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ABSTRACT

GEOLOGIC FACTORS IN THE EVALUATION OF WATER POLLUTION
POTENTIAL AT MOUNTAIN DWELLING SITES

In order to establish the relationship between the geologic setting

and the occurrence of wate r pollution in mountain horne development s

containing individual sewage disposal systems, three areas in Colo-

radors Front Range were studied. Two of the areas were known to

have biological contamination as confirmed by microbiological tests.

Also, each area had adequate rock exposures to allow for detailed

geologic study, the absence of thick soil profiles above bedrock and

current development for mountain horne location. In addition, each of

the selected study areas differed in geologic setting, age of develop-

ment and horne density in the development. The extent of water pollu-

tion was established by a program of well and surface water testing

for total coliform. Fecal coliform and inorganic contaminants were

tested in selected wells.

Detailed geologic maps were made of each area to locate fea-

tures such as dikes or shear zones which might act as either barriers

or conduits to ground water movement. Slope maps were prepared

for the area by computer plots of digitized data of elevations taken

from U.S. Geological Survey topographic maps. Determination of the

water table profile and extent of alluvial fill in valley bottoms was
ii



accomplished using driller's well logs for each well in the area. In

addition, soils were tested to determine their effective grain size, a

joint and foliation study was conducted to determine the direction of

pollutant travel should effluent enter these openings, driller's well

logs were used to establish depth of soils and depth ot weathering in

bedrock and data from county health records were used to establish

soil percolation rates.

Data were compiled in the form of overlays on base maps of the

areas involved. A topographic map with the geologic overlay was used

in conjunction with various combinations of the field derivitive over­

lays to indicate the pollution potential for specific areas. The over­

lays used in this procedure were compiled from. the following para­

meters: I) slope, 2) depth of soil, 3) depth of intensely weathered

bedrock, 4) local water table profile, and 5) soil percolation rates.

These overlays indicated that the Glen Haven area is unsuitable for

soil absorption sewage systems because of steep slopes, soil depth

and depth of the water table. Most of the Tall Timbers area was

indicated as unsuitable for soil absorption systems because of slope,

soil depth and local geology. The Crescent Park area was categorized

as safe (in part) for soil absorption systems, however, local areas

within the subdivision were categorized as hazardous.

From the results it was suggested that a procedure such as the

one used in this study could be used for each subdivision proposed in
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the :mountainous regions of Colorado. Thus :more effective use of

:mountainous areas :might be pas sible while :maintaining a low prob­

ability of ground water contamination. Areas within each proposed

subdivision would be classified as safe, hazardous, or unsuitable for

soil absorption sewage syste:ms. Unsuitable areas could be used as

parks or greenbelts, hazardous areas would have low population

densities and safe areas would be allowed to have higher population

densities as long as other factors were favorable. In addition, pro­

cedures such as the one used in this investigation could be used to

indicate :mountain areas which should require a :municipal sewage

disposal syste:m before development to ensure that the ground water

system was not polluted.
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INTRODUCTION

Scope and Purposes of the Project

The general problem that is considered in this project is that of

the pollution of ground water supplies in mountain areas by dispersal

type sewage disposal systems as developmental pressure on mountain

areas increases. The increase in population in the mountainous

areas of Colorado has produced serious problems concerning the pro­

tection of the environment and one of the most pressing problems at

present is that the use of individual dispersal-type sewage disposal

systems, usually of the leach field- septic tank type, in areas unsuited

for this type of system is causing a deterioration in the quality of

ground water supplies and to some extent surface water supplies as

well.

The magnitude of the problem cannot be accurately known with

data now available, but records of Jefferson, Boulder and Larimer

County Health Departments indicate that the percentages of well water

samples from m.ountainous areas tested in 1971 that were unsafe

ranged from. 20 to almost 40 percent, depending on County. Although

these figures must be used with extrem.e caution since many water

samples are tested only when there is reason to believe thE' y may be

contaminated and sorne contaminated supplies are tested several



2

times further biasing the statistics, the clear indication that serious

water pollution is already present cannot be rejected.

One of the primary purposes of this project is to establish the

relationship between the geologic setting and the ~ater pollution

potential in mountainous areas that currently have or are likely to

have homes or other dwellings built which use dispersal-type sewage

disposal systems. Another primary purpose of the study is to devise

a method to evaluate the probability that water pollution in a given

mountainous area will occur if that area is developed. This method

of evaluation can be utilized for land-use planning with respect to

water quality preservation.

At the onset, the authors of this report warn that many of the

conclusions must be held as tentative until tested thoroughly by both

tho se who agree and disagree with them. Such a testing is invited. In

fact, we have deliberately decided to put forth conclusions and ideas

even though they may be tentative in order to encourage a thorough

testing and discussion of our ideas. The justification for such an

approach is the urgent need for revised and scientifically sound regu-

lations concerning mountain water and sewage regulations.

As only three mountain developments were used in this, study, it
I

may be that some of the conclusions are not generally applicable;

however, we believe the basic approach to be valid in spite of the

limitations of this approach. Other limitations encountered in the
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study include the reliability of certain data collected, especially that

frorn other sources. The specific nature of these lirnitations is dis­

cussed in the Su:mrnary.

Specific Objectives

One of the rnore specific objectives of the study is to deterrnine

what geologic and geornorphic parameters influence the effectiveness

of disposal-type sewage disposal systerns. The parameters that were

considered include bedrock type and rnineralogy, jointing in bedrock,

depth of weathering of bedrock, soil depth, slope, depth of ground

water table, proxirnity to special geologic features such as faults,

shear zones and igneous dike s, clay rnineralogy of the soil, effective

grain size of the soil, and percolation rate of the filtering rnaterial.

The determination of the effect of a cornbination of single parameters

on the potential for a dewage dispo sal system to pollute the ground

water was also a prime objective of the study.

Another specific objective was to devise a method whereby rela­

tively easily obtainable quantitative data on important pararneters

could be used in a systern to evaluate the pollution potential in a given

area, such as a housing developrnent or proposed developrnent area.

Such a method would allow a qualified engineer, geologi st, soil

scientist or technician to use the data about the irnportant geologic

and geornorphic parameters to evaluate an area with respect to pollu­

tion potential and aid in developrnent reasonable waste dispo sal
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densities to population density ratios that would not be likely to cause

pollution of the ground and surface waters in the area. Such a land­

use planning tool would be of help in the prudent development of

Colorado I s mountainous areas.

Location of Study Areas

Three sites are studied in detail in this report. Two sites were

chosen because they met the requirements of having good geologic

controls, shallow or no soil in at least part of the area, and docu­

mented water pollution. The third site, Cresent Park, did not show

any significant pollution and was used as a control area.

Site 1 is the community of Glen Haven, located approximately

seven miles northeast of Estes Park, Colorado, in sections 27 and 34

of Township 6 North, Range 72 West, Larimer County. Site 2 is the

Tall Timbers development in Boulder County, located five miles west

of Boulder, Colorado, just north of Boulder Canyon on County Road

No. 122, in section 33 of Township 1 North, Range 71 West. Site 3 is

the Crescent Park subdivision located approximately five miles west

of the junction of Colorado highways 93 and 72, up Coal Creek Canyon

in the northern part of Jefferson County, section 4, Township 2 South,

Range 71 West. The location of the se sites are shown on Figure I.



FIGURE 1. Location m.ap of study areas.
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LITERATURE

Recently there has been an increasing interest in the problem of

contamination of shallow ground water systems. This has resulted in

several research projects on various aspects of ground water con­

tamination. The extent of ground water pollution in mountainous areas

is indicated by records from county health departments of some

counties along Colorado's Front Range. Jefferson County records

show that about 20 percent of the water samples tested by their county

health department in 1971 were considered unsafe and, in neighboring

Boulder County almost 40 percent of the water samples tested by their

health department in 1971-72 were considered unsafe. These figures

are biased, because many water samples are tested only when there

is reason to believe they may be contaminated and in some cases the

same water supply is tested several times after pollution has been

detected. However, they do indicate that there are pollution problems

in these counties. In addition, Millon (1970) has demonstrated that

certain areas in Colorado's Front Range have reached the point where

their ground water system is contaminated to the extent that it may

not be possible to reclaim the aquifer. Data reported from the cur­

rent investigation indicate that of three areas studied, one has 28

percent of its wells polluted, a second area has almost 45 percent of

its wells polluted and the third area 6 percent.
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Allen and Morrison (1973) have shown that insufficient Inicrobial

filtration of leach field effluent occur s in and along bedrock fractures

and joints as cOInpared to that in soils. In addition, the distance was

in excess of 100 feet and Inost probably exceeded several hundred feet.

Franks (1972) has shown that a leach field systeIn constructed in

fractured rock will function properly for a year or two but then fail.

This failure Inay be caused by plugging froIn suspended solids in the

fractures or by anaerobic growth in the fractures. In addition to this,

physical location is very iInportant in the operation of leach field

systeIns. Franks ( 1971) lists the following causes of failure to leach

field systeIns due to iInproper physical location:

1) construction of leach field systeIns on slopes exceeding 20

percent,

2) location of leach field systeIns near construction cuts such

that there is less than 15 feet of soil horizontally between

the ground surface and the bottoIn of the leaching s ysteIn,

3) construction of leach field systeIns in open gravel areas with

a high water table,

4) construction of leach field systeIns on bedrock fractures

which do not provide filtration or treatInent of effluent, and

5) construction in surficial pervious deposits over nonwater

bearing rocks which Inay result in downstreaIn surfacing of

fluid.
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Other studie s have shown that the nature of the soil used as the

filtration media plays a dominant role in the subsequent life and travel

of bacteJ;"ia (Orlob and Krone, 1956; Romero, 1970, p. 43). In fact,

the particle s~ze of the filter material and whether or not the material

is saturated can be used to determine the approximate distance efflu­

ent must travel to become properly filtered (see Figure 2) (Orlob and

Krone, 1956, p. 32).

Freethy (1969) has shown that it is possible, at least to sorne

extent, to determine the pollution potential of an individual well due to

bacterial movement along joints and fractures from nearby leach

fields.



FIGURE 2. Biological pollution travel in non- saturated mate­
rial and with ground water in saturated material.
The graphs show the sizes of filter material
particles that are effective or ineffective in treat­
ing septic tank effluent in a leach line system.
After Franks, 1972 and Romero, 1970.
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METHODOLOGY

For this investigation all of the selected study sites were

located on the eastern slope of Colorado's Front Range. It is in this

area that land development is proceeding at a very rapid pace and thus

the quality of the ground water is threatened. Because the objectives

of this project included the analysis of tracts of land for land-use

planning, two sites were selected from areas of known ground water

pollution and a third was selected as an example of an area with no

pollution. Each of the three study sites met the following require-

ments:

1) sufficient exposures of bedrock to allow for detailed geologic

sampling and study,

2) the lack of a thick soil profile in at least part of the area,

and

3) current or potential development of the area for mountain

horne sites.

In addition to the above requirements, each of the selected study sites

differed in geologic setting (i. e. bedrock mineralogy and the occur­

rence and distribution of various geologic structures such as dikes

and faults), age of development, horne density and construction prac­

tices for homes, wells, leach fields, privies and roads.
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Each area was studied in detail to include geology, soil analysis

for effective grain size and clay mineralogy, extent and depth of

weathered bedrock and the hydrologic characteristics of the ground

water. Several geomorphic parameters and non- geologic parameters

were al so studied to relate their effect on the ground water system.

These included slopes, drainage characteristics, ground water char­

acteristics, age of development, type of sewage disposal systems,

kind and depths of wells and home density.

Laboratory studies were used to augment field investigations

and included:

1) Sieve analysis of soils to determine their texture,

2) X-ray analysis of clays present in soils and as weathering

products and

3) Petrographic analysis of bedrock to determine mineralogy.

