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ABSTRACT 
 
 
 

DEVELOPMENT OF COMPUTATIONAL TOOLS TO MODEL MOLECULAR 

INTERACTIONS FOR MEDICINAL CHEMISTRY 

 
 

Medicinal chemistry has evolved over the past 40 years to rely heavily on the 

computationally aided design of new drugs. The work in this dissertation focuses on developing 

computational tools for the application of medicinal chemistry. For computational techniques to 

be dependable, important interactions must be properly modeled and the techniques must be 

rigorously tested. In this work, I first introduce an important interaction for drug design, the 

halogen bond (X-bond). We consider how decades of work has come closer to properly 

modeling the X-bond, yet there remain many unexplored areas. Two areas are addressed in this 

dissertation: the structure-energy relationship of 1) a Br…S- X-bond in a DNA junction and 2) 

Br…O and I…O X-bonds in T4 Lysozyme (T4-L). Using these systems, we can better understand 

the X-bond and further test computational tools. One such tool, a molecular mechanics/dynamics 

package, TINKER, does not model X-bonds. Thus, I then incorporate a force field for a broad 

range of X-bonding molecules into TINKER, creating X-TINKER. X-TINKER reproduces the 

energies and geometries of the X-bond in the DNA and T4-L systems. Last, I will discuss testing 

a different software developed by Schrödinger, FEP+. We find FEP+ can effectively predict 

protein stability; however, it still has areas that need improvement. Together, the findings of this 

dissertation emphasize the importance of understanding molecular interactions, improving 

algorithms, and testing current programs to find remaining failures. By continuing to use this 

cycle, we hope to see the impact of computational tools in medicinal chemistry.    
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

The origins of medicinal chemistry can be traced back thousands of years to the use of 

natural products to treat ailments and disease. Flashing forward to the present day, medicinal 

chemistry has become a billion dollar industry worldwide. This transition did not happen 

overnight, but instead, has travelled a long path to reach where it is today. The modern 

pharmaceutical industry as we know it began in the 1930s, when a small number of companies 

began introducing new molecular entities (NMEs) or “drugs”. Until the 1950s, the number of 

NMEs remained relatively low (below 100). Now, this number has swelled to over 1,450 NMEs 

approved in the United States that were produced by 275 different companies1.   

Since the 1990s, the pharmaceutical industry has spent an increasing amount of money and 

resources into acquiring NMEs; however, the output has been underwhelming with an average 

between 25 to 30 NMEs per year (Figure 1.1). As technology continues to improve, medicinal 

chemists have begun to incorporate computational techniques to save time and money during 

drug design. The use of computational techniques in drug discovery fundamentally shifts 

medicinal chemist’s efforts to computer-aided drug design instead of a purely experimental-

heavy chemical synthesis. This type of design, however, is heavily dependent on the accuracy, 

speed, and reliability of the computer program that is used and many programs fall short in one 

or all of these areas. The field has reached a crucial point–where the user must be able to identify 

and understand failures and possibly improve upon them. In this dissertation, I will discuss 

where some programs fail to predict fundamental biological or chemical aspects in an accurate,  
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Figure 1.1. Money spent on drugs and number of novel drugs per year. Money spent (left axis) 
on research and discovery for drug design in billions. Number of approved novel drugs or NMEs 
(right axis).  Data was obtained from the Food and Drug Administration (FDA)2.   
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reliable and/or fast manner. I will then offer potential improvements that overcome some of these 

deficiencies.  

It is important to understand the stages of drug discovery and the types of programs that can 

be applied to each stage to better appreciate the role of computers in drug design relies on first 

grasping the (Figure 1.2). The initial stages of drug design are disease genomics and target 

identification. The latter of these, target identification, can make use of many computational 

techniques including reverse docking and protein structure prediction. The subsequent stages of 

drug discovery are identifying a lead compound for the classified target and optimizing that lead. 

During these stages, computational programs can be very valuable due to their speed and ability 

to screen thousands of compounds. Some of the applications for this stage include docking, 

library design, quantitative structure activity relationship (QSAR), and molecular mechanics/ 

molecular dynamics (MM/MD). Finally, the optimized lead will undergo preclinical tests and 

eventually, clinical trials. Furthermore, computational programs can be used prior to these trials 

to predict absorption, distribution, metabolism, excretion and toxicity (ADME/T) of the 

compound. 

There the power of rational design can be shown by taking a look at a few successful 

examples that save both time and money in different stages of the discovery process. One such 

example is the use of molecular docking during the lead identification stage to discover a potent 

inhibitor for protein tyrosine phosphatase 1B, a key target for type II diabetes3. In this study, a 

group from Pharmacia (now a part of Pfizer) used both a traditional, experimental high-

throughput screen (HTS) with 400,000 compounds and a computational molecular docking 

approach with 235,000 compounds. While the more time-intensive experimental HTS found 85 

potential lead compounds with an inhibitory constant (IC50) of less than 100 µM (a hit rate of 
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Figure 1.2. Computers in the drug design process. Each stage of drug design is shown from initial stages of 
disease genomics to the final stages of clinical trials. The stages that computers can be used are shown in blue 
with a few notable examples of simulation packages and programs bulleted for each stage.   
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0.021%), the computational docking found 365 potential lead compounds. These compounds 

were then experimentally tested and 127 of the 365 compounds were found to have an IC50 of 

less than 100 µM (a hit rate of 34.8%). This was an astonishing increase in hit rate of over 1700-

fold when comparing the docking approach to the traditional experimental screening approaches. 

Additionally, the computational screen identified a 2.5-fold more potent lead inhibitor than the 

one found using HTS.  

Another successful demonstration of the use of computers is in the lead optimization stage of 

drug discovery where the use of free energy perturbation (FEP) is applied to a non-nucleoside 

inhibitor of the human immunodeficiency virus reverse transcriptase (HIV-RT)4. Jorgensen’s 

group had previously found a potential lead of 5 µM using common docking programs, Glide5 

and GlideXP6, on a library of about two million compounds7. Here, they optimized the low 

micromolar lead compound to an extremely potent 55 pM using FEP4. In more detail, using FEP 

substitutions on the lead compound were made in silico allowing the prediction of binding 

energies. Only the compounds that had predicted tighter binding to HIV-RT were then 

synthesized, tested and crystallized. By using this method of FEP in conjunction with 

experimental techniques, the Jorgensen group was able to find the most potent, non-toxic anti-

HIV agent ever discovered.   

In addition to discovering and optimizing lead compounds, computational design can aid in 

how we understand the mechanism of drugs binding to their targets. Medicinal chemists can then 

use this understanding as a stronger platform for designing better drugs. MM/MD is a 

particularly promising method for this application. Once a target and a lead compound have been 

identified, a MM/MD simulation can be performed to study the binding event. An exceptionally 

interesting example of this was done by Decherchi et al by studying the binding of a transition 
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state analogue (TSA) to purine nucleoside phosphorylase (PNP)8. PNP-TSAs are promising 

inhibitors for many T-cell cancers and autoimmune diseases including but not limited to gout, 

rheumatoid arthritis, psoriasis, tissue transplant rejection, and multiple sclerosis.9 In this study, 

the binding event of a strong inhibitor, DADMe-immucillin-H, is simulated and validated to 

experimental findings. Using these findings, they were able to elucidate the mechanism of 

binding and estimate binding energies while determining the kinetics of the binding event.   

Although it is encouraging to look at these successful cases, many programs still fall short in 

important areas. Thus, it is important for the field of computational chemistry to undergo 

constant testing and improvements where necessary. Furthermore, it is important to note, the use 

of computers in drug design cannot be a full replacement for educated medicinal chemists. In this 

dissertation, there is an important interplay between understanding the biology and chemistry of 

noncovalent interactions and learning how to use this understanding to make improvements in 

computational programs for drug design.  

 Often the failures seen in computational programs occur due to their inaccuracy of modeling 

important noncovalent interactions. In the beginning of this dissertation, I take a look at a 

perspective on a common noncovalent interaction found in medicinal chemistry–the halogen 

bond (X-bond). The X-bond is named due to its analogous behavior to the hydrogen bond (H-

bond)10. Although there are many competing theories to describe the X-bond11,12, the most 

widely accepted of these is the σ-hole theory13. In this description, when the halogen participates 

in a σ-bond, the electron present in the halogen’s pz orbital is pulled into the σ-bond, thus, 

exposing the halogen’s positive nucleus on the surface diametrically opposed to the bond. This 

causes a unique polarization on the halogen and an aspherical shape of the van der Waals surface 

that allows the halogen to favorably interact with a large number of both positive and negative 
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acceptors. In Chapter 2, I will explore the X-bonds importance in medicinal chemistry, current 

programs and how they improperly model X-bonds, and current attempts to fix this problem.  

In order to fix these inaccuracies, we must first understand the fundamentals of the 

noncovalent interaction. This introduces the first scientific question that this dissertation aims to 

answer: Can we better understand the structure-energy relationship of the X-bond in different 

biological settings? In previous work in our lab, we have developed a unique experimental DNA 

system that allows for determining structure-energy relationships of halogens in a biological 

setting14,15. In this work, relationships were determined for the common halogens that participate 

in X-bonding–chlorine (Cl), bromine (Br), and iodine (I) interacting with a negative oxygen (O) 

acceptor. In Chapter 3, I will use this system to determine the structure-energy relationship of Br 

to another negative acceptor, sulfur (S). Although formally negative oxygen and sulfur are found 

as X-bond acceptors, they are not the most common. Instead, formally neutral oxygens make up 

the most prevalent acceptors16 Moreover, in Chapter 4 of this dissertation, I will discuss how we 

have developed a protein system that allows us to determine structure-energy relationships of Br 

and I to a formally neutral O. Using both the DNA and protein systems we can better understand 

the structure-energy relationship of X-bonds in biological settings.   

With better understanding of the fundamentals of X-bonding, we can then ask the next 

important question: Can we use this understanding to develop and incorporate a better model for 

X-bonds in programs for drug design? Most molecular simulation packages, especially MM/MD, 

model the average behaviors of both the overall charge and shape of atoms and, therefore, fail to 

properly model halogens due to their unique polarization. Chapter 5 of this dissertation attempts 

to use the knowledge from our experimental systems to develop a unique fix to its improper 

modeling in MM/MD. Our lab has previously developed an accurate model to describe X-
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bonding17,18. Here, I will expand this model for more X-bonding systems and incorporate it into 

an MM/MD simulation package, TINKER. The experimental systems that have been developed 

offer a platform to validate the MM/MD implementation.  

Although many MM/MD packages are valuable for many stages in drug design, FEP is also a 

very useful application for lead optimization and target identification. While FEP has been 

around for many decades, it has recently made great advances that prove to be highly effective in 

protein ligand binding19. Another promising application for FEP in medicinal chemistry is 

designing and testing protein (or drug target) stability, however, FEP has been much less 

explored for this application and only undergone initial testing20,21. Designing more stable 

proteins has a great potential in medicinal chemistry to help crystallize target proteins. This 

brings up the last question this dissertation will address: Can FEP accurately predict protein 

stability in a practical manner? In Chapter 6, I present the results of the testing of new software 

developed by Schrödinger, FEP+19, with the application of protein stability and explore its 

applicability for use in academia and industry.  

When using rational design, it is critical to understand the chemistry and biology behind the 

systems that are being modeled. As seen with many MM/MD and many other molecular 

simulation packages, by testing software we can discover where the software succeeds and what 

drawbacks still remain. This knowledge can then help build and test better software. Only with 

the constant interplay between–understanding the fundamentals and using this knowledge to test 

and improve software–will computers begin to reach their full potential in medicinal chemistry. 

In the conclusion of this dissertation, I will explore the scope of this work, how it fits into the 

field of computational medicinal chemistry, and what still lies ahead. 
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CHAPTER 2 
 

COMPUTATIONAL TOOLS TO MODEL HALOGEN BONDS IN MEDICINAL 
CHEMISTRY1 

 
 
 

� 2.1 SUMMARY 

The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed 

was used as a source of iodine to treat goiters. The incorporation of halogens to improve the 

potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have 

been recognized as direct participants in defining the affinity of inhibitors through a noncovalent 

interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based 

drug design requires computational models for the anisotropic distribution of charge and the 

nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing 

energies. We review here current successes and challenges in developing computational methods 

to introduce X-bonding into lead compound discovery and optimization during drug develop-

ment. This fast-growing field will push further development of more accurate and efficient 

computational tools to accelerate the exploitation of halogens in medicinal chemistry. 

� 2.2 INTRODUCTION 

The standard strategy in drug design is a multistep process that involves very time-intensive 

and costly steps22, starting with the discovery of a therapeutic target, followed by identification 

of a lead compound that can potentially inhibit that target, optimizing the lead compound to imp-

rove its efficacy, and then performing clinical trials that will lead to eventual FDA approval for 

                                                        
1 The work in this chapter was published as a review article in 2016 in Journal of Medicinal Chemistry. P.S.H 

and I conceived and co-wrote this manuscript. 
  
Ford, M. C.; Ho, P. S. Computational Tools to Model Halogen Bonds in Medicinal Chemistry. J. Med. Chem. 2016, 
59, 1655 –1670. 
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release of the new drug to market (Figure 2.1). Halogens have been classically incorporated into 

the development of pharmaceuticals to increase membrane permeability and decrease metabolic 

degradation16. Interestingly, 50% of the top leading drugs on the market are halogenated, and 

halogens persist throughout the drug development process, from initial discovery to launch 

(Figure 2.2)23. There is now a greater appreciation that halogens play a direct role in the efficacy 

of certain drugs through a molecular interaction that is now defined as the halogen bond (or X-

bond10, Figure 2.3a), in addition to their more traditional role as acceptors of hydrogen bonds (H-

bonds). X-bonding is recognized as providing upwards of 1,000-fold increase in specificity and 

affinity of inhibitors toward their molecular targets; however, their contributions have been 

recognized primarily in hindsight. Although fluorine is the dominant substituent, the percent of 

fluorinated compounds decreases whereas those of the heavier halogens (Cl, Br, and I) that most 

commonly form X-bonds increase from 40% at the start to >60% of halogenated drugs at 

launch23. Thus, there is great potential to exploit X-bonding as a molecular tool in medicinal 

chemistry if the interaction can be accurately incorporated into drug design algorithms. 

On average, the traditional approach to drug development stretches over 14 years and costs 

∼$880 million from the time a therapeutic target is discovered to the launch of a drug to market 

(Figure 2.1)22. This inordinately long time and high cost can be mitigated with the aid of 

computational approaches, particularly during the earlier stages of drug development. The 

rational design of new halogenated inhibitors, however, is greatly hampered by the inability of 

current computational programs to properly model X-bonds, particularly their contributions to 

specificity and affinity. The shortcomings of current computational models for halogens lie 

primarily in their inability to describe the fundamental underpinnings of the interaction–

specifically how halogens, which are generally electron-rich, can direct the binding of inhibitors  
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Figure 2.1. Flowchart of the time and cost in traditional drug development. The flowchart 
follows the process for bringing one drug to market from initial target discovery to final approval 
by the Food and Drug Administration (FDA), including the average times and the percentage of 
the overall costs associated with each step (data from Parexel22). 
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Figure 2.2. Progression of halogenated compounds through each phase of drug development. 
Percentages of compounds that are halogenated are shown as black bars. The percentages of 
halogenated compounds that are fluorinated are shown as white bars, whereas those that contain 
halogens other than fluorine are striped bars (data from Xu et al.23). 
 

 
 
Figure 2.3. X-bonding and charge-transfer bonding model. (a) The X-bond is defined as a short, 
directional interaction between a halogen substituent (X) and an electron-rich acceptor atom (A). 
(b) The charge-transfer bond in the NH3···Cl2 complex. The top figure shows the electron 
density difference (EDD) map for polarization of the molecules in their Lewis states. The EDD 
map showing electron transfer from the nitrogen to the Cl in the complex (reproduced with 
permission from Wang et al.24). 
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through directional X-bonding interactions with electronegative atoms (oxygen, nitrogen, sulfurs, 

and delocalized π-electron systems) in their protein targets. 

In this perspective, we will focus on the various approaches to applying the X-bonding 

concept in drug design, and what challenges still lay ahead. The most obvious stages for 

inserting X-bonding into this process from a traditional medicinal chemistry perspective are the 

early steps of lead discovery and optimization. Our discussion will focus primarily on 

computational methods to enhance these steps through halogenation and the introduction of X-

bonds; thus, we will start by summarizing the various physicochemical models that have been 

presented to explain this seemingly paradoxical interaction. Fluorines serve as X-bond donors 

only under extraordinary circumstances25,26 and, thus, for most medicinal chemistry applications 

and for the remainder of this review, we will consider only the heavier halogens (Cl, Br, and I). 

Physical Chemical Basis of X-bonding. 

The X-bond concept explains generally how electron-rich halogens (particularly Cl, Br, and 

I) can interact favorably and at short distances with nucleophilic and, in some instances, formally 

anionic atoms (N, O, or S). X-bonds share many similarities to hydrogen bonds (H-bonds), hence 

the name. The interaction poses a significant challenge to standard molecular modeling 

programs, particularly those that are applied to macromolecular structures, including protein-

inhibitor complexes. To better appreciate how challenging this interaction is for a medicinal 

chemist, we must first understand the basic chemical principles of X-bonding. 

Charge-Transfer Theory. The short-distance, stabilizing interaction between molecular 

halogens (Br2 and I2) and, for example, oxygen atoms in dioxane was first described as charge- 

transfer (CT) bonds by Odd Hassel27 as an extension of Mulliken’s CT theory28,29. A CT 

interaction is characterized as a classic electron donor/acceptor complex (Figure 2.3b) in which a 
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Lewis base transfers partial electron densities from its highest occupied molecular orbital to the 

lowest unoccupied orbital of a Lewis acid (the halogen). Such a complex is typically 

characterized by a unique spectroscopic CT absorption band30. There remains strong support for 

the contribution of charge transfer to X-bonds, including experimental characterization of carbon 

tetrabromide and bromoform11 and recent analysis of various Lewis acid/base complexes apply-

ing valence bond and blocked-localized wave function (VB/BWF) theories24. Recently, however, 

the CT-model has been challenged by models that focus more on the electrostatic nature of the 

X-bond. In particular, there is evidence from electrostatic potential maps that the central atoms 

(C or Si) of highly halogenated Group IV compounds (such as CCl4 and SiCl4) carry an electro-

positive potential that could attract a nucleophilic atom (see the σ-hole theory below).31 

Experimental evidence in support of this primarily electrostatic interaction comes from the struc-

tures of various halogenated Si or Ge cages surrounding halide ions32–a so-called “tetral-bond”33. 

σ-Hole Theory. Perhaps the most readily accessible explanation for the X-bond is the σ-hole 

model espoused by Pulitzer and colleagues13,31,34. In this model, a halogen that forms a covalent 

bond to, for example, a carbon (a C–X σ-bond) will result in depopulation of the valence pz 

orbital of the halogen and, consequently, an electropositive crown diametrically opposed to that 

σ-bond–a σ-hole (Figure 2.4). The electropositive σ-hole serves as the X-bond donor, whereas 

the electron-rich partner is the X-bond acceptor10, in analogy to H-bonding nomenclature. 

The model provides a simple explanation for the strong directionality and the various 

chemical factors that affect X-bonding energies. The electropositive crown specifies that X-bond 

acceptors will align primarily opposite the σ-bond. The size of the σ-hole defines the potential 

strength of the X-bond and intensifies with the increased size of the halogen (F < Cl < Br < I, 

which also follows the polarizability and conversely the electronegativity in their periodicity)  
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Figure 2.4. σ-Hole model: The formation of a covalent carbon−halogen bond (a C–X σ-bond) for 
example pairs the electrons from the valence orbitals of the two atoms. As a result, the pz orbital 
of the halogen opposite the σ-bond becomes depopulated, resulting in an electropositive crown 
(in blue), whereas the pxy orbitals retain their complement of electrons to account for the overall 
negative charge of the halogen (reproduced with permission from Scholfield et al.18). 
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and the increased electron withdrawing ability of the atom or molecule participating in the σ-

bond with the halogen. 

Lump-Hole Theory. There are alternative electrostatic models that purport to fill-in gaps or 

shortcomings of the σ-hole model. The lump-hole model, for example, does not rely on an 

explicit positive charge at the surface of the halogen but rather on a local charge depletion at the 

X-bond donor end (the hole), which can interact with excess charge of the acceptor (the lump) 

(Figure 2.5)12,35. This model is consistent with the local charge concentration (CC) and local 

charge depletion zones (CD) that result in anisotropic electron-density distribution around 

chlorines, as seen by Espinosa et al., in the high-resolution crystal structures of C6Cl636. 

Although the physicochemical description remains under debate, it is well understood that X-

bonds are most accurately modeled through rigorous QM calculations derived from these various 

models. However, QM is not appropriate for biological complexes, except in very rare situations 

where a structure is known to subatomic resolution (as in the case of aldose reductase37). Thus, 

we are left with the need to adapt what we learn from QM calculations on model systems to more 

tractable molecular mechanics and dynamics (MM/MD) simulation methods. A major challenge 

for medicinal chemists is thus to accurately incorporate X-bonding models into MM/MD 

methods in drug design, particularly the steps of lead discovery and optimization. The strategies 

will take advantage of some properties of X-bonds that appear to be unique to the interactions in 

biological systems38; therefore, we need to summarize these structural and energetic features. 

X-Bonds in Biology. 

In the past decade, our understanding of X-bonds in biological molecules (biomolecular X-

bonds or BXBs) has increased dramatically38. BXBs share many of the same geometric features 

with their small molecule counterparts, including short donor−acceptor distances and the strong  
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Figure 2.5. Electron distribution of atoms in CH3Br, as predicted from the lump-hole theory. The 
distribution of electrons forms a ring around the bromine center (accounting for the majority of 
electrons at the atomic surface) and a “hole” at the surface that can interact with the “lump” of 
electrons from an interacting X-bond acceptor (data from Eskandari and Zariny12). The standard 
surface of the bromine atom is outlined as a spherical cage. 
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directional preference for the approach of the acceptor toward the electropositive σ-hole of the 

halogen donor. Anything that can serve as a H-bond acceptor (O, N, S, π-systems, including 

aromatic rings38 and radicals39) can also accept X-bonds in both small molecule and biological 

complexes (Figure 2.640–42). We are now seeing, however, complexities in the relationships of 

BXBs to H-bonds in proteins and to solvent. 

In protein-inhibitor complexes, the most common X-bond acceptors are the carbonyl oxygen 

of a protein’s peptide backbone16,43, which is not entirely surprising given their prevalence in 

proteins. However, because most peptide bonds are also involved in H-bonds that stabilize 

protein structures (α-helices, β-sheets, turns, etc.), the carbonyl oxygen serves as an acceptor for 

both molecular interactions. In small organic molecules, H- and X-bonds can compete or 

complement each other with H-bonds being stronger, weaker, or similar to X-bonds44–46. In 

biological systems, however, they are observed as orthogonal interactions that intersect at a 

common peptide oxygen (Figure 2.6a)40. Such X-bonds (called hX-bonds) are geometrically 

perpendicular and thermodynamically independent of each other. The orthogonal relationship 

between H- and X-bonds are now becoming relevant also in small molecule complexes,47 

including those involving isolated amides that mimic peptide bonds48. The significance of this 

concept is that the addition of a BXB interaction to a protein can be well-defined in terms of an 

optimum position and will not be expected to perturb the integrity of the protein structure–

important concepts in drug design, as we will see later. 

The halogen itself is amphoteric41 with the electropositive σ-hole being a potential X-bond 

donor and the electronegative annulus around the girth of the atom being a H- or X-bond 

acceptor. In biomolecular systems, this amphoteric nature is most evident in the interactions of 

halogens with water (in itself amphoteric), a unique feature of biological systems. The  
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Figure 2.6. Biological X-Bonds (BXBs) and their relationship to H-bonds. The halogen (X) is 
shown with its electrostatic potential going from negative (red) to positive (blue), allowing it to 
be both an X-bond donor and a H-bond acceptor. (a) BXBs (XB, magenta dotted line) and H-
bonds (HB, gray dotted line) that share a common acceptor are orthogonally related both 
geometrically and thermodynamically40. (b) The amphoteric nature of the halogen41 also allows 
it to serve as an X-bond donor or H-bond acceptor to a water, which in turn bridges to other 
acceptors and donors42. 
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relationship between halogens and water is complex. Waters can, for example, serve to bridge an 

X-bond donor to its acceptor42. Alternatively, because any H-bond acceptor can also form an X-

bond, the BXB at a solvent-exposed surface will invariably displace a water molecule. Finally, 

with all these potentially stabilizing electrostatic-type interactions at the surface, we must come 

to terms with the truism that halogens are actually hydrophobic atoms, with Br, for example, 

having the same hydrophobic effect as a methyl group38,49. 

The stabilizing energy of a BXB can be comparable to or greater than that of a H-bond, 

depending on the system. The BXB energy can be tuned according to the type of halogen, 

becoming more favorable as the halogen becomes larger and more polarizable50. In addition, 

attaching the halogen to a more electron-withdrawing group will result in a more positive σ-hole 

and, consequently, a stronger BXB. For any given system, the effective BXB energy is 

dependent on the geometry (distances and angles of approach) that relates the X-bond donor and 

acceptor atoms. These general concepts are consistent with all of the basic QM models described 

above for X-bonds and have been confirmed experimentally using a unique four-stranded DNA 

junction model system15. The DNA studies show that the enthalpies of stabilization by BXBs 

follow the series F < Cl < Br < I in stability, and the more enthalpically favorable interactions 

result in more ideal geometries (more linear approach of acceptor toward the σ-hole and shorter 

distances). However, the studies also demonstrate the concept of enthalpy−entropy 

compensation, where the most stabilizing enthalpic interaction (that of I) comes at an entropic 

cost in that fitting such a large atom into a small space results in the loss of conformational 

dynamics17. As a result, we must consider not only the enthalpic contributions of the electrostatic 

component of the interaction, but also how the interaction affects the entropy of the entire 

system, including the solvent. 
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This detailed understanding of BXBs can help facilitate the rational design of halogenated 

inhibitors and drugs. We will start this discussion with how detailed knowledge of BXBs helps in 

the development of general computational tools for the rational design of inhibitors, starting with 

those used to optimize the efficacy of a lead compound, followed by how BXBs can facilitate 

lead compound discovery through scoring functions. Although chronologically backward relative 

to the progression of drug development (Figure 2.1), the computational methods required to 

enhance the efficacy of a molecule can be derived directly from BXB geometries and energies, 

and these optimization methods lend themselves logically to solving the more complex problem 

of deriving scoring functions. 

■ 2.3 COMPUTATIONAL TOOLS TO MODEL BXBS FOR MOLECULAR DOCKING 

AND LEAD OPTIMIZATION 

Several studies have shown how important halogens can be at enhancing the affinity of a lead 

compound, potentially increasing the affinity of an inhibitor by up to 1000-fold (Table 2.1). In a 

very systematic study, Hardegger et al.51 demonstrated that introducing halogens that form BXBs 

reduces the inhibitor’s IC50s against two anticancer targets (human cathepsin L and MEK1 

kinase). In one set of studies, the authors showed that adding X-bonding halogens to the human 

cathepsin L inhibitor resulted in successive increases in affinity to its target51. The introduction 

of Cl, Br, or I to the phenyl ring of the inhibitor that sits in the polar S3 pocket of the substrate 

binding site was seen to form BXBs with favorable geometries to the peptide oxygen of Gly61. 

The new interactions were attributed to reducing the IC50 from 0.29 μM (with no interaction) to 

0.022 μM for Cl, 0.012 μM for Br, and 0.0065 μM for I X-bonds. As expected, the F analogue 

showed repulsion of the electronegative halogen from the Gly61 oxygen and a concomitant 
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Table 2.1. Effect on Affinity of Replacing H-Bond Donors with Iodine Substituents in Inhibitors against Protein Targets51–56 with 
Protein Data Bank (PDB)57 Codes, Where Available, Listed for the Single Crystal Structures Showing an X-Bonding Interaction of 
Each Inhibitor Along with the Fold Increase Associated with the H to I Substitution 

Inhibitor Target Inhibitor 
Fold Increase in 

Affinity 
PDB ID 

membrane-anchored 
aspartyl protease (BACE) 

(1S,2R)-N-[1-(3,5-Difluorobenzyl)-2-hydroxy-3-(3-iodobenzyl- 
amino)-propyl]-5-methyl -N′,N′-dipropylisophthalamide 

25 2IQG52 

Cathepsin L 
(4R)-4-[(2-Chlorophenyl)sulfonyl]-N-(1-cyanocyclopropyl)-1-{[1-(2-
fluoro-4- iodophenyl)cyclopropyl]carbonyl}-L-prolinamide 

74 N/A51 

Mouse double minute 2 
(MDM2/HDM2) 

(4-chlorophenyl)[3-(4-chlorophenyl)-7-iodo-2,5-dioxo-1,2,3,5-
tetrahydro-4h-1,4-benzodiazepin-4-yl]acetic acid 

100 1T4E53 

adenosine kinase 7-iodo-7-deazaadenosine 200 1LIJ54 

HIV RT 3-iodo-4-phenoxypyridinone 
300 

 
N/A55 

Aldose reductase 
2-[2-[(4-bromo-2-fluorophenyl)methylcarbamothioyl]-5-
fluorophenoxy]acetic acid (IDD 594) 

1100 1US056 



 23

increase in the IC50 relative to the parent inhibitor. A methyl substituent (which mimics the steric 

and hydrophobic properties of Br) reduced the IC50 only slightly (to 0.13 μM). 

In a parallel study, Hardegger et al.58 also considered the potential effects of X-bonding in 

the apolar binding pocket of MEK1 kinase. In this case, similar trends were seen with an F sub-

stituent showing higher IC50 values, and systematically reduced IC50 going from Cl to Br to I. In 

each case, the halogen interaction to the carbonyl oxygen of Val127 was of the hX-bond type. 

For Cl, the effect on affinity was not as pronounced (with only ∼2-fold reduction in IC50), which 

may be compromised by the flexibility of the inhibitor within the binding pocket, leading to less 

ideal geometries for the X-bond. The studies demonstrated the importance of X-bonding 

geometry on the effects of halogens on affinity in either a polar or nonpolar environment. 

