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Abstract

This is an overview of the robust resource allocation re-
search efforts that have been and continue to be conducted
by the CSU Robustness in Computer Systems Group.

Parallel and distributed computing systems, consisting
of a (usually heterogeneous) set of machines and networks,
frequently operate in environments where delivered perfor-
mance degrades due to unpredictable circumstances. Such
unpredictability can be the result of sudden machine fail-
ures, increases in system load, or errors caused by inaccu-
rate initial estimation. The research into developing models
and heuristics for parallel and distributed computing sys-
tems that create robust resource allocations is presented.

1. Introduction

Parallel and distributed computing systems must often
operate in environments replete with uncertainty while con-
tinue to provide a required level of service. Designing ro-
bust systems for such environments involves determining
resource allocations that can account for uncertainty in es-
timated system parameters.

Our research into robust resource allocations has pro-
gressed in several stages. This paper provides an overview
of this research into robust resource allocations in paral-
lel and distributed computing systems. Section 2 discusses
the deterministic models of robustness and related heuristics
that have been investigated. The stochastic robustness met-
ric developed as part of this ongoing research is presented
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in Section 3 along with a selection of the resource allocation
heuristics developed for static stochastic resource allocation
environments. Our most recent stochastic research explores
the design of robustness metrics in stochastic dynamic en-
vironments and is discussed in Section 4.

2. Deterministic Robustness

The following is a brief description of the determinis-
tic robustness research in heterogeneous parallel and dis-
tributed computing systems that has been conducted by the
CSU Robustness in Computer Systems Group.

A mathematical description of a general robustness met-
ric when the system parameters are represented by deter-
ministic estimates is introduced in [1]. Also in [1], the
FePIA procedure is developed for deriving an instantiation
of the robustness metric for arbitrary given resource alloca-
tion environments. Examples of how the FePIA procedure
can be applied in different situations are shown, as well as
the utility of the performance metric is introduced.

Creating robust resource allocations when there is un-
certainty in task execution times is studied in [10]. Two
variations of this problem are considered. The first varia-
tion considers robust static allocation of resources with a
constraint on the total time allowed to complete all of the
tasks on a fixed set of machines. The goal is to maximize
the collective allowable error in execution time estimates.
The second variation analyzes the purchasing choices of a
set of machines that are to comprise a heterogeneous sys-
tem. Dollar cost constraints are imposed and the goal is to
select a set of machines that maximizes the robustness of
the resource allocation while meeting the completion time
constraint.

In [4], data sets arriving from a space-based weather
monitoring system must be processed before the next data



set arrives. Specific tasks that operate on the data sets have
high, medium, or low priorities. The arrival time of the next
data set is uncertain and the goal is to have all the high prior-
ity tasks and as many of the medium and low priority tasks
completed before the next data set arrives. Medium and
low priority tasks are assigned a weight that is combined
with a value representing the “likelihood” that that task will
complete and is used to determine the “worth” of a resource
allocation. Static resource allocation heuristics for this envi-
ronment are designed and compared. The heuristics execute
in two phases: 1) minimize the makespan of the high prior-
ity tasks and 2) maximize the overall worth of the resource
allocation for medium and low priority tasks.

In [2], greedy static resource allocation heuristics are de-
veloped for a heterogeneous set of sensors, applications,
machines, networks, and actuators. In this environment, the
application tasks are continuously executing, receiving new
input data sets from the sensors and producing correspond-
ing new control commands for the actuators. The heuris-
tics try to create a robust initial allocation, i.e., one that can
withstand the maximum increase in workload, generated by
changes in the sensor data sets, until a runtime reallocation
of resources is required to continue meeting a given set of
constraints. If a heuristic cannot determine a resource al-
location that meets the constraints, it is said to have failed.
Developing heuristics that both allow increased workload
and have low failure rates is the focus of [2].

Robust static resource allocations in distributed, multi-
tasking computing systems aboard shipboard environments
is studied in [5]. Complete and partial resource allocation
schemes were considered. The complete resource allocation
scheme is used when the system has enough resources to
accommodate all tasks and the partial method is used when
the resources are limited or service level constraints are vi-
olated. Each task is assigned a “worth” factor that is used
to determine the total worth of a resource allocation. The
goal of the developed heuristics is to create a robust initial
resource allocation that maximizes the total worth of the
system’s performance and the system’s capacity to absorb
unpredictable increases in input workload without quality
of service violations.

