

WARD NOT THE STA

by

J. A. Peterka* and J. E. Cermak**

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

COLLEGE OF ENGINEERING

COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

CERS4-85JAP-JEC 19

WIND-TUNNEL STUDY OF PET PLAZA, ST. LOUIS--WIND PRESSURES ON GLASS WALL

by

J. A. Peterka* and J. E. Cermak**

for

Kuhlmann Design Group, Inc. 66 Progress Parkway Maryland Heights, MO 63043

Fluid Mechanics and Wind Engineering Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523

CSU Project 2-95950

November 1984

*Professor **Professor-in-Charge, Fluid Mechanics and Wind Engineering Program

CER84-85JAP-JEC19

TABLE OF CONTENTS

<u>Chapter</u>		Page
	LIST OF FIGURES	ii
	LIST OF TABLES	iii
	LIST OF SYMBOLS	iv
1	INTRODUCTION	1
	1.1GeneralGeneralGeneralGeneral1.2The Wind-TunnelTestGeneralGeneral	1 2
2	EXPERIMENTAL CONFIGURATION	3
	2.1 Wind Tunnel	3 3
3	DATA ACQUISITION AND RESULTS	4 4 6
	REFERENCES	11
	FIGURES	12
	TABLES	22
	APPENDIX A	26

LIST OF FIGURES

Figure										Page
1	Fluid Dynamics and Diffusion Laboratory	•	•	•	•	•	•	•	٠	13
2	Wind-Tunnel Configuration	•	•	•	•	•	•	•	•	14
3	Completed Model in Wind Tunnel	•	•	•	•	•	•	•	•	15
4	Site Plan Showing Building Location	•	•	•	•	•	•	•	•	16
5	Pressure Tap Locations	•	•	•	•	•	•	•	٠	17
6	Mean Velocity and Turbulence Profiles Approaching the Model	•	•	•	•	•	•	•	•	19
7	Peak Cladding Pressures for a 50-Year Recurrence Wind	•	•	•	•	•	•	•	•	20

LIST OF TABLES

<u>Table</u>		Page
1	Maximum Pressure Coefficients and Loads in PSF \ldots .	23
2	Calculation of Reference Pressure	25

LIST OF SYMBOLS

Symbol [Variable]	Definition
U	Local mean velocity
D	Characteristic dimension (building height, width, etc.)
ν, ρ	Kinematic viscosity and density of approach flow
	Reynolds number
E	Mean voltage
A, B, n	Constants
U rms	Root-mean-square of fluctuating velocity
E rms	Root-mean-square of fluctuating voltage
U _∞	Reference mean velocity outside the boundary layer
Z	Height above surface
δ	Height of boundary layer
T _u	Turbulence intensity $\frac{U_{rms}}{U_{\infty}}$ or $\frac{U_{rms}}{U}$
C p _{mean}	Mean pressure coefficient, $\frac{(p-p_{\infty})_{mean}}{0.5 \rho U_{\infty}^2}$
C _p rms	Root-mean-square pressure coefficient, $\frac{((p-p_{\infty})-(p-p_{\infty})_{mean})_{rms}}{0.5 \rho U_{\infty}^2}$
C p max	Peak maximum pressure coefficient, $\frac{(p-p_{\infty})_{max}}{0.5 \rho U_{\infty}^2}$
C _{p_{min}}	Peak minimum pressure coefficient, $\frac{(p-p_{\infty})_{\min}}{0.5 \rho U_{\infty}^2}$
() _{min}	Minimum value during data record
() _{max}	Maximum value during data record
р	Fluctuating pressure at a pressure tap on the structure
₽ _∞	Static pressure in the wind tunnel above the model

iv

1. INTRODUCTION

1.1 General

A previous wind-tunnel study (1) investigated the pedestrian wind environment in the pedestrian plaza beneath the Pet building in St. Louis. The plaza is located at ground level under the building and is open on the east and west sides of the building. Pressure differences between the east and west sides of the building generated by approaching winds caused wind speeds in the plaza which were unacceptably large. Reference (1) showed that a greenhouse or wall which completely blocked the passage of air under the building would provide a solution to the high wind problem. The design solution was a glass wall lining up with the east facade of the building which completely closed the opening under the building.

The glass wall will be exposed to wind pressures on both sides. Adequate design of the wall should account for the instantaneous pressure differences acting across the wall. The purpose of this study was to define the pressure differences acting across the wall due to wind action. A wind-tuhnel test was performed to determine these design loads. Results of the study show that a design pressure of 30 psf for the glass wall will be adequate.

Techniques have been developed for wind-tunnel modeling of structures which allow the prediction of wind pressures on cladding and windows, overall structural loading, and also wind velocities and gusts in areas of concern. Accurate knowledge of the intensity and distribution of the pressures on the structure permits adequate but economical selection of structural elements such as the Pet building glass wall. Modeling of the aerodynamic loading on a structure requires special consideration of flow conditions in order to guarantee similitude between model and prototype. A detailed discussion of the similarity requirements and their wind-tunnel implementation can be found in references (2), (3), and (4). In general, the requirements are that the model and prototype be geometrically similar, that the approach mean velocity at the building site have a vertical profile shape similar to the full-scale wind, that the turbulence characteristics of the flows be similar, and that the Reynolds number for model and prototype be equal.

These criteria are satisfied by constructing a scale model of the structure and its surroundings and performing the wind tests in a wind tunnel specifically designed to model atmospheric boundary-layer flows. Reynolds number similarity requires that the quantity UD/ ν be similar for model and prototype. Since ν , the kinematic viscosity of air, is identical for both, Reynolds numbers cannot be made precisely equal with reasonable wind velocities. To accomplish this the air velocity in the wind tunnel would have to be as large as the model scale factor times the prototype wind velocity, a velocity which would introduce unacceptable compressibility effects. However, for sufficiently high Reynolds numbers (>2x10⁴) the pressure coefficient at any location on the structure will be essentially constant for a large range of Reynolds numbers. Typical values encountered are 10⁷-10⁸ for the full-scale and 10⁵-10⁶ for the wind-tunnel model. In this range acceptable flow similarity is achieved without precise Reynolds number equality.

1.2 The Wind-Tunnel Test

The wind-tunnel study was performed on a building of the Pet building at a scale of 1:300. The same model used for the pedestrian

velocity study was used for the current study. A wall was fitted with pressure taps and inserted into place in the model. The model was subjected to a simulated atmospheric wind flow in a boundary-layer wind tunnel. The model was rotated to 36 approach wind directions to observe the influence of wind direction. Pressure measurements were obtained on both sides of the glass wall and on the south wall of the plaza area near the building entrance to provide information for design of the glass wall and to find wind loads on the entry doors.

The following pages discuss in greater detail the procedures followed and the equipment and data collecting and processing methods used. In addition, the data presentation format is explained and the implications of the data are discussed.

2. EXPERIMENTAL CONFIGURATION

2.1 Wind Tunnel

Wind engineering studies are performed in the Fluid Dynamics and Diffusion Laboratory at Colorado State University (Figure 1). Three large wind tunnels are available for wind loading studies depending on the detailed requirements of the study. The Industrial Aerodynamics Wind Tunnel used for this investigation is shown in Figure 2. The wind tunnel has a flexible roof adjustable in height to maintain a zero pressure gradient along the test section. The mean velocity can be adjusted continuously to the maximum velocity available.

