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ABSTRACT 

 

 

 

ESTIMATING PRE-FIRE FOREST STRUCTURE WITH STEREO IMAGERY AND POST-FIRE LIDAR 

 

 

 

Lidar has become an established tool for mapping forest structure attributes including those 

used as inputs for fire behavior and effects modelling. However, lidar is rarely available to document 

pre-fire conditions due to its sparse availability. In contrast, aerial imagery is regularly collected in many 

regions, and advances in stereo image matching have enabled the creation of dense photogrammetric 

point clouds similar to those from lidar. As part of a study of the physical and ecological impacts of the 

2012 High Park Fire, we generated a photogrammetric point cloud from pre-fire aerial imagery collected 

in 2008 and calculated forest height using a digital terrain model generated from a 2013 post-fire lidar 

collection. A suite of canopy height and density metrics were created from both the pre-fire 

photogrammetry and the post-fire lidar point clouds. These metrics were compared to each other and 

to forest structure attributes measured in the field. 

For unburned areas, we found strong relationships between corresponding lidar and 

photogrammetry height and density metrics with biases that were consistent with known differences in 

eaĐh seŶsor͛s ŵethod of sampling the canopy. Regressions models of field-measured forest structure 

attributes incorporating both lidar and photo metrics demonstrated that a single equation could 

estimate some forest structure attributes without significant intercept or slope bias due to the source of 

the metrics (i.e. photo or lidar). Models of aboveground biomass on unburned plots had similar root 

mean square errors for lidar (29.3%), photogrammetry (31.0%), and combined data sources (RMSE = 

29.1% and source intercept bias = 34.64 Mg ha-1 and slope bias = -0.28). Similar results were obtained 

for LoreǇ͛s height, ďasal area, aŶd ĐaŶopǇ ďulk deŶsitǇ. Models of struĐture iŶ ďurŶed areas deriǀed 

from post-fire lidar had loǁer perforŵaŶĐe thaŶ photograŵŵetrǇ due to the fire͛s ĐoŶsuŵption of 
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canopy materials which generally reduced the explanatory power of lidar density metrics. Pre-fire forest 

structure information could aid assessments of contributing factors such as canopy fuels and fire effects 

such as loss of biomass. The wide spatial and temporal coverage of aerial photos and growing coverage 

of lidar could enable many other applications of combining photogrammetry with lidar, including 

assessments of changes in forest carbon storage. 
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1 Introduction 

Remote sensing has matured to the point that it is now relied on for wall-to-wall mapping of 

forest structure for carbon accounting, operational forestry, fuels management, conservation biology, 

and numerous other applications. While two-dimensional optical remote sensing systems are 

sometimes used for these applications, sensors and methods which are capable of detecting three-

dimensional structure (e.g. interferometric synthetic aperture radar, light detection and ranging (lidar), 

and stereo photogrammetry) generally provide more accurate estimates of forest structure attributes. 

Lidar in particular has gained widespread adoption in forest research and management applications over 

the last two decades because of its ability to accurately estimate the vertical structure of forest 

canopies. By sampling the ground topography in addition to the canopy, lidar is capable of directly 

estimating canopy height. Canopy height and cover metrics derived from lidar greatly enhance 

prediction accuracy in models of basal area, timber volume, leaf area index, aboveground biomass, 

canopy bulk density, and other structure attributes.  

This ability has made lidar appealing to numerous land management and research organizations. 

For example, lidar is now widely used for operational forest inventories in Norway, Finland, Canada, and 

other parts of the world (Maltamo, Næsset, & Vauhkonen, 2014). Recent research has focused on 

implementing lidar for national-scale carbon accounting that meets the measuring, reporting, and 

verification standards of carbon monitoring programs such as the Reducing Emissions from 

Deforestation and forest Degradation framework developed by the United Nations (Goetz & Dubayah, 

2011). Canopy fuels maps required for fire behavior modeling have been derived from various passive 

and active remote sensing systems, but lidar is often the most effective of these technologies due to its 

ability to sample the vertical distribution of the entire canopy (Keane, 2015). By capturing the three-

dimensional structure of vegetation, lidar has also proven effective at mapping key habitat 

characteristics for wildlife research (e.g. Vierling, Vierling, Gould, Martinuzzi, & Clawges, 2008). Dubayah 
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and Drake (2000) and Lefsky, Cohen, Parker and Harding (2002), among others, recognized the potential 

for lidar in these and other applications during its early development ǁhiĐh spurred lidar͛s rapid and 

widespread adoption.  

Disturbance has long been recognized as an essential process in forest ecosystems, and 

remotely sensed imagery is frequently used to evaluate the effects of forest disturbances (Frolking et al., 

2009; Lentile, Holden, et al., 2006). Despite its rapid growth, applications of lidar for understanding 

forest disturbance remain limited because pre-disturbance lidar is rarely available. Several studies have 

demonstrated the potential of lidar for measuring canopy fuels that serve as input to fire behavior 

models (Andersen, McGaughey, & Reutebuch, 2005; Erdody & Moskal, 2010; Hermosilla, Ruiz, Kazakova, 

Coops, & Moskal, 2014), but only a few studies have collected lidar data after a fire to investigate the 

potential causes and effects of the fire. Lefsky, Turner, Guzy, and Cohen (2005) estimated net primary 

productivity following stand initiation from disturbances such as fire and logging using biomass 

estimates from lidar and stand age estimated from Landsat change detection. Wulder et al. (2009) used 

pre- and post-fire profiling lidar and Landsat imagery to study the relationship between forest structure 

and post-fire conditions. Goetz, Sun, Baccini, and Beck (2010) evaluated changes in canopy height and 

vegetation regrowth following fires in Alaska with the Geoscience Laser Altimeter System, a spaceborne 

waveform lidar sensor. Kane et al. (2013) used lidar to gauge the effect of burn severity on canopy 

structure in Yosemite National Park and found that increased severity was related to greater canopy 

openness and patchiness even decades after a fire. Two forest service technical reports have 

demonstrated the potential for using pre- and post-fire lidar to characterize changes in vegetation from 

disturbance (Kaufmann, Stoker, & Greenlee, 2006; R. A. White & Dietterick, 2012).  

It may also be possible to obtain pre-fire canopy height information from airborne lidar 

collected immediately after a fire by observing the remaining burned snags which might allow 

estimation of pre-fire forest structure. This type of analysis is complicated by the challenge of obtaining 
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lidar returns from the canopy of burned stands. Charred and leafless trees have low surface area and 

reflectivity which reduces their likelihood of being detected and accurately measured by a lidar sensor. 

Adequately measuring the height of burned snags may require higher laser power and pulse density 

than what is typically necessary for mapping unburned forests. Wing, Eklund, and Sessions (2010) is the 

only study to date to assess the accuracy of lidar for measuring individual burned trees. Using lidar with 

point densities between 1.6 and 2.5 points per m2 they achieved height accuracies of 2.8-4 m (RMSE) 

and an omission error of 15%. Their results suggest that lidar could still serve as a useful tool for forest 

inventory in a post-fire landscape, but to our knowledge, no studies have examined the effect of burn 

severity on lidar height and density metrics and how it might impact estimates of pre-fire forest 

structure.  

In recent years photogrammetry has reemerged as a possible alternative to lidar because of 

improvements in image matching algorithms, increased computational power, and low cost aerial image 

collection, including the rapid growth of unmanned aerial systems (Colomina & Molina, 2014). Modern 

image matching algorithms such as Semiglobal Matching (Hirschmuller, 2008) are capable of producing 

point clouds with a higher density than lidar at lower cost, but the photogrammetric point cloud only 

captures the canopy surface as opposed to the full distribution of observed surfaces such as those 

obtained from multiple-return or waveform lidar. Since image matching in forests often results in sparse 

points on the terrain surface, a high resolution digital terrain model (DTM) must be obtained from lidar 

(or another technology capable of penetrating the canopy) to normalize the photogrammetric point 

cloud to ground level. Height and density metrics derived from the normalized photogrammetric point 

cloud have proven effective at estimating forest structure attributes but with a slightly lower accuracy 

than lidar (J. C. White et al., 2013). To date, almost all studies using photogrammetric point clouds have 

taken place in boreal forests (Bohlin, Wallerman, & Fransson, 2012; Gobakken, Bollandsås, & Næsset, 

2015; Järnstedt et al., 2012; Montesano, Sun, Dubayah, & Ranson, 2014; Nurminen, Karjalainen, Yu, 
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Hyyppä, & Honkavaara, 2013; Pitt, Woods, & Penner, 2014; Vastaranta et al., 2013), and there is a need 

to test this approach in other forest types. Existing research has also emphasized the application of this 

approach to updating forest inventories by combining a pre-existing lidar DTM with new stereo imagery 

(J. C. White et al., 2013), but the combination of lidar and photogrammetry can also be used to examine 

past landscape states by collecting airborne lidar in locations that have pre-existing stereo imagery 

(Véga & St-Onge, 2008). Successful application of this approach in other forest types could enable 

estimates of forest structure within any several year time window for many parts of the United States 

because of the widespread and frequent collection of aerial and satellite imagery with stereo overlap.  

Mapping past forest structure conditions with lidar or photogrammetry has potential 

applications in quantifying changes in structure and understanding the influence of pre-fire structure on 

fire effects and post-fire trajectories. Field studies have incorporated plot-level measures of pre-fire 

structure in models of burn severity to compare its influence relative to topography and weather 

(Alexander, Seavy, Ralph, & Hogoboom, 2006; Lydersen, North, & Collins, 2014; Turner, Romme, & 

Gardner, 1999). Wall-to-wall maps of pre-fire structure derived from imagery or mixed-source spatial 

databases have also been used for this purpose (Bigler, Kulakowski, & Veblen, 2005; Lentile, Smith, & 

Shepperd, 2006; Odion et al., 2004; Thompson & Spies, 2009), but only recently has remotely sensed 

three-dimensional structure been incorporated in modelling burn severity (Kane et al., 2015). Pre-fire 

basal area and tree density have been included in models of post-fire tree regeneration (Broncano & 

Retana, 2004; Greene & Johnson, 1999; Harvey, Donato, Romme, & Turner, 2013). Mapping these pre-

fire structure attributes could be used to estimate seedling density across a burn area and forecast post-

fire succession trajectories. Pre-fire structure has also be used to estimate post-fire habitat quality for 

wildlife such as woodpeckers (Nappi & Drapeau, 2011). These applications illustrate the utility of 

mapping pre-fire structure with remote sensing to enable spatial analysis of disturbance effects and 

post-disturbance trajectories. 
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This study compares the potential of pre-fire photogrammetry (with a post-fire DTM from lidar) 

and post-fire lidar for mapping pre-fire forest structure. The study area covers the High Park fire which 

took place in northern Colorado in 2012. We compare lidar and photogrammetry estimates of forest 

structure attributes in unburned areas to examine whether these two remote sensing methods can be 

used interchangeably. If so, photogrammetry could serve as an alternative to lidar for mapping structure 

of similar forests, and direct comparison of estimates from lidar and photogrammetry could characterize 

change in forest structure. We also evaluate the relative effectiveness of using post-fire lidar and pre-

fire photogrammetry for recovering pre-fire forest structure in burned areas. We expect high levels of 

canopy consumption to cause inconsistent decreases in canopy height and density metrics from post-

fire lidar, which will lead to a weaker relationship with associated forest structure attributes. To test 

this, we compare estimates of pre-fire forest structure made with post-fire lidar to estimates made with 

pre-fire photogrammetry. To evaluate the effect of fire on the quality of statistical models of forest 

attributes, we compared models of forest attributes from lidar in burned and unburned areas. Maps of 

pre-fire forest structure are derived from the most accurate models and used to evaluate the influence 

of canopy fuels on burn severity and also evaluate the effects of the fire on forest structure such as loss 

of biomass.  
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2 Methods  

2.1 Study area 

Field and remotely sensed data were collected within and immediately surrounding the burn 

perimeter of the High Park fire in northern Colorado (40°37'N, 105°21'W) (Figure 1). The High Park fire 

burned an area of approximately 35,300 hectares in June 2012, half of which was composed of public 

lands (Natural Resources Conservation Service, Larimer County, United States Forest Service, & Colorado 

Department of Transportation, 2012). Burn severity was heterogeneous over the entire study area, with 

12.8%, 27.5%, 18.7%, and 41% of the area consisting of unburned, low, moderate, and high burn 

severity, respectively (Stone, 2015). Elevation ranges from 1600 m in the eastern foothills immediately 

outside the burn perimeter to 3100 m in the more mountainous western region of the burn area. Lower 

elevations are primarily composed of mature montane coniferous forests dominated by a mixture of 

ponderosa pine (Pinus ponderosa) and Douglas-fir (Psuedotsuga menziesii) on northern aspects and 

open ponderosa pine stands on southern aspects. Higher elevations in the western portion of the study 

area are dominated by mature lodgepole pine (Pinus contorta) stands. Aspen stands, grasslands, 

shrublands, and riparian areas comprise a much smaller proportion of the total area. Immediately prior 

to the fire, approximately 17% of the burn area contained pines in the red or grey phase of mountain 

pine beetle (Dendroctonus ponderosae) attack which began to reach epidemic levels in 2009 (Stone, 

2015).  

