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ABSTRACT

COVARIANCE INTEGRAL INVARIANTS OF EMBEDDED RIEMANNIAN MANIFOLDS
FOR MANIFOLD LEARNING

This thesis develops an effective theoretical foundation for the integral invariant approach to
study submanifold geometry via the statistics of the underlying point-set, i.e., Manifold Learning
from covariance analysis. We perform Principal Component Analysis over a domain determined
by the intersection of an embedded Riemannian manifold with spheres or cylinders of varying scale
in ambient space, in order to generalize to arbitrary dimension the relationship between curvature
and the eigenvalue decomposition of covariance matrices. In the case of regular curves in general
dimension, the covariance eigenvectors converge to the Frenet-Serret frame and the corresponding
eigenvalues have ratios that asymptotically determine the generalized curvatures completely, up to
a constant that we determine by proving a recursion relation for a certain sequence of Hankel deter-
minants. For hypersurfaces, the eigenvalue decomposition has series expansion given in terms of
the dimension and the principal curvatures, where the eigenvectors converge to the Darboux frame
of principal and normal directions. In the most general case of embedded Riemannian manifolds,
the eigenvalues and limit eigenvectors of the covariance matrices are found to have asymptotic
behavior given in terms of the curvature information encoded by the third fundamental form of
the manifold, a classical tensor that we generalize to arbitrary dimension, and which is related to
the Weingarten map and Ricci operator. These results provide descriptors at scale for the principal
curvatures and, in turn, for the second fundamental form and the Riemann curvature tensor of a
submanifold, which can serve to perform multi-scale Geometry Processing and Manifold Learn-
ing, making use of the advantages of the integral invariant viewpoint when only a discrete sample

of points is available.

il



ACKNOWLEDGEMENTS

I would like to thank my advisors Dr. Chris Peterson and Dr. Michael Kirby for their patience
and support over the last two years. I am enormously indebted to them for their permanent advice,
understanding and encouragement to make this project successful.

I am most grateful to Dr. Louis Scharf for many illuminating and enjoyable discussions.

I am very thankful to Dr. Renzo Cavalieri for his guidance during my first year here, and to
everybody at the Department of Mathematics at CSU for making this a hardly forgettable experi-
ence.

Conversations with Nand Sharma have been an endless source of philosophical debate, for
which I am really grateful. I also thank Kwancheol Shin and Zhuoran Wang for our mutual support
ever since our arrival.

I would also like to thank my professors at Universidade de Santiago de Compostela and Uni-
versidad de Oviedo for their encouragement and help to continue my studies after difficult times.

Finally, I deeply want to thank my family and friends for their permanent support and patience.
My early passion for physics and mathematics was heavily influenced by Moisés L. Caeiro. Great
moments with Daniel Barja, David Barral, Daniel Lowe, Xabier Palacios and Rodolfo Pardo also
shaped the person I am now. Unconditional support from my mother has been crucial to be able
to make my dreams come true. And the transcendental role played by Miguel Dovale to climb the
glass staircase of life has been and shall be fundamental until each of us fulfils his true purpose in
life.

And to you, the only one that defines what was, is and shall be important.

il



DEDICATION

As derradeiras lembranzas laranxas.

v



TABLE OF CONTENTS

ABSTRACT . . . . e il
ACKNOWLEDGEMENTS . . . . . . . e iii
DEDICATION . . . . . e e e v
LISTOF FIGURES . . . . . . e e e vi
Chapter 1 Introduction . . . . . ... 1
Chapter 2 PCA Integral Invariants in Differential Geometry . . . . . ... .. ... .. 12
2.1 Geometry of Riemannian Submanifolds . . . . . . ... ... .. ... ... 12
22 Integral Invariants and Descriptors . . . . . . . . . ... ... ... ... 19
Chapter 3 Regular Curves and Hankel Determinants . . . . . . .. ... ... ..... 26
3.1 Frenet-Serret Apparatus from Covariance Matrices . . . . . . . ... . .. 26
3.2 Hankel Matrices and Orthogonal Polynomials . . . . . . . ... ... ... 31
Chapter 4 Covariance Analysis of Smooth Hypersurfaces . . . . . . .. ... ... ... 39
4.1 Spherical Component Integral Invariants . . . . . .. ... ... ... .. 39
4.2 Patch Integral Invariants . . . . . . . ... ... ... .. ... ... 45
Chapter 5 Covariance Analysis of Embedded Riemannian Manifolds . . . . . ... .. 54
5.1 Third Fundamental Form of a Riemannian Submanifold . . . . .. .. .. 54
5.2 Cylindrical Domains . . . . . . . ... ... ... ... ... .. ..., 59
5.3 Spherical Domains . . . . . . ... ... ... 68
Chapter 6 Descriptors at Scale for Manifold Learning . . . . . .. ... ... .. ... 77
6.1 Spherical Component Descriptors . . . . . . . . . . ... ... ..., 78
6.2 Cylindrical and Spherical Patch Descriptors . . . . . . .. ... ... ... 80
Chapter 7 Conclusions and Outlook . . . . . .. ... ... ... ... ... ... ... 85
Bibliography . . . . . . L e 90
Appendix A Integration of Monomials over Spheres . . . . . . .. ... ... ... .. .. 96



LIST OF FIGURES

2.1 Cylindrical domain on a hypersurface. . . . . . .. ... .. ... ... ........ 22

4.1 TIrregular boundary of the spherical domain on a hypersurface. . . ... ... ... .. 47

vi



Chapter 1

Introduction

The purpose of Manifold Learning is the reconstruction of local geometry from the analysis
of a subset of its points, usually a finite sample and possibly with noise. The present dissertation
aims to describe an effective theoretical generalization to arbitrary dimension of a line of research
whose ultimate goal and application is the recovery of submanifold curvature via the study of the
statistical information of the underlying point-set.

A set of data points in some configuration space, typically a Riemannian manifold, often be-
longs to a lower-dimensional submanifold due to correlations among its degrees of freedom, e.g.
a constrained dynamical system in phase space. From the geometric perspective, arbitrary sam-
ples of points can be generated if one knows the submanifold a priori from implicit equations or
by given local chart parametrizations. From a data analysis point of view, only the point-set of
a sample from the submanifold is known and, ideally in the limit of the number of points, one
would like to characterize as uniquely as possible the geometric properties of the manifold from
which those samples arise by studying the statistical properties of the set. The core of our results
shows that the classical statistical concept of covariance matrix is essentially a purely geometrical
one: the eigenvalue decomposition of these matrices encodes the curvature information of the third
fundamental form, and its principal directions furnish an adapted frame for the tangent and normal
spaces of the submanifold.

In classical differential geometry manifolds are defined intrinsically from an atlas of coordi-
nate charts that cover the point-set with smooth transition functions between them. This definition
was established historically through the abstraction of embedded submanifolds in Euclidean space:
smooth subsets of ambient space which require fewer degrees of freedom to be described analyti-
cally, e.g. by local parametrizations. The classical differential geometry of curves and surfaces in
space built the foundation for the types of definitions, questions and structures studied in Rieman-

nian geometry for general manifolds of arbitrary dimension.



Regular curves in space [26], [33], [58] have as natural differential invariants the velocity and
acceleration vectors with respect to arc-length, which can be completed to an orthonormal basis of
the ambient space by the Gram-Schmidt method with higher derivative vectors. This provides a
comoving frame, the Frenet-Serret frame, which measures how the tangent line to the curve, and its
osculating planes move and rotate from point to point, providing a natural definition of curvature
that generalizes the inverse of the radius of the osculating circle, tangent to the curve at every
point. The fundamental theorem of regular curves states that the Frenet-Serret curvature functions
completely determine the parametric curve up to rigid motion, since the curve is locally given
by the solution of a system of ordinary differential equations whose coefficients are the curvature
functions. Therefore, curve parametrizations and their curvature functions can be thought of as dual
descriptions of the same local embedded geometric object. The case of curves in any dimension
is special with respect to higher-dimensional submanifolds because one-dimensional objects do
not have intrinsic curvature, which is defined by parallel transport in different tangent directions.
Indeed, the mathematical tools employed in our work are very different for each scenario.

The case of surfaces in space [26], [33], [58], very similar to hypersurfaces in any dimension,
was the first type of manifold with intrinsic geometry thoroughly studied by Gauf3, Darboux, Wein-
garten and others, paving the way to the abstract generalizations of Riemann, Levi-Civita, Ricci,
Cartan, and many other great mathematicians since then. A parametrized smooth surface has a tan-
gent plane at every point with an induced metric, or first fundamental form, given by the Euclidean
scalar product restricted to tangent vectors. Integration over curves inside the surface provides an
intrinsic metric distance between points. The twisting and torsion of the tangent plane from point
to point measures how the surface bends in ambient space. Equivalently, the change in different
tangent directions of the unit vector normal to the surface encodes this curving. Since Euclidean
space has a canonical notion of directional derivative, playing the role of global covariant deriva-
tive, it is natural to define the derivative of the normal vector in a tangent direction as a measure
of the extrinsic curvature of the surface at the point. Indeed, moving tangentially to the surface

in a certain direction provides a canonical measurement of curvature given by the acceleration of



the curve inside the surface associated to that direction and point. Since there is a tangent plane
worth of possible directions, the object to encode all this curvature information is a linear map, the
Weingarten operator, that associates to every tangent vector the directional derivative of the normal
vector. This map turns out to be self-adjoint with respect to the metric and its components in an
orthonormal tangent basis represent the second fundamental form of the surface. The eigenvalues
and eigenvectors of the Weingarten map are called the principal curvatures and principal directions
of the surface at the point. The principal curvatures are in fact the minimum and maximum cur-
vatures of curves inside the surface cut out by a normal plane, i.e., a plane spanned by the normal
vector and a tangent direction. The corresponding eigenvectors point in these directions. The sum
of the principal curvatures is the mean curvature, and their product is the GauBlian curvature; these
correspond to the trace and determinant of the Weingarten operator. Gaufl Theorema Egregium
shows how the GauBian curvature is an intrinsic invariant independent of the embedding that is
determined by combinations of the second fundamental form components.

Hypersurfaces [18], [35], [49] share a very similar differential-geometric structure, where the
main difference is that the tangent space is now higher-dimensional so the Weingarten operator has
as many principal curvatures and directions as the dimension of the hypersurface. The frame given
by the normal vector and principal directions is called the Darboux frame. A theorem by Bonnet,
similar to the Frenet-Serret characterization of curves, is available for hypersurfaces: if smooth
parametrization functions for the first and second fundamental form are given and satisfy the Gaul3-
Codazzi-Mainardi-Peterson equations, then a local hypersurface exists with those forms, unique up
to rigid motion. Notice that, in comparison, this is now a system of partial differential equations.
We can however regard the Darboux frame and the principal curvatures as all the information
needed to characterize the differential geometry of a hypersurface. This information is completely
encoded in the osculating quadrics that approximate the hypersurface at every point, since this is
determined by the Hessian of the functions that locally parametrize the hypersurface as a graph

manifold.



Embedded Riemannian manifolds [16], [32], [35], [49], [46] can be studied in a similar way
by means of a second fundamental form that now takes values in the normal bundle of the sub-
manifold. Since there are now more than one independent normal vectors, the generalized second
fundamental form keeps track of how they change tangentially by means of a Weingarten operator
per normal vector. Hence, principal directions and curvatures are only defined with respect to a
given normal direction. In order to measure the intrinsic curvature, Riemann introduced a tensor
which is essentially the only one constructible from the metric and its first and second deriva-
tives, and linear in the latter. The Riemann tensor is zero if and only if the manifold is locally
flat, i.e., if there is a chart where the metric is Euclidean. It equivalently measures how initially
parallel geodesics, the straightest intrinsic lines or curves of shortest length, deviate because of
the manifold curvature, the essential feature of non-Euclidean geometries. It can be defined as a
differential-invariant by the non-commutativity of the second covariant derivative. This reflects
the non-integrability of parallel transport around an infinitesimal closed loop. The Gaull equation
again expresses the Riemann tensor as a product of components of the second fundamental form,
thus relating intrinsic and extrinsic curvature. Taking traces of this tensor generates other objects
like the sectional curvature, which for every plane in the tangent space measures the Gauflian cur-
vature of the geodesic surface tangent to that plane. The Ricci tensor and the scalar curvature are
further contractions over the degrees of freedom of this tensor.

The purpose of our work [4-7] is to show the relationship between these classical differen-
tial invariants and local integral invariants in general dimension. In particular, we shall see that
integration over small domains on a submanifold encodes the same curvature information as the
differential-geometric tensors. Performing integration can be computationally better behaved than
differentiation since it reduces to sums in the discrete case, which have a naturally averaging nature
(e.g. for noise concerns), in contrast to the finite-differences and quotients in differential approx-
imations. Since integrals over regions have a natural scale, the curvature information that can be

obtained provides multi-scale descriptors of geometric features.



Integral invariants from Principal Component Analysis were introduced in [21], [13, 14], [19,
20], [41,42] as theoretical tools to perform Manifold Learning and Geometry Processing of low-
dimensional submanifolds, like curves and surfaces in space. They have been used for shape
and feature detection at scale as geometric low-pass filters, [3], [11], [19, 20], [29], [42], [60].
The focus in these settings has been on curves, surfaces and the study of stability with respect to
noise [34], [50,51]. Voronoi-based covariance matrices have also been of interest, [44,45], where
a relationship to the derivative of the normal vector is found for hypersurfaces.

Descriptors can be interpreted as approximations of certain characteristic variables of a sys-
tem given in terms of other relevant information. The seminal work of [51] developed the idea of
performing covariance matrix analysis over domains on surfaces determined by balls in space in
order to recover curvature information at scale. The series expansion of the eigenvalue decompo-
sition was shown to reproduce the principal curvatures at second order, and the limit eigenvectors
were shown to converge to the principal curvatures and normal direction. In [60], [50], [34] the
stability and robustness of this viewpoint was studied both theoretically and computationally. The
theoretical results of [51] are generalized in this thesis to hypersurfaces and Riemannian manifolds
of arbitrary codimension. The higher-dimensional integrals and approximations involved become
much more complicated and a unifying approach and notation is taken in our proofs, using spheri-
cal coordinates and integration of monomials over spheres [23].

The other side of this theory is the study of finite point clouds and how their discrete PCA
covariance matrices converge with the number of points to the exact analytical result. Multi-
scale SVD methods, using geometric measure theory and harmonic analysis, have been devel-
oped [36, 38], [17,37] in order to study noisy samples from probability distributions supported
on submanifolds of a high-dimensional Euclidean space [39]. In these works, ranges of scales
are determined, taking into account curvature, for the covariance matrices to be most informative
and close to the noisy empirical matrices. In particular, the leading order term of the eigenvalues
is obtained and it is seen that tangent and normal eigenvalues scale differently, with the specific

expression of the normal eigenvalue to leading order in terms of the principal curvatures in the



hypersurface case. In the case of general codimension, the authors obtain a similar conclusion,
following [12] and [55, 56] discussed below. In this sense, the noisy point cloud approach of [39]
is complemented by the approach of the present dissertation that computes the covariance analysis
of the smooth point-set for different types of kernel domains. We obtain in particular the next to
leading order terms of the tangent eigenvalues for the complete smooth data set, and the normal
eigenvalues leading term in general codimension, providing the direct theoretical link between
curvature and covariance, i.e. between differential and integral invariants. Since [39] develops an
explicit algorithm for the estimation of the dimension of the manifold, a natural next step would
be to expand these multiscale SVD methods in order to apply them to our main theorems and thus
to estimate curvature from noisy point clouds. Our curvature descriptors at scale aim to fulfil this
task.

Adapted frames from the eigenvalue decomposition of covariance matrices of spherical inter-
section domains were introduced in [12], [55,56], in order to obtain local adaptive Galerkin bases
for dynamical systems. This was motivated by the study of the long-term behavior of dynamical
systems confined to an invariant manifold. Choosing a general operator in an optimal way, in order
to reflect natural nonlinear structures of the system, leads as well to the covariance matrix integral
invariant. This allowed the authors to obtain the dimension of the submanifold and approximations
at scale of its tangent and normal spaces, even for manifolds with general measures. However, the
approximations made in [55, 56] for submanifolds of Euclidean space reduce to the leading order
terms of the cylindrical case studied in the present thesis, which do not single out the geometri-
cally natural frame specified by the limit eigenvectors, nor the curvature information hidden in the
eigenvalues. We complete the analysis of the covariance matrix series to the next order to obtain
explicitly this information in terms of the traces of the third fundamental form tensor.

For this, we generalize to arbitrary Riemannian submanifolds the notions of integral invariants
based on the volume, barycenter and covariance matrix of a point-set, weighted by the induced
measure of the submanifold. This can be done via the exponential map [16], [46] of the ambient

manifold, which uses the lengths of geodesics tangent to an orthonormal frame at a point as the



Riemannian generalization of Cartesian coordinates. Measuring the geodesic normal coordinates
of the points of a submanifold domain provides a general definition for these integral invariants.
Normal coordinates are naturally used to make geometric measurements needed to perform prob-
ability and statistics inside Riemannian manifolds, e.g. [47,48]. Optimization on Riemannian
manifolds [1, 2] has been studied assuming the underlying geometry is known, for which any
characterization and reconstruction techniques through Manifold Learning would be the first step
needed to perform optimization.

These integrals perform Principal Component Analysis on domains determined by the subman-
ifold, so they feature a scale dependent behavior. This type of analysis can be understood in two
different ways: from a physics perspective, the integral invariants measure the total mass of the
domain, the center of mass point, and an analogue of the moments of inertia with the correspond-
ing principal directions; from a statistical perspective, these integrals compute the total volume of
the data set, its average point, and the covariance matrix of its degrees of freedom. The volume
and barycenter can be easily defined as the integral over the domain of the identity and the position
vector respectively, weighed by the induced measure on the submanifold. The covariance matrix
of the domain with respect to a fixed point is constructed by choosing an orthonormal frame at
the point and measuring the coordinates of the other points in the region; the pairwise products of
these coordinates determine a matrix function, whose integration over the domain yields a matrix
dependent only on the scale of the region. We are interested in regions determined by the intersec-
tion of the submanifold with balls and cylinders in ambient space, which have a natural radius as
scale. Since the matrix so constructed is frame dependent but symmetric, the covariance integral
invariants of interest are to be defined as its eigenvalues and eigenvectors.

This covariance analysis can be thought of as the study of a matrix-valued function of scale
at every point of the manifold, which can be given a Taylor series expansion by the classical per-
turbation theory of Hermitian matrices [52]. One of the main results of our analysis is that the
eigenvectors converge, when the scale tends to zero, to a special orthonormal frame of the tangent

and normal spaces of the manifold, specifying an adapted frame which turns out to have geomet-



ric meaning as generalized principal directions. Precisely, the scaling behavior of the eigenvalues
permits the detection of which eigenvectors span either the tangent or normal spaces in the limit.
Moreover, our main result is the computation of the asymptotic expansion with scale of the eigen-
values, to second order, in order to find curvature information in the Taylor coefficients. For this
we need to introduce the generalization to arbitrary codimension of the classical third fundamental
form.

