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Abstract

Radar and Satellite Observations of Precipitation:

Space Time Variability, Cross-Validation, and Fusion

Rainfall estimation based on satellite measurements has proven to be very useful for

various applications. A number of precipitation products at multiple time and space scales

have been developed based on satellite observations. For example, the National Oceanic and

Atmospheric Administration (NOAA) Climate Prediction Center has developed a morphing

technique (i.e., CMORPH) to produce global precipitation products by combining existing

space-based observations and retrievals. The CMORPH products are derived using infrared

(IR) brightness temperature information observed by geostationary satellites and passive

microwave (PMW)-based precipitation retrievals from low earth orbit satellites. Although

space-based precipitation products provide an excellent tool for regional, local, and global

hydrologic and climate studies as well as improved situational awareness for operational

forecasts, their accuracy is limited due to restrictions of spatial and temporal sampling and

the applied parametric retrieval algorithms, particularly for light precipitation or extreme

events such as heavy rain.

In contrast, ground-based radar is an excellent tool for quantitative precipitation es-

timation (QPE) at finer space-time scales compared to satellites. This is especially true

after the implementation of dual-polarization upgrades and further enhancement by urban

scale X-band radar networks. As a result, ground radars are often critical for local scale

rainfall estimation and for enabling forecasters to issue severe weather watches and warn-

ings. Ground-based radars are also used for validation of various space measurements and

products.
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In this study, a new S-band dual-polarization radar rainfall algorithm (DROPS2.0) is

developed that can be applied to the National Weather Service (NWS) operational Weather

Surveillance Radar-1988 Doppler (WSR-88DP) network. In addition, a real-time high-

resolution QPE system is developed for the Engineering Research Center for Collabora-

tive Adaptive Sensing of the Atmosphere (CASA) Dallas-Fort Worth (DFW) dense radar

network, which is deployed for urban hydrometeorological applications via high-resolution

observations of the lower atmosphere. The CASA/DFW QPE system is based on the combi-

nation of a standard WSR-88DP (i.e., KFWS radar) and a high-resolution dual-polarization

X-band radar network. The specific radar rainfall methodologies at S- and X-band frequen-

cies, as well as the fusion methodology merging radar observations at different temporal

resolutions are investigated. Comparisons between rainfall products from the DFW radar

network and rainfall measurements from rain gauges are conducted for a large number of

precipitation events over several years of operation, demonstrating the excellent performance

of this urban QPE system. The real-time DFW QPE products are extensively used for flood

warning operations and hydrological modelling. The high-resolution DFW QPE products

also serve as a reliable dataset for validation of Global Precipitation Measurement (GPM)

satellite precipitation products.

This study also introduces a machine learning-based data fusion system termed deep

multi-layer perceptron (DMLP) to improve satellite-based precipitation estimation through

incorporating ground radar-derived rainfall products. In particular, the CMORPH technique

is applied first to derive combined PMW-based rainfall retrievals and IR data from multiple

satellites. The combined PMW and IR data then serve as input to the proposed DMLP

model. The high-quality rainfall products from ground radars are used as targets to train

the DMLP model. In this dissertation, the prototype architecture of the DMLP model is
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detailed. The urban scale application over the DFW metroplex is presented. The DMLP-

based rainfall products are evaluated using currently operational CMORPH products and

surface rainfall measurements from gauge networks.
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CHAPTER 1

Introduction

Water, a primordial element of life, impacts almost every segment of human society. A

large amount of infrastructure, including rain gauges, disdrometers, weather radars, and

meteorological satellites (see Figure 1.1), has been deployed to directly or indirectly measure

rainfall and its space time distribution.

Radar

Rain Gauge

LEO Satellite

Disdrometer

GEO Satellite

Figure 1.1. Instrument commonly used to measure precipitation.

Among these tools, rain gauges are traditionally used and are still widely used today.

However, the accuracy of rain gauge data faces a number of error factors. Alongside the
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random and systematic errors, the resolution of sampling time and bucket volume of rain

gauges may introduce additional uncertainties, especially under light rain circumstances. The

most significant limitation of using rain gauges to measure rainfall is that they only provide

point-wise observations. A huge number of rain gauges must be deployed in order to capture

the complex spatial and temporal variability of precipitation. In the real world, this is neither

possible nor necessary due to the arduous nature of the deployment and maintenance of the

gauges. Kidd et al. (2017) concluded that the total area measured globally by all currently

available rain gauges is surprisingly small, equivalent to less than half a football field or

soccer pitch.

Compared to rain gauges, satellites have coverage advantages over most of the globe,

especially in the ocean and polar regions. Therefore, rainfall estimation based on satellite

measurements has been an important topic since the earliest meteorological application of

satellites (Kidd and Levizzani 2011). In recent years, a number of precipitation products

at multiple time and space scales have been developed using satellite observations. For ex-

ample, the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction

Center has proposed a morphing technique (CMORPH) to derive global precipitation prod-

ucts by combining existing space-based measurements and retrievals (Joyce et al. 2004). In

particular, the geostationary satellite infrared (IR) brightness temperature information and

precipitation retrievals from low-earth-orbit passive microwave (PMW) measurements are

essentially used to produce CMORPH products (Joyce et al. 2004; Xie et al. 2017). The

various satellite-based precipitation products are commonly used for disaster monitoring

worldwide and for initializing numerical weather prediction (NWP) models and validation of

the model-based precipitation forecasts. However, for many applications such as flash flood
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warnings, higher resolution precipitation estimation is needed in both spatial and temporal

domains.

According to the U.S. National Academy report, floods are responsible for more deaths

nationwide than any other weather phenomenon (NRC National Research Council 2005). In

addition, ongoing rapid urbanization has made densely populated areas even more vulnera-

ble to flood risks since the heavy development in urban regions decreases the response time

of urban watersheds to rainfall and subsequently increases the chance of localized flooding

events over small spatial domains. From a temporal perspective, small-scale urban flash

floods can occur within a few minutes after local torrential rainfall due to urban character-

istics such as impervious cover and complex drainage system. In such scenarios, accurate

and timely estimation of precipitation and streamflow is critical for civil defense, especially

in urban areas. High-resolution high-quality precipitation products are also prerequisites

for complex hydrological and hydraulic modelling. However, it is challenging to obtain such

high-quality rainfall estimates using only rain gauges and/or satellite measurements. In this

context, ground-based weather radar has shown great advantages in conducting precipita-

tion observations over wide areas in a relatively short time span. Hence, weather radars

have been widely used for rainfall measurement applications and studies of the microphys-

ical characteristics of precipitation. They form the cornerstones of national severe weather

warning and forecasting infrastructure in many developed countries.

Traditionally, quantitative precipitation estimation (QPE) with radars starts with re-

flectivity and rainfall rate relationships, commonly referred to as Z − R relations. These

relations have usually been applied to single polarization radar systems and are still in use

today. Since 2011, the National Weather Service (NWS) had initiated an effort to upgrade

the operational S-band (wavelength ∼10 cm) Weather Surveillance Radar-1988 Doppler
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(WSR-88DP) network to include dual-polarization capabilities. Currently, all the WSR-

88DP sites in the contiguous United States (CONUS) operate in dual-polarization mode

(https://www.roc.noaa.gov). One of the main drivers for dual-polarization upgrade has

been better rainfall estimation. The dual-polarization radar observations offer a number

of advantages over single-polarization radar by gleaning more information about raindrop

size distribution (DSD) and providing more characteristics for discriminating precipitation

echoes from non-precipitation echoes. The combination of dual-polarization radar measure-

ments and environmental temperature is also capable of identifying different hydrometeor

types over illuminated scanning volumes (Liu and Chandrasekar 2000; Lim et al. 2005; Chan-

drasekar et al. 2013; Bechini and Chandrasekar 2015). Efficient and effective hydrometeor

classification can further enhance the performance of QPE (Cifelli et al. 2011; Chen et al.

2017a).

1.1. Problem Statement

The space-based precipitation product is an excellent tool for regional, local, and global

hydrologic and climate studies. It is generally used in operational global weather models

for improving situational awareness. However, its accuracy is severely hindered by spatial-

temporal sampling limitations as well as uncertainties introduced by the parametric retrieval

algorithms, especially for extreme events such as very heavy or very light rain.

On the other hand, although the radar QPE performance has been significantly improved

through dual-polarization upgrades, there is still no standard methodology that can be ap-

plied to obtain optimal QPE for a given set of dual-polarization measurements. How to fully

address the fundamental science in radar QPE remains challenging. In addition, numerous
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studies have concluded that the challenges in radar QPE come not only from physical con-

siderations but also from system engineering issues such as radar measurement height, beam

broadening, and coverage limitations (Chen and Chandrasekar 2015b). Such engineering

challenges are specially obvious in operational or urban environments. Operationally, the

S-band radars comprising the WSR-88DP network are spaced about 230 km apart in the

eastern U.S. and about 345 km apart in the western U.S. At the maximum coverage range

of 230 km, the lowest (0.5 degree) beam is about 5.4 km above ground level (AGL) due to

the Earth’s curvature. Incomplete low-level coverage and degraded spatial resolution at long

distances impede the ability of such systems to detect and monitor fine-scale weather features

such as tornadoes and flash floods. In order to overcome the WSR-88DP coverage limitations

and improve weather sensing in the lower troposphere (1-3 km AGL), the U.S. National Sci-

ence Foundation Engineering Center (NSF-ERC) for Collaborative Adaptive Sensing of the

Atmosphere (CASA) has introduced an innovative sensing paradigm called Distributed Col-

laborative Adaptive Sensing (DCAS). The DCAS system utilizes dense network of low-power,

low-cost, small X-band (wavelength ∼3 cm) dual-polarization radars to observe, predict, and

respond to hazardous weather events (McLaughlin et al. 2009; Chandrasekar et al. 2017).

These short-range radars can also serve as gap fillers for the WSR-88DP network by provid-

ing enhanced sampling of precipitation and winds near the ground. The first CASA research

test-bed with four radar nodes was deployed in tornado-prone Southwestern Oklahoma at

the locations of Cyril, Lawton, Rush Springs, and Chickasha. The high resolution radar

observations, post-event analysis, and fundamental multi-disciplinary research during five-

years of operation demonstrated the success of the CASA concept (McLaughlin et al. 2009;

Chandrasekar et al. 2012).
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Since 2012, CASA, in collaboration with the North Central Texas Council of Governments

(NCTCOG) and the NWS, has embarked on the development of its first urban test bed in the

Dallas-Fort Worth (DFW) metroplex, one of the largest metropolitan areas in the U.S. This

urban remote sensing network, centered by the deployment of eight boundary-layer observing

dual-polarization X-band radars and a WSR-88DP station (KFWS radar), is expected to

provide real-time severe weather products for warning operations in a densely populated

urban environment (Chandrasekar et al. 2017). How to produce real-time high-resolution

high-quality rainfall products is one of the key research aspects in the deployment of the

DFW dense urban radar network.

1.2. Research Objectives

The main scientific objective of this research is to explore the potential of ground-based

dual-polarization radar network observations for accurate precipitation estimation, and sub-

sequently use the ground radar-derived products to evaluate and improve satellite-based

rainfall retrievals. Within this general goal, specific research objectives are devised, includ-

ing:

1) invention of new dual-polarization radar rainfall methodologies that can be applied to

operational S-band radar network;

2) development of real-time high-resolution high-quality rainfall system for the CASA

DFW dense urban (X- and S-band) radar network;

3) design of a machine learning-based data fusion system toward improving rainfall esti-

mation using satellite observations (i.e., IR data and PMW-based retrievals). Therein, the

ground radar products are used as targets to train the machine learning model.
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1.3. Organization of the Dissertation

In Chapter 2, the fundamentals and challenges of rainfall estimation using different plat-

forms are described, including rain gauge, satellite, and weather radar.

Chapter 3 presents a new S-band dual-polarization radar rainfall methodology. This

methodology, driven by a region-based hydrometeor classification mechanism, incorporates

the spatial coherence and self-aggregation of dual-polarization observables to produce robust

rainfall estimates. The proposed algorithm can be easily applied to other radars, including

operational WSR-88DP.

Chapter 4 details the development of CASA X-band radar networks. Such networks

can overcome the WSR-88DP coverage limitations through enhanced sampling of weather

features in the lower troposphere. The dense urban radar network deployed over the DFW

metroplex will be described, with an emphasis on its various application products for urban

hazard detection and mitigation.

The real-time high-resolution rainfall system designed for the DFW dense urban radar

network, as well as the techniques used to integrate radar data at different frequencies and

scales, will be detailed in Chapter 5. The DFW QPE system performance will be evaluated

using rainfall measurements from a high-quality rain gauge network.

Chapter 6 explores the application of high-resolution ground radar rainfall products to

satellite-based precipitation retrievals. The CMORPH technique is implemented first to

derive combined IR data from five geostationary satellites and PMW-based precipitation

estimates from multiple low earth orbit satellites. Then, a machine learning system is in-

troduced to improve rainfall estimation based on PMW-based retrievals and IR data, using

ground radar-derived rainfall products as target labels. An urban-scale application of the

proposed Deep Multi-Layer Perceptron (DMLP) model in the DFW area will be presented.
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Chapter 7 summarizes the main points of this study and suggests directions for future

research.
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CHAPTER 2

Challenges of Rainfall Estimation

As mentioned in Chapter 1, rainfall estimation is generally conducted using rain gauge,

weather radar, and/or satellite. Accurate measurement of rainfall plays a key role in cli-

matological and hydrological modelling. To this end, numerous rainfall estimation systems

using one or more of these instruments have been developed for regional, local, or global

applications. In this chapter, an overview of the pros and cons of different platforms for

rainfall measurement is given, with an emphasis on the fundamentals of radar quantitative

precipitation estimation (QPE).

2.1. Rain gauge-based rainfall measurement

Despite recent advances in remote sensing of precipitation, rain gauges are still in use

for practical applications in many countries. Point-wise rain gauge data are also used for

calibration of remote sensing precipitation products. In general, several types of rain gauges

are deployed including weighing gauges, capacitance gauges, tipping bucket gauges, optical

gauges, and disdrometers, etc. Among them, tipping bucket rain gauges are the most com-

monly used for surface rainfall measurement in a number of federal agencies including NWS,

the U.S. Forest Service, and the U.S. Geological Survey (USGS). Tipping-bucket gauges are

also widely used to provide rainfall depths in hydrological models and flash flood systems

that can provide emergency management agencies with warnings.

The operation principle of a tipping bucket gauge is rather simple. Falling rain is collected

in a fixed-size bucket that tips and drains when it gets full. Recording the number of tips

along with information about their time of occurrence can render estimates of rainfall rates

and accumulations. Various recording strategies can be followed to collect the tipping bucket
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gauge data. For example, one may record the number of tips that occur during a pre-specified

period of time (e.g., number of tips every minute). Alternatively, the time each tip occurs

can be recorded with a certain time resolution (e.g., the recording device checks whether the

bucket has tipped every 10 seconds). The bucket size and frequency of the recording device

samples determine the accuracy of the tipping-bucket gauge. Transforming the recorded

number of tips into rainfall intensities can be made on different time scales when providing

rainfall data products for subsequent applications.

Tipping bucket gauges have a number of limitations, especially when used in an oper-

ational environment. Systematic error is the most significant type of error and includes

losses due to wind, wetting, evaporation, and splashing. Wind-induced error, the largest

component, has been extensively investigated using different methodologies ranging from

field intercomparisons to the use of numerical simulation of the airflow around the gauge site

(Nepor and Sevruk 1999). Another significant error source associated with tipping bucket

gauges is caused by the nonconformance of the bucket size with the constant calibration

volume specified by the manufacturer. Humphrey et al. (1997) recommended a dynamic cal-

ibration to account for the nonlinear behaviour of the gauge, especially at the high-intensity

rainfall rates. In addition, tipping bucket gauges also suffer from mechanical and electri-

cal problems, as they may occasionally fail to tip during a storm event. The failure may

be caused by partial or complete clogging of the funnel that drains into the bucket, data

transmission interruption, or even temporary power failure. Such errors are almost always

unpredictable.

Beyond the errors that can be either accounted for or removed with a certain degree

of accuracy from the rain gauge measurements, the sampling mechanism of the tipping

bucket gauge can also introduce significant errors to the rainfall products. In particular, the

10



uncertainties associated with different recording scenarios and the chosen time scale of the

final products need to be carefully investigated. Otherwise, additional sampling errors may

be introduced from its working mechanism and the inability to capture the rainfall time series

characterized by small temporal features. The gauge’s performance and its associated errors

are sensitive to the applied sampling interval and the bucket volume. The ideal setting of the

tipping bucket gauge to properly capture rainfall characteristics, such as intensity, especially

at small time scales on the order of a few minutes, is a challenging task. For example, under

light rain circumstances, for a gauge with bucket volume resolution of 0.254 mm (or 0.01

in), it may take too long to get a tip (Chen and Chandrasekar 2015a).
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Figure 2.1. 5-min rainfall accumulations from a rain gauge and collocated
disdrometer at (42.1224◦N, 92.2806◦W) during a storm event in Iowa on June
4, 2013.

Figure 2.1 illustrates examples of 5-min rainfall accumulations recorded by a tipping

bucket gauge and collocated disdrometer during a storm event in Iowa on June 4, 2013.

Obviously, compared to the disdrometer, which can measure raindrop size distribution, the

gauge can hardly capture the fine temporal structure of rainfall distribution. Chen and

Chandrasekar (2015a) also found that as the time scale of rainfall accumulations increases,
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the gauge measurement error decreases substantially. In applications, extra attention needs

to be paid when configuring the bucket volume and time scale resolution of a gauge system.

Another concern in using a large number of rain gauges to observe the complex distri-

bution of precipitation is the arduous deployment and maintenance of the gauges. The area

effectively covered by rain gauges is surprisingly limited over the globe (Kidd et al. 2017).

As such, it is almost impossible to use gauge data to study the global or local distribution

of precipitation.

2.2. Satellite-based rainfall estimation

While global rain gauge data are routinely available over land, that information is very

sparse in many important regions. In addition, many gauge locations report only six hour

or even daily amounts. From a global coverage point of view, meteorological satellites have

excellent coverage, especially over the ocean and polar regions. In addition, remote sens-

ing precipitation estimates from a satellite can be acquired with a temporal resolution of

three hours or less, which provides the necessary information to enhance the resolution and

accuracy of global precipitation products.

Generally, satellite precipitation estimation is conducted either through cloud top tem-

perature in the infrared (IR) images from geostationary satellites or through the passive

microwave (PMW) measurements on board low earth orbit satellites. Geostationary IR

data are available globally nearly everywhere nearly all the time. This is an ideal tool for

global rainfall monitoring due to low latency and frequent refreshing. IR-based algorithms

retrieve rain rates based on cloud-top brightness temperatures. Equation (1) illustrates the

operational Geoestationary Operational Environmental Satellite (GOES) IR rainfall relation
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(Vicente et al. 1998):

(1) R = 1.1183× 1011 exp(−3.6382× 10−2 × T 1.2)

where R is the rainfall rate in mm hr−1; T is the cloud-top brightness temperature in Kelvins.

The algorithm in Equation (1) is derived using a power-law fit between instantaneous

radar-based rainfall estimates and satellite measurements of IR brightness temperatures at

cloud top. Figure 2.2 shows the conceptual diagram of IR-based rainfall estimation for con-

vective and stratiform precipitation systems. As shown in Figure 2.2 (a), this algorithm

works fairly well for convective rainfall. However, the measured cloud-top temperature does

not always correlate well with rainfall. In many instances, the cold cloud shield in a precipi-

tation system may be several times larger than the areal coverage of the actual precipitating

region. Cirrus cloud or decaying rainfall with cold but nonprecipitating clouds can be easily

mistaken for precipitating systems if IR data alone are used. In addition, rainfall is not

necessarily just associated with cold clouds. For example, rainfall in the eastern Pacific in-

tertropical convergence zone often occurs as a result of relatively warm clouds (Joyce et al.

2004).
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Figure 2.2. Conceptual diagram of rainfall estimation using geostationary
satellite Infrared (IR) data.
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Low earth orbit satellite PMW-based retrieval algorithms have better physics than IR

since clouds are semi-transparent at PMW frequencies. The low frequency band PMW

signals (10-37 GHz) sense the thermal emission of raindrops, whereas the higher frequencies

(85 GHz and higher) sense the scattering of upwelling radiation from the earth to space

due to ice particles in the rain layer and tops of convective systems. Figure 2.3 shows a

conceptual diagram of rainfall estimation using PMW sensors.

(a) (b)

Ocean (Emission)

Lower Tb 

above 

clear air

Higher Tb 

above 

cloud

Low ε

High ε
∙
∙
∙

∙ ∙ ∙
∙ ∙

∙∙
∙
∙ ∙

∙

Land (Scattering)

Lower Tb 

above 

cloud

Higher Tb 

above 

clear air

** * **
*
** **

*

∙ ∙∙

Figure 2.3. Conceptual diagram of rainfall estimation using low earth orbit
satellite passive microwave (PMW) sensors.

However, due to technical challenges that have precluded the deployment of PMW sensors

on geostationary platforms, these instruments are restricted to polar-orbiting satellites. As

a result, spatial and temporal sampling limitations from these observations are significant.

For a given satellite, the PMW-based retrievals only refresh a few times per day and latency

can be up to three hours. In order to produce a complete rainfall product over the globe, a

number of such satellites have to be combined and the data need to be averaged substantially

over time.
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Combining different IR and PMW sensors to take advantage of the strengths of each

system provides us a possible solution to accurate estimation of global rainfall. To this end,

numerous studies have been devoted to this topic in recent years. More details about merging

satellite IR and PMW data will be discussed in Chapter 6.

2.3. Radar-based rainfall estimation

Radar is the acronym for RAdio Detection And Ranging. It is an object-detection system

that uses radio waves to determine the range, angle, and/or velocity of targets. Essentially,

radar operates by sending electromagnetic waves toward targets to determine their properties

based on the return signal. Radar has been used for rainfall estimation since its earliest

application in meteorology. Compared to rain gauges and/or satellites, there are a number

of advantages of using radar, including the fact that radar can observe precipitation over a

wide area in a relatively short span of time. Long-range microwave (S- or C-band) radar

networks are used as an integral part of the weather sensing and forecast infrastructure

by many nations. Typical examples include the U.S. WSR-88DP network, also known as

next-generation radar (NEXRAD) network, which is comprised of about 160 S-band radar

sites that are operated according to a set of predefined scan strategies. Figure 2.4 shows the

layout of WSR-88DP radars within the U.S. and its territories.

Meteorological targets such as thunderstorms are composed of large numbers of hydrom-

eteors extending over a large space. Modern pulse radars treat these as distributed targets

within a sample volume, which is typically defined by the radar’s beamwidth and sam-

ple range spacing. Figure 2.5 shows the conceptual sample volume illuminated by a pulse

Doppler weather radar. The beamwidth is a physical parameter of the radar antenna. The

sample range resolution △R is determined by the pulse width T0, which is often referred to
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Figure 2.4. The operational WSR-88DP locations over the United States
and its territories. All the radar nodes are operating at S-band frequency.

ሺ�,�ሻ
∆�

Figure 2.5. Weather radar sensing distributed targets within a sample vol-
ume. The sample volume size is determined by the radar’s horizontal and
vertical beamwidths θ and ϕ, and range spacing △R.

as “pulse duration”.

(2) △R =
cT0
2

where c is the speed of light.
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Figure 2.6. Range-time characteristics of a pulse Doppler radar system.

The relation in Equation (2) can also be explained by the properties of a finite-duration

pulse in the range-time domain, as shown in Figure 2.6 (Bringi and Chandrasekar 2001).

The leading and trailing edges of a transmitted pulse are characterized as two lines defined

by r = ct and r = c(t − T0) . The return signal at the radar receiver at time t consists of

contributions from all the particles in the range between r1 and r2 (note△R = r2−r1), which

are located along the characteristic line whose slope equals −c. A well-designed radar should

be able to distinguish targets separated by T0/2, which indicates that the pulse width is the
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dominant factor of the radar range resolution. The time period between each transmitted

pulse Ts in Figure 2.6 is known as the Pulse Repetition Time (PRT).

2.3.1. Polarimetric radar rainfall relations.

As the fundamental building block for deriving various radar rainfall algorithms, the raindrop

size distribution (DSD) describes the probability density of raindrop sizes. A good knowledge

of DSD in the precipitating system is necessary for accurate radar rainfall estimation and

forecasting. Since the early work of Marshall and Palmer (1948), various DSD models have

been proposed, among which the gamma distribution model can adequately represent many

of the natural variations in the shape of the raindrop size distribution (Ulbrich 1983). The

corresponding form of gamma DSD can be expressed as:

(3) N(D) = N0D
µe−ΛD

where N0 is the intercept parameter in m−3 mm−1−µ, µ is a distribution shape parameter, Λ

is a slope term in mm−1, and D is the volume equivalent diameter in mm. Often, the water

content normalized gamma DSD model is used, given by:

(4) N(D) = Nwf(µ)(
D

D0

)µ exp[−(3.67 + µ)
D

D0

]

where Nw is the scaled version of N0 defined as:

(5a) Nw =
N0

f(µ)
Dµ

0

(5b) f(µ) =
6

3.674
·
(3.67 + µ)µ+4

Γ(µ+ 4)
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Traditionally, rainfall estimation using radar has been accomplished by relating the backscat-

tered power to the rainfall rate through the so-called Z − R relations. These relations have

usually been applied to single polarization radar systems and are still in use today. However,

it has been found that Z −R relations greatly depend on DSD, which varies across different

rainfall regimes, even within a single storm. It is a challenging task to find an ideal Z − R

relation for a given region to represent the local rainfall microphysical properties of different

types of storms in different seasons. With technologies such as dual-polarization, the sensing

capabilities of weather radars have improved considerably over the past 30 years (Bringi and

Chandrasekar 2001). Dual-polarization radar offers a number of advantages over conven-

tional single-polarization radar for rainfall estimation because more information about the

rainfall microphysics can be obtained from the dual-polarization measurements. In addition,

dual-polarization provides us with a better means for radar data quality control, as well as

discrimination of meteorological echoes versus non-meteorological echoes such as fires, birds,

and insects, etc. (Chandrasekar et al. 2013). The combination of dual-polarization radar

measurements, namely, reflectivity (Zh), differential reflectivity (Zdr), the specific differential

propagation phase (Kdp), copolar correlation coefficient (ρhv) and environmental tempera-

ture information (T ) is also capable of identifying different hydrometeor types to further

improve the precipitation estimation (Liu and Chandrasekar 2000; Lim et al. 2005; Cifelli

et al. 2011; Chen et al. 2017a). Therefore, all the operational WSR-88DP sites now operate

in dual-polarization mode.

The dual-polarization radar measurements are derived from the covariance matrix of the

polarized radar return signals. Here, four polarimetric radar variables extensively used in

rainfall applications are reviewed, including Zh, Zdr, Kdp, and ρhv. For details, the interested

readers may refer to the text book by Bringi and Chandrasekar (2001). Among the four
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variables, Zh, Zdr, and ρhv can be directly measured by a dual-polarization radar system,

while Kdp is estimated as the range derivative of the differential phase shift φdp.