2.2 Model

In order to obtain an accurate assessment of local velocities and pressures, models are constructed to the largest scale that does not produce significant blockage in the wind-tunnel test section. The building model was constructed of thin Lucite plastic and fastened

together with glue and metal screws. Piezometer taps (1/16 in. diameter) were drilled normal to the two exterior surfaces of the glass wall and south wall of the plaza. Photographs of the model installed in the wind tunnel are shown in Figure 3. The building site plan is shown in Figure 4.

Pressure tap locations on the glass wall and plaza south wall were located as shown in Figure 5. Pressure tap locations on the doors are shown to scale. Pressure tap numbers are shown on the figure.

The buildings surrounding the model were modeled for a radius of about 1400 ft. An open suburban environment was assumed to be a reasonable estimate for establishing approach wind characteristics. The floor of the wind tunnel upwind of the model turntable was covered with a randomized roughness selected to provide an open suburban environment. Spires and a two-dimensional barrier were installed at the test section entrance to provide a thicker boundary layer than would otherwise be available. The thicker boundary layer permitted a larger scale model than would otherwise be possible.

3. DATA ACQUISITION AND RESULTS

3.1 Velocity

Mean velocity and turbulence intensity profiles were measured upstream of the model to determine that the desired approach boundarylayer flow had been established. Tests were made at one wind velocity in the tunnel. This velocity was well above that required to produce Reynolds number similarity between the model and the prototype as discussed in Section 1.

Measurements are made with a single hot-wire anemometer mounted with its axis vertical. The instrumentation used was a TSI constant

temperature anemometer (Model 1050) with a 0.001 in. diameter platinum film sensing element 0.020 in. long. Output is directed to the on-line data acquisition system for analysis.

Calibration of the hot-wire anemometer was performed by comparing output with the pitot-static tube in the wind tunnel. The calibration data were fit to a variable exponent King's Law relationship of the form

$$E^2 = A + BU^n$$

where E is the hot-wire output voltage, U the velocity and A, B, and n are coefficients selected to fit the data. The above relationship was used to determine the mean velocity at measurement points using the measured mean voltage. The fluctuating velocity in the form $U_{\rm rms}$ (root-mean-square velocity) was obtained from

$$U_{\rm rms} = \frac{2 E E_{\rm rms}}{B n U^{\rm n-1}}$$

where E_{rms} is the root-mean-square voltage output from the anemometer. For interpretation all rms velocity measurements for locations within the model were divided by the local mean velocity. The resulting ratio is termed turbulence intensity.

Velocity and turbulence intensity profiles are shown in Figure 6. Profiles were taken upstream from the model which are characteristic of the boundary layer approaching the model. The height of the reference velocity measurement, δ , is shown in Figure 6. The corresponding prototype value of δ for this study is also shown in the figure. The mean velocity profile approaching the modeled area has the form

$$\frac{U}{U_{\infty}} = \left(\frac{z}{\delta}\right)^n.$$

The exponent n for the approach flow established for this study is shown in Figure 6. The approach mean velocity characteristics are appropriate for the building location.

The profile of longitudinal turbulence intensity in the flow approaching the modeled area is shown in Figure 6. The turbulence intensities are appropriate for the approach mean velocity profile selected.

3.2 Pressures

Mean and fluctuating pressures were measured at each of the pressure taps on the model structure. Data were obtained for 36 wind directions at 10-degree azimuthal increments, rotating the entire model assembly in a complete circle. Pieces of 1/16 in. I.D. plastic tubing were used to connect the pressure ports to four 48-tap pressure switches mounted underneath the model. Each of the measurement ports was directed in turn by the switch to one of four pressure transducers mounted close to the switch. The four pressure input taps not used for transmitting building surface pressures were connected to a common tube leading to a pitot tube mounted inside the wind tunnel. This arrangement provided a means of automatically monitoring the tunnel speed. A computer-controlled solenoid stepped the switch into each switch The computer kept track of switch position but a digital position. readout of position was provided at the wind tunnel.

The pressure transducers used were setra differential transducers (Model 237) with a ± 0.10 psid range. Reference pressures were obtained by connecting the reference sides of the four transducers, using plastic tubing, to the static side of a pitot-static tube mounted in the wind tunnel free stream above the model building. In this way the transducer

measured the instantaneous difference between the local pressures on the surface of the building and the static pressure in the free stream above the model.

Output from the pressure transducers was fed to an on-line data acquisition system consisting of a Hewlett-Packard 21 MX computer, disk unit, printer, Digi-Data digital tape drive and a Preston Scientific analog-to-digital converter. The data were processed immediately into pressure coefficient form as described below and stored for printout and further analysis.

All four transducers were recorded simultaneously for 16 seconds at a 250 sample-per-second rate. An examination of a large number of pressure taps from previous experiments showed that the overall accuracy for a 16-second period is, in pressure coefficient form, 0.03 for mean pressures, 0.1 for peak pressures, and 0.01 for rms pressures. Pressure coefficients are defined below.

For each of the pressure taps examined at each wind direction, the data record was analyzed to obtain four separate pressure coefficients. The first is the mean pressure coefficient

$$C_{p_{mean}} = \frac{(p - p_{\infty})_{mean}}{0.5 \rho U_{\infty}^2}$$

where the symbols are as defined in the List of Symbols. It represents the mean of the instantaneous pressure difference between the building pressure tap and the static pressure in the wind tunnel above the building model, nondimensionalized by the dynamic pressure

$$0.5 \rho U_{\infty}^{2}$$

at the reference velocity position. This relationship produces a dimensionless coefficient which indicates that the mean pressure

difference between building and ambient wind at a given point on the structure is some fraction less or some fraction greater than the undisturbed wind dynamic pressure near the upper edge of the boundary layer. Using the measured coefficient, prototype mean pressure values for any wind velocity may be calculated.

The magnitude of the fluctuating pressure is obtained by the rms pressure coefficient

$$C_{p_{rms}} = \frac{\left((p - p_{\infty}) - (p - p_{\infty})_{mean}\right)_{rms}}{0.5 \rho U_{\infty}^{2}}$$

in which the numerator is the root-mean-square of the instantaneous pressure difference about the mean.

If the pressure fluctuations followed a Gaussian probability distribution, no additional data would be required to predict the frequency with which any given pressure level would be observed. However, the pressure fluctuations do not, in general, follow a Gaussian probability distribution so that additional information is required to show the extreme values of pressure expected. The peak maximum and peak minimum pressure coefficients are used to determine these values:

$$C_{p_{max}} = \frac{(p - p_{\infty})_{max}}{0.5 \rho U_{\infty}^{2}}$$
$$C_{p_{min}} = \frac{(p - p_{\infty})_{min}}{0.5 \rho U_{\infty}^{2}}$$

The values of $p-p_{\infty}$ which were digitized at 250 samples per second for 16 seconds, representing about one hour of time in the full-scale, were examined individually by the computer to obtain the most positive and most negative values during the 16-second period. These were converted to C and C by nondimensionalizing with the free stream P_{max} P_{min} dynamic pressure.

The four pressure coefficients were calculated by the on-line data acquisition system computer and tabulated along with the approach wind azimuth in degrees from true north. The list of coefficients is included as Appendix A. The pressure tap code numbers used in the appendix are explained in Figure 5.