Our understanding of the principles leading to BXBs has led us to propose a general strategy 

for lead compound optimization that takes advantage of the structural and thermodynamic 

properties of the interaction (Figure 2.7)59. In this approach, we start with the structure 

(determined either experimentally or derived from a virtual screen) of a lead compound in the 

binding pocket of its target. From this initial model, we can analyze the protein structure to 

identify the potential X-bond acceptors in the binding pocket and, from the orthogonality 

concept, predict the optimum position in space to place a halogen to form a BXB. This predicted 

position can then help inform a medicinal chemist as to what type and where to place a halogen 

as a substituent of the lead compound in order to form an effective BXB. The geometry and 

energy, and the corresponding effect on affinity of the newly halogenated compound, can then be 

predicted by geometry optimization/molecular dynamics simulation of the complex with the 

protein target. It is this last step of computational modeling that remains an obstacle to this 

strategy because most current molecular docking and simulation programs do not incorporate 
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Figure 2.7. Strategy for lead optimization. An optimization strategy starts with a structure of a 
target in complex with a lead compound. X- bonds in protein-inhibitor complexes tend to be 
geometrically perpendicular and energetically independent of H-bonds that share the same 
acceptor (the concept of orthogonality between the interactions40); thus, the position for where to 
place a halogen to form an optimum BXB can be predicted from the geometries of the acceptors 
and the H-bonding pattern within the binding site. This position can then be used to inform 
where a halogen substituent should be added to the lead compound. Finally, MM/MD simulation 
predicts the final geometry and binding energy for the optimized inhibitor. 



 25

BXBs in their algorithms. In the remainder of this section, we will focus on the challenges to 

developing computational methods that accurately model BXB geometries and energies, which 

in turn facilitate the optimization of a lead compound. 

QM Modeling of X-Bonding on Inhibitor Specificity and Optimization. 

The most accurate computational method to study and model X-bonding is through QM 

calculations; however, there are very few biomolecular systems that lend themselves to this level 

of rigorous analysis. The first example of a QM analysis defining the role of X-bonding in 

inhibitor specificity was with the inhibitor of aldose reductase, 2-[2-[(4-bromo-2-fluorophenyl) 

methylcarbamothioyl]-5-fluorophenoxy]acetic acid (1, IDD-594)56. The 0.6 Å resolution struc-

ture of the reductase inhibitor in complex had shown that the Br of the inhibitor was within 3.0 Å 

of the hydroxyl group of a Thr side chain56. An analysis of the electrostatic potential of the 

complex, applying density functional theory (DFT), attributed the 1,000-fold increase in the 

specificity of 1 for the aldose reductase over the closely related aldehyde dehydrogenase to this 

short bromine-oxygen interaction, which we now define as an X-bond37. 

A more direct application of QM to model BXBs for inhibitor design and optimization can be 

seen in the studies of Xu et al.60 on analogues of sildenafil, an inhibitor against the degradative 

action of phosphodiesterase type 5 (PDE5) on certain smooth muscle groups in the body. PDE5 

inhibitors are important drug candidates for the treatment of male erectile dysfunction and 

pulmonary arterial hypertension61. Starting with the crystallographic structure of the PDE5-

sildenafil complex62, the authors first considered how systematically replacing a hydrogen in the 

inhibitor with X-bonding halogens would potentially affect affinity, using the molecular docking 

program GLIDE XP6 to determine if a particular X-bond was favorable. These simulations were 

then used to inform the subsequent costly steps of chemically synthesizing the compounds that 
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had potential as leads. Because X-bonding is not incorporated in these algorithms, the docking 

studies were followed by hybrid QM/MM calculations, where the BXB donors and acceptors 

constituted the QM layer to predict the energies of any potential X-bond, and the remainder of 

the complex treated by classical molecular mechanics force fields as an MM layer. Those 

halogenated analogues that were predicted to form a favorable X-bonding interaction were then 

chemically synthesized, their structures determined by X-ray crystallography to confirm the 

presence of the X-bond, and the interaction energies determined by NMR. The resulting 

experimental binding energies correlated well with the QM/MM predicted energies, supporting 

the concept that X-bonds can be rationally incorporated into a lead compound optimization 

strategy. Furthermore, the study indicated that accurate computational modeling of X-bonds has 

the potential to reduce the time and cost of structure-based drug development. The question, 

however, is how to make the computational modeling of X-bonds in biomolecular complexes 

more readily accessible, i.e., without the need to apply rigorous and costly QM calculations. 

Application of Semiempirical QM (SQM) in Drug Design. 

One approach to reducing the computational cost of a QM calculation in drug design is to 

apply a semiempirical QM (SQM) appraoch63. SQM describes the electronic behavior of a 

molecular system by applying experimentally parametrized functions (often linear scaling) that 

approximate electron exchange interactions of the QM Hamiltonian equations. In the late 1970s, 

Michael Dewar and James Stewart developed MNDO64, which used experimental heats of form-

ation to help parametrize chemical bonding potentials. AM165 and then PM366 were developed to 

help incorporate noncovalent interactions, specifically H-bonding, into SQM calculations. More 

recently, PM667 was developed to provide consistent global parameter optimization for all main 



 27

group elements. The result is a method that maintains sufficient accuracy relative to QM, but 

with significant improvements in computational time to allow simulations of protein systems68. 

Despite the obvious computational time savings, there are several hurdles to incorporating 

SQM into drug design strategies. One particular problem is that the parametrized equations are 

highly dependent on the experimental system that they were derived from and thus may not be 

accurate for describing energies of molecules that are not closely related to the parent system. In 

addition, many of the SQM approaches still have difficulty describing noncovalent interactions, 

including dispersion69, and more complex interactions such as H-bonding and, for this 

discussion, X-bonding. 

Hobza’s group introduced corrections for dispersion and electrostatic H-bonds into PM6 to 

develop PM6-DH70. The dispersion energy (Edis, Eq. 2.1) is a classical r−6 function with C6 

serving as an empirical scaling coefficient. The overall function is dampened at short distances 

by fdamp(rij, Rij
0), which is a function of rij (the distance) and Rij

0 (the sum of van der Waals radii) 

of interacting atoms (i and j). The various scaling terms (including the slope α and the scaling 

factor for the radii sr of the dampening function) are fit empirically to replicate distance-

dependent interaction energies in a benchmark data set71 that includes only dispersion. 

� ���� =  − � 	�
�� (���, ����) ���������                                       (��. 2.1) 

The H-bonding function of PM6-DH was derived from a small molecule data set that 

contained 104 H-bonded complexes with various hybridized N and O acceptors70. The resulting 

H-bonding energy (EHB, Eq. 2.2) includes two distance (r)-dependent components. The first term 

defines the electrostatic and directional properties of H-bonds incorporated with the charges 

(q(H) and q(Y)) and the angle (θ) relating the H-bond donor and acceptor. The second 1/r 

dependent term is incorporated to account for positive correction terms associated with close 
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distance repulsions, particularly with −H···O hydrogen bonds. The scaling coefficients c, crep, 

and A are parameters that are fitted against the complete benchmark data set. The authors found 

that interaction energies calculated with the corrected PM6-DH had errors of <1 kcal/mol 

relative to QM calculations, reducing some errors from PM6 (with no correction) by as much as 

8 kcal/mol and making them comparable to MP2 level calculations. 

��� = � ��(�)�( )�!cos (%) + �'(�)�'*                                           (��. 2.2) 

A second generation of PM6-DH (PM6-DH2) was applied in virtual design strategies to 

identify potential inhibitors against two important therapeutic targets: HIV protease and cyclin-

dependent kinase 2 (CDK2)72. HIV protease is responsible for the maturation of HIV-encoded 

proteins in the host to generate infectious virus particles. The study by Fanfrlík et al. evaluated 

the ability of the molecular docking program DOCK73 to score the potential binding affinities of 

22 ligands, 11 current drugs on the market, and 11 “false” decoys against HIV protease74. The 

correlation of the DOCK- calculated enthalpies to the experimentally determined Ki values in 

this set improved from R2 = 0.3 for the native program to 0.8 with PM6-DH2 incorporated. 

CDK2 is a key serine/theorine kinase involved in cell cycle control at the G1/S phase; defects 

in this enzyme are associated with many forms of cancer75. ATP analogues that are competitive 

inhibitors form extensive H-bonding networks in the ATP-binding cleft of CDK2. Using a 

similar docking approach as with HIV protease, Dobeš et al. evaluated the ability of the AMBER 

force field to predict the binding affinity of 15 inhibitors against CDK2 and found that PM6-

DH2 improved the correlation of the calculated total enthalpies to lnKi from R2 = 0.21 to 0.8772. 

Thus, the incorporation of noncovalent interactions (dispersion and H-bonding) into SQM 

methods can significantly enhance virtual lead discovery. 
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A correction to PM6 that incorporates the BXB concept (PM6-DH2X) takes the form of an 

exponential function that is dependent on the X-bond distance r (Eq. 2.3)76. The scaling 

parameters a and b were derived for each donor (Cl, Br, and I) and acceptor (O and N) atom type 

by fitting to MP2 calculated energies for X-bonded complexes. 

�+� = ,-�.'                                                               (��. 2.3) 

For determining how well this correction works, PM6-DH2X was applied to a test set of 

inhibitors against casein kinase 2 (CK2), a key Ser/Thr kinase involved in cell cycle control, 

DNA repair, and other cellular processes77. CK2 is abnormally active in tumor cells, making it a 

good target for the development of anticancer therapeutics. Halogenated drugs are powerful 

inhibitors of CK2 with X-bonds in the ATP-binding site contributing significantly to the affinity 

and specificity of these compounds78,79; thus, this class of compounds is ideal to test the perform-

ance of PM6-DH2X against PM6-DH2. This study utilized two test sets (Table 2.2, Figure 2.8), 

the first set with structural and binding energy data on CK2 inhibitor complexes and the second 

set with only information on binding (structures were calculated for complexes resulting from 

molecular docking procedures using the program DOCK80). PM6-DH2X performed very well in 

predicting the interaction enthalpies in the set with known structural data (R2=0.86) and moder-

ately well for the test set with no structural data (R2=0.52) compared to PM6-D2H (R2=0.00 and 

0.17 for the two sets, respectively). When entropy is incorporated to calculate overall binding 

free energies, the correlations for the two sets decrease to R2=0.24 and 0.19, respectively. This is 

the first successful implementation of BXB models into the molecular docking program DOCK.  

QM-Derived Force Fields for Biomolecular X-Bonds. 

The most commonly used programs for virtual lead discovery and optimization are based on 

classical Newtonian potential energy functions, as they are applied in molecular mechanics/  



 30

Table 2.2. Halogenated CK2 inhibitorsa 

PDB Code Inhibitor 
Number of 
Halogens 

Ki (μM) 

3KXN81 4,5,6,7-tetraiodo-1H-benzimidazole 4 I 0.023 
1ZOE82 4,5,6,7-tetrabromo-benzimidazole 4 Br 0.045 
N/A79 4,5,6,7-tetrabromo-N,N-dimethyl-1H-benzimidazol- 2-

amine 
4 I 0.050 

1ZOG82 4,5,6,7-tetrabromo-1H,3H-benzimidazol-2-thione 4 Br 0.070 
N/A79 2-chloro-4,5,6,7-tetraiodobenzimidazole 4 I 0.090 
N/A79 2-bromo-4,5,6,7-tetraiodobenzimidazole 4 I 0.120 
N/A79 4,5,6,7-tetrabromo-1H,3H-benzimidazol-2-one 4 I 0.120 
2OXD83 4,5,6,7-tetrabromo-2-(methylsulfanyl)-1H- benzimidazole 4 Br 0.150 
2OXX83 5,6-dichloro-4,7-diiodo-2-methyl-1H-benzimidazole 4 Br 0.200 
N/A 4,5,6,7-tetraiodo-1H,3H-dihydro-2H-benzimidazole-2- 

thione 
4 Br 0.200 

2OXY83 5,6-dichloro-4,7-diiodo-1H-benzimidazole 4 Br 0.300 
N/A79 4,5,6,7-tetrabromo-1H,3H-dihydro-2H-benzimidazole-2-

thione 
2 Cl, 2 I 0.330 

N/A 4,5,6,7-tetraiodo-2-trifluoromethyl-1H-benzimidazol 4 Br 0.370 
1J915 4,5,6,7-tetrabromo-2-trifluoromethyl-1H-benzimidazol 4 Br 0.400 
N/A79 5,6-dichloro-4,7-diiodo-1H-benzimidazole 2 Cl, 2 I 0.460 
aThe halogenated inhibitors against the CK2 protein kinase79,81–84 have been used to evaluate the positive-extra-
point85 and explicit sigma hole77 corrections to the AMBER force field for MM/MD simulation. The number and 
types of halogen substituents along with their experimentally determined inhibition constants (Ki) are listed for 
each inhibitor. 

 

 

 
 

Figure 2.8. Structure of CK2 in complex with a tetrabromobenzimidizole inhibitor. The 
inhibitor forms two BXBs: one to the carbonyl oxygen of Glu114 and the other to Val116 
(dotted lines in the inset). The X and R represent sites where halogens (X) or other substituent 
groups (R) are attached (see Table 2.2 for list of inhibitors)78,79. 
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molecular dynamics (MM/MD) algorithms. The intra- and intermolecular interactions in folded 

structures of large biomolecules and their complexes with inhibitors are simulated by applying a 

Coulombic function (VCoulomb) to model the electrostatic potential (Eq. 2.4, where ZX and ZA are 

the partial charges of the X-bond donor and acceptor, respectively, e is the charge of the electron, 

D is the dielectric constant of the medium, and r is the distance separating the interacting atoms) 

and a Lennard-Jones 6-12 type potential (VLJ) to model the dispersion and steric repulsion effects 

in these interactions (Eq 2.5, where εX and εA define the energy minima of the potentials and 

RvdW(x) and RvdW(A) define the van der Waals radii of the X-bond donor and acceptor, 

respectively). Although classical in form, these energy functions are parametrized against QM 

calculations on complexes of small model compounds and validated against empirical data. 

012342�.�5 = 6+67-!
8�                                                           (��. 2.4) 
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Atoms are treated in Eqs. 2.4 and 2.5 as near hard-spheres with uniform charges and shapes. 

The problem is that halogens as organic substituents are electron-rich and are typically assigned 

an overall negative partial charge. Thus, when approaching another electron-rich atom, such as 

the standard H- and X- bond acceptors (O, N, or S), these atoms will repel each other. 

Consequently, X-bonding becomes impossible, which will lead to rejection of all halogenated 

ligands as viable drug candidates77,86. Thus, the standard MM/MD force fields must be extended 

to account for the potential effects of X-bonding in the affinity of a halogenated inhibitor. 

Positive-Extra-Point (PEP) Approaches. One of the first extended MM/MD methods 

developed to model halogenated inhibitor-protein complexes is the positive-extra-point (PEP) 

approach, first implemented by Ibrahim87. This approach was adapted from a computational 
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strategy to more accurately describe the structure and energies of H-bonding in MM/MD force 

fields88–90. For X-bonds, the PEP method accounts for the electropositive crown of the σ-hole by 

placing a massless positive pseudoatom at a position diametrically opposed to the C–X bond. 

The specific position relative to the halogen center and charge of the pseudoatom are optimized 

by calculating the energy of the halogenated ligand interacting with a particular Lewis base type 

using density functional theory (DFT)91,92. Within the context of the popular AMBER MM/MD 

force field93, the PEP method successfully predicted favorable X-bond energies in various 

protein complexes with halogenated ligands85,94. For example, when applied to CK2 using the 

same test sets as Hobza et al. (Table 2.2), the method more accurately ranked CK2 inhibitors 

according to their inhibition constant (Ki) than the PM6-DH2X (seen in better correlation in 

Figure 2.9) and much better than AMBER alone85,94. It should still be mentioned, however, that 

this particular adaptation of the PEP did not predict interaction energies in absolute terms, nor 

was it able to accurately recapitulate the detailed X-bonding geometries observed in the crystal 

structures of the inhibitor-protein complexes. Finally, the method still relies on an initial DFT 

calculation. Despite these shortcomings, the initial success of the PEP method has spawned 

several variations that attempt to improve the geometries and energies of interactions of halogens 

in protein complexes. 

A variation on the PEP approach offered by Hobza’s group is the explicit sigma hole (ESH) 

model95, which attempts to determine whether the QM calculation to assign the charge and 

position of the pseudocharge could be circumvented to make the method more efficient. In this 

study, the authors compared calculations based on QM, non-QM, and combinations of these in 

defining the PEP mimic of the σ-hole for seven different brominated inhibitors to CK2. The ESH 

models, when incorporated into AMBER, resulted in energy minimized structures with  
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Figure 2.9. Comparison of force field calculated binding free energies (∆G’
W) to experimental 

inhibitor constants (ln Ki) for halogenated inhibitors against CK2. Binding free energies are 
calculated with either an X-bond correction implemented into AMBER with the PEP85 method 
(blue squares, R = 0.69742) or an SQM PM6-DH2X77 method (green circles, R = 0.52548). ∆G’

W 
calculated using an uncorrected AMBER force field are shown in the inset (amber triangles, R = 
0.04950)85. 
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geometries for the protein-inhibitor complexes that were closer to the experimental X-ray 

structures (as measured by root-mean-square deviations or RMSDs) than those simulated using 

the native AMBER force field. 

OPLS-AA96,97 was developed as a computationally efficient force field for molecular 

simulations of organic liquids and biomolecular systems98. In a 2011 study, Jorgensen’s group 

applied this force field in a free energy perturbation (FEP) simulation to increase the potency of 

an HIV-1 reverse transcriptase (RT) from EC50 = 4.8 μM to 55 pM, an extraordinary example of 

lead optimization4. The design of the inhibitor started as a uracil base connected to a diphenyl- 

methane via an ethyl ether linkage. For this discussion, we will focus on two components of the 

study involving chlorine substitutions at the phenyl rings, although there were numerous other 

modifications, including substitution of the methyl linker between the two phenyl rings to an 

oxygen, resulting in a catechol diether analogue that ultimately led to the highly potent end 

product. FEP calculations on the catechol diether analogue with chlorines introduced 

systematically around the terminal phenyl group indicated that adding two halogens (at the 2,5-, 

3,5-, or 2,6- positions) to this ring would greatly enhance the free energy of binding (ΔΔGb). 

Studies on potency also indicated that substituting the methyl group on the catechol ring with 

methyl chlorine increased the potency by an order of magnitude. For the most part, these 

calculations attributed the contribution of the chlorines to their abilities to fill spaces in the RT 

binding pocket. An interesting aspect of this study, however, was that the authors proposed a 

potential X-bonding interaction between the Cl at position 5 of the phenyl ring to the carbonyl 

oxygen of Pro95. The computed structure of the final optimized inhibitor with HIV-RT showed a 

distance for the atoms to be from 0.1 to 0.4 Å longer than the sum of their van der Waals radii 

(OPLS-AA does not incorporate X-bonding). 
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Soon afterwards, Jorgensen’s group introduced the OPLS-AAx99 and accompanying OPLS-

CM1Ax force fields (CM1A charges are derived from AM165 calculations), which incorporated 

X-bonding using a strategy analogous to PEP; a massless pseudocharge (called an x-site) is 

added to each halogen as a mimic of the positive σ-hole. The resulting force fields were 

parametrized against QM calculated energies of aryl halide-acetone complexes in the gas phase. 

Comparison of FEP calculations on the optimized HIV-RT inhibitor from their 2011 study 

showed that ΔΔGb for the protein-ligand complex became 1 to 2 kcal/mol more negative when 

X-bonding is included in the force field, including enthalpic, entropic, and solvent terms. 

Force Field for Biological X-Bonds (ffBXB). Despite their successes, the PEP and ESH 

approaches are work-arounds in adapting force field potentials to accommodate the unique 

directional properties of X-bonds. Our lab has taken the approach that an empirical force field 

specific for biological X-bonds (ffBXB) could be derived based on fundamental atomic 

properties of halogens that contribute to the formation of BXB17,18. For this derivation, we 

consider the primary observations that the geometric and energetic properties of X-bonds result 

from the anisotropic distribution of charge and nonuniform atomic shape of halogens as covalent 

substituents. Incorporating these structural properties into the potential energy functions of Eqs. 

2.4 and 2.5 simply required introducing angle-dependent functions to describe the charge of the 

halogen (ZX = A cos (π − θ1)+ B, where the parameter A describes the magnitude of the charge 

anisotropy and B the overall charge of the halogen surface) for VCoulomb, and the effective van der 

Waals radius (RvdW(X) = < RvdW(X)> + ΔR cos(π − θ1), where <RvdW(X)> is the average effective 

radius, and ΔR is the perturbation from spherical) for the steric repulsive component of VLJ. The 

resulting ffBXB functions were parametrized against a set of QM-calculated X-bonding energies 

calculated for model donor-acceptor pairs with various distances and angles of approach18. The 
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parametrized model shows one-to-one correlation between the calculated and experimentally 

determined energies for specific geometries observed for Cl, Br, and I halogen bonds (Figure 

2.10)18,100. This promising correlation suggests that once the ffBXB has been implemented into 

drug design programs, it will be able to accurately model X-bonds in protein-inhibitor complexes 

as the last step in the virtual lead optimization strategy outlined in Figure 2.7. 

� 2.4 BXBS IN SCORING FUNCTIONS FOR VIRTUAL SCREENING 

Inhibitor Screening. 

Discovery of a lead compound that specifically inhibits a clinically important enzyme or 

protein target is typically identified through high-throughput screening of a small molecule 

library either experimentally or virtually. Introducing X-bonding into the virtual discovery 

process is not as straightforward as lead optimization but can apply many of the same comp-

utational concepts, adapting them for the additional steps of constructing halogenated libraries 

and docking such compounds to potential binding sites on their protein targets. Boeckler’s group 

has taken a major step in this direction by creating a virtual fragment library, called the Halogen-

Enriched Fragment Libraries (HEFLib) that is enriched in halogenated aryl compounds.101 

HEFLib takes advantage of the electron-withdrawing ability of aromatic systems to enhance the 

size of the σ-hole and, consequently, the strength of a potential BXB. The HEFLib was tested 

against the Y220C destabilizing variant of the p53 tumor suppressor (Figure 2.11a), a mutation 

associated with various types of cancers102. A previous virtual screen had identified PhiKan083 

as a compound that could bind and stabilize this p53 variant (Figure 2.11b)103. Virtual screening 

using the HEFLib identified 79 compounds that could have this same stabilizing effect. Each of 

the lead compounds from the HEFLib virtual screen were then synthesized and physically 

characterized for their binding specificity. Through this process, one lead compound was 
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Figure 2.10. Correlation between ffBXB calculated (ΔEffBXB) and experimentally determined 
(ΔEExp) BXB energies18. BXB energies were measured by differential scanning calorimetry 
(filled squares) or by an X-ray crystallographic titration assay (open squares) in a DNA junction 
model system15. The Cl1J and Cl2J constructs competed one and two chlorine BXBs 
(respectively) against two H-bonds in stabilizing the junction. Similarly, the Br1J and Br2J 
competed one and two bromine BXBs, and the I2J competed two iodine BXBs in this system. 
 

 
 

Figure 2.11. Structures of compounds from the virtual screening of X- bonding library 
(HEFLib)101 against the Y220C mutant of p53. (a) Structure of the p53 protein with the inhibitor 
binding site highlighted by a red box. (b) Lead compound PhiKan083, found using traditional 
screening library, shown in the p53 binding pocket with the H-bond highlighted. (c) Halogenated 
compound identified using HEFLib with BXB in the inhibitor site. (d) Optimized compound 
from (c) with stabilizing BXB and a H-bond in the p53 pocket. 
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identified, which contained an iodine substituent with a KD = 225 μM (Figure 2.11c). Further 

optimization resulted in a series of iodinated analogues with even higher affinities (KD <20 μM) 

to p53 compared to PhiKan083 (example in Figure 2.11d). The increase in affinity and 

specificity can partly be attributed to the introduction of an X-bond. The early success of the 

HEFLib emphasizes the potential benefits of incorporating BXBs in the discovery stage of drug 

design, including the virtual screening of potential lead compounds. 

Scoring Functions and Docking Programs with X- Bonds. 

The process of virtual screening of libraries is a molecular docking problem–engaging 

multiple compounds with a target in virtual space and analyzing the optimum (energetically 

favorable) geometries for those complexes to identify potential leads. Scoring functions in 

docking programs offer a benefit to screening libraries by introducing a computational way to 

estimate binding affinities throughout the high-throughput inhibitor screening process104. 

Generally, there are three types of scoring functions applied to docking programs: knowledge-

based, empirical, and force field-based (Figure 2.12). We focus here on how X-bonds have been 

incorporated into knowledge-based and empirical scoring functions. 

Knowledge-Based Scoring Functions. Knowledge-based scoring functions are constructed 

through pairwise interaction networks that are defined around experimentally determined 

properties of molecular interactions, in particular, structural data from the Protein Data Bank57 

(PDB). Such functions sacrifice accuracy in favor of computational efficiency; however, this 

trade-off has particular advantages when searching across a very large virtual space, for example, 

during the initial screening phase. A simple example of an early knowledge-based scoring 

function is seen in the studies on protein folding and docking105. In these methods, the goal is to 

construct a set of data-derived potential energy functions based on what is observed in known 
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Figure 2.12. Hierarchy of scoring functions. The three common types of scoring functions to 
estimate binding energies during virtual screening/lead discovery stages of drug development are 
shown. Force field-based functions are the most accurate but computationally most expensive. 
These are followed by empirical- and knowledge-based with each being less accurate but more 
efficient. Specific scoring functions with BXBs incorporated are listed for the empirical- and 
knowledge-based functions. 
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folded protein structures to facilitate predictions of folded structures for an unknown sequence. 

For example, consider the interactions of amino acids in a folded protein in space. The tendency 

for a particular amino acid to pair with other amino acids will define a pairing potential. Thus, 

the frequency for which a particular pair is observed in the PDB structural database relative to an 

ideal reference pairing is expected to follow a Boltzmann distribution across all possible 

pairings, which can then be translated into a potential energy for pairing by a standard 

Boltzmann energy relationship. The challenge is that ideal pairing frequencies are not known 

and, therefore, an iterative process is used to estimate these reference frequencies. Once 

determined, however, these pairing energies can then help drive the folding of a test sequence, 

even if the physicochemical reason for the pairings are not well understood. For inhibitor 

screening, the strategy is extended to the atomic level, where knowledge of structural properties, 

such as distances, can be used to derive energies for atomic pairs. 

In an early attempt at deriving a knowledge-based scoring function for ligand binding, Zhu et 

al.106 developed XBPMF, which considers geometric and energetic preferences for molecular 

interactions, focusing specifically on incorporating X-bonds for screening halogenated com-

pounds. The pairwise potentials considered H- and X-bonding energies and were derived using 

training sets composed of crystallographic structures of various protein-ligand complexes (solved 

to 3.0 Å resolution or better) extracted from the PDB. Because X- and H-bond energies are 

dependent on both distance and angle of approach, the potentials consider both geometric prop-

erties for atomic pairs, defined as 2-D potentials for the molecular interactions. The derivation of 

the potential energy functions require a set of known ideal distributions for the 2-D parameters, 

which were derived through an iterative approach, in this case against a set of decoy ligands. The 

XBPMF scoring functions were parametrized using training sets that consisted of all protein-



 41

ligand complexes that met their selection criteria (31,145 structures) or those with only halo-

genated ligands (1,591 structures). The resulting knowledge-based potentials for X- and H-bond 

donor/acceptor pairs defined optimal geometries that are short-range and linear with interaction 

energies that vary according to the types of halogen donors and their associated acceptor atoms. 

The success of XBPMF scoring functions in docking was evaluated by comparison against 

the several widely used scoring functions that use only one structural property (distance) in 

scoring and, therefore, are considered to be 1-D functions: LigScore1107, LigScore2107, Glide-

ScoreSP5, GlideScoreXP6, DrugScore108, Jain109, PMF110, and PMF04111. The three criteria for 

evaluation of the scoring functions were docking power (ability of the binding score to identify 

the native ligand conformation away from a set of decoys, as reflected in the RMSD of the best-

scored ligand conformation), ranking power (the ability of the score to properly rank a set of 

ligands against a particular protein in order of affinity), and scoring power (the correlation bet-

ween the binding score and the experimentally determined binding affinity of ligands to a protein 

target). In the docking power test, the success of the XBPMF scoring function was about average 

overall compared to other functions (falling in the middle group between the LigScore functions 

at the top and the PMF-type functions at the bottom). The ranking order evaluation was based on 

the ability of the functions to properly place in order the affinity of a set of ligands against eight 

protein targets (carbonic anhydrase II, casein kinase-1, coagulation factor X, HSP 90-alpha, HIV 

protease, tyrosine-protein phosphatase non-receptor type 1, beta-trypsin, and urokinase-type 

plasmogen activator). In this test, XBPMF was the top performer, yielding Spearman correlation 

coefficients for rank ≥0.6 for 4 of the test cases, and 2 other functions properly scored 3, 3 

functions scored 2, and 1 scored only 1. Finally, the performance of XBPMF was average on the 

scoring power evaluation against three different test sets. Overall, it is fair to say that 
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incorporating the angular dependence of X-bonding into a knowledge-based scoring function, 

such as XBPMF, works best when the complexes show near ideal X-bonding geometries (i.e., 

strong X-bonds) but not markedly better than without the additional parameters for complexes 

that are less than ideal. 

More recently, the XBPMF approach was extended by incorporating QM scan grids to 

account for the anisotropic electrostatic potentials of X-bonds (incorporating both distance and 

angle dependencies). It is the first scoring function to be incorporated in the widely used 

AutoDock program112 for high throughput virtual screening. The resulting function in AutoDock 

showed improved performance compared to the original XBPMF and the various other scoring 

functions in the docking power, ranking power, and scoring power. However, AutoDock itself 

could account for the majority of the improvement in these evaluative measures with the X-

bonding component showing slight improvements or, in some cases, slightly detriments to the 

parent program. In particular, the scoring function only improves the predicted binding energy 

slightly (from 1 to <0.5 kcal/mol difference) or for some not at all relative to AutoDock alone. 

Empirical Scoring Functions. Alternatives to knowledge-based scoring functions are the 

empirical scoring functions, which attempt to recapitulate experimental binding energies through 

a series of individual parametrized functions (which may or may not be based on physical 

properties). The form of these functions varies drastically depending on how they are 

implemented into a particular program, but they are all parametrized against training sets derived 

from experimental data113. 

ScorpionScore is an empirical scoring function developed to consider how the environment 

modulates noncovalent interactions, including X-bonds, in ligand binding by proteins114. The 

authors create a “small world” interaction network (described by Watts et al.115), which considers 
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local cooperative effects instead of independent pairwise interactions. The scoring functions in 

ScorpionScore define favorable and unfavorable noncovalent interactions as well as local 

networks of interactions based on geometric (distance and angles) constraints. Several training 

sets of crystal structures were used to parametrize the scoring functions. We will focus on the 

binding of a chlorinated inhibitor to hepatitis C viral polymerase. A substitution at the para 

position of the aromatic ring on the inhibitor had previously been shown to decrease the IC50 

from >32 μM for the unsubstituted to 1.2 μM for the chloro-substituted inhibitor, correlating well 

with the halogen contributing 2.7 to the overall favorable Scorpion score of 5.2 for the complex. 