We also study the volumes of these regions. Geodesic balls inside manifolds have intrinsic
volume with asymptotic series given as corrections to the Euclidean ball volume, completely de-
termined by intrinsic scalar curvature invariants [27]. These invariants also appear in the volume
of tubes generated by the normal flow of an embedded manifold [25]. In our case, the domains
of integration depend on the embedding of the submanifold, so the extrinsic curvature will play a
crucial role in the volume corrections, as found in [30].

The structure of the dissertation is as follows.

In chapter 2 we study the notion of PCA integral invariants within the context of Riemannian
Geometry. In section §2.1 we give an explicit coordinate expression for the first fundamental form
and the induced measure on graph embedded manifolds. Then we overview the geometry of Rie-
mannian submanifolds, where curvature is classically defined as a differential invariant via the
the second fundamental form, whose local coordinate expression will be crucial for our compu-
tations. The particular case of hypersurfaces is reviewed. In section §2.2 PCA integral invariants
are defined in a general setting using the exponential map and given by the volume, barycenter
and covariance matrix of a domain determined by the submanifold. In particular, we shall study
PCA kernel domains delimited by the intersection with balls and higher-dimensional cylinders
in ambient space. Geometric descriptors are introduced to show how the study of hypersurfaces
is sufficient to build descriptors in any codimension, by applying the analysis on the manifold
hypersurface projections, since principal curvatures and principal directions determine the local

Hessians and, therefore, the second fundamental form and Riemann tensor via the Gauf3 equation.



In chapter 3 we deal with the case of regular curves in Euclidean space of any dimension,
which requires completely different tools since curves do not have intrinsic curvature. In section
§3.1 we recall the Frenet-Serret apparatus and how the Frenet curvatures completely determine
the curve up to rigid motion. We state previous results known to obtain the Frenet-Serret frame
and curvatures from covariance analysis, and arrive at an asymptotic formula that relates the ratio
of the eigenvalues of the covariance matrix to the Frenet curvatures by the recursion relation of
certain Hankel determinants. In order to prove this formula, the theory of moments and orthogonal
polynomials is reviewed in section §3.2, from which the recursion relation of a general family of
Hankel determinants is obtained.

In chapter 4 three different domains for hypersurfaces are studied. In section §4.1 the integral
invariants are computed for a volume region delimited by a hypersurface inside a ball centered at a
point of the hypersurface. We need to prove a fundamental lemma to approximate the correspond-
ing integrals to high enough order. The asymptotic expansion of the invariants with respect to the
scale of the ball are shown to be given in terms of the principal curvatures and the dimension, and
the eigenvectors of the covariance matrix are shown to converge in the scale limit to the principal
and normal directions. In section §4.2 the analogous analysis is carried out for the integral invari-
ants of the hypersurface patch cut out by the ball and a higher-dimensional cylinder. The patch
covariance eigenvalues reproduce the principal curvatures as well but either squared or multiplied
by the mean curvature; the corresponding eigenvectors converge again to the principal and normal
directions when all curvatures are different.

In chapter 5 we study the most general setting of the present work: embedded Riemannian man-
ifolds of arbitrary dimension. In section §5.1 the classical third fundamental form is generalized
to submanifolds of general codimension by means of the metric product of any two Weingarten
maps, measuring the curvature of the induced normal connection on the manifold via the Ricci
equation. Its different traces are shown to relate to the Weingarten map at the mean curvature
vector and the Ricci operator. In section §5.2 we compute the volume, barycenter and covariance

matrix of a cylindrical domain inside an embedded submanifold. In particular, for generic cylin-



ders, we show that the scaling of the eigenvalues of the covariance matrix singles out the tangent
and normal spaces of the manifold at the point via the span of the corresponding limit eigenvectors.
Moreover, for normal cylinders, the next-to-leading order term in the asymptotic series of the co-
variance eigenvalues is determined by the eigenvalues of the tangent and normal traces of the third
fundamental form. The limit eigenvectors then converge to the principal directions determined by
these tensors in the tangent and normal spaces. In section §5.3 an analogous analysis is carried
out for the domain given by the intersection of a ball in ambient space with the manifold, which
introduces a considerable number of correction terms with respect to the previous case. This leads
to an eigenvalue decomposition of the covariance matrix with essentially the same normal part as
the cylindrical case, and with tangent part given in terms of the Weingarten operator at the mean
curvature normal.

Finally, in chapter 6 all previous results are used to produce estimators and get the most general
asymptotic ratio between eigenvalues and curvature. In section §6.1 we see how the volume and
eigenvalue asymptotic formulas can be inverted and truncated to yield geometric descriptors of the
principal curvatures and principal directions of hypersurfaces, thus establishing concrete formulas
to use in the general method outlined for Riemannian submanifold. In section §6.2 we obtain the
limit ratios of the covariance eigenvalues, in the cylindrical and spherical domain cases, in terms
of those of the third fundamental form, generalizing the asymptotic ratios found for regular curves.
The descriptors that these domains provide also recover the principal curvatures and directions,
where the cylindrical estimators have a better truncation error than the general spherical case.

In appendix A we set the notation for the spherical coordinates used, and review the formula for
the integrals of monomials over spheres and balls. We also define specific symbols to encapsulate
the possible values of these integrals under arbitrary products of coordinates that depend on the
indices involved.

These results show how Principal Component Analysis can be carried out on a general em-
bedded Riemannian submanifold to probe its local geometry. From a theoretical point of view

our work establishes the generalization of the relationship between the statistical covariance anal-
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ysis of the underlying point-set of a submanifold and the classical differential-geometric curvature
using the third fundamental form. From the applied and computational point of view, the inte-
gral invariant approach used in the literature to perform Geometry Processing of low-dimensional
manifolds can be employed with embedded manifolds of arbitrary dimension via the study of the
hypersurface descriptors obtained here. This opens the way for computational implementations of
Manifold Learning with big data sets, and the potential detection and classification of features of

this data via the curvature profile of its embedded geometric representation.
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Chapter 2

PCA Integral Invariants in Differential Geometry

In this chapter we review the differential geometry of Riemannian submanifolds [16], [18],
[32], [33], [35], [46], [49], [57]. We introduce the first and second fundamental forms, give local
expressions for them for graph submanifolds, and define the Riemann curvature tensor. The case of
hypersurfaces and their principal curvatures and directions is covered as well. Then we generalize
the definition of PCA integral invariants and descriptors to this general setting using geodesic nor-
mal coordinates, and define the cylindrical and spherical intersection domains via the exponential
map. Finally, we see how the covariance analysis of hypersurfaces is enough to obtain descriptors
for submanifolds of general codimension via the local expression of the second fundamental form

and the Gaul} equation.

2.1 Geometry of Riemannian Submanifolds

Let (M, g) be an n-dimensional manifold isometrically embedded in an (n + k)-dimensional
Riemannian manifold (N, g), and let V,V be the respective Levi-Civita connections. We shall
write (-, ) = (-, - ), classically called the first fundamental form of M in N

We shall always work in a neighborhood U < R"** of p € M, sufficiently small so that U n M
is given by a graph representation [z1,..., 2", fi(x),..., f¥(x)]" over its tangent space, i.e., 0
represents p, x = [2',...,2"|T € T, M, and V f7(0) = 0, so that the manifold is approximated at

p by its osculating quadric.

Lemma 2.1.1. The first fundamental form components of a graph manifold M < R"**, parametrized

by [z',..., 2", fH{(x),..., fF(x)]" € M @® N,M = R""* qre:

= oxt Oxv’

G (T) = Opy + 2.1)

The induced measure on M in these coordinates is given by

12



+ 0@ | de.  (22)

dVol = 4/det g(x) d"x = lzk: Zn: [Zn: ( J (0)) 2’ 2
244 e Ox*oxP

Proof. The tangent space in these coordinates is spanned by the vectors

0

XH:%[xl,...,x”,fl(m),...,fk(a:)]T:[(),...,1,...,0, of! of*

oxt’ 7 O

I,

for u = 1,...,n, which yields the canonical orthonormal basis at p since Vf7(0) = 0. The

induced metric tensor is then

Lo Of
— ozt oxv’

G (®) = (X, X,,) =0y

From this, recalling that the f7(x) have Taylor expansions starting at order 2 in these coordinates,
the matrix of the metric components is of the form [g] = Id,, + [h], where the correction matrix

=Y. 0, f7] is small because we are in a neighborhood of 0 wit (0) = 0. Let
h ]5M 10,17 11b ghborhood of 0 with V f7(0 0. L

. " 0% fi

a,p=

forevery j = 1,...,k, then

off ([ 5
ozr ,5;1 (&rﬂax“ (O)> o+ 06

The natural volume form of a Riemannian manifold is given by v/det g daz! A --- A da™, [46, Ch.

7, Lem. 19], whose lowest order approximation is det g ~ 1 + tr h, so y/det g ~ 1 + %tr h,i.e.,

CZCREEMICOREREES b )>
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Then, at any point p € M and for any vector y € 7,M, and vector field X € I'(TM), the
metric connection of M is the projection of the metric connection of N: V,X = (V,X)T,
where (- )" : T,N — T, M. The second fundamental form 11 of M in N is defined to be the
normal projection of the ambient covariant derivative when acting on vector fields tangent to M,

i.e., denoting (- )* : T,N — N, M,
I(z,y) = (V,X)", ie, V,X =V,X +1I(z,y), (2.3)

forall x,y € T,M, and X € I'(T’M) such that X |, = . It is a symmetric bilinear form on the
tangent space at every point taking values in the normal space, II : T, M ® T, M — N, M. Fixing
a normal vector n € N, M, the scalar-valued bilinear form (II(x,y), n ) has a corresponding

self-adjoint map S,, € End(7, M), called the Weingarten map at n, such that:

(I(z,y), n)={(Spx, y)=(x, Spy). (2.4)

Fixing orthonormal bases {e,}!'_, of T, M, and {n;}_, of N, M, the components of the second

fundamental form at point p are:
B k koo
Il(e,. e,) = Z I’ (e,, e )n; = Z<II(€H, e,), n;)n; = Z<Sj e, €, )n;. (2.5)
j=1 j=1 j=1

The geometric meaning of II lies in the fact that the Weingarten map measures the tangential rate

of change of normal vectors to M when moving in tangent directions, cf. [16, Eq. 11.2.4]:

for any N € I'(NM) such that N|, = n. From this, [46, Ch. 4, Cor. 9, 10], II(x, x) is to be
interpreted as the curve acceleration in N of a geodesic inside M at p with tangent velocity .
Therefore, 11 naturally measures the extrinsic curvature of the embedding since it represents the

forced curving of the straightest lines in M due to the curving of M itself in NV.
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The inverse function theorem and [32, Ch. VII, Ex. 3.3] establish the following lemma, of

fundamental importance for the computations in the proofs of this dissertation.

Lemma 2.1.2. Let M be an n-dimensional submanifold of an (n + k)-dimensional Riemannian
manifold (N, g), with the induced metric g|p. For any point p € M and orthonormal basis
{eu}n_) of T,M, it is possible to choose normal coordinates (y',...,y""*) in N such that the
coordinate tangent vectors at the origin Y, ..., Y™ coincide with {eu}p_1, and yn oy th
are an orthonormal basis {n };?:1 of Ny,M. Moreover, M is locally given by a graph manifold
yt=al ..yt =2yt = fUx),...,y""F = f*(x), such that the components of the second

fundamental form at p can be written as:

(e, e,) = Zk:[ e (0)] n;. (2.6)

The invariance of the trace of IT for any orthonormal tangent frame {e,}};_, leads to the defi-

nition of the mean curvature vector:
H =) Ti(e,e,) = ) Hny where H/ = Y 1V (e,,, €,,). (2.7)
=1 j=1 -1

The study of the intrinsic geometry of (M, g) depends only on the metric and is given in terms

of the Riemann curvature tensor:
R(xz,y)z = (VaVy — VyVae — Vizy) Z,

forany x,y,z € T,M and Z € I'(T M) such that Z|, = z. This fundamental tensor equivalently
measures the integrability of parallel transport, geodesic deviation and local flatness. Its traces

yield the Ricci tensor

Ric(z.y) = ) (Rlen )y, e,) = (Rz. y),

p=1
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and the scalar curvature, R = }, Ric(e,,e,). Here, R € End(7, M) is the Ricci operator
associated to the Ricci bilinear form with respect to the metric.

Gaull Theorema Egregium establishes that the intrinsic curvature of surfaces is a particular
combination of products of the components of the second fundamental form. This generalizes to

higher dimension in

Theorem 2.1.3 (GauB} equation). The Riemann curvature tensor of a submanifold M is related to

the curvature R of the ambient manifold N via
(R(z,y)z, w) = (R(x,y)z, w) + (Il(z,w), I(y, z)) - ((x, 2), Iy, w)) (2.8

forallz,y, z,we T, M.

A hypersurface S is an embedded manifold of codimension 1, many of whose properties gen-
eralize those of surfaces in R?. Its second fundamental form can also be introduced via the Wein-
garten map, or shape operator S defined as follows: given a choice of unit normal vector field N

around p € S, there is a linear endomorphism of 7,S given by
S(x) = -V,N, VxeT,M
such that the classical second fundamental form is related to the one defined above by:

U(z,y) = (I(z,y), n) ={S(x), y).

The Weingarten map encodes how the hypersurface normal vector varies in the ambient space
when moving in a direction tangent to the hypersurface, thus measuring curvature. Moreover,
S is self-adjoint with respect to the metric so there is an orthonormal basis of 7,S given by its
eigenvectors called the principal directions of S at p. The corresponding eigenvalues are called
principal curvatures, {,(p)}},_,, because S(uw), u ) measures the normal acceleration of a curve

inside S with unit tangent u. The 2-plane spanned by a tangent vector w € 7,5 and the normal
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vector n € N,S intersects the hypersurface in a normal section curve whose first Frenet-Serret
curvature is precisely the normal curvature given by { S (u), w ). For any tangent vector the normal

section curvature is

(x, )
= : Ve e T,S. 29
w(@) (x,x)’ e 29)
Furthermore, one can define elementary curvature scalars K1(p), ..., K,(p) as the elementary
symmetric polynomials on the {r,(p)};_;. In particular the mean curvature of a hypersurface is

H(p) = Ki(p) = tr S = Y k(p) = > 1l(e,, €,), (2.10)
p=1 pn=1
the scalar curvature is R(p) = 2K,(p), and the Gaufian curvature is
Ko(p) = det 8§ = [ [ k() (2.11)
pn=1

Remark 2.1.4. To simplify notation we shall write x,, H, R instead of x,(p), H(p), R(p), etc.
if the point is understood from the context. The point itself may be denoted p if interpreted set-

theoretically in S, or p if considered as a vector when it appears in linear operations of R"*!,

Notice the most elementary Newton relation between the power sum function of order 2 and

the elementary symmetric polynomials yields the useful expression:
~92 n
S =Y ki = Ki — 2K, = H* — R. (2.12)
pn=1
In fact, more is true since the Gaul} equation applied to the Ricci tensor of a hypersurface leads to
) ~ ~2

Ric(x,y) = H(S(x), y)— (S (), y). (2.13)
Using the lemmas introduced above and Gaul} equation in codimension 1, we get the following

crucial lemma for the approximations made in chapter 4.
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Lemma 2.1.5. There is an open neighborhood U, around any point p € S such that the smooth
hypersurface S is locally given by a graph z : U, < T,§ =~ R" — T,8§ ® {(n,) =~ R""!, with
p =0, and Vz(0) = 0. Thus, it is defined to leading order by an osculating quadric which in the

basis of principal directions becomes:

1 n
=3 Z Ky + O(x (2.14)
In this neighborhood the area element is
dVol|y, = 4/detg d"z =, |1+ Z ((97) dxy---dz,. (2.15)
p=1 H

The second fundamental form at p corresponds to the Hessian matrix of z(x) at p:

2
IIp(eu,el,)zl = ] (2.16)

02,0, »

where {e,,}}._, are the principal basis vectors. In this basis the Riemann tensor reduces to

<R<e,u7 el/)eav 65> = Hﬂ<p)’£1/(p) (60&1/5#5 - 60!#551/)7 (2.17)

the diagonal components of the Ricci tensor are

’Ric(eu,e“) = Ruu(p) = Z na(p)m#(p), (2.18)
aFEN
and the scalar curvature is
R(p) = 2K2(p) = 2 ) ku(p)in(p). (2.19)
n<v
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2.2 Integral Invariants and Descriptors

In our context, integral invariants are local integrals over domains of a submanifold determined
by intersection with objects in the ambient space, like spheres. Two such integrals are the volume
of the domain and the point in the ambient manifold that represents the center of mass of the region.
A more interesting object is the covariance matrix obtained by integrating the relative covariance of
the degrees of freedom of the points in the domain, i.e., the products of the coordinates of the points
with respect to a chosen frame. In order to get a frame independent integral invariant, one takes
the eigenvalue decomposition of the covariance matrix. Since the kernel domains have a natural
scale, e.g., the radius of the sphere, it is useful to think of them as a matrix-valued function of scale
at every point. Therefore, these integral invariants correspond to eigenvalues and eigenvectors that
can be interpreted respectively as a set of scalar and frame-valued functions of scale at every point.
The study of covariance matrices in order to obtain adapted frames of general submanifols was
introduced in [12] and [55, 56], whereas the integral invariant approach was developed in detail to
extract the curvature information of surfaces in space, e.g. [20], [51].

In order to do this type of Principal Component Analysis on a general Riemannian submanifold
and generalize local integral invariants, definitions using Cartesian coordinates must be naturally
promoted to Riemann normal coordinates [16], [46]. If the n-dimensional submanifold M) sits
inside an ambient Riemannian manifold (N"**) g), the curves in A that generalize the axes used
in R"** are the geodesic curves 7, (t), and these always exist uniquely, locally at any point p € A
and direction v. Given an orthonormal frame of 7}, M @ N, M, the geodesics tangent to each of the
basis vectors will trace out generalized coordinate axes in A that, through the exponential map,
will uniquely specify any point in a local neighborhood around p. Assuming N is geodesically
complete to simplify the exposition, the exponential map collects all geodesics starting at p by

mapping straight lines through the origin in T,N" =~ R"* to geodesics through p:

exp, : T,M — N givenby  exp,(tv) = v (1) = (1)
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At any point p there is a neighborhood U of 0 in T,N where exp is a diffeomorphism onto a
neighborhood U of p in N'. From this, for star-shaped U, there is also a unique geodesic ()
connecting p and any other point ¢ € U such that the tangent 7'(0) = exp,'(¢). Moreover, the
arclength of - between the two points, i.e. the distance d(p, ¢) between them determined by the
metric g, is the length of the tangent vector representation through this map, d(p, q) = | exp,*(¢)|,
cf. [46, Ch. 5, Lem. 13]. These normal neighborhoods allow the parametrization of points using
the geodesic distances tangent to a given frame {eu}Zi’f at p. The injectivity radius r, is the
radius of the largest ball By (¢) in T, " where exp is a diffeomorphism, so B,(r,) = exp,,(Bo(r))
is the largest ball in \V created by radial geodesics of the same length around p where normal
coordinates are well-defined. In fact, r, > 0 always. Since our main theorems 5.2.4 and 5.3.5
are asymptotic results in the scale limit, in a general Riemannian manifold one could always use

normal coordinates to study domains of submanifolds small enough so that they can be mapped to

Euclidean space, thus, we propose the following general definition of PCA integral invariants.