2.2 Field data 

Field data collected in the fall of 2012 were used to estimate forest structure attributes for 50 

unburned and 45 burned inventory plots.  Plot locations were randomly distributed according to a 

spatially clustered plot design stratified by forest type, elevation, prior beetle activity, and burn severity. 

Plot centers were georeferenced with Trimble Juno or GeoXH GPS receivers and differentially corrected 

using a nearby continuously operating reference station (CORS) to an average horizontal precision of 3.1 
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m. Inventory plots were 20 m by 20 m with 10 m by 10 m sub-plots. Tree measurements in all sub-plots 

included species, diameter at breast height (DBH), stem location, burn status, and mortality status for all 

trees with a DBH greater than 10 cm. For all trees with burn signs, such as charred bark, needle loss, or 

scorch, we recorded the scorch height and we visually estimated crown consumption as the percentage 

of the pre-fire crown volume consumed by the fire. Tree heights were measured with a laser 

hypsometer for at least 10 trees and the tallest tree in each 20 m by 20 m plot beginning in the 

southwest sub-plot and sampling other sub-plots if necessary.  

Tree height was estimated for the unmeasured trees on each plot using the ‘ paĐkage ͚lŵfor͛ 

(Mehtatalo, 2015) to implement species-specific nonlinear mixed-effects models using the Wykoff 

height-diameter function (Wykoff, Crookston, & Stage, 1982). Unburned and undamaged trees were 

used as a source of heights, and species with fewer than 10 measured trees had heights estimated using 

the Wykoff model with coefficients from the Forest Vegetation Simulator Central Rockies variant (Keyser 

& Dixon, 2015).  Estimated heights were also used for burned trees which had their height reduced due 

to lean or breakage so that estimates of mean height and LoreǇ͛s height (i.e. mean basal area weighted 

height) on burned plots would more accurately reflect their pre-fire status. Root mean square errors of 

tree height imputation were less than 2 m or 18% of the mean observed height for all species, which we 

deemed acceptable for estimation of mean height and LoreǇ͛s height. Even though field data were 

collected four years after the aerial imagery and one year prior to the lidar, similar studies have 

assumed that the slow growth rate of these mature pine and mixed conifer forests makes tree size 

corrections unnecessary (Hall, Burke, Box, Kaufmann, & Stoker, 2005). 

Forest structure attributes derived from field data included maximum canopy height, LoreǇ͛s 

height, aboveground biomass, basal area, canopy bulk density, and canopy base height (Table 1). We 

chose to include maximum canopy height because it is the attribute most directly measured by lidar and 

photogrammetry. Therefore it serves as an indicator of the height measurement accuracy of each 
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method without requiring assumptions about how it samples the canopy, as would be necessary for 

more complex tree height indices (e.g. the mean height of dominant and co-dominant trees). For 

lodgepole pine we calculated aboveground biomass from allometries developed by Pearson, Fahey, and 

Knight (1984) in the nearby Medicine Bow Mountains; aboveground biomass for all other species was 

calculated from the appropriate general equations developed by Chojnacky, Heath, and Jenkins (2014). 

The Chojnacky et al. (2014) allometries, which are an update to the meta-analysis of individual species 

allometries in North America performed by Jenkins, Chojnacky, Heath, and Birdsey (2003), contains 35 

new general equations which divide species on the basis of taxonomic grouping and wood specific 

gravity. In the burned areas, tree boles were rarely charred deeply enough to affect diameter 

measurements, even for beetle-killed trees in severely burned plots, so no correction was applied to 

pre-fire DBH measurements. This method of pre-fire stand reconstruction has been implemented in 

other studies for carbon accounting (Johnson et al., 2005; Meigs, Donato, Campbell, Martin, & Law, 

2009; Michalek, French, Kasischke, Johnson, & Colwell, 2000). Pre-fire canopy bulk density and canopy 

base height were estimated for plots which had ponderosa pine, lodgepole pine, or Douglas-fir as the 

dominant species. These estimates were based on allometric equations that consider dominant species, 

stand density, basal area, and mean canopy height using the appropriate equations from Cruz, 

Alexander, and Wakimoto (2003). 

2.3 Remote sensing data collection and processing 

NEON͛s AirďorŶe OďserǀatorǇ Platforŵ ĐolleĐted small footprint discrete return lidar over the 

entire burn scar and surrounding area in July 2013 using an Optech ALTM Gemini. Ninety-seven flight 

lines with ~30% overlap were collected over the burn area using a mean swath pulse density of 1.87 

pulses per square meter, and were delivered as up to four discrete returns in LAS format (Table 2). Initial 

processing involved identification of ground points with LAStools (Isenburg, 2011) which uses a 

progressive TIN densification algorithm similar to the method developed by Axelsson (2000). The ground 
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points and resulting DTM were used to calculate the height of points above the ground surface. Three 

categories of point cloud metrics were calculated from all points that were greater than 2 m above the 

terrain (Table 3). Height profile metrics were calculated using all point returns above the 2 m cutoff and 

included the height minimum, maximum, mean, quadratic mean, and six height percentiles. The height 

variation category included the standard deviation, coefficient of variation, skew, kurtosis, range, and 

interquartile range of point heights. The point density category included canopy cover (percent of first 

returns above the 2 m cutoff), canopy density (percent of all returns above the 2 m cutoff), and the 

percent of all returns within four fixed height intervals.  

Aerial images were collected in 2008 using a Z/I Imaging DMC-1 camera in 15 flight lines at an 

altitude of 3200 m above ground level with approximately 60% forward overlap and 30% side overlap, 

which enables stereo photogrammetric processing (Table 2). The images have four bands (red, green, 

blue, and near infrared) with ~1.2 m ground sampling distance (GSD) and a higher resolution 

panchromatic band that was used to pan-sharpen the images to ~30 cm GSD. Initial camera locations 

and orientation obtained from the airĐraft͛s GP“ aŶd iŶertial ŵeasureŵeŶt uŶit ǁere ĐorreĐted iŶ a 

bundle block adjustment with 40 control points identified on a lidar intensity image and DTM to co-

register the images to the lidar data. Coregistration with the lidar had a horizontal RMSE of 0.72 m and a 

vertical RMSE of 0.82 m as determined from 9 check points which were also derived from the lidar 

intensity image and DTM. Stereo image matching in the PhotoScan software (Photoscan Professional 

Edition, 2015) with the ͞Ultra Quality͟ setting produced a photogrammetric point cloud capturing the 

canopy surface with an average point density of 12.91 points per square meter over plot areas and 

15.89 points per square meter for the entire study area. The lidar DTM was subtracted from the 

photogrammetric point cloud to calculate the height of points above the ground surface. We then 

calculated the same point cloud metrics as done for the lidar (Table 3).  
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The images were orthorectified with the lidar DTM to a spatial resolution of 0.25 m and 

mosaicked for producing vegetation and image texture metrics (Table 3). Vegetation and texture indices 

represent a source of potentially useful information which are not commonly available for lidar-based 

modelling of forest structure but can easily be produced from aerial imagery. From the orthomosaic we 

calculated the Normalized Difference Vegetation Index (NDVI), which is associated with the quantity of 

healthy foliage and related attributes (Carlson & Ripley, 1997). Since the imagery was mostly collected in 

the summer of 2008, NDVI should be related to the amount of live vegetation prior to the bark beetle 

infestation which began to reach red-phase at epidemic levels in our study area starting in 2009 (Stone, 

2015). First-order texture indices (e.g. variance of pixels in a moving window) and second-order indices 

(e.g. contrast of a grey-level co-occurrence matrix) were calculated from NDVI. These indices have been 

associated with vegetation structure in other studies (Hudak & Wessman, 1998; Tuominen & 

Pekkarinen, 2005) and may provide additional explanatory power over point-cloud based height and 

cover metrics derived from photogrammetry. A grey level co-occurrence matrix was calculated for each 

pixel falling within the plot area from the NDVI of the aerial imagery using a 3 by 3 window, a shift of 

one in the x and y direction and 64 quantization levels. Second-order texture indices, also known as 

Haralick texture features (Haralick, Shanmugam, & Dinstein, 1973), were calculated from the grey level 

co-occurrence matrix for every pixel falling within the plot area, and the average value of each index was 

used as the texture metric for the plot (Table 3). We examined the relationship between these indices 

and forest structure, and included them in regression modelling to evaluate whether they could improve 

model performance.  

2.4 Data analysis 

2.4.1 Effect of crown consumption on post-fire lidar 

We examined the effects of burn severity on post-fire lidar metrics and their ability to estimate 

pre-fire forest structure through three analyses. Scatterplots and linear models were used to identify the 
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effect of canopy consumption on lidar metrics and on their ability to estimate pre-fire forest height and 

tree density attributes. We compared maximum lidar point height (Hmaxlidar) to maximum tree height 

measured in the field since they should have the most direct correspondence.  Estimates of canopy 

cover are often critical for estimating forest structure attributes such as aboveground biomass from lidar 

because cover is related to stand density. Since field data was collected after the fire, it was not possible 

to obtain field measurements of pre-fire canopy cover on burned plots for comparison to the post-fire 

lidar estimates of cover. NDVI from May 2012 RapidEye imagery was weakly correlated (r = 0.32) with 

lidar estimates of canopy cover in forested unburned areas, which indicated that pre-fire NDVI may be a 

poor measure of canopy cover in this case. Instead, we selected field-measured stem density as a proxy 

for pre-fire cover to assess the influence of canopy consumption on post-fire lidar cover metrics because 

cover and the square root of stand density in unburned plots are highly correlated. Scatterplots of these 

two relationships (maximum tree height ~ Hmax and tree density ~ cover) and associated linear models 

indicate how sensitive lidar measurements were to canopy consumption.  

We also examined the effect of burn severity on post-fire lidar metrics and their association with 

forest structure attributes through multiple regression models which incorporated estimates of canopy 

consumption as an explanatory variable. The perĐeŶtage of eaĐh tree͛s ĐroǁŶ ǀoluŵe ǁhiĐh ǁas 

consumed by the fire was visually estimated in the field. The average of these tree-level crown 

consumption estimates (AvgCC) was included as a single variable and as an interaction term with the 

selected lidar metrics. We tested the significance of these interactions and compared the percent of 

variance explained with and without their inclusion.  

