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ABSTRACT

STATISTICAL AND ECONOMIC CONSIDERATIONS FOR IMPROVING 

REGULATORY WATER QUALITY MONITORING NETWORKS

The assignment of sampling frequencies in regulatory water quality 

monitoring networks has often been performed with little or no statis-

tical or cost-effectiveness analysis. The research effort described 

here has attempted to address this problem through the development of 

appropriate statistical and economic analysis tools which might be 

applied by regulatory agencies.

A technique is presented for predicting confidence interval widths 

about annual means or annual geometric means for water quality consti- 

tuents while considering (1) serial correlation and (2) seasonal 

variation of the quality time series. These two effects are quantified 

by fitting deterministic seasonal models and time series models of the 

autoregressive-moving average type to historic water quality records.

The statistical tools are illustrated via application to three sets of 

water quality observations, and the consequences of applying more 

elementary statistical tools in the determination of confidence interval 

widths are then examined.

A dynamic programming algorithm is developed to assign sampling 

frequencies throughout a network in order to achieve desirable con-

fidence Interval widths about annual geometric means for selected 

quality constituents while operating within a fixed budget. The use of
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the algorithm is illustrated through an application, and a sensitivity 

analysis is performed to study the effect of variation in values of 

input variables on the results of the dynamic programming solution.
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Chapter 1

INTRODUCTION

The seventh and eighth decades of the twentieth century may be 

characterized as a period of public awareness and alarm. It is a time 

when the common man is expressing outrage against threats to his stan-

dard of living which seem to appear at every turn. In particular, the 

middle class American sees his ideal of a quality lifestyle— which has 

come into being partly through the wasteful use of his nation's natural 

resources— endangered by the energy shortage, inflation, and pollution, 

not to mention high taxes, waste and corruption in government, over-

crowding from population growth, crime, unemployment— a seemingly 

endless list of assailants.

Out of widespread dissatisfaction has arisen a demand for action, 

a demand which has historically been answered through corrective 

legislation. Since the preservation of the environment has been a 

major national concern for some 15 years, the legislative response has 

reached a considerable level of maturity in environmental issues.

In the area of water pollution, federal law contains well defined 

procedures for planning and implementation of pollution control measures 

by local, state and Federal government agencies. Throughout the perti-

nent body of legislation (PL 89-234, PL 92-500, and PL 95-217 henceforth 

referred to as the Clean Water Act) and plans which have arisen from 

implementation of the law, there exists an almost universal recognition 

of the need for regulatory water quality monitoring in support of 

pollution control activities. Regulatory monitoring is defined here as 

routine, fixed-station monitoring performed by a water quality management



agency to support its regulatory functions such as discharge pennit 

issuance and renewal.

Unfortunately, neither the nature and scope, nor the precise 

statistical objectives of such monitoring programs have been spelled 

out. Thus regulatory monitoring systems have often been put into ser-

vice in response to demands for immediate action without the careful 

thinking beforehand which is necessary to ensure success.

Researchers in both government and academic institutions have 

declared that much of this careful thinking in relation to water quality 

data collection should occur through consideration of statistical 

concepts. As a result; the application of statistical methods to the 

design of surface water monitoring systems has received much attention 

in recent years, and considerable research has been conducted in an 

attempt to develop statistically sound design procedures. One might 

hope that all of this work had led to a fairly widespread acceptance of 

some basic principles which could be applied in practical situations. 

Unfortunately this is not the case. Rather one is confronted with many 

diverse opinions as to what sort of statistical approach and what level 

of statistical sophistication to apply to the design of regulatory water 

quality monitoring networks. Several design procedures have been pro-

posed, each based on one opinion or another, but none seem to have made 

it into the hands of water quality management agencies who are required 

by law to collect water quality data and who, consequently, collect a 

significant percentage of all the water quality data in the United 

States.



Thus the monitoring efforts of many, if not most, management 

agencies have been criticized, and the value of information they collect 

has been questioned.

A second major concern in the design of monitoring networks is that 

of achieving cost effectiveness in operation. Although the final 

judgment of whether or not the dollars devoted to monitoring are being 

well spent rests on a difficult and subjective evaluation of the worth 

of data records, the problem of improving statistical and economic effi-

ciency in existing monitoring programs is more straightfoward.

This research effort was undertaken in an attempt to refine 

currently available scientific tools and to investigate their potential 

for application to these two problems, the statistics and economics of 

water quality sampling. The results of the research are directed toward 

use by regulatory water quality management agencies for the twofold 

purpose of evaluating and upgrading their regulatory water quality 

monitoring programs.

The project involves the analysis of historic water quality records 

for the purpose of reassigning sampling frequencies within a network.

The level of statistical sophistication employed is somewhat beyond the 

current capabilities of most water quality management agencies. The 

practical realities of applying this approach are then weighed against 

the consequences of using only elementary statistics in sampling 

frequency design.

Finally, a mathematical programming procedure is developed which 

can make use of statistical Infomation (at any level of sophistica-

tion) to assign sampling frequencies within a network while operating 

at a fixed budgetary level.



Objectives

The overall objective of this research is to develop procedures for 

evaluating and upgrading regulatory water quality monitoring networks in 

terms of their ability to achieve desirable confidence interval widths 

about sample geometric means for selected measured variables. This 

overall objective is accomplished via the following detailed objectives:

1) to identify a method for calculating the confidence interval 

width about the sample mean or geometric mean of water quality 

variables (concentrations of constituents) for given sampling 

frequencies when the sample observations form a correlated 

time series.

2) to compare the results of computing confidence interval widths 

using the method in objective (1) with those obtained using 

simpler statistical approaches.

3) to incorporate both statistical and economic information into 

sampling frequency design by formulating and solving a mathe-

matical programming problem. The solution should minimize the 

overall difference between design confidence Interval widths 

and predicted confidence interval widths throughout a network 

while operating at a fixed budgetary level.

The first objective above is accomplished through analysis of 

historic water quality records. The time series of observations is 

assumed to consist of three components: a linear trend, an annual 

cycle, and a correlated noise component. Each of these components is 

modeled and the effects of each are accounted for in the computation of 

confidence intervals.



The second objective above is accomplished by incorporating the 

results of the first objective into a dynamic programming algorithm 

along with provision for computing the operating cost of sampling at 

individual stations. The algorithm assigns sampling frequencies to each 

station in a network in order to achieve optimum size and uniformity of 

confidence interval widths about sample means or geometric means when 

considering several water quality constituents simultaneously. A fixed 

annual operating budget is imposed as a constraint.

Several basic assumptions are necessary. The assumptions which 

delineate the scope of the research, are as follows:

1) An adequate historic data record is available for each water 

quality constituent and each station under consideration;

2) Future grab samples will be equally spaced in time;

3) Sampling frequencies for all water quality constituents at a 

given station are identical, i.e. each sample will be analyzed 

for all constituents;

A) The selection of constituents to be measured is assumed to 

have been performed beforehand;

5) Water quality observations from data records used are assumed 

to be representative in both time and space of conditions 

which actually existed at the station;

6) The variance of the estimated of annual means of water quality 

variables due to poor sampling procedure or laboratory error 

are Ignored; and

7) The variance of the estimates of parameters in deterministic 

and stochastic models used in computing confidence Interval 

widths about the annual means are ignored as well.



Organization of the Report

The remainder of this report is organized in the following manner. 

Chapter 2 contains a review of literature covering the current state of 

water quality monitoring, statistical tools appropriate for designing 

stream-quality monitoring systems, and several approaches to design 

which have been suggested in the past. Chapter 3 develops in detail 

those statistical methods, including time series analysis, which are 

necessary for applying the confidence interval approach to assigning 

sampling frequencies while considering seasonal variation and serial 

correlation in water quality. The methods are illustrated via applica-

tion to data records from three areas: (1) the Red River, Manitoba;

(2) Grand River, Michigan; and (3) a nine-station network in the state 

of Illinois. In Chapter 4 the aforementioned dynamic programming 

algorithm is developed and applied to the Illinois network. A sensi-

tivity analysis explores the effect of variation of the major input 

variables. Chapters 5 and 6 conclude the report with a discussion of 

the practical implications of the research, a brief summary statement, 

and suggestions for further research.



Chapter 2

REVIEW OF LITERATURE

Much has been written in recent years on the subject of water 

quality monitoring, and fortunately, adequate literature reviews have 

also appeared which summarize the work reported up to 1976. Such a 

summary will not be repeated here, but those major reports prior to 1976 

which form the basis for the current project will be discussed. The 

aforementioned literature reviews will be identified, and pertinent 

publications which have appeared since 1976 will be pointed out.

The first portion of this literature review covers material of a 

general nature dealing with nationwide needs for water quality data in 

support of water quality management and the degree to which those needs 

are or are not being met. The rest of the review covers material deal-

ing with the more technical considerations of designing water quality 

monitoring networks, particularly the assignment of sampling frequencies. 

First, early approaches to design with the objective of detecting pol-

lution events are mentioned. Then more currently applicable approaches 

with the objective of determining annual means and using fairly basic 

statistical methods are reviewed. Next, turning to the more complex 

problem of determining annual means while considering serial correla-

tion, the necessary background material is covered. Finally, advanced 

design approaches which make use of this theory are reviewed.



Monitoring Policy and Evaluation

Several reports have attempted to describe the state of water 

quality monitoring in general terms and to identify specific problems 

and deficiencies in current monitoring practices. Foremost among these 

is the National Research Council of the National Academy of Sciences 

(1977) report entitled "Environmental Monitoring." This report was 

prepared for the U.S. Environmental Protection Agency at the request of 

the U.S. Congress and deals with monitoring programs both operated by 

and supervised by EPA. The latter would include regulatory monitoring 

by state water quality authorities. Many of the conclusions and 

recommendations of this report underscore the need for performing 

research of the type described here. Among the pertinent conclusions 

are the following.

(1) The objectives of monitoring programs should be more clearly 

defined.

(2) An effort should be made to better incorporate scientific 

principles (including statistics) into the design, evaluation, 

and operation of monitoring systems.

(3) The design of monitoring networks should incorporate an 

analysis of the tradeoffs between cost and effectivness.

(4) Data collected through monitoring efforts should be more 

thoroughly analyzed with respect to its intended use, ade-

quately summarized, and more widely disseminated.

(5) Decisions in environmental management should rely more heavily 

on data collected in the past.



A more detailed summary of the National Academy of Sciences report is 

presented by Kendrick (1977).

An interesting philosophical treatise on designing hydrologic data 

collection networks is given by Moss, Lettenmaier, and Wood (1978). The 

paper includes a restatement of an obvious, but sometimes forgotten, 

problem of design. Namely, if enough information were known about the 

hydrologic phenomena involved to perfectly design a network, there would 

be no need to collect additional data. The need for further research 

into hydrologic network design is emphasized, particularly with respect 

to careful definition of monitoring objectives, determining the value of 

data obtained from monitoring, and in relating monitoring network design 

to data utilization.

Cleary (1978) makes this crucial point regarding the role of 

background data in water quality management decisions :

Before billions of dollars are spent for measures to 
control the quality of U.S. rivers, their elusive 
aspects should be understood. Unfortunately those 
who try to understand— those responsible for forming 
public policy and deciding how those billions of 
dollars will be spent— face a serious handicap.
That handicap is a lack of information describing 
past river quality and reasons for the variability 
in that quality.

Clearly (1978) recognizes the National Stream Quality Accounting 

Network (NASQAN) established by the U.S. Geological Survey in 1972 as 

having the greatest promise for improving the nationwide water quality 

data base. A description of the NASQAN program is presented in Cragwall 

(1976), and summarized results of the program which attempt to describe 

the current state of national water quality on a region by region basis
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are available in Steele et al., (1974), Hawkinson, et al., (1977), 

and Briggs and Ficke (1978).

The NASQUAN system is dedicated to detecting long-term changes in 

stream quality on a nationwide basis. Therefore, station locations are 

chosen to account for as much of the nation's streamflow as possible, 

and uniform sampling frequencies for several constituents are used 

throughout the network (Hawkinson and Ficke, 1975).

Why then are states required to operate their own monitoring 

networks, and why should a state network be subject to different design 

criteria than NASQUAN? The state water quality authorities must make 

management decisions on a short-term basis (crisis-oriented management) 

and must have water quality data which is tailored to this purpose. For 

example bi-annual reports on the current condition of water quality 

in the state are required by section 305-B of the Clean Water Act. 

Therefore, annual means (yearly averages) of pertinent water quality 

variables are meaningful statistics for this short-term type of mana-

gement strategy. The confidence interval approach to design, to be 

discussed later, allows states to allocate their limited monitoring 

resources among stations in order to gain the largest possible amount of 

usable information for a given level of expenditure. It further 

facilitates an understanding of the significance of changes from year to 

year of annual means in water quality.

The emphasis in regulatory monitoring has traditionally been 

directed toward assessing the effectiveness of municipal or point-source 

type pollution control. However, the Clean Water Act directs EPA to 

begin programs to manage and control nonpoint sources. Pisano (1976) 

discusses Section 208 of the Clean Water Act as the primary legislative



mechanism through which states will act to achieve water quality goals 

via control of both point and nonpoint source pollution. Management 

under Section 208 involves both the planning and implementation of 

pollution control practices and should be supported through effective 

monitoring activities. Cooley (1976) provides an editorial comment on 

some general considerations of monitoring nonpoint source pollution, 

including station location and constituent coverage.

A final article which is quite critical of the current approaches 

to stream quality monitoring is that of Hines, Rickert, and McKenzie 

(1977) of the U.S. Geological Survey, who state
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Perhaps justifiably, in light of the complexities involved, 
enormous amounts of time, money, and effort are spent on 
river-quality sampling programs. In many basins, however, 
years of quality sampling have not generated adequate in-
formation from which to establish environmental standards 
or to make sound resource decisions. This situation has 
resulted in a growing dissatisfaction with river-quality 
data programs.