Although the favorable score was attributed primarily to the close packing of the chlorine in a 

hydrophobic pocket, the halogen is in a geometry that can form a potentially stabilizing X-bond 

to the ε-nitrogen of an arginine side-chain (Figure 2.13116). 

Boeckler’s group recently derived an empirical scoring function, XBScore117, which, unlike 

the ScorpionScore, is not designed as a screening mechanism for all possible inhibitors to a part-

icular target but rather is directed to specifically identify halogenation sites on a predefined lig-

and scaffold that would potentially introduce X-bonding–a strategy similar to that described for 

lead optimization in Figure 2.7. In particular, XBScore focuses on the most common X-bonding 

interactions involving halogenated aromatic ligands as donors and the carbonyl oxygen along the 

protein backbone as acceptors16,43. The geometric constraints of BXBs are incorporated into 

XBScore through look-up tables: SigmaHoleScore as determined from polynomial functions for 

the directionality and SphericalScore for the available interaction sphere at various distances 

(Figure 2.14). XBScore is applied by first developing a scaffold decoration algorithm, where 

over 230,000 unsubsti- tuted and aromatic carbons were identified in the PDB (97,362 files) as 

potential halogenation scaffolds. After identification of the scaffolds, the algorithm  
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Figure 2.13. Potential stabilizing BXB in the hepatitis C viral polymerase-inhibitor complex 
(PDB ID: 1YVZ116). The para-chloro- substituent off the phenyl ring of 3-[(2,4-dichlorobenzoyl) 
(isopropyl)amino]-5-phenylthiophene-2-carboxylic acid, a non-nucleo- side inhibitor, is in close 
contact (3.3 Å) with the ε-nitrogen of the Arg422 side-chain in the polymerase binding pocket. 
 
 
 

 

Figure 2.14. Components of the XBScore scoring function117. XBScore is made up of two 
separate components (SigmaHoleScore and SphericalScore) that approximate the angle and 
distance dependence of a BXB energy. (a) The interaction between the carbonyl on N-
methylacetamide and the halogen on a halobenzene was used to model both components. (b) The 
SigmaHoleScore describes the directionality of X-bonding where the normalized complex 
energies at various angles relating the acceptor approach to the halogen (Θ1) were fit with a 
polynomial function. (c) The SphericalScore describes the spatial position of the donor to the 
acceptor. Different distances (d)define different possible points of contact from the BXB 
acceptor to donor. Because no mathematical relationship was found, a lookup table is used to 
assign the SphericalScore. 
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“halogenates” various carbons with Cl, Br, or I. The algorithm then identifies those halogens that 

are near carbonyl oxygens and calculates their XBScore. Remarkably, a scan of the PDB with 

the XBScore algorithm was able to extract all structures with known X-bonds to the protein 

backbone with distances between 2.6 and 5.0 Å. Using the scaffold decoration, they found 

potential structures that would benefit from X-bonding. Not only do the resulting complexes 

recapitulate QM binding energies with good correlation, they have also been able to identify 

possible target sites on the scaffold for the introduction of BXBs. 

� 2.5 CONCLUSIONS AND PERSPECTIVES 

Halogenated compounds have a long history in therapeutics, including the introduction of 

chloramphenicol as an antibiotic in 1949118, with a more recent example being flavopiridol 

(HMR 1275), a chlorinated CDK2 inhibitor currently in human clinical trials as an anticancer 

agent119. For the most part, the inclusion of halogens, particularly the heavy halogens (Cl, Br, 

and I) into a compound for hit-to-lead and lead-to-drug steps in drug development have occurred 

empirically through trial and error as opposed to purposeful design. When halogens have been 

included in rationale design strategies, they are added primarily to improve bulk properties of the 

compound, such as membrane permeability or, at the molecular level, to fill spaces in binding 

pockets. For example, a recent systematic study on the effect of halogen substituents on the 

ability of compounds to penetrate cellular membranes showed that replacing a hydrogen in 

promazine and perazine with a chlorine to make chlorpromazine and chlorperazine, respectively, 

increases the permeability coefficient on average by a factor of 2120. 

In the past decade, there is a growing appreciation that halogens play direct roles in defining 

the affinity and specificity of inhibitors against their protein targets, specifically through a 

molecular interaction that is now defined as the halogen bond or X-bond10. The first known 
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application of the X-bonding concept to structure-based design of a potential therapeutic 

compound was in 1996 when P. Lam was inspired to replace a H-bonding amidine group with an 

X-bonding iodine in an inhibitor to Factor Xa121. Our understanding of the fundamental 

principles of X-bonds and their physicochemical properties have grown significantly in parallel 

with the exponential growth in interest in the interaction, resulting largely from the expanding 

application of X-bonding in materials science122,123 and from the recognition that X- bonds play a 

broader role in biology124,125. Thus, the application of halogen chemistry to drug design now 

keeps one eye on how X-bonds in biomolecular systems (biomolecular X-bonds or BXBs) can 

facilitate the construction of more effective inhibitors, including those against important 

pharmacological targets such as HIV and cancer. Halogenation, however, is not always a positive 

or even benign modification. There have been toxicity issues associated with halogens that cause 

off target effects or that create toxic small molecules126,127. Thus, as with all drug design 

strategies, we need to remain aware of potentially harmful side effects associated with 

introducing halogens with the potential to increase specificity through X-bonds. 

A more deliberate exploitation of X-bonds as molecular tools in medicinal chemistry, 

however, has until recently been hampered by the lack of computational tools to properly model 

BXBs, particularly the anisotropic charge distribution. The excitement in the area of BXBs has 

drawn attention to new research approaches to attacking this computational problem. There are 

now several approaches to incorporating BXBs into virtual lead discovery and optimization from 

full QM computations to hybrid QM/MM to SQM to force field to empirical and finally structure 

knowledge-based strategies (going from highly accurate and computationally expensive to highly 

approximate and computationally efficient). We have seen some impressive success, particularly 

in simulating the geometries and energies of known protein-ligand complexes, leading in some 
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cases to successful optimization of inhibitors with higher affinities and efficacies against their 

molecular targets. For complexes where accurate structural information is lacking, however, the 

success has been more moderate, and for true virtual screening applications, the introduction of 

BXBs appears to primarily affect the details of docking results, which is not surprising because a 

single molecular interaction can only add to 1−5 kcal/mol to the total binding enthalpy (which 

can be upwards of tens to hundreds of kcal/mol). In effect, including BXBs improves the 

accuracies in molecular simulations of protein complexes with halogenated ligands but cannot 

overcome the inherent problems associated with the more general problem of accurately 

predicting de novo the geometries and energies of such complexes, whether halogenated or not. 

One of the primary issues in applying molecular simulations to structure-based drug design is 

that there are more components to binding affinity than just the final static structure seen in the 

crystal structure of a complex. For many of the studies testing the accuracies of BXB corrections, 

the evaluations have been limited to comparing the calculated X-bonding energy to the rank 

order of potency, as measured by Ki, IC50, and so forth. This assumes, however, that the effect of 

the halogen on affinity is restricted only to their effects on enthalpies of interaction–certainly an 

improvement over not including BXBs at all. However, potency and even affinity are dependent 

not only on the strength of a particular molecular interaction but on the overall effect of free 

energy differences between the complex and the individual molecular components, including the 

solvent. The work from Jorgensen’s group4 has come a long way toward incorporating many of 

these important concepts in his studies, demonstrating that systematic and detailed simulations 

through free energy perturbation methods can contribute to lead optimization that results in 

upward of 105-fold increase in affinity with ∼103 coming from effects of halogen substituents. 

These studies set the bar for how to evaluate the efficacy of a BXB correction. A greater 
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challenge is to accurately predict binding free energies when starting with the native 

uncomplexed structure of a protein target in a virtual screening environment. Boeckler’s strategy, 

with the halogen enhanced library101 and X-bond focused scoring function117, is an example of a 

comprehensive approach to incorporating BXBs at the discovery stage. 

As the field continues to develop, the cache of computational tools to model X-bonds is 

expected to grow. Along with this growth and the improvements in accuracy in the 

computational models, we hope and expect that the algorithms for simulating all aspects of 

macromolecular structure, including the more ubiquitous H-bonding and solvent interactions, 

will improve in parallel. Only then will structural-based rational drug design fully reach its 

potential in medicinal chemistry. 

 
  



 49

CHAPTER 3 
 

SULFUR AS A BROMINE BIOMOLECULAR HALOGEN ACCEPTOR 2 
 
 
 

� 3.1 SUMMARY 

The halogen bond (X-bond) has become an important noncovalent interaction for the design 

of pharmaceuticals. The X-bond is able to form an interaction with many electronegative 

acceptors, such oxygen, nitrogen, sulfur, and aromatic systems. In this study, we explore the role 

of sulfur as a bromine biomolecular halogen acceptor by assessing the structure and 

thermodynamics of a S…Br X-bond present at the core of a stacked-X Holliday junction (a four-

stranded DNA structure). The sulfur incorporated into the phosphate of the DNA backbone 

adopts two conformations–one forming a more geometrically ideal X-bond and the other forming 

a less ideal X-bond with a bromine atom on a uracil base. Both conformations were, however, 

found to be in a less ideal geometry than a previously studied O acceptor. Surprisingly, using 

calorimetry, the S acceptor is found to be more thermodynamically stable than the O acceptor by 

0.43 kcal/mol. Thus, for the first time, we have shown that an anionic sulfur can serve as a 

favorable acceptor for bromine X-bonds in a biological system. With the current understanding 

of sulfur as a favorable X-bond acceptor in less ideal geometries, medicinal chemists have an 

attractive target when designing halogenated inhibitors. 

� 3.2 INTRODUCTION 

Interest in halogen bonds has grown, corresponding with its emergence as a tool in medicinal 

chemistry58,86,128,129. The term “halogen bond”10 (X-bond) has been adopted to reflect its 

                                                        
2 The work in this chapter is formatted for an ACS journal. P.S.H. and I planned the studies and wrote the 

manuscript. I performed the purifications, DSC studies, and crystallographic studies. M.S. and I performed the 

QM.  

 
Formatted for submission. 
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analogous behavior to the better known hydrogen bond (H-bond). In particular, any electron-rich 

atom or functional group that serves as an H-bond acceptor can potentially be an X-bond 

acceptor (Figure 3.1a). Most recent studies have focused on oxygen, nitrogen, and π-electron 

systems as X-bond acceptors, because of their prevalence in biomolecules. Sulfur is also 

commonly seen as an acceptor, and is gaining attention as a potential target in drug design using 

the X-bond concept43,130,131, but there is currently very little experimental data on its X-bonding 

potential. Here, we apply a DNA Holliday junction as a model system to determine the structure-

energy relationship of S···Br X-bonds, showing that sulfur is slightly stronger as an X-bond 

acceptor relative to oxygen. 

The X-bond, similar to the H-bond, is considered to be primarily an electrostatically driven 

interaction13,31,132, although charge-transfer, dispersion, and polarization contribute significantly 

at very short distances11,12,30. In the case of the X-bond, the donor is seen as an electropositive 

crown created at tip of the halogen as a consequence of depletion of electron-density opposite a 

covalent σ-bond (e.g., a C—X bond) (Figure 3.1b)13. The resulting “σ-hole” can form an 

interaction with an electron-rich acceptor, with a geometry that is characterized as being shorter 

than the sum of the van der Waals radii (∑rvdW) of the respective atoms and linear in respect to 

the approach of the acceptor atom to the halogen (the θ1-angle). The σ-hole is most pronounced 

with the heavier halogens (Cl, Br, and I)—F is not a significant X-bond acceptor in biology—

and is accentuated by electron-withdrawing groups.  

The most common X-bond acceptor in biomolecules is the carbonyl oxygen of the peptide 

bond, primarily because of its prevalence, although the amino acid side chains collectively are 

nearly equivalent in their representation16,43,130,133. The sulfur containing amino acids, 

particularly Cys, are underrepresented as X-bond acceptors133,  but quantum mechanical (QM)  
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Figure 3.1. The X-bond. (a) Comparison of H- and X-bond donors and acceptors in biological 
systems, and relationships between the two. H-bond donors are typically the electropositive 
hydrogens bonded to more electronegative atoms (O, N, or S) in proteins or nucleic acids. In 
contrast, X-bond donors are primarily halogenated ligands that bind noncovalently to proteins or 
nucleic acids, but can also come from halogenated amino acids or nucleic acids that result from 
oxidative halogenation. Since both H- and X-bonds are primarily electrostatically driven 
interactions, they share a common set of electron-rich acceptors. When an H- and X-bond shares 
a common acceptor, such as the carbonyl oxygen of the peptide backbone in a protein, the 
interactions are known to be orthogonally related (both in terms of geometry and in their energy 
independence)40. The anisotropic charge distribution results in halogens being amphipathic, 
allowing them to serve simultaneously as X-bond donors and H-bond acceptors134. (b) σ-Hole 
model for X-bonding. A σ-hole is shown to form a halogen becomes covalently bonded to, for 
example, the carbon of a methyl group. The pz-orbital of the halogen is depopulated when the 
valence electron is subsumed by the resulting σ-bond molecular orbital, creating a “σ-hole”, 
which accounts for the electropositive charge and polar flattening in the direction opposite the σ-
bond. The electrons that remain in the perpendicular px,y-orbitals creates an anisotropic charge 
distribution across the halogen surface. Adapted from Auffinger et al6 and Ford and Ho4,. 
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analyses have shown that the S in Met has potential as a target for inhibitor design from the 

perspective131,135. Experimental and computational studies on small molecule systems show 

sulfur as similar to slightly more favorable than oxygen as an X-bond acceptor136, with 

geometries that deviate significantly from linearity131,136,137. In one study, an iodobenzene ligand 

bound in an artificial cavity of T4 lysozyme was shown to form an X-bond to the sulfur of a 

methionine or selenium of a selenomethionine residue138. The energetic contribution of this 

interaction, however, was shown to be very small (~0.6 kcal/mol), leaving the question open as 

to whether sulfur is a reasonable X-bond acceptor in a biological system. 

Our lab had previously developed a DNA system to study X-bonds in a biological 

context14,15. In this model system, a 5-bromouracil, BrU (Figure 3.2) is placed at a nucleotide 

position that can form an X-bond, replacing a comparable H-bond, to stabilize a decanucleotide 

sequence (5’-CCGGTpA6
BrU7CCGG-3’, where the p represents a standard phosphate group 

linking the T5 nucleotide with A6) as a four-stranded Holliday junction in the stacked-X 

geometry. The single-crystal structures of this construct (Protein Data Bank, PDB57 code 2ORG) 

reveal the detailed geometries of the molecular interaction from the bromine of BrU7 to the 

phosphate oxygen of A6 when the DNA backbone forms a tight U-turn in the junction, while 

differential scanning calorimetry (DSC) allow determination of the energetics of this interaction 

in solution139. Finally, QM analyses of the interacting groups within the DNA junction helps 

bridge the structural details with the associated energies17. We apply this same DNA junction 

system here to determine the structure-energy relationship of an S···Br X-bond by introducing a 

phosphorothioate (ps) in place of the standard phosphate linkage between T5 and A6, thereby 

allowing for the first time a direct comparison between sulfur and oxygen as biomolecular X-

bond acceptors.  
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Figure 3.2. X-bonding interactions with oxygen as the acceptor at the crossover in a DNA 
junction. The overall junction (PDB code 2ORG14) is shown, with the inset depicting the 5-
bromouracil base at BrU7 interacting with phosphate oxygen pA6. Replacement of an oxygen with 
a sulfur in this phosphate group, as a phosphorothioate in the junction (ps-J), creates a prochiral 
center at the phosphorus, thereby defining the two prochiral configurations of the sulfur (labeled 
pro-Rp and pro-Rs).  
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� 3.3 MATERIALS AND METHODS 

DNA Synthesis and Purification 

The DNA constructs for this study were designed as self-complementary sequences of the 

form 5'-CCGATXbrUCGG-3' (where X has either a standard 2’-deoxyadenosine 5’-

monophosphate, pA, or a 2-deoxyadenosine-5'-thiomonophosphate, psA). Chemically 

synthesized DNA oligonucleotides are purchased from Midland Certified Reagent Company 

attached to the solid controlled-pore glass (CPG) support, with the terminal dimethoxytrityl 

(DMT) protecting group intact to allow for purification. The full-length product sequences were 

purified using high-performance liquid chromatography (HPLC), and subsequently the DMT 

was removed as previously described14,15. Phosphorothioate constructs required an additional 

HPLC step to separate the pro-Rp from pro-Sp enantiomers, using a protocol derived from that 

as described in Liu, et al140. The final product was desalted by size exclusion chromatography 

using a Sephadex G-25 Column. 

Crystallization and Structure Determination 

DNA constructs were crystallized by hanging drop vapor diffusion under conditions similar 

to those used previously to crystallize brominated DNA junctions14. The initial 6 µL 

crystallization drops containing 0.75 mM DNA, 25 mM sodium cacodylate buffer (pH 7.0), 10-

20 mM calcium chloride, and 0.9-1.2 mM spermine. Thin diamond-shaped crystals of one of the 

psA enanatiomers grew after 7 days equilibration against a reservoir containing 30% 2-Methyl-

2,4-pentanediol and 1% ß-mercaptoethanol.  

X-ray diffraction data on DNA crystals were collected using a Rigaku Compact Home Lab 

equipped with a copper sealed-tube microfocus source and a  PILATUS detector. Data were 

indexed, integrated, and scaled using the HKL2000 program 141. Crystal structures were solved 
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by molecular replacement using PHENIX142, with a brominated junction (2ORG) in which the 

bromine had been removed, serving as the initial phasing model14. The actual enantiomer of the 

phosphorothioate of the S-construct was not known. The residual positive electron density in the 

initial difference Fo-Fc electron density maps indicated that the crystal of the S-construct was the 

pro-Rp enantiomer, and subsequently confirmed by the drop in Rwork and Rfree during refinement. 

DNA base pair measurements (rise, twist, slide, etc.) were performed with the CURVES+ DNA 

structure analysis program143, and junction structure parameters (Jroll and Jtwist) were calculated 

according to the methods described by Watson et al144. 

Differential Scanning Calorimetry Studies 

Differential scanning calorimetry (DSC) was performed to determine the melting energies of 

the sulfur-containing and oxygen-containing constructs, as previously described15. DNA 

constructs (300 μM concentration in a solution containing 50 mM sodium cacodylate buffer (pH 

7.0) and 15 mM calcium chloride) were annealed in the DSC instrument (TA Instruments Nano 

DSC) by heating to 90 °C for 20 min then allowing to cool to 10 °C at a rate of 0.9 °C/min. DNA 

melting energies were collected in the DSC, starting with equilibration for 400 s and scanning 

from 10 °C to 95 °C at a rate of 0.9 °C/min at a pressure of 3.0 atm. Melting temperatures (TM) 

and enthalpies of melting (ΔHM) were determined by fitting the data with TA Nano Analyze 

software. Previous studies15,100 had shown the presence of both junction and duplex at 300 μM 

DNA concentrations and, therefore, a two-component (junction and duplex), two-state scaled 

model was used to analyze the data (Figure 3.3). Data for each construct were measured for at 

least 7 replicates. Melting energies were extrapolated to a standard temperature of 25 °C, and the 

duplex melting energies were subtracted from the junction to determine the stabilization energy 

of the junction core as previously described15,100. 



 56

 
 

Figure 3.3. Example Differential Scanning Calorimetry (DSC) Two-Component Van’t 
Hoff Fit. The raw data (solid gray line) was fit with a two-component, two-state scaled 
model, one for DNA duplex (solid blue line) and one for DNA junction (solid red line) to 
yield an overall fit (dotted black line). 
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Quantum Mechanical (QM) Calculations  

Models for QM energy calculations of the X-bonded junctions consisted of a 5-brominouracil 

base interacting with either (dimethylphosphate) for the non-S construct or 

dimethylphosphorothioate (for the S-construct), with atomic position placed according to their 

respective crystal structures (Figure 3.4). The Møller−Plesset second-order (MP2) QM energies 

were calculated using Gaussian 09145, with cyclohexane as the solvent (D = 2, relative to a 

vacuum) to mimic the hydrophobic environment of the junction core, applying an appropriate 

polarizable basis set that includes dispersion (aug-cc-PVTZ) from the EMSL Basis Set 

Exchange146. Basis set superposition errors (BSSE) were determined from a separate 

counterpoise gas phase calculation and directly summed into the calculated solvent phase 

energy147. 

� 3.4 RESULTS  

The goals of the current studies are to determine the structure-energy relationships of sulfur 

as an X-bond acceptor and to compare against the more prevalent oxygen acceptor in a 

biomolecular system. From previous studies100, bromine was found to be overall the most 

stabilizing X-bond donor in the model DNA junction. We have thus designed a DNA junction in 

which a phosphorothioate (ps) linkage is introduced into the self-complementary sequence 

(CCGGT5psA6
BrUCCGG, abbreviated ps-J). The crystal structure of this ps-J construct, when 

compared to the previous structure of 2ORG, allows the geometries of an S···Br X-bond to be 

compared to that of an O···Br interaction. Unlike previous studies, all four strands of ps-J are 

identical, forcing an X-bond to form in all structures, instead of having an X-bond compete 

against an H-bond (as in the 2ORG structure). Thus, for the DSC melting studies, we constructed  
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Figure 3.4. Quantum Mechanics Calculation Setup. 5-bromouracil was used as a model for the 
base of nucleotide 7 (BrU7). The bromine atom was interacting with either a dimethylphosphate 
(Z = oxygen) to mimic the interaction found in 2ORG or dimethylphosphorothioate (Z = sulfur) 
to mimic the interaction found in both conformations of 5VBJ. All three systems (2ORG, ps-JA 
and ps-JB) were modeled using geometries (rBr…Z, Θ1) found from the x-ray crystal structures. 
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a self-complementary sequence, analogous to ps-J, but with a standard phosphate (p) diester 

linkage between T5 and A6 (CCGGT5pA6
BrUCCGG, abbreviated p-J). 

X-ray Crystallography: Comparison of Structures 

The overall structure of the ps-J is that of the four-stranded DNA junction, similar to the 

stacked-X junctions seen previously (Table 3.1 and Figure 3.5a)14, but with the sulfur from A6 

positioned as the pro-Rp enantiomer at the core of the junction and close to the bromine on BrU7. 

During refinement, it became clear from the electron density maps that the ps-linkage assumed 

two alternative conformations (Figure 3.5b)—conformer A (labeled as ps-JA, with 52% 

occupancy) and conformer B (ps-JB, with 48% occupancy). Evidence for the presence of two 

conformers came initially from careful analysis of the residual electron densities in the Fo-Fc 

difference map, and further supported by the reduced Rwork and Rfree values when both 

conformations were included in the final model (with Rwork dropping from 22.5% to 21.8% and 

Rfree from 27.8% to 27.6% with the addition of two conformations). Finally, support for the 

presence of both conformations came from analysis of the structural B-factors, which were 

higher for the T5 and A6 residues with only a single model, but reduced to be consistent with the 

remainder of the structure with two conformers (Figure 3.6). 

The overall junction geometries (Jtwist, which relates the rotational angle between the stacked 

arms along their helical axes, and Jroll, which relates the stacked arms perpendicular to the helix 

axes) indicate that the global geometries of the two conformations of ps-J are very similar to 

each other and to the previously determined structure of the junction (2ORG) containing O···Br 

X-bonds (Table 3.2). The primary difference between ps-J and 2ORG is that the stacked duplex 

arms of the sulfur containing junction are related by a much shallower angle (Jtwist ≈ 30° 

compared to ≥40° in all previous structures), making it a more planar junction structure.  
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Table 3.1. Parameters from Crystallization and Structure 
Solution of ps-J (PDB 5VBJ)  

Crystallographic Parameters 

Space group C2 

Unit cell dimensions  
a(Å) 64.165 

b(Å) 23.981 

c(Å) 37.815 

ß(˚) 112.318 

no. of unique reflections (for 

refinement)
a
 

3562 (3499) 

Resolution 1.94 

Completeness (%)
a
 85.93 (42.57) 

I/sigma (I)
a
 12.4 (1.13) 

R-merge (%)
a
 8.8 (77.1) 

Refinement Statistics 

R
cryst 

(%)
a,b

 21.8 (44.1) 

R
free 

(%)
a,b

 27.6 (45.5) 

no. of atoms of DNA (solvent) 431 (29) 

<B factor> for DNA (solvent) 33.825 (37.2) 

RMSD for bonds (Å) 0.009 

RMSD for angles (˚) 1.17 
 

a
Values for highest-resolution shell are given in parentheses 

b
Values for R

cryst
 and R

free
 are very similar to previously published, 

2ORG 
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Figure 3.5. X-ray crystal structure of phosphorothioate DNA junction (ps-J). (a) The 
phosphorothioate DNA junction (ps-J) crystallizes as a stacked-X four-stranded junction. The 
junction was seen to adopt two conformations (ps-JA in blue and ps-JB in orange). (b) 
Electron density map at the junction cross-over. The 2Fo-Fc electron density map calculated 
at the 1σ level (blue wire) for the psA6 and brominated uracil (brU7) nucleotides is shown, 
indicating the presence of the ps-JA (blue carbons) and ps-JB (orange carbons) conformations 
(c) S from the phosphothioate of A6 (yellow sphere) to Br of brU7 interaction at the junction 
core of ps-JA. The short distance and angle of approach are labeled for the S···Br interaction, 
along with distance to the associated water molecule (W1). (d) S to Br interaction at the 
junction core for ps-JB. The distance and angle of approach are labeled for the S···Br 
interaction. 
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Figure 3.6. Temperature factors in ps-J crystal structure measured as (a) a single model or (b) 
two conformers. The average temperature factors (B factors) of the nucleotides along the 
continuous outside strand (□) and inside crossover strands (◆) of single model structure are 
compared to those when two conformers are added to T5 and psA6 (indicated by the arrows). The 
B factors for the two conformers were averaged. (The standard deviations for each B factor are 
around or below 5.0 Å2, which are about the size of the symbols). After the addition of the two 
conformers, the B-factors of the crossover nucleotides (5-7) are significantly lower than the 
continuous strand.   
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Table 3.2. Comparison of overall junction parameters and helical parameters for the 
A6·T5 base pair at the crossover of the phosphate (2ORG) and phosphorothioate (ps-JA, 
ps-JB) junction constructs.a 

 p-J (2ORG) p-JA p-JB 

Junction parameters 

Jtwist 40.68° 30.13° 30.16° 

Jroll 138.70° 129.55° 124.82° 

Rotational helix parameters 

Helical Twist (34.7°) 36.85° 36.90° 36.95° 

Propeller Twist (-12.0°) -19.90° -12.20° -19.10° 

Tilt (-0.62°) 0.15° 0.50° 1.30° 

Roll (1.74°) 3.35° 2.60° -1.50° 

Buckle (-0.23°) -7.80° 8.10° -17.10° 

Opening 3.10° 4.70° 5.80° 

Translational helix parameters 

Rise (3.30 Å) 3.29 3.21 3.27 

Slide (0.66 Å) 0.75 0.79 0.19 

Shear 0.30 0.59 -0.93 

Stretch 0.12 -0.34 0.12 

Stagger -0.06 -0.60 0.54 

Shift 0.03 0.03 0.03 
 

aHelical parameters around the modified phosphate, T5 and A6, were calculated using Curves+143. Ideal 
values of B-DNA from Hays et. al.148 that vary from 0 are indicated in parentheses. 
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The local structures of the T5 and the A6 nucleotides at the point of junction cross over 

differed among the two ps-J conformers. In particular, the base pair from T5 to its 

complementary A6 base is slightly stretched in ps-JA compared to ps-JB (Table 3.2). A more 

detailed analysis showed the sulfur of ps-JA approaches the Br of BrU7 at a closer distance 

(rBr···(S/O)) and more linearly (θ1) than that of ps-JB (Figure 3.5c-d, Table 3.3). It is clear from the 

geometries that ps-JA forms an X-bond and, as a result pulls T5 base slightly away from the A6 

base on the complementary strand. 

The geometry of the X-bond in ps-JA, however, is longer (in terms of the %Σrvdw) and less 

linear compared to the analogous O···Br interaction in the 2ORG structure. The less linear 

acceptor approach to the halogen, however, is consistent with results from previous work on 

sulfur acceptors in small molecule assemblies131, where the approach angles are seen to fall 

between 160˚ and 170˚, as compared to those of oxygen acceptors18, which fall between 170˚ and 

180˚. Furthermore, the X-bond of sulfur acceptors in the small molecule systems have been 

shown to be more energetically favorable when compared to oxygen acceptors136, suggesting that 

the angle of approach may not be as destabilizing as initially thought. Finally, a water molecule 

is seen in ps-JA bridging the sulfur acceptor to the Br, which could confer additional stability to 

this interaction in the junction (Figure 3.5d). 

Differential Scanning Calorimetry: Comparison of Energies 

The effect of the Br···S X-bond on the thermal stability of the junction in solution was 

determined through DSC melting studies. We had shown that junction formation is concentration 

dependent, with the DNA remaining as a duplex at low concentrations and as a four-stranded 

junction at higher concentrations. At the concentration of DNA (300 µM) for the current study, 

both junction and duplex are present, allowing the melting parameters of the two forms to be  
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Table 3.3. Geometries of Br X-bond interactions for sulfur and oxygen acceptors.a  

 ps-JA ps-JB 2ORG 

rBr···(S/O) 3.5 Å 4.1 Å 2.9 Å 

%Σrvdw 96% 112% 86% 

θ1 161.3° 150.1° 167.2° 
 

aThe distances (rBr···(S/O)) and the corresponding percent of the Σrvdw (%Σrvdw) from the Br of BrU7 to the 
sulfur of conformers A and B of the of the DNA junctions containing a phosphorothioate linkage (ps-JA 
and ps-JB, respectively) are compared to those to the oxygen of a phosphate containing junction (from a 
previous crystal structure, 2ORG from the PDB). The angles of approach of the acceptor to the Br—C 
bonds (θ1) are also compared. 
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determined simultaneously. The DSC melting and cooling profiles of the ps-J construct showed 

fully reversible melting and reannealing of the DNA, and were best fit using two two-state van’t 

Hoff models (Figure 3.3). Subtraction of the duplex energies from the junction leaves us with the 

energy of stabilization associated with the interactions at the junction crossover. Subsequent 

comparison of the crossover energies between ps-J and p-J allows us to determine the specific 

thermodynamic parameters (∆H, ∆S, and ∆G) of a sulfur relative an oxygen as the X-bond 

acceptor. 