The reflectivity factor at horizontal (Zh) and vertical polarization (Zv) can be related to

the backscatter properties of raindrops, integrated over the drop size distributions as:

(6a) Zh =
λ4

π5|Kw|2

∫
σh(D)N(D)dD

(6b) Zv =
λ4

π5|Kw|2

∫
σv(D)N(D)dD

where λ is the radar wavelength; D is the particle equivalent diameter in mm; σh and σv are

the radar cross sections at horizontal and vertical polarization, respectively; N(D)dD is the

number of drops per cubic meter in the interval of D to D + dD; and |Kw|
2 is the dielectric

factor of water given by |Kw|
2 = |(εr − 1)/(εr + 2)|2. Here εr is the complex dielectric

constant of water. In applications, only the horizontal polarization measurement Zh is used

for rainfall estimation. Therefore, for simplicity, Zh is also referred to Z in this dissertation.

The logarithmic transformation 10log10Z is generally used and its units are in decibels of Z

relative to 1 mm6m−3, which corresponds to 0 dBZ.

The differential reflectivity is the ratio of the reflectivity factor at horizontal polarization

to that at vertical polarization state, and can be expressed as follows:

(7) Zdr = 10 log10
Zh

Zv

= 10 log10

∫
σh(D)N(D)dD∫
σv(D)N(D)dD

where Zh and Zv are reflectivity factors defined in Equation (6). Zdr is positive for oblate

particles, negative for prolate particles, and zero for particles that are ideally spherical.

Typically, raindrops are oblate and therefore have positive Zdr values. Conversely, key DSD
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parameters can be estimated using Zdr measurements since Zdr is directly related to the

particle axis ratio and size. Zdr is also a critical dual-polarization radar variable used to

identify rainfall intensities and hydrometeor types. In addition, examining the Z and Zdr

space, we can separate hailstones from raindrops because hailstones generally produce larger

Z but smaller Zdr relative to raindrops (Aydin et al. 1986).

The specific differential propagation phase is defined as:

(8) Kdp =
180

π
λRe

∫
[fh(D)− fv(D)]N(D)dD

where fh and fv are the complex forward scattering amplitudes at horizontal and vertical po-

larization, respectively. In the dual-polarization radar system, Kdp is estimated as the range

derivative of the forward propagation phase difference (φdp) between the two polarization

channels.

(9) K̂dp =
φdp(r2)− φdp(r1)

2(r2 − r1)

However, it should be noted that radar does not measure the forward propagation phase

shift φdp directly. Instead, the total differential phase ψdp is derived from the copolar co-

variance matrix. ψdp consists of phase shifts resulting from both forward propagation and

backscattering. As such, the estimation of Kdp from radar measured ψdp is a nontrivial task

due to measurement noise and backscattering phase (i.e., δco). In general, range filtering on

ψdp measurement from a radar system is employed to isolate φdp information from δco and

random noise (Hubbert and Bringi 1995). However, by averaging or smoothing over a long

path, the peak Kdp may get smoothed, which will lead to underestimation of peak rainfall

intensity. In this study, the adaptive algorithm proposed by Wang and Chandrasekar (2009)
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is implemented for both S- and X-band radars, used in this research in order to mitigate noise

fluctuations and suppress the estimation errors. This method is dynamically fine-tuned to

local variability and statistical fluctuation and it is performed in the complex domain (Wang

and Chandrasekar 2009).

The copolar correlation coefficient is a measurement of the correlation between the re-

flected horizontal and vertical power returns, which can be expressed in terms of the elements

in the backscattering matrix.

(10) ρhv(0) =
〈SvvS

∗

hh〉

〈S2
hh〉

1/2
〈S2

vv〉
1/2

where Shh and Svv refer to the elements of the backscattering matrix; the asterisk stands

for the complex conjugate; and the angle brackets denote the sample average. Although ρhv

is not directly related to rainfall intensity, it is a good indicator of regions where there is a

mixture of precipitation types, such as rain and hail (Liu and Chandrasekar 2000; Bechini

and Chandrasekar 2015). In this study, ρhv is used as one of the key parameters for radar

data quality control. In addition, ρhv is sensitive to particle axis ratio and shapes, so it is

also utilized in the hydrometeor classification algorithm for the S-band radar data processing

prior to the implementation of specific rainfall relations.

With the DSD, the ‘still air’ rainfall rate R is defined as (Bringi and Chandrasekar 2001):

(11) R = 0.6π × 10−3

∫
v(D)D3N(D)dD

where v(D) in m s−1 is the raindrop terminal velocity at sea level. In applications, v(D)

can be modelled as a function of the particle equivalent diameter through v(D) = 9.65 −

10.3e−0.6D (Atlas et al. 1973).
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From Equations (6), (7), (8), and (11), it can be seen that Z, Zdr, Kdp, and rainfall

rate R are all characterized by the moment of DSD. Subsequently, via the DSD information

various empirical rainfall relations can be derived with respect to the dual-polarization radar

measurements. For illustration purposes, Figure 2.7 shows the scatter plots of rainfall rate R

versus reflectivity Z computed using DSD data collected during the National Aeronautics and

Space Administration (NASA) Integrated Precipitation and Hydrology Experiment (IPHEx)

field campaign. Similarly, Figure 2.8 shows the scattergram of R versus Kdp, both of which

are computed based on DSD data collected during the NASA Iowa Flood Studies (IFloodS)

field experiment (Chen and Chandrasekar 2015a). The black curves in Figures 2.7 and 2.8

indicate the best-fitting power-law rainfall relations.
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Figure 2.7. Scattergram of rainfall rate R versus reflectivity Z. Both R
and Z values are computed based on DSD data collected during the NASA
IPHEx field experiment. The black curve indicates the best-fitting power-law
relation of R(Z). The grey bars stand for the mean and standard deviation of
the binned data.
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Figure 2.8. Scattergram of rainfall rate R versus specific differential prop-
agation phase Kdp. Both R and Kdp values are computed based on DSD
data collected during the NASA IFloodS field experiment (Chen and Chan-
drasekar 2015a). The black curve indicates the best-fitting power-law relation
of R(Kdp).

In general, radar rainfall algorithms can be broadly classified into four categories: R(Z),

R(Z,Zdr), R(Kdp), and R(Zdr, Kdp) in the following forms:

(12) R(Z) = aZb

(13) R(Z,Zdr) = aZbZc
dr

(14) R(Kdp) = aKb
dp
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(15) R(Zdr, Kdp) = aZb
drK

c
dp

It should be noted that in the above equations a, b, and c are generic constants determined

by the natural distribution of rainfall regimes and radar operating frequencies. In addition,

the specific attenuation A has also been used for rainfall estimation in a number of previous

studies such as Ryzhkov et al. (2014) and Junyent and Chandrasekar (2016). Here, R(A) is

not classified as a separate category since the attenuation is essentially estimated from the

polarimetric radar variables.

It is well known that each dual-polarization parameter-based rainfall estimator has its

advantages and disadvantages. As a result, Z, Zdr, and Kdp are often combined to derive

rainfall products. Although there is still no standard criterion to adopt regarding which

estimator to apply for a given set of dual-polarization measurements, a few approaches have

been suggested in previous studies and are commonly used by the weather radar commu-

nity. For example, Chandrasekar et al. (1993) attempted to minimize the standard error

of rainfall rate estimates by selecting rainfall relations according to rainfall intensities. The

rainfall intensity-based method was also applied during the Joint Polarization Experiment

(Ryzhkov et al. 2005). Petersen et al. (1999) selected different rainfall relations based on

thresholds on the values of Z, Zdr, and Kdp. In recent years, the hydrometeor classification-

based rainfall methodologies have been extensively used for operational applications (Cifelli

et al. 2011; Giangrande and Ryzhkov 2008; Chen et al. 2017a). Such rainfall systems typ-

ically consist of three modules-data quality control, classification of different hydrometeor

types, and precipitation quantification with appropriate rainfall relations. At Colorado State

University (CSU), an optimization algorithm has been developed by Cifelli et al. (2011)
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using hydrometeor identification results to guide the choice of particular radar rainfall re-

lations, namely, R(Z), R(Kdp), R(Z,Zdr), and R(Kdp, Zdr). This optimization algorithm

is commonly referred to as CSU-HIDRO (Cifelli et al. 2011) or the CSU Dual-polarization

(CSU-DP) algorithm (Seo et al. 2015). It is a key component of the Dual-Polarization

Radar Operational Processing System (DROPS) developed at CSU. Therefore, it will be

referred to as DROPS1.0 in this dissertation. DROPS1.0 has been used in a number of

previous studies. For instance, Cifelli et al. (2011) demonstrated the encouraging perfor-

mance of DROPS1.0 in the high plains environment with data collected from the S-band

CSU-University of Chicago-Illinois State Water Survey (CSU-CHILL) radar and a network

of rain gauges in Denver, Colorado. Pei et al. (2014) used DROPS1.0 rainfall algorithms to

study the impacts of raindrop fall speed and axis radio errors. Seo et al. (2015) showed that

DROPS1.0 was superior to a single-polarization-based rainfall algorithm during the NASA

Global Precipitation Measurement (GPM) satellite mission’s Iowa Flood Studies (IFloodS)

field experiment in central and northeastern Iowa, especially for intense rainfall estimation.

Besides the research-based rainfall methodologies described above, a couple of operational

rainfall systems have been developed for the WSR-88DP network. For example, a nationwide

multisensor precipitation estimator (MPE) system was developed by the NWS Office of

Hydrologic Development (OHD: reorganized into the National Water Center as of April 1,

2015) as part of the Advanced Weather Interactive Processing System (AWIPS) (Kitzmiller

et al. 2011). The MPE system, which produces rainfall estimates on 4 km by 4 km grids

and updated every hour, is widely used by the Weather Forecast Offices (WFOs) and River

Forecast Centers (RFCs). Recently, a comparative package termed the multi-radar multi-

sensor (MRMS) system was developed by the National Severe Storms Laboratory (NSSL)

to produce severe weather and precipitation products (Zhang et al. 2011).

26



However, most of the hydrometeor classification-based rainfall systems, including the one

implemented by WSR-88DP dual-polarization systems (Giangrande and Ryzhkov 2008), are

designed using traditional bin-by-bin based fuzzy logic classification methods. They are

not sufficient for operational applications, especially when the input radar data are noisy.

That is because the hydrometeor identification results will be noisy and unrealistic if the

radar data quality is low since the classification quality and correlation with adjacent range

gates are not taken into account. In addition, traditional fuzzy logic approaches suffer

severely from brightband contamination due to the challenges of mixed-phase precipitation

classification in the melting layer. In this study, an improved S-band radar rainfall algorithm

termed DROPS2.0 will be introduced. The advanced classification technique implemented

in DROPS2.0 exploits the spatial information content of dual-polarization radar observables.

Compared to traditional fuzzy logic-based classifications, it also considers spatial coherence,

the quality of the classification itself, and the self-aggregation propensity of polarimetric

radar measurements (Bechini and Chandrasekar 2015). Details about the improved rainfall

methodology will be presented in Chapter 3.

In addition, it should be noted that the choice of rainfall estimator gets more complicated

at higher frequencies (e.g., X-band) when Z and Zdr must be corrected for attenuation

before being used for any quantitative applications such as QPE. Therefore, this study takes

advantage of the differential phase measurements which are not affected by radar calibration

and attenuation. In particular, only the R(Kdp)-based rainfall algorithm is considered at

X-band. The specific X-band R(Kdp) relation for the X-band radar network developed in

this study will be detailed in Chapter 5.
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2.3.2. Limitations of Conventional Operational Radar Network.

Although dual-polarization technologies are now moving into operational applications, fun-

damental challenges in radar rainfall estimation remain. To this end, numerous experiments

have been conducted to quantify the error structure of various radar rainfall algorithms. The

net result of these experiments has shown two fundamental aspects of rainfall estimation:

the physical science aspect and the system engineering consideration. The physical science

process essentially represents the tracking of rainfall microphysical properties from radar

observations. It is fundamentally related to the physical model of DSD and relation of the

model to radar parameters. Chapter 3 develops an improved rainfall methodology by taking

into account the microphysical constraints and spatial coherence of the dual-polarization

measurements.

In spite of the improvements in rainfall estimation realized from dual polarization, vari-

ous experiments done to compare rainfall from radar with ground observations have exposed

extensive challenges that were not purely rainfall physics but were related to system engi-

neering issues, such as beam averaging, radar measurement bias, bright band contamination,

and sampling and geometry considerations. Again, taking the WSR-88DP network as an ex-

ample, the S-band radars comprising this operational network are spaced about 230 km apart

in the eastern U.S. and about 345 km apart in the western U.S. From a temporal resolution

perspective, individual radars in the WSR-88DP network are operated with a predefined

volume coverage pattern (VCP) mode that is repeated. The update rate, the same for all

areas under the radar umbrella, will increase as the number of elevation angles of VCP in-

creases. Figure 2.9 shows the 14 tilts from 0.5◦ to 19.5◦ elevation angles for the commonly

used VCP12 scanning strategy. It takes five to six minutes to finish a volume scan task,

which is too long to capture weather evolution details, especially for high-impact localized
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Figure 2.9. (a) Center beam height as a function of range from radar for the
14 elevation tilts of the WSR-88DP volume coverage pattern 12 (VCP12) scan
mode. (b) Height of the lowest (0.5 degree) beam in the VCP12 scan mode.
The beam height is calculated based on the 4/3 earth radius model.

meteorological phenomena such as tornadoes and flash floods. Figure 2.9 also illustrates the

lowest (0.5 degree) beam height of VCP12 as a function of distance from radar. The beam

height is calculated based on the 4/3 earth radius model. At the maximum coverage range

of 230 km, the lowest beam center is about 5.4 km above ground level (AGL). Compounding

the terrain blockage, more than 70% of the atmosphere below 1 km altitude AGL cannot be

observed over the continental U.S. (see Figure 2.10).
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Figure 2.10. WSR-88DP radar coverage at 1 km AGL over the continental
U.S. The coverage map is essentially derived based on the center beam height
of 0.5-degree elevation (courtesy of NOAA/NWS/OST).

From the spatial resolution perspective, WSR-88DP radar sample volumes extend to

many cubic kilometers as the range increases. The incomplete low-level coverage and limited

spatial resolution at long distances impedes the ability of such systems to identify and detect

fine-scale weather features. As a result, the performance of operational rainfall products de-

rived based on the WSR-88DP network gets significantly degraded, especially in the western

U.S. (Willie et al. 2017).

In order to overcome the sampling and coverage limitations of WSR-88DP, the National

Science Foundation Engineering Research Center for Collaborative Adaptive Sensing of the

Atmosphere (CASA) has proposed a new weather sensing paradigm through the use of a

large number of small X-band radars. The X-band systems are appropriately spaced to

overcome the terrain blockage and effect of the earth’s curvature. The adaptive sensing

concept developed by CASA and its urban implementation will be detailed in Chapter 4.
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CHAPTER 3

An Improved Dual-Polarization Radar Rainfall

Algorithm (DROPS2.0)

As presented in Section 2.3 in Chapter 2, R(Z), R(Z,Zdr), R(Kdp), and R(Zdr, Kdp) are

often combined to derive rainfall products. Among various radar rainfall methodologies,

the hydrometeor identification- (HID) based rainfall algorithms have been fairly successful

in recent years. Such an algorithm is also applied to the operational S-band WSR-88DP

network. Figure 3.1 illustrates a flowchart describing the CSU DROPS1.0 algorithm, which

is one of the earliest studies of HID-based rainfall estimation. The specific rainfall estimators

Fuzzy-logic-based Hydrometeor Type

��� ≥ 0.3

R=N/A R(���)

��� ≥ 0.5

��� ≥ 0.3� ≥ 38

R(�) R(Z, ���)R=N/A
��� ≥ 0.5

R(���) R(���, ���)

Mix
Ice Liquid

N Y

N Y

N Y N Y

Figure 3.1. Diagram of the blended rainfall algorithm developed at CSU
(DROPS1.0). The algorithm is driven by the fuzzy logic-based hydrometeor
classification approach.

are given by Cifelli et al. (2011):

(16a) R(Z) = 0.017Z0.714

(16b) R(Kdp) = 40.5K0.85
dp
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(16c) R(Z,Zdr) = 6.7× 10−3Z0.927Z−3.43
drl

(16d) R(Zdr, Kdp) = 90.8Z−1.69
drl K0.93

dp

where Z (mm6m−3) and Zdrl = 10Zdr/10 are reflectivity and differential reflectivity in linear

scale.
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Figure 3.2. Generic blocks of a traditional fuzzy logic-based hydrometeor
classification approach.

The hydrometeor classification module in most of the HID-based rainfall systems, in-

cluding DROPS1.0, is based on a fuzzy logic approach, which typically includes four steps:

fuzzification, interference, aggregation, and defuzzification (see Figure 3.2). However, the

bin-by-bin-based fuzzy logic algorithm may not be sufficient for operational applications, es-

pecially when the radar data quality is low. That is, for a given range gate, the hydrometeor

classification result can be noisy if the input radar measurements are noisy since the infor-

mation from adjacent gates is not considered. In addition, the bin-by-bin-based approach

is severely affected by partial beam blockage and/or bright band contamination. Even if

the radar data are not polluted by clutter or partial beam blockage, the radar beam can
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overshoot precipitation at long distances from the radar, especially during stratiform rain

events. In the regions close to or within the melting layer, the bin-by-bin-based classification

approach is not able to clearly identify the mixed-phase precipitation. All these factors will

greatly affect the subsequent rainfall estimation. A smoother and clearer output is desirable

in an operational environment to ease the interpretation by the end users. Furthermore, the

rainfall relations in DROPS1.0 are derived based on simulated drop size distribution (DSD)

data (Cifelli et al. 2011), which may not be sufficient to represent real rainfall microphysical

properties.

In this chapter, an improved dual-polarization algorithm called DROPS2.0 is developed

for more accurate and robust rainfall estimation, especially in an operational environment.

Compared with the method in Cifelli et al. (2011), the improved method incorporates a

region-based hydrometeor classification methodology (Bechini and Chandrasekar 2015). In

addition, the specific rainfall relations have been upgraded based on real DSD observa-

tions collected during the NASA IFloodS field experiment. This study also attempts to

quantify rainfall estimation errors introduced by radar beam broadening. Although the

dual-polarization techniques provide us with a better means of radar system calibration,

data quality control, and rainfall estimation, the geometry of radar measurements combined

with the variability of spatial distribution of precipitation still pose challenges. A number of

studies have been devoted to the correction of range-dependent errors in rainfall estimates

obtained from gridded radar reflectivity data (Chumchean et al. 2004). Nevertheless, the

quantification of dual-polarization radar rainfall errors introduced by beam broadening and

beam tilting in native radar polar coordinates is relatively rare. One of the challenges that

limit such research is the ad hoc deployment of ground validation instruments (e.g., rain
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Table 3.1. NPOL radar and APU disdrometer locations during the NASA
IFloodS field experiment. The ranges and bearings relative to NPOL are
calculated using the 1980 Geodetic Reference System.

Latitude (◦N) Longitude (◦W) Range (km) Azimuth(◦)
NPOL 42.2681 92.5096 - -
APU01 42.2388 92.4637 4.99 130.60
APU02 42.1823 92.3654 15.24 128.60
APU03 42.1260 92.2817 24.56 129.89
APU04 42.1224 92.2807 24.88 130.45
APU05 41.9927 92.0602 48.12 129.31
APU06 41.9782 92.0758 48.20 131.76
APU07 41.9926 92.0914 46.17 131.36
APU08 41.9927 92.0709 47.45 129.98
APU09 41.8614 91.8854 68.62 130.95
APU10 41.8605 91.8737 69.42 130.48
APU11 41.8471 91.8603 71.24 130.80
APU12 41.8474 91.8458 72.13 130.15
APU13 41.6406 91.5418 106.28 130.65
APU14 41.6406 91.5416 106.28 130.64

gauges or disdrometers) relative to radar. During the NASA IFloodS field campaign, a va-

riety of ground-based instruments were deployed to collect high-quality in situ precipitation

data. Among them, 14 autonomous particle size and velocity (Parsivel) unit (APU) disdrom-

eters were deployed along the NASA Polarimetric (NPOL) S-band radar azimuthal radials at

different ranges, and tipping-bucket gauges were collocated with 10 APU disdrometers (see

Figure 3.3). The disdrometer locations, relative to the NPOL radar, are listed in Table 3.1.

This unique instrument layout provides us with an ideal environment in which to investigate

the impact of beam broadening on radar rainfall estimation. Therefore, this study takes the

opportunity to quantify rainfall errors of a few rainfall algorithms, namely, DROPS2.0, the

WSR-88D default R(Z) (hereafter referred to as NEXRAD Z−R), and the dual-polarization

rainfall relation proposed by Giangrande and Ryzhkov (2008) that is adopted by NEXRAD.
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Figure 3.3. Deployment of NPOL radar during NASA’s IFloodS field cam-
paign. The red plus signs denote the locations of 14 APU disdrometers. Rain
gauges are collocated with 10 disdrometers with underlines.

3.1. DROPS2.0 Rainfall Algorithm

The architecture of the DROPS2.0 rainfall algorithm is similar to DROPS1.0 (see Figure

3.1). In the following, the important features of DROPS2.0, as well as the specific rainfall

relations used by DROPS2.0, are presented. The logic of DROPS2.0 is shown in Figure 3.4,

which includes three main steps:

Step 1: data quality control and Kdp estimation;

Step 2: region-based hydrometeor classification;

Step 3: rainfall estimation.
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Figure 3.4. Architecture of the DROPS2.0 rainfall algorithm for dual-
polarization S-band radar.

In the data quality control step, the adaptive algorithm developed by Wang and Chan-

drasekar (2009) is implemented to estimateKdp and remove ground clutter and non-meteorological

echoes. Figure 3.5 illustrates the flowchart of the differential phase-based data quality control

process. Essentially, the non-meteorological echoes are identified based on the characteristics

of differential phase (ψdp) and co-polar correlation coefficient (i.e., ρhv) measurements. As

aforementioned, the estimation of Kdp is a nontrivial task because fundamentally it is a slope

measurement. Compared to traditional Kdp estimation methods such as Hubbert and Bringi
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(1995), the adaptive technique in Wang and Chandrasekar (2009) does not smooth the peak

Kdp by averaging over a long path. In this study, the Kdp estimation method in Wang and

Chandrasekar (2009) is implemented for both S-band WSR-88DP radar and X-band CASA

DFW radars.

Start from the 1st ray, ࢏ = ૚
Start from the 1st gate, ࢐ = ૚

Calculate dispersion (��) of differential phase over �� gates

Start of rain cell

Calculate dispersion (��) of differential phase over �� gates

End of rain cell

Last gate

NO

YES

YESNO

YES

NO

+࢐=࢐૚+࢏=࢏
૚ ࢐ = ࢐ + ૚

࢐ = ࢐ + ૚
�� > ૙. ૢૡ

�� < ૙. ૢૡ
and��� < ૙. ૢ

Figure 3.5. Flowchart of differential phase processing, where NG and NB

are constant numbers of consecutive good and bad gates, respectively.

The quality-controlled S-band dual-polarization radar measurements then serve as input

to the hydrometeor classification module. In this research, the region-based hydrometeor

classification proposed by Bechini and Chandrasekar (2015) is applied. A brief description

of this methodology is provided here. For details, the reader is referred to Bechini and Chan-

drasekar (2015). The input radar data for hydrometeor classification include Z, Zdr, Kdp,
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and ρhv. The vertical profile of temperature (T ) observed from a nearby sounding station

is also used as an optional input. The overall structure of this region-based classification

methodology is depicted in Step 2 in Figure 3.4. First, a traditional bin-based fuzzy logic ap-

proach (Liu and Chandrasekar 2000; Lim et al. 2005) with four general blocks (see Figure 3.2)

is implemented to get initial classification results. The temperature profile is then adjusted

based on the quality of wet ice classification, which is essentially the average confidence of all

the bins identified as wet ice based on the inference rule (Bechini and Chandrasekar 2015).

Second, a modified K-means clustering technique is applied to incorporate the spatial con-

tiguity and microphysical constrains. Then, the connected component labelling algorithm

is employed to derive connected regions (Gonzalez and Woods 2002), and the final clas-

sification is performed over connected regions where unique labelling of regions populated

with adjacent bins are assigned to the same hydrometeor type. In total, 11 hydrometeor

types are classified, namely, large drops (LD), drizzle (DR),rain (RA), heavy rain (HR),

rain hail mixture (RH), hail (HA), graupel (GR), wet ice (WI), dry ice (DI), crystals (CR),

and dendrites (DN). Ground clutter and non-meteorological echoes are also classified, and

marked as clutter (CL). Compared to the conventional fuzzy logic method, this region-based

approach is appealing in terms of operational application and easy interpretation. Figure 3.6

illustrates sample NASA S-band NPOL radar observations and corresponding hydrometeor

classification results for a range height indicator (RHI) scan at 23:43UTC, May 29, 2013. For

the sake of precipitation estimation, a similar concept to DROPS1.0 (Cifelli et al. 2011) is

adopted and the hydrometeor classes are narrowed down to three categories: liquid, rain-hail

mixture, and others, where “liquid” includes LD, DR, RA, and HR; “rain-hail mixture” is

RH; and “others” includes HA, GR, WI, DI, CR, DN, and CL. Rainfall estimation is then

conducted based on the hydrometeor categories and thresholds on Zh, Zdr, and Kdp. At
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S-band frequency, the thresholds on Zh, Zdr, and Kdp are 38 dBZ, 0.5 dB and 0.3 degree

km−1, respectively. However, the thresholds may need to be adjusted based on measurement

quality, which can vary from system to system due to a number of factors such as radar

signal processing algorithms.

In order to attain the specific rainfall relations, the DSD measurements from 14 Parsivel

disdrometers deployed during NASA’s IFloodS field campaign were used for simulation pur-

poses. The Parsivel’s DSD data is essentially the number of raindrops in a 32-by-32 size ver-

sus fall velocity matrix (Tokay et al. 2014). In total, 13772 one-minute-averaged DSDs were

used for deriving polarimetric rainfall relations. This DSD dataset (training data) consists of

nine precipitation days, including a couple of severe multicellular convective thunderstorms

and a few widespread stratiform rain cases. The dual-polarization radar moments (i.e., Z,

Zdr, Kdp) were simulated at S-band frequency using the T -matrix method (Waterman 1965).

The drop shape model used in the simulation is the one proposed by Brandes et al. (2002).

The temperature information is obtained from a local sounding station. Rainfall rates are

also computed directly from the DSD data using the following equation:

(17) R = 0.6π × 10−3

32∑

n=1

V (Dn)D
3
nN(Dn)Sn

where R is rainfall rate in mm hr−1; Dn is raindrop mean diameter in mm; Sn is diameter

spread in mm; N(Dn) is the number of drops, and V (Dn) is the raindrop terminal velocity in

m s−1, at diameter size level n. The diameter level Dn and spread Sn are specified for a given

type of disdrometer (Tokay et al. 2014). Equation (17) is essentially the discrete form of the

definition of rainfall rate given by Equation (11). In this study, the fall velocity measured

by disdrometers was not used due to its inaccuracy, particularly at larger size and higher

fall speeds. For details, the interested reader is referred to Tokay et al. (2014). Instead, the
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Figure 3.6. S-band NASA NPOL radar observations at 23:43UTC, May
29, 2013. (a) Z, (b) Zdr, (c) Kdp, (d) ρhv, and (e) corresponding hydrometeor
classification results.
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model-based relation V (D) = 9.65 − 10.3e−0.6D from Atlas et al. (1973) is adopted when

calculating rainfall rate from DSD data.

