessarily

one, but is already known. This is possible because the divide and conquer nature of the algorithm

presents the opportunity for margins to be encountered more than once in the recursion process,

in which case the count can be stored in the lookup table the first time it is encountered, and

retrieved from the lookup table on subsequent encounters. As a simple example, consider margins

p = q = (1, 1, 1, 1) and suppose the cut point k = 3, so that ql = qr = (1, 1). The only valid

margin spreads are permutations of (pl, pr) =
(
(1, 1, 0, 0), (0, 0, 1, 1)

)
. Dividing the row margins

next produces 2×2 matrices which are either zero-regular (having margins all zero) or one-regular

(having margins all one), as seen in Figure 4.8
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Figure 4.8: Beginning with the margins p = q = (1, 1, 1, 1), the matrix is divided first by columns, with
the only valid margin spread (up to permutation of the rows) being (pl, pr) = ((1, 1, 0, 0), (0, 0, 1, 1)). Each
smaller matrix is then divided by rows, resulting in four 2× 2 matrices with regular margins, either all one
or all zero. The zero-regular margin matrices are at a base case, with only one way of satisfying the margins
(all zeros). The one-regular margin matrices are not yet at a base case, so more division is required, however
this process only has to occur once, since both one margin matrices are identical and have the same count.

The count for both of the zero-regular margin matrices is one, and there is no need to subdivide

further. The one-regular margin matrices need to be divided further, but this process only needs to

be done once since both matrices will have the same count. This example shows another situation

which may be exploited, namely when a row or column has margin zero after dividing. There is

exactly one way to satisfy such a margin (leave it empty), so it can be excluded when performing

the count, leaving reduced versions of the left and right parts, as shown in Figure 4.9.
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1 1 1 1
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Figure 4.9: If row or column margins have value zero at any point in the counting process, those rows or
columns can be excluded from subsequent steps.
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The same simplification can be applied if a margin implies that a row or column must be populated

with all ones rather than all zeros: that row or column can be excluded from subsequent steps.

4.3.3 Algorithm

Here we formally state the algorithm for divide and conquer counting of fixed margin bi-

nary matrices, see Algorithm 3. We use the functions Contains(LT, x), Get(LT, x), and

Set(LT, x, y) to check whether lookup table LT contains object x, get the value associated with

x, or set the stored lookup value of x to y. The algorithm uses multiple lookup tables, one to store

matrix counts, LTC , and one to store valid margin spreads, LTS , and a few more for bookkeeping

when computing margin spreads (LT1 and LT2). The spread enumeration process involves first

enumerating all of the fills valid for a division, then enumerating all of the margins consistent

with each fill. Enumerating fills involves a local search which processes fills one at a time, and

we use a queue todo to store fills waiting to be processed. We use functions Push(todo, x) and

Pop(todo) to emplace and retrieve fills from the queue. Valid spreads are collected in a list S,

to which we append an element x using Append(S, x). When enumerating spreads consistent

with fills, we use the function EnumerateOrbits(f l) function which iteratively applies the

split-elevate-combine idea to enumerate representatives for all orbits consistent with the given fill.

We first define the Spreads function which enumerates all margin spreads, then the DAC-Count

function which performs the counting. In this implementation we alternate between dividing rows

and columns, and always divide closest to the midpoint, but these choices can be made differently,

and the ramifications are discussed in Section 4.5.4.

Since the algorithm populates lookup tables of counts and spreads, the DAC-Count function is

endowed with a form of “idempotency”: after the initial run, no additional counting is performed,

and subsequent calls to the function are composed entirely of lookups. Also, we populate the

lookup table of counts and margin spreads at each level of the recurrent hierarchy, which is pivotal

to the sampling algorithm described in the next section and ensures that no margin pair is counted

more than once.
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Algorithm 3: Divide and Conquer Counting of Fixed Margin Binary Matrices.

1 Function Spreads(p, ql, qr):

2 S = empty list;
3 todo = empty queue, contains fills waiting to be processed;
4 LT1 = empty lookup table;
5 LT2 = empty lookup table;
6 f l

0 = left fill implied by shift-right canonical matrix of (p, q);
// Enumerate convex integral polytope of fills:

7 Push(todo, f l
0);

8 while todo is not empty do

9 f = Pop(todo);
10 Set(LT1, f , true);
11 (pl∗, p

r
∗) = flattest partition consistent with f ;

// Check if T (f l) is nonempty:

12 if (pl∗, p
r
∗) satisfy Gale-Ryser conditions then

// Add spreads to spreads list:

13 σ = Number of possible permutations of pl∗ within blocks p.;
14 Append(S, (pl∗, p

r
∗, σ));

15 for (pl, pr) in EnumerateOrbits(f) do

16 if (pl, pr) satisfy Gale-Ryser then

17 σ = Number of possible permutations of pl within blocks of p.;
18 Append(S, (pl, pr, σ));
19 end

20 end

// Explore nearby fills:

21 for f ’ in fills hamming distance one from f l do

22 if Not Contains(LT1, f ’) then

23 Push(todo, f’);
24 end

25 end

26 end

27 end

28 return S;
29 end
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30 Function DAC-Count(p, q):

31 if Contains(LTC , (p, q)) then

32 return Get(LTC , (p, q))
33 end

34 m = length(p);
35 n = length(q);
36 if

∑
i(pi) = 0 or n = 1 or m = 1 then

37 N = 1;
38 else if (p, q) do not satisfy Gale-Ryser conditions then

39 N = 0;
40 else

41 ql = (q1, . . . q⌊m/2⌋);
42 qr = (q⌊m/2⌋+1, . . . , qm);
43 S =Spreads(p, ql, qr);
44 N = 0;
45 for (pl, pr, σ) in S do

46 N = N + σ × DAC-Count(ql, pl) × DAC-Count(qr, pr);
47 end

48 Set(LTC , (p, q), N);
49 return N ;
50 end

4.4 Divide and Conquer Sampling

In this section, we describe how to use the counts and margin spreads produced in the previous

section to sample from the space of binary matrices with specified margins uniformly. Follow-

ing the divide and conquer approach to counting, sampling involves randomly sampling from the

available margin spreads at each division, and the specification of the actual matrix elements is

completed once matrices are at a base case and there is only one option for filling in the matrix.

Sampling uniformly from the space of binary matrices does not translate to sampling uniformly

from the space of spreads at each division, because some spreads may correspond with more ma-

trices than others, not only because the number of matrices for the left and right margins (N(pl, ql)

and N(pr, qr)) may be greater or lesser, but also the allowable permutations within each block

(σ(pl, pr) ) may vary as well. The key is to sample from spreads in proportion to the number of

matrices corresponding to that choice. For this reason lookup tables are created not only of all the

spreads, but also the matrix counts at each division in the hierarchy.

64



4.4.1 Algorithm

Here we describe Algorithm 4 for sampling binary matrices with fixed margins explicitly.

These algorithms make use of the DAC-Count function, but it is not strictly necessary that count-

ing be performed before sampling starts: if counting has been performed already, then all calls to

DAC-Count will amount to lookups; if counting has not been performed already, then the first

sampled matrix will involve the counting process, but subsequently sampled matrices will use the

lookup tables. In our description of the algorithm, we use the function Matrix(m,n, x) to denote

a m × n matrix with elements given by x. If x is a vector, then the matrix will have only one

column so the meaning should be unambiguous, if x is a scalar, then all of the elements of the

matrix should be given that value. For sampling, we assemble the matrix counts ck associated with

margin spread k, then normalize to produce probabilities for sampling, Pk. The function Hcat is

horizontal concatenation, t is the transpose function, and Sample(S, P ) samples a spread given

weights vector P . As before, we choose to alternate between dividing rows and columns, and

divide as close to the midpoint as possible.

4.5 Experiments

4.5.1 Example Counts

To verify our implementation of divide and conquer counting, we repeat a few example counts

performed by previous authors. The first example comes from finch species observations made by

Charles Darwin in the Galapagos islands, where the rows represent species and columns represent

islands. Each element in the matrix is either one indicating the presence of the row species on the

column island, or zero indicating the absence of the species on the island (see [29]). The matrix

margins are p = (14, 13, 14, 10, 12, 2, 10, 1, 10, 11, 6, 2, 17) and q = (4, 4, 11, 10, 10, 8, 9, 10, 8, 9,

3, 10, 4, 7, 9, 3, 3). We compute the total number of matrices as N(p, q) = 67, 149, 106, 137, 567,

626 which agrees with Miller & Harrison [33].

In the special case of k × k square matrices with one-regular margins, the number of valid

matrices is just the number of permutation matrices, or k!. In the case of k × k square matrices
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Algorithm 4: Divide and Conquer Sampling of Fixed Margin Binary Matrices

1 Function DAC-Sample(p, q):

2 m = length(p);
3 n = length(q);
4 if m = 1 then

5 M = Matrix(1, n, q);
6 else if n = 1 then

7 M = Matrix(m, 1, p);
8 else if

∑
i pi = 0 then

9 M = Matrix(m,n, 0);
10 else

11 ql = (q1, . . . q⌊m/2⌋);
12 qr = (q⌊m/2⌋+1, . . . , qm);
13 S =Spreads(p, ql, qr);
14 N = 0;
15 P = vector of length |S|;
16 for k in 1, . . . , |S| do

17 (pl, pr, σ) = kth spread of S;
18 Nk = σ×DAC-Count(ql, pl) × DAC-Count(qr, pr);
19 N = N +Nk;
20 end

21 for k in 1, . . . , |S| do

22 Pk = Nk/N ;
23 end

24 (pl, pr, σ) = Sample(S, (P1, . . . , P|S|));
25 M l = DAC-Sample(ql, pl);
26 M r = DAC-Sample(qr, pr);
27 M = Hcat(t(M l), t(M r));
28 return M ;
29 end
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with (k − 1)-regular margins, the number of valid matrices is also k! (imagine starting with a

permutation matrix and trading out ones for zeros and zeros for ones). We verified our counts of

one-regular and (k − 1)-regular matrices are correct up to k = 10, 000.

4.5.2 Example Sampling

To verify our implementation of divide and conquer sampling, we consider drawing a sample

and performing a lack of fit test against a uniform null distribution. We expect the distribution

of p-values in such case to be uniform. We draw samples of size 100, 300, and 1,000 for the

margins p = (2, 2, 2, 1), q = (3, 2, 1, 1), and perform a χ2 lack of fit test against the uniform

null distribution. There are 24 valid matrices with these margins, so the expected frequency of

each matrix under each sample size is approximately 4.1, 12.5, and 41.7, arguably too low for

the asymptotic χ2 lack of fit test to be appropriate. Hence p-values are estimated using Monte

Carlo resampling as in [6] with 10,000 replicates. Repeating this process 100,000 times for each

sample size generates distributions of p-values, as shown in Figure 4.10 The uniformity of these

distributions lacks evidence of incorrect sampling.

4.5.3 Lookup Table Size

By using a lookup table, our algorithm is designed to only compute the counts for a set of

margins once and in the course of recursively counting, a count may be used several times. To

investigate the degree of re-use, we compare the size of the lookup table (the number of unique

counts it contains) to the number of valid matrices, and the density of the matrix. For this compar-

ison, we examine all graphical margin pairs with sums from one up to 22. This comprises about

1.02 million margin pairs, representing roughly 7.4 × 1021 unique matrices. The dimensions of

each matrix are implied by the length of each margin, assuming no zero margins. In each case, we

employ Algorithm 3 to count the number of compatible matrices and the number of elements in the

lookup table after counting. We also compute the density of ones in the matrix, which is influenced

by both the sum and length of each margin. Figure 4.11 illustrates the results from counting. The

left-most region of the figure corresponds to margins of small, dense matrices where the number

67



Figure 4.10: We repeatedly sample from matrices with margins p = (2, 2, 2, 1) and q = (3, 2, 1, 1) using
the divide and conquer sampling approach, drawing samples of size 100, 300, and 1000. The panels show
the distribution of 100,000 p-values from a χ2 lack of fit test against the uniform distribution for each
sample size. P-values are estimated using Monte-Carlo resampling [6] with 10,000 Monte-Carlo replicates
per sample. The p-values should follow a uniform distribution if sampling is uniform.
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Figure 4.11: Number of unique counts stored in lookup table for all graphical margins with sums up to 22.
There are roughly 1.02 million graphical margins, representing roughly 7.4× 1021 unique matrices. Lighter
colors indicate higher density matrices, i.e. a higher percentage of ones. Note the log scale on the horizontal
axis.
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of valid matrices is low, and the required number of lookup table entries is also small. As margin

length (m or n) increases, the number of valid matrices generally increases as well, and we see an

increase in the lookup table entries also. This reflects the higher number of divisions before reach-

ing the base case for larger matrix dimensions, and the greater number of spreads to consider as

the margins get longer and there are more valid matrices. However, the margins with the greatest

number of valid matrices tend to require fewer lookup table entries due to increasing information

reuse. For example, the largest count corresponds with one-regular margins, where symmetry im-

plies that every margin pair considered in the left part of the split will also be considered in the

right part of the split.