The DSC melting data show that both the junction and duplex forms of the phosphothioate 

ps-J construct are more thermally stable than the native p-J, with melting temperatures (TM) that 

are higher by ~0.7 ˚C for the duplex and by 1 ˚C for the junction (Table 3.4). Furthermore, 

melting enthalpies (∆HM) for ps-J in duplex form is ~6 kcal/mol higher and in junction form is 

~13 kcal/mol higher than the comparable oxygen containing DNA.  

In order to directly compare the stabilizing potential of the sulfur X-bond acceptor to that of 

oxygen, the DSC melting parameters were translated to stabilizing enthalpies and entropies 

(∆H25°C and ∆S25°C, respectively) at a reference temperature of 25 °C, applying the heat capacity 

(∆Cp) in the standard relationships (Eqs. 3.1 and 3.2). Since the core structures are nearly 

identical for the oxygen and sulfur constructs, the difference in ∆H25°C and ∆S25°C, reflect the 

difference in specific X-bonding potential for the two types of acceptors. The resulting ∆∆H and 

∆∆S values (Table 3.5) show that the sulfur-bromine X-bond is enthalpically more stabilizing by 

-3.5 kcal/mol. As had been previously seen100, this more thermally stable interaction comes at an 

entropic cost, which is reflected in the significantly lower crystallographic B-factors of the 

nucleotides at the junction crossing-over—those that participate in the X-bond (Figure 3.6). The  
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Table 3.4. Differential Scanning Calorimetry (DSC) melting temperatures (TM), enthalpies (∆HM), and 
entropies (∆SM) for the duplex and junction forms of the phosphate (p-J) and phosphorothioate (ps-J) DNA 
constructs. 

DNA 
Construct 

Duplex  Junction 

TM (°C) 
∆HM 

(kcal/mol) 
∆SM 

(cal/mol K) 
 TM (°C) 

∆HM 
(kcal/mol) 

∆SM 
(cal/mol K) 

p-J 51.9 ± 0.12 53.2 ± 0.5 163.5 ± 1.6  57.2 ± 0.08 70.7 ± 1.0 214 ± 3 

ps-J 52.6 ± 0.10 58.4 ± 0.3 179.4 ± 0.9  58.2 ± 0.13 83.8 ± 0.6 253.1 ± 1.8 
 

 
 

 ∆�!E°1 = Δ�H + Δ��(I!E°1 − IH)                                                               (��. 3.1) 
 ∆J!E°1 = ΔJH + Δ�� KL MI!E°1

IH N                                                                 (��. 3.2) 

 
 

Table 3.5.  Stabilization energies at 25° C (∆H25°C, ∆S25°C, and ∆G25°C) for the junction minus 
duplex forms of the p-J and ps-J DNA constructs. 

DNA Construct ∆H25°C
(J-D) (kcal/mol) ∆S25°C

(J-D) (cal/mol K) ∆G25°C
(J-D) (kcal/mol) 

p-J 5.6 ± 0.5 15.6 ± 1.5 0.97 ± 0.06 

ps-J 9.1 ± 0.3 25.7 ± 0.9 1.40 ± 0.04 

 ∆∆H25°C
 (kcal/mol) ∆∆S25°C

 (cal/mol K) ∆∆G25°C
 (kcal/mol) 

p-J - ps-J -3.5 ± 0.6 -10.2 ± 1.8 -0.43 ± 0.07 
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resulting ∆∆G, however, shows that sulfur remains overall a slightly stronger X-bond acceptor in 

this DNA system. 

Quantum Mechanics Calculations of X-bonding energies 

In order to associate the geometries of the X-bonds seen in the crystal structures with the 

stabilizing potentials determined by DSC, we performed quantum mechanics calculations at the 

MP2 level on a set of model compounds (Figure 3.3) that mimic the O···Br interaction from the 

previous 2ORG and the S···Br interaction of the current ps-J constructs (Table 3.6). The MP2 

energies show that the X-bond of the ps-JA conformer is about twice as stabilizing as that of ps-

JB. This is not surprising, given the shorter and more linear geometry of the ps-JA conformer. 

Contrary to the DSC results, however, the S···Br X-bond of ps-JA was predicted to be slightly 

less stabilizing than that of O···Br. However, we note that our MP2 calculations do not take into 

account the explicit solvent interactions, including the water seen in ps-JA that bridges the sulfur 

to the Br atom. 

� 3.5 DISCUSSION 

In the current work, we have shown that an anionic sulfur can serve as a favorable acceptor 

for bromine X-bonds. Although previous studies have characterized the structure-energy 

relationship of sulfur X-bonds in small molecule assemblies both experimentally and 

computationally, there was a dearth of knowledge about sulfur acceptors in a biological context. 

In our DNA model system, a bromine X-bond with a sulfur acceptor was shown to be 

enthalpically more stabilizing than a comparable oxygen acceptor, despite what appears to be 

less favorable geometries. Both the energetics and broader range of geometries are consistent 

with prior computational studies on sulfur-halogen interactions131,136. The stronger interaction,  
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Table 3.6.  Quantum mechanical energies calculated at the MP2 level (EMP2), applying the (aug-
cc-PVTZ) with BSSE correction for a 5-bromouracil complex with dimethylphosphate (for 
2ORG) or with dimethylphosphorothioate (for ps-JA and ps-JB conformers of the ps-J 
construct). 

 O···Br (2ORG) S···Br (ps-JA) S···Br (ps-JB) 

EMP2 (kcal/mol) -2.22 -1.75 -0.94 
 



 70

however, comes with an entropic cost, which renders sulfur overall only slightly more stabilizing 

as an X-bond acceptor. 

Sulfurs have been observed to comprise only 5% of X-bond acceptors in protein-ligand 

complexes130, which may reflect the overall lower occurrence of the element at accessible 

regions in protein structures. The sulfur containing amino acids cysteine and methionine, 

however, are both prevalent in active sites of enzymes149. Cysteines, for example, are key 

reactive nucleophiles for many hydrolases, deubiquitinases, caspases and enzymes involved in 

redox reactions150. Methionine is a particularly interesting residue for drug design due to it’s 

flexibility and lipophilicity. Similar to cysteine, it is found at higher rates in active sites of many 

enzymes including nuclear hormone receptors, catechol-O-methyltransferase, and herpes simplex 

virus type 1 thymidine kinase151. It has also been found to be the most common “gatekeeper”, a 

residue that blocks the hydrophobic pocket and plays a key role in the recognition elements at the 

ATP binding site in human kinases135. Methionines could, therefore, serve as a key acceptor for 

halogenated inhibitors. Our understanding that sulfur is capable of forming X-bonds that are 

comparable to or more stable to oxygen over a broader range of geometries would allow this 

underrepresented element to become an attractive target when designing halogenated compounds 

as therapeutic agents.  
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CHAPTER 4 
 

STRUCTURE-ENERGY RELATIONSHIPS OF HALOGEN BONDS IN PROTEINS3 
 
 
 

� 4.1 SUMMARY 

The structures and stabilities of proteins are defined by a series of weak noncovalent 

electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have 

designed and engineered halogen bonds (XBs) site-specifically to study their structure−energy 

relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the 

aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the 

sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type 

tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB 

rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent 

noninteracting site), indicating that the interaction is also present in solution. Quantum chemical 

calculations show that the XB complements an HB at this site and that solvent structure must 

also be considered in trying to design molecular interactions such as XBs into biological 

systems. A bromine substitution also shows displacement of the side chain, but the distances and 

geometries do not indicate formation of an XB. Thus, we have dissected the contributions from 

various noncovalent interactions of halogens introduced into proteins, to drive the application of 

XBs, particularly in biomolecular design.   

                                                        
3 The work in this chapter was published in 2017 in Biochemistry. P.S.H, M.R.S., A. –C. C. C., and I planned 

experimental studies and wrote the manuscript. M.R.S, A. –C. C. C. and I performed purifications, DSC studies, 

and crystallographic studies. M.R.S and I performed the MP2 calculations. H.B. carried out crystallographic 

studies. R.A.M. provided the modified proteins.  

 
Scholfield, M. R.*; Ford, M. C.*; Carlsson, A.-C.C.; Butta, H.; Mehl, R. A.; Ho, P. S. Structure-Energy 
Relationships of Halogen Bonds in Proteins. Biochemistry. 2017. 
*These authors contributed equally to this work 
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� 4.2 INTRODUCTION 

The halogen bond (XB)10, which is analogous to the hydrogen bond (HB), has become 

widely applied as a design element in supramolecular chemistry152. This recently rediscovered 

interaction in biology, however, is recognized only in hindsight, leaving it an inchoate tool for 

biomolecular design. In particular, XBs are seen to be critical for defining the specificity and 

affinity of halogenated inhibitors against protein targets43, making them important tools in 

medicinal chemistry38,125. Although we had previously studied the structure−energy relationships 

of XBs in a model DNA system14,100, it is critical to define these relationships in a protein 

system. We present here the first detailed characterization of XB geometry−energy relationships 

in a protein, with XBs specifically designed to affect the stability of the model protein T4 

lysozyme.  

Although the physicochemical basis for a halogen as a covalent substituent, interacting with 

an electron-rich oxygen, nitrogen, or sulfur, is still being debated, a readily accessible 

explanation for the XB is the σ-hole model13 (Figure 4.1a). When a halogen is covalently bonded 

to a carbon atom, one of its valence electron is pulled into the σ-molecular orbital, resulting in a 

“σ-hole”, as an electropositive crown that serves as the donor in the XB and accounts for the 

strong directionality of the interaction (Figure 4.1b). Because the atomic orbitals perpendicular to 

the σ-hole retain their full complement of electrons, the halogen is amphoteric38,41, with the 

halogen serving as electropositive XB donor along the σ-hole and as an electronegative HB 

acceptor in the perpendicular direction153,154. 

The typical XB donor in protein systems is a halogen substituent of an enzyme inhibitor, 

while the acceptor is most often the peptide carbonyl oxygen of the protein’ s back-

bone43,51,86,130,155. The strength of the XB depends on the size of the σ-hole, which in turn follows  
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Figure 4.1. Halogen bond (XB). (a) σ-Hole model for X bonding13. The electropositive σ-hole 
that serves as the XB donor is created as a result of pairing the valence electron from a halogen 
(typically assigned to the pz atomic orbital) with, in this example, an electron from a carbon to 
form a covalent C−X bond. The resulting σ-molecular orbital depopulates the outside lobe of the 
pz orbital, leaving an electropositive crown (blue surface) and flattening of the atomic radius, the 
σ-hole. The px,y orbitals remain fully occupied, resulting in an electronegative (red surface) ring 
perpendicular to the σ-molecular orbital. (b) Relationship between XBs and hydrogen bonds 
(HBs). The XB (red dotted line) is defined by contact distances that are less than the sum of the 
standard van der Waals radii for the halogen donor and the acceptor, and an approximate linear 
approach of the acceptor to the halogen (ΘXB ≈ 180°). The px,y orbitals of the halogen can also 
serve as an acceptor to an HB (blue dotted line), an approach that is approximately orthogonal to 
the XB (ΘHB ≈ 90°). (c) Electrostatic potential of halobenzenes. The DFT-calculated electrostatic 
potentials at the 6-311+G (d,p) level [from >10 kcal/mol (blue) to less than −10 kcal/mol (red)] 
show the size and intensity of the σ-hole increase as the size of the halogen increases from F to 
Cl to Br to I. 
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the polarizability of the halogen [F ≪≪≪≪  Cl < Br < I (Figure 4.1c)]. The XB can be further tuned 

according to the electron withdrawing ability of the compound to which the halogen is covalently 

bonded38,156, with aromatic groups accentuating XBs78. XB energies to anionic oxygen acceptors 

measured in a model DNA system are equal to or greater than that of a competing HB15,18,139. 

Furthermore, their geometries become more ideal (with shorter distances and more linear 

alignment to the X–C bond, ΘXB ) as their strength increases18. The structure−energy 

relationships of XBs to a neutral carbonyl oxygen acceptor in a protein43,51,86,155, however, have 

not been previously determined. 

To study the impact of XBs on protein stability, we started with T4 lysozyme, a classic 

model system for studying the effects of molecular interactions on protein structure and stability 

in crystals and in solution157,158. An iodinated phenylalanine had previously been incorporated 

into lysozyme to demonstrate the utility of noncanonical amino acids (ncAAs) to solve the phase 

problem in protein crystallography; however, this iodine was not positioned to form an XB159. 

For the study presented here, we have replaced tyrosines (Y) with a chemically modified 

phenylalanine (ZF) at two different sites: the first position (Y18) has the potential to interact with 

the protein backbone through HBs and/or XBs, while the second (Y88) serves as a control for the 

effects of each substituent at a noninteracting site (Figure 4.2). Comparing the structure and 

energy effects separately at the two positions reveals how the engineered XB interactions affect 

the structure and stability of the protein. 

� 4.3 MATERIALS AND METHODS 

Site directed mutagenesis and protein expression 

All T4 lysozyme constructs started with the gene of the pseudo-wild-type (WT*) protein160, 

with the DNA sequence encoding a six-His tag appended at the C-terminus to facilitate protein  
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Figure 4.2. Structures of halogenated and nonhalogenated T4 lysozyme constructs. (a) Cartoon 
representation of the T4 lysozyme structure. The aromatic amino acid residues selected for 
modifications in this study (tyrosine 18 and 88) are circled and labeled (Y18 and Y88, 
respectively). The side chain at Y18 makes specific intramolecular interactions with the carboxyl 
oxygen of Glu11 (red dashed line) and the amine of Gly30 (blue dashed line). (b−e) Crystal 
structures of halogenated and nonhalogenated T4 lysozyme constructs at Y18. In each panel, the 
structures of the modified ZF residues at position 18 are superimposed on the structure of WT* 
(green carbons). The modified constructs are colored (b) magenta for Y18F, (c) purple for 
Y18mF, (d) cyan for Y18brF, and (e) orange for Y18iF. The blue dashes indicate short distances 
(RN−H···Z) of each modified substituent (Z) to the HB donor of Gly30, while the red dashes 
indicate short distances (RZ···O) to the potential HB or XB acceptor oxygen of Glu11. 
  



 76

purification. The modified DNA sequences were inserted into the pBAD vector for expression in 

DH5α Escherichia coli. 

Expression vectors for WT* containing canonical amino acids were transformed into BL21 

(DE3) pLysS E. coli. Transformed cells were grown in 2xYT medium with the appropriate 

antibiotic (ampicillin and chloramphenicol) and incubated at 37 °C while being shaken at 250 

rpm until an OD600 of 0.4−0.6 was reached. The cells were induced with arabinose added directly 

to the cultures to a final concentration of 0.2% (w/v) and allowed to grow for an additional 3 h. 

Subsequently, the cells were harvested by centrifugation at 2.2K RCF; the supernatant was 

decanted, and the bacterial pellets were stored at − 80 ° C. 

WT* constructs that incorporate ncAAs were expressed in E. coli cells, as previously 

described161. Briefly, for the constructs with halogenated or methylated Phe, the codons for Y18 

or Y88 were replaced with an AMBER (TAG) codon. The expression vectors were 

cotransformed with pBAD (gene) and pDule2-pCNF (containing the orthogonal aminoacyl-

tRNA synthetase and tRNA pair) into DH10β E. coli. The cells were grown overnight in 5 mL of 

noninducing medium with the appropriate antibiotics. These cultures were used to inoculate 1 L 

of autoinduction medium without arabinose, and with the appropriate antibiotics at 37 ° C while 

being shaken at 250 rpm. At an OD600 of 0.8, ncAAs were added to the cultures to a final 

concentration of 1 mM. Once cells reached an OD600 of 3.0, arabinose was added to a final 

concentration of 0.1% (w/v) and cell growth continued for an additional 3 h. The cells were 

harvested by centrifugation at 2.2K RCF; the supernatant was decanted, and bacterial pellets 

were stored at − 80 ° C. 
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Protein purification 

Bacterial pellets were suspended in 35 mL of binding buffer [40 mM potassium phosphate 

(pH 7.4), 500 mM sodium chloride, 50 mM imidazole, and 0.02% (w/v) sodium azide] and 

thawed in a 37 °C water bath for 5 min, and all subsequent steps were performed at 4 °C. 

Thawed pellets were sonicated for 1.5 min and then centrifuged for 30 min at 35.3K RCF. The 

supernatant was decanted and directly loaded onto a HisTrap HP column on an A ̈KTA FPLC 

system, after which His-tagged protein was eluted with an increasing imidazole gradient with 

elution buffer [40 mM potassium phosphate (pH 7.4), 500 mM sodium chloride, 500 mM 

imidazole, and 0.02% (w/v) sodium azide]. Selected fractions were concentrated in an Amicon 

Ultra centrifugal concentrator (NMWL, 10 kDa) to 1 mL and then loaded onto a gravity-fed 

Sephadex G-50 fine column equilibrated in buffer specific for crystallization or differential 

scanning calorimetry (DSC) experiments [crystallization buffer consisting of 500 mM sodium 

chloride (pH 7.4), 50 mM sodium phosphate, and 0.02% (w/v) sodium azide; DSC buffer 23 

consisting of 20 mM glycine-HCl (pH 3.5), 80 mM NaCl, and 1 mM EDTA]. Selected fractions 

were combined and used for crystallization or DSC experiments.  

Protein crystallization 

Protein Crystallization. Combined fractions in crystallization buffer were concentrated to 

18−20 mg/mL. T4 lysozyme crystals were grown at 18 °C using the hanging drop vapor 

diffusion method with a 1:1 ratio of protein (18−20 mg/mL) to precipitant solution [2.0−2.4 M 

potassium phosphate (pH 6.6−7.5), 50 mM 2-hydroxyethyldisulfide, and 50 mM 2-

mercaptoethanol], as previously described138,162. Diffraction quality crystals grew in 1−7 days. 

Crystals were harvested using a cryo-loop, flash-frozen, and stored in liquid nitrogen until X-ray 

data were collected. 
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X-ray Data Collection and Structure Determination 

X-ray diffraction data were collected on crystals held in a cryogenic nitrogen stream (100 K), 

on the home source (Rigaku copper anode X-ray generator, 1.54 Å, Dectris Pilatus 200K 

detector) or Advanced Light Source (ALS) beamline 4.2.2 at Berkeley National Laboratory (1.00 

Å, Research Detectors Inc. complementary metal-oxide-semiconductor 8M detector). Diffraction 

data from the home source were reduced using Denzo/Scalepack141, or for data from the ALS 

beamline using d*TREK and CCP4 suite163. X-ray data were phased by molecular replacement, 

applying the atomic coordinates of WT*  [Protein Data Bank (PDB) entry 1L63]164 as the 

starting model, yielding initial models with Rwork values that ranged from 31.8 to 35.5% and Rfree 

values that ranged from 31.0 to 36.1%. The PHENIX suite of crystallographic software142 was 

used for subsequent refinement, which resulted in final structures with Rwork values that ranged 

from 16.0 to 20.3% and Rfree values that ranged from 19.6 to 24.7% (Tables 4.1−4.3). 

Differential Scanning Calorimetry  

Combined fractions of T4 lysozyme, after gel filtration purification, were diluted to a 

concentration of 0.1 mg/mL using DSC buffer and stored at −80 °C. A low pH was used to help 

promote reversible folding165. Melting curves were collected on a TA Instruments Nano DSC 

instrument under a constant pressure (3.0 atm) with all samples matched against identical buffers 

in the reference cell. Samples were equilibrated for 600 s, followed by melting data collected 

through heating cycles from 10 to 90 °C (at scan rates of 1 °C/min). Reversibility was confirmed 

for all constructs by performing a cooling scan from 90 to 10 °C (at scan rates of 0.5 °C/min) and 

a subsequent heating cycle. A minimum of five replicate experiments was conducted for each 

mutant. Melting data were analyzed using NanoAnalyze Data Analysis version 3.5.0 from TA 

Instruments to extract the melting temperatures (Tm) and enthalpies (ΔH°
Tm). 
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Table 4.1. Crystallographic parameters for non-halogenated T4 lysozyme constructs. All 
constructs crystallized in the space group P3221 (angles for the unit cells: α = β = 90.0°; γ 
=120.0°). All data were collected on the Rigaku home source, as described in the Materials and 
Methods section. 

Parameter WT* Y18F Y18mF 
Crystal  

Unit Cell Lengths a = b = 60.248 Å;  
c = 96.454 Å 

a = b = 59.763 Å;  
c = 95.119 Å 

a = b = 60.197 Å;  
c = 95.969 Å 

Data Collection 

Resolution (Å)a 21.98 - 1.49  
(1.54 - 1.49) 

29.88 - 1.46  
(1.51 - 1.46) 

18.76 - 1.50  
(1.55 - 1.50) 

#Total 
Reflections 

298,362 283,211 310,833 

#Unique 
Reflectionsa 

31,370 (3,322) 34,257 (3,097) 31,673 (2,670) 

Multiplicity 9.5 8.3 9.8 
Completenessa  92% (99%) 98% (85%) 96% (67%) 
Mean I/σ(I)a 28.4 (2.9) 31.0 (2.1) 23.1 (1.8) 

Rmerge
a 0.085 (0.592) 0.065 (0.594) 0.115 (0.757) 

Rmeas
a 0.089 (0.623) 0.069 (0.727) 0.121 (0.825) 

Structure Refinement 

Molecular Replacement: Initial Model Statistics 

Rwork 0.3418 0.3536 0.3384 
Rfree 0.3479 0.3438 0.3312 

Final Model 

PDB Code 5KHZ 5KI1 5KI2 
A.A. Residues 162 162 162 
Non-Solvent 

atoms 
1,374 1,313 1,383 

Solvent atoms 383 325 367 
Rwork

a 0.1755 (0.2164) 0.1800 (0.2919) 0.1879 (0.2760) 
Rfree

a 0.1962 (0.2537) 0.2067 (0.343) 0.2216 (0.3188) 
aValues in parentheses are for the highest resolution shell.  



 80

Table 4.2. Crystallographic parameters for halogenated T4 lysozyme construct and one control 
construct. All constructs crystallized in the space group P3221 (angles for the unit cells: α = β = 
90.0°; γ =120.0°).  

Parameter Y18brF Y18iF Y88F 
Crystal  

Unit Cell Lengths a = b = 59.589 Å;  
c = 95.150 Å 

a = b = 60.103 Å;  
c = 96.080 Å 

a = b = 60.368Å;  
c = 96.571Å 

Data Collection 

Data collect at: ALS Rigaku home source Rigaku home source 
Resolution (Å) a 34.98 - 1.65 

(1.71 - 1.65) 
32.03 - 1.63  
(1.69 - 1.63) 

22.99 – 1.493 
(1.546 – 1.493) 

#Total 
Reflections 

236,904 218,989 269,948 

#Unique 
Reflectionsa 

23,668 (2,084) 25,701 (2,478) 33,480 (3,216) 

Multiplicity 5.3 8.5 8.1 
Completenessa 98% (92%) 99% (100%) 99% (94%) 
Mean I/σ(I) a 4.6 (1.0) 31.0 (2.5) 42.2 (3.7) 

Rmerge
a 0.210 (0.759) 0.098 (0.792) 0.061 (0.339) 

Rmeas
a 0.233 (0.913) 0.103 (0.865) 0.064 (0.470) 

Structure Refinement 

Molecular Replacement: Initial Model Statistics 

Rwork 0.3344 0.3396 0.3374 
Rfree 0.3379 0.3494 0.3272 

Final Model 

PDB Code 5KI3 5KIO 5KIG 
A.A. Residues 162 162 162 
Non-Solvent 

atoms 
1,365 1,367 1,408 

Solvent atoms 248 264 343 
Rwork

a 0.2028 (0.3547) 0.1858 (0.2232) 0.1628 (0.2336) 
Rfree

a 0.2473 (0.3744) 0.2165 (0.2959) 0.1958 (0.2857) 
aValues in parentheses are for the highest resolution shell.  



 81

Table 4.3. Crystallographic parameters for control T4 lysozyme constructs (Res. 88). All 
constructs crystallized in the space group P3221 (angles for the unit cells: α = β = 90.0°; γ 
=120.0°).  

Parameter Y88mF Y88brF Y88iF 
Crystal  

Unit Cell Lengths a = b = 60.183 Å;  
c = 95.834 Å 

a = b = 60.013 Å;  
c = 95.945 Å 

a = b = 60.283 Å;  
c = 96.197 Å 

Data Collection 

Data collect at: Rigaku home source ALS Rigaku home source 
Resolution (Å)a 45.79 – 1.56  

(1.616 – 1.560) 
45.70 - 1.55  
(1.61 - 1.55) 

28.76 – 1.499 
(1.553 – 1.499) 

#Total 
Reflections 

361,463 163,055 431,722 

#Unique 
Reflections1 

29,011 (2836) 28,167 (2,068) 33,083 (3,250) 

Multiplicity 12.4 1.9 13.0 
Completenessa 99% (98%) 95% (71%) 100% (99%) 
Mean I/σ(I)a 43.6 (2.4) 19.1 (6.3) 70.4 (6.5) 

Rmerge
a 0.065 (0.783) 0.026 (0.310) 0.058 (0.341) 

Rmeas
a 0.068 (0.870) 0.037 (0.438) 0.060 (0.376) 

Structure Refinement 

Molecular Replacement: Initial Model Statistics 

Rwork 0.3430 0.3178 0.3546 
Rfree 0.3290 0.3095 0.3613 

Final Model 

PDB Code 5KII 5KI8 5KIM 
A.A. Residues 162 162 162 
Non-Solvent 

atoms 
1,393 1,366 1,436 

Solvent atoms 342 205 368 
Rwork

a 0.1999 (0.2893) 0.1757 (0.2757) 0.1604 (0.2117) 
Rfree

a 0.2244 (0.3198) 0.2101 (0.3147) 0.1844 (0.2326) 
aValues in parentheses are for the highest resolution shell. 
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Quantum Mechanical (QM) Calculations 

The atomic coordinates for the interacting residues (11, 18, and 30) were taken directly from 

the refined structures of each construct. Residues 11 and 30 were reduced to N-

methylacetamides, and residue 18 was reduced to Z-benzene to decrease the computational time  

 (Figure 4.3). QM energies were calculated using Gaussian 09 Rev.E.01145, with the 

Møller−Plesset second-order (MP2) calculations in cyclohexane as the solvent (D = 2, relative to 

a vacuum). Geometry optimization of the hydrogen atoms was performed with the Hartree−Fock 

method prior to the energy calculations. Polarizable basis sets including dispersion were applied 

to the calculations (aug-cc-PVTZ for WT*, Y18F, Y18mF, and Y18brF and aug-cc-PVTZ-PP166 

from EMSL Basis Set Exchange for Y18iF). Basis set superposition errors (BSSEs)147,167 were 

determined from a separate counterpoise gas phase calculation and directly summed into the 

calculated solvent phase energy. 

Turbidity Assay 

The activity of T4 lysozyme was monitored via a standard cell clearing assay168,169. 

Micrococcus lysodeikitcus bacteria was grown in 2xYT medium overnight and then diluted in 50 

mM sodium phosphate buffer until an OD450 of 1.0 was reached. Purified T4 lysozyme was 

added to the solution at room temperature to reach a final concentration of 0.1 mg/mL, and the 

absorbance change over time was measured. 

� 4.4 RESULTS AND DISCUSSION 

The constructs for engineering XBs into a model protein are based on the modified WT* 

form of T4 lysozyme, which has its two disulfide-forming Cys residues replaced and, thus, 

follows a classical two-state reversible folding/unfolding pathway158. To identify positions at 

which an optimal XB could be introduced into this system, we started by identifying all aromatic  
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Figure 4.3. Schematic of the molecular models used in the quantum mechanical calculations of 
HB/XB interactions at the Y18 site of T4 lysozyme constructs. The modified side chain at the 
Y18 position was modeled as a benzene molecule with a single substituent (Z = H, OH, CH3, Br, 
or I), while N-methylacetamides were used to model the HB donor from Gly30 and HB/XB 
acceptor of Glu11 (atomic coordinates were taken directly from the refined crystal structures of 
the interacting residues (11, 18, 30) of each Y18 construct). QM energies were calculated using 
Gaussian 09e170, with the Møller−Plesset second-order (MP2) calculations performed in 
cyclohexane. The positions of the hydrogen atoms were optimized prior to the energy 
calculations as their positions are dependent on Z. Interaction energies were calculated for the 
binary complexes of two residues (a) ([Glu11(O) + Y18(C–Z)] and (b) [Gly30(N–H) + Y18(C–
Z)]); for the ternary complex of three residues (c) ([Glu11(O) + Gly30(N–H) + Y18(C–Z)]); or 
for the quaternary complex with water W1 (d) ([Glu11(O) + Gly30(N–H) + Y18(C–Z) + (W1)]). 
The dashed lines in each panel indicate the interactions for which energies were calculated. 
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amino acids with side chains that are in the proximity of a peptide carbonyl oxygen. Tyrosine 18 

(Y18) was selected as the site to engineer XB interactions; the hydroxyl group of Y18 serves as 

an HB acceptor to a backbone amino group at Gly30 and is close but does not form a direct HB 

to the peptide oxygen of Glu11 (Figure 4.2a). Constructs of Y18 were engineered as Y18ZF, 

where ZF is a phenylalanine (F) residue with a Z substituent [hydrogen (F), bromine (brF), iodine 

(iF), or a methyl group (mF)]. We expected both of the halogenated ZF analogues to form 

stabilizing XBs with the Glu11 oxygen. The amphoteric nature of halogens predicts that the 

Y18brF and Y18iF constructs would also maintain the orthogonal HBs to Gly30.171 The Y18F 

mutant was designed as a control with no HB or XB capabilities, while methylated Y18mF was 

designed to mimic the size and hydrophobic properties of the halogens. 

Constructs at Y88 (Y88ZF) serve as controls to determine the nonspecific effects of each 

substituent on the structure and stability of the enzyme. Y88 is similar to Y18 in that the Tyr side 

chain is mostly buried within the protein, with very little exposure of the hydroxyl group at the 

solvent accessible surface. The hydroxyl group of Y88, however, is pointed toward the surface, 

and thus, the potential interacting (Z) substituent of Y88ZF constructs would be unable to form 

direct intramolecular interactions within the protein (Figure 4.2a). The effects of the engineered 

XB on the protein structure are characterized by comparing the single-crystal structures of the 

Y18ZF to Y88ZF constructs, while the effects on stability were determined by comparing the 

thermodynamics of melting by differential scanning calorimetry (DSC). 