Then, nonlinear regression is conducted between rainfall rates and dual-polarization mea-

surements in order to get the specific rainfall relations given below:

(18a) R(Z) = 0.02Z0.657

(18b) R(Kdp) = 39.84K0.851
dp

(18c) R(Z,Zdr) = 5.4× 10−3Z0.94Z−3.593
drl

(18d) R(Zdr, Kdp) = 93.154Z−1.752
drl K0.953

dp

again, Z is in the units of mm6m−3, and Zdrl = 10Zdr/10 is differential reflectivity in linear

scale.

In addition, this chapter compares the proposed rainfall method with the standard

NEXRAD Z − R relation in Equation (16a), and the R(Z,Zdr) relation used by WSR-

88DP (Giangrande and Ryzhkov 2008). However, it should be noted that this study will

not fully implement the blended WSR-88DP rainfall methodology found in Giangrande and

Ryzhkov (2008). Instead, only the rainfall relation used in liquid regions is referred since the

current operational version of the WSR-88DP rainfall algorithm only estimates the amount

of liquid precipitation, in which case Equation (19) is adopted. Hereafter, Equation (19) will
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be referred to as the NEXRAD DP relation.

(19) R(Z,Zdr) = 1.42× 10−2Z0.77Z−1.67
drl

Before the implementation of DROPS2.0, NEXRAD Z−R, and NEXRAD DP relations,

the data quality control in step 1 of DROPS2.0 is applied. In addition, NEXRAD Z−R and

DP relations are only applied when the precipitation type is classified as liquid (based on

step 2 in DROPS2.0), and zeros are assigned for the regions where nonliquid precipitation

types are identified. To investigate the parameterization error structure of various rainfall

algorithms, another DSD dataset (testing data) is used to quantify the parameterization

errors, particularly for liquid precipitation estimation. Although collected in the same field

experiment, the testing dataset is independent from the training data used to derive Equation

(18). The normalized standard deviation (σp) of rainfall rate estimates (for liquid regions),

defined as follows, is computed at different rainfall intensity ranges:

(20) σp =
SD(RDSD −REST )

< RDSD >

where REST represents the estimated rainfall rates using radar rainfall relations in Equations

(16a), (18), and (19); RDSD stands for rainfall rates directly computed from testing DSD

data using Equation (17). SD(·) stands for standard deviation. The angle bracket stands

for sampling average.

Figure 3.7(a) shows the scattergram of rainfall rates estimated using the improved rainfall

relations in DROPS2.0 versus rainfall rates directly computed from testing DSD data using

Equation (17), whereas Figure 3.7(b) illustrates σp due to parameterization of various rainfall

algorithms. From a theoretical perspective, for liquid precipitation estimation, we can strive
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to achieve the error rates in Figure 3.7(b) provided the measurement errors can be eliminated

by spatial or temporal averaging. Figure 3.7(b) also shows that the improved rainfall relations

developed in this study have a better performance than the NEXRAD Z − R or NEXRAD

DP relations.

In Section 3.2, the performance of various algorithms are demonstrated and evaluated

with S-band NPOL radar data collected for three precipitation events during the NASA

IFloodS field experiment.

3.2. Application in NASA IFloodS Field Campaign

During the IFloodS experiment, the NPOL radar was deployed at an ideal location to fill

the gap of WSR-88DP low-elevation coverage, and for proximity to local river basins. NPOL

was operated in several modes, including the two-sweep (i.e., 0.7◦ and 1.4◦) full plan position

indicator (PPI), RHIs over the APU disdrometers, PPI sector (PPS) scans of precipitation

systems over principal river basins, and “bird bath” scans that can be used for monitoring Zdr

biases. The RHI sector scans covered an azimuth range of 8◦ above locations of ground-based

instrumentation (i.e., APU disdrometers). The PPI and RHI scan tasks were repeated every

3 min when precipitation was detected anywhere within NPOL’s coverage domain, and they

were performed throughout the campaign. Other scans, such as PPS and bird-bath scans,

were scheduled between rain scans on an event-by-event basis, among which three options

for PPS scans were considered depending on echo-top height and range to NPOL radar in

order to obtain high-resolution rainfall mapping over the local river basins. In this section,

three precipitation events characterized by different meteorological features were selected for

rainfall validation analysis. In the following, these three events are briefly described. Sample
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(a)

(b)

Figure 3.7. (a) Scattergram of estimated rainfall rates with S-band rainfall
algorithm in Equation (18) versus rainfall rates directly computed from DSD
data. The black line indicates the 1:1 line; (b) normalized standard deviation
of parameterization errors in various rainfall algorithms as a function of rainfall
intensity.
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products during the events are also provided, with an emphasis on quantitative evaluation

of various rainfall algorithms.

3.2.1. Rainfall events and dataset description.

20 May 2013 Case: This event, characterized by a mesoscale convective system (MCS),

began as strong, tornadic storms near the KDMX radar (NEXRAD deployed in Des Moines,

Iowa). From the evening hours of May 19 to the very early morning hours of May 20 local

time (central daylight time, i.e., UTC-5hr), a few isolated cells developed in the IFloodS

domain. In particular, a strong line of convection was observed to the west of the NPOL

radar moving to the east shortly after 00:00UTC, May 20. Followed by an asymmetric MCS

from the southwest, this convective line passed over the NPOL site around 01:45UTC. For

validation purposes, we only make use of the NPOL data collected during 02:00-05:00UTC,

May 20, when the rainfall was significantly impacting the disdrometer network. During this

period, NPOL was conducting regular RHI and full surveillance PPI scans. In addition, a

few PPS scans were conducted over the Turkey River basin (northeast of the NPOL radar)

and the disdrometer network near the 130 radial (southeast of the NPOL radar) when strong

convection moved to the regions of interest. In this research, the lowest (0.7◦ elevation) PPI

as well as PPS scans over the disdrometer network were used to generate various rainfall

products. In Figure 3.8, sample NPOL radar observations and corresponding rainfall rate

estimates using different algorithms are shown for the event of 20 May 2013. It is worth

mentioning that, because of the high winds (about 31 m s−1) at the radar site, it was decided

to stow the NPOL radar antenna in the vertical position at 01:26UTC, and it was restored

at 01:45UTC. This may slightly affect radar data processing and subsequent rainfall product

performance.
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(a) �� (b) ��� (c) ��� (d) ���

(e) Rain Rate: NEXRAD Z-R (f) Rain Rate: NEXRAD DP (g) Rain Rate: New Method (DROPS2.0)

Figure 3.8. Sample NPOL radar observations at 03:50 UTC 20 May 2013:
(a) Z, (b) Zdr, (c) φdp, (d) ρhv, and corresponding rainfall-rate estimates us-
ing different algorithms: (e) NEXRAD Z − R, (f) NEXRAD DP, and (g)
DROPS2.0.

25 May 2013 Case: This is a typical stratiform event. Rain showers were observed in

the IFloodS domain all through the night of May 24. The stratiform precipitation became

more widespread in the morning of May 25, especially to the south and east of the NPOL

site, and it lasted until late afternoon. Several flood and flash flood watches and warnings

were issued in the IFloodS and nearby regions. NPOL radar was fully staffed again after

maintenance on the previous day. It had been continuously conducting PPI and RHI scans

during this event. PPS scans near the 130◦ azimuthal angle were also scheduled around 12:00-

18:00UTC in coordination with the instrumented disdrometer array as precipitation was

focused there. It is a good case for horizontal variability studies of precipitation properties.

Similar to the previous event, the lowest PPI and PPS sweeps (0.7◦ elevation) collected

during 12:00-21:00UTC May 25 were used to derive rainfall products when fairly uniform

precipitation coverage was observed over the disdrometer network in the NPOL domain.
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Figure 3.9 shows sample NPOL radar observations and corresponding rainfall rate estimates

using different algorithms during this stratiform case.

(a) �� (b) ��� (c) ��� (d) ���

(e) Rain Rate: NEXRAD Z-R (f) Rain Rate: NEXRAD DP (g) Rain Rate: New Method (DROPS2.0)

Figure 3.9. As in Figure 3.8, but for observations at 15:39 UTC 25 May 2013.

29 May 2013 Case: With a major MCS passing through the entire IFloodS domain,

this is another well-documented case with severe weather and heavy rain. Besides the regular

PPI and RHI scans, NPOL performed many hours (around 17:15-21:00UTC) of dedicated

PPS scans for high temporal-resolution rain mapping. Around 21:00-24:00UTC, the strong

convective cells moved to the southeast of the NPOL coverage domain, where the disdrometer

arrays were deployed. Therefore, the lowest PPI scan data collected during this period

were utilized for rainfall analysis. In addition, single RHI scans over the disdrometer radial

were also conducted regularly in order to investigate the vertical structure of precipitation.

Nevertheless, characterization of the vertical structure/distribution of rainfall is beyond the

scope of this paper. Similar to Figures 3.8 and 3.9, Figure 3.10 illustrates sample NPOL

radar observations and corresponding rainfall estimates for this event.

Radar and APU Data Processing: During IFloodS, a number of disdrometers and

tipping-bucket rain gauges were deployed within the NPOL radar coverage to provide in
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(e) Rain Rate: NEXRAD Z-R (f) Rain Rate: NEXRAD DP (g) Rain Rate: New Method (DROPS2.0)

Figure 3.10. As in Figure 3.8, but for observations at 22:48 UTC 29 May 2013.

situ validation data (see Figure 3.3). A number of previous studies have shown that the

use of rain gauges can introduce significant biases to high temporal-resolution radar QPE

validation due to the limitations on sampling time and bucket volume resolution, particularly

in light rainfall cases (Chen and Chandrasekar 2015a). Therefore, this study will use only

APU data for radar rainfall product evaluation. During the three precipitation events, some

of the APUs had malfunctions. Only the APUs that were working fine all through the

three precipitation events are used in this paper, namely, APU02, APU03, APU05, APU06,

APU08, APU09, APU11, APU13, and APU14. Each APU, equipped with a Parsivel unit

(version 2) developed by OTT Hydromet in Germany, is an optical disdrometer that can

measure raindrop size and falling speed (Tokay et al. 2014). During the field experiment, the

APU sampling resolution was configured to 1 min. With the drop size distribution, rainfall

rate can be computed using Equation (17). For the sake of evaluation, the consecutive 1-

min APU rainfall rate data were aggregated to get 5-, 15-, 30-, 45-, and 60-min rainfall

accumulations.
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The data quality control and Kdp estimation procedure in Section 3.1 was applied to

NPOL radar data before implementing various rainfall relations. The estimated NPOL radar

rainfall rates corresponding to APU rainfall observation times were used to produce matched

radar rainfall amounts. For the time frames when APU or radar did not report rain, zeros

were assigned. The radar-APU rainfall pairs were then used for quantitative evaluation. For

the time frames when there was no NPOL radar data/scan (not often), a piecewise cubic

Hermite interpolating polynomial (PCHIP)-based interpolation methodology (Fritsch and

Carlson 1980) was applied in order to get radar rain rates that exactly match APU rainfall

measurements.

3.2.2. Evaluation Results and Discussion.

It is well known that radar observations represent a unit of illuminated volume in polar

coordinate with a resolution of 0.98◦×150 m, whereas APUs provide point-wise measure-

ments. In this study, the radar range gate closest to the APU location was selected for the

purpose of quantitative evaluation. The discrepancies caused by wind drift on radar-APU

comparison were neglected. Assuming the APU measurements are the “ground truth,” a set

of metrics are computed for rainfall estimates at different time scales at each APU location.

The evaluation metrics, including the normalized mean absolute error (NMAE), root-mean-

square error (RMSE), and Pearson correlation coefficient (CORR), are respectively defined

as follows:

(21) NMAE =
< |RR −RA| >

< RA >

(22) RMSE =
√
< (RR −RA)2 >
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(23) CORR =

∑
[(RR− < RR >)(RA− < RA >)]√∑

(RR− < RR >)2
√∑

(RA− < RA >)2

where the angle brackets stand for sample average, and RR and RA denote the estimated

rainfall amount at different time scales (i.e., 5-, 15-, 30-, 45-, or 60-min) from NPOL radar

and APU, respectively.

NMAE, RMSE, and CORR results for each of the events, as well as for all three events

combined, are shown in Tables 3.2-3.5. It should be noted that the NMAEs in Tables 3.2-3.5

are in percentage (%), RMSEs are in mm, and Z-R and DP represent NEXRAD Z−R and

NEXRAD DP algorithms, respectively.

Scrutinizing Tables 3.2-3.5, it can be concluded that DROPS2.0 generally has the best

performance in terms of NMAE and RMSE. Surprisingly, NEXRAD Z − R has lower

NMAE compared to the NEXRAD DP relation for most of the cases, although NEXRAD

DP generally has a slightly higher CORR. Nevertheless, there is no big statistical difference

among the three rainfall algorithms in terms of CORR. That is, all of the algorithms can

provide QPE with high CORR with respect to APU rainfall observations. However, it

should be noted that the CORR has an increasing trend as the rainfall accumulation time

increases from 5 to 60 min. On the other hand, the NMAE has a decreasing trend. This

can be attributed to the reduction of random error in radar measurements due to temporal

and spatial averaging. The RMSE increases as the rainfall accumulation time increases

(i.e., rainfall amount gets larger). In order to further demonstrate the rainfall performance,

Figure 3.11 shows scatterplots of the radar-APU rainfall comparisons at a sample APU

location (APU03) for the three cases combined. Corresponding evaluation results are shown

in Figure 3.12. Scatterplots of the individual events are not shown because they show

essentially similar results to those in Figures 3.11 and 3.12.
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(a) 5-min Rainfall (b) 15-min Rainfall

(e) 60-min Rainfall

(c) 30-min Rainfall (d) 45-min Rainfall

Figure 3.11. Scatterplots of radar rainfall estimates versus APU observa-
tions at different time scales at a sample APU location (APU03): (a) 5-, (b)
15-, (c) 30-, (d) 45-, and (e) 60-min.

51



(a)

(b)

(c)

Figure 3.12. Evaluation results of rainfall products at different time scales
with various rainfall algorithms at the location of APU03 for all the events
combined: (a) NMAE, (b) RMSE, and (c) CORR.

52



Table 3.2. Evaluation results of various rainfall products at different time
scales for the 20 May 2013 event.

NMAE (%) RMSE (mm) CORR

Z-R DP DROPS2 Z-R DP DROPS2 Z-R DP DROPS2

5-min Rainfall Product

APU02 36.47 44.92 39.16 0.61 0.79 0.62 0.95 0.97 0.94
APU03 43.23 45.62 38.13 1.24 1.42 0.91 0.88 0.88 0.91
APU05 54.06 43.80 39.36 0.78 0.72 0.48 0.81 0.89 0.93
APU06 48.84 57.20 48.44 0.94 1.00 0.76 0.73 0.80 0.90
APU08 33.04 33.25 42.91 0.48 0.53 0.56 0.92 0.96 0.94

APU09 39.28 47.00 29.19 0.67 0.84 0.43 0.99 0.99 0.97

APU11 62.60 69.17 53.07 2.00 2.26 1.93 0.80 0.72 0.73
APU13 57.55 52.93 34.78 0.34 0.32 0.17 0.72 0.81 0.93
APU14 53.76 57.95 59.64 0.38 0.41 0.41 0.73 0.85 0.67

15-min Rainfall Product

APU02 31.83 40.92 31.72 1.36 1.82 1.11 0.97 0.98 0.97

APU03 34.74 37.33 22.40 2.16 2.76 1.50 0.96 0.96 0.96
APU05 32.33 33.10 22.62 1.27 1.29 0.69 0.90 0.93 0.97

APU06 41.75 52.86 43.77 1.80 2.29 1.72 0.91 0.93 0.97

APU08 23.41 31.82 26.93 0.90 1.23 0.75 0.96 0.98 0.98
APU09 38.56 46.81 21.72 1.40 1.76 0.70 0.99 0.99 0.98
APU11 59.47 67.42 52.21 4.10 4.73 3.56 0.92 0.90 0.90
APU13 34.96 51.03 28.16 0.50 0.78 0.37 0.89 0.86 0.96
APU14 39.83 53.81 48.49 0.74 1.05 0.89 0.86 0.93 0.81

30-min Rainfall Product

APU02 29.38 40.55 25.97 2.26 3.14 1.71 0.98 0.99 0.99
APU03 30.06 35.06 17.51 3.04 4.09 1.79 0.97 0.98 0.98
APU05 20.72 29.54 18.95 1.24 1.66 0.87 0.95 0.97 0.99
APU06 38.02 51.73 42.20 2.60 3.49 2.67 0.96 0.96 0.99

APU08 18.37 32.02 17.99 1.10 1.91 0.92 0.98 0.99 0.98

APU09 38.51 46.92 17.63 2.23 2.75 1.06 0.99 0.99 0.98
APU11 58.60 67.44 52.15 5.97 6.89 5.19 0.95 0.94 0.93
APU13 23.47 47.50 25.06 0.53 1.19 0.54 0.96 0.92 0.98
APU14 33.19 53.22 42.25 1.07 1.70 1.28 0.92 0.97 0.89

45-min Rainfall Product

APU02 29.80 41.20 25.34 3.39 4.65 2.46 0.99 0.99 0.99
APU03 27.24 34.17 15.48 3.71 5.13 2.13 0.98 0.98 0.98
APU05 15.87 28.58 17.21 1.26 2.06 1.10 0.97 0.99 0.99
APU06 38.30 52.32 42.40 3.35 4.54 3.52 0.97 0.96 0.99
APU08 16.11 32.62 14.18 1.32 2.55 1.09 0.99 0.99 0.98
APU09 38.72 47.26 15.85 3.06 3.74 1.31 0.99 0.99 0.98
APU11 58.84 68.22 52.32 7.15 8.25 6.24 0.97 0.96 0.96
APU13 17.21 46.06 24.10 0.56 1.57 0.72 0.98 0.94 0.99
APU14 32.38 54.53 40.65 1.32 2.23 1.62 0.95 0.98 0.93

60-min Rainfall Product

APU02 29.96 41.79 24.86 4.46 6.13 3.27 0.99 0.99 0.99

APU03 24.42 33.61 14.03 4.36 6.25 2.44 0.99 0.98 0.98

APU05 13.47 28.43 16.31 1.37 2.56 1.40 0.97 0.99 0.99
APU06 38.55 52.96 42.31 4.18 5.75 4.51 0.98 0.96 0.99
APU08 15.52 32.98 11.92 1.54 3.25 1.24 0.99 0.99 0.98
APU09 38.93 47.43 13.92 3.79 4.64 1.49 0.99 0.99 0.98
APU11 59.40 68.87 52.45 8.68 10.03 7.62 0.98 0.98 0.97
APU13 17.56 47.13 23.64 0.70 1.91 0.90 0.98 0.94 0.99
APU14 31.31 55.12 38.88 1.50 2.67 1.88 0.97 0.99 0.95

3.2.3. Range Impact on QPE Performance.

As mentioned above, from a theoretical point of view, the advanced dual-polarization tech-

niques have made it generally possible to obtain rainfall algorithms less sensitive to DSD.

53



Table 3.3. Evaluation results of various rainfall products at different time
scales for the 25 May 2013 event.

NMAE (%) RMSE (mm) CORR

Z-R DP DROPS2 Z-R DP DROPS2 Z-R DP DROPS2

5-min Rainfall Product

APU02 34.89 35.94 42.97 0.13 0.13 0.15 0.78 0.82 0.81
APU03 39.41 42.71 37.44 0.14 1.14 0.12 0.81 0.78 0.79
APU05 32.66 35.73 42.83 0.12 0.13 0.15 0.86 0.85 0.80
APU06 35.33 33.44 37.44 0.14 0.12 0.13 0.84 0.87 0.85
APU08 33.43 34.59 40.38 0.13 0.13 0.16 0.85 0.85 0.80

APU09 38.49 42.83 48.86 0.16 0.17 0.19 0.82 0.82 0.81

APU11 41.82 44.32 49.58 0.18 0.19 0.21 0.74 0.76 0.77
APU13 40.50 40.74 47.16 0.15 0.15 0.17 0.79 0.80 0.75
APU14 41.22 40.61 47.25 0.15 0.15 0.17 0.78 0.79 0.74

15-min Rainfall Product

APU02 34.42 35.13 43.00 0.39 0.39 0.45 0.68 0.71 0.68

APU03 34.03 30.27 33.00 0.36 0.27 0.29 0.87 0.92 0.86
APU05 25.93 29.21 35.91 0.26 0.30 0.36 0.91 0.92 0.91

APU06 24.73 23.91 26.61 0.24 0.21 0.23 0.94 0.95 0.95

APU08 25.63 27.69 33.18 0.28 0.30 0.35 0.92 0.92 0.91
APU09 35.67 41.11 48.15 0.43 0.47 0.53 0.86 0.87 0.87
APU11 38.82 42.65 49.09 0.50 0.54 0.58 0.78 0.80 0.81
APU13 33.95 32.52 39.90 0.36 0.35 0.40 0.85 0.88 0.87
APU14 34.74 32.59 40.39 0.37 0.36 0.41 0.85 0.87 0.86

30-min Rainfall Product

APU02 30.08 30.53 37.83 0.65 0.66 0.77 0.78 0.81 0.81
APU03 32.22 26.12 31.61 0.66 0.49 0.54 0.89 0.95 0.89
APU05 22.81 26.54 34.13 0.44 0.52 0.65 0.94 0.94 0.94
APU06 22.05 21.27 22.86 0.39 0.35 0.38 0.96 0.96 0.97

APU08 21.29 25.31 31.10 0.44 0.51 0.60 0.95 0.95 0.95

APU09 33.69 40.63 48.45 0.80 0.89 1.01 0.88 0.90 0.90
APU11 37.79 42.62 49.30 0.95 1.02 1.11 0.81 0.82 0.83
APU13 28.71 28.63 37.03 0.59 0.60 0.71 0.91 0.92 0.92
APU14 29.44 28.76 37.10 0.61 0.61 0.71 0.90 0.91 0.92

45-min Rainfall Product

APU02 27.71 28.46 36.47 0.88 0.91 1.09 0.84 0.86 0.87
APU03 30.69 24.15 30.26 0.94 0.69 0.74 0.90 0.95 0.90
APU05 20.83 25.32 33.99 0.57 0.73 0.92 0.95 0.95 0.96
APU06 18.95 18.89 21.01 0.51 0.46 0.51 0.96 0.97 0.98
APU08 19.12 24.25 30.04 0.60 0.71 0.86 0.96 0.96 0.97
APU09 33.22 40.78 48.66 1.15 1.29 1.48 0.89 0.90 0.91
APU11 37.36 42.74 49.52 1.38 1.50 1.64 0.82 0.83 0.85
APU13 24.95 27.52 36.98 0.74 0.80 0.98 0.94 0.95 0.95
APU14 25.81 27.76 37.10 0.77 0.82 0.99 0.93 0.94 0.95

60-min Rainfall Product

APU02 26.47 28.13 36.29 1.10 1.16 1.40 0.87 0.89 0.89

APU03 29.94 23.44 28.05 1.21 0.90 0.91 0.91 0.96 0.92

APU05 19.46 25.14 34.18 0.68 0.93 1.19 0.96 0.96 0.97
APU06 17.55 17.55 20.34 0.61 0.57 0.63 0.97 0.97 0.98
APU08 18.10 23.56 30.31 0.74 0.90 1.10 0.97 0.97 0.97
APU09 32.52 40.61 48.47 1.49 1.69 1.94 0.89 0.91 0.92
APU11 36.46 42.38 49.15 1.78 1.95 2.14 0.83 0.84 0.86
APU13 23.62 27.39 37.21 0.89 0.99 1.25 0.95 0.96 0.97
APU14 24.67 27.58 37.37 0.92 1.01 1.25 0.95 0.96 0.97

However, from an operational point of view, the geometry of radar measurements combined

with the variability of the spatial structure of precipitation still limits the radar rainfall ac-

curacy, especially for the regions far from radar (Ryzhkov 2007; Gorgucci and Baldini 2015).

54



Table 3.4. Evaluation results of rainfall products at different time scales for
the 29 May 2013 event. “-” indicates no rain observed by radar or APU.

NMAE (%) RMSE (mm) CORR

Z-R DP DROPS2 Z-R DP DROPS2 Z-R DP DROPS2

5-min Rainfall Product

APU02 38.16 43.95 21.42 2.59 2.83 1.37 0.84 0.90 0.94
APU03 31.15 37.81 31.98 0.71 0.85 0.90 0.91 0.96 0.85
APU05 45.68 42.25 42.76 1.07 0.84 0.85 0.86 0.90 0.89
APU06 47.85 31.41 37.42 1.07 0.67 0.74 0.90 0.90 0.87
APU08 41.66 33.51 38.72 1.11 0.98 1.06 0.91 0.91 0.87

APU09 89.03 50.51 58.20 0.29 0.15 0.18 0.93 0.95 0.88

APU11 41.36 22.53 42.45 0.05 0.02 0.05 0.92 0.99 0.99
APU13 - - - - - - - - -
APU14 - - - - - - - - -

15-min Rainfall Product

APU02 36.80 43.69 18.23 6.07 6.87 2.97 0.93 0.95 0.97

APU03 21.42 35.12 20.14 1.06 1.73 1.35 0.98 0.98 0.94
APU05 30.88 30.54 28.11 1.80 1.33 1.13 0.91 0.95 0.96

APU06 41.98 19.94 17.37 2.04 0.86 0.72 0.96 0.97 0.97

APU08 32.32 25.16 28.17 2.19 1.58 1.60 0.93 0.95 0.92
APU09 86.65 44.91 39.97 0.51 0.25 0.22 0.98 0.98 0.97
APU11 25.03 18.58 40.33 0.05 0.03 0.09 0.98 0.99 0.99
APU13 - - - - - - - - -
APU14 - - - - - - - - -

30-min Rainfall Product

APU02 35.52 43.70 13.73 8.64 10.31 3.38 0.98 0.98 0.99
APU03 22.68 33.35 14.22 1.74 2.52 1.39 0.99 0.99 0.97
APU05 31.55 29.34 25.39 2.60 1.89 1.59 0.94 0.97 0.97
APU06 42.67 15.92 9.06 3.45 1.23 0.63 0.98 0.99 0.99

APU08 33.53 21.37 18.70 3.52 2.00 1.59 0.96 0.97 0.97

APU09 84.14 42.27 32.52 0.66 0.32 0.25 0.99 0.99 0.98
APU11 21.32 16.81 39.42 0.05 0.04 0.12 0.99 0.99 0.99
APU13 - - - - - - - - -
APU14 - - - - - - - - -

45-min Rainfall Product

APU02 35.09 43.70 12.52 10.64 13.05 3.70 0.99 0.99 0.99
APU03 23.17 32.09 11.24 2.43 3.34 1.44 0.99 0.99 0.99
APU05 31.52 28.60 24.49 3.32 2.33 1.99 0.98 0.99 0.99
APU06 43.31 15.88 7.35 4.73 1.57 0.66 0.99 0.99 0.99
APU08 35.52 19.70 11.89 4.60 2.23 1.20 0.99 0.99 0.99
APU09 84.41 41.98 30.53 0.82 0.40 0.30 0.99 0.99 0.99
APU11 17.73 13.39 38.15 0.06 0.05 0.15 0.99 0.99 0.99
APU13 - - - - - - - - -
APU14 - - - - - - - - -

60-min Rainfall Product

APU02 35.26 44.33 11.70 13.39 16.63 4.47 0.99 0.99 0.99

APU03 23.44 31.36 10.39 3.20 4.27 1.64 0.99 0.99 0.99

APU05 28.64 29.96 25.67 3.68 3.19 2.65 0.98 0.99 0.99
APU06 42.15 15.43 5.90 5.83 1.91 0.72 0.99 0.99 0.99
APU08 32.74 19.69 11.99 5.24 2.78 1.54 0.99 0.99 0.99
APU09 85.31 42.20 30.50 0.96 0.47 0.34 0.99 0.99 0.99
APU11 15.18 11.50 37.89 0.07 0.05 0.17 0.99 0.99 0.99
APU13 - - - - - - - - -
APU14 - - - - - - - - -

Here, the unique instrument layout during the NASA IFloodS field campaign is investigated

to quantify the rainfall errors introduced by range impact.
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Table 3.5. Evaluation results of various rainfall products at different time
scales for the three events combined.