A model is developed in [3] for quantifying robustness
in a dynamic heterogeneous environment, where task ar-
rival times are not known a priori and actual task execu-
tion times may deviate from the estimated execution times.
Two problem variations are considered. The first is a robust-
ness constrained analysis, where the goal is to minimize the
makespan while maintaining a certain level of robustness.
The second is a makespan constrained analysis, where the
robustness is maximized while the makespan remains below
a specified limit.

The next section discusses stochastic robust resource
allocation (as opposed to deterministic model based) for

heterogeneous parallel and distributed computing systems.
This stochastic model robustness research builds upon the
work of the previously discussed deterministic robustness
research.

3. Stochastic Robustness

3.1. Model

This section summarizes the definition of the stochastic
robustness metric (SRM), that is part of the research de-
scribed in [7]. Heterogeneous parallel and distributed com-
puting systems are subject to uncertainties that may lead to
variations in application execution times. For a computing
system that consists of M nodes, let nj be the number of
applications assigned to compute node cj and let random
variable Tij denote the execution time of each individual
application aij on compute node cj . The random variables
Tij serve as the inputs to the mathematical model that char-
acterize the uncertainty in execution time for each of the
applications in the system and will be referred to as the
uncertainty parameters. A characterization of system per-
formance referred to as the performance characteristic ψ, is
an output of the mathematical model of the system. The
functional dependence between the uncertainty parameters
and the performance characteristic in the model can be ex-
pressed mathematically as

ψ = max{
n1∑
i=1

Ti1, ...,

nM∑
i=1

TiM}. (1)

Due to its functional dependence on the uncertainty param-
eters Tij , the performance characteristic ψ is itself a random
variable.

The time period Λ between arriving data sets is held
fixed, limiting the acceptable range of possible variation
in system performance, i.e., ψ ≤ Λ. The stochastic
robustness metric, denoted by θ, is the probability that
the makespan of the system does not exceed Λ, i.e.,
θ = P[ψ ≤ Λ]. For a given resource allocation, the
stochastic robustness quantitatively measures the likelihood
that the total time required to process a data set will not ex-
ceed the period between arriving data sets. Clearly, unity is
the most desirable stochastic robustness metric value, i.e.,
there is zero probability that the system will violate the es-
tablished time period constraint.

In the model of compute node cj , the functional de-
pendence between the set of local uncertainty parameters
{Tij | 1 ≤ i ≤ nj} and the local performance characteristic

ψj can be stated as ψj =
nj∑
i=1

Tij . Assuming no inter-

application data transfers exist among the applications aij

executing on different compute nodes, random variables



ψ1, ψ2, ..., ψM are mutually independent. As such, the
stochastic robustness of a resource allocation can be found
as the product of the probabilities that execution on each
compute node satisfies the imposed Λ time period. Mathe-
matically, this is given as

θ =
M∏

j=1

P[ψj ≤ Λ]. (2)

If the execution times Tij for applications mapped to
compute node cj are mutually independent, then each mul-
tiplication term in Equation 2 can be computed using an
(nj − 1)-fold convolution of probability mass functions
(pmfs) fTij

P[ψj ≤ Λ] =
∫ Λ

0

fTij
∗ ... ∗ fTnjj

dt. (3)

In the next subsection, we present heuristics that uti-
lize the stochastic robustness metric during resource allo-
cation. These heuristics apply the SRM as a constraint
on the resource allocation instead of focusing on minimiz-
ing the time period Λ. That is, the heuristics try to min-
imize Λ while ensuring that the stochastic robustness re-
mains greater than or equal to a given value.

3.2. Heuristics

In [6] and [8] we study heuristics that attempt to
minimize Λ for a given environment. A two-phase greedy
heuristic (BASIC) from our research in [8] and an iterative
heuristic (Steady State Genetic Algorithm) from [6] are
summarized in the following subsections. Both heuristics
use a time period minimization routine (PMR) that is
described next.

Period Minimization Routine. The PMR procedure
determines the minimum possible value of Λ for a given re-
source allocation and a given level of stochastic robustness.
As a first step, the results of (nj − 1)-fold convolutions
are obtained for each compute node corresponding to the

completion time (i.e.,
nj∑
i=1

Tij) distribution expressed in a

pmf form. The completion time pmf for compute node
cj is comprised of Kj impulses, where every impulse
corresponds to a possible pair of time outcome tkj and
associated probability pkj for k ∈ [1,Kj ].