For pressure taps on the glass wall, taps on both sides of the wall were measured simultaneously. Instantaneous differences between pressures on the inside and outside ($P_{outside} - P_{inside}$) were calculated to obtain the instantaneous pressure differential across the wall. In this convention, positive pressures act toward the west while negative pressures act to the east. Pressure coefficients were formed as described above for the pressure differences. Pressure difference coefficients for each glass wall tap combination (listed by tap number on the east side of the wall) and wind direction are listed in Appendix A.

To determine the largest peak loads acting at any point on the structure for cladding design purposes, the pressure coefficients for all wind directions were searched to obtain, at each pressure tap, the largest peak negative and peak positive pressure coefficients. Table 1 lists the largest values and associated wind directions.

The pressure coefficients of Table 1 can be converted to full-scale loads by multiplication by a suitable reference pressure selected for the field site. This reference pressure is represented in the equations for pressure coefficients by the $0.5 \rho U_{\infty}^2$ denominator. This value is the dynamic pressure associated with an hourly mean wind at the reference velocity measurement position. In general, the method of arriving at a design reference pressure for a particular site involves selection of a design wind velocity, translation of the velocity to an hourly mean wind at the reference velocity location and conversion to a reference pressure. The 50-year recurrence design velocity was selected from ANSI A58.1 - 1982 (5) as 70 mph fastest mile wind at 10 meters. The calculation of reference pressure for this study is shown in Table 2. The factor used in Table 2 to reduce gust winds to hourly mean winds is given in reference (6).

The reference pressure associated with the design hourly mean velocity at the reference velocity location can be used directly with the peak-pressure coefficients to obtain peak local design wind loads. Local, instantaneous peak loads on the full-scale structure suitable for design were computed by multiplying the reference pressure of Table 2 by the peak coefficients of Table 1 and are listed as peak pressures in that table. The maximum psf loads given at each tap location are the largest peak positive and peak negative values found in the tests.

Peak pressures are shown in Figure 7 for the glass wall and the south wall of the plaza. Pressures for the glass wall are pressure differences. Positive differences act westward while negative differences act eastward. On the south wall of the plaza, positive pressures act inward and negative pressures act outward. Design pressures of ± 30 psf on the glass wall and ± 20 psf on the plaza south wall are adequate.

REFERENCES

- 1. Peterka, J. A. and J. E. Cermak, "Wind-Tunnel Study of Pet Pedestrian Plaza, St. Louis," Technical Report CER84-85JAP-JEC9 for Kuhlmann Design Group, Fluid Mechanics and Wind Engineering Program, Colorado State University, October 1984.
- 2. Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA Jl., Vol. 9, September 1971.
- Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering," A Freeman Scholar Lecture, ASME Jl. of Fluids Engineering, Vol. 97, No. 1, March 1975.
- 4. Cermak, J. E., "Aerodynamics of Buildings," Annual Review of Fluid Mechanics, Vol. 8, pp. 75-106, 1976.
- 5. American National Standards Institute, Inc. "Minimum Design Loads for Buildings and Other Structures," ANSI A58.1 - 1982.
- Hollister, S. C., "The Engineering Interpretation of Weather Bureau Records for Wind Loading on Structures," Building Science Series 30--Wind Loads on Buildings and Structures, National Bureau of Standards, pp. 151-164, 1970.

FIGURES

Figure 1. Fluid Dynamics and Diffusion Laboratory, Colorado State University

INDUSTRIAL AERODYNAMICS WIND TUNNEL

Figure 2 - Wind Tunnel Configuration

Figure 3. Completed Model in Wind Tunnel

TOTAL TAPS = 23

MODEL SCALE = 1/300

DIMENSIONS IN MODEL INCHES AND FULL SCALE FEET

EAST ELEVATION VIEW OF GLASS WALL

Figure 5a. Pressure Tap Locations

NORTH ELEVATION VIEW OF PLAZA SOUTH WALL

Figure 5b. Pressure Tap Locations

Figure 6. Mean Velocity and Turbulence Profiles Approaching the Model

NEGATIVE (EASTWARD ACTING) PRESSURE

EAST ELEVATION VIEW OF GLASS WALL PRESSURE DIFFERENCE ACROSS WALL IN PSF

NEGATIVE PRESSURE

NORTH ELEVATION VIEW OF PLAZA SOUTH WALL LOCAL CLADDING PRESSURES IN PSF

TABLES

TABLE 1A. PEAK LOADS FOR CONFIGURATION A : PET-EAST OR WEST SIDE OF GLASS WALL AND ENTRY DOOR WALL Largest values of cladding load reference pressure = 22.0 PSF

TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK	POSITIVE PEAK SF	TAP	AZI- Muth	PRESS COEFF	NEGATIVI PEAK	E POSITIVE PEAK PSF	TAP	AZI- Muth	PRESS Coeff	NEGATIVE PEAK	POSITIVE PEAK SF
12345678	320 270 270 320 260 260	- 94 92 91 - 78 93 78 91	-20.6 -15.9 -16.1 -16.3 -16.3 -16.8	17.5 18.1 20.5 16.6 20.4 17.0	901123456 1123456	320 2600 2600 3600 800 60	- 97 .86 .718 - 887 - 883 - 833 - 83	-21. -16. -13. -16. -18. -18. -18.	20.0 6 19.0 6 15.5 1 15.8 1 15.8 1 15.8 1 15.13 1 15.13 1 15.13 1 15.13 1 15.13 1 15.13 1 15.13	178901 122223	250 260 250 300 270	98 760 .972 .972 .897 .895	-17.4 -17.3 -19.0 -16.6 -16.6	21.6 17.5 21.4 20.3 19.5

TABLE 1A. PEAK LOADS FOR CONFIGURATION A : PET-PRESSURE DIFFERENCE ACROSS GLASS WALL LARGEST VALUES OF CLADDING LOAD REFERENCE PRESSURE = 22.0 PSF

TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK PS	POSITIVE PEAK F	TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK	POSITIVE PEAK SF	TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK	POSITIVE PEAK SF
1 3 5	60 60 60	1,37 1,41 1,42	-27.8 -27.4 -30.1	30.2 30.9 31.3	7 9 11	60 270 270	1.30 -1.41 -1.33	-28.1 -31.0 -29.2	28.7 30.0 28.0	13 15	50 70	1.40 1.48	-25.8 -24.0	30.7 32.5

TABLE 2

CALCULATION OF REFERENCE PRESSURE

- 1. Basic wind speed from ANSI A58.1-1982 50-yr fastest mile at 33 ft = 70 mph Mean hourly wind speed = $\frac{70}{1.25}$ = 56.0 mph Mean hourly gradient wind speed = 56.0 ($\frac{960}{33}$)^{.17} = 99.3 mph Mean hourly wind at ref location U_w = 99.3 ($\frac{825}{1200}$)^{.22} = 91.4 mph Reference pressure = 0.5 pU_w² = (0.00256) (91.4)² = 21.4 psf Use reference pressure = $\frac{22 \text{ psf}}{1200}$
- Loads for 100-yr recurrence wind: Multiply 50-yr loads by 1.15