2.4.2 Comparison of lidar and photogrammetric point clouds  

Metrics derived from the distribution of lidar point heights or the proportion of points within 

vertical layers are often excellent predictors of forest structure attributes such as aboveground biomass. 

These metrics can also be calculated from photogrammetric point clouds, but the physical meaning of 
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photogrammetry-based metrics do not have a one-to-one correspondence with lidar-based metrics 

because photogrammetry only samples the outer surface of the canopy whereas lidar can sample both 

the surface and interior of the canopy by penetrating through gaps between individual leaves and 

branches. As such, lidar can accurately estimate canopy cover (Korhonen, Korpela, Heiskanen, & 

Maltamo, 2011) and the vertical distribution of all canopy elements (Figure 2). To examine the 

magnitude of difference between these two remote sensing approaches, we used scatterplots and linear 

models to compare corresponding height and density metrics derived from the lidar and 

photogrammetric point clouds.  Strong correlations between corresponding metrics generated from 

each point cloud, along with slopes near to one and intercepts near to zero, would indicate that those 

metrics are relatively insensitive to the presence of canopy interior points. The lack of an identity 

relationship would indicate that lidar and photogrammetric estimates could not be used 

interchangeably in regression equations. However, the metrics derived from photogrammetry (or lidar) 

ŶeedŶ͛t be less informative predictors of forest structure on their own. In some previous studies, height 

metrics derived solely from lidar first returns were selected as more informative predictors than metrics 

derived from all returns (e.g. Hall et al., 2005; Næsset, 2002), which indicates that in some cases 

information on the canopy surface alone can be more strongly related to forest structure attributes. We 

also examined the correlation between the metrics from each sensor and several forest structure 

attributes to understand how differences between lidar and photogrammetry metrics affected their 

association with forest structure. 

2.4.3 Estimates of forest structure attributes from lidar and photogrammetry  

We used ordinary least squares regression models to compare the ability of canopy metrics 

derived from lidar and photogrammetry point clouds to estimate forest structure attributes. Analyses 

were performed separately for burned and unburned plots. Results for unburned plots can be used to 

address questions related to the relative performance of lidar and photogrammetry for future studies of 
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temperate coniferous forest structure. Analyses for burned plots allow us to compare the relative utility 

of using post-fire lidar and pre-fire photogrammetry for estimating pre-fire forest structure. In addition, 

the utility of image texture and vegetation metrics was examined by comparing models of forest 

structure attributes created from photogrammetric point cloud metrics with and without these image 

metrics.  

While these analyses inform our understanding of how the two sets of metrics perform for 

estimating forest structure, direct comparison of models is hampered by collinearity of the independent 

variables which makes it difficult to evaluate differences in variable selection. For instance, models 

based on either lidar or photogrammetry data sources might select different independent variables, but 

those independent variables might be highly correlated in both datasets. To address this problem, we 

combined the observed point cloud metrics from lidar and photogrammetry and duplicated the 

observed forest structure attribute for variable selection and regression modelling of unburned plots. 

We then regressed the predictions from these models on the observed values and included the data 

source as a categorical variable to test if data from lidar or photogrammetry could be used 

interchangeably in the same model without significant bias. 

To select a subset of independent variables to use in each regression model, we examined 

correlations of individual point cloud and image metrics with forest structure attributes. A correlation-

based filtering strategy was first employed to select one independent variable from each of the five 

variable classes: height, height variability, density, texture, and vegetation indices (Table 3). Within each 

class, the variable which had the highest correlation with the response was kept in the regression 

model. Final models were selected by identifying the subset of the filtered variables which yielded the 

lowest Akaike Information Criterion (AIC) with a condition number less than 30. This method of variable 

selection yielded parsimonious models and reduced potential problems with multicollinearity in the final 

model since variables were highly correlated within the categories but not between them. We 
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compared the model fit for the different attributes and scenarios by the adjusted coefficient of 

determination (Adj R2). Model prediction accuracy was compared by the root mean square error from 

leave-one-out cross-validation expressed as a percent of the mean observed value (%RMSE). Model 

selection was performed within a cross-validation loop to avoid overestimating prediction accuracy 

(Kuhn & Johnson, 2013).   
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3 Results 

3.1 Effect of crown consumption on post-fire lidar 

High canopy consumption weakened the relationship between lidar cover metrics and pre-fire 

forest structure attributes, but had little effeĐt oŶ lidar͛s ability to estimate pre-fire canopy height. 

Contrary to our expectations, pre-fire maximum tree height was noticeably underestimated by lidar on 

only a few of the severely burned plots, and the correlation between observed maximum tree height 

and Hmaxlidar was similar for burned and unburned plots (Figure 3). By contrast, the relationship 

between coverlidar and pre-fire tree density was much weaker in burned plots (Figure 4) because severely 

burned plots often had a coverlidar near zero even when pre-fire tree density was relatively high. Since 

the imagery was collected before the fire, high canopy consumption did not decrease the strength of the 

relationship between Hmaxphoto and pre-fire maximum tree height or coverphoto and pre-fire tree density.  

In fact, the relationship between coverphoto and tree density was weaker on unburned plots than burned 

plots primarily because of inaccurate cover metrics for three plots whose photogrammetric point clouds 

had high vertical bias with respect to the lidar ground model (r2 = 0.66 after vertical bias correction).  

Based on the results in Figure 3 and Figure 4, we expected the indicator of canopy consumption 

(AvgCC) to be a significant factor in models of forest structure attributes of burned stands. However, 

including AvgCC in lidar-based regression models of structure attributes increased the percent of 

variance explained by less than two percentage points. AvgCC or its interactions often had small 

coefficients and were only significant iŶ the ŵodels of ŵaǆiŵuŵ tree height, LoreǇ͛s height, aŶd ďasal 

area (Table 4).   

3.2 Comparison of lidar and photogrammetric point clouds for unburned plots 

Comparing height distributions and metrics derived from the lidar and photogrammetric point 

clouds of unburned plots revealed trends consistent with their respective methods for sampling the 

forest canopy (Figure 5). Percentile height metrics (p25, p50, p75, p90, Hmax) that are relatively closer 
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to the top of the canopy had slopes closer to one and had higher correlations. Maximum height (Hmax, 

i.e. 100th percentile) had a strong positive relationship with many points falling near the one-to-one line. 

The differences in Hmaxlidar and Hmaxphoto were more pronounced for short stands as a result of 

photograŵŵetrǇ͛s teŶdeŶĐǇ to uŶderestiŵate height in stands where HMAX was less than 10 m (Figure 

3). In one plot, noise from false image matching led to Hmax being much higher for photogrammetry. 

However, in reviewing the photogrammetric point cloud we found noise from poor image matching 

more commonly resulted in points below the ground level than above the actual tree canopy. Since 

these noise points were below the 2m cutoff they had no effect on height metrics unless there was also 

a high positive vertical bias. Height histograms of individual plots (not shown) revealed that 

photogrammetry-based point clouds tended to be clustered around a single height level with a few 

points generated much higher or lower in the canopy, which sometimes resulted in long tails in the 

height distribution. These compact but long-tailed height histograms from photogrammetry also 

affected height variability metrics. Photogrammetry derived point clouds tended to have a lower 

interquartile range, but a greater skew and kurtosis than lidar. Density metrics from lidar and 

photogrammetry had fairly high correlations of 0.63 to 0.9 despite photogrammetry-based metrics 

being saturated near 100% for many plots. Photogrammetry-based cover metrics (coverphoto and 

densityphoto) also had a stronger relationship to lidar first returns (coverlidar) than to all returns 

(densitylidar). As with the height percentile metrics, the density layer metrics, such as d01 and d02, 

showed slopes closer to one and higher correlations for higher vertical layers.  

For unburned plots, lidar and photogrammetry metrics had similar levels of correlation with the 

field-estimated structure attributes (Figure 6), with lidar having correlations that were greater in 

magnitude by only 0.11 on average. The absolute maximum correlations between the metrics and the 

field attributes were also similar across datasets, having a difference of less than 0.1 for all attributes. 

However, lidar density metrics had higher maximum correlations with every field attribute, and lidar 
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height variability metrics also had higher absolute maximum correlations with all attributes except 

canopy base height and basal area. Although maximum correlations were similar between lidar and 

photogrammetry the identity of the most strongly correlated metric differed in some cases. For 

example, aboveground biomass was most strongly correlated with p50lidar and p75photo. As with the 

comparison of lidar and photo generated height metrics, the correlation of height metrics with field 

attributes was higher for height metrics that reflect the distribution of the uppermost canopy (e.g. max 

height from field data or higher percentile heights from point clouds derived from either source).  The 

difference in the magnitude of correlation between lidar and photogrammetry metrics with field 

attributes also decreased with increasing height percentile.  

3.3 Estimates of forest structure attributes from lidar and photogrammetry 

3.3.1 Estimates from lidar 

As expected, regression models from post-fire lidar predicted forest structure attributes on 

unburned plots more accurately than on burned plots, particularly for aboveground biomass, basal area, 

and canopy bulk density (Table 5). On unburned plots, lidar-based models had fit and prediction 

aĐĐuraĐies oŶ par ǁith results froŵ Hall et al.͛s studǇ (2005) in a similar forest in Colorado. On burned 

plots, lidar-based models of height attributes had moderately lower prediction accuracy relative to their 

unburned counterparts, with %RMSE higher by 8.1 percentage points for maximum height, 12.1 for 

LoreǇ͛s height, aŶd ϰ.ϭ for ĐaŶopǇ ďase height. With one exception (canopy base height on burned 

plots), a single height variable was selected for models of height attributes. This made them more robust 

than the models of aboveground biomass, basal area, and canopy bulk density which relied on both 

height and density metrics that were affected by canopy consumption. The ability of lidar-based models 

to predict these other forest structure attributes on burned plots declined more substantially, with an 

increase in %RMSE of 16.4 for basal area, 15.7 for aboveground biomass, and 22.8 for canopy bulk 

density. Models of these structure attributes relied on both height and density metrics, which made 
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them more susceptible to weaker relationships between these metrics and the canopy structure of 

burned plots. This is a reflection of the effect of crown consumption on lidar density metrics and, to a 

lesser extent, height metrics which are shown in Figure 4 and Figure 3, respectively.  

3.3.2 Estimates from photogrammetry 

For unburned plots, the explained variance (Adj R2) and prediction accuracy (%RMSE) for models 

predicting structure attributes was nearly equivalent for photogrammetry and lidar-based models for 

most structure attributes (Table 5). Hmaxlidar had nearly a one-to-one relationship with maximum tree 

height and a measurement bias of 0.8 m and standard error of 1.6 m while Hmaxphoto had a bias of 0.2 m 

and a standard error of 2.7 m (Figure 3). With an intercept of 4.95 and a slope of 0.64, the regression 

line for maximum tree height from photogrammetry would suggest that height was underestimated 

when trees were shorter and overestimated when trees were taller, but the line was strongly leveraged 

by a single outlier because of noise from poor image matching.  This outlier also had a strong influence 

on the photogrammetry-ďased ŵodel of LoreǇ͛s height ǁhiĐh used Hmaxphoto as the selected variable.  

As a result, LoreǇ͛s height was more accurately predicted with lidar (%RMSE = 12.3) than with 

photogrammetry (%RMSE = 16.2). DroppiŶg the outlier iŵproǀed photograŵŵetrǇ͛s estiŵate of 

maximum tree height (%RMSE = 11.15, slope = 0.7, intercept = 4.3Ϳ aŶd LoreǇ͛s height ;%RMSE = 13.38). 

Surprisingly, the difference between lidar and photogrammetry on unburned plots was lower for basal 

area and aboveground biomass (<2.1 percentage point difference in %RMSE) than it was for the height 

attributes (3.1-5.6 difference in %RMSE).  