These authors suggest an alternative approach to monitoring consist-

ing of three major elements: (1) increased hydrologic analysis focusing 

on streamflow, water temperature, channel morphology, and basin history, 

(2) reinterpretation of existing data in light of the hydrologic analysis, 

and (3) design of sampling programs based on short-term, synoptic surveys 

rather than routine monitoring.

The authors indicate at least indirectly, that this approach would 

be appropriate for regulatory objectives (environmental decisions); how-

ever, many of the practical realities of monitoring at the state level, 

such as a dearth of expertise in water quality hydrology, are ignored. 

Also, the Intensive survey approach has been shown to be less than



satisfactory for trend detection by Lettenmaier (1978) which will be 

covered later. Thus it is apparent that much disagreement exists among 

experts as to what the basic nature of monitoring programs should be.

Technical Approaches to Design

12

Detecting Pollution Events

Within the past six years, several major reports have appeared 

which address the technical aspects of the design of monitoring systems 

for water quality management purposes. Although each includes a sta-

tistical approach to the design problem, they differ widely in their 

objectives and recommended methods.

In the late 1960's and early 1970's when water quality management 

was guided by the Federal Water Quality Act of 1965 (PL 89-234), it was 

thought that stream quality monitoring should have as its goal the 

detection of stream standard violations (pollution events). Ward (1973) 

proposed a monitoring network design which would include two classes of 

stations. A primary network would be designed to detect stream standard 

violations and a secondary network would be designed to detect trends. 

The primary network would be designed using a simulation model to deter-

mine the effectiveness of a monitoring scheme in detecting pollutant 

spills. The secondary network would be designed to determine annual 

means of river quality constituents with a given width of confidence 

interval. In each case costs would be balanced against effectiveness.

Beckers and Chamberlain (1974) presented a more sophisticated 

approach to designing for detecting stream standards violations. They



developed a complete, computerized design package using more complex 

stream models and more detailed cost-effectiveness analysis than were 

applied by Ward (1973).

As time progressed the realization of two important factors led to 

a shift away from the objective of detecting stream standard violations. 

The first factor is that such networks require high sampling frequencies 

and thus high costs to operate with any satisfactory level of perfor-

mance. The second is that effluent monitoring became recognized (via 

the 1972 Federal Water Pollution Control Act Amendments, PL 92-500) as 

the only practical way to Enforce pollution standards.

Deteimiinlng Annual Means

13

Thus the emphasis in stream monitoring has now been placed on the 

determination of annual means and trends of various water quality 

constituents. Montgomery and Hart (1974) and Sherwani and Moreau (1975) 

provide reviews of basic statistical techniques which may be applied to 

the design of such a network.

Ward, Nielsen, and Bundgaard-Nlelsen (1976) provide an excellent 

summary of those statistical tools which might possibly be adopted by 

regulatory agencies within the near future. The emphasis is placed on 

the basic statistics of the water quality "population" such as the 

annual mean and variance. Design of sampling frequencies in order to 

achieve desired widths of confidence Intervals about annual means is 

discussed. Stratified sampling and linear programming are suggested as 

appropriate design tools. In addition a comprehensive review of litera-

ture is presented which adequately presents the state of the art in 

water quality monitoring at the time of publication. In a concluding



section, the relationship of data needs and data utilization by agencies 

to their selection of monitoring strategies is discussed.

An additional population statistic of importance in water quality 

which is often used in place of the annual mean is the geometric mean. 

The geometric mean of flow is important in the work of Sanders (1974). 

The properties of the geometric mean in the context of its use in water 

quality standards are further discussed in Landwehr (1978).

The arguments of Sanders and Ward (1978) point out that the full 

value of any statistical approach to the design of monitoring networks 

can only be realized if state governments are willing to incorporate 

these same statistics into water quality decisions such as the setting 

of stream standards and defining standards violations.

14

Considering Serial Correlation

A major limitation of the work of Ward et al. (1976) would appear 

to be the assumption that in most water quality sampling for regulatory 

purposes, the samples will be independent. The extension of the same 

statistical concepts to the case of samples which are not Independent 

but serially correlated requires that the field of time series analysis 

be introduced into the subject of monitoring design. The basic statis-

tical concepts involved in this extension are illustrated in the 

following papers.

Bourodimos, Yu, and Hahn (1974) examine the stochastic nature of 

water quality time series, specifically, streamflow, temperature, dis-

solved oxygen, and biochemical oxygen demand. These time series are 

assumed to consist of three components: (1) a trend, (2) a cyclic or 

seasonal component, and (3) irregular fluctuations or a random component.



15

The trend component is modeled by a polynomial and the cyclic component 

by a sinusoidal expression. The random component is studied through its 

autocorrelation and spectral density functions. The essential concept, 

though, is that of viewing a water quality time series as composed of 

deterministic and stochastic portions which may be isolated and studied 

independently. This concept is also applied elsewhere in the literature, 

for example in Steele et al. (1974) and Sanders (1974).

The stochastic component of a water quality time series will in 

general be serially correlated. The importance of this phenomenon 

relative to monitoring is explicitly conveyed in Matalas and Langbein 

(1962) in the following statement.

Hydrologic series frequently consist of observations that are 
dependent on one another. Such series are referred to as non- 
random series and may be represented by a simple Markov model. 
The dependence between the observations is measured by the 
autocorrelation coefficients. In a nonrandom series each 
observation repeats part of the information contained in 
past observations. Consequently a nonrandom series yields 
less information about the mean than a random series having 
an equal number of observations.

The means by which this reduction in Information may be quantified 

mathematically will be developed in detail in Chapter 3.

The use of the first order Markov model mentioned above is illus-

trated in Rodriguez-Iturbe (1969) as applied to annual river flow. This 

simple stochastic model expresses the present value of a time series in 

terms of the immediately preceding value and a random shock or uncorre-

lated noise term. The only parameters of this model are the lag-one 

autocorrelation coefficient and the mean and variance of the series. 

Rodriguez-Iturbe discusses the range of errors involved in estimating
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these parameters for annual river flows indicating that large errors may 

result when less than 40 observations are used in estimation.

The lag-one Markov model is a member of a larger class of time 

series models known as autoregressive-moving average (ARMA) models. The 

classic text which covers this type of model is Box and Jenkins (1976). 

This text is the basis for all of the time series analysis performed in 

connection with the research described here.

Box-Jenkins type time series analysis has become extremely popular 

in recent years and journal articles have appeared describing the appli-

cation of AEMA models to many types of time series. An interesting 

study in which time series models of the ARMA type were constructed for 

water temperature and flow and then used for forecasting is described in 

McMichael and Hunter (1972). A significant portion of the paper is 

devoted to introducing the work of Box and Jenkins and describing the 

process of model construction.

The process of model construction has been refined since the 

appearance of Box and Jenkins (1976). These developments have been 

published in articles such as Hipel et al., (1977) and McLeod et al., 

(1977). The first article includes a summary of model Identification, 

parameter estimation, and diagnostic checks. The second paper Includes 

t application to three actual time series, each of which is a "classic" 

which had been modeled and discussed previously.

Advances in ARMA modeling occur so rapidly that it is difficult to 

define the state of the art at any one time. The British journal 

Biometrika is a good source of information concerning the latest develop-

ments in model construction, but the level of presentation is suitable 

for reading primarily by statisticians. On a more practical level, the



method by which one constructs a time series model will usually depend 

on the availability of computer programs to perform this function.

17

Advanced Design Techniques

Two reports have appeared which view water quality observations as 

serially correlated time series. Sanders (1974) studied the turbulent 

diffusion of a conservative pollutant to establish mixing length criteria 

for sampling station location. Sampling frequencies were determined 

based on daily observations of flow. Time series analysis was used to 

isolate the residual random noise component of flow data, and then 

sampling frequencies were assigned to achieve a given confidence inter-

val width for the noise term. This work represents the first attempt to 

take the confidence interval approach beyond the simple situation of 

independent samples to cases where serial correlation is important. The 

portion of the work dealing with the assignment of sampling frequencies 

is summarized in Sanders and Adrian (1978).

Lettenmaier (1975) presented a rather sophisticated approach to 

designing a network for trend detection. He discussed two major points: 

(1) the power of nonparametric tests for detecting linear and step 

trends in equally spaced, serially correlated water quality observa-

tions, and (2) coupling statistics and water quality models to determine 

spatial location of sampling stations such that the average power of 

trend detection would be a maximum. Both Sanders (1974) and Lettenmaier 

(1975) include excellent reviews of the literature of water quality 

monitoring.

Two important papers supporting the above work are Lettenmaier and 

Burges (1976) and Lettenmaier (1976). The former paper is a summary of 

the complete report, and the latter paper is a discussion of nonparametric
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statistical tests for trend which can be applied to water quality 

records. Procedures are described for assigning sampling frequencies in 

order to achieve desired power of trend detection for either a linear or 

step trend. Many of the specific results are dependent on the assump-

tion that a simple Markov (first-order autoregressive) model adequately 

describes most water quality time series. '

The most recent in this series of articles (and the most relevant 

to this current research) is Lettenmaier (1978). This article deals 

further with the problem of designing networks for trend detection. 

Specifically the power of trend detection tests in the case of constant 

sampling frequencies is compared to that for stratified sampling 

(sampling one year in three). The conclusion is reached that constant 

sampling frequencies are superior for trend detection even when 2 or 3 

times as many samples may be collected in stratified sampling. The 

importance of determining the correlation structure of water quality 

time series for sampling frequency design is emphasized. Subsequently, 

the difficulty in actually evaluating the correlation coefficients from 

the type of data records normally available is recognized. A regional-

ized approach to estimating correlation structure from the few complete 

records available is suggested. Two other subjects, the use of inter-

vention analysis in trend detection, and the geographical location of 

sampling stations are briefly touched upon.

There are few reports after Ward et al. (1976) which deal directly 

with water quality monitoring network design in more specific terms, 

that is which spell out exactly how one should set up a sampling program. 

One notable study, though, is that of Moore, Dandy, and DeLucia (1976). 

Their research, directed toward monitoring of eutrophication in lakes.
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produced a cost-effectiveness analysis for assigning sampling frequencies. 

Using a simple water quality model and estimation theory, the reduction 

in uncertainty (variance) in the estimates of water quality variables 

achieved through increased sampling is balanced against the resulting 

increased cost. The effectiveness of this approach (and many others) is 

limited by available prior data, adequacy of the water quality model and 

the ability of the designer to place a value on the reduction of 

uncertainty in estimates. An additional drawback, with regard to appli-

cation by state agencies, is that the necessary statistical and 

mathematical theory is far beyond the capabilities of existing agency 

personnel. This limitation is shared with the design approach presented 

by Lettenmaier (1975) and is one of the more serious problems associated 

with upgrading monitoring programs at the state level.



Chapter 3

STATISTICAL ANALYSIS OF HISTORIC DATA

Basic Statistical Concepts

Confidence Interval About Mean

The value (concentration) of a water quality constituent is a

function of time, represented as . The annual mean concentration of

the constituent is precisely

rT

y = I\ dt

where T is the period of consideration, here one year.

The mean is estimated from discrete grab samples as a sum.
k

„ - t=l
 ̂ ""t  = — — (1)

where k = number of samples collected during period T ,

and k = T/At, where At = interval between samples (assumed equal).

Another parameter for characterizing water quality "populations" 

and the one which is primarily used in this research is the geometric 

mean. The geometric mean y' is estimated from

■
exp

i  X ■
t=l

k

Here X^ is the sample geometric mean. The geometric mean is simply 

the quantity which results from dealing with the logarithms of the water



quality observations rather than the raw observations.

The geometric mean is probably a more useful statistic of water 

quality random variables in general than is the mean for several reasons. 

One reason is that the logarithms of water quality observations are 

often more nearly normally distributed than are the observations them-

selves. In this case, the geometric mean more closely approximates the 

median than does the mean. Water quality observations for a single 

constituent may range over orders of magnitude. If only a few observa-

tions are taken, the mean will be heavily influenced by a single large 

observed value. The geometric mean will be less influenced by the large 

value and will in this case provide a more meaningful indication of 

central tendency. Finally, water quality time series composed of logs 

of observations will be free of the very large fluctuation in magnitudes 

of observations found in most untransformed series. Thus because the 

logarithmic series are better behaved, they can be modeled more 

effectively.

If the population variance is known, a (1 - a) x 100% confidence 

interval about the sample mean is given by
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X -  (Kc^/2)[var(X)]^/^ , X + 1 ( 2 )

where var(X) = the variance of the sample mean

~ standard normal deviate corresponding to a 

probability of a/2 (tabulated).

(1 - a) X 100% = significance level 

A 95% confidence interval may be defined by the following probability 

statement: There is a 95% probability that the true mean lies within 

the interval about the sample mean given by (2) above.



The above holds if the sample mean is normally distributed. The 

Central Limit Theorem indicates that this will usually be true for 

sample sizes greater than 10 (Bendat and Piersol, 1971).

If the observations are independent, the variance of the sample 

mean is given by

2
var(X) = -^ > (3)

2
where a = the population variance, 

and k = number of observations.

In this case it is a simple matter to compute the number of obser-

vations, k , necessary to achieve a confidence interval of a particular 

width. Let one-half the desired width of the confidence interval be 

represented by R ,
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where R = Ka / 2
/k

thus, k =
K /„ ag/2
R (4)

This procedure is applied to water quality sampling in Ward et al. 

(1976).

If, on the other hand, the observations are not independent, the

2
variance of the sample mean is larger than a /k and the above pro-

cedure will result in a sample size which is smaller than that actually 

required. This problem may be handled as follows.