Instead of allowing matrix dimensions to vary for a given number of ones, we can instead con-

sider matrices of fixed size and examine all margin pairs consistent with that size, allowing some

margins to be zero now. Figure 4.12 compares the number of lookup table entries to the number

of matrices consistent with the given margins for all matrices of size 9 × 7, where brighter colors

indicate more dense matrices. This figure illustrates how lookup table size generally increases

for higher count matrices. This figure excludes the right tail present in Figure 4.11 because the

dimensions are constrained. To show the influence of density, Figure 4.12b separates points into

five density ranges, with less dense on the left and more dense on the right. Densities near 0.5

correspond with the highest matrix counts and the largest lookup tables as well. Though the figure

focuses on one size, the same trends can be seen in other sizes of matrices as well.

4.5.4 Cut Point Location

In Algorithms 3 and 4, the cut point is chosen closest to the midpoint of q, so that the left

and right parts are roughly half the original size (⌊m/2⌋), but this is not strictly necessary. In

this section, we explore the effect of moving the cut point, using four example sets of margins.

For each example, we perform divide and conquer counting several times for different cut points.

Specifically, we define the split margins ql = (q1, . . . , q⌊m×c⌋) and qr = (q⌊m×c⌋+1, . . . ,m) where

c is allowed to vary between 0 and 1, and we also ensure that pl and pr each have length at least
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(a) Number of unique counts stored in lookup table for all possible margins of size 9 × 7. There are roughly
1.29 million graphical margins, representing roughly 1.99×1013 unique matrices. Lighter colors indicate higher
density matrices, i.e. a higher percentage of ones. Note the log scale on the horizontal axis.

(b) The same results as panel (a), separated by density to more clearly show its effect.

Figure 4.12
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Label Row Margins (p) Column Margins (q)
A (4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1) (same as p)
B (1, . . . , 1) (20 ones) (same as p)
C (1, . . . , 1) (45 ones) (5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1)
D (5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1) (same as p)

Table 4.1: Example margins used for examining cut point and cut strategy. Margins were sorted as displayed
when feeding to the algorithm.

one. The division point is applied at all levels of the recursive algorithm (not just the initial divi-

sion). Varying the cut point can affect the number of margin spreads, which directly increases or

decreases the number of recursive calls and the running time. On the other hand, some divisions

may be more likely to produce repeated margin lookups, reducing run time. The first division im-

pacts run time the most, as the lengths of p and q, the marginal sums, and the number of blocks in

p produce more margin spreads than at lower levels. Increased recursive calls at the first level will

create a larger recursion tree than the same number of calls lower in the tree. We use our R/C++

implementation of Algorithm 3 on a PC with an AMD Ryzen 3700X processor and 48GB of RAM

(which was well in excess of that required by the software). Figure 4.13 summarizes the simulation

results, across three metrics: number of spreads in the first division (red), size of the lookup table

(green), and median running time out of three trials (blue). Even though the algorithm is determin-

istic, run time will vary slightly from run to run because of other computer processes, hence we

take the median time for three runs. When dividing near the center of the margins, the number of

spreads in the first division tends to be larger compared to when dividing near the edges. Allowing

half of q in each divided part reduces the restrictions imposed by the Gale-Ryser condition, which

require ql and qr to majorize the potential spreads. In cases A and D, where q is asymmetric, the

worst run time occurs left of center, likely because that more evenly divides the ones between ql

and qr (compared to the symmetry seen in example C, which has a symmetric q). The exception to

this rule is example B, where the regular margins give a single spread no matter what the division

point. This illustrates the value of the permutation factor σ, which exploits the symmetry within

the margin blocks. The lesson from this metric alone is that perhaps division should take place at

the left or right extremes, as with Miller & Harrison’s algorithm.
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Figure 4.13: Measurements from the counting process for examples A-D from Table 4.1: A:p =
q = (4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1); B:p = q = (1, . . . , 1) (20 ones); C:p = (1, . . . , 1) (45 ones),
q = (5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1); D:p = q = (5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1). Three met-
rics are shown for varying cut points: number of spreads in the first division (red), size of the lookup table
(green), and median running time out of three trials (blue). Note the different vertical scales on each plot.
The rapid jumps between 0.000 and 0.001 seconds for example B are a result of limited time resolution.
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Inspecting lookup table size, however, shows that the number of lookup table entries is lowest

when division occurs midway through q. In this case, the left and right parts are of comparable,

if not equal, size, so the likelihood of encountering the same margins more than once is greatly

increased. Note that even though the number of recursive calls may be greater, caused by a greater

number of spreads, the number of unique margins encountered can still be far less, which is cap-

tured by lookup table size.

Finally, the running times for each example show the interplay between increasing spreads and

decreasing lookups near a cut point of 0.5 particularly for example C. The shifting between two

values in example B is a result of the limited measurement precision for short time intervals.

4.5.5 Division Strategy

Algorithms 3 and 4 alternate between dividing row and column margins and at each level of the

recursion, the rationale being that the total margin length for both parts would be minimized. The

divide and conquer approach to counting and sampling need not adhere to this division strategy,

however. Indeed, we could choose to always divide the column margins, resulting in narrower and

narrower matrices with the same height as the original matrix. Alternately, we could always divide

the row margins, always divide the longer margin, or always divide the shorter margin. To examine

the impact of different division strategies, we take examples A-D from the previous section, a cut

point of 0.5, and apply each division strategy. In each case, we employ the division strategy at all

recursive levels.

Figure 4.14 shows measurements in the same three metrics as in the previous section, where the

division strategies are: always divide the longer margin (Long), always divide the shorter margin

(Short), alternate between row and column margins (Alternate), always divide the row margin

(Horizontal). For symmetric matrices like examples A, B, and D, the Long and Alternate strategies

are very similar, differing only in how they handle equal length row and column margins. This is

reflected in similar first divide spreads, lookup table size, and time between those two strategies

on those examples. Surprisingly, the Short strategy has reduced run time for examples A, C, and
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Figure 4.14: Measurements from the counting process for examples A-D from Table 4.1: A:p =
q = (4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1); B:p = q = (1, . . . , 1) (20 ones); C:p = (1, . . . , 1) (45 ones),
q = (5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1); D:p = q = (5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1). We compare
four division strategies: always divide the longer margin (Long), always divide the shorter margin (Short),
always alternate row/column divisions (Alternate), always divide the row margin (Row). Note the different
scales on each plot, and the fine vertical time scale for example B.
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D. The insight gained here is that reducing the size of one of the margins as fast as possible limits

the valid spreads for the other margin due to the Gale-Ryser constraints, so repeatedly dividing

the shorter margin results in smaller lookup tables compared to alternating or always choosing

the longer side. For the square examples (A, B, and D), the Shorter and Horizontal strategies are

effectively doing the same thing, so we see very similar performance. Because example C is much

taller than it is wide, the Horizontal and Long strategies are the same for the first few steps. Despite

the row margins eventually becoming shorter, the Horizontal strategy suffers because of the high

number of spreads in the first few recursive levels. These examples suggest that always dividing

the shorter margin is preferable to the alternating strategy outlined in Algorithms 3 and 4.

4.5.6 Connection to Miller & Harrison’s Approach

We stated earlier that our approach is a generalization of the one-column-at-a-time approach

of Miller & Harrison. Indeed, (4.10) reduces to (4.3) if we set the division point k = 2, so the left

part of the division is a single column. More specifically, the sum over non-empty fill classes in

(4.10) reduces to the sum over choices of vector s with si ≤ ri and summing to qi. The inner sum

of (4.10) reduces to a single term (no sum) since the partitions in each block of p are limited to size

one. The combinatorial factor σ(pl, pr) permuting within each block of p reduces to counting the

combinations associated with placing ri ones in each block of p in the column qi, which is given

by the product of choose functions in (4.3). Finally, the product of left and right recursive calls to

N in (4.10) reduces to a single call in (4.3) because the left count is always one.

4.6 Discussion

4.6.1 Computational Complexity

Counting and sampling via our divide and conquer approach involves recursive evaluations of

(4.10), each of which involves sums over lattice structures and computation of a combinatorial

factor. Computing the theoretical worst-case complexity of the algorithm is challenging because

of the need to bound the number of terms being summed at each level in the algorithm. The

76



outer sum covers the space of fills which have at least one valid spread orbit, whose boundaries

are hyperplanes arising from two types of constraints: the fill in each block is bounded by that

block’s size, so 0 ≤ f l
i ≤ |si| × i and at least one margin consistent with the fill must satisfy the

Gale Ryser conditions. These fills are lattice points in an integral polytope with dimension equal

to the number of blocks in p (the margin being spread). Short of specialized cases (e.g. Pick’s

formula for dimension 2), few closed form expressions exist for the number of lattice in an integral

polytope [69]. The counting problem in general is #P-Hard, but in fixed dimension (as is our case)

there exists an algorithm for counting which is polynomial in the number of vertices, or even linear

in the number of vertices if special conditions are met [70]. However, these complexities bound

how long it takes to determine the number terms in the outer sum of (4.10), not the number of

terms themselves, so the polynomial and linear algorithms imply nothing about the computation

complexity of Algorithms 3 and 4.

The inner sum in (4.10) is over spread orbits consistent with a given fill. Given a fill f l, each

block of p can be viewed as a partition with bounded number of parts and size. Each spread orbit

is then a point in the d-dimensional product lattice, whose boundaries are imposed again by the

block and Gale-Ryser constraints. The task of counting integer partitions dates at least to Hardy

& Ramanujan [71], who give asymptotic expressions for the number of partitions as the integer

approaches infinity. Rademacher later proved an exact formula, but which involves an infinite

series [72].

Miller & Harrison [73] gave expressions for computational complexity for their algorithm by

bounding the total number of nodes in the directed acyclic graph arising from the recursive evalu-

ation of (4.3). Unfortunately we have not found a straightforward application of their approach to

our algorithm.

4.6.2 Connection to symmetric polynomials

There is a connection between our approach for counting and taking products of elementary

symmetric polynomials. First identify the ith row with a variable xi, for i ∈ {1, . . . ,m}. The
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jth column margin, qj , indicates a particular elementary symmetric polynomial, i.e. if qj = b,

then each term in eb(x1, . . . , xm) indicates a unique way of selecting b out of m rows in column j.

The product of the polynomials associated with the columns gives a collection of monomial terms,

each of which represents a resulting set of row margins, and the coefficient on each term represents

the number of unique choices for the columns that give rise to the row margins. Our objective of

counting the number of binary matrices with margins p and q maps to identifying the coefficient

on the term that corresponds to the desired row margins, p. Naively taking this approach would be

enormously wasteful, because the number of resulting terms could be quite large (bounded above

by
(
m
q1

)
× · · · ×

(
m
qn

)
), and we would discard all but one of them. However, the concept of dividing

the matrix into two smaller parts can be considered in this context, where the product of column-

based polynomials is computed separately for the left and right parts of the division. At this stage,

some terms could be eliminated from the left and right parts because they don’t contribute to the

term whose coefficient contains the desired count (e.g. if the exponent on xi exceeds pi).

4.7 Conclusions

At first glance, the notion of dividing a problem into smaller independent pieces seems quite

promising, as the resulting sub-parts are decoupled from each other. The challenge in our approach

is in the decoupling of the two sub-parts, which gives rise to a large number of sub-problems to

consider, not just two as intuition might suggest. Nevertheless our approach demonstrates that a

generalized divide and conquer approach to binary matrix sampling is achievable, though open

questions about computational complexity and optimal algorithm design remain.
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Chapter 5

Fréchet Covariance and MANOVA Tests for

Random Objects in Multiple Metric Spaces

5.1 Introduction

Much networks research has traditionally addressed research questions pertaining to a single

observed network [42, 74], focusing on either global characteristics (e.g. degree distribution, num-

ber of triadic relationships) or local characteristics (e.g. node attributes, individual dyadic rela-

tionships). Statistics in this context has often been applied at the local scale by treating each node

or dyadic relationship as an observation and addressing the dependencies between observations

implied by the network structure [75, 76]. At the global scale, however, there is only one network,

which is a single observation, so there is little opportunity for statistical modeling without placing

assumptions on the generating process [77, 78, 79].

However, the advent of network data comprised of multiple networks led researchers to read-

dress basic statistical concepts in this new setting, such as the sample mean network, population

mean network, and measurement errors [52, 80]. With observed networks themselves now be-

ing viewed as realizations of random networks having some probability measure, tools from shape

analysis, non-Euclidean data sets, and object oriented data analysis were leveraged [45, 49, 46, 81].