Since the stereo imagery was collected before the fire, models derived from photogrammetry 

had similar performance in burned and unburned areas as opposed to the substantial declines in model 

performance we observed for post-fire lidar in burned areas. Photogrammetry-based models on burned 

plots had a %RMSE within less than 10 percentage points of unburned plots for all attributes except 

aboveground biomass and canopy bulk density (Table 5Ϳ. EǀeŶ though photograŵŵetrǇ͛s prediĐtioŶ 
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accuracy of aboveground biomass was worse on burned plots (%RMSE=41.9) than unburned plots 

(%RMSE = 31.0), this method was still more accurate than estimates from the post-fire lidar (%RMSE = 

45.0). Although photogrammetry-ďased ŵodels perforŵed ďetter thaŶ lidar oŶ ďurŶed plots, it͛s 

improvement over lidar varied considerably across the structure attributes. On burned plots, the %RMSE 

of the photogrammetry-based models was lower than lidar by 0.8 percentage points for maximum tree 

height, ϱ.ϲ for LoreǇ͛s height, ϭϭ.ϭ for ďasal area, ϯ.ϭ for aďoǀegrouŶd ďioŵass, aŶd ϯ.Ϯ for canopy bulk 

density. 

3.3.3 Estimates of canopy fuels from lidar and photogrammetry 

Models of canopy bulk density on unburned plots had only modest prediction accuracy for both 

lidar (%RMSE = 36.7) and photogrammetry (%RMSE = 36.8), with the cover metric being the only 

independent variable selected for both datasets. Canopy base height was also more accurately 

predicted by lidar, but both models had an RMSE of less than one meter. Photogrammetry-based 

models that included texture and vegetation indices during model selection for canopy bulk density also 

retained glcm_mean on unburned plots and glcm_contrast on burned plots, but their inclusion did not 

substantially improve prediction accuracy. Texture and vegetation metrics were dropped from all other 

models as a result of the best subset selection process. Their results are not shown for other structure 

attributes since they were identical to the photogrammetry-based models which did not include these 

metrics in the selection process. We also regressed the residuals from every model on a set of 

topographic indices and species composition to test for model biases. These additional metrics 

explained an average 4% of the variance in the model residuals (range = 0 - 24%), and they had no 

consistent relationships with the attributes across burn severities or data sets.  

3.3.4 Estimates from combined photo and lidar dataset 

On unburned plots, lidar and photogrammetry-based models appeared to have only minor 

differences between selected variables and their relationship to the structure attributes. To test if these 
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differences between datasets were meaningful, linear models were generated using a dataset 

containing two copies of each unburned plot; one which had lidar metrics and the other with 

photogrammetry metrics (Figure 7). Using the predicted structure attributes, a second regression 

analysis examined the effect of the source of the data (photo or lidar) and the interaction of the source 

and the predicted value to test for significant intercept and slope bias. We evaluated combinations of 

variables with one from each metric category to determine which combinations explained the greatest 

variance while having insignificant levels (p > 0.05) of intercept bias (i.e. intercept not equal to zero) and 

slope bias (i.e. slope not equal to one) introduced by the source (Table 6). For basal area, aboveground 

biomass, canopy bulk density, and canopy base height we found subsets of variables which explained 

relatively high levels of variance while the data source was insignificant. For these variable combinations 

lidar and photogrammetry were nearly interchangeable in predicting the forest structure attribute. Data 

source was significant (p < 0.05) for all regressions of maximum height using height metrics and all linear 

ŵodels of LoreǇ͛s height eǆĐept those that eǆplaiŶed ǀerǇ little ǀariaŶĐe. For these attributes we show 

the model with the maximum r-squared since regressing on data source with these models introduces 

reasonably low slope and intercept bias even though they are statistically significant. 

3.4 Reconstructing forest structure prior to the High Park Fire 

We mapped pre-fire forest structure over the High Park fire burn scar and surrounding area 

using the pre-fire aerial photogrammetry-based models calibrated from the unburned plots (Table 5a). 

Mapped values were forced to zero when canopy metrics were zero since these areas should not be 

forested. These maps were used to assess the potential influence of pre-fire forest structure on burn 

severity and calculate the loss of live aboveground biomass. The maps of forest structure have several 

small omissions in coverage due to gaps in the lidar-based ground model and unsuccessful matching of 

some image areas by the photogrammetry software. These gaps total 54.3 hectares and amount to less 

thaŶ Ϭ.ϯ% of eaĐh ďurŶ seǀeritǇ͛s area. The photograŵŵetriĐ poiŶt Đloud also had an apparent vertical 
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bias of greater than 2 m above the lidar ground model in several patches within the burn perimeter, 

which covered a total area of approximately 15 km2 (~4% of the burn area). The vertical bias in these 

areas led to overestimation of basal area and canopy bulk density because of inflated values of the 

canopy cover metrics used in the models for these structure attributes. The variability in vertical bias 

across the study area prevents us from correcting this difference without incorporating more ground 

control points during triangulation; 40 control points were collected from lidar intensity and DTM 

images to triangulate the 15 flightlines.  

The map of aboveground biomass (Figure 8) shows pre-fire biomass to be high in drainages, in 

the dense stands of lodgepole pine in the southwest portion of the burn scar, and on northern aspects 

of ponderosa pine and Douglas-fir stands in the eastern portion of the burn scar. Given that 

approximately 17% of the High Park area was impacted by mountain pine beetle in the three years prior 

to the fire (Stone, 2015), our map actually estimates the live aboveground woody biomass prior to the 

fire and beetle epidemic. Maps of the beetle epidemic (Stone, 2015) would allow us to calculate loss of 

live biomass due only to beetle kill if we assumed a fixed level of mortality in each cell (e.g. 100% 

mortality), but mortality level likely varied between cells. Instead we focus on the biomass lost in the fire 

by assuming complete mortality in high and moderate burn severity areas and ignore that the biomass 

estimated for the pre-fire condition may have been alive or dead and standing. Visual inspection of post-

fire imagery indicates that there was also some mortality in low burn severity areas. Tree mortality in 

these areas could have been directly caused by fire damage, or delayed mortality due to insects, 

disease, drought stress, or other agents as an indirect result of fire damage weakening the tree͛s 

defenses. The rate and cause of mortality could be investigated with the multi-temporal hyperspectral 

imagery collected over the burn scar and additional field surveys, but for this study we assume 0% 

mortality in low burn severity areas to make a conservative estimate of biomass lost in the fire. Figure 9 

shows the percent of the total burn area covered by each burn severity and the percent of total pre-fire 
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biomass in that burn severity category. We estimated the pre-disturbance live aboveground woody 

biomass to be 3.26 Tg within the burn perimeter, with 2.16 Tg killed in moderate and high burn severity 

areas. Assuming that carbon was 50% of biomass, 1.08 Tg of carbon were transferred to other carbon 

pools such as standing dead biomass, coarse woody debris, and emissions. This amount of carbon is 

roughly equivalent to the amount produced by a single coal power plant in a year (US EPA, 2014).  

Areas that burned at different severity levels had minor differences in most pre-fire forest 

structure attributes (Figure 10). Since our data represent a census of the structure and burn severity 

conditions, we refrained from using tests of significance in our analysis and instead focus on effect sizes. 

Pre-fire aboveground biomass and basal area had slightly higher median values in high burn severity 

areas (AGB median = 108 Mg ha-1, BA median = 25 m2 ha-1) than in other burn classes (AGB medians = 71 

to 82 Mg ha-1, BA medians = 16 to 18 m2 ha-1), but a high degree of overlap in interquartile ranges 

indicates the differences in structure across burn severities were still relatively minor. Canopy bulk 

density had bimodal distributions for all but high burn severity because the model was based on canopy 

cover which was often near 0% or 100% since photogrammetry can only sample the ground through 

large gaps in the canopy. While this meant that estimates of canopy bulk density saturated at 100% 

canopy cover, our estimates of canopy bulk density across burn severities still indicated that a 

continuous canopy was necessary to carry a high severity crown fire. This can be seen by the higher 

median and lack of low canopy bulk density values for the high burn severity category. Canopy base 

height, LoreǇ͛s height, aŶd maximum height had similar medians for all burn severities, but an increase 

in burn severity corresponded to a smaller interquartile range and a decrease in the frequency of low 

height values in favor of a more pronounced single peak near the median height. This is another 

indication that open uneven-aged stands and areas dominated by shrubs, both of which had lower 

height values, were less likely to carry a high severity crown fire.  
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Distributions of forest structure across burn severities were also partitioned into areas burned 

under severe and calm weather conditions (Figure 11). Nightly thermal imaging collected by the 

National Infrared Operations (NIROPS) team was used to map the daily burn perimeter, which we 

obtained from the Geospatial Multi-Agency Coordination website ;͞GeoMAC Wildfire Map,͟ ϮϬϭϮͿ. 

Wind gust speeds from three nearby Remote Automated Weather Stations (RAWS) were averaged over 

the time period between NIROPS observations and compared to the corresponding area burned (Figure 

12). According to these burn perimeters and weather data, the fire covered 150.8 square kilometers 

(~42 % of the total area) in the first two days during an intense wind storm, and it progressed more 

slowly to burn the remaining area over the next 21 days. We partitioned the dataset into areas that 

burned under these severe weather conditions in the first two days and under calmer weather 

conditions in the remaining days to examine possible differences in forest structure across burn 

severities under different weather conditions. However, the distributions show no substantial 

differences between the weather classes when looking at the forest structure of the burn severity 

classes (Figure 11).  
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4 Discussion 

4.1 Effect of crown consumption on lidar height and density estimates 

Lidar collection of our study area was intended to characterize the burned forest canopy, but 

consumption of tree crowns by the fire reduced canopy surface area and reflectance which resulted in 

few canopy returns and slightly lower height measures. Lidar is known to underestimate individual tree 

heights by about 0.4 to 1.2 meters for the dominant species found in our study area due to laser pulses 

missing tree tops or insufficient energy being returned until the pulse reaches lower in the canopy 

(Andersen, Reutebuch, & McGaughey, 2006). Underestimation is partially a function of crown geometry, 

with narrow leaders from trees like Douglas-fir more likely to be missed by a laser pulse than the broad 

tops of trees like ponderosa pine (Andersen et al., 2006), but the degree of error also depends on lidar 

collection parameters such as pulse repetition rate (Chasmer, Hopkinson, Smith, & Treitz, 2006) and 

beam divergence (Andersen et al., 2006). An increase in either of these collection parameters will 

reduce the power associated with each pulse. Burned snags have a much lower surface area and 

reflectance than typical tree crowns making them a difficult target to measure with lidar. A previous 

lidar collection of our study area in 2012 had inadequate pulse density and laser power for obtaining 

lidar returns from burned canopies, but various changes to flight parameters, such as a decrease in flight 

altitude, substantially increased lidar canopy returns for the dataset used in this study.  