A serially correlated time series of water quality observations may 

be written as a sum of deterministic and stochastic components where:

X, = yt +
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= the value of the observation at time t 

= the value of the deterministic component at time t 

= the value of the stochastic component at 

time t . (Z^ must be stationary.)

In general, both and Z^ will be serially correlated.

In order to determine a confidence interval about the sample mean, 

it is necessary to develop an expression for var(X) .

var(X) = var
1

¥  ̂ ^t
t=o

var
1

k I (yt +
t= 0   ̂ ^

Since there is no variance associated with the y^ terms, we have

1
var(X) =

k- 1  k- 1

I I covCZ . Z )
i= 0  j= 0  "

2 r
k + 2 (k-l)p(l) + 2 (k-2 )p(2 ) + . . + 2 p(k-1 )

k

2 r
var(X) =

k- 1

k + 2  I (k-n)p(n) 
n=l

(5)

where p(n) = lag-n autocorrelation coefficient,

2
and a = var [Z ] 

z f'

Note that equation (5) reduces to equation (2) if the function p(n) 

is identically zero, which is the case when samples are independent. 

If Z^ is stationary

p(n) =
var[Z^]
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If is periodic, i.e., is periodic, the sample mean must, of

course, be computed over an integral number of periods to have any 

meaning. In the case of water quality constituents, an annual cycle is 

commonly exhibited, thus the annual mean is a useful statistic. For 

computing annual means, k in the above derivation corresponds to the 

number of samples collected in one year and the sampling interval in 

days would then be 365/k . Implicit in this discussion is the

assumption that

1

k= 0  ^

is an unbaised estimator of the annual mean, p , regardless of the 

point in the deterministic cycle at which the first sample is taken. In 

order to use equation (5) to compute the variance of the sample mean it 

is necessary to know the values of the autocorrelation function of the

stochastic component p(n): n = l , 2 .......k - 1  . These can be

estimated from a historic data record; however, one must have consider-

ably more than k data points in order to estimate k - 1  auto-

correlation coefficients.

A better approach is to fit a time series model to the historic 

data record with the deterministic component removed and then compute a 

theoretical autocorrelation function based on that model. This will 

generally require less data and hopefully will result in an auto-

correlation function which is "smoother" and more representative of the 

underlying stochastic process than an autocorrelation function estim.ated 

from a particular realization of the process.
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ARMA Models

The general class of time series models used for this purpose is 

autoregressive, moving average (ARMA) models as described in Box and 

Jenkins (1976).

An ARMA (p,q) model possesses the following form.

^  “ h^t-i + * ■ ■ ■ * *p\-p * \

- - «2 V 2  +
- 6 a 

q t-q (6)

where = present value of the time series

 ̂= value of the series one time interval in the past, 

etc.

,.. • ,<i'p = autoregressive coefficients

6 ^ , 0 2 .... 6 p = moving average coefficients

Sp = present value of a random noise term or "shock" 

value of random shock at time t- 1t- 1

The model expreses the current value of the time series in terms of

previous values, a random shock, and previous values of the random

shock. One effect of the model is to remove all serial correlation from

the time series, reducing it to a series of independent noise terms or

2
shocks, a^ . The variance of the residuals, a wil be less than

t ’ a
2

the variance of the time series, , since the variance of the time

series includes the effect of correlation. In a purely autoregressive 

model, AR(p), all of the moving average coefficients are zero. Likewise, 

in a purely moving average model, MA(q) , all of the autoregressive 

coefficients are zero.



A particular ARMA (p, q) process with specified coefficients will 

have a unique autocorrelation function associated with it. This func-

tion may then be used to determine the variance of the sample mean for 

equally spaced samples drawn from the process. The sampling frequency 

necessary to achieve a specified confidence interval which accounts for 

the effect of serial correlation may then be determined by computing the 

variance of the sample mean and width of the confidence interval for 

various sample sizes and selecting the appropriate one.

The autocorrelation function desired is that of the stochastic 

component only. Therefore, the deterministic component must be removed 

before a time series model is fitted. For this research, the deter-

ministic component was assumed to consist of a linear trend plus a 

sinusoidal component with a period of one year. This deterministic 

function has the form
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y^ = mt + A(cos wt + C) (7)

where y^ = deterministic component at time t

w = 360 degrees/number of samples per year 

m, A, C = fitted constants.

A similar form of the deterministic function is also applied in Sanders 

(1974) and Steele et al., (1974).

Application

Data Records Used

Water quality records from three locations were analyzed using the 

methods described above to determine their correlation structures. For 

selected constituents a range of hypothetical sampling frequencies were
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then assigned, confidence intervals were computed, and the results were 

compared with those obtained when serial correlation was not considered. 

The water quality records used were:

(1) Approximately two years of weekly observations for four con-

stituents from the Red River at Emerson, Manitoba. The period 

of record considered was August, 1960, through June, 1962. 

Constituents considered were specific conductance, sodium, 

bicarbonate and chloride.

(2) Approximately 15 months of daily observations for four con-

stituents from the Grand River at 6 8 th Avenue Bridge, Allen-

dale, Michigan. Period of record considered was March 1,

1976, through April 30, 1977. Constituents considered were 

specific conductance, total phosphate, sulfate and chloride.

(3) One year of daily observations for five constituents at each 

of nine stations in Illinois. Constituents considered were 

total dissolved solids, total organic carbon, suspended 

solids, total hardness, nitrates and turbidity.

Data were obtained from the Monitoring and Surveys Division, Water 

Quality Branch, Inland Waters Directorate, Ottawa, Canada; from the 

U. S. Environmental Protection Agency, Region V, Chicago, Illinois; and 

the Illinois State Water Survey, Urbana, Illinois, respectively.

The data sets from the Canadian and Michigan locations were 

evaluated first and used to gain experience in model fitting. (The 

results from these two locations are presented first to describe the 

fitting process.) The model fitting procedure was therefore more 

"streamlined" and efficient when the much larger task of working with 

records from an entire network in Illinois was begun.
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For each of the Michigan data records, the parameters ra, A, and C 

in equation (7) were fitted by the method of least squares as described 

in Sanders (1974), and then the function was subtracted from the

data record before an ARMA model was fitted.

In practice, it would be unwise to estimate a linear trend based on 

a single year of observations. Therefore the linear trend was not 

removed from the Canadian or Illinois time series which were used in the 

final design example. If however, longer historic records were avail-

able, one would normally estimate a linear trend component and then 

apply a statistical test to see if it were significant. A "t" test— as 

described in any basic statistics text such as Bowker and Lieberman 

(1972)— strictly applies only if the individual observations are inde-

pendent and identically, normally distributed, but may be useful also 

when these conditions "roughly" hold. Modified "t" tests for records 

with dependent observations and nonparametric tests (which are not based 

on a probability distribution) for trend are given by Lettenmaier (1976) 

and (1978).

The deterministic coefficients which were estimated for the seasonal 

components of the water quality time series under study are listed in 

the Appendix.

Time series models of the ARMA type were fitted to each data record 

using the IMSL (International Mathematics and Statistics Library) sub-

routines and the Control Data Corporation CYBER 172 computer system at 

Colorado State University.

An initial step in model fitting is often some transformation of 

the data. In many cases a transformation is selected in order to obtain 

"better" fits. However, for this research it is important to remember



that the models will ultimately be used to generate theoretical 

autocorrelation functions for time series to be sampled in the future 

and to establish confidence interval widths about some sample statistic. 

If the sample statistic of interest is the annual geometric mean, a 

logarithmic transformation would be used as in Sanders (1974). If the 

annual mean were of interest, no transformation would be used. For the 

final design example based on the Illinois data, it is desired to deal 

only with geometric means for the sake of consistency, thus a logarith-

mic transformation is used in every case. This rule is followed for the 

Canadian and Michigan data sets as well. Only models of degree p 2 

and q £  2  were considered.

Model Fitting
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The process of an ABMA model fitting is rather complex and is 

perhaps as much an art as a science. A brief description will be 

attempted here, and a detailed explanation may be found in Box and 

Jenkins (1970). Likely candidate models are selected based on a visual 

inspection of autocorrelation and partial autocorrelation functions 

estimated from the data for the first 20 or so lags. An AR(p) process 

tends to exhibit exponentially decaying or damped sine wave behavior in 

the autocorrelation function and has a partial autocorrelation function 

which is zero except for the first p values. A moving average model 

[MA(q)] would show similar behavior in reverse, exponential decay in the 

partial autocorrelation function and q nonzero values in the auto-

correlation function. Mixed processes tend to exhibit a combination of 

the above behavioral patterns. The estimated autocorrelation function 

and partial autocorrelation function for the daily sulfate concentration
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time series from the Grand River, Michigan data are shown in Figures 1 

and 2. This time series was later fitted by a second-order autoregres-

sive— AR(2)— model.

After likely candidate models are selected, the autoregressive and 

moving average coefficients are computed by the appropriate IMSL sub-

routines using the method of maximum likelihood as described in Box and 

Jenkins (1976). One model is then selected as the best from the various

candidates based on an examination of the correlation structure of the

2
residuals and on the magnitude of the residual variance, . If the

model were perfect, the residuals would be completely uncorrelated. One 

would usually select a model which had the smallest residual variance 

and least correlation remaining among the residuals as the best. Other 

factors must be considered, however. For example, one would like to 

adopt a model which has as few parameters as possible.

Case Study , Model Fitting

In order to explain the time series model-fitting process in more 

detail a case study is presented in which the procedures are described 

step-by-step. The specific conductance record for the Grand River, 

Michigan site is used for this purpose.

After removing the deterministic seasonal component, the first step 

in model fitting is a visual inspection of the estimated autocorrelation 

and partial autocorrelation functions. These are given in Figures 3 and 

A and appear very similar to the estimated functions for sulfate 

concentration in Figures 1 and 2. Since the estimated autocorrelation 

function decays fairly slowly, a significant autoregressive component is
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Figure 1. Estimated Autocorrelation Function for Daily Sulfate
Concentration. Crand River, Michigan.
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Figure 2. Estimated Partial Autocorrelation Function for Daily
Sulfate Concentration. Grand River, Michigan.
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Figure 3. Estimated Autocorrelation Function for Daily Specific Conductance, 
Grand River, Michigan.
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Figure 4. Estimated Partial Autocorrelation Function for Daily Specific 
Conductance. Grand River, Michigan.
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indicated. Only the first two values of the estimated partial 

autocorrelation function appear to be significant. Therefore no moving 

average component appears to be present, and the autoregressive operator 

would likely be of degree two. The most likely candidate model, second 

order autoregressive, is fitted first using the appropriate IMSL sub-

routines. Values of the fitted parameters tf)̂ = 0.63 and (f> 2 = 0.

2
result along with a residual variance, of 0.0026.

28

The next step is the evaluation of the fitted model. The esti-

mated autocorrelation function , of the residuals is shown in

Figure 5. According to Box and Jenkins (1970), if the form of the model 

were known exactly the the residuals would be normally dis-

tributed with mean zero and standard error l//n . Thus the standard 

error limits as shown in Figure 5 may serve as an approximate check on 

the adequacy of the model. For the current example the most significant 

value of r̂  ̂ occurs at a lag of seven. A logical explanation for this 

occurance is that a weekly cycle exists in the time series. A similar 

occurrence was noted, although to a lesser extent, in other quality 

series at the same location but was not observed at the other locations. 

Thus the adequacy of the deterministic model, which should possibly 

include a weekly component for this location— as suggested by Sanders 

(1974)— is questionable, but there is little reason to doubt the 

adequacy of the AR(2) model.

A more quantitative check is given by a test statistic

K

I
k=l

Q = n I rĵ (̂a)
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Figure 5. Estimated Autocorrelation Function of Residuals for AR(2)
Model, Specific Conductance. Grand River, Michigan.
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where ” lag-k autocorrelation coefficient of residuals

n = number of observations to fit the model

K = number of t^'s used in the test. (Here, K = 20.)

If the final model is appropriate, Q is approximately distributed as

chi-square with (k-p-q) degrees of freedom. Recall, that p and q

are the orders of.the autoregressive and moving-average components of

the model, respectively. By computing a such that the probability

2
that Q is less than x k-p-q 1-a , it is possible to gain

2
some insight into the adequacy of the model. [x ^ rt (l-a)thK—p q

quantile of the chi-square distribution with k-p-q degrees of 

freedom.] One would expect a to be fairly small (say less than 0.10) 

for adequate models. In practice, however, a may be much larger, 

particularly when n is large, even when an inspection of the 

plot would Indicate that the model is very good. Therefore, in this 

research, a was computed primarily for the purpose of comparing models.

A model with a smaller a would normally be more acceptable than one 

with a higher a . For the case study, the fitted AR(2) model results 

in a value of a = 0.48.

A third technique of model evaluation is that of overfitting or

fitting more parameters than are actually thought necessary. Thus an

AR(3) model is fitted for the case study series. Fitted parameters are

(f)̂ = 0.63 , = 0.25 , and = 0.02. A value of a = 0.64 and residual

2
variance (a ) of 0.0037 are also found. The fact that the value of 

a

is quite small would lend support to the acceptance of an AR(2)

2
model. This conclusion is also supported by the values of a and a8i

which are both larger for the AR(3) model than for the AR(2) model.



Two other candidate models were evaluated, AR(1) and ABMA (2,1). 

Both appeared to provide poorer fits of the data than did the AR(2) 

model when measured by the same criteria described above. Thus the 

AR(2) model was selected. The results of fitting the four candidate 

models are summarized in Table 1.