These tools, such as the notion of a Fréchet mean[82], have been used to redefine the concepts of

consistency and convergence for random objects. This has led to the development of methods anal-

ogous to traditional two sample testing, ANOVA, and regression in service of practitioners dealing

with random objects data sets [83].

The purpose of this chapter is to continue in the vein of building basic analysis tools for these

more complicated random objects in bounded metric spaces. The appeal of metric spaces is that

they encompass several examples of non-Euclidean random objects, including networks, probabil-
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ity distributions, and other multivariate objects [50]. On the other hand, metric spaces do not admit

an arithmetic mean, voiding many routine statistical models and testing procedures. In contrast to

the Euclidean setting, where the observations in a sample each have an absolute position, a sample

in metric space can produce only a set of pairwise distances between observations, with no other

information about the underlying geometry, if there is one. Without an arithmetic mean, statis-

ticians have turned to the Fréchet mean for a basis from which to build anew classical statistical

methods [50, 84]. The next section reviews one such development, the analysis of variance, in

preparation for our introduction of a multivariate extension.

In this chapter we propose a definition for Fréchet covariance and establish consistency of the

sample estimator. We also discuss various definitions of the Fréchet correlation, with particular

attention paid to the interpretation of each. We then propose several statistical tests for differences

in group mean and covariance matrices among two or more groups of random objects in bounded

metric spaces. Some statistics draw inspiration from existing MANOVA tests, others relying on

the Riemannian geometry of symmetric positive definite matrices, and others which use our CLT

results. In two scenarios, we perform simulation studies to assess the Type I error of each statistic,

as well as the power under various departures from the null hypothesis.

5.2 Analysis of Variance in Bounded Metric Spaces

Our work builds upon that of Dubey & Müller [50], which studies Fréchet variance and an

ANOVA procedure for differences in means and variances between two or more groups. In this

section we briefly review their work, though we have adjusted the notation to be consistent with

the rest of this chapter. We begin with the following definitions. Let Ωs be a non-empty metric

space with metric ds and generic point ω ∈ Ωs. We have added the s subscripts in preparation

for adding more metric spaces later. Suppose random object Xs ∈ Ωs has probability measure P .

Then the population Fréchet mean is given by

µs = argmin
ω∈Ωs

E[d2s(ω,Xs)], (5.1)

80



and for an independent and identically distributed sample {Xsi} with i ∈ {1, . . . , n}, each Xsi

having probability measure P , the corresponding sample mean is

µ̂s = argmin
ω∈Ωs

1

n

n∑

i=1

d2s(ω,Xsi). (5.2)

If the metric space happens to be Euclidean space equipped with the Euclidean L2 metric, then the

Fréchet mean is the same as the arithmetic mean. The Fréchet variance is given by

σ2
s = E[d2s(µs, Xs)] (5.3)

and the corresponding sample variance is

σ̂2
s =

1

n

n∑

i=1

d2s(µ̂s, Xsi). (5.4)

Petersen & Müller established the consistency of the sample Fréchet mean [84], and Dubey &

Müller established the consistency and asymptotic normality of the sample Fréchet variance [50].

From these results, Dubey & Müller developed an ANOVA procedure to test for equality of vari-

ance and means simultaneously among several groups for a random variable defined on a metric

space.

Dubey & Müller’s test combines two statistics, Fs and Us, where Fs is analogous to the Fs

statistic from classical ANOVA tests, and Us (which is a “U-statistic” in the sense of [85]) tests for

equality of variances. While typically equality of group variances is an assumption to be checked

before performing the ANOVA procedure (for example, see [86]), the metric space ANOVA tests

against a null of the means and variances being equal among the groups. One advantage of this

approach is that it produces an asymptotic test thanks to the asymptotic distribution of Us and

the fact that Fs is op(n
−1/2). Their proposed test also does not require normality assumptions of

the groups, which seems appropriate given the diversity of random objects which are found it the
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setting of bounded metric spaces. We outline the major components of Dubey & Müller’s test

below insofar as they are relevant to our approach later.

Given j groups denoted by j ∈ {1, . . . , J}, let observation Xjsi be the ith observation from

group j, where i ∈ {1, . . . , nj}, and assume {Xjsi} are independent across all i and j, and identi-

cally distributed within each group j. Define the group specific means and variances as

µjs = argmin
ω∈Ωs

E[d2s(ω,Xjsi)], j ∈ {1, . . . , J} (5.5)

σ2
js = E[d2s(µ,Xjsi)], (5.6)

and corresponding sample estimators as

µ̂js = argmin
ω∈Ωs

1

nj

nj∑

i=1

d2s(ω,Xjsi), j ∈ {1, . . . , J}, (5.7)

σ̂2
js =

1

nj

nj∑

i=1

d2s(µ̂js, Xjsi) j ∈ {1, . . . , J}. (5.8)

The hypothesis being tested is

H0 : µ1s = . . . = µJs, σ2
1s = . . . = σ2

Js. (5.9)

Define the pooled sample mean and variance as

µ̂ps = argmin
ω∈Ωs

1

nj

J∑

j=1

nj∑

i=1

d2s(ω,Xjsi), (5.10)

σ̂2
ps =

J∑

j=1

1

nj

nj∑

i=1

d2s(µ̂js, Xjsi). (5.11)
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Since the sample sizes are not necessarily equal, let γj = nj/n represent the proportion of obser-

vations belonging to group j. Then define the statistics

Fs = σ̂2
ps −

J∑

j=1

γjσ̂2
js (5.12)

Us =
∑

j<j′

γjγj′

V̂ar(σ̂2
js)V̂ar(σ̂2

j′s)

(
σ̂2
j − σ̂2

j′

)2

, (5.13)

where

V̂ar(σ̂2
js) =

1

nj

nj∑

i=1

d4s(µ̂js, Xjsi)−
{

1

nj

nj∑

i=1

d2s(µ̂js, Xjsi)

}2

, j ∈ {1, . . . , J} (5.14)

is an estimate of the variance of σ̂2
js. The Fs statistic can be seen as estimating the between group

variances by subtracting the average within group variance from the the total variance, and is

analogous to the numerator of the Euclidean ANOVA statistic. The Us statistic is similar to the

test statistic underlying Levene’s test, and when appropriately scaled, is asymptotically χ2
(J−1) as

n → ∞, assuming each γj converges as well. To perform the metric space ANOVA, Dubey &

Müller propose a test statistic Ts defined as

Ts =
nUs∑J

j=1
γj

V̂ar(σ̂2

js)

+
nF 2

s∑J
j=1 γ

2
j V̂ar(σ̂2

js)
. (5.15)

Under some existence and uniqueness assumptions for the population means and variances, Ts

converges in distribution to χ2
(J−1) under the null hypothesis as n → ∞.

Simulation studies show that Dubey & Müller’s metric space ANOVA performs well when

considering scale-free networks, probability distributions, and even multivariate Euclidean data

(each object being an observation in R
5). Our purpose in the rest of this chapter is to extend this

approach to the setting of two or more metric spaces, to test for differences in two or more groups

measured in multiple metric spaces, analogous to a metric space MANOVA procedure. We begin

this with the introduction of Fréchet covariance in the next section.
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5.3 Fréchet Covariance

Consider now two distinct metric spaces, Ωs with metric ds and Ω′
s with metric ds′ , and random

object vector (Xs, Xs′) ∈ Ωs × Ωs′ with joint distribution Pss′ . Strictly speaking, (Xs, Xs′) is

an ordered pair not necessarily belonging to a vector space, but we use the term “vector” for

convenience. For compactness we will omit the subscripts of the metrics ds and ds′ and use simply

d when it is obvious from context which one we mean. In particular, ds measures distances in Ωs

and ds′ measures distances in Ωs′ . We define the population mean vector as (µs, µs′), with elements

given by:

µ∗ = argmin
ω∈Ω∗

E[d2(ω,X∗)], ∗ ∈ {s, s′}. (5.16)

Given a set of independent and identically distributed observations {(Xsi, Xs′i)} with i ∈ {1, . . . , n},

the sample mean vector (µ̂s, µ̂s′) has elements

µ̂∗ = argmin
ω∈Ω∗

1

n

n∑

i=1

d2(ω,X∗i), ∗ ∈ {s, s′}. (5.17)

The population and sample variance vectors, (σ2
s , σ

2
s′) and (σ̂2

s , σ̂
2
s′), are defined analogously to

(5.3)-(5.4) with elements

σ∗ = argmin
ω∈Ω∗

E[d2(ω,X∗)] ∗ ∈ {s, s′}, (5.18)

σ̂2
∗ =

1

n

n∑

i=1

d2(µ̂∗, X∗i) ∗ ∈ {s, s′}. (5.19)

Now that there are multiple metric spaces, we may consider the dependency which may exist

between Xs and Xs′ , the two elements of the random object vector. Before proposing how to do

so, however, we first address exactly what dependence means in a two-metric-space context.

Because general metric spaces lack a coordinate system which endows direction, it does not

make sense to talk about the tendency for Xs to increase or decrease as Xs′ increases. However,

84



Xs and Xs′ can be characterized by their distance from their respective means, and one sensible

notion of dependence would be whether Xs tends to move away from or toward its mean as Xs′

moves away from its mean. This suggests the following definitions for the population and sample

Fréchet covariance:

σss′ = E[d(Xs, µs)d(Xs′ , µs′)] (5.20)

σ̂ss′ =
1

n

n∑

i=1

d(Xsi, µ̂s)d(Xs′i, µ̂s′), (5.21)

which we expect to be large if Xs and Xs′ tend to deviate from their mean together, and small

if not. This definition, however, always produces a positive covariance, since distances are al-

ways positive, so it does not clearly indicate when Xs and Xs′ both tend to move away from their

respective means at the same time, or if one tends to move away from its mean as the other ap-

proaches its mean. Indeed, unlike the Fréchet variance, which reduces to the classical definition

when applied to Euclidean objects with the Euclidean metric, the definition in (5.20) reduces to

E[|Xs − µs||Xs′ − µs′ |], which is not the Euclidean covariance.

Using the definition for covariance in (5.20) allows us to express the covariance matrix of

(Xs, Xs′) as Σ = E[dµ(Xs, Xs′)dµ(Xs, Xs′)
T ], where the distance vector dµ(Xs, Xs′)

T = (d(Xs, µs),

d(Xs′ , µs′)). Both the population and sample versions are positive semi-definite, positive definite

if Xs and Xs′ are non-degenerate, as shown later in Lemma 3.

An alternative definition of covariance is motivated by the desire that the sign of the covariance

be meaningful, which we call the centered Fréchet covariance:

σ
′

ss′ = E {[d(Xs, µs)− E(d(Xs, µs))] [d(Xs′ , µs′)− E(d(Xs′ , µs′))]} (5.22)

σ̂
′

ss′ =
1

n

n∑

i=1

[
d(Xsi, µ̂s)− ds

] [
d(Xs′i, µ̂s′)− ds′

]
(5.23)

where ds = 1
n

∑n
i=1 d(Xsi, µ̂s) and ds′ =

1
n

∑n
i=1 d(Xs′i, µ̂s′). Equation (5.22) is simply the Eu-

clidean covariance between d(Xs, µs) and d(Xs′ , µs′), and (5.23) is the sample analog. If both the
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Xs and Xs′ distances increase / decrease together, this will be positive. Unlike (5.20) and (5.21),

equations (5.22) and (5.23) can be negative, when the Xs distances and Xs′ distances have an in-

verse relationship. This is arguably the nicer interpretation, though it does not align as well with

Dubey & Müller’s definition of Fréchet variance in (5.3).

For both covariance definitions, we can define correlation by normalizing by the appropriate

standard deviations. For the definitions in (5.20) and (5.21), we divide by the square root of Dubey

& Müller’s variance to produce the non-centered Fréchet correlation:

ρss′ =
E[d(Xs, µs)d(Xs′ , µs′)]√

E[d2(Xs, µs)]E[d2(Xs′ , µs′)]
, (5.24)

ρ̂ss′ =
1
n

∑n
i=1 d(Xsi, µ̂s)d(Xs′i, µ̂s′)√

1
n

∑n
i=1 d

2(Xsi, µ̂s)
1
n

∑n
i=1 d

2(Xs′i, µ̂s′)]
. (5.25)

For the definitions in (5.22) and (5.23), we simply use the Euclidean version of correlation on the

distances to produce the centered Fréchet correlation:

ρ′ss′ =
E [(d(Xs, µs)− Ed(X,µs)) (d(Xs′ , µs′)− Ed(Xs′ , µs′))]√

E
[
(d(Xs, µs)− Ed(Xs, µs))

2]E
[
(d(Xs′ , µs′)− Ed(Xs′ , µs′))

2] , (5.26)

ρ̂′ss′ =
1
n

∑n
i=1

(
d(Xsi, µ̂s)− ds

) (
d(Xs′i, µ̂s′)− ds′

)
√

1
n

∑n
i=1

(
d(Xsi, µ̂s)− ds

)2 1
n

∑n
i=1

(
d(Xs′i, µ̂s′)− ds′

)2 . (5.27)

The non-centered correlation lies in [0, 1], and the centered version is in [−1, 1].