As a second step, the minimum Λ is determined recur-
sively as the smallest value among {tkj | 1 ≤ k ≤ Kj , 1 ≤
j ≤ M}, such that the specified level of stochastic robust-

ness is less than or equal to
M∏

j=1

Kj∑
k=1

(pkj × 1(tkj ≤ Λ)),

where 1(condition) is 1 if condition is true; 0 otherwise.
The PMR procedure is summarized in Figure 1.

lo = t1 ← min{tkj | 1 ≤ k ≤ Kj , 1 ≤ j ≤M};
hi = t2 ← max{tkj | 1 ≤ k ≤ Kj , 1 ≤ j ≤M};
P ← specified level of P[ψ ≤ Λ];
while ∃ tkj ∈ (lo, hi) | {1 ≤ k ≤ Kj , 1 ≤ j ≤M}

P[ψ ≤ Λ]←
M∏

j=1

Kj∑
k=1

pkj × 1(tkj ∈ [t1, t2]);

case P[ψ ≤ Λ] :
== P : return;
> P : hi← t2;
< P : lo← t2;

end of case
t2 ← tkj | {1 ≤ k ≤ Kj , 1 ≤ j ≤M}

closest to lo+ (hi− lo)/2
end of while
Λ← hi.

Figure 1. The Period Minimization Routine
procedure.

After Ω iterations, the PMR procedure reduces the
uncertainty range by the factor ≈ (0.5)Ω, which is the
fastest possible uncertainty reduction rate. This optimality
becomes possible due to the fact that θ is strictly increasing
as the number of impulses considered for its computation
grows.

Greedy Heuristic. The two-phase greedy heuristic
(BASIC) [8] is based on the principles of the Min-Min
algorithm. The heuristic traverses through I iterations
resolving an allocation of one application at each iteration.
In the first phase of each iteration, the heuristic determines
the best assignment (according to the performance goal)
for each of the applications left unmapped. In the second
phase, it selects which application to map based on the best
result found in the first phase. The notation Λ(ai, cj) will
be used to denote a PMR call that returns the minimum
value of Λ for the specified level of stochastic robustness
when application ai is added to compute node cj . The
BASIC procedure is summarized in Figure 2.

Iterative Heuristic. The adapted genetic algorithm (GA)
implementation is summarized in Figure 3. Each chromo-
some in the GA models a complete resource allocation as
a vector of numbers where the ith element of the vector
identifies the compute node assignment for application ai.
The order in which applications are placed in a chromo-
some does not play any role and can be considered arbi-
trary. The population size for the GA was fixed at 200 for
each iteration. The initial members of the population were
generated by applying the one-phase sorting greedy heuris-
tic presented in [8], in which the application ordering was
perturbed to produce different resource allocations to serve



while not all applications are mapped
for each unmapped application ai

find the compute node cj such that
cj ← argmin{Λ(ai, cj) | 1 ≤ j ≤M};

from all (ai, cj) pairs found above
select the pair(s) (ax, cy) such that
(ax, cy)← argmin{Λ(ai, cj) | all (ai, cj)};
map ax on cy;

end of while

Figure 2. Summary of the BASIC two-phase
greedy procedure.

generate initial population;
evaluate each chromosome;
rank population based on Λ values calculated using PMR;
while stoping criteria not met

generate new chromosomes using crossover
and mutation;

insert unique offspring into population based on Λ
value calculated using PMR;

drop worse chromosomes to maintain population size;
end of while
output the best solution.

Figure 3. The steady state Genetic Algorithm
procedure.

as the initial members of the population. In addition, the so-
lution produced by the BASIC heuristic from [8] was also
added to the initial population.

The GA was implemented as a steady state GA, i.e.,
for each iteration of the GA only a single pair of chromo-
somes will be selected for crossover. Selection for crossover
was implemented as rank-based selection using a linear bias
function where the population of chromosomes is sorted ac-
cording to evaluation of Λ values. The most fit chromo-
some corresponds to a resource allocation with the small-
est Λ value supportable at the specified level of stochas-
tic robustness θ. Each chromosome generated by crossover
or mutation is inserted into the population according to its
evaluation such that after insertion the population remains
sorted. After insertion the population is truncated to the
original population size.