Statistical Analysis Results 

Results of Model Fitting

All of the models selected in this study are of the first-order 

autoregressive, second-order autoregressive, or first-order autore-

gressive— first-order moving average types. Tables 2, 3, and 4 indicate 

the type of model adopted and values of fitted model parameters for each 

water quality constituent considered for the Manitoba, Michigan, and 

Illinois locations respectively. Theoretical autocorrelation functions 

were computed for each model using the following equations from Box and 

Jenkins (1976).
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For an AR(1) process:

Pi =

\  = ‘I’l k = 1, 2, 3,

( 8 )

(9)

For an AR(2) process:

Pi =
1 -(|>.

(10)

'f> 2 +
l-(().

P. = '*’lPk-l + ‘*'2^-2
k = 3, 4, 5,

(11)

( 12)
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Table 1. Results of Fitting Candidate Models for 
Conductivity Time Series, Grand River, Michigan

Candidate
Model

Fitted parameters Chi-square 
significance 
level, a^1 2̂ 3̂ ®1

2
a
a

AR(1) 0.89 0.0029 0.60

AR(2) 0.63 0.28 0.0026 0.48

AR(3) 0.63 0.25 0.02 0.0037 0.64

ARMA(2,1) 0.70 0.21 0.06 0.0037 0.66



Table 2. Results of Model Fitting, Red River, Manitoba

Constituent Model <̂2 ®1
2

a
2

a
z P

log Specific conductance 
(Umhos/cm)

ARMACI,1) 0.40 -0.37 0.0923 0.567 6.74

log Bicarbonate 
(mg/e)

AR(2) 0.45 0.17 0.145 0.091 5.71

log Sodium 
(mg/e.)

AR(1) 0.624 0.350 0.210 3.98

log Chloride 
(mg/v)

AR(1) 0.644 0.602 0.375 4.08

4>
O



Table 3. Results of Model Fitting, Grand River, Michigan

Constituent Model
^2 ®1

2a
2

az P

log Specific conductance 
(umhos/cm)

AR(2) 0.64 0.28 0.0279 0.0136 6.418

log Total phosphate 
(mg/1 )

ARMA(1,1) 0.84 0.10 0.125 0.0953 -1.703

log Sulfate 
(mg/i )

AR(2) 0.4430 0.3771 0.058 0.0169 4.04

log Chloride 
(mg/£)

AR(2) 0.51 0.29 0.130 0.0664 3.661



Table 4. Results of Model Fitting, Illinois Network

"k
Constituent Model 4-2 01

2
a

2
a
z M

Station #1— Little Wabash River at Louisville, Illinois

TDS ARMACI,1) 0.86 0.03 0.1740 0.1176 5.6793
TOC ARCI) 0.79 0.1855 0.1833 2.4066
SS ARCI) 0.86 1.8174 1.1655 3.7091
Hardness ARMACI,1) 0.86 -0.02 0.2065 0.1468 5.2670
NO^“ ARCI) 0.90 0.6773 0.4276 1.1365

Station #2— Kankakee River at Kankakee, Illinois

TDS ARCI) 0.83 0.00686 0.00600 5.8526
TOC ARC2) 0.69 0.19 0.1920 0.1298 1.9213
SS ARC2) 0.73 0.19 1.5596 0.5059 2.6832
Hardness ARCI) 0.85 0.00948 0.00900 5.7419
NO3- ARMACI,!) 0.93 -0.14 0.6289 0.5506 1.782

Station #3— Kankakee River near Lorenzo , Illinois

TDS ARC2) 0.65 0.14 0.1658 0.0145 5.8875
TOC ARC2) 0.61 0.19 0.07536 0.0749 2.0321
SS ARC2) 0.76 0.11 0.5746 0.5634 3.0103
Hardness ARC2) 0.69 0.20 0.01744 0.0158 5.6880
NO^" ARC2) 0.53 0.33 0.4649 0.3842 2.2108

hO



Table 4. Results of Model Fitting, Illinois Network Ccont'd)

Constituent* Model 4>1 <i>2 83 o2
z P

Station //4— Chicago Sanitary and Ship Canal at Lockport, Illinois

TDS AR(1) 0.89 0.3292 0.0281 6.0708
TOC AR(2) 0.38 0.17 0.7536 0.0749 2.3513
ss AR(2) 0.35 0.21 0.5746 0.5634 3.2369
Hardness AR(2) 0.74 0.15 0.1639 0.0127 5.3434

NO 2“ AR(1) 0.56 0.40223 0.2330 2.0266

Station #5-— Illinois River at Ottawa, Illinois

TDS ARMACI,1) 0.85 -0.05 0.01099 0.0105 6.0520
TOC ARMACI,1) 0.80 0.10 0.0658 0.0534 2.3383
SS ARC2) 0.65 0.11 0.4685 0.3311 3.4309
Hardness ARCI) 0.95 0.01227 0.0116 5.5769
NO 3" ARMACI,!) 0.88 -0.15 0.1619 0.1250 2.553

Station #6—-Vermillion River at Pontiac, Illinois

TDS ARCI) 0.96 0.07003 0.0482 6.0069
TOC ARC2) 0.50 0.20 0.1631 0.1409 2.0488
SS ARC2) 0.55 0.25 1.3816 0.6979 3.5015
Hardness ARCI) 0.93 0.07233 0.0583 5.8522
NO 3“ ARC2) 0.79 0.18 1.8465 1.2864 2.1514

UJ



Table 4. Results of Model Fitting, Illinois Network (cont’d)

AConstituent Model <l>2 ®1
o2 o2

z y

Station //7— Eureka Lake at Eureka, Illinois

TDS AR(2) 0.81 0.16 0.02458 0.0086 5.9165
TOC AR(2) 0.42 0.45 0.0400 0.0381 2.5203
SS AR(2) 0.46 0.32 0.3776 0.2270 2.6115
Hardness AR(1) 0.97 0.02234 0.0105 5.4766
N03~ ARCI) 0.84 1.6920 1.6083 0.2927

Station #8— Canton Lake at Canton, Illinois

TDS AR(1) 0.98 0.0153 0.0061 5.4071
TOC ARMACI,1) 0.93 0.15 0.03867 0.0300 1.8897
SS AR(2) 0.58 0.29 1.0757 0.8078 1.6359
Hardness ARCI) 0.99 0.02077 0.0082 5.2039
NO^" AR(2) 0.62 0.34 0.6245 0.3458 0.5083

Station //9— Sangamon River at: Lake Decatur, Illinois

TDS ARCI) 0.92 0.1169 0.0083 5.7097
TOC AR(2) 0.46 0.22 0.0801 0.0765 2.0290
SS AR(2) 0.55 0.24 0.7142 0.2193 2.8744
Hardness AR(2) 0.86 0.07 0.0146 0.0117 5.5574
N03~ AR(2) 0.41 0.51 2.6655 0.5672 1.6438

4̂

log (mg/£)
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For an ARMA (1,1) process:

Pi =

( 1  - - e^)

1  + - 2 <p̂ d̂
(13)

Pk ‘*’lPk-l k = 2, 3, 4. (14)

Theoretical (computed) autocorrelation functions are plotted in 

Figures 6, 7, 8, and 9 for the Manitoba chloride models, AR(1) process; 

Manitoba specific conductance model, ARMA(1,1) process; Michigan 

specific conductance model, AR(2) process; and Michigan total phosphate 

model, ARMA (1,1) process, respectively. Since each model contains an 

autoregressive component, all of the autocorrelation functions decay 

exponentially. However, they differ considerably in the rate of decay.

Computed Confidence Interval Widths For Specific Models

The variance of the sample mean for each water quality constituent 

was then computed over a range of sampling frequencies using equation 

(5). A 95% confidence interval about the sample mean is then

1/2 _ 1/2
y - 1.96 [var(X)] , y + 1.96 [var(X)] (15)

Since a logarithmic transformation has been performed, the width of 

the confidence interval about the geometric mean in the original units

of the constituent is found from

-  -  1/2 _ ^y + 1.96[var(X)] _^y - 1.96 [var (X) ]
(16)

The results of these computations for the Canadian and Michigan loca-

tions are presented in Table 5. Confidence interval #1 in Table 5 is 

computed as just described and takes into account both the deterministic
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Figure 6. Theoretical Autocorrelation Function for Chloride Concentration.

AR(1) Process 

(f, = 0.64

Red River, Manitoba
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Figure 7. Theoretical Autocorrelation Function for Total Phosphate 
Concentration.

ARMA(1,1) Process

ip^ = 0,40 = -0.37

Red River, Manitoba



00

Lag -  Days

Figure 8. Theoretical Autocorrelation Function for Specific Conductance.

AR(2) Process

<}>̂ = 0.63 <)>2 = 0.28

Grand River, Michigan



49

Lag -  Days

Figure 9. Theoretical Autocorrelation Function for Sulfate 
Concentration.

ARMA(1,1) Process

<f)ĵ  = 0 . 8 4 0  ̂= 0 . 1 0

Grand River, Michigan
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Table 5. Computed Confidence Intervals about Geometric 
Mean for Several Water Quality Constituents

Sampling interval 
(days)

Width of 
confidence 
interval #1

Width of 
confidence 
interval #2

Width of 
conf idence 
interval //3

GRAND RIVER AT ALLENDALE, MICHIGAN

Specific Conductance (ymhos/cm)

1 74.3 14.7 21.0
3 74.8 25.5 36.5
7 75.6 38.8 55.7

14 78.5 55.0 78.7
28 87.6 77.8 111.4
36 94.7 88.7 127.1
45 102.5 99.2 142.2

Total Phosphate (mg/1)

1 5.4 1.5 2.8
3 5.6 2.6 4.9
7 5.8 4.0 7.5
14 6.5 5.7 10.6
28 8.2 8.1 15.0
36 9.3 9.2 17.1
45 10.3 10.3 19.1

Sulfate (mg/1)

1 0.038 0.012 0.013
3 0.039 0.020 0.023
7 0.041 0.031 0.035
14 0.047 0.043 0.050
28 0.062 0.061 0.070
36 0.070 0.070 0.080
45 0.070 0.079 0.090

Chloride (mg/1)

1 6.8 2.1 2.9
3 7.0 3.6 5.0
7 7.4 5.5 7.6
14 8.5 7.7 10.8
28 11.0 10.9 15.3
36 12.5 12.5 17.5
45 14.0 14.0 19.6
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Table 5. Computed Confidence Intervals about Geometric
Mean for Several Water Quality Constituents (cont'd)

Sampling interval 
(weeks)

Width of 
confidence 
interval //I

Width of 
confidence 
interval #2

Width of 
confidence 
interval //3

RED RIVER AT EMERSON, MANITOBA

Specific Conductance (yrahos/cm)

1 189.1 109.2 139.4
2 193.2 154.5 197.4
3 209.4 191.3 244.4
4 226.9 218.9 279.7
6 281.0 279.5 357.6
8 323.5 323.2 413.9

Bicarbonate (mg/1)

1 105.7 49.6 62.4
2 110.6 70.2 88.4
3 115.8 86.9 109.5
4 120.4 99.5 143.3
6 138.5 127.2 160.6
8 153.0 147.2 186.2

Sodium (mg/1)

1 27.2 13.4 17.3
2 28.1 18.9 24.5
3 29.6 23.5 30.4
4 31.0 ' 26.9 35.0
6 36.3 34.5 45.0
8 40.9 40.1 52.5

Chloride (mg/1)

1 41.8 19.7 25.0
2 42.9 28.0 35.7
3 45.1 34.8 44.5
4 47.0 40.0 51.2
6 54.9 51.5 66.5
8 61.6 60.0 77.9

Confidence interval #1 accounts for both seasonal and 
serial correlation effects.

Confidence interval #2 accounts for seasonal effects only. 

Confidence interval #3 assumes independent random samples.



component and serial correlation of the time series. Confidence

interval #2 is computed from equation (16) using

^ 2

var(X) = ,

52

where k = number of observations per year,

2
and a = the variance of the time series with the deterministic 

z

component removed.

2
is estimated from water quality observations from which the 

function given by equation (7) has been subtracted. Confidence

interval #3 is computed from equation (16) as well, this time using

2
var(X) = as in equation (3) ,

where a is the variance of the time series without considering either

2
the deterministic component or serial correlation, a is estimated 

from the logs of the raw water quality data. Thus confidence intervals 

#1, #2 and #3 represent successively decreasing levels of sophistication 

in the analysis.

Since the raw observations contain an apparent (or "false") 

variance due to the deterministic component, confidence interval (/2 is 

always smaller than confidence interval #3. The effect of serial 

correlation is to increase the variance of the sample mean. Therefore, 

confidence interval #1 is always larger than confidence interval //2.

When samples are collected frequently the effect of serial correla-

tion is large and confidence interval //3 is much larger than the other 

two. However, as the interval between samples increases the effect of 

serial correlation becomes equal to the decrease in variance due to 

considering the deterministic annual cycle. For example, this occurs



for the Michigan chloride series at a sampling interval of seven days at 

which point confidence intervals #1 and #3 are equal. At some still 

larger sampling interval the effect of serial correlation will disappear 

entirely. This occurs at about four weeks for the Michigan chloride 

series at which time confidence intervals #1 and #2 are equal. These 

relationships are illustrated graphically in Figure 10. Although a 

design approach using confidence interval //2 is certainly feasible, it 

is presented here primarily as an intermediate step in arriving at 

confidence interval #3.

One can readily see that the level of improvement in estimating 

confidence interval widths which can be gained from the more sophisti-

cated statistical techniques is highly dependent on the sampling 

interval used and, perhaps to a lesser extent, on the time series model 

which applies.

Table 6 gives a summary of these results by indicating the relative 

error of confidence interval #3 as compared to confidence interval #1 

for selected sampling frequencies. Taking an average over the four 

constituents of the Canadian data, confidence interval #3 is 36% too 

narrow in weekly sampling, 12% too wide when samples are collected 

monthly, and 27% too wide when samples are collected eight weeks apart. 

For the Michigan constituents, confidence interval #3 is on the average 

61% too small in daily sampling, 24% too large in biweekly sampling, and 

45% too large when sampling every 45 days.

