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ABSTRACT

COVARIANCE INTEGRAL INVARIANTS OF EMBEDDED RIEMANNIAN MANIFOLDS

FOR MANIFOLD LEARNING

This thesis develops an effective theoretical foundation for the integral invariant approach to

study submanifold geometry via the statistics of the underlying point-set, i.e., Manifold Learning

from covariance analysis. We perform Principal Component Analysis over a domain determined

by the intersection of an embedded Riemannian manifold with spheres or cylinders of varying scale

in ambient space, in order to generalize to arbitrary dimension the relationship between curvature

and the eigenvalue decomposition of covariance matrices. In the case of regular curves in general

dimension, the covariance eigenvectors converge to the Frenet-Serret frame and the corresponding

eigenvalues have ratios that asymptotically determine the generalized curvatures completely, up to

a constant that we determine by proving a recursion relation for a certain sequence of Hankel deter-

minants. For hypersurfaces, the eigenvalue decomposition has series expansion given in terms of

the dimension and the principal curvatures, where the eigenvectors converge to the Darboux frame

of principal and normal directions. In the most general case of embedded Riemannian manifolds,

the eigenvalues and limit eigenvectors of the covariance matrices are found to have asymptotic

behavior given in terms of the curvature information encoded by the third fundamental form of

the manifold, a classical tensor that we generalize to arbitrary dimension, and which is related to

the Weingarten map and Ricci operator. These results provide descriptors at scale for the principal

curvatures and, in turn, for the second fundamental form and the Riemann curvature tensor of a

submanifold, which can serve to perform multi-scale Geometry Processing and Manifold Learn-

ing, making use of the advantages of the integral invariant viewpoint when only a discrete sample

of points is available.
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Chapter 1

Introduction

The purpose of Manifold Learning is the reconstruction of local geometry from the analysis

of a subset of its points, usually a finite sample and possibly with noise. The present dissertation

aims to describe an effective theoretical generalization to arbitrary dimension of a line of research

whose ultimate goal and application is the recovery of submanifold curvature via the study of the

statistical information of the underlying point-set.

A set of data points in some configuration space, typically a Riemannian manifold, often be-

longs to a lower-dimensional submanifold due to correlations among its degrees of freedom, e.g.

a constrained dynamical system in phase space. From the geometric perspective, arbitrary sam-

ples of points can be generated if one knows the submanifold a priori from implicit equations or

by given local chart parametrizations. From a data analysis point of view, only the point-set of

a sample from the submanifold is known and, ideally in the limit of the number of points, one

would like to characterize as uniquely as possible the geometric properties of the manifold from

which those samples arise by studying the statistical properties of the set. The core of our results

shows that the classical statistical concept of covariance matrix is essentially a purely geometrical

one: the eigenvalue decomposition of these matrices encodes the curvature information of the third

fundamental form, and its principal directions furnish an adapted frame for the tangent and normal

spaces of the submanifold.

In classical differential geometry manifolds are defined intrinsically from an atlas of coordi-

nate charts that cover the point-set with smooth transition functions between them. This definition

was established historically through the abstraction of embedded submanifolds in Euclidean space:

smooth subsets of ambient space which require fewer degrees of freedom to be described analyti-

cally, e.g. by local parametrizations. The classical differential geometry of curves and surfaces in

space built the foundation for the types of definitions, questions and structures studied in Rieman-

nian geometry for general manifolds of arbitrary dimension.
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Regular curves in space [26], [33], [58] have as natural differential invariants the velocity and

acceleration vectors with respect to arc-length, which can be completed to an orthonormal basis of

the ambient space by the Gram-Schmidt method with higher derivative vectors. This provides a

comoving frame, the Frenet-Serret frame, which measures how the tangent line to the curve, and its

osculating planes move and rotate from point to point, providing a natural definition of curvature

that generalizes the inverse of the radius of the osculating circle, tangent to the curve at every

point. The fundamental theorem of regular curves states that the Frenet-Serret curvature functions

completely determine the parametric curve up to rigid motion, since the curve is locally given

by the solution of a system of ordinary differential equations whose coefficients are the curvature

functions. Therefore, curve parametrizations and their curvature functions can be thought of as dual

descriptions of the same local embedded geometric object. The case of curves in any dimension

is special with respect to higher-dimensional submanifolds because one-dimensional objects do

not have intrinsic curvature, which is defined by parallel transport in different tangent directions.

Indeed, the mathematical tools employed in our work are very different for each scenario.

The case of surfaces in space [26], [33], [58], very similar to hypersurfaces in any dimension,

was the first type of manifold with intrinsic geometry thoroughly studied by Gauß, Darboux, Wein-

garten and others, paving the way to the abstract generalizations of Riemann, Levi-Civita, Ricci,

Cartan, and many other great mathematicians since then. A parametrized smooth surface has a tan-

gent plane at every point with an induced metric, or first fundamental form, given by the Euclidean

scalar product restricted to tangent vectors. Integration over curves inside the surface provides an

intrinsic metric distance between points. The twisting and torsion of the tangent plane from point

to point measures how the surface bends in ambient space. Equivalently, the change in different

tangent directions of the unit vector normal to the surface encodes this curving. Since Euclidean

space has a canonical notion of directional derivative, playing the role of global covariant deriva-

tive, it is natural to define the derivative of the normal vector in a tangent direction as a measure

of the extrinsic curvature of the surface at the point. Indeed, moving tangentially to the surface

in a certain direction provides a canonical measurement of curvature given by the acceleration of
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the curve inside the surface associated to that direction and point. Since there is a tangent plane

worth of possible directions, the object to encode all this curvature information is a linear map, the

Weingarten operator, that associates to every tangent vector the directional derivative of the normal

vector. This map turns out to be self-adjoint with respect to the metric and its components in an

orthonormal tangent basis represent the second fundamental form of the surface. The eigenvalues

and eigenvectors of the Weingarten map are called the principal curvatures and principal directions

of the surface at the point. The principal curvatures are in fact the minimum and maximum cur-

vatures of curves inside the surface cut out by a normal plane, i.e., a plane spanned by the normal

vector and a tangent direction. The corresponding eigenvectors point in these directions. The sum

of the principal curvatures is the mean curvature, and their product is the Gaußian curvature; these

correspond to the trace and determinant of the Weingarten operator. Gauß Theorema Egregium

shows how the Gaußian curvature is an intrinsic invariant independent of the embedding that is

determined by combinations of the second fundamental form components.

Hypersurfaces [18], [35], [49] share a very similar differential-geometric structure, where the

main difference is that the tangent space is now higher-dimensional so the Weingarten operator has

as many principal curvatures and directions as the dimension of the hypersurface. The frame given

by the normal vector and principal directions is called the Darboux frame. A theorem by Bonnet,

similar to the Frenet-Serret characterization of curves, is available for hypersurfaces: if smooth

parametrization functions for the first and second fundamental form are given and satisfy the Gauß-

Codazzi-Mainardi-Peterson equations, then a local hypersurface exists with those forms, unique up

to rigid motion. Notice that, in comparison, this is now a system of partial differential equations.

We can however regard the Darboux frame and the principal curvatures as all the information

needed to characterize the differential geometry of a hypersurface. This information is completely

encoded in the osculating quadrics that approximate the hypersurface at every point, since this is

determined by the Hessian of the functions that locally parametrize the hypersurface as a graph

manifold.
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Embedded Riemannian manifolds [16], [32], [35], [49], [46] can be studied in a similar way

by means of a second fundamental form that now takes values in the normal bundle of the sub-

manifold. Since there are now more than one independent normal vectors, the generalized second

fundamental form keeps track of how they change tangentially by means of a Weingarten operator

per normal vector. Hence, principal directions and curvatures are only defined with respect to a

given normal direction. In order to measure the intrinsic curvature, Riemann introduced a tensor

which is essentially the only one constructible from the metric and its first and second deriva-

tives, and linear in the latter. The Riemann tensor is zero if and only if the manifold is locally

flat, i.e., if there is a chart where the metric is Euclidean. It equivalently measures how initially

parallel geodesics, the straightest intrinsic lines or curves of shortest length, deviate because of

the manifold curvature, the essential feature of non-Euclidean geometries. It can be defined as a

differential-invariant by the non-commutativity of the second covariant derivative. This reflects

the non-integrability of parallel transport around an infinitesimal closed loop. The Gauß equation

again expresses the Riemann tensor as a product of components of the second fundamental form,

thus relating intrinsic and extrinsic curvature. Taking traces of this tensor generates other objects

like the sectional curvature, which for every plane in the tangent space measures the Gaußian cur-

vature of the geodesic surface tangent to that plane. The Ricci tensor and the scalar curvature are

further contractions over the degrees of freedom of this tensor.

The purpose of our work [4–7] is to show the relationship between these classical differen-

tial invariants and local integral invariants in general dimension. In particular, we shall see that

integration over small domains on a submanifold encodes the same curvature information as the

differential-geometric tensors. Performing integration can be computationally better behaved than

differentiation since it reduces to sums in the discrete case, which have a naturally averaging nature

(e.g. for noise concerns), in contrast to the finite-differences and quotients in differential approx-

imations. Since integrals over regions have a natural scale, the curvature information that can be

obtained provides multi-scale descriptors of geometric features.
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Integral invariants from Principal Component Analysis were introduced in [21], [13, 14], [19,

20], [41, 42] as theoretical tools to perform Manifold Learning and Geometry Processing of low-

dimensional submanifolds, like curves and surfaces in space. They have been used for shape

and feature detection at scale as geometric low-pass filters, [3], [11], [19, 20], [29], [42], [60].

The focus in these settings has been on curves, surfaces and the study of stability with respect to

noise [34], [50, 51]. Voronoi-based covariance matrices have also been of interest, [44, 45], where

a relationship to the derivative of the normal vector is found for hypersurfaces.

Descriptors can be interpreted as approximations of certain characteristic variables of a sys-

tem given in terms of other relevant information. The seminal work of [51] developed the idea of

performing covariance matrix analysis over domains on surfaces determined by balls in space in

order to recover curvature information at scale. The series expansion of the eigenvalue decompo-

sition was shown to reproduce the principal curvatures at second order, and the limit eigenvectors

were shown to converge to the principal curvatures and normal direction. In [60], [50], [34] the

stability and robustness of this viewpoint was studied both theoretically and computationally. The

theoretical results of [51] are generalized in this thesis to hypersurfaces and Riemannian manifolds

of arbitrary codimension. The higher-dimensional integrals and approximations involved become

much more complicated and a unifying approach and notation is taken in our proofs, using spheri-

cal coordinates and integration of monomials over spheres [23].

The other side of this theory is the study of finite point clouds and how their discrete PCA

covariance matrices converge with the number of points to the exact analytical result. Multi-

scale SVD methods, using geometric measure theory and harmonic analysis, have been devel-

oped [36, 38], [17, 37] in order to study noisy samples from probability distributions supported

on submanifolds of a high-dimensional Euclidean space [39]. In these works, ranges of scales

are determined, taking into account curvature, for the covariance matrices to be most informative

and close to the noisy empirical matrices. In particular, the leading order term of the eigenvalues

is obtained and it is seen that tangent and normal eigenvalues scale differently, with the specific

expression of the normal eigenvalue to leading order in terms of the principal curvatures in the
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hypersurface case. In the case of general codimension, the authors obtain a similar conclusion,

following [12] and [55, 56] discussed below. In this sense, the noisy point cloud approach of [39]

is complemented by the approach of the present dissertation that computes the covariance analysis

of the smooth point-set for different types of kernel domains. We obtain in particular the next to

leading order terms of the tangent eigenvalues for the complete smooth data set, and the normal

eigenvalues leading term in general codimension, providing the direct theoretical link between

curvature and covariance, i.e. between differential and integral invariants. Since [39] develops an

explicit algorithm for the estimation of the dimension of the manifold, a natural next step would

be to expand these multiscale SVD methods in order to apply them to our main theorems and thus

to estimate curvature from noisy point clouds. Our curvature descriptors at scale aim to fulfil this

task.

Adapted frames from the eigenvalue decomposition of covariance matrices of spherical inter-

section domains were introduced in [12], [55, 56], in order to obtain local adaptive Galerkin bases

for dynamical systems. This was motivated by the study of the long-term behavior of dynamical

systems confined to an invariant manifold. Choosing a general operator in an optimal way, in order

to reflect natural nonlinear structures of the system, leads as well to the covariance matrix integral

invariant. This allowed the authors to obtain the dimension of the submanifold and approximations

at scale of its tangent and normal spaces, even for manifolds with general measures. However, the

approximations made in [55, 56] for submanifolds of Euclidean space reduce to the leading order

terms of the cylindrical case studied in the present thesis, which do not single out the geometri-

cally natural frame specified by the limit eigenvectors, nor the curvature information hidden in the

eigenvalues. We complete the analysis of the covariance matrix series to the next order to obtain

explicitly this information in terms of the traces of the third fundamental form tensor.

For this, we generalize to arbitrary Riemannian submanifolds the notions of integral invariants

based on the volume, barycenter and covariance matrix of a point-set, weighted by the induced

measure of the submanifold. This can be done via the exponential map [16], [46] of the ambient

manifold, which uses the lengths of geodesics tangent to an orthonormal frame at a point as the
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Riemannian generalization of Cartesian coordinates. Measuring the geodesic normal coordinates

of the points of a submanifold domain provides a general definition for these integral invariants.

Normal coordinates are naturally used to make geometric measurements needed to perform prob-

ability and statistics inside Riemannian manifolds, e.g. [47, 48]. Optimization on Riemannian

manifolds [1, 2] has been studied assuming the underlying geometry is known, for which any

characterization and reconstruction techniques through Manifold Learning would be the first step

needed to perform optimization.

These integrals perform Principal Component Analysis on domains determined by the subman-

ifold, so they feature a scale dependent behavior. This type of analysis can be understood in two

different ways: from a physics perspective, the integral invariants measure the total mass of the

domain, the center of mass point, and an analogue of the moments of inertia with the correspond-

ing principal directions; from a statistical perspective, these integrals compute the total volume of

the data set, its average point, and the covariance matrix of its degrees of freedom. The volume

and barycenter can be easily defined as the integral over the domain of the identity and the position

vector respectively, weighed by the induced measure on the submanifold. The covariance matrix

of the domain with respect to a fixed point is constructed by choosing an orthonormal frame at

the point and measuring the coordinates of the other points in the region; the pairwise products of

these coordinates determine a matrix function, whose integration over the domain yields a matrix

dependent only on the scale of the region. We are interested in regions determined by the intersec-

tion of the submanifold with balls and cylinders in ambient space, which have a natural radius as

scale. Since the matrix so constructed is frame dependent but symmetric, the covariance integral

invariants of interest are to be defined as its eigenvalues and eigenvectors.

This covariance analysis can be thought of as the study of a matrix-valued function of scale

at every point of the manifold, which can be given a Taylor series expansion by the classical per-

turbation theory of Hermitian matrices [52]. One of the main results of our analysis is that the

eigenvectors converge, when the scale tends to zero, to a special orthonormal frame of the tangent

and normal spaces of the manifold, specifying an adapted frame which turns out to have geomet-
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ric meaning as generalized principal directions. Precisely, the scaling behavior of the eigenvalues

permits the detection of which eigenvectors span either the tangent or normal spaces in the limit.

Moreover, our main result is the computation of the asymptotic expansion with scale of the eigen-

values, to second order, in order to find curvature information in the Taylor coefficients. For this

we need to introduce the generalization to arbitrary codimension of the classical third fundamental

form.

We also study the volumes of these regions. Geodesic balls inside manifolds have intrinsic

volume with asymptotic series given as corrections to the Euclidean ball volume, completely de-

termined by intrinsic scalar curvature invariants [27]. These invariants also appear in the volume

of tubes generated by the normal flow of an embedded manifold [25]. In our case, the domains

of integration depend on the embedding of the submanifold, so the extrinsic curvature will play a

crucial role in the volume corrections, as found in [30].

The structure of the dissertation is as follows.

In chapter 2 we study the notion of PCA integral invariants within the context of Riemannian

Geometry. In section §2.1 we give an explicit coordinate expression for the first fundamental form

and the induced measure on graph embedded manifolds. Then we overview the geometry of Rie-

mannian submanifolds, where curvature is classically defined as a differential invariant via the

the second fundamental form, whose local coordinate expression will be crucial for our compu-

tations. The particular case of hypersurfaces is reviewed. In section §2.2 PCA integral invariants

are defined in a general setting using the exponential map and given by the volume, barycenter

and covariance matrix of a domain determined by the submanifold. In particular, we shall study

PCA kernel domains delimited by the intersection with balls and higher-dimensional cylinders

in ambient space. Geometric descriptors are introduced to show how the study of hypersurfaces

is sufficient to build descriptors in any codimension, by applying the analysis on the manifold

hypersurface projections, since principal curvatures and principal directions determine the local

Hessians and, therefore, the second fundamental form and Riemann tensor via the Gauß equation.
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In chapter 3 we deal with the case of regular curves in Euclidean space of any dimension,

which requires completely different tools since curves do not have intrinsic curvature. In section

§3.1 we recall the Frenet-Serret apparatus and how the Frenet curvatures completely determine

the curve up to rigid motion. We state previous results known to obtain the Frenet-Serret frame

and curvatures from covariance analysis, and arrive at an asymptotic formula that relates the ratio

of the eigenvalues of the covariance matrix to the Frenet curvatures by the recursion relation of

certain Hankel determinants. In order to prove this formula, the theory of moments and orthogonal

polynomials is reviewed in section §3.2, from which the recursion relation of a general family of

Hankel determinants is obtained.

In chapter 4 three different domains for hypersurfaces are studied. In section §4.1 the integral

invariants are computed for a volume region delimited by a hypersurface inside a ball centered at a

point of the hypersurface. We need to prove a fundamental lemma to approximate the correspond-

ing integrals to high enough order. The asymptotic expansion of the invariants with respect to the

scale of the ball are shown to be given in terms of the principal curvatures and the dimension, and

the eigenvectors of the covariance matrix are shown to converge in the scale limit to the principal

and normal directions. In section §4.2 the analogous analysis is carried out for the integral invari-

ants of the hypersurface patch cut out by the ball and a higher-dimensional cylinder. The patch

covariance eigenvalues reproduce the principal curvatures as well but either squared or multiplied

by the mean curvature; the corresponding eigenvectors converge again to the principal and normal

directions when all curvatures are different.

In chapter 5 we study the most general setting of the present work: embedded Riemannian man-

ifolds of arbitrary dimension. In section §5.1 the classical third fundamental form is generalized

to submanifolds of general codimension by means of the metric product of any two Weingarten

maps, measuring the curvature of the induced normal connection on the manifold via the Ricci

equation. Its different traces are shown to relate to the Weingarten map at the mean curvature

vector and the Ricci operator. In section §5.2 we compute the volume, barycenter and covariance

matrix of a cylindrical domain inside an embedded submanifold. In particular, for generic cylin-
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ders, we show that the scaling of the eigenvalues of the covariance matrix singles out the tangent

and normal spaces of the manifold at the point via the span of the corresponding limit eigenvectors.

Moreover, for normal cylinders, the next-to-leading order term in the asymptotic series of the co-

variance eigenvalues is determined by the eigenvalues of the tangent and normal traces of the third

fundamental form. The limit eigenvectors then converge to the principal directions determined by

these tensors in the tangent and normal spaces. In section §5.3 an analogous analysis is carried

out for the domain given by the intersection of a ball in ambient space with the manifold, which

introduces a considerable number of correction terms with respect to the previous case. This leads

to an eigenvalue decomposition of the covariance matrix with essentially the same normal part as

the cylindrical case, and with tangent part given in terms of the Weingarten operator at the mean

curvature normal.

Finally, in chapter 6 all previous results are used to produce estimators and get the most general

asymptotic ratio between eigenvalues and curvature. In section §6.1 we see how the volume and

eigenvalue asymptotic formulas can be inverted and truncated to yield geometric descriptors of the

principal curvatures and principal directions of hypersurfaces, thus establishing concrete formulas

to use in the general method outlined for Riemannian submanifold. In section §6.2 we obtain the

limit ratios of the covariance eigenvalues, in the cylindrical and spherical domain cases, in terms

of those of the third fundamental form, generalizing the asymptotic ratios found for regular curves.

The descriptors that these domains provide also recover the principal curvatures and directions,

where the cylindrical estimators have a better truncation error than the general spherical case.

In appendix A we set the notation for the spherical coordinates used, and review the formula for

the integrals of monomials over spheres and balls. We also define specific symbols to encapsulate

the possible values of these integrals under arbitrary products of coordinates that depend on the

indices involved.

These results show how Principal Component Analysis can be carried out on a general em-

bedded Riemannian submanifold to probe its local geometry. From a theoretical point of view

our work establishes the generalization of the relationship between the statistical covariance anal-

10



ysis of the underlying point-set of a submanifold and the classical differential-geometric curvature

using the third fundamental form. From the applied and computational point of view, the inte-

gral invariant approach used in the literature to perform Geometry Processing of low-dimensional

manifolds can be employed with embedded manifolds of arbitrary dimension via the study of the

hypersurface descriptors obtained here. This opens the way for computational implementations of

Manifold Learning with big data sets, and the potential detection and classification of features of

this data via the curvature profile of its embedded geometric representation.
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Chapter 2

PCA Integral Invariants in Differential Geometry

In this chapter we review the differential geometry of Riemannian submanifolds [16], [18],

[32], [33], [35], [46], [49], [57]. We introduce the first and second fundamental forms, give local

expressions for them for graph submanifolds, and define the Riemann curvature tensor. The case of

hypersurfaces and their principal curvatures and directions is covered as well. Then we generalize

the definition of PCA integral invariants and descriptors to this general setting using geodesic nor-

mal coordinates, and define the cylindrical and spherical intersection domains via the exponential

map. Finally, we see how the covariance analysis of hypersurfaces is enough to obtain descriptors

for submanifolds of general codimension via the local expression of the second fundamental form

and the Gauß equation.