These were performed to determine the relative homogeneity of each

study area.

Local Water Quality

A preliminary sampling program along Colorado I s Front Range

indicated that Glen Haven and Tall Timbers had significant levels of

ground water pollution. During this preliminary sampling Escherichia

coli (E. coli) had been detected in several well samples from both

areas. In addition, the surface water samples from the Glen Haven

area had shown positive tests for E. coli at each location sampled.
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No positive tests for E. coli on the water saITlples froITl the Crescent

Park area were detected in this preliITlinary sampling, and the area

was selected for detailed study as an eXaITlple of an area with low

pollution. The Crescent Park area is similar to the other selected

study sites with respect to the regional geologic and hydrologic con­

ditions. It was felt that the Crescent Park area could be used as a

control area.

Water quality in each of the areas was deterITlined from both

cheITlical and biological tests. Chemical tests included those for

phosphates, detergents, nitrites, nitrates, and total dissolved solids

as deterITlined by conductivity. Biological tests were performed to

deterITline total coliform.. Fecal coliforITl was tested in selected wells.

Total coliform was used as an indicator of pollution and was deter­

ITlined by the ITlembrane filter technique. A sample was designated as

unsafe when the arithITletic ITlean coliforITl density of a standard sam­

ple exceeded one per 100 ITll (Walton, 1970). Water sampling was

carried out over the period from. July to DeceITlber 1972. All water

testing was perforITled in the water quality laboratory at the Micro­

biology DepartITlent of Colorado State University by Ron Stow. The

cOITlplete results of the water quality for each area are presented in

Appendix 1 and sumITlarized in Table 1.

FrOITl the water quality results each well was categorized as

either safe, a pollution indicator, or a variable pollution indicator.
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TABLE 1. Summary of water quality test results in percent. Calcu­
lated as percent of pollution indicators and variable
pollution indicators to the total number of wells sampled
during July to December, 1972.

CRESCENT PARK - 37 wells sampled
3 variable pollution indicators
o pollution indicators

8. 1 Percent wells with probable pollution

T ALL TIMBERS - 39 wells sampled
5 variable pollution indicators
6 pollution indicators

28.2 Percent wells with probable pollution

GLEN HAVEN - 29 wells sampled
8 variable pollution indicator s
5 pollution indicators

44.8 Percent wells with probable pollution
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Wells were categorized as safe if the m.ean coliform. density of all

standard sam.ples exam.ined per m.onth was less than one per 100 m.l,

pollution indicators were those wells where the m.ean coliform. density

was consistently over one per 100 m.l (i. e. unsafe), and variable

pollution indicators were those wells which received both safe and

unsafe tests during the period of the sam.pling program.

Soil Anal ys e s

Studies have shown that the texture of a soil or filter medium. is

m.ore im.portant than the perm.eability in rem.oval of bacteria (Franks,

1972, p. 198). Soil texture can be indexed by the effective grain size,

i.e. the grain size where 90 percent is coarser and 10 percent finer

by weight (Franks, 1971). Rom.ero (1970) stated that the aquifer

m.aterial best suited for rem.oval of biological contam.inants were those

that were uniform.ly com.posed of very fine to fine-grained sand with a

high clay content. For these reasons textural and x-ray analysis of

the soils present in each area were made. The x- ray analyses were

perform.ed to determ.ine the clay types within the study areas. It was

noted from. soil m.aps prepared by the U. S. Soil Conservation Service

that soil types were classified by slope and depth as well as other

criteria. Thus in each study area soils were collected from. valley

bottoms, side slopes, and hill crests to determ.ine if any variations

in texture or clay m.ineralogy occurred. From. the three areas a total
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of 32 soil samples were collected from 15 different locations. Plate

1, 8, and 15 are maps of each study area showing the locations of soil

samples, bedrock samples, well locations, and stream sample loca­

tions. The data pertaining to soil analysis are in Tables 2 and 3.

Soil Sampling

A truck-mounted hydraulic auger and soil corer provided by the

Agronomy Department of Colorado State University was used to

collect the soil scunples. Samples were taken from depths of three

feet and six feet except when bedrock was encountered prior to that.

In these locations samples were taken at bedrock depth. Each sample

was collected using a punch tube core barrel when moisture content

permitted. For dry powdery soils, the samples were taken directly

from the auger blade s .

A description of the soils was made during sample collection

which included soil type, depth, and any bedrock encountered. The

Crescent Park and Glen Haven areas have not been mapped by the

U. S. Soil Conservation Service. Prior to the laboratory testing each

sample was stored in cardboard containers and allowed to air dry. A

sieve analysis was performed after each sample had been disaggre­

gated by hand crushing. Care was taken to produce no additional fines

during the analysis. Sieve sizes ranged from. 50 mm to .044 mITl in

half phi intervals. Mter sieving for approximately 20 m.inutes the

amount of soil in each sieve was weighed and recorded. The soil
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portion less than. 044 millimeters was saved for clay separation. In

addition, the sieve interval containing the effective grain size was

determined from cum.ulative weight percents of each sample. The

sieve analysis data is contained in Table 2 for all study areas.

x- ray Analysis

The clay sized portion of each soil sample was prepared for

x-ray analysis using the following procedure developed by Ganow

(1969). The soil portion less than. 044 millimeters was suspended in

approximatel y 5 00 ml of di stilled water and allowed to stand for

several hours while the clay fraction separated from the silt. This

clay- silt mixture was then remixed and centrifuged at 1000 rpm for

two minutes in an International No. 2 centrifuge. This left the clay

sized material (les s than. 002 mm) in suspension and the silt sized

material sedimented at the bottom of the beaker. The clay water sus­

pension was then siphoned off and the procedure repeated to remove

as much clay as pos sible. The silt sized portion was placed in a

small beaker and oven dried to remove all the water. This material

was then weighed and the percentage of silt determined. The approx­

imate percent of clay in each soil sample was then calculated as the

difference between the total sample weight and the sum. of each portion

in the sieve analysis plus the weight of the silt.

The following procedure for obtaining an oriented clay mount

suitable for the treatments neces sary in x- ray diffraction of clays is
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after Ganow (1969). Porous ceramic tiles approximately 1/16 inch

thick were used as mounts. The clay water suspension which was

siphoned off after centrifuging was concentrated to approximately 20

mI. About 10 ml of the clay-water mixture was allowed to drip slowly

from a pipette onto the tile which was being subjected to vacuum pres-

sure on the rever se side. This procedure was repeated until the tile

was completely covered by clay sediment. The tile was then air dried

in preparation for x-ray analysis.

Following the method of Carroll ( 1970) each tile was x- ra yed

after being subjected to the following treatments:

1) after reaching stability (approximately 48 hours) in an

atmosphere of 50 percent relatively humidity,

2) after being subjected to an atmosphere of ethylene glycol

vapor for a minimum of 24 hours,

o
3) after a one hour heat treatment of 300 C., and

o
4) after a heat treatment of 550 C. for one hour.

The diffraction scan following each of the above treatments was from

o 0
4· to 26 28 (two theta). The various clays present were determined

from the combined diffraction patt~rns for each sample and are listed

in Table 3. In addition, representative diffraction patterns were

reproduced from several clay scans and can be found in Figures 4, 5,

and 6, with the m.ajor peaks labeled as to the mineral which caused

them.



FIGURE 3. Histogram.s of effective grain sizes for soils in
each of the study areas.
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TABLE 2. Sieve analysis of soil samples. Top line indicates weight percent of each sieve size,
bottom line indicate s cumulative weight pe r cent.

d-90 = range of effective grain size
cb = sample collected with core barrel

a = sample collected from auger blades
--
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N

2 69 10 4 4 3 3 1 6 .088-.0625 .27 6.5 cb

69 79 83 87 90 93 94 100

3 53 15 5 6 4 3 3 10 . 044-. clay .30 3.0 cb
53 68 73 79 83 86 89 99

4 58 15 6 5 4 4 2 6 .088-.,0625 .. 24 5.0 a

58 73 79 84 88 92 94 100

5 56 14 5 6 4 3 3 9 .0625-.044 .31 6.0 cb

56 70 75 81 85 88 91 100

6 57 18 6 6 4 4 1 4 .125-.088 .27 1 .5 a

57 75 81 87 91 95 96 100

7 66 16 4 5 3 2 2 2 .177-.125 .03 3.0 cb

66 82 86 91 94 96 98 100



TABLE 2. ( continued)

Sieve Sizes in Millimeters . ~ s::
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57 77 83 88 92 95 96 100

9 73 14 4 4 2 1 1 1 .25-.177 - 3.0 cb
73 87 91 95 97 98 99 100

10 57 18 6 7 3 2 2 4 .125-.088 .17 6.0 cb
N

57 75 81 88 91 93 95 99 v.>

11 47 19 7 6 6 5 2 8 .088-.0625 .58 3.0 a

47 66 73 79 85 90 92 100

12 60 15 5 4 4 4 2 7 .088-.0625 .31 6.0 a
60 75 80 84 88 92 94 101

13 62 12 4 5 3 3 3 8 .0625-.044 .23 3.0 cb
62 74 78 83 86 89 92 100

14 61 14 5 5 4 3 2 6 .088-.0625 .33 6.0 cb
61 75 80 85 89 92 94 100
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Sieve Sizes in Millimeters
"H ~

..f-) o 0

Q) .~
..f-)

Q) ~
.,-l

~ "'t1..f-)
--t Q) Q) --t,.q o U
~..o

LC) U >. ~..f-) ,.q Q)

S § ['- LC) co N ~ >.. 0 S ~
..f-)--t

0 LC) ['- N co -..0 ~ cd ..f-) 0' J.-4 cd Q)--t

LC) N ....-t --t 0 0 0 --t....-t I Q)--t cd Q)
~8~Z . . . Ut;) "'t1 ~U U) .c::l

CRESCENT PARK

15 69 14 4 5 2 2 2 3 .177-.125 .04 3.0 cb

69 83 87 92 94 96 98 102

16 64 14 5 4 4 3 1 5 .125-.088 .13 6.0 . cb

64 78 83 87 91 94 95 100

17 57 14 6 6 3 3 3 9 .0625-.044 .45 3.0 cb N

57 71 77 83 89 92 101 .J:>.

18 45 17 7 7 6 -5 2 12 .044- . 002 .43 5.0 a

4S 62 69 76 82 87 89 101

19 41 21 8 9 4 3 3 11 .044- . 002 .39 3.0 a

41 62 70 79 83 86 89 100

20 32 24 9 10 5 3 4 13 .044-.002 .44 4.2 a

32 56 65 75 80 83 87 100

21 47 14 6 7 4 3 4 16 .044-.002 .40 3.5 a

47 61 67 74 78 81 85 101

22 51 19 7 6 5 4 1 8 .088-.0625 .16 6.0 a

51 70 77 83 88 92 93 101
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Sieve Sizes in Millimeter s . ~ l=:
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23 46 24 8 7 5 4 1 5 .088-.0625 .- 3.0 cb

46 70 78 85 90 94 95 100

24 45 19 6 8 4 3 4 10 .0625-.044 .20 5.2 a
45 64 70 78 82 85 89 99

25 62 16 6 6 4 3 1 2 .177-.125 .03 3.5 cb
62 78 84 90 94 97 98 100

26 55 22 7 7 3 2 2 3 .177-.125 .05 5.5 a
55 77 84 91 94 96 98 101 N

U1

27 46 20 8 7 5 4 2 9 .0625-.044 .08 3.0 a
46 66 74 81 86 89 91 100

28 49 19 7 8 4 3 3 7 .088-.0625 .28 5.5 a

49 68 75 83 87 90 93 100

29 31 25 11 10 7 5 2 10 .0625-.044 .30 3.5 cb
31 56 67 77 84 89 91 101

30 55 17 6 6 3 2 3 8 .0625-.044 .10 3.5 cb

55 72 78 84 89 92 100

31 57 17 6 5 4 3 2 7 .088-.0625 .08 4.0 cb

57 74 80 85 89 92 94 101

32 38 22 9 11 4 3 4 8 .0625-.044 .59 7.0 cb

38 60 69 80 84 87 91 99



FIGURE 4. x- ray diffraction pattern of oriented clay mount
typical of mountain soils containing non- expansive
clays.