Our results suggest that with adequate post-fire lidar sampling it is possible to obtain reasonable 

estimates of height for burned snags, which should also reflect pre-fire canopy height for areas of similar 

vegetation and disturbance. Based on prior studies, we expected high underestimation of canopy height 

by the post-fire lidar, but canopy consumption had only a minor effect on lidar height metrics. Wulder et 

al. (2009) found significant reductions in lidar measured canopy height following fire in boreal forests, 

which is presumably due to laser pulses having greater penetration into the canopy before a significant 

amount of energy was returned. Bolton, Coops, and Wulder (2015) examined a chronosequence of burn 
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patches with discrete return lidar transects spanning CaŶada͛s ďoreal forests, aŶd theǇ oďserǀed higher 

canopy heights in unburned areas than areas that burned within a five year period prior to the lidar 

collection. The methods of our study were more similar to Wing et al. (2010), who examined the 

accuracy of measuring burned snags in ponderosa pine forests of the Pacific Northwest with discrete 

return lidar and reported height accuracies of 2.8-4 m (RMSE). For our study, lidar estimates of 

maximum height had an RMSE of only 2.6 m in burned plots (Figure 3), which is lower than would be 

expected given the results of the aforementioned studies. Maximum tree height was noticeably 

underestimated in only three of the severely burned plots. Hmaxlidar was actually higher than the field-

measured maximum height in 62 % of the plots across both burn severities, with an average difference 

of 1.5 m when the point cloud metric was higher than the field measure. The overestimation of height is 

consistent with edge effects, which may result from GPS error and trees outside the plot having a 

portion of their canopy overlapping the plot area. Edge effects are more likely to be a significant 

problem with smaller plot areas (Zolkos, Goetz, & Dubayah, 2013), but high spatial variability in tree 

heights may cause significant edge effects even with moderate plot sizes such as the 400 m2 plots used 

in this study.  

The loss of needles and fine branches in high burn severity areas reduced lidar cover below 

expected pre-fire cover levels for a given field-measured tree density. The fire reduced canopy volume 

by various amounts on burned plots which we quantified in a relative index as the average of field 

estimated crown consumption for individual trees (AvgCC). This loss of canopy volume was associated 

with fewer lidar returns from the canopy, which made coverlidar a less reliable predictor of pre-fire tree 

density. While only coverlidar and tree density are shown as examples, other lidar density metrics 

appeared to be affected by canopy consumption as well, which likely reduced the explanatory power of 

these metrics in estimating pre-fire forest structure attributes. Wulder et al. (2009) also observed 

significant declines in lidar measures of canopy cover following wildfire and found this change to be 
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strongly correlated with burn severity as measured by the differenced normalized burn ratio (dNBR) 

index. When examining a chronosequence of burned patches with discrete return lidar transects,  

Bolton et al. (2015) found canopy cover to be much higher in unburned areas than areas that burned 

within the last five years. Similar results have been found in studies of deciduous forests where lidar 

collected during leaf-off conditions underestimated leaf-on fractional cover (Wasser, Day, Chasmer, & 

Taylor, 2013), as one would expect. 

The results from this analysis led us to model unburned and burned areas separately when 

estimating forest structure attributes as described in section 3.4. Although we chose a threshold of 50% 

in average crown consumption for assessing the influence of burn severity on lidar metrics, it is more 

likely that canopy consumption influenced lidar metrics on a continuum. Pre-fire RapidEye imagery 

failed to produce accurate estimates of pre-fire canopy cover which would be necessary to map canopy 

consumption for the study area. Instead of relying on image-based estimates of change in canopy cover, 

we decided to model structure attributes separately for burned areas and unburned areas.  

Incorporating information on canopy consumption failed to improve lidar-based models of 

forest structure despite its apparent influence in the prior analysis. The effect of canopy consumption on 

lidar, which we observed in Figure 4 suggested that we could test for the significance of this factor by 

including it as an independent variable or interaction in regression models. AvgCC was statistically 

significant in some models, but its inclusion had very little effect on model fit. AvgCC may have had little 

explanatory power because it was a relative index based on visual estimates of consumed vegetation 

from tree crowns. Although AvgCC served as an adequate index for identifying severely burned plots, it 

did not complement the post-fire lidar density metrics well enough to explain additional variance in 

forest structure. An absolute measure of the proportion of canopy cover consumed by the fire may have 

proven more informative and significant in the regression models, but it would not be possible to 

calculate this without pre-fire field or lidar measurements. 
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4.2 Comparison of lidar and photogrammetry metrics 

On unburned plots, photogrammetry-based height metrics were strongly correlated with those 

from lidar, while height variability metrics exhibited weaker correlations between datasets due to 

photograŵŵetrǇ͛s deŶse saŵpliŶg of poiŶts on the canopy surface. Image matching can only occur for 

objects observed from multiple camera positions which restricted point generation to locations on the 

canopy surface and where large gaps occur in the canopy. Due to this restriction, points become 

concentrated in a single layer draped over the canopy with few points representing objects that may be 

present under the canopy surface.  We found that the photo point cloud led to a height distribution with 

a lower standard deviation, higher kurtosis, lower maximum height, and higher values for height 

percentiles when compared to lidar.  

Photogrammetry generally yielded density metrics with much higher values than lidar, as found 

in other studies. Lidar is known to yield canopy cover estimates which correspond closely with field 

measurements (Korhonen et al., 2011), but photogrammetry can greatly overestimate cover. The spatial 

arrangement of crowns and the percent of overlap between subsequent camera frames affects 

photograŵŵetrǇ͛s aďilitǇ to saŵple the grouŶd topographǇ aŶd aĐĐuratelǇ represeŶt ĐaŶopǇ Đoǀer. For 

example, photogrammetry would likely produce more accurate cover estimates on a plot with 50% 

cover if the canopies were clustered together with a single large gap, than if the canopies were evenly 

spaced with small gaps between them. Increasing the image overlap reduces the ground area occluded 

by tree canopies in multiple images and may improve image matching because of greater similarity 

between adjacent frames. This should enable photogrammetry to yield more accurate estimates of 

canopy cover, but this has yet to be tested. Increasing image overlap also decreases the base-to-height 

ratio of image collection which is expected to reduce the accuracy of height measurements, but 

previous studies have found only minor differences in height accuracy when comparing different overlap 

percentages (Bohlin et al., 2012; Nurminen et al., 2013). Because of the 60% forward overlap used for 
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our study, photogrammetry sampled the ground only through large canopy gaps which resulted in much 

higher values of overall canopy density, such as coverphoto and densityphoto, and density metrics in the 

height range of most dominant trees (d02 for most of our plots). This also led to much lower values of 

density for low canopy layers (e.g., d01) and a weaker correlation with the values observed by lidar at 

those levels. Vastaranta et al. (2013) also found a decrease in the difference between lidar and 

photogrammetry cover metrics with increasing canopy height interval, but they did not directly compare 

metrics for individual plots as we have in this study.  

Errors in point cloud generation were another important determinant of the observed 

differences in lidar and photo point cloud metrics for some of our plots. Despite a low overall RMSE 

(1.09 m) from triangulation checkpoints and a reported vertical error of 0.82 m, the point cloud for 

some plots still had a vertical misregistration to the lidar of up to 2.5 m. The high variation in terrain for 

our study area (50% of the burn area has slopes greater than 20 degrees) makes some vertical bias 

likely, and this should be considered before applying this observation to sites with lower slope. A high 

positive vertical misregistration can cause points on low vegetation and ground to be pushed above the 

2 m height cutoff. In areas of low canopy cover this may result in an anomalously high number of 

observations near the terrain surface which 1) decreases height metrics, 2) increases height variability 

metrics, and 3) increases the general and low layer density metrics (density/cover and d00). We 

attempted to manually apply a vertical correction to the photogrammetric point cloud on 17 plots by 

visually matching the apparent photogrammetric ground points to the lidar ground points. This 

correction caused only minor increases in correlation and slope for most metrics, so we continued our 

analysis without the correction.  

In contrast to the minor differences caused by vertical registration errors, failure of the image 

matching software to generate points on the canopy surface had a much stronger impact on the height 

distribution of points and their derived metrics. In 31 unburned plots we observed areas of the point 
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cloud where canopy points appeared to be either missing or at a much lower height than the canopy 

surface detected by lidar. Gruen (2012) lists a number of potential issues that can lead to poor image 

matching results including poor image texture such as in shadows, a lack of planar facets on objects, and 

repetitive objects, which are all common features of tree canopies in imagery. We observed poor image 

matching results most often on plots with relatively short and isolated trees. This effect can be seen in 

height metrics such Hmax, which had low values from photogrammetry on plots where the lidar Hmax 

was less than 10m (Figure 5). Adjacent camera frames may have observed different sides of an isolated 

conifer rather than a continuous canopy surface, and the dissimilarity in pixel patterns from different 

camera angles could have prevented successful point generation for these trees. It is also possible that 

potential points on isolated trees were automatically filtered out by the image matching software as 

noise. Poor image matching results for a plot likely decreased height percentiles and could have either 

increased or decreased various density and height variability metrics with regard to expected values 

from perfect image matching results. Plots in which the height metrics from photogrammetry were 

lower than from lidar appeared to have poor image matching results, vertical misregistration, or both.  

Improvements in image matching are leading to more accurate and complete photogrammetric 

point clouds (Gruen, 2012), but the problems we observed are unlikely to be resolved in the near future 

given the numerous challenges associated with image matching for forested scenes. Current image 

matching techniques perform well for images of developed landscapes, where objects are spatially 

distinct and have well defined edges. Trees in forested landscapes may have overlapping crowns and 

repeated patterns (e.g. in areas of similarly sized trees) that lead to fewer matches between images and 

erroneous matches. In open forests, the spatial mosaic of sunlit and shadowed crowns and background 

cover further complicates image matching, especially when two stereo images view opposite sides of a 

partially sunlit tree.  Incorporating this information into matching algorithms could lead to an 

improvement in point cloud and DSM accuracy over forested areas, particularly in sparse stands. These 
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problems may make photogrammetry less reliable than lidar under some circumstances and should be 

considered alongside other factors when evaluating technologies for mapping forest structure over 

broad extents.  

We expected the strength of the relationship between a forest structure attribute and 

photogrammetry-based metrics to depend on the attriďute͛s association with the canopy interior and 

the success of image matching. As in prior studies (Gobakken et al., 2015; Järnstedt et al., 2012; Pitt et 

al., 2014; Vastaranta et al., 2013), we found stronger relationships between height attributes (HMAX, 

HLOR, and CBH) and lidar-based metrics than photogrammetry-based metrics (Figure 6). The advantage 

of lidar could be due to a more accurate sampling of the canopy surface or its ability to sample the full 

canopy profile. Some height attributes may be more strongly associated with height metrics 

representing the distribution of the full canopy profile, which is better captured by lidar, rather than 

metrics that only represent the distribution of the canopy surface, which can be adequately measured 

with photogrammetry. Since canopy bulk density is based on the mass of materials in the canopy profile 

we expected lidar metrics to have higher explanatory power than photogrammetry for this attribute, 

but all the photogrammetry height metrics and three of the variability and density metrics (iqr, density, 

and d02) had higher correlations with canopy bulk density by 0.06 to 0.13. Lidar cover was the notable 

exception which had the highest absolute correlation (r=0.67). This could indicate that sampling of the 

canopy interior provides little or no benefit for estimating canopy bulk density and that canopy cover 

metrics may be the best predictor of canopy bulk density in similar forests. However, in plots with low 

tree density photogrammetry may sample points on the sides of tree crowns causing height and height 

variability metrics to be influenced by crown length in such a way that these metrics become more 

strongly associated with canopy bulk density. Lidar density metrics also had higher correlations with 

other attributes such as basal area and aboveground biomass, which are often related to canopy cover. 

Density metrics from photogrammetry may saturate at relatively low canopy cover much in the same 
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way that NDVI saturates at moderate levels of leaf area index (Carlson & Ripley, 1997). Even with this 

cover saturation effect, we expect photogrammetry to more accurately predict structure attributes in 

forests of continuous canopy cover and our results support this.  

