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ABSTRACT 

 

 

 

PREDICTING CATTLE GRAZING DISTRIBUTIONS: 

AN AGENT-BASED MODELING APPROACH 

 

 

 An agent-based model was designed which simulates foraging of yearling steers grazing 

in the short grass steppe region of Colorado, USA. Eleven hypotheses were analyzed that 

address different aspects of foraging behavior. Models tracked the grazing distributions of 

simulated steers, as well as their time spent grazing and amount of forage consumed. Model 

output was validated against grazing distributions and time spent grazing of real steers, 

observed using GPS-collars. Results indicate that in pastures containing sufficient 

heterogeneity, steers exhibit selective grazing behaviors in response to forage concentration 

and slope, as well as use reference memory to return to higher quality patches. In relatively 

homogenous pastures, cattle graze evenly, and over the course of multiple grazing seasons do 

not exhibit the selective foraging behaviors tested in this model. Future uses of this model 

include applying it to other range management scenarios to address differences in steer 

foraging behavior and pairing the agent-based model with a more elaborate ecosystem model 

to analyze relationships between steers and vegetation. 
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1. INTRODUCTION 

Rangelands compose approximately 25% of the Earth’s land area, are some of the most 

species-rich ecosystems, and account for 10% of global meat supply through livestock farming 

(Alkemade et al., 2010). In the United States, rangelands compose 61% of all land surface 

(Fuhlendorf and Engle, 2001). Conversion of natural habitats to food production causes a loss of 

ecosystem services and biodiversity (Tillman et al., 2001). Heterogeneity of rangelands is 

needed to both promote biodiversity directly through variation of plant species, and indirectly, 

as animals native to rangelands often are adapted to a diverse suite of habitat types that were 

present before European settlement (Fuhlendorf and Engle, 2001). 

A key driver of heterogeneity in rangelands (or lack thereof) is grazing distribution of 

livestock. In addition to plant composition and productivity (Milchunas and Lauenroth, 1993; 

Augustine and McNaughton, 1998), distribution of cattle in rangeland systems impacts several 

processes, such as fire regimes (Fuhlendorf et al., 2009), edaphic and hydrological processes 

(Ludwig et al., 2005; Popp et al., 2009), and livestock-wildlife interactions (Fuhlendorf et al., 

2006). Grazing distribution has been well studied (e.g., Bailey et al., 1996), and is affected by 

several abiotic and biotic factors. Abiotic factors include distance to water, slope, and 

topography (Gersie et al., 2019). Biotic factors include forage quantity and quality, nutrient 

content of plants, and presence or absence of toxins (Senft et al., 1987; Bailey et al., 1996; 

Launchbaugh and Howery, 2005). Cattle respond to a combination of both abiotic and biotic 

factors when making decisions about where to graze (Allred et al., 2013). Cattle also have 

spatial memory, which influences decisions about movements and bite rates within patches of 

a landscape (Provenza and Balph, 1987; Bailey et al., 1996). Cattle are social animals who 
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respond to the structure and mechanisms of their social environment (Lazo, 1993). 

Understanding how these abiotic and biotic factors, along with social mechanisms, influence 

cattle grazing behavior and distribution can help guide management of rangelands for desired 

outcomes (Rinella et al., 2011). 

Cattle make grazing decisions at a variety of spatial and temporal scales, ranging from 

an individual bite lasting a few seconds, to a feeding station lasting approximately a minute, to 

a patch lasting up to 30 minutes, a feeding site lasting a few hours, a camp lasting a few weeks, 

and a home range which lasts months to years (Bailey et al., 1996). Large-scale foraging 

patterns are the aggregate results of many individual small-scale grazing decisions. Cattle tend 

to allocate the time they spend in specific areas of a pasture based on the resources found 

there, attempting to balance intake of maximum quality and adequate quantity (Senft et al., 

1987). There is a trade-off for herbivores in selecting biomass swards for either quality or 

quantity. Nutritional quality is an inverse function of biomass abundance, and herbivores often 

sacrifice intake (quantity) for nutritional quality (Wilmshurst et al., 2000). Quantity is limited by 

body size, gut capacity, ability to crop forage, and available feeding time (Senft et al., 1987). 