2.1 Geometry of Riemannian Submanifolds
Let pM, gq be an n-dimensional manifold isometrically embedded in an pn ` kq-dimensional

Riemannian manifold pN , gq, and let ∇,∇ be the respective Levi-Civita connections. We shall

write gp¨, ¨q “ x ¨, ¨ y, classically called the first fundamental form of M in N .

We shall always work in a neighborhood U Ă Rn`k of p PM, sufficiently small so that UXM

is given by a graph representation rx1, . . . , xn, f 1pxq, . . . , fkpxqsT over its tangent space, i.e., 0

represents p, x “ rx1, . . . , xnsT P TpM, and ∇f jp0q “ 0, so that the manifold is approximated at

p by its osculating quadric.

Lemma 2.1.1. The first fundamental form components of a graph manifold M Ă Rn`k, parametrized

by rx1, . . . , xn, f 1pxq, . . . , fkpxqsT P TpM‘NpM – Rn`k, are:

gµνpxq “ δµν `
k
ÿ

j“1

Bf j

Bxµ
Bf j

Bxν
. (2.1)

The induced measure on M in these coordinates is given by

12



dVol “
a

det gpxq dnx “

¨

˝1`
1

2

k
ÿ

j“1

n
ÿ

α“1

«

n
ÿ

β“1

ˆ

B2f j

BxαBxβ
p0q

˙

xβ

ff2

`Opx3
q

˛

‚dnx. (2.2)

Proof. The tangent space in these coordinates is spanned by the vectors

Xµ “
B

Bxµ
rx1, . . . , xn, f 1

pxq, . . . , fkpxqsT “ r0, . . . , 1, . . . , 0,
Bf 1

Bxµ
, . . . ,

Bfk

Bxµ
s
T ,

for µ “ 1, . . . , n, which yields the canonical orthonormal basis at p since ∇f jp0q “ 0. The

induced metric tensor is then

gµνpxq “ xXµ, Xν y “ δµν `
k
ÿ

j“1

Bf j

Bxµ
Bf j

Bxν
.

From this, recalling that the f jpxq have Taylor expansions starting at order 2 in these coordinates,

the matrix of the metric components is of the form rgs “ Idn ` rhs, where the correction matrix

rhs “ r
ř

j Bµf
jBνf

js is small because we are in a neighborhood of 0 with ∇f jp0q “ 0. Let

f jpxq “
1

2

n
ÿ

α,β“1

ˆ

B2f j

BxαBxβ
p0q

˙

xαxβ `Opx3
q,

for every j “ 1, . . . , k, then

Bf j

Bxµ
“

n
ÿ

β“1

ˆ

B2f j

BxβBxµ
p0q

˙

xβ `Opx2
q.

The natural volume form of a Riemannian manifold is given by
?

det g dx1 ^ ¨ ¨ ¨ ^ dxn, [46, Ch.

7, Lem. 19], whose lowest order approximation is det g « 1` trh, so
?

det g « 1` 1
2
trh, i.e.,

a

det gpxq “ 1`
1

2

n
ÿ

α“1

k
ÿ

j“1

ˆ

Bf j

Bxα

˙2

` ... “ 1`
1

2

n
ÿ

α“1

k
ÿ

j“1

«

n
ÿ

β“1

ˆ

B2f j

BxβBxµ
p0q

˙

xβ

ff2

`Opx3
q.

13



Then, at any point p P M and for any vector y P TpM, and vector field X P ΓpTMq, the

metric connection of M is the projection of the metric connection of N : ∇yX “ p∇yXq
J,

where p ¨ qJ : TpN Ñ TpM. The second fundamental form II of M in N is defined to be the

normal projection of the ambient covariant derivative when acting on vector fields tangent to M,

i.e., denoting p ¨ qK : TpN Ñ NpM,

IIpx,yq “ p∇yXq
K, i.e., ∇yX “ ∇yX ` IIpx,yq, (2.3)

for all x,y P TpM, and X P ΓpTMq such that X|p “ x. It is a symmetric bilinear form on the

tangent space at every point taking values in the normal space, II : TpMbTpMÑ NpM. Fixing

a normal vector n P NpM, the scalar-valued bilinear form x IIpx,yq, n y has a corresponding

self-adjoint map pSn P EndpTpMq, called the Weingarten map at n, such that:

x IIpx,yq, n y “ x pSn x, y y “ xx, pSn y y. (2.4)

Fixing orthonormal bases teµunµ“1 of TpM, and tnjukj“1 of NpM, the components of the second

fundamental form at point p are:

IIpeµ, eνq “
k
ÿ

j“1

IIjpeµ, eνqnj “
k
ÿ

j“1

x IIpeµ, eνq, nj y nj “
k
ÿ

j“1

x pSj eµ, eν y nj. (2.5)

The geometric meaning of II lies in the fact that the Weingarten map measures the tangential rate

of change of normal vectors to M when moving in tangent directions, cf. [16, Eq. II.2.4]:

pSn x “ ´p∇xN q
J,

for any N P ΓpNMq such that N |p “ n. From this, [46, Ch. 4, Cor. 9, 10], IIpx,xq is to be

interpreted as the curve acceleration in N of a geodesic inside M at p with tangent velocity x.

Therefore, II naturally measures the extrinsic curvature of the embedding since it represents the

forced curving of the straightest lines in M due to the curving of M itself in N .
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The inverse function theorem and [32, Ch. VII, Ex. 3.3] establish the following lemma, of

fundamental importance for the computations in the proofs of this dissertation.

Lemma 2.1.2. Let M be an n-dimensional submanifold of an pn ` kq-dimensional Riemannian

manifold pN , gq, with the induced metric g|M. For any point p P M and orthonormal basis

teµu
n
µ“1 of TpM, it is possible to choose normal coordinates py1, . . . , yn`kq in N such that the

coordinate tangent vectors at the origin Y 1, . . . ,Y n coincide with teµunµ“1, and Y n`1, . . . ,Y n`k

are an orthonormal basis tnjukj“1 of NpM. Moreover, M is locally given by a graph manifold

y1 “ x1, . . . , yn “ xn, yn`1 “ f 1pxq, . . . , yn`k “ fkpxq, such that the components of the second

fundamental form at p can be written as:

IIpeµ, eνq “
k
ÿ

j“1

„

B2f j

BxµBxν
p0q



nj. (2.6)

The invariance of the trace of II for any orthonormal tangent frame teµunµ“1 leads to the defi-

nition of the mean curvature vector:

H “

n
ÿ

µ“1

IIpeµ, eµq “
k
ÿ

j“1

Hjnj, where Hj
“

n
ÿ

µ“1

IIjpeµ, eµq. (2.7)

The study of the intrinsic geometry of pM, gq depends only on the metric and is given in terms

of the Riemann curvature tensor:

Rpx,yqz “ p∇x∇y ´∇y∇x ´∇rx,ysqZ,

for any x,y, z P TpM and Z P ΓpTMq such that Z|p “ z. This fundamental tensor equivalently

measures the integrability of parallel transport, geodesic deviation and local flatness. Its traces

yield the Ricci tensor

Ricpx,yq “
n
ÿ

µ“1

xRpeµ,xqy, eµy “ x pRx, y y,
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and the scalar curvature, R “
ř

µRicpeµ, eµq. Here, pR P EndpTpMq is the Ricci operator

associated to the Ricci bilinear form with respect to the metric.

Gauß Theorema Egregium establishes that the intrinsic curvature of surfaces is a particular

combination of products of the components of the second fundamental form. This generalizes to

higher dimension in

Theorem 2.1.3 (Gauß equation). The Riemann curvature tensor of a submanifold M is related to

the curvatureR of the ambient manifold N via

xRpx,yqz, wy “ xRpx,yqz, w y ` x IIpx,wq, IIpy, zq y ´ x IIpx, zq, IIpy,wq y (2.8)

for all x,y, z,w P TpM.

A hypersurface S is an embedded manifold of codimension 1, many of whose properties gen-

eralize those of surfaces in R3. Its second fundamental form can also be introduced via the Wein-

garten map, or shape operator pS defined as follows: given a choice of unit normal vector field N

around p P S, there is a linear endomorphism of TpS given by

pSpxq “ ´∇xN , @x P TpM

such that the classical second fundamental form is related to the one defined above by:

IIpx,yq “ x IIpx,yq, n y “ x pSpxq, y y.

The Weingarten map encodes how the hypersurface normal vector varies in the ambient space

when moving in a direction tangent to the hypersurface, thus measuring curvature. Moreover,

pS is self-adjoint with respect to the metric so there is an orthonormal basis of TpS given by its

eigenvectors called the principal directions of S at p. The corresponding eigenvalues are called

principal curvatures, tκµppqunµ“1, because x pSpuq, u ymeasures the normal acceleration of a curve

inside S with unit tangent u. The 2-plane spanned by a tangent vector u P TpS and the normal
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vector n P NpS intersects the hypersurface in a normal section curve whose first Frenet-Serret

curvature is precisely the normal curvature given by x pSpuq, u y. For any tangent vector the normal

section curvature is

κpxq “
IIpx,xq
Ipx,xq

, @x P TpS. (2.9)

Furthermore, one can define elementary curvature scalars K1ppq, . . . , Knppq as the elementary

symmetric polynomials on the tκµppqunµ“1. In particular the mean curvature of a hypersurface is

Hppq “ K1ppq “ tr pS “
n
ÿ

µ“1

κµppq “
n
ÿ

µ“1

IIpeµ, eµq, (2.10)

the scalar curvature is Rppq “ 2K2ppq, and the Gaußian curvature is

Knppq “ det pS “
n
ź

µ“1

κµppq (2.11)

Remark 2.1.4. To simplify notation we shall write κµ, H, R instead of κµppq, Hppq, Rppq, etc.

if the point is understood from the context. The point itself may be denoted p if interpreted set-

theoretically in S, or p if considered as a vector when it appears in linear operations of Rn`1.

Notice the most elementary Newton relation between the power sum function of order 2 and

the elementary symmetric polynomials yields the useful expression:

tr pS
2
“

n
ÿ

µ“1

κ2
µ “ K2

1 ´ 2K2 “ H2
´R. (2.12)

In fact, more is true since the Gauß equation applied to the Ricci tensor of a hypersurface leads to

Ricpx,yq “ Hx pSpxq, y y ´ x pS
2
pxq, y y. (2.13)

Using the lemmas introduced above and Gauß equation in codimension 1, we get the following

crucial lemma for the approximations made in chapter 4.
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Lemma 2.1.5. There is an open neighborhood Up around any point p P S such that the smooth

hypersurface S is locally given by a graph z : Up Ă TpS – Rn Ñ TpS ‘ xnpy – Rn`1, with

p “ 0, and ∇zp0q “ 0. Thus, it is defined to leading order by an osculating quadric which in the

basis of principal directions becomes:

zpxq “
1

2

n
ÿ

µ“1

κµx
2
µ `Opx3

q. (2.14)

In this neighborhood the area element is

dVol|Up “
a

det g dnx “

g

f

f

e1`
n
ÿ

µ“1

ˆ

Bz

Bxµ

˙2

dx1 ¨ ¨ ¨ dxn. (2.15)

The second fundamental form at p corresponds to the Hessian matrix of zpxq at p:

IIppeµ, eνq “
„

B2z

BxµBxν



p

(2.16)

where teµunµ“1 are the principal basis vectors. In this basis the Riemann tensor reduces to

xRpeµ, eνqeα, eβy “ κµppqκνppqpδανδµβ ´ δαµδβνq, (2.17)

the diagonal components of the Ricci tensor are

Ricpeµ, eµq “ Rµµppq “
n
ÿ

α‰µ

καppqκµppq, (2.18)

and the scalar curvature is

Rppq “ 2K2ppq “ 2
n
ÿ

µăν

κµppqκνppq. (2.19)
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2.2 Integral Invariants and Descriptors
In our context, integral invariants are local integrals over domains of a submanifold determined

by intersection with objects in the ambient space, like spheres. Two such integrals are the volume

of the domain and the point in the ambient manifold that represents the center of mass of the region.

A more interesting object is the covariance matrix obtained by integrating the relative covariance of

the degrees of freedom of the points in the domain, i.e., the products of the coordinates of the points

with respect to a chosen frame. In order to get a frame independent integral invariant, one takes

the eigenvalue decomposition of the covariance matrix. Since the kernel domains have a natural

scale, e.g., the radius of the sphere, it is useful to think of them as a matrix-valued function of scale

at every point. Therefore, these integral invariants correspond to eigenvalues and eigenvectors that

can be interpreted respectively as a set of scalar and frame-valued functions of scale at every point.

The study of covariance matrices in order to obtain adapted frames of general submanifols was

introduced in [12] and [55, 56], whereas the integral invariant approach was developed in detail to

extract the curvature information of surfaces in space, e.g. [20], [51].

In order to do this type of Principal Component Analysis on a general Riemannian submanifold

and generalize local integral invariants, definitions using Cartesian coordinates must be naturally

promoted to Riemann normal coordinates [16], [46]. If the n-dimensional submanifold Mpnq sits

inside an ambient Riemannian manifold pN pn`kq, gq, the curves in N that generalize the axes used

in Rn`k are the geodesic curves γvptq, and these always exist uniquely, locally at any point p P N

and direction v. Given an orthonormal frame of TpM‘NpM, the geodesics tangent to each of the

basis vectors will trace out generalized coordinate axes in N that, through the exponential map,

will uniquely specify any point in a local neighborhood around p. Assuming N is geodesically

complete to simplify the exposition, the exponential map collects all geodesics starting at p by

mapping straight lines through the origin in TpN – Rn`k to geodesics through p:

expp : TpMÑ N given by exppptvq “ γtvp1q “ γvptq.

19



At any point p there is a neighborhood rU of 0 in TpN where exp is a diffeomorphism onto a

neighborhood U of p in N . From this, for star-shaped rU , there is also a unique geodesic γptq

connecting p and any other point q P U such that the tangent γ1p0q “ exp´1
p pqq. Moreover, the

arclength of γ between the two points, i.e. the distance dpp, qq between them determined by the

metric g, is the length of the tangent vector representation through this map, dpp, qq “ } exp´1
p pqq},

cf. [46, Ch. 5, Lem. 13]. These normal neighborhoods allow the parametrization of points using

the geodesic distances tangent to a given frame teµun`kµ“1 at p. The injectivity radius rp is the

radius of the largest ball B0pεq in TpN where exp is a diffeomorphism, so Bpprpq “ expppB0prpqq

is the largest ball in N created by radial geodesics of the same length around p where normal

coordinates are well-defined. In fact, rp ą 0 always. Since our main theorems 5.2.4 and 5.3.5

are asymptotic results in the scale limit, in a general Riemannian manifold one could always use

normal coordinates to study domains of submanifolds small enough so that they can be mapped to

Euclidean space, thus, we propose the following general definition of PCA integral invariants.

Definition 2.2.1. Let D be a measurable domain in a Riemannian manifold pN , gq such that D Ă

Bpprpq for some point p P N , The integral invariants associated to the moments of order 0, 1 and

2 of the geodesic coordinate functions of the points of D with respect to p are:

the volume

V pDq “

ż

D

1 dVol, (2.20)

the barycenter

spDq “
1

V pDq

ż

D

rexp´1
p pqqs dVol, (2.21)

and the eigenvalue decomposition of the covariance matrix:

CpDq “

ż

D

rexp´1
p pqqs b rexp´1

p pqqs dVol. (2.22)

Here dVol is the measure on D, restriction of the measure on N induced by the metric g, and the

tensor product is to be understood as the outer product of the components of the exp´1 map in a
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chosen orthonormal basis of TpN . The reference point of the covariance matrix is often chosen to

be the barycenter, expppsq, instead of p.

These can be interpreted as statistical characterization measurements of a continuous distribu-

tion: the volume measures the size or mass of the set; the barycenter measures the centralization

of the domain as a mean or average point, i.e., a center of mass; finally, the covariance matrix is a

measure of the dispersion of the points in D around its center of mass. From this statistical point

of view, we could have defined the covariance matrix normalized by V pDq as well, so that dVol
V

is a

density, but this will not affect our results in any significant way (essentially, the second-to-leading

order term in the volume equations would get added to the eigenvalues at that order).

The two types of domains that we shall study are regions in a submanifold M Ă N determined

by the intersection with a ball and a cylinder, cf. Figure 2.1. Using the exponential map one can

define such intersections by mapping Euclidean balls and higher-dimensional cylinders in TpN to

their geodesic generalizations in the ambient manifold N .

Definition 2.2.2. The spherical component of radius ε ď rp, at a point p of a submanifold M of a

Riemannian manifold N , is the domain given by:

Dppεq :“MX tq P N : } exp´1
p pqq} ď ε ď rpu. (2.23)

An element V in the Grassmannian Grpm,n` kq is anm-dimensional linear subspace of Rn`k.

Fixing a point and m-dimensional ball inside V, the standard three dimensional cylinder over the

xy-plane can be generalized to a V-cylinder by taking all points in the ambient space that project

down onto the ball inside V.

Definition 2.2.3. The cylindrical component of radius ε ď rp, at a point p of a submanifold M of

a Riemannian manifold N over the m-plane V P Grpm,n` kq, is the V-cylinder intersection:

Cylppε,Vq :“MX tq P N : }projVpexp´1
p pqqq} ď ε ď rpu, (2.24)
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Figure 2.1: A normal cylinder to the surface at a point cuts out a patch domain (greyed region) whose
covariance matrix EVD shall encode generalized principal curvatures and directions at p.

where projVp¨q is the orthogonal projection onto V as a linear subspace of TpN . We shall write

Cylppεq when V “ TpM is assumed.

In the following chapters, we shall compute the integral invariants defined above for these

domains on embedded submanifolds of Euclidean space, N “ Rn`k, where exp´1
p pqq “ q ´ p as

vectors and the tensor product recovers the common definition of PCA integral invariants studied

in the literature. The points q P D are then parametrized by a vectorX such that the barycenter is

spDq “
1

V pDq

ż

D

X dVol, (2.25)

and the the covariance matrix can be interpreted as analogous to a moment of inertia matrix, which

for the cylindrical component shall be taken with respect to the center p, following the convention

and motivation of [56],

CpCylppεqq “

ż

Cylppεq

pX ´ pq b pX ´ pq dVol, (2.26)

whereas for the spherical component the covariance matrix shall be taken with respect to the

barycenter, following [51],
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CpDppεqq “

ż

Dppεq

pX ´ spDppεqqq b pX ´ spDppεqqq dVol. (2.27)

An integral invariant descriptor F pDq of some feature F of a measurable domain D is any

expression for F completely given in terms of V pDq, spDq, the eigenvalue decomposition ofCpDq

or other integral invariants. If the domain D is determined by a region of a hypersurface S, the

main geometric descriptors are any principal curvature estimators κµpDq of κµppq, and principal

and normal direction estimators eµpDq, npDq of eµppq,nppq, for some known point p P S. If the

domain D is determined by a region of an embedded manifold M, the main geometric descriptor

is any second fundamental form estimator, IIpDq of IIp, for some known point p PM. Since our

domainD of interest will possess a natural scale ε determined by the size of the ball or cylinder that

defines it, we shall talk about descriptors at scale. Moreover, we consider ε to be small enough

so that we can approximate the submanifold by the local graph representation of its osculating

paraboloids at p, which is sufficient to obtain the first terms of the asymptotic expansions of the

integral invariants with respect to scale.

When the asymptotic expansions with respect to scale of hypersurface integral invariants are

available to high enough order, curvature information can be extracted by truncating the series

and inverting the relations in order to obtain a computable multi-scale estimator of the actual

curvatures. In particular, the eigenvalues of the covariance matrix will provide such a descriptor

for the principal curvatures of a smooth hypersurface, κµpDq, and its eigenvectors teµpDqunµ“1, and

en`1pDq, will do the same for the principal and normal directions. In order to produce analogous

descriptors for an embedded Riemannian manifold of higher codimension, we just need to apply

the procedure to the k hypersurfaces created by projecting the manifold down to pn ` 1q-linear

subspaces.

Lemma 2.2.4. Let M Ă Rn`k be an n-dimensional embedded Riemannian manifold, and let an

orthonormal tangent basis teµunµ“1 of the tangent space TpM, and an orthonormal basis tnjukj“1

of the normal space NpM be fixed at p P M. Consider a ball Bpn`kqp pεq for small enough ε ą

0, such that the projections of M X B
pn`kq
p pεq onto the linear subspaces TpM ‘ xnjy, for all
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j “ 1, . . . , k, are smooth hypersurfaces Sj . Then, if κpjqµ pDq, te
pjq
µ pDqunµ“1 are descriptors of the

principal curvatures and principal directions at p for each of the hypersurfaces Sj , then the second

fundamental form of M at p has a descriptor:

IIppDqpeµ, eνq “
k
ÿ

j“1

rVjpDqKjpDqV pDq
T
j sµν nj , µ, ν “ 1, . . . , n, (2.28)

where rVjpDqs are the matrices whose columns are the components of tepjqµ pDqunµ“1 in the chosen

basis teµunµ“1, and rKjpDqs is the diagonal matrix of principal curvature estimators. In turn, the

Riemann curvature tensor of M at p acquires a descriptor:

xRpDqpeµ, eνqeα, eβy “
k
ÿ

j“1

`

rVjKjV
T
j sµβrVjKjV

T
j sνα ´ rVjKjV

T
j sµαrVjKjV

T
j sνβ

˘

. (2.29)

Proof. From lemma 2.1.2, there is a neighborhood of Up Ă TpM such that the manifold can

be locally given by a graph x ÞÑ px, f1pxq, . . . , fkpxqq, where x P Up, p corresponds to 0, and

∇fjp0q “ 0. From this, the projection hypersurfaces Sj are just px, fjpxqq for j “ 1, . . . , k. The

second fundamental form of M at p is precisely the linear combination of the second fundamental

forms of each of the hypersurface projections weighed by the corresponding normal vector, i.e.,

IIppeµ, eνq “
k
ÿ

j“1

„

B2fj
BxµBxν

ppq



nj

Analyzing each of those hypersurfaces in TpM ‘ xnjy – Rn`1, to obtain descriptors κpjqµ pDq,

te
pjq
µ pDqunµ“1 for every j, we obtain precisely a descriptor of the eigenvalue decomposition of each

Hessian, i.e., Hess fj|ppDq “ rVjpDqKjpDqV pDq
T
j s is an estimator of the second fundamental

form of Sj at p in the original basis. Applying Gauß equation 2.1.3 yields a corresponding descrip-

tor for the Riemann tensor.