One can obtain a better idea of the significance of these results 

through a simple hypothetical example.

Case 1; Suppose that an agency wishes to monitor the Michigan 

location in order to determine the annual mean specific conductance with

53
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Figure 10. 95% Confidence Interval Widths for the Michigan Chloride Series as a Function of
Sampling Frequency.
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Table 6. Relative Error of Confidence Interval #3 as Compared to Confidence Interval #1

RED RIVER, MANITOBA GRAND RIVER , MICHIGAN

Sampling interval Sampling interval

Constituent 1 week 4 weeks 8 weeks Constituent 1 day 14 days 45 days

Conductance -26% +23% +28% Conductance -71% 0% +39%

Bicarbonate -41% + 4% +22% Phosphate -48% +63% +85%

Sodium -37% +13% +28% Sulfate -66% + 6% +14%

Chloride -40% + 9% +27% Chloride -58% +28% +40%

Average -36% +12% +27% Average -61% +24% +45%

Ln

Confidence interval #3 assumes independent, random samples.

Confidence interval #1 accounts for effects of serial correlation and seasonal variation.



a 95% confidence interval width of 40 ymhos/cm. If the simplest 

statistical approach were used, the agency would implement a program of 

sampling two times per week (Table 5) but would obtain an "actual" 

confidence Interval width (accounting for the deterministic cycle and 

serial correlation) of 75 ymhos/cm. If, alternatively, the time series 

approach described here were used, the agency would realize that the 

desired confidence Interval could not be achieved with daily or less 

frequent sampling.

Case 2; Now suppose that the desired confidence interval width is 

80 pmhos/cm. The agency could adopt biweekly sampling regardless of 

which statistical approach was used (#1 or #3). Either would be 

appropriate in this case.

Computed Confidence Interval Widths— Generalized Results

56

The widths of confidence intervals about the geometric means for 

five constituents at each station in the Illinois network were computed 

over a range of sampling frequencies as before. The computed widths 

were averaged over the nine stations and plotted in Figures 11 through 

15 for total dissolved solids, total organic carbon, suspended solids, 

total hardness, and nitrates respectively.

The general behavioral pattern seen in Figure 10 is repeated here. 

The effect of serial correlation seems to become relatively insignifi-

cant for sampling intervals of about 20 days or greater in the total 

organic carbon and suspended solids series. The same thing occurs at an 

Interval of about 30 days for total dissolved solids. However, the 

effect of serial correlation in the total hardness and nitrate series 

seems to persist out beyond sampling intervals of 40 days.
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Recall that a "rule of thumb" has been suggested in the past by 

Ward et al. (1976) and others that samples may be considered to be 

independent i^en collected monthly or less frequently. The current 

analysis would Indicate that this assumption is reasonably correct.

It should be noted, however, that this assumption strictly applies only 

to data records with deterministic seasonal variation removed, the 

seasonal component being significant over the entire range of sampling 

frequencies.

The task of fitting a separate model to each constituent record at 

each station is certainly a foraidable one. Lettenmaier (1975) has 

suggested that many if not most water quality time series might be 

modeled using AR(1) model. He further suggested using a parameter value 

of = 0.85 when insufficient data are available for estimation of 

. The error involved in applying this assumption is explored in 

Figures 16 and 17 which compare average confidence interval widths for 

total dissolved solids and total hardness for the Illinois network using 

the fitted models with those computed using an AR(1) model with 

Pĵ = 0.85 . The widths of the "actual" confidence intervals are 

significantly less in each case indicating that, at least for these 

examples, the time series tend to exhibit stronger serial correlation 

than that of the postulated AR(1), p^ = 0.85 model.

In the absence of adequate data to fit a time series model of the 

ARMA type, the use of the first order autoregressive model is certainly 

justifiable. However, confidence interval widths computed subsequent to 

this assumption are highly dependent on the value of the lag-one auto-

correlation coefficient, p^ . Figure 18 shows 95% confidence interval
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Sampling Interval -  days

Figure 18. Effect of on 95% Confidence Interval Widths
about the Annual Mean for First-Order Autoregressive 
Processes with Unit Variance.
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widths about the annual mean (not the geometric mean) for samples 

exhibiting AR(1) type correlation with several values of the parameter 

and variance equal to unity. A value of = 0 of course 

corresponds to uncorrelated (independent) samples. These curves were 

obtained from equations (5) and (15). Actual confidence Interval widths 

would be obtained by multiplying the width obtained from Figure 18 times 

the square root of the variance (standard deviation) of a particular 

time series. A significant difference in confidence interval widths 

exists at high sampling frequencies from the case of p^ = 0.85 to 

p^ = 0.95 .



Chapter 4

INCORPORATING ECONOMICS INTO 

WATER QUALITY MONITORING SYSTEM DESIGN

This chapter expands the application of the previously developed 

statistical analysis techniques to consider assigning sampling frequen-

cies within a multi-station network. Not only are confidence Interval 

widths of several constituents considered, but also the economics of 

actually obtaining and analyzing the water quality sample are intro-

duced. Given that the statistical and economic objectives are generally 

competing, mathematical programming is used to "optimize" the sampling 

frequencies.

The chapter is separated into three parts: (1) formulation;

(2) application; and (3) sensitivity analysis. The formulation section 

objectively defines the problem and establishes a dynamic programming 

approach to solving it. The application section applies the dynamic 

programming algorithm to assigning sampling frequencies for an Illinois 

network for which detailed statistics are currently available. The 

sensitivity analysis section evaluates the sensitivity of the sampling 

frequencies to changes in the design variables (e.g., changes in costs, 

changes in travel distances, changes in statistical design criteria, 

etc. ).

Assigning Sampling Frequencies via Dynamic Programming

The problem of redesigning a water quality monitoring network which 

is already in place may be viewed as one of assigning new sampling 

frequencies to each station in order to achieve improved performance.



In this study the performance of a network is evaluated in terms of the 

confidence interval widths obtained about the annual means in quality 

constituents measured by the network.

The primary consideration in design is that the confidence interval 

widths obtained for each constituent of major concern be reasonably 

small and as uniform as possible from station to station. The optimi-

zation procedure presented here attempts to achieve this general 

objective while satisfying an economic constraint. The statistical 

objective of the design is to minimize the double summation— over both 

stations and constituents— of the positive differences between predicted 

confidence interval widths and design confidence interval widths for 

selected quality constituents. The economic constraint ensures that the 

sum of the operating costs over all stations will be less than the 

specified annual budget. The cost of sampling at each station is 

assumed to consist of the direct travel cost plus the laboratory cost of 

processing the samples.

In general the design will be based only on a small number of 

quality constituents which are considered to be most important by the 

management agency rather than on the total number of constituents 

actually measured. Also a limited number of possible sampling 

frequencies will be considered which reflect the agency's options in 

this area.

Problem Definition

The optimization problem may be expressed mathematically as:

68

N M 
Minimize J ^

i=l j=l

X. . - X.
-Jj____1

„ D
(17)
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subject to

N
1 c
i=l

i -
(18)

■1 ' 1 = 1 . 2. . . . N (19)

1 = 1 ,  

j = 1,

2, . 

2, .

. . N 

. . M

(20)

= a constant 
3

3 = 1, 2, . . . M (21)

and

where X

= a constant

X y - X ^  - 0 if - X. < 0 
ij J

( 22)

(23)

ij

X.
3

C.1

N

M

predicted confidence interval width for constituent j 

at station i

design confidence interval width for constituent j 

annual cost of sampling at station i 

total annual operating budget

number of samples collected per year at station i

total number of stations considered

total number of constituents included in the design.

Note that the difference X.. - X.^ is set equal to zero if it
ij 3

would otherwise be negative since one would not normally wish to allow 

the objective function to benefit from a station which had achieved a 

confidence interval width which was smaller than that actually sought.

The differences, X^^ - X^^ , are normalized by dividing by the 

design confidence interval width, X^^ , in order that the summation



can be performed over several different quality constituents whose 

confidence interval widths might differ greatly in magnitude.

Also note that only operating costs are considered. This arises 

from the assumption that the general level and extent of the monitoring 

operation have been established and optimization is performed within a 

fairly narrow region around this level. Thus fixed costs such as equip-

ment costs and personnel salaries will remain relatively constant within 

the range of decisions under consideration. Another way to view the 

situation is that monetary resources devoted to monitoring are being 

reallocated in order to Improve system performance. Only those 

resources which are actually affected by the reallocation need be 

included in the analysis. Since changing sampling frequencies would 

result in different numbers of samples to be processed and different 

distances to be traveled, these are the costs considered in expression 

(19), which for this study is assumed to be linear.

Linear Programming Approach

The functional relation (20)— and thus the objective function—  

above is nonlinear; therefore, linear programming cannot be used to 

solve the problem as it stands. If the objective function were 

expressed as a linear function of sampling interval rather than numbers 

of samples collected, then expression (19) would become nonlinear and 

nothing is accomplished. One approach suggested by Ward et al. (1976) 

is to reformulate the problem as follows:
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i=l j=l
I.. - I,
ij 2

(24)
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subject to similar constraints where and are predicted and

design information contents, respectively, is defined by

u .1

"ij

(25)

where = variance of constituent j at station i , a known

population parameter.

Thus the information content is a linear function of the number of 

samples collected, and linear programming techniques would apply. 

Assuming independent samples, the information content as defined above 

is the reciprocal of the variance of the sample mean. It follows that 

achieving equal information contents would also achieve equal confidence 

intervals. Of course the expression for the variance of the sample mean 

becomes much more complicated as serial correlation becomes important as 

shown in equation (5).

The linear programming approach, therefore, suffers from its 

inability to deal with confidence Interval widths directly. An addi-

tional drawback is that computed "optimal" sampling frequencies may take 

on fractional values unless an integer programming technique is used.

An integer, linear programming formulation is also presented in Ward 

et al., (1976).

Dynamic Programming Approach

A mathematical programming technique which overcomes all of these 

difficulties and is both simple and computationally efficient is dynamic
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programming. This is a technique which requires no assumption of 

linearity in either the objective function or constraints. The discrete 

form of dynamic programming, which is applied here, has the further 

advantage that the analytical form of the objective function and con-

straints need not be known. Additionally, only specific values of the 

decision variable, i.e., specific sampling frequencies, need be 

considered. Thus dynamic programming can be applied as an integer 

technique.

The limitations of dynamic programming which relate to this 

application are that no "cookbook" formulation of a "typical" dynamic 

programming problem exists, and, therefore, one cannot normally use an 

off-the-shelf computer code for his particular problem as one can in the 

case of linear programming. However, dynamic programming codes which 

are specific to a particular situation are usually not as difficult to 

write as are other types of optimization codes.

There are also some advantages inherent in preparing one's own 

optimization code. The first is that a code written for a particular 

problem is usually more efficient than one prepared to handle all prob-

lems in a general class. A second advantage is that the writer of a 

code will have a better feel for its operation and therefore will be 

less inclined to accept erroneous results. Finally, one can gain valu-

able Insight into the nature of the system he is dealing with as a 

result of the careful thinking necessary to formulate a mathematical 

programming code used to optimize that system. Dynamic programming was, 

therefore, selected as the optimization technique for this study, and a 

computer program was written to solve the specific problem previously 

described.
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Summary of the Dynamic Programming Algorithm

The theory and mechanics of dynamic programming may be found in 

many optimization texts. A very simple presentation of the subject 

which is, nevertheless, adequate for most purposes is contained in 

Hillier and Lieberman (1974). A brief discussion will be presented 

here.

Dynamic programming is a technique for making a sequence of 

interrelated decisions. The problem is divided into stages with a 

policy decision required at each stage. Each stage has a number of 

states associated with it. The effect of a decision is to transform 

the current state into a new state at the next stage. Each decision 

also makes an Individual contribution to the objective function. The 

optimization algorithm chooses the sequence of decisions which mini-

mizes (or maximizes) the overall value of the objective function. The 

algorithm makes use of a recursive relation to find the optimal sequence 

of decisions without considering all of the possible sequences.

Given the current stage and state, the minimum value of the 

objective function over all succeeding stages is called the return 

function. The minimum value of the return function, which results from 

making the appropriate current decision, is known as the optimal return 

function. The recursive relation expresses the value of the return 

function for the current satge and state in terms of the contribution 

from making the current decision and the value of the optimal return 

function for the new state at the next stage which results.

Beginning at the last stage, the optimization proceeds by moving 

backwards defining and storing the value of the optimal return function 

and the associated minimizing decisions for each possible state in each



stage. When the first stage is reached, there is a single possible 

state known as the Initial condition. Thus the optimal return function 

has a single value which is the minimal value of the objective function 

for the overall problem. The decision which achieves this minimum is 

chosen as the first policy decision. Since this decision results in a 

unique state at the second stage, it is possible to recall the decision 

associated with the optimal return function for that state. This 

decision is chosen as the second policy decision, and so on, until all 

policy decisions are made.

Dynamic Programming Formulation of the Monitoring Problem

The above general concepts are applied to the water quality 

monitoring problem as follows.

Define:

u^ = decision variable for stage i; number of 

samples colected per year at station i 

= state variable for stage i; portion of 

total budget remaining

M (X - X “)
I  —  = contribution to objective function at stage i

j=l X.
J
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= return function for stage i

ff (S^) = minimum
u ,1

fi(S^,u^) = optimal return function 

for stage i

i,j = subscripts referring to station and constituent 

respectively
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The value of the optimal return function corresponding to stage i 

and state represents the minimum possible value of the objective

function which could result from sampling at stations i through N , 

given that there are dollars currently remaining in the budget.

Thus

min 
u .