Definition 2.2.1. Let D be a measurable domain in a Riemannian manifold (', ¢g) such that D <
B,(r,) for some point p € N, The integral invariants associated to the moments of order 0, 1 and

2 of the geodesic coordinate functions of the points of D with respect to p are:

the volume
V(D) = J 1 dVol, (2.20)
D
the barycenter
1 _
(D) = 155 L[exppl(q)] dvol, 221)

and the eigenvalue decomposition of the covariance matrix:

(D) = L[exp;(q)] ® [exp; ' (g)] dVol. (2.22)

Here dVol is the measure on D, restriction of the measure on N induced by the metric g, and the

tensor product is to be understood as the outer product of the components of the exp~! map in a
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chosen orthonormal basis of 7, VV. The reference point of the covariance matrix is often chosen to

be the barycenter, exp,(s), instead of p.

These can be interpreted as statistical characterization measurements of a continuous distribu-
tion: the volume measures the size or mass of the set; the barycenter measures the centralization
of the domain as a mean or average point, i.e., a center of mass; finally, the covariance matrix is a
measure of the dispersion of the points in D around its center of mass. From this statistical point

dVol :
% 1S a

of view, we could have defined the covariance matrix normalized by V(D) as well, so that
density, but this will not affect our results in any significant way (essentially, the second-to-leading
order term in the volume equations would get added to the eigenvalues at that order).

The two types of domains that we shall study are regions in a submanifold M < N determined
by the intersection with a ball and a cylinder, cf. Figure 2.1. Using the exponential map one can
define such intersections by mapping Euclidean balls and higher-dimensional cylinders in T,V to

their geodesic generalizations in the ambient manifold .
Definition 2.2.2. The spherical component of radius € < r,, at a point p of a submanifold M of a
Riemannian manifold \V, is the domain given by:

Dy(e) :=Mn{geN :|exp,'(q)] <e<r,}. (2.23)

An element V in the Grassmannian Gr(m, n + k) is an m-dimensional linear subspace of R %,
Fixing a point and m-dimensional ball inside V, the standard three dimensional cylinder over the
xy-plane can be generalized to a V-cylinder by taking all points in the ambient space that project

down onto the ball inside V.

Definition 2.2.3. The cylindrical component of radius € < r,, at a point p of a submanifold M of

a Riemannian manifold N over the m-plane V € Gr(m, n + k), is the V-cylinder intersection:

Cyl,(e,V) :=Mn{geN: Hprojv(exp;l(q))H < e <rpl, (2.24)
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Figure 2.1: A normal cylinder to the surface at a point cuts out a patch domain (greyed region) whose
covariance matrix EVD shall encode generalized principal curvatures and directions at p.

where projy(+) is the orthogonal projection onto V as a linear subspace of 7,N'. We shall write

Cyl,(e) when V = T, M is assumed.

In the following chapters, we shall compute the integral invariants defined above for these
domains on embedded submanifolds of Euclidean space, N' = R"**, where exp,, (q)=q—pas
vectors and the tensor product recovers the common definition of PCA integral invariants studied

in the literature. The points ¢ € D are then parametrized by a vector X such that the barycenter is

1

and the the covariance matrix can be interpreted as analogous to a moment of inertia matrix, which
for the cylindrical component shall be taken with respect to the center p, following the convention

and motivation of [56],

CenE) = | (X -p)@(X —p)avel 226)
yl, (e

whereas for the spherical component the covariance matrix shall be taken with respect to the

barycenter, following [51],
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co,e - | (X 5(D,(0) © (X~ 5(Dy(e)) vl (227)

An integral invariant descriptor F'(D) of some feature F' of a measurable domain D is any
expression for F' completely given in terms of V' (D), s(D), the eigenvalue decomposition of C'(D)
or other integral invariants. If the domain D is determined by a region of a hypersurface S, the
main geometric descriptors are any principal curvature estimators «,(D) of x,(p), and principal
and normal direction estimators e, (D), n(D) of e, (p), n(p), for some known point p € S. If the
domain D is determined by a region of an embedded manifold M, the main geometric descriptor
is any second fundamental form estimator, II(D) of IL,, for some known point p € M. Since our
domain D of interest will possess a natural scale £ determined by the size of the ball or cylinder that
defines it, we shall talk about descriptors at scale. Moreover, we consider € to be small enough
so that we can approximate the submanifold by the local graph representation of its osculating
paraboloids at p, which is sufficient to obtain the first terms of the asymptotic expansions of the
integral invariants with respect to scale.

When the asymptotic expansions with respect to scale of hypersurface integral invariants are
available to high enough order, curvature information can be extracted by truncating the series
and inverting the relations in order to obtain a computable multi-scale estimator of the actual
curvatures. In particular, the eigenvalues of the covariance matrix will provide such a descriptor

for the principal curvatures of a smooth hypersurface, (D), and its eigenvectors {e,(D)}"_,, and

p=1>
en+1(D), will do the same for the principal and normal directions. In order to produce analogous
descriptors for an embedded Riemannian manifold of higher codimension, we just need to apply

the procedure to the k hypersurfaces created by projecting the manifold down to (n + 1)-linear

subspaces.

Lemma 2.2.4. Let M < R"** be an n-dimensional embedded Riemannian manifold, and let an
orthonormal tangent basis {e,,}}._, of the tangent space T, M, and an orthonormal basis {n;}_,
of the normal space N, M be fixed at p € M. Consider a ball B}g"+k)(€) for small enough € >

0, such that the projections of M N B,(]Hk)(s) onto the linear subspaces T,M @ {(n;), for all
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Jj = 1,...,k, are smooth hypersurfaces S;. Then, if/ffﬁ(D), {e,(f')(D)}Z:1 are descriptors of the
principal curvatures and principal directions at p for each of the hypersurfaces S;, then the second

fundamental form of M at p has a descriptor:

IT,(

Mw

(D)T]/w n;, uv=1...n, (2.28)

»(D)(eu, e,) j

]:1
where [V;(D)] are the matrices whose columns are the components of {eg) (D)}=y in the chosen

basis {e,}”

=1, and [K;(D)] is the diagonal matrix of principal curvature estimators. In turn, the

Riemann curvature tensor of M at p acquires a descriptor:
k
(R(D)(ey, e)ea; e5) Z (Vi VS LuslViEG Vi e = ViG] el ViV g ) - (2.29)

Proof. From lemma 2.1.2, there is a neighborhood of U, < T, M such that the manifold can
be locally given by a graph © — (x, fi(x), ..., fx(x)), where € U,, p corresponds to 0, and
V f;(0) = 0. From this, the projection hypersurfaces S; are just (x, f;(x)) for j = 1,..., k. The
second fundamental form of M at p is precisely the linear combination of the second fundamental

forms of each of the hypersurface projections weighed by the corresponding normal vector, i.e.,

k
f;
r(en ) Z lﬁx,ﬁxu ] i

Analyzing each of those hypersurfaces in T, M @ (n;) =~ R""!, to obtain descriptors /@Ef)(D),
{e,@ (D) =1 forevery j, we obtain precisely a descriptor of the eigenvalue decomposition of each
Hessian, i.e., Hess f;[,(D) = [V;(D)K;(D)V(D)T] is an estimator of the second fundamental
form of §; at p in the original basis. Applying Gaul3 equation 2.1.3 yields a corresponding descrip-

tor for the Riemann tensor. O]

These descriptors become valuable tools to perform Manifold Learning, feature detection and

shape estimation when only partial knowledge of the complete set of points is known or when
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noise is present. In this regard, [50,51, 60] carried out experimental and theoretical analysis of the
stability of these and other descriptors in the case of curves and especially surfaces in R?, reporting
for example that the invariants of the spherical component domain are more robust with respect to
noise than the patch region ones. It is to be expected that the same stability behavior holds in the
hypersurface case studied in chapter 4, due to the sensitivity to small changes of an n-dimensional
patch compared to an (n + 1)-dimensional volume which has the perturbed patch as part of its

boundary.
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Chapter 3

Regular Curves and Hankel Determinants

The covariance analysis of regular curves in a Euclidean space of arbitrary dimension was
already studied in [55,56], where the eigenvectors were shown to converge with scale to the Frenet-
Serret frame, and the eigenvalues series expansion was found to be proportional to leading order
to products of the Frenet curvatures. A formula for the coefficients was not explicitly known
however since they depend on the value of certain Hankel determinants. These results provide an
asymptotic relationship between the squares of the Frenet-Serret curvatures and ratios of successive
eigenvalues of the covariance matrix. Since curves are locally determined by the Frenet curvature
functions, up to rigid motion, the covariance integral invariants fully characterize the curve in the
limit, providing descriptors at scale for these curvatures. In order to find the explicit value of the
ratio coefficient, we obtain the recursion relation of a certain family of Hankel determinants by

using the theory of orthogonal polynomials and its relation to the moment problem.

3.1 Frenet-Serret Apparatus from Covariance Matrices

Smooth curves in Euclidean space R", for any dimension n > 1, have essentially the same
structure [26], [33], [35], [57], [58] as the classical cases of plane curves and three-dimensional
space curves: generically, they possess a comoving orthonormal frame constructed from the veloc-
ity and acceleration vectors, and their orthonormal completion, along with generalized curvature
functions at every point. The latter were originally defined for plane curves in terms of the inverse
radius of the osculating circle.

A regular parametrized curve v : I < R — R” is a continuously differentiable immersion, so
that 7/(t) = Cfl—z # 0 for all t € I. Two such curves are considered equivalent if they are related
by a bijective, continuously differentiable reparametrization of / that preserve orientation. The

length of the curve from point ¢ = a to ¢t = b is given by the ambient space metric integration of

its tangent vector:
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b d’}/ d’y b
S(a7b)_Ja <E7E>dt_L

Every regular curve can be parametrized by its arc length s(a,t) so that its velocity is a unit

dvy
L 3.1
dt H dt G-

v'(s)|| = 1. From now on, we shall consider only regular curves n-times continuously

vector,
differentiable and parametrized by their arc length. In order to use a system of reference adapted to
the curve, one introduces the Frenet-Serret frame. When 7(s) is a regular curve in R", we say it is
a Frenet curve when all the derivatives v/, ", ..., (™ form a set of n linearly independent vectors
in R”™. The Frenet-Serret frame {e;}}_, is the positively oriented comoving orthonormal basis of

R™ obtained from the Gram-Schmidt orthogonalization procedure applied to v/, ~”, ..., y(™:

e;(s) = N: with &;(s) = 7Y (s) — Z<7(j)(s),ei(s)> e;i(t) for 1 <j<n.

In R3, e, is the tangent vector, e, is the principal normal vector, and e; = e; x e, is the
binormal vector, which specify the tangent line and osculating plane at every point of the curve.
From the classical curvature functions of plane and space curves, one arrives at a definition of
Frenet curvatures at a point s:

ki(s) = (€j(s), ejri(s)) for 1<j<n—1 (3.2)

They satisfy the Frenet equations [33, Th. 2.13] in any dimension.

Theorem 3.1.1. Let vy be a Frenet curve in R with Frenet-Serret frame {e;}_,. Then the cur-
vatures {k; ?;11 satisfy ki, ..., kn—o > 0, and every k; is (n — 1 — j)-continuously differentiable

such that
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e, 0 K1(s) 0 0 0 e
e —kK1(s) 0 Ka($) 0 0 e
dii e; |= 0 —ka(s) . : es |- (3.3)
0 Kn-1(8)
e, 0 . 0 —Kn1(s) 0 e,

And the Frenet-Serret frame and curvatures are invariant under Euclidean motions.

From this result the local characterization of regular curves is obtained. This establishes the ex-
istence and uniqueness of a Frenet curve when a point, initial Frenet-Serret frame and generalized

curvature functions are given, cf. [33, Th. 2.15].

Theorem 3.1.2. Let k1, . .., k,—1 : (a,b) — R be given functions such that each kj is a (n—1—j)-
continuously differentiable function with k1, . . ., k,_o > 0. Let 5o € (a,b), and let a point py € R™
and a frame {eg-o) i1 of R™ be fixed. Then there is a unique n times continuously differentiable
Frenet curve v : (a,b) — R™, parametrized by arc length satisfying v(so) = po, {eg-o) }7_ is the
Frenet-Serret frame of vy at the point py, and where {;(s)}}_, are the Frenet curvature functions

of .

The integral invariant approach to Frenet curves thus aims to find a relationship between the
Frenet-Serret apparatus and the eigenvalue dcomposition of the covariance matrix. The spherical
and cylindrical covariance matrix applied to a regular curve ~ in R", at point s and scale ¢, reduces
to leading order to

Os,e) = 2 f () = () - ((E) — A (s)) Tl (3.4)

2€ Js—e

This expression must be understood as the outer product of the position vectors of the curve with
respect to the center point ~y(s). Notice that here we are normalizing by the first order approxi-

mation of the arc length of the intersection domain in order to use the results of [56]. Indeed, it
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was proven [55], [4] that the eigenvectors of the covariance matrix converge to the Frenet-Serret

directions.

Theorem 3.1.3. Let v : I — R" be a parametric curve of class C™**, regular of order n. Let
ei(s),...,en(s) denote the Frenet-Serret frame at y(s). Let V1(s),...,V,(s) denote the limit
eigenvector of C(s,€) at y(s) for e — 0. Then the covariance eigenvectors converge to the Frenet-

Serret frame, i.e., e;(s) = £V ;(s), forj =1,... n.

The following key result by F.J. Solis [55,56] expresses the series expansion of the eigenvalues

to leading order in terms of the Frenet curvatures:

Lemma 3.1.4. Ler y(s) be a regular curve in R™, and let py be a point on the curve, then the

eigenvalues associated with C(pg, €) are given by

M(e) = P + O(eh), (3.5)

o .. . 2 . .
QLG§}QJ¢%+O@%”L j=2....n (3.6)

Aj(e) =
and the eigenvectors are given by the Frenet-Serret frame at py. The r;’s are the Frenet curvatures

of the v and Py, is the k-th (k = 1,...,n) pivot of the n x n matrix A, defined by

1 . . .
—1, i+ jiseven;
Ay =1 3.7)

0 otherwise.

From the proof of this lemma, a typo is corrected for the denominator of \A;(e) in the final
statement. With this result we can express the curvatures x; in terms of the eigenvalues by writing

the pivots as quotients of the determinants B; of A;, thatis P; = B;/B;_4, so that:

. A (8) B; 1B',1
lim o = 2 3.8
NN T+ 1285 (3-8)
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In fact, a different route towards the covariance analysis of curves was developed in [4]: by
solving the characterization theorem 3.1.2, given curvature constants at a point, the system of
ODE:s can be solved to obtain canonical helix-type curves with those curvatures that approximate

any smooth curve at that point as an osculating helix:

- - ay cos(as)

ay cos(as)
ay sin(ay s)
ap sin(ay s)

7@(3) = or 70(5> = (39)
ay cos(ags)
ax cos(ays)
a sin(ags))

| agsin(ays)) |

bs

where the first equation is for the case when n is even, such that k& = n/2, and the second equation
is for the case when n is odd, such that k£ = (n — 1)/2. By directly computing the covariance
matrix for this type of curves, one can relate explicitly the eigenvalues to the parameters a,,, o, b
of those solutions and establish a relationship with the Frenet curvatures that leads to a conjectured
formula, whose proof constitutes the present author contribution: determining the coefficient of

equation 3.8 by using the theory of Hankel determinants.

Theorem 3.1.5. Let vy : I — R" be a parametric curve of class C™', regular of order n. Let k;(s)
denote the j curvature function of -y evaluated at s and let \;(¢) denote the j* local eigenvalue

of the covariance matrix C(s,¢). Foreach s € I and each j = 1,...,n — 1,

o Agale j 2452 -1
K2(s) = a; thQ aj_1 = (j n (_1)].) 5 (3.10)

For fixed € > 0, these eigenvalue ratios furnish descriptors at scale of the generalized cur-
vatures, with their respective eigenvectors becoming descriptors of the Frenet-Serret frame. This
permits the local characterization of the curve within the given approximation. In particular, if

we are given a big sample of points belonging to a regular curve in some Euclidean space, the

30



covariance integral can be computed for small balls around every point to obtain a set of curvature
descriptor functions. This curvature profile can be used as a classifier of point sets belonging to
different curves when explicit parametrization functions of the curves that generate those point are

unknown.

3.2 Hankel Matrices and Orthogonal Polynomials

The determinants B; are of Hankel type for the sequence {s,,}:> o = {3,0,1,0,%, ...}, ie,

Mo M1 M2 o

. 1 % 0 % R R N

Bi =3, By= ; 1 CBs=10 L 0| Bi=| my ops g o e
5 Lol

Mj—1 HKj  Hj+1 -0 H25-2

Then to get our coefficient in theorem 3.1.5 amounts to showing that the aforementioned Hankel

determinants satisfy the following recurrence relation:

BiBis  (j+(~1))’
(B2 421

(3.11)

This is indeed the case after we realize that such a recurrence relation appears in the theory
of monic orthogonal polynomials generated from {z"}?_, by Gram-Schmidt orthogonalization
with respect to a measure generating our sequence /., as the integral moments. Indeed, choose a
nondecreasing function A(z) on R having finite limits at +00 such that it induces a positive measure

d\ with finite moments to all orders

o (dX) = J z"dNx), n=0,1,2,..
R

o0

o using the scalar product

then apply the Gram-Schmidt orthogonalization procedure to {x"
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(o), gla)) = f pl)q(z)dA(z)

to obtain a sequence of monic orthogonal polynomials P, (x) (without normalization). If the given
scalar product is positive-definite, such a sequence is infinite and unique, and this is the case if
B, > 0 for all n € N, see Gautschi [24, Th. 1.2, 1.6]. Moreover, in this case, the infinite sequence
of monic orthogonal polynomials obtained in this manner obeys the recursion relation [24, Th.
1.27]:

Pa(e) =0, Pola) = 1, Papi(2) = (2 — an) Pale) — BuPacs(2) (3.12)

where

Py, zP, P, P, P(x)|?
an:< n,ilf n>7 = < s n> — H n(l’)” 2,f0rn=1,2,...
(Ppy Pn) (Fo-1, Boer) [P (2)]

The importance of this result is that the recursion coefficients (3,, are precisely the recursion coef-

ficients of the Hankel determinants B,, for the sequence ., as it is proved in [24, eq. 2.1.5]

Bij,Q
(Bj-1)%

Bij—1 = forn=2,3,... (3.13)

so finding a measure to reproduce our sequence as its moments and a way to compute the norms of
the corresponding polynomials will yield our coefficient formula. There is a fundamental determi-

nantal representation of the monic orthogonal polynomials generated in the previous way [24, Th.