4.3 Estimation of forest structure attributes 

4.3.1 Comparison of photogrammetry and lidar for estimating forest structure of unburned areas 

Models of forest structure derived from lidar metrics on unburned plots had accuracies 

consistent with literature values for most attributes and therefore can serve as a standard basis for 

comparison to other model scenarios. Although our lidar estimates of aboveground biomass did not 

meet the suggested accuracy level of less than 20 Mg/ha or less than 20% RMSE for carbon monitoring 

(Goetz & Dubayah, 2011), they are similar to many previous studies which also fail to meet this standard 

(Zolkos et al., 2013). This standard remains a challenging goal for using remote sensing to aid carbon 

accounting efforts. Since most other attributes also had accuracy levels on par with previous studies in 

similar forests, models from lidar on unburned plots serve as our basis for comparison with 

photogrammetry and with lidar on burned plots.  

Photogrammetry-based models performed similarly to lidar on unburned plots for all forest 

structure attributes. The lidar-based model of aboveground biomass had higher prediction accuracy 

than photogrammetry, but the difference between them was lower in our study than the differences 

reported by St-Onge et al. (2008) and Vastaranta et al. (2013) (1.7 percentage points difference in 

%RMSE vs 4.2 and 6.2 percentage points, respectively).  As with prior studies (Gobakken et al., 2015; 

Järnstedt et al., 2012; Nurminen et al., 2013; Pitt et al., 2014; Vastaranta et al., 2013), lidar-based 

models also had slightly higher accuracy than photogrammetry-based models for some other attributes 

suĐh as LoreǇ͛s height, ďut photograŵŵetrǇ had slightlǇ higher aĐĐuraĐǇ thaŶ lidar for estimating basal 

area in this study. Most lidar – photogrammetry comparisons to date have taken place in boreal forests 

which may possess more continuous canopies than the savannah-like southern aspects of our study 
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area. A more continuous canopy surface could reduce the potential for errors in the photogrammetric 

point cloud, which we observed mainly on plots with low tree density. However, the Norway spruce 

(Picea abies) of boreal forests may feature more narrowly conical crowns than the dominant species in 

our study area, ponderosa pine. Trees with narrow peaks may suffer from greater underestimation of 

canopy height than broadly peaked trees because of failure to match pixels on small terminal leaders. 

The effect of crown shape and collection parameters on tree height estimation has been studied 

extensively for lidar (Andersen et al., 2006), but to our knowledge, no studies have evaluated individual 

tree height accuracy from photogrammetry for different collection and processing scenarios. A thorough 

comparison of tree and stand height accuracy from photogrammetry under different forest types and 

conditions, collection parameters, and image processing methods would greatly aid operational use of 

photogrammetry in forestry as it has with lidar. 

Photogrammetry may also be useful for predicting canopy fuels which are commonly thought to 

be associated with canopy interior measures that can only be provided by lidar. Photogrammetry-based 

models predicted canopy bulk density with nearly the same accuracy as lidar in unburned areas, and 

lidar sampling of the canopy interior appeared to provide no benefit since percent cover of first returns 

(cover) was the only lidar metric selected.  However, the lidar-based models of canopy bulk density on 

unburned plots had a surprisingly low R2 of 0.44 compared to some prior studies which had R2 values 

between 0.67 and 0.84 (Andersen et al., 2005; Erdody & Moskal, 2010; Hall et al., 2005; Hermosilla et 

al., 2014), but our %RMSE of 36.7 was lower than the 38% reported by Hermosilla et al. (2014). Canopy 

fuel attributes are defined and calculated differently across studies which adds to the uncertainty in 

making comparisons between them. To our knowledge, our study is the first to estimate canopy fuels 

with a photogrammetric point cloud, and we were surprised to find predictive accuracy similar to lidar. 

Fuel maps are frequently used in fire behavior modeling but recent lidar coverage is rarely available and 

expensive to collect, while aerial photography is widely available and collected frequently. If canopy 
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fuels can be reliably estimated from lidar because of their relationship to canopy height and cover then 

photogrammetric point clouds may hold the same capability. The Landscape Fire and Resource 

Management Planning Tools program (LANDFIRE) provides maps of canopy fuels for the United States 

which are derived from Landsat data and biophysical gradient modeling, but these maps are better 

suited for regional to national level planning rather than for landscape scale usage (Reeves, Ryan, 

Rollins, & Thompson, 2009). The higher resolution and accuracy provided by lidar or photogrammetry 

could greatly aid land managers in reducing the risk of catastrophic fires and understanding the spatial 

relationship between pre-fire canopy fuel distribution and burn patterns. If there are consistent 

relationships between canopy fuel indices and metrics derived from photogrammetric point clouds, they 

could serve as training datasets for future national level mapping efforts.  

The similarities between lidar and photogrammetry discussed above could make them 

interchangeable for many purposes. Although we observed differences in point cloud metrics for lidar 

and photogrammetry as discussed in section 5.2, for some metrics these differences were small in 

comparison to their relationship with forest structure attributes. In models combining the lidar and 

photogrammetry datasets on unburned plots, some combinations of metrics had a similar enough 

relationship to the structure attributes that data source was not statistically significant (Table 6, Figure 

7). The relatively small intercept and slope bias introduced by the source variable in these models was 

another indicator that data source did not play a substantial role in defining the relationship between 

some combinations of point cloud metrics and the structure attributes. Furthermore, in this study we 

looked for consistent relationships between lidar and photo derived metrics so we could evaluate the 

use of current datasets to interpret historical photos, but in most applications there would be no need 

for consistency. A consistent relationship between lidar and photo derived metrics should enable us to 

apply existing lidar models to historical photos for estimating past forest structure, but of all possible 

metric combinations we found very few to be directly interchangeable between the lidar and 
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photogrammetry datasets in modelling forest structure. For this application to be reliable, the linear 

relationships we observed in comparing lidar and photo metrics would need to be consistent across 

datasets with different collection parameters. Calibrating models from modern imagery with similar 

scale and overlap to a historic photo collection may be a more reliable approach to estimating historic 

forest structure. 

The similarity between the prediction accuracy for lidar and photogrammetry for unburned 

areas in this study lends weight to the growing evidence that a combination of a lidar ground model and 

photogrammetric point cloud could serve as a suitable alternative to repeated lidar surveys for updating 

forest inventories. The difference in predication accuracy between lidar and photogrammetry in 

unburned areas was negligible for aboveground biomass, basal area, and canopy bulk density, although 

height attributes were predicted with slightly higher accuracy by lidar (e.g. 16.2% vs 12.3% RMSE for 

LoreǇ͛s height in unburned plots, Table 5). This relatively small difference in accuracy and the lower 

collection cost should make photogrammetry an appealing alternative to lidar for updating forest 

inventories where an accurate digital terrain model is available. This application has already been tested 

and emphasized in several studies (Bohlin et al., 2012; Gobakken et al., 2015; Järnstedt et al., 2012; 

Nurminen et al., 2013; Vastaranta et al., 2013). Although lidar coverage is still rare, digital terrain models 

from nationwide lidar collection programs, such as the 3D Elevation Program (3DEP) in the United 

States, could enable the use of photogrammetry for future updating of forest inventories across broad 

spatial extents to aid forest management and estimate carbon sequestration. Numerous aerial and 

stereo satellite image collections are already available to support this application. For example, the 

National Agriculture Image Program (NAIP) annually collects aerial imagery over large portions of the 

United States at a one meter ground sampling distance, which may be sufficient to map forest structure 

attributes with similar accuracies to those obtained with the 30 cm resolution imagery used in this 

study.  
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At a global scale, a single global DTM collection, as would be provided by the Lidar Surface 

Topography mission (Yu et al., 2010), would enable flexible approaches to mapping canopy height and 

biomass using a variety of stereo data sources to map canopy elevation. DTMs derived from radar 

interferometry, such as the Shuttle Radar Topography Mission product (Farr et al., 2007) or WorldDEM-

DTM ™ produĐt deǀeloped froŵ the TaŶDEM-X mission (Riegler, Hennig, & Weber, 2015), are unsuitable 

because they do not penetrate to the terrain surface in forested areas. These limitations also apply to 

interferometry using longer wavelengths, which do penetrate the canopy, since volume scattering is 

likely to reduce coherence between the return signals (Rodriguez & Martin, 1992). Similarly, DTMs 

generated from ALOS PRISM suĐh as the AWϯD™ product (Tadono et al., 2014) or higher resolution 

imagery are also unsuitable as they sample only the uppermost canopy surface. On the other hand, 

these same sensors, as well as many other high spatial resolution airborne and spaceborne sensors, are 

likely to be suitable for mapping the elevation of the canopy surface. With a suitable global DTM, this 

would allow for the creation of canopy height and biomass estimates at a variety of spatial resolutions 

and levels of vertical precision. Wall-to-wall products might be produced at a regional scale using canopy 

elevation estimates from a relatively coarse imager such as JAXA PRISM, while higher precision products 

could be produced on a local or project scale using airborne or higher resolution satellite stereo 

imagery. Such an approach would likely be more cost-effective than repeated surveys with lidar remote 

sensing. 

Others have suggested the application of combining previously collected lidar data with future 

image collections as discussed in the previous paragraph, but the potential to apply this method to past 

image collections for historical analysis of forest change has been largely overlooked. To the knowledge 

of the authors, Vega and St-Onge (2008) are the only researchers to have successfully demonstrated 

application of combining photogrammetry with lidar in a historical context by measuring changes in 

canopy height with a series of aerial photos from 1945 to 2003. Aerial imagery collected for resource 
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management, such as the imagery used in this study, is widely available in the United States, and the 

NAIP program began collecting high resolution imagery in 2003. Historic aerial photographs such as the 

early collections contracted by the Soil Conservation Service, may also be useful if collected at a large-

scale and adequately preserved. Applying modern photogrammetry to this large archive of aerial 

imagery could open the possibility for continental-scale change detection of forest structure starting 

from the late 1930s. The primary challenge with this approach will be obtaining accurate point clouds 

from scanned photographs which may suffer from noise, distortions from improper scanning, and 

degradation from being inadequately preserved.  

4.3.2 Utility of vegetation and texture indices in photogrammetry-based models 

Including vegetation and texture metrics with photogrammetry-based point cloud metrics failed 

to improve estimation accuracy of most forest structure attributes. Our variable selection strategy 

removed vegetation and texture metrics from all but three models, which suggests that these metrics 

did not explain additional variation in the structure attributes over what could be explained with height 

and density based metrics from the point cloud. However, our variable selection strategy of grouping 

metrics and applying correlation-based filtering may have excluded potentially useful metrics. The 

vegetation and texture metrics had lower within group correlation than the point cloud metrics, and 

some of these variables may have been selected if metrics were grouped empirically using a technique 

such as hierarchical cluster analysis. Also, we only produced a small subset of potential metrics that 

could be derived from the two-dimensional spectral information. A wide variety of spectral indices and 

different parameterizations of texture indices have proven useful in estimation of forest structure 

(Tuominen & Pekkarinen, 2005). A thorough examination of spectral and texture indices in this context 

could be helpful for determining which ones best complement point cloud metrics for modelling forest 

structure. The high spatial resolution and point density available with aerial imagery also lends itself to 

object-oriented analysis, which could be used either to provide additional plot level indices or to enable 



 

 

37 

 

analysis on the level of individual trees. Simultaneous development of dense image matching algorithms 

and individual tree delineation techniques presents an exciting opportunity for fully utilizing high 

resolution stereo imagery. 

4.3.3  Comparison of pre-fire imagery and post-fire lidar for estimating forest structure of burned areas 

The substantially higher accuracy of photogrammetry-based models on burned plots suggests 

that this approach may be preferable to post-fire lidar for estimation of pre-fire structure attributes. 