N M

I  I
\il=i j = l

X.. - X.
Ji2____1

X.
(26)

The value of u. which minimizes f,(S.,u.) is denoted as 1 i i i

Ui (S^) . The function, u^ (S^) , might be called an "optimal

*
decision function" analagous to the optimal return function, f^ (S^) 

Therefore

f/(S.) = f,(S,,u.*) .i 1 1 i 1
(27)

The value of the state variable at stage i+1 may be expressed in 

terms of the current state and current decision as follows:

i+1
S. - C, 
1 i

(28)

and C. = f (u,,i) 
1 c i

Thus the amount of money remaining in the budget is reduced by an 

amount equal to the annual cost of sampling station i at frequency 

u^ . This relation is known as the equation of state.

The recursive relation for this problem may be expressed as 

follows;

M (X - X/) ^
f.(S.,u.) = y — ^   + f..T (S.,i)1 i* 1 „ D 1+1 1+1

J=1 X.
(29)
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DvM (X.. - X. ) .
y — ____J!___ I- f (s - C )

J-1 Xj

M (X.. - X. )
I —^ ^  + ™in

j=l X. u...
J 1+1

/ M M (X„ . - X. )

I   ̂ ..5,=i+l j = i X.
J

(30)

An Important point to remember is that each minimization over 

above is constrained such that always greater than or equal to

zero. Thus ^  0 , and the total budget is never exceeded.

Recalling the definition given earlier, this relation expresses the 

minimum value of the objective function (minimum sum of deviations from 

design confidence intervals) resulting from sampling at stations i 

through N , given a current state and making the current decision

u^ in terms of the contribution from the current stage,

M X . . -  X.°y __ LL ]) »
3=1 X.

and the optimal return function for the new state at the next stage,

 ̂ i+l^^i+1^ •

The sequence of calculations involved in the operation of the 

dynamic programming code is illustrated in the flow diagram of Figure 19. 

As previously discussed, the general procedure is to first move back-

wards through the stages computing optimal return functions and optimal 

decision functions for each stage. The second step is, beginning with 

the initial condition (total budget) at the first stage, to go back 

through the stages, computing the new state at each stage based on the 

previous decision, and recalling the optimal policy decision associated 

with each new state until the last stage is reached and the overall 

optimal operating policy has been attained.
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Figure 19. Flow Diagram of Dynamic Programming code.
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The first segment of the program is composed of statistical 

subroutines which compute confidence intervals for each water quality 

constituent at each station over the range of sampling frequencies of 

interest. The method of computation is described in Chapter 3. 

Theoretical autocorrelation functions for adopted ARMA models are used 

to account for serial correlation in the time series. The required 

inputs for this portion include the numerical values of the ARMA model 

parameters for each constituent of each station and the variance of each 

series with deterministic seasonal variation removed.

The main portion of the program is the optimization algorithm 

itself which utilizes the computed confidence intervals from the first 

segment in the computation of the objective function. The cost of 

sampling, which is used in the equation of state, is computed in a 

separate subroutine which facilitates using any desired cost relations. 

For this research the cost of collecting and processing a sample is 

considered to be the sum of the incremental cost of travel plus direct 

laboratory analysis costs. Thus,

: /incremental^ / Incremental\
(31)

As mentioned previously, since only direct costs are considered 

in the analysis, the optimization should be regarded as an efficient 

reallocation of resources within a predetermined operating range, not 

as a "global" optimization of the system.

Total Annual No. of Lab cost Incremental' jIncremental
Cost for = samples per + travel distance
Station per year sample i cost 1 yto station



Application to Illinois Network

As an illustration of the dynamic programming formulation described 

earlier, the network design procedure was applied to nine stations of 

the Illinois network for which time series models had been determined. 

The input factors which must be determined in order to use this approach 

are the following: (1) water quality constituents to be included in the 

design, (2) the parameters of the ARMA models used including autoregres-

sive constants, moving-average constants and variances, (3) design 

confidence interval widths, (4) incremental travel costs, (5) incre-

mental distances for each station, (6) laboratory analyses costs, (7) 

total annual operating budget, and (8) sampling frequencies considered. 

The design values of the input variables related to the above factors 

were selected as follows.

Constituents Included In Design
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The type and number of water quality constituents to be included in 

the analysis is highly subjective. The most Important considerations 

are probably: (1) to include those constituents which can serve as 

indicators of the major types of quality problems (pollution) expected, 

and (2) to avoid including too many constituents in the design, which 

would result in a less effective determination of means for major 

indicators. For the initial or "baseline" run, five constituents were 

included:

(1) total dissolved solids (rng/i) as an indicator of overall water 

quality and nonpoint-source pollution.



(2) total organic carbon (mg/£) as an indicator of organic 

(municipal and industrial) pollution.

(3) suspended solids (mg/Jl) as an indicator of pollution from 

agriculture, land clearing, and development.

(4) total hardness (mg/Jl as calcium carbonate) as an indicator of 

metal ion concentration.

(5) nitrate (mg/Jl) as a nutrient indicator.

ARMA Models

The model used in the design was the selected "best" model of the 

three candidates— AR(1), AR(2) and ARMA(1,1)— for each constituent at 

each station as listed in Table 4. Since five parameters at nine 

stations were used, the baseline run used 45 different models in 

computing confidence intervals.
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Design Confidence Interval Widths

In order to assign design confidence interval widths to each 

constituent, a hypothetical situation was constructed in which the 

state agency had sufficient resources to sample all stations uniformly 

at a frequency of 26 samples per year. It was desired to reassign 

sampling frequencies in order to achieve greater uniformity of con-

fidence intervals. Therefore confidence interval widths were computed 

for each constituent at each station based on a frequency of 26 samples 

per year and the median width over all the stations was selected for 

this demonstration as the design value for each constituent. Other 

desirable criteria could be established for selecting the design value. 

Thus, at the uniform frequency half of the stations would be achieving



the design confidence interval width and the program would reallocate 

samples in order to improve upon this performance. The range of and 

median confidence interval widths for the design constituents are 

presented in Table 7.

Incremental Travel Costs
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The Illinois State Water Survey (Harmeson, 1978) indicated a direct 

travel cost of $0.14 per km for sampling the network used in this study. 

This figure should be representative of the change in travel costs an 

agency would experience due to relatively small changes in total 

distance traveled and would apply for the type of reallocation in 

sampling discussed here. This is the cost which applies in equation 31.

Laboratory Analysis Costs

The laboratory cost per sample is highly variable, depending on the 

type and number of constituents measured and on whether the analysis is 

done within the agency or contracted to an outside laboratory. The 

costs used in this study were based on information obtained from the 

Colorado State Department of Health, Water Quality Control Division.

This agency routinely measures at least 35 chemical constituents (Table 

8). Also given are the average costs of analysis for each constituent 

as reported by the U. S. Army Corps of Engineers (1978) for several 

independent laboratories. These costs would more nearly reflect average 

total costs of analysis. The State of Colorado performs its own 

laboratory analyses and reports an average cost of $111.91 per sample 

(Anderson, 1978). This cost is taken to represent operating costs of 

the laboratory excluding overhead. Since this study deals with changes 

in operating costs, a per-sample cost of $110 was used in the network



Table 7. Median and Range of Confidence Interval Widths for 
Water Quality Constituents, Illinois Network 
(95% Confidence Level, 26 Samples per Year)

Quality constituent
Median confidence 
interval width Range

Total dissolved solids (mg/i,) 37.0 17.0 - 132.1

Total organic carbon (mg/£) 2.29 1.26 3.80

Suspended solids (mg/i,) 14.9 3.6 - 39.5

Total hardness (mg/S.) 36.8 23.0 - 93.1

Nitrates (mg/Z) 1.99 0.52 - 19.5

00
N3
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Table 8. Laboratory Analysis
of Water

Costs for Chemical 
Quality

Constituents

Water quality constituent

Laboratory 
State of.A
Colorado

analysis costs
Independent
laboratories^

1 Turbidity 0.53 ,3.89
2 Conductivity 0.27 3.95
3 Dissolved oxygen 2.50 4.60
4 Biochemical oxygen demand 9.96 27.19
5 Chemical oxygen demand 9.96 14.38
6 pH 0.83 3.05
7 Total volatile solids 3.00 6.63
8 Total dissolved solids 2.00 7.23
9 Total solids 2.00 7.00
10 Ammonia nitrogen 1.66 11.81
11 Nitrite nitrogen 1.66 7.50
12 Nitrate nitrogen 1.66 8.17
13 Total phosphate 1.66 5.57
14 Cyanide 4.98 19.93
15 Total hardness 1.66 4.85
16 Calcium 1.66 7.56
17 Magnesium 0.50 8.56
18 Sodium 1.66 8.95
19 Chloride 1.33 5.79
20 Sulfate 2.67 8.75
21 Fluoride 0.83 12.00
22 Arsenic 9.96 16.29
23 Boron 1.66 10.42
24 Cadmium 4.98 7.56
25 Chromium 4.98 9.05
26 Copper 4.98 7.88
27 Iron 1.66 8.24
28 Lead 4.98 10.47
29 Manganese 1.66 19.20
30 Silver 1.66 10.70
31 Zinc 1.66 9.63
32 Mercury 7.47 17.50
33 Kjeldahl nitrogen 9.96 18.05
34 Aluminum 1.66 10.96
35 Potassium 1.66 8.77

Total 111.91 342.08

from Anderson, 1978,

t
from U. S. Army Corps of Engineers, 1978.



design. Note that if some samples were analyzed for fewer than the 

total number of constituents, a smaller laboratory cost would apply.

A more complex economic analysis would be necessary, however, if the 

assumption that all samples are processed identically were removed.

Determining Incremental Distances

The cost of collecting additional samples at a particular station

is more nearly a function of the "remoteness" of that station from other

stations in the network than it is of the actual distance from that

station to the laboratory. This is true of course since the sampling

unit normally travels from station to station rather than from station

to laboratory each time. An exact determination of travel costs would

require a consideration of the exact collection routes and would be an
/

enormously complex task. A simpler procedure which was adopted for this 

study was to use the average one-way travel distance (approximated by a 

straight line) from the three stations nearest the one in question. This 

represents the average additional distance traveled to collect an 

additional sample at the station and is the distance used in equation 

Design distances for each station in the network are presented in 

Table 9.
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Total Budget

The design budget is the portion of the total monitoring budget 

which represents the direct operating cost associated with travel of the 

sampling units and laboratory analysis of samples. The design budget 

used in this study is based on the same hypothetical situation described 

earlier. It is assumed that the agency's total budget allows it to



sample each station with a uniform frequency of 26 samples per year.

The portion of that budget which is direct operating expense was cal-

culated as follows.

The direct travel budget is the incremental travel cost (per km) 

times the sum over all stations of the distances associated with each 

station times the number of samples per year. The annual laboratory 

budget is the cost of processing a sample times the number of stations 

times the number of samples per year. The total annual operating 

budget is, of course, the sum of the travel and laboratory budgets.

Using the baseline costs of $0.14 per km for travel, $110 per sample for 

laboratory analysis, and 26 samples per year, a design budget of $28 050 

was obtained.

Sampling Frequencies Considered
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The choice of sampling frequencies to consider is another highly 

subjective aspect of the design process. One approach would be to 

consider every integer sampling frequency between one sample per year 

and 365 samples per year. However, most state agencies are constrained 

(or feel that they are) to certain "standard" sampling frequencies, 

e.g., weekly, monthly, etc. The dangers of considering only such fre-

quencies are discussed elsewhere, such as in Sanders (1974). Briefly, 

the problem is that of sampling at the same point in every cycle of an 

underlying cyclic variation in quality. For example, sampling on the 

same day in every week in a stream which exhibits a weekly cycle in flow 

will cause aliasing of the collected water quality data. A study of 

underlying cyclic variations in quality is, therefore essential before 

the selection of candidate sampling frequencies is made. A mathematical



tool for performing such a study is spectral analysis. The application 

of this tool to water quality is described in Wastler (1963).

Nevertheless, for this study, "standard" sampling frequencies 

ranging from twice a week to every two months were considered. Spe-

cifically the possible frequencies were 104, 52, 39, 26, 13 and 6 

samples per year.

Results
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The results of the design procedure may be found in Table 9. The 

table shows the computed design sampling frequencies, design confidence 

interval widths for each quality constituent, confidence interval widths 

which would result from a uniform frequency of 26 samples per year at 

all stations, and confidence interval widths which would result from the 

design sampling frequency.

The level of improvement afforded by design sampling frequencies 

over uniform sampling frequencies may be examined by comparing the means 

and standard deviations of the confidence interval widths obtained in 

each case. These results are also included in the table.

Taking an average over all five constituents, the mean confidence 

interval widths decreased by 0.5% with respect to a uniform frequency 

program and the standard deviation of the confidence interval widths 

decreased by 10.3%. Although using the same resources as uniform 

sampling and allocating them via dynamic programming did not greatly 

improve the average size confidence intervals, it did provide for 10.3% 

more uniformity in confidence widths across the network.