Large herbivores may use momentary maximization to find a balance between quality and 

quantity. Momentary maximization is the sequential acceptance of the most palatable items 

encountered at a feeding location until palatability decreases to some threshold level. This 

threshold level is likely based on experience and can change depending on recent experiences 

and satiation level (Senft et al., 1987). Once the threshold is met, the animal changes its 

location until the array of plants available changes. At the patch level, an herbivore may decide 

to enter a new patch based on the rate of intake at the present patch, expected rate at other 
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patches, and cost of moving to a new patch. If intake falls to a threshold level, the herbivore will 

likely move to a new patch. As the threshold is met more quickly in a poor patch, less time is 

spent in poor patches than in rich patches. At broader landscape levels, such as the camp and 

home range scale, grazing distribution is likely a result of herbivores moving from patch to 

patch, and moving more slowly through rich patches and more quickly through poor patches 

(Senft et al., 1987).  

Areas close to water are generally grazed more heavily than areas further away and 

changing the location of water sources in a pasture can dramatically alter grazing distribution 

(Ganskopp, 2001). Topography is another key factor, as cattle often avoid steep slopes 

(Ganskopp and Vavra, 1987) and high elevations (Bailey et al., 2015). In relatively gentle terrain, 

cattle still show uneven grazing patterns, especially later in the grazing season when vegetation 

is sparser, preferring lowlands and avoiding uplands (Gersie et al., 2019). Additionally, fences 

are an abiotic influence on cattle grazing distribution, as cattle tend to travel next to and graze 

more frequently in proximity to fences (Augustine and Derner, 2014).  

Finally, social interactions in herds affect grazing distribution, and cattle often form 

stable social subgroups that share a common home range (Lazo, 1994). Howery et al. (1996) 

found that in Idaho, 78% of the cows in a herd showed high consistency in home ranges. Within 

herds, individuals may fill roles of leaders, followers, and independents (Sato, 1982). Leaders 

are individuals that tend to initiate changes in behavior, such as moving toward or away from 

grazing areas or water, and the rest of the group may follow. Independent cattle tend to have a 

further distance to their herdmates than other cattle (Sato, 1982). The social behavior of cattle 
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has an influence on the grazing distribution of cattle and can be manipulated by managers to 

achieve desired outcomes (Sowell et al., 2000). 

Herbivore foraging systems are considered complex because herbivores are making 

decisions about foraging based on several variables at multiple spatial and temporal scales.  

Due to this complex nature, herbivore foraging systems are difficult to model with traditional 

mathematical models, and isolating variables to test through real-world experimentation is 

impossible.  A better understanding of the factors influencing cattle grazing distribution may 

come through the development of an agent-based model (ABM).  Agent-based models are 

computational simulation tools in which a system is modeled as a collection of autonomous 

decision-making entities called agents who assess the environment and agents around them to 

make decisions based on a set of programmed rules (Bonabeau, 2002). ABMs may be 

particularly useful for modeling group foraging by herbivores, as they can be used to simulate 

the complexity of animal spatial interactions and behavior (Dumont and Hill, 2003). Dumont 

and Hill (2003) also note that ABMs would be particularly useful in scenarios in which 

experimentation is impractical, or where different management strategies are being compared. 

ABMs are also useful in gaining a better understanding of the ways that parts make up the 

whole of a system, as ABMs are able to capture emergent behaviors (Bonabeau, 2002). In this 

context, an ABM can be used to both better understand the underlying decisions cattle are 

making in determining their grazing behavior, intensity, and distribution, and in running 

experiments to analyze the outcomes of management decisions impacting grazing distributions 

(Coughenour, 1991; Jablonski et al., 2018).  
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I developed a spatially explicit ABM to gain a deeper understanding of the factors 

contributing to the grazing distribution of cattle. I parameterized the model through both 

relevant literature and through analyses of movement rates of grazing steers equipped with 