Q, quartz; M, mica; Ch, chlorite; F, feldspar;
K, kaolinite.
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FIGURE 5. X- ray diffraction pattern of oriented clay ITlount
typical of ITlountain soils containing expansive
clays.

Q, quartz; M, ITlica; Ch, chlorite; F, feld spar;
K, kaolinite; Ml, ITlixed-layered ITlinerals con­
taining ITlontITlorillonite.
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FIGURE 6. X-ray diffraction pattern of oriented clay mount
typical mountain soil containing an expansive clay
(27) and rock weathering pr oduct containing non­
expansive clay (12-11-8).

0, quartz; M, rnica; Ch, chlorite; F, feldspar;
K, kaolinite; Ml, mixed-layered minerals con­
taining montmorillonite.
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TABLE 3. X-ray diffraction analysis of clay minerals present in
mountain soils and as rock weathering products. Table
lists dominant clay types only and the corresponding
diffraction pattern which is presented in Figure 12 thru
14 that represents each clay analyzed.

Sample
Nmnber

1

2

3

4

5

6

7

8

9

10

11

12

13

14

12-10-S

12-11-S

Clay

TALL TIMBERS

Kaolinite

Kaolinite

Kaolinite

Kaolinite

Kaolinite

Kaolinite, Chlorite

Kaolinite

Kaolinite

Kaolinite

Kaolinite

Kaolinite, Chlorite

Kaolinite, Chlorite

Kaolinite

Kaolinite

Mixed -layer (montmorillonite - chlorite)

Kaolinite

R epr e s entative
Pattern

14

14

14

14

14

16

14

14

14

14

16

16

14

14

23

12 .. 11-S

CRESCENT PARK

15 Kaolinite 14

16 Kaolinite, Chlorite 16

17 Kaolinite 14

18 Kaolinite 14

19 Kaolinite 14

20 Mixed-layer (montmorillonite - chlorite) 23
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TABLE 3. ( continued)

Sample
Number

21

22

Clay

Kaolinite

Kaolinite, Chlorite

Representative
Pattern

14

GLEN HAVEN

23 Mixed-laye r (rnontrnorillonite- chlorite) 23

24 Kaolinite, Chlorite 16

25 Kaolinite, Chlorite 16

26 Mixed-layer (rnontrno rillonite- chlorite) 26

27 Mixed-layer (rnontrnorillonite- chlorite) 27

28 Mixed-layer (rnontrnorillonite- chlorite) 27

29 Kaolinite 14

30 Kaolinite 14

31 Mixed-layer (rnontrno rillonite - chlorite) 27

32 Kaolinite 14
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Data from each area were sum.marized as to the suitability of the

soils for leach field systems and listed in the soil section of the sum­

mary for each area. Included in the soil summary is the data on

percolation rate s as obtained from county health department record s,

sieve analysis and soil depth. Clay mineralogy did not vary a great

deal within the individual study areas and accounted for les s than 1

percent of the soil, thus, was not used in the evaluation.

Physical Setting

In addition to the controls placed on the ground water systeITl by

local geology, there are also many purely physical controls on ground

water movem.ent which may be just as im.portant and were taken into

account. For example, the direction and steepne s s of slope s, the

regional slope of the land, and age and density of horne s all must be

considered when trying to determine the amount and direction of

movement of pollution. Thus for each area studied the following

physical parameters were also considered and where possible mea­

surements were obtained:

1) age of developm.ent,

2) type of sewage di sposal system. s,

3) percent of slope, and

4) regional slope of the land.
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Slope maps were made for the Crescent Park and Tall Timbers

areas (Plates 2 and 10). The slope m.aps were made by digitizing

elevation data from. enlarged U. S. Geological Survey topographic

m.aps. The digitizing was done at the Engineering Research Center of

Colorado State University on an Auto-Trol sem.i-automatic digitizer.

Data points were taken such that the average elevation and slope could

be com.puted for each 100 ft. x 100 ft. cell area on the enlarged

topographic map. The digitized data were used to generate com.puter­

drawn topographic and slope m.aps using program.s devised by Mr. R. S.

Parker and Mr. W. W. Burt of Colorado State University. The pro­

graIns operate by com.puting the average slope in percent of each

100 it. x 100 ft. square cell on the topographic m.ap and contouring

these slope values at the same scale as the original topographic map.

Com.puter-generated topographic m.aps were also m.ade in order to

co:mpare with the original topographic data from. the U.S. Geological

Survey maps. This was done to check the accuracy of the digitizing

and the co:mputer progra:ms only, and the computer-drawn topographic

:maps are not reproduced in this report. The co:mputer-drawn slope

:maps of Crescent Park and Tall Ti:mbers are presented as Plates 2

and 10, respectively. Areas with slopes greater than 30 percent are

cross hatched on these :maps; these areas are considered unsuitable

for installation of septic tank-leach field type waste disposal systems.

Slopes between 20 and 30 percent are not indicated as hazardous
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because the occurrence of polluted wells in areas with slopes between

20 and 30 percent was not significantly greater than the occurrence of

polluted wells in areas with slopes less than 20 percent. It must be

emphasized that this conclusion is based entirely on the data contained

in this report and that other studie s have indicated that slopes of 20­

30 percent are hazardous for the installation of septic tank-leach field

type systems (Franks, 1972a). It may be necessary to consider 20-30

percent slopes as hazardous in the future; however, more data are

needed for this to be clearly shown.

Crescent Park

Crescent Park subdivision covers about one half of section 4 and

is situated over hill crests, side slopes, and valley bottoms. Be­

cause the area drains into several small intermittent creeks, the

topographic controls on ground water movement are very localized,

that is, the ground water will tend to drain downward to the nearest

creek. There are no perennial streams in the subdivision. However,

there are two springs, these yield small amounts of water which goes

underground after a sho rt distance. In general, the area is well

drained and most of the precipitation enters the ground water system

through fractures in the bedrock. The slope map for the area is given

on Plate 2. Slopes are in percent.

The ground water configuration generally reflects the topog­

raphy, being shallow in the valley bottoms and deep under the ridges.
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The regional flow of the ground water is in the direction of Coal Creek.

The amount of water available for individual homes appears to be

sufficient and at least one well in the subdivision produces enough

water to be used as a municipal supply (35 gpm) should the need arise

(see Appendix 2, Table I, lot 67).

Tall Timbers

The Tall Timbers subdivision covers approximately one-fourth

of section 33 and is located almost entirely on steep side slopes. The

slope map for the area is given on Plate 10. The topographic con­

trols on shallow ground water movement is fairly consistent as almost

the entire subdivision drains to the east into Bummers Gulch. A

small intermittent creek runs through Bummers Gulch and will affect

the quality of water in shallow wells producing from the alluvium. Its

effect will be from induced recharge from the creek during the

periods when it is not dry. This will affect only a few homes located

near the creek and will generally be confined to high runoff periods

after large storms.

The topography reflects the ground water configuration very

well, with the water table being shallow toward the valley bottoms and

becoming deeper higher up on the hill. The amount of water available

for individual horne use is sufficient, but no wells in the area produce

enough water to be considered for municipal use.
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Glen Haven

Glen Haven is an older ITlountain cOITlITlunity and is used mainly

as a sununer resort area. For this reason the population varies con­

siderably over the year. There are probably less than 50 year round

residents while the resident population in the SUITlITler ITlonths ITlay be

as high as 200. In addition to this there are a large nUITlber of horses

in the area during the SUITlITler ITlonths. These are used at the local

youth CaITlPS and riding stables on trails.

Most of the wells in the area are shallow dug located near

the streams in the alluviUITl. These wells rely on a high rate of

infiltration from the streams for their water. Thus the quality of the

surface water is reflected in the quality of the well water. This inter­

action between the surface water and the shallow ground water is

clearly indicated by the tests for total dissolved solids. The results

are of the saITle ITlagnitude for surface water and shallow well water

near the streams, while the deep drilled wells located away from the

streaITlS on hill sides and ridges are much higher in total dissolved

solids (see Appendix I, Tables 3 and 4).

The ground water configuration could only be determined near

the streams as the data were not available over the entire area.

There are several deep drilled wells in the area. However, these are

located relatively near the streams also. Development has been

.limited to near the streams due to the steepness of the area.
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Regional Climate

The Front Range is characterized by a temperate, relatively dry

climate.
o 0

The average annual temperature is between 40 F and 50 F.

. 0
MaXlmum. sununer temperatures are generally below 100 F and

minimum winter temperatures fall below freezing, som.etime s to

o 0
-30 F. More typical temperatures, however, are about 60 F for the

summer and 30
0

F in the winter (see Table 1).

Mountain weather stations show a greater variation among them-

selves than do stations on the plains or foothills. This variety is due

for the most part to the changes in topography over short distances.

Climatological data compiled by the National Oceanic and Atmospheric

Administration of the U.S. Department of Commerce for the 6 m.onths

ending 1972 are summarized in Table 4. This includes the entire

period during which the water quality of each area was established.

Data from Estes Park were used for the Glen Haven area and an

average of the data for Boulder and a weather station two miles north-

northeast of Nederland were used to describe both the Tall Timbers

area and Cre scent Park. These data indicate that the Glen Haven area

received approximately 7 .2 inches of precipitation with an average

o
temperature of 46 . Tall Timbers and Crescent Park received about

o
10. 1 inches of precipitation with an average temperature of 47 for the

research period.



TABLE 4. Climatological data obtained from the U . S. Department of Commerce, National Oceanic
and Atmospheric Administration, Environmental Data Service. Data for period July to
Decem.ber, 1972, during water quality testing period.

STATION INDEX - all stations Platte River Drainage
Years of Record

Name No. County Lat. Long. Elevation Temp. Pree. Evap.

Estes Park 2759 Larimer 40-23 105 - 31 7525 53 62 22

Boulder 0842 Boulder 40-00 105 -16 5420 72 79

Nederland 5878 Boulder 39-59 105-30 8240
2 NNE

AVERAGE TEMPERATURE AND DEPARTURE FROM NORMAL

Name July Aug. Sept. Oct. Nov. Dec. Annual Last 6 Mo.

Estes Park 61.2 59.1 54.3 45.1 28.7 24.9 43.5 45.5

-1.0 -1.8 .2 -.2 -5.8 -4.9 .5

Boulder 69.9 69.0 62.0 51.6 34.0 27.9 50.8 52.4

-3.7 -3.1 -2.3 -2.1 -7.4 -7.9 -1.0

Nederland 57.2 55.9 49.6 40.9 23.9 21.0 39.3 41.4

~
o



TABLE 4. ( continued)
-

TOTAL PRECIPITATION AND DEPARTURE FROM NORMAL

Natne July Aug. Sept. Oct. Nov. Dec. Annual Last 6 Mo.

Estes Park .49 2.61 1.39 1.32 .65 .71 11.70 7.17
-1.64 .75 .15 .32 - . 17 .06 -4.37

Boulder 2.24 1.79 1.18 1.26 2.15 1.14 18.43 9.76
.83 .15 -.07 -.13 1.19 .52 -.14

Nederland I • 16 2.44 1.99 1.21 3.06 .67 17.27 10.53

TEMPERATURE EXTREMES AND FREEZE DAT A
First Fall Minitnurn

Natne Highest Date Lowest Date 32
0

28
0

24
0

20
0

16
0

Estes Park 88 7-31 -30 1-4 9/21 10/7 10/23 10/30 10/13
29 28 22 12 12

Boulder 96 7-30 -16 12-6 10/15 10/29 10/30 10/30 10/30
32 25 15 15 15

Nederland 86 7-31 -29 1-4 7/5 9/21 10/11 10/23 10/24
32 25 23 17 16

.J::>......