APPENDIX A

APPENDIX A -- PRESSURE DATA ; CONFIGURATION A ; PET-EAST OR WEST SIDE OF GLASS WALL AND ENTRY DOOR WALL PAGE A 1

WD .	TRP	CPMEAN	CPRMS	CPMAX	CPMIN	WD	TAP	CPMEAN	CPRHS	CPMAX	CPMIN	WD	TAP	CPMEAN	CPRHS	CPMAX	CPMIN
0 000000000000000000000000000000000000	P 123456789012345678901231234567890123	C -	S7911469801239406403028963334229349107	C PM A 511226233005194 - 060466721194195532445174792055504471678 - 07056330051941955324451747920555324471678	C	D 000000000000000000000000000000000000	P 56789012345678901231234567890123456789012345678901234567890123123456789012312345678901121111111111111111111111111111111111	C P ME 2 - 32810 - 3995 - 3995 - 228771 - 228771 - 228771 - 42764 - 334567 - 238771 - 42764 - 335510 - 238756 - 23895 - 243177227 - 3485 - 3455 - 243177227 - 3485 - 3455 - 34555 - 34555 - 34555 - 34555 - 34555 - 34555 - 34555 -	S 525611132561724166333728459624132317247	X 7951769893274474935293967118540586234 P	C	D 000000000000000000000000000000000000	T 90123456789012312345678901123456789012 11123456789012222	C	CPRM874 0057567003119884 005756700310655884 0055884800055884 0055884800055884 0055884800055884 0055884800055884 0055884800055688 00558848000550911027888 00770900000000000000000000000000000	C -	CP
00000000000000000000000000000000000000	12345678901231234		0087526 0087526 0005526 0005526 00065526 000665 00066 00066 000949	- 1615346530 - 162546530 - 111008369858 - 1115028369858 - 1115028369858 - 1115028369858 - 111502836 - 111502838 - 1115028 - 111508 - 1115		50000000000000000000000000000000000000	11119012312345678	- 422 - 3883 - 3888 - 3899 - 3999 - 3999 - 4226 - 42688 - 4386 - 4386 - 435	.24333964577782237 .05553964577782237 .05559777822373	- 223309 22300 222222222222222222222222222		55555666666666666666666666666666666666	22223123456789012 1112	- 4547 - 4547 - 4547 - 45887 - 45988 - 45948 - 45948 - 45948 - 45948 - 45947 - 45547 - 455477 - 45547 - 45547 - 45547 - 45547 - 45547 - 45547 - 45547	075 070 070 105 065 113 067 101 070 070 070 070 070	- 27851 - 22868 - 37807 - 2668 - 37807 - 65087 - 2668 - 37807 - 2668 - 37807 - 2668 - 27066 - 27066 - 27066 - 27066 - 27057 - 2309 - 27051 - 22851 - 22852 - 22766 - 22766 - 22766 - 27766 - 27723 - 27766 - 27766 - 27723 - 27766 - 27723 - 27766 - 27723 - 27766 - 27723 - 27766 - 27723 - 27766 - 27723 - 2	- 715 - 748 - 77934 - 7797 - 1706 - 7096 - 7097 - 17097 - 17097 - 7105 - 71362 - 71362

W D	TAP	CPMEAN CPRMS	CPNAX	CPMIN	ND.	TAP	CPMEAN	CPRMS	CPMAX	CPMIN	¥D.	TAP	CPMEAN	CPRMS	CPMAX	CPMIN
60000000000000000000000000000000000000	134 1567 1901	306 .099 - 498 .071 361 .108 - 496 .072 - 476 .069 - 482 .069 - 488 .068 - 506 .074	224953 22495342 225872	624 895 895 792 781 784 764 768	80 80 80 80 80 80 80 90	1789012231 22231 2	- 389 - 388 - 427 - 402 - 398 - 389 - 389 - 312 - 341	063 060 068 068 065 107 050	- 193 - 222 - 236 - 214 - 160 - 141 - 160 - 171 - 195	593 597 6337 6623 6623 5542	100 100 110 110 110 110 110 110	21223 2223 2234 56		051 050 086 099 094 094 094	$\begin{array}{c} - & 140 \\ - & 123 \\ - & 136 \\ & 613 \\ - & 156 \\ & 601 \\ - & 151 \\ & 667 \\ - & 147 \end{array}$	- 468 - 468 - 464 .069 - 410 .033 - 413 .058 - 440
600000 77000 77777777777777777777777777	23123456	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290 301 223 813 218 .753 248	753 752 .131 723 .162 731 .138 719	90 90 90 90 90 90	3 4 5 6 7 8 9 1 4	334 - 341 320 - 351 - 351 - 341 269 - 351	.115 .051 .119 .060 .096 .060 .099 .050	- 186 - 186 - 177 - 177 - 168 - 713 - 208	083 - 529 - 5530 - 5530 - 523 - 538	110 110 110 110 110 110 110	789011234 101234	- 200 - 2057 - 2205 - 2005 - 2	077 042 061 040 041 073 041	+59 - 139 - 180 - 180 - 175 - 175 - 140	- 014 - 435 - 094 - 431 - 056 - 433 - 055 - 415
77000	0789011 1011234	333 094 - 435 067 337 098 - 446 066 349 082 - 443 067 500 101		128 - 6867 - 6754 - 6754 - 6754 - 6756 - 7568	90 90 90 90 90 90 90 90	1123455576	2848364 - 2337438 - 1-1-	.084 .051 .091 .049 .119 .056 .055	599 1999 11140	- 569 - 560 - 560 - 5569 - 5560 - 5560 - 5560	110 110 110 110 110 110 110	15 167 199 212 222	387684637 	111 044 044 045 045 043	- 133 - 129 - 134 - 115 - 155	444 428 428 428 428 428 428 428 428
70000	156789012	- 422 071 - 432 072 - 436 072 - 436 072 - 438 066			90 90 90 90 100 100	190123123 292923123		054 0630 059 059 051 043		537 608 556 556 556 0532 437	110 1200 1200 1200 1200 1200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		.043 .066 .044 .045 .045 .045 .045		- 435 - 049 - 445 - 020 - 439 - 038 - 0449
700 800 800 800 800 800	131234567	- 442 068 361 112 - 403 058 397 124 - 404 059 359 107 - 418 065 311 094	2297 218 212 212 229 229 229		100 100 100 100 100 100 100	456789411	- 305 312 - 322 213 - 314 .181 - 316 239	044 089 045 073 043 090 043 070	172 .588 198 .476 197 .525 173 .448	- 430 022 - 482 - 018 - 479 - 094 - 471 090	120 120 120 120 120 120	89 10 112 13 14 5	- 2803 - 2925 - 1489 - 2881 - 2881 - 2889 - 2889	046 060 046 042 047 0534 098	- 130 273 - 118 272 - 112 269 - 145 679	428 128 447 .044 449 084 084 .016
888888888888888888888888888888888888888	89 10 11 13 13 15 16	- 399 065 312 098 - 402 060 326 082 - 399 061 272 091 - 404 055 - 366 107 - 400 057	- 210 - 257 - 2577 - 2577 - 2510 - 26503 - 2830 - 2800	- 655 - 6638 - 6638 - 6412 - 6611	100 100 100 100 100 100 100	1234 1567 1890	- 314 175 - 312 376 - 298 - 298 - 311 - 332	.044 .083 .046 .122 .047 .047 .043 .047 .043	- 168 - 534 - 173 - 176 - 143 - 164 - 161	- 475 - 059 - 530 - 529 - 455 - 489 - 520	120 120 120 120 120 120 120 120 120	16 17 16 20 22 22 22 22 22 22 21	2859 22622 22622 2273 2270 2270 2270 22677 22677	045 045 045 045 045 045 0467 063	$\begin{array}{c} - 137 \\ - 117 \\ - 129 \\ - 140 \\ - 086 \\ - 082 \\ - 080 \\ 401 \end{array}$	-,470 -,445 -,417 -,459 -,422 -,422 -,432 -,012