2.1]
Ho  H1 -..  Hn
M1 M2 ... Hnyd
Pla) =g | 0 | IP@IP = 22
Hn—1 Hn .- fHon—1
| A "

that yields Heine’s integral representation formula [28, p. 288] by essentially pulling the integrals

of each moment out of the determinant and expanding i:
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Since the polynomials are monic, 53,, can be solved equating to 1 the leading coefficient of the

previous equation

JR [1 (on— ) dr(wy) - dA(wn), (3.14)

1<i<k<n

which is a closed formula for all Hankel determinants of any sequence as long as this can be written
as moments of a positive measure.

Using the theory above for Hankel determinants of a particular type we arrive at the following

key result.
1 0
Theorem 3.2.1. For any inverse arithmetic sequence { 3 } , where o, 3 € Ry, the cor-
an _—
responding Hankel determinants
1 1 1 A S
B8 a+p 2a+0 (n—1)a+p
1 1 1 o 1
a+p 2a+8 3a+ps na+p
— 1 1 1 1
Fu(a, B) 2048  3a+f  4atf T (mADa+B (3.15)
1 L 1 U S
(n—1)a+B na+B (n+l)a+p (2n—2)a+ps
are given by
1= + k) (! 1
= —H B N N a—ET)
ne s PBlat+n+k)  arill j:[)a( +7)+p
and satisfy the recursion relation
F,F,_ 2 —2) + B)* (n— 1)

F?2, ((2n —2) + B) (a(2n — 3) + 5)2 (a(2n—4) + ﬁ)’

starting with Fy =

37
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Proof. Choose the function \(z) = 2% /3 which is always nondecreasing in the interval [0, 1] for

B/a > 0, then the corresponding positive measure

Bla—1
d/\(x) = XJo0,1]

dx,

where 7 is the characteristic function of a measurable set I — R, yields moments

1
1 1 1 n+§ 1
o, = f z"d\(z) = —f Ay = = | 2 = .
R a Jo aln+ g , ant 6]

Notice that this solves the Stieltjes moment problem uniquely for these sequences because our
measure is infinitely supported on [0, c0), and its moments satisfy Carleman’s condition [53, th.
1.10]. From this, the necessary condition F,, > 0 is guaranteed to hold for any dimension n
[53, th. 1.2], so the induced inner product is positive definite and thus the sequence of monic
orthogonal polynomials P,(x) is infinite and unique. Thus their recurrence relations (3.12) hold
for any n € N, so we can compute the determinants F,,(«, 5) of any dimension. This is done by

computing equation (3.14)

B_q
1 (! rr x)
Fn(a,ﬁ)zaL---LE = H (mk—xl)2dx1---dxn

1<i<k<n

by means of Selberg’s integral formula [10, 8.1.1], an extension of Euler’s Beta function which has

applications in different fields within mathematics and physics:

n—1

= r r (1 1
f H$?—1(1 o 'Ii)b_l n |xkz o xl|29 d"x = H (a + kg) (b + kg) ( + (k + )g)’
[0,1]"

0 I<l<he i Ma+b+(n+k—1)g)I(1+g)

when Re(a) > 0,Re(b) > 0 and Re(g) > —min{l/n, Re(a)/(n — 1), Re(b)/(n — 1)}. These
conditions are satisfied for our case a = /o > 0, and b = g = 1. Therefore by substitution of

these values
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1 "1N@@+k>u+kw@+k 1 (B/a + k)(k!)?
Fuen ) = o T(B/a +n + k)(2) rlrmu+n+m

| A1
e 0

where the Gamma functions can be simplified by the factorial property I'(z + 1) = 2I'(z) to get a

closed formula:
=
Fo(0,8) = —H (k) Hm

Finally, the recursion equation 3.13 can be worked out by telescoping the products of Gamma

functions:
F.F, _2_1Ti Ij Zin —1+@
sl + n + k Pl g (k!)?
11[ —l— n—1+k) 1 11[ k)(RD)?
LI E k) a2 —2+k)
T2 +n-1)(n 1:[ 1 1:[ ( . 1+k>
— n—
T2 +n—2)(n—2)12 5 ~1+kKTE +n—1+k) ;5
(5 8 -
H(—+n—2+k>F< —|—n—2+k)n
ilo \& i —24 k)
(ﬁ+n—2)(n—1)2f( +2n —4) = - ( )
= - +n—2+k
I'(2+2n- U S4n—1+k) U
B (£ +n—2)2n-1)2
S Crom-2) (8 r2n—32(2 +2n—4)
which yields the stated formula upon multiplying numerator and denominator by o* 0
1
= 1 ,‘{ where

Remarkably, this means that our polynomial recursion coefficients satisfy (3,

Bz are those of the classical monic Jacobi polynomials of type (ﬁ —1,0). These are generated by
~1dx, which induces a completely different moment sequence and set

the measure x[_11(1 — x)

of orthogonal polynomials.
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Our actual determinants 3,, have alternating 0’s in the even positions of the moment sequence,

so a block decomposition is needed to get them into the form of the theorem.

e0]
0} with a, B € R.q, where zeros alter-

n=0

Corollary 3.2.2. For any sequence of type { ,
an + (3

nate every other position, the corresponding Hankel determinants B,, are given by the following

block decomposition for even n = 2m or odd n = 2m — 1 dimension, m € N:
BZm = Fm(a75>Fm(&7ﬁ+Q)7 B2m71 = Fm((X?B)mel(aa/B_‘_Q)a (318)

and obey the recurrence relations:

BQmBQm_Q _ (a(m — ].) + 5)2 (3 19)
(Bom-1)*  (a(2m —1) + B)(a(2m — 2) + )’ '
Boy—1Bam -3 . 042(771 - 1)2
(Bans)?  (a(Zm—2) + B)(a2m —3) + B) (320
starting with By = E, By = m.

Proof. The Hankel determinants with 0’s at every even position of the first row can be decomposed
into blocks by a procedure of moving rows and columns without altering the overall sign. Notice
that the second block has as Hankel sequence the original one but shifted in index by +1, so the
blocks are F,, := F,,(«, ) and E,, := F,,(a, f + «). Analogously for n = 2m — 1, but in this
case the number of 0’s is now m — 1, so the size of the second block is (m — 1)? whereas the first
is still m2. Thus

BQm = FmEma BQm—l = FmEm—l-
Whence the recursion coefficients for the induced polynomials are, for even n,

BQmBZ(m—l) En Fna

anl = 6217171 = B%m_l = Emfl Fm )

and for odd n:
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BZm—lBQ(mfl)fl _ Em—2 Fm

Bg(m_l) Em—l Fm—l .

ﬁn—l = 62m—2 =

Therefore using equation 3.16, that the corresponding 3/« for the E,, blocks is 5/« + 1 and the
factorial property of the Gamma function, the products can be simplified in the same way as in our

previous proof:

BamBam-1) _iml Bla+1+k)kD)? " D(B/a+m+k)
B3, 4 am L4 F(B/a+1+m+k) o T(B/a+ 1+ k)(k!)?
1 T T(B/a+ k)(k)? w17 DB/a+m+k)
am-1 [ TB/a+m—1+k) ,H) D(B/a + k)(k)?2
m—1 1 m—2
z(ﬁ/a—i—m—l)g (ﬁ/a+m+k)-g(ﬂ/a+m+k—l)=
B (B/a+m —1)?
 (BJa+2m —1)(B/a +2m —2)
Similarly,
Bgm 1B2(m 1)— _ B/Oé—f'l—i‘k ]{Z' i ﬁ/a+m+k)
B3y _am2HF (Bla+m—1+k) U (B/a+ 1+ k)(k!)?2
1 7 D(B/a + k) (k!> T LBla+m—1+k)
Oé_m,g) T(Bja+m+k) 1:[ I(8/a+k)(k)2

_ (m —1D)PPT(B/a+m — 1)T(B/a + 2m — 3) _
(m—=2)2I'(B/a+m — 1)I'(B/a+2m — 1)

) (m — 1
(B/a+2m —2)(B/a + 2m — 3)

Finally the coefficient formula of theorem 3.1.5 is obtained from this using equation 3.8.
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Corollary 3.2.3. The Hankel determinants of size n x n

1 . . Y .
P ifi+ j is even;

0 otherwise.

satisfy the recurrence relation
B.B, 2 (n+(—1)")?

T (3.21)

1 a0
Proof. Notice the matrix entry at (A,,);; is precisely the element of the sequence { 3 O}
n 0
where n = i+ j —2. Thus substituting & = 2 and 5 = 3 into the equations 3.19 and 3.20 above, the
result follows straightforwardly when simplifying the theorem formulas after indices are written in

terms of the dimension, m = n/2 or m = (n + 1)/2 for the even and odd cases respectively. [

The manifold reconstruction problem is thus solved for regular curves in Euclidean space in

terms of covariance integral invariants.
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Chapter 4

Covariance Analysis of Smooth Hypersurfaces

We generalize to hypersurfaces in any dimension major results known about the covariance
analysis of surfaces in space [20], [51], whose descriptors shall yield a method to estimate the ex-
trinsic and intrinsic curvature of an embedded Riemannian submanifold of general codimension.
We obtain the asymptotic expansion of the PCA integral invariants for a spherical volume com-
ponent delimited by a hypersurface and a ball in ambient space, and for the hypersurface patch
created by ball and cylinder intersections. The domain volumes have asymptotic expansion with
scale that correct the volume of a ball by the extrinsic curvature of the hypersurface at the cen-
ter point. The EVD of the covariance matrix of the spherical volume component has eigenvalues
with series expansion in terms of the principal curvatures and the mean curvature at the center,
and eigenvectors that converge to the respective principal and normal directions. In the case of
the patch invariants, the results are analogous but in terms of the squares and products of principal

curvatures.

4.1 Spherical Component Integral Invariants

The following domain was introduced in [30] to study the relation between the mean curvature

of hypersurfaces and the volume of ball sections (we reserve their notation B, (¢) for the half-ball).

Definition 4.1.1. Let S be a smooth hypersurface in R"*! with a locally chosen normal vector field
n:S — R"1 Let B},"H)(z-:) be a ball of radius £ > 0 centered at a point p € S, for small enough
¢ the hypersurface always separates this ball into two connected components. Consider the region

V. (¢) to be that spherical component such that n(p) points towards inside the region V" (¢).

All the methods and results of [51] for surfaces using this domain generalize because to ap-
proximate integrals of functions over this type of region in IR, the formula developed in their work

makes use of the hypersurface approximations of [30], valid in any dimension.
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Lemma 4.1.2. Let f : R""™' — R be a function of order O(p*2') in cylindrical coordinates
X = (x,2) = (px, 2), Te S, let S be a graph hypersurface given by the function z(x) whose
normal at the origin points in the positive z-axis, and V. (¢) the spherical component delimited by

this S, then

Z=% ZZ:I Hﬂmu
J f(X)dVol = J f(X)dVol — f [J fl@,2) dz | dha+O(H+2Hn+3)
Vo' () Bjf (¢) B (e)

z=0
4.1
where the half ball B}f (€) consists of the points of B}™*(¢) such that z = 0.
Proof. We are going to approximate z(x) by its osculating quadric at the origin, % =1 HMSL’Z,

and remove from the complete half-ball integral of f(X) its contribution from below the quadric
approximation but, since what we know is the function over the tangent space at p, what can be
computed is the contribution below the quadric over a domain in the tangent space that is explic-
itly integrable. The exact domain is determined by the sphere intersection with the hypersurface,
{|z|> + z(x)* < £}, and what we can compute exactly is the integral over the cylinder {p < &},
so that for every x € B,(f‘) (¢) € T,,S, we can remove the contribution of S(Z) f(x, z)dz. This results

in the approximation:

2(x)
f f(x, z(x)) dz] d"z.

z=0

f f(X)dVol ~ f f(X)dVol — J
Vi (e) By (e) Bp(e)

What we need to find is the order of the error in this expression. The volume in the second integral
extends outside the ball that defines V;r (), which is inscribed in the cylinder, and thus the integral
below the hypersurface is subtracting an extra contribution from the region 2, that lies outside the

sphere but inside the cylinder and is bounded by the hypersurface. Then
f F(X)dVol < max |f(X)|- Vol(Q).
Q XeN

Since z(px) ~ O(p?), we have maxxcq | f(X)| ~ O(p*(p*)!). To bound the volume of €2, notice

p is bounded by ¢ from the cylinder and by approximately ¢ — Ce® from the intersection of the
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sphere with the hypersurface, for some constant C' (cf. lemma 5.3.1 below or the estimation in
[30]). This maximum thickness O (&%) is added up for every point of the base sphere, whose area is
~ O(g"1). Now, the maximum height in the z direction of {2 is of order O(g?) because it is given
by the intersection of the cylinder with the hypersurface. Therefore, Vol(Q) ~ O(g2e" 1e3) ~
O(e™**). The total error of this approximation is then O(g**2+7+4)  Finally, the graph function
z(x) is to be approximated by its osculating quadric, truncating the terms O(p*) from its Taylor
series. This makes a new error in the second integral of our formula, given by the integral over the
region inbetween the quadric approximation and the actual hypersurface, which has height given

by the O(p?) difference between the full series of z and the quadratic terms. Therefore, the integral

we are neglecting by this truncation makes an error

p=¢
f f O(pk(pQ)l)O(pB)pn—ldpdS N O(€k+2l+n+3)
Sn=1 Jp=0

which is the leading order of the two errors for small £ > 0. [

The key idea of the approximations carried out in the previous lemma were developed in [30]

precisely to obtain the first integral invariant.

Proposition 4.1.3 (Hulin and Troyanov). The volume of the spherical component cut by a hyper-

surface has the asymptotic expansion

Voii(e)  €2V,(e)

V(VF — _ H + O(e"™). 4.2
Proof. Using lemma 4.1.2 the computation is immediate since SB; (e) dVol = V”+T1(E), and
= S ] Lo D, &
J J “do| de = Z Ky, f xi x| == K-
Br (e) z=0 2 p=1 v (e) 2 pu=1
[

Proposition 4.1.4. The barycenter of the spherical component is of the form:
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s(V,f(e)) =10,...,0, 2

Vo(e) &2 Vo(e) &2 . ,

Proof. Notice that { . (o T dVol = O(e"™*) because applying lemma 4.1.2, § . o Td'Tdz =
0, and the second integral is also of monomials of odd degree. We get right away the normal

component

ACER|

2
n 1 - n n n+1 n

. zda:dz—f 5 Z/ﬁ”xi 'z + O™ = DY L O,

B (e) By 2 | (o

where we have discarded the second integral since its order is O(D{") = O(D{J) ~ O(e"*),
which leaves the same O(g3) as the error after dividing by the volume. The final expression
follows from inverting the volume formula from the previous proposition and using the value of

D™ from the appendix. O

Theorem 4.1.5. The covariance matrix C(V,(¢)) has eigenvalues with the following series ex-

pansion, forall p =1,...,n:

2 4

/\M(‘/ZEJ+(€>> = Vn+1(€)m - Vn<5>2(n T 2)(n + 4)

(26, + H) + O(e"), 4.4)

a4 (9) = Vo O3 25 g (1 Ty r3) 06

(4.5)

Moreover, in the limit ¢ — 0T, when the principal curvatures are different, the corresponding
eigenvectors e, (V" (¢)) converge linearly to the principal directions of S at p, and e,,1(V, (¢))

converges quadratically to the hypersurface normal vector n at p.

Proof. Working in the basis formed by the principal directions and the normal vector of the hyper-
surface at the fixed point p, we shall compute the entries of the covariance matrix and see that it
is diagonal to all orders smaller than O(¢""?), precisely the error we get in the diagonal elements,

therefore the eigenvalues coincide with those diagonal terms up to that error since differences be-
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tween eigenvalues of symmetric matrices are bounded by the matrix norm distance. The covariance

matrix with respect to the barycenter is

cvre)=| XexTavel- [ Xos dVol_f

s®XT dV01+J s®s’ dVol,
Vi (e) Vi (e) Vi ()

Vp+ (e)

and the last two terms cancel each other upon integration. To compute the second term we can use

the expression for V's from the proof of the barycenter formula to get:

O(8n+7)nxn O(€n+5)n><1

f X ®s" dVol = V(V, (e))s®s" =

+
Vp (¢) O(€n+5)1xn V(V;_(S))Sz
where
(n+1)72
+ 2 [Dl ] n+5
V(V, (g))s; = —V(V;(g)) + O(e").

The other contribution to the last entry of the covariance matrix is

n

D(n+1)

3
1
J z* dVol = J 2d'xdz— 2 ks, | d'z+O(™T) = ZT + 0",
Vi) B; (¢) B | 2

P

in which we have neglected the second integral for being of higher order than the barycenter matrix
error, whose subtraction yields the stated result for the normal eigenvalue. Notice that the other
elements in the last column and row of the complete covariance matrix are O(¢"*5) since the
remaining contributions come from SV; (c) Tu? dVol ~ O(g"*5), and its approximation formula
has all monomials with odd powers in z.

Now, we compute the tangent coordinates block. This can be done at once for any p,v =
1,...,n, noticing that when v # v, the integrals of lemma 4.1.2 are of monomials of odd degree

in tangent coordinates so the off-diagonal elements are O(""?):
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1 n
2 2 gn 2 2 mn n+5
deolzj xda:dz—f x —E KoXs, | d"x + O(e"™)
st) g Bie) By (e) ”<2a—1 )

n+1
_DéJF)*lf I{:L‘4+Z/'€$25U2 +O(€n+5)
- H aFa

aFE

Dé”"‘l) Di") D(Z)

; { Dén-}-l) D(n)
2 2 M 2

5 ;2 (26, + H) + O(e"9)

Z Ko + O(e"7) =

aFE N

Here we have completed the last sum and used the fact that D, = 3Dqs.