Single-Crystal Structures 

The crystals from all of the Y18ZF to Y88ZF constructs were isomorphous and diffracted to 

sufficiently high resolution to provide highly accurate geometries (Tables 4.1-4.3 and Figure 

4.4). The single-crystal structures of Y18F and Y18 mF place the phenyl rings in nearly identical  
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Figure 4.4. Omit electron density maps from crystal structures of halogenated Y18XF T4 
lysozyme constructs. Fo-Fc electron densities of structures refined with Y18 modeled as a Gly 
residue, after simulated annealing, for the Y18F (a), methylated Y18mF (b), brominated Y18brF 
(c), and the iodinated Y18iF constructs (d) are rendered at the 2.5σ level of contours. 
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geometries relative to that of WT* (Figure 4.2b,c), suggesting that the local loop structure is not 

perturbed by interactions to Gly30 or a lack of interaction to Glu11. In contrast, the orientations 

of the aromatic rings in the Y18brF and Y18iF constructs are significantly perturbed, showing the 

halogens pulled toward the Glu11 oxygen (Figure 4.2d,e). The aromatic rings in all the control 

Y88ZF constructs superimpose nearly exactly on the WT* structure (Figure 4.5), indicating that 

the perturbations in Y18brF and Y18iF are directly associated with the interactions at that site. In 

Y18brF, the bromine is within van der Waals distance of the Glu11 oxygen [∼∼∼∼100% of the sum 

of the van der Waals radii, ΣRvdW (Table 4.4)], but at an angle of approach from the oxygen of 

Glu11 (ΘE11 = 142.7°) that is nonlinear relative to the C−Br bond. The geometries suggest that 

the bromine is not making an XB, or at least not a very strong one. The distortion is significantly 

greater, however, with Y18iF, where the I···O distance is within the optimal distance of ∼∼∼∼93% 

of ΣRvdW for XBs in proteins.38This cannot be a steric effect, because Y18mF remains 

unperturbed. The angle of approach of the Glu11 oxygen toward the I− C bond (ΘE11  = 150.0°) 

places it within the electropositive σ-hole for the iodine.38 Thus, the geometries indicate that an 

XB is formed in the Y18iF construct, with the iodine being more ideal and thus leading to a 

potentially stronger interaction than with the Y18brF construct. 

In addition to the interactions with Glu11, the Y18brF and Y18iF constructs maintain the HB 

to Gly30 seen in WT*, but the angles of approach of the Gly30 N− H group to each halogen 

(ΘG30  = 130.3°  and 125.9°  for Br and I, respectively) are significantly far from the optimum,6  

suggesting HBs weaker than those in WT* . 

Quantum mechanical (MP2) analyses of simple models for the molecular interactions with 

Glu11 and Gly30 (Table 4.5 and Figure 4.3) predict Y18iF to be the most stable ternary construct 

[EMP2 (ternary)]. The XB from the iodine to the Glu11 oxygen was the strongest interaction of any  
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Figure 4.5. Details of the crystal structures of halogenated and non-halogenated T4 lysozyme 
constructs at Y88 position. In each panel, the structures of the modified residues are 
superimposed on the structure of the WT* enzyme (carbons and backbone trace in green). The 
carbons and backbone traces of the modified constructs are colored as (a) Y88F magenta, (b) 
Y88mF purple, (c) Y88brF cyan, (d) Y88iF orange. 
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Table 4.4. Interaction geometries for T4 lysozyme constructs.  
  Glu11(O)  Gly30(N) 

Construct Substituent RO···Z (Å) ΣRvdW (%) ΘE11 (°)  RN–H ···Z (Å) ΣRvdW (%) ΘG30 (°) 
WT* OH 4.07 133.0 126.4  2.63 96.7 147.1 
Y18F H 5.38 175.2 142.1  3.21 108.1 155.0 

Y18mF CH3 4.03 148.2 133.4  2.55 106.3 156.0 
Y18brF Br 3.37 100.0 142.7  2.82 92.5 130.3 
Y18iF I 3.25 92.9 150.0  2.99 94.0 125.9 

 

aThe distances from the modified substituent (Z) to the potential HB or XB acceptor oxygen atom of Glu11 
(RO···Z) or the HB donor of Gly30 (RN−H···Z) identify HB or XB interactions, in terms of the percent of the 
sum of the standard van der Waals distances of the interacting atoms (%ΣRvdW). The approach of Z to the 
potential HB or XB acceptor oxygen atom of Glu11 (ΘE11) or to the HB donor of Gly30 (ΘG30) determines 
whether the interaction is linear. 
 

 
Table 4.5. Experimental and calculated interaction energies for T4 lysozyme constructs.a  

Construct Substituent ΔH°M ΔΔH°M (18-88) TM ΔTM (18-88) ΔEMP2 (ternary) ΔEMP2 (quaternary) 
 (Z) (kcal·mol-1) (kcal·mol-1) (°C) (°C) (kcal·mol-1) (kcal·mol-1) 

Nonhalogenated T4 Lysozyme Constructs 
WT*18 OH 130 ± 1 – 57.56 ± 0.02 – -3.4 -15.0 
WT*88 OH 130 ± 1 – 57.56 ± 0.02 – – – 
Y18F H 122.6 ± 0.4 7 ± 1 56.65 ± 0.04 -0.12 ± 0.05 -0.3 -13.5 
Y88F H 115 ± 1 – 56.77 ± 0.04 – – – 
Y18mF CH3 118.7 ± 0.5 2 ± 1 55.32 ± 0.03 -1.12 ± 0.05 -1.4 -9.8 
Y88mF CH3 116.4 ± 0.7 – 56.53 ± 0.04 – – – 

Halogenated T4 Lysozyme Constructs 
Y18brF Br 115 ± 1 1 ± 1 55.21 ± 0.02 0.27 ± 0.07 -2.4 – 
Y88brF Br 114 ± 1 – 54.94 ± 0.06 – – – 
Y18iF I 119 ± 1 6 ± 1 56.21 ± 0.07 0.79 ± 0.08 -3.5 -11.3 
Y88iF I 113 ± 1 – 55.43 ± 0.03 – – – 

 

aThe experimental melting enthalpies (ΔH°M) and melting temperatures (TM) are measured by DSC for each Y18 and Y88 construct. The differences in ΔH°M 
(ΔΔH°M (18-88)) and TM (ΔTM (18-88)) between the Y18 and Y88 constructs reflect the energies associated with specific interactions at the Y18 site relative to a 
non-interacting substitution at Y88. Errors are the standard deviations of mean for each measurement. The H/XB interaction energies for the ternary complex 
of the interacting residues of ZF18 to Glu11 and Gly30 (ΔEMP2 (E11 & G30)) were calculated by the Møller-Plesset 2 (MP2) method, applying the aug-cc-PVTZ 
basis set, with atomic coordinates for individual residues taken from the single crystal structures, in the absence of waters. The quaternary complex MP2 
interaction energies of W1 (atomic coordinates taken from the single crystal structures seen in Figure 4.6) with residues Y18ZF, Glu30, and Gly11 (ΔEMP2 (W1)) 
shows how the position of this water contributes additionally to the stabilization of each Y18 construct (ΔEMP2 W1 was not calculated for Y18brF construct, since 
W1 was not observed in this structure). See Figure 4.3 for more detail. 
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construct, as expected from the short O··· I distance. However, as predicted from the N− H··· I 

angle, the iodine is not as strong as an HB acceptor as the Tyr OH in WT* (Table 4.6). Indeed, 

WT* was predicted to have an overall energy for direct interactions that is nearly identical to that 

of Y18iF. Similarly, the weak interaction in Y18brF (a consequence of the less positive σ-hole 

and less ideal geometry of the bromine) is compensated by a stronger N− H··· Br interaction. 

Not surprisingly, the Y18mF construct shows only weak interactions with the amine group at this 

site. 

An MP2 analysis of Y18F indicates that there are essentially no stabilizing interactions from 

the Phe to either Glu11 or Gly30. Overall, the MP2 analyses predict the stability of the Y18 

constructs to decrease in the following order: Y18iF > WT* > Y18brF > Y18mF > Y18F. 

However, a water [W1 (Figure 4.2b)] fills in the cavity in the Y18F construct, bridging Glu11, 

and Gly30 through HBs. We see that the positioning of W1 is relatively conserved for all of the 

Y18 constructs, except for Y18brF, where it is absent, and Y18F, where it moves significantly 

compared to the other Y18 constructs (Figure 4.6). When W1 is taken into account, the MP2 

energies [EMP2 (quaternary)] show that the Y18F construct becomes very stabilizing, much more so 

than the other Y18 halogenated or methylated constructs (Table 4.5 and Table 4.7). Thus, the 

MP2 analysis that includes W1 predicts the stability decreases in the following order: WT* > 

Y18F > Y18iF ≈ Y18mF > Y18brF. 

Thermal Melting Studies To Assess Protein Stability 

DSC-determined melting temperatures (TM) and melting enthalpies (ΔH°
M) for each construct 

(Table 4.5) showed that any substitution made either at position Y18 or Y88 is destabilizing 

relative to WT*, reinforcing the general under- standing that it is very difficult to engineer a 

more stable T4 lysozyme.172 Indeed, the stability, as reflected by the TMs, decreases in the  
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Table 4.6. Quantum mechanical energies of the binary and ternary complexes.a  

Construct 
Substituent ΔEMP2 (binary, E11) ΔEMP2 (binary, G30) ΔEMP2 (ternary) 

(Z) (kcal·mol-1) (kcal·mol-1) (kcal·mol-1) 

WT* OH -1.0 -2.7 -3.4 

Y18F H -0.2 -0.1 -0.3 

Y18mF CH3 -0.6 -0.8 -1.4 

Y18brF Br -0.6 -2.4 -2.4 

Y18iF I -1.6 -1.9 -3.5 
 

aMP2 level quantum mechanical energies were calculated for noncovalent interactions from the Z-
substituent of Y18ZF constructs (where Z = H, OH, CH3, Br, or I) to the HB donor of Gly30 (ΔEMP2 

(binary, G30)), to the HB/XB acceptor of Glu11 (ΔEMP2 (binary, E11)), or to both (ΔEMP2 (ternary)). Quantum 
mechanical energies were calculated by MP2 method, applying the aug-cc-PVTZ basis set, in 
cyclohexane with BSSE corrections. Refer to Figure 4.2 and 4.3 for a reference of the schematic 
showing the geometries of the interacting residues. We note that the individual interaction energies 
(ΔEMP2 (binary, E11) + ΔEMP2 (binary, G30)) sums to approximately that calculated with both interaction groups 
in the model, indicating that the ternary model is fairly accurate, and can be segregated into its 
individual components.  
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Figure 4.6. Structure of water molecules in the halogenated and nonhalogenated T4 lysozyme 
constructs. (a−e) Details of the crystal structures of the halogenated and nonhalogenated T4 
lysozyme constructs around the Y18 residue. In each panel, the structures of the modified 
residues at position 18 are superimposed on the structure of WT* (a, green). The modified 
constructs are colored (b) magenta for Y18F, (c) purple for Y18mF, (d) cyan for Y18brF, and (e) 
orange for Y18iF. The nonbonded spheres are water molecules, which are colored with their 
associated structure. The waters in each modified construct are aligned and labeled relative to the 
closest corresponding water in WT*. The arrow in panel b shows the shift in the position of W1 
to accommodate the loss of the Tyr hydroxyl group in the Y18F construct. 
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Table 4.7. Quantum mechanical energies for HB interactions of water W1 to the oxygen (O) of 
Glu11, amide group (N–H) of Gly30, and/or the ring hydrogen (C–H) of Phe18 in the Y18F 
construct. 

Interacting Residue (Functional Group) 
ΔEMP2 

(kcal·mol-1) 
Glu11(O)···W1 

-6.0 
Gly30(N–H)···W1 

-4.6 
Phe18(C–H)···W1 

-1.3 
[Glu11(O) + Gly30(N–H)]···W1 

-11.5 
[Glu11(O) + Phe18(C–H)]···W1 

-6.1 
[Gly30(N–H) + Phe18(C–H)]···W1 

-7.4 
[Glu11(O) + Gly30(N–H) + Phe18(C–H)]···W1 -13.2 

 

aInteraction energies (∆EMP2) were calculated by MP2 method with the aug-cc-PVTZ basis set in cyclohexane, with 
BSSE corrections applied. ∆EMP2 values were calculated for W1 paired with the individual amino acids (atomic 
coordinates taken from the refined crystal structures), with pairs of amino acids ([Glu11(O) + Gly30(N–H)], 
[Glu11(O) + Phe18(C–H)], or [Gly30(N–H) + Phe18(C–H)]), or with all three amino acids as a quaternary complex 
([Glu11(O) + Gly30(N–H) + Phe18(C–H)]. The positions of the hydrogen atoms were optimized prior to the energy 
calculations. From this analysis, we see that the ∆EMP2 values for pairs that are approximately the sums of the 
energies to the respective individual amino acids, and the quaternary complex the sums of the individual residues, or 
the pairs plus the individual residues. Thus, the overall energies of interactions within the quaternary complex is 
accurate, and can be accurately segregated into the individual components. 
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following order: WT* > Y18F > Y18iF > Y18mF > Y18brF (which initially did not follow our 

predictions from the MP2 analysis until W1 was added to the calculations). Analyses of the 

control Y88ZF constructs indicate that all Z substitutions destabilize the protein, with 

halogenation being the most destabilizing. Comparing the thermodynamic parameters for the 

Y18ZF to Y88ZF sites [ΔTM (18−88) and ΔΔH°M (18−88)] allows us to gauge the effects of the XB and 

HB interactions at the Y18 site on the stability of the protein relative to the general substituent 

effects. In general, Z substitutions at both positions destabilize the protein, with nearly equivalent 

effects on the TM (lowering TM by an average of 1.7° and 1.6° for the Y18 Z F and Y88Z F 

constructs, respectively). However, there is a significant difference in the effect of the 

substituents on ΔΔH°M, with Y88ZF showing on average a loss of enthalpic stability of ∼ 4 

kcal/mol greater than that of the Y18ZF constructs, which can be attributed to the additional 

intramolecular interactions seen in the latter. 

Focusing on individual interactions, we see that the iodine as a substituent has a significant 

effect on both the differences in ΔTM (18−88) and ΔΔH°M (18−88), reflecting the contribution of the 

iodine XB to the enthalpic stabilization of the protein and the associated increase in the relative 

melting temperature. Thus, we can confidently state that the XB seen in the crystal structure also 

exists in solution. The Y18F shows the largest ΔΔH°M (18−88), which is in agreement with the 

MP2 analysis of the direct intramolecular interactions at this site when W1 is included. As 

previously suggested, W1 of Y18F shifts to compensate for the lost hydroxyl group in WT*  

(Figure 4.6b). Indeed, the MP2 analysis shows that W1 becomes energetically more favorable by 

∼∼∼∼ 2 kcal/mol when shifted from its WT* position to that of the Y18F construct, which may help 

to account for the increased ΔΔH°M (18−88) for this construct (Table 4.5). This enthalpic 

stabilization, however, does not translate into an increase in ΔTM (18−88), which could be 
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interpreted as the entropic penalty resulting from positioning this water into a structurally fixed 

position. 

Both Y18mF and Y18brF constructs show small effects on ΔΔH°M (18−88); however, the methyl 

substituent results in significant thermal destabilization, while the bromine only slightly 

increases the stability. Thus, the ΔΔH°M (18−88)values reflect the contributions of each substituent 

group on the molecular interactions at the Y18 site, as quantified by the MP2 analysis of the 

crystal structures. The data indicate that the iodine of Y18iF forms an XB that contributes 

significantly to the stability of the protein in solution, relative to iodination at position 88 that 

cannot form an XB. The effect of these interactions on the overall thermal stability of the protein, 

however, remains a more complex relationship. 

� 4.5 CONCLUSIONS 

We have for the first time designed and engineered an XB directly into a protein and, in the 

process, determined the geometry−energy relationships for the interaction in this biomolecular 

system. We had previously introduced XBs into a model DNA junction14 and showed that MP2 

analyses of the interaction from the geometries in the crystal structures correlated with DSC-

measured energies14,15,100, resulting in the development of a force field17 to model the interaction. 

The energetic contribution of XBs that we have now characterized in the T4 lysozyme helps us 

test this force field to more accurately model XBs in proteins, including direct applications in the 

design of new halogenated inhibitors against clinically important cellular targets38,125, by 

informing the development of new scoring functions for lead discovery173. 

In this study, we see a linear relationship between the MP2-calculated molecular interactions 

and the melting enthalpies [ΔΔH°M (18−88)] in T4 lysozyme (Figure 4.7), but in this case, we need 

to consider the solvent structure for the relationship to hold. This analysis shows that the  
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Figure 4.7. Molecular interactions at Y18 that rescue destabilizing substituents. The effect of 
replacing the hydroxyl group of Y88 in Y88ZF constructs, where Z is H (Y88F), methyl 
(Y88mF), bromine (Y88brF), or iodine (Y88iF), results in all cases in a destabilization of T4 
lysozyme, as reflected in the positive ΔH°M relative to that of native WT* (blue arrows). The 
losses in enthalpic stabilization are rescued by specific molecular interactions when the Z 
substituents are instead engineered at the Y18 site [maroon arrows, calculated as differences in 
ΔH°M for the Y88 vs. the equivalent Y18 construct, ΔΔH°M (18-88) (Table 4.5)]. The ΔΔH°M (18-88) 

enthalpies are linearly correlated with the total MP2 energies from HB interactions of the 
substituents with the carboxyl group of Glu11 (E11, red bars), N−H of Gly30 (G30, green bars), 
a bridging water (W1, blue bars), or an XB to E11 (violet bars) (R = 90.7%). The slope of 0.87 
of this linear relationship suggests that the general rescue of experimental enthalpic energies is 
modeled well by the interactions included in the MP2 calculations, but the y-intercept of 4.3 
kcal/mol indicates that additional destabilizing effects have not been included in the model. 
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hydroxyl group in WT* is too distant to form a direct HB to the Glu11 peptide oxygen, yet WT* 

remains overall more stable than any of the Y18ZF constructs. Again, we must consider the 

solvent structure. A detailed analysis of all the current crystal structures that maintain the 

tyrosine at the Y18 position (WT* and all the Y88 constructs) shows four very well-defined 

water molecules help bridge the Y18 hydroxyl to the Glu11 peptide oxygen (Figure 4.6a), one of 

which also connects Y18 to the side chain of Glu11 in the catalytic pocket of the enzyme 

(labeled W4). In all control Y88 constructs, this constellation of waters remains intact. In all 

cases in which Y18 is replaced, W4 remains intact, while W1 is either repositioned or displaced 

(Figure 4.6b−e). In the case of Y18F, W1 is repositioned to fill the void space left by the loss of 

the tyrosyl OH group, while in Y18mF and Y18iF, this water remains largely in place, suggesting 

that W1 is particularly important for conferring stability to the entire protein. Our MP2 

calculations show that W1 positioned at the Y18F position is ∼∼∼∼ 2 kcal/mol more favorable than 

its similar position in WT*, which explains why simply removing the hydroxyl group was not as 

detrimental to the protein’ s stability as expected. Thus, when we consider how to engineer a 

more stable protein, it is perhaps not surprising that we must pay attention to not only the direct 

interactions within the protein but also how they affect the solvent structure. 

The significance of the solvent in the structure also applies to the enzyme function. The 

hydroxyl group of Y18 sits near the substrate binding pocket and interacts with the side chain of 

the catalytic Glu11 residue through a bridging water (W4 in Figure 4.6). We see that the 

activities, as monitored by a turbidity assay168, of the substituted Y18 constructs are all 

significantly diminished when the OH of the Tyr residue is replaced with a halogen or non-

halogen substituent, even though W4 remains intact. The activities of constructs in which Y18 

and its constellation of waters remain intact are all at least 40% of that of WT* (Figure 4.8). In  
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Figure 4.8. Cell clearing activity vs melting enthalpy. The base-10 logarithm of the fractions of 
the enzymatic activities for each construct relative to that of WT* (log(factivity)) are plotted against 
their melting enthalpies (∆H°M), as determined from the DSC measured melting data (Table 4.5). 
Diamonds show the T4 lysozyme constructs that have been modified at the interacting Y18 
residue, while squares are the control Y88 constructs. WT* is shown as a circle. The log(factivity) 
are linearly correlated with 0H°M for the control Y88 constructs (R2=0.92). Error bars show 
standard deviations of the mean for ∆H°M measured for each construct. 
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contrast, the halogenated and methylated constructs, where this cluster of waters is disrupted, 

show diminished activities. The Y18F construct, however, retains significant activity even 

though it has lost the direct interactions to Glu11, suggesting that indeed W1 helps to 

compensate for the missing OH. 

The additive nature of noncovalent interactions suggests that introducing XBs into the system 

can result in a more thermally stable protein. Although we did not succeed in creating an overall 

more thermally stable T4 lysozyme, we have shown that XBs will help rescue effects that 

generally cause instability in a protein (Figure 4.7). All modifications, including halogenation, to 

Y88 were seen to destabilize the protein to a similar degree (∼∼∼∼15 kcal/mol enthalpy). By moving 

the halogen from this noninteracting position to Y18, we can restore much of the loss of thermal 

stability by the relatively strong iodine XB. The XB (with an MP2 energy of − 1.6 kcal/mol), 

however, was not in an ideal geometry, with a ΘXB of 150° (30° from the optimal linear angle of 

180°). Thus, there is significant room to improve the geometry and consequently to increase the 

stabilizing potential of the engineered XB in this and other proteins. As ncAAs, including 

halogenated residues, become more widely applied to engineer proteins with new functions, the 

XB can provide added stability to an otherwise destabilizing substitution. 

The application of XBs in protein engineering can be easily expanded beyond simply 

affecting protein stability. We can envision that XBs can be introduced at interfaces to engineer 

new protein−protein interactions, recognition sites, and even XB-dependent enzymatic catalysts. 

Organocatalysts have been designed in which XB donors help to accelerate halide 

abstraction174,175, nucleophilic substitution176, and aza-Diels−Alder reactions177. In addition, XBs 

are thought to facilitate iodination abstraction by iodothyronine deiodinase178. In such catalysts, 

the XB interaction helps to weaken the covalent bond to facilitate extraction of the leaving 
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group. The introduction of amino acids as XB donors can thus provide new catalytic capabilities 

that take advantage of their tunability and high directionality. 
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CHAPTER 5 
 

X-TINKER: AN ALGORITHM FOR THE RATIONAL DESIGN OF BIOLOGICAL 

HALOGEN BONDS 4 

 
 

� 5.1 SUMMARY 

The halogen bond (or X-bond) is a noncovalent interaction that is increasingly recognized as 

important in protein-ligand interactions, and is being engineered to control the structures of 

proteins and nucleic acids. In the past ten years, there have been significant efforts to 

characterize the structure-energy relationships for this interaction in macromolecules. Progress in 

the computational modeling of X-bonds in biological molecules, however, has lagged behind 

these experimental studies, with most molecular simulation algorithms, particularly molecular 

mechanics and dynamics (MM/MD) methods, not treating the X-bond at all. In the current study, 

we demonstrate how the force field for biological X-bonds (ffBXB), which we developed as a set 

of potential energy functions that describe the anisotropic charge distribution and shape 

properties of halogens participating in X-bonds, can be incorporated into a molecular simulation 

program. In doing so, we have generalized the ffBXB by reducing the number of variable 

parameters from the original seven to one for each halogen type, and show that this remaining 

charge variable can be accurately estimated for any new halogenated molecule, including 

inhibitors, through a routine Restricted Electrostatic Potential (RESP) calculation of atomic 

charges. As a proof of principle, we have parameterized this more reasonable ffBXB against the 

AMBER force field and incorporated it into TINKER. The resulting X-bond specific program 

                                                        
4 The work in this chapter is formatted for an ACS journal. A.K.R., P.S.H. and I planned computational studies 

and wrote the manuscript. I wrote the X-TINKER routines and tested them with input from A.K.R. and P.S.H.  

 
Formatted for Submission. 
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(X-TINKER) was tested against experimental studies on X-bonds incorporated into DNA 

junction and T4 lysozyme model systems. X-TINKER was shown to accurately predict the 

interaction energies and recapitulate geometries from x-ray structures of our experimental 

system. The approach used in creating X-TINKER is readily portable to other commonly used 

molecular simulation programs for biomolecular design, including those applied to the 

development of new inhibitors against therapeutic targets in medicinal chemistry.  

� 5.2 INTRODUCTION 

Halogen atoms are abundant substituents in pharmaceutical compounds, comprising 50% of 

the leading drugs currently on the market60. Historically, halogens have been utilized to improve 

absorption, distribution, metabolism, and excretion (ADME) properties like drug metabolism or 

bioavailability128,179. Recently, however, halogens have been shown to form a favorable non-

covalent interaction called the halogen bond or X-bond10, which increases affinity and specificity 

of inhibitors against their protein targets52–56. Over the past few decades, the strategies to develop 

new and more effective pharmaceuticals has undergone a fundamental shift from purely 

empirical trial and error to more rational approaches that utilize the power of molecular 

simulation180. In order to exploit the X-bond concept in rational design strategies, they must be 

properly modeled in molecular simulation programs—unfortunately, they currently are not. 

Here, we demonstrate how a set of potential energy functions developed to accurately model X-

bonds (the force field for biological X-bonds, or ffBXB) can be incorporated into the molecular 

simulation program TINKER, creating X-TINKER. This strategy for developing X-TINKER is 

generally applicable to creating variations of other simulation programs to properly model X-

bonds in biomolecular systems. 
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The application of computational rational design has found success in the development of 

biologics for catalysis181–183, biofuels 184, and drugs185. The variety of computational tools that 

have been used in biomolecular design include (in increasing order of computational complexity 

and cost) molecular docking, molecular mechanics (MM), molecular dynamics (MD), and 

quantum mechanics (QM) algorithms. Only QM, however, has the inherent capacity of properly 

treating the unique aspects of X-bonds. 

To understand the challenge in properly modeling for X-bonds in MM/MD molecular 

simulation programs, we must first understand the nature of the X-bond. Although there are 

several competing physical descriptions for the X-bond11,12, the most readily accessible 

description comes from the σ-hole theory34. In this model, a halogen that is covalently bonded to 

another atom will have its valence electron pulled into the σ-bond, creating a positive crown 

called a σ-hole that sits diametrically opposed to the σ-bond (Figure 5.1a). The roots of two 

unique physical properties of halogen substituents—anisotropic charge distribution and 

flattening of the van der Waals radius—can be rationalized by this σ-hole concept. Consequently, 

this positive σ-hole allows halogens to interact with a variety of electron-rich atoms, serving as 

X-bond acceptors (Figure 5.1b). The size of the σ-hole, which helps to define the strength of the 

X-bond, increases with the size and thus the polarizability of the halogen, as well as the electron-

withdrawing ability of the atom or molecule to which the halogen is bound (Figure 5.1c)43. With 

this relatively straightforward model in mind, we can now understand why properly modeling X-

bonds is a particular challenge to molecular simulation algorithms. 

With the acceptance that X-bonds affect folding and recognition, there have been several 

focused efforts to model the interaction in biomolecular systems. The standard force fields used 

in molecular mechanics (MM) and dynamics (MD) algorithms treat halogens as isotropic spheres  
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Figure 5.1. The X-bond. (a) Cartoon of the σ-hole theory. (b) Comparison of H- and X-
bond donors and acceptors in biological systems. H-bond donors are typically the 
electropositive hydrogens bonded to more electronegative atoms (O, N, or S) in proteins 
or nucleic acids. Contrarily, halogenated ligands comprised most X-bond donors, but they 
are also found on halogenated amino acids or nucleic acids that result from oxidative 
halogenation. Similarly, H- and X-bonds are primarily electrostatically driven 
interactions, thus, share a common set of electron-rich acceptors. The anisotropic charge 
distribution results in halogens being amphipathic, allowing them to serve simultaneously 
as X-bond donors and H-bond acceptors134. (c) Degree of electrostatic potential variation 
of the σ-hole across the halogens is shown from -10kcal/mol (red) to +10kcal/mol (blue). 
Adapted from Ford and Ho19 and Scholfield et al.186  
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with uniform charge distributions and shapes; thus, they cannot account for any aspect that 

makes the X-bond a stabilizing interaction. Quantum mechanics (QM) calculations can 

recapitulate the anisotropic properties of halogens and, consequently, accurately model X-bonds, 

but at computational costs that make them impractical for studying biopolymers. There have 

been some success seen with hybrid QM/MM approaches to help with inhibitor design60,187, but 

the most efforts have been to incorporate X-bonds into Class I force fields of classical MM/MD 

algorithms. One approach in this effort is the positive extra point (PEP) strategy, where a 

massless pseudoatom with a defined positive charge is placed at or near the surface of the 

halogen to mimic the anisotropic charge distribution associated with the σ-hole. This strategy has 

also seen some success in reproducing the geometries and relative energies of ligand interactions 

with proteins and, thus, have been incorporated into various Class I force fields, including 

AMBER85, CHARMM188, and OPLS3189. The drawbacks are that the PEP parameters for any 

new ligand to be studied must be defined through QM calculations and do not account for polar 

flattening, which affects the important contribution of dispersion in defining the angular 

dependence of X-bonds190. Recently, multipole (MTP) electrostatics has been implemented in 

CHARMM for X-bonding, which has resulted in a vast improvement in energies, but at a much 

greater computational cost with slowdowns of 8-10x depending on the number of MTP pairs 

involved191. With these challenges in mind, we had previously derived a set of potential energy 

functions that model the anisotropic electrostatic and shape properties of halogens by defining 

their charge and van der Waals radius as being angle dependent24. The resulting force field for 

biological X-bonds (ffBXB) could accurately reproduce the experimental energies for X-bonds 

determined from a set of studies on model DNA junctions18. The limitations of the approach, 

however, were that there were seven independent parameters (four shape and three charge 
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variables) in the ffBXB and, as with the PEP, parameterization of the model required high level 

QM calculations for each new halogenated compound.  

In this study, we have reparameterized the ffBXB so that there is now only a single 

independent charge variable that needs to be determined, and show that this variable can be 

readily assigned through a standard restrained electrostatic potential (RESP) calculation that is 

commonly used to parameterize any new compound prior to classical MM/MD simulations. As a 

proof of concept that the ffBXB can be readily integrated into MM/MD algorithms, we have 

incorporated the reparameterized force field into the open source program TINKER192, creating 

X-TINKER. Finally, we show that MM calculations with X-TINKER can recapitulate energies 

and geometries of X-bonds in DNA and now model protein systems.  