Lidar-based models of ŵaǆiŵuŵ height, LoreǇ͛s height, aŶd ĐaŶopǇ ďase height had oŶlǇ ŵodest drops 

in performance when compared to their unburned counterparts, but models of aboveground biomass, 

basal area, and canopy bulk density performed much worse on burned plots than unburned plots. The 

dependency of aboveground biomass, basal area, and canopy bulk density on both height and density 

metrics likely made models of these attributes more susceptible to declines in performance because of 

the effect of canopy consumption on both types of metrics. In contrast, estimates of field measured 

height attributes only depended upon point cloud height metrics and were likely less susceptible to the 

effects of canopy consumption. These results are substantiated by Figure 3 and Figure 4, which show 

density metrics to be more strongly affected by canopy consumption than height metrics. It is unlikely 

that model performance would improve substantially for these attributes even with higher pulse density 

or laser power since pre-fire canopy cover information cannot be recovered after the fire from this data. 

We expected this decline in lidar-based model accuracy on burned plots because of reports by 

others of lower canopy height and cover measured by lidar in burned areas (Bolton et al., 2015; Wing et 

al., 2010; Wulder et al., 2009), but our results conflict with lidar studies of forest structure in leaf-off 

deciduous forests, which we expected to be similar to burned coniferous forests. Naesset (2005) 

estiŵated LoreǇ͛s height, ďasal area, aŶd tiŵďer ǀoluŵe iŶ a ŵiǆed-forest of Norway with similar 

accuracies between leaf-off and leaf-on lidar collections. In a study of tropical dry forests, prediction 

accuracy of aboveground biomass was slightly worse with leaf-off lidar (RMSE = 25.7 Mg ha-1) than with 
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leaf-on lidar (RMSE = 21.6 Mg ha-1), but the difference in the mean predicted field biomass was 

insignificant in both cases (Hernández-Stefanoni et al., 2015). Similarly, Anderson and Bolstad (2013) 

found only minor differences in prediction accuracy between leaf-off and leaf-on lidar when estimating 

aboveground biomass in temperate deciduous and mixed forests of Wisconsin. The discrepancy 

between these studies in deciduous forests with leaf-off conditions and our study of burned snags may 

be due to the branching structure of leaf-off deciduous trees which could still be capable of returning a 

significant amount of laser energy. Many of the burned coniferous snags likely have lower surface area 

and reflectance than leaf-off deciduous trees, which led to very few canopy returns in the most severely 

burned plots. 

It may be possible to improve model performance by pairing the post-fire lidar height metrics 

with pre-fire spectral indices from widely available satellite imagery. However, our tests of incorporating 

texture and spectral indices with photogrammetry point cloud metrics failed to improve model 

performance. Combining lidar with optical imagery has improved estimates of aboveground biomass in 

some studies, but the gains in accuracy are sometimes marginal over using lidar alone (Zolkos et al., 

2013).  

4.4 Forest structure and the High Park fire 

Combining pre-fire aerial imagery with a post-fire lidar ground model enabled us to map 

aboveground biomass and other forest structure attributes over the High Park burn scar. Maps of other 

structure attributes (not shown) exhibited spatial patterns similar to that observed on the map of 

aboveground biomass (Figure 8). Tree height, basal area, and biomass were often highest in drainages. A 

few of these drainages were spared from burning, possibly because of higher moisture levels or 

topographic effects on fire behavior, but many patches of high biomass burned at high severity. High 

burn severity accounted for 43.6% of the total area and 51.3% of the total biomass (Figure 9).  
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The immediate greenhouse gas emissions from consumption of tree canopies in the moderate 

and high burn severity areas likely represent a modest fraction of the total emissions from combustion 

in comparison to the emissions from burning of other carbon pools such as coarse woody debris, 

understory vegetation, and litter, which were not measured in this study. For example, a study of the 

2002 Biscuit Fire estimated live foliage, wood, and bark (including saplings and understory vegetation) to 

account for only 0.92 Tg of the total 3.83 Tg of carbon emissions (Campbell, Donato, Azuma, & Law, 

2007). Through eventual decomposition and subsequent fires, standing dead biomass and coarse woody 

debris will likely become the largest source of atmospheric carbon resulting from the High Park fire.  

Global emissions from wildfire were estimated to average 2 Pg of carbon per year between 1997 and 

2009 (van der Werf et al., 2010), but may increase with changes in climate. An increase in wildfire 

activity in the western United States after the mid-ϭϵϴϬ͛s has corresponded with early snowmelt and an 

increase in temperatures which contribute to drought conditions (Westerling, Hidalgo, Cayan, & 

Swetnam, 2006). These climatic conditions could become more prevalent in the future, increasing global 

emissions attributable to wildfires and creating a positive feedback loop for climate change (Flannigan, 

Krawchuk, de Groot, Wotton, & Gowman, 2009). Better accounting of live woody aboveground biomass 

and other carbon pools could improve estimates of greenhouse gas emissions resulting from wildfires 

and improve our understanding of fire in the global carbon cycle.  

Weather, topography, and fuels drive fire behavior and effects, but the complex interaction of 

these factors can make it challenging to determine their relative influence on burn severity in individual 

fires. Schoennagel, Veblen, and Romme (2004) generalized Rocky Mountain forests into three major 

types of fire regimes (low, mixed, and high severity) and characterized the potential impacts of fire 

suppression on each of these regimes. Fire suppression is known to have had a significant impact on low 

elevation dry ponderosa pine forests that have historically burned at low severity but little or no impact 

on high elevation subalpine forests that historically burned at high severity. There is greater uncertainty 
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in the effects of fire suppression on mid-elevation mixed conifer forests which have historically burned 

in complex mosaics of mixed severity (Schoennagel et al., 2004). The High Park burn scar predominately 

covers forest stands that would be categorized into this mixed severity fire regime. An investigation of 

fire suppressioŶ͛s role iŶ altering the fuel loads and fire regimes in the High Park area is beyond the 

scope of this study, but we have examined whether pre-fire forest structure influenced burn severity by 

comparing the distribution of structure attributes across burn severity classes and under different 

weather conditions. 

We mostly found minor differences in forest structure between areas of different burn 

severities. However, high burn severity areas predominately had high levels of canopy bulk density as 

opposed to other burn severity classes which featured both high and low values of canopy bulk density 

(Figure 10). Since the model of canopy bulk density was solely dependent on photogrammetry-based 

canopy cover, the high levels of canopy bulk density in high burn severity areas suggests that a 

continuous canopy was necessary to sustain an active crown fire. Basal area and aboveground biomass 

tended to be slightly higher in high burn severity areas (Figure 10), which could indicate that areas with 

high biomass or basal area were more likely to burn at high severity. Much of the high burn severity and 

high biomass areas were in lodgepole pine stands in the southwestern portion of the burn scar, which 

typically burn as stand replacing crown fires. Ponderosa pine stands and Douglas-fir stands also burned 

at high severity as the fire rapidly expanded eastward in the first two days of the fire.  

Almost half of the area burned occurred in the first two days of the fire, likely because of an 

intense windstorm (Coen & Schroeder, 2015). Fuels could have played a more significant role in 

determining burn severity when weather conditions were not the primary driver of the fire, as was the 

case in the 2002 Hayman fire in Colorado (Schoennagel et al., 2004).  To test this hypothesis we 

partitioned the burn area into areas burned in the first two days under strong winds and in the 

remaining days under weaker winds. Excluding large unburned areas inside the burn perimeter, the fire 
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burned similar proportions of area in each burn severity under strong (Unburned = 13.1%, Low = 16.0%, 

Moderate = 24.1%, High = 46.8%) and weak winds (Unburned = 12.0%, Low = 16.8%, Moderate = 27.7%, 

High = 43.5%). The forest structure in each burn severity was also similar for both weather conditions 

(Figure 11). This indicates that the fire did not preferentially burn areas of high biomass or canopy bulk 

density when winds were weaker, contrary to our hypothesis. We used daily burn area as a proxy for 

daily weather conditions, but weather conditions may have influenced burn severity on finer spatial and 

temporal scales. Understanding the role of fuels, weather, and topography in determining burn severity 

of the High Park fire may be better accomplished with fire behavior modeling tools or statistical models 

which include multiple factors. While evaluating all the potential factors which influenced burn severity 

in the High Park fire was not the intent of this study, our work illustrates the potential for combining 

photogrammetry and lidar to map pre-fire forest structure which may serve an important role in 

determining the burn severity patterns of some fires. The ability to retrieve past forest structure has 

many potential applications which includes enabling land managers and scientists to model fire behavior 

and effects.  
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5 Conclusion 

Lidar and photogrammetry both served as excellent tools for retrieving forest structure on 

unburned plots, and post-fire lidar was still capable of recovering canopy height from the remaining 

snags in burned areas. However, canopy consumption from wildfire reduced the explanatory power of 

height and density metrics in post-fire lidar which resulted in decreased model performance for 

structure attributes that depended upon these metrics. As would be expected, photogrammetry-based 

models from pre-fire imagery performed similarly in plots that were subsequently either burned or 

unburned, and results from these models were on par with lidar-based models for most structure 

attributes. These results demonstrate that both post-fire lidar and combining pre-fire photogrammetry 

with a lidar ground model have the ability to map pre-fire structure in Rocky Mountain mixed-conifer 

forests. These maps could aid assessment of the spatial relationship between canopy fuels and burn 

severity and also enable mapping of post-fire effects such as loss of live biomass. Given the low cost and 

wide availability of aerial imagery, we recommend pursuing photogrammetry as a compliment to lidar 

for a broader range of applications which require mapping past and present forest structure in similar 

forest types. With the increasing popularity of high resolution imagery from unmanned aerial vehicles 

and the growing national lidar collection in the United States, this approach could soon be broadly 

applied for a much lower cost than repeated lidar collections.   
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6 Tables and Figures 

 

 
Figure 1. The High Park fire comprised a 35300 hectare area in 

northern Colorado which was characteristically different across 

several factors in its eastern and western portions as divided by 

Country Road 27. Plots were distributed randomly in clusters in areas 

of different burn severity including unburned areas within and 

immediately outside the burn perimeter. 
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Table 1. Summary of field data for structure attributes of interest. Maximum height was not 

measured on all plots and canopy bulk density and canopy base height were computed only for 

plots that had PIPO, PICO, or PSME as the dominant species.  

 Unburned  Burned 

 Count Mean SD Min Max  Count Mean SD Min Max 

Aboveground  

Biomass (Mg ha-1) 

50 122.8 61.4 2.6 240.0  45 82.5 49.2 12.3 208.4 

Basal Area (m2 ha-1) 50 27.5 12.7 0.7 50.9  45 18.0 10.2 3.4 44.4 

Canopy Base  

Height (m) 

47 5.5 1.3 2.3 9.3  39 4.6 1.3 2.1 7.2 

Canopy Bulk  

Density (kg m-3) 

47 0.22 0.11 0.02 0.46  39 0.15 0.12 0.03 0.50 

Lorey's Height (m) 50 11.4 3.1 4.4 20.6  45 11.0 3.5 6.3 27.9 

Maximum Height (m) 48 14.2 4.2 4.4 21.8  38 13.9 4.7 7.5 32.0 

Percent PICO  

Basal Area 

50 23 41 0 100  45 7 24 0 100 

Percent PIPO  

Basal Area 

50 49 40 0 100  45 61 35 0 100 

Percent PSME  

Basal Area 

50 23 32 0 97  45 23 28 0 96 

 

Table 2. Collection parameters for 2013 lidar and 2008 aerial imagery. Swath pulse 

density was calculated as the mean density of last returns from individual swaths.  

Collection Parameter Lidar Imagery 

Sensor Optech ALTM Gemini Z/I DMC-1 

Flight Altitude above ground 

level (m) 

1000 3200 

Number of flight lines 97 17 

Side overlap (%) 30 30 

Forward overlap (%) - 60 

Scan frequency (Hz) 41 - 

Scan angle (degrees) 18.5 - 

Pulse repetition frequency (kHz) 70 - 

Beam divergence (mrad) 0.8 - 

Max returns per pulse 4 - 

Swath pulse density (m-2) 1.87 - 

Number of bands - 4 

Ground sampling distance (cm) - 30 
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Table 3. Acronyms for structure attributes and point and image metrics. All point cloud metrics refer to 

points above the 2m height cutoff. Vegetation and Texture indices apply to the aerial imagery only. 