These descriptors become valuable tools to perform Manifold Learning, feature detection and

shape estimation when only partial knowledge of the complete set of points is known or when
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noise is present. In this regard, [50, 51, 60] carried out experimental and theoretical analysis of the

stability of these and other descriptors in the case of curves and especially surfaces in R3, reporting

for example that the invariants of the spherical component domain are more robust with respect to

noise than the patch region ones. It is to be expected that the same stability behavior holds in the

hypersurface case studied in chapter 4, due to the sensitivity to small changes of an n-dimensional

patch compared to an pn ` 1q-dimensional volume which has the perturbed patch as part of its

boundary.
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Chapter 3

Regular Curves and Hankel Determinants

The covariance analysis of regular curves in a Euclidean space of arbitrary dimension was

already studied in [55,56], where the eigenvectors were shown to converge with scale to the Frenet-

Serret frame, and the eigenvalues series expansion was found to be proportional to leading order

to products of the Frenet curvatures. A formula for the coefficients was not explicitly known

however since they depend on the value of certain Hankel determinants. These results provide an

asymptotic relationship between the squares of the Frenet-Serret curvatures and ratios of successive

eigenvalues of the covariance matrix. Since curves are locally determined by the Frenet curvature

functions, up to rigid motion, the covariance integral invariants fully characterize the curve in the

limit, providing descriptors at scale for these curvatures. In order to find the explicit value of the

ratio coefficient, we obtain the recursion relation of a certain family of Hankel determinants by

using the theory of orthogonal polynomials and its relation to the moment problem.

3.1 Frenet-Serret Apparatus from Covariance Matrices
Smooth curves in Euclidean space Rn, for any dimension n ą 1, have essentially the same

structure [26], [33], [35], [57], [58] as the classical cases of plane curves and three-dimensional

space curves: generically, they possess a comoving orthonormal frame constructed from the veloc-

ity and acceleration vectors, and their orthonormal completion, along with generalized curvature

functions at every point. The latter were originally defined for plane curves in terms of the inverse

radius of the osculating circle.

A regular parametrized curve γ : I Ă R Ñ Rn is a continuously differentiable immersion, so

that γ1ptq “
dγ

dt
‰ 0 for all t P I . Two such curves are considered equivalent if they are related

by a bijective, continuously differentiable reparametrization of I that preserve orientation. The

length of the curve from point t “ a to t “ b is given by the ambient space metric integration of

its tangent vector:
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spa, bq “

ż b

a

c

x
dγ

dt
,
dγ

dt
y dt “

ż b

a

›

›

›

›

dγ

dt

›

›

›

›

dt (3.1)

Every regular curve can be parametrized by its arc length spa, tq so that its velocity is a unit

vector, }γ1psq} “ 1. From now on, we shall consider only regular curves n-times continuously

differentiable and parametrized by their arc length. In order to use a system of reference adapted to

the curve, one introduces the Frenet-Serret frame. When γpsq is a regular curve in Rn, we say it is

a Frenet curve when all the derivatives γ1, γ2, ..., γpnq form a set of n linearly independent vectors

in Rn. The Frenet-Serret frame tejunj“1 is the positively oriented comoving orthonormal basis of

Rn obtained from the Gram-Schmidt orthogonalization procedure applied to γ1, γ2, ..., γpnq:

ejpsq “
rejpsq

}rejpsq}
with rejpsq “ γpjqpsq ´

j´1
ÿ

i“1

xγpjqpsq, eipsqy eiptq for 1 ď j ď n.

In R3, e1 is the tangent vector, e2 is the principal normal vector, and e3 “ e1 ˆ e2 is the

binormal vector, which specify the tangent line and osculating plane at every point of the curve.

From the classical curvature functions of plane and space curves, one arrives at a definition of

Frenet curvatures at a point s:

κjpsq “ x e1jpsq, ej`1psq y for 1 ď j ď n´ 1. (3.2)

They satisfy the Frenet equations [33, Th. 2.13] in any dimension.

Theorem 3.1.1. Let γ be a Frenet curve in Rn with Frenet-Serret frame tejunj“1. Then the cur-

vatures tκjun´1
j“1 satisfy κ1, . . . , κn´2 ą 0, and every κj is pn ´ 1 ´ jq-continuously differentiable

such that
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d

ds

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

e1

e2

e3

...

en

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 κ1psq 0 0 0

´κ1psq 0 κ2psq 0 0

0 ´κ2psq
. . . . . . ...

... . . . . . . 0 κn´1psq

0 . . . 0 ´κn´1psq 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

e1

e2

e3

...

en

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.3)

And the Frenet-Serret frame and curvatures are invariant under Euclidean motions.

From this result the local characterization of regular curves is obtained. This establishes the ex-

istence and uniqueness of a Frenet curve when a point, initial Frenet-Serret frame and generalized

curvature functions are given, cf. [33, Th. 2.15].

Theorem 3.1.2. Let κ1, . . . , κn´1 : pa, bq Ñ R be given functions such that each κj is a pn´1´jq-

continuously differentiable function with κ1, . . . , κn´2 ą 0. Let s0 P pa, bq, and let a point p0 P Rn

and a frame tep0qj u
n
j“1 of Rn be fixed. Then there is a unique n times continuously differentiable

Frenet curve γ : pa, bq Ñ Rn, parametrized by arc length satisfying γps0q “ p0, tep0qj u
n
j“1 is the

Frenet-Serret frame of γ at the point p0, and where tκjpsqunj“1 are the Frenet curvature functions

of γ.

The integral invariant approach to Frenet curves thus aims to find a relationship between the

Frenet-Serret apparatus and the eigenvalue dcomposition of the covariance matrix. The spherical

and cylindrical covariance matrix applied to a regular curve γ in Rn, at point s and scale ε, reduces

to leading order to

Cps, εq “
1

2ε

ż s`ε

s´ε

pγptq ´ γpsqq ¨ pγptq ´ γpsqqTdt. (3.4)

This expression must be understood as the outer product of the position vectors of the curve with

respect to the center point γpsq. Notice that here we are normalizing by the first order approxi-

mation of the arc length of the intersection domain in order to use the results of [56]. Indeed, it
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was proven [55], [4] that the eigenvectors of the covariance matrix converge to the Frenet-Serret

directions.

Theorem 3.1.3. Let γ : I Ñ Rn be a parametric curve of class Cn`1, regular of order n. Let

e1psq, . . . , enpsq denote the Frenet-Serret frame at γpsq. Let V 1psq, . . . ,V npsq denote the limit

eigenvector of Cps, εq at γpsq for εÑ 0. Then the covariance eigenvectors converge to the Frenet-

Serret frame, i.e., ejpsq “ ˘V jpsq, for j “ 1, . . . , n.

The following key result by F.J. Solis [55,56] expresses the series expansion of the eigenvalues

to leading order in terms of the Frenet curvatures:

Lemma 3.1.4. Let γpsq be a regular curve in Rn, and let p0 be a point on the curve, then the

eigenvalues associated with Cpp0, εq are given by

λ1pεq “ P1ε
2
`Opε4q, (3.5)

λjpεq “
pκ1 ¨ ¨ ¨κj´1q

2

pj!q2
Pjε

2j
`Opε2j`2

q, j “ 2, . . . , n (3.6)

and the eigenvectors are given by the Frenet-Serret frame at p0. The κi’s are the Frenet curvatures

of the γ and Pk is the k-th pk “ 1, . . . , nq pivot of the nˆ n matrix An defined by

Aij “

$

’

’

&

’

’

%

1
i`j`1

, if i` j is even;

0 otherwise.
(3.7)

From the proof of this lemma, a typo is corrected for the denominator of λjpεq in the final

statement. With this result we can express the curvatures κj in terms of the eigenvalues by writing

the pivots as quotients of the determinants Bj of Aj , that is Pj “ Bj{Bj´1, so that:

lim
εÑ0

λj`1pεq

λ1pεqλjpεq
“ κ2

j

Bj`1Bj´1

pj ` 1q2B1B2
j

. (3.8)
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In fact, a different route towards the covariance analysis of curves was developed in [4]: by

solving the characterization theorem 3.1.2, given curvature constants at a point, the system of

ODEs can be solved to obtain canonical helix-type curves with those curvatures that approximate

any smooth curve at that point as an osculating helix:

γepsq “

»

—

—

—

—

—

—

—

—

—

—

–

a1 cospα1sq

a1 sinpα1sq

...

ak cospαksq

ak sinpαksqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

or γopsq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a1 cospα1sq

a1 sinpα1sq

...

ak cospαksq

ak sinpαksqq

bs

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.9)

where the first equation is for the case when n is even, such that k “ n{2, and the second equation

is for the case when n is odd, such that k “ pn ´ 1q{2. By directly computing the covariance

matrix for this type of curves, one can relate explicitly the eigenvalues to the parameters aµ, αµ, b

of those solutions and establish a relationship with the Frenet curvatures that leads to a conjectured

formula, whose proof constitutes the present author contribution: determining the coefficient of

equation 3.8 by using the theory of Hankel determinants.

Theorem 3.1.5. Let γ : I Ñ Rn be a parametric curve of class Cn`1, regular of order n. Let κjpsq

denote the jth curvature function of γ evaluated at s and let λjpεq denote the jth local eigenvalue

of the covariance matrix Cps, εq. For each s P I and each j “ 1, ..., n´ 1,

κ2
jpsq “ aj lim

εÑ0

λj`1pεq

λ1pεqλjpεq
, aj´1 “

ˆ

j

j ` p´1qj

˙2
4j2 ´ 1

3
. (3.10)

For fixed ε ą 0, these eigenvalue ratios furnish descriptors at scale of the generalized cur-

vatures, with their respective eigenvectors becoming descriptors of the Frenet-Serret frame. This

permits the local characterization of the curve within the given approximation. In particular, if

we are given a big sample of points belonging to a regular curve in some Euclidean space, the
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covariance integral can be computed for small balls around every point to obtain a set of curvature

descriptor functions. This curvature profile can be used as a classifier of point sets belonging to

different curves when explicit parametrization functions of the curves that generate those point are

unknown.

3.2 Hankel Matrices and Orthogonal Polynomials
The determinants Bj are of Hankel type for the sequence tµnu8n“0 “ t

1
3
, 0, 1

5
, 0, 1

7
, ...u, i.e.,

B1 “
1

3
, B2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
3

0

0 1
5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, B3 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
3

0 1
5

0 1
5

0

1
5

0 1
7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, Bj “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ0 µ1 µ2 ¨ ¨ ¨ µj´1

µ1 µ2 µ3 ¨ ¨ ¨ µj

µ2 µ3 µ4 ¨ ¨ ¨ µj`1

...
...

...
...

µj´1 µj µj`1 ¨ ¨ ¨ µ2j´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then to get our coefficient in theorem 3.1.5 amounts to showing that the aforementioned Hankel

determinants satisfy the following recurrence relation:

BjBj´2

pBj´1q
2
“
pj ` p´1qjq2

4j2 ´ 1
. (3.11)

This is indeed the case after we realize that such a recurrence relation appears in the theory

of monic orthogonal polynomials generated from txnu8n“0 by Gram-Schmidt orthogonalization

with respect to a measure generating our sequence µn as the integral moments. Indeed, choose a

nondecreasing function λpxq on R having finite limits at˘8 such that it induces a positive measure

dλ with finite moments to all orders

µnpdλq “

ż

R
xndλpxq, n “ 0, 1, 2, ...

then apply the Gram-Schmidt orthogonalization procedure to txnu8n“0 using the scalar product
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xppxq, qpxqy “

ż

R
ppxqqpxqdλpxq

to obtain a sequence of monic orthogonal polynomials Pnpxq (without normalization). If the given

scalar product is positive-definite, such a sequence is infinite and unique, and this is the case if

Bn ą 0 for all n P N, see Gautschi [24, Th. 1.2, 1.6]. Moreover, in this case, the infinite sequence

of monic orthogonal polynomials obtained in this manner obeys the recursion relation [24, Th.

1.27]:

P´1pxq “ 0, P0pxq “ 1, Pn`1pxq “ px´ αnqPnpxq ´ βnPn´1pxq (3.12)

where

αn “
xPn, xPny

xPn, Pny
, βn “

xPn, Pny

xPn´1, Pn´1y
“

||Pnpxq||
2

||Pn´1pxq||2
, for n “ 1, 2, . . .

The importance of this result is that the recursion coefficients βn are precisely the recursion coef-

ficients of the Hankel determinants Bn for the sequence µn, as it is proved in [24, eq. 2.1.5]

βj´1 “
BjBj´2

pBj´1q
2
, for n “ 2, 3, . . . (3.13)

so finding a measure to reproduce our sequence as its moments and a way to compute the norms of

the corresponding polynomials will yield our coefficient formula. There is a fundamental determi-

nantal representation of the monic orthogonal polynomials generated in the previous way [24, Th.

2.1]

Pnpxq “
1

Bn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ0 µ1 . . . µn

µ1 µ2 . . . µn`1

...
...

...

µn´1 µn . . . µ2n´1

1 x
... xn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, ||Pnpxq||
2
“
Bn`1

Bn

,

that yields Heine’s integral representation formula [28, p. 288] by essentially pulling the integrals

of each moment out of the determinant and expanding i:
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Pnpxq “
1

n!Bn

ż

¨ ¨ ¨

ż

Rn

n
ź

i“1

px´ xiq
ź

1ďlăkďn

pxk ´ xlq
2dλpx1q ¨ ¨ ¨ dλpxnq.

Since the polynomials are monic, Bn can be solved equating to 1 the leading coefficient of the

previous equation

Bn “
1

n!

ż

Rn

ź

1ďlăkďn

pxk ´ xlq
2dλpx1q ¨ ¨ ¨ dλpxnq, (3.14)

which is a closed formula for all Hankel determinants of any sequence as long as this can be written

as moments of a positive measure.

Using the theory above for Hankel determinants of a particular type we arrive at the following

key result.

Theorem 3.2.1. For any inverse arithmetic sequence
"

1

αn` β

*8

n“0

, where α, β P Rą0, the cor-

responding Hankel determinants

Fnpα, βq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
β

1
α`β

1
2α`β

¨ ¨ ¨ 1
pn´1qα`β

1
α`β

1
2α`β

1
3α`β

¨ ¨ ¨ 1
nα`β

1
2α`β

1
3α`β

1
4α`β

¨ ¨ ¨ 1
pn`1qα`β

...
...

...
...

1
pn´1qα`β

1
nα`β

1
pn`1qα`β

¨ ¨ ¨ 1
p2n´2qα`β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.15)

are given by

Fnpα, βq “
1

αn

n´1
ź

k“0

Γpβ{α ` kqpk!q2

Γpβ{α ` n` kq
“

1

αn

n´1
ź

k“0

pk!q2
n´1
ź

j“0

α

αpk ` jq ` β
, (3.16)

and satisfy the recursion relation

FnFn´2

F 2
n´1

“
α2 pαpn´ 2q ` βq2 pn´ 1q2

pαp2n´ 2q ` βq pαp2n´ 3q ` βq2 pαp2n´ 4q ` βq
, (3.17)

starting with F1 “
1

β
, F2 “

α2

βp2α ` βqpα ` βq2
.
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Proof. Choose the function λpxq “ xβ{α{β which is always nondecreasing in the interval r0, 1s for

β{α ą 0, then the corresponding positive measure

dλpxq “ χr0,1s
xβ{α´1

α
dx,

where χI is the characteristic function of a measurable set I Ă R, yields moments

µn “

ż

R
xndλpxq “

1

α

ż 1

0

xn`
β
α
´1dx “

1

α

«

xn`
β
α

n` β
α

ff1

0

“
1

αn` β
.

Notice that this solves the Stieltjes moment problem uniquely for these sequences because our

measure is infinitely supported on r0,8q, and its moments satisfy Carleman’s condition [53, th.

1.10]. From this, the necessary condition Fn ą 0 is guaranteed to hold for any dimension n

[53, th. 1.2], so the induced inner product is positive definite and thus the sequence of monic

orthogonal polynomials Pnpxq is infinite and unique. Thus their recurrence relations (3.12) hold

for any n P N, so we can compute the determinants Fnpα, βq of any dimension. This is done by

computing equation (3.14)

Fnpα, βq “
1

n!

ż 1

0

¨ ¨ ¨

ż 1

0

n
ź

i“1

x
β
α
´1

i

α

ź

1ďlăkďn

pxk ´ xlq
2dx1 ¨ ¨ ¨ dxn

by means of Selberg’s integral formula [10, 8.1.1], an extension of Euler’s Beta function which has

applications in different fields within mathematics and physics:

ż

r0,1sn

n
ź

i“0

xa´1
i p1´ xiq

b´1
ź

1ďlăkďj

|xk ´ xl|
2g dnx “

n´1
ź

k“0

Γpa` kgqΓpb` kgqΓp1` pk ` 1qgq

Γpa` b` pn` k ´ 1qgqΓp1` gq
,

when <epaq ą 0,<epbq ą 0 and <epgq ą ´mint1{n,<epaq{pn ´ 1q,<epbq{pn ´ 1qu. These

conditions are satisfied for our case a “ β{α ą 0, and b “ g “ 1. Therefore by substitution of

these values
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Fnpα, βq “
1

n!αn

n´1
ź

k“0

Γpβ{α ` kqΓp1` kqΓp2` kq

Γpβ{α ` n` kqΓp2q
“

1

αn

n´1
ź

k“0

Γpβ{α ` kqpk!q2

Γpβ{α ` n` kq
,

where the Gamma functions can be simplified by the factorial property Γpz ` 1q “ zΓpzq to get a

closed formula:

Fnpα, βq “
1

αn

n´1
ź

k“0

pk!q2
n´1
ź

j“0

α

αpk ` jq ` β
.

Finally, the recursion equation 3.13 can be worked out by telescoping the products of Gamma

functions:

FnFn´2

F 2
n´1

“
1

αn

n´1
ź

k“0

Γpβ
α
` kqpk!q2

Γpβ
α
` n` kq

¨ αn´1
n´2
ź

k“0

Γpβ
α
` n´ 1` kq

Γpβ
α
` kqpk!q2

¨

αn´1
n´2
ź

k“0

Γpβ
α
` n´ 1` kq

Γpβ
α
` kqpk!q2

¨
1

αn´2

n´3
ź

k“0

Γpβ
α
` kqpk!q2

Γpβ
α
` n´ 2` kq

“

“
Γpβα ` n´ 1qpn´ 1q!2

Γpβα ` n´ 2qpn´ 2q!2

n´1
ź

k“0

1

p
β
α ` n´ 1` kqΓpβα ` n´ 1` kq

n´2
ź

k“0

Γ

ˆ

β

α
` n´ 1` k

˙

¨

n´2
ź

k“0

ˆ

β

α
` n´ 2` k

˙

Γ

ˆ

β

α
` n´ 2` k

˙ n´3
ź

k“0

1

Γ
`

β
α
` n´ 2` k

˘ “

“
p
β
α
` n´ 2qpn´ 1q2Γpβ

α
` 2n´ 4q

Γpβ
α
` 2n´ 2q

n´1
ź

k“0

1
`

β
α
` n´ 1` k

˘

n´2
ź

k“0

ˆ

β

α
` n´ 2` k

˙

“
p
β
α
` n´ 2q2pn´ 1q2

p
β
α
` 2n´ 2qpβ

α
` 2n´ 3q2pβ

α
` 2n´ 4q

which yields the stated formula upon multiplying numerator and denominator by α4.

Remarkably, this means that our polynomial recursion coefficients satisfy βn “
1

4
βJn , where

βJn are those of the classical monic Jacobi polynomials of type pβ
α
´ 1, 0q. These are generated by

the measure χr´1,1sp1´ xq
β
α
´1dx, which induces a completely different moment sequence and set

of orthogonal polynomials.
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Our actual determinants Bn have alternating 0’s in the even positions of the moment sequence,

so a block decomposition is needed to get them into the form of the theorem.

Corollary 3.2.2. For any sequence of type
"

1

αn` β
, 0

*8

n“0

with α, β P Rą0, where zeros alter-

nate every other position, the corresponding Hankel determinants Bn are given by the following

block decomposition for even n “ 2m or odd n “ 2m´ 1 dimension, m P N:

B2m “ Fmpα, βqFmpα, β ` αq, B2m´1 “ Fmpα, βqFm´1pα, β ` αq, (3.18)

and obey the recurrence relations:

B2mB2m´2

pB2m´1q
2
“

pαpm´ 1q ` βq2

pαp2m´ 1q ` βqpαp2m´ 2q ` βq
, (3.19)

B2m´1B2m´3

pB2m´2q
2

“
α2pm´ 1q2

pαp2m´ 2q ` βqpαp2m´ 3q ` βq
, (3.20)

starting with B1 “
1

β
, B2 “

1

βpα ` βq
.

Proof. The Hankel determinants with 0’s at every even position of the first row can be decomposed

into blocks by a procedure of moving rows and columns without altering the overall sign. Notice

that the second block has as Hankel sequence the original one but shifted in index by `1, so the

blocks are Fm :“ Fmpα, βq and Em :“ Fmpα, β ` αq. Analogously for n “ 2m ´ 1, but in this

case the number of 0’s is now m´ 1, so the size of the second block is pm´ 1q2 whereas the first

is still m2. Thus

B2m “ FmEm, B2m´1 “ FmEm´1.