NMAE (%) RMSE (mm) CORR

Z-R DP DROPS2 Z-R DP DROPS2 Z-R DP DROPS2

5-min Rainfall Product

APU02 37.14 42.79 30.65 0.90 1.01 0.56 0.92 0.95 0.96
APU03 37.61 41.89 35.54 0.65 0.75 0.58 0.88 0.91 0.90
APU05 43.51 40.52 41.88 0.52 0.44 0.40 0.86 0.91 0.91
APU06 44.44 39.69 40.82 0.56 0.48 0.42 0.83 0.86 0.89
APU08 37.17 34.05 40.52 0.47 0.43 0.47 0.92 0.93 0.89

APU09 41.31 45.24 42.94 0.30 0.35 0.23 0.92 0.94 0.96

APU11 51.21 55.16 51.52 0.71 0.80 0.68 0.80 0.73 0.76
APU13 46.89 42.66 51.82 0.21 0.18 0.22 0.70 0.76 0.67
APU14 44.59 45.19 50.58 0.20 0.21 0.22 0.76 0.74 0.73

15-min Rainfall Product

APU02 35.19 41.50 26.77 2.31 2.66 1.25 0.95 0.97 0.98

APU03 29.48 34.90 23.91 1.14 1.51 0.95 0.96 0.96 0.96
APU05 29.67 30.81 29.40 0.93 0.79 0.61 0.92 0.95 0.97

APU06 36.61 30.72 27.95 1.14 1.02 0.79 0.88 0.90 0.94

APU08 28.29 27.83 29.76 1.01 0.86 0.78 0.94 0.96 0.95
APU09 39.03 43.69 39.08 0.69 0.81 0.52 0.92 0.94 0.96
APU11 47.80 53.23 50.66 1.51 1.74 1.35 0.87 0.84 0.91
APU13 36.34 35.19 42.75 0.43 0.44 0.48 0.83 0.85 0.82
APU14 36.20 38.22 42.63 0.45 0.54 0.51 0.85 0.81 0.85

30-min Rainfall Product

APU02 33.03 40.51 21.64 3.82 4.61 1.73 0.98 0.98 0.99
APU03 27.92 32.37 19.62 1.72 2.29 1.14 0.96 0.96 0.98
APU05 25.82 28.47 26.85 1.24 1.12 0.90 0.95 0.97 0.98
APU06 34.60 27.98 23.13 1.83 1.58 1.19 0.90 0.92 0.95

APU08 25.87 25.56 23.02 1.57 1.22 0.89 0.95 0.97 0.98

APU09 37.52 43.13 37.41 1.15 1.35 0.93 0.92 0.94 0.95
APU11 46.55 52.93 50.52 2.38 2.74 2.16 0.86 0.83 0.93
APU13 28.89 32.10 37.38 0.62 0.73 0.75 0.90 0.89 0.90
APU14 30.52 35.18 38.53 0.71 0.92 0.85 0.89 0.84 0.91

45-min Rainfall Product

APU02 32.45 40.26 20.40 5.05 6.25 2.14 0.99 0.99 0.99
APU03 26.61 31.10 17.43 2.21 2.94 1.33 0.97 0.97 0.98
APU05 23.67 27.45 26.11 1.55 1.42 1.18 0.97 0.98 0.99
APU06 33.46 27.59 22.33 2.46 2.06 0.57 0.90 0.93 0.95
APU08 24.99 24.77 19.24 2.05 1.52 0.94 0.97 0.98 0.99
APU09 37.11 43.15 36.72 1.61 1.88 1.62 0.91 0.93 0.95
APU11 46.19 53.13 50.55 3.15 3.61 2.89 0.85 0.82 0.94
APU13 24.93 31.29 36.17 0.76 0.98 0.99 0.93 0.91 0.93
APU14 27.52 34.56 38.04 0.90 1.24 1.13 0.91 0.87 0.93

60-min Rainfall Product

APU02 32.32 40.64 19.81 6.17 7.73 2.61 0.99 0.99 0.99

APU03 25.35 30.46 15.99 2.67 3.58 1.53 0.97 0.97 0.98

APU05 21.31 27.78 26.50 1.70 1.83 1.54 0.97 0.98 0.99
APU06 32.22 27.27 21.86 3.00 2.54 1.95 0.91 0.93 0.96
APU08 23.01 24.68 19.11 2.33 1.90 1.18 0.97 0.98 0.99
APU09 36.67 43.00 35.99 2.02 2.36 1.70 0.90 0.93 0.95
APU11 45.83 53.11 50.39 3.86 4.43 3.59 0.84 0.81 0.94
APU13 23.16 31.10 35.56 0.89 1.21 1.24 0.94 0.93 0.95
APU14 26.30 34.35 37.74 1.07 1.52 1.41 0.93 0.89 0.95

As shown in Figure 3.3, APU05, APU06, and APU08 are almost collocated; APU09 and

APU11 are very closely deployed; and APU13 and APU14 are collocated. Therefore, for the

sake of comparison, this study takes the mean of ranges and rainfall evaluation results for
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those APUs that are closely deployed. Figure 3.13 shows a conceptual diagram illustrating

the radar beam broadening effect. The mean ranges, radar center beam heights, and radar

range gate volumes at these ranges are also indicated in Figure 3.13.

NPOL Radar
Range (km) 47.9324.5615.24 69.93 106.28

Center Beam Height (km) 0.20 0.34 0.74 1.17 2.03

Figure 3.13. Conceptual diagram showing radar beam broadening effect.

Figure 3.14 shows the CORR results of different rainfall products as a function of range

for all three events combined. Clearly, there is a decreasing trend in CORR, which indicates

that the radar-estimated rainfall and APU-observed rainfall are less correlated as the range

from the radar moves farther away. This again poses the challenge of using weather radar

to capture complex spatial and temporal variabilities of precipitation at long distances.

3.3. Summary

Although a number of radar rainfall algorithms are available in the literature, there is

no standard approach to radar rainfall estimation. In particular, when solid or mixed phase

precipitation is involved, it is difficult to determine which rainfall relation to apply to a given

set of radar measurements.

In this chapter, an improved S-band dual-polarization algorithm (DROPS2.0) has been

developed. DROPS2.0 is essentially an HID-guided approach. The advanced classification

technique implemented in DROPS2.0 exploits the spatial correlation of dual-polarization
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(a) 5-min Rainfall (b) 15-min Rainfall

(e) 60-min Rainfall

(c) 30-min Rainfall

(d) 45-min Rainfall

Figure 3.14. CORR of rainfall products at different time scales with various
rainfall algorithms at different ranges from radar for all the events combined:
(a) 5-, (b) 15-, (c) 30-, (d) 45-, and (e) 60-min rainfall.

radar observations from adjacent range bins. Compared to traditional fuzzy logic-based

methods, this hydrometeor identification methodology also takes into account the hydrom-

eteor microphysical constraints and the classification quality. Even in the case of limited

melting layer contamination, it can provide a clean classification that allows the application

of appropriate rainfall relations.

The proposed rainfall methodology has been demonstrated and evaluated with S-band

NPOL radar data collected during the IFloodS field campaign. It is shown that DROPS2.0

performs better compared to the NEXRAD Z−R relation or the dual-polarization algorithm

adopted by NEXRAD. In addition, the impact of radar beam broadening on various rainfall

algorithms has been investigated within the framework of the IFloodS field experiment.

It was found that the radar-estimated rainfall is less correlated with ground truth (i.e.,

disdrometer measurements) when the beam goes farther from the radar. Hence, it can be
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a challenging task to use weather radar to characterize the complex spatial and temporal

variabilities of precipitation at long distances (e.g., beyond 100 km).

DROPS2.0 is very robust, and it worked continuously without any incident during the

NASA IFloodS field experiment. Since S-band is one of the standard radar operating fre-

quencies in many countries, the rainfall system designed in this chapter can potentially be

applied in a broader domain with operational dual-polarization radars.
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CHAPTER 4

Dense Radar Network for Urban Weather Hazards

Detection and Mitigation

Most parts of the world are becoming increasingly urbanized. This rapid urbanization has

made densely populated areas more vulnerable to natural disasters such as urban flash floods.

Therefore, monitoring weather conditions in a timely manner at good spatial resolution is

critical in terms of protecting personal and property safety. To this end, a variety of product

systems have been developed based on the long-range microwave operational radar networks

(e.g., WSR-88DP in the U.S.). However, as described in Section 2.3.2 in Chapter 2, one

limitation of today’s large weather radar installations is their inability to cover the lower

part of the atmosphere due to the earth’s curvature and terrain blockage. The incomplete

low-level coverage, limited spatial resolution at long distances, and slow scan rate impede the

ability of such systems to identify and detect fine-scale weather phenomena such as tornadoes

and downbursts.

In this chapter, the principles of short-wavelength (i.e., X-band) radar technology and

networking are presented. The dense radar network developed by the Center for Collabora-

tive Adaptive Sensing of the Atmosphere (CASA) will be detailed, with an emphasis on the

development of application products for urban hazard detection and mitigation.
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4.1. Background of CASA

Radar sampling resolution is primarily determined by the transmitted pulse width, an-

tenna beamwidth, and range from radar. For an ideal uniformly illuminated parabolic re-

flector, the sampling resolution is given by:

(24a) Resolution cell length ≈ cT/2

(24b) Resolution cell width ≈ λR/d

where c is the speed of light; T is the transmitted pulse width typically in the order of µs;

λ is radar wavelength; d is the antenna aperture size; and R is the range from radar.

A study by McLaughlin et al. (2009) concluded that a reasonable antenna size for un-

obtrusive equipment deployment is of the order of 1 to 1.5 meters. Assuming the frequency

of the NWS WSR-88DP system (S-band), operating a radar with a 1-m antenna will result

in a resolution cell width of 3 km at 30 km range. The fine-scale weather features such

as tornadoes and localized flash floods cannot be resolved at this coarse resolution. In re-

ality, each WSR-88DP system is equipped with a 9 m diameter antenna. In addition, as

aforementioned, the WSR-88DP radar coverage is non-overlapping (at very high altitudes, if

any), and the spacing between radars is about 230 km in the eastern U.S. and 345 km in the

western U.S. The illuminated volume will be tremendously expanded as the distance from

the radar increases. Further, because of the earth’s curvature and terrain blockage, more

than 70% of the atmosphere below 1 km altitude AGL cannot be observed. From a temporal

resolution perspective, individual radars in the WSR-88DP network conduct volume scans

updated every five to six minutes, which is too long for applications such as urban flash flood
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monitoring. Moreover, deployment and maintenance of such high-powered large radars (12-

m radomes) are expensive in terms of cost efficiency and operational complexity. By going

to a shorter wavelength (X-band), higher spatial resolution can be attained with a smaller

antenna. Compared to the WSR-88DP radar, the easier manipulation of X-band radar can

also provide us with higher temporal resolution. In addition, the compact X-band system

can be readily deployed on small towers with small land footprints or existing infrastructure

elements such as rooftops and communication towers. Therefore, because of its low power

low cost, the small X-band radar has gained increasing interest in recent years.

As a prestigious National Science Foundation (NSF) Engineering Research Center (ERC),

CASA was established in 2003, dedicated to revolutionizing the ability to observe, under-

stand, predict, and respond to hazardous weather events (McLaughlin et al. 2009). It is a

multi-sector partnership among academia, industry, and government with over 50 million

USD in federal, university, industry, and state funding. In particular, the multidisciplinary

CASA research team, including radar engineers, computer scientists, meteorologists, soci-

ologists, and hydrologists, have aimed to overcome the resolution and coverage limitations

of traditional weather radar networks through deploying dense networks of shorter-range,

high-resolution X-band dual-polarization Doppler radars (Junyent et al. 2010; Chandrasekar

et al. 2012). The innovative collaborative and dynamic sensing paradigm proposed by

CASA, called Distributed Collaborative Adaptive Sensing, or DCAS, can significantly en-

hance weather observations, especially in the lower troposphere (1-3 km AGL). Figure 4.1

illustrates the simplified architecture of a typical DCAS system, which includes distributed

high-resolution X-band Doppler radars, algorithms that dynamically process the collected

data, detect ongoing weather features, and manage system resource allocations as well as

interfaces that enable end-users to interact with the system.
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by radar network
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Figure 4.1. Simplified architecture of a distributed collaborative adaptive
sensing (DCAS) system. The real-time data and products are disseminated to
various end users. Through meteorological command & control (MC&C) the
radar network scanning strategy is adapted according to feedback from end
users.

Compared to the static scanning strategy adopted by WSR-88DP radars, the DCAS

approach employed by CASA adaptively operates the radars within a dynamic information

technology infrastructure, directing the radars to scan areas of interest according to chang-

ing weather conditions and end-user needs (McLaughlin et al. 2009; Chen and Chandrasekar

2018). In this way, CASA’s multidisciplinary team conducts end-to-end research from sensor

observation to product development and validation linked to end user decision-making and

response. The DCAS system uses a Meteorological Command and Control (MC&C) compo-

nent to collaboratively coordinate the scanning strategy of distributed radars in a network

environment. Through a space-time adaptive targeted sector-scan approach, or a collabo-

rative processing approach, the network-level performance is superior to the capabilities of

individual radars in terms of update rate on key weather features, minimum beam height,

and spatial resolution (Junyent and Chandrasekar 2009). In addition, the requirement for

63



radar transmitter power is lower in DCAS mode than it would be if the radars were operated

independently in order to achieve a certain level of sensitivity. As well as the high-resolution

observations of the lower troposphere provided by CASA radars, the network topology of

CASA allows for large areas of overlapping coverage. At the overlapping regions, multiple

Doppler analyses can be conducted to retrieve the vector wind velocity and wind patterns.

The dense network topology also provides a fault-tolerant system that can operate and re-

configure itself if one of the radars is down. Overall, through mapping storms, winds, and

rain, the CASA radar network serves as a critical emergency weather warning tool that can

save lives and property.

The first research network developed by CASA, termed Integrated Project 1 (IP1), which

consisted of four radar nodes, was deployed in the “tornado alley” over southwestern Okla-

homa for the study of tornadoes, severe thunderstorms, and other severe weather hazards

(McLaughlin et al. 2009). The test bed, covering an area of about 7,000 km2, was located

approximately 45 km southwest of Oklahoma City, Oklahoma. Figure 4.2 illustrates the cov-

erage map of the CASA IP1 radars. These radars-KCYR, KLWE, KRSP, and KSAO-were

installed in the towns of Cyril, Lawton, Rush Springs, and Chickasha, Oklahoma, respec-

tively. Each radar node was approximately 30 km away from the next unit. The blue circles

in Figure 4.2 correspond to a 40 km range from the radars. The range resolution of IP1

radars is 75 m. The location of the test bed was chosen based on its climatological and

meteorological properties. Being in tornado alley, this test bed has about a 77% chance of

experiencing at least one tornado each year, and severe storms are almost 100% guaranteed

every year. This area receives an average of four tornado warnings and 53 thunderstorm

warnings per year (www.spc.noaa.gov). This four-node DCAS system was operated in a

tight loop with an end user group comprised of the NWS Weather Forecast Office (WFO)
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Figure 4.2. CASA IP1 testbed in Oklahoma. The letter symbols such as
KSAO denote the names of the various radars. The circles in blue correspond
to the 40 km converge range rings of the X-band radars.

in Norman, Oklahoma, emergency managers who have jurisdictional authority within and

upstream of the test bed area, and CASA researchers. The high-resolution observations,

post-event case studies, and fundamental multi-disciplinary research during the five years’

operation (2007-2011) demonstrated the excellent performance of the CASA DCAS concept

(McLaughlin et al. 2009; Junyent et al. 2010; Chandrasekar et al. 2012).
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However, it should be noted that moving to X-band from conventional S-band research

did not come easily, as technical solutions needed to be found for several basic limitations,

such as attenuation, range velocity ambiguity, etc. In particular, the attenuation induced

by propagation in rain media was an important challenge in X-band applications. Extensive

research in CASA and elsewhere demonstrated that this can be overcome by using some mod-

ern attenuation correction techniques that include dual-polarization (Lim and Chandrasekar

2016). Similarly, using a standard uniform pulsing scheme at X-band will result in a reduced

maximum observable velocity due to the range velocity ambiguity (Bringi and Chandrasekar

2001). As documented in Bharadwaj et al. (2010), modern pulsing schemes with advanced

signal processing were developed in CASA to overcome this limitation. Another critical

problem with short range operations in an urban environment is the high clutter environ-

ment. One needs to pay extra attention to clutter suppression. While clutter suppression

by itself is not complicated, all the advanced clutter suppression techniques must work in

conjunction with the operational mode for clutter suppression as well as range velocity miti-

gation. CASA researchers such as Nguyen et al. (2008) and Bharadwaj et al. (2010) invested

heavily in this, and advanced clutter suppression techniques were developed to handle the

high clutter environment.

Since spring 2012, CASA, in collaboration with the NWS and the North Central Texas

Council of Governments (NCTCOG), has been operating its first dense urban radar network

in the Dallas-Fort Worth (DFW) area, one of the largest inland metropolitan areas in the

U.S. All the major technological advances developed through CASA have been put into

operation in most of the radars in the network at DFW, with a demonstration of research

in operations for urban weather hazard detection and mitigation. In the following sections,
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the CASA DFW dense urban radar network and examples of its operational products will

be detailed.

4.2. CASA Dallas-Fort Worth (DFW) Dense Urban Radar Network

The DFW metroplex is among the fastest-growing major urban areas in the country. It is

home to two major airports, including DFW International Airport, the third busiest airport

in the world; numerous regional airports; and many large sports complexes. The DFW area

experiences a wide range of natural hazardous events such as severe winds, tornadoes, and

flash floods. It is an ideal place to demonstrate the application of a dense radar network for

urban weather disaster monitoring.

Centered in the DFW urban remote sensing network are eight dual-polarization X-band

radars that can provide coverage to most of the 6.5 million people in this region. Figure

4.3 shows photos taken during the installation of various DFW radars, while 4.4 illustrates

the geographical deployment of the eight X-band radars as well as the S-band WSR-88DP

deployed in Fort Worth (the KFWS radar). The letter symbols in Figure 4.4 correspond

to the names of the various radars. The specific locations of each radar node, including

longitude, latitude, and altitude information, as well as the cities where the radars are

installed, are listed in Table 4.1.

The radar system deployed in the DFW urban testbed is based on new technologies

developed within the CASA project. The system specifications and data products produced

by the DFW radars are listed in Table 4.2. More details about the CASA X-band radar

system can be found in Junyent et al. (2010). Table 4.2 also shows the key parameters of a

typical WSR-88DP radar system for comparison purposes. The DFW X-band radars sit atop
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Figure 4.3. Installation of CASA DFW radars. The letter symbols (e.g.,
XUTA) correspond to the naming of various radars. More information about
DFW radar deployment can be found in Table 4.1.

Table 4.1. Longitude/latitude information of the eight dual-polarization X-
band radar nodes in the DFW urban network. The altitudes above mean sea
level (AMSL), as well as the cities where the radar are deployed are also listed.
The one marked with ∗ (i.e., XMKN radar) is yet to be deployed.

Radar Name Latitude (◦N) Longitude (◦W) Altitude (m) City
XUTA 32.7306 97.1125 300 Arlington
XMDL 32.4921 96.9973 250 Midlothian
XFTW 32.8385 97.4257 300 Fort Worth
XUNT 33.2536 97.1520 224 Denton
XJCO 32.3717 97.3890 263 Cleburne
XADD 32.9814 96.8391 210 Addison
XMSQ 32.7556 96.5332 148 Mesquite
XMKN∗ 33.2118 96.6572 225 McKinney

a high-performance pedestal assembly capable of high accelerations and rapid back-and-forth

PPI and RHI scans.
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Figure 4.4. The layout of S-band KFWS WSR-88DP radar (100 km range
ring in red) and DFW dual-polarization X-band radars (40 km range rings in
blue). Letter symbols such as XMDL correspond to the names of the various
radars.

The major objectives of the development of this dense urban remote sensing network are:

1) To develop high-resolution, three-dimensional mapping of atmospheric conditions,

focusing on the boundary layer, to detect and forecast severe hazards including high wind,

tornado, hail, and flash flood;
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Table 4.2. System specifications of DFW X-band radar versus WSR-88DP
S-band radar.

WSR-88DP S-band Radar DFW X-band Radar
Transmitter

Transmitter Type Klystron Magnetron
Center Frequency 2.7-3GHz 9.41GHz
Wavelength 10 cm 3.2cm
Peak Power 750kw 8kw
Average Power 1000w 12w
Max. Duty Cycle 0.2% 0.16%
Pulse repetition Long: 318 to 452 Hz; Short:

318 to 1304 Hz
2.0KHz (maximum)

Polarization Dual linear, H and V channel Dual linear, H and V chan-
nel

Receiver
Type Dual channel, linear output

I/Q,log output
Parallel, dual channel, lin-
ear output I/Q

Dynamic range 95 dB(0.795MHz) 90 dB (1MHz)
Noise figure 4.6 dB (540 Kelvin) ≤5dB

Antenna and Pedestal
Antenna type (diameter) Center-feed, parabolic (9m) Front-fed parabolic (1.8 m)
Antenna feed Orthogonal dual polarization Orthogonal dual polariza-

tion
3-dB beam width 0.95 degree 1.4 degree
Gain 45.5 dB 41dB
Azimuth motion range Unlimited Unlimited
Elevation motion range N/A 0o-180o

Scan speed Up to 36 degree/sec Up to 60 degree/sec
Scan acceleration Up to 17 degree/s2 Up to 60 degree/s2

Data Products
Range resolution 1km (250m super resolution) 60 m
Update rate five-six minutes Less than 1 minute
Variables Level II base data and level III

products
Z, Zdr, V , W , NCP , ψdp,
Kdp, ρhv

2) To create neighbourhood-scale warnings and forecasts that are based on impact for

a range of public and private sector decision-makers that result in benefit for public safety

and the economy;
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Figure 4.5. Closed-loop dataflow architecture of the DFW urban radar net-
work. Through the Internet, the radar data are streamed to DROC, where the
majority of the real-time products are generated and archived. The real-time
products are available to a variety of end users. Based on the users’ feedback,
the radar control commands are sent out from the DROC.

3) To demonstrate the added value of collaborative, adaptive X-band radar networks to

the existing and future NWS sensors, products, performance metrics, and decision-making

and to assess optimal combinations of observing systems;

4) To develop models for federal/municipal/private partnerships to introduce new obser-

vation technologies for ongoing operational and interdisciplinary weather system research.
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The research and research-to-operation topics include, but are not limited to:

1) Quantitative precipitation estimation (QPE) and forecasting (QPF)

2) Urban hydrologic modelling for flood and streamflow prediction

3) Hydrometeor identification and hail detection

4) 3-D multi-Doppler wind retrieval

5) High-resolution radar-driven numerical weather prediction (NWP)

New product research and transition of research to operations in the DFW remote sensing

network occur in a quasi-operational environment (Chen and Chandrasekar 2015b; Chan-

drasekar et al. 2017). The real-time products are used and evaluated by a variety of users,

including NWS forecasters and emergency managers and users from transportation, utilities,

regional airports, arenas, and the media. Figure 4.5 shows the overall dataflow architecture

for the DFW urban radar network. The entire DFW testbed is fundamentally considered

an integrated networked radar operation platform. Transferred through the Internet, the

data and products include single and multi-radar data, model-based assimilated data, vector

wind, hydrometeor classification, rainfall, and numerical weather prediction (NWP) prod-

ucts, etc. In particular, the radar data are streamed to the DFW Radar Operations Center

(DROC), which is located at the Southern Regional Headquarters (SRH) of the National

Oceanic and Atmospheric Administration (NOAA). The bandwidth of the network between

DROC and individual radar nodes depends on the local environment and the “last mile”

setup. A bandwidth of 10 mbps is requested from each radar node to DROC, but it is

different for different radar nodes. Generally, it is much higher than 10 mbps (e.g., XUNT

and XUTA are 60-70 mbps, XMDL is 25-50 mbps, XADD is 10-12 mbps). In theory, the

bandwidth from DROC to WFO is 45 mbps. The majority of the processes for range velocity

ambiguity mitigation, clutter suppression, and single node-based attenuation correction are
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implemented in the radar node computers. However, other product generation such as QPE,

hydrometeor classification, hail product, and multiple Doppler processing are done at DROC

servers. Subsequently, the forecast results and alerts are sent to a variety of end users, in-

cluding the NWS forecast office, emergency managers, and flood control districts. The end

users, depending on their level of interest, have access to both the individual radar and the

networked products. With the end users’ feedback, the radar control commands are sent out

from the DROC. The DROC also serves as the data archive center. The computation and

processing are distributed throughout the DFW metroplex.

In addition to providing real-time high-resolution radar and other data to users for warn-

ing operations, the DFW testbed is expected to be an ideal research platform, with major

research thrusts including convective initiation, nowcasting, and fusion of data from in situ

and remote sensors such as S-band KFWS radar, rain gauges, local profilers, and even satel-

lite observations.

4.3. Sample CASA/DFW Products in the Presence of Tornado, High Wind,

Hail, and Flood

4.3.1. Space-Time Integration of DFW Observations and Products.

It can be seen from the CASA radar network topology that observations are available from

multiple radars with multiple looks (views from different vantage points) in most parts of the

network. As such, data fusion between a high-resolution X-band radar network and other

instrumentation became one of the critical research efforts in the development of the DFW

urban remote sensing network. Integration of different data sources is also an indispens-

able step for creating high-quality networked products. In the following, this study takes
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the S-band KFWS WSR-88DP radar as an example to illustrate CASA’s solution to the

spatiotemporal sampling differences among various radar sensors.
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Figure 4.6. Schematic diagram illustrating the space-time integration of
DFW observations at different frequencies and time scales.