4. Robustness of Resource Allocation Heuris-
tics in a Stochastic Dynamic Environment

We present the use of a stochastic robustness metric [7]
to quantify the robustness of a resource allocation in a dy-
namic environment. This research focuses on an instance of

a dynamic, heterogeneous computing (HC) system where
task arrival times are not known in advance and exact task
execution times are uncertain prior to their completion. All
incoming tasks to the system are assumed to have been pre-
viously classified into gross classifications based on their
relative complexity. Each task class defines a set of pmfs,
where each pmf describes the probability of all execution
times for that class on a given machine within the HC suite.
Further, all of the classes of tasks that the system may be
asked to perform are known in advance. Each arriving task
has a deadline, relative to its arrival time established in ad-
vance that limits its total processing time. Although some
tasks may belong to the same class, task execution times
may still vary depending on the details of the submitted
task. For this reason, task execution times are modeled as
random variables and the probability distributions describ-
ing task execution times are assumed known. The impact
of missing a task deadline is modeled by a constant factor
penalty for each task deadline missed. That is, the overall
performance objective of a resource allocation heuristic in
this environment is to minimize the number of tasks that
miss their deadlines.

Following from our prior work [7], the robustness of the
finishing time for a task can be found as the probability that
the task will finish before its deadline. This probability de-
fines a local robustness characteristic. Individual local ro-
bustness characteristics for all tasks currently awaiting exe-
cution, can be combined to produce an instantaneous SRM,
at a given mapping event by taking the product of the lo-
cal robustness characteristics. Mapping events occur within
the system whenever a new task arrives or an existing task
completes.

An instantaneous SRM value is generated at each map-
ping event during the course of a dynamic resource allo-
cation and is used to define a dynamic SRM value. The
dynamic SRM value is defined as the average of the in-
stantaneous SRM values found during a given time period.
Given the relationship between the dynamic SRM value and
the performance metric, the dynamic SRM value can be
used to predict the relative performance of two resource al-
location heuristics. That is, if a heuristic consistently main-
tains a high instantaneous robustness value over some num-
ber of mapping events, then there is a consistently low prob-
ability that tasks will miss their deadlines over that same
period.

In a dynamic environment, the set of tasks being consid-
ered is constantly changing due to task arrivals and comple-
tions. Computing the instantaneous SRM value at a given
mapping event requires that the start time of the currently
executing task on each machine is known. Determining the
start time for a task i requires knowledge of the actual ex-
ecution time of the previously executed task k on that ma-
chine to calculate task k’s actual completion time. During



the initial set of simulations used for heuristic evaluation,
our methodology utilizes the expectation of the execution
time pmf as the actual execution time for each task. Thus,
the start time of the subsequent task i is known, enabling
the calculation of instantaneous SRM value.

Because of variations in the set of tasks to be executed
and changes in their arrival ordering, multiple simulation
trials should be conducted to adequately predict the typical
relative performance among the resource allocation heuris-
tics. In evaluating our results [9], we demonstrate that in
a dynamic environment a small number of simulation trials
are required to sufficiently indicate the performance of a re-
source allocation heuristic relative to our given performance
objective.

The dynamic SRM values for all simulation trials are
then combined by taking their average to determine a single
dynamic SRM value for the resource allocation heuristic.
The dynamic SRM values for different resource allocation
heuristics can then be compared to select the approach that
is more robust within the given environment [9].

5. Conclusions

In our research on robust resource allocation we try to
investigate three questions for any given environment. The
first is, what behavior makes the system robust? The sec-
ond is, what uncertainty must the system be robust against?
The third is, how can one quantify exactly how robust the
resource allocation is?

We have examined these three robustness questions us-
ing two different paradigms: deterministic and stochastic.
In Section 2, we gave pointers to the research where we de-
fine the deterministic robustness measure and describe envi-
ronments for which we have developed both static and dy-
namic resource allocation heuristics based on this measure.
Our stochastic model of robustness was defined in Subsec-
tion 3.1 and static resource allocation heuristics based on
this model were presented in Subsection 3.2. Finally, in
Section 4 we summarized how the stochastic model can be
used to quantify robustness when doing dynamic resource
allocation.
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