The perturbation theory of Hermitian matrices [22], [31] shows the convergence of the eigen-
vectors to the principal directions in the case of no multiplicity: truncating C'(V,"(¢)) to order
lower than O(e""?), that is precisely the order of the perturbation with respect to the exact diago-
nalized matrix. Fixing an eigenvalue \,(V,"(¢)) with zz # n + 1, the minimum difference to the
other eigenvalues is of order ~ £"™(k, — K, ), whereas for the last eigenvalue its distance to all
the others is already at leading order ~ "3, Therefore, from the sin @ theorem [22], the pertur-
bation O(£"*°) changes the eigenvectors {e,(V,"(¢))}7_, with respect to the principal directions

as O("*9)/O(e"**(k,, — ky)) ~ —=—, and changes the eigenvector e,,,1(V,"(¢)) with respect to

n—ky’

the normal as O(e"*%)/O("3) ~ €2, i.e., in the limit ¢ — 07 the eigevectors of C'(V,* (<)) get a

vanishing correction with respect to the principal and normal directions. 0

Therefore, since the Weingarten operator S at p is diag(k1(p), . - ., kn(p)) in our basis, we may

write the covariance matrix as:

g4 H 0
V., 1(5) g2 Vn(é) gt S + 5 Id,, nx1
VJF + dn . n+5 )
N (e e s | O
O1xn 2Vn+1(5)(n+2)

In [51], following [21], the spherical shell V,*(¢) n S} (¢) is also considered for surfaces in
R3, and its invariants are shown to be just the derivative with respect to scale of those obtained
for the ball region. This is due to the fact that the integral of a function over a region delimited

by a ball is the radial integration of the corresponding result over spheres. The same property
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holds in our case, therefore the derivatives with respect to ¢ of the invariants in this section are the

corresponding integral invariants of the n-dimensional spherical shell.

4.2 Patch Integral Invariants

Now, we shall state the results of the integral invariants of the hypersurface patch domain given

by a cylinder intersection as corollaries to the main theorems in the next chapter. Cf. 5.2.1 for

Proposition 4.2.1. The n-dimensional volume of the hypersurface cylindrical component for a
generic V € Gr(n,n + k), such that V* ~ T,M = {0}, is to leading order the volume of the

ellipsoid of intersection between the V-cylinder and T,S:
V(Cyl,(s,V)) Hf + O™ (4.6)
where {,, are the the principal semi-axes of the ellipsoid. WhenV = T,S, the volume is
g? o 4
V(Cyl =V, 14+ —— @) : 4.7
(C¥L, (&) = Vale) +2(n+2);ﬂ+ (") @.7)

The barycenter for the cylindrical domain is the same as for the spherical domain computed
below in proposition 4.2.5. Finally, the covariance matrix analysis yields a direct relation between

its eigenvalues and the squares of the principal curvatures.

Theorem 4.2.2. ForV € Gr(n,n + k) such that V* n T,M = {0}, i.e. for non-normal transver-
sality, and when Cyl,(g,V) is finite, the covariance matrix Cy(e,V) of a hypersurface S has n
limit eigenvectors that form an orthonormal basis of T,,S, corresponding to the first n eigenvalues
that scale as £%. The other eigenvalue scales at higher order and has limit eigenvector converging

to the normal of S at p:

Mu(Cyly(e, V) =

+2# Hg + O(e "*3 w=1...,n, 4.8)
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Ani1(Cyl (e, V) = 0+ O("?), (4.9)

where {,, are the principal lengths of the ellipsoid in 4.2.1. When V = T, M the eigenvalues of the

covariance matrix of the cylindrical component are:

2 4

84

4(n+2)(n+4)

At1(Cyl,(€)) = Val(e) [ (3H* —2R) + (’)(56)] (4.11)

forall n = 1,...,n. Moreover, if the principal curvatures are different, the first n eigenvectors

converge to the principal directions, and the last eigenvector to the normal direction at p.

However, as a warm up exercise for the more involved computations of the general codimension
case, we shall explicitly compute below the asymptotic expansions of the integral invariants of the
hypersurface spherical patch. We are integrating over the domain D,(c) = S n B}**(¢), using
again the local graph representation in a small neighborhood around the point. What follows served
as a toy model for the general case and was obtained first during our research.

Since a parametrization of the region is needed to perform the integrals locally, we need to
find local parametric equations of the boundary 0(S n Bg“(e)), which is no longer a sphere (cf.
Figure 4.1), to high enough order in € so that we can expand asymptotically the integral invariants
in terms of the geometric information of the hypersurface at the point. The strategy of [51], hinted
in [30], obtaining a cylindrical coordinate approximation for the boundary radius of the patch,
works in general dimension as follows. The result is general for higher codimension so the proof

is given in lemma 5.3.1.

Lemma 4.2.3. In cylindrical coordinates (p, ¢1, ..., ¢n_1,2) over the tangent space T,S, fixing
the basis to the principal directions and the normal vector of S at p, the parametric equations of a

point X = (pTy, ..., pTn, 2)" in dDy(e) = S N Sp(e), are
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0.4 -02 0.0 02 0.4

Figure 4.1: The intersection of a sphere with a hypersurface no longer projects as a ball onto the tangent
space, which renders local integration more difficult. Lemma 5.3.1 provides a way to tackle the correction
terms due to the irregularities of the boundary. Here, the example of the integration domain of the graph

hypersurface z = 2° — 223y + 322y + % + 3xy> — 5xy? + ﬁ, fore = 0.5.

(%) = p(Ty1,...,Tn) = — ém2(§)83+0(64), 2(T1y ..., Tn) %/{2(5)52—#@(53), (4.12)

where Ty, ..., T, are the coordinates of points on S"~' < T,,S, and
n
K(T) = K(T1,. .., ) = ) KT (4.13)
pn=1

is the normal curvature of S at p in the direction of .

For this type of domain the previous parametric expansions are enough to asymptotically ex-
pand both the integrand and the measure, collect terms and solve the integrals using the appendix
formulas. The area or mass of the domain can be expressed as a correction to the volume of the

n-ball in terms of the extrinsic and intrinsic curvature of S at the point.

Proposition 4.2.4. The n-dimensional area of the hypersurface patch has the asymptotic expansion

2

m(fﬂ —2R) + O(e%)|. (4.14)

V(Dy(e)) = Vale) |1+
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Proof. Using lemma 5.3.1 in equation 2.15, we have that

dVol|p, ) = v/det g(x) dz; - - [1 + = Z roxh + Oz ] dxy - dx,

,ul

2
since >, ((%) = |Vz(x)|?* can be considered small for small enough ¢ > 0, because in our
o

coordinates Vz(0) = 0. With this and the cylindrical measure, eq. A.1, the integration becomes

V(D,(g)) = LQBM dVol = L ldSJ [ %Zi] Ko pT, +(’)(p3)] P tdp

- Ln ds [%(5 I C O(eM)" + % 3 zﬂé - r(@)°e” O + 0(57”4)]

after integrating over p up to the boundary radius. Expanding the binomial series and the square of

the normal curvature, all the remaining integrals are in example A.0.4, leading to

n

c <,5n+2 €n+2 n
V(Dy(e)) = —Sur - J KE)?dS + —— ) /{if 72dS + O("?)
Sn 1

8

e [0y n+2 )\ <& n+2. & .
= V.(¢) " (7 -3 6’4) Z /@Z — Oy 2 Z Kuky | + O(e"?)
B p=1 u<v
8”+2 02 CZ
=V,(e) + —(H?>-R) — —R| + 0",
Oy | SRy - CR| 4 0
where we use equation 2.12 and the relations among the coefficients from the appendix. [

It is natural to expect the extrinsic curvature /1 to be present in the second order correction
since the domain depends on how S is embedded, in contrast to an intrinsically defined geodesic
ball where the correction only depends on R. Now, the center of mass in this case turns out to

deviate from the center of the ball, to leading order in €, only in the normal direction.
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Proposition 4.2.5. The barycenter of the patch region has coordinates in the principal basis with

respect to p given by

——H+0(*]". 4.15
Proof. When integrating any tangent component x, of X, only factors with an odd power in
some component are produced because the known terms (see previous proof) now contain prod-

ucts fafi, :caa: and 7,772, which always have an odd power factor regardless of the subindices

2
combination. Therefore the first n components of V' (D, (¢))s(D,(¢)) are of order O(¢"**), com-

ing from the error inside r(z)""! after integrating radially the first term x,p" 'dp. The normal

component of X integrates as

r @) 1
LB+()de01= . 1dSL lz (®)p* + O(p ] 1+ = Z/ﬁupx2+(9 N p"tdp
NBR (e JSn—

= Jus dsS |:2<n n 2) (5 _ H(?) 63 + O<€4))n+2 + O(€n+3):|

€n+2

_ —2 n+3: - n+3
n+2 Z/{HLnlxﬂdS—kO(e ) 022(n+2)H+(’)(5 ).

Then normalizing by the volume to lowest order cancels the coefficient Ce™. ]

Finally, the study of the covariance matrix of the patch domain shows a behavior similar to the
spherical component, but where the next-to-leading order contribution to the eigenvalues includes

only products of principal curvatures and no linear terms.

Theorem 4.2.6. The covariance matrix C(D,(c)) has n eigenvalues that scale like €"** as

4

A(Dy(2)) = Vile) [ni 3 ST 28)<n oy (H? — 2R — 4H@)] L OED),  (4.16)

forall iy = 1,...,n, and one eigenvalue scaling as €"** with leading term
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4

Mt (Dale)) = Vale) g 25)(71 vy (Z i ;HQ - R) +O("). 4.17)

Moreover, in the limit € — 0%, if the principal curvatures at p are all different, the eigenvectors
e,(D,(¢)) corresponding to the first n eigenvalues converge to the principal directions of S at p,

and the last eigenvector e, 1(D,(c)) converges to the hypersurface normal vector n(p).

Proof. We need to evaluate SDP(E) X ()X (z)" y/det gd"x and V(D,(£))s(D,(c))®s(D,(e))".

The latter can be obtained from the previous proof:

C2€n+2 52

[O("), ..., 0, eI OEH) T @[O®ED, ..., O, gt O ],

resulting in all entries of the n x n block being O(e"™®), the first n elements of the last column
and last row being O(¢"°), and the last element of the matrix becoming

V() et

[V(Dy(€))8(Dy(€)) ® 8(Dp())" Jns1),ns1) = Tt 2)2H2 +O(e"),

(we already disregarded the term of O(¢"*%) that can be computed for this matrix entry because
we shall see below that the other contributing term in that position has error at O(¢"*9)).

Now, the rest of the covariance matrix requires the longest computations so far. The entries of
X (x) ® X (x)" are of three types: x,z,, z,z(x) and z(x)?. The first n entries of the last column
and last row, z,z(x), contribute at order O(¢"**). This implies that the matrix may not decompose
at order O("**) as the direct sum of a "tangent" n xn block, the integrals of [x,z, ], and a "normal"
1 x 1 block, the integral of z(x)?. Then the argument in the proof of theorem 4.1.5 to equate the
diagonal elements of this expansion with that of the actual eigenvalues cannot be made here, since
there are off-diagonal error elements at the same order as the diagonal approximation. However,
this will not affect the eigenvalue decomposition as we shall see later in the crucial lemma 5.2.3,
and the eigenvalues will be given to order O(¢"**) by the diagonals of these blocks.

The normal block entry is:
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J 2avol — | ds L (T)2p* + 1+ = Z T+ 0 | p
z = — R\ K .Z'
SnBpt 4 o rw

() Jsn—1 Jo

r @) [
= dS - Z KakaToTs p" >+ O(p" ) | dp
J§n—1 JO | aﬂ 1 i
_1! imzf T dS—i—QZka K f a:QEQdS_ = + O(e"™?)
4 a=1 * sn-t a<f Y " n+4
_ [Co(H? = R) + CouR] + O("+5);
An+4) >

subtracting the contribution from the barycenter matrix term, the last eigenvalue becomes

02 €n+4 02 6n+4

Map9) = ey B 2R -

H? + O(e")

which simplifies to the stated result.

The tangent block entries can be computed simultaneously considering arbitrary i, v=1,...,n

r()
f z,x, dVol = f dSJ PPT T 1+ Z K2p*T2 + O(p®) | dp
SABIT(e) st 0
T,T, k(T)? , L g4
= dS= — +O(eH))"? 4 = J 2%, T, dS + O™t
Lnl n + 2 (E 8 8 Z S§n—1 xaxul‘ n + 4 (8 )
e 6, C. (n+2) f dST,T Zn: K2TE 42 Zn: KakgZ T5 | | +
= v T T o v ava alvpgLy
n+2|" A = g

+ 5n+4% RZJ T dS—i—Z J 72 + O(e"),
n+42 uSnl §n—1

aFE N

where the 0, appears because the monomials get an odd power if u # v. Now, the different
integrals inside the indexed sums result in different constants depending on the different monomials

that the terms 7,7, and 77273 can combine into, thus
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8n+2 8n+4 n4+4 N n ) n
= OO + 0w | =—— | Cory + Caa DURE 4 Kakip(Oau + 05,)Coa +
" " aF#p a,B
a#B

4 22
+ Z Ka/iﬁCQQQ + 7/€i + T Z Kli + O(€n+5)
a#p aF
a,B#u

n

n+ 4 =
— 3 (2024 2 RuRa + 0222 2 Iialiﬁ) + O(€n+5).
aFp a#f
a,B#p

Notice that the summations in the last equation are all over indices that must be different from ,
so we can add and subtract the corresponding missing terms to those sums as long as we subtract
them in the correct place. Doing this, and using the crucial relationships between the constants

from the appendix, each of the different terms under the big braces simplify to:

g_n+4 Cy n+4 9 Cy 9

(2 8 2+8

n+4
8

Cy Cy

2+ 2) et St )

((2024 — 20222) 2 RuRa + 20222 Z Raﬁg) = —

aFEp a<f
Finally, these lead to the expression

g2 gt

n+2+8(n+2)(n+4)

f z,2,dVol = 6, V() l (H? — 2R — 4k, — 4RW)] + O(e"*?),
Dy(e)
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and since /ii + Ry, = k,H, from equation 2.13, the stated formula for the tangent eigenvalues

follows from the diagonal of this block. Therefore, we can write C'(D; (¢)) =

Onxl Vn<€) 54 H2Z2R1dn — H§ Anxl

2n +2)(n+ 4
N RECERITET )

Vo(e)e? Id,,
n+ 2

+ O(€n+5)’

ntl 2 p

1xn n+2

so the Weingarten operator appears inside the covariance matrix in this case as well but multiplied

by the mean curvature, which is a term in equation 2.13. [

These covariance matrix eigenvalues will be inverted in chapter 6 to extract the principal cur-
vatures and obtain descriptors at scale of them by truncating the series. The eigenvectors at fixed
€ > 0 also coverge to the principal and normal directions, so they serve as multi-scale estimators of
these as well. The spherical component invariants provide a direct relationship to the Weingarten
operator, thus the principal curvatures will be estimated without the need for sign choices. In the
cylindrical and spherical cases, the principal curvatures appear in products which leads to sign

choices that can be made using the barycenter.
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Chapter 5
Covariance Analysis of Embedded Riemannian

Manifolds

It is shown in this chapter that the volume of domains on a submanifold of general codimension,
determined by the intersection with higher-dimensional cylinders and balls in the ambient space,
have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose
a generalization of the classical third fundamental form [26], [58] to general submanifolds and
prove that the eigenvalue decomposition of the covariance matrices of the domains have asymptotic
expansions with scale that contain the curvature information encoded by the traces of this tensor,
where the limit eigenvectors converge to its generalized principal directions. Theorems 5.2.4 and
5.3.5 represent the most important contributions of this thesis, proving for embedded submanifolds
of arbitrary dimension the direct relationship between PCA covariance analysis and the generalized
principal curvatures and directions that can be defined from the third fundamental form operators.
This achieves a major development with respect to the leading order approximations of [56], and

the expansions for surfaces in R? of [51].

5.1 Third Fundamental Form of a Riemannian Submanifold

In classical differential geometry, [26], [58], the third fundamental form is the natural object to
construct out of scalar products after the first fundamental form, I(x,y) = (x,y), and the second

fundamental form Il(x, y) = <§ x,Y), so it is defined for hypersurfaces, e.g. [40], as
M(@,y) =Sz, Sy) = (S wy).

However, it does not provide new information since it is completely determined by Gaul3 equation

2.1.3, i.e., in Euclidean space [32, Ch. VII, Prop. 5.2]:
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<§2fc,y>=H<§w,y>—RiC(w,y), (5.1)

or, in terms of the Ricci operator, S g HS —R. For a manifold M of higher codimension &, there
are k linearly independent normal vectors at every point and the generalized second fundamental
form takes values in the normal bundle precisely to reflect this structure in terms of the correspond-
ing Weingarten operators at every normal vector. See §2.1. Therefore, the natural generalization

of ( S, Sy to this context is

Definition 5.1.1. The third fundamental form of a Riemannian submanifold M < N is the fourth-

rank tensor III € (T, M*)? ® N, M* ® N, M, given at every point p € M by
(I(z,y)n, m) :=(Spm x, Sp y). (5.2)

for any =,y € T, M, and n, m € N, M.

At any specific point, and because the Weingarten maps are self-adjoint, the linear operator
ITII(z,y) € End(V,M) is written as the following linear combination, when a particular orthonor-

mal basis {rn;}¥_, of the normal space is fixed and 1/ = g(-,m;) is the dual basis:

k

II(z,y) = Z (S, §j T,y n' n,. (5.3)

i j=1
This is due to the linearity of the map n — S, : NyM — End(T,M). If n = 3}, n/n; then
k
(Sna,y)=(l(x,y), n) = ZHJGI T,yY), n;) = <(Z )w, Y),
J=1 =1

forall x,y € T, M.
Let us define the tangent trace of a tensor A € (T, M*)*® N, M* ® N, M as the operator sum

of the evaluations at an orthonormal basis {e,,}};_; of T, M:
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trjA:= > A(e,e,) €End(N,M), (5.4)

pn=1

And let the normal trace of such a tensor be

k
tri A=Y (I, ) ny, ;) € (T,M*)?, (5.5)

j=1
for any orthonormal basis {n; }§=1 of N, M. These tensors are well-defined since the sums are

independent of the orthonormal basis chosen.

Lemma 5.1.2. At any point p € M, for any x,y € T, M, and n, m € N, M, the normal trace of

the third fundamental form is

k
) ~ ~ __
tr (@, y) = Y (S, z, y)={((Su —R+R)z, y), (5.6)
j=1
where R and R are the Ricci operators of M and N respectively. In particular, the sum of squares
of the Weingarten operators S J, for an orthonormal basis {n; };?:1 of N, M, is independent of the
basis. The tangent trace of the third fundamental form is a linear operator on N, M whose compo-

nents with respect to the metric are the Frobenius inner products of the corresponding Weingarten

operators:

((tr 1) o, m) = tr (SpSpm). (5.7)

The total trace is

trIIT = tr tr 1L = [H|? - R + R. (5.8)

Proof. The normal trace bilinear form has components

k k n
tr | I11(e,, e,) Z ,§j e, )= Z Z<§jea, e, X §jea, e,)
j=1 j=la=1

2 IV (eq, e,)1l (eq, €,) = Z<II(ea,e#), II(eq, e,) ), (5.9

la=1 a=1

I
M=

<.
Il
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that using Gaul equation, th. 2.1.3, lead to the corresponding linear operator with respect to the

metric:

tr [ I1I(e,, e,) = Z<II €. €q), Il(e,, e,)) Z <R €n,€,)e,, €,) —(R(e, €,)e,, e, >]

a=1

= (Il(e,,e,), H )+ Ric(e,, e,) — Ric(e,, e,)

—(Sy e, e >+(Re, e,)— <7€e“, e, ).
This is the generalization of the operator of the classical third fundamental form, equation 5.1:
ko, o
Y58 =Sa-R+R.