Whence the recursion coefficients for the induced polynomials are, for even n,

βn´1 “ β2m´1 “
B2mB2pm´1q

B2
2m´1

“
Em
Em´1

Fm´1

Fm
,

and for odd n:
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βn´1 “ β2m´2 “
B2m´1B2pm´1q´1

B2
2pm´1q

“
Em´2

Em´1

Fm
Fm´1

.

Therefore using equation 3.16, that the corresponding β{α for the Em blocks is β{α ` 1 and the

factorial property of the Gamma function, the products can be simplified in the same way as in our

previous proof:

B2mB2pm´1q

B2
2m´1

“
1

αm

m´1
ź

k“0

Γpβ{α ` 1` kqpk!q2

Γpβ{α ` 1`m` kq
¨ αm´1

m´2
ź

k“0

Γpβ{α `m` kq

Γpβ{α ` 1` kqpk!q2

1

αm´1

m´2
ź

k“0

Γpβ{α ` kqpk!q2

Γpβ{α `m´ 1` kq
¨ αm

m´1
ź

k“0

Γpβ{α `m` kq

Γpβ{α ` kqpk!q2
“

“ pβ{α `m´ 1q
m´1
ź

k“0

1

pβ{α `m` kq
¨

m´2
ź

k“0

pβ{α `m` k ´ 1q “

“
pβ{α `m´ 1q2

pβ{α ` 2m´ 1qpβ{α ` 2m´ 2q
.

Similarly,

B2m´1B2pm´1q´1

B2
2pm´1q

“
1

αm´2

m´3
ź

k“0

Γpβ{α ` 1` kqpk!q2

Γpβ{α `m´ 1` kq
¨ αm´1

m´2
ź

k“0

Γpβ{α `m` kq

Γpβ{α ` 1` kqpk!q2

1

αm

m´1
ź

k“0

Γpβ{α ` kqpk!q2

Γpβ{α `m` kq
¨ αm´1

m´2
ź

k“0

Γpβ{α `m´ 1` kq

Γpβ{α ` kqpk!q2
“

“
pm´ 1q!2Γpβ{α `m´ 1qΓpβ{α ` 2m´ 3q

pm´ 2q!2Γpβ{α `m´ 1qΓpβ{α ` 2m´ 1q
“

“
pm´ 1q2

pβ{α ` 2m´ 2qpβ{α ` 2m´ 3q
.

Finally the coefficient formula of theorem 3.1.5 is obtained from this using equation 3.8.
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Corollary 3.2.3. The Hankel determinants of size nˆ n

Bn “ detpAnq, pAnqij “

$

’

’

&

’

’

%

1
i`j`1

, if i` j is even;

0 otherwise.

satisfy the recurrence relation
BnBn´2

pBn´1q
2
“
pn` p´1qnq2

4n2 ´ 1
. (3.21)

Proof. Notice the matrix entry at pAnqij is precisely the element of the sequence
"

1

2n` 3
, 0

*8

n“0

where n “ i`j´2. Thus substituting α “ 2 and β “ 3 into the equations 3.19 and 3.20 above, the

result follows straightforwardly when simplifying the theorem formulas after indices are written in

terms of the dimension, m “ n{2 or m “ pn` 1q{2 for the even and odd cases respectively.

The manifold reconstruction problem is thus solved for regular curves in Euclidean space in

terms of covariance integral invariants.
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Chapter 4

Covariance Analysis of Smooth Hypersurfaces

We generalize to hypersurfaces in any dimension major results known about the covariance

analysis of surfaces in space [20], [51], whose descriptors shall yield a method to estimate the ex-

trinsic and intrinsic curvature of an embedded Riemannian submanifold of general codimension.

We obtain the asymptotic expansion of the PCA integral invariants for a spherical volume com-

ponent delimited by a hypersurface and a ball in ambient space, and for the hypersurface patch

created by ball and cylinder intersections. The domain volumes have asymptotic expansion with

scale that correct the volume of a ball by the extrinsic curvature of the hypersurface at the cen-

ter point. The EVD of the covariance matrix of the spherical volume component has eigenvalues

with series expansion in terms of the principal curvatures and the mean curvature at the center,

and eigenvectors that converge to the respective principal and normal directions. In the case of

the patch invariants, the results are analogous but in terms of the squares and products of principal

curvatures.

4.1 Spherical Component Integral Invariants
The following domain was introduced in [30] to study the relation between the mean curvature

of hypersurfaces and the volume of ball sections (we reserve their notationB`p pεq for the half-ball).

Definition 4.1.1. Let S be a smooth hypersurface in Rn`1 with a locally chosen normal vector field

n : S Ñ Rn`1. Let Bpn`1q
p pεq be a ball of radius ε ą 0 centered at a point p P S, for small enough

ε the hypersurface always separates this ball into two connected components. Consider the region

V `p pεq to be that spherical component such that nppq points towards inside the region V `p pεq.

All the methods and results of [51] for surfaces using this domain generalize because to ap-

proximate integrals of functions over this type of region in R3, the formula developed in their work

makes use of the hypersurface approximations of [30], valid in any dimension.
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Lemma 4.1.2. Let f : Rn`1 Ñ R be a function of order Opρkzlq in cylindrical coordinates

X “ px, zq “ pρx, zq, x P Sn´1, let S be a graph hypersurface given by the function zpxq whose

normal at the origin points in the positive z-axis, and V `p pεq the spherical component delimited by

this S, then

ż

V `p pεq

fpXqdVol “
ż

B`p pεq

fpXqdVol ´
ż

Bnp pεq

«

ż z“ 1
2

řn
µ“1 κµx

2
µ

z“0

fpx, zq dz

ff

dnx`Opεk`2l`n`3
q

(4.1)

where the half ball B`p pεq consists of the points of Bn`1
p pεq such that z ě 0.

Proof. We are going to approximate zpxq by its osculating quadric at the origin, 1
2

řn
µ“1 κµx

2
µ,

and remove from the complete half-ball integral of fpXq its contribution from below the quadric

approximation but, since what we know is the function over the tangent space at p, what can be

computed is the contribution below the quadric over a domain in the tangent space that is explic-

itly integrable. The exact domain is determined by the sphere intersection with the hypersurface,

t}x}2 ` zpxq2 ď ε2u, and what we can compute exactly is the integral over the cylinder tρ ď εu,

so that for every x P Bpnqp pεq Ă TpS, we can remove the contribution of
şz

0
fpx, zqdz. This results

in the approximation:

ż

V `p pεq

fpXqdVol «
ż

B`p pεq

fpXqdVol ´
ż

Bnp pεq

«

ż zpxq

z“0

fpx, zpxqq dz

ff

dnx.

What we need to find is the order of the error in this expression. The volume in the second integral

extends outside the ball that defines V `p pεq, which is inscribed in the cylinder, and thus the integral

below the hypersurface is subtracting an extra contribution from the region Ω, that lies outside the

sphere but inside the cylinder and is bounded by the hypersurface. Then

ż

Ω

fpXqdVol ď max
XPΩ

|fpXq| ¨ VolpΩq.

Since zpρxq „ Opρ2q, we have maxXPΩ |fpXq| „ Opρkpρ2qlq. To bound the volume of Ω, notice

ρ is bounded by ε from the cylinder and by approximately ε ´ Cε3 from the intersection of the
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sphere with the hypersurface, for some constant C (cf. lemma 5.3.1 below or the estimation in

[30]). This maximum thickness Opε3q is added up for every point of the base sphere, whose area is

„ Opεn´1q. Now, the maximum height in the z direction of Ω is of order Opε2q because it is given

by the intersection of the cylinder with the hypersurface. Therefore, VolpΩq „ Opε2εn´1ε3q „

Opεn`4q. The total error of this approximation is then Opεk`2l`n`4q. Finally, the graph function

zpxq is to be approximated by its osculating quadric, truncating the terms Opρ3q from its Taylor

series. This makes a new error in the second integral of our formula, given by the integral over the

region inbetween the quadric approximation and the actual hypersurface, which has height given

by the Opρ3q difference between the full series of z and the quadratic terms. Therefore, the integral

we are neglecting by this truncation makes an error

ż

Sn´1

ż ρ“ε

ρ“0

Opρkpρ2
q
l
qOpρ3

qρn´1dρ dS „ Opεk`2l`n`3
q

which is the leading order of the two errors for small ε ą 0.

The key idea of the approximations carried out in the previous lemma were developed in [30]

precisely to obtain the first integral invariant.

Proposition 4.1.3 (Hulin and Troyanov). The volume of the spherical component cut by a hyper-

surface has the asymptotic expansion

V pV `p pεqq “
Vn`1pεq

2
´
ε2 Vnpεq

2pn` 2q
H `Opεn`3

q. (4.2)

Proof. Using lemma 4.1.2 the computation is immediate since
ş

B`p pεq
dVol “ Vn`1pεq

2
, and

ż

Bnp pεq

«

ż z“ 1
2

řn
µ“1 κµx

2
µ

z“0

dz

ff

dnx “
1

2

n
ÿ

µ“1

κµ

«

ż

Bnp pεq

x2
µ d

nx

ff

“
D2

2

n
ÿ

µ“1

κµ.

Proposition 4.1.4. The barycenter of the spherical component is of the form:
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spV `p pεqq “ r 0, . . . , 0, 2
Vnpεq

Vn`1pεq

ε2

n` 2

ˆ

1`
Vnpεq

Vn`1pεq

ε2

n` 2
H

˙

s
T
`Opε3

q. (4.3)

Proof. Notice that
ş

V `p pεq
x dVol “ Opεn`4q because applying lemma 4.1.2,

ş

B`p pεq
x dnx dz “

0, and the second integral is also of monomials of odd degree. We get right away the normal

component

rV pV `p pεqqssz “

ż

B`p pεq

z dnx dz ´

ż

Bnp pεq

1

2

«

n
ÿ

µ“1

κµx
2
µ

ff2

dnx`Opεn`4
q “ D

pn`1q
1 `Opεn`4

q,

where we have discarded the second integral since its order is OpDpnq4 q “ OpDpnq22 q „ Opεn`4q,

which leaves the same Opε3q as the error after dividing by the volume. The final expression

follows from inverting the volume formula from the previous proposition and using the value of

D
pn`1q
1 from the appendix.

Theorem 4.1.5. The covariance matrix CpV `p pεqq has eigenvalues with the following series ex-

pansion, for all µ “ 1, . . . , n:

λµpV
`
p pεqq “ Vn`1pεq

ε2

2pn` 3q
´ Vnpεq

ε4

2pn` 2qpn` 4q
p2κµ `Hq `Opεn`5

q, (4.4)

λn`1pV
`
p pεqq “ Vn`1pεq

ε2

2pn` 3q
´ 2

Vnpεq
2

Vn`1pεq

ε4

pn` 2q2

ˆ

1`
Vnpεq

Vn`1pεq

ε2

n` 2
H

˙

`Opεn`5
q.

(4.5)

Moreover, in the limit ε Ñ 0`, when the principal curvatures are different, the corresponding

eigenvectors eµpV `p pεqq converge linearly to the principal directions of S at p, and en`1pV
`
p pεqq

converges quadratically to the hypersurface normal vector n at p.

Proof. Working in the basis formed by the principal directions and the normal vector of the hyper-

surface at the fixed point p, we shall compute the entries of the covariance matrix and see that it

is diagonal to all orders smaller than Opεn`5q, precisely the error we get in the diagonal elements,

therefore the eigenvalues coincide with those diagonal terms up to that error since differences be-
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tween eigenvalues of symmetric matrices are bounded by the matrix norm distance. The covariance

matrix with respect to the barycenter is

CpV `p pεqq “

ż

V `p pεq

XbXT dVol´
ż

V `p pεq

XbsT dVol´
ż

V `p pεq

sbXT dVol`
ż

V `p pεq

sbsT dVol,

and the last two terms cancel each other upon integration. To compute the second term we can use

the expression for V s from the proof of the barycenter formula to get:

ż

V `p pεq

X b sT dVol “ V pV `p pεqqsb s
T
“

¨

˚

˚

˝

Opεn`7qnˆn Opεn`5qnˆ1

Opεn`5q1ˆn V pV `p pεqqs
2
z

˛

‹

‹

‚

where

V pV `p pεqqs
2
z “

rD
pn`1q
1 s2

V pV `p pεqq
`Opεn`5

q.

The other contribution to the last entry of the covariance matrix is

ż

V `p pεq

z2 dVol “
ż

B`p pεq

z2 dnx dz´
1

24

ż

Bnp pεq

«

n
ÿ

µ“1

κµx
2
µ

ff3

dnx`Opεn`7
q “

D
pn`1q
2

2
`Opεn`6

q,

in which we have neglected the second integral for being of higher order than the barycenter matrix

error, whose subtraction yields the stated result for the normal eigenvalue. Notice that the other

elements in the last column and row of the complete covariance matrix are Opεn`5q since the

remaining contributions come from
ş

V `p pεq
xµz dVol „ Opεn`6q, and its approximation formula

has all monomials with odd powers in x.

Now, we compute the tangent coordinates block. This can be done at once for any µ, ν “

1, . . . , n, noticing that when µ ‰ ν, the integrals of lemma 4.1.2 are of monomials of odd degree

in tangent coordinates so the off-diagonal elements are Opεn`5q:
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ż

V `p pεq

x2
µ dVol “

ż

B`p pεq

x2
µ d

nx dz ´

ż

Bnp pεq

x2
µ

˜

1

2

n
ÿ

α“1

καx
2
α

¸

dnx`Opεn`5
q

“
D
pn`1q
2

2
´

1

2

ż

Bnp pεq

˜

κµx
4
µ `

ÿ

α‰µ

καx
2
αx

2
µ

¸

`Opεn`5
q

“
D
pn`1q
2

2
´
D
pnq
4

2
κµ ´

D
pnq
22

2

ÿ

α‰µ

κα `Opεn`5
q “

D
pn`1q
2

2
´
D
pnq
22

2
p2κµ `Hq `Opεn`5

q

Here we have completed the last sum and used the fact that D4 “ 3D22.

The perturbation theory of Hermitian matrices [22], [31] shows the convergence of the eigen-

vectors to the principal directions in the case of no multiplicity: truncating CpV `p pεqq to order

lower than Opεn`5q, that is precisely the order of the perturbation with respect to the exact diago-

nalized matrix. Fixing an eigenvalue λµpV `p pεqq with µ ‰ n ` 1, the minimum difference to the

other eigenvalues is of order „ εn`4pκµ ´ κνq, whereas for the last eigenvalue its distance to all

the others is already at leading order „ εn`3. Therefore, from the sin θ theorem [22], the pertur-

bation Opεn`5q changes the eigenvectors teµpV `p pεqqu
n
µ“1 with respect to the principal directions

as Opεn`5q{Opεn`4pκµ´κνqq „
ε

κµ´κν
, and changes the eigenvector en`1pV

`
p pεqq with respect to

the normal as Opεn`5q{Opεn`3q „ ε2, i.e., in the limit ε Ñ 0` the eigevectors of CpV `p pεqq get a

vanishing correction with respect to the principal and normal directions.

Therefore, since the Weingarten operator pS at p is diagpκ1ppq, . . . , κnppqq in our basis, we may

write the covariance matrix as:

CpV `p pεqq “
Vn`1pεq ε

2

2pn` 3q
Idn`1 ´

Vnpεq ε
4

pn` 2qpn` 4q

¨

˚

˚

˝

pS ` H
2

Idn 0nˆ1

01ˆn 2 Vnpεqpn`4q
Vn`1pεqpn`2q

˛

‹

‹

‚

` Opεn`5
q.

In [51], following [21], the spherical shell V `p pεq X Snp pεq is also considered for surfaces in

R3, and its invariants are shown to be just the derivative with respect to scale of those obtained

for the ball region. This is due to the fact that the integral of a function over a region delimited

by a ball is the radial integration of the corresponding result over spheres. The same property
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holds in our case, therefore the derivatives with respect to ε of the invariants in this section are the

corresponding integral invariants of the n-dimensional spherical shell.

4.2 Patch Integral Invariants
Now, we shall state the results of the integral invariants of the hypersurface patch domain given

by a cylinder intersection as corollaries to the main theorems in the next chapter. Cf. 5.2.1 for

Proposition 4.2.1. The n-dimensional volume of the hypersurface cylindrical component for a

generic V P Grpn, n` kq, such that VK X TpM “ t0u, is to leading order the volume of the

ellipsoid of intersection between the V-cylinder and TpS:

V pCylppε,Vqq “ Vnp1q
n
ź

µ“1

`µ `Opεn`1
q, (4.6)

where `µ are the the principal semi-axes of the ellipsoid. When V “ TpS, the volume is

V pCylppεqq “ Vnpεq

«

1`
ε2

2pn` 2q

n
ÿ

µ“1

κ2
µ `Opε4

q

ff

. (4.7)

The barycenter for the cylindrical domain is the same as for the spherical domain computed

below in proposition 4.2.5. Finally, the covariance matrix analysis yields a direct relation between

its eigenvalues and the squares of the principal curvatures.

Theorem 4.2.2. For V P Grpn, n` kq such that VK X TpM “ t0u, i.e. for non-normal transver-

sality, and when Cylppε,Vq is finite, the covariance matrix Cppε,Vq of a hypersurface S has n

limit eigenvectors that form an orthonormal basis of TpS, corresponding to the first n eigenvalues

that scale as ε2. The other eigenvalue scales at higher order and has limit eigenvector converging

to the normal of S at p:

λµpCylppε,Vqq “
ε2

n` 2
`2
µ Vnp1q

n
ź

α“1

`α ` Opεn`3
q, µ “ 1, . . . , n, (4.8)
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λn`1pCylppε,Vqq “ 0`Opεn`3
q, (4.9)

where `µ are the principal lengths of the ellipsoid in 4.2.1. When V “ TpM the eigenvalues of the

covariance matrix of the cylindrical component are:

λµpCylppεqq “ Vnpεq

«

ε2

n` 2
`

ε4

2pn` 2qpn` 4q

˜

2κ2
µ `

n
ÿ

α“1

κ2
α

¸

` Opε6
q

ff

(4.10)

λn`1pCylppεqq “ Vnpεq

„

ε4

4pn` 2qpn` 4q
p3H2

´ 2Rq `Opε6
q



(4.11)

for all µ “ 1, . . . , n. Moreover, if the principal curvatures are different, the first n eigenvectors

converge to the principal directions, and the last eigenvector to the normal direction at p.

However, as a warm up exercise for the more involved computations of the general codimension

case, we shall explicitly compute below the asymptotic expansions of the integral invariants of the

hypersurface spherical patch. We are integrating over the domain Dppεq “ S X Bn`1
p pεq, using

again the local graph representation in a small neighborhood around the point. What follows served

as a toy model for the general case and was obtained first during our research.

Since a parametrization of the region is needed to perform the integrals locally, we need to

find local parametric equations of the boundary BpS X Bn`1
p pεqq, which is no longer a sphere (cf.

Figure 4.1), to high enough order in ε so that we can expand asymptotically the integral invariants

in terms of the geometric information of the hypersurface at the point. The strategy of [51], hinted

in [30], obtaining a cylindrical coordinate approximation for the boundary radius of the patch,

works in general dimension as follows. The result is general for higher codimension so the proof

is given in lemma 5.3.1.

Lemma 4.2.3. In cylindrical coordinates pρ, φ1, . . . , φn´1, zq over the tangent space TpS, fixing

the basis to the principal directions and the normal vector of S at p, the parametric equations of a

pointX “ pρx1, . . . , ρxn, zq
T in BDppεq “ S X Snp pεq, are
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Figure 4.1: The intersection of a sphere with a hypersurface no longer projects as a ball onto the tangent
space, which renders local integration more difficult. Lemma 5.3.1 provides a way to tackle the correction
terms due to the irregularities of the boundary. Here, the example of the integration domain of the graph
hypersurface z “ x5 ´ 2x3y ` 3x2y ` x2

2 ` 3xy3 ´ 5xy2 `
y2

3 , for ε “ 0.5.

rpxq :“ ρpx1, . . . , xnq “ ε´
1

8
κ2
pxqε3

`Opε4
q, zpx1, . . . , xnq “

1

2
κ2
pxqε2

`Opε3
q, (4.12)

where x1, . . . , xn are the coordinates of points on Sn´1 Ă TpS, and

κpxq “ κpx1, . . . , xnq “
n
ÿ

µ“1

κµx
2
µ (4.13)

is the normal curvature of S at p in the direction of x.

For this type of domain the previous parametric expansions are enough to asymptotically ex-

pand both the integrand and the measure, collect terms and solve the integrals using the appendix

formulas. The area or mass of the domain can be expressed as a correction to the volume of the

n-ball in terms of the extrinsic and intrinsic curvature of S at the point.