Table 9. Results of Dynamic Programming Design of Sampling Frequencies for Illinois Network

(a) Individual results 

Station no.
Distance

(km)
Frequency
samples/year

Water quality 
constituent

_____95% confidence interval widths_____
Design Uniform frequency Predicted 
(mg/2,) (mg/«,) (mg/£)

1 58.9

69.1

44.3

54.1

63.5

52

26

26

39

26

TDS 37.0
TOC 2.29
Suspended solids 14.9
Hardness 36.3
Nitrate 1.99

TDS 37.0
TOC 2.29
Suspended solids 14.9
Hardness 36.3
Nitrate 1.99

TDS 37.0
TOC 2.29
Suspended solids 14.9
Hardness 36.3
Nitrate 1.99

TDS 37.0
TOC 2.29
Suspended solids 14.9
Hardness 36.3
Nitrate 1.99

TDS 37.0
TOC 2.29
Suspended solids 14.9
Hardness 36.3
Nitrate 1.99

87.2 
3.80

39.5
64.5 
1.99

17.0 
2.30
12.0
25.1
5.03

35.3
2.38
17.8
36.8
5.39

67.6
2.22
14.9
23.0 
2.77

37.0 
1.92
14.3
36.4 
4.14

78.1
3.14
35.2
57.9 
1.87

17.0 
2.30

12 . 0
25.10 
5.03

35.3
2.38
17.8
36.8
5.39

64.3 
1.81

12.2
22.1
2.24

37.0
1.92
14.3
36.4
4.14

00



Table 9. Results of Dynamic Programming Design of Sampling Frequencies for Illinois Network (cont’d)

(a) Individual 

Station no.

results

Distance
(km)

Frequency 
samples/year

Water quality 
constituents

95%
Design 
(mg/£)

confidence interval 
Uniform frequency 

(mg/i,)

widths
Predicted 

(mg/£)

6 67.2 26 IDS 37.0 132.1 132.1
TOC 2.29 2.29 2.29
Suspended solids 14.9 23.6 23.6
Hardness 36.3 93.1 93.1
Nitrate 1.99 19.5 19.5

7 79.2 13 TDS 37.0 58.8 60.0
TOC 2.29 2.40 2.82
Suspended solids 14.9 5.40 7.18
Hardness 36.3 39.3 40.3
Nitrate 1.99 1.49 2.01

8 119.7 13 TDS 37.0 28.8 32.8
TOC 2.29 1.65 2.30
Suspended solids 14.9 6.90 9.17
Hardness 36.3 31.9 35.1
Nitrate 1.99 4.95 5.37

9 98.5 13 TDS 37.0 33.3 33.7
TOC 2.29 1.26 1.41
Suspended solids 14.9 4.54 5.50
Hardness 36.3 41.1 41.2
Nitrate 1.99 1.62 1.67

00
00



Table 9. Results of Dynamic Programming Design of Sampling Frequencies for Illinois Network (cont 'd)

(b) Summary statistics

Constituent
Uniform frequency sampling 

(mg/A)
Predicted 

(mg/Si) % change

TDS mean = 55.3 54.5 - 1.5

standard deviation = 35.2 34.8 - 1.1

TOC mean = 2.25 2.26 + 0.4
standard deviation = 0.70 0.52 -25.8

Suspended solids mean = 15.4 15.2 - 1.3
standard deviation = 10.9 9.3 -14.7

Total hardness mean = 43.5 43.1 - 0.9
standard deviation = 22.0 21.3 - 3.2

Nitrate . mean = 5.21 5.25 + 0.7
standard deviation = 5.57 5.57 0.0

Average % change in mean confidence interval widths = -0.5

Average % change in standard deviation of confidence interval widths = -10.3

00
V O
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Sensitivity Analysis

In order to determine how sensitive the dynamic programming 

solution is to changes in the values of the input variables, -^e design 

problem was repeated several times with a variety of input conditions. 

The results were compared using the solution obtained previously as the 

standard of comparison (or baseline run).

Incremental Travel Costs

The operating cost of travel was varied from $0.00 to $0.50 per km 

with a baseline cost of $0.1A per km. Costs of $0.00, $0.10, $0.14, 

$0.18, $0.22 and $0.26 per km yielded the same solution. However a cost 

of $0.50 per km produced an Increase in number of samples at station #3, 

which has a distance of 44.3 km, and a decrease at station #9, which has 

a distance of 88.5 km. These results are presented in Table 10. The 

lack of sensitivity to travel cost is expected since, for this example, 

the travel cost represents a rather small fraction of the total design 

budget as indicated in the table.

Distances to Each Station

ii-

An alternate method of determining the distance associated with 

each station was evaluated by using the one-way travel distance from the 

laboratory to the station. For these alternate distances, travel costs 

of $0.14 and $0.50 per km were applied. The results in the case of 

$0.14 per km are the same as the baseline results except the alternate 

mileages produce a sampling frequency of six samples per year rather 

than 13 at station #9. In the case of $0.50 per km, there is additionally



Table 10. Design Sampling Frequencies Based on Varying Travel Costs

Station
Distance

(km)

Design frequency 
(samples/yr) for 
cost = $0.14/km

Design frequency 
(samples/yr) for 
cost = $0.50/km

1 58.9 52 52

2 69.1 26 26

3 44.3 26 39

4 54.1 39 39

5 63.5 26 26

6 67.2 26 26

7 79.2 13 13

8 119.7 13 13

9 88.5 13 6
Total distance 644.5

Annual travel cost 2,350 8,350

Lab analysis cost 25.750 25.750

Total annual cost $28 100 $34 100



a shift of six samples per year from station #1, which has a distance of 

160 km, to station #7 which has a distance of 120 km. These results are 

presented in Table 11.

Annual Operating Budget
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The economic reasoning behind this study should apply for small 

variations about some predetermined level of activity. A variation of 

less than + 10% in the total budget was Investigated while maintaining 

the baseline travel and laboratory analysis costs. As indicated in 

Table 12 a considerable difference in solutions resulted. The $2 600 

decrease in budget resulted in a design total of fewer samples collected 

per year while the $2 600 increase resulted in a total of 19 more samples 

per year than in the baseline run.

The means and standard deviations of confidence Interval widths for 

each constituent are also given in Table 12 at each of the three budget 

levels.

At the lower budget ($25 500), the mean confidence interval width 

increased by an average of 1.1% compared to a uniform frequency program 

while the average standard deviation of the confidence interval widths 

decreased by 9.6%. At the higher budget ($30 700) the mean confidence 

interval width decreased by 1.2%, and the average standard deviation of 

the confidence interval widths decreased by 12.7% when compared to the 

uniform frequency program. In retrospect, the baseline budget of $28 100 

had produced decreases in the average means and average standard 

deviations of confidence interval widths of 0.5% and 10.3%, respec-

tively. Note that the change in the mean confidence interval widths are 

insignificant in all cases, but improvements in uniformity of confidence 

intervals are important.



Table 11. Design Sampling Frequencies Based on Alternate Travel Distances

Station
Distance

(km)

Design frequency 
(samples/yr) for 
cost = $0.14/km

Design 
(sampl 
cost =

frequency 
es/yr) for 
$0.50/km

1 160 52 39

2 122 26 26

3 150 26 26

4 174 39 39

5 158 26 26

6 98 26 26

7 120 13 26

8 168 13 13

9 78 6 6

Total distance 1 228

Annual travel cost 4 500 15 950

Lab analysis cost 25 750 25 750

Total annual cost $30 250 $41 700

VO
LJ



Table 12, Effect of Variation in Total Operating Budget on
Design Sampling Frequencies and Monitoring System Performance,

Illinois Network

(a) $25 :500 Budget
interval widthsDesign sampling 

frequency
!io. samples/year

rredicted conridence

Station 1
TDS
mg/7.

TOC
mg/l

SS Hardness 
mg/a

N0 3 ~
mg/i

1 39 80.7 3.32 36.4 59.8 1.91
2 26 17.0 2.30 12.0 25.10 5.03
3 26 35.3 2.38 17.8 36.8 5.39
4 39 64.3 1.81 12.2 22.1 2.24
5 26 37.0 1.92 14.3 36.4 4.14
6 26 132.1 2.29 23.6 93.1 19.5
7 13 60.0 2.82 7.2 40.3 2.01
8 13 32.8 2.30 9.2 35.1 5.37
9 6 35.8 1.86 8.1 42.2 1.88

Total samples 214

Mean confidence interval width 55.0 2.33 15.6 43.4 5.27

% change over uniform frequency -0.5 +3.5 +1.3 -0.2 +1.2

Standard deviation of confidence
interval widths 34.9 0.49 9.3 21.5 5.55

% change over uniform frequency -0.9 -■30.3 -14.4 -2.3 -0.3

Average % change in mean confidence interval width = 1.1

VO

Average % change in standard deviation of confidence interval widths = 9.6



Table 12. Effect of Variation in Total Operating Budget on
Design Sampling Frequencies and Monitoring System Performance,

Illinois Network (cont'd)

(b) $30 700 Budget

Station No.

Design sampling
frequency
samples/year

Predicted confidence interval widths

TDS 
mg/i

TOC
mg/i

SS
m g / i

Hardness 
mg/a

NO,
mgh

1 52 78.1 3.14 35.2 57.9 1.87
2 26 17.0 2,30 12.0 25,10 5.03
3 39 31.4 2.15 16.7 35.4 5.11
4 39 64.3 1.81 12.2 22.1 2.24
5 26 37.0 1.92 14.3 36.4 4.14
6 26 132.1 2,29 23.6 93.1 19.50
7 26 58.8 2.40 5.4 39.3 1.49
8 13 32.8 2.30 9.2 35,1 5.37
9 6 35.8 1.86 8.1 42.2 1.88

Total samples 253 

Mean confidence interval width 54.1 2.24 15.2 42.9 5.18

% change over uniform frequency -2.2 -0.4 -1.3 -1.4 -0.5

Standard deviation of 
interval widths

confidence
34.9 0.40 9.2 21.4 5.59

% change over uniform frequency -2.0 -42.6 -15.7 -2.7 +0.3

Average % change in mean confidence interval width = -1.2

Average % change in standard deviation of confidence interval widths

VO
Ln

= -12.7



Design Confidence Interval Widths

The design confidence interval widths for each constituent were 

reassigned based on a uniform sampling frequency of 13 samples per year. 

The total budget was accordingly reduced from $28 100 to $14 050. The 

alternate design confidence interval widths and resulting sampling 

frequencies are shown in Table 13. These results represent a realloca-

tion of samples about a uniform frequency of 13 samples per year rather 

than 26 samples per year as in previous designs, but the same stations 

tend to get the greatest number of samples as in the baseline run.

Water Quality Constituents Included
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Sampling frequencies were determined based on a single constituent 

(total dissolved solids) and on three constituents (total dissolved 

solids, total organic carbon, and nitrates), in addition to the baseline 

run with five constituents. The results are presented in Table 14 using 

the same summary statistics as before. As one would expect, the greatest 

improvement for the design constituents is seen when fewer are included 

in the design.

Since the concentrations of many water quality constituents are 

quite correlated with each other (or to flow) one would expect an 

improvement in overall uniformity of confidence interval widths from 

designs based on only a very few constituents. These results support 

that conclusion. Also, as more constituents are Included, the individual 

improvements become compromised and less and less is gained. One could 

conclude that if each of the 30 measured constituents were equally 

important, uniform frequency sampling would be the best alternative.



Table 13. Effect of Design Confidence Interval Widths on
Design Sampling Frequencies

Constituent

(a)
Design confidence 
interval widths based on 
26 samples/year, (mg/i.)

(b)
Design confidence 
interval widths based on 
13 samples/year, (mg/i!-)

Total dissolved solids 37.0 47.4

Total organic carbon 2.29 2.82

Suspended solids 14.9 19.7

Total hardness 36.8 40.3

Nitrates 1.99 5.10

Station
Sampling frequency 

samples/year
Sampling frequency 
samples/year

1 52 26

2 26 13

3 26 13

4 39 13

5 26 13

6 26 13

7 13 6

8 13 13

9 13 6

Total samples 234 116

VO



Table lA. Effect of Water Quality Constituent Selection on
Design Sampling Frequencies and System Performance

Illinois Network

(a) Design based on TDS only

Design sampling Predicted confidence interval widths
frequency TDS TOC SS Hardness NOo“

Station no. samples/year mg/i- mg/l mg/1 mg/i.

1 52 78.1 3.14 35.2 57.9 1.87
2 6 33.0 4.00 17.8 47.4 7.57
3 26 35.3 2.38 17.8 36.8 5.39
4 52 62.8 1.54 10.9 21.7 1.99
5 26 37.0 1.92 14.3 36.4 4.14
6 26 132.1 2.29 23.6 93.1 19.50
7 26 58.8 2.40 5.4 39.3 1.49
8 13 32.8 2.30 9.2 35.1 5.37
9 6 35.8 1.86 8.1 42.2 1.88

Total samples 233

Mean confidence interval width 56,2 2.43 15.8 45.5 5.47

% change over uniform frequency -1.6 +8.0 +2.6 +4.5 +5.0

Standard deviation of confidence
interval widths 32.8 0.740 9.2 20.3 5.67

% change over uniform frequency -6.8 +6.0 -15.6 -7.8 +1.8

Average i'i change in mean confidence interval width = +3.7

Average !Z change in standard deviation of confidence interval widths = -4.5

VO
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Table lA. Effect of Water Quality Constituent Selection on
Design Sampling Frequencies and System Performance,

Illinois Network (cont'd)

(b) Design based on TDS, TOC, and NO,

Station no.

Design sampling
frequency
samples/year

Predicted confidence interval widths

TDS TOC SS Hardness NO "
mg/1 mg/S- mg/£ mg/i. mg/l

1 39 80.7 3.32 36.4 59.8 1.91
2 26 17.0 2.30 12.0 25.10 5.03
3 26 35.3 2.38 17.8 36.8 5.39
4 39 64.3 1.81 12.2 22.1 2.24
5 26 37.0 1.92 14.3 36.4 4.14
6 26 132.1 2.29 23.6 93.1 19.50
7 26 58.8 2.40 5.4 39.3 1.49
8 13 32.8 2.30 9.2 35.1 5.37
9 6 35.8 1.86 8.1 42.2 1.88

Total samples 227 

Mean confidence interval width 54.9 2.29 15.4 43.3 5.22

% change over uniform frequency -0.7 +1.8 0.0 -0.5 +0.2

Standard deviation of 
interval widths

confidence
34.9 0.46 9.5 21.5 5.59

% change over uniform frequency -0.8 -34.1 -12.8 -2.3 +0.4

Average 51 change in mean confidence Interval widths = +1.6

\D
VO

Average % change in standard deviation of confidence interval widths = -9.9



Chapter 5 

SUMMARY

Three sets of data records for several water quality constituents 

were analyzed to examine the effects of using various levels of statis-

tics to design water quality monitoring networks. The effects measured 

were the errors in computing confidence interval widths about the annual 

mean for each constituent.