� 5.3 THEORY AND METHODS 

The X-bond Model for Class I MM/MD 

The ultimate goal of this paper is to properly model the halogen’s anisotropic charge 

distribution and non-spherical van der Waals surface using a classical force field without the 

need for additional parameterization. This model will then be implemented into Class I 

molecular dynamics making it important to first understand the functional form of these Class I 

potential energy equations (Eq. 5.1). As seen in Eq. 5.1, there are a series of equations describing 

the bonding terms (bonds, angles, dihedrals, and improper dihedrals) and nonbonded term 

(generally an electrostatic potential and a 6-12 Lennard-Jones potential).   
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We have previously modified the nonbonding portion of this functional form to 

accommodate X-bonding. In short, the modification for halogens has an additional cosine 

function in both the electrostatic term and the Lennard-Jones equations to describe the angular 

dependence found in X-bonding (Eq. 5.2). It is important to add that Class I MM/MD 

simulations are generally performed on pairwise interactions, for X-bonding this would be 

between the halogen (X) and its acceptor (A). However, the addition of the cosine function for 

X-bonding causes the interaction to be a three-body term. The three bodies will be: 1) the atom 

bound to the halogen (Y), 2) the halogen (X), and 3) its acceptor (A). 
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 (Eq. 5.2) 

Parameterization of Equation 5.2 using QM fitting 

 In standard programs, Class I MM/MD simulations (Eq. 5.1) require three non-bonding 

parameters as input for all new systems: 1) van der Waals radii of interaction atoms i and j (Ri 

and Rj), 2) minima of potential energy well of the van der Waals interaction (εi and εj), and 3) 
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electrostatic charges (Zi and Zj). Generally, the shape or van der Waals parameters are found 

using high-level QM, empirically, or both93. Charge parameters are found using either Restrained 

Electrostatic Potential (RESP193,194) charge model or AM1 with bond charge corrections (AM1-

BCC195) charge model.   

For the modified Eq. 5.2, apart from the standard parameters: RA,X, εA,X, and ZA,X, additional 

parameters need to be determined. Additional parameters were initially found using QM. For 

QM on all systems in this paper, second-order Møller-Plesset (MP2) calculations were used 

applying the aug-cc-PVTZ basis set for Cl, and Br; and aug-cc-PVTZ-PP for I146. Calculations 

were done using cyclohexane (D = 2) and a gas phaseBSSE correction147 was included. For QM 

fitting of Eq. 5.2, a selection of systems were used, varying the type of X-bond donors and 

acceptors). The geometries of these systems were defined by varying the angle of approach (Θ1) 

from 90° to 180°, and varying the interacting distances from 70% to 100% of the standard radius 

of the various halogens to the acceptors. These calculated energies generated a QM energy 

landscape for each system that could be used to fit Eq. 5.2. This was done using a non-linear 

least squares fit floating the parameters needed.  

Energy minimization simulations 

MM energy minimization simulations were carried out using TINKER192 and X-TINKER, 

which contains 3 extra subroutines written in Fortran 95 (Supplemental). The small molecule 

mimic of the T4 lysozyme system (described in more detail below) was energy minimized in a 

vacuum using steepest descent to a final energy gradient RMS of 0.05 kcal/molÅ. The overall T4 

lysozyme systems were prepared using AmberTools16196 in a rectangular TIP3P water box with 

Amber99sb parameters197 using the starting structures from Scholfield et al186. The systems were 

minimized using a multistep protocol using TINKER or X-TINKER. This protocol first 
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minimized the solvent using steepest descent to a final energy gradient RMS value of 0.8 kcal 

mol-1 Å-1 with the protein inactive. The macromolecule was then minimized to a final energy 

gradient RMS value of 0.6 kcal mol-1 Å-1. 

� 5.4 RESULTS AND DISCUSSION 

Reduced and General ffBXB Parameters  

We had previously fully parameterized the seven variables of the ffBXB (Eq. 5.2, Table 5.1) 

for Cl, Br, and I in terms of the experimental geometries and energies of X-bonds seen in a DNA 

junction system (Figure 5.2)17,18. The X-bonds seen in this DNA system were modeled as the 

interactions in a complex formed between a halogenated uracil base (XU) and an anionic 

hypophosphite X-bond acceptor (O2PH2
-1, mimicking the phosphate of the DNA backbone) 

(Figure 5.2a inset). This minimal model allowed an accurate energy landscape to be derived from 

high level QM calculations, with the X-bond donors and acceptors sampling a broad range of 

distances and angles of approach. The ffBXB parameters were then globally fit to reproduce the 

QM landscape. The resulting parameterized ffBXB accurately reproduced the energies of the 

DNA junction system, in terms of the experimental energies associated with the X-bond 

geometries from the crystal structures, thereby validating both the minimal XU···O2PH2
-1 as a 

model for the DNA system and the ffBXB approach. Although accurate, the seven independent 

parameters of the ffBXB made it unwieldy. In addition, the parameters were specific for a DNA 

system, although most biological X-bonds involve ligands bound in a protein environment. Thus, 

our first goal for the current study was to reduce the number of independent variables in Eq. 5.2, 

and, in the process, define parameters that are general for both proteins and nucleic acids.  

We started with the shape parameters that defined the average van der Waals radius (<RX>), 

the perturbation to that radius due to polar flattening (∆RX), and the contribution of the halogen 
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Table 5.1: Parameters from Equation 5.2 fit to QM values. a 

  Shape Parameters    Electrostatic Parameters    Fit Correlation 

   <Rvdw> (Å) ΔR (Å) εx (kcal/mol) ν   n A B   R2 

Fully Parameterized 

Chlorine 1.698 ± 0.010 0.1487 ± 0.0010 0.107 ± 0.002 2.39 ± 0.05 2.4 ± 0.3 0.17 ± 0.05 -0.08 ± 0.02 0.9995 

Bromine 1.831 ± 0.015 0.160 ± 0.018 0.11 ± 0.04 2.41 ± 0.05 2.66 ± 0.19 0.19 ± 0.04 0.18 ± 0.04 0.9998 

Iodine 1.933 ± 0.014 0.185 ± 0.005 0.087 ± 0.008 2.21 ± 0.04 
 

2.28 ± 0.13 0.40 ± 0.04 0.31 ± 0.05 
 

0.9997 

Parameters for MM/MD 

Chlorine 1.687 ± 0.012 0.15 0.107 ± 0.002 2 2 0.12 ± 0.007 -0.062 ± 0.006 0.9986 

Bromine 1.798 ± 0.016 0.16 0.11 ± 0.04 2 2 0.113 ± 0.008 0.057 ± 0.010 0.9987 

Iodine 1.918 ± 0.011 0.19 0.087 ± 0.008 2   2 0.330 ± 0.011 0.233 ± 0.010   0.9997 
 

aThe fully parameterized fit was found by allowing all parameters in Eq. 5.2 to float. The parameters for MM/MD simulations were found by fixing n, ∆R, and ν . 
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to the van der Waals energy (εx). Since these parameters were determined explicitly by probing 

the molecular halogens Cl2, Br2, or I2 with a small nonpolarizable helium atom, their values for 

each halogen type were already defined as fixed and, thus, Eq. 5.2 of the ffBXB really only has 

one variable shape parameter, ν. The parameter ν reflects the position of the most 

electronegative waist of a halogen substituent, which affects where an H-bond donor, for 

example will approach the atom. The non-integer value of ν (>2) derived for the fully 

parameterized ffBXB indicated that the pxy orbitals were slightly tipped away from 90° relative to 

the σ-bond. However, these were deemed to be details that would not dramatically affect the X-

bonding potential of a halogen substituent and, therefore, the value of ν was fixed to an integer 

value of 2, defining the position of the electronegative annulus explicitly to be perpendicular to 

the σ-hole. In doing so, we have also greatly simplified the derivatives of the potential energy 

functions in Eq. 5.2, as will be described in a latter section. 

We next tackled the parameters that define the charge distribution across the atomic surface 

of the halogen. The parameter n, which reflects the power of the distance dependence and thus 

the form of the electrostatic interaction, was seen from the fully parameterized ffBXB to fall 

between 2 and 3. Again, we fixed n to be the integer 2, which explicitly defines the X-bond as a 

charge-dipole type interaction. 

The A parameter defines the amplitude difference in charge between the positive σ-hole and 

negative waist, while B defines the overall charge of a halogen substituent. Together, they define 

the angle at which the halogen charge is neutral. We expect both A and B to be dependent on the 

inductive effects of the atom or molecule that the halogen is covalently bonded to, with an 

electron withdrawing group enhancing and electron donating group diminishing the σ-hole and, 

consequently, the X-bonding potential of the halogen. We thus constructed a set of halogenated
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Figure 5.2. Experimental and Computational Setup. (a) The previously characterized 
experimental DNA junction system15 is a four-stranded stacked-X DNA junction. The small 
molecule mimic of the stabilizing X-bond, O2PH2

-1··· XU, that was used in computational studies 
is depicted in the inset. (b) The previously solved T4 Lysozyme structure186 is shown with its 
small molecule mimic, N-methylacetamide (NMA)··· Br-benzene, shown in the inset. Adapted 
from Scholfield et al.18  
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benzene compounds, in which various substituents (their electron donating to electron 

withdrawing potential defined by Hammett constants, Table 5.2) were placed para to the 

halogen, and calculated the energies of interactions (Eint) to the anionic O2PH2
-1 and, now also to 

N-methylacetimide (NMA) as a neutral X-bond acceptor. The distances and angles of approach 

between the X-bond donors and acceptors were varied to develop a QM energy landscape and, as 

before, we used this landscape to parameterize the ffBXB. In this case, however, we kept the 

values for all of the shape parameters and n fixed, as described above, fitting only A and B. The 

results showed that for each halogen type, B became more positive, as expected, para-substituent 

of the donor became more electron withdrawing. However, A was fairly consistent within each 

halogen type (Table 5.2). These results suggest that the amplitude difference between positive 

and negative regions of the halogen are defined by the polarizability of the halogen (which in 

turn is defined by its atomic size), while the overall charge and the neutral point angle is variable 

and defined by extent to which the pz orbital of the halogen is depopulated. We could, therefore, 

fix A to an average value for each halogen type, as determined from the QM landscape, now 

leaving B as the only parameter of the ffBXB as being variable. 

With this set of six fixed and one variable parameters, we show that the ffBXB can accurately 

recapitulate the QM energy landscape. As seen in Table 5.1 and Figure 5.3, the reparameterized 

Eq. 5.2 fits the QM calculated Eint landscape very well, particularly at θ1 from 120° to 180°. The 

primary deviations, are at 90°, where the ffBXB predicts a more positive Eint than the QM 

calculation, as expected when ν was fixed to 2. However, deviations at this angle of approach 

should not affect the ability of the ffBXB to predict the X-bonding potential of each halogen. 

Furthermore, by constructing the QM energy landscape with both the O2PH2
-1 and neutral NMA 

acceptors, we have parameterized the ffBXB to be applicable to both nucleic acids and proteins. 
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Table 5.2: A Parameter for each systema 

     
A Parameter 

Y Acceptor σp  
Chlorine Bromine Iodine 

CN NMA 0.66  0.114 0.194 0.403 

CN hypophosphite 0.66  0.124 0.180 0.325 

Cl hypophosphite 0.23  0.104 0.177 0.302 

F hypophosphite 0.23  0.127 0.190 0.298 

H NMA 0  0.111 0.198 0.317 

H hypophosphite 0  0.129 0.187 0.286 

CH3 hypophosphite -0.17  0.115 0.192 0.314 

OH hypophosphite -0.37  0.115 0.192 0.337 

NH2  NMA -0.66  0.116 0.208 0.402 

NH2  hypophosphite -0.66  0.119 0.197 0.287 

  Average 0.117±0.008 0.191±0.009 0.33±0.04 
 

a Y represents the para-substituent relative to the halogen. σp denotes the Hammet-sigma constant, where the greater 
the value, the more electron-withdrawing. 
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Figure 5.3. Results of QM energy landscape with ffBXB fit for (a) Cl, (b) Br, and (c) I. QM 
calculated interaction energies (∆Eint) were performed with the DNA junction mimic (XU… 
O2PH2

-1, Figure 5.2a) at various distances (data points) and, for each distance, at angles of 
approach (Θ1) from 90˚ to 180˚. The curves represent the values calculated using the 
parameterized ffBXB with fixed parameters for MM/MD implementation (Table 5.1). 
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Non-QM fitting of the ffBXB parameter 

The ffBXB has now become less unwieldy, but still requires high-level QM calculations to 

determine the single remaining variable parameter (B). At this point, we asked whether B could 

be determined through a non-QM calculation. For classical Class I MM/MD simulations, an 

RESP or AM1-BCC protocol is used to assign the isotropic charge of atoms of a new compound 

or ligand. Since B reflects the overall charge of a halogen, it was possible that this parameter 

could be determined from either of these protocols. The RESP charges for the atoms of the 

halogenated benzene X-bond donors with various electron donating or withdrawing para-

substituents were calculated and compared to the B parameters determined from the QM Eint. We 

saw that the RESP assigned charges were linearly related to the QM determined values for B 

(Figure 5.4).  

Integration of the ffBXB into TINKER  

With the ffBXB reduced to a single variable parameter without significantly affecting its 

ability to model the QM energy landscape of an X-bond in either a DNA or protein system, we 

can now integrate the force field into an MM/MD algorithm. As a proof of concept, we elected to 

work here with the open source MM/MD program TINKER, creating an X-bonding variant we 

call X-TINKER. Our goal was to develop an integration approach that would require minimal 

modification to the main program, so that the methodology could be generally portable to other 

programs. The integration methodology was constructed around three distinct routines: 1) 

identification of a halogen and its covalently bonded atoms, as required to define the angular 

components of the ffBXB equations; 2) assignment of ffBXB parameters to the halogen; and 3) 

energy and force calculations. 
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The first routine identifies and keeps track of any halogen that is present in the molecular 

system, along with atoms that are 1, 2, or 3 covalent bonds from that halogen. A logical is then 

set to “TRUE” for X-bonding, triggering the program to execute the next two X-bond only 

routines. The next routine assigns values to the ffBXB shape and charge parameters that are 

specific to the type of halogen being considered. Finally, the list of atoms and the assigned 

parameters are passed on to the final routine to calculate the potential energy and force between 

the halogen and any potential X-bond acceptor.  

The next step is to calculate the energy of each halogen with any potential X-bonding 

acceptor. This routine starts by taking any atom that X-TINKER identified as interacting with 

the halogen atom, then subtracting out the nonbonding energy calculated by the main TINKER 

program for the interacting pair. Although this step slightly increases the computational costs (in 

that X-TINKER first calculates the energy, then subtracts it out), this approach does not require 

modification to the main program. We elected to sacrifice some speed for more general 

adaptability of the methodology. With the standard noncovalent interaction energy subtracted 

out, the routine then proceeds to calculate the potential X-bonding energy of the halogen to this 

same neighboring atom. The distance between the X-bonding pair (rX-A) would have already been 

calculated by the main program. The X-bond routine calculates the angle of approach of the 

acceptor to the halogen (A···X—B, or θ1). Notice that by assigning the ffBXB parameter ν with 

the integer value of 2, the cosine of this angle is simply calculated by the Cartesian dot product 

in Eq. 5.3. Eq. 5.2 is then applied using the rX-A distance and θ1 angle to calculate the X-bonding 

energy, which is then passed back to the TINKER main program to incorporate into the overall 

energy of the system. 
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Figure 5.4. B parameter vs RESP charge of halogen. QM calculated energies of various 
halogenated benzenes (color in legend) interacting with either a O2PH2

-1 (squares) or N-
methylacetamide (diamonds) were calculated for various distances and angles then fit using 
the ffBXB with all parameters fixed except A and B (Table 5.1). The B parameter was then 
plotted against the halogen’s overall charge calculated using the RESP charge model.  
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To test the accuracy of the energy calculations in this subroutine, the same XU···O2PH2
-1 

model complex used for the QM of the DNA junction (Figure 5.2 inset) was run through the 

energy routine of X-TINKER. The system was fixed to the X-ray crystallography geometries in 

order to compare the energies calculated by X-TINKER to the experimentally determined 

energies. As seen in Figure 5.5, energies found using Eq. 5.2 implemented into TINKER agree 

very well with experimental energies, with an R2 of 0.960 and a slope ≈ 1.  

Once X-TINKER was shown to successfully calculate X-bonding energies, it needs to be 

able to calculate the force associated with the halogen and its nonbonded pair in order to allow 

energy minimization and/or MD simulations. The force equations were derived as the first 

derivatives of the Lennard-Jones potential (VLJ) and separately the electrostatic potential (VElec) 

energy functions of Eq. 5.2 in respect to the x-, y-, and z-directions. These derivatives are shown 

in in Eqs. 5.4 and 5.5 in respect to the x-direction for simplicity, but are repeated for the y- and z-

directions. Eqs. 5.4 and 5.5 were tested by comparing the force calculated from these derivatives 

to the finite difference of the potential energies (final minus initial coordinates) XU···O2PH2
-1 

model as the positions of the molecular components were perturbed along the x-, y-, or z-

directions. As seen in Table 5.3, the finite differences (numerical derivative) matched exactly to 

the derivative calculated (analytical derivative) using Eqs. 5.4 and 5.5 in TINKER.  

After confirming the successful implementation of the energy and force calculations, X-

TINKER was further validated using a system that was outside of the DNA junction system or 

the trained set—in this case, the X-bonds engineered into T4 lysozyme (T4L, Figure 5.2b). In 

this T4L test system, a bromo- or iodophenylalanine replaced the tyrosine at the Y18 position, to 

create the constructs BrF18-T4L or IF18-T4L.186 The crystal structure of  BrF18-T4L showed a 
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Figure 5.5. Experimental energies vs. theoretical energies from X-TINKER of DNA junction 
system. Energies found by either crystallographic competition assays (open squares) or 
differential scanning calorimetry (closed squares)31 are compared to theoretical energies found 
by X-TINKER. Geometries were taken from crystal structures in Carter et al.33, where either 
one halogen (X1J) or two halogens (X2J) were competed against 2 H-bonds. 
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Table 5.3: Analytical vs Numerical Derivatives Calculated with X-
TINKERa 

Derivative Atom dE/dX dE/dY dE/dZ 
Analytical Y 0.6568 -2.7566 -0.1392 
Numerical Y 0.6568 -2.7566 -0.1392 
Analytical X 0.2946 2.2215 0.6227 
Numerical X 0.2946 2.2215 0.6227 
Analytical A 0.1322 -1.7527 -0.0362 
Numerical A 0.1322 -1.7527 -0.0362 

 

aDerivatives were calculated on the small molecule mimic of NMA··· Br-
benzene and the 3 interacting atoms are shown: the halogen (X), the atom 
covalently bound to the halogen (Y), and the acceptor (A). 
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long weak Br···O X-bond interaction to the carbonyl oxygen of the protein backbone (Eint = -0.6 

kcal/mol), while the IF18-T4L showed a shorter and stronger I···O X-bond (Eint = -1.6 kcal/mol).  

We applied TINKER and X-TINKER to perform energy minimization simulations on the X-ray 

structures of each of the T4L construct (the WT* and the halogenated variants Y18brF and 

Y18iF), with a convergence to a final RMS for the energy gradient of 0.6 kcal/mol Å. It was 

clear that both programs kept the structures of the protein essentially identical to those of their 

respective X-ray structures. These results reflect the very rigid conformational constraint 

imposed on this particular site by the protein. The overall energies, however, were seen to be 

much more favorable from X-TINKER as compared to TINKER for the halogenate structures 

(Figure 5.6), reflecting the contribution of the X-bonding potential. Finally, the T4L simulations  

serve as important tests for how the patch affects the timing of the TINKER program. Using one 

CPU, X-TINKER only slows TINKER down by ~10%, representing a reasonable trade-off 

between speed and accuracy. 

We further modeled the Br···O X-bonding interaction as a complex between a bromobenzene 

(mimicking the BrF18 side chain as the X-bond donor) and NMA (mimicking the backbone 

carbonyl oxygen acceptor) in a system that was entirely unconstrained by the protein. Energy 

minimizations were performed using both TINKER and X-TINKER on this model interacting 
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Figure 5.6. TINKER vs. X-TINKER energy minimization of T4L system. The X-ray structure 
(cyan) of the Y18-T4L (a) BrF18-T4L (b) the iF18-T4L (c) was energy minimized using either 
TINKER (magenta) for all constructs and X-TINKER (green) for the halogenated constructs. 
The entire structure energies for the minimizations can be found in the table. 
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pair, with the resulting structures compared to that of the X-ray structure (Figure 5.7). The more 

stabilizing energies of ~ 6 kcal/mol from the TINKER minimization compared to the X-TINKER 

minimization can possibly be attributed to interactions from π-systems of the NMA and the Br-

benzene. It is clear, however, from these simulations that the parent TINKER program in the 

absence of the X-bonding potential and the protein environment could not maintain the close 

Br···O interaction, placing the donor parallel with the acceptor. X-TINKER, however, faithfully 

recapitulated the X-bonding interaction seen in the crystal structure, even in the absence of the 

remainder of the protein.  

� 5.5 CONCLUSIONS 

X-bonding has become an increasingly important area of research, which is beginning to be used 

in biological applications including drug design and protein engineering. With the constant 

improvements in computational power over the past decades, medicinal chemists and 

biomolecular engineers have relied increasingly on many computational approaches for the 

rational design of new compounds and materials. One of the most powerful of such approaches 

has been the development of MM/MD simulations, which have been successfully applied to 

modeling macromolecular conformations, along with their binding to various ligands. Still, 

standard MM/MD programs are challenged by atomic systems, such as halogens, that do not 

behave isotropically.  

There have been various approaches to incorporate X-bonding into MM/MD simulations. 

The PEP and MTP approaches have made great leaps towards more accurately capturing the 

electrostatic component of the σ-hole model for X-bonding. Each method, however, comes with 

its own set of disadvantages. While the PEP approach provides a very fast computational fix, it  
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Method rBr…O (Å) Θ1 (deg) 

E minimized 
(kcal/mol) 

X-ray Structure 3.37 142.7 – 

TINKER minimized 5.29 52.8 -25.35 

X-TINKER minimized 2.96 167.2 -19.48 
 

 
Figure 5.7. TINKER vs. X-TINKER energy minimization of T4L mimic. The X-ray structure 
(cyan) of the X-bond interaction of the BrF18-T4L was energy minimized using either TINKER 
(magenta) or X-TINKER (green). The resulting X-bonding geometries and overall minimized 
structures energies can be found in the table below.   
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comes at the cost of accuracy. MTP, on the other hand, more accurately describes the halogen’s 

electratic properties, but at a high computational cost. 

In this paper, we offer an alternative to implementation of X-bonding, that of the ffBXB into 

an MM/MD program. The ffBXB was derived in an attempt to model X-bonds based on the 

physical properties of halogen substituents—the anisotropic charge distribution and polar 

flattening associated with the σ-hole model. We have now reparameterized the potential energy 

functions of the ffBXB to become less unwieldy, reducing the seven independent variables to a 

single one and showing that this remaining variable can be readily obtained through a standard 

RESP calculation for any new or unknown compound. This optimized force field was 

implemented into the open source MM/MD program TINKER to create X-TINKER, which was 

shown to be capable of recapitulating the geometries and energies of X-bonds seen in both model 

DNA junctions and protein systems in the presence and absence of their respective 

macromolecular backbone. These initial energy minimization simulations offer a good proof of 

concept that the ffBXB can be successfully implemented into an MM/MD program. This 

implementation of X-TINKER is applicable to a large variety of X-bond donors without the need 

for costly QM calculations. Finally, since only a minor alternation needs to be made to the 

original source code, our approach to developing X-TINKER, including the functional 

subroutines, is readily portable to other more widely used MM/MD simulation programs.  

We have shown here that the ffBXB, as implemented into X-TINKER, accurately captures 

the energies of well-defined systems. We have not, at this point, determined how well it can 

model the solvent interactions in and around halogen atoms, nor how the entropy of the overall 

macromolecular system is modeled. Although this seems intuitively simple, halogens are 

hydrophobic, making it different from the H-bond. The proper modeling of the desolvation of the 
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halogen atom will be vital to model the overall entropy of the system. In order to test these 

aspects of the force field, we would need to perform full MD simulations on complex 

biomolecular systems, but such a test would be best performed using an implementation in an 

MM/MD approach, such as free energy perturbation, that is better suited to treating all aspects of 

biomolecular dynamics.  

Even with some of these questions, X-TINKER offers a unique MM/MD algorithm that for 

the first time accurately models the halogens electronic structure in many complex systems 

without significant computational costs, when comparing the original with the altered code. This 

program is now one additional computational tool that can be applied to rational design of 

halogenated compounds for both medicinal chemistry and biomolecular engineering 

applications.  
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CHAPTER 6 
 

EXAMINING THE FEASIBILITY OF USING FREE ENERGY PERTURBATION 

(FEP+) IN PREDICTING PROTEIN STABILITY 5 

 
 

� 6.1 SUMMARY 

The importance of engineering protein stability is well known and has the potential to impact 

many fields ranging from pharmaceuticals to food sciences. Engineering proteins can be both a 

time consuming and expensive experimental process. The use of computation is a potential 

solution to mitigating some of the time and expenses required to engineer a protein. This process 

has been previously hindered by inaccurate force fields or energy equations and slow 

computational processors, however improved software and hardware have made this goal much 

more attainable. Here we find that Schrödinger’s new FEP+, although still imperfect, proves 

more successful in predicting protein stability than other simpler methods of investigation. This 

increased accuracy comes at a cost of computational time and resources when compared to 

simpler methods. This work adds to the initial testing of FEP+ by offering options for more 

accurately predicting protein stability in an efficient manner.  

� 6.2 INTRODUCTION 

Engineering protein stability is an ever-expanding field having direct applications that range 

from designing better catalysts for food sciences, chemical assays or biofuels181,183,198 to studying 

structure and function of biological targets199. Moreover, some success has been found in 

creating more stable proteins for X-ray crystallography efforts using protein mutation200, 

                                                        
5 The work in this chapter was published as a result of my internship in 2016 with Merck & Co. K.B. and I 

planned computational studies and wrote the manuscript. I performed all FEP+ calculations.  

 
Ford, M. C.; Babaoglu, K. Examining the Feasibility of Using Free Energy Perturbation (FEP+) in Predicting 
Protein Stability. Journal of Chemical Information & Modeling. 2017. 



 128

particularly in challenging targets like G-protein-coupled receptors201,202. Engineering stable 

proteins generally starts by using random mutagenesis to generate large libraries, screening those 

libraries, and finally purifying and testing for stabilizing mutants203. However, depending on the 

resources and screens available this can take anywhere from weeks to a year. The ability to 

computationally predict mutations that have the highest chance of being stabilizing would aid 

tremendously in cutting down on these significant burdens on time and resources. 

There are many computational methodologies that can be applied to predicting protein 

stability such as molecular mechanics (MM) and molecular dynamics (MD)204,205. The most 

demanding yet potentially accurate approach available is using free energy calculations, such as 

free energy perturbation (FEP) or thermodynamic integration (TI). Each method employs 

different techniques that transform the wild-type amino acid to the mutant amino acid via 

chemical or alchemical transformation. The transformation is generally split into a series of non-

physical intermediate states and an ensemble is generated at each state by Monte-Carlo (MC) or 

MD techniques206. Finally, the resulting ΔG is calculated by employing various statistical 

mechanics methods. FEP methodology has been around for many years207–210 and has had some 

early success in predicting protein stability in T4 lysozyme211,212. In recent years, free energy 

calculations have gained much interest in protein-ligand binding for drug design applications213 

and protein stability calculations214. In particular, Schrödinger has improved upon their existing 

FEP protocol – creating FEP+, which has had success predicting binding affinities for protein-

ligand interactions19,215. 

The main limitations to FEP historically have been poorly performing force fields, errors in 

the potential energy model, inadequate sampling and the high cost of computational time to run 

the calculations.  FEP+ now uses an improved force field, enhanced sampling via replica-
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exchange with solute tempering (REST)216,217, and faster calculations using GPU hardware. In a 

recent publication on protein-ligand binding prediction using FEP+19, the prior implementation 

of OPLS2.1 was found to be an improvement over both OPLS2005218 and MMFF219 with better 

modeling of noncovalent interactions and the inclusion of additional covalent parameters. The 

current force field OPLS3 includes off-point charges for halogen bonding and nitrogen lone pairs 

and incorporates better parameters for peptide dihedrals189. The REST method was shown to be a 

more efficient sampling technique to its predecessor, replica exchange method (REM) and 

demonstrated an improvement in simulation convergence216. Lastly, the GPU implementation of 

the code showed a significant speed-up over CPUs19. Now, with a new force field, faster 

processing, and enhanced sampling, FEP+ is a much more useful program for many applications.  

FEP+ has shown initial success in protein-ligand studies and is gaining traction in the 

pharmaceutical industry19,220,221. In light of some of these successes, eleven pharmaceutical 

companies met to evaluate how ligand based FEP methods were fitting scientific needs, 

especially those pertinent to drug design222.  

Here, however, we present testing of the default FEP+ in the context of protein stability, 

compare it to other available MM methods, and discuss practical strategies around employing it 

in design efforts. There has been a recent, initial test of FEP+ by Schrödinger223 on soluble 

proteins; we hope to add to this by offering an external review of the practicality of using FEP+ 

for such predictions. This includes a thorough analysis of how the program compares to MM 

methods, the effectiveness of speeding up the costly FEP+ calculations, and the pitfalls of the 

program as it is now. Additionally, this work uniquely uses a dataset with an equal distribution of 

stabilizing (N=30) to destabilizing (N=29) mutations as to not overly weight the less desired, but 

more common destabilizing mutations. This dataset also includes neutral (N=3) mutations, 
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although not as interesting still important to properly predict. Lastly, due to the difficulty that can 

arise when experimentally measuring the ∆∆G of folding, the predicted values were all compared 

to a much more easily attainable ∆Tm value. Ultimately, this work addresses the practicality of 

using FEP+ or faster MM methods when predicting protein stability in a realistic setting. 

There has also recently been a thorough analysis of FEP for protein mutations including an 

individual force field analysis, a consensus approach using multiple force fields, sampling time 

analysis, and a dataset of both soluble proteins and a membrane protein224. Although these types 

of analyses are very important for the field and future iterations of software, the work presented 

here is not intended to do the same analysis. Instead, we aim to assess FEP+ (one of the fastest 

FEP programs) in its current state for protein stability calculations and how it can be used in the 

most practical manner.   