42

Regional Geology

Each of the areas studied is located in the Front Range which is

the eastern most Range in the Southern Rocky Mountains. This range

is approximately 30 to 60 miles wide and about 250 miles long. In

Wyoming it is known as the Laramie Range. It consists mainly of

Precambrian gneiss, schist, and granitic intrusive rocks (Lovering

and Goddard, 1950). The Range is a complexly faulted anticlinal arch

on which are superposed numerous cross-folds and faults which

divide it into five major fault-bounded structural belts (Boos and

Boos, 1957).

Precambrian intrusive rocks are widespread in the Front Range

and include the Boulder Creek Granodiorite, Silver Plume Granite,

and Pikes Peak Granite. These occur as batholiths, plutons, and

dikes which are locally porphyritic. The gneiss and schist occur as

biotitic, feldspathic, and hornblendic units which were previously

mapped as the Idaho Springs and Swandyke Formations (Lovering and

Goddard, 1950). These rocks have been repeatedly deformed and now

lie in a series of complex folds. In addition to these units, there are

also many metalliferous deposits located in the central portion of the

Front Range (Wells, 1967, Lovering and Goddard, 1950).

The entire Front Range is bordered by Paleozoic and Mesozoic

sedimentary rocks that were upturned during the LaraInide orogeny.

Rotation of some of the Precambrian units and renewed displacement
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along the Precambrian fault system accompanied the orogeny (Wells,

1967). The Rogers and Hoosier "breccia reef" are part of the Pre­

cambrian fault system that was reactivated during the Laramide. The

Tertiary rocks in the Front Range include conglomerate, sandstone,

shale, and dikes of diabase and latite porphyry (Wells, 1967).

Pleistocene and Recent deposits include glacial material in the high

mountains, and alluvial and colluvial deposits which occur locally.

Local Geology

Each of the areas studied has been previously mapped on a large

scale by the following workers: Wells (1967), "Geology of the

Eldorado Springs Quadrangle"; Wrucke and Wilson, (1967), "Geology

of the Boulder Quadrangle"; Gardner (1968), "Engineering Geology of

the Eldorado Springs and Boulder Quadrangle"; and Bucknam (1969),

"Structure and Petrology of part of the Glen Haven Quadrangle". The

geology of the study areas for this investigation, which included the

individual developments or subdivisions, was modified from that of

previous workers on the basis of detailed field exam.ination. The

influence that the local geology has on the spreading of leach field

effluent is summarized at the end of the geology section for each

study area.
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Crescent Park

Crescent Park is underlain by the Boulder Creek Granodiorite

and a quartz monzonite (see Plate 1). The quartz monzOITlite is

younger than the granodiorite and in the southern part of the Eldorado

Springs Quadrangle has invaded the Boulder Creek Batholith. Inclu­

sions of the batholithic rocks occur in various shapes and sizes in the

quartz monzonite clearly indicating that the quartz monzonite is

younger (Wells, 1967, p. 18). In Crescent Park the quartz monzonite

occurs as a gray, fine to medium-grained rock with an average com­

position of 34 percent quartz, 29 percent microcline, 37 percent

plagioclase, 3-7 percent biotite, 0-2 percent hornblende, and 0-1

percent muscovite. Accessory minerals make up less than 2 percent

of the rock and include zircon, apatite, sphene, and opaque minerals.

Foliations and lineations occur locally as alignment and streaking of

biotite. The biotite is locally altered to chlorite and epidote is

present in aggregated layers. When weathered the quartz monzonite

appears pinkish and becomes iron stained when highly fractured. In

intensely weathered outcrops it is highly friable and can be crumbled

by hand. These areas are indicated on Plate 5 as weathered zones

greater than 15 feet in depth.

The illost abundant rock in the Crescent Park area is the Boulder

Creek Granodiorite. Locally it occurs as a medium gray, faintly

banded, medium to fine grained, locally porphyritic rock. The



45

average composition is 28 percent quartz, 17 percent microcline, 44

percent plagioclase, 6 -12 percent biotite, and 0-2 percent hornblende.

Accessory minerals account for less than 2 percent of the rock and

include apatite, zircon, sphene, and opaque minerals. Porphyritic

varieties occur locally and some contain potassic feldspar pheno­

crysts up to an inch in length. Foliation is generally weak and occurs

mainly as alignment of biotite crystals. In outcrop the Boulder Creek

Granodiorite and the quartz monzonite weather in similar fashions.

Because of this and the similar nature of the two rocks it is very

difficult to establish a sharp contact between them.

Surficial deposits in Crescent Park include alluvial and colluvial

deposits. The colluvium. is of recent age and consists of locally de­

rived solifluction debris overlying bedrock and surficial deposits. It

occurs as a mixture of boulders, gravel, sand, silt, and clay that has

accumulated at the base of steep slopes and may be as deep as 30 feet

and support forest vegetation (Wells, 1967, p. 49). The areal extent

and depth of colluvium in the Crescent Park area does not appear to

be this great, and probably its thickness is less than 15 feet in all

places. This could not be definitely confirmed but was indicated by

the driller's logs for local water wells.

Alluvial deposits in the Crescent Park area are restricted to

valley alluvium. and consist of deposits in present stream channels.

These deposits are equivalent to the pre-Piney Creek, Piney Creek,
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and post-Piney Creek of previous workers (Wells, 1967). All

deposits in the study area are at or near stream level and consist of

locally derived, well rounded, fairly well sorted, pebbles and cobbles

that are one to four inches in diaIneter. These deposits are subject to

reworking by flood waters and visual estiInates indicate their Inaxi ..

Inurn thickness is probably less than 15 feet in all areas of Crescent

Park. There are no wells which produce from. the alluvial deposits in

Crescent Park.

Faults in the Crescent Park area include the Rogers fault zone

which is a group of subparallel, branching, and cross faults that trend

through the west part of the subdivision at approxiInately north 30
0

west. In Crescent Park this zone occurs as a broad, poorly cemented,

and steeply dipping zone of fault breccia. This shear zone is evi­

denced by the subdued topography on the west side f)f Crescent Park

subdivisioIl'"'and is shown in the road cut on Coal Creek Road just

prior to entering the subdivision. This zone and one on the east side

of the subdivision (see Plate l) act as conduits to ground water flow.

Because of the highly fractured nature of these zones the weathering

is m.ore intense and thus wells producing from. these areas tend to have

higher yields and more total dissolved solids as indicated by chemical

tests (Appendix 1, Table 1). In addition to these zones, there are

several other shorter faults which occur as fairly well cemented,

narrow, breccia zones. These faults have a significant influence on
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ground water movement and act as barriers to ground water flow.

Their influence does not seem to be as great as the shear zones.

Tall Timbers

Tall Timbers is underlain almost entirely on Boulder Creek

Granodiorite. For the most part the granodiorite occur s as a coar se­

grained quartzo-feldspathic biotite gneiss (see Plate 8). Foliation is

due chiefly to parallel alignment of biotite crystals and to some extent

to the parallel elongation of feldspar crystals. The average composi­

tion is 30 percent quartz, 20 percent microcline, 38 percent plagio­

clase,. 0-17 percent biotite, and 0-32 percent hornblende. Accessory

minerals account for less than 3 percent of the rock and include

apatite, zircon, sphene, and opaque minerals. Locally, inclusions of

biotite schist xenoliths are abundant showing very little evidence of

assimilation. Associated with the xenoliths are some cataclastic

seams filled with epidote. In outcrop the bedrock ranges from

moderately to intensely weathered. This is evidenced by the rounded

appearance of most outcrops, the many iron stained areas, and the

friable nature of most bedrock samples. Drillers logs indicate this

weathered zone extends to depths of from 10 to 50 feet (Table 2,

Appendix 2). Plate 12 indicates the depths of intensive weathering by

zones. Surficial deposits in the Tall Timbers area include the Piney

Creek alluviwn. These consist of valley alluviwn deposits in present

stream channels and terrace deposits above the stream bed.



FIGURE 7. Pole plot diagram. of Crescent Park joints.
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FIGURE 8. Rose diagralll of Crescent Park joints.
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PLATE 1. Geologic map of Crescent Park.
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PLATE 2. Slope map - Crescent Park.
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PLATE 3. Soil thickness overlay for Cre~cent Park sub­
division.

o to 5 Feet - Unsuitable

5 to 10 Feet - Hazardous

10 or more Feet - Safe





PLATE 4. Water table overlay for Crescent Park showing
depth to the water table.
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PLATE 5. Water table elevation overlay.
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PLATE 6. Overlay indicating zones of intensely weathered
bedrock for Crescent Park. Note - categories
for the suitability of weathered bedrock for use
as soil absorption systems have not been estab­
lished.
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PLATE 7. Overlay indicating zones of different percolation
rates for Crescent Park. Note - all percolation
rates of less than 60 minutes per inch are accept­
able to Jefferson County.

less than 10 Min. per inch - Hazardous ~
10 to 20 Min. per inch - Safe

20 to 60 Min. per inch - Safe

60 or more Min. per inch - Unsuitable





PLATE 8. Composite overlay showing hazardous and unsuit­
able areas for soil absorption systems in Crescent
Park.
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It occurs as a mixture of well rounded, fairly well sorted, pebbles

and cobbles and a dark gray, humic, silty, coarse sand. Younger

soils occur in the upper part of the Piney Creek which locally included

alluvium of Wisconsin age that commonly underlies the Piney Creek

Alluvium (Wrucke, 1967). In addition to the a 11uvhlln, there is col­

luvium covering part of the study area; however, it is generally very

thin and thus was mapped only in areas where it was possible to dis­

tinguish it from the soil (see Plate 8).

The m.ajor joint spacing in Tall Timbers generally ranges from

three to six feet. However, near the shear zones the bedrock is so

friable and weathered as to appear granulated. In these areas there

is a great deal of clay minerals present and the joint spacing m.ay be

only a matter of one to three inches. X-ray analysis of two samples

of clay present as weathering products indicates that. one sample is

predominately Kaolinite and the other sample is expansive mixed

layer clays. The trend of the joints and folations is north 45-60
0

east in the major joint set and north 75-90
0

east and north 30-45
0

west for the two m.inor trends. Figure 9 is a diagram showing a pole

plot of the joints and foliations and Figure lOis a rose diagram. of the

strike directions.

The Hoosier fault or "breccia reef" trends about north 30
0

west

and divides the Tall Timbers subdivision in half (see Plate 9). It

occurs as a zone of branching and sUbparallel fractures that



FIGURE 9. Pole plot diagram of Tall Timbers joints and
foliations.
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FIGURE 10. Rose diagrams of Tall Timbers joints and
foliation s.
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PLATE 9. Geologic map of Tall Timbers.
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PLATE 10. Slope map - Tall Timbers.
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PLATE 11. Soil thickness overlay for Tall Tim.bers subdivision .

10 or m.ore Feet - Safe

o to 5

5 to 10

Feet - Unsuitable

Feet - Hazardous •~
D.





PLATE 12. Water table overlay for Tall Tim.bers showing
depth to water table.
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PLATE 13. Overlay indicating water table elevation.