As aforementioned (see also Table 4.2), the S- and X-band radar systems operate very

differently. From the observation resolution point of view, the KFWS radar generates an

update every five to six minutes, whereas the X-band radar network produces observations

updated within one minute. Spatially, the KFWS radar sampling resolution is severely

degraded due to beam broadening as distance from the radar increases, whereas the X-

band radar network has much higher resolution since the individual radar coverage range is

limited to within 40 km. Figure 4.6 shows a conceptual diagram illustrating the space-time

integration of DFW observations at different scales. Multiple X-band radars are combined

first as a unitary network to produce high-resolution products (e.g., 250 m×250 m×1 min).

In order to match the resolution of X-band network products, the S-band KFWS radar based

products (e.g., rainfall rate field) are temporally interpolated to one-minute resolution using
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a piecewise cubic polynomial Hermite interpolation approach (Fritsch and Carlson 1980).

Spatially, the KFWS radar products in polar coordinates within 100 km from the radar are

mapped onto 250 m by 250 m grids using Cressman weighting (Cressman 1959). The 100 km

range is selected mainly because of the radar beam size and beam broadening effect (details

can be found in Section 4.1). It should be noted that instead of interpolating radar data,

it was decided to interpolate products to avoid nonlinear error propagation. Subsequently,

products at the same spatiotemporal scale from both the KFWS radar and the X-band radar

network are merged together to create network-level products. The scheme in Figure 4.6 is

particularly suitable for deriving networked rainfall rates and amounts, which will be detailed

in Chapter 5.

4.3.2. Sample CASA/DFW Products.

Hail Detection: As detailed in Chapter 3, fuzzy logic-based approaches are convention-

ally used for radar hydrometeor classification. Those approaches are designed to work on

each radar resolution cell represented by azimuthal angle and range gate. However, such

bin-by-bin-based methodologies have limitations when applied to “noisy” radar data that

could be caused by ground clutter, partial beam blockage, and/or bright band contamina-

tion. To overcome these issues, a region-based hydrometeor classification approach has been

implemented for S-band radar rainfall estimation(see Chapter 3). Here, the same approach

is applied for the DFW X-band radar network. The overall structure of this region-based

classification methodology in the context of operational applications is depicted in Figure

4.7. For illustration purposes, Figure 4.8 shows sample dual-polarization observations from

a CASA X-band radar and corresponding hydrometeor classification results at 04:15UTC,

May 20, 2011. Overall, the classification product shown in Figure 4.8 looks reasonable, with

a few well-defined regions. It is interesting to note that at approximately 2-3 km height
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Figure 4.7. Diagram of the operational hydrometeor classification and hail
detection system for the DFW dense urban radar network.

and 30 km range, where high reflectivity values are present, rain-hail mixtures are identified.

Some negative Zdr values are observed beyond the rain plus hail region, which is possibly

due to the underestimation of the difference of path-integrated-attenuation between two po-

larization channels. However, the negative Zdr values at approximately 10 km height and

30 km range are considered to be real, which implies the existence of vertically oriented

ice crystals associated with electrical activity inside the storm (Carey and Rutledge 1996;

Caylor and Chandrasekar 1996).

For the sake of operational interpretation and clean hail product generation, the hy-

drometeor classes from individual DFW radar nodes are merged together using clustering

analysis to produce a network-level product. In addition, the number of hydrometeor types

is narrowed down to five categories: drizzle, rain, rain+hail, hail, and snow. LD, RA, HR,

and WI are grouped as rain; DI, CR, and DN are grouped as snow and HA and GR are

grouped as hail. These five categories were essentially determined based on the requests of

a variety of end users. Figure 4.9 shows an example hail product during the storm event

of March 24, 2016. In the following figure, a hailstorm that occurred on May 12, 2014, is
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(a) (b)

(c) (d)

Figure 4.8. Sample CASA X-band radar observations and corresponding
hydrometeor classification results at 04:15UTC, May 20, 2011: (a) Z, (b) Zdr,
(c) ρhv, (d) classified hydrometeor types. The Z and Zdr fields shown here are
after attenuation correction.

presented as an example to further illustrate the DFW hail product and demonstrate the

product performance through comparison with ground weather reports.

A strong line of thunderstorms stretching from Brownwood, Texas, northeast to Tulsa,

Oklahoma, began pushing east-northeast through the DFW area shortly before 15:00UTC,

May 12, 2014. In a very short time span, the storm produced more than 30 mm of rain

along with hail as large as golf balls at many locations in North Texas. Power outages

to more than 60,000 people were reported, with hundreds of flights at North Texas’s two

major airports delayed or cancelled. Figure 4.10 shows the dual-polarization measurements

of Z, Zdr, ρhv, and Kdp, from a DFW X-band radar (XUTA radar) at 20:50UTC, May 12,

2014. It is worth noting that differential phase-based attenuation correction (Chen et al.

2017b) was applied on measured Z and Zdr. The fields shown in Figure 4.10(a)(b) are after

attenuation correction. The high Z but low ρhv values near (10 km, -10 km) indicate that
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Figure 4.9. DFW hail product at 02:39UTC, March 24, 2016.

the precipitation was not purely liquid, which is identified as a rain hail mixture in the DFW

hail system product shown in Figure 4.10(e).

With the real-time hail products, a hail path is generated for operational warning appli-

cations. The hail path is created based on the duration of hailfall at a given location. Figure

4.11 illustrates the estimated hail path for a 20-minute period, from 20:37 to 20:57UTC,

May 12, 2014. It can be seen from Figure 4.11 that dense hail occurred near the Joe Pool

Lake. Figure 4.11 also shows hail pictures and screenshots of ground hail reports from social

media. The reported locations and times agree very well with the hail observations from

the DFW radar network, which demonstrates the excellent performance of the DFW hail

system.
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(a) �� (b) ��� (c) ���

(d) ��� (e) Hydrometeor Types

Figure 4.10. Sample dual-polarization observations from a DFW X-band
radar (XUTA radar) and corresponding hydrometeor classification results at
20:50UTC, May 12, 2014: (a) Z, (b) Zdr, (c) Kdp, (d) ρhv, and (e) classified
hydrometeor types. The Z and Zdr fields shown here are after attenuation
correction.

Nevertheless, it should be noted that although CASA has devoted extensive efforts to

ground hail report collection and in situ instrument deployment for hail observations over the

DFW metroplex, verification of hydrometeor classification (hail) products has never become

a straightforward task, especially when mixed-phase precipitation is observed.

Multiple Doppler Wind Retrieval: Close to the tornado alley, the topology of the

DFW radar network allows for high-resolution observation of the lower troposphere while

providing large areas of overlapping coverage (see also Figure 4.4). In addition, either under

the DCAS scan strategy or the regular PPI scan mode, each radar node is able to finish

a volume scan within one minute, which makes the high-resolution X-band radar network

more appealing for retrieving Doppler velocity information and subsequently issuing tornado

or high-wind warnings. In the following, the fundamental concept of vector wind velocity
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pic.twitter.com/QiAXWiAKvy

James Jennings
@jennings9701
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2:48 PM - May 12, 2014

pic.twitter.com/wcdxHvepWP

Derek
@BeeManDerek

@TxStormChasers From a friend in Mansfield Tx
3:01 PM - May 12, 2014

pic.twitter.com/LHLcKJogrN

Quinton Browder
@Qbrowder

@wfaaweathertoo hail in Grand Prairie near Joe Pool Lake
2:43 PM - May 12, 2014

Figure 4.11. DFW radar network-based hail product (path/duration) over
Joe Pool Lake from 20:37 to 20:57UTC, May 12, 2014. The hailfall and hail
path were demonstrated by social media reports.

retrieval using a Doppler radar network is reviewed. The real-time multi-Doppler system

designed for the DFW dense urban radar network is described, including the multi-Doppler

scan strategy, system integration of high-resolution observations, as well as sample real-time

products generated during tornado and high wind events.

The essence of multi-Doppler wind retrieval from a radar network is to get the three-

dimensional velocity components in a Cartesian coordinate from the non-orthogonal radial

velocities measured by individual radars (Miller and Strauch 1974; Ray et al. 1980; Chen

and Chandrasekar 2018). In the Cartesian coordinate system, the velocity of a particle at

(x, y, z) within a thunderstorm can be expressed by a triplet (u, v, w +wf ), where u, v, and
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w are the velocity components in eastward, northward, and vertical directions, respectively.

wf is the particle fall speed. The projections of the particle’s motion onto the radars’ line

of sight are:

V 1
R = u sinφ1 cos θ1 + v cosφ1 cos θ1 + (w + wf ) sin θ1

...(25)

V m
R = u sinφm cos θm + v cosφm cos θm + (w + wf ) sin θm

where V m
R is the radial velocity measured by radar node m and φm and θm are respectively

the azimuth and elevation angles of the radial beam. Taking into account the geometric

relation in Cartesian coordinates, Equation (25) can also be expressed as:

(26) V m
R =

1

rm
[u(x− xm) + v(y − ym) + (w + wf )(z − zm)]

for a radar at (xm, ym, zm) with slant range rm =
√

(x− xm)2 + (y − ym)2 + (z − zm)2.

Putting the radial velocities into a vector form VR = [V 1
R · · · V m

R ]T , and using the

following matrix form:

(27) H =




sinφ1 cos θ1 cosφ1 cos θ1 sin θ1

...
...

...

sinφm cos θm cosφm cos θm sin θm




a linear system can be obtained as follows:

(28) VR = H[u v w + wf ]
T
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The 3D wind velocity components can be retrieved using the generalized least square

method, in the following form:

(29) [u v w + wf ]
T = (HTH)−1HTVR

The horizontal wind components u and v can be retrieved directly from the solution in

Equation (29), provided that at least two radars are available. However, the vertical velocity

from the least square solution may not be reliable due to the small vertical component of

radar-measured radial velocities. More accurate retrieval of the vertical wind component can

be obtained using the mass continuity equation (Miller and Strauch 1974):

(30)
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0

where ρ is the air density that is modelled as a function of the altitude in this study. In

addition, its local variation is assumed to be negligible. This study focuses more on horizontal

wind retrieval, with an emphasis on engineering issues and application products.

It should be noted that simultaneous measurements from individual radar nodes are re-

quired for applying the multi-Doppler techniques. Therefore, effective and efficient scans

should be conducted for multi-Doppler retrieval by taking into account resource limitations

such as time constraints and computational complexity. As aforementioned, the DFW net-

work is designed with a small “heartbeat” for a volume scan to ensure data synchronization

and meet the computational requirements at the same time. In addition, multiple candi-

date pairs may exist for dual-Doppler synthesis in the overlapping regions and a choice has

to be made in order to select the best pair. In the DFW network system, the selection is

made according to the optimal radar beam-crossing angles for the target areas (Chen and
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Chandrasekar 2018). Figure 4.12 illustrates the real-time data flow and system operation for

multi-Doppler retrieval. There are three major steps: real-time data acquisition, ingestor,

and main processing for Doppler wind synthesis.

Radar Network

Ingestor

Volume Generation 

Task Configuration  

Main Processing
Format Conversion

(NetCDF to UF)

Interpolation: Reorder
(Radar Coordinate to Cartesian)  

Doppler Synthesis

3D Velocity Component

Wind Velocity Product 

in NetCDF Format 

Real-time Application

Real-time Display

Forecast Office

Emergency Management 

Local Data Manager

Compressed NetCDF Files 

Synchronization 

Extracted NetCDF Files

Figure 4.12. Framework of real-time Doppler wind retrieval system and ap-
plication for the DFW urban radar network.

Through data transmission protocols, the moment data from each radar node in com-

pressed NetCDF format are streamed to the radar operation center (see also Figure 4.5),

which houses the rest of the processing sub-systems. In this step, radar data are also broken

down into elevation-denominated PPI sweeps. Then, the ingestor program will decompress

the incoming data, extract their scanning information, and synchronize them to respective

radar and volumes for the subsequent Doppler synthesis. In the main processing, the data
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in the radar polar coordinates are first mapped onto a common Cartesian space so a multi-

Doppler wind synthesis can be conducted (Chen and Chandrasekar 2018). In the Doppler

synthesis step, if the data are available from only one radar node, no wind velocity infor-

mation will be produced. If two or more radars are available, the horizontal components (u

and v) of wind velocity will be retrieved. The whole system is automated and the processing

continuously updates every minute, which makes it suitable for real-time detection of sudden

wind-related hazards such as tornadoes and microbursts. The real-time wind products are

immediately sent to the forecast and emergency management offices for issuing tornado and

high wind warnings. In the following, the EF0 tornado on May 8, 2014, and high wind on

October 2, 2014, are investigated to demonstrate the performance of DFW multiple Doppler

wind products.

On May 8, 2014, large-scale lift ahead of an upper level shortwave, combined with am-

ple instability and adequate moisture, evolved in North Texas. Severe thunderstorms were

observed moving through this area. Scattered convection developed in the afternoon, and a

linear mesoscale convective system had formed by the late afternoon hours. Although there

were no fatalities or injuries, the damaging downburst winds produced a great deal of tree

damage and brought down power lines across areas in and around the city of Dallas. An

EF-0 tornado was reported in Cockrell Hill (32.757◦N, 96.889◦W) in Dallas County around

20:14UTC, May 8, 2014. Figure 4.13 shows a screenshot of the NWS tornado report for

this event. The tornado path length was about 800 meters and path width was about 137

meters, according to the NWS report. Although the tornado only lasted two minutes (20:14-

20:15UTC), it caused damage to a warehouse building in Cockrell Hill. Several windows

were blown out of the warehouse, and the building also suffered roof damage as the tornado

moved from the southwest to northeast. During the entire event, the DFW multi-Doppler
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wind retrieval system was continuously operating, monitoring the weather conditions. Fig-

ure 4.14 shows the multi-Doppler velocity retrieval results at 1 km height during this EF0

tornado event. At 20:14UTC, the retrieved maximum velocity was about 112.7 km hr−1, and

it became 119.0 km hr−1 at 20:15UTC. The estimated vorticities are also shown in Figure

4.14, from which we can clearly see the vortex evolution and tornado movement in a two-

minute span. The vortex locations in Figure 4.14 agree fairly well with where the tornado

was reported.

 

Figure 4.13. NWS tornado report for the EF0 tornado that occurred in
Cockrell Hill in the DFW area on May 8, 2014.

85



0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

Longitude (deg)

�−�(b) 20:15UTC

-96.92        -96.91         -96.90        -96.89         -96.88        -96.87       -96.86

32.78

32.77

32.76

32.75

32.74

32.73

La
ti

tu
d

e
 (

d
e

g
)

Tornado Reported

100 km/hr

Longitude (deg)

(a) 20:14UTC

-96.92        -96.91         -96.90        -96.89         -96.88        -96.87       -96.86

32.78

32.77

32.76

32.75

32.74

32.73

La
ti

tu
d

e
 (

d
e

g
)

Tornado Reported

Figure 4.14. Multi-Doppler wind velocity retrieval results based on the
DFW dense radar network during the EF0 tornado event on May 8, 2014,
at (a) 20:14 and (b) 20:15UTC. The results are at 1 km height level. The
arrows denote the magnitude and direction of the retrieved wind velocity. The
maximum velocity at 20:14UTC is about 112.7 km hr−1, and 119.0 km hr−1 at
20:15UTC. The color-coded field represents the vertical vorticity. The vortex
locations agree fairly well with the NWS tornado report shown in Figure 4.13

On October 2, 2014, severe thunderstorms packing winds of up to 200 km hr−1 tore

through the DFW area. The severe storm began to develop shortly before 18:00UTC, when

a severe thunderstorm watch was issued for most of North Texas. The storms developed

near Jack, Wise, and Parker counties, about 70 km to the northwest of the city of Fort

Worth, before moving east. A severe thunderstorm warning was effective until 22:00UTC for

Dallas County. This fast-moving storm left widespread damage and power outages as winds

downed utility poles and tree limbs. Many flights were canceled at DFW International

Airport. It was concluded that the significant damage was not caused by rain (less than

10mm of rain was observed in DFW airport), but the straight-line winds. The real-time

DFW multiple Doppler wind retrieval system was operating during this high-wind event.

Figure 4.15 shows the DFW network reflectivity observation and retrieved wind speed and

directions at 1-km height at 20:53UTC, when the peak wind was reported. The peak wind
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Figure 4.15. Real-time DFW multiple Doppler radar wind retrieval system
product at 1-km height during the high wind event on October 02, 2014, at
20:53UTC: (a) composite reflectivity overlaid with retrieved wind directions,
(b) retrieved wind speed and directions.
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speed reached about 200 km hr−1 at the location near (97.15◦W, 32.75◦N). The retrieved

peak wind and corresponding location agree fairly well with the ground weather report

(http://www.spc.noaa.gov/exper/archive/event.php?date=20141002).

Rainfall Estimation: High-resolution QPE for the DFW dense radar network is derived

based on the combination of dual-polarization X-band radars and the KFWS WSR-88DP

radar. Figure 4.16 illustrates sample instantaneous rainfall rate products from the DFW

network radar QPE system for a 15-min period (02:01-02:15UTC) during the storm event

of May 29, 2015. Similarly, Figure 4.17 shows sample rain rate products for the event

of November 27, 2015. Spatially, the rainfall products are produced on 250 m by 250 m

grids. Temporally, the instantaneous rainfall rates are updated every minute. Based on

the instantaneous rainfall rates, various rainfall accumulation products can be computed.

Beyond the real-time warning applications, the high-resolution QPE products are used for

urban flash flood forecasting through coupling with hydrological models.

The details of the DFW QPE system, including specific dual-polarization rainfall algo-

rithms applied at different frequencies (i.e., S- and X-band) and the fusion methodology

combining observations at different resolutions, will be presented in Chapter 5. In addition,

extensive evaluation of the real-time rainfall products from this urban radar QPE system

will be given in that chapter.

4.4. Summary

Due to the earth’s curvature, complex terrain, and/or urban deployment challenges,

the physically large, high-power, long-range radars in the current operational network have

severe limitations for observing the lower part of troposphere where many hazardous weather

events occur. Furthermore, the space-time resolutions of measurements and products based

88

http://www.spc.noaa.gov/exper/archive/event.php?date=20141002


120

110

100

90

80

70

60

50

40

30

20

10

0

0201UTC 0202UTC 0205UTC0204UTC0203UTC

0206UTC 0207UTC 0210UTC0209UTC0208UTC

0211UTC 0212UTC 0215UTC0214UTC0213UTC

mm/hr

Figure 4.16. Sample instantaneous rainfall rate products from the DFW
network radar QPE system for a 15-min period (02:01-02:15UTC) during the
storm event of May 29, 2015.

on the current operational radars are not sufficient for monitoring high-impact localized

weather phenomena such as tornadoes and urban flash floods. To this end, the center for

CASA has developed an alternative weather sensing approach by deploying dense networks

of low-power small X-band dual-polarization radars. The CASA radar network can provide

enhanced sampling of weather features near the ground, which is beyond the capability of

state-of-the-art operational radars.

This chapter discusses the rationales and principles of short-wavelength (X-band) opera-

tions. In addition, the CASA DFW urban radar network is presented as an example of using

such high-resolution radar networks for urban hazard mitigation and disaster management.
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Figure 4.17. Sample instantaneous rainfall rate products from the DFW
network radar QPE system for a 10-min period (02:21-02:30UTC) during the
storm event of November 27, 2015.
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Various real-time weather products produced by the DFW urban radar network are also

presented. In particular, sample products of precipitation classification and quantification

are illustrated for improving hail and flash flood monitoring. The multiple Doppler wind

retrieval system is also detailed; it should improve high-wind and tornado detection and

tracking and reduce the rate of false alarms. All these real-time products are integrated

to operational platforms for evaluation by a variety of users, including NWS forecasters,

emergency managers, and social media.
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CHAPTER 5

The High-Resolution, Real-Time QPE System for

the CASA/DFW Network: System Development and

Product Performance

Flooding is a common natural hazard that produces substantial loss of life and property.

According to the U.S. National Academy report, floods are responsible for more deaths

nationwide than any other weather phenomenon (NRC National Research Council 2005).

Furthermore, heavy development in urban regions decreases urban watersheds’ response

time to rainfall and increases the chance of localized flooding events over a small spatial

domain. The scales of urban floods are fairly small and intense and have a large temporal

variability with fast response time. They can occur immediately after heavy rainfall because

of the complex hydrologic and hydraulic characteristics of the urban environment. Therefore,

real-time monitoring of urban floods requires high spatio-temporal resolution and accurate

estimations of precipitation and streamflow.

As discussed in Chapter 2, numerous types of infrastructure have been deployed to di-

rectly or indirectly measure rainfall rates and amounts, including rain gauges, weather radars,

and satellites. Among these tools, the radar network is the primary system used for QPE

in many nations. Through raindrop size distribution information, various radar rainfall al-

gorithms have been developed with respect to dual-polarization measurements (for details,

see Section 2.3 in Chapter 2). Presently, the NWS operational WSR-88DP radar-based

rainfall products are commonly used to understand rainfall distribution nationwide and feed

the subsequent hydrological models. However, due to sampling limitations, the operational

QPE products based on the WSR-88DP network are typically produced on 1 km by 1 km
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spatial grids (Zhang et al. 2011), and focus on rainfall accumulations at temporal scales of

1-, 3-, 6-, 12-, and/or 24-hrs. Such coarse resolution hinders the WSR-88DP-based rainfall

products for local flash flood applications, especially high-impact urban flash floods which

can occur a few minutes after torrential rainfall. Chapter 4 presented the applications of the

CASA dense radar network for urban disaster detection and mitigation. High-resolution,

high-quality QPE is one of the main drivers of the deployment of such dense radar networks.

This chapter will detail the real-time QPE system developed for the CASA DFW urban

radar network.

5.1. CASA/DFW QPE System and Sample Products

The rainfall system for the DFW urban network was designed via a combination of obser-

vations from both the X-band radar network and the S-band KFWS radar. The advantages of

rapid X-band radar scan strategy are taken into account, which can produce high-resolution

observations in both space and time domains. In real time, the high-resolution rainfall prod-

ucts from the CASA DFW QPE system are used as input to flash flood forecast models.

Figure 5.1 summarizes the key features of this dense urban radar network in the context of

QPE and urban hydrologic applications. Figure 5.2 shows a schematic diagram of the real-

time DFW QPE system, which consists of the dual-polarization S-band KFWS WSR-88DP

radar and a high-resolution X-band polarimetric radar network. As shown in Figure 5.2,

different rainfall methodologies are used for S-band KFWS radar and X-band DFW radars.

For S-band, the blended rainfall algorithm (DROPS2.0) detailed in Chapter 3 is imple-

mented where the specific rainfall relations are guided by hydrometeor classification results.

The estimated rainfall rates in the radar’s native (polar) coordinates are then mapped onto
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Figure 5.1. Key features of the CASA DFW urban radar network for rainfall
estimation and hydrological applications.

Cartesian grids using a Cressman weighting scheme to match the X-band network product

resolution.

For X-band, only R(Kdp) is considered. As discussed in Section 2.3.1 of Chapter 2, the

selection of an X-band algorithm is influenced by attenuation induced by propagation in

rain. The power-based measurements, including Z and Zdr, should be corrected before they

can be used for quantitative applications such as rainfall estimation. At X-band, rainfall

estimation from Kdp is particularly appealing because (1) it avoids the uncertainty in atten-

uation correction; (2) due to the frequency scaling, Kdp responds well to low rainfall rates

at X-band (compared to S-band) such that R − Kdp conversion can be directly applied in

light rain circumstances; on the other hand, Kdp can also exhibit a steeper slope within an
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Figure 5.2. Schematic diagram of the QPE system for the CASA DFW
urban remote sensing network.

intense rain cell; (3) as a phase based term, it does not need network calibration for multiple

radar nodes (Chandrasekar et al. 1990; Aydin et al. 1995).

In practice, Kdp is estimated as the range derivative of the differential phase. However,

it should be noted again that Kdp estimation is a non-trivial task since the differential phase

measurements are subject to substantial fluctuations, especially at low rain rates. Often,

a radar-measured differential phase is firstly suppressed with a strong filter. However, the

filter may smooth out the peaks and introduce biases at high rain rates. In this study,

the adaptive Kdp estimation algorithm developed by Wang and Chandrasekar (2009) was

implemented, which is automatically tuned to the spatial gradient of Kdp. In this way, the

fluctuation in light rain and the bias in heavy rain observations are substantially reduced

(Wang and Chandrasekar 2009). With the Kdp estimates, the following power law R −Kdp
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relation is applied for X-band DFW radar rainfall estimation:

(31) R = 18.15K0.79
dp

This relation is obtained based on the frequency adjustment of one of the S-band KOUN’s

R(Kdp) relations described in Ryzhkov et al. (2005), which is repeated here as:

(32) R = 47.3K0.791
dp

The DFW network is designed with extensive overlapping coverage among its radar

nodes (see Figure 4.4). As such, data availability can be enhanced, especially in cases of

heavy rainfall, beam blockage, or in the need for redundancy to demonstrate the operational

strength of the network centric system. In the real-time CASA DFW QPE system, the

X-band radar nodes are considered as an integrated unit when generating QPE products.

The observation fields (e.g., Kdp) from synchronized X-band radar scans are projected onto

the same Cartesian grids at first. Then they are merged together to produce Kdp-based

rainfall rates. The Kdp field, rather than the rainfall rate field, is merged in order to reduce

the variation introduced by the nonlinear R − Kdp conversion. The independence of Kdp

on the radar calibration enables flexibility in combining the collocated Kdp estimates from

all the radar nodes. In this study, for an overlapping grid pixel, the closest radar has

the highest priority in the merging process to ensure high resolution and low level samples

(Chandrasekar et al. 2012; Chen and Chandrasekar 2015b; Chandrasekar et al. 2017). The

quality of Kdp fields is also taken into account in the merging process, especially during

an extreme rainfall event when signal extinction may occur. The composite Kdp field is

much better than individual radar observations for surface rainfall estimation. In addition,
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Table 5.1. Real-time rainfall products from DFW urban radar network.

Rainfall Product Update Rate Spatial Resolution
Instantaneous Rainfall Rate 60 secs 250 m × 250 m

5-min Rainfall 60 secs 250 m × 250 m
15-min Rainfall 60 secs 250 m × 250 m
30-min Rainfall 60 secs 250 m × 250 m
60-min Rainfall 60 secs 250 m × 250 m
3-hr Rainfall 60 mins 250 m × 250 m
6-hr Rainfall 60 mins 250 m × 250 m
12-hr Rainfall 60 mins 250 m × 250 m

it should be noted that additional considerations must be given in practical and urban

operational environments. Critical evaluation of a large number of data sets reveals that

the ground clutters, clutters from sidelobes, and their impacts would be minimal for the 2◦

elevation scans after filtering. Therefore, the 2◦ sweep datasets from X-band radars are used

to derive rainfall products.
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Figure 5.3. Real-time rainfall products from the DFW QPE system on No-
vember 27, 2015, at 12:00UTC. (a) instantaneous rainfall rate, (b) 5-min, (c)
15-min, (d) 30-min, (e) 60-min, (f) 3-hr, (g) 6-hr, and (h) 12-hr rainfall.
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Details about the integration of measurements at different frequencies and time scales is

described in Section 4.3.1. Over all, the DFW QPE system produces real-time rainfall rate

estimates at 250 m by 250 m scale in spatial terms, and temporally the instantaneous rainfall

rates are updated every minute. With the one-minute resolution rainfall rate field, running

accumulations of rainfall at different time scales are produced in real time, including 5-, 15-,

30-, 60-min, and 3-, 6-, 12-hr rainfall amounts. The various real-time rainfall products for

the DFW network and their update rates are listed in Table 5.1. For illustration purpose,

Figure 5.3 shows real-time rainfall products from the DFW QPE system on November 27,

2015, at 12:00UTC. Similarly, Figure 5.4 illustrates sample real-time rainfall products during

the flood event of May 29, 2015, at 03:00UTC. All the products have the capacity of being

updated every minute. However, in a real-time environment, the instantaneous rainfall rates

and 5-, 15-, 30-, and 60-min rainfall accumulations are updated every 60 seconds, whereas

the 3-, 6-, and 12-hr rainfall products are generated at the top of the hour (every 60 minutes).