APPENDIX A -- PRESSURE DATA ; CONFIGURATION A : PET-EAST OR WEST SIDE OF GLASS WALL AND ENTRY DOOR WALL PAGE A 3

WD	TAP	CPNEAN	CPRMS	CPMAX	CPHIN	ND	TAP	CPMEAN	CPRMS	CPMAX	CPMIN	WD	TAP	CPMEAN	CPRMS	CPMAX	CPMIN
130	2	249	. 048	123	483	150	6	179	. 040	080	350	170	10	272	. 095	064	610
130	3	. 099	. 060	. 328	029	150	7	- 048	. 027	.051	134	170	11	284	056	- 110	
130	4	249	. 049	118	488	150	8	184	. 043	079	413	170	12	269	. 097	- 036	- 620
130	5	. 142	065	. 3 9 5	010	150	. 9	~ . 074	.036	. 962	- 224	179	13	241	011	- 007	- 722
130	6	- 268	. 0 4 9	132	477	150	10	187	. 038	090	338	170	17	- 274	. 073	004	- 569
130	7	. 053	. 055	. 272	128	150	11	- 028		. 0 3 3	- 110	170	10	- 290		- 079	- 771
130	8	237	. 0 5 0	127	472	150	12	184	. 039	083	- 1992	170	17	- 249		- 000	- 688
130	9	. 004	. 065	. 262	204	150	13	~ 040	. 039		- 771	170	10	- 277		- 073	- 667
130	10	255	.048	152	413	150	14	- 107	. 030	007	- 195	170	19	- 252	091	- 011	- 666
130	11	. 085	.049	.237 -	0 2 7	130	1.5	- 105		- 067	- 177	170	20	- 256	094	005	- 692
130	12	253	. 049	143	- 303	150	17	- 161	019	- 022	- 357	170	21	- 253	093	013	- 601
130	13	. 928		- 125	- 401	150	18	- 167	039	- 027	- 340	170	22	- 256	091	- 002	- 553
130	14	237	. 049	505	012	150	19	- 166	0.3.9	~ 0.70	- 359	170	23	- 274	093	- 049	- 601
130	13	. 220	. 075		- 486	150	26	- 162	039	- 026	- 344	180	-ī	- 303	058	- 135	- 552
170	10	- 235	657	- 682	- 419	150	21	- 164	042	- 053	- 330	180	2	- 218	. 103	. 017	- 603
1 7 6	10	- 246	051	- 100	- 413	150	22	- 166	041	- 062	- 329	180	3	298	.052	149	505
170	1 0	- 254	0.52	- 121	- 426	150	23	- 170	042	- 051	- 322	180	4	219	. 105	. 021	616
1 7 6	26	- 260	057	- 106	- 454	160	-1	- 159	085	078	561	180	5	304	. 063	131	628
170	21	- 253	0.54	- 077	- 458	160	ź	- 155	045	- 050	- 346	180	6	205	. 096	019	621
130	22	- 250	052	- 086	- 459	160	3	- 144	. 070	. 046	477	180	7	286	. 047	149	- 539
130	23	- 250	052	- 078	- 454	160	4	154	. 046	046	349	180	8	197	. 115	.050	- 657
140	- 1	052	045	222	- 143	160	5	154	. 080	041	541	180	9	311	. 071	139	753
140	2	- 198	043	090	- 381	160	6	177	. 048	030	- 373	180	10	218	. 102	010	619
140	3	018	037	.164	127	160	7	- 119	. 059	. 035	421	180	11	302	. 04 0	191	- 438
140	4	197	. 044	086	384	160	8	195	. 058	031	4 96	180	12	216	. 104	006	632
140	5	. 065	. 047	. 268	058	160	9	141	. 087	. 047	653	180	13	284	. 033	100	- 604
140	6	211	. 048	086	422	160	10	185	. 051	062	405	180	14	229	. 100		- 503
140	7	015	. 034	. 1 2 6	109	160	11	142	. 06 5	- 029	421	180	13	273	. 051	113	- 573
140	8	210	. 0 5 0	079	- 436	160	12	181	. 032	033	- 406	180	17	- 210	115		- 664
140	9	- 066	. 047	.082	- 262	160	13	- 117		. 057	- 490	1 00	10	- 279		- 069	- 689
140	10	215	. 945	105		164	12	- 177		033	- 427	190	19	- 239	102	- 023	- 654
140	11	. 019	. 028	.105	~ .04/	160	13	- 194		- 042	- 485	180	26	- 224	114	025	- 666
140	12	213	. 045		- 150	160	17	- 174		- 023	- 417	180	21	- 211	106	013	- 747
140	13	019	. 035	- 106	- 137	160	18	- 172	058	- 021	- 444	180	22	- 228	091	- 035	- 756
140	14	200	049	496	- 064	160	19	- 158	054	- 029	- 436	180	23	- 255	092	042	716
140	1.5	- 205		- 099	- 384	160	20	- 162	054	- 021	- 435	190	1	339	. 045	185	531
140	17	- 204	052	- 058	- 402	160	21	- 155	051	- 036	390	190	2	135	. 084	. 084	516
140	10	- 204	0.50	- 049	- 395	160	22	- 152	051	018	4:05	190	3	334	. 043	201	509
140	19	- 209	0.50	- 066	- 394	160	23	- 166	056	034	~ . 421	190	4	135	. 086	. 088	532
140	20	- 208	054	- 061	- 409	170	1	27 0	. 085	022	570	190	5	335	. 044	209	- 526
140	21	- 212	049	- 078	- 393	170	ź	- 255	. 084	066	651	190	6	138	. 080	.048	- 503
140	22	- 212	047	- 081	- 393	170	3	256	. 074	052	526	190	7	313	. 037	204	445
140	23	- 211	. 048	083	- 402	170	- 4	252	. 086	060	- 658	190	8	106	. 099	. 110	3 + 3
150	-ī	028	. 040	.155	219	170	5	264	. 081	- 011	- 618	190		347	. 030	181	- 613
150	Ź	165	. 038	053	- 288	170	6	262	. 092	018	640	190	10	- 140	. 079		- 321
150	3	045	. 033	. 0 92	- 176	170	7	236	. 065	- 039	- 330	190	11	340	. V 3 4	- 238	- 529
150	4	164	. 039	- 049	- 289	170	8	273	. 100	.046	5//	190	12	- 138	. 061	. 191	- 500
150	5	013	.040	.166	- 164	170	9	291	. 106	00%	833	170	15		. 74 (. 199	