PLATE 14. Overlay indicating zones of intensely weathered
bedrock for Tall Timber s. Note - categories for
the suitability of weathered bedrock for use as
soil absorption systems have not been established.
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PLATE 15. Overlay indicating zones of different percolation
rates for Tall Timbers. Note - all percolation
rates of less than 60 min. per inch are accept­
able in Boulder County.

less than 10 Min. per inch - Hazardous ~
10 to 20 Min. per inch - Safe

20 to 60 Min. per inch - Safe

60 or more Min. per inch - Unsuitable





PLATE 16. Composite overlay showing hazardous and unsuit­
able areas for soil absorption systems for Tall
Timbers.
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presumably originated during the PrecaInbrian and was later reacti­

vated during Laramide time (Lovering and Goddard, 1950, p. 216).

In the study area it is a steeply dipping, poorly cemented zone with

some smaller well- cemented zones branching from it. It is an

important control on ground water in the area and acts as both a

barrier and conduit to the flow of ground water. The major fault zone

is shown on Plate 9 and is a poorly cemented, highly fractured zone

and acts as a ground water conduit. This is indicated by well yields

which are slightly higher in this area and by the chemical tests indi­

cating higher total dissolved solids in this zone because of more

intense weathering. An outcrop in the road cut on lower Kelly Road

near lot 34 is another indicator of the control exerted on the ground

water. This outcrop shows a small, well- cemented branch fault

trending to the northwest. On the downhill side the bedrock is moder­

ately weathered while the uphill side is intensely weathered, indicating

the well- cemented fault acted as a barrier to the flow of ground water

from the uphill side causing a more intensely weathered zone on that

side. For these reasons the geologic controls in the Tall Timbers

area are very significant.

Glen Haven

The geology of the Glen Haven area is the mOHt varied of the

study areas. It is underlain by Precambrian Silver Plume Granite and

metasedimentary rocks. Part of the Glen Haven Quadrangle has been
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mapped by Robert Bucknam (1969). His work was modified by the

author to some extent. In general Fox Creek and West Creek are

underlain by the younger granitic rocks and the North Fork of the Big

Thompson is underlain by metamorphic rocks (see Plate 17).

The granitic rocks are probably equivalent to Silver Plume

Granite (Bucknam, 1969) and generally occur as tan, medium-grained,

seriate porphyritic quartz monzonite. Average composition if 42 per­

cent quartz, 26 percent microcline, 24 percent plagioclase, 0-3 per­

cent biotite, and 0-12 percent muscovite. Accessory minerals

account for less than 3 percent of the total rock and include :zircon,

sphene, apatite, and opaque minerals. Some chlorite occur s locally

as an alteration product of biotite. Foliations and lineations are

present in the quartz monzonite and generally occur as alignment and

streaking of biotite. Porphyritic varieties of the quartz monzonite

occur locally but do not account for large areas near Glen Haven and

are included with the coarse- grained variety of Silver Plume Granite

for mapping purposes. For the purpose of this report the composition

of the coarse- grained variety is the same as the medium grained

variety.

There is a broad area where the Silver Plume Granite is inter­

mixed with the metam.orphic rocks in such a way that differentiation

would be very difficult. This area was mapped as a unit of inter­

mixed quartz monzonite and quartzo-feldspathic mica schist.
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Predominant minerals include muscovite, biotite, quartz, microcline,

and plagioclase. There are local occurrences of andalusite,

cordierite, garnet, and opaque minerals. The percentages of

minerals present in any specimen varies widely due to the nature of

the mapped unit. This unit is well foliated and mineral lineation is

conspicuous and the occurrence of opaque minerals is in concentra­

tions parallel to the foliation.

The metasedimentary unit in the Glen Haven area is mainly a

knotted, well foliated, muscovite-biotite schist. Crinkling of the

foliation is common and intense in places. Mineralogy varied with

metamorphic grade, but muscovite, quartz and biotite were ubiquitous.

In addition, chlorite, tourmaline, garnet and andalusite were present

locally.

The joints and foliations present in the Glen Haven area each

show a preferred orientation that is consistent over the entire area.

Joints are well developed and are spaced from 6 to over 20 feet with a

preferred orientation of north 30-45
0

east with dips approaching

vertical. The entire area is strongly foliated as evidenced by parallel

aligmnent of minerals. Lineations are predominant in certain areas

and are represented in outcrops by fold-axes, boudinage, and mineral

alignment either as aggregates or as the elongate minerals them­

selves. The preferred orientations of the foliations and lineations is

north 30-45
0

west with dips to the southwest from 30
0

to almost
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vertical. These alignments are represented as contour diagrams on

Schmidt equal area nets (Turner and Weiss, 1963, p. 58) and rose

diagrams (Figures 13 and 14).



FIGURE 11. Pole plot diagram of Glen Haven joints.
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FIGURE 12. Pole plot diagram of Glen Haven foliations.
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FIGURE 13. Rose diagram of joints at Glen Haven. Diagram
shows the strike direction of the joints with the
maximum occurrence equal to 100 percent of the
circle radius.
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FIGURE 14. Rose diagram. of foliations at Glen Haven.
Diagram shows the strike dir ection of the folia­
tions with maximum. occurrence equal to 100
percent of the circle radius.
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PLATE 17. Geologic map of Glen Haven.
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PLATE 18. Generalized rock outcrop and soil depth overlay
for the Glen Haven area .
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PLATE 19. Overlay showing depth to water table in the Glen
Haven area. Note - the limited extent of this
overlay is due to the lack of control for large
areas.

o to 10 Feet - Unsuitable •10 to 15 Feet - Hazardous

15 or more Feet - Safe





SUMMARY

Each of the study areas is summarized individually as to the

effect that each of the evaluated parameters has on the spreading of

leach field effluent. Also included in the evaluation is a discussion on

the present and future water quality of each area and the effect that

development may have on bot!). the quantity and quality of the local

ground water supply.

Crescent Park

Water Quality

There are approximately 50 wells located in the Crescent Park

area and 36 of these were tested regularly. Two of the wells tested

were designated as variable pollution indicators and the remaining 34

wells were not contaminated. The additional wells in the area which

were not tested included many which were completed but sealed while

home construction was being completed. In addition, several resi­

dents were not available during the test period and their wells were

not included in the sampling program.

The study indicates that the ground water in the Crescent Park

area is unpolluted and will likely remain unpolluted with further

development of the subdivision. Reasons for this are:
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1) the density of homes will remain low due to the relatively

large lot size s,

2) the effective grain size of the soil is within the most desir­

able range,

3) the water table is from 6 feet to 200 feet below the ground

surface except in two locations where springs occur, (wells

in these areas should be monitored very closely, as they are

more susceptible to local contamination),

4) the depth of soil and intensely weathered bedrock ranges

from 2 feet to 109 feet and appears to be sufficient for soil

absorption systems over most of the area, and

5) because it is a relatively new subdivision the construction

regulations for homes, wells, and leach fields are more

stringent than those which were in effect during the time

communities such as Glen Haven were being developed.

Soil

In general, the soils in the Crescent Park area appear to be the

best of the areas studied for soil absorption systems. The overall

effective grain size is the smallest of the areas, and except for the

ridge tops, where the soil is very thin, there appears to be sufficient

soil depth for leach fields. There are two areas where the soil thick­

ness between the water table and the projected bottoIn of a leach field
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is not sufficient. The se occur in areas of a high water table as evi­

denced by location of the two springs in this area.

The percolation rates for Crescent Park are all within the

required limits of 60 min. per inch or less. In addition, except for

one rate of 57 min. per inch and four of 10 min. per inch, all fall

within the range of 15 to 35 min. per inch indicating a soil texture

which is fairly consistent through the area.

x- ray analysis of clays present in the soils indicate that

Kaolinite is dominant and occur s in 6 out of 8 sample s . Sample 20

has the only example of expansive clay in the Crescent Park sub-

division.

Physical Setting

The slope map of the Crescent Park area (Plate 2) shows that

much of the area has slopes which are too high for suitable locations

for leach fields; however, sufficient areas of lower slopes are present

such that portions of most lots in the subdivision have suitable areas

for leach-field installation. It should be emphasized that the slope

maps derived here are somewhat generalized and on-site slope mea­

surements should be made in making final recommendations for leach

field locations for individual cases.

Population density is not a problem in the Crescent Park area

because the subdivision is only about 40 percent developed and the lots

are generally larger than 2 acres and many are as large as 5 acres.
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Age of the development is very important to the operation of septic

tank leach line systems because, due to their design, failure is prob­

able during the life of the structure (Franks, 1972, p. 195). The

septic tank retains the solids and the leach line disposes of the fluids.

When the septic tank reache s the point where it can no longer retain

the solids then these, along with the scum which is collected in the

tank, begin to enter the leach lines. At this point both the leach line

and the filtering media become clogged with the solid particles and the

system has failed. Studies have shown that under the best conditions

failure occurs after 10 to 12 years of use (Franks, 1972). This prob­

lem could essentially be eliminated if home owners would periodically

have their septic tanks pumped out; however, most home owners are

either not aware that septic tanks require pumping or do not have

them pumped until failure occur s. Once a septic tank leach field

system has failed, it is likely to fail again and sooner. This is due to

the fact that once failure occurs, the soil becomes clogged with solid

matter and loses much of its filtration ability.

Geology

The influence local geology has on the spreading of leach field

effluent is summarized as follows:

I) The shallow ground water movement in bedrock is influenced

to some degree by the faults in the area. In fact, most wells
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which are near one of the faults in the area have a higher

probability of becoming contaminated.

2) Joints and foliations will control the movement of any water

that reaches bedrock. The major trend of the joints and

foliations is north 45 to 47
0

west. The joints and foliations

tend to dip very steeply, thus, their control of flow direction

will be a resultant of the slope direction and the strike of the

joints and foliations,

3) Intensely weathered bedrock occurs in the western part of

the subdivision and is associated with the shear zone,

4) The large shear zone which occurs in the western part of the

subdivision acts as a conduit to ground water flow as does

the small shear zone in the eastern part of the subdivision,

5) The smaller branching faults in the Crescent Park area are

well cemented and act as barriers to the flow of ground

water,

6) Bedrock mineralogy has little effect on the spreading of

pollution, except for the clays produced as natural weather­

ing product s.

Tall Timbers

Water Quality

There are approxim.ately 45 wells in the Tall Timbers area and

38 of these were included in our sampling program. Five of the wells
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tested were designated as variable pollution indicators and six others

were categorized as pollution indicators. The remaining 22 wells

were not contaminated. The Tall Timbers area, therefore, had 28

percent of the wells tested by our research program. as showing signs

of contamination.

Our study indicates that the water quality in the Tall Timbers

area is not as good as that in the Crescent Park area which had only

8 percent of the wells showing signs of pollution. Also, it is not ex­

pected that the water quality will improve due to the following reasons:

1) the density of homes is already relatively high and will

become higher with continued development,

2) the effective grain size of the soils is larger than the other

study areas, requiring a greater distance for travel of

pollution to become properly filtered (see Figure 2),

3) the depth of soil is not sufficient for soil absorption systems

in much of the subdivi sion,

4) the majority of the subdivision is located on steeper slopes

than desired for soil absorption systems, and

5) failure m.ay be expected in many of the leach field system.s

due to septic tanks becoming filled and causing failure in the

leach lines. Research has shown that this occurs at about

10 to 12 years under the best conditions (Franks, 1972).
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Soil

The soils in the Tall Timbers area are not as well suited for

soil absorption systems as those in the Crescent Park area. The

effective grain size of the soils in Tall Timbers is in the range

.088 mm to .177 mm. While this is larger than the other two areas,

it is still well within the range suitable for soil absorption systems.

Soil depth is also thinner than that in the Crescent Park area due to

the major portion of the subdivision being located on steep slopes.

The water table is at sufficient depth over the entire area and ranges

from 20 feet to over 100 feet deep, but whether there are sufficient

fine-grained filtering soils above the water table is questionable.