Proposition 4.2.4. The n-dimensional area of the hypersurface patch has the asymptotic expansion

V pDppεqq “ Vnpεq

„

1`
ε2

8pn` 2q
pH2

´ 2Rq `Opε3
q



. (4.14)
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Proof. Using lemma 5.3.1 in equation 2.15, we have that

dVol|Dppεq “
a

det gpxq dx1 ¨ ¨ ¨ dxn “

«

1`
1

2

n
ÿ

µ“1

κ2
µx

2
µ `Opx3

q

ff

dx1 ¨ ¨ ¨ dxn,

since
řn
µ“1

´

Bz
Bxµ

¯2

“ }∇zpxq}2 can be considered small for small enough ε ą 0, because in our

coordinates ∇zp0q “ 0. With this and the cylindrical measure, eq. A.1, the integration becomes

V pDppεqq “

ż

SXBn`1
p pεq

dVol “
ż

Sn´1

dS
ż rpxq

0

«

1`
1

2

n
ÿ

µ“1

κ2
µρ

2x2
µ `Opρ3

q

ff

ρn´1 dρ

“

ż

Sn´1

dS

«

1

n
pε´

κpxq2ε3

8
`Opε4

qq
n
`

1

2

n
ÿ

µ“1

κ2
µx

2
µ

n` 2
pε´

κpxq2ε3

8
`Opε4

qq
n`2

`Opεn`4
q

ff

after integrating over ρ up to the boundary radius. Expanding the binomial series and the square of

the normal curvature, all the remaining integrals are in example A.0.4, leading to

V pDppεqq “
εn

n
Sn´1 ´

εn`2

8

ż

Sn´1

κpxq2 dS`
εn`2

2pn` 2q

n
ÿ

µ“1

κ2
µ

ż

Sn´1

x2
µ dS`Opεn`3

q

“ Vnpεq ´
εn`2

8

ż

Sn´1

dS

˜

n
ÿ

µ“1

κ2
µx

4
µ ` 2

n
ÿ

µăν

κµκνx
2
µx

2
ν

¸

`
C2 ε

n`2

2pn` 2q

n
ÿ

µ“1

κ2
µ `Opεn`3

q

“ Vnpεq `
εn`2

n` 2

«

ˆ

C2

2
´
n` 2

8
C4

˙ n
ÿ

µ“1

κ2
µ ´ C22

n` 2

8
2

n
ÿ

µăν

κµκν

ff

`Opεn`3
q

“ Vnpεq `
εn`2

n` 2

„

C2

8
pH2

´Rq ´ C2

8
R


`Opεn`3
q,

where we use equation 2.12 and the relations among the coefficients from the appendix.

It is natural to expect the extrinsic curvature H to be present in the second order correction

since the domain depends on how S is embedded, in contrast to an intrinsically defined geodesic

ball where the correction only depends on R. Now, the center of mass in this case turns out to

deviate from the center of the ball, to leading order in ε, only in the normal direction.
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Proposition 4.2.5. The barycenter of the patch region has coordinates in the principal basis with

respect to p given by

spDppεqq “ rOpε4
q, . . . ,Opε4

q,
ε2

2pn` 2q
H `Opε3

q s
T . (4.15)

Proof. When integrating any tangent component xα of X , only factors with an odd power in

some component are produced because the known terms (see previous proof) now contain prod-

ucts xαx2
µ, xαx

4
µ and xαx2

µx
2
ν , which always have an odd power factor regardless of the subindices

combination. Therefore the first n components of V pDppεqqspDppεqq are of order Opεn`4q, com-

ing from the error inside rpxqn`1 after integrating radially the first term xαρ
n´1dρ. The normal

component ofX integrates as

ż

SXBn`1
p pεq

z dVol “
ż

Sn´1

d S
ż rpxq

0

„

1

2
κpxqρ2

`Opρ3
q



«

1`
1

2

n
ÿ

µ“1

κ2
µρ

2x2
µ `Opρ3

q

ff

ρn´1 dρ

“

ż

Sn´1

d S
„

κpxq

2pn` 2q
pε´

κpxq2

8
ε3
`Opε4

qq
n`2

`Opεn`3
q



“
εn`2

2pn` 2q

n
ÿ

µ“1

κµ

ż

Sn´1

x2
µ d S`Opεn`3

q “ C2
εn`2

2pn` 2q
H `Opεn`3

q.

Then normalizing by the volume to lowest order cancels the coefficient C2ε
n.

Finally, the study of the covariance matrix of the patch domain shows a behavior similar to the

spherical component, but where the next-to-leading order contribution to the eigenvalues includes

only products of principal curvatures and no linear terms.

Theorem 4.2.6. The covariance matrix CpDppεqq has n eigenvalues that scale like εn`2 as

λµpDppεqq “ Vnpεq

„

ε2

n` 2
`

ε4

8pn` 2qpn` 4q
pH2

´ 2R´ 4Hκµq



`Opεn`5
q, (4.16)

for all µ “ 1, . . . , n, and one eigenvalue scaling as εn`4 with leading term
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λn`1pDppεqq “ Vnpεq
ε4

2pn` 2qpn` 4q

ˆ

n` 1

n` 2
H2
´R

˙

`Opεn`5
q. (4.17)

Moreover, in the limit ε Ñ 0`, if the principal curvatures at p are all different, the eigenvectors

eµpDppεqq corresponding to the first n eigenvalues converge to the principal directions of S at p,

and the last eigenvector en`1pDppεqq converges to the hypersurface normal vector nppq.

Proof. We need to evaluate
ş

Dppεq
XpxqbXpxqT

?
det g dnx and V pDppεqqspDppεqqbspDppεqq

T .

The latter can be obtained from the previous proof:

rOpεn`4
q, . . . ,Opεn`4

q,
C2ε

n`2

2pn` 2q
H `Opεn`3

q s
T
b rOpε4

q, . . . ,Opε4
q,

ε2

2pn` 2q
H `Opε3

q s,

resulting in all entries of the n ˆ n block being Opεn`8q, the first n elements of the last column

and last row being Opεn`6q, and the last element of the matrix becoming

rV pDppεqqspDppεqq b spDppεqq
T
spn`1q,pn`1q “

Vnpεq ε
4

4pn` 2q2
H2
`Opεn`5

q,

(we already disregarded the term of Opεn`6q that can be computed for this matrix entry because

we shall see below that the other contributing term in that position has error at Opεn`5q).

Now, the rest of the covariance matrix requires the longest computations so far. The entries of

Xpxq bXpxqT are of three types: xµxν , xµzpxq and zpxq2. The first n entries of the last column

and last row, xµzpxq, contribute at order Opεn`4q. This implies that the matrix may not decompose

at order Opεn`4q as the direct sum of a "tangent" nˆn block, the integrals of rxµxνs, and a "normal"

1 ˆ 1 block, the integral of zpxq2. Then the argument in the proof of theorem 4.1.5 to equate the

diagonal elements of this expansion with that of the actual eigenvalues cannot be made here, since

there are off-diagonal error elements at the same order as the diagonal approximation. However,

this will not affect the eigenvalue decomposition as we shall see later in the crucial lemma 5.2.3,

and the eigenvalues will be given to order Opεn`4q by the diagonals of these blocks.

The normal block entry is:
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ż

SXBn`1
p pεq

z2 dVol “
ż

Sn´1

dS
ż rpxq

0

„

1

4
κpxq2ρ4

`Opρ5
q



«

1`
1

2

n
ÿ

µ“1

κ2
µρ

2x2
µ `Opρ3

q

ff

ρn´1 dρ

“

ż

Sn´1

d S
ż rpxq

0

«

1

4

n
ÿ

α,β“1

κακβx
2
αx

2
β ρ

n`3
`Opρn`4

q

ff

dρ

“
1

4

«

n
ÿ

α“1

κ2
α

ż

Sn´1

x4
α d S` 2

n
ÿ

αăβ

κακβ

ż

Sn´1

x2
αx

2
β d S

ff

εn`4

n` 4
`Opεn`5

q

“
εn`4

4pn` 4q

“

C4pH
2
´Rq ` C22R

‰

`Opεn`5
q;

subtracting the contribution from the barycenter matrix term, the last eigenvalue becomes

λn`1pp, εq “
C2 ε

n`4

4pn` 2qpn` 4q

“

3H2
´ 2R

‰

´
C2 ε

n`4

4pn` 2q2
H2
`Opεn`5

q

which simplifies to the stated result.

The tangent block entries can be computed simultaneously considering arbitrary µ, ν“1, ..., n:

ż

SXBn`1
p pεq

xµxν dVol “
ż

Sn´1

dS
ż rpxq

0

ρ2xµxνρ
n´1

«

1`
1

2

n
ÿ

α“1

κ2
αρ

2x2
α `Opρ3

q

ff

dρ

“

ż

Sn´1

dS
xµxν
n` 2

pε´
κpxq2

8
ε3
`Opε4

qq
n`2

`
1

2

n
ÿ

α“1

κ2
α

ż

Sn´1

x2
αxµxν d S

εn`4

n` 4
`Opεn`5

q

“
εn`2

n` 2

«

δµνC2 ´
ε2pn` 2q

8

ż

Sn´1

dSxµxν

˜

n
ÿ

α“1

κ2
αx

4
α ` 2

n
ÿ

αăβ

κακβx
2
αx

2
β

¸ff

`

`
εn`4

n` 4

δµν
2

˜

κ2
µ

ż

Sn´1

x4
µ dS`

n
ÿ

α‰µ

κ2
α

ż

Sn´1

x2
αx

2
µ dS

¸

`Opεn`5
q,

where the δµν appears because the monomials get an odd power if µ ‰ ν. Now, the different

integrals inside the indexed sums result in different constants depending on the different monomials

that the terms x2
µx

4
α and x2

µx
2
αx

2
β can combine into, thus
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“ C2
εn`2

n` 2
δµν `

εn`4

n` 4
δµν

»

—

–

´
n` 4

8

¨

˚

˝

C6κ
2
µ ` C24

n
ÿ

α‰µ

κ2
α `

n
ÿ

α,β
α‰β

κακβpδαµ ` δβµqC24 `

`

n
ÿ

α‰β
α,β‰µ

κακβC222

˛

‹

‚

`
C4

2
κ2
µ `

C22

2

n
ÿ

α‰µ

κ2
α

fi

ffi

fl

`Opεn`5
q

“ C2
εn`2

n` 2
δµν `

εn`4

n` 4
δµν

«

p
C4

2
´
n` 4

8
C6qκ

2
µ ` p

C22

2
´
n` 4

8
C24q

n
ÿ

α‰µ

κ2
α

´
n` 4

8
p2C24

n
ÿ

α‰µ

κµκα ` C222

n
ÿ

α‰β
α,β‰µ

κακβq

fi

ffi

fl

`Opεn`5
q.

Notice that the summations in the last equation are all over indices that must be different from µ,

so we can add and subtract the corresponding missing terms to those sums as long as we subtract

them in the correct place. Doing this, and using the crucial relationships between the constants

from the appendix, each of the different terms under the big braces simplify to:

p
C4

2
´
n` 4

8
C6 ´

C22

2
`
n` 4

8
C24qκ

2
µ “ ´

C2

2pn` 2q
κ2
µ,

p
C22

2
´
n` 4

8
C24q

n
ÿ

α“1

κ2
α “

C2

8pn` 2q
pH2

´Rq,

´
n` 4

8
pp2C24 ´ 2C222q

n
ÿ

α‰µ

κµκα ` 2C222

n
ÿ

αăβ

κακβq “ ´
C2

2pn` 2q
Rµµ `

C2

8pn` 2q
R.

Finally, these lead to the expression

ż

Dppεq

xµxνdVol “ δµνVnpεq

„

ε2

n` 2
`

ε4

8pn` 2qpn` 4q
pH2

´ 2R´ 4κ2
µ ´ 4Rµµq



`Opεn`5
q,
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and since κ2
µ ` Rµµ “ κµH , from equation 2.13, the stated formula for the tangent eigenvalues

follows from the diagonal of this block. Therefore, we can write CpD`p pεqq “

Vnpεq ε
2

n` 2

¨

˚

˚

˝

Idn 0nˆ1

01ˆn 0

˛

‹

‹

‚

`
Vnpεq ε

4

2pn` 2qpn` 4q

¨

˚

˚

˝

H2´2R
4

Idn ´H pS Anˆ1

A1ˆn
n`1
n`2

H2 ´R

˛

‹

‹

‚

`Opεn`5
q,

so the Weingarten operator appears inside the covariance matrix in this case as well but multiplied

by the mean curvature, which is a term in equation 2.13.

These covariance matrix eigenvalues will be inverted in chapter 6 to extract the principal cur-

vatures and obtain descriptors at scale of them by truncating the series. The eigenvectors at fixed

ε ą 0 also coverge to the principal and normal directions, so they serve as multi-scale estimators of

these as well. The spherical component invariants provide a direct relationship to the Weingarten

operator, thus the principal curvatures will be estimated without the need for sign choices. In the

cylindrical and spherical cases, the principal curvatures appear in products which leads to sign

choices that can be made using the barycenter.
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Chapter 5

Covariance Analysis of Embedded Riemannian

Manifolds

It is shown in this chapter that the volume of domains on a submanifold of general codimension,

determined by the intersection with higher-dimensional cylinders and balls in the ambient space,

have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose

a generalization of the classical third fundamental form [26], [58] to general submanifolds and

prove that the eigenvalue decomposition of the covariance matrices of the domains have asymptotic

expansions with scale that contain the curvature information encoded by the traces of this tensor,

where the limit eigenvectors converge to its generalized principal directions. Theorems 5.2.4 and

5.3.5 represent the most important contributions of this thesis, proving for embedded submanifolds

of arbitrary dimension the direct relationship between PCA covariance analysis and the generalized

principal curvatures and directions that can be defined from the third fundamental form operators.

This achieves a major development with respect to the leading order approximations of [56], and

the expansions for surfaces in R3 of [51].

5.1 Third Fundamental Form of a Riemannian Submanifold
In classical differential geometry, [26], [58], the third fundamental form is the natural object to

construct out of scalar products after the first fundamental form, Ipx,yq “ xx,yy, and the second

fundamental form IIpx,yq “ x pS x,yy, so it is defined for hypersurfaces, e.g. [40], as

IIIpx,yq “ x pS x, pS y y “ x pS
2
x,yy.

However, it does not provide new information since it is completely determined by Gauß equation

2.1.3, i.e., in Euclidean space [32, Ch. VII, Prop. 5.2]:
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x pS
2
x, y y “ Hx pS x, y y ´Ricpx,yq, (5.1)

or, in terms of the Ricci operator, pS
2
“ H pS´ pR. For a manifold M of higher codimension k, there

are k linearly independent normal vectors at every point and the generalized second fundamental

form takes values in the normal bundle precisely to reflect this structure in terms of the correspond-

ing Weingarten operators at every normal vector. See §2.1. Therefore, the natural generalization

of x pS x, pS y y to this context is

Definition 5.1.1. The third fundamental form of a Riemannian submanifold M Ă N is the fourth-

rank tensor III P pTpM˚q2 bNpM˚ bNpM, given at every point p PM by

x IIIpx,yqn, m y :“ x pSm x , pSn y y. (5.2)

for any x,y P TpM, and n,m P NpM.

At any specific point, and because the Weingarten maps are self-adjoint, the linear operator

IIIpx,yq P EndpNpMq is written as the following linear combination, when a particular orthonor-

mal basis tnjukj“1 of the normal space is fixed and ηj “ gp¨,njq is the dual basis:

IIIpx,yq “
k
ÿ

i, j“1

x pSi pSj x , y y η
i
b nj. (5.3)

This is due to the linearity of the map n ÞÑ pSn : NpMÑ EndpTpMq. If n “
ř

j n
jnj then

x pSn x, y y “ x IIpx,yq, n y “
k
ÿ

j“1

njx IIpx,yq, njy “ x

˜

k
ÿ

j“1

nj pSj

¸

x, y y,

for all x,y P TpM.

Let us define the tangent trace of a tensorA P pTpM˚q2bNpM˚bNpM as the operator sum

of the evaluations at an orthonormal basis teµunµ“1 of TpM:
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tr ‖A :“
n
ÿ

µ“1

Apeµ, eµq P EndpNpMq, (5.4)

And let the normal trace of such a tensor be

tr KA :“
k
ÿ

j“1

x IIIp¨, ¨qnj, nj y P pTpM˚
q
2, (5.5)

for any orthonormal basis tnjukj“1 of NpM. These tensors are well-defined since the sums are

independent of the orthonormal basis chosen.

Lemma 5.1.2. At any point p PM, for any x,y P TpM, and n,m P NpM, the normal trace of

the third fundamental form is

tr KIIIpx,yq “
k
ÿ

j“1

x pS
2

j x, y y “ x p
pSH ´ pR`Rqx, y y, (5.6)

where pR and R are the Ricci operators of M and N respectively. In particular, the sum of squares

of the Weingarten operators pSj , for an orthonormal basis tnjukj“1 of NpM, is independent of the

basis. The tangent trace of the third fundamental form is a linear operator onNpM whose compo-

nents with respect to the metric are the Frobenius inner products of the corresponding Weingarten

operators:

x ptr ‖IIIq n, m y “ tr p pSn
pSmq. (5.7)

The total trace is

tr III “ tr Ktr ‖III “ }H}
2
´R`R. (5.8)

Proof. The normal trace bilinear form has components

tr KIIIpeµ, eνq “
k
ÿ

j“1

x pSj eµ, pSj eν y “
k
ÿ

j“1

n
ÿ

α“1

x pSjeα, eµ yx pSjeα, eν y

“

k
ÿ

j“1

n
ÿ

α“1

IIjpeα, eµqII
j
peα, eνq “

n
ÿ

α“1

x IIpeα, eµq, IIpeα, eνq y, (5.9)

56



that using Gauß equation, th. 2.1.3, lead to the corresponding linear operator with respect to the

metric:

tr KIIIpeµ, eνq “
n
ÿ

α“1

x IIpeα, eαq, IIpeν , eµq y `
n
ÿ

α“1

“

xRpeα, eνqeµ, eα y ´ xRpeα, eνqeµ, eα y
‰

“ x IIpeµ, eνq, H y `Ricpeµ, eνq ´Ricpeµ, eνq

“ x pSH eµ, eν y ` xR eµ, eν y ´ x pR eµ, eν y.

This is the generalization of the operator of the classical third fundamental form, equation 5.1:

k
ÿ

j“1

pS
2

j “
pSH ´ pR`R.

The tangent trace is trivial by definition of trace of a linear operator with respect to the metric and

the self-adjointness of the Weingarten operators:

x ptr ‖IIIq n, m y “

n
ÿ

µ“1

x pSm
pSn eµ, eµ y “ p pSm, pSnqF .

In a fixed orthonormal basis this tensor is the linear combination

tr ‖III “
k
ÿ

i, j“1

n
ÿ

µ“1

x pSi pSj eµ , eµ y η
i
b nj “

k
ÿ

i, j“1

tr p pSi pSjq η
i
b nj,

whose components can be expressed in terms of the second fundamental form as

tr p pSi pSjq “
n
ÿ

µ, ν“1

x pSi eµ, eν yx pSj eµ, eν y “
n
ÿ

µ, ν“1

IIipeµ, eνqII
j
peµ, eνq. (5.10)

Taking the total trace of III is analogous to the complete contraction of the Riemann curvature

tensor indices to obtain the scalar curvature:
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tr III “ tr ‖tr KIII “
n
ÿ

µ“1

x p pSH ´ pR`Rqeµ, eµ y “ tr pSH ´ tr pR` trR

“

n
ÿ

µ“1

tr KIIIpeµ, eµq “
n
ÿ

α, β

}IIpeα, eβq}
2, (5.11)

where tr pSH “
řn
µ“1x IIpeµ, eµq, H y “ }H}2, and the traces of the Ricci operators are by

definition the scalar curvatures.

Equations 5.9 and 5.10 shall be recognized inside the elements of the tangent and normal matrix

blocks in our covariance matrices to express its eigenvalues in terms of the third fundamental form.

Example 5.1.3. For a smooth hypersurface S, there is only one unit normal vector n at every point

p P S , up to orientation. Choosing teµunµ“1 as the orthonormal basis of the tangent space given by

the principal directions at p, the components of the third fundamental form are:

x IIIpeµ, eνqn, n y “ x pS eµ, pS eν y “ x pS
2
eµ, eν y “ κ2

µδµν “ tr KIIIpeµ, eνq. (5.12)

The tangent trace component coincides with the total trace:

x tr ‖IIIn, n y “ tr p pS
2
q “

n
ÿ

µ“1

κ2
µ “

˜

n
ÿ

µ“1

κµ

¸2

´ 2
n
ÿ

µăν

κµκν “ H2
´R “ tr III. (5.13)

The asymmetry of the components of the third fundamental form operator IIIpx,yq encodes

the curvature information of the connection defined on the normal bundle NM by p∇xN q
K, for

any x P TpM, N P ΓpNMq, where an analog to Gauß equation holds.

Lemma 5.1.4 (Ricci equation). The Riemann curvature of the induced normal connection, RK,

satisfies:

xRKpx,yqn,m y “ xRpx,yqn,m y ` x IIIpx,yqn,m y ´ x IIIpx,yqm,n y, (5.14)

for all x,y P TpM, and n,m P NpM, at any point p PM.
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Proof. Writing the classical equation [16, Ex. II.11] in terms of Weingarten maps leads to

xRpx,yqn,m y ´ xRKpx,yqn,m y “

n
ÿ

µ“1

r x IIpeµ,xq, n yx IIpeµ,yq, m y`

´x IIpeµ,yq, n yx IIpeµ,xq, m y s

“

n
ÿ

µ“1

x pSn x, eµ yx pSm y, eµ y ´
n
ÿ

µ“1

x pSn y, eµ yx pSm x, eµ y

“ x pSn x, pSm y y ´ x pSn y, pSm x y.

for any orthonormal basis teµunµ“1 of TpM.

5.2 Cylindrical Domains
In this section we compute the integral invariants of the cylindrical domain around a point on

an n-dimensional submanifold M of Rn`k. In the case the cylinder is not normal to the manifold

at the point, we can only establish the leading order terms, but that is sufficient in the generic case

to be able to detect the tangent space of the manifold by the scaling behaviour of the eigenvalues

of the covariance matrix. Once the cylinder is fixed to be normal to this tangent space, the in-

tegral invariants can be computed to next-to-leading order to see how they encode the geometric

information of the third fundamental form.

In the rest of this paper we shall abbreviate second derivatives at the origin by

κjαβ “ κjβα :“
B2f j

BxαBxβ
p0q,

motivated by the notation of hypersurface principal curvatures, which are the eigenvalues of the

local Hessian of the defining function. We can now compute the Taylor expansion of the integral

invariants in the chosen coordinates, and then relate the terms to the curvature differential invariants

which are always combinations of second derivatives.
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Theorem 5.2.1. The n-dimensional volume of the cylindrical component for a generic V in

Grpn, n` kq, such that VK X TpM “ t0u, is to leading order the volume of the ellipsoid of

intersection between the V-cylinder and TpM:

V pCylppε,Vqq “ Vnp1q
n
ź

µ“1

`µ `Opεn`1
q, (5.15)

where `µ are the principal semi-axes of the ellipsoid. When V “ TpM, the volume is

V pCylppεqq “ Vnpεq

„

1`
ε2

2pn` 2q
tr III`Opε4

q



(5.16)

where tr III “ }H}2 ´R.