� 6.3 MATERIALS AND METHODS 

Selecting Mutations 

The ProTherm database225 contains 311 unique proteins with experimental stability data for 

12561 single mutations making it impractical to run FEP on all of them. A recent paper from 

Amgen and Intrexon used a smaller subset of 82 proteins and 799 mutations to develop a 

machine learning algorithm for stability prediction226. Using this dataset, the proteins were 

further narrowed down to 9 structures with 62 mutations total. The proteins and their respective 

mutations were chosen to maximize the variety in the final dataset using the following criteria. 

The proteins were initially filtered to 24 to include proteins that contained more than one 

stabilizing mutation as to not overweigh destabilizing mutations. Due to the use of alanine scans 

for many stability assays, the 24 were narrowed to 9 proteins to accommodate a variety of amino 
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acid changes. The final 62 mutations are composed of 32 destabilizing and 30 stabilizing 

mutations and 14 different amino acids.  

Selecting Proteins and Protein Prep 

The starting structures were obtained from the Protein Database (PDB)57 with the following 

PDB codes: 1ARR, 1I0V, 1RN1, 1RTB, 1STN, 1WQ5, 2A36, 2AFG, 4LYZ, and 5CRO. To 

maintain consistency across the protein preparation, all structures were prepared using 

Schrödinger’s Maestro 11 (2016-2) Protein Preparation Wizard. To ensure the validity of using 

Maestro’s prepping algorithm prior to running energy calculations using alternative programs, 

the proteins were also prepped and reran using solely MOE. Those results were found to be 

worse with the R-value from the Pearson correlation decreasing from 0.504 using Maestro 

preparation to 0.382 using MOE preparation. Additionally, the Spearman R-value decreased 

from 0.417 to 0.215. Therefore, all calculations were done using the protein preparation 

algorithm in Maestro. All solvent molecules present in the crystal structures were removed and 

protonation was assigned at pH 7.0. 1ARR and 5CRO are present as homodimers in solution and 

prepped as such. For 1WQ5, residues 57-64 and 184 and 185 were missing from the crystal 

structure thus they were added using Prime. 2A36 was solved using NMR, resulting in 10 

structures present, structure 5 showed the most consensus and was used going forward. 

Energy Calculations 

The prepped structures from Maestro were used to run energy calculations using Chemical 

Computing Group’s (CCG) MOE 2015.1001227. Biovia’s Discovery Studios 2017 (DS)228, 

Schrödinger’s Bioluminate 229, and Schrödinger’s FEP+19,189. The default settings for MOE, DS, 

and Bioluminate were used for each programs protein mutation calculations. MOE was used with 

an AMBER ff10 forcefield. DS was used with CHARMm Polar H forcefield without pH 
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dependence or temperature dependence. Bioluminate was run inside Maestro 11 using OPLS3189 

and side-chain prediction with backbone minimization.  

For FEP+, the protein structures were solvated in a 5 Å orthorhombic, neutral water box for 

complex calculations and a 10 Å box for solvent calculations. All simulations were run using an 

SPC water model. Using a default Desmond230 protocol provided by Schrödinger’s software, the 

following series of relaxation and equilibration simulations were performed employing OPLS3. 

The system was first minimized with the Brownie integrator and was simulated using an NVT 

class ensemble at 10 K for 100 ps with restraints on heavy solute atoms. This was followed with 

a 12 ps NVT calculation at 10 K using a Berendsen thermostat with heavy solute atoms still 

restrained. The last equilibrations prior to FEP were 2 NPT calculations at room temperature and 

1 atm pressure, the first with restraints still on the heavy solute atoms for 24 ps and the last with 

no restraints for a total of 240 ps.  

Once the systems were relaxed and equilibrated, the production simulation for FEP/REST 

was performed using NPT class ensembles for both complex and solvent. A 10 Å cutoff radius 

was used for both vdW and electrostatic interactions along with smooth particle mesh Ewald to 

calculate long-range electrostatic interactions. The simulations were done first using the default 

settings of 12 λ at 5000 ps for charge-conserved mutations and 16 λ windows at 5000 ps for 

charge-changing mutations. The calculations were accelerated by using 4, 6, or 8 λ windows at 

500 ps, 750 ps, or 1000 ps respectively. Replica exchanges were attempted every 1.2 ps as 

described in Wang et al.19 and the final ∆G’s were calculated using the Bennett Acceptance Ratio 

(BAR)231.  All FEP calculations were run on 4 NVidia Tesla K80 GPU cores.  To assess protein 

stability over the course of the simulation, RMSD of the backbone atoms was monitored and was 

consistently observed as ≤ 2.0Å. For the error analysis, the cycle closure correction to 
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incorporate redundant information into free energy estimates was not used due to the calculations 

being direct wild-type-to-mutant transformations without redundancy as discussed in 

Steinbrecher et al.223 

Statistical Evaulations 

Each programs calculated energy values were compared to experimentally found ∆Tm values. 

A Pearson correlation was used to evaluate the linear relationship found between predicted 

values and experimental values. A p-value was found for each correlation indicating the 

significance of the linear relationship. Using a Fisher z-transformation, the sampling distribution 

from the Pearson correlation was transformed to a normal distribution allowing the calculation of 

confidence intervals. The confidence intervals were calculated at 95% confidence. Furthermore, 

a Spearman rank correlation was performed.  

� 6.4 RESULTS AND DISCUSSION 

To examine the ability of computation to predict stability, 62 mutations and associated 

stability data from 9 different proteins were chosen (see Methods for details) from the ProTherm 

database225.  A set of commonly used software platforms were used as a baseline comparison to 

the FEP+ protocol. Each program, Molecular Operating Environment (MOE), Bioluminate 

(Schrödinger), Discovery Studios (DS), and FEP+(Schrödinger), were run using default settings 

as an “out-of-the-box” approach (see Methods). Each of the three comparison methods estimates 

the change in energy upon the introduction of a mutation using classical molecular mechanics, 

with the major difference being the force field used during the calculations. The final predicted 

energy for each mutant was compared to the measured ∆Tm found experimentally. In order to use 

FEP+ in a prospective manner, it is essential to predict the experimental value that is much more 

widely used in measuring protein stability, ∆Tm. Although the predicted values of ∆∆G are not 
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absolutely correlated to ∆Tm, they are known to have a negative correlation232 and have been 

successfully compared previously224. Therefore, scale-independent statistical methods were 

employed while comparing these two values, which deviate from previous literature19,223, but 

give a more practical application.  

Initially, the predicted energies were compared to experimental data via a linear Pearson 

correlation. As seen in Table 6.1, DS, Bioluminate and MOE predicted energies all had a 

Pearson R2 of around 0.3 to experimental ∆Tms. However, FEP+ performed better, predicting 

stability with a Pearson R2 of 0.5. The difference in predicted and experimental variables 

prohibits the use of mean unsigned error (MUE), however, the p-values give validity of the 

correlation and the confidence intervals (CI) show the range that the population correlation falls 

between with 95% confidence (Table 6.1).  

From a practical perspective, a more useful metric for predictive power is the use of truth 

tables, which explicitly illustrate the number of calculations a computational tool predicted 

correctly and incorrectly. To remain consistent with the error of the experimental methods, the 

mutants were categorized as stabilizing with an experimental ∆Tm ≥ 1 ˚C (N=30), destabilizing 

with a ∆Tm ≤ -1 ˚C (N=29), and neutral with a ∆Tm falling between -1 ˚C and 1 ˚C (N=3). For 

the predicted data, the analysis becomes more convoluted due to the unquantified error 

associated with each method as well as the varying range of the predicted values for each 

program. Thus, placing boundaries on a neutral prediction is somewhat arbitrary. In order to 

determine the neutral category and remain as consistent as possible for each program, the same 

percentage of the total range of the observed experimental data was used. For instance, a total 

range of experimental data of 47.5˚C would give a cutoff of ± 1˚C, which is 2% of the total. 

Applying the same 2% to each method, MOE (range of 4.5 kcal/mol) had a ± 0.09 kcal/mol   
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Table 6.1. Linear Correlation (Pearson) Statistical Analysis of Various Prediction Methodsa 

Method FEP+ DS Bioluminate MOE 

R2-value 0.502 0.329 0.283 0.254 

R-value -0.708 -0.574 -0.532 -0.504 

p-value 1.19E-10 1.08E-06 1.02E-05 3.00E-05 

95% CI (-0.814,-0.557) (-0.721,-0.378) (-0.691,-0.324) (-0.669,-0.290) 

Accuracy 0.71 0.55 0.50 0.50 

Sensitivity (TPR) 0.67 0.53 0.38 0.21 

Fall-out (FPR) 0.17 0.26 0.38 0.11 
 

aValues reported were obtained using default settings of FEP+, DS, MOE and Bioluminate as described in 
methods. Statistical analysis was performed using a linear Pearson correlation. The p-value and 95% CI were 
calculated for the R-value. The accuarcy, sensitivity, and fall-out were calculated using Eqs. 6.1, 6.2, and 6.3 
respectively with the inclusion of neutral values. 
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cutoff, DS (range of 8.68 kcal/mol) had a ± 0.34 cutoff, Bioluminate (range of 53.97 kcal/mol) 

had a ± 1.08 kcal/mol cutoff, and lastly FEP+ (range of 12.51 kcal/mol) had a ± 0.25 kcal/mol 

cutoff. While admittedly arbitrary, these distinctions permitted grouping of the mutants into true 

positive (maximum of 30), false positive, true negative (maximum of 29), false negative, true 

neutral (maximum of 3) or false neutral (where false neutrals can be classified into 2 categories: 

those that were experimentally stabilizing and those that were experimentally destabilizing). 

Using these classifications, accuracy, true positive rates (TPR or sensitivity), and false positive 

rates (FPR or fall-out) were calculated using Eqs. 6.1, 6.2 and 6.3 respectively, where a positive 

indicates a stabilizing mutation (for experimental: a positive ∆Tm or for predictions: a negative 

∆∆G). Therefore, a true positive is one where the predicted method has a negative energy and the 

experimental value has a positive ∆Tm. The false positive includes both the false positives and 

the false neutrals that were experimentally stabilizing. Using this analysis, FEP+ again stands 

alone with 71.0% accuracy, where the others fall near 50% (Table 6.1). Additionally, FEP+ 

provides good sensitivity of 66.7% with a low fall-out rate of 16.7%.  

)��s�,�t =  ∑ v�s- wmnxvxy-n + ∑ v�s- L-z,vxy-n∑ ,KK y,Ks-n                                           (��. 6.1) 

J-Lnxvxyxvt =  ∑ v�s- wmnxvxy-n∑ -lw-�x|-Lv,K wmnxvxy-n                                                         (��. 6.2) 

},KK − msv =  ∑ 	,Kn- wmnxvxy-n∑ -lw-�x|-Lv,K L-z,vxy-n                                                         (��. 6.3) 

Although the FEP+ appears to only be slightly better in terms of a linearly correlated R2, we 

cannot be certain that the calculated ∆∆G has a linear relationship to ∆Tm. Spearman ranks are an 

advantageous statistical analysis when measuring a monotonic relationship without making 

assumptions about the shape of that relationship. Using this analysis, the experimental data is 

first ranked from stabilizing ∆Tm to destabilizing and given a numerical value from 1 to N (N = 
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62 in this dataset), then each predictive method is labeled the same. Now a linear correlation 

analysis (the standard Pearson) can be used when comparing the experimental rank and each 

predicted rank. A Spearman Rank correlation on each of the methods yielded a slight 

improvement of FEP+ with an R2 of 0.53 and a detrimental effect on the relationship of the MM 

programs all with R2 values near 0.2 (Table 6.2). 

FEP+ was clearly more accurate than the simpler techniques but at a much greater 

computational cost.  The MM methods were on the order of seconds to minutes per mutation on 

one CPU, where FEP+ took an average of 6 hours per mutation on 4 GPUs. To use this method 

in a more applied fashion, it was important to consider if combining or altering approaches could 

better predict protein stability at a faster speed. Intuitively, the use of MM programs has the 

potential to save a lot of computational time, yet individually their overall accuracy is 

underwhelming. For other computational predictive methodologies, such as molecular docking, 

techniques like consensus scoring have been used to overcome these types of shortcomings.  

Along these lines, it was hypothesized that if the more poorly performing MM programs were 

combined, the average rank score obtained might improve the overall predictions providing a 

“crude screen” to initially filter out the truly destabilizing mutants. A “refined screen” of the 

remaining top-scoring mutants could then be run using FEP+ to filter out the false positives 

predicted by the crude screen. Here, FEP+ acts as the refined screen due to the smaller number of 

mutants needed to run, potentially saving time.  

Testing this approach on our data set (Figure 6.1a), a retrospective crude screen was 

performed using an average rank of MOE, DS, and Bioluminate to remove the bottom half of the 

mutations (N=31), where 21 were true negatives but 10 were false negative or neutral. For 

simplicity of analysis, experimentally defined neutral mutants were classified as destabilizing 

since in a true experiment they would not be selected for validation (Figure 6.1b). Of the 31 
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Table 6.2. Rank Correlation (Spearman) Statistical Analysis of Various Prediction Methodsa 

Method FEP+ DS Bioluminate MOE 

R2-value 0.526 0.209 0.189 0.174 

R-value -0.726 -0.457 -0.434 -0.417 

p-value 2.537E-11 1.89E-04 4.18E-04 7.49E-04 

95% CI  (-0.826, -0.581) (-0.634, -0.234) (-0.617,-0.207) (-0.604,-0.187) 
 

aStatistical analysis was performed using a Spearman rank correlation. The p-value and 95% CI were calculated 
for the R-value.  

 



 139

 

Figure 6.1. Results of protocol for predicting protein stability using default programs. (a) 
Overview of screen is shown with time and number of mutations for each step. (b) Results of 
crude screen are shown after ranking the average MM prediction and eliminating the top half 
(red). The resulting bottom half (green) proceeded to the refined screen. The breakdown of the 
negatives (destabilizing) and positives (stabilizing) are located in the pie charts to the right, 
where the neutral values are labeled as negative (not stabilizing) for simplicity. (c) Results of the 
refined screen are shown after the FEP+ ∆∆G is calculated. The unfavorable ∆∆Gs (red) are 
eliminated, proceeding with the favorable ∆∆Gs (green) to experimental studies. This would 
yield a final positive predictive value (PPV) shown. 
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mutations that would be carried forward to the refined screen, 20 were true positives and 11 were 

false positives. The best expectation was that after running the refined screen all of the false 

positives would be identified, however, only 8 of these were identified while 3 were labeled as 

false positives. Additionally, 4 mutations were incorrectly eliminated using the refined screen 

leaving 19 mutations that passed the selection criteria with 16 true positives. These results 

yielded a positive predictive value of 84.2% for the proceeding experiments (Figure 6.1c). 

Although a high hit rate was returned and a total of 16 stabilizing mutants were found, this 

method would still take 180 hours or 7.5 days to run.  

The question remains: can we construct an even faster, more accurate workflow using the 

tools in hand? Potential approaches to answer this question are to make either the crude or 

refined screen more accurate, faster, or both. Generally, these goals are diametrically opposed as 

making the programs more accurate compromises the time of the calculation.  However, it is 

important to further consider both approaches and the feasibility of each.  

Starting with the less practical approach of making the refined screen more accurate, it is 

relevant to examine what went poorly in the FEP+ simulations. Generally, it is important to 

examine how the calculation performed including the convergence of the simulation for both the 

solvent and complex calculations. 10 of the 62 mutations were found to have poor convergence. 

Similar to Steinbrecher et al223, after removing the non-converged data, the Spearman rank R-

value increased from -0.726 to -0.813.  

Although the overall statistical correlations for the entire set were mediocre, when inspecting 

the nine different proteins, the targets had vastly dissimilar correlations (Table 6.3). The 

methodologies, like most structure-based approaches, appear to show target-biased effects with 

some targets being 100% accurately predicted and others being essentially random. This result  
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Table 6.3. Comparison of Prediction Performance by Targeta 

PDB 1arr 1rn1,1i0v 1rtb 1stn 1wq5 2a36 2afg 4lyz 5cro 

# Mutations 5 10 7 9 7 5 6 8 5 

MW (kDa) 12.5 33.6 13.7 16.8 59.5 6.9 15.8 14.3 14.7 

FEP Results 

Spearman R2-value 0.915 0.571 0.548 0.174 0.655 0.045 0.087 0.963 0.367 

Spearman R-value 0.956 0.756 0.740 0.417 0.810 0.211 0.295 0.981 0.605 

p-value 1.09E-02 1.15E-02 5.72E-02 2.64E-01 2.73E-02 7.33E-01 5.71E-01 1.65E-05 2.79E-01 

95% CI (0.93, 0.97) (0.62, 0.85) (0.60, 0.84) (0.19, 0.60) (0.70, 0.88) (-0.04, 0.44) (0.05, 0.51) (0.97, 0.99) (0.42, 0.74) 

FEP Accuracy 1.000 0.600 0.714 0.556 0.714 0.800 0.500 1.000 0.600 

MM Results 

Spearman R2-value 0.414 0.417 0.552 0.201 0.567 0.104 0.282 0.796 0.760 

Spearman R-value 0.643 0.646 0.743 0.449 -0.753 -0.322 0.531 0.892 0.872 

p-value 0.242 0.044 0.056 0.226 0.051 0.597 0.279 0.003 0.054 

95% CI (0.47, 0.77) (0.47, 0.77) (0.61, 0.84) (0.22, 0.63) (-0.84, -0.62) (-0.53, -0.08) (0.32, 0.69) (0.83, 0.93) (0.80, 0.92) 

MM Accuracy 0.600 0.433 0.714 0.481 0.238 0.400 0.500 0.750 0.533 
 

aValues reported were obtained using default settings of FEP+, DS, MOE and Bioluminate as described in methods. R2 values were found using 
Spearman correlations and accuracy values were found using Eq. 6.1. The MM values were averaged from final rank values of DS, MOE, and 
Bioluminate. 

 



 142

could be due the reproducibility of experimental data. For example, lysozyme has been 

extensively studied in the field and seen to be a robust experimental model. In this case, FEP+ 

performed much better with an R2 of 0.909 and 100% accuracy172,233. Furthermore, the MM 

methods performed the best on this protein with an average R2 of 0.554 and an accuracy of 

75.0% (Table 6.3). Again, the correlation between ∆G and ∆Tm is not linear and depends on the 

∆Cp of the folded and unfolded form of the protein. The ∆Cp is highly dependent on the overall 

hydrophobicity of the protein and could be responsible for some of the discrepancy seen with 

each target. 

Apart from the type of target, the types of mutations made could also account for some of the 

failures of FEP+. Variables such as type of amino acid, molecular weight (MW), hydropathy, 

number of rotatable bonds, and solvent accessible surface area (SASA) of the mutation were 

examined (Figure 6.2). Two potential problems were found: the amino acid composition and the 

change in solvent accessible surface area (SASA). Arguably, the more important failures from 

the population are the false negatives (including the false neutrals that are experimentally 

stabilizing) as these represent useful mutations that would be missed by FEP+.  When looking at 

this particular subset, the mutation changes were examined by amino acid sequence and physical 

chemical properties. One potentially significant observation, given the caveat of the small sample 

size, is that 9 of the 10 false negatives by FEP+ had a side chain with a polar functional group; a 

hydroxyl (Ser, Thr, Tyr), a sulfhydryl (Cys) or an imidazole (His). As seen in Figure 6.2a, these 

amino acids (Tyr, Thr, Cys, and His) are overrepresented in false negatives as compared to the 

total population, with Ser being a noted outlier. To support this observed trend of changes in 

polarity being problematic, we examined the overall change in solvent accessible surface area 

(SASA) for each mutation in the set. Seen in Figure 6.2b, the largest discrepancy between the
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Figure 6.2. Comparison of False Negatives to Total Population. (a) Type of amino acid was 
compared as percentage of total population (blue) and percentage of false negatives (red). 
Changes in physical properties: (b) SASA, (c) number of rotatable bonds, (d) hydropathy 
index234, and (e) MW were compared. These changes are the average change between the 
mutation and wildtype for the total population (blue) and false negatives (red). 
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false negatives and the total population was SASA varying by more than 2-fold from the total 

population. This is in stark contrast to the other physical properties: rotatable bonds, 

hydrophobicity and MW, which varied from the total population by 1.6-fold, 1.3-fold, and no 

change respectively (Figure 6.2c-e). If this change in polarity is a legitimate issue than a higher 

representation of the canonical uncharged polar residues Gln and Asn would be expected in the 

false negatives, however, these residues were not highly observed in the overall data set. Also of 

note, 2 out of 3 total charge to nonpolar mutations were false positives. This is not more than an 

anecdotal observation due to the small sample statistics.  

Aside from general trends, there are more specific examples of failure.  In the case of 

Staphylococcal nuclease (PDB 1STN) when Thr41 is mutated to the hydrophobic residues Ile or 

Val this is experimentally stabilizing in both cases with Tm shifts of 4.2 ˚C.  However, the 

predictions fail to recognize this as stabilizing, in fact FEP+ predicts an increase in ∆∆G >1.5 

kcal/mol. Looking more closely at the molecular context of this residue, the side chain is located 

in a fairly hydrophobic pocket (Figure 6.3).  Intuitively, both Ile and Val are small hydrophobic 

residues and thus if placed into this hydrophobic pocket should be predicted as favorable 

interactions.  One explanation, in this case, is the starting point may be incorrectly calculated to 

be more stable than it actually is. Given the trend observed of ∆SASA being problematic, perhaps 

the method is either incorrectly calculating desolvation of the polar side chain or assigning undue 

weight to the potential hydrogen bond, which in the starting structure appears to have a less than 

ideal geometry (Figure 6.3). To answer these questions more directly requires further study 

beyond the scope of this work.  

With a stated goal of making the refined screen more accurate, it is important to consider the 

resulting FEP+ could potentially be improved by increasing lambda windows, increasing  



 145

 
 
 
Figure 6.3.  Example of False Negative from FEP+ calculations. The entire staphylococcal 
nuclease with surface representation is depicted on the left. The residue Thr41 is showed at 
closer detail in the inset with the potential H-bond interaction highlighted.  
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simulation time, increasing sampling at the end points or increasing initial equilibration. FEP 

methods have also been known to be affected by the van der Waals endpoint problem235–237. 

These problems have been heavily studied in the field238–240 and will result in adding 

exponentially more simulation time. Our focus, however, is in shortening the overall 

computational cost whilst maintaining a level of accuracy. Additionally, this work is not an 

extensive analysis of how to improve FEP+, but instead aims to determine how feasible FEP+ is 

in its current form. Thus, the focus was turned to making either the crude screen more accurate 

or the refined screen faster, in essence becoming the equivalent of a more accurate crude screen. 

The crude screen could be improved by either altering the default settings of the MM programs 

or by using a faster version of the more accurate FEP itself as the crude screen. The first option is 

certainly viable, but would require an exhaustive study altering multiple variables in the separate 

software packages so attention was instead focused on the latter option. The goal was to test if a 

truncated FEP+ protocol could be significantly faster without sacrificing accuracy, potentially 

making a one step process. To make FEP+ faster, both the lambda windows and the simulation 

time were decreased incrementally. As seen in Table 6.4 and Figure 6.4, for our small dataset the 

faster FEP sacrificed little accuracy 71.0% to 67.7% for up to a 6X speed up in time. It should be 

noted that this could depend on the types of proteins and hardware setup making the degree of 

speedup variable. On this dataset, however, the computational time is sped up from more than a 

week to a little over 2 days to run. Additionally, using FEP+ as a filter cuts down on 

experimental time and resources by at least 55%.  

� 6.5 CONCLUSIONS 

Overall the results here show that the ability to computationally predict protein stability with 

total accuracy still has a ways to go to be practically useful in protein engineering. The statistical 
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Table 6.4. Results of Faster FEP+a 

No. of λ Windows 12 8 6 4 

λ window length (ps) 5000 1000 750 500 

Spearman R2-value 0.526 0.434 0.476 0.472 

Spearman R-value -0.726 -0.659 -0.690 -0.687 

p-value 2.54E-11 5.77E-09 5.55E-10 7.07E-10 

95% CI  (-0.826,-0.581) (-0.780,-0.490) (-0.802,-0.532) (-0.800,-0.528) 

Accuracy 0.710 0.645 0.710 0.677 

Sensitivity (TPR) 0.667 0.529 0.667 0.655 

Fall-out (FPR) 0.167 0.179 0.167 0.212 

Mutation Time (hrs) 5.73 2.04 1.49 0.94 
 

aThe number of λ windows and simulation time were varied incrementally and Spearman rank R values 
were reported. The mutation time reported is the total time for one mutation to run. The accuarcy, sensitivity, 
and fall-out were calculated using Eqs. 6.1, 6.2, and 6.3 respectively.   

 
 
 
 

 
Figure 6.4. Results of FEP+ with altered settings. (a) Overview of fast FEP+ screens is shown 
with times and number of mutations for each step. (b) Breakdown of results from screen for 
varying λ windows and simulation times are depicted for each of these setups.  The green slices 
are the mutations that would be selected for experimental testing. 
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correlations observed for all the methods employed here were not impressive, however when 

considered from a relative perspective there was a significant increase in overall performance of 

FEP+ when compared to the much simpler MM based methods. FEP+ showed an approximate 

30% increase in accuracy, but this number is tempered by the dramatic target-by-target variation, 

wherein some cases show up to a 100% accuracy rate and some are essentially a coin flip. These 

improvements in accuracy come at a cost in speed of the calculation, in our hands slowing it 

down by more than 36X. How significant a 36X slowdown is however depends on the situation, 

timelines, and available resources. For instance, in an academic setting it may be appropriate to 

spend a week or more on FEP+ calculations to save time on costly experiments that need to be 

executed manually. On the other hand, in an industrial setting where resources are less 

constrained and high-throughput experimentation technologies exist, the amount of time spent on 

FEP+ could take much longer than the respective experiments.  

In this work, we have introduced two new approaches to performing protein stability FEP+ in 

a more practical manner. Although FEP+ applied to protein stability has been recently explored, 

we sought to address two unanswered questions. First, “can you combine the faster MM methods 

with FEP+ into a usable workflow?” A novel consensus approach was used, where the simpler 

MM methods were a quick “pre-screen” and then followed by an in depth screen using FEP+ on 

a smaller number of potential mutations. The consensus approach maintains a very high 

enrichment with a final hit rate of 84.2%. This success can be very valuable to the right user, 

however, for some it requires too many software packages and two different methods to 

reproduce. This raises the next question: “could you speed up the FEP+ alone and get successful 

results?”  After altering the default settings, we have shown that for soluble protein stability 

predictions, the FEP+ could be sped up by 6-fold. Under our setup, being limited to the use of 4 
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GPU nodes, the average time for a mutation decreased from ~6 hours to less than 1 hour. This 

decrease in time permits up to 168 mutations per week where with the default setting, the same 

number of mutations would take more than a month to run. Speeding up the calculations comes 

without a noticeable decrease in performance, applying the rates observed here to the 

hypothetical 168 mutations, the default settings would correctly identify 119 whereas switching 

to 4λ at 500 ps, 113 mutations would be correctly identified. This remarkable and somewhat 

unexpected finding merits future study. Although each user must decide if this timescale and 

error tolerance is feasible for their own application, the two approaches described here provide a 

starting point for employing FEP+ for predicting protein stability of soluble proteins.  

An important question for the use of FEP is when and why does it fail.  Although not 

definitive, this analysis suggests that changing the solvent accessible surface area of the amino 

acid is not always correctly captured with these methods and this should be considered when 

trying to predict such a change.  There could be a number of explanations and potential solutions 

to addressing them. For instance, the desolvation of the amino acids could be improperly 

modeled or the parameters in the current force field, OPLS3, could be contributing to the 

incorrect energies seen. Some success in FEP has been found in improving protein-ligand 

binding by altering the number or spacing of λ windows, the simulation time or the sampling 

technique.217,240,241  

With increasing understanding of protein engineering comes an increasing demand to 

efficiently and accurately predict protein stability. The improvement of computational programs 

such as FEP+ provides the field with a reliable method to predict stability. With the inclusion of 

OPLS3 (that includes extra parameters for halogen bonding and nitrogen atoms), GPU 

implementation, and REST technology, FEP+ can more readily be applied to protein stability 
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calculations. In this paper, we have shown how these improvements predict stability 

measurements in soluble proteins; however, the workflows outlined here have the potential to be 

applied to many systems. Although it is important to consider the amount of time and resources, 

FEP+ proves to be a valuable resource. Better understanding in the successes and failures is vital 

when continuing the improvement of an ever-rising field.  
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CHAPTER 7 
 

CONCLUSION AND FUTURE PERSPECTIVE 
 
 
 

� 7.1 SUMMARY 

The work throughout this dissertation highlights the importance of testing and improving 

computational models to better agree with experimental findings. Although this work has the 

potential to impact many fields, I turn focus to its influence on medicinal chemistry. Medicinal 

chemistry has been around since 3500 BC; however, it was not until the early 20th century when 

it began to be commercialized to today’s standards. In more recent years, medicinal chemistry 

has begun a transition, where chemists are now incorporating computational techniques into drug 

discovery. The field has begun to see some initial success in this transition; however, there is still 

more to overcome for computers to reach their full potential in medicinal chemistry.  

 The start to computers becoming more successful in medicinal chemistry is to better 

understand the failures they have when modeling some fundamentals of biology or chemistry. 

The initial work of this dissertation is to characterize one of these failures, an important 

noncovalent interaction in medicinal chemistry–the halogen bond (X-bond). The information 

from these studies was then used to better model this interaction in a common simulation 

methodology for drug design, molecular mechanics or dynamics (MM/MD). The final important 

task to improving drug design software is testing current versions to better understand where 

failures still remain. The last work of this dissertation looks at another software, Schrödinger’s 

Free Energy Perturbation (FEP) software package, FEP+, and determines its feasibility to being 

applied to protein stability predictions. With the combination of understanding fundamental 
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biology and chemistry and testing and improving current software, we can help reach the goal of 

improving computers for drug design efforts.  

� 7.2 UNDERSTANDING THE FUNDAMENTALS OF X-BONDING 

Halogens have been classically incorporated into drugs to increase membrane permeability 

and decrease metabolic degradation16. More recently, halogens have been recognized to increase 

drug to target specificity and affinity through the X-bond129. Since the initial recognition of the 

importance of X-bonds in biological systems in 200443, there has been a large amount of research 

to better grasp this interaction. However, there are still many areas that have yet to be explored. 

Here, I have described how we explored the structure-energy relationships of two different types 

of X-bonds in biological systems that have never been shown before.  