The high-resolution products are particularly useful during localized flash flood events. For

example, Figure 5.5 shows sample rainfall products for a 10 km by 10 km area during the

flash flood event of June 24, 2014, at 21:39UTC. The peak rainfall rate reached about 200

mm hr−1. Some regions in the city of Fort Worth were completely flooded within less than

two hours of rain. Such localized extreme events can hardly be captured using the current

operational radars.

The DFW QPE system has been operating for a number of years. Over all, it is very ro-

bust and continuously works well without any incidents. In the following section, quantitative

evaluation of various CASA DFW rainfall products will be conducted through comparison

with rain gauge measurements.
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Figure 5.4. Sample real-time rainfall products on May 29, 2015, at
03:00UTC. (a) instantaneous rainfall rate, (b) 5-, (c) 15-, (d) 30-, (e) 45-.
and (f) 60-min rainfall.
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(a) 1-min rainfall: mm (b) 5-min rainfall: mm

(c) 10-min rainfall: mm (d) 60-min rainfall: mm

Figure 5.5. Sample real-time rainfall products for a 10 km by 10 km area
during the flash flood event of June 24, 2014, at 21:39UTC.

5.2. Evaluation of CASA/DFW QPE Products

5.2.1. Example Events.

A large number of precipitation events were investigated in order to quantitatively evaluate

the performance of the CASA DFW QPE system. Here, several example rainfall cases from

2013 are described that are characterized by different meteorological phenomena. Table 5.2
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Table 5.2. Summary of several precipitation events in 2013. Columns (from
left to right) refer to the rainfall date, the time when intense rainfall was
passing over the gauge network, and notes regarding the precipitation type
and weather impact.

Date Intense rain hours
over gauges

Remarks

18 April 2013 09:40-10:40UTC Squall line
16 May 2013 01:15-02:15UTC,

04:00-05:00UTC
Supercells, tornadoes, lightning, flash
flooding in north Texas

09 June 2013 11:35-12:35UTC Classical summer convective storm
27 October 2013 01:55-02:55UTC Winter storm, lightning

presents an overview of the meteorological features of these events, including the time when

intense rainfall occurred over the gauge network (see Figure 5.10 for gauge network location).

The data collected during these time periods are used in the comparison between rainfall

estimates by DFW dense radar network and rain gauge measurements.

18 April 2013: In the early morning of 18 April 2013, a squall line evolved ahead of

a strong cold front and moved west to east in the DFW area. Wind gusts with the frontal

passage were observed around 55 to 65 km hr−1. Heavy rainfall was observed in the DFW

metroplex around 09:00-13:00UTC. Figure 5.6 shows sample observations of reflectivity Z,

differential reflectivity Zdr, specific differential phase Kdp, and corresponding rainfall rate

estimates from the S-band KFWS WSR-88DP radar. Figure 5.6 is based on the observations

from a 0.5 degree elevation sweep at 08:47UTC. A severe thunderstorm watch was issued

in north Texas for this event, but no significant severe weather was reported to the Storm

Prediction Center (SPC). The real-time DFW QPE system was operating during the entire

event, proving references to a variety of users.

16 May 2013: This event was characterized by supercells, flash flooding, lightning, and

several tornadoes. In mid-May 2013, an upper-level shortwave trough causing a tornado out-

break moved northeastward from Mexico into the Southern Plains states. The low-pressure
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(a) � (dBZ) (b) ��� (dB)

(d) Rainfall Rate (mm/hr)(c) ��� (deg/km)

Figure 5.6. Sample observations from the S-band KFWS WSR-88DP radar
0.5 degree scan at 08:47UTC, 18 April 2013. (a) Z, (b) Zdr, (c) Kdp, and (d)
corresponding rainfall rate R.

area and atmospheric instability resulted in the formation of tornadoes across northern Texas

and Oklahoma on May 15. This small but intense and deadly tornado outbreak produced

several damaging tornadoes in north and central Texas, Louisiana, and Alabama in the

two days following May 15. In addition to tornadoes, large hail was reported, peaking at

approximately 10 cm in diameter near Mineral Wells, Texas, on May 15. Severe thunder-

storms were observed in the DFW metroplex and southern Oklahoma. For the sake of QPE

validation, the S-band KFWS radar data and DFW X-band network data collected during
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01:00-05:00UTC, 16 May 2013, were used for generating rainfall products when the strong

thunderstorm passed over the rain gauge network. Figure 5.7 illustrates sample observa-

tions of Z, Zdr, Kdp, and corresponding rainfall rate estimates based on the S-band KFWS

WSR-88DP radar 0.5 degree elevation scan at 04:45UTC.

(a) � (dBZ) (b) ��� (dB)

(d) Rainfall Rate (mm/hr)(c) ��� (deg/km)

Figure 5.7. As in Figure 5.6, but for observations at 04:45UTC, 16 May 2013.

09 June 2013: A widespread severe thunderstorm moving from northwest to southeast

entered the DFW area around 09:00UTC, 09 June 2013. A severe thunderstorm warning

was issued by the NWS for several counties in northern Texas. The thunderstorm lasted a

few hours and weakened around 13:00UTC. This event was a common summer convective
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rainfall case. The dense radar network data, including S-band and X-band, collected around

11:35-12:35UTC, were used in the QPE validation analysis. Similarly, Figure 5.8 shows the

sample observations of Z, Zdr, Kdp, and corresponding rainfall rate estimates based on the

S-band KFWS radar 0.5 degree elevation scan at 12:31UTC during this event.

(a) � (dBZ) (b) ��� (dB)

(d) Rainfall Rate (mm/hr)(c) ��� (deg/km)

Figure 5.8. As in Figure 5.6, but for observations at 12:31UTC, 09 June 2013.

27 October 2013: This event was characterized by large hail and lightning. On October

26, a cluster of severe storms extended from Eagle Mountain eastward to the DFW metro-

plex. Golfball size hail was reported in Eagle Mountain and Southlake around 01:20UTC on

October 27. High winds were also observed around 95-115 km hr−1. A severe thunderstorm
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warning was in effect in the DFW area until 02:30UTC, October 27. Figure 5.9 shows sample

radar observations and rainfall rate estimates during this event at 02:39UTC.

(a) � (dBZ) (b) ��� (dB)

(d) Rainfall Rate (mm/hr)(c) ��� (deg/km)

Figure 5.9. As in Figure 5.6, but for observations at 02:39UTC, 27 October 2013.

5.2.2. Quantitative Evaluation of CASA/DFW Rainfall Products.

In order to quantitatively evaluate the performance of the CASA DFW QPE system, rainfall

records from a rain gauge network were used for comparison. The gauge network, consisting

of about 60 gauge stations, is deployed and managed by the city of Fort Worth and city of

Grand Prairie. Figure 5.10 shows the locations of gauge stations with respect to the S-band

KFWS radar and several X-band radars in the DFW network.
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Figure 5.10. Locations of rain gauges (red triangles) used for the DFW
rainfall product evaluation. The gauges are managed and operated by the city
of Fort Worth and city of Grand Prairie.

At each rain gauge, rainfall data is archived based on the Automated Local Evaluation

in Real Time (ALERT) transmission system. Each time one millimeter (0.04 inch) of rain-

fall occurs, that information is transmitted to the base station and the data are stored to

the nearest second. For the sake of comparison, the rainfall data are accumulated to rain-

fall amounts in 5-min intervals over every 24-hr period. The 5-min rainfall accumulations

from gauges are then used as the baseline for evaluating various CASA DFW radar rainfall

products.

However, it should be noted that radar observations represent a unit of illuminated reso-

lution volume, whereas the gauges provide point-wise measurements. Considerable literature
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exists documenting the scale mismatch between radar and gauge rainfall observations. In

this study, the radar measurements are spatially chosen at the location of the rain gauges

for validation. Temporally, the one-minute resolution radar rainfall rates are used for calcu-

lating the running accumulations of rainfall to match the gauge observation frequencies (a

five-minute interval). Rainfall amounts at longer time scales are then obtained by aggregat-

ing the 5-min rainfall data.

In addition, point-wise traces at each gauge station are generated for diagnostic purposes.

As an example, a detailed comparison of the DFW radar network rainfall product against

gauges at several stations during the 2015 Thanksgiving event is illustrated in Figure 5.11.

The upper, middle, and bottom panels of Figure 5.11 show the rainfall measurements at

gauges 1100 (32.7952◦N, 97.3368◦W), 1030 (32.8181◦N, 97.4534◦W), and 1800 (32.6141◦N,

97.3468◦W), respectively. The thin lines represent 15-min rainfall estimates, while the thick

lines denote rainfall accumulations. Clearly, Figure 5.11 shows that the rainfall estimates

from the DFW radar QPE system agree very well with the rain gauge measurements.

In order to quantify the accuracy of the CASA DFW QPE system, the normalized mean

bias (NMB) and normalized standard error (NSE) of rainfall amounts at different time

scales are computed. Assuming the rain gauge measurements are the “ground truth”, the

NMB and NSE are respectively defined as:

(33a) NMB =
< RR −RG >

< RG >

(33b) NSE =
< |RR −RG| >

< RG >
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Hours from 2015-11-26 12:00UTC

Figure 5.11. 15-min rainfall (thin lines) and rainfall accumulations (thick
lines) from the DFW radar network and gauges at sample gauge locations
during the 2015 Thanksgiving flood event. The upper, middle, and bottom
panels illustrate the products at gauges 1100 (32.7952◦N, 97.3368◦W), 1030
(32.8181◦N, 97.4534◦W), and 1800 (32.6141◦N, 97.3468◦W), respectively.
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Table 5.3. Evaluation results (NMB: normalized mean bias, and NSE:
normalized standard error) of various rainfall products at different time scales.
‘-’ indicates that an operational product is not available from the NWS.

NSE (%) NMB (%)
Time scale DFW Network N1P OHA DAA DFW Network N1P OHA DAA

18 Apr 2013

5-min 30.8 - - - -2.8 - - -
10-min 20.1 - - - -1.2 - - -
15-min 17.7 - - - -0.5 - - -
20-min 14.7 - - - -0.3 - - -
30-min 13.9 - - - -0.6 - - -
60-min 10.6 42.7 22.5 16.2 -3.4 -42.7 -18.2 -1.6

16 May 2013

5-min 37.0 - - - -4.2 - - -
10-min 31.5 - - - 2.7 - - -
15-min 27.6 - - - 3.8 - - -
20-min 24.0 - - - 4.6 - - -
30-min 19.6 - - - 4.4 - - -
60-min 14.6 25.4 24.6 27.4 2.0 -19.3 -1.8 11.3

09 Jun 2013

5-min 39.1 - - - -2.7 - - -
10-min 34.2 - - - 8.9 - - -
15-min 30.4 - - - 10.6 - - -
20-min 27.2 - - - 10.2 - - -
30-min 20.7 - - - 9.0 - - -
60-min 15.5 28.2 29.7 22.9 11.1 -25.2 -1.4 7.8

27 Oct 2013

5-min 33.9 - - - -8.0 - - -

10-min 26.5 - - - -5.1 - - -

15-min 21.8 - - - -5.2 - - -
20-min 19.2 - - - -5.6 - - -
30-min 16.5 - - - -7.8 - - -
60-min 14.6 52.0 46.9 29.8 -2.4 -51.7 -46.9 -26.6

where RR and RG denote the DFW radar network and gauge rainfall measurements (mm),

respectively. The angle brackets stand for sample averages. It should be noted that the

errors associated with rain gauge measurements were neglected in the evaluation. Interested

readers are referred to Habib et al. (2001) and Chen and Chandrasekar (2015a) for sampling

errors of tipping-bucket gauges.

NMB and NSE results for rainfall estimates at different time scales (5-min, 10-min,

15-min, 20-min, 30-min, and 60-min) for each of the example events described in Section

5.2.1 are shown in Tables 5.3.

In addition, the overall NMB and NSE are calculated for each time scale based on the

entire observations, combining the four example events and a number of other interesting
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Table 5.4. Evaluation results (NMB and NSE) of various rainfall products
at different time scales for 11 events combined. ‘-’ indicates that an operational
product is not available from the NWS. The 11 events are 18 April 2013, 16
May 2013, 09 June 2013, 27 October 2013, 09 May 2014, 18 July 2014, 18
August 2014, 11 May 2015, 29 May 2015, 26 November 2015, and 26 December
2015.

NSE (%) NMB (%)
Time scale DFW Network N1P OHA DAA DFW Network N1P OHA DAA
5-min 35.4 - - - -5.7 - - -
10-min 29.0 - - - 0.3 - - -
15-min 25.6 - - - 1.4 - - -
20-min 22.6 - - - 2.0 - - -
30-min 18.8 - - - 1.5 - - -
60-min 14.8 34.1 29.3 25.0 0.4 -30.7 -13.3 1.2

events, including 09 May 2014, 18 July 2014, 18 August 2014, 11 May 2015, 29 May 2015,

26 November 2015, and 26 December 2015. The results are shown in Table 5.4.

For a side-by-side peer comparison, the operational products generated by the NWS

for the S-band KFWS WSR-88DP radar (both single- and dual-polarization products) are

also included in the validation analysis. The NWS single-polarization rainfall algorithm

is presented in Fulton et al. (1998) and the dual-polarization rainfall algorithms are de-

scribed in Giangrande and Ryzhkov (2008). Both are generated on polar grids centered

at the radar, and are available from the National Centers for Environmental Information

(NCEI). The single-pol product included in the evaluation study is one-hour precipitation

(N1P), which has a spatial resolution of 2 km in range by 1.0 degree in azimuth. The dual-

polarization-based hourly rainfall accumulations are produced in two different formats: one

hour accumulation (OHA) and digital accumulation array (DAA). The NWS/OHA prod-

uct has 16 data levels (4-bit) with the same spatial resolution of NWS/N1P, while the

NWS/DAA product has 256 data levels (8-bit) and a spatial resolution of 0.25 km by 1.0

degree (https://www.ncdc.noaa.gov/data-access/radar-data/nexrad-products). The

DAA never has a rain gauge bias correction applied, but the OHA product can potentially
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have bias applied. Both N1P, OHA, and DAA are estimates of precipitation accumulation

over the past hour, and are updated every five to six minutes. The NMB and NSE of

NWS/N1P, NWS/OHA, and NWS/DAA for each of the example events, as well as for all

11 events combined, are shown in Tables 5.3 and 5.4. The evaluation statistics for rainfall

products at other time scales are not included because higher temporal-resolution products

are not operationally available from the NWS.

The main findings from the evaluation results of different rainfall products, including the

CASA DFW radar network and the NWS single- and dual-polarization QPE, are summarized

as follows:

(1) As expected, the three dual-polarization hourly rainfall products (CASA DFW net-

work QPE, NWS/OHA, and NWS/DAA) have a better performance than the single-polarization

products (i.e., NWS/N1P) in terms of NMB and NSE for each of the four example events

or the 11 events combined. Among the four types of hourly rainfall products, the CASA

DFW QPE system products have the best performance, which is further illustrated by the

scatter plots shown in Figure 5.12 and the NSE histograms in Figure 5.13.

(2) For the 11 events combined, the NMBs of 5-, 10-, 15-, 20-, 30- and 60-min rainfall

from the CASA DFW QPE system are -5.7%, 0.3%, 1.4%, 2.0%, 1.5%, and 0.4%, respec-

tively; and the NSEs are 35.4%, 29.0%, 25.6%, 22.6%, 18.8%, and 14.8%, respectively. In

particular, the 5-, 10-, 15-, 20-, and 30-min products are not available from the operational

NWS radars. The excellent performance of the DFW QPE system is further demonstrated

by the scatter plots shown in Figures 5.14 and 5.12(a).

(3) The NSEs of the CASA DFW radar network QPE products have a decreasing trend

as the rainfall accumulation time increases from five minutes to one hour (see also Figure
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(a) DFW Network vs. Gauge
Hourly Rainfall (mm)    

(b) NEXRAD N1P vs. Gauge
Hourly Rainfall (mm)    

(c) NEXRAD OHA vs. Gauge
Hourly Rainfall (mm)    

(d) NEXRAD DAA vs. Gauge
Hourly Rainfall (mm)    

Figure 5.12. Scatterplots of hourly rainfall accumulations from the CASA
DFWQPE system versus rain gauge measurements for the four example events
(combined) described in Section 5.2.1. (a) CASA DFW QPE system product,
(b) NWS N1P product, (c) NWS OHA product, and (d) NWS DAA product.

5.15). This is because the random radar measurement errors are reduced by temporal and

spatial averaging.

(4) For all four example events or the 11 events combined, the NWS N1P and OHA

products underestimate rainfall compared with the gauge network observations (see also

Figure 5.12(b)(c)). The overall NMB and NSE for the NWS/N1P are -30.7% and 34.1%,

respectively, for the 11 events combined, and -13.3% and 29.3% for the NWS/OHA. Other

than the spatial resolution difference, the impact of data quantization on NWS N1P and
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Figure 5.13. The NSEs of hourly rainfall products operationally generated
by the NWS and CASA DFW QPE systems for 11 events combined, including
18 April 2013, 16 May 2013, 09 June 2013, 27 October 2013, 09 May 2014, 18
July 2014, 18 August 2014, 11 May 2015, 29 May 2015, 26 November 2015,
and 26 December 2015.

OHA may have introduced significant errors to the products. Detailed investigation of

the quantization error in the NWS operational products is beyond the scope of this study.

The interested reader is referred to documents about the WSR-88DP Open Radar Product

Generator (ORPG) from http://www.roc.noaa.gov/.

(5) Overall, the NWS/DAA products have better performance than OHA in terms of

NMB and NSE. The overall NMB is about 1.2% and the NSE is about 25.0%. Besides
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(a) 5-min Rainfall (mm) (b) 10-min Rainfall (mm)

(c) 15-min Rainfall (mm)

(e) 30-min Rainfall (mm)

(d) 20-min Rainfall (mm)

Figure 5.14. Scatterplots of (a) 5-, (b) 10-, (c) 15-, (d) 20-, and (e) 30-min
rainfall accumulations from the CASA DFW QPE system versus rain gauge
measurements for the four example events described in Section 5.2.1
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Figure 5.15. The NSEs of the CASA DFW QPE products at different time
scales, for the 11 events combined. The error bars in grey represent the vari-
ability of performance at different gauge locations

the aforementioned spatial averaging and degraded quantization, the worse performance

of OHA may be attributable to the bias applied to it (for details, see documents from

http://www.roc.noaa.gov/).

5.3. Summary

High spatiotemporal resolution QPE is one of the essential requirements for the pre-

diction of urban flash floods, which are usually associated with heavy rainfall over a short

time span. It has been shown in Chapter 3 that the dual-polarization radar techniques can

improve the QPE accuracy over the traditional single-polarization radars by rendering more

measurements to enhance the data quality, providing more information about rain DSD, and

implying more characteristics of different hydrometeor types. However, doing QPE in com-

plex terrain is still a large challenge due to the sampling limitations of the NWS operational
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radar. Spatially, the NWS radars are normally separated by distances of over 200 km, and

the radar resolution volume is continuously enlarged with increasing range. Subsequently,

the QPE accuracy will suffer from beam broadening, beam overshooting, and the earth’s

curvature. In addition, it is an overwhelming task to find proper infrastructure to support a

large radar system in an urban environment and to avoid local terrain blockage. Temporally,

the NWS radar observations are updated every five to six minutes in precipitation mode,

which is too long for urban flash flood modeling and forecasting.

CASA has proposed a solution to the sampling dilemma of WSR-88DP by deploying a

network of higher-frequency (X-band) dual-polarization radars to fill the gaps in the oper-

ational S-band weather radar coverage (detailed in Chapter 4). This small X-band radar

system has gained increasing interest in recent years due to its cost efficiency and compact

configurations, especially for urban deployment and applications (Chen et al. 2017b; Chan-

drasekar et al. 2017; Cifelli et al. 2017). In addition, at X-band, the differential phase-based

rainfall approaches can better address the physical sciences in precipitation estimation. At

the same time, the deployment of a dense radar network can address engineering challenges

such as beam height and resolution (Cifelli and Chandrasekar 2010; Chandrasekar et al.

2012).

In this chapter, the real-time high-resolution (250 m × 250 m × 1 min) QPE system

designed for the CASA DFW dense urban radar network has been presented. This real-time

rainfall system is built based upon a local polarimetric S-band WSR-88DP radar (i.e., KFWS

radar) and the CASA/DFW X-band radar network. The performance of the CASA DFW

QPE system was evaluated in an operational environment during a number of precipitation

events that occurred in 2013, 2014 and 2015. In addition, the NWS hourly rainfall products

(note that the NWS does not generate rainfall products in shorter time scales than one hour)
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were also evaluated. Comparisons between radar rainfall estimates and rainfall measurements

from ground rain gauges have demonstrated the excellent performance of the CASA DFW

urban QPE system. In particular, the hourly rainfall performance of the CASA DFW QPE

system is about 20% better in NSE than the operational NWS single-polarization product,

and 10% better than the NWS dual-polarization products.

Coupled with hydrologic models, the high-resolution real-time rainfall products from the

DFW radar network are being used in downstream applications such as urban flash flood

forecasting. The high-quality DFW radar network rainfall products can also serve as reliable

datasets for validation of satellite precipitation retrievals (Chen and Chandrasekar 2016).
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CHAPTER 6

Application of High-Resolution Ground Radar

Observations to Satellite Precipitation Data Fusion

The high-performance precipitation products derived from ground radars have been

used in a number of applications for disaster mitigation and numerical weather predic-

tion. Ground-based dual-polarization radar is also a powerful tool for validation of satellite

measurements and associated precipitation retrieval algorithms (Schwaller and Morris 2011;

Kirstetter et al. 2012; Chen and Chandrasekar 2016). Taking the Global Precipitation Mea-

surement (GPM) satellite mission (Hou et al. 2014) initiated by the National Aeronautics

and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA)

as an example, ground radar is always a key component in GPM ground validation field

campaigns. However, most previous research only focused on using ground radar products

to evaluate various satellite precipitation products. The ground radar observations or prod-

ucts themselves are not essentially incorporated in the satellite product development phase.

In this chapter, the application of high-resolution ground radar observations to satellite

precipitation estimation and fusion will be investigated.

As discussed in Section 2.2 in Chapter 2, precipitation retrieval using satellites is gener-

ally conducted through cloud top brightness temperatures in the infrared (IR) images from

geostationary satellites and/or passive microwave (PMW) measurements from low earth or-

bit satellites (Kummerow et al. 2000; Kidd et al. 2003). IR data are available globally nearly

everywhere nearly all the time. Global rainfall mapping can be obtained by correlating rain-

fall rates with cloud top brightness temperatures measured by the IR channels. In contrast
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to IR, relatively low frequency (10-37 GHz) PMW signals sense the thermal emission of rain-

drops while higher frequency (85 GHz and higher) signals sense the scattering of upwelling

radiation from the earth to space due to ice particles. PMW-based retrieval has better

physics than that based on IR data. However, the space time coverage of PMW sensors

is very limited compared to IR sensors. Figure 6.1 shows a typical sampling of 16 PMW

satellites over the continental U.S. (CONUS) at each half-hour window during a 3-hr period

(00:00-02:30UTC) on May 29, 2015. Obviously, at each half hour, only a small portion of

CONUS is covered. The PMW data have to be substantially averaged over time in order

to provide full coverage. Figure 6.1 (bottom panel) also shows a 3-hr composite of six half-

hourly converge maps, which demonstrates that most of the regions are currently scanned

by PMW sensors during a 3-hr period.

A number of techniques have been developed to produce precipitation products over

the globe, using either IR or PMW data or IR and PMW in combination. The IR data are

generally manipulated in a statistical fashion to mimic the behavior of ground radar or PMW-

derived precipitation estimates. For example, Miller et al. (2001) developed a technique in

which PMW-derived precipitation estimates are regressed with collocated observations of IR

brightness temperatures to generate precipitation estimates when and where PMW data are

unavailable. Huffman et al. (2007) proposed a scheme in which PMW observations are used

to calibrate the more frequently available IR data. Turk et al. (2008) developed a scheme to

determine the IR brightness temperature threshold for precipitation estimation by comparing

the distribution of IR data with collocated rainfall estimates from PMW sensors, and the

resulting relationship is used to estimate rainfall using IR data in locations and instances

where PMW data are not available.
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Figure 6.1. Typical sampling coverage of current passive microwave sensors
for each half-hour window during a 3-hr period on May 29, 2015. The 16 sen-
sors are on board TRMM, Aqua, FY-3B, DMSP, MetOp, and NOAA satellites.
The bottom panel shows a 3-h composite of the half-hourly coverage maps in
the upper three panels.
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With these techniques, several global precipitation products have been derived. Tra-

ditional examples include the Tropical Rainfall Measuring Mission (TRMM) Multisatellite

Precipitation Analysis (TMPA) described in Huffman et al. (2007), the Precipitation Esti-

mation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)

in Sorooshian et al. (2000), the Passive Microwave-Calibrated Infrared algorithm (PMIR)

(Kidd et al. 2003), the Naval Research Laboratory Global Blended-Statistical Precipitation

Analysis (NRLgeo) (Turk and Miller 2005), and the Goddard profiling algorithm (GPROF),

which is also applied in TMPA (Kummerow et al. 2001). On 27 February 2014, the GPM

Core Observatory was successfully launched in Japan (Hou et al. 2014). The application goals

of this science mission are to advance our understanding of global precipitation microphysics

and distribution, and improve the accuracy and frequency of precipitation measurements. In

the GPM era, new products have been developed based on recent developments in satellite-

sensing technologies. Typical examples include the Integrated Multisatellite Retrievals for

GPM (IMERG) (Liu 2016) and the Global Satellite Mapping of Precipitation (GSMaP) esti-

mates (Kubota et al. 2007; Aonashi et al. 2009; Ushio et al. 2009). Both IMERG and GSMaP

seek to produce high-precision, high-resolution global precipitation maps using both IR and

PMW data. These two products are often referred to as GPM flagship level 3 products.

NOAA’s Climate Prediction Center (CPC) has developed a morphing method for combin-

ing IR data and PMW-based precipitation retrievals (Joyce et al. 2004). This morphing

technique, termed CMORPH, uses precipitation estimates derived from PMW observations

exclusively whose features are transported via spatial propagation information obtained from

IR data during periods when instantaneous PMW retrievals are not available. The motion

(or propagation) vectors are produced by computing spatial lag correlations on successive

IR images and then used to propagate the PMW-derived precipitation estimates in time and
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Table 6.1. A summary of commonly used satellite precipitation products.
The PERSIANN-Cloud Classification System (CCS) is essentially an enhanced
PERSIANN products.