WD	TAP	CPMEAN CPRMS	CPMAX	CPHIN	U D	TAP	CPMEAN	CPRMS	CPMAX	CPMIN	WD.	TAP	CPMEAN	CPRMS	CPMAX	CPMIN
W 9999999999999000000000000000000000000	P 45678901231234567890123456789012312345 T 1111122222	CPMEAN CPRMS - 117 113 - 333 045 - 116 097 - 116 097 - 116 097 - 1201 087 - 1207 0866 - 2053 040 - 152 0866 - 2054 040 - 3554 040 - 3554 040 - 3552 076 - 3552 086 - 355 - 355	C PP A 71859545249993352429108450777 2222927899933524242179553475505151882108450777 200022222222232423524225108450777 2000222222222323524225108450777	C	D 000000000000000000000000000000000000	P 89012312345678901234567890123123456789	CPM2247777810022273476866477959473682693760	CPR 6660232710010000000000000000000000000000000	X 65312249224920909823235109797764762814 222333324242424242424555544425258282 	C	D 000000000000000000000000000000000000	P 23123456789012345678901231234567890123 11111111112222	C -	CPR 72027290 0027290 00272990 00272990 00272990 00272990 00272990 0027290 00277290 00277290 00277290 00277290 00277290 00277200 00277200 00277200 00277200 00277200 00277200 00277200 00277200 00277200 00277200 00277200 00277200 0027720000000000	X 359765410322954817066213217940191729989 P 571959654103229548170665756628826378 - - - - - - - - - - - - - - - - - - - - - -	C -
122222222222222222222222222222222222222	56789012234567	- 354 040 048 063 - 358 039 083 042 - 358 042 - 358 042 - 358 057 - 358 042 - 358 042 - 358 042 - 358 044 - 346 043 125 074 - 346 043 086 066	- 237 - 257 - 2534 - 219 - 2667 - 2273 - 173 - 171 - 2023 - 173 - 111 - 2023 - 319 - 219 - 2267 - 2273 - 2254 - 2254 - 2254 - 2254 - 2254 - 2254 - 2254 - 2254 - 2255 - 2254 - 2255 - 2257 - 2255 - 2257 - 25	- 47593 47383 1384 14935 - 44935 - 44935 - 44935 4989 4989 	00000000000000000000000000000000000000	9012345678901	- 3508 2344 - 323461 - 323461 - 32346 - 32346 - 32356 23568 - 2214	0499 07789 0500 06827 0882 08817 0982 08817 0982	- 2009 - 2618528 - 155283 - 1568333 - 1568333 - 5560 - 55560 - 600 - 55560 - 600 - 750 - 7500 - 750 - 750 - 750 - 750 - 750 - 750 -	- 533 3345 - 464 - 664 - 6094 - 6094 - 60209 - 60209 - 60209 - 60209 - 60209 - 60209 - 60209 - 60209	2500 2550 2550 2550 2550 2550 2550 2550	1345676901231 116901231 222312	- 330439 - 330439 23330439 2322245 3326 3326 3326 3326 3326 	0489 0992 1011 1122 1115 1115 1099 045 114	- 2199 - 27195 - 27350 9823 7765 9771 6482 - 1207 810	- 543 - 511 - 511 - 549 - 511 - 2078 - 2078 - 2078 - 2077 - 4994 123

APPENDIX A -- PRESSURE DATA ; CONFIGURATION A : PET-EAST OR WEST SIDE OF GLASS WALL AND ENTRY DOOR WALL PAGE A 5

U D	TAP	CPHEAN	CPRMS	CPMAX	CPHIN	ND.	TAP	CPMEAN	CPRMS	CPNAX	CPHIN	WD	TAP	CPMEAN	CPRHS	CPMAX	CPMIN
260	3	334	. 045	178	487	280	7	223	. 032	109	333	300	11	240	. 034	158	353
260	4	. 406	. 117	. 820	.112	280	8	. 088	. 082	. 513	9 96	300	12	. 3 3 2	. 114	. 826	. 964
260	5	336	. 045	212	498	280	. 3	223	. 041	098	427	300	13	242	.031	- 121	529
260	6	. 433	. 127	. 928	.102	280	10	. 088	.076	. 500	103	300	14	.276	. 106		. 014
260	7	357	. 047	249	537	280	11	223	. 029	138	337	300	15	244	. 048	133	470
260	8	. 426	. 128	.910	.099	280	12	. 087	. 0.1 8		~ . 103	300	10	. 27(. 100	. 504	
260	9	340	.054	151	546	280	13	- 207	. 037		- 343	300	10		. 137	. 033	- 012
260	10	. 417	. 1 3 1	.862	.197	280	12	. 083	. 482	480	- 777	700	10	297	126	771	- 042
260	11	337	.041	21(472	280	13	- 217	. 033		- 005	700	20	776	142	861	003
260	12	- 417	.134	.8((280	12	125		475	- 111	300	21	202	170	921	- 091
250	13	339	. 033	2 1 7	570	280	18	079	080	799	- 179	300	22	300	127	888	- 096
204	14		. 1 4 4		- 520	280	19	677	086	402	- 166	700	23	319	134	846	- 090
260	10		102	2 1 3	1020	280	26	095	090	448	- 150	310	-1	- 283	066	- 111	- 595
200	17	410	176	927	069	280	21	088	077	395	- 109	310	2	249	121	747	- 021
260	10	740	117	771	057	280	22	671	073	410	- 121	310	3	- 298	069	- 123	- 631
260	19	1040	117	796	- 092	280	23	080	074	4 3 0	- 113	310	4	249	. 124	760	027
260	20	384	127	888	062	290	- ī	- 209	043	- 112	- 359	310	5	268	. 058	- 128	554
260	21	353	115	894	102	290	2	210	130	681	- 079	310	6	.217	.107	.700	028
260	22	341	110	837	093	290	Ĵ	219	. 045	123	390	310	7	264	. 055	134	532
260	23	369	. 1 1 8	822	.101	290	- 4	. 209	. 133	. 693	086	310	8	.202	. 107	. 700	024
270	-ī	- 334	054	175	566	290	5	201	. 039	112	385	310	9	285	. 081	096	- 891
270	Ž	347	. 123	. 822	.015	290	6	. 182	. 114	.715	0 6 6	310	10	.220	. 111	. 720	026
270	3	352	.057	187	576	290	7	203	. 036	112	- 362	310	11	285	. 053	161	~.513
270	4	. 347	. 126	. 839	.004	290	8	172	. 115	. 762	057	310	12	.220	. 114	. / 36	031
270	5	325	. 054	186	512	290	. ?	206	. 941	092	- 439	310	13	297		483	
270	6	. 341	. 136	. 897	015	290	19	. 182	. 108	. 572	066	310	14	.175	. 067	. 983	- 517
270	7	352	. 0 5 5	202	538	2 90	11	- 205	. 926	140	27(310	10	271	. 000	076	- 057
270	8	. 334	134	. 6 2 6	010	290	14	. 152			- 770	710	17	270	122	780	- 049
270		359	. 0.28	186	016	279	10	- 170		480	- 052	310	18	170	104	618	- 068
270	10	. 34 7	124		.005	270	1.2		077	- 097	- 754	710	19	150	105	623	- 109
279	11	348				2 90	14	146	101	490	- 057	310	26	221	129	819	- 090
270	14	- 744	054	- 199	- 564	296	17	194	126	681	- 084	310	ži	185	104	645	- 173
270	1.0	220		640	051	290	18	157	114	594	- 095	310	22	181	102	590	110
270	1 5	- 721	046	- 196	- 501	290	19	145	116	575	- 123	310	23	209	112	. 713	123
270	16	228	097	648	044	290	20	185	132	771	- 109	320	1	274	. 102	. 055	938
270	17	343	124	802	- 017	290	21	170	122	842	- 097	320	2	.229	. 098	. 556	023
270	18	231	106	768	- 003	290	22	155	117	. 619	095	320	3	294	. 105	. 037	905
270	19	271	114	759	- 098	290	23	. 178	. 125	. 859	- 100	320	- 4	. 227	. 100	. 565	027
270	20	324	119	783	- 032	300	1	248	. 052	106	5 5 4	320	5	290	. 097	. 032	784
270	21	309	. 1 32	. 8 4 8	017	300	2	. 342	. 117	.760	. 947	320	6	.195	. 089	. 530	927
270	22	. 30 9	130	. 802	008	300	3	258	. 055	- 133	555	320	7	311	. 095	.016	/ 01
270	23	. 329	. 142	. 862	- 012	300	4	. 342	. 120	.771	.040	320	8	.183	. 090	521	073
280	ī	219	.032	119	- 326	300	5	240	. 947	119	- 448	320		315	. 109	037	~ 763
280	2	. 097	. 977	.408	112	300	6	. 338	. 125	.815	.003	320	10	.150	. 486	. 34 3	- 402
280	3	231	. 034	136	354	300	7	236	.043	127	- 425	320	11	321		190 556	- 079
280	4	. 094	. 079	. 415	117	300	ğ	. 328	. 123	. 736	- 567	320	17	. 100	104	- 010	- 869
280	5	209	. 031	098		300		241	. 052	111		320	1.4			444	- 640
280	6	. 093	. 982	.484	687	300	10	. 332	1	. 611		JEV	14				