Proof. To compute the leading term of V pCylppε,Vqqwe can approximate M near p by its tangent

space, such that, fixing local coordinates with a basis of TpM ‘ NpM, a point is specified by

X “ rx,0sT , with x P TpM, 0 P NpM. Since VK X TpM “ t0u, we have TpM‘VK “ Rn`k,

and of course V‘VK“ Rn`k. Let teµunµ“1 be an orthornomal basis of TpM, and tuαunα“1Ytvju
k
j“1

an orthonormal basis of V ‘ VK, then the elements of the former are a linear combination of the

latter, so there are matrices A,B such that:

eµ “
n
ÿ

α“1

Aαµuα `
k
ÿ

j“1

Bj
µvj.

We need to find the region }projVpXq} ď ε, and since X “
ř

µ x
µeµ, when X P TpM, the

projection is

projVpXq “
n
ÿ

α“1

xX, uα y uα “
n
ÿ

α“1

n
ÿ

µ“1

xµAαµuα,

hence, the domain of integration in x in this approximation is

}projVpXq}
2
“

n
ÿ

α“1

˜

n
ÿ

µ“1

xµAαµ

¸2

ď ε2.

This is a quadratic equation that can be written as
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n
ÿ

µ, ν

xµ

«

n
ÿ

α“1

AαµA
α
ν

ff

xν “ xT rA ¨ AT sx “ yT ¨ y “ }y}2 ď ε2,

where y “ ATx. The matrix rA ¨ AT s is positive definite since it is clearly nonnegative, and if

x P kerAT for nonzero x, then projVpXq “ 0, thusX P VK, which contradictsX P TpM under

our assumption VKXTpM “ t0u. Therefore, the cylindrical domain is an n-dimensional ellipsoid

in the tangent space at p, whose volume is given in terms of its principal semi-axes:

V pCylppε,Vqq “
πn{2

Γpn
2
` 1q

n
ź

µ“1

`µ `Opεn`1
q.

When V “ TpM, the local graph approximation of M over TpM yields

projTpMpXq “ }projTpMprx, f
1
pxq, . . . , fkpxqsT q} “ }x} ď ε,

thus, we are integrating
a

det gpxq over the ball Bpnqp pεq Ă TpM, which can be computed using

the integrals from the appendix A:

V pCylppεqq “

ż

Sn´1

dS
ż ε

0

ρn´1

¨

˝1`
1

2

k
ÿ

i“1

n
ÿ

α“1

«

n
ÿ

β“1

κiαβρ x
β

ff2

`Opx3
q

˛

‚dρ

“ Vnpεq `
εn`2

2pn` 2q

k
ÿ

i“1

n
ÿ

α“1

n
ÿ

β,γ

κiαβκ
i
αγ

ż

Sn´1

xβxγ dS`Opεn`4
q

“ Vnpεq `
C2 ε

n`2

2pn` 2q

k
ÿ

i“1

n
ÿ

α,β

pκiαβq
2
`Opεn`4

q

“ Vnpεq `
Vnpεq ε

2

2pn` 2q

n
ÿ

α,β

x IIpeα, eβq, IIpeα, eβq y `Opεn`4
q.

Here the spherical integral is only nonzero when β “ γ, and the last term is the component

expression of equation 5.8.
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Proposition 5.2.2. The barycenter of the cylindrical component, for V as in the previous theorem,

is

spCylppε,Vqq “ 0`Opε2
q. (5.17)

In the case V “ TpM, the barycenter is:

spCylppεqq “ r 0,
ε2

2pn` 2q
H s

T
`Opε4

q. (5.18)

Proof. For generic V, approximating the manifold again by its tangent space, X “ rx,0 `

Opε2qsT , the normal component does not contribute until order two and the tangent component

also vanishes at order one in ε. When V “ TpM, we saw that the integration domain reduces to a

ball. The integrals of the tangent components xµ weighed by
?

det g are of order Opεn`4q, since

the first terms in the expansion have odd powers in the coordinates. On the other hand the normal

components integrate as:

V rssj “

ż

Sn´1

dS
ż ε

0

f j
a

det gρn´1 dρ “

ż

Sn´1

dS
ż ε

0

ρn´1

˜

1

2

n
ÿ

α, β“1

κjα βρ
2xαxβ `Opx3

q

¸

dρ

“
εn`2

2pn` 2q

n
ÿ

α,β“1

κjαβ

ż

Sn´1

xαxβd S`Opεn`4
q “

C2 ε
n`2

2pn` 2q
Hj
`Opεn`4

q,

Dividing by V “ V pCylppεqq cancels C2ε
n “ Vnpεq to leading order.

In order to study the eigenvalue decomposition of the covariance matrix we need to establish

how to determine the limit eigenvectors and the first two terms of the series expansion of the

eigenvalues, so that computing the integrals in an arbitrary orthonormal basis produces blocks

identifiable in terms of the coordinate expressions of the second and third fundamental forms in

that basis.

Lemma 5.2.3. Let Cpεq be an pn ` kq ˆ pn ` kq real symmetric matrix depending on a real

parameter ε with convergent series expansion in a neighborhood of 0 such that:
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Cpεq “ ε2

¨

˚

˚

˝

a Idn 0nˆk

0kˆn 0kˆk

˛

‹

‹

‚

` ε4

¨

˚

˚

˝

Anˆn Bnˆk

Bkˆn Γkˆk

˛

‹

‹

‚

`Opε5
q,

where a ‰ 0, and the blocks A,B,Γ are not completely zero. Let rV sJ, rV sK denote the first n and

last k components of a vector in Rn`k. Then the series of eigenvectors ofCpεq form an orthonormal

basis of Rn`k that converges for εÑ 0. The first n eigenvalues are λµpεq “ aε2` λ
p4q
µ ε4`Opε5q,

where λp4qµ and the corresponding limit eigenvectors tV p0q
µ u

n
µ“1 satisfy the eigenvalue decomposi-

tion of A:

pλp4qµ Idn ´ Aq rV p0q
µ sJ “ 0nˆ1, rV p0q

µ sK “ 0kˆ1.

The last k eigenvalues are λjpεq “ λ
p4q
j ε4 `Opε5q, where λp4qj and the corresponding limit eigen-

vectors tV p0q
j u

n`k
j“n`1 satisfy the eigenvalue decomposition of Γ:

pλ
p4q
j Idk ´ Γq rV

p0q
j sK “ 0nˆ1, rV

p0q
j sJ “ 0nˆ1.

Therefore, the fourth-order term of the eigenvalues is given by the eigenvalues of the blocks A and

Γ, with the respective eigenvectors as the limit eigenvectors of Cpεq for εÑ 0.

Proof. The eigenvalue decompositionCpεqV pεq “ λpεqV pεq can be written as a convergent series

expansion in ε within a neighborhood of 0 for all Hermitian matrices of converging power series

elements [52]:

r ε2

¨

˚

˚

˝

a Idn 0nˆk

0kˆn 0kˆk

˛

‹

‹

‚

` ε4

¨

˚

˚

˝

Anˆn Bnˆk

Bkˆn Γkˆk

˛

‹

‹

‚

`Opε5
q s ¨ rV p0q

` V p1qε` V p2qε2
` . . . s “

“ pλp1qε1
` λp2qε2

` λp3qε3
` λp4qε4

` . . . qrV p0q
` V p1qε` V p2qε2

` . . . s.

The zero matrix Cp0q is the limit when ε Ñ 0, with λp0q “ λp0q “ 0 as a totally degenerate

eigenvalue of multiplicity pn ` kq. By [52, ch. I, Th. 1], for ε ą 0, this eigenvalue branches
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out into pn` kq eigenvalues λipεq with pn` kq orthonormal eigenvectors V ipεq, all convergent in

a neighborhood of 0. Thus, the vectors V p0q
i “ limεÑ0 V ipεq are a unique orthonormal basis of

Rn`k that is completely determined by the perturbation matrix.

The eigenvalue difference between Cpεq and its full diagonalization is bounded by the matrix

norm difference between them, which implies λp1q “ λp3q “ 0, and also λp2qi “ a, for i “ 1, . . . , n,

and λp2qi “ 0, for i “ n ` 1, . . . , n ` k, since Cpεq is already diagonal up to that order. One can

obtain the relations satisfied by λp4q and V p0q equating order by order. At second order, λp2qi “ a is

nonzero for i “ 1, . . . , n, hence

r

¨

˚

˚

˝

a Idn 0nˆk

0kˆn 0kˆk

˛

‹

‹

‚

´ λ
p2q
i Idn`k sV

p0q
i “

¨

˚

˚

˝

0nˆn 0nˆk

0kˆn ´a Idk

˛

‹

‹

‚

V
p0q
i “ 0

implies that rV p0q
µ sK “ 0kˆ1, for the limit of the first n eigenvectors. At fourth order we have

rλ
p4q
i Idn`k ´

¨

˚

˚

˝

Anˆn Bnˆk

Bkˆn Γkˆk

˛

‹

‹

‚

sV
p0q
i “ r

¨

˚

˚

˝

a Idn 0nˆk

0kˆn 0kˆk

˛

‹

‹

‚

´ λ
p2q
i Idn`k sV

p2q
i ,

which in the present case, i “ 1, . . . , n, makes the right-hand side become 0 for the first n rows.

On the other hand, rV p0q
i sK “ 0kˆ1 makes B not contribute in the left-hand side, hence the first n

rows lead to the equation:

pλ
p4q
i Idn ´ Aq rV

p0q
i sJ “ 0nˆ1.

When i “ n ` 1, . . . , n ` k, an analogous argument using λp2qi “ 0, leads to rV p0q
i sJ “ 0nˆ1, and

in turn to:

pλ
p4q
i Idn ´ Γq rV

p0q
i sK “ 0kˆ1.

Since the limit eigenvectors are an orthonormal basis they cannot be zero and, therefore, the previ-

ous equations establish λp4qi and the nonzero components of rV p0q
i s as the eigenvalue decomposition

of A and Γ, which always has a solution due to being symmetric matrices.
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The previous lemma is a fundamental step to establish the main theorem of this and the next

section, along with the special case of hypersurfaces in §4.2.

Theorem 5.2.4. For V P Grpn, n` kq such that VK X TpM “ t0u, i.e. for non-normal transver-

sality, and when Cylppε,Vq is finite, the covariance matrix Cppε,Vq has limit eigenvectors that

span TpM those corresponding to the first n eigenvalues, which scale as ε2. The other k eigenval-

ues scaling at higher order have limit eigenvectors that span NpM:

λµpCylppε,Vqq “
ε2

n` 2
`2
µ Vnp1q

n
ź

α“1

`α ` Opεn`3
q, µ “ 1, . . . , n, (5.19)

λjpCylppε,Vqq “ 0`Opεn`3
q, j “ n` 1, . . . , n` k, (5.20)

where `µ are the principal lengths of the ellipsoid in 5.2.1. When V “ TpM, let λlr¨s denote taking

the l-th eigenvalue of a linear operator at p, or of its associated bilinar form with respect to the

metric. Then the eigenvalues of the covariance matrix of the cylindrical component are:

λµpCylppεqq “ Vnpεq

„

ε2

n` 2
`

ε4

2pn` 2qpn` 4q
λµr ptr IIIq Idn ` 2 tr KIII s ` Opε6

q



(5.21)

λjpCylppεqq “ Vnpεq

„

ε4

4pn` 2qpn` 4q
λjrH bH ` 2 tr ‖III s `Opε6

q



(5.22)

for all µ “ 1, . . . , n, and j “ n ` 1, . . . , n ` k. Moreover, the corresponding first n eigenvectors

converge to the principal directions of the operator tr KIII “ pSH´ pR, and the last k eigenvectors

to those ofH bH ` 2 tr ‖III.

Proof. For generic V the manifold is again approximated by its tangent space as X “ rx,0sT ,

which produces no contribution to the normal block at leading order Opεn`2q. Choosing the tan-

gent orthonormal basis to be aligned with the principal axis of the ellipsoid, and changing variables

so that xµ “ yµ`µ, the tangent block becomes an integration over a ball:
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rCpCylppε,Vqqsµν “
ż

xTA¨ATxďε2
xµxν dnx “

ż

ř

µ y
2
µď1

yµyν`µ`ν

n
ź

α“1

`α d
ny

“ δµν
εn`2

n` 2
`µ`νVnp1q

n
ź

α“1

`α `Opεn`3
q.

Thus, the covariance matrix leading term is proportional to diagp`2
1, . . . , `

2
n, 0, . . . , 0q, which has

limit eigenvectors corresponding to the first n eigenvalues spanning TpM, and the other k eigen-

vectors spanning NpM, by an straightforward extension to lemma 5.2.3 at order ε2.

For V “ TpM, we shall compute the integrals of the matrix blocks rxµxνsnµ,ν“1, and rf if jski, j“1,

so the next-to-leading order elements of those blocks will suffice to obtain the eigenvalues and limit

eigenvectors by the results of the previous lemma. The tangent block is:

rCpCylppεqqs
µν
“

ż

Bpnqpεq

xµxν
a

det gpxq dnx

“

ż

Sn´1

dS
ż ε

0

ρn`1xµxν

¨

˝1`
1

2

k
ÿ

i“1

n
ÿ

α“1

«

n
ÿ

β“1

κjαβρ x
β

ff2

`Opx3
q

˛

‚dρ

“
εn`2

n` 2

ż

Sn´1

xµxνdS`
εn`4

2pn` 4q

k
ÿ

i“1

n
ÿ

α“1

n
ÿ

β,γ

κiαβκ
i
αγ

ż

Sn´1

xµxνxβxγdS`Opεn`6
q,

and the last integral is only nonzero for the following combination of indices using the notation in

the appendix

ż

Sn´1

xµxνxβxγ dS “ C4pµνβγq ` C22

”

pµνβγq ` pµνβγq ` pµνβγq
ı

. (5.23)

This simplifies the sums using the relationship between C4, C22 and C2, and writing p1 ´ δµνq to

enforce µ ‰ ν in the last two terms of C22:
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δµνC2ε
n`2

n` 2
`

C2ε
n`4

2pn` 2qpn` 4q

k
ÿ

i“1

»

—

–

3δµν

n
ÿ

α“1

pκiαµq
2
` δµν

n
ÿ

α, β
β‰µ

pκiαβq
2
` 2p1´ δµνq

n
ÿ

α“1

κiαµκ
i
αν

fi

ffi

fl

`...

“
Vnpεqε

2

n` 2
δµν `

Vnpεqε
4

2pn` 2qpn` 4q

«

δµν

k
ÿ

i“1

n
ÿ

α,β

pκiαβq
2
` 2

k
ÿ

i“1

n
ÿ

α“1

κiαµκ
i
αν

ff

`Opεn`6
q

“
Vnpεqε

2

n` 2
δµν `

Vnpεqε
4

2pn` 2qpn` 4q

«

δµν

n
ÿ

α, β

}IIpeα, eβq}
2
` 2

n
ÿ

α“1

x IIpeα, eµq, IIpeα, eνq y

ff

`...

The component expression of equations 5.9 and 5.11 identify this block matrix at order Opεn`4q as

the matrix elements of the operator rptr ‖tr KIIIqIdn ` 2tr KIIIs in our chosen orthonormal basis,

whose eigenvalues are then by lemma 5.2.3 the next-to-leading order contribution to the first n

eigenvalues of CpCylppεqq, and whose eigenvectors are the limit eigenvectors of CpCylppεqq.

We perform now the integration of the normal block, which truncated to leading order yields:

rCpCylppεqqs
ij
«

ż

Bpnqpεq

f if jdnx “

ż

Sn´1

dS
ż ε

0

ρn`3

4
dρ

n
ÿ

α,β

n
ÿ

γ, δ

κiαβκ
j
γδx

αxβxγxδ `Opεn`6
q,

where the angular integral is only nonzero in the same cases as in equation 5.23 above, but with the

indices relabeled accordingly. This again simplifies every summation by matching the combination

of indices and using the relations among the constants:

rCpCylppεqqs
ij
“

εn`4

4pn` 4q

»

—

–

C4

n
ÿ

α“1

κiαακ
j
αα ` C22

¨

˚

˝

n
ÿ

α, γ
α‰γ

κiαακ
j
γγ ` 2

n
ÿ

α, β
α‰β

κiαβκ
j
αβ

˛

‹

‚

fi

ffi

fl

`Opεn`6
q

“
C2 ε

n`4

4pn` 2qpn` 4q

»

—

–

3
n
ÿ

α“1

IIipeα, eαqII
j
peα, eαq `

n
ÿ

α, γ
α‰γ

IIipeα, eαqII
j
peγ, eγq`

`2
n
ÿ

α, β
α‰β

IIipeα, eβqII
j
peα, eβq

fi

ffi

fl

`Opεn`6
q,
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in which the first sum precisely completes the elements missing from the other two

Vnpεqε
2

4pn` 2qpn` 4q

«˜

n
ÿ

α“1

IIipeα, eαq

¸˜

n
ÿ

γ“1

IIjpeγ, eγq

¸

` 2
n
ÿ

α,β

IIipeα, eβqII
j
peα, eβq

ff

`Opεn`6
q.

In this last expression we clearly identify the components rH bHsij and those of 2 tr ‖III using

the definition ofH and equation 5.10.

We shall see below that the spherical covariance matrix has the same normal eigenvalues, to

leading order, as the cylindrical case above. In [55, 56] these were expressed as an average of the

squares of the curvatures of curves inside the manifold M. Therefore, our previous computation

provides an explicit formula for this interpretation of the normal eigenvalues.

Corollary 5.2.5. Let M be an n-dimensional submanifold of Euclidean space Rn`k, then the first

generalized curvatures κpγ,x,njq of curves γ Ă M, passing through p with tangent vector x

and principal normal vectors any of the eigenvectors nj, j “ 1, . . . , k, of rH bH ` 2 tr ‖III s,

integrate to:

1

Vnpεq

ż

Bpnqpεq

κ2
pγ,x,njq d

nx “
ε4

pn` 2qpn` 4q
λjrH bH ` 2 tr ‖III s. (5.24)

In particular:
k
ÿ

j“1

1

Vnpεq

ż

Bpnqpεq

κ2
pγ,x,njq d

nx “
3}H}2 ´ 2R
pn` 2qpn` 4q

ε4. (5.25)

5.3 Spherical Domains
The difference between the cylindrical and spherical intersection domains for a graph manifold

lies in the irregular projection onto the tangent space: by definition the cylinder is the extension

in the normal directions of the ball Bpnqp pεq Ă TpM, so the points of the graph manifold satisfy

}projTpMprx,fpxqs
T q} “ }x} ď ε, and thus the integration region is a perfect ball. However, in

the spherical case the domain of integration is }x}2 ` }fpxq}2 ď ε2, which is nontrivial and in

68



general cannot be parametrized exactly. One can nevertheless generalize the same procedure done

originally for surfaces in space [51] to find the leading order corrections to the ball domain.

Lemma 5.3.1. For ε ą 0 small enough so that M is a graph manifold over TpM, using cylindrical

coordinates, the radial parametric equation of a point X “ rρx1, . . . , ρxn, f 1pρxq, . . . , fkpρxqsT

in BDppεq “MX Snp pεq, is

rpxq :“ ρpx1, . . . , xnq “ ε´
Kpxq2

8
ε3
`Opε4

q, (5.26)

where x P Sn´1 Ă TpM, and

Kpxq2 :“ }IIpx,xq}2 “
k
ÿ

i“1

n
ÿ

α,β

n
ÿ

γ,δ

κiαβκ
i
γδ x

αxβxγxδ (5.27)

is the square of the ambient space acceleration of a geodesic curve of M with tangent x at p.

Proof. A point of the spherical boundary satisfies }x}2 `
řk
i“1pf

ipxqq2 “ ε2. Since }x}2 “ ρ2,

and f ipxq “ 1
2

řn
α,β κ

i
αβx

αxβ `Opx3q, it is immediate that

ρ2
`

1

4
ρ4

k
ÿ

i“1

˜

n
ÿ

α,β

κiαβx
αxβ

¸2

´ ε2
“ Opρ5

q.

Defining Kpxq2 as the coefficient of ρ4

4
, we can solve the equation to order four to get

ρ2
“

2

Kpxq2

´

´1`
a

1`Kpxq2ε2
¯

“ ε2
´

1

4
Kpxq2ε4

`Opε6
q,

whose square root yields the result. Note that the actual error may be of order four because this

could contribute at order five upon squaring the expression, which is the order neglected in the orig-

inal equation. In our chosen orthonormal basis at p, we have that IIpx,xq “
ř

i

ř

α,β κ
i
αβx

αxβni,

and this is precisely the ambient space acceleration of a geodesic of M, cf. [46, ch. 4, Cor. 10].

Proposition 5.3.2. The n-dimensional volume of the spherical component is
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V pDppεqq “ Vnpεq

„

1`
ε2

8pn` 2q
p2 tr III´ }H}2q `Opε3

q



(5.28)

where 2 tr III´ }H}2 “ }H}2 ´ 2R.