To illustrate the behavior of each definition of correlation, we simulated data from two metric

spaces, both Euclidean, and each equipped with the L1 metric. The first random variable is X1 ∈

Ω1 = R and the second random variable is X2 ∈ Ω2 = R. In a Euclidean sense, we are sampling

bivariate data in R
2. We simulate data under 5 different scenarios. For all scenarios the X1 values

are generated from a Uniform(0, 1), distribution. The X2 values are generated either as a noisy

function of X1 (scenarios 1-4) or from a Uniform(0, 1) distribution independent of X1 (scenario

5). For each scenario, we compute both the non-centered and centered sample Fréchet correlation,

treating each bivariate observation as an object vector, (X1i, X2i). Figure 5.1 shows a scatter plot
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Figure 5.1: Non-centered (ρ̂12) and centered (ρ̂′12) Fréchet correlation for 5 Euclidean bivariate scenarios.
Scenarios 1 and 2 illustrate how both definitions show strong positive correlation when Euclidean correla-
tion is either strongly positive or strongly negative. Scenarios 3 and 4 highlight how the centered Fréchet
correlation is negative when X1 and X2 tend to move in opposite directions relative to their means. Scenario
5 shows that the centered Fréchet correlation near zero when X1 and X2 are independent.

of observations for each scenario, along with the non-centered and centered Fréchet correlations

of each. In terms of Euclidean correlation, scenarios 1 and 2 show strong positive and negative

correlation respectively, scenario 3 shows weaker positive correlation, and scenarios 4 and 5 have

correlation near zero.

The non-centered Fréchet correlation measures how much the X1 and X2 deviate from their

mean at the same time. In this regard, scenarios 1 and 2 both exhibit strong positive non-centered

Fréchet correlation, as the points deviate from (0.5, 0.5) together. In scenarios 3 and 4, X1 val-

ues far from their mean are paired with X2 values near their mean, and vice versa, resulting in

smaller (but still positive) non-centered Fréchet correlations. Finally, scenario 5 shows how the

non-centered Fréchet correlation disagrees with the classical Euclidean definition.
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The centered Fréchet correlation focuses on the degree to which the distance from X1 to its

mean is above or below average, and similarly for X2. For scenarios 1 and 2, X1 and X2 are

both above and below average distance simultaneously, leading to strong positive correlation. In

scenario 3, X1 is near its mean when X2 is far away from its and vice versa, leading to a strong

negative centered Fréchet correlation, similarly for scenario 4. In scenario 5, when X1 and X2

are generated independently, the centered correlation is near zero. Scenarios 3-5 in particular

show how the centered version of correlation retains some desirable characteristics of Euclidean

correlation and is arguably easier to interpret than the non-centered version.

The examples in Figure 5.1 illustrate how both definitions of Fréchet correlation differ from

the Euclidean notion when looking at Euclidean data, but this is expected since metric spaces force

us to redefine what it means to be correlated using only distances. In the rest of this paper, we

will consider the non-centered version of Fréchet covariance, as it integrates nicely with Dubey &

Müller’s Fréchet variance.

5.4 Properties of Fréchet Covariance

In this section we define the (non-centered) Fréchet covariance matrix, and establish consis-

tency for the (non-centered) Fréchet covariance defined in (5.21). We begin by considering the

Fréchet covariance matrix constructed using Dubey & Müller’s Fréchet variances on the diagonal

and our non-centered Fréchet covariance on the off-diagonals. Given S metric spaces {Ωs} for

s ∈ {1, . . . , S}, and random object vector X = (X1, . . . , XS) ∈ Ω1 × . . . × ΩS with probability

measure P : Ω1 × . . . × ΩS → R≥0 and Fréchet mean vector (µ1, . . . , µS). Define the (s, s′)

element of the population covariance matrix Σ and the sample covariance matrix Σ̂ as

Σ(s, s′) =





σ2
s s = s′

σss′ s 6= s′
, (5.28)
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Σ̂(s, s′) =





σ̂2
s s = s′

σ̂ss′ s 6= s′
. (5.29)

Defining the vector of distances dµ(X) = (d(X1, µ1), . . . , d(XS, µS))
T , we can write Σ = E[dµd

T
µ ].

Similarly, if Xsi is the ith observation in the sth metric space and µ̂s the sample Fréchet mean in

the sth metric space, define dµ̂i = (d(X1i, µ̂1), . . . , d(Xsi, µ̂s))
T so that Σ̂ = 1

n

∑n
i=1 dµ̂id

T
µ̂i. This

makes it clear the both Σ and Σ̂ are positive semi-definite:

Lemma 3. The Fréchet population covariance matrix Σ and sample covariance matrix Σ̂ are both

positive semi-definite. If the elements of dµ are non-degenerate, then Σ is positive definite. If the

vectors {dµ̂1, . . . , dµ̂n} span R
S , then Σ̂ is positive definite.

Proof of Lemma 3. Given vector z ∈ R
S , then

zTΣz = zTE[dµd
T
µ ]z = E[zTdµd

T
µz] = E[||dTµz||2] ≥ 0. (5.30)

The quantity is strictly greater than zero if the elements of dµ are non-degenerate. Similarly for Σ̂,

zT Σ̂z =
1

n

n∑

i=1

zTdµ̂id
T
µ̂iz =

1

n

n∑

i=1

||dTµ̂iz||2 ≥ 0. (5.31)

If the vectors {dµ̂1, . . . , dµ̂n} span R
D, then any vector z can be written as a1dµ̂1 + · · · + andµ̂n

so that zT z = a1d
T
µ̂1z + · · · + and

T
µ̂nz. Hence if (5.31) is equal to zero, then dTµ̂iz = 0 for each i,

implying zT z = 0, so z = 0.

From now on we assume that all population and sample covariances are strictly positive defi-

nite. The remaining results of this section will focus on the the covariance of (Xs, Xs′) ∈ Ωs×Ωs′ ,

and require the following assumptions:

A.1 The population and sample Fréchet means in each metric space, (µs, µs′) and (µ̂s, µ̂s′),

exist and are unique, and for any ǫ > 0, infd(ω,µs)>ǫ E[d2(ω,Xs)] > E[d2(µs, Xs)] and
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infd(ω,µs′ )>ǫ E[d2(ω,Xs′)] > E[d2(µs′ , Xs′)]. In other words, in each metric space, the ex-

pected distance from the mean is uniquely minimum compared to the expected distance from

any other point ω which is further than ǫ from the mean.

This assumption is analogous to one made by Dubey & Müller in [50], and Petersen & Müller

show in [84] that it is satisfied by the following two metric spaces: univariate probability distri-

butions with compact support and finite second moment equipped with the L2-Wasserstein metric,

the set of correlation matrices of a fixed dimension equipped with the Frobenius metric. Dubey &

Müller additionally claim that the set of graph Laplacians of connected, undirected, simple graphs

of a fixed dimension also satisfy the assumptions [50]. Under Assumptions A.1, we establish

consistency of the sample Fréchet covariance σ̂ss′ .

Theorem 6 (Consistency). Under Assumption 1 above, the sample covariance converges to the

population covariance in probability, that is σ̂ss′
p→ σss′ as n → ∞.

The proof of Theorem 6 is provided in Appendix A.

5.5 Tests for Differences in Means and Variance / Covariance

Matrices

Our goal is to investigate various tests for differences between J groups in S metric spaces, as

an analog to the MANOVA procedure. We will consider various tests based on several test statis-

tics, but in all cases the null hypothesis we wish to test is simultaneous equality of the mean vector

across groups and equality of covariance matrix across groups. Letting µj = (µj1, . . . , µjS)
T and

Σj be the mean vector and covariance matrix for group j respectively, then the null hypothesis can

be expressed as

H0 : µ1 = . . . = µJ , Σ1 = . . . = ΣJ . (5.32)
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If the groups deviate from the null hypothesis, we expect the sample means and sample covariance

matrices to deviate from one another, so we seek test statistics which quantify these differences.

5.5.1 Adaptations of Classical MANOVA Statistics

Several Euclidean MANOVA tests, including Wilks’ lambda [87], Pillai & Bartlett’s trace [88],

Lawley & Hotelling’s trace [89], and Roy’s Root [90], test for differences in means by relying on

a partition of the total sums of squares and cross products matrix into a between group comopo-

nent (the treatment) and a within group component (the residuals). Such a partition is possible

in Euclidean space, thanks to the Pythagorean theorem, but not always possible in generic metric

spaces. We can circumvent this problem, however, following the approach of Dubey & Müller’s Fs

statistic, which compares the pooled covariance matrix to the weighted mean of group covariance

matrices.

Let σ̂jss′ be the covariance of group j, and σ̂pss′ be the pooled covariance. Define the (s, s′)

element of the population and sample pooled covariance matrices as

Σp(s, s
′) =





σ2
ps s = s′

σpss′ s 6= s′
, (5.33)

Σ̂p(s, s
′) =





σ̂2
ps s = s′

σ̂pss′ s 6= s′
. (5.34)

Similarly, define the (s, s′) element of the population and sample group weighted mean covariance

matrices as

Σg(s, s
′) =





∑J
j=1 γjσ

2
js s = s′

∑J
j=1 γjσjss′ s 6= s′

, (5.35)

Σ̂g(s, s
′) =





∑J
j=1 γjσ̂

2
js s = s′

∑J
j=1 γjσ̂jss′ s 6= s′

. (5.36)
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Whereas Σp and Σ̂p capture the total variation across all groups, Σg and Σ̂g capture the within group

variation. When all groups share the same mean vector and covariance matrix, then Σp = Σg, so

Σ̂p will be close to Σ̂g. As the group mean vectors deviate from one another, Σ̂p will inflate while

Σ̂g will remain more or less the same.

It turns out that we can mimic Euclidean MANOVA statistics using Σ̂p and Σ̂g, without having

an explicit residuals term. For instance, the Pillai-Bartlett trace [88] can be expressed as the trace

of H(H+E), where H is the between-group sums of squares and cross product matrix, and E is the

residual sums of squares and cross product matrix. Consider starting with the pooled covariance,

Σ̂p, and subtracting the mean within group covariance, Σ̂g. This is similar to the idea of subtracting

the within group sum of squares from the total sum of squares, leaving only a between group effect.

Therefore we may loosely equate Σ̂p − Σ̂g to H , and similarly loosely equate Σ̂g to E, ignoring

obvious normalizing constants. Translating the Pillai-Bartlett trace into our context then produces:

Λpillai = tr[H(H + E)−1] = tr
[(

Σ̂p − Σ̂g

)
Σ̂−1

p

]
(5.37)

= tr(I − Σ̂gΣ̂
−1
p ) =

∑

i

λi

(
I − Σ̂gΣ̂

−1
p

)
, (5.38)

Where λi(A) denotes the ith eigenvalue of the matrix A. Under the null hypothesis, Σ̂gΣ̂
−1
p is close

to the identity matrix I , and Λpillai will be close to zero.

Another possible adaptation of a classical MANOVA test would be to perform a Euclidean

MANOVA on distances between observations and sample means. That is, for group j and ob-

servation i, define the vector of distances dµ̂ji = (d(Xj1i, µ̂j1), . . . , d(XjSi, µ̂jS))
T . each vector

summarizes an observation based on its distance to its respective group sample mean. We can then

apply the Pillai-Bartlett trace directly to the distances to compare the groups. We call this statistic

Λpillai,d. Clearly, if any of the group variances changes, the average distance must be changing as

well, which should be detected by Λpillai,d.
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5.5.2 Statistics Based on Riemannian Geometry

As was mentioned above, as the group mean vectors deviate from one another, Σ̂p will inflate

while Σ̂g will remain more or less the same, so a natural test for difference in means would be to

compare them to one another.

Since Σ̂g is the sum of positive-definite matrices, it is positive definite, whereas Σ̂p is positive

definite by Lemma 3. The space of symmetric positive definite (SPD) matrices is a manifold, so

the so Σ̂p and Σ̂g can be thought of as points on the manifold. This manifold can be endowed with

a Riemannian metric which defines the distance between points in any tangent space incident to

the manifold. To avoid confusion, note that the Riemannian metric does not measure distances

between points on the manifold (i.e. SPD matrices) directly, but the Riemannian metric can be

integrated along a path on the manifold to determine the length on the manifold, and the distance

between two points on the manifold can be taken as the length of the shortest path between them.

For more details on manifolds and Riemannian metrics, refer to Chapter 2.7. The shortest path

length between two SPD matrices provides a means to compare Σ̂g to Σ̂p and ultimately test for

differences between the groups.