The tangent trace is trivial by definition of trace of a linear operator with respect to the metric and

the self-adjointness of the Weingarten operators:

((trIM) n, m) = >(SmSne,, €)= (Sm.Sn)r.

pn=1

In a fixed orthonormal basis this tensor is the linear combination

k n k
tr ) I1I = Z Z<S’iSj €., e,)n n; = Z tr(S; S;) n' @n;,
i, 7=1pu=1 i, =1

whose components can be expressed in terms of the second fundamental form as
§ § Z <S e, € ><S e, e )= Z Il (e,, e,)Il (e, e,). (5.10)

py,v=1 wn,v=1

Taking the total trace of III is analogous to the complete contraction of the Riemann curvature

tensor indices to obtain the scalar curvature:
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tr I = trtr (II = > ((Syr — R+ R)ey, e,) = tr Sy —tr R + tr R

pn=1
= > tr (e, e,) = Y [TI(eq, e5)]?, (5.11)
p=1 a, 3

where tr Sg = ZZ:KH(GWGH% H) = |H

2, and the traces of the Ricci operators are by

definition the scalar curvatures. O]

Equations 5.9 and 5.10 shall be recognized inside the elements of the tangent and normal matrix

blocks in our covariance matrices to express its eigenvalues in terms of the third fundamental form.

Example 5.1.3. For a smooth hypersurface S, there is only one unit normal vector n at every point
p € S, up to orientation. Choosing {e, }},_, as the orthonormal basis of the tangent space given by

the principal directions at p, the components of the third fundamental form are:
(IlI(e,, e,)n, 1) = <§e#, Se,) = <§2 ey, e, ) = Kb = tr 1 111(e,, e,). (5.12)

The tangent trace component coincides with the total trace:

n n 2 n
(tryIn, n) = tr(§) = DKL= (Z @> ~2) Kk = H =R =trIIL  (5.13)
pn=1 pn=1

p<v

The asymmetry of the components of the third fundamental form operator ITI(x, y) encodes
the curvature information of the connection defined on the normal bundle N M by (V,N)*, for

any € T, M, N € I'(NM), where an analog to Gaul} equation holds.

Lemma 5.1.4 (Ricci equation). The Riemann curvature of the induced normal connection, R,

satisfies:
(Ri(z,y)n,m) ={(R(z,y)n,m) + (Ill(z,y)n,m) - (IL(z,y)m,n),  (5.14)

forall x,y € T,M, and n, m € N, M, at any point p € M.
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Proof. Writing the classical equation [16, Ex. II.11] in terms of Weingarten maps leads to

(R(z,yn,m)— (R, (x,y)n,m) = Z [ (II(e,, x), n XII(e,,y), m )+

p=1

—(1I(e,,y), n X1I(e,, ), m) |

Z<§n z, eu><§m Yy, eu>_ Z<§n vy, eu><§m €T, eu>
pn=1

pn=1

A~ A~ A~

(Spnx, 8my)—(8Sny, Spm ).

for any orthonormal basis {e,,}};_, of T, M. O

5.2 Cylindrical Domains

In this section we compute the integral invariants of the cylindrical domain around a point on
an n-dimensional submanifold M of R™**, In the case the cylinder is not normal to the manifold
at the point, we can only establish the leading order terms, but that is sufficient in the generic case
to be able to detect the tangent space of the manifold by the scaling behaviour of the eigenvalues
of the covariance matrix. Once the cylinder is fixed to be normal to this tangent space, the in-
tegral invariants can be computed to next-to-leading order to see how they encode the geometric
information of the third fundamental form.

In the rest of this paper we shall abbreviate second derivatives at the origin by

) . 2 £
Klg = Ky 1= %(O),

motivated by the notation of hypersurface principal curvatures, which are the eigenvalues of the
local Hessian of the defining function. We can now compute the Taylor expansion of the integral
invariants in the chosen coordinates, and then relate the terms to the curvature differential invariants

which are always combinations of second derivatives.
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Theorem 5.2.1. The n-dimensional volume of the cylindrical component for a generic V in
Gr(n,n + k), such that V* n T,M = {0}, is to leading order the volume of the ellipsoid of

intersection between the V-cylinder and T}, M:
V(Cyl,(,V)) Hﬁ + O™ (5.15)
where {,, are the principal semi-axes of the ellipsoid. When V = T, M, the volume is

V(Cyl, () = Vi (e) [1 + tr ITT + 0(54)] (5.16)

2(n+2)

where trII1 = | H|* —

Proof. To compute the leading term of V' (Cyl, (¢, V)) we can approximate M near p by its tangent
space, such that, fixing local coordinates with a basis of 7, M @ N, M, a point is specified by
X = [z,0]", withx € T,M, 0 € N,M. Since V* n T, M = {0}, we have T, M ® V+ = R"**,

and of course V@V = R™**. Let {e,}"_, be an orthornomal basis of T, M, and {u. }i_u{v;}h_,

pn=1
an orthonormal basis of V @ V=, then the elements of the former are a linear combination of the

latter, so there are matrices A, B such that:

n k
_ @ Jay .
e, = Z Auua + Z BMv].
a=1 j=1

We need to find the region |projy(X)| < e, and since X = >, 2"e,, when X € T,M, the
projection is

projy(X) = Z<X, Uy ) Uy = Z Z " AU,
a=1

a=1p=1

hence, the domain of integration in & in this approximation is

n n 2
[projy (X)[* = Z( x“z‘”)

This is a quadratic equation that can be written as
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D [Z Af;Ag] o' =z [A-Ale =y" -y =|y[* <

v a=1

where y = ATx. The matrix [A - AT] is positive definite since it is clearly nonnegative, and if
x € ker AT for nonzero x, then projy (X ) = 0, thus X € V*, which contradicts X € 7, M under
our assumption V*+ n 7, M = {0}. Therefore, the cylindrical domain is an n-dimensional ellipsoid

in the tangent space at p, whose volume is given in terms of its principal semi-axes:
V(Cyl,(,V)) = Hﬁ + O™
When V = T, M, the local graph approximation of M over T, M yields

projr, v (X) = [projg, p([z. f1 (@), ..., fA(@)]")] = =] < e

thus, we are integrating /det g(a) over the ball B;l(,")(z-:) < T, M, which can be computed using

the integrals from the appendix A:

1 n n )
V(Cyl,(e f dsf L+5), 2, [Z KigpT |+ O(%) | dp
Sn—t i=la=1 | g=1
V() i iii f 7dS + O™
= V(e Kok, T + "
2(n + 2) i—1a=1 8 oy sn—1
C €n+2 kE n , A
_ 7 n—+
Vn( ) 2(n + 2) ;;3 (’%a,@) + O<5 )
Vn(ﬁ) 52 - n
= Vn(€) + mgg <II(€a, 65), II(ea, 65) > + 0(8 +4>.

Here the spherical integral is only nonzero when 5 = -+, and the last term is the component

expression of equation 5.8. [
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Proposition 5.2.2. The barycenter of the cylindrical component, for V as in the previous theorem,
is

s(Cyl,(e,V)) = 0+ O(£?). (5.17)
In the case V = T, M, the barycenter is:

82

T 4
sy HI 0. (5.18)

s(Cyl,()) = [0,

Proof. For generic V, approximating the manifold again by its tangent space, X = [x,0 +
O(e?)]*, the normal component does not contribute until order two and the tangent component
also vanishes at order one in . When V = T, M, we saw that the integration domain reduces to a
ball. The integrals of the tangent components z* weighed by +/det g are of order O ("), since
the first terms in the expansion have odd powers in the coordinates. On the other hand the normal

components integr ate as:

V[s) = f dSJ fIA/det gp"tdp = J dSJ < K gp"TOT + 0(333)) dp
Sn—1 0 n—1 o ﬂ 1
n+2 5 s Cg 8n-i—? ; »
= Qs n — H n
2(n +2) aZl aﬂf TTAS+OE) 2(n +2) + O,
Dividing by V' = V(Cyl,(¢)) cancels Cpc™ = V,,(¢) to leading order. O

In order to study the eigenvalue decomposition of the covariance matrix we need to establish
how to determine the limit eigenvectors and the first two terms of the series expansion of the
eigenvalues, so that computing the integrals in an arbitrary orthonormal basis produces blocks
identifiable in terms of the coordinate expressions of the second and third fundamental forms in

that basis.

Lemma 5.2.3. Let C(c) be an (n + k) x (n + k) real symmetric matrix depending on a real

parameter € with convergent series expansion in a neighborhood of 0 such that:
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ank

CLIdn Onxk Anxn

+ &

Cle) = &2 +0(e°),

Okxn | Opxk Bixn | Trxk

where a # 0, and the blocks A, B, I" are not completely zero. Let [V |1, [V']| . denote the first n and
last k components of a vector in R"™*. Then the series of eigenvectors of C () form an orthonormal
basis of R™™* that converges for ¢ — 0. The first n eigenvalues are \,(g) = ag® + )\,(f)a‘l + O(e%),
where A,S4) and the corresponding limit eigenvectors {V&O)}Zzl satisfy the eigenvalue decomposi-
tion of A:

AP Id, = A) [Vl = 0nxr, [VIV]L = Opsa

m

The last k eigenvalues are \;(g) = )\5-4)64 + O(g%), where >\§4) and the corresponding limit eigen-

vectors {Vg-o)}?:,’f 1 satisfy the eigenvalue decomposition of I':

O D) [V =001, [V = 00

J

Therefore, the fourth-order term of the eigenvalues is given by the eigenvalues of the blocks A and

T, with the respective eigenvectors as the limit eigenvectors of C () for e — 0.

Proof. The eigenvalue decomposition C'()V () = A(e)V (£) can be written as a convergent series
expansion in ¢ within a neighborhood of 0 for all Hermitian matrices of converging power series

elements [52]:

ank
+0@E) ] [VO+ Ve vB2 4 ] =

Onxk Aan
+ ¢t

, ald,
[

Okxn | Okxk Bixn | Trxk

= (AWl £ A@e2 L AOB3 L AWt 1 VO L vl L vB2 L

The zero matrix C'(0) is the limit when ¢ — 0, with A\(0) = A(® = 0 as a totally degenerate

eigenvalue of multiplicity (n + k). By [52, ch. I, Th. 1], for ¢ > 0, this eigenvalue branches
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out into (n + k) eigenvalues \;(¢) with (n + k) orthonormal eigenvectors V';(¢), all convergent in
a neighborhood of 0. Thus, the vectors VEO) = lim._,o V;(¢) are a unique orthonormal basis of
R"™** that is completely determined by the perturbation matrix.

The eigenvalue difference between C'(¢) and its full diagonalization is bounded by the matrix
norm difference between them, which implies AL = \G) = 0, and also )\1@) =a,fort=1,...,n,
and )\Z@) =0,fori =n+1,...,n+ k, since C(e) is already diagonal up to that order. One can

obtain the relations satisfied by A*) and v equating order by order. At second order, )\52) = ais

nonzero for ¢ = 1,...,n, hence
aIdn Onxk Oan Onxk
[ M1y VO = | ——— [V =0
Orxn | Orxr Okxn | —aldy

implies that [VELO)] 1 = Ogx1, for the limit of the first n eigenvectors. At fourth order we have

A A,vn | Baxe . ald,, | Onxk , ,
(A Ty V¥ =1 2P 1d, i ]V,
Bixn | Trxk Okxcn | Okxk
which in the present case, ¢ = 1,...,n, makes the right-hand side become 0 for the first n rows.

On the other hand, [V(O)] 1 = 0«1 makes B not contribute in the left-hand side, hence the first n

)

rows lead to the equation:

A\ 1d, — A) [V

i 1T = Onxl'

Wheni =n+1,...,n + k, an analogous argument using )\52) = 0, leads to [VZ(O)]T = 0,,x1, and
in turn to:

AP 1d, — 1) [VI2]L = 0.

Since the limit eigenvectors are an orthonormal basis they cannot be zero and, therefore, the previ-
ous equations establish A§4) and the nonzero components of [VEO)] as the eigenvalue decomposition

of A and I', which always has a solution due to being symmetric matrices. [
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The previous lemma is a fundamental step to establish the main theorem of this and the next

section, along with the special case of hypersurfaces in §4.2.

Theorem 5.2.4. ForV € Gr(n,n + k) such that V* n T,M = {0}, i.e. for non-normal transver-
sality, and when Cyl,(g,V) is finite, the covariance matrix Cy(e,V) has limit eigenvectors that
span T, M those corresponding to the first n eigenvalues, which scale as *. The other k eigenval-

ues scaling at higher order have limit eigenvectors that span N, M.:

Au(Cyly (e, V) =

+2M ]_[e + 0" p=1,...n, (5.19)

Ai(Cyl,(e, V) = 0+ O(e"?), j=n+1,....,n+k  (5.20)

where {,, are the principal lengths of the ellipsoid in 5.2.1. WhenV = T, M, let \,[-] denote taking
the [-th eigenvalue of a linear operator at p, or of its associated bilinar form with respect to the

metric. Then the eigenvalues of the covariance matrix of the cylindrical component are:

g2 gt

nt2 2 t2)(ntd)

Au(Cyl (2)) = Vn(s)[ Au[ (trTIT) Id,, + 2t TIT] + 0(56)] (5.21)

84

4(n+2)(n+4)""

A (Cyl, () = Vn(s)[ MNH®H + 21t I | + O(c )] (5.22)

forally=1,...,n,and j =n+1,...,n+ k. Moreover, the corresponding first n eigenvectors
converge to the principal directions of the operator tr | I11 = S H— ’ﬁ,, and the last k eigenvectors

to those of H @ H + 2 tr | I1L

Proof. For generic V the manifold is again approximated by its tangent space as X = [z, 0],
which produces no contribution to the normal block at leading order O(¢"*2). Choosing the tan-
gent orthonormal basis to be aligned with the principal axis of the ellipsoid, and changing variables

so that z* = y*/,, the tangent block becomes an integration over a ball:
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[C(Cyl, (e, V)] = J et d"x = J y'y e, Hﬁa d"y
T A- ATz <e? DI a=1

€n+2

= G bulu Va Hz +O(e"?)

Thus, the covariance matrix leading term is proportional to diag(¢3,...,¢2,0,...,0), which has
limit eigenvectors corresponding to the first n eigenvalues spanning 7, M, and the other k eigen-
vectors spanning N, M, by an straightforward extension to lemma 5.2.3 at order £2.

For V = T, M, we shall compute the integrals of the matrix blocks [z*"]}: ,_,,and [ f*f7]¥ ,_,,

so the next-to-leading order elements of those blocks will suffice to obtain the eigenvalues and limit

eigenvectors by the results of the previous lemma. The tangent block is:

[C(Cyl, ()] = f ztrV~/det g(x) d"x

e e 1 k n n . 3
:Ln_ldstﬂm 1+§2121 ;ﬁgﬁpxa L o) | dp
i=1a= =1

JS§n—1

ent2 gntd E n n
= J ?TAS + —— Z Z D K gk, [ mwamas + o),
i=la=144

and the last integral is only nonzero for the following combination of indices using the notation in

the appendix

J T dS = O, m + Cos | ( [ j1i% 6 HV uyﬁv ] (5.23)
S§n— 1

This simplifies the sums using the relationship between Cy, C52 and Cs, and writing (1 — §,,) to

enforce ;1 # v in the last two terms of Cys:
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0, Cag™+? Coe™tt u 5 SRR 5 i \2 5 S
n+2 +2(n+2)(n—|—4)z 3 /WZ(%M) + uvz(ﬁaﬁ) +2(1— W)Z Fapbay |-

i=1 a=1 a, B a=1
B#u
Vi (g)e? V,(g)et LN ) LNUA
" ” n y 7 2 7 7 n+6
n+2 O + 2(n+2)(n +4) O ;(XZ@:(%B) i ; o; Fonfow | 7 o)
V,(e)e? Vet | < > o\
= 11 2 11 11
O [ S e e . )]«

The component expression of equations 5.9 and 5.11 identify this block matrix at order O (") as
the matrix elements of the operator [(tr tr | ITI)Id,, + 2tr ;III] in our chosen orthonormal basis,
whose eigenvalues are then by lemma 5.2.3 the next-to-leading order contribution to the first n
eigenvalues of C'(Cyl,()), and whose eigenvectors are the limit eigenvectors of C'(Cyl, (¢)).

We perform now the integration of the normal block, which truncated to leading order yields:

i J ===y =0 n+6
0l TT T + O™,

st ~ |

B(™) (e)

fiffdnaszf ds

gn-t 0 a,B7,6

where the angular integral is only nonzero in the same cases as in equation 5.23 above, but with the
indices relabeled accordingly. This again simplifies every summation by matching the combination

of indices and using the relations among the constants:

. 6n+4 .
[C(Cyl,())]7 = prE—Y C, E Kb okl + Cao E Ky, + 2 E Kigtitg || +O("0)
o, 3
oa;é’y oa;éﬂ

Cy et oo . noo .
= 3 Ir oy Ca I ar Ca I ay Ca IV )
4(71 + 2)(7’L + 4) agl (6 e ) (e € ) + ; (6 = ) (e“f e’Y>+

aFEy

+2 Z T (e, e5)Il (€4, €5) | + O("1°),

a7ﬁ
a#S
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in which the first sum precisely completes the elements missing from the other two

V n ) n ' '
' J ! J n+6
4(n + 2 (n +4) [(Z II'(€q, €q ) (;:1 IV (e, ew)) + 2211 (ea,ep)Il’(eq, e3) | +O(E™T).

a?/B

In this last expression we clearly identify the components [H ® H]” and those of 2 tr | III using

the definition of H and equation 5.10. [

We shall see below that the spherical covariance matrix has the same normal eigenvalues, to
leading order, as the cylindrical case above. In [55,56] these were expressed as an average of the
squares of the curvatures of curves inside the manifold M. Therefore, our previous computation

provides an explicit formula for this interpretation of the normal eigenvalues.

Corollary 5.2.5. Let M be an n-dimensional submanifold of Euclidean space R"**, then the first
generalized curvatures k(vy,x,n;) of curves v < M, passing through p with tangent vector x
and principal normal vectors any of the eigenvectors m;, j = 1,.... k, of [H @ H + 2tr |III],

integrate to:

4

1 2 €
(7, @, my) d'e = H® H + 2tr III 5.24
Va(e) L}(n)(g) G i) (n+2)(n+4)"7 Al (IIL]. (5.24)
In particular:
k
3|H|* — 2R

Ry, @, my) d'e = e 5.25
Z wa (©) < i) (n+2)(n+4) (5.23)

5.3 Spherical Domains

The difference between the cylindrical and spherical intersection domains for a graph manifold
lies in the irregular projection onto the tangent space: by definition the cylinder is the extension
in the normal directions of the ball B,(,n) ()  T,M, so the points of the graph manifold satisfy
Iprojo, am([z, f(x)]7)|| = || < e, and thus the integration region is a perfect ball. However, in
”

the spherical case the domain of integration is |z|* + || f(x)|? < €2, which is nontrivial and in
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general cannot be parametrized exactly. One can nevertheless generalize the same procedure done

originally for surfaces in space [51] to find the leading order corrections to the ball domain.