Percolation rates for the area are more variable than Crescent Park

and range from 5 min. pe r inch to 48 min. pe r inch. It rna y be sig­

nificant to note that from the 30 percolation rates obtained, 18 were

lO min. per inch or less. While this is within allowable limits, it

does indicate that effluent will percolate down to the ground water

supply much faster than in the Crescent Park area. This is what one

would expect for the coarser- grained size of the soils as indicated by

the effective grain size. X- ray analysis of clays present in the soils

indicated that Kaolinite is the dominant clay in the Tall Timbers area.

In addition to the clays analyzed from soil samples, two clay samples

present as weathering products in bedrock were analyzed and one was

an expansive clay and one a non-expansive clay.
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Physical Setting

The slope map of the Tall Tim.bers area (Plate 10) indicates

that most of the area has slopes that are greater than 30 percent and

thus leach field- septic tank systems are not well suited for most of

the subdivision. It should be noted that a sim.ilar large area of

unsuitability is indicated by other key param.eters as well. This sug­

gests that these parameters are not necessarily independent of each

other and that some, such as slope, may be used to predict others,

such as percolation rate, soil depth, etc. The fact that leach field­

septic tank systems are used in the Tall Timbers area, in spite of the

steep slopes and other poorly suited geologic and soil conditions for

their use, could be one of the main reasons that the water quality is

poorer in the Tall Timbers area than in the Crescent Park area.

The most important non- geologic factor influencing pollution in

the Tall Timbers area could be the population density. The subdivi­

sion is approxim.ately 50 percent developed now, and 28 percent of the

wells tested for this study showed positive counts of coliform. As

developm.ent continues more ground water pollution can be expected.

In addition to the problem. of population density is the age of the sub­

division. Many of the hom.es in the area are about 10 to 12 years old,

and research has shown that after 10 to 12 years septic tanks become

filled with solids causing failure in the leach lines from plugging or

anaerobic growth or both (Franks, 1971).
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Geology

The influence of local geology on the spreading of leach field

effluent in the Tall Timbers area is summarized as follows:

I) The shallow ground water movement in bedrock is influenced

to a high degree by the faults in the area. In fact, most

wells which show an indication of pollution are located very

near the shear zone,

2) Joints and foliations will control the movement of any

shallow ground water that reaches bedrock. The major

trend of the joints and foliations is north 45 to 60
0

east.

Because both joints and foliations tend to dip very steeply,

their control on flow direction will be a resultant of the

slope direction and the strike of the joints and foliations,

3) Intensely weathered bedrock occurs in several places in the

subdivision and in many places there is sufficient clay

present to act as barrier s to ground water movement. These

are generally associated with the shear zone,

4) The large shear zone, which divides the subdivision in half,

acts as a conduit to ground water flow,

5) The smaller branching faults off the large shear z one are

well cemented and act as barriers to the flow of ground

water, and

6) Bedrock mineralogy probably has little effect on the spread­

ing of pollution, except for the clays produced as natural
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weathering products and in connection with the shear zone

where they act as barriers to the ground water flow.

Glen Haven

Water Quality

Because :many of the residents in the Glen Haven area rely on

shallow wells in river alluvium for their water supply and these wells

rely on induced recharge fra:m surface waters for their water supply,

both surface and ground water were tested in the Glen Haven Area. A

total of 29 wells was tested in the Glen Haven area and 8 of these were

classified as pollution indicators, 5 were classified as variable pollu­

tion indicators, and 16 were classified as not conta:minated. Thus 45

percent of the wells in the Glen Haven area show signs of being con­

ta:minated. Because it is a resort area :many of the ho:mes are

occupied only a few weeks out of the year or so:me years not at all.

However, because these wells produce fro:m river alluvium it was felt

that even though the well data :might be inco:mplete, a complete

sa:mpling of surface water would help in determining the local water

quality.

The sampling program for the surface waters in the Glen Haven

area included 26 different locations. Tests for total coliform were

positive for all locations. Total coliform count increased to SOIne

extent at each area where sewage disposal syste:ms began to contribute
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to the stream. Total coliform count also decreased downstream. with

dilution. Thus the counts appear to go up and down in total coliform

as populated areas are reached. Of the 26 locations sampled 11 were

upstream from the influence of Glen Haven, 7 were within the com­

munity of Glen Haven, and 8 were from locations downstream of the

Glen Haven area. One of the more apparent results of the test pro­

gram is the correlation between coliform count and seasonal use.

For example, the counts were high for all samples on the 7th of July

which is right after one of the busiest weekends of the summer and

all samples had very low counts during the month of December when

very few people are using the picnic areas, and the nearby national

park is closed.

This study indicates that the water quality in the Glen Haven

area is the poorest of any of the study areas. This was determined

from tests on total coliform from all wells tested. Crescent Park had

8 percen~ of the wells with positive tests, Tall Timbers 28 percent,

and Glen Haven 45 percent. It is not expected that the water quality

will improve unless many factors which contribute to the water quality

are eliminated .. Each of the following factor s contribute to the poor

quality of water in the Glen Haven area:

1) The home density in the summer months will remain high

and probably become rnuch higher with tim.e,
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2) The water table is very near the ground surface in the valley

bottoms where population density is highest and most wells

are located,

3) The depth of soil is not sufficient for soil absorption systeIns

on most of the hill sides,

4) The hill sides are generally steeper than the recommended

maximum for soil absorption systems, and

5) Because Glen Haven is an old community there are many

poorly constructed wells and sewage disposal units, 1. e.

many residents use privies during the summer months when

they occupy their cabins and in most cases these are

unvaulted and constructed on fractured bedrock.

Soil

The soils in the Glen Haven area are not well suited for soil

absorption systems. The effective grain size of the soils is well

within th;e range suited for bacteria removal ( .0625 to .125). How­

ever, several other factors indicate that the area is not well suited

for soil absorption systems. For example, hill slopes in the area are

very steep and in general have thin soil covers. In areas such as on

the valley alluvium where there is a thick soil cover, the water table

is very shallow. X-ray analysis of the clays present in the soils at

Glen Haven show a higher occurrence of expansive clays than the other

study areas. Ten soil samples were taken at Glen Haven and 5 had
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expansive clays present. In addition to the above facts, the surface

waters in the Glen Haven area already show signs of being highly con­

taminated. This would make overloading of the ground water system

much easier than in other areas. Also, it appears that the surface

waters rely somewhat on downstream. dilution for removal of som.e of

the bacteria and additional leach fields in the Glen Haven area as

development increases will only add to the already contaminated

streams,

Physical Setting

Many non-geologic factors contribute to the pollution problem in

the Glen Haven area. For example, sewage disposal methods range

from the standard septic- tank leach-field system to many unvaulted

privies which are used during the summer months. Also significant

is the fact that most of the summer cabins are located very near the

streams and because of this so are their privies. Population density

is another non-geologic factor influencing the pollution. During the

summer months when the population is at its highest, the demand on

the ground water system is the greatest, and infiltration from leach

fields and privies is also the greatest. Thus the problem for Glen

Haven, in addition to further growth and development, is stopping the

overloading of the ground water system during the summer months.

This means eliminating the poorly constructed unvaulted privies and

moving all sewage disposal systems further away from the streams.
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This will be especially difficult in the Glen Haven area because the

areas away from the streams are also not suitable for sewage dis­

posal systems.

Geology

The influence that the local geology has on the spreading of leach

field effluent is summarized as follows: In general, soil absorption

systems are not satisfactory in the Glen Haven area due to shallow

soil depths, high water table, steep slopes, and the possibility of

overloading a system which is already polluted. However, if soil

absorption systems are used, the follQwing can be expected:

l) Foliations are well developed and show a major trend as

indicated in Figures 8 and 10; however, due to their closed

nature, very little ground water enters the foliations,

2) Joints are also well developed and open enough to allow

ground water movement in the direction of the dips (Figure 7)

should water enter the fractures,

3) There are very few areas of intense weathering in Glen

Haven, and water which percolates through the soil doe s not

penetrate as deeply into the unjointed bedrock as the other

study areas,

4) Because of the unweathered nature of the bedrock, the dikes

and faults in the area do not have a large influence on ground

water movement. There is one large well cemented fault in
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the Glen Haven area; however, it appears to have little effect

on the flow of ground water, and

5) Bedrock mineralogy has little effect on the spreading of

pollution in the areas studied.



DISCUSSION

That a definite relationship exists between several geologic

parameters and the occurrence of ground water and surface water

pollution is shown by the results of this report. This conclusion is

supported by previous studies (Romero, 1970; Frank, 1971, 1972a;

Waltz, 1972; Allen and Morrison, 1973) which have also investigated

the relation between geology and groundwater pollution. Each

paranleter used to evaluate the pollution potential of an area is listed

below and the method in which the parameter is used is discussed.

An area is considered as either safe, hazardous, or unsuitable

for soil absorption sewage disposal systems for data given for each

parameter considered separately, and the area is also evaluated as

either safe, hazardous, or unsuitable for soil absorption sewage dis­

posal systems using a combination of all parameters.

The categorizing of the areas as either safe, hazardous, or

unsuitable is somewhat arbitrary, but only in the selection of the

quantitative boundaries of the various categories. Statistical analysis

given in this report as well as independent practical and theoretical

studies (Orlob and Krone, 1956; Romero, 1970; Franks, 1971, 1972a;

Allen and Morrison, 1973) support the conclusions on the effect of the

pararn.eters considered and indicate the limits for the various cate­

gories are reasonable.
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A category of "safe" de signates areas which can be developed

following present regulation governing mountain subdivisions in Colo-

rado (Le., those regulations stated in the 1973 Senate Bill 35 of the

State of Colorado).

A category of "unsuitable II designates areas which will not sup-

port a soil absorption sewage disposal system. Areas of this cate-

gory should not contain any disposal system of this type if the quality

of the ground water is to be preservedo They are areas of extremely

high pollution potential Q

An intermediate category of "hazardous" de signate s areas which

have a fairly high pollution potential, but which might support a soil

absorption system for sewage disposal for special situations (e. g.,

very low density of dwellings). The local geologic features need to be

considered very carefully before areas in this hazardous category are

developed.

Parameter s and limits of suitability:

I. Slope

o to 20 percent .
20 to 30 percent .

30 or greater percent 0

. safe
otentatively

considered
ounsuitable

:>~

suitable

':-:
Slopes of 20-30 percent are considered safe since there was no

significantly higher pollution in wells located on slopes of 20-30 per­
cent than those on slopes of 0~2 0 percent. It should be noted that
some investigators consider any slope above 20 percent unsuitable for
leach fields (Franks, 1971) Q When other areas are analysed, it may
be that the 20-30 percent slope clas s will be removed from the safe
category and have to be considered as either hazardous or unsuitable.
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2. Depth of Soil (not including weathered in situ bedrock)

10 feet or greater .
5 to 10 feet .

1e s s than 5 fee t .

safe
· hazardous
· unsuitable

3. Depth to Water Table or Impervious Layer (this aSSUITles
that the leach field is not deeper than about 3 feet and that
suitable filtering material (soil) exists between bottom of
leach field and water table)

15 feet or greater .
10 to 15 feet.
10 feet or less

safe
· hazardous

unsuitable

4. Percolation rate (current regulations are generally suffi­
cient for percolation rates providing that values for other
parameters are suitable - an exception is listed for very
rapid percolation rates). Typical percolation rates that are
currently acceptable:

10 min. per inch to 60 min. per inch.
(in soils with non- expansive clays)

lOmin. per inch to 40 min. per inch.
(in soils with expansive clays)

5 to 10 min. per inch.

less than 5 min. per inch

greater than 60 min. per inch
(non-expansive clays)

greater than 40 min. per inch
(expansive clays)

· safe

· safe

· hazardous

· unsuitable

· unsuitable

· unsuitable

Perhaps a better parameter to consider than perco-

lation rates would be effective grain size, e specially since

the currently prescribed methods for measuring the

percolation rates are poorly defined and give imprecise

results. Not enough data is available relating to effective
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grain size to the filtering efficiency of a soil for quantita­

tive limits to be established in this report, however,

A fifth factor which should possibly be included in the analysis

of an area is the depth of weathered bedrock. At present no reliable

data exist for evaluating the effect of weathered bedrock as a filtering

media for sewage effluent, therefore incorporation of this parameter

into our evaluation scheme is not pos sible at this time. If reliable

data can be obtained for the limits of suitability of weathered bedrock,

incorporation of this parameter into the scheme should be relatively

straight forward.