We define the following statistics which compare the within group variation Σ̂g to the total

variation Σ̂p:

Rµ,Euc = dEuc

(
Σ̂p, Σ̂g

)
=

√∑

i

λ2
i

(
Σ̂p − Σ̂g

)
(5.39)

Rµ,AIRM = dAIRM

(
Σ̂p, Σ̂g

)
=

√∑

i

log2
[
λi(Σ̂−1

p Σ̂g)
]

(5.40)

Rµ,LERM = dLERM

(
Σ̂p, Σ̂g

)
=

√∑

i

λ2
i

(
Log(Σ̂p)− Log(Σ̂g)

)
(5.41)

All of these statistics are expected to be small if all groups have the same population mean vector

and will increase as the mean vectors deviate from each other. The dLERM and dAIRM distances

are particularly sensitive to changes in determinant, which will certainly change for Σp as the

mean vectors grow further apart, so we anticipate that Rµ,LERM and Rµ,AIRM will be particularly
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sensitive to departures from the null hypothesis in (5.32). Later we will integrate each of the

statistics from this section into a global test for differences in means or covariance matrices.

The distances dEuc, dAIRM and dLERM defined respectively in (2.3), (2.4), and (2.5) can also be

used to compare the group covariance matrices in a pairwise fashion, in order to determine if any

covariance matrix differs from the others. Since the sample covariance matrices are each SPD, the

use of these Riemannian metric based distances is appropriate. This is similar in spirit to Dubey

& Müller’s Us statistic, which performs pairwise comparisons of group Fréchet variances. Like

Us, we consider the weighted average of all pairwise distances between group covariance matrices,

where the weights are the product of the proportions of observations in the respective groups:

RΣ,Euc =
∑

j<j′

γjγj′dEuc

(
Σ̂j, Σ̂j′

)
=

∑

j<j′

γjγj′

√∑

i

λ2
i

(
Σ̂j − Σ̂j′

)
(5.42)

RΣ,AIRM =
∑

j<j′

γjγj′dAIRM

(
Σ̂j, Σ̂j′

)
=

∑

j<j′

γjγj′

√∑

i

log2
[
λi(Σ̂

−1
j Σ̂j′)

]
(5.43)

RΣ,LERM =
∑

j<j′

γjγj′dLERM

(
Σ̂j, Σ̂j′

)
=

∑

j<j′

γjγj′

√∑

i

λ2
i

(
Log(Σ̂j)− Log(Σ̂j′)

)
(5.44)

Each of these quantities is expected to be small when the population covariance matrices of all

groups are equal, and grow as the covariance matrices differ from each other. Since each type of

distance is rooted in a different underlying geometry, covariance matrices which appear close in

one geometry may appear further apart in another geometry, and vice versa. Therefore we expect

the three statistics introduced in this section to have relative strengths and weaknesses for the types

of departures from equality of group covariance matrices they can detect well. We anticipate that

the statistics using dAIRM and dLERM will be more sensitive to differences in matrix determinant,

while the statistic using dEuc may be better equipped to detect differences between matrices of

similar determinants.

Comparing the covariance matrices between groups implicitly compares the metric space to

metric space dependence of the random object vectors across groups. Another way to compare

dependence between groups is to compare their centered Fréchet correlations. Define the (s, s′)
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element of the centered sample correlation matrix P̂j of group j be defined as

P̂j(s, s
′) =





1 s = s′

ρ̂′jss′ s 6= s′
, (5.45)

where ρ̂′jss′ is the sample centered covariance between metric spaces s and s′ in group j. Since the

centered Fréchet correlation is just the classical Euclidean correlation applied to the distances of

the random objects from their means, P̂j is necessarily positive semi-definite, so we can use the

same approach to compare correlation matrices as we used to compare covariance matrices above:

RP,Euc =
∑

j<j′

γjγj′dEuc

(
P̂j, P̂j′

)
=

∑

j<j′

γjγj′

√∑

i

λ2
i

(
P̂j − P̂j′

)
(5.46)

RP,AIRM =
∑

j<j′

γjγj′dAIRM

(
P̂j, P̂j′

)
=

∑

j<j′

γjγj′

√∑

i

log2
[
λi(P̂

−1
j P̂j′)

]
(5.47)

RP,LERM =
∑

j<j′

γjγj′dLERM

(
P̂j, P̂j′

)
=

∑

j<j′

γjγj′

√∑

i

λ2
i

(
Log(P̂j)− Log(P̂j′)

)
(5.48)

It is possible that comparing correlations directly will be more sensitive to changes in dependence

than comparing covariance matrices, so the correlation based statistics are worth consideration.

5.5.3 Statistics Based on the Fréchet ANOVA

Just as Dubey and Müller defined the Ts statistic to compare group means and variances, we

may analogously define the Tss′ statistic as

Tss′ =
nUss′∑J

j=1
γj

V̂ar(σ̂jss′ )

+
nF 2

ss′∑J
j=1 γ

2
j V̂ar(σ̂jss′)

, (5.49)

where

Fss′ = σ̂pss′ −
J∑

j=1

γjσ̂jss′ (5.50)
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Uss′ =
∑

j<j′

γjγj′

V̂ar(σ̂jss′)V̂ar(σ̂j′ss′)
(σ̂jss′ − σ̂j′ss′)

2 , (5.51)

Unlike Ts, we do not have asymptotic results for Tss′ , though if the Fréchet covariance is indeed

asymptotically normal, then under the null hypothesis Tss′ would be asymptotically χ2
J−1 as n →

∞, the proof being identical to the proof of Theorem 2 in [50]. Based on simulation studies, we

suspect asymptotic normality of the Fréchet covariance may hold at least in some circumstances,

suggesting we may be justified in comparing Tss′ to a χ2
J−1 distribution to test the null hypothesis.

We explore the validity of this approach in a few example scenarios below.

In the preceding three sections we introduced several statistics, two inspired by the classical

MANOVA test, three comparing pooled and group mean covariance matrices, three comparing

group covariance matrices, three comparing group centered correlation matrices, and one analo-

gous to the statistic involved in the Fréchet ANOVA. In the next section we will employ these

statistics in the construction of tests for the null hypothesis in (5.32).

5.5.4 Testing the Null Hypothesis

Broadly speaking, we will consider three main approaches to testing the null hypothesis in

(5.32). The first approach will combine the Riemannian mean, covariance matrix, and correlation

matrix based statistics from the previous two sections into a global permutation-based test, achiev-

ing the desired Type I error rate using a Bonferroni correction. Doing this for each Riemannian

metric gives three global tests. The second approach will combine several Fréchet ANOVA test

statistics, each of which applies to just one or two metric spaces, into a single test, also using a

Bonferroni correction to account for multiple tests. Using the Ts and Tss′ statistics, we will con-

sider a test which compares against the χ2
J−1 distribution, as well as a permutation test. The third

approach will apply both extensions of the Pillai-Bartlett trace statistic discussed above, resulting

in two tests, one based on permutations and one based on an approximation using the F distribution.

Each test will be discussed in more detail below.
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In the absence of any distributional assumptions on the underlying metric space probability

measures, we lack distributions for the Riemannian statistics under the null hypothesis. The null

hypothesis only assumes equality of the first and second moments between the groups, however if

we make the stronger assumption that all moments are equal, then observations are exchangable

between groups, and we may generate an approximate sampling distribution for the statistics using

either label permutation or bootstrap. Permutation tests have recently been employed to compare

groups of persistence diagrams [91], another non-euclidean setting, and Dubey & Müller [50]

found in simulation studies that a bootstrapped version of their Ts statistic showed improved power

over the version comparing against a χ2
J−1 distribution.

We create three global tests, one for each Riemannian-based metric, each comprising of a mean

test, a covariance matrix test, and a correlation matrix test, then apply a Bonferroni correction by

rejecting if any statistic is greater than the 1 − α/3 upper-quantile of its permutation distribution.

Explicitly, the three tests are:

1. REuc: reject if the permutation test for any of Rµ,Euc, RΣ,Euc, RP,Euc rejects at the α/3 level

2. RAIRM : reject if the permutation test for any of Rµ,AIRM , RΣ,AIRM , RP,AIRM rejects at the

α/3 level

3. RLERM : reject if the permutation test for any of Rµ,LERM , RΣ,LERM , RP,LERM rejects at

the α/3 level

Another way to test the null hypothesis is by applying the Fréchet ANOVA in (5.15) to each

of the S metric spaces separately, and also apply the analogous ANOVA for covariances in (5.49)

for each distinct pairing of metric spaces, performing S(S + 1)/2 tests in total. Again we can

use a Bonferroni correction to construct a single global test, TFA, which we reject if any of the S

ANOVA tests or any of the S(S − 1)/2 ANOVA for covariance tests reject at the 2α/(S(S + 1))

significance level. We compare each statistic against the 1 − 2α/(S(S + 1)) upper quantile of

a χ2
J−1 distribution. We also consider permutation based tests, denoted TFA,perm, where each
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statistic is compared against the 1− 2α/(S(S+1)) upper quantile of the permutation distribution,

to investigate if it produces higher power at lower sample sizes as was observed in [50].

Finally, we construct tests using each version of the Pillai-Bartlett trace, Λpillai and Λpillai,d

to examine a more straightforward application of existing MANOVA methods. Again, we lack

distributional results for Λpillai, so we resort to a permutation test comparing Λpillai to the upper

1 − α quantile of its permutation distribution. On the other hand, Λpillai,d is just the Euclidean

Pillai-Bartlett trace, which typically assumes normality and homogeneity of variance. The statistic

is usually transformed and compared to an F distribution, and tends to be robust against departure

from normality assumptions, see [92] or [93] for more details. We’ll denote these tests as Λpillai

and Λpillai,d respectively.

In total, we have seven tests reflecting three broad approaches to comparing two or more groups

in multiple metric spaces: REuc, Riemannian permutation test based on the Euclidean Rieman-

nian metric; RAIRM , Riemannian permutation test based on the affine invariant Riemannian met-

ric; RLERM , Riemannian permutation test based on the log-Euclidean Riemannian metric; TFA,

asymptotic test based on the Fréchet ANOVA (recall that asymptotic results for the Fréchet co-

variance remain to be proven); TFA,perm, permutation test based on the Fréchet ANOVA; Λpillai,

permutation test adapted from the Pillai-Bartlett trace; Λpillai,d, classical Pillai-Bartlett trace ap-

plied to the distances of observations to their respective group means. In the next section, we will

evaluate these statistics under various departures from the null hypothesis in two separate scenario

5.6 Simulation Studies

To compare the power and Type I error rate of the tests described in the previous section, we

simulate data under the null hypothesis and under various departures from the null hypothesis

for two different scenarios, performing each test on each sample. All permutation-based tests

permuted group labels 500 times to generate a null distribution, and 6,000 simulated data sets were

used to estimate the power and Type I error rate. In both scenarios, we use a desired Type I error

rate of α = 0.05.
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5.6.1 Scenario 1: Normal Distributions in Two Metric Spaces, Two Groups

In the first scenario, we compare J = 2 groups in S = 2 metric spaces, Ω1 and Ω2. Random

objects X1 ∈ Ω1 are normal distributions with random mean a and unit variance, and random

objects X2 ∈ Ω2 are normal distributions with random mean b and unit variance. Both Ω1 and Ω2

are equipped with the Wasserstein-2 metric which reduces to the L2 Euclidean distance between

the means of the probability distributions. The Fréchet mean of X1 is a N(E(a), 1) distribution,

and the mean of X2 is a N(E(b), 1) distribution. The Fréchet variance of X1 is simply var(a), and

the Fréchet variance of X2 is var(b). For this scenario, we performed five simulation studies to

examine different ways the data might depart from the null hypothesis, summarized in Table 5.1.

In each study, both groups have sample size n = 100.

The first study investigates a change in the Fréchet mean of X1 for group 2. That is, a ∼

N(0, 0.52) and b ∼ N(0, 0.22) for group 1, and a ∼ N(δ, 0.52) and b ∼ N(0, 0.22) for group 2,

where we let δ range between −1 and 1. Note that 0 corresponds to the null hypothesis, and a and

b are independent. Figure 5.2a shows five realizations of X1 for group 2, under different values of

δ.

The second study investigates a change in the variance of X2 for group 2, such that b ∼

N(0, (0.2r)2) with r ranging between 0.125 and 3, with r = 1 corresponding to the null hy-

pothesis. Figure 5.2b shows five realizations of X2 for group 2, under different values of r. The

distribution of group 1 is the same as in study 1, and again a and b are independent.