Lemma 5.3.1. For ¢ > 0 small enough so that M is a graph manifold over T}, M, using cylindrical
coordinates, the radial parametric equation of a point X = [pz', ..., pT", fX(pZ), ..., f*(px)]*

in 0Dy(e) = M NSy (e), is
r(x) = p(T1,...,Tp) =€ — K—wgg + O(e"), (5.26)

where T € S"~! < T, M, and

n

k n
K(@)? = |II(Z,%)|? = 222 kgl s T°T°T T (5.27)
i=laBy

,0

is the square of the ambient space acceleration of a geodesic curve of M with tangent T at p.

Proof. A point of the spherical boundary satisfies |x[> + >.F, (fi(x))? = €. Since |x|?> = p?,

and f'(z) = 5200 5 Khar®a” + O(2?), it is immediate that

p? +4p Z <Z/{aﬂx T ) — 2= 0(p°).

Defining K (Z)? as the coefficient of %4, we can solve the equation to order four to get

7 = s (1 VI R@PS) = = 1K (@) + OF)

whose square root yields the result. Note that the actual error may be of order four because this
could contribute at order five upon squaring the expression, which is the order neglected in the orig-
inal equation. In our chosen orthonormal basis at p, we have that II(Z, &) = 33, >, ; kb T T N,

and this is precisely the ambient space acceleration of a geodesic of M, cf. [46, ch. 4, Cor. 10]. [

Proposition 5.3.2. The n-dimensional volume of the spherical component is
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V(Dy(e)) = Vi(e) |1+ (2tr 1T — | H|J*) + 0(53)] (5.28)

8(n +2)
where 2tr 111 — |H|? = | H|* — 2R.

Proof. In contrast to the proof of the cylindrical domain, the radial integration introduces new

angular corrections due to 7 (x):

7(T)
= J dSJ "t/ det g(px) dp
S§n—1 0

[ @ (@) S o s
= s + Z 2 Kigho, T T dS + O("?),
sn—1 S

n no1 2(n + 2) 5

the second integral is the same to leading order as in the cylindrical case, hence

n )2 2
- f ds = [1 - n@ﬁ + 0(53)] L Yl o
Sn 1

n 2(n + 2)
en+2 kE n V. (5)
= ZZZ '{aﬁ’i%f PTTT dS + L gy III + O(e"*?),
T1aB -1 2(’/1 + 2)

where the integral is only nonzero as in equation 5.23, so

Chent? i \2 c i i C i \2 Vn(5)52 n+3
=Vn(€)——z 3D (Kha)® + D Kbk, + 2 (Khyg) +mtrIII—I—O(5 )

i=1 a=1 o?;gy O?;fﬁ
k n '
= V(o) |1+ 8( <4trIII - ZEH(M KL 222(%)2) +O(%)
=1 a,y =1a,8

Now, the first set of sums in the braces is ( 3, II(eq; €4), 2., (e, €,) ) = |H ||, and the second

set is tr IT1. O]

Remark 5.3.3. Notice that the dependence of the error generated by the irregular radius () is not

known, leaving O (") in the previous proof, or whether it cancels at that order upon spherical
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integration, so the spherical component invariants may have error terms at lower order than the

cylindrical ones.

Proposition 5.3.4. The barycenter of the spherical component is to leading order the same as for

the cylindrical component:

52

T 4

s(Dp(e)) = [0,

Proof. The new contributions from () to the cylindrical computations are at least of the same

order, O(g?), as the overall error. O

In contrast to the hypersurface case, for arbitrary codimension the different osculating quadrics
of fi(x),i =1,...,k, cannot be diagonalized simultaneously to a common basis in general. The
number of terms and simplifications needed in this general case is of much higher complexity
than for hypersurfaces but, nevertheless, an analogous result for the eigenvalue decomposition is

obtained.

Theorem 5.3.5. Let \/[| denote taking the [-th eigenvalue of a linear operator at p, or of its
associated bilinar form with respect to the metric. Then the eigenvalues of the covariance matrix

of the spherical component are:

g2 gt ~
A(D =V, N (2t III — | H|*)1d,, — 48 o(e®
ADoE) = (@) | 55 + e L G T - LI, — 48] + 0|
(5.30)
Ai(Dy(€)) = V,(e) ¢! Aj[ tr IIT — H®H]+ 0O (5.31)
NP I o+ 2)(n + 4) n+2 '
forallp=1,....n,and j =n+1,...,n+ k. Moreover, the corresponding first n eigenvectors

converge to the principal directions of the Weingarten operator at H, i.e., Sy, and the last k

eigenvectors to those of [tr | II1 — - H @ H]|.
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Proof. From lemma 5.2.3 again, only the tangent and normal blocks need to be computed. Now,
however, the covariance matrix is taken with respect to the barycenter, so there is an extra matrix

contribution from the tensor product,

C(D,(e)) = X ® X dVol — X ® s dVol,
Dy (e) Dy (e)

because the other two products cancel each other upon integration. From the proof of the barycen-

ter formula, this integral is to leading order:

O™ )nxn | O™ )nxi
X ®sdVol = V(D,(e))s®s =
Dyp(e) O<€n+6)k><n Xnn(j-Q HQH

There is no difference in the normal block computations of this covariance matrix and the cylin-
drical case proved before, since the corrections coming from 7(Z) are O(¢"*9). Thus, subtracting

the barycenter contribution:

Vi, (e)e?
4(n+2)(n+4)

HRH
n -+ 2

4 4
(H®H+2trHIII)—MH®H _ Vn(€)5

H(n + 2)2 = St o)y plrits

!

For the tangent block, the number of correction terms due to the spherical domain irregularities

with respect to the cylindrical case makes a substantial contribution at O(g"*4):

() 2
[C(D,,(a))]wzfn ldSL g (141 ZZ [2 /iaﬁpx] + 06 |dp

Sn— zlal

gnt? LK (T)%e?
n+2[5#,,02 (n+2)Lnlx:c dS+ O(e”)
n+4 k n B
n+4 aﬁl{/a’y L7z lml dS+
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V. (e)e? entt & & n+4 ¢ i
- 5!“’ n+ 2 + 2(n + 4 2 Z I{aﬁnavc (nvBy) — Zzﬁaﬂﬁvéo (nvapys) + O< i )
z:I a, B,y a,B 7,6

where we have made use of equation 5.27, and written C'(,4...) for the integral over S*1 of the
monomial product Z%Z” ..., (notice here the indices are not exponents but coordinate compo-
nents). The first summation simplifies again with equation 5.23 to yield the cylindrical tangent
block, but the other set of sums comprises the 31 spherical integrals of all possible monomials of

degree six:

Cluvapys) = Lnl TS = Co(urafyo) +

C24[/WM um (@H(@ uvaﬁvé ﬁ@ﬁ%)ﬂﬁ@%)
+ (JwaBy0) + (aB0) + (waBd) + (jwabyo) + (wabid) + (iwapyd) + (avasye)
+(W@]+Cw[ MV(%% V@ (MI_,VO@) u”v’g uvaﬁvé

+<&@>+<@%>+<@>+<@>+<@>+<@)+(@)

M (I
+ (uIQ50) + (uFaB) + (D)

Each of these contractions are only nonzero when the connected indices are equal, and at the same

time different from the indices of the other connected groups, for instance:

ZZ’%B’W W/O%% = O 2 Z Kookt e

a,B 7,8 QFEUYF
yHEQ

Matching all the indices in this way for each of the terms just found, and taking into account

the relation of Cg, Uy, and Csyy to C5 in the appendix, we take out a common factor (C and

+2)°

abbreviate the sum notation to produce all the terms of order O(e"**):
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L 0w Va(e)e? Oy et
[Cle = 2 O [CR Z 45,“,2 Kig)? + 85WZ Kby, + 12%2 k)
/#u

- 156/“/( Iizr/)2 - {5MV (’%iya)z + lgl“/(ﬁ H + H K’VV + HVVK/MV—F KVI/VHVM—*— KVMKNH + K}U/RHN

pv' vy

aFEp

7
+ ’{uu Vu
QFEL QFEL QN BFu B#u

+ Huuﬁuu + 51“/ <Z K;oza vv + Z ow + Z ow + Z Vﬁ + Z I/ﬁ

gkals QFpYF a#uﬁ#u,
+ Z Huﬁ/ﬁyﬁ—i- Z K! Bﬁﬁy—I— Z /iw w"’ Z “au m+ Z /ﬁw a,,+ Z /ﬂyﬁfiuﬁ
B#p,v B#p,v YFEIY Qv QFE L,V B,
+5
+ Z KL ua+ Z KLk uv+ Z Hﬁliﬁu—i- Z KL, au+ Z KL K W}]ﬂLO(e” )
QF L,V QF v B#u,v QF L,V aFp,v

Many of the resulting summations are the same after relabeling and using !, 5= "f,i@a’ so they can

be gathered into common factors:

V,(g)e? Vi, (g)et -
C(D =96, 46, 8 — 156, (k!
[ ( p(€>)] 2 n+ 2 + 8(n + 2)(7’L + 4 Z iz Z oz,B + Zﬁa,u Koy iz (HVV)
- 36#” (Hiaa)Q - 12<1 o 5/"V>KZV( 65#” Z 'Liaoa 122 126#’/ ( fxt/)Z
QF L a#p QL
= Z Z KL K . 25,“,2 Z — O (4/{W Z KL, + 8 Z ’{au m)]
QF [ YF Q[ aFp fFoLp aF v aF v

for which regrouping terms and completing some sums will clarify the simplifications below,
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" (g)e2 v, o . . .
_ %/V (e)e n (e)e? Z [82 ,ﬂw = 12%,/(/@;“ +K,) — 4k, Z Koo

n+2  8n+2)(n+4) o

—8 Y Kbk m+5w{42 Khg)” =3 D (Kha)? + 21(KL,)? — 260, > Ky —122 ki)
a, B

QLY aF aFu

O(e"t?).

8 8t 2% S s Do

aFEp YL aFp B, p aFp

Some terms inside the curly braces complement the missing elements of other summations:

21(x uu _QHMMZH _122 au +82 au = 15(k uu _Q’QWZRW 42 au’
aFp aFp
and
*32(’{2@)2*2 Z Kook 77722 Z (’%35)2:* Z Kook 2 Z G

aFEp QF L YF QL[ aFp BFoLp Q,YF a,B#u

Now, notice that this last type of double sum decomposes as follows

QY F

_Z[']@’Y:_Z[']OA’Y_‘_Z['OFY_'—Z u;u

therefore, the right hand side of the previous two equations complement each other:

n+ 2 8(n+2)(n+4)

[C(D, ()™ = OwVal)e” | Va(e)e” Z [82 Kbty — 1260, (KL, + KL,)

uuZFd _82’%# Va+6MV{42 Kag) P+ 12(k /m 2’%& Ry 2Z<Ki‘5>2}]+
a, B

— v

. . Z 2 . . .
To simplify further, use 12(x},,)* to complete the remaining sums and cancel terms:

SZKW m—8/-£W( W+liw )—38 Z mw m+8( )25W=O,

aFE W,V

75



and

f4/£fw(/-€fw+/<iw) W Z /<; o+ 4k /m) w = 4/-%”2/10@

QF L,V

Finally, all these computations lead us to the simple expression:

[C(Dy(e))™ = (5;112/1(52)5 + 3(n KHQ((;()Z+4 Z [ MV{QZ aﬁ - } 4/{ H’]

where

ijwﬂi — (Il(e,,e,), HY={(Sue,, e,),

and

22D (kep)® = (HY)?) = 26 1L — | H|?,

i a, B
identify the covariance tangent block to be the matrix of the Weingarten operator at the mean

curvature, plus a constant, in the orthonormal basis chosen. The error is O(e"?). ]

The theorems of this chapter provide the most general relationship known between PCA co-
variance matrices and the local curvature of submanifolds. The geometric role played by the gen-
eralized third fundamental form is thus uncovered via its appearance in the asymptotic series of
the eigenvalue decomposition, which completely justifies the importance of this tensor as an inde-

pendent object of interest to describe curvature from an integral invariant point of view.
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Chapter 6

Descriptors at Scale for Manifold Learning

By solving the second order term from the series expansion of our integral invariants, we can
extract the curvature information they encode and write it in terms of the volume and eigenvalues
at a fixed scale. The integral invariants can be computed without a priori knowledge of the mani-
fold geometry, which implies that these local statistical measurements of the underlying point set
provide descriptors of the local differential geometry of the manifold, e.g., approximated from a
cloud of points.

The limit formula for the ratio of the eigenvalues in the case of curves was the major result of
chapter 3, establishing a direct relationship between the local covariance analysis and the Frenet-
Serret curvature information. The two main theorems 5.2.4 and 5.3.5 generalize this type of result

to general submanifolds by directly taking the limits of the covariance matrix eigenvalues.

Corollary 6.0.1. Writing \,(p, €) for the tangent eigenvalues of the cylindrical covariance matrix

C(Cyl,(g)), they satisfy the asymptotic ratio

: Aﬂ(pv ) )\l/(p78) _ n + 2
ll_r}(l) Va(e) M () (Au[tr (IXIT) — A, [tr (IIOD]), (6.1)

and the normal eigenvalues satisfy

n+k n+ 2
lim Ai(p,e) = |H|?* + 2tr IIT (6.2)
3 3.2, o) )
forany p,v = 1,...,n. Let X#(p, e) denote the eigenvalues in the case of the spherical domain

covariance matrix, C,(D,(¢c)), then the corresponding limits are

. /N\ (p75)_xu(p7€) n+ 2
lim V2. () =5 3 “2(n+4
c )‘,u(pa 6))‘V(p7 5) n

) (X,,[§H] - XM[S*H]) , 6.3)
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and

n+k
2 1
lim ~ - Z Xi(p,e) = nr <trIII —|H|2). (6.4)
e—0 )\“( )\ ( ) ;5 2(n + 4) n+ 2

These ratios can be used at fixed € > 0 to obtain estimators of the eigenvalues and eigenvectors

of the third fundamental form and the Weingarten map at the mean curvature.

6.1 Spherical Component Descriptors

Now we focus on smooth hypersurfaces in R"*! since our integral invariants furnish descrip-
tors at scale of the principal curvatures, and the principal and normal directions which, by lemma
2.2.4, are sufficient to construct descriptors for an embedded Riemannian manifold of general codi-
mension. Employing the asymptotic series of section §4.1, we solve for the principal curvatures
in terms of the eigenvalues. In this case no sign choices are needed. The eigenvectors generically
converge to the principal and normal directions, so at fixed € > 0 they provide approximations to

the Darboux frame at every point.

Corollary 6.1.1. Abbreviating the integral invariants of the spherical component as \,(p,e) =
Au(ViE(e)), Vi(e) = V(V,"(€)), then the corresponding descriptors of the principal curvatures, at

scale € > 0 and point p € S, are given by

S5O = g | S D) ¢ Q%Aa(p, e>] S 6
or equivalently by

H(V;(E)) _ (n —;22‘)/2/&-31(5) (1 _ 2VE§€(2)) : (6.6)

oy @) = D (Sl ) GHOE). 6
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The truncation errors are |H(p) — H(V,*(¢))| < O(e), and |k, (p) — k,.(V,"(€))] < O(e), for any
p=1,...,n. The eigenvectors e,(V,"(¢)) and e, 1(V,"(¢)) are descriptors of the principal and

normal directions respectively.

Proof. Let us define the coefficients at scale

2 Voia(e) eV, (e)

- 2(n+3)’  2(n+2)(n+4)

then the tangent eigenvalues from equation 4.4 solve the principal curvatures

Ap—a 1
= —=—H + O(e).
Kﬂ 2h 2 + (8)
Fixing one 1 = 1, ..., n, and subtracting any two such equations with i # « results in
Ao — A
Ko =~ £tk +0(e),

inserting this into the definition of  one gets

A — A
H=nr,+ Y. o+ 0),
aFE

which substituting back leaves

D VL S Y n
ru(V, (€)) = bn+2) Z W(n+2)  2b(n +2) (—2a+ (n+ 1)\, — Z )\a> .

aFEp aF

The truncation error is given by the order of O(¢"*?)/b ~ O(e). Alternatively, one can solve the
Hulin-Troyanov relation 4.2 to obtain a descriptor of H, and then use this in the expression of x,

in terms of A\, and H above. OJ

The asymptotic relations of corollary 6.0.1 reduce to very simple formulas in the case of hyper-

surfaces, relating the ratios of differences and products of eigenvalues to the principal curvatures.
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Corollary 6.1.2. Let p € S and consider the spherical component invariants. Then for any |, v =
1,...,n, the first n eigenvalues \,(p,€) = \,(V," (€)) of the covariance matrix C(V," (¢)) satisfy
the following limit ratio:

lim Vn2+1(5) )‘M(p7 5) - )‘V(pa 8) _ 4(” + 3)2
=0t Vo(e)  Au(p,e) A (p,€) (n+2)(n+4)

[k (p) = £u(p)]- (6.8)

These eigenvalue ratios can be used along with the volume formula to obtain other expressions

for the descriptors of the principal curvatures.

6.2 Cylindrical and Spherical Patch Descriptors

An analogous inversion process can be carried out with the series expansions of section §4.2.
However, the relation to the principal curvatures is now quadratic so sign choices are needed when
taking roots, and thus truncation errors are worse than in the spherical component volume above,
as expected from the explanation at the end of chapter 2.

The cylindrical domain descriptors may determine in general the squares of the principal cur-

vatures with better truncation error than their spherical domain counterparts.

Corollary 6.2.1. Denote \(p,c) = MCyl,(¢€)),V,(e) = V(Cyl,(¢)) the integral invariants of a

cylindrical domain on a hypersurface S, then the corresponding curvature descriptors at scale

e > 0andpointp e S, forany up =1, ...,n, are:
2(n+2) [2(n+4) A\, , V.
R(Cyl(e) = 2D |2 g (1 ) (©9)

g2 g2 Va(€)

H(Cyl (2)) = (i)\/2(n +2) l2(n =) Mnap:e) (1 - VP(E))], (6.10)

nﬁm%@»=”+2[

e2

n+4(nma e )_%@)

= —~ + 1] : 6.11)

Via(€) n+2

where the overall sign can be chosen by fixing a normal orientation from
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() = sgn{ens1(Cyl,(€)), 8(Cyl,(€)) )-

The eigenvectors e, (Cyl (c)) and e, 1(Cyl,(€)) are descriptors of the principal and normal di-

rections respectively. The truncation errors are:
[H?(p) — H*(Cyl,(e))| < O(?),
[R(p) — R(Cyl,(e))] < O(?),
|15, (p) — K, (Cyl, ()] < O(€7).