GPS-collars, grazing in the shortgrass steppe of Colorado, USA. The ABM uses remotely-sensed 

measures of spatial heterogeneity in forage availability and slope at 1 m2 resolution to simulate 

three ~130 hectare pastures. Rules guiding the behavior of the simulated steers were adjusted 

to test a series of hypotheses, each sequentially increasing in complexity, regarding the 

behavioral rules driving grazing distribution. Hypotheses were tested by comparing the 

predicted grazing distributions with real-world grazing distributions captured from steers 

equipped with GPS-collars. My overarching goal was to evaluate the degree to which specific 

behavioral rules are likely to contribute to real-world grazing distributions. A longer-term goal is 

to evaluate the potential for an ABM such as this to be coupled with an ecosystem-level process 

model of forage growth, to simulate cattle grazing in response to changing environmental 

variables. 
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2. METHODS 

A series of hypotheses were tested using the ABM created regarding cattle grazing 

behavior at different spatial scales. These scales were defined from Bailey et al. (1996) and 

range from the smallest spatial scale of a feeding station, to the largest, the feeding site. The 

feeding station is defined as the plants available to a steer without moving its front feet. The 

patch level is an animal’s reorientation to a new location, or a break in the foraging sequence. 

The feeding site is defined as a collection of patches in a contiguous area that animals graze in a 

foraging bout and may consist of more than one plant community. This spatially explicit ABM 

defines a feeding station as a 1 m2 pixel, a patch as pixels within a circle with a 20 m radius, and 

a feeding site as the entire simulated pasture. Table 1 provides the hypotheses being analyzed 

using the ABM and defines the forage selection and memory rules followed by simulated steers, 

occurring at each spatial scale for each hypothesis. These hypotheses are defined further in 

Section 2.4. 

Table 1: List of hypotheses tested using the ABM. 

Hypothesis Scale Description 

Null 

Feeding Station Steers select pixels at random. 

Patch Patch level selection not present. 

Feeding Site Feeding site level selection not present. 

1 

Feeding Station Steers select pixels with the most biomass. 

Patch Patch level selection not present. 

Feeding Site Feeding site level selection not present. 

2 

Feeding Station Steers select pixels at random. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quantity (biomass). 

Feeding Site Entire pasture is used to define patch selection. 
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3 

Feeding Station Select pixels with the most biomass. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quantity (biomass). 

Feeding Site Entire pasture is used to define patch selection. 

4 

Feeding Station Steers select pixels with intermediate biomass (quality). 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quality, defined here as patches with intermediate 

amounts of biomass (Bailey et al., 1996; Wilmshurst, 2000). 

Feeding Site Entire pasture is used to define patch selection. 

5 

Feeding Station Steers select for pixels with least amount of slope. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
accessibility, defined here as patches with the least amount of 

slope. 

Feeding Site Entire pasture is used to define patch selection. 

6 

Feeding Station 
Steers select for pixels based on best outcome from Hypotheses 

3 or 4, combined with least slope. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quality, based on the best outcome of Hypotheses 3 and 

4, combined with least slope. 

Feeding Site Entire pasture is used to define patch selection. 

7 

Feeding Station 
Steers select for pixels based on best outcome of Hypotheses 3 

and 4, combined with least slope. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quality, based on the best outcome of Hypotheses 3 and 

4, combined with least slope. 

Feeding Site 
Set of remembered patches is used to define patch selection. 

Steers use reference memory to return to good quality patches 

after visiting water. 

8 

Feeding Station 
Steers select for pixels based on best outcome of Hypotheses 3 

and 4, combined with least slope. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quality, based on the best outcome of Hypotheses 3 and 

4, combined with least slope. 

Feeding Site 
Entire pasture is used to define patch selection. Steers use 

episodic memory to leave bad quality patches. 
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9 

Feeding Station 
Steers select for pixels based on best outcome of Hypotheses 3 

and 4, combined with least slope. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quality, based on the best outcome of Hypotheses 3 and 

4, combined with least slope. 