The third and fourth studies investigate changes in the dependence between X1 and X2, where

dependence is induced by giving a and b a non-zero covariance. For study 3, a and b for group 1

remain independent, while cor(a, b) = v for group 2, with v ranging between 0 to 1, and v = 0 cor-

responding to the null hypothesis. Note that a and b are real numbers, so v is the classic (Euclidean)

correlation. For study 4, we let a and b for group 1 have some dependence (i.e. cor(a, b) =
√
0.5 ),

while we let cor(a, b) = v range between 0 and 1 for group 2. Figure 5.2c shows five realizations

of (X1, X2) in group 2 under different values of v, where X1 and X2 are illustrated in the margins,

and the points correspond to (a, b) for each realization.
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(a) Five realizations of X1 for group 2 for simulation
scenario 1, study 1, for three values of δ, which is the
mean of a.

(b) Five realizations of X1 for group 2 in simulation sce-
nario 1, study 2, for three values of r. The length of the
whiskers in each plot shows the standard deviation of b,
which is 0.2r.

(c) Five realizations of (X1, X2) for group 2 in simulation scenario 1, study 3, for three values of v = cor(a, b).
X1 and X2 are illustrated in the margins, and the points correspond to (a, b). Dashed lines connect each instance of
(X1, X2) to its corresponding point (a, b).

Figure 5.2: Data examples for the first four studies in scenario 1

The fifth study investigates multiple simultaneous departures from the null hypothesis. Here

a ∼ N(δ, 0.52) and b ∼ N(0, (0.2r)2), and cor(a, b) = v for group 2, whereas in group 1, a and b
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have the same distributions as in study 1. We allow δ to range between 0 to 1, r range from 1 to

3, and v range from 0 to 1 all simultaneously. Specifically, we let (δ, r, v) = (1−∆)× (0, 1, 0) +

∆× (1, 3, 1), with ∆ ∈ [0, 1] indicating the overall “effect size”.

Study / Group a b a vs. b Parameter Range

Study 1: Means
- Group 1 N(0,0.52) N(0, 0.22) Independent −1 ≤ δ ≤ 1
- Group 2 N(δ,0.52) N(0, 0.22) Independent

Study 2: Variances
- Group 1 N(0, 0.52) N(0,0.22) Independent

0.125 ≤ r ≤ 3
- Group 2 N(0, 0.52) N(0, (0.2r)2) Independent

Study 3: Covariances
- Group 1 N(0, 0.52) N(0, 0.22) Independent

0 ≤ v ≤ 0.9
- Group 2 N(0, 0.52) N(0, 0.22) cor(a, b) = v

Study 4: Covariances
- Group 1 N(0, 0.52) N(0, 0.22) cor(a, b) =

√
0.5

0 ≤ v ≤ 0.9
- Group 2 N(0, 0.52) N(0, 0.22) cor(a, b) = v

Study 5: Composite
- Group 1 N(0,0.52) N(0,0.22) Independent 0 ≤ δ ≤ 1

1 ≤ r ≤ 3
0 ≤ v ≤ 0.9

- Group 2 N(δ,0.52) N(0, (0.2r)2) cor(a, b) = v

Table 5.1: Summary of simulation parameters for groups 1 and 2 in each study of scenario 1. Bold sections
highlight the differences between groups in each study.

The simulation parameters for scenario 1 are summarized in Table 5.1 and the results of the

simulation studies are shown in Figure 5.3. When the group means differ in study 1, all tests except

Λpillai,d show similar ability to reject H0 at varying effect sizes. Since Λpillai,d only works with

distances, it cannot pick up on a shift in the mean of X2, so it rejects with rate α = 0.05 at all effect

sizes.

When changing group variances in study 2, however, Λpillai,d is able to detect the difference,

while Λpillai is not. Recall the latter test, being reconfigured from the Euclidean Pillai-Bartlett

MANOVA test, is only designed to detect differences in means. Both the Riemannian (REuc,

RAIRM , RLERM ) and Fréchet ANOVA based tests (TFA and TFA,perm) reject under departure

of the null as well, though the Riemannian test using the underlying Euclidean Metric requires a
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(a) Study 1: Means (b) Study 2: Variances

(c) Study 3: Covariances (d) Study 4: Covariances

(e) Study 5: Composite

Figure 5.3: Results from each simulation study in scenario 1. In each plot, a vertical black line indicates
the null hypothesis, and a horizontal black line indicates the desired Type I error rate, α = 0.05.

much more drastic group difference to detect the difference. This shows the utility of the LERM

and AIRM Riemannian geometries when comparing PSD matrices in certain scenarios.

For studies 3 and 4, the Riemannian tests show the greatest sensitivity to changes in depen-

dence. Through additional simulations (not shown), we identified that the statistics which compare
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correlation matrices (RP,Euc, RP,AIRM , RP,LERM ) are the the most sensitive to the differences in

dependence in these studies. Omitting the correlation statistics from the Riemannian metric based

tests drastically decreases their power against this alternative. The Fréchet ANOVA based tests

(TFA, TFA,perm) include a statistic testing for changes in covariance, T12, resulting in power

against the alternatives in these studies, although substantially lower than that of the Riemannian

tests. The Pillai-Bartlett tests (Λpillai,d, Λpillai) show that adapting classical MANOVA proce-

dures may not prove useful in some instances, with Λpillai showing low power even at the largest

effect size of v = 1 in scenario 3, and Λpillai,d rejecting close to α = 0.05.

Though studies 1-4 show that the tests considered can behave very differently under different

types of departures from the null hypothesis, they perform similarly when groups 1 and 2 differ in

several ways simultaneously as in study 5. Presumably each test is leaning on its own strengths in

this case, and the similar power curves are a function of the relative magnitude of change in mean,

variance, and covariance affected by the chosen ranges of δ, r, and v respectively.

Across all studies, the non-Euclidean Riemannian metric based tests (RLERM , RAIRM ) per-

form the most consistently well, being on par or superior to the other tests examined.

5.6.2 Scenario 2: Random Networks with Node Covariates, Two Groups

In the second scenario, we consider random networks with undirected, simple edges (no loops

or multi-edges) with ten nodes each and a real valued covariate on each node. Our interest is in

detecting a difference between the groups with respect to network topology and/or node covariates,

or some change in the relationship between topology and covariates. Therefore we identify two

metric spaces, one which captures network topology and one which captures the node covariates.

Let Ω1 consist of graph Laplacians equipped with the Frobenius metric, and Ω2 consist of vectors

in R
10 equipped with the standard Euclidean metric, so that each network can be represented by a

random object vector (X1, X2) ∈ Ω1 × Ω2.

We generate observations of (X1, X2) by first sampling X1, the network topology, then sam-

pling X2, the node covariates, conditional on X1. We sample random networks using the Barabasi-
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Study / Group γ ν

Study 1: Power Law
- Group 1 ∈ (2,3) 1
- Group 2 2.5 1

Study 2: Power Law
- Group 1 ∈ (−1,2) 1
- Group 2 1 1

Study 3: Dependence
- Group 1 2.5 1
- Group 2 2.5 ∈ (0.125,3)

Study 4: Composite
- Group 1 ∈ (2.5,3) 1
- Group 2 2.5 ∈ (1,3)

Table 5.2: Summary of simulation parameters for Groups 1 and 2 in each study of scenario 2. Bold sections
highlight the differences between groups in each study.

Albert growth-plus-preferential-attachment mechanism [94] in which each network starts with a

single node, then nodes are added one at a time, each connecting ("attaching") to a single exist-

ing node at random. The probability of attaching to an existing node is proportional to kγ with

γ ∈ R, where k is the current number of edges currently incident to that node, its degree. Note

that a node’s degree k can change as the network is constructed, so we let kf denote a node’s final

degree after the network is fully sampled. Values of γ closer to 0 approach more uniform degree

distributions while values further from 0 tend to produce more skewed degree distributions. Each

node covariate is generated according to a Gamma distribution with mean kf , and variance ν. Be-

cause network topology and node covariates both depend on node degree kf , there is an inherent

dependence between X1 and X2, and the strength of that dependence depends on the magnitudes

of γ and ν: larger magnitudes of γ and smaller values of ν correspond with stronger dependence

between X1 and X2. We consider four studies, summarized in Table 5.2, and for each, both groups

have sample size n = 100.

For the first study, γ is fixed at 2.5 for group 2 while it varies between 2 and 3 for group 1. Both

groups have ν = 1. The second study is identical to study 1, except that γ is fixed at 1 for group

2 while it varies between −1 and 2 for group 1. Changing γ will affect the mean and variance
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(a) Study 1: Topology 1 (b) Study 2: Topology 2

(c) Study 3: Node Features (d) Study 4: Composite

Figure 5.4: Results from each simulation study in scenario 2. In each plot, a vertical black line indicates
the null hypothesis, and a horizontal black line indicates the desired Type I error rate, α = 0.05

of X1 (network topology) as well as the mean of X2 (node covariates), leading to a multifaceted

departure from the null hypothesis.

In the third study, γ = 2.5 for both groups, but ν is fixed at 1 for group 1 and varies between

0.125 and 3 for group 2. Higher values of ν lead to weaker dependence between X1 and X2. In

the fourth study both groups vary at the same time, but in different ways. For group 1, γ varies

between 2.5 and 3 with ν fixed at 1, while for group 2, ν varies between 1 and 3 simultaneously

with γ fixed at 2.5. Specifically, (γgroup 1, νgroup 2) = (1−∆)× (2.5, 1) + ∆(3, 3), with ∆ ∈ [0, 1]

indicating the overall “effect size”.
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The results of the simulation studies are shown in Figure 5.4. In study 1 the changing topology

is best detected by the Fréchet ANOVA based tests, the Riemannian test using the underlying

Euclidean metric, and the Pillai-Bartlett trace using distances. In this case, the non-Euclidean

geometry imposed by the AIRM and LERM metrics works against those tests. It turns out that

those tests are most sensitive to changes in determinants, owing to the behavior of the underlying

dLERM and dAIRM distances. For instance, the shortest path between two PSD matrices A and

B with the same determinant will always follow a curve of constant determinant. Empirically,

changing γ results in group covariance matrices which are different but have similar determinant,

similarly for the pooled and mean group covariance matrices, meaning this study is particularly

challenging for the RLERM and RAIRM tests.

Study 2 shows that RLERM and RAIRM have some ability to detect changes in γ, but are much

less powerful that other tests. Study 3 reflects a more isolated difference between groups, where

only the variance of X2 and covariance between X1 and X2 change. In this case, the RAIRM and

RLERM are comparable to or are better than the Fréchet ANOVA based tests.

When combining both a changing γ and a changing ν in study 4, we see that the RAIRM and

Λpillai,d tests have the greatest sensitivity to change, but again this is influenced by the relative

magnitude of change of γ and ν.

In all four networks studies, the distance based Pillai-Bartlett test is among the best performing

of all tests considered, which makes sense given that all studies involve changing variances and

hence changing distances between the groups. On the other hand, the adapted Euclidean Pillai-

Bartlett test shows some power against changing γ, which affects the mean of X1, but is not

sensitive to changing ν at all, which affects only variances and covariances.

5.6.3 Type I Error Rate

Table 5.3 summarizes the Type I error for scenarios 1 and 2. All tests are below the desired

Type I error rate of 0.05 in both scenarios, with the exception of the Fréchet ANOVA based TFA

in Scenario 1, at 0.074. This statistic relies on asymptotic results for the Fréchet variance, and
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Scenario REuc RAIRM RLERM TFA TFA,perm Λpillai Λpillai,d

1 0.046 0.048 0.047 0.074 0.041 0.049 0.050
2 0.045 0.046 0.044 0.033 0.030 0.051 0.051

Table 5.3: Type I error rates for each test in the studies of scenarios 1 and 2. The Type I error is not a
function of the alternative hypothesis so it is the same across all studies within each scenario. We simulated
6,000 data sets under each scenario, giving a standard error of approximately 0.003 for each estimate, and
used 1,000 permutations for each permutation test. .

presumptive (not yet proven) asymptotic results for the Fréchet covariance, so the over-rejection is

likely explained by a lack of convergence to the asymptotic distribution in the tail of the Fréchet

ANOVA statistics. Indeed, the same over-rejection is not seen in the permutation version of the

test.

The conservative nature of the Bonferronni correction can be seen in both the Riemannian

based tests, REuc, RAIRM , RLERM , and the Fréchet ANOVA based tests, TFA and TFA,perm,

which reject below the nominal level. As the number of metric spaces S increases, the Fréchet

ANOVA based tests must correct for a greater number of underlying tests, while the number of

underlying test statistics for the Riemannian based tests remain at three. The lowest Type I error

rate is seen for TFA and TFA,perm in scenario 2, resulting from correlation between the underlying

test statistics. We expect correlation to be common among the Fréchet ANOVA based statistics due

to the correlation between the estimated elements of the Fréchet covariance matrices. The Pillai

tests, Λpillai and Λpillai,d, don’t use a Bonforroni correction, and appear to reject at the nominal

level.