Metric Description 

Structure attributes  

HMAX Maximum tree height (m) 

HLOR LoreǇ͛s height ;ŵͿ 

AGB Aboveground biomass (Mg ha-1) 

BA Basal area (m2 ha-1) 

CBD Canopy Bulk Density (kg m-3) 

CBH Canopy Base Height (m) 

AvgCC Average of crown consumed (%) 

Point cloud metrics  

Height profile (m)  

Hmin Minimum height 

Hmax Maximum height 

Havg Mean height 

Hqavg Quadratic average of height 

p05, p10, p25, p50, p75, p90 Height percentiles 

Height Variation  

stdev Standard deviation of height (m) 

cv Coefficient of variation of height 

skew Skew of height 

kurt Kurtosis of height 

range Range of height (m) 

iqr Interquartile range of height (m) 

Density (%)  

density Percent of points above the height cutoff 

cover Percent of first returns above the height cutoff 

d00, d01, d02, d03, d04 Percent of points within height intervals. 

Image metrics  

Vegetation Indices  

ndvi_min Minimum of NDVI 

ndvi_max Maximum of NDVI 

ndvi_rng Range of NDVI 

ndvi_std Standard deviation of NDVI 

ndvi_avg Mean of NDVI 

ndvi_sum Sum of NDVI 

Texture (based on grey-level co-occurrence matrix (GLCM)) 

glcm_mean Mean of GLCM 

glcm_var Variance of GLCM 

glcm_hom Homogeneity of GLCM 

glcm_contrast Contrast of GLCM 

glcm_dis Dissimilarity of GLCM 

glcm_ent Entropy of GLCM 

glcm_sec Second Moment of GLCM 

glcm_cor Correlation of GLCM 
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Figure 2. Hypothetical profiles of point clouds and resulting point height histograms for the three dataset scenarios: lidar in unburned forests, 

photogrammetry in unburned forests, and lidar in burned forests. 
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Figure 3. Scatterplots of point cloud maximum height (Hmax) with field maximum tree 

height (HMAX) for lidar and photogrammetry on unburned and burned plots with the 

line of best fit (gray) and the 1:1 line (black dashed). StdErr and Bias are with respect to 

the 1:1 line. Plots with greater than 50% average canopy consumption (black triangle) 

have similar residuals to plots with less than 50% average canopy consumption (black 

circle) for both lidar and photogrammetry. All regressions were significant at the 0.05 

level. 
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Figure 4. Scatterplots of the cover metric against field tree density for lidar and 

photogrammetry on unburned and burned plots with line of best fit (grey). For lidar, plots 

with greater than 50% average canopy consumption (black triangle) have low cover and 

high residuals even for plots with moderate to high tree density. All regressions were 

significant at the 0.05 level. 
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Table 4. Linear models of structure attributes with lidar metrics for all plots. Field estimated average 

crown consumption (AvgCC) was included as an independent variable and an interaction with the 

selected lidar metrics. Adjusted R2 is also shown for models with and without incorporating AvgCC. P-

values for each term are given as ns: p > 0.05, *: p < 0.05, **: p < 0.01. 

Response Model 

Adj R2 

without 

AvgCC 

Adj R2 

with 

AvgCC 

HMAX 1.04ns + 0.88  Hmax** + 0.05  AvgCC** - 0.003  Hmax:AvgCC* 0.82 0.84 

HLOR 1.75* + 0.65 Hmax** + 0.03 AvgCC* - 0.002 Hmax:AvgCCns 0.74 0.75 

BA -8.79* + 3.22 p25** + 0.34 density** + 0.15 AvgCC* - 0.02 p25:AvgCCns 

+ 0.0 density:AvgCCns 

0.65 0.66 

AGB -17.49ns + 12.49 Havg** + 2.33 d02** + 0.46 AvgCCns  

- 0.084 Havg:AvgCCns + 0.023 d02:AvgCCns 

0.64 0.64 

CBD -0.024ns + 0.023 p25** - 0.004 rangens + 0.002 cover** + 0.001 AvgCCns + 

0.0 p25:AvgCCns + 0.0 range:AvgCCns + 0.0 cover:AvgCCns 

0.46 0.47 

CBH 1.97** + 0.37 p50** + 0.02 d02ns + 0.002 AvgCCns - 0.001 p50:AvgCCns  

+ 0.001 d02:AvgCCns 

0.64 0.65 
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Figure 5. Scatterplots of corresponding point cloud metrics from lidar and photogrammetry for 

unburned plots with line of best fit (solid), one-to-one line (black dashed), and confidence intervals 

(grey). The linear model and Pearson product-moment correlation coefficient (r) are shown for each of 

the corresponding metrics. 
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Figure 6. Heatmap of Pearson product-moment correlation coefficient (r) between select point cloud 

metrics for lidar (L) and photogrammetry (P) with forest structure attributes on unburned plots. Most 

lidar height metrics have higher correlations than photogrammetry with the height attributes HMAX, 

HLOR, and CBH. Lidar density metrics also tend to have higher correlations with the structure attributes 

than photogrammetry, but some photogrammetry height metrics show stronger correlations than lidar 

with AGB, BA, and CBD. 

 



 

 

52 

 

 

 

Table 5. Models of forest structure attributes with lidar and photogrammetry on unburned plots (a) and 

burned plots (b). RMSE is from leave-one-out cross-validation, and %RMSE expresses RMSE as a percent 

of the mean observed value. Photogrammetry estimated HMAX with higher accuracy when excluding a 

single plot that had several noise points above the tree canopy. 

 

(a) Unburned Plots 

Response Dataset N Adj R2 RMSE %RMSE Model 

HMAX photo 48 0.81 1.87 13.2 4.95 + 0.64 Hmax 

photo (no outlier) 47 0.86 1.57 11.15 4.3 + 0.7 Hmax 

lidar 48 0.88 1.43 10.1 1.69 + 0.83 Hmax 

HLOR photo 50 0.72 1.86 16.2 4.94 + 0.45 Hmax 

lidar 50 0.81 1.40 12.3 2.39 + 0.6 Hmax 

BA photo 50 0.65 7.58 27.7 3.43 + 1.96 Havg + 0.12 cover 

photo & texture 50 0.66 8.32 30.1 -7.15 + 2.3 Havg + 0.44 glcm_mean 

lidar 50 0.67 8.67 29.8 -9.23 + 3.62 p25 + 0.3 density 

AGB photo 50 0.68 38.08 31.0 18.18 + 9.44 p75 + 0.47 d02 

lidar 50 0.68 36.12 29.3 -20.52 + 14.69 p50 + 1.48 d02 

CBD photo 47 0.43 0.08 36.8 0.057 + 0.0023 cover 

photo & texture 47 0.45 0.09 41.6 -0.05 + 0.015 p25 + 0.0047 glcm_mean 

lidar 47 0.44 0.08 36.7 0.028 + 0.003 cover 

CBH photo 47 0.51 1.05 19.1 3.23 + 0.22 p75 

lidar 47 0.68 0.74 13.5 1.56 + 0.46 p50 

 

(b) Burned Plots 

Response Dataset N Adj R2 RMSE %RMSE Model 

HMAX photo 38 0.77 2.41 17.4 4.02 + 0.75 Hmax 

lidar 38 0.76 2.52 18.2 3.35 + 0.76 Hmax 

HLOR photo 45 0.78 2.05 18.8 5.89 + 2.04 stdev 

lidar 45 0.70 2.71 24.4 4.81 + 0.58 range 

BA photo 45 0.66 6.26 35.1 -1.01 + 1.68 Havg + 0.17 cover 

lidar 45 0.40 8.59 46.2 4.1 + 1.73 p25 + 0.82 d02 

AGB photo 45 0.59 34.36 41.9 -11.43 + 10.98 Havg + 0.48 cover 

lidar 45 0.50 36.86 45.0 10.81 + 3.96 Hmax + 3.84 d02 

CBD photo 39 0.64 0.09 56.3 -0.03 + 0.05 p10 

photo & texture 39 0.72 0.08 51.7 -0.08 + 0.04 p10 - 0.03 skew  

+ 0.02 glcm_contrast 

lidar 39 0.48 0.09 59.5 -0.04 + 0.03 p10 + 0.01 d01 

CBH photo 39 0.63 0.82 17.8 2.09 + 0.31 p75 

lidar 39 0.64 0.80 17.6 2.2 + 0.21 p75 + 0.09 d02 
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Table 6. Models incorporating lidar and photogrammetry together for unburned plots which 

had low or insignificant slope and intercept bias when regressing by source. Source intercept 

and slope bias are the intercept and slope of including data source as a categorical variable in 

regressing the observed response on predicted values of the response. Source was significant in 

all models of HMAX and models of HLOR with high R2 values, but the model with the maximum 

R2 (shown below) had relatively low levels of bias. 

     Intercept Slope 

Response N R2 %RMSE Model bias p-value bias p-value 

HMAX 96 0.83 11.7 3.69 + 0.72 Hmax 4.24 0.00 -0.27 0.00 

HLOR 100 0.76 13.0 3.79 + 0.48 p90 + 0.14 range + 

0.04 d00 

3.00 0.03 -0.23 0.04 

BA 100 0.61 28.6 0.01 + 1.14 p90 + 0.22 cover 8.47 0.08 -0.32 0.06 

AGB 100 0.65 29.1 -34.69 + 13.63 p75 + 4.96 kur + 

0.48 d00 

34.64 0.09 -0.28 0.07 

CBD 94 0.46 35.0 0.08 + 5e-4 Hqavg  - 4e-3 range + 

2e-3 cover 

0.06 0.27 -0.38 0.12 

CBH 94 0.59 14.7 1.54 + 0.31 p75 + 0.22 kurt  

+ 0.01 d00 

1.17 0.25 -0.24 0.18 

 

 
Figure 7. Observed against predicted values of forest structure attributes for models created with 

metrics combined from lidar and photogrammetry. Regression lines for lidar and photogrammetry 

have  similar slopes and intercepts, showing that data source was an insignificant factor in modeling 

structure attributes. 
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Figure 8. Map of pre-fire aboveground biomass from photogrammetry using the model calibrated on 

unburned plots. High levels of biomass are concentrated in drainages and on northern aspects in the 

eastern portion of the burn scar.  

 



 

 

55 

 

 

 

 

Figure 9. Percent of the total area and biomass within each burn severity.  
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Figure 10. Violin plots of forest structure attributes by burn severity which show the kernel density estimate (grey) on top of the interquartile 

range (thick black line) and median (white circle). Except for slightly higher levels of AGB, BA, and CBD in high severity areas, forest structure 

was similar for all burn severities. The heavy zero loading in these distributions is due to the inclusion of unforested areas.  
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Figure 11. Violin plots of pre-fire forest structure by burn severity and weather conditions on the day an area was burned, which show the kernel 

density estimate on top of the interquartile range (thick black line) and median (white circle). The burn area expanded rapidly during the first 

two days of the fire when winds were strong and grew more slowly on the remaining 21 days. Forest structure appears similar across burn 

severities even when accounting for weather conditions on the day an area burned.  
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Figure 12. The area burned as measured by nightly thermal imaging corresponded with mean gust 

speed measured at three nearby RAWS stations over the previous day. The measurements for June 

26th are for the previous two days because of a one day gap in the thermal imaging observations. 

Gust speed for June 10th was averaged from the first report of the fire on June 9th at 5:54 am to the 

first thermal imaging observation. 
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