The first was an X-bond in a DNA junction system, where, more specifically, a sulfur present 

on the phosphate group of the DNA backbone was interacting with a bromine on a uracil base. 

Sulfur is an important element found in both cysteine and methionine amino acids. Cysteine is 

present at many active sites of enzymes, including hydrolases, deubiquitinases, caspases, and 

enzymes involved in redox reactions150. Methionine is a particularly interesting target for drug 

target due to its lipophilicity and flexibility and is also found at high percentages in the binding 

site of enzymes relative to the enzyme’s surface149. Due to the fact that many of these enzymes 

are key targets for drug design, better understanding of sulfur as an X-bond acceptor is 

imperative. There was a large dearth in the field of X-bonding–understanding sulfur’s role as an 

acceptor in biological systems. Although there has been some initial work done, this work 

focuses mostly on small molecule studies136 and quantum mechanics (QM)131 calculations with 

only a few studies done in biological systems135,138. Here, I explain how we use our DNA 

junction system to further explore sulfur’s role as an X-bond acceptor in a biological molecule.  
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In this study, the crystallographic findings showed that the bromine was interacting with the 

sulfur in two different conformations. When comparing the geometries of this interaction to our 

previously solved DNA junction system with an oxygen acceptor, the sulfur acceptor was at a 

less linear angle of approach to the halogen and further distance in relation to the sum of the 

interacting atoms van der Waals radii. Surprisingly, the energies obtained from calorimetry 

studies indicated the sulfur to be a more favorable interaction with a free energy of stabilization 

(∆∆G) of -0.4 kcal/mol as compared to the previously studied negative oxygen acceptor. These 

findings show that sulfur is a favorable acceptor for X-bonding at a broader range of geometries. 

Now, using the knowledge found from this study, medicinal chemists can have an attractive 

target to keep in mind when designing inhibitors.  

The next experimental system that was used to study the structure-energy relationship of X-

bonding was an X-bond site-specifically engineered in a protein system, T4 lysozyme. Lysozyme 

is a heavily studied protein (as it was first enzyme to ever be crystallized242) providing a robust 

experimental system for this study. Although this system is heavily studied, the work here is one 

of the first time X-bonds are site-specifically engineered in a protein system with the aim to 

stabilize the protein. Protein stabilization can be very useful for the target identification stage of 

drug design. It has been found that the more stable the protein is, the more likely it is to 

crystallize and thus, obtain a 3-D structure of the target200. This study can also elucidate 

information about the fundamentals of another type of X-bond. In this case, a bromine or iodine 

was designed to form an X-bond with a formally neutral oxygen acceptor. Although this type of 

interaction is more studied in this field, its detailed structure-energy relationship in of a 

halogenated amino acid can help us design and refine our computational models.  
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The setup of the T4 lysozyme system, more specifically, replaced a hydroxyl group on 

tyrosine 18 with either a bromine or iodine in order to interact with a carbonyl oxygen in close 

proximity. As a control, a non-interacting site, tyrosine 88, was identified and used to compare 

the effects of halogenation without an X-bond forming. At site 18, the crystallography results 

indicate that the phenyl ring is moved to interact with the carbonyl oxygen when either a 

bromine or iodine is present as compared to a tyrosine, phenylalanine or methylphenylalanine 

alone. At site 88, the phenyl ring remains unperturbed suggesting no interaction is forming at 

that site. Calorimetry results showed that although modifying the tyrosine to either halogenated 

phenylalanine at site 18 destabilized lysozyme, they were less destabilizing modifications than 

when present in the control site 88. These results suggest that a favorable X-bond forming at site 

18 partially rescues the overall destabilizing effect of halogenation.  

Additionally, an important finding of this study is that the solvent structure was altered at site 

18 causing change in stability. QM calculations on the interacting residues could only 

recapitulate the stabilization energy when the water structure was considered. Often times the 

solvent structure is not always considered and when perturbed, can have a large detrimental 

effect on the overall stability. So I must emphasize that while not only considering important 

interactions occurring within the structure, we must also consider the solvent structure. In 

conclusion, we are able to use this structure-energy relationship to better understand X-bonds 

against their most common acceptor in a protein setting and in the future, use these structures to 

test computational models.  

� 7.3 IMPROVING A MOLECULAR MECHANICS ALGORITHM  

Despite the known importance that X-bonds have in medicinal chemistry and the rising use 

of computers in drug design, X-bonds are still improperly modeled using most standard 
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programs. There have been some attempts to rectify this problem, however, these attempts 

remain either inaccurate or slow and require additional costly QM parameterization. Molecular 

mechanics/molecular dynamics (MM/MD) simulations offer a fast, fairly accurate model when 

understanding how inhibitors bind to their targets, which can be incredibly useful when 

discovering and optimizing lead compounds. Although MM/MD is more accurate than some 

computational models, it does not inherently model X-bonding.  

Here, I have discussed a unique solution in MM/MD for X-bonding, which incorporates a 

modified potential energy equation that properly models the halogen’s unique polarization. 

Incorporating this equation into a Class I MM/MD algorithm, TINKER, energies are 

recapitulated from our experimental DNA junction system using the MM portion of the program. 

Additionally, to try to eliminate the need for costly QM parameterization, different systems were 

used to reparameterize the modified potential equation, finding general mathematical trends that 

can be incorporated into the MM/MD force fields. When parameters n, ν, ∆R, RX,A, A, and εX,A 

were fixed to constants, the overall fit was not compromised greatly. The last parameter, B, was 

found to have a linear relationship to the overall RESP charge of the halogen. For the first time, 

using these relationships, we have eliminated the need for costly QM parameterization of 

halogen atoms for Class I MM/MD simulations.  

After incorporating all of these parameters into the MM/MD package (creating X-

TINKER), we can use the structures found in the T4 lysozyme studies as an external test system. 

As an initial proof of concept, the entire protein system was simulated in a water box. We find 

that the constructs with halogens remain close to the crystallography findings in TINKER and X-

TINKER. Thus, to test the X-bond with no external restraints, an energy minimization was 

performed on a mimic of the X-bond interaction at site 18 (a bromobenzene interacting with N-
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methylacetamide). In this simulation, the TINKER program completely missed the X-bonding 

potential, placing the donor parallel with the acceptor. X-TINKER, however, faithfully repeated 

the X-bonding interaction seen in the crystal structure.  

This work provides the field with a new model for X-bonding in MM/MD methodology. 

Additionally, with the elimination of the additional QM steps, we have provided the first general 

model of X-bonding for multiple donors and oxygen acceptors. Using this program, we can 

accurately model this important, prevalent interaction present in medicinal chemistry.   

� 7.4 TESTING FREE ENERGY PERTURBATION SOFTWARE 

While understanding the basics of molecular interactions and incorporating that knowledge 

into current programs used for drug design is important, in order to understand the knowledge of 

where these programs fail we must first test the programs. In this portion of my dissertation, I 

examined how feasible a new free energy perturbation (FEP) program, FEP+, is for predicting 

protein stability. FEP+ has recently shown to be highly effective when predicting protein-ligand 

interactions19,243; however, it has only undergone recent testing for protein stability223,224. We 

offer additional testing comparing FEP+ to other molecular mechanics (MM) programs and 

provide two novel, faster methods for applying FEP+ to protein stability.  

In this study, we find that FEP+ is more successful than some current MM programs at 

predicting stability. We present two protocols that can be employed, one of which was found to 

speed up the calculations by 36X than the default, standard protocol. We also found that there 

were some places where FEP+ failed to properly predict protein stability. By using the 

knowledge of these failures, programmers can start to make improvements on FEP+. This 

important study gives users an understanding of the best way to use FEP+ as well as gives 

developers an idea of what still needs to be upgraded in regards to protein stability predictions.   
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� 7.5 CONCLUSIONS AND FUTURE OUTLOOK  

The work in this dissertation highlights an important interaction that has been improperly 

modeled in most programs–the X-bond. We characterize X-bonds in two important biological 

systems to help inform medicinal chemists in future design efforts. Although this work and 

previous work are a great beginning to better understanding this interaction, there are still many 

X-bonding interactions and X-bonding fundamentals that remain to be characterized in 

biological systems. One such poorly understood area of halogen bonds is that these polarizable 

atoms are mainly hydrophobic.49 This phenomenon is in stark contrast to the analogous H-bond 

and causes some of the differences of the two in desolvation events in protein-ligand binding. It 

is important to consider the solvent structure and how X-bonds may affect it. Tools like X-

TINKER allow us to study and possibly better understand the contribution of entropy, both the 

conformational entropy and the solvent entropy associated with the hydrophobic effect. 

However, a full MD set of tests would need to be performed on X-TINKER prior to this 

application. A more accurate way to look at the entropic effects of halogenation would be to 

apply the modified force field and MD simulations to FEP studies.  

Using the knowledge gained in the first part of this dissertation as a better platform, we can 

begin to build more adequate computational algorithms for drug discovery. For example, by 

using some of the information found in characterizing these X-bonds, we are able to understand 

and improve upon failures in current MM/MD algorithms for X-bonding. For example, the 

solvent structure that was observed to be important in X-ray structures of T4 lysozyme studies 

can be used to determine if the solvent is properly modeled in X-TINKER. We might find that 

different solvent models may perform better than others and thus it is important to continuing 
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testing all aspects of this program. Additionally, it is important to continue testing and improving 

X-TINKER for an even larger range of X-bonding donors and acceptors.  

By testing programs, we are able to discover the methodology where they perform best as 

well as where they still fail. In the last part of this dissertation, I examined the feasibility of using 

FEP+ in protein stability predictions. Although we discovered that FEP+ is the best 

commercially available method for predicting protein stability, we found some potential failures 

still exist. This realization can now be used to study and improve the software further.   

In this dissertation, I investigate the field of computational medicinal chemistry–where the 

current field is, how it is important to understand the fundamentals of biology and chemistry to 

make improvements to the field, and what still remains to be studied, especially as it pertains to 

important chemical interactions such as X-bonds. There is a recurring theme throughout this 

dissertation that we must first understand the basics of biology and chemistry and leverage this 

knowledge to test and improve upon our current computational algorithms. Although this field 

has incredible potential, we must continue to test the current programs, identify failures, and 

learn how to overcome them–only then will we strengthen the role of computers in medicinal 

chemistry.  
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APPENDIX 
 

SOURCE CODE 
 
 
 

Supplemental Subroutine 1: Identifying the X-bond. 
c 
c 
c     ################################################### 
c     ##  COPYRIGHT (C)  1990  by  Jay William Ponder  ## 
c     ##              All Rights Reserved              ## 
c     ################################################### 
c 
c     ######################################################### 
c     ##                                                     ## 
c     ##  subroutine xbonds  --  locate and store bxb atoms  ## 
c     ##                                                     ## 
c     ######################################################### 
c 
c 
c     "xbonds" finds the total number of halogen bonding atoms  
c     and stores the atom numbers of the atoms defining each bxb 
c 
c 
      subroutine xbonds 
      implicit none 
      include 'sizes.i' 
      include 'action.i' 
      include 'atoms.i' 
      include 'atmtyp.i' 
      include 'couple.i' 
      include 'xbond.i' 
      include 'potent.i' 
      integer i,j,k,m,nint 
c 
c     loop over all atoms, finding the halogens 
c     when halogen is found, an array is made (ixbnd) with index c     (nint,nexbond) nint is 1,2 1,3 
interaction and nexbnd 
c     is the number of xbond 
c 
      nexbnd = 0 
      do i = 1, n 
         nint = 1 
         j=atomic(i) 
         if((j.eq.17).or.(j.eq.35).or.(j.eq.53)) then 
            nexbnd=nexbnd+1 
            ixbnd(nint,nexbnd)=i 
            if(n12(i).gt.1) then 
               write(6,*) "oops ",i," bonded to more than one atom" 
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            end if 
            xatmnm=j 
            do k = 1, n12(i) 
                nint=nint+1 
                ixbnd(nint,nexbnd)=i12(k,i) 
            enddo 
            do k = 1, n13(i) 
                nint=nint+1 
                ixbnd(nint,nexbnd)=i13(k,i) 
            enddo 
         end if 
      end do 
 
c 
c     set use_xbond logical to true if xbond present 
c 
      use_xbond=.false. 
      if (nexbnd.ne.0) then 
         use_xbond=.true. 
      end if 
      return 
      end 
 
 
Supplemental Subroutine 2. Assigning the X-bond parameters. 
 
c 
c 
c     ################################################### 
c     ##  COPYRIGHT (C)  1990  by  Jay William Ponder  ## 
c     ##              All Rights Reserved              ## 
c     ################################################### 
c 
c     ######################################################## 
c     ##                                                    ## 
c     ##  subroutine kxbond  --  assign xbond parameters    ## 
c     ##                                                    ## 
c     ######################################################## 
c 
c 
c     "kxbond" assigns parameters of ffbxb depending on halogen 
c 
c 
      subroutine kxbond 
      implicit none 
      include 'sizes.i' 
      include 'atmtyp.i' 
      include 'atoms.i' 
      include 'xbond.i' 
      include 'charge.i' 
      integer i,j  
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c 
c 
c 
      do i = 1, nexbnd 
        if(xatmnm.eq.17) then 
            xbdr=0.1487 
            xba=0.117 
        endif 
        if(xatmnm.eq.35) then 
            xbdr=0.160 
            xba=0.191 
        endif 
        if(xatmnm.eq.53) then 
            xbdr=0.185 
            xba=0.33 
        endif 
      enddo 
      return 
      end 

 
Supplemental Subroutine 3. Calculating the X-bond energies and forces. 
 
c 
c 
c     ################################################### 
c     ##  COPYRIGHT (C)  1990  by  Jay William Ponder  ## 
c     ##              All Rights Reserved              ## 
c     ################################################### 
c 
c     ########################################################### 
c     ##                                                       ## 
c     ##  subroutine exbond1  --  xbond energy & derivatives   ## 
c     ##                                                       ## 
c     ########################################################### 
c 
c 
c     "exbond1" calculates the xbond energy and 
c     first derivatives with respect to Cartesian coordinates 
c 
c 
      subroutine exbond1 
      implicit none 
      include 'sizes.i' 
      include 'atoms.i' 
      include 'xbond.i' 
      include 'vdw.i' 
      include 'charge.i' 
      include 'deriv.i' 
      include 'energi.i' 
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      include 'group.i' 
      include 'chgpot.i' 
      include 'usage.i' 
      include 'virial.i' 
      include 'couple.i' 
      integer i,ia,ib,ic,iaclass, o, p 
      integer icvdw,mvdw,mion,icion 
      integer k,l,j,jc,mm,break 
      integer*4 ict(maxatm),icclass,id(3) 
      real*8 delr,qafac,qcfac,qfac,rad,eps,qa 
      real*8 a(3),amod,b(3),c(3),d(3),dmod,bmod,abdot 
      real*8 da(3),db(3),damod,dbmod,dcostheta,dcos2theta 
      real*8 dexvdw,dexcc,dlocal(3,3) 
      real*8 ordexvdx,ordexvdy,ordexvdz 
      real*8 ordexcdx,ordexcdy,ordexcdz 
      real*8 costheta,cos2theta 
      real*8 rvdw,p12,orp12 
      real*8 p6,oridec,oridev,scale14 
      real*8 qc,ees,oriees,rb,r,fik,f,fi 
      real*8 expterm,bde,fgrp 
      logical proceed 
c 
c 
c     zero out the xbond energy and first derivatives 
c 
      orev = 0.0d0 
      orec = 0.0d0 
      exv = 0.0d0 
      exc = 0.0d0 
      do i = 1, n 
         dexv(1,i) = 0.0d0 
         dexv(2,i) = 0.0d0 
         dexv(3,i) = 0.0d0 
         dexc(1,i) = 0.0d0 
         dexc(2,i) = 0.0d0 
         dexc(3,i) = 0.0d0 
         ordev(1,i) = 0.0d0 
         ordev(2,i) = 0.0d0 
         ordev(3,i) = 0.0d0 
         ordec(1,i) = 0.0d0 
         ordec(2,i) = 0.0d0 
         ordec(3,i) = 0.0d0 
      end do 
c 
c     calculate the xbond energy term 
c 
c     ia = xbond center (center of the angle) 
c     ib = center bonded to the xbond center 
c     delr = distance displacement factor 
c     qafac = A charge factor 
c     qcfac = C charge factor 
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c 
      do i = 1, nexbnd 
         ia = ixbnd(1,i) 
         ib = ixbnd(2,i) 
         id(1) = ib 
         id(2) = ia 
         iaclass = jvdw(ia) 
         delr = xbdr 
         qafac = xba 
         qa = pchg(ia) 
         qcfac = (3.2174*pchg(ia)+0.1512) 
         a(1) = x(ia) - x(ib) 
         a(2) = y(ia) - y(ib) 
         a(3) = z(ia) - z(ib) 
         amod = dsqrt(a(1)*a(1) + a(2)*a(2) + a(3)*a(3)) 
c 
c     loop over all atoms for non-bond terms 
c        van der Waals first 
c        generate a list that doesn't have 1,2 1,3 terms 
c        need separate variables to keep consistent with loops of elj1 
c 
         mvdw = 0 
         do icvdw = 1,nvdw 
            break = 0 
            ic = ivdw(icvdw) 
            do k = 1, 10 
               if ((ic.eq.ixbnd(k,i))) then 
                   break = 1 
               endif 
            enddo 
            if (break.ne.1) then 
                mvdw = mvdw+1 
                ict(mvdw) = ic 
            endif 
         enddo 
         do icvdw = 1,mvdw 
            ic = ivdw(icvdw) 
            ic = ict(icvdw) 
            if (ic.gt.ia) then 
                o = ia 
                p = ic 
            elseif (ic.lt.ia) then 
                o = ic 
                p = ia 
            endif 
            icclass = jvdw(ic) 
            id(3) = ic 
            rad = radmin(iaclass,icclass) 
            eps = epsilon(iaclass,icclass) 
            scale14 = 1.0d0 
c 
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c     need to loop over atoms and scale 1,4 interactions 
c 
            do j = 1, n14(ia) 
                if ((i14(j,ia).eq.ic)) then 
                    scale14 = 2.0d0 
                endif 
            enddo 
            b(1) = x(ia) - x(ic) 
            b(2) = y(ia) - y(ic) 
            b(3) = z(ia) - z(ic) 
            c(1) = x(ib) - x(ic) 
            c(2) = y(ib) - y(ic) 
            c(3) = z(ib) - z(ic) 
            d(1) = x(o) - x(p) 
            d(2) = y(o) - y(p) 
            d(3) = z(o) - z(p) 
            bmod = dsqrt(b(1)*b(1) + b(2)*b(2) + b(3)*b(3)) 
            abdot = a(1)*b(1) + a(2)*b(2) + a(3)*b(3) 
            costheta = abdot/(amod*bmod) 
            cos2theta = (2.0d0*(costheta**2))-1.0d0 
            rvdw = rad - delr*cos2theta 
            p12 = ((rvdw**12/bmod**12)*eps)/scale14 
            orp12 = ((rad**12/bmod**12)*eps)/scale14 
            p6 = (2.0d0*eps*(rad**6/bmod**6))/scale14 
            exv = exv + p12 
            oridev = ((orp12)*(-12.0d0/bmod))/bmod 
            orev = orev - orp12 
            ordexvdx = d(1)*oridev 
            ordexvdy = d(2)*oridev 
            ordexvdz = d(3)*oridev 
c 
c       loop over center(in id) & coordinate to generate derivatives 
c       zero derivative array 
c 
        do l = 1,3 
            do j = 1,3 
                dlocal(j,l) = 0.0d0 
            enddo 
        enddo 
        do l = 1,3 ! center 
            mm = id(l) 
            do j = 1,3 ! coordinate 
                da(1) = 0.0d0 
                da(2) = 0.0d0 
                da(3) = 0.0d0 
                if(mm.eq.ia) da(j) = 1.0d0 
                if(mm.eq.ib) da(j) = -1.0d0 
                damod = (a(1)*da(1)+a(2)*da(2)+a(3)*da(3))/amod 
                db(1) = 0.0d0 
                db(2) = 0.0d0 
                db(3) = 0.0d0 
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                if(mm.eq.ia) db(j) = 1.0d0 
                if(mm.eq.ic) db(j) = -1.0d0 
                dbmod = (b(1)*db(1)+b(2)*db(2)+b(3)*db(3))/bmod 
                dcostheta = (-((abdot)*(amod*dbmod+bmod*damod))/ 
     &          ((amod*bmod)**2))+((da(1)*b(1)+da(2)*b(2)+da(3)*b(3)) 
     &          +(a(1)*db(1)+a(2)*db(2)+a(3)*db(3)))/(bmod*amod) 
                dcos2theta = 4*costheta*dcostheta 
                dexvdw=((-12.0d0*eps*(rvdw/bmod)**11) 
     &          *(((delr*dcos2theta)/bmod)+((rvdw/(bmod**2)) 
     &          *dbmod)))/scale14 
                dlocal(j,l) = dlocal(j,l)+dexvdw 
              enddo 
            enddo 
c 
c       check original derivative array, note that o is i and p is k in elj1.f 
c 
            ordev(1,o) = ordev(1,o) - ordexvdx 
            ordev(2,o) = ordev(2,o) - ordexvdy 
            ordev(3,o) = ordev(3,o) - ordexvdz 
            ordev(1,p) = ordev(1,p) + ordexvdx 
            ordev(2,p) = ordev(2,p) + ordexvdy 
            ordev(3,p) = ordev(3,p) + ordexvdz 
c 
c       fill derivative array 
c 
            dexv(1,ia) = dexv(1,ia) + dlocal(1,2) 
            dexv(2,ia) = dexv(2,ia) + dlocal(2,2) 
            dexv(3,ia) = dexv(3,ia) + dlocal(3,2) 
            dexv(1,ib) = dexv(1,ib) + dlocal(1,1) 
            dexv(2,ib) = dexv(2,ib) + dlocal(2,1) 
            dexv(3,ib) = dexv(3,ib) + dlocal(3,1) 
            dexv(1,ic) = dexv(1,ic) + dlocal(1,3) 
            dexv(2,ic) = dexv(2,ic) + dlocal(2,3) 
            dexv(3,ic) = dexv(3,ic) + dlocal(3,3) 
c 
c       generate virial contributions 
c 
            vir(1,1) = vir(1,1)+(b(1)*dlocal(1,1)+c(1)*dlocal(1,2)) 
     &                  -(d(1)*ordexvdx) 
            vir(2,1) = vir(2,1)+(b(2)*dlocal(1,1)+c(2)*dlocal(1,2)) 
     &                  -(d(2)*ordexvdx) 
            vir(3,1) = vir(3,1)+(b(3)*dlocal(1,1)+c(3)*dlocal(1,2)) 
     &                  -(d(3)*ordexvdx) 
            vir(1,2) = vir(1,2)+(b(2)*dlocal(1,1)+c(2)*dlocal(1,2)) 
     &                  -(d(2)*ordexvdx) 
            vir(2,2) = vir(2,2)+(b(2)*dlocal(2,1)+c(2)*dlocal(2,2)) 
     &                  -(d(2)*ordexvdy) 
            vir(3,2) = vir(3,2)+(b(3)*dlocal(2,1)+c(3)*dlocal(2,2)) 
     &                  -(d(3)*ordexvdy) 
            vir(1,3) = vir(1,3)+(b(3)*dlocal(1,1)+c(3)*dlocal(1,2)) 
     &                  -(d(3)*ordexvdx) 
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            vir(2,3) = vir(2,3)+(b(3)*dlocal(2,1)+c(3)*dlocal(2,2)) 
     &                  -(d(3)*ordexvdy) 
            vir(3,3) = vir(3,3)+(b(3)*dlocal(3,1)+c(3)*dlocal(3,2)) 
     &                  -(d(3)*ordexvdz) 
         enddo 
c 
c        loop over electrostatics 
c        generate a list that doesn't have 1,2 1,3 terms 
c 
         mion = 0 
         do icion = 1,nion 
            break = 0 
            ic = ivdw(icion) 
            do k = 1, 10 
                if ((ic.eq.ixbnd(k,i))) then 
                    break = 1 
                endif 
            enddo 
            if (break.ne.1) then 
                mion = mion+1 
                ict(mion) = ic 
            endif 
         enddo 
         do icion = 1,mion 
            ic = ict(icion) 
            if (ic.gt.ia) then 
                o = ia 
                p = ic 
            elseif (ic.lt.ia) then 
                o = ic 
                p = ia 
            endif 
            id(3) = ic 
            qc = pchg(ic) 
            scale14 = 1.0d0 
            do j = 1, n14(ia) 
                if ((i14(j,ia).eq.ic)) then 
                    scale14 = 1.2d0 
                endif 
            enddo 
            b(1) = x(ia) - x(ic) 
            b(2) = y(ia) - y(ic) 
            b(3) = z(ia) - z(ic) 
            c(1) = x(ib) - x(ic) 
            c(2) = y(ib) - y(ic) 
            c(3) = z(ib) - z(ic) 
            d(1) = x(o) - x(p) 
            d(2) = y(o) - y(p) 
            d(3) = z(o) - z(p) 
            bmod = dsqrt(b(1)*b(1) + b(2)*b(2) + b(3)*b(3)) 
            abdot = a(1)*b(1) + a(2)*b(2) + a(3)*b(3) 
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            costheta = abdot/(amod*bmod) 
            cos2theta = (2.0d0*(costheta**2))-1.0d0 
            qfac = (qafac*cos2theta) + qcfac 
            ees = ((qfac*qc*electric)/(dielec*(bmod**2+ebuffer))) 
     &             /scale14 
            f =electric/dielec 
            fi = f*pchg(ic) 
            fik = fi*qa 
            r = bmod 
            rb = bmod+ebuffer 
            oriees= (fik/rb)/scale14 
            orec = orec - oriees 
            exc = exc + ees 
            oridec = -(fik/rb**2/r)/scale14 
            ordexcdx = d(1)*oridec 
            ordexcdy = d(2)*oridec 
            ordexcdz = d(3)*oridec 
c 
c           loop over center(in id) & coordinate to generate derivates 
c           zero derivative array 
c 
        do l = 1,3 
            do j = 1,3 
                dlocal(j,l) = 0.0d0 
            enddo 
        enddo 
        do l = 1,3 ! center 
            mm = id(l) 
            do j = 1,3 ! coordinate 
                da(1) = 0.0d0 
                da(2) = 0.0d0 
                da(3) = 0.0d0 
                if (mm.eq.ia) da(j) = 1.0d0 
                if (mm.eq.ib) da(j) = -1.0d0 
                damod=(a(1)*da(1)+a(2)*da(2)+a(3)*da(3))/amod 
                db(1) = 0.0d0 
                db(2) = 0.0d0 
                db(3) = 0.0d0 
                if (mm.eq.ia) db(j) = 1.0d0 
                if (mm.eq.ic) db(j) = -1.0d0 
                dbmod = (b(1)*db(1)+b(2)*db(2)+b(3)*db(3))/bmod 
                dcostheta = (-1.0d0*((abdot)*(amod*dbmod+bmod*damod))/ 
     &           ((amod*bmod)**2))+((da(1)*b(1)+da(2)*b(2)+da(3)*b(3)) 
     &           +(a(1)*db(1)+a(2)*db(2)+a(3)*db(3)))/(bmod*amod) 
                dcos2theta = 4*costheta*dcostheta 
                dexcc = (((qafac*qc*dcos2theta*electric)/ 
     &          (dielec*(bmod**2)))-((2.0d0*qfac*qc 
     &          *electric*dbmod)/(dielec*(bmod**3))))/scale14 
c                print *, "this is dexcc", dexcc 
                dlocal(j,l) = dlocal(j,l) + dexcc 
c                print *, "this is dlocal for cc", dlocal 
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              enddo 
            enddo 
c 
c       check original derivative array, note that o is i and p is k in echarge1.f 
c 
            ordec(1,o) = ordec(1,o) - ordexcdx 
            ordec(2,o) = ordec(2,o) - ordexcdy 
            ordec(3,o) = ordec(3,o) - ordexcdz 
            ordec(1,p) = ordec(1,p) + ordexcdx 
            ordec(2,p) = ordec(2,p) + ordexcdy 
            ordec(3,p) = ordec(3,p) + ordexcdz 
c 
c       fill derivative array 
c 
            dexc(1,ia) = dexc(1,ia) + dlocal(1,2) 
            dexc(2,ia) = dexc(2,ia) + dlocal(2,2) 
            dexc(3,ia) = dexc(3,ia) + dlocal(3,2) 
            dexc(1,ib) = dexc(1,ib) + dlocal(1,1) 
            dexc(2,ib) = dexc(2,ib) + dlocal(2,1) 
            dexc(3,ib) = dexc(3,ib) + dlocal(3,1) 
            dexc(1,ic) = dexc(1,ic) + dlocal(1,3) 
            dexc(2,ic) = dexc(2,ic) + dlocal(2,3) 
            dexc(3,ic) = dexc(3,ic) + dlocal(3,3) 
c 
c       generate virial contributions 
c 
            vir(1,1)=vir(1,1)+(b(1)*dlocal(1,1)+c(1)*dlocal(1,2)) 
     &                  -(d(1)*ordexvdx) 
            vir(2,1)=vir(2,1)+(b(2)*dlocal(1,1)+c(2)*dlocal(1,2)) 
     &                  -(d(2)*ordexvdx) 
            vir(3,1)=vir(3,1)+(b(3)*dlocal(1,1)+c(3)*dlocal(1,2)) 
     &                  -(d(3)*ordexvdx) 
            vir(1,2)=vir(1,2)+(b(2)*dlocal(1,1)+c(2)*dlocal(1,2)) 
     &                  -(d(2)*ordexvdx) 
            vir(2,2)=vir(2,2)+(b(2)*dlocal(2,1)+c(2)*dlocal(2,2)) 
     &                  -(d(2)*ordexvdy) 
            vir(3,2)=vir(3,2)+(b(3)*dlocal(2,1)+c(3)*dlocal(2,2)) 
     &                  -(d(3)*ordexvdy) 
            vir(1,3)=vir(1,3)+(b(3)*dlocal(1,1)+c(3)*dlocal(1,2)) 
     &                  -(d(3)*ordexvdx) 
            vir(2,3)=vir(2,3)+(b(3)*dlocal(2,1)+c(3)*dlocal(2,2)) 
     &                  -(d(3)*ordexvdy) 
            vir(3,3)=vir(3,3)+(b(3)*dlocal(3,1)+c(3)*dlocal(3,2)) 
     &                  -(d(3)*ordexvdz) 
        enddo 
      enddo 
      return 
      end 
 
 
 