5.6.4 Effect of Sample Size and Group Balance

Finally, we investigate how sample size and balanced group sizes affect the performance of

each test in study 5 of scenario 1. Figure 5.5 shows power curves under three different sample

sizes: n1 = n2 = 30, n1 = n2 = 100, and n1 = n2 = 300. As expected, larger sample sizes lead

to increased power at all effect sizes across all tests examined. However we see the inflated Type

I error rate (shown at ∆ = 0 in Figure 5.5) for the asymptotic Fréchet ANOVA based test, TFA,

unsurprising given its reliance on large sample asymptotics. However, the permutation version of

107



Figure 5.5: Results of study 5 in scenario 1 at three different sample sizes (equal for each group). In each
plot, a vertical black line indicates the null hypothesis, and a horizontal black line indicates the desired Type
I error rate, α = 0.05.

Figure 5.6: Results of study 5 in scenario 1 with varying balance (unequal samples sizes). In each plot, a
vertical black line indicates the null hypothesis, and a horizontal black line indicates the desired Type I error
rate, α = 0.05.
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the Fréchet ANOVA based test, TFA,perm, shows a more appropriate Type I error and the best

power among the tests (excluding TFA) at the lower sample sizes.

Figure 5.6 shows the results of varying the relative sample size of each group, keeping the total

sample size the same (n1 + n2 = 300). We consider highly imbalanced (n1 = 270, n2 = 30),

moderately imbalanced (n1 = 100, n2 = 200), and balanced (n1 = 150, n2 = 150) situations. The

inflated Type I error rate (∆ = 0) of TFA is again present in the highly imbalanced case, for the

same reason as in the balanced design with n1 = n2 = 30, since group 2 has few observations.

Among the other tests, the Riemannian tests and distance based Pillai-Bartlett tests are best in the

highly imbalanced case.

5.7 Conclusions

In expanding the setting of random objects to multiple metric spaces, we defined the Fréchet

analog to covariance. We motivated two possible definitions and explored their interpretations,

as well as established consistency for the sample estimator for one of them, which allowed the

construction of a full metric space covariance matrix. Using this matrix, we considered various

tests for differences in mean and covariance structure in multiple metric spaces between two or

more groups. Finally, we examined the performance of these tests under two simulation scenarios

and studied their power characteristics under a variety of departures from the null distribution.

It is clear from our simulations that no single proposed test is universally preferred, a result

reminiscent of prior work comparing the performance of the various classical MANOVA tests [95,

96]. However, the adaptations of the Pillai-Bartlett test appeared to fall short of the performance

of the other tests: Λpillai,d because it only sees the within group distances, Λpillai because it is

not designed to test for variances. A possible augmentation to either Λpillai,d or Λpillai would

be to incorporate some adaptation of Box’s M test [97], though performance may be poor when

normality assumptions do not hold, as noted in [98].

Permutation tests provided a path to testing for group differences in the absence of asymptotic

results, which is particularly useful when distributional properties are unknown. However, the
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desire remains to establish asymptotic results for the Fréchet covariance, and theoretically justify

the Riemannian approaches, if possible showing asymptotically favorable power as sample size

grows.

Despite recent progress on working with random objects in metric spaces, many existing chal-

lenges remain. Among these are the selection of an appropriate metric, the mechanic of its compu-

tation, and efficient estimation of sample Fréchet mean. Regardless, future prospects of the metric

space framing of data sets appear promising.
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Chapter 6

Conclusion

The work in this dissertation explores two approaches to the analysis of network data. In one

approach we wish to know how special is an observed network, and in the other approach we wish

to compare several groups of networks (or other random objects) represented in multiple metric

spaces. These approaches differ both in their purpose and the generality of their scope, but they

are both intriguing avenues worthy of further research.

To address the question of how special is an observed network we considered the popular

method of comparing an observed network against random networks with the same degree distri-

bution. Sampling such networks can be reduced to sampling binary matrices with fixed marginal

sums, for which several sampling methods exist. We extended two MCMC techniques based on

edge swaps to allow for non-uniform sampling of the space through specification of a weight ma-

trix. This gave rise to structural zeros, which in some cases prohibit Markov transitions from one

state to another, resulting in a reducible chain. However when structural zeros are monotonic, we

prove the sample space is still connected. In principle, this type of non-uniform extension may

be applied to other property-preserving sampling algorithms, like the recently proposed method of

sampling chordal graphs [99]. It may also be possible to apply the non-uniform extension to future

methods which preserve properties like modularity, assortativity, or community structure, which

we believe would also be of interest to practitioners. We observe that non-uniform weights and the

presence of structural zeros increases autocorrelation between samples and affects mixing time,

which can be addressed using the methods in [100] for example, but further analysis is needed to

better quantify this impact theoretically. It would also be valuable to identify other structural zero

configurations which retain irreducibility in the Markov chain. The estimation or specification of

weights remains an open problem.

We also generalized a divide and conquer approach to the uniform sampling of binary matrices

with fixed margins. In exploring this generalization, we identified emergent properties of the space

111



of margin fills and spreads which satisfy the Gale-Ryser conditions. Importantly, this includes

the convexity of the integer polytope describing the set of valid fills, enabling full enumeration

with local search. In simulation studies, we investigated factors which contribute to algorithm

performance metrics like lookup table size and running time, which are partially implementation

dependent, but also depend on characteristics of the margins, the size of the matrix, etc. Many

open questions exist for this generalized method. A vital contribution would be a bound on the

worst case running time, which may be achievable using a similar approach to [33], which bounds

the number of nodes in the recursive computation tree. It would be tempting to explore a non-

uniform extension to the divide and conquer approach as well. However, we foresee challenges

in the bookkeeping, which is already quite complicated, required to incorporate the non-uniform

weights of all the matrices represented by a certain choice of margin, into the probability of choos-

ing that margin. It is possible this would require full enumeration of the sample space, defeating

one purpose of divide and conquer. Though we focus on sampling binary matrices, it is possible

a similar approach could be taken for sampling contingency tables. Though our generalized algo-

rithm is not simple, its success may indicate that related methods are awaiting discovery, perhaps

a probabilistic divide and conquer approach similar to [101].

To compare several groups of networks, we framed the statistics problem in terms of random

objects in metric spaces, where the lack of a coordinate system renders most classical statistical

methods unusable. Inspired by recent progress extending the ANOVA test to metric space ran-

dom objects, we considered a multivariate extension, presuming that multiple metric spaces may

more adequately capture the various facets of random objects better than a single metric space can.

We developed the notion of Fréchet covariance, and proved its consistency. We then proposed

and evaluated several tests for differences in means and covariance matrices between two or more

groups, with some tests being inspired by classical MANOVA tests, some drawing inspiration from

the Riemannian geometry of symmetric positive definite matrices, and some relying on our theo-

retical results. Most of these tests relied on permutation testing, but asymptotic results under the

null distribution may be achievable. At a minimum, asymptotic power results for one or more of
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the proposed tests would help validate them as possible choices for the metric space version of

MANOVA. Finally, extending to multiple metric spaces not only allows more expressive repre-

sentations of random objects, but also opens the door to the development of analogs of classical

multivariate approaches, for example, metric space on metric space regression and metric space

principal component analysis, both promising paths for future research.
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Appendix A

Proofs

A.1 Nonuniform Sampling of Fixed Margin Binary Matrices

Proof of Theorem 2. Here we prove that the weighted checkerboard swap algorithm samples from

P(·) defined in (3.1) when there are no structural zeros, by showing that the Markov chain implied

by the algorithm is ergodic (irreducible and aperiodic) with stationary distribution P(·) [28, 102].

Irreducibility. Since wij > 0 we have 0 < pij:i′j′ < 1, so irreducibility follows directly from

the result of Brualdi [3], which showed that a series of swaps could change any matrix A into any

other matrix B when row and column sums are preserved.

Aperiodicity. Since every checkerboard swap has probability less than 1, it is possible to

remain in the same state after a step. This is enough to show aperiodicity.

Detailed Balance. Lastly, we show that P (·) is the stationary distribution by showing that it

satisfies the detailed balance condition:

P(A) pA→B = P(B) pB→A. (A.1)

for any matrices A,B ∈ Ω′(p, q), where pA→B and pB→A are transition probabilities. If A and

B do not differ by a checkerboard swap, then both transition probabilities are 0, and detailed

balance holds trivially. If A and B differ by a checkerboard swap, then let u and u′ be its rows

and let v and v′ be its columns. Also, let k be the sum of the row counts, and define the set S =

{(u, v), (u′, v), (u, v′), (u′, v′)}, so that aij = bij for (i, j) /∈ S . The transition probability pA→B

is the probability of first selecting the two 1’s in the checkerboard,
(
k
2

)−1
, times the probability of

performing the swap puv;u′v′ . Starting from the left side of (A.1),

P(A)pA→B = (A.2)
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κ
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bij
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wu′vwuv′
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wuvwu′v′ + wu′vwuv′
(A.5)

=

[
1

κ

∏

ij

w
bij
ij

][(
k

2

)−1
wu′vwuv′

wuvwu′v′ + wu′vwuv′

]
(A.6)

= P(B)pB→A, (A.7)

so detailed balance holds.

Proof of Theorem 3. When structural zeros are present, that is, at least one of wij = 0, the Markov

chain implied by checkerboard swapping may become reducible. Here we prove that in the special

case of monotonic structural zeros, irreducibility still holds. Specifically we show that between

any two matrices A and B, there exists a checkerboard swap which reduces the Hamming distance

between them, so that repeated application of such swaps eventually reduces the distance to 0.

Finding a Swap. Consider A,B ∈ Ω′(p, q), and let dH be the Hamming distance between

them. The structural zeros are monotonic, so assume the rows and columns have been arranged

such that wij = 0 =⇒ wkj = wil = 0 for k > i, l > j. This places all the structural zeros in the

bottom-right corner (See Figure A.1).

Let (i, j) denote the first element where A and B differ, where “first” means no rows above

j contain a difference, and in row j, no column to the right of column i contains a difference.

Specifically, (i, j) satisfies:

1. aij 6= bij

2. akl = bkl for k < i and 1 ≤ l ≤ n (A and B agree above row i)

3. ail = bil for j < l (A and B agree in row j to the right of column j)
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In Figure A.1, we show agreement between A and B with cross hatching.

Without loss of generality, assume aij = 0 and bij = 1. A and B must have the same sum in

row i, but they differ at (i, j), so there must be some column j′ such that aij′ = 1 and bij′ = 0. We

also know j′ < j because j is the last column where A and B differ in row i. Similarly, there must

be some row i′, such that i′ > i, where ai′j = 1 and bi′j = 0, since the column sums agree.

Element (i′, j′), filled orange in Figure A.1, cannot be a structural zero due to the selection

criterion so one of the following is true:

1. Checkerboard in A and B: ai′j′ = 0 and bi′j′ = 1 so both A and B contain a checkerboard

with the elements in rows {i, i′} and columns {j, j′}. Performing the swap in either A or B

reduces dH by 4.

2. Checkerboard in A only: ai′j′ = bi′j′ = 0. Performing the swap in A reduces dH by 2.

3. Checkerboard in B only: ai′j′ = bi′j′ = 1. Performing the swap in B reduces dH by 2.

4. No checkerboard: ai′j′ = 1 and bi′j′ = 0.

Cases (1-3) allow checkerboard swaps which reduce the distance between A and B by at least 2.

Case (4) does not permit a swap, but if this is the case, a swap can be found as outlined below.

Let c be the last column in row i′ which is not a structural zero. Since row i′ in A and row i′ in

B have the same sum, the partial sums up to column c are also equal (see region with blue border

in Figure A.1).

Note that j, j′ ≤ c. In row i, A and B agree after column j (due to the selection procedure),

and since j < c, they agree after column c as well. Therefore the partial sums up to column c must

agree in row i as well (see region with red border in Figure A.1).

We will use the agreement of these partial sums to show that there exists some column j′′ which

permits a checkerboard swap in either A or B. Consider the difference matrix D = A − B with

elements dkl ∈ {−1, 0, 1}. Because the partial sums described above agree, we have:

0 =
c∑

l=1

dil =
∑

l∈{1,...,c}\{j,j′}

dil, (A.8)
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since dij = −1, dij′ = 1 (recall we are in Case 4 from above). Furthermore,

0 =
c∑

l=1

di′l =⇒ −2 =
∑

l∈{1,...,c}\{j,j′}

di′l, (A.9)

since di′j = di′j′ = 1. Therefore there must be some j′′ ∈ {1, . . . , c}\{j, j′} such that dij′′ > di′j′′ ,

and one of the following is true:

1. Checkerboard in B, dij′′ = 1, di′j′′ = 0: aij′′ = 1, bij′′ = 0, and ai′j′′ = bi′j′′ = 1, a checker-

board swap exists in B in rows {i, i′} and columns {j, j′′}.