WD	TAP	CPMEAN	CPRMS	CPMAX	CPHIN	UD	TAP	CPMEAN	CPRMS	CPMAX	CPMIN	ND	TAP	CPNEAN	CPRMS	CPMAX	CPMIN
320	15	- 314	0.96	- 034	- 728	330	18	055	088	421	- 122	340	21	015	057	233	- 157
320	ĨĔ	174	082	454	- 042	330	19	040	091	416	- 185	340	22	005	050	196	- 151
320	17	209	101	679	- 044	330	2 ô	066	. 699	572	~ 148	340	23	- 001	. 050	201	- 144
320	18	163	093	633	- 067	330	21	064	095	475	- 130	350	-1	065	058	294	- 084
320	19	141	095	647	- 107	330	22	063	. 091	456	- 124	350	2	- 040	055	189	- 224
320	20	294	197	679	962	330	23	. 066	. 095	446	- 124	350	3	119	074	419	- 059
320	21	160	091	527	- 082	340	- 1	- 043	. 043	151	- 164	350	4	- 041	056	195	- 231
320	22	. 161	.090	.512	091	340	2	. 023	.050	. 234	- 100	350	5	.061	. 060	. 325	- 099
320	23	184	. 099	. 531	071	340	3	- 028	.052	. 260	- 159	350	5	052	. 035	. 162	- 213
330	1	117	. 059	.048	- 458	340	4	. 021	. 051	. 237	- 104	350	7	.105	. 063	335	- 080
330	2	. 079	. 097	.580	107	340	5	045	.041	. 134	- 157	350	8	085	053	140	- 290
330	3	121	. 064	.107	- 464	340	ŝ	.005	. 045	. 189	- 120	350	9	.045	.058	287	- 133
330	4	. 077	. 1 0 0	.589	110	340	7	043	. 040	. 113	208	350	10	062	. 051	138	- 248
330	5	130	. 062	056	- 390	340	8	016	. 043	.151	137	350	11	064	. 046	214	- 943
330	6	. 080	. 0 94	. 476	100	340	9	052	. 045	. 229	331	350	12	062	. 052	149	- 251
330	7	159	.077	.044	538	340	10	- 009	046	205	- 138	350	13	.096	. 974	427	- 082
330	8	. 069	.092	. 461	110	340	11	- 046	. 028	.077	214	350	14	097	057	100	336
330	9	160	. 091	.067	- 759	340	12	- 008	. 047	. 210	- 142	350	15	.096	. 071	.375	072
330	10	. 090	. 096	. 425	113	340	13	052	.045	. 128	213	350	16	096	. 058	. 107	343
330	11	- 162	065	031	479	340	14	016	. 043	. 218	131	350	17	036	. 060	. 217	215
330	12	. 089	. 099	. 430	~.119	340	15	047	.040	. 130	- 175	350	18	046	. 056	. 237	226
330	13	159	.078	.088	623	340	16	015	. 044	. 224	- 135	350	19	036	. 064	. 235	- 214
330	14	.057	.075	. 354	091	340	17	. 019	.056	. 265	129	350	20	043	. 062	214	- 224
330	15	152	. 968	.055	479	340	18	.003	. 049	. 229	127	350	21	032	. 068	. 251	- 224
330	16	. 054	. 0 7 7	.360	097	340	19	. 006	. 050	. 218	130	350	22	034	. 062	. 242	- 235
330	17	. 082	. 093	. 579	110	340	20	. 917	.056	. 264	131	350	· 23	044	. 060	. 208	306