Several other factors in addition to the parameters listed above

must also be considered in estimating the suitability of an area for

use of soil absorption type sewage disposal systems. U~fortunately,

most of these additional factors are not as readily quantifiable as the

four key factors listed above.

In order to minimize the probability of polluting surface water

supplies, leach field areas should be a minimum of 1 00 feet from

rivers, streams, lakes, and wells. There should be a minimum of

15 feet of soil horizontally from any construction cut or slope above a

construction cut. Open gravel areas with a high water table, such as

might occur near old stream courses, are unsuitable in all cases.

The location and trend of any special geologic feature, such as

a major joint or joint set, fault, shear zone, igneous dike,
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unconformity, etc., should be noted and the distances between a leach

field area and all special geologic feature s should be determined. As

these special features can act as both barriers or conduits for ground

water and/or sewage effluent, their locations can be of crucial impor­

tance in evaluating an area for pollution potential, and each case nlust

be considered separately as the pos sible effects are too nwnerou8 for

adequate generalizations. It is evident from the present study that

local geologic features can playa dominant role in the pollution poten­

tial of a m.ountainous area.

Non- geologic and non- geom.orphic factors that m.ust also be

considered in evaluating the pollution potential of a site include the

method of sewage disposal, population density on the site, age of the

development, and type of construction of wells, sewage disposal

facilities, roads and homes.

Presentation of Critical Data

A major problem in the application of geologic and geomorphic

data to an analysis of a given area is how the data, once collected, is

to be utilized. The presentation of data on a suitable base map such

as the topographic base maps used in this study is one of the most

useful methods of presentation for purposes of land-use planning, and

has the further advantage of being readily interpreted by qualified

engineers, scientists, and technicians from. varied disciplines.

Interpretation of the geologic map of the area would most likely
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require a trained geologist or geological engineer, however, and ITlay

also require some on- site inspection.

The scheme of evaluation and data presentation used here

utilizes transparent overlays for a suitable base ITlap, e. g. a topo-

graphic map of suitable scale, showing the parameters of slope, soil

depth, water table depth, percolation rate, and depth of bedrock

weathering, respectively. On each overlay, safe, hazardous, and

unsuitable areas may easily be delineated. In addition, a compo site

map showing, for example, the areas considered unsuitable for all

parameters combined is easily derived.

The interpretation of the composite map in areas indicated as

hazardous by two or more parameters is more difficult. The statisti-

cal analysis of the correlation of pollution occurrence with a combina-

tion of individual parameters indicates that individual parameters ITlay

2
have a rather low correlation (expressed as r ) in with pollution in

the hazardous areas, but that combining the parameters ITlay show that

the correlation of several para:meters indicating hazardous areas with

2
pollution is high (r ~ .85). It is recommended here than an area

indicated as hazardous in two or more parameters be considered

unsuitable for dispersal type se"wage disposal systems.

In addition to the overlay maps of the various parameters, it is

essential to construct an overlay map of the geology of the area. The

location and nature of special geologic feature s such as fault s, shear
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zones, unconformities, igneous dikes, etc. must be considered in

evaluating the pollution potential of an area, as they may act as loci

of discontinuities in the overlay maps showing the quantified data on

the parameters, and these discontinuities are not always evident from

the overlay maps showing only the parameters due to sparcity of data

points near the geologic feature s or discontinuities. In some areas

there will be strong correlation between bedrock types and various

pollution problems and ground water movement. Thi s was not the

case in the mountainous areas studied in this report, but the correla­

tion has been well documented elsewhere (e. g., for sedimentary rocks

including limestone, Parizek, White, and Langmuir, 1971; for basalts,

Stearns and MacDonald, 1942; for pyroclastic rocks, tuffs, ash, and

breccias, Davis and De Wiest, 1966, Chapter 9).

In areas of crystalline plutonic bedrock such as occurs in the

areas studied and throughout most of the Front Range of Colorado,

there is little filtering effect of bacteria from sewage effluent once the

effluent gets into the fracture system of relatively fresh rock (Allen

and Morrison, 1973). Once unfiltered sewage reaches the unweathered

bedrock, the probability that the ground water will become polluted is

very high, and only in exceptional cases does further filtering take

place sufficiently to remove these' bacterial pollutants from the ground

water. It is common to have the polluted ground water confined to

certain fracture systems, and in special cases this polluted ground­

water can be avoided by carefully selecting the site of a well (Millon,
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1970; Waltz, 1972). In order to avoid pollution of all ground water, an

evaluation scheITle, such as the one used here, which atteITlpts to avoid

having any sewage bacteria enter the ground water systeITl via rock

fractures, must be employed.

Additional overlay maps could be generated from data on popu­

lation density, effective grain size of soil, landslide deposits and

potential landslide areas, water courses and areas inundated by floods,

areas containing swelling clays, etc. which, while all not being criti­

cal for the evaluation of water pollution potential from. sewage systems,

would be useful in a total land,..use planning approach to the analysis

of an area.



CONCLUSIONS

1. Ground water pollution from ineffective sewage disposal
systems occurs in areas which meet all present require­
ments governing mountain horne construction; therefore, the
present requireITlents for location and installation of sewage
disposal systeITls are not adequate.

2. Local geologic features often playa dominant role in shallow
ground water movement and in the ITlovement of sewage
effluent.

3. Location and nature of these geologic features must be care­
fully determined to assess the pollution potential from sew­
age of a given area.

4. Certain paraITleters can be quantified and used singly and
together to evaluate the pollution potential of a given area.
These paraITleters are slope, depth of soil, depth of water
table and percolation rate.

5. The system of analysis of a given area using the local
geology and the four parameters ITlay be used in small or
large scale planning of an area or areas in mountainous
terrain, and the analysis will provide inforITlation as to the
suitability of sites for installation of dispersal type sewage
disposal systems.

6. Percolation rates that are too high (less than 10 ITlin. per
inch) indicate that a leach field site is unsuitable just as
percolation rates that are too low (greater than 60 ITlin. per
inch) does under most current regulations.

7. When several of the quantified paraITleters indicate that an
area is hazardous for proper leach field operation, the area
should be considered unsuitable for location of leach fields.

8. Shallow wells which are close to streaITlS or other surface
water and produce froITl alluvial fill often reflect the water
quality of the surface water, and due to induced ground water
recharge frOITl the surface water the wells may be contaITli­
nated by the surface water.
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9. The effective grain size of soils in the mountain areas
studied did not vary significantly when taken from areas of
similar slope; however, the effective grain size did vary
between areas of different slopes.

10. The bedrock mineralogy and petrography was fairly similar
in the three study areas, and had little apparent effect on
the spreading of bacterial pollutant s fr am leach field effluent.

11. Clay mineralogy of the soils tested was fairly similar in the
three study areas and had little apparent effect on the spread­
ing of bacterial pollutants from leach field effluent.

Further Inve stigations

Further research in certain areas is indicated by the results of

this study. These further studies would extend the current study and

help te st some of the conclusions therein:

1. The correlation between slope and other parameters such as
soil depth, effective grain size of soil (or percolation rate)
and depth of weathering of bedrock should be determined in
an intensive statistical study.

2. On-site tests measuring the effectiveness of weathered rock
as a bacterial leaching agent should be performed in order
to incorporate the data on depth of weathering into the
scheme outlined here for evaluation of pollution potential in
mountainous regions.

3. The bacterial filtering properties of soils with different
effective grain size and different soil depth should be deter ...
mined for soils from mountains terrains .. If pos sible, this
should be done both in the lab and in on-site tests.

4. The effect of temperature on the persistance and spread of
bacteria and viruses should be determined as m.uch of the
available data is for restricted temperature ranges.

5. Long term changes (2-10 years) in the water table due to
leach field operations should be studied. Such factor s as
water table depth can be changed significantly.
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6. The physical and chemical changes in soils and weathered
bedrock due to long term exposure to sewage effluent should
be studied. This study should include what changes have
occurred in the percolation rate of fluids in the soils and the
bacterial filtering capacity of the soils.

7. A method for predicting the quantitative parameters used in
the analysis proposed here using faster and less expensive
techniques should be developed. Because many of the
properties are interdependent on underlying geologic
features (including bedrock type), microclimate, and geo­
morphic features, development of rapid techniques to
evaluate at least some of the parameters would seem
feasible.
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Explanation of abbreviations and symbols used in following tables.

d-90

P. I.

V.P.I.

S

TNTC

Cl

cb

a

TDS

Equivalent to effective grain size, range in sieve analysis
which included the size where 90 percent is coarser and
10 percent finer by weight.

A well categorized as a pollution indicator because the
total coliform count was ITlore than I per 100 m.l con­
sistently.

A well categorized as a variable pollution indicator be­
cause the total coliform count varied from more than one
to Ie s s than one per 100 ITll during the sampling period.

A well categorized as safe because the total coliform
count was les s than one consistently during the sampling
period.

Indicates a total coliform count on a water sa:mple which
was greater than 300 and thus categorized as to numerous
to count.

Indicates a well which was chlorinated by the owner due to
a previous unsafe test.

Indicates a soil sample which was obtained by use of a
core barrel.

Indicates a soil sample which was obtained by collecting
sample directly from the auger blades.

Che:mical te st indicating total di s s oIved solids as CaC 03
in parts per :million (pp:m) as determined by conductivity
:methods.



APPENDIX 1. Mode (volume percent) of crystalline rocks in all
study areas.
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TABLE 1. Modes (volume percent) of bedrock samples from. all study
areas. Modes by visual estimates using petrographic
m.icroscope, microcline and plagioclase distinguished by
point counts after staining by the procedure of Bailey and
Stevens (1960).

Crescent Park

13-1

13-2

13-4

13-6

34

31

34

29

28

24

24

35

34

38

33

34

3

7

4

3

Tr

Tr

1

1

2

Tr

Tr

Tr

Tall Tim.bers

12-1 32 23 38 12

12-2 30 58 8 1 3

12-3 30 3 43 17 4 3

12-4 16 5 44 2 32 1

12-5 20 20 33 3 4

12-7 36 30 25 6 3

12-9 43 21 27 8

Glen Haven

11-7 16 20 19 23 18 4

11-9 42 26 24 3 4 1

11-11 20 19 32 29 1

11-13 25 20 54 Tr 1

11-15 12 24 35 24 5

11-16 20 35 14 2 29

11-18 28 19 38 12 3



APPENDIX 2. Data for individual horne sites as determined by
drillers well logs and percolation rates for individual
lots obtained from county health department records.



TABLE 1. Measurements at individual horne sites as determined from drillers well logs and
percolation rates for individual lots obtained from county health department records of
Jefferson County.