For each set of data, an estimate of the deterministic annual 

variation and serial correlation structure was computed. The annual 

cycles were determined by estimating the coefficients A and C of the 

equation

y^ = A(cos wt + C) (32)

where y^ = deterministic component at time t

w = 360 degrees/number of samples per year.

The correlation structures were determined by fitting the coef-

ficients, <l>2  ̂ > ®l * autoregressive-moving average

model

^  - ‘•'l̂ t - 1 + '*’2^t - 2 ^t " ®l\ - 1

where = value of time series at time t

(33)

random noise at time t

for each water quality constituent and then calculating theoretical 

autocorrelation functions based on the fitted models.
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Confidence interval widths about annual geometric means were then 

determined for a range of sampling frequencies for each constituent.

The confidence interval widths were computed in three ways:

2
(1) based on the variance of the correlated noise (a ) and

z

accounting for the effect of serial correlation.

(2) based on the variance of the series with the deterministic 

component removed (variance of correlated noise); and

(3) based oh the variance of the original time series;

The relative error resulting from using the simpler computational 

methods, (2) and (3), as compared with method (1) was examined.

A dynamic programming code was then formulated for the purpose of 

assigning sampling frequencies throughout a network in order to minimize 

a statistical objective function with an economic constraint. The 

objective function is the sum (over several selected constituents and 

all stations) of the normalized positive deviation of the predicted 

confidence interval widths from preselected design confidence interval 

widths. The code was designed to account for the effects of deter-

ministic seasonal variation and serial correlation by incorporating the 

results of the time series analysis just described. The economic 

constraint insures that the annual operating cost of the system, includ-

ing direct costs of travel and laboratory analysis, will not exceed the 

allowable budget.

As an example situation, the dynamic progranuning code was used to 

assign sampling frequencies to the nine stations in Illinois from which 

data had been obtained and analyzed. Design confidence Interval widths 

were adopted as the median confidence interval width for each constituent 

over all stations based on a sampling frequency of 26 samples per year.
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Using five design water quality constituents and representative travel 

and laboratory costs, a baseline design was produced. A sensitivity 

analysis was then performed by varying the values of the input para-

meters of the optimization routine. The input variables which were 

varied included the cost of travel, annual operating budget, design 

confidence interval widths, and number of quality constituents included 

in the analysis.



Chapter 6

ASSUMPTIONS

Water quality monitoring involves sampling a correlated time 

series, which is a realization of a stochastic process, the exact nature 

of which is unknown. Thus assumptions had to be made relative to the 

way in which a water quality population varies over time. Additional 

assumptions were necessary in order to facilitate an economic analysis. 

Consequently, the results of this research should be viewed in light of 

the limitations under which it was conducted.

Perhaps the most serious limitation is the lack of adequate histor-

ical water quality records. The records used in this study are among 

the best available today, and yet their limited length is inadequate for 

an accurate estimation of deterministic seasonal components and somewhat 

inadequate for fitting time series models. Practically speaking, regu-

latory agencies will seldom have daily water quality records. However, 

records consisting of infrequent and unevenly spaced observations may be 

used to estimate deterministic seasonal cycles provided the record 

length is adequate. A closely related limitation is the assumption that 

estimated population parameters such as the mean and variance represent 

true population values. Such an assumption is, of course, only as good 

as the data used in estimation.

The assumption of representative sampling is not to be taken 

lightly. Since many regulatory agencies have operated inadequate 

sampling programs in the past, it is unlikely that they have recorded 

representative data. Other data sources, such as the U. S. Geological 

Survey, might be relied on as an alternative when possible.
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Although this report deals strictly with sampling frequency 

selection it is essential that sample collection procedures be evaluated 

and improved as a part of any upgrading of a water quality monitoring 

system. This improvement should be geared toward assuring that future 

samples are representative in both space and time of water quality 

conditions as they actually exist in the stream.

Some common problems in sample collection which produce distorted 

water quality information are failure to account for weekly cyclic 

variation in quality, failure to account for diurnal variation in 

quality, and failure to account for cross-sectional variation in 

quality. Some possible solutions to these problems are (1) using 

sampling intervals other than multiples of a week (2) collecting 24-hour 

composite samples, and (3) collecting multiple samples along each stream 

cross-section, respectively. A more in-depth discussion of these 

considerations is presented in Sanders (1974).

A major limitation with regard to the application of these results 

is that of statistical and mathematical expertise required by agency 

personnel. Virtually all of the techniques described here would require 

some additional training of personnel. However, all of them can be 

applied in "cookbook" fashion without an understanding of all of the 

underlying mathematics. Fitting ARMA models requires that the necessary 

software packages (such as IMSL) be available, but the other procedures—  

fitting the seasonal component, computing confidence Interval widths, 

and assigning sampling frequencies via dynamic programming— can be 

accomplished if well-documented Fortran programs are supplied to 

agencies.
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A third limitation is that imposed by the economic viewpoint taken 

here. This viewpoint requires that an existing network be in operation, 

that the overall scale of the monitoring network will not be subject to 

change, that the fraction of the total budget due to operating costs of 

travel and laboratory analysis can be identified, and that incremental 

costs due to a reallocation of sampling frequencies can be Identified. 

This viewpoint is admittedly restrictive, but in order to extend the 

analysis to optimize the total monitoring program in an economic sense, 

it would be necessary to translate the value of water quality data into 

dollars and cents. Such an objective would require an extensive 

research effort beyond that attempted here.

A final limitation on the value of these results is caused by the 

failure of most regulatory agencies to carefully define the ultimate use 

of water quality data in management decisions. Without such definition 

there cannot exist fully rational approaches toward the more subjective 

aspects of network design. In the design procedures outlined here, the 

subjective aspects Include the selection of water quality constituents 

to be included in the analysis and the assignment of design confidence 

interval widths for each constituent.



Chapter 7

CONCLUSIONS

1) The effect of serial correlation on confidence interval 

widths about annual means is important at high sampling 

frequencies and lessens as the sampling frequency decreases. 

The point at which the effect of serial correlation becomes 

insignificant varies among water quality constituents and 

locations, depending on the correlation structure of the 

individual time series. Typically, however, this point will 

occur at a sampling interval of three to five weeks.

2) The deterministic annual cycle significantly affects computed 

confidence interval widths over the entire range of sampling 

frequencies under consideration-daily to bimonthly. Experi-

mental results Indicate that failure to account for this 

seasonal variation can result in computation of confidence 

interval widths which are 20% to 50% larger than those which 

actually apply within this range of sampling frequencies.

3) For the water quality time series studied and for a certain 

range of sampling intervals, typically two to four weeks, the 

effects of serial correlation in computing confidence interval 

widths is roughly offset by the effects of seasonal variation. 

Therefore within this region, both of the above factors should 

be considered in computing confidence interval widths, or 

neither should be considered.
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4) The water quality records studied in this research indicate 

that the most likely candidate models of the ARMA type to be 

evaluated for water quality time series are AR(1), AR(2), and 

ARMA (1,1).

5) Computed confidence interval widths about annual means are

highly sensitive to the value of the lag-one autocorrelation 

coefficient of the time series in question. Estimated values 

of encountered in this research range from approximately

0.5 to 0.9.

6) The dynamic programming code presented in this report provides 

a fairly simple, efficient means of assigning sampling fre-

quencies throughout a network. The code is particulary useful 

when it is desired to include the effect of serial correlation 

in the computation of confidence interval widths and when the 

selection of sampling frequencies is limited to a few allow-

able values.

7) Within the economic framework used in this study, which deals 

strictly with the operating costs of a monitoring system at a 

fixed scale of operation, the dynamic programming solution is 

relatively insensitive to variation in the laboratory analysis 

and travel costs. The solution is more strongly influenced, 

however, by the water quality constituents included in the 

design and by the selection of design confidence Interval 

widths.



Chapter 8 

RECOMMENDATIONS

Two groups of recommendations are made. The first group deals 

with application of the current research, and the second group deals 

with suggestions for future research.

Recommendations For Application

1) The effect of serial correlation on the widths of confidence 

intervals about annual means or geometric means of quality 

constituents should be considered by water quality management 

agencies for sampling intervals of one month or less. These 

effects are important in both the design of regulatory moni-

toring networks and the analysis of data subsequently collected 

for management decisions.

2) The serial correlation effects should be quantified via the 

time series analysis procedures described herein if sufficient 

data records are available. An assumed AR(1) correlation 

structure with a regionalized or estimated value of the lag-

one autocorrelation coefficient is the suggested alternative.

3) In analyzing water quality records, a deterministic annual 

cycle should be computed and removed from the observations 

prior to the determination of confidence interval widths 

whenever possible. A fairly long record is needed for this 

purpose but equally spaced observations are not required.
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4) In future water quality monitoring systems, samples should

be collected equally spaced in time to facilitate time series 

analysis and trend detection.

5) Sampling frequencies should be allocated among various stations 

of a regulatory network using some rational statistical basis. 

The dynamic programming code presented here is suggested with 

linear programming and stratified sampling approach as alter-

natives. The mathematical programming approaches are preferable 

because they allow the incorporation of economics into the 

analysis.

6) Management agencies should attempt to quantify as accurately 

as possible the direct costs of travel and laboratory analysis 

which they experience in sample collection and processing.

The economic viewpoint adopted here assumes that these costs 

are accurately known in order to establish the annual operat-

ing budget. Thus these cost figures are critical in the 

economic analysis even though the sensitivity analysis showed 

the example dynamic programming solution to be relatively 

insensitive to changes in them.

7) The eventual uses of water quality data in management deci-

sions should be considered in the design of regulatory moni-

toring networks, particularly with respect to the selection of 

water quality constituents to be Included in the design.

The Implementation of the above recommendations should require no 

major increases in manpower or technical expertise of regulatory agencies 

and is not predicated on increased legislative or financial support of



such agencies. It Is entirely conceivable that each of these 

suggestions could be at least partially adopted by many agencies within 

three to five years.

Suggestions For Future Research
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1) Daily water quality data for several constituents should be 

collected at several locations in various sections of the 

United States over a long period of time.

2) Such daily records should be analyzed to determine appropriate 

regional models of the ARMA type for various quality consti-

tuents .

3) Techniques should be explored for the design of monitoring 

networks based on daily records of flow and/or total dissolved 

solids supplemented with sparser records of other quality 

constituents. Such techniques would be based on the cross-

correlation between flow or total dissolved solids and other 

quality constituents.

4) "Cookbook" network design and data analysis packages which 

include well documented fortran or programmable calculator 

programs should be prepared and distributed to regulatory 

agencies (or made available through STÖRET). These packages 

should provide the capability of estimating deterministic 

components from data records, computing confidence interval 

widths about annual means and geometric means for time series 

of various correlation structures, and assigning sampling 

frequencies throughout a network via mathematical programming.
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APPENDIX

Estimated values of deterministic coefficients for seasonal components 
of water quality time series.

Water Quality 
Constituent

y^ = A cos (wt + C) + mt

Location log (mg/5-) A C m

Grand River, Specific conductance -0.105 1.03 0.446
Michigan (pmhos/cm)

Total phosphate -0.171 1.23 0.0013

Sulfate -0.119 0.462 0.0816

Chloride -0.334 0.718 0.0015

Red River, Specific conductance 0.265 1.94
Manitoba (ymhos/cm)

^Bicarbonate 0.276 65.4

Sodium 0.508 1.37

Chloride 0.653 1.47

Little Wabash River TDS -0.268 5.60
Illinois Sta. 1

TOC 0.0646 -0.0771

SS -1.15 1.46

Hardness 0.344 8.81

Nitrate 0.369 1.54

Kankakee River, TDS 0.0410 1.21
Illinois, Sta. 2

TOC -0.357 1.80

SS -1.47 1.72

Hardness -0.0301 0.997

Nitrate -0.394 0.790
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Water Quality y = A cos (wt
Constituent t

Location log (mg/£) A C

Kankakee River IDS 0.0648 1.14
Illinois Sta. 3

TOC -0.282 1.84

SS -1.35 1.65

Hardness 0.0578 2.20

Nitrate -0.401 1.42

Chicago Ship Canal TDS -0.0983 0.661
Illinois Sta. 4

TOC -0.0297 0.985

SS 0.151 1.46

Hardness -0.0858 0.874

Nitrate 0.576 -0.017

Illinois River TDS 0.032 14.9
Illinois Sta. 5

TOC -0.159 1.91

SS -0.530 1.94

Hardness -0.0364 1.03

Nitrate -0.272 14.9

Vermillion River TDS 0.211 1.61
Illinois Sta. 6

TOC 0.208 0.0401

SS -1.18 1.67

Hardness 0.170 1.53

Nitrate -1.06 0.904

m
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Water Quality y = A cos (wt + C) + mt
Constituent

Location log (mg/2,) A C m

Eureka Lake IDS 0.180 2.17
Illinois Sta. 7

TOC 0.0597 34.41

SS -0.553 2.15

Hardness 0,156 1.79

Nitrate -0.413 2.09

Canton Lake TDS 0,134 -3.43
Illinois Sta. 8

TOC -0,133 2.00

SS -0,742 1.93

Hardness -0,157 -6.61

Nitrate -0.733 0.385

Sangamon River TDS 0.0806 1.71
Illinois Sta. 9

TOC -0.0846 1.49

SS -0.979 1.40

Hardness 0.0753 1.46

Nitrate -2.019 1.22
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