APPENDIX A -- PRESSURE DATA ; CONFIGURATION A : PET-EAST OR WEST SIDE OF GLASS WALL AND ENTRY DOOR WALL PAGE A 6

APPENDIX A -- PRESSURE DATA ; CONFIGURATION A : PET-PRESSURE DIFFERENCE ACROSS GLASS WALL

PAGE R 7

W D	TAP	CPMEAN	CPRMS	CPNAX	CPMIN	WD.	TAP	CPMEAN	CPRAS	CPMAX	CPMIN	U D	TAP	CPMEAN	CPRMS	CPNAX	CPHIN
¢	1	. 359	. 092	.773	.100	60	5	. 82 9	. 149	1.424	356	120	.9	.361	.069	. 636	068
0	3	. 524	.137	1.011	.147	60	á	. 924	147	1 36.2	356	120	13	374	072	701	927
ç	3	. 427	105	1 1 0 0 1	174	60	11	828	127	1 273	317	120	15	604	127	1.115	. 084
Q A		. 370	. 120	711	124	60	13	828	141	1 354	299	130	1	400	. 085	.726	. 174
×		. 370	0.020	786	140	60	iš	884	150	1.404	414	130	3	.376	.077	. 653	. 171
X	17	526	1.36	1 174	203	70	ĩ	761	140	1.265	.417	130	5	.406	. 093	. 765	. 065
ň	15	576	1 30	1 180	165	70	Ĵ	. 802	149	1.401	. 4 3 9	130	7	.313	. 075	. 598	.019
10	ĩ	470	099	.876	105	70	5	.770	.150	1.345	. 428	130	?	.276	. 079	. 551	085
iò	ż	607	127	1.140	. 297	70	7	.741	. 141	1.275	. 4 3 4	130	11	.370	. 073	. 613	011
ĩò	5	. 524	. 1 0 3	.966	190	70	. 9	. 743	. 146	1.269	.271	130	13	. 273			
10	7	. 657	. 118	1.132	265	70	11	. 761	. 126	1.121	.278	130	12	. 310	. 110	. 730	. 103
10	9	. 593	. 099	.889	173	70	13	. 759	. 14 9	1 361		140	17	262	. 004	516	- 018
10	11	. 554	090	.900	.255	70	15	. 833	102	1 9 6 0	. 3 (7	140	3	292	072	593	087
10	13	. 685	. 1 4 1	1.200	.233	80	1	. (31	140	1 207	472	140	ž	211	060	486	011
10	15	. 691	.133	1.113	.221	6V 00	्र	770	140	1 330	379	140	ģ	159	056	382	- 118
20	1	. 332	1 21	1.049	.000	Řň	7	716	128	1 138	368	140	11	256	057	. 474	008
20	5 E	. 597	101	1.100	214	80	ģ	690	130	1 227	344	140	13	200	. 058	. 440	. 009
20	27	21.8	117	1 1 27	266	80	11	707	109	1.102	423	140	15	.357	. 088	. 739	. 126
20		588	102	923	210	80	13	666	126	1,192	. 258	150	1	.156	. 052	. 353	082
20	11	632	087	.927	219	80	15	. 768	. 149	1.304	.492	150	3	.149	. 045	. 319	090
20	13	708	126	1 194	166	90	1	.687	. 144	1.290	.339	150	5	.160	. 055	. 381	- 021
20	iš	711	120	1.159	140	90	3	.716	. 152	1.362	. 362	150	7	.147	. 047	. 337	017
30	ī	643	117	1.100	.360	90	5	. 683	.139	1.259	.252	150		.125	. 04 7	311	089
30	3	.710	. 122	1.180	. 423	90	7	. 616	. 118	1.072	.222	150	11	.166	.043	. 32 (- 092
30	5	. 654	. 112	1.079	.312	90		633	. 120	1.047	.304	139	13	130	. 0.01		- 041
30	7	. 736	123	1.163	.320	90	11	. 662	. 103	1.031	. 372	1 5 0	1.5	. 2 2 4	077	264	- 350
30	9	. 647	. 115	1.061	.196	90	12	. 600	. 1 1 7	1.042	. 2.93	160	4	070	066	271	- 283
30	11	. 682	. 0 9 9	1.045	.2((100	13	. (3 1	117	1 059	305	160	5	039	076	307	- 331
30	13	. 748	. 1 31	1.220	. 233	.100	ż	619	123	1 055	324	160	ž	.097	070	351	- 215
30	. 15	. ((4	172	1 1 9 9	.232	100	, s	655	123	1 167	268	160	ģ	.055	068	. 296	329
40	17	. (2 2	177	1 275	453	100	ž	560	101	965	162	160	11	.063	. 055	. 278	127
40	3	718	127	1 129	373	100	9	493	106	851	.170	160	13	.096	. 062	. 371	117
4ŏ	ž	761	130	1.179	455	100	11	. 558	.087	.855	. 227	160	15	.103	. 062	. 398	133
40	ģ	734	127	1.166	170	100	13	. 482	. 096	. 987	170	170	1	015	. 109	. 348	341
40	11	765	107	1.100	.294	100	15	. 689	. 136	1.196	.285	170	3	.008	. 100	. 330	286
40	13	. 783	. 135	1.284	.347	110	1	. 561	. 110	1.019	.240	170	Ş		. 113		- 242
40	15	. 825	.140	1.321	. 423	110	3	. 558	. 109	1,045	.240	170	á	- 002	121	402	- 514
50	1	. 784	. 142	1.299	433	110	5	. 379	. 107	1.020	.147	170	11		. 121	209	- 307
50	3	. 81 9	. 147	1.335	.450	110	<u> </u>	.480	. 000	. 0 0 1	194	170	17	063	103	482	- 320
50	5	. 782	. 143	1.334	.387	110			. 071	700	227	170	15	057	100	426	- 290
20	7	. 808	.142	1.234	324	110	17	427	0.95	8 7 0	059	180	ĩ	- 082	106	318	- 518
20	. 9	. /8/	.133	1.231	342	110	15	619	133	1 135	115	180	3	- 066	. 101	312	414
50	11	. 514	147	1 204	254	120	1	484	085	894	150	180	5	062	. 111	. 414	358
50	13	. (03	. 143	1 470	209	120	ź	461	078	817	114	180	ź	042	. 115	. 432	366
60	1 1	828	148	1 373	275	120	5	. 509	100	848	.163	180	9	076	. 125	. 363	- 634
šõ	3	. 868	157	1.406	282	120	7	. 412	.075	. 662	.118	180	11	058	. 102	. 306	334

APPENDIX A -- PRESSURE DATA ; CONFIGURATION A : PET-PRESSURE DIFFERENCE ACROSS GLASS WALL

W D	TAP	CPNEAN	CPRNS	CPNAX	CPHIN	#D	TAP	CPMEAN	CPRMS	CPMAX	CPNIN	WD	TAP	CPNEAN	CPRNS	CPMAX	CPHIN
• 000000000000000000000000000000000000	TAP 351357913513579135135791 1111 11357913513579135135791	H H S S S S S S S S S S S S S S S S S S	CPRHS 113000866 0090600991 008660991 008660991 008660991 008660991 008660991 008660991 008660991 008660991 008660991 00991 00997770084 00994 0098609984 009880 009860 009860 009977770 00880 009860 009977770 00880 009974 009860 009860 009977770 009977770 009860 009974 009860 009977770 009860 009977770 009977770 009860 009977770 009977770 009977770 009977770 009977770 00997777770 009977770 009970 009970 0099777770 009977777777	x 022060086239323814815007100539579655 x 0200600862393238148150071005539579655 x 00000000111111201003366556 x 00000000111111201003366556 x 00000000111111201003366556 x 00000000111111201003366556	C	0 0	P 9135135791357913513579135791357	H G G G G G G G G G G G G G	CPR 111111111111111111111111111111111111	X 894818994466730871005135888820771	$\begin{array}{c} CPMIM \\ -11 & 173977601\\ -11 & 19977601\\ -11 & 11977601\\ -11 & 11977601\\ -11 & 11916779922177891\\ -11 & 11916779922177891\\ -11 & 11916779922177891\\ -11 & -11 & -11 & -229310\\ -11 & -11 & -11 & -229310\\ -11 & -11 & -11 & -229310\\ -11 & -11 & -11 & -229310\\ -11 & -11 & -11 & -11 & -11 \\ -11 & -11 & -11 & -11 & -11 \\ -11 & -11 & -11 & -11 \\ -11 & -11 & -11 & -11 \\ -11 & -11 & -11 \\ -11 & -11 & -11 \\ -11 & -11 & -11 \\ -11 \\ \mathsf$	D 000000000000000000000000000000000000	Fe 579113579113579113579113579113513579113511357911351135791135791135791135791135791135135791135135	C	CPR 436422502541880884324018064223497 1664342502541880884324018064223497 111111111111111111111111111111111111	X 9429939632812062321172474824030661257	P N N 8 955390 P 10055390 -11.009946845 -11.009155390 -11.10912948 -11.10912948 -11.1091294 -11.1091294 -11.10925330 -11.1092548 -11.10925330 -11.1092548 -11.10925330 -11.1092548 -11.10925330 -11.1092548 -11.10925330 -11.10925330 -11.1092553 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.109255 -11.1095 -11.109 -1
10000000000000000000000000000000000000	79135135791351357		0988 0998 0998 0998 0995 1099 1099 1099 1097 1004 1004 11201 11203			22222222222222222222222222222222222222	85784354857848548 1111 1111		0880 0999 0999 1331 1235 1135 1138 1156			33440000000000000000000000000000000000	191357913513579135	- 2660 - 017 - 019 - 0017 - 0013 - 0014 - 0142 - 115 - 1770 - 1223 - 1223 - 214	1766939 06698749 006688749 109840 09840 0110 09840 0110	09766437552233195522334535722344515552661 6097664375522434645155554602	

PAGE A 8