Lot Depth of Depth of Static water Well Well yield in Percolation rate
Number soil-ft. weathering-it . level-it . depth-ft. gal. Imin. in min. linch

CRESCENT PARK

2 2 35 90 260 6 24

3 1 27 40 125 2

4 3 35 18 320 .5

5 3 80 30 200 2 20

6 3 40 170 1 .5 -7 3 109 32 125 5 40 ~-
9a 6 15 200 1 27

9b 6 42 245 9 27

lOa 10 41 350 1 05

lOb 20 118 255 4.5

12 20 18 207 .5

17 49 43 290 1 10

25 10 30 21 400 1

26a 4 16 17 140 3

26b 3 12 10 90 1



TABLE 1. (continued)

Lot Depth of Depth of Static water Well Well yield in Percolation rate
Number soil-ft. weathering-ft. level-ft. depth-ft 0 gal. 1m. in 0 in m.in 0 linch

33 3 20 45 230 .5 20

34 6 18 43 185 12 57

35 3 89 300 1 10

37 3 5 15 290 1 20

40 10 25 34 170 3 10

44 21 55 305 1 20

50 1.5 43 200 397 1 .5 10

57 2 114 320 2.5 23 .....
~
N

58 2 65 170 3 14

64 14 75 125 9 35

67 9 45 165 400 35 20

73 5 177 410 1 20

83 14 80 305 5 10

86 4 18 130 170 7.5 5

92a 22 31 125 1 20

92b 32 54 300 305 10

93 6 6 110 6.5 13

F.H. 15 340 1



TABLE 20 Measurem.ents at individual hom.e sites as determ.ined from. drillers well logs and
percolation rates for individual lots obtained from. county health departm.ent records of
Boulder County.

Lot Depth of Stati c water Well Well yield in Percolation rate
num.ber weathering-it. level-ft 0 depth-fto galo/m.in. in m.in. linch

T ALL TIMBERS

3 10

4a 20 244 3 5

4b 30 30 170 1 10

5 15 30 135 4 20

6 20 30 100 3 5
.....

8 6 ~
l.N

9 15 50 150 4 15

10 30

11 5

14 8

15 15 70 185 3 5

17 10 50 195 I

19 15 50 140 6 20

20 15 40 216 1

21 15 30 90 4 5



TABLE 2. (continued)

Lot Depth of Static water Well Well yield in Percolation rate
number weathering~ft. level-ft. depth-ft 0 gaL Imino in min. linch

--
22 186 2 0 5 48

23 20 75 150 1 10

24 10

25 20 90 190 5 15

27 20

28 150

33 50 80 155 3 30

35 15 ........
~
~

36 20

38 15 135 235 2 5

39

40 17 290 1 10

42 20 50 130 2

43a 10 30 70 5 5

43b 22 22 260 12

45 21

48 20 50 155 4 10

50 8



TABLE 2. (continued)

Lot
number

58

60

64

Depth of
weathering~ft0

Static water
level-ft .

Well
depth-ft.

Well yield in
gale Imino

Percolation rate
in m.in. linch

5

10

13

......
~
01
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TABLE 3. Measurements at individual home sites as determined
from driller's well log s.

Cll

~
Z

~o
-..-4
4-)

U
Cll

til

GLEN HAVEN

Adams

Letford

Rodgers

Roberts

Vanhorn

Mallow

Florio

Kephart

Holt

Atkinson

Melcher

Boyle

Ernest

Himbarger

Hollbrook

Rhoadarrner

Sidwell

34

34

34

34

33

32

28

27

27

27

27

27

27

27

25

25

27

11-70

4-70

7-68

1-60

6-64

2-63

7-63

11-71

5-70

11-66

8-65

8-61

8-59

1-61

8-67

11-65

7-64

15

1

o

o
o

80

17

35

o
80

2

o
5

4

o

17

8

8

o

18

25

o

o

12

11

50

o

o
30

o

o
o

28

20

6

10

20

12

100

26

10

12

150

10

150

40

20

16

215

280

218

14

100

50

140

200

150

30

215

17

175

60

155

80

124

1

2.5

2.5

2

2

1

1

.5

50

4

2

10

1

2

1

5

Dry



APPENDIX 3. Results of water quality tests 0
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TABLE 1. Results of water quality tests from. Crescent Park in total
coliform. per 100 m.1.

Sample date TDS
Sample no. 7 /10 7 /17 8/14 9/27 11/10 CaC0

3

1 . S 0 0 0 0 0 91

2. S 0 0 0 0 0 82

3. S 0 0 0 (pump 7 99
inop. )

4. S 0 0 0 101

5. S 0 0 0 0 0 97

6. S 0 0 0 0 0 83

7. S 0 0 0 103

8. S 0 0 0 0 0 65

9. S 0 0 0 0 0 119

10. S 0 0 117

11 • S 0 0 0 0 0 102

12. V.P.I. 0 10 0 0 0 112

13. S 0 0 0 0 0 136

14. S 0 0 0 0 0 57

15. S 0 0 0 0 0 74

16. S 0 0 0 72

17. S 0 0 0 0 52

18. S 0 0 0 0 0 33

19. V.P.I. 0 0 0 2 0 40

20. S 0 0 0 0 0 43

21 . S 0 0 0 0 0 41

22. S 0 0 0 0 78

23. S 0 62

24. S 0 0 0 59

25. S 0 0 0 0 0 118

26. S 0 0 0 157
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TABLE 1. ( continued)

Sample date TDS
Sample no. 7 /1 0 7 /17 8/14 9/27 11 /10 CaC0

3

27. V.P.I. 0 1 2 0 0 94

28. S 0 0 0 0 98

29. S 0 0 0 0 0 73

30. S 0 0 0 57

310 S 0 0 0 77

32. S 0 42

33. S 0

34. S 1 0 131

35. S 0 0 0 0 0 159

36. S 0 0 0 188

37. S 0
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TABLE 2. Results of water quality tests froITl Tall Timbers in total
coliforITl per 100 ml.

Sample date TDS
Sample no. 7 /13 7 /21 8/17 8/30 10/3 12/12 CaC0

3

1 . S 0 0 0 0 244

2. S 0 0 0 0 0 153

3. V.P.I. 0 90 217

4. S 0 0 0 206

5. Pol. 2 126 45 294

60 S 0 0 0 233

7. S 0 0 179

8. S 0 0 0 243

9. S 0 0 0 0 0 204

10. S 0 0 0 200

11 . S 0 0 0 160

12. V.P.I. 0 0 5 2 0 0 160

13. P.I. 0 74 24 2 370

14. S 0 1 0 240

15. S (Boulder city water) 0 0

16. P.I. 12 7 7 0 2 152

17. S 0 0 0 152

18. S 0 1 0 93

19. S 0 1 0 0 1 0 101

20. V.P.I. 0 0 0 0 43 158

21. S 0 0 0 0 147

22. S 0 0 0 0 171

23. S 0 0 0 100

24. V.P.I. 2 0 1 0 133

25. S 0 0 0 96

26. S 0 0 0 0 0 97

27. S 0 0 1 1 0 0 102
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TABLE 2. ( continued)

Sample date TDS
Sample no. 7 /13 7 /21 8/17 8/30 10/3 12/12 CaC0

3

28. P.I. 1 5 4 88

29. S 0 1 126

30. P. I. 136 313

31. P.I. 2 -C1 0 139 289

32. S 0 0 542

33. S 0 0 0 0 0 393

34. S 0 0 0 277

35. S 0 0 0 0 480

36. S 0 0 398

37. V.P.I. 0 0 4 0 3 0 321

38. S 0 1 0 0 0 1 535

39. S 0 145



TABLE 3. Results of water quality tests from Glen Haven in total coliform per 100 m!.

Sample date TDS
Sample number 7/7 7/14 7/28 8/16 8/19 8/30 10/10 10/15 CaC0

3

1 . P.I. 0 76 34 300 62 16 20 27

2 . V.P.I. 7 0 0 0 19 2 0 46

3. V.P.I. 2 0 26 40 0 0 0 126

4. V.P.I. 0 0 - 70 46 6 0 8S

5. S 0

6. V.P.I. 0 2 0 200

7. V.P.I. 0 0 0 105 0 0 0 205

8. S 0 0 0 0 0 0 310 ...-
(Jl

N

9· S 0 0 0 0 0 0 480

10. S 0 0

11 . S 0 0 0 0 0 260

12. S 0 0 0 300

13. S 0

14. S 0 0 0 0 1 6S

15. S 0 0

16. S 0

17. S 0 0 0 165

18. P.I. 3 6



TABLE 3. ( continued)

Sarn.ple date TDS
Sample number 7/7 7/14 7/28 8/16 8/19 8/30 10/10 10/15 CaC0

3

19. P.I. 21 3 2 32

20. S 0

21. V.P.I. 4 0 0 0

22. S 0 0 0 34

23. P .1. 21

24. S 0 0 0 38

25. S 0 0 0 1 0 0 38

26. 6 0 33 450
I--'

P.I. 7 48 5 U1
v.>

27. V.P.I. 0 0 9 0 0

28. S 0 0 0 52

29. V.P.I. 0 0 0 20 0 0 2 133



TABLE 4. Results of stream water quality tests near Glen Haven, Colorado in total
coliform per 100 ml.

SAMPLES FROM NORTH FORK (line indicates Glen Haven)

TDS Sample Date
No. CaC03 7/6 7/7 7/13 7/26 8/30 10/10

53 23 4

2 22

3 3 2

4 90 21 4

5 63 30 4

6 88 25 2
Entering Glen Haven area of influence

7 21 62 30 34 24 12

8 23 91 27 12 18 54

9 18 19 22 12 16

10 23 96 50 4 42 14

11 25 41 15 12 42 56
Leaving Glen Haven area of influence
12 23 33 25 36 14 54

13 23 2 40

14 26 140 24 114 36 42

15 28 180 11 40 64 40

LOCATIONS OF SAMPLES - From confluence North Fork and West Creek
1. 7.0 miles above confluence, .5 miles from North Fork ranger station.
2. 5.8 miles above confluence, in Rocky Mtn. National Park.
3. 4.6 miles above confluence, above Deserted Village.
4. 4.5 miles above confluence, at Deserted Village.
5. 3.2 miles above confluence, above Trails End Ranch for boys.
6. 2.8 miles above confluence, below Trails End Ranch for boys.
7. 1.5 miles above confluence, just above Glen Haven influence.
8. 1.2 miles above confluence, in Glen Haven area.
9. .7 miles above confluence, in Glen Haven area.

10. .4 miles above confluence, above confluence of Fox Creek.
11. .2 miles above confluence, below confluence of Fox Creek.
12. .1 miles below confluence, just below Glen Haven area.
13. 1.2 miles below confluence, near picnic area.
14. 2.7 miles below confluence, below confluence of Miller Creek.
15. 7.5 miles below confluence, near fish hatchery above Drake.

12/13

2

3

3

o

16

32

17

30

26



TABLE 4. (continued)

No.
TDS

CaC0
3

7/6 7/7 7/13
Sam.p1e Date
7/26 8/30 10/10 12/13

54 47

46 60

FOX CREEK

16 55

17 50 58

18 50 47

WEST CREEK

19

20

21 21

22 24

MILLER CREEK

23 37

24 42 16

BIG THOMPSON RIVER

70

65

23

17

28

TNTC

55

2

7

8

124

24

58

138

12

82

36

110

6

18

28

104

70

74

30

46

34

62

25

26

35

35

TNTC

TNTC

28

42

60

62

40

128

110

56

LOCATION OF SAMPLES

16. 2.1 miles above confluence of North Fork and West Ck. above influence of Glen Haven.
17. 1.0 miles above confluence. at old Ca:mp Bob Waite.
18. .4 miles above confluence, near confluence North Fork and Fox.
19. 4.7 miles above confluence. above "Dude Ranch" on Cow Creek.
20. 4.5 miles above confluence, below "Dude Ranch'! on Cow Creek.
21. 3.0 miles above confluence, above Greely Camp Glen Haven.
22. .4 miles above confluence, above G1encrofter Store.
23. 3.7 miles above confluence Miller Ck. and North Fork above influence of new

development.
24. .3 miles above confluence Miller Ck. and North Fork.
25. .3 miles above Drake, Colo. on Big Thompson River.
26. .3 miles below Drake, Colo. on Big Thompson River.


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	