Proof. In contrast to the proof of the cylindrical domain, the radial integration introduces new

angular corrections due to rpxq:

V pDppεqq “

ż

Sn´1

dS
ż rpxq

0

ρn´1
a

det gpρxq dρ

“

ż

Sn´1

rpxqn

n
dS`

ż

Sn´1

rpxqn`2

2pn` 2q

k
ÿ

i“1

n
ÿ

α,β,γ

κiαβκ
i
αγx

βxγ dS`Opεn`3
q,

the second integral is the same to leading order as in the cylindrical case, hence

“

ż

Sn´1

dS
εn

n

„

1´ n
Kpxq2

8
ε2
`Opε3

q



`
Vnpεq ε

2

2pn` 2q
tr III`Opεn`3

q

“ Vnpεq ´
εn`2

8

k
ÿ

i“1

n
ÿ

α,β

n
ÿ

γ,δ

κiαβκ
i
γδ

ż

Sn´1

xαxβxγxδ dS`
Vnpεq ε

2

2pn` 2q
tr III`Opεn`3

q,

where the integral is only nonzero as in equation 5.23, so

“ Vnpεq ´
C2 ε

n`2

8pn` 2q

k
ÿ

i“1

»

—

–

3
n
ÿ

a“1

pκiααq
2
`

n
ÿ

α,γ
α‰γ

κiαακ
i
γγ ` 2

n
ÿ

α,β
α‰β

pκiαβq
2

fi

ffi

fl

`
Vnpεq ε

2

2pn` 2q
tr III`Opεn`3

q

“ Vnpεq

«

1`
ε2

8pn` 2q

˜

4 tr III´
k
ÿ

i“1

n
ÿ

α,γ

κiαακ
i
γγ ´ 2

k
ÿ

i“1

n
ÿ

α,β

pκiαβq
2

¸

`Opε3
q

ff

Now, the first set of sums in the braces is x
ř

α IIpeα, eαq,
ř

γ IIpeγ, eγq y “ }H}
2, and the second

set is tr III.

Remark 5.3.3. Notice that the dependence of the error generated by the irregular radius rpxq is not

known, leaving Opεn`3q in the previous proof, or whether it cancels at that order upon spherical
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integration, so the spherical component invariants may have error terms at lower order than the

cylindrical ones.

Proposition 5.3.4. The barycenter of the spherical component is to leading order the same as for

the cylindrical component:

spDppεqq “ r 0,
ε2

2pn` 2q
H s

T
`Opε4

q. (5.29)

Proof. The new contributions from rpxq to the cylindrical computations are at least of the same

order, Opε4q, as the overall error.

In contrast to the hypersurface case, for arbitrary codimension the different osculating quadrics

of f ipxq, i “ 1, . . . , k, cannot be diagonalized simultaneously to a common basis in general. The

number of terms and simplifications needed in this general case is of much higher complexity

than for hypersurfaces but, nevertheless, an analogous result for the eigenvalue decomposition is

obtained.

Theorem 5.3.5. Let λlr¨s denote taking the l-th eigenvalue of a linear operator at p, or of its

associated bilinar form with respect to the metric. Then the eigenvalues of the covariance matrix

of the spherical component are:

λµpDppεqq “ Vnpεq

„

ε2

n` 2
`

ε4

8pn` 2qpn` 4q
λµr p2 tr III´ }H}2qIdn ´ 4 pSH s ` Opε5

q



(5.30)

λjpDppεqq “ Vnpεq

„

ε4

2pn` 2qpn` 4q
λjr tr ‖III´

1

n` 2
H bH s `Opε6

q



(5.31)

for all µ “ 1, . . . , n, and j “ n ` 1, . . . , n ` k. Moreover, the corresponding first n eigenvectors

converge to the principal directions of the Weingarten operator at H , i.e., pSH , and the last k

eigenvectors to those of rtr ‖III´
1

n`2
H bHs.
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Proof. From lemma 5.2.3 again, only the tangent and normal blocks need to be computed. Now,

however, the covariance matrix is taken with respect to the barycenter, so there is an extra matrix

contribution from the tensor product,

CpDppεqq “

ż

Dppεq

X bX dVol´
ż

Dppεq

X b s dVol,

because the other two products cancel each other upon integration. From the proof of the barycen-

ter formula, this integral is to leading order:

ż

Dppεq

X b s dVol “ V pDppεqqsb s “

¨

˚

˝

Opεn`8qnˆn Opεn`6qnˆk

Opεn`6qkˆn
Vnpεqε4

4pn`2q2
H bH

˛

‹

‚

There is no difference in the normal block computations of this covariance matrix and the cylin-

drical case proved before, since the corrections coming from rpxq are Opεn`6q. Thus, subtracting

the barycenter contribution:

Vnpεqε
4

4pn` 2qpn` 4q
pHbH`2 tr ‖IIIq´

Vnpεqε
4

4pn` 2q2
HbH “

Vnpεqε
4

2pn` 2qpn` 4q
rtr ‖III´

H bH

n` 2
s.

For the tangent block, the number of correction terms due to the spherical domain irregularities

with respect to the cylindrical case makes a substantial contribution at Opεn`4q:

rCpDppεqqs
µν
“

ż

Sn´1

dS
ż rpxq

0

ρn`1xµxν

¨

˝1`
1

2

k
ÿ

i“1

n
ÿ

α“1

«

n
ÿ

β“1

κiαβρ x
β

ff2

`Opx3
q

˛

‚dρ

“
εn`2

n` 2

„

δµνC2 ´ pn` 2q

ż

Sn´1

xµxν
Kpxq2ε2

8
d S`Opε3

q



`
εn`4

2pn` 4q

k
ÿ

i“1

n
ÿ

α,β,γ

κiαβκ
i
αγ

ż

Sn´1

xµxνxβxγdS` ...
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“ δµν
Vnpεqε

2

n` 2
`

εn`4

2pn` 4q

k
ÿ

i“1

«

n
ÿ

α, β, γ

κiαβκ
i
αγCpµνβγq ´

n` 4

4

n
ÿ

α,β

n
ÿ

γ,δ

κiαβκ
i
γδCpµναβγδq

ff

`Opεn`5
q,

where we have made use of equation 5.27, and written Cpαβ... q for the integral over Sn´1 of the

monomial product xαxβ . . . , (notice here the indices are not exponents but coordinate compo-

nents). The first summation simplifies again with equation 5.23 to yield the cylindrical tangent

block, but the other set of sums comprises the 31 spherical integrals of all possible monomials of

degree six:

Cpµναβγδq “

ż

Sn´1

xµxνxαxβxγxδdS “ C6pµναβγδq `

C24

”

pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq

` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq

` pµναβγδq
ı

` C222

”

pµναβγδq` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq

` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq ` pµναβγδq

` pµναβγδq ` pµναβγδq ` pµναβγδq



Each of these contractions are only nonzero when the connected indices are equal, and at the same

time different from the indices of the other connected groups, for instance:

n
ÿ

α,β

n
ÿ

γ,δ

κiαβκ
i
γβpµναβγδq “ δµν

n
ÿ

α‰µ

n
ÿ

γ‰µ
γ‰α

κiαακ
i
γγ.

Matching all the indices in this way for each of the terms just found, and taking into account

the relation of C6, C24 and C222 to C2 in the appendix, we take out a common factor C2

4pn`2q
, and

abbreviate the sum notation to produce all the terms of order Opεn`4q:

73



rCpεqsµν “
δµνVnpεqε

2

n` 2
`

C2 ε
n`4

8pn` 2qpn` 4q

ÿ

i

»

—

–

4δµν
ÿ

α, β
β‰µ

pκiαβq
2
` 8��δµν

ÿ

α

κiαµκ
i
αν ` 12δµν

ÿ

α

pκiανq
2

´ 15δµνpκ
i
ννq

2
´ 3

#

δµν
ÿ

α‰µ

pκiααq
2
` ��δµνpκ

i
µνκ

i
νν` κ

i
νµκνν ` κ

i
ννκ

i
µν` κ

i
ννκ

i
νµ` κ

i
νµκ

i
µµ ` κ

i
µνκ

i
µµ

` κiµµκ
i
νµ ` κ

i
µµκ

i
µνq ` δµν

˜

ÿ

α‰µ

κiαακ
i
νν `

ÿ

α‰µ

pκiανq
2
`

ÿ

α‰µ

pκiανq
2
`

ÿ

β‰µ

pκiνβq
2
`

ÿ

β‰µ

pκiνβq
2
`

ÿ

γ‰µ

κiγγκ
i
νν

+̧

´ δµν

˜

ÿ

α‰µ

ÿ

γ‰µ,α

κiαακ
i
γγ `

ÿ

α‰µ

ÿ

β‰µ,α

pκiαβq
2
`

ÿ

α‰µ

ÿ

β‰µ,α

pκiαβq
2

¸

´ ��δµν

#

ÿ

γ‰µ,ν

κiµνκ
i
γγ

`
ÿ

β‰µ,ν

κiµβκ
i
νβ `

ÿ

β‰µ,ν

κiµβκ
i
βν `

ÿ

γ‰µ,ν

κiνµκ
i
γγ `

ÿ

α‰µ,ν

κiαµκ
i
να `

ÿ

α‰µ,ν

κiαµκ
i
αν `

ÿ

β‰µ,ν

κiνβκ
i
µβ

`
ÿ

α‰µ,ν

κiανκ
i
µα `

ÿ

α‰µ,ν

κiαακ
i
µν `

ÿ

β‰µ,ν

κiνβκ
i
βµ `

ÿ

α‰µ,ν

κiανκ
i
αµ `

ÿ

α‰µ,ν

κiαακ
i
νµ

+ff

`Opεn`5
q

Many of the resulting summations are the same after relabeling and using κiαβ “ κiβα, so they can

be gathered into common factors:

rCpDppεqqs
µν
“ δµν

Vnpεqε
2

n` 2
`

Vnpεqε
4

8pn` 2qpn` 4q

ÿ

i

«

4δµν
ÿ

α,β

pκiαβq
2
` 8

ÿ

α

κiαµκ
i
αν ´ 15δµνpκ

i
ννq

2

´ 3δµν
ÿ

α‰µ

pκiααq
2
´ 12p1´ δµνqκ

i
µνpκ

i
µµ ` κ

i
ννq ´ 6δµν

ÿ

α‰µ

κiαακ
i
νν ´ 12δµν

ÿ

α‰µ

pκiανq
2

´δµν
ÿ

α‰µ

ÿ

γ‰α,µ

κiαακ
i
γγ ´ 2δµν

ÿ

α‰µ

ÿ

β‰α,µ

pκiαβq
2
´ p1´ δµνq

˜

4κiµν
ÿ

α‰µ,ν

κiαα ` 8
ÿ

α‰µ,ν

κiαµκ
i
να

¸ff

`...

for which regrouping terms and completing some sums will clarify the simplifications below,
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“ δµν
Vnpεqε

2

n` 2
`

Vnpεqε
4

8pn` 2qpn` 4q

ÿ

i

«

8
ÿ

α

κiαµκ
i
αν ´ 12κiµνpκ

i
µµ ` κ

i
ννq ´ 4κiµν

ÿ

α‰µ,ν

κiαα

´ 8
ÿ

α‰µ,ν

κiαµκ
i
να ` δµν

#

4
ÿ

α, β

pκiαβq
2
´ 3

ÿ

α‰µ

pκiααq
2
` 21pκiµµq

2
´ 2κiµµ

ÿ

α‰µ

κiαα ´ 12
ÿ

α

pκiαµq
2

´
ÿ

α‰µ

ÿ

γ‰α,µ

κiαακ
i
γγ ´ 2

ÿ

α‰µ

ÿ

β‰α,µ

pκiαβq
2
` 8

ÿ

α‰µ

pκiαµq
2

+ff

`Opεn`5
q.

Some terms inside the curly braces complement the missing elements of other summations:

21pκiµµq
2
´ 2κiµµ

ÿ

α‰µ

κiαα ´ 12
ÿ

α

pκiαµq
2
` 8

ÿ

α‰µ

pκiαµq
2
“ 15pκiµµq

2
´ 2κiµµ

ÿ

α

κiαα ´ 4
ÿ

α

pκiαµq
2,

and

´3
ÿ

α‰µ

pκiααq
2
´

ÿ

α‰µ

ÿ

γ‰α,µ

κiαακ
i
γγ ´ 2

ÿ

α‰µ

ÿ

β‰α,µ

pκiαβq
2
“ ´

ÿ

α,γ‰µ

κiαακ
i
γγ ´ 2

ÿ

α,β‰µ

pκiαβq
2.

Now, notice that this last type of double sum decomposes as follows

´
ÿ

α,γ‰µ

r ¨ sαγ “ ´
ÿ

α, γ

r ¨ sαγ `
ÿ

γ
α“µ

r ¨ sαγ `
ÿ

α
γ“µ

r ¨ sαγ ´ r ¨ sµµ,

therefore, the right hand side of the previous two equations complement each other:

rCpDppεqqs
µν
“
δµνVnpεqε

2

n` 2
`

Vnpεqε
4

8pn` 2qpn` 4q

ÿ

i

«

8
ÿ

α

κiαµκ
i
αν ´ 12κiµνpκ

i
µµ ` κ

i
ννq

´4κiµν
ÿ

α‰µ,ν

κiαα ´ 8
ÿ

α‰µ,ν

κiαµκ
i
να ` δµν

#

4
ÿ

α, β

pκiαβq
2
` 12pκiµµq

2
´
ÿ

α, γ

κiαακ
i
γγ ´ 2

ÿ

α, β

pκiαβq
2

+ff

`...

To simplify further, use 12pκiµµq
2 to complete the remaining sums and cancel terms:

8
ÿ

α

κiαµκ
i
να ´ 8κiµνpκ

i
µµ ` κ

i
ννq ´ 8

ÿ

α‰µ,ν

κiαµκ
i
να ` 8pκiµµq

2δµν “ 0,
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and

´4κiµνpκ
i
µµ ` κ

i
ννq ´ 4κiµν

ÿ

α‰µ,ν

κiαα ` 4pκiµµq
2δµν “ ´4κiµν

ÿ

α

κiαα.

Finally, all these computations lead us to the simple expression:

rCpDppεqqs
µν
“
δµνVnpεqε

2

n` 2
`

Vnpεqε
4

8pn` 2qpn` 4q

ÿ

i

«

δµν

#

2
ÿ

α, β

pκiαβq
2
´ pH i

q
2

+

´ 4κiµνH
i

ff

`...

where
ÿ

i

κiµνH
i
“ x IIpeµ, eνq, H y “ x pSH eµ, eν y,

and
ÿ

i

p2
ÿ

α, β

pκiαβq
2
´ pH i

q
2
q “ 2 tr III´ }H}2,

identify the covariance tangent block to be the matrix of the Weingarten operator at the mean

curvature, plus a constant, in the orthonormal basis chosen. The error is Opεn`5q.

The theorems of this chapter provide the most general relationship known between PCA co-

variance matrices and the local curvature of submanifolds. The geometric role played by the gen-

eralized third fundamental form is thus uncovered via its appearance in the asymptotic series of

the eigenvalue decomposition, which completely justifies the importance of this tensor as an inde-

pendent object of interest to describe curvature from an integral invariant point of view.
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Chapter 6

Descriptors at Scale for Manifold Learning

By solving the second order term from the series expansion of our integral invariants, we can

extract the curvature information they encode and write it in terms of the volume and eigenvalues

at a fixed scale. The integral invariants can be computed without a priori knowledge of the mani-

fold geometry, which implies that these local statistical measurements of the underlying point set

provide descriptors of the local differential geometry of the manifold, e.g., approximated from a

cloud of points.

The limit formula for the ratio of the eigenvalues in the case of curves was the major result of

chapter 3, establishing a direct relationship between the local covariance analysis and the Frenet-

Serret curvature information. The two main theorems 5.2.4 and 5.3.5 generalize this type of result

to general submanifolds by directly taking the limits of the covariance matrix eigenvalues.

Corollary 6.0.1. Writing λµpp, εq for the tangent eigenvalues of the cylindrical covariance matrix

CpCylppεqq, they satisfy the asymptotic ratio

lim
εÑ0

Vnpεq
λµpp, εq ´ λνpp, εq

λµpp, εqλνpp, εq
“
n` 2

n` 4
pλµrtr KIIIs ´ λνrtr KIIIs q , (6.1)

and the normal eigenvalues satisfy

lim
εÑ0

Vnpεq

λµpp, εqλνpp, εq

n`k
ÿ

j“n`1

λjpp, εq “
n` 2

4pn` 4q

`

}H}2 ` 2 tr III
˘

, (6.2)

for any µ, ν “ 1, . . . , n. Let rλµpp, εq denote the eigenvalues in the case of the spherical domain

covariance matrix, CppDppεqq, then the corresponding limits are

lim
εÑ0

Vnpεq
rλµpp, εq ´ rλνpp, εq

rλµpp, εqrλνpp, εq
“

n` 2

2pn` 4q

´

rλνr pSHs ´
rλµr pSHs

¯

, (6.3)
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and

lim
εÑ0

Vnpεq

rλµpp, εqrλνpp, εq

n`k
ÿ

j“n`1

rλjpp, εq “
n` 2

2pn` 4q

ˆ

tr III´
1

n` 2
}H}2

˙

. (6.4)

These ratios can be used at fixed ε ą 0 to obtain estimators of the eigenvalues and eigenvectors

of the third fundamental form and the Weingarten map at the mean curvature.

6.1 Spherical Component Descriptors
Now we focus on smooth hypersurfaces in Rn`1 since our integral invariants furnish descrip-

tors at scale of the principal curvatures, and the principal and normal directions which, by lemma

2.2.4, are sufficient to construct descriptors for an embedded Riemannian manifold of general codi-

mension. Employing the asymptotic series of section §4.1, we solve for the principal curvatures

in terms of the eigenvalues. In this case no sign choices are needed. The eigenvectors generically

converge to the principal and normal directions, so at fixed ε ą 0 they provide approximations to

the Darboux frame at every point.

Corollary 6.1.1. Abbreviating the integral invariants of the spherical component as λµpp, εq ”

λµpV
`
p pεqq, Vppεq ” V pV `p pεqq, then the corresponding descriptors of the principal curvatures, at

scale ε ą 0 and point p P S, are given by

κµpV
`
p pεqq “

n` 4

ε4Vnpεq

«

ε2Vn`1pεq

n` 3
´ pn` 1qλµpp, εq `

n
ÿ

α‰µ

λαpp, εq

ff

, (6.5)

or equivalently by

HpV `p pεqq “
pn` 2qVn`1pεq

ε2Vnpεq

ˆ

1´ 2
Vppεq

Vn`1pεq

˙

, (6.6)

κµpV
`
p pεqq “

pn` 2qpn` 4q

ε4Vnpεq

ˆ

ε2Vn`1pεq

2pn` 3q
´ λµpp, εq

˙

`
1

2
HpV `p pεqq. (6.7)
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The truncation errors are |Hppq ´HpV `p pεqq| ď Opεq, and |κµppq ´ κµpV `p pεqq| ď Opεq, for any

µ “ 1, . . . , n. The eigenvectors eµpV `p pεqq and en`1pV
`
p pεqq are descriptors of the principal and

normal directions respectively.

Proof. Let us define the coefficients at scale

a “
ε2 Vn`1pεq

2pn` 3q
, b “ ´

ε4Vnpεq

2pn` 2qpn` 4q
,

then the tangent eigenvalues from equation 4.4 solve the principal curvatures

κµ “
λµ ´ a

2b
´

1

2
H `Opεq.

Fixing one µ “ 1, . . . , n, and subtracting any two such equations with µ ‰ α results in

κα “
λα ´ λµ

2b
` κµ `Opεq,

inserting this into the definition of H one gets

H “ nκµ `
n
ÿ

α‰µ

λα ´ λµ
2b

`Opεq,

which substituting back leaves

κµpV
`
p pεqq “

λµ ´ a

bpn` 2q
´

n
ÿ

α‰µ

λα ´ λµ
2bpn` 2q

“
1

2bpn` 2q

˜

´2a` pn` 1qλµ ´
n
ÿ

α‰µ

λα

¸

.

The truncation error is given by the order of Opεn`5q{b „ Opεq. Alternatively, one can solve the

Hulin-Troyanov relation 4.2 to obtain a descriptor of H , and then use this in the expression of κµ

in terms of λµ and H above.

The asymptotic relations of corollary 6.0.1 reduce to very simple formulas in the case of hyper-

surfaces, relating the ratios of differences and products of eigenvalues to the principal curvatures.
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Corollary 6.1.2. Let p P S and consider the spherical component invariants. Then for any µ, ν “

1, . . . , n, the first n eigenvalues λµpp, εq ” λµpV
`
p pεqq of the covariance matrix CpV `p pεqq satisfy

the following limit ratio:

lim
εÑ0`

V 2
n`1pεq

Vnpεq

λµpp, εq ´ λνpp, εq

λµpp, εqλνpp, εq
“

4pn` 3q2

pn` 2qpn` 4q
rκνppq ´ κµppqs. (6.8)

These eigenvalue ratios can be used along with the volume formula to obtain other expressions

for the descriptors of the principal curvatures.

6.2 Cylindrical and Spherical Patch Descriptors
An analogous inversion process can be carried out with the series expansions of section §4.2.

However, the relation to the principal curvatures is now quadratic so sign choices are needed when

taking roots, and thus truncation errors are worse than in the spherical component volume above,

as expected from the explanation at the end of chapter 2.

The cylindrical domain descriptors may determine in general the squares of the principal cur-

vatures with better truncation error than their spherical domain counterparts.

Corollary 6.2.1. Denote λpp, εq ” λpCylppεqq, Vppεq ” V pCylppεqq the integral invariants of a

cylindrical domain on a hypersurface S, then the corresponding curvature descriptors at scale

ε ą 0 and point p P S , for any µ “ 1, . . . , n, are:

RpCylppεqq “
2pn` 2q

ε2

„

2pn` 4q

ε2

λn`1pp, εq

Vnpεq
` 3

ˆ

1´
Vppεq

Vnpεq

˙

(6.9)

HpCylppεqq “ p˘q

d

2pn` 2q

ε2

„

2pn` 4q

ε2

λn`1pp, εq

Vnpεq
` 2

ˆ

1´
Vppεq

Vnpεq

˙

, (6.10)

κ2
µpCylppεqq “

n` 2

ε2

„

n` 4

ε2

ˆ

λµpp, εq

Vnpεq
´

ε2

n` 2

˙

´
Vppεq

Vnpεq
` 1



, (6.11)

where the overall sign can be chosen by fixing a normal orientation from
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p˘q “ sgnx en`1pCylppεqq, spCylppεqq y.