Product Spatial Resolu-
tion

Temporal
Resolution

Data Source

TMPA 3B42RT 0.25◦ ×0.25◦ 3-hr https://mirador.gsfc.nasa.gov
PERSIANN 0.25◦ ×0.25◦ 1-hr ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN
PERSIANN CCS 0.04◦ ×0.04◦ 0.5-hr ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-

CCS
CMORPH 0.25◦ ×0.25◦ 1-hr https://rda.ucar.edu/datasets
GSMaP 0.1◦ ×0.1◦ 1-hr ftp://rainmap@hokusai.eorc.jaxa.jp
IMERG 0.1◦ ×0.1◦ 0.5-hr ftp://jsimpson.pps.eosdis.nasa.gov

space when updated PMW data are not available. This morphing process is very flexible in

that any precipitation estimates from any PMW satellite source can be incorporated.

The spatial and temporal resolution of a few popular satellite precipitation products are

summarized in Table 6.1. As mentioned above, although ground radar rainfall estimates are

used when developing some of the IR- or PMW-based algorithms, the radar measurements are

not directly incorporated in producing any of the operational satellite precipitation products.

This chapter describes a machine learning system that has been developed to improve satellite

precipitation data fusion through combining ground radar observations. The CMORPH

mechanism is referred to extensively in the development of this machine learning-based radar

and satellite data fusion framework. Therefore, a brief overview of the CMORPH technique

is provided in Section 6.1. For more details, interested readers are referred to Joyce et al.

(2004) and Xie et al. (2017). In Section 6.2, the machine learning system for merging IR,

PMW observations from satellites, and high-resolution rainfall products from ground radar

networks is detailed. An urban-scale application of the proposed machine learning approach

is presented in section 6.3.
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6.1. Review of NOAA CMORPH Satellite Precipitation Product

As shown in Figure 6.2, the input to CMORPH includes both IR data and PMW-based

retrievals. However, the CMORPH products only use precipitation estimates derived from

PMW sensors. For a given location, the features of PMW-based precipitation retrievals

are transported via spatial propagation information obtained from IR data during periods

when instantaneous PMW retrievals are not available. In particular, the spatial correlations

between successive IR images are applied to derive PMW-based precipitation retrievals in

time and space when updated PMW data are unavailable. Overall, CMORPH produces

high-resolution global (60◦S-60◦N) precipitation estimates at a spatial resolution of about 8

km × 8 km, and a temporal resolution of 30 min.

PMW 
Retrievals 

Preprocessing 
(Decoding, QC, 

Mapping, Calibration)
MWCOMB

Propagation 
& Morphing

GEO IR
Defining Motion Vectors 

(Cross-Correlation)
Motion 
Vectors

CMORPH

Figure 6.2. Conceptual diagram of CMORPH technique.

6.1.1. Input Data.

PMW Retrievals: The PMW-based precipitation retrievals that are currently used in

CMORPH are generated from observations from NOAA polar-orbiting operational mete-

orological satellites (NOAA-15, -16, -17, -18, -19), polar-orbiting meteorological satellites

(MetOp-A, -B) developed by the European Space Agency (ESA) and operated by the Euro-

pean Organization for the Exploitation of Meteorological Satellites (EUMETSAT), the U.S.

Defense Meteorological Satellite Program (DMSP) satellites (DMSP-13, -14, -15, -16, -17,

-18), the second generation of Chinese polar-orbiting meteorological satellites (FY-3B), and

NASA’s TRMM and Aqua satellites. The PMW sensors aboard these satellites are Advanced

123



Table 6.2. PMW sensors whose precipitation retrievals are presently (to
date) used in CMORPH.

PMW sensor (decreasing
quality from top to bottom)

LEO platforms (decreasing quality from left to
right)

Quality
ranking

TMI TRMM 1
AMSR Aqua 2
MWRI FY-3B 3
SSMIS DMSP F-18, F-17, and F-16 4
SSM/I DMSP F-15, F-14, and F-13 5
MHS MetOp-B, MetOp-A, NOAA-19, and NOAA-18 6
AMSU NOAA-17, NOAA-16, and NOAA-15 7

Microwave Sounding Unit-B (AMSU-B; NOAA-15, -16, -17), Microwave Humidity Sounder

(MHS; NOAA-18, -19, MetOp-A, -B), the Special Sensor Microwave Imager (SSM/I; DMSP

F-13, -14, -15), the Special Sensor Microwave Imager Sounder (SSMIS; DMSP F-16, -17, -18),

the Microwave Radiation Imager (MWRI; FY-3B), the TRMM Microwave Imager (TMI),

and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E;

AQUA). Table 6.2 lists the satellite PMW sensors whose measurements are used to derive

the precipitation retrievals served as inputs to CMORPH. The quality of retrievals from

various PMW sensors is also ranked in Table 6.2.

Different PMW sensors have different characteristics in terms of retrieval algorithm,

resolution, and coverage (Joyce et al. 2004; Xie et al. 2017). For example, the TMI is a

nine-channel radiometer that operates at five frequencies similar to the SSM/I instrument.

Its geographic coverage is restricted to 38◦N to 38◦S latitude due to the limits of the TRMM

spacecraft orbit. But the TMI offers higher spatial resolution than SSM/I because of the

relatively lower orbit of the TRMM spacecraft. Surface rainfall derived from TMI is based

on the TRMM 2A25 algorithm, which essentially relates the vertical profiles of liquid and ice

to surface rain rates in a radiative model context, and rainfall estimates are derived over land

and ocean (Kummerow et al. 2001). In addition, matching between the convective/stratiform
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fraction of a satellite view of precipitation and that of a cloud model is applied in the retrieval

(Hong et al. 1999). Precipitation estimates from SSM/I sensors aboard the DMSP platforms

utilize the 85-GHz vertically polarized channel to relate the scattering of upwelling radiation

by precipitation-sized ice particles within the rain layer and in the tops of convective clouds to

surface precipitation (Ferraro 1997). The scattering technique is applicable to both land and

ocean. A precipitation rate derived empirically from the relationship between ice amount

in the rain layer and in the tops of convective clouds to actual surface rainfall is used to

estimate precipitation amounts. The absorption of the upwelling radiation by rainwater and

cloud water at 19 and 37 GHz is used to derive rainfall rates over oceans (Joyce et al. 2004).

In contrast to TMI or SSM/I, the AMSU-B instrument has five window channels, and its

cross-track swath width (approximately 2200 km) contains 90 fields of view per scan. The

AMSU-B rainfall algorithm first performs a physical retrieval of ice water path and particle

size from the 89 and 150 GHz channels (Ferraro 1997). Then a conversion from the ice water

path to the rain rate is made based on cloud data from the Pennsylvania State University-

National Center for Atmospheric Research (PSU/NCAR) mesoscale model (also known as

MM5) and on comparisons with in situ measurements.

IR Data: In CMORPH, the geostationary satellite IR brightness temperature infor-

mation is extracted through the Man-computer Interactive Data Access System (McIDAS).

Currently, the IR data from five satellites are used. Starting from the Pacific, the five satel-

lites are Japan Meteorological Agency (JMA) satellite Himawari-8, GOES-West (currently

GOES-15), GOES-East (currently GOES-13), Meteosat-10, and Meteosat-7. Sometimes,

GOES-14 (normally in standby mode) is put into action as GOES-West or East when GOES-

15 or 13 is in some anomaly. The characteristics of these five satellite IR sensors are listed

in Table 6.3.
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Table 6.3. Characteristics of geostationary IR data used in this study.

Satellite Nadir location (at equator) IR central wavelength (microns)
Himawari-8 140.7◦E 11.0
GOES-15/WEST 135◦W 10.7
GOES-13/EAST 75◦W 10.7
Meteosat-10 0◦ 11.5
Meteosat-7 0◦ 11.5

Global IR images are available from both the Meteosat-10 and Meteosat-7 satellites every

30 min, but only every 3 hours from the GOES although northern and southern hemispheric

images are available from the GOES spacecraft during the intervening 30-min intervals.

CPC maps each satellite IR image to a rectilinear grid at 0.03635◦ of latitude and longitude

resolution (about 4 km at the equator) using the method described in Janowiak et al. (2001).

The global IR data (60◦S-60◦N) are then constructed by compositing IR window channel

measurements from the five geostationary satellites listed in Table 6.3, the equator at the

Atlantic Ocean, Africa, the Indian Ocean, the western Pacific Ocean, and the eastern Pacific

Ocean. The full-resolution global cloud-top temperature data (4 km × 4 km × 30 min) are

then used to derive cloud motion vectors as part of the CMORPH processing (Joyce et al.

2004; Xie et al. 2017).

6.1.2. Data Processing and Morphing.

As aforementioned, the input IR data are available at half-hour intervals (Janowiak et al.

2001). This temporal resolution is selected to produce spatially complete PMW precipitation

analyses (Joyce et al. 2004). Spatially, CMORPH uses 0.0727◦ latitude and longitude (8 km

at the equator) grid resolution, which is determined by compromising the spatial resolution of

various input data sources: 5-km (Meteosat IR), 4-km (GOES IR), and the greater-than-13-

km resolution of the AMSU-B and SSM/I-derived precipitation estimates. The PMW-based

rainfall estimates are first mapped to the nearest grid point on global (60◦N-60◦S) rectilinear
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grids at 0.0727◦ of latitude and longitude resolution. Such mapping is done for each half

hour and each satellite. If two or more estimates from the same satellite sensor are available

for a given grid pixel, the average rainfall rates will be calculated and used for this grid

pixel. In reality, this only happens for high resolution TMI-based precipitation retrievals.

At grid pixels within the satellite swath but with no rainfall estimates available, an inverse

distance squared weighting interpolation of the nearest rainfall estimates is performed to

create a spatially complete field. But it should be noted that CMORPH does not perform

extrapolation beyond the last gridded estimate at the edge of a scan. For each half hour, after

this process is completed for all the individual satellites, precipitation retrievals from multiple

satellites are combined by sensor type (TMI, MWRI, SSM/I, AMSU, SSMIS, AMSR, and

MHS) and the combined fields are saved to separate files. Basically, the precipitation fields

composed of estimates with scan-swath time tags from 0 to 29 min after the hour are in

a separate file from those with time tags ranging from 30 to 59 min after the hour. In

applications, the TRMM spacecraft underflies all other satellites used in CMORPH so that

TMI may have more frequent observations. In addition, some slight coverage overlap exists

between the NOAA-17 and DMSP F-15 satellites in the half-hourly mapped precipitation

files. Therefore, an optimization procedure is adopted to determine which estimate to use

when PMW-based retrievals from more than one sensor are available at the same location

for a given half-hour period (Joyce et al. 2004). In CMORPH, the order of precedence is

established based on spatial resolution and the availability of both emission and scattering-

based estimates over the oceans. The resulting order of precedence in regions of overlap is

to use estimates from TMI first, then from AMSR if no estimate from TMI is available, and

then MWRI, SSMIS, SSM/I, MHS, and finally AMSU (Xie et al. 2017). This procedure is
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also adopted in developing the machine learning-based fusion system for radar and satellite

precipitation estimation that is detailed in Sections 6.2 and 6.3.

Figure 6.3 illustrates sample combined PMW-based rainfall rate estimates over the conti-

nental U.S. during a 3-hr period on May 29, 2015. Figure 6.4 shows the combined IR data for

the same region during the same time as Figure 6.3. However, the IR data shown here have

a higher resolution (4 km × 4 km) than combined PWM-based retrievals. The half-hourly

global IR data are averaged to 8 km resolution in order to match exactly the grids that con-

tain the PMW-based rainfall estimates. The averaged IR data are then used to propagate

the PMW-based retrievals. In the following, more details about the generation of IR-based

cloud motion vectors in CMORPH and how to use these motion vectors to propagate the

PMW-based precipitation products will be provided.

There are two main advantages of using IR data to propagate PMW-based retrievals.

On the one hand, the IR data are available globally every half hour. In addition, the IR

sensors provide good measurements of cloud-top properties so that the cloud systems and

their movements can be detected from the IR data. Essentially, the cloud system advection

vectors are derived based on the correlation between collocated IR imagery at two different

time intervals. However, it is well known that the direction and speed of cloud tops as

detected by satellite IR sensors may not always correlate well with the propagation of the

precipitating system in the lower layers. In addition, the direction of the wind may change

and wind speed generally increases in magnitude with height from the earth’s surface. In

applications, the spatial scale of lag correlation should be large enough to include the sharp

contrast of the cloud shield edges with the earth’s surface. At the same time, the spatial

resolution should not be too large in case the variability of the steering currents that provide

propagation of the cloud system may be missed. In CMORPH, 5◦ latitude/longitude IR
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Figure 6.3. Combined PMW-based precipitation retrievals over continental
U.S., 00:00-02:30UTC, May 29, 2015. The satellites included here are TRMM,
Aqua, FY-3B, DMSP F-13, -14, -15, -16, -17, -18, MetOp-A, -B, and NOAA-
15, -16, -17, -18, -19. The spatial resolution is about 8 km × 8 km.
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Figure 6.4. Combined IR brightness temperature data collected at the same
time as Figure 6.3. The IR data are based on five geostationary satellites:
Himawari-8, GOES-13, GOES-15, Meteosat-7, and Meteosat-10.
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regions centered at 2.5◦ intervals are used for spatial lagging. Such resolution can provide a

good measure of the movement of entire cloud systems while capturing the bulk of variations

in the steering currents. Specifically, at a given 5◦ latitude/longitude grid box that contains

∼ 8 km pixel resolution IR data at time t = 0, a spatial correlation is performed among the

IR pixel brightness temperatures in that grid box with those in the same domain but from

the t + 0.5hr image. This process is repeated, but with each iteration the spatial domain

of the t+ 0.5hr grid box is shifted pixel by pixel in the zonal or meridional directions. The

combination of lags that yields the highest correlation determines the cloud motion vectors.

If only hourly data are available for some satellites, the same procedure as described above

is used except that the motion vector magnitudes are divided into two and are assumed

to be the same for both half-hour periods within the hour. A primary domain is defined

for each satellite, demarked by the midpoints between the nadir positions of primary and

neighbouring satellites. Within each primary domain, the cloud motion vectors are derived

solely from the primary satellite IR images unless the daily image count is less than half of

the overlapping neighbouring satellite daily image count, in which case the information from

the neighbouring satellite is used instead. If the IR data are missing for a particular half

hour, vectors are determined by a linear temporal interpolation between the nearest past

and future half-hourly vectors, weighted by the time distance from the missing time. If the

missing vectors remain in very small regions, a spatial interpolation of the motion vector

fields is performed. However, it should be noted that no spatial or temporal interpolation is

performed over the GOES and Himawari-8 domains south of 50◦S latitude, where IR data

are very sparse. The motion vectors in those regions are assigned to zero.

In addition, a speed adjustment mechanism is applied in CMORPH in order to compen-

sate for the fast advection rates in the northern hemisphere mid-latitudes. The adjustment
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first computes rainfall advection vectors by spatially lagging operational hourly WSR-88DP

rainfall products (regridded to the same 8-km resolution) in the exact same dimensions and

manner cloud motion vectors are computed from IR data. The half-hourly cloud motion

vectors are then combined to hourly to match the radar rainfall advection vectors. Com-

parisons between hourly cloud motion vectors and radar rainfall advection rates indicate

that north-to-south rates are quite similar but the west-to-east cloud motion vector speeds

are about twice as fast compared to the radar-derived vectors, and south-to-north rates are

about 3-4 times faster. The incorporation of such adjustment procedures has resulted in

improved propagation of precipitation features (Joyce et al. 2004). For consistency with the

northern hemisphere, the meridional adjustment is applied to the derived cloud motion vec-

tors of the opposite sign in the southern hemisphere in order to reduce the same long-wave

trough effect (Xie et al. 2017).

With the derived cloud motion vectors, the propagation of PMW-based precipitation

retrievals starts from spatially propagating the current (t + 0hr) fields of 8-km half-hourly

PMW rainfall estimates forward in time. During the forward propagation, two auxiliary

fields are maintained along with each precipitation estimate, including time stamps (t = 0hr

for current) in half-hourly increments, in which the units represent the time since the scan

of the PMW satellite overpass used to define that grid pixel and the satellite identification

associated with the retrievals. All the PMW satellite grid pixels within each 2.5◦× 2.5◦

region, including those with zero precipitation, are propagated in the same direction and

distance to produce the analysis for the next half hour (t+ 0.5hr). If a PMW precipitation

feature is on the border between two of the 2.5◦× 2.5◦ regions, the rainfall field is propagated

evenly if the vector pairs from both regions match exactly. If two grid pixels from different

regions are propagated to the same pixel location by convergence, the average of the two
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values is used. If a data gap in the estimated rainfall field is created due to divergence,

a bilinear interpolation of the rainfall features across the gap is computed. Finally, if a

PMW-derived precipitation estimate from a new scan at t+0.5hr is available at a particular

grid location, that estimate will overwrite the propagated estimate and the associated time

stamp for that pixel set to a value of zero. Otherwise, the time stamp is incremented by a

value of 1.

This entire morphing process is repeated every half hour. For illustration purpose, Figure

6.5 shows the fundamental concept of the propagation process. An initial 03:30UTC time

analysis of current PMW-based retrievals (t = 0hr) consisting of two precipitation clusters

is propagated forward to produce analyses at t + 0.5hr and t + 1hr using the IR-derived

cloud motion vectors. The continuity of the propagated rainfall clusters in the t+0.5hr and

t + 1.0hr fields can be appreciated by comparing them with the updated PMW analysis.

It should be noted that the shape and intensity of the features have not changed in the

propagated plots (Joyce et al. 2004). Also, this analysis can possibly be propagated one

more time step to t + 1.5h, in which case all values will be overwritten by precipitation

estimates from an updated PMW scan that became available at the t+1.5hr time step (i.e.,

05:00UTC).

In addition to the forward propagation, a similar process is invoked in which current

rainfall estimates are spatially propagated backward in time using the same cloud motion

vectors as those used in the forward propagation, except for reversing the sign of those

vectors. Corresponding results are stored separately from those computed in the forward

propagation process. Thus, for the above example in Figure 6.5, if the t = 1.5hr updated

PMW precipitation estimates are available, they will be propagated backward to the t = 0hr

time frame. After all propagated fields have been computed, the precipitation analysis at
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Figure 6.5. Illustration of the propagation and morphing process in
CMORPH (adopted from Joyce et al. (2004)). The estimates at time frames
03:30 and 05:00UTC are real PMW-based retrievals with no propagation or
morphing applied. The estimates at 04:00 and 04:30UTC are (a) forward
propagated in time, (b) backward propagated in time, and (c) morphed from
propagation in both directions.
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t = 0hr that contains observed PMW-based retrievals overwrites the propagated estimates

for that time frame. In CMORPH, due to the temporal sampling considerations imposed

by the orbital nature of the spacecraft, the backward propagation process must begin at

least 5hr beyond the current analysis time (t = 0hr) in order to have a globally complete

field of backward-propagated rainfall field. This is also why there is a 5-hr delay in the

operational availability of CMORPH products (Xie et al. 2017). Nevertheless, the results

obtained from temporal propagation in both directions in time are improved over a single

direction (Joyce et al. 2004). In CMORPH, the propagation of precipitation features will not

change the characteristics of those features themselves but will merely translate them to new

positions. Changes in the intensity and shape of the PMW-based retrievals are accomplished

by inversely weighting both forward- and backward-propagated rainfall fields. The weights

are determined by the respective time distances from the current and updated available

fields. Again, taking Figure 6.5 as an example, at each grid pixel at time frame t + 0.5hr,

the estimate is produced by a weighted mean given by:

(34) CMORHt+0.5hr = 0.67× Pforward(t+0.5hr) + 0.33× Pbackward(t+0.5hr)

where Pforward is the PMW precipitation estimate forward propagated from the initial analy-

sis (03:30UTC), and Pbackward is the PMW precipitation estimate backward propagated from

the updated analysis (05:00 UTC). Similarly, the CMORPH value for the 04:30UTC analysis

is computed as follows:

(35) CMORHt+1hr = 0.33× Pforward(t+1hr) + 0.67× Pbackward(t+1hr)
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Figure 6.6. Sample CMORPH products over the continental U.S. on May
29, 2015. The corresponding PMW and IR data are shown in Figures 6.3 and
6.4, respectively.
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Each half-hour estimate and the associated propagation time and satellite information

are extracted from this morphing analysis and saved as standard CMORPH products. For

illustration purposes, Figure 6.6 shows sample CMORPH products over the continental U.S.

on May 29, 2015, for a 3-hr period. The corresponding combined IR data and PMW-based

retrievals are shown in Figures 6.4 and 6.3, respectively.

6.2. A Machine Learning System for Radar and Satellite Precipitation

Data Fusion

6.2.1. Background.

As aforementioned, although the ground radar network has usually been used when de-

veloping satellite retrieval algorithms or validating the derived precipitation products, the

radar data themselves are not used in the operational production of satellite precipitation

retrievals. In addition, traditional use of radar in satellite precipitation studies relies on

the parametric relations between satellite measurements (e.g., IR data) and radar rainfall

estimates. The non-parametric application of radar products in satellite precipitation data

fusion is rare to nonexistent. To this end, this study explores the non-parametric approach

to satellite precipitation estimation using additional information from ground radar observa-

tions. A simplified conceptual diagram is shown in Figure 6.7. This study is also motivated

by the rapid development of machine learning techniques in recent years. In particular,

the artificial neural network-based deep learning algorithms are extensively investigated and

implemented in relation to radar and satellite precipitation data fusion.

Since McCulloch and Pitts (1943) developed the first conceptual model of an artifi-

cial neural network in 1943, its application has tremendously expanded over the past few

decades. The artificial neural network, which is simply referred to as “neural network” in
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Figure 6.7. Simplified diagram of machine learning-based radar and satellite
precipitation data fusion.

this study, was designed as a computational model based on the human brain. Nowadays,

neural networks are applied in almost every aspect of human life, including research in bi-

ology, computer science, geoscience, etc. The neural networks are modelled as collections of

neurons that are connected in an acyclic graph. That is, the outputs of some neurons can

become inputs to other neurons. Neural network models are often organized into distinct

layers of neurons. For regular neural networks, the most common layer type is the fully con-

nected layer in which neurons between two adjacent layers are fully pairwise connected, but

neurons within a single layer share no connections. Figure 6.8 illustrates two example neural

network topologies that use a stack of fully connected layers. As the fundamental element of

a neural network, the artificial neuron is also called a “perceptron”, and takes several inputs

and produces a single output. Figure 6.9(a) shows an example perceptron that has n inputs.

A simple rule for computing the output is to assign different weights w1,w2,· · · , wn to each

input according to the importance of respective inputs to the output. The neuron’s output
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output layer
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hidden layer 1

output layer

hidden layer 2

(a) A 2-layer neural network 

(b) A 3-layer neural network 

Figure 6.8. (a) A 2-layer neural network with three inputs, one hidden layer
of 4 neurons, and one output layer with 2 neurons. (b) A 3-layer neural network
with three inputs, two hidden layers of 4 neurons each and one output layer.
Notice that in both (a) and (b) there are connections between neurons across
layers, but not within a layer.

in Equation (36), is determined by whether the weighted sum
∑

iwixi + b is less than or

greater than a threshold value. In other words, the perceptron can be considered as a device

that makes decisions by weighing the evidence.

(36) y = f(
n∑

i=1

wixi + bi)

where xi is the input element; wi is the weight assigned to input xi; bi is an error term; f is

the activation function; and y is the output.
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Figure 6.9. (a) Example of a perceptron. (b) A single layer with two percep-
trons. Each output can be related to the three inputs through the perceptrons.

Traditionally, the activation function is modelled as a sigmoid function σ(x) = 1
1+e−x .

The derivative of the sigmoid function is dσ(x)/dx = σ(x) ∗ (1− σ(x)). As shown in Figure

6.10(a), the range of the σ function is between 0 and 1. The maximum of its derivative is equal

to 0.25. Obviously, when we have multiple stacked sigmoid layers, by the back propagation

derivative rules we get multiple multiplications of dσ(x)/dx. And as we stack more and

more layers the maximum gradient decreases exponentially. This is commonly known as the

vanishing gradient problem. The opposite problem is when the gradient is greater than 1,

in which case the gradients explode toward infinity (exploding gradient problem).

On the other hand, the rectifier function f(x) = max(0, x), where x is the input to a

neuron, was demonstrated to have more biological and mathematical justifications. It has
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(a) sigmoid function 

(b) Rectified linear unit (ReLU)

Figure 6.10. Activation functions and their derivatives commonly used
in neural network. (a) The sigmoid function. (b) The rectified linear unit
(ReLU).

been used in neural networks more effectively than the sigmoid function and it is more

practical (Nair and Hinton 2010; Glorot et al. 2011). The rectifier linear unit (ReLU) is, as

of 2015, the most popular activation function for deep neural networks (LeCun et al. 2015).

Figure 6.10(b) illustrates the ReLU function and its derivative. This study applies the ReLU

activation function when devising the neural network models for radar and satellite-based

precipitation estimation.

It should be noted that when we say N -layer neural network, the input layer is not taken

into account. That is, a single-layer neural network describes a network with no hidden layers

(input directly mapped to output). Unlike all layers in a neural network, the output layer

perceptrons generally do not have an activation function. This is because the last output

layer is usually taken to represent the class scores (e.g., in classification), which are arbitrary

real-valued numbers, or some kind of real-valued target (e.g., in regression). In addition,

the neural networks with two or more layers are also referred to as multi-layer perceptron
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(MLP). In the following, a deep MLP (DMLP) model is designed to incorporate radar and

satellite observations for precipitation estimation.

6.2.2. Architecture of the DMLP Model for Radar and Satellite Precip-

itation Estimation.

In this section, the CMORPH technique described in Section 6.1 is referred to extensively.

The same input data with CMORPH, including the geostationary satellite IR data and

low earth orbit satellite PMW-based precipitation retrievals, are used in the design of the

DMLP-based data fusion model. At the same time, ground-based dual-polarization radar

observations are used as additional sources in this fusion system. Figure 6.11 illustrates the

general idea of developing enhanced precipitation products using the non-parametric MLP

methodology. The CMOPRH strategy is also included in Figure 6.11 in order to emphasize

the novelty of this study.

Ground 
Radar Data

PMW 
Retrievals 

Preprocessing 
(Decoding, QC, 

Mapping, Calibration)
MWCOMB

Propagation 
& Morphing

GEO IR
Defining Motion Vectors 

(Cross-Correlation)
Motion 
Vectors

CMORPH

Multi-Layer 
Perceptron (MLP) 

based Data Fusion

Enhanced Satellite 
Precipitation Product

Figure 6.11. Generic concept of the application of DMLP model in produc-
ing enhanced precipitation products using radar and satellite data.
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Compared to a traditional neural network, the deep learning concept (DMLP model)

applied here is also a branch of machine learning. The DMLP model attempts to conduct

high-level abstractions in the data through using a deep graph with multiple processing

layers. It is commonly used in fields such as image processing, automatic speech recognition,

natural language processing, and audio recognition.

Figure 6.12 shows a detailed framework of the DMLPmodel in the context of precipitation

estimation. The input data includes PMW sensor measurements and IR data collected from

satellites as well as the scan time information of the IR and PMW sensors. The ground radar

measurements are used to derive high-resolution rainfall products that are used as training

labels for this DMLP model.