Proof. Solving for the next-to-leading order term in the volume formula 5.16, and for the normal
eigenvalue in equation 5.22, we get a system of two equations H2—R = A(e), 3H*>—2R = B(e),

whose solution is H?> = B — 2A and R = B — 3A, where

2(n +2) (V,(e) 4(n+2)(n+4) Mt1(p, €)

Ale) = P2 1) +0(%), Bl = ’ O(e%).
@ =252 (S ). BE D2ty o
Finally, solving for #”, from the tangent eigenvalue equation 5.21, and using A(e) = > 2, the
last formula is obtained. 0

The cylindrical asymptotic ratios are very similar to the spherical component ones but relate

the difference of eigenvalues to the difference of the squared principal curvatures.

Corollary 6.2.2. The tangent eigenvalues of the cylindrical covariance matrix C(Cyl,()) satisfy

)‘M(pv 5) - /\V(pa 5) o n+ 2 2

lim V, = — K. 6.12
lim V;,(¢) P (p:2) ) = Ry (p), (6.12)
and the normal eigenvalue has
An , 2
lim V, (e) i) n+ (3H2(p) — 2R(p) ), (6.13)

e—0 ()N (pre)  A(n+4)
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forany n,v=1,... n.

Now, the spherical patch domain descriptors below can be used to determine the relative signs
of the principal curvatures, and the cylindrical descriptors can be used to estimate with higher

precision their absolute value, since they are guaranteed a better error bound.

Corollary 6.2.3. Denoting by \(p,e) = A(D,(¢)),V,(e) = V(D,(¢)) the integral invariants of
the spherical hypersurface patch domain, then the corresponding curvature descriptors at scale

e > 0andpointpe S, forany p=1,...,n, are

R(D; (£)) = 2(n + 2)%(n + 4) Anta(pe)  8(n+1)(n+2) <Vp(€) _ 1> (614

netV,(e) ne?

H(D#(s)) = (i)\/4(n +2)2(n + 4)A"“(p’ e) , 8ln+2p <1 _ Vp(e)), (6.15)

netV,(e) ne?

N o 2n+2) [Vile)  n+d [ & Au(p, €)
5By ) = SHD ) [vn@) T <n+ 2" V(o) > B 1} ’ (6.16)

where the overall sign can be chosen by fixing a normal orientation from
() = sgndeni1(Dp(e)), s(Dp(e)) ).

The eigenvectors e, (D,(c)) and e, 1(D,(c)) are descriptors of the principal and normal direc-

tions respectively. The corresponding errors are

Proof. By solving the second term in equations 4.14 and 4.17, let us define
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G 1) + O(e),

)\n-i-l (p> 5)

B =2(n+2)(n+4) SV.(0)

+ O(e),

so that we have the system of equations A = H> — 2R, B = Z—iéH 2 — R whose solution is

R = %((n +2)B —(n+1)A),

= " o)

n

We can approximate the normal direction and orientation by using e, 1 (p, €), and since the barycen-
ter 4.15 has normal component with leading order in terms of /7, their mutual projection can serve
to fix the orientation and overall relative sign of all the principal curvatures. The principal cur-

vatures themselves are then solved from eq. 4.16 substituting the value of H above, resulting in

1
Ky = E(A —TI',), where
8n+2)(n+4) (Au(p,e) g2
r,= e Ofe).
a et Via(€) n+2 +0L)
The errors follow straightforwardly by the truncation of A, B, I',,. U

For this patch domain the asymptotic ratios are very similar to the spherical component case

but multiplied by the mean curvature.

Corollary 6.2.4. Let p € S and consider the hypersurface spherical domain invariants. Then
for any p,v = 1,...,n, the first n eigenvalues \,(p,c) = \,(D,(¢)) of the covariance matrix

C(Dy(e)) satisfy the following limit ratio:

Au(pye) = Au(p,e) n+ 2

lim V()RR = s ) — s ), (617

and the last eigenvalue satisfies:
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lim V, (e)—ontile) _ n+2 n+1H2(p)—R(p)]. (6.18)

e—0+ Mu(pye)A\(pe)  2(n+4) | n+2

The potential benefits of employing the spherical component descriptors lie in the fact that the
domain they are computed from is an (n + 1)-dimensional volume in R""!, whereas the patch
descriptors below are n-dimensional areas of hypersurfaces which in fact are part of the boundary
of the aforementioned volume. This makes it reasonable to expect a higher robustness and stabil-
ity with respect to noise, since intuitively variations of the hypersurface can significantly change
the patch while the volume region barely gets distorted in volume and shape. Indeed, numerical

computations have confirmed this in the lowest-dimensional cases [60].
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Chapter 7

Conclusions and Outlook

Local integral invariants based on Principal Component Analysis have been introduced in the
Geometry Processing literature in order to perform shape and feature detection of geometric prop-
erties of manifolds, usually from finite samples of points. In particular, principal curvatures and
principal directions for surfaces in space have been found in the series expansion of the eigenvalue
decomposition of PCA covariance matrices, computed from small kernel domains on the surface.
Similar covariance matrices were also introduced with the purpose of finding local frames adapted
to the tangent and normal spaces of the invariant manifolds of dynamical systems of large dimen-
sion. The core results of these milestones are summarized in [51], [55], which this dissertation
generalizes to arbitrary dimension and reproduces as straightforward corollaries.

Indeed, in chapter 2 we have proposed a generalization of traditional PCA integral invariants
to regions inside general Riemannian manifolds as ambient space by using the exponential map.
The volume, barycenter and eigenvalue decomposition of the covariance matrix of the geodesic
coordinates of the region points serve as local invariants that are expected to encode the geometry
of the domain. In particular, the covariance matrix measures the statistical correlation among
the geodesic distance coordinates of the underlying point set. Two specific kernel domains are
proposed: the spherical and cylindrical intersection regions on the submanifold, i.e., the domains
given by the intersection of the submanifold with a ball and generalized cylinder of the higher-
dimensional ambient manifold. In the case of hypersurfaces, the volume inside a ball delimited by
the hypersurface is also considered as a third type of region to study. Since these domains have
an intrinsic scale ¢, the covariance analysis can be interpreted as the eigenvalue decomposition
of matrix-valued functions of scale at every point of the submanifold. Therefore, the eigenvalue
asymptotic series with scale is expected to encapsulate geometric information at the point.

Once integral invariants and their kernel domains were defined, we introduced the notion of de-

scriptors at scale as specific approximations to characteristic properties of the submanifold given in
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terms of integral invariant information. In particular, we are interested in the curvature information
encoded by the extrinsic second fundamental form and the intrinsic Riemann curvature tensor. For
hypersurfaces all this information is reduced to the principal directions and principal curvatures. In
the rest of our work we focus on computing these integral invariants for curves, hypersurfaces and
arbitrary embedded Riemannian manifolds in order to obtain corresponding descriptors of their
curvatures from integral invariants.

Previous results on the covariance analysis of regular curves were reviewed in chapter 3, where
our contribution completed the relationship known between the leading term of the asymptotic
series of the covariance eigenvalues and the Frenet-Serret curvatures of the curve. In particular,
quotients of successive eigenvalues are proportional to these curvatures squared. The coefficient
of proportionality was not explicitly known, for which we needed to use the theory of orthogonal
polynomials and its relation to Hankel determinants via the moment problem. This allowed us to
obtain explicit recursion relations for a certain family of Hankel determinants that yields precisely
the conjectured coefficient in any dimension. This asymptotic relation provides a direct link be-
tween the curvatures and the eigenvalues of the local covariance matrix, whose limit eigenvectors
also converge to the Frenet-Serret frame. By the existence and uniqueness, up to rigid motion, of
Frenet curves given by such information, the covariance integral invariants can be said to com-
pletely characterize these curves.

Extending the study of curves to hypersurface in arbitrary dimension, in chapter 4, we were able
to obtain all the curvature information from the covariance analysis. We computed the volumes of
the three types of domains proposed and showed that they are given in terms of the corresponding
ball volume of the same dimension but with second order corrections proportional to the mean
curvature and scalar curvature. The appearance of the extrinsic curvature is to be expected, in
contrast to the volume of intrinsic geodesic balls, since our domains do depend on the embedding
of the hypersurface. The covariance eigenvalue series expansion has one eigenvalue that scales
faster than the others, whose eigenvector converges to the normal vector of the hypersurface at

the center of the domain; the other eigenvalues have eigenvectors that generically converge to the
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principal directions at the point. We computed the second order terms in their series expansion and
showed that they are completely given by the principal curvatures or their squares, which implies
that the covariance matrix is given at second order by the Weingarten operator, establishing a direct
link between integral invariants and curvature again.

The most general and complete study of the covariance-curvature relationship was carried out
in chapter 5 for embedded Riemannian manifolds of dimension n in R"**. Here we introduced
the generalization of the classical third fundamental form to arbitrary dimension. This tensor is
a bilinear form on the tangent space that takes values in the normal endomorphism space. Its
components in an orthonormal basis of the normal space are defined by the metric products of
the Weingarten maps associated to those normal vectors. Since the Weingarten map at a normal
vector is the linear operator on the tangent space associated to the bilinear second fundamental
form, this third fundamental form can be interpreted as the tensor associated to the linear operator
given by the product of a pair of Weingarten maps at possibly different normal vectors. The
geometric meaning of this tensor is given by the classical Ricci equation: the noncommutativity of
its components measures the Riemann curvature of the induced connection on the normal bundle
of the submanifold. For hypersurfaces it is given by the squares of the principal curvatures. The
normal, tangent and total traces of this tensor were computed and showed to be directly related to
the Weingarten map at the mean curvature and also the Ricci operator.

Then we obtained the leading order terms of the cylindrical domain integral invariants. In the
generic case, the scaling of the eigenvalues singles out the decomposition of the ambient tangent
space into the tangent and normal spaces of the submanifold, where the corresponding eigenvec-
tors provide a basis for each of them. In the case of normal cylinders, the second order terms of the
eigenvalue series was computed, thanks to a fundamental lemma that we proved in order to show
that finding the covariance matrix in an arbitrary basis is enough to determine the eigenvalues from
its block structure. In particular, the tangent block shows that the first n eigenvalues scale with

n+2

€"“ and have second order corrections given by the eigenvalues of the normal trace of the third

fundamental form, thus encoding its curvature information. Moreover the corresponding eigenvec-
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tors converge to a basis of the tangent space given by the generalized principal directions of this

n+4 and encode the curvature

tensor. The normal block shows that the last k eigenvalues scale as ¢
information given by the tangent trace of the third fundamental form and the mean curvature tensor.
The corresponding eigenvectors converge to a basis of the normal space given by the eigenvectors
of this combined tensor.

Finally, taking into account all the correction terms due to the spherical domain irregularities,
we performed the analogous analysis for the ball intersection region. These boundary contributions
do introduce significant changes in the tangent eigenvalues and eigenvectors, since now they are
directly given at second order by the Weingarten map at the mean curvature vector. Thus, as for
hypersurfaces, the tangent eigenvectors of the covariance matrix of the spherical domain converge
with scale to the most canonical principal directions one can define in arbitrary codimension, those
of the Weingarten map at the mean curvature.

From this, in chapter 6, we solved for the series coefficients to obtain descriptor formulas that
give approximations at scale of the curvature information. In particular, this was written as a
generalization to higher dimension of the asymptotic ratio formula proved for curves, where now
the quotient of differences and products of covariance eigenvalues is proportional to the difference
of third fundamental form curvatures. In the case of hypersurfaces, all these ratios are given by
differences of the principal curvatures or their squares. By solving for the second order coefficients
and truncating the series, the formulas from the previous chapters yield concrete descriptors in
terms of the integral invariants. The spherical component descriptors have the best error bound
and need no sign choices, whereas the cylindrical descriptors have an error one order better than
the one that can be proved for the spherical descriptors.

These results prove a completely general relationship in any dimension between differential-
geometric curvature and integral covariance. We can think of the results of our work as a dictionary
between differential geometry and local statistical analysis, since it allows for the recovery of
manifold curvature information from the statistics of the underlying point set. Therefore, our

developments serve as a theoretical basis for more applied and computational implementations
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geared towards Manifold Learning in arbitrary dimension from big clouds of points. These results
provide explicit formulas that relate Riemannian geometry to Geometric Data Analysis via the
integral invariant approach.

The natural possible paths to take after our work are multiple. First, obtain local expressions
for the induced volume element on a submanifold within an arbitrary Riemannian manifold as
ambient space, taking into account the ambient Riemann curvature contributions to the ambient
metric in normal coordinates at second order [15]. This would generalize lemma 2.1.1 in order to
recompute all integrals with the new ambient space curvature terms, which is fundamental to do
covariance analysis on submanifolds of non-embedded matrix manifolds [2], [54] and statistical
manifolds [8,9]. Second, study robustness and stability with respect to noise. In order to do this,
the canonical procedure would be to study the first variation of the covariance matrix under the
one parameter family of deformations of the submanifold given by the well-known mean normal
flow [43], and bound the resulting terms. Third, arrive at a formulation and measurement of sub-
manifold curvature in terms of the principal angles between tangent spaces at nearby points, so that
the covariance analysis can be related to a Grassmannian formulation. For this, obtain the EVD of
a finite approximation of the parallel transport of a tangent frame moving along a geodesic. Fourth,
for specific families of submanifolds whose parameter space is known, try to establish a sampling
theorem using curvature descriptors. Fifth, study and implement computationally the most effi-
cient numerical methods to compute the integral invariant descriptors given a big cloud of data
points, e.g. using FFT convolutions [51]. Then use this to do Manifold Learning and Geometry
Processing, e.g. to do data classification [59] based on curvature profiles.

Therefore, covariance analysis opens a new perspective to look at differential geometry in any

setting, both as a theoretical dictionary and as a computational tool.
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Appendix A

Integration of Monomials over Spheres

Letx = (z1,...,7,) € R", and denote the sphere and ball of radius € in R" by:
S e) ={zeR": x| =}, B"(e) ={xeR":|z|<c},

where we set S"! = S"7!(1). Using generalized spherical coordinates (7, ¢y, . .., ¢, 1), where

r=|x|, T, =2,/re S*1 ie.,
T4 =COSQ1, ..., Tp_1=sin¢gy - -Sing, oc08¢,_1, T, =sin¢g;- - -sing, osind, 1,

the Euclidean measure over the unit sphere and ball of any radius can be written as

n—2
dS" = dg,_4 1_[ sin”_l_“(gbu)dgzﬁu, d"B = dxy ---dx, = " tdr dS" (A.1)
p=1
Definition A.0.1. For any integers ay,...,a, € {0,1,2,...}, the integrals of the monomials

x7" - - 2% over the unit sphere and the ball of radius ¢ are denoted by:

Qj...0n aj...Qn

o :J 28 g0 dSPT D™ :f ot d"B. (A2)
sn-1 B"(e)

These can be computed directly in spherical coordinates by collecting factors and separating
the integrals into a product of powers of sines and cosines of independent angles which are given
in terms of the Beta function. This then telescopes and simplifies. Another shorter proof uses the

usual exponential trick, see for example [23], resulting in the following fundamental formula.

Theorem A.0.2. Denoting (3, = 5(a,, + 1), the values of the integrals A.2 over spheres are

1
2
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- 0, if some o, is odd,
Coton = D(BIT(8) - T(B) (43

DB+ o+ +Bn)

ifall o, are even,

and the integrals over balls become

€n+(al+'“+an)
Dm = cw (A.4)
tran s pt (a4 )

Notice that the values of the integrals of these monomials only depend on the combination of
powers, not on which particular coordinates have those powers. Using these formulas we compute

the relevant integrals that are needed for our work.

Remark A.0.3. Unless integrals over spheres of different dimension appear in the same expression,

we shall abbreviate and omit the superscript () to be understood from the context.

Example A.0.4. Using the factorial property of the gamma function, I'(z + 1) = zI'(z), and
the value I'(3) = 4/, the integrals of monomials of even powers of order 2, 4 and 6, have the

following relations (shortening d S*~! as d S):

r+2t)  T(E+1)
C :J x2x2dS—LC
22 - 149 +2 2
C —f x%S—iC =3C
4 — - 1 —n+2 2 — 22,
C =J 22r2a2 dS = ! C
N SR (n+2)(n+4)

3
Coy = 2,4 4S = Cy = 3C
A LHW? (n+2)(n+d) 2 222,

15
6
= = - 1 .
06 Ln ) xq dsS (n )(n ) CQ 5 0222

97



The value of C; is related to the n-dimensional volume of the ball of radius ¢, and the (n — 1)-

dimensional area of the unit sphere by

Va(e) = Vol(B"(g)) = " Oy, Sp_1 = Area(S"™) = nC,.

The integrals over balls needed in our work are:

N €n+2 52
D, — day - da, — Cy = V().
? JBH(E) 71 471 v n+ 2 2 n+ 2 (6)
5 o €n+4 84
Dyy = day - - dx, — Cy = V(o).
2 JB"(E)W% T Tt d) 2T (n+2)(n+4) ()
3€n+4 354
D, — L A Cy = V.(2).
; Ln(g)xl T Tt d) 2T (et 2)(nt4) ()

We also need the integral of monomials over half-balls B*(¢) (without loss of generality we
can consider the half-ball is defined by x; > 0). If all the «; are even then nothing changes in the
proof of theorem A.0.2 except that now we integrate over half the domain and an extra factor of %
is needed. If any «; is odd for 7 # 1, the integration over those variables is still carried out over the
same domain so the overall integral is still 0. However, if oy is odd the corresponding integral of
that coordinate does not cancel out, and the main formula still holds with 5; = 1 but without the

factor of 2.
Example A.0.5. Using the formula in the mentioned adjusted form, we define and compute

n—1

n+l, 5=

entime
D(")ZJ xy dry - dry, = —m
R 20("5%)
which gives the constant needed in our main text
D§"“> = f x1 dxy - dTps, = e V().
Bt (¢) n+ 2

When integrating § B+ (o) 2?2 dVol, we shall just write % to be consistent with our notation above.
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In the general Riemannian setting, chart coordinates are often written with superindices, so the
integral of a general product of these coordinates depends on the superindices involved which must

not be confused with exponents. For instance

Ln_1 T TTY dS = 04(1%) + Oy [(/TVﬂl_,V) T (@) + (@)]

is the general value of the integral of any product of 4 coordinates, that can be all equal to produce

C4, or be a couple of different pairs to result in Cs,. We introduce the following notation:

M

(“V5J> = O Op B s,

so that the symbol is 1 only when the connected superindices are equal and the nonconnected
superindices are different, and 0 otherwise, and where § uB = (1-— (5u5) is the negation of the

Kronecker delta, i.e., nonzero only if i # . An example of order 6 is

(/Lyaéfy?}) = 5#7 51/5 5&5 fg,u,u Zua Zua-
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