2. Checkerboard in A, dij′′ = 1, di′j′′ = 0: aij′′ = 1, bij′′ = 0, and ai′j′′ = bi′j′′ = 0, a checker-

board swap exists in A in rows {i, i′} and columns {j, j′′}.

3. Checkerboard in A, dij′′ = 0, di′j′′ = −1: aij′′ = bij′′ = 1, and ai′j′′ = 0, bi′j′′ = 1, a

checkerboard swap exists in A in rows {i, i′} and columns {j, j′′}.

4. Checkerboard in B,dij′′ = 0, di′j′′ = −1: aij′′ = bij′′ = 0, and ai′j′′ = 0, bi′j′′ = 1, a checker-

board swap exists in B in rows {i, i′} and columns {j, j′′}.

Thus there exists a checkerboard swap which decreases dH by 2. Weighted curveball trades include

checkerboard swaps, so the proof applies to irreducibility of the weighted curveball algorithm as

well. This also implies that the number of swaps between any two matrices is bounded by dH
2

, and

hence the diameter of the Markov state space is bounded by half the maximum possible Hamming

distance between two matrices.

Proof of Theorem 4. Here we prove that the weighted curveball algorithm samples from P(·) de-

fined in (3.1) when there are no structural zeros.

Irreducibility. Any checkerboard swap can be viewed as a curveball trade, so the set of all

weighted curveball trades contains the set of all weighted checkerboard swaps. Therefore any state

transition in the checkerboard swap Markov chain is also a state transition in the curveball trade

chain, hence irreducibility holds for curveball as well.
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Aperiodicity. Again, since wij > 0, then 0 < pii′ < 1 for any proposed trade, so the probability

of remaining in the same state is non-zero, and the chain is aperiodic.

Detailed Balance. For detailed balance, consider matrices A and B which differ by a curveball

trade in rows u and u′. The curveball algorithm involves permuting the elements of the trade

candidates in Au\u′ and Au′\u to create a proposed trade, captured in (Bu\u′ , Bu′\u). The probability

of obtaining (Bu\u′ , Bu′\u) is

pc = |Au\u′ |!|Au′\u|!/
(
|Au\u′ |+ |Au′\u|

)
! (A.10)

= |Bu\u′ |!|Bu′\u|!/
(
|Bu\u′ |+ |Bu′\u|

)
!, (A.11)

where | · | is the cardinality operator. Note that pc is the same for all such partitions, that is, all

partitions are equally likely. Let S = {ij : i ∈ {u, u′}, j ∈ {ji ∪ ji′}}, and for a generic index t

and index set s, define wts =
∏
j∈s

wtj . Again starting from the left side of (A.1):

P(A)pA→B = P(A)pcpuu′ (A.12)

=
pc
κ

∏

ij

w
aij
ij

[
wuji

wu′ji′

wuji
wu′ji′

+ wu′ji
wuji′

]
(A.13)

=
pc
κ


∏

ij /∈S

w
aij
ij


wu′ji

wuji′

[
wuji

wu′ji′

wuji
wu′ji′

+ wu′ji
wuji′

]
(A.14)

=
pc
κ


∏

ij /∈S

w
bij
ij


wuji

wu′ji′

[
wu′ji

wuji′

wuji
wu′ji′

+ wu′ji
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]
(A.15)

=
pc
κ

∏

ij

w
bij
ij

[
wu′ji

wuji′

wuji
wu′ji′

+ wu′ji
wuji′

]
(A.16)

= P(B)pcpu′u (A.17)

= P(B)pB→A (A.18)

Hence the detailed balance condition holds, where the stationary distribution is again given by

(3.1).
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Figure A.1: Illustration of irreducibility proof Theorem 3. A and B have structural zeros (in black), and
agree for elements in the hashed region. Their partials sums must agree in the red regions, and their partial
sums must agree in the blue regions as well. Four cases are possible for the orange element.

A.2 Divide and Conquer Sampling of Fixed Margin Binary Ma-

trices

Proof of Lemma 1. Denote by h and v the horizontal and vertical transitions described in [2]. We

will show there is a minimal element for each block of p, and by combining the minimal elements in

each block we prove the existence of the minimal element of T (f l). Our definition of majorization

by orbits assumes the vectors have been sorted non-increasing, so we may treat them as integer

partitions. Since f l is fixed, every τ(pl, pr) ∈ T (f l) has the same number of elements in each

level set (block) of p. This means the ith block of every τ(pl) is a partition of f l
i into at most |si|

parts. Similarly, the ith block of every τ(pr) is a partition of f r
i into at most |si| parts. Denote

these partitions with λ(i) and µ(i) for the ith block of the left and right sides, respectively. Because

plj + prj = i for each j ∈ si, every h transition in λ(i) corresponds to an h transition in µ(i), and

every v transition in λ(i) corresponds to a v transition in µ(i). Repeated application of h and v

transitions will produce the minimal partitions λ(i)
∗ and µ

(i)
∗ . Define τ(pl∗) such that block i is λ(i)

∗

and define τ(pr∗) such that block i is µ
(i)
∗ . Given some τ(pl, pr) ∈ T (f l) where the ith block of

τ(pl) is λ(i) and the ith block of τ(pr) is µ(i) Since λ
(i)
∗ � λ(i) for each i, then τ(pl∗) � τ(pl), and

similarly since µ
(i)
∗ � µ(i), then τ(pr∗) � τ(pr).
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Proof of Theorem 5. We show that F1 and F2 are individually convex, from which the result imme-

diately follows. Consider mapping from the fill f l to the conjugate partition of the minimal element

τ(pl∗) ∈ T (f l), specifically define hk : Zb
≥0 → Z≥0 such that hk(f

l) =
∑m

i=1 I

(
τ(pl∗)i ≥ k

)
for

k ∈ (1, . . . , n). Then hk(f
l) is given by

hk(f
l) =

b∑

i=1

rem

(
f l
i

|si|

)
I

(
k − 1 <

f l
i

|si|
< k

)
+ |si|I

(
k ≤ f l

i

|si|

)
, (A.19)

where I is the indicator function, and rem(a/b) = a− b⌊a/b⌋ is the remainder function.

Each hk(f
l) is monotone in each f l

i and the domain F is convex, so the image Hk = hk(F ) is

convex for each k. The Gale-Ryser condition implies constraints to each hk(F ), namely

t∑

k=1

hk ≥
t∑

k=1

qlk (A.20)

for t ∈ (1, . . . , n). Let H ′
i ⊆ Hi be the subsets of each image which satisfy (A.20) for all t.

Because these are half space constraints, each H ′
i is still convex. Taking the preimage h−1

i (H ′
i) of

each subsetted range preserves convexity because the hi are monotone. Satisfying all constraints

simultaneously implies taking the intersection of all preimages: F1 =
⋂

i h
−1
i (H ′

i), which must

be convex as well. Applying this reasoning to the right fill analogously shows that F2 is also

convex.

Proof of Lemma 2. As in the proof of Lemma 1, we represent the spread orbits as lists of integer

partitions λ(i) and µ(i), for the ith block of the left and right sides, respectively. We will show

that any partition lists (λ(1), . . . , λ(b)) and (µ(1), . . . , µ(b)) can be reached from the minimum lists

(λ
(1)
∗ , . . . , λ

(b)
∗ ) and (µ

(1)
∗ , . . . , µ

(b)
∗ ), implied by τ(pl∗, p

r
∗) via reverse h and v transitions. Bry-

lawski [59] showed that for any partitions a and b of k with a � b, there exist a sequence of h and

v transitions which transition from a to b. We apply that process to each level set in turn, which

“reduces” λ(i) to λ
(i)
∗ and µ(i) to µ

(i)
∗ using h and v transitions. As shown in the proof for Lemma

1, a v or h transition in λ(i) corresponds to a v or h transition in µ(i) as well, so reducing the left
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partition also reduces the right partition. Assuming the starting partitions satisfy the Gale-Ryser

conditions, each reduction maintains satisfaction of the conditions by definition, and eventually

the minimum spread orbit is reached. Applying this chain of h and v transitions in reverse would

therefore change the minimal orbit into the desired valid spread orbit. Therefore an exhaustive

search over h and v transitions can produce all valid spread orbits within T (f l).

A.3 Fréchet Covariance and MANOVA Tests for Random Ob-

jects in Multiple Metric Spaces

Proof of Theorem 6. Note that d(µ̂s, µs)
p→ 0 by the continuous mapping theorem and consistency

of µ̂s, similarly for Xs′ . Then

|σ̂ss′ − σss′ | =
∣∣∣∣∣
1

n

n∑

i=1

d(µ̂s, Xsi)d(µ̂s′ , Xs′i)− E[d(µs, Xs)d(µs′ , Xs′)]

∣∣∣∣∣ (A.21)

= |A+B + C| (A.22)

≤ |A|+ |B|+ |C| (A.23)

where

A =
1

n

n∑

i=1

[d(Xsi, µ̂s)− d(Xsi, µs)] [d(Xs′i, µ̂s′)− d(Xs′i, µs′)] (A.24)

B =
1

n

n∑

i=1

d(Xsi, µ̂s)d(Xs′i, µs′) + d(Xsi, µs)d(Xs′i, µ̂s′)− 2d(Xsi, µs)d(Xs′i, µs′) (A.25)

C =
1

n

n∑

i=1

d(Xsi, µs)d(Xs′i, µs′)− E [d(Xsi, µs)d(Xs′i, µs′)] (A.26)

Each of |A|, |B|, and |C| converges to zero in probability as n → ∞, as follows:

|A| ≤ 1

n

n∑

i=1

|d(Xsi, µ̂s)− d(Xsi, µs)| |d(Xs′i, µ̂s′)− d(Xs′i, µs′)| (A.27)

≤ d(µ̂s, µs)d(µ̂s′ , µs′). (A.28)
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Since d(µ̂s, µs) and d(µ̂s′ , µs′) converge to zero in probability, so does |A|. For B,

|B| =
∣∣∣∣∣
1

n

n∑

i=1

[d(Xsi, µ̂s)− d(Xsi, µs)] d(Xs′i, µs′) + d(Xsi, µs) [d(Xs′i, µ̂s′)− d(Xs′i, µs′)]

∣∣∣∣∣

(A.29)

≤ 1

n

n∑

i=1

|d(Xsi, µ̂s)− d(Xsi, µs)| d(Xs′i, µs′)+

1

n

n∑

1=1

d(Xsi, µs) |d(Xs′i, µ̂s′)− d(Xs′i, µs′)| (A.30)

≤ 1

n

n∑

i=1

d(µ̂s, µs)d(Xs′i, µs′) + d(Xsi, µs)d(µ̂s′ , µs′), (A.31)

which converges to zero in probability from the consistency of µ̂s and µ̂s′ , as well as the bound-

edness of both metric spaces. Finally, |C| converges to zero in probability by the weak law of

large numbers and the boundedness of the metric spaces. Consistency follows from Slutsky’s

theorem.
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Appendix B

Enumerating Valid Spreads: The Naïve Approach

The set C1 is defined by multiple constraints. In this section we discuss how to obey those

constraints while enumerating spreads. Theorem 1 limits the set of valid partition pairs to those

where λl and λr are majorized by ql
′

and qr ′ respectively. Thankfully the Young diagram frame-

work provides an intuitive way to enumerate all partitions majorized by some starting partition.

Starting from ql
′
, we may repeatedly apply v and h shifts to enumerate all candidates for pl for

which the conditions of Theorem 1 hold, similarly for qr ′ and pr.

Given candidates {cl(i)} for pl, and candidates {cr(j)} for pr, we must identify all possible pairs

(cl(i), c
r
(j)) which can add together to produce p. It is important to note that for integer partitions,

order is unimportant, so the elements are ordered non-increasing by convention. However, cl(i) and

cr(j) may require permuting in order to add to p. This gives rise to the 3D matching problem:

σlcl(i) + σrcr(j) = p (B.1)

where σl and σr are unknown permutation matrices. This problem is famously NP-Hard [103],

and ostensibly must be solved for every possible (i, j) pair of candidates. Furthermore, our desire

is not simply to discover some (σl, σr) which satisfy (B.1), rather all valid (σl, σr) which give

a valid matching. As an example, consider the simple case p = (5, 4, 3) with candidates cl =

cr = (3, 2, 1). The choice of permutations is not unique, since {σl = (2, 1, 3), σr = (1, 3, 2)} and

{σl = (1, 3, 2), σr = (2, 1, 3)} both give rise to a valid matching. This example shows that a 3D

matching algorithm which produces a valid match may not be sufficient, and exhaustive search

may be the only way to ensure all matches are found. This approach is therefore ill-advised, and

below we outline a method of enumerating valid spreads that avoids the prohibitive computational

complexity of the naïve method.
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