Rainfall Rate 

Estimates

Combined PMW-
based Rainfall 

Retrievals

Time Associate 
with PMW 
Retrievals

Combined IR Data

Satellite Data Preprocessing Input Layer �
Example Multi-Hidden Layers

Output Layer ࢠ

High-Resolution Dual-
Polarization Radar 
Rainfall Products

Target

Adjust Connections (Weights) between Hidden Layers (Neurons)

Ground Radar

IR Data from Individual 
GEO Satellites

PMW Sensor 
Measurements from 

Individual LEO Satellites

IR Sensor Scan Times

PMW Sensor Scan Times

�࢟ ૛࢟ ૜࢟

Figure 6.12. (a) Overall architecture of the DMLP Model for radar and
satellite precipitation estimation.

With the IR data and PMW retrievals from individual satellites, the CMORPH technique

is implemented first to obtain combined global IR data (∼ 4 km resolution) and PMW-based

precipitation estimates (∼ 8 km resolution). The combined satellite data and retrievals, along

with the associated time of the PMW-based retrievals, serve as the input to the DMLP model.
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The input data are denoted by input layer vector x:

(37) x = [x1, x2, x3]

where x1 represents the PMW-based precipitation retrieval, x2 represents the time frames

when the PMW scans are available, and x3 represents the combined IR data that are

remapped to the PMW retrieval grid resolutions.

Taking the DMLP model in Figure 6.12 as an example, the output z can be related to

the input data x through the following equations:

(38a) y1 = f1(w1x+ b1)

(38b) y2 = f2(w2y1 + b2)

(38c) y3 = f3(w3y2 + b3)

(38d) z = f4(w4y3 + b4)

where y1, y2, and y3 are the intermediate outputs in the three hidden layers from left to

right, respectively; w1, w2, w3, and w4 are the weights associated with the input layer and

three hidden layers from left to right, respectively (the weights will be updated in the model

training and optimization process); b1, b2, b3, and b4 are the bias vectors at the input

layer and three hidden layers from left to right, respectively; f1, f2, f3, f4 are the activation

functions at different layers. All the activation functions are modelled as ReLU (see Figure
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6.10(b)). z is the derived precipitation field. Equation (38) can also be expressed as:

(39) z = f4(w4f3(w3f2(w2f1(w1x+ b1) + b2) + b3) + b4)

which directly relates the derived precipitation field to the input satellite data.

In the model training, the high-resolution rainfall products from a ground radar or radar

network will serve as labels (targets). The ground radar products can be derived using any

radar or radar network provided that the coverage domain and resolution match the input

satellite data coverage domain. In Section 6.3, an urban-scale application of this DMLP

model over the DFW metroplex will be detailed, where the high-quality rainfall products

from the CASA DFW dense urban radar network QPE system are used as training targets.

However, it should be noted that the three hidden layers in Figure 6.12 are only used

for illustration purposes. In reality, the hyper parameters, including the number of hidden

layers and the number of perceptrons (nodes) in each layer, are determined using the strategy

described below.

6.2.3. Model Optimization and Hyperparameter Setting.

Model Optimization: For the DMLP model with given numbers of layers and nodes, the

gradient descent approach is applied to find the optimal solution. Figure 6.13 illustrates

the model optimization process. Essentially, the optimization includes forward propagation

for estimation and backward propagation for error optimization (or changing weights). The

weights are updated with:

(40) wi,j(new) = wi,j(old) − ρ
∂E

∂wi,j(old)
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where E is the error function, also known as cost function. ρ is the learning rate; wi,j are

the weights to be updated in the model optimization. In this study, the mean square error

of satellite precipitation estimates with respect to ground radar rainfall estimates is used as

cost function E.

Input Data
 Combined PMW-

based Rainfall 

Retrievals

 Time Associate 

with PMW 

Retrievals

 Combined IR Data

DMLP 
Model

DMLP Model Output 
Satellite Precipitation 

Estimates 

Target
Ground Radar 

Rainfall Estimates

+

Back Propagation

Gradient Descent

Forward Calculation

Figure 6.13. DMLP model optimization for radar and satellite rainfall es-
timation.

The model is optimized through the following four steps:

1) Forward Calculation: calculate the hidden node outputs yi and precipitation estimate

z for given input satellite data x;

2) Cost Function: calculate the mean square error E of z using target label z∗;

3) Backward Propagation: compute the gradient ∂E
∂wi,j

using error E and outputs yi and

z;

4) Gradient Descent: calculate the updated weights wi,j using the gradient from step 3).

It should be mentioned that the learning rate ρ must be set to an appropriate value to

make sure the gradient descent will work. The learning rate determines how quickly or slowly

we will move toward the optimal weights. In addition, the learning rate should satisfy the
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condition of being less than 2/λmin to guarantee convergence to the point of local minimum,

where λmin is the minimum eigenvalue of the input covariance matrix.

In real implementations, this study attempts to improve the computational efficiency

with the aid of the open source machine learning software library TensorFlow developed

by Google. TensorFlow is essentially an interface, or a platform for machine intelligence

(Abadi and Coauthors 2015). It is commonly used for developing various machine learning

algorithms. At this point, the second-generation TensorFlow is available for the implementa-

tion and deployment of large-scale MLP models. TensorFlow takes computations described

using a dataflow-like model and maps them onto a wide variety of different hardware plat-

forms. Traditionally, separate systems for large-scale training and small-scale deployment

have been used, leading to significant maintenance burdens and leaky abstractions. With the

TensorFlow platform, one can span a broad range of systems; it significantly simplifies the

real-world use of neural network systems. TensorFlow computations are expressed as stateful

dataflow graphs and the system is made both flexible enough for quickly experimenting with

new models for research purposes and sufficiently high performance, and robust enough for

production training and deployment of machine-learning models. A TensorFlow computa-

tion is described by a directed graph, which is composed of a set of nodes. Again, taking

the DMLP model in Figure 6.12 as an example, the computation graph will consider 3×9×3

nodes for the three hidden layers with, respectively, three, nine and three neurons. The

graph represents a dataflow computation, with extensions for allowing some kinds of nodes

to maintain and update persistent states and for branching and looping control structures

within the graph (Abadi and Coauthors 2015). Overall, the TensorFlow is a flexible data
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flow-based programming model. The system was born from real-world experience in con-

ducting research. For more details, interested readers are referred to Abadi and Coauthors

(2015).

This study constructs the computational graph in the proposed DMLP model using

Python. Figure 6.14 shows an example fragment to construct and then execute a TensorFlow

graph using the Python front end. The resulting computation graph is also illustrated in

Figure 6.14.

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) 

# 100-d vector, init to zeroes

W = tf.Variable(tf.random_uniform([784,100],-1,1)) 

# 784x100 matrix w/rnd vals

x = tf.placeholder(name="x") 

# Placeholder for input

relu = tf.nn.relu(tf.matmul(W, x) + b)

# Relu(Wx+b)

C = [...]

# Cost computed as a function of Relu

s = tf.Session()

for step in xrange(0, 10):

input = ...construct 100-D input array ... 

# Create 100-d vector for input

result = s.run(C, feed_dict={x: input}) 

# Fetch cost, feeding x=input

print step, result

(a) (b)

Figure 6.14. (a) Example TensorFlow code fragment. (b) Computation
graph for (a).

Hyperparameter Setting: Determination of the hyper parameters in the DMLP model

is one of the main efforts in this study. The number of hidden layers and the number of

perceptrons for each layer should be investigated in order to produce reliable precipitation
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estimates for a given set of radar and satellite data. As aforementioned, for a given set

of hyper parameters, the DMLP model can be optimized using gradient descent. Here it

is worth noting that even for the same hyper parameters, the DMLP model is updated

every now and then provided that new data are available to be included in the training

dataset. Figure 6.15(a) shows a conceptual diagram of the update of the DMLP model. In

particular, when new satellite and radar data are available, the optimized DMLP model will

be re-evaluated and optimized again.

For the hyper parameter setting, this study applies a grid approach. A large number of

combinations of different learning rates, number of perceptrons, and number of hidden layers

are predefined. Each combination will be trained and tested using ground radar-derived

products, and the hyper parameters resulting in the best satellite precipitation performance

will be used. Figure 6.15 shows some examples of the pre-defined hyper parameters. In the

following, a detailed implementation of the designed DMLP-based data fusion framework

over the DFW Metroplex will be given.

6.3. Urban Scale Application of the Proposed Machine Learning System

As presented in Chapter 5, a high-resolution radar quantitative precipitation system was

developed for the CASA DFW dense urban radar network. Comparison between the CASA

DFW radar rainfall products and rain gauge observations has demonstrated the excellent

performance of this ground radar network. The QPE products from the DFW radar network

serve as input to distributed hydrologic models for flash flood warning operations. The DFW

QPE products are also used to validate various satellite precipitation estimates, especially

the instantaneous rainfall rate products (Chen and Chandrasekar 2016).
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1e-3 1; 40 2; (9, 3) 3; (3, 9, 3) 2; (4, 2)

1e-4 1; 40 2; (9, 3) 3; (3, 9, 3) 2; (4, 2)

1e-5 1; 40 2; (9, 3) 3; (3, 9, 3) 2; (4, 2)

… … … … …

(b) Examples of hyper parameters

(a) Model update for given hyper parameters

Figure 6.15. (a) DMLP model update when new training data are available.
This is specially for given hyper parameters. (b) Grid approach to the selection
of hyper parameters.

In this section, the high-performance rainfall products from the DFW urban radar net-

work are used as target labels to train the proposed DMLP model. In particular, the domain

of 96.3◦W-98◦W longitude, 31.8◦N-33.47◦N latitude is selected for demonstration purposes.

The area of study domain is 200 km×192 km. The PMW and IR measurements used in
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CMORPH are used as input to the DMLP model. Note again that the PMW data are

obtained from 16 low earth orbit satellites, and the IR data are obtained from five geosta-

tionary satellites (see Section 6.1 for details). The CMORPH techniques are implemented

first to get combined PMW and IR data. Figure 6.16 illustrates the DMLP model for the

DFW domain.

Rainfall Rate 

Estimates

Combined PMW-
based Rainfall 
Retrievals over 

DFW Region 

Time Associate 
with Combined 
PMW Retrievals

Combined IR Data 
Over DFW Region 

Input Data

Multi-Hidden Layers

Output Layer

DFW Radar Network 
QPE Products

Target

Adjust Connections (Weights) between Hidden Layers (Neurons)

Figure 6.16. Urban scale application of the deep multi-layer perceptron
(DMLP) model for rainfall estimation over DFW Metroplex.

In this study domain, there are 25 × 24 grid pixels of PMW-based precipitation retrievals

with spatial resolution ∼ 8 km, whereas there are 50 × 48 grid pixels of combined IR data

with spatial resolution ∼ 4 km. Both IR and PMW data have a temporal resolution of 30

mins. Similar to CMORPH, the spatio-temporal resolution of 8 km × 8 km × 30 min is

used to derived final precipitation products.
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6.3.1. Data Preprocessing.

Before training the DMLP model illustrated in Figure 6.16 and applying it to new datasets,

preprocessing of the DFW radar-based rainfall products and satellite IR data is required.

In this study, the DFW radar rainfall products and satellite IR data are processed to match

the PMW-based retrieval grid pixels. In particular, the combined IR brightness temperature

data at 4km × 4km grids are spatially averaged at each half-hour window. Figure 6.17 shows

example remapping of the IR data collected on June 23, 2014, at 12:00 and 12:30UTC.

(a) 12:00UTC, 2014-06-23

(b) 12:30UTC, 2014-06-23
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Figure 6.17. Spatial averaging of satellite IR data (∼ 4 km resolution) to
match satellite PMW-based rainfall data (i.e., ∼ 8 km grids). In this study, a
simple linear average is applied. In particular, 2× 2 IR grid pixels are averaged.
Data shown here were collected on June 23, 2014.
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For the high-resolution DFW radar rainfall products, both spatial and temporal averaging

are applied. Figure 6.18 illustrates the temporal and spatial averaging of the high-resolution

DFW radar rainfall products to match satellite PMW-based precipitation retrievals. The

resolution of the ground radar rainfall products is 250 m × 250 m × 1 min. Temporally,

30 frames of DFW radar products from 00-29 mins of each hour are averaged for the first

half-hour window, and 30 frames from 30-59 mins are averaged for the second half-hour

window. Spatially, 32× 32 high-resolution rainfall pixels are averaged to get rainfall estimates

matching the 8 km × 8 km grid.

It should be noted that the linear averaging is applied here only for purposes of simplicity.

More complicated and efficient methods need to be investigated in future studies. In addition,

although the PMW-based precipitation retrievals are produced every half hour, the retrievals

themselves are essentially instantaneous rainfall rates at a certain time within that half-hour

window. In other words, the PMW-based retrievals are not the mean of rainfall rates across

the half-hour window. However, the processed ground radar products stand for the mean of

rainfall rate field for a given half-hour window. The biases introduced by such mismatching

are beyond of the scope of this study, but should be researched in future.

Compared to CMORPH, which uses the cloud motion vector derived from IR data to

propagate PMW-based retrievals, this study does not apply the motion vector propagation.

Instead, a time vector associated with PMW-based retrievals is created and used as a key

input to the DMLP model. If the PMW data are available for a given time frame, the time

value is assigned with zero, whereas if there are no PMW data available for that time frame

the closest (in time) observations are used and the time difference is assigned as the time

value.
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Figure 6.18. Temporal and spatial averaging of high-resolution DFW radar
rainfall products to match satellite PMW-based precipitation retrievals. Tem-
porally, 30 frames of DFW radar products from 00-29 mins of each hour are
averaged for the first half hour window (a), and 30 frames from 30-59 mins
are averaged for the second half hour window (b). Spatially, 250m× 250m
high-resolution rainfall products are averaged to 8km × 8km grid.

6.3.2. Model Training.

In order to train the DMLP model for urban-scale applications, 15 precipitation events that

occurred in 2013, 2014, and 2015 are taken into account. Among the 15 events, 12 are used
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Table 6.4. Training and testing events for developing the machine learning-
based system merging satellite and ground radar rainfall observations.

Precipitation Cases Categories
2013-04-17 00 to 2013-04-20 00UTC Training
2013-05-15 00 to 2013-05-18 00UTC Training
2013-10-26 00 to 2013-10-29 00UTC Training
2014-07-16 00 to 2014-07-20 00UTC Training
2015-03-17 00 to 2015-03-20 00UTC Training
2015-04-01 00 to 2015-04-04 00UTC Training
2015-04-08 00 to 2015-04-15 00UTC Training
2015-05-10 00 to 2015-05-13 00UTC Training
2015-05-28 00 to 2015-05-31 00UTC Training
2015-06-16 00 to 2015-06-20 00UTC Training
2015-11-25 00 to 2015-11-29 00UTC Training
2015-12-25 00 to 2015-12-29 00UTC Training
2013-06-08 00 to 2013-06-11 00UTC Testing
2014-06-23 00 to 2014-06-27 00UTC Testing
2015-05-28 00 to 2015-05-31 00UTC Testing

as training cases, while the other 3 are used as testing cases. Table 6.4 lists the events

used for training and testing purposes. It should be noted that the selection of training and

testing cases is random. In total, the training dataset include 960 hours of data (i.e., 1920

half-hour frames). All the input data, including satellite PMW-based rainfall estimates, IR,

and time vectors associated with PMW observations are put on 25×24 grids covering the

DFW metroplex. The total number of grid points in the training data is about 1.15 million.

The DFW radar network-based rainfall products are generated for the 15 events listed in

Table 6.4. Among them, the products for the training events are used as training labels in the

DMLP model. The products for the testing events are used to test the trained model. That

is, after training the DMLP model, satellite data (DMLP inputs) for the testing events are

processed with the trained DMLP model to produce estimated rainfall fields. The estimated

rainfall products based on satellite data will be compared with the testing data products

from the DFW radar network.
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The methodologies detailed in Section 6.2 are implemented to configure the hyper pa-

rameters in the DMLP model and optimize the model for selected hyper parameters. It is

concluded that the three hidden layers with three, nine, and three perceptrons, respectively,

can render the best results for the 13 testing events. This is also why such hyper parameters

are used as examples in Figure 6.16.

6.3.3. Preliminary Results and Performance Evaluation.

The DMLP model trained with radar and satellite data collected during 12 precipitation

events was tested using the 3 independent validation cases. Figure 6.19(b) shows the rainfall

estimates with the trained DMLP model using satellite PMW and IR data collected for

the validation event of June 24, 2014. For comparison purpose, Figure 6.19(a) illustrates

the rainfall products from the DFW radar network and the combined PMW-based rainfall

retrievals and CMORPH products are shown in Figure 6.19(c) and (d).

Similarly, Figure 6.20 show the results for another half-hour frame on June 24, 2014, at

23:00UTC. For reference, Figure 6.20 also includes the high-resolution rainfall product from

the DFW radar network and the combined IR data information observed at this time frame.

The results for other validation events are not given since essentially they show similar per-

formance with the results shown in Figures 6.19 and 6.20. Based on the comparison between

the rainfall products shown in Figures 6.19 and 6.20, it is concluded that the products from

the designed DMLP model can capture the precipitation pattern fairly well. In order to

further demonstrate the performance of the DMLP-based data fusion model for radar and

satellite precipitation estimation, rainfall estimates generated for the test events (see Table

6.4) are also used for quantitative evaluation. Here, the ground radar-based rainfall products

(after averaging) are used as references in the validation. The normalized standard errors

(NSErain) of combined PMW-based retrievals, CMORPH products, as well as the rainfall
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(d) CMORPH Product (c) PMW-based Retrieval

(b) DMLP-based Product(a) Averaged Radar Product

Figure 6.19. Cross-comparison of various rainfall products on June 24, 2014,
at 20:00UTC. (a) DFW radar network rainfall estimates (after averaging); (b)
rainfall estimates from the DMLP model; (c) combined PMW-based rainfall
retrieval; (d) CMORPH products.

products derived using the DMLP model, defined below, are computed.

(41) NSErain =
|ER −RR|

RR

where ER is the number of rainy pixels in the PMW-based retrievals, CMORPH or DMLP

products; RR is the number of rainy pixels from ground radar rainfall estimates. Here, it is
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(f) IR Data(e) High-resolution Radar Product

(d) CMORPH Product (c) PMW-based Retrieval

(b) DMLP-based Product(a) Averaged Radar Product

Figure 6.20. Cross-comparison of various rainfall products at 23:00UTC,
June 24, 2014. (a) DFW radar network rainfall estimates (after averaging); (b)
rainfall estimates from the DMLP model; (c) combined PMW-based rainfall
retrieval; (d) CMORPH products; (e) high resolution rainfall product from
DFW radar network (before averaging); (f) corresponding IR data.
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Table 6.5. Evaluation results of the CMORPH, DMLP, and combined
PMW-based rainfall estimates for the time frame of 20:00UTC, June 24, 2014

DFW Radar Network Combined PMW CMORPH DMLP

Threshold of 0.5 mm/hr Applied
ER 71 82 216 79

NSErain - 15.5% 204.2% 11.3%
Threshold of 1 mm/hr Applied

ER 57 80 186 78
NSErain - 40.3% 226.3% 36.8%

worth mentioning again that RR for the test events is not used in the DMLP model training

process. In other words, RR is independent from ER.

Table 6.4 shows the evaluation results of the CMORPH, DMLP, and combined PMW-

based rainfall products derived for the time frame of 20:00UTC, June 24, 2014. Obviously,

the DMLP model has very good performance in detecting rainfall compared to PMW-only

based rainfall retrieval or PMW and IR combined estimates in CMORPH. Nevertheless, it

should be noted that this study will not conduct a more quantitative validation since the

rainfall rates from ground radar represent an average over half-hour window, whereas the

PMW-based retrievals or CMORPH products represent instantaneous rainfall rates sampled

within the half-hour window. The temporal mismatching may introduce additional errors in

the quantitative analysis.

In addition, the probability distribution function (PDF) of rainfall rates estimated using

different techniques is investigated. For illustration purposes, Figure 6.21 shows the PDF for

rainfall products derived for the time frame of 23:00UTC, June 24, 2014. Although more case

studies are needed, the preliminary results based on the DMLP model are quite promising.

In particular, this non-parametric machine learning approach can capture low rainfall rates

better than CMORPH or the PMW-based products.
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Figure 6.21. Probability distribution of rainfall rate estimates from the
DFW radar network, PMW measurements, CMORPH, and the DMLP model
developed in this study. Results show that the DMLP model-based products
capture low rainfall rates better than CMORPH or the PMW-only based prod-
ucts. The products presented here are for the time frame of 23:00UTC, June
24, 2014.

6.4. Summary

Space-based precipitation products are commonly used for regional and/or global hy-

drologic modelling and climate studies. However, the accuracy of onboard satellite mea-

surements is limited due to spatial-temporal sampling limitations, especially for extreme

events such as very heavy or light rain. On the other hand, ground-based radar is a more

mature science related to quantitative precipitation estimation (QPE). Presently, ground

radars are critical for providing local-scale rainfall estimations for operational forecasters to

issue watches and warnings, as well as validation of various space measurements and prod-

ucts. In this chapter, a review of the NOAA CMORPH technique and products has been
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given purely based on satellite measurements. In addition, this paper introduces a neu-

ral network-based data fusion mechanism to improve satellite-based precipitation retrievals

by incorporating dual-polarization measurements from ground-based radar network. The

prototype architecture of this fusion system has been detailed. Results from urban-scale

application in the DFW metroplex are presented. Comparison with existing PMW-based

retrievals and CMORPH product shows the promising performance of the machine learning

model designed in this study.
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CHAPTER 7

Summary, Conclusions and Future Work

7.1. Summary and Conclusions

The measurement of precipitation is an important issue that has been pursued since the

earliest time in civilization. Currently, numerous types of infrastructure have been deployed

to directly or indirectly measure rainfall rate and amounts, such as rainfall gauges, weather

radars, and satellites. Rain gauges can directly measure rainfall at point locations. However,

deploying and maintaining a large number of rain gauges to observe the complex spatial

and temporal variability of precipitation processes is an extensive and expensive task. In

addition, it is challenging to use rain gauges to accurately measure light rain due to the

sampling limitations of the gauges. For example, for a gauge with bucket volume resolution

of 0.254 mm (or 0.1 inch), it may take too long to get one tip in light rain. Satellites

provide good coverage over the globe, and the resulting information plays an important role

in understanding global climate and water cycles. However, the space time resolution of

precipitation products based on satellite observations is very coarse because of the large

footprint of satellite instruments. Compared to rain gauges and satellites, radar has shown

great advantages in conducting spatially continuous observations over a large area with small

temporal sampling intervals. Currently, long-range microwave (e.g., S- or C-band) radar

networks are considered an integral part of the weather sensing and forecasting infrastructure

by many nations. In particular, the dual-polarization upgrade of the U.S. operational weather

radar network (WSR-88DP) offers a number of advantages for rainfall estimation compared

to single-polarization by gleaning more information about precipitation microphysics and

raindrop size distribution.
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However, it is well known that one limitation of today’s operational weather radars is

the inability to cover the lower part of atmosphere due to the earth’s curvature and terrain

blockage. The S-band WSR-88DP radars are spaced about 230 km apart in the eastern

U.S. and 345 km apart in the western U.S. At the maximum coverage range of 230 km, the

lowest (0.5 degree) beam is about 5.4km above ground level (AGL). As a result, many fine-

scale weather features in the lower atmosphere such as tornadoes and flash floods cannot be

observed. In order to overcome the coverage and resolution limitations of WSR-88DP, the

National Science Foundation Engineering Center for CASA has been dedicated to enhancing

the ability to observe, understand, predict, and respond to hazardous weather events using

a dense network of small, low-power X-band dual-polarization radars that can sense the

lower atmosphere. These smaller and less expensive radars can serve as gap fillers for the

WSR-88DP network by providing enhanced sampling of precipitation and winds near the

ground. Since 2012, CASA, in collaboration with the NWS and the North Central Texas

Council of Governments (NCTCOG), has operated a dense urban X-band radar network in

the DFW metroplex for urban weather disaster detection and hazard mitigation. The real-

time high-resolution radar observations and products from the DFW network are used and

evaluated by a variety of users, including NWS forecasters, emergency managers, and users

from transportation, utilities, regional airports, sports, arenas, and the media. In addition,

the existing in-situ and remote sensors such as WSR-88DP radar and rain gauges are used

to generate value-added weather products.

This study explores the potential of ground-based dual-polarization radar network ob-

servations for accurate precipitation estimation, and subsequently uses the ground radar-

derived products to evaluate and improve satellite-based rainfall retrievals. In particular,

an improved S-band dual-polarization radar rainfall methodology has been developed that
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can be applied to the operational S-band radar network. Compared to traditional rainfall

methodologies, this new algorithm exploits the spatial information content of polarimetric

radar observations. It also considers the spatial coherence and quality of hydrometeor classi-

fication, as well as the self-aggregation propensity of radar measurements, to produce smooth

and clear rainfall products that can be easily interpreted by a variety of users.

In addition, this study presents the principles of high-resolution X-band radar technology

and networking for urban hazard mitigation and disaster management, with an emphasis on

the warning applications of the DFW dense urban radar network. The high-resolution QPE

system developed for the CASA DFW dense urban radar network is detailed. This real-time

QPE system is built based on the CASA X-band radar network and a local polarimetric S-

band WSR-88DP radar (KFWS radar). The fusion methodology combining both the X-band

radar network and KFWS radar observations at different temporal resolutions was developed.

The real-time DFW QPE system has been operating for a number of years. Overall, it is

very robust and continuously works well without any incidents. The rainfall performance has

been demonstrated through comparison between DFW radar network rainfall estimates and

rainfall observations from a rain gauge network. The hourly rainfall products operationally

produced by the NWS are also included in the evaluation study, which shows that the CASA

DFW QPE system product is superior to both the NWS single- and dual-polarization rainfall

products. The real-time DFW rainfall products also serve as input to various hydrologic

models for downstream applications including urban flash flood forecasting and streamflow

prediction.

Furthermore, this study has developed a machine learning model (DMLP) for radar

and satellite precipitation estimation. With the combined passive microwave-based rainfall

retrievals and IR data from multiple satellites, the DMLP model attempts to improve the
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performance of satellite-based rainfall estimates by incorporating high-resolution high-quality

ground radar-derived rainfall products as targets to train the core machine learning model.

The prototype architecture of the DMLP model and its urban-scale applications in the DFW

metroplex are presented. Preliminary results demonstrated the promising performance of this

multi-source precipitation estimation system.

7.2. Future Work

The following items are suggested for future work in this area of study:

Radar Rainfall Methodology

1) The proposed radar rainfall algorithms need to be tested and evaluated in other

precipitation regimes especially in complex terrain with orographic enhancement (e.g., the

San Francisco Bay Area).

DMLP-based Precipitation Data Fusion System

1) Preprocessing of ground radar-based rainfall products (i.e., before use for training

the DMLP model) could be improved to better reflect storm advection during a combined

satellite observation time span.

2) For time frames when PMW-based retrievals are not available, ways of using retrievals

from previous or subsequent frames to obtain current estimates should be further investi-

gated.

3) Data collected by newer satellites with higher resolutions (i.e., GOES-R) should be

combined to improve the DMLP model-based precipitation product.
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