The eigenvectors eµpCylppεqq and en`1pCylppεqq are descriptors of the principal and normal di-

rections respectively. The truncation errors are:

|H2
ppq ´H2

pCylppεqq| ď Opε2
q,

|Rppq ´RpCylppεqq| ď Opε2
q,

|κ2
µppq ´ κ

2
µpCylppεqq| ď Opε2

q.

Proof. Solving for the next-to-leading order term in the volume formula 5.16, and for the normal

eigenvalue in equation 5.22, we get a system of two equationsH2´R “ Apεq, 3H2´2R “ Bpεq,

whose solution is H2 “ B ´ 2A and R “ B ´ 3A, where

Apεq “
2pn` 2q

ε2

ˆ

Vppεq

Vnpεq
´ 1

˙

`Opε2
q, Bpεq “

4pn` 2qpn` 4q

ε4

λn`1pp, εq

Vnpεq
`Opε2

q.

Finally, solving for κ2
µ from the tangent eigenvalue equation 5.21, and using Apεq “

ř

α κ
2
α, the

last formula is obtained.

The cylindrical asymptotic ratios are very similar to the spherical component ones but relate

the difference of eigenvalues to the difference of the squared principal curvatures.

Corollary 6.2.2. The tangent eigenvalues of the cylindrical covariance matrix CpCylppεqq satisfy

lim
εÑ0

Vnpεq
λµpp, εq ´ λνpp, εq

λµpp, εqλνpp, εq
“
n` 2

n` 4
p κ2

µppq ´ κ
2
νppq q, (6.12)

and the normal eigenvalue has

lim
εÑ0

Vnpεq
λn`1pp, εq

λµpp, εqλνpp, εq
“

n` 2

4pn` 4q

`

3H2
ppq ´ 2Rppq

˘

, (6.13)
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for any µ, ν “ 1, . . . , n.

Now, the spherical patch domain descriptors below can be used to determine the relative signs

of the principal curvatures, and the cylindrical descriptors can be used to estimate with higher

precision their absolute value, since they are guaranteed a better error bound.

Corollary 6.2.3. Denoting by λpp, εq ” λpDppεqq, Vppεq ” V pDppεqq the integral invariants of

the spherical hypersurface patch domain, then the corresponding curvature descriptors at scale

ε ą 0 and point p P S , for any µ “ 1, . . . , n, are

RpD`p pεqq “ 2pn` 2q2pn` 4q
λn`1pp, εq

n ε4 Vnpεq
´

8pn` 1qpn` 2q

n ε2

ˆ

Vppεq

Vnpεq
´ 1

˙

, (6.14)

HpD`p pεqq “ p˘q

d

4pn` 2q2pn` 4q
λn`1pp, εq

n ε4Vnpεq
`

8pn` 2q2

n ε2

ˆ

1´
Vppεq

Vnpεq

˙

, (6.15)

κµpD
`
p pεqq “

2pn` 2q

ε2HpD`p pεqq

„

Vppεq

Vnpεq
`
n` 4

ε2

ˆ

ε2

n` 2
´
λµpp, εq

Vnpεq

˙

´ 1



, (6.16)

where the overall sign can be chosen by fixing a normal orientation from

p˘q “ sgnx en`1pDppεqq, spDppεqq y.

The eigenvectors eµpDppεqq and en`1pDppεqq are descriptors of the principal and normal direc-

tions respectively. The corresponding errors are

|H2
ppq ´HpDppεqq

2
| ď Opεq,

|Rppq ´RpDppεqq| ď Opεq,

|κ2
µppq ´ κµpDppεqq

2
| ď Opεq.

Proof. By solving the second term in equations 4.14 and 4.17, let us define
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A “
8pn` 2q

ε2

ˆ

Vppεq

Vnpεq
´ 1

˙

`Opεq,

B “ 2pn` 2qpn` 4q
λn`1pp, εq

ε4 Vnpεq
`Opεq,

so that we have the system of equations A “ H2 ´ 2R, B “ n`1
n`2

H2 ´R whose solution is

R “
1

n
ppn` 2qB ´ pn` 1qAq,

H2
“
pn` 2q

n
p2B ´ Aq.

We can approximate the normal direction and orientation by using en`1pp, εq, and since the barycen-

ter 4.15 has normal component with leading order in terms of H , their mutual projection can serve

to fix the orientation and overall relative sign of all the principal curvatures. The principal cur-

vatures themselves are then solved from eq. 4.16 substituting the value of H above, resulting in

κµ “
1

4H
pA´ Γµq, where

Γµ “
8pn` 2qpn` 4q

ε4

ˆ

λµpp, εq

Vnpεq
´

ε2

n` 2

˙

`Opεq.

The errors follow straightforwardly by the truncation of A, B, Γµ.

For this patch domain the asymptotic ratios are very similar to the spherical component case

but multiplied by the mean curvature.

Corollary 6.2.4. Let p P S and consider the hypersurface spherical domain invariants. Then

for any µ, ν “ 1, . . . , n, the first n eigenvalues λµpp, εq ” λµpDppεqq of the covariance matrix

CpDppεqq satisfy the following limit ratio:

lim
εÑ0`

Vnpεq
λµpp, εq ´ λνpp, εq

λµpp, εqλνpp, εq
“

n` 2

2pn` 4q
rκνppq ´ κµppqsHppq, (6.17)

and the last eigenvalue satisfies:
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lim
εÑ0`

Vnpεq
λn`1pp, εq

λµpp, εqλνpp, εq
“

n` 2

2pn` 4q

„

n` 1

n` 2
H2
ppq ´Rppq



. (6.18)

The potential benefits of employing the spherical component descriptors lie in the fact that the

domain they are computed from is an pn ` 1q-dimensional volume in Rn`1, whereas the patch

descriptors below are n-dimensional areas of hypersurfaces which in fact are part of the boundary

of the aforementioned volume. This makes it reasonable to expect a higher robustness and stabil-

ity with respect to noise, since intuitively variations of the hypersurface can significantly change

the patch while the volume region barely gets distorted in volume and shape. Indeed, numerical

computations have confirmed this in the lowest-dimensional cases [60].
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Chapter 7

Conclusions and Outlook

Local integral invariants based on Principal Component Analysis have been introduced in the

Geometry Processing literature in order to perform shape and feature detection of geometric prop-

erties of manifolds, usually from finite samples of points. In particular, principal curvatures and

principal directions for surfaces in space have been found in the series expansion of the eigenvalue

decomposition of PCA covariance matrices, computed from small kernel domains on the surface.

Similar covariance matrices were also introduced with the purpose of finding local frames adapted

to the tangent and normal spaces of the invariant manifolds of dynamical systems of large dimen-

sion. The core results of these milestones are summarized in [51], [55], which this dissertation

generalizes to arbitrary dimension and reproduces as straightforward corollaries.

Indeed, in chapter 2 we have proposed a generalization of traditional PCA integral invariants

to regions inside general Riemannian manifolds as ambient space by using the exponential map.

The volume, barycenter and eigenvalue decomposition of the covariance matrix of the geodesic

coordinates of the region points serve as local invariants that are expected to encode the geometry

of the domain. In particular, the covariance matrix measures the statistical correlation among

the geodesic distance coordinates of the underlying point set. Two specific kernel domains are

proposed: the spherical and cylindrical intersection regions on the submanifold, i.e., the domains

given by the intersection of the submanifold with a ball and generalized cylinder of the higher-

dimensional ambient manifold. In the case of hypersurfaces, the volume inside a ball delimited by

the hypersurface is also considered as a third type of region to study. Since these domains have

an intrinsic scale ε, the covariance analysis can be interpreted as the eigenvalue decomposition

of matrix-valued functions of scale at every point of the submanifold. Therefore, the eigenvalue

asymptotic series with scale is expected to encapsulate geometric information at the point.

Once integral invariants and their kernel domains were defined, we introduced the notion of de-

scriptors at scale as specific approximations to characteristic properties of the submanifold given in
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terms of integral invariant information. In particular, we are interested in the curvature information

encoded by the extrinsic second fundamental form and the intrinsic Riemann curvature tensor. For

hypersurfaces all this information is reduced to the principal directions and principal curvatures. In

the rest of our work we focus on computing these integral invariants for curves, hypersurfaces and

arbitrary embedded Riemannian manifolds in order to obtain corresponding descriptors of their

curvatures from integral invariants.

Previous results on the covariance analysis of regular curves were reviewed in chapter 3, where

our contribution completed the relationship known between the leading term of the asymptotic

series of the covariance eigenvalues and the Frenet-Serret curvatures of the curve. In particular,

quotients of successive eigenvalues are proportional to these curvatures squared. The coefficient

of proportionality was not explicitly known, for which we needed to use the theory of orthogonal

polynomials and its relation to Hankel determinants via the moment problem. This allowed us to

obtain explicit recursion relations for a certain family of Hankel determinants that yields precisely

the conjectured coefficient in any dimension. This asymptotic relation provides a direct link be-

tween the curvatures and the eigenvalues of the local covariance matrix, whose limit eigenvectors

also converge to the Frenet-Serret frame. By the existence and uniqueness, up to rigid motion, of

Frenet curves given by such information, the covariance integral invariants can be said to com-

pletely characterize these curves.

Extending the study of curves to hypersurface in arbitrary dimension, in chapter 4, we were able

to obtain all the curvature information from the covariance analysis. We computed the volumes of

the three types of domains proposed and showed that they are given in terms of the corresponding

ball volume of the same dimension but with second order corrections proportional to the mean

curvature and scalar curvature. The appearance of the extrinsic curvature is to be expected, in

contrast to the volume of intrinsic geodesic balls, since our domains do depend on the embedding

of the hypersurface. The covariance eigenvalue series expansion has one eigenvalue that scales

faster than the others, whose eigenvector converges to the normal vector of the hypersurface at

the center of the domain; the other eigenvalues have eigenvectors that generically converge to the
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principal directions at the point. We computed the second order terms in their series expansion and

showed that they are completely given by the principal curvatures or their squares, which implies

that the covariance matrix is given at second order by the Weingarten operator, establishing a direct

link between integral invariants and curvature again.

The most general and complete study of the covariance-curvature relationship was carried out

in chapter 5 for embedded Riemannian manifolds of dimension n in Rn`k. Here we introduced

the generalization of the classical third fundamental form to arbitrary dimension. This tensor is

a bilinear form on the tangent space that takes values in the normal endomorphism space. Its

components in an orthonormal basis of the normal space are defined by the metric products of

the Weingarten maps associated to those normal vectors. Since the Weingarten map at a normal

vector is the linear operator on the tangent space associated to the bilinear second fundamental

form, this third fundamental form can be interpreted as the tensor associated to the linear operator

given by the product of a pair of Weingarten maps at possibly different normal vectors. The

geometric meaning of this tensor is given by the classical Ricci equation: the noncommutativity of

its components measures the Riemann curvature of the induced connection on the normal bundle

of the submanifold. For hypersurfaces it is given by the squares of the principal curvatures. The

normal, tangent and total traces of this tensor were computed and showed to be directly related to

the Weingarten map at the mean curvature and also the Ricci operator.

Then we obtained the leading order terms of the cylindrical domain integral invariants. In the

generic case, the scaling of the eigenvalues singles out the decomposition of the ambient tangent

space into the tangent and normal spaces of the submanifold, where the corresponding eigenvec-

tors provide a basis for each of them. In the case of normal cylinders, the second order terms of the

eigenvalue series was computed, thanks to a fundamental lemma that we proved in order to show

that finding the covariance matrix in an arbitrary basis is enough to determine the eigenvalues from

its block structure. In particular, the tangent block shows that the first n eigenvalues scale with

εn`2 and have second order corrections given by the eigenvalues of the normal trace of the third

fundamental form, thus encoding its curvature information. Moreover the corresponding eigenvec-
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tors converge to a basis of the tangent space given by the generalized principal directions of this

tensor. The normal block shows that the last k eigenvalues scale as εn`4 and encode the curvature

information given by the tangent trace of the third fundamental form and the mean curvature tensor.

The corresponding eigenvectors converge to a basis of the normal space given by the eigenvectors

of this combined tensor.

Finally, taking into account all the correction terms due to the spherical domain irregularities,

we performed the analogous analysis for the ball intersection region. These boundary contributions

do introduce significant changes in the tangent eigenvalues and eigenvectors, since now they are

directly given at second order by the Weingarten map at the mean curvature vector. Thus, as for

hypersurfaces, the tangent eigenvectors of the covariance matrix of the spherical domain converge

with scale to the most canonical principal directions one can define in arbitrary codimension, those

of the Weingarten map at the mean curvature.

From this, in chapter 6, we solved for the series coefficients to obtain descriptor formulas that

give approximations at scale of the curvature information. In particular, this was written as a

generalization to higher dimension of the asymptotic ratio formula proved for curves, where now

the quotient of differences and products of covariance eigenvalues is proportional to the difference

of third fundamental form curvatures. In the case of hypersurfaces, all these ratios are given by

differences of the principal curvatures or their squares. By solving for the second order coefficients

and truncating the series, the formulas from the previous chapters yield concrete descriptors in

terms of the integral invariants. The spherical component descriptors have the best error bound

and need no sign choices, whereas the cylindrical descriptors have an error one order better than

the one that can be proved for the spherical descriptors.

These results prove a completely general relationship in any dimension between differential-

geometric curvature and integral covariance. We can think of the results of our work as a dictionary

between differential geometry and local statistical analysis, since it allows for the recovery of

manifold curvature information from the statistics of the underlying point set. Therefore, our

developments serve as a theoretical basis for more applied and computational implementations
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geared towards Manifold Learning in arbitrary dimension from big clouds of points. These results

provide explicit formulas that relate Riemannian geometry to Geometric Data Analysis via the

integral invariant approach.

The natural possible paths to take after our work are multiple. First, obtain local expressions

for the induced volume element on a submanifold within an arbitrary Riemannian manifold as

ambient space, taking into account the ambient Riemann curvature contributions to the ambient

metric in normal coordinates at second order [15]. This would generalize lemma 2.1.1 in order to

recompute all integrals with the new ambient space curvature terms, which is fundamental to do

covariance analysis on submanifolds of non-embedded matrix manifolds [2], [54] and statistical

manifolds [8, 9]. Second, study robustness and stability with respect to noise. In order to do this,

the canonical procedure would be to study the first variation of the covariance matrix under the

one parameter family of deformations of the submanifold given by the well-known mean normal

flow [43], and bound the resulting terms. Third, arrive at a formulation and measurement of sub-

manifold curvature in terms of the principal angles between tangent spaces at nearby points, so that

the covariance analysis can be related to a Grassmannian formulation. For this, obtain the EVD of

a finite approximation of the parallel transport of a tangent frame moving along a geodesic. Fourth,

for specific families of submanifolds whose parameter space is known, try to establish a sampling

theorem using curvature descriptors. Fifth, study and implement computationally the most effi-

cient numerical methods to compute the integral invariant descriptors given a big cloud of data

points, e.g. using FFT convolutions [51]. Then use this to do Manifold Learning and Geometry

Processing, e.g. to do data classification [59] based on curvature profiles.

Therefore, covariance analysis opens a new perspective to look at differential geometry in any

setting, both as a theoretical dictionary and as a computational tool.
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Appendix A

Integration of Monomials over Spheres

Let x “ px1, . . . , xnq P Rn, and denote the sphere and ball of radius ε in Rn by:

Sn´1
pεq “ tx P Rn : }x} “ εu, Bn

pεq “ tx P Rn : }x} ď εu,

where we set Sn´1 “ Sn´1p1q. Using generalized spherical coordinates pr, φ1, . . . , φn´1q, where

r “ }x}, xµ “ xµ{r P Sn´1, i.e.,

x1 “ cosφ1, . . . , xn´1 “ sinφ1 ¨ ¨ ¨ sinφn´2 cosφn´1, xn “ sinφ1 ¨ ¨ ¨ sinφn´2 sinφn´1,

the Euclidean measure over the unit sphere and ball of any radius can be written as

dSn´1
“ dφn´1

n´2
ź

µ“1

sinn´1´µ
pφµqdφµ, dnB “ dx1 ¨ ¨ ¨ dxn “ rn´1dr dSn´1. (A.1)

Definition A.0.1. For any integers α1, . . . , αn P t0, 1, 2, . . . u, the integrals of the monomials

xα1
1 ¨ ¨ ¨ xαnn over the unit sphere and the ball of radius ε are denoted by:

Cpnqα1...αn
“

ż

Sn´1

xα1
1 ¨ ¨ ¨ xαnn dSn´1, Dpnqα1...αn

“

ż

Bnpεq

xα1
1 ¨ ¨ ¨ xαnn dnB. (A.2)

These can be computed directly in spherical coordinates by collecting factors and separating

the integrals into a product of powers of sines and cosines of independent angles which are given

in terms of the Beta function. This then telescopes and simplifies. Another shorter proof uses the

usual exponential trick, see for example [23], resulting in the following fundamental formula.

Theorem A.0.2. Denoting βµ “ 1
2
pαµ ` 1q, the values of the integrals A.2 over spheres are
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Cpnqα1...αn
“

$

’

’

&

’

’

%

0, if some αµ is odd,

2
Γpβ1qΓpβ2q ¨ ¨ ¨Γpβnq

Γpβ1 ` β2 ` ¨ ¨ ¨ ` βnq
, if all αµ are even,

(A.3)

and the integrals over balls become

Dpnqα1...αn
“

εn`pα1`¨¨¨`αnq

n` pα1 ` ¨ ¨ ¨ ` αnq
Cpnqα1...αn

. (A.4)

Notice that the values of the integrals of these monomials only depend on the combination of

powers, not on which particular coordinates have those powers. Using these formulas we compute

the relevant integrals that are needed for our work.

Remark A.0.3. Unless integrals over spheres of different dimension appear in the same expression,

we shall abbreviate and omit the superscript pnq to be understood from the context.

Example A.0.4. Using the factorial property of the gamma function, Γpz ` 1q “ zΓpzq, and

the value Γp1
2
q “

?
π, the integrals of monomials of even powers of order 2, 4 and 6, have the

following relations (shortening dSn´1 as dS):

C2 “

ż

Sn´1

x2
1 dS “ 2

Γp3
2
qΓp1

2
qn´1

Γp3
2
` n´1

2
q
“

πn{2

Γpn
2
` 1q

,

C22 “

ż

Sn´1

x2
1x

2
2 dS “

1

n` 2
C2,

C4 “

ż

Sn´1

x4
1 dS “

3

n` 2
C2 “ 3C22,

C222 “

ż

Sn´1

x2
1x

2
2x

2
3 dS “

1

pn` 2qpn` 4q
C2,

C24 “

ż

Sn´1

x2
1x

4
2 dS “

3

pn` 2qpn` 4q
C2 “ 3C222,

C6 “

ż

Sn´1

x6
1 dS “

15

pn` 2qpn` 4q
C2 “ 15C222.
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The value of C2 is related to the n-dimensional volume of the ball of radius ε, and the pn ´ 1q-

dimensional area of the unit sphere by

Vnpεq “ VolpBn
pεqq “ εnC2, Sn´1 “ AreapSn´1

q “ nC2.

The integrals over balls needed in our work are:

D2 “

ż

Bnpεq

x2
1 dx1 ¨ ¨ ¨ dxn “

εn`2

n` 2
C2 “

ε2

n` 2
Vnpεq,

D22 “

ż

Bnpεq

x2
1x

2
2 dx1 ¨ ¨ ¨ dxn “

εn`4

pn` 2qpn` 4q
C2 “

ε4

pn` 2qpn` 4q
Vnpεq,

D4 “

ż

Bnpεq

x4
1 dx1 ¨ ¨ ¨ dxn “

3 εn`4

pn` 2qpn` 4q
C2 “

3 ε4

pn` 2qpn` 4q
Vnpεq.

We also need the integral of monomials over half-balls B`pεq (without loss of generality we

can consider the half-ball is defined by x1 ě 0). If all the αi are even then nothing changes in the

proof of theorem A.0.2 except that now we integrate over half the domain and an extra factor of 1
2

is needed. If any αi is odd for i ‰ 1, the integration over those variables is still carried out over the

same domain so the overall integral is still 0. However, if α1 is odd the corresponding integral of

that coordinate does not cancel out, and the main formula still holds with β1 “ 1 but without the

factor of 2.

Example A.0.5. Using the formula in the mentioned adjusted form, we define and compute

D
pnq
1 “

ż

B`pεq

x1 dx1 ¨ ¨ ¨ dxn “
εn`1 π

n´1
2

2Γpn`3
2
q
,

which gives the constant needed in our main text

D
pn`1q
1 “

ż

B`pεq

x1 dx1 ¨ ¨ ¨ dxn`1 “
ε2

n` 2
Vnpεq.

When integrating
ş

B`pεq
x2

1 dVol, we shall just write D2

2
to be consistent with our notation above.
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In the general Riemannian setting, chart coordinates are often written with superindices, so the

integral of a general product of these coordinates depends on the superindices involved which must

not be confused with exponents. For instance

ż

Sn´1

xµxνxβxγ dS “ C4pµνβγq ` C22

”

pµνβγq ` pµνβγq ` pµνβγq
ı

is the general value of the integral of any product of 4 coordinates, that can be all equal to produce

C4, or be a couple of different pairs to result in C22. We introduce the following notation:

pµνβγq “ δµν δβγ��δµβ,

so that the symbol is 1 only when the connected superindices are equal and the nonconnected

superindices are different, and 0 otherwise, and where ��δµβ :“ p1 ´ δµβq is the negation of the

Kronecker delta, i.e., nonzero only if µ ‰ β. An example of order 6 is

pµναβγδq “ δµγ δνδ δαβ ��δµν ��δµα ��δνα.
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