Feeding Site 

Set of remembered patches is used to define patch selection. 

Steers use episodic memory to leave bad quality patches. Steers 

use reference memory to return to good quality patches after 

visiting water and when leaving bad quality patches. 

10 

Feeding Station 
Steers select for pixels based on best outcome of Hypotheses 3 

and 4, combined with least slope. 

Patch 
Steers adjust rate of movement through patch based on patch’s 
forage quality, based on the best outcome of Hypotheses 3 and 

4, combined with least slope. 

Feeding Site 

Set of remembered patches is used to define patch selection. 

Steers use episodic memory to leave bad quality patches and 

use reference memory to return to good quality patches after 

visiting water and when leaving bad quality patches. Steers are 

limited in time spent grazing by reaching thresholds of either 

indigestible or digestible organic matter consumed. 

 

 

2.1 Study Area 

 The ABM has been developed to simulate real-world pastures present at the USDA-

Agricultural Research Service’s Central Plains Experimental Range (CPER) in Nunn, Colorado (40 

50’ N, 104 43’ W). Mean annual precipitation is 340 mm with mean elevation of 1640 m. CPER 

is within the shortgrass steppe eco-region, which occupies approximately 3.4 x 105 km2 in the 

semiarid, south-western portion of the Great Plains (Lauenroth et al., 1999). Cattle production 

is a major land use of this region, and cattle account for 97% of grazing pressure by large 

herbivores (Hart and Derner, 2008). An ongoing experiment, the Collaborative Adaptive 

Rangeland Management Project, is designed to compare the livestock grazing behavior and 

weight gains under adaptive vs. traditional rangeland management (Wilmer et al., 2018), 
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among other goals. Here, I focus on development of an ABM for cattle in the traditional 

rangeland management treatment. Three of the traditionally managed pastures, which differ in 

the distribution of soil types, vegetation communities, and topographic complexity, were 

chosen for inclusion in the ABM to represent different suites of environmental conditions 

occurring at CPER (Table 2). These pastures were grazed by 20 – 22 yearling steers in 2014 and 

22 – 24 yearling steers in 2016 from mid-May to early October, which corresponds to a stocking 

rate of 0.64 animal unit months (AUM) ha−1 in 2014 and  0.68 AUM ha−1 in 2016. 

Table 2: Environmental variables from the three pasture replicates. 

Variable Replicate 1 Replicate 2 Replicate 3 

Pasture area (m2) 1,330,634 1,262,336 1,286,346 

NDVI (index) Min: 0 

Max: 0.5851 

Mean: 0.2664 

Min: 0.0559 

Max: 0.5314 

Mean: 0.3007 

Min: 0 

Max: 0.8831 

Mean: 0.3073 

Slope (degrees) Min: 0 

Max: 27.7 

Mean: 2.9 

Min: 0 

Max: 20.9 

Mean: 2.9 

Min: 0.1 

Max: 41.0 

Mean: 3.9 

Standing Biomass (g m-2) Min: 0 

Max: 127.86 

Mean: 58.19 

Min: 0 

Max: 124.54 

Mean: 70.47 

Min: 0 

Max: 211.44 

Mean: 73.55 

Number of water locations 2 1 2 

 

2.2 Collar Data 

 Cattle distribution was measured by placing GPS collars (Lotek collars; Lotek 

Engineering, Newmarket, ON, Canada), which recorded positions at 5-min intervals, on two 

randomly selected steers in each pasture. Previous studies (Gersie et al., 2019; Augustine and 

Derner, 2014) indicate that the two replicate steers adequately represent the distribution 

patterns of the entire herd. Collars contained an activity sensor that recorded movements of 

the neck along the X- and Y- axes and the estimated percent of each 5-min interval in which the 
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neck angle indicated the animal’s head was down. We used the calibration of Augustine and 

Derner (2014) to predict whether each animal was grazing or not grazing for each 5-min 

tracking interval. In some cases where the activity sensors did not function correctly in 2016, 

we used the methods described by Gersie et al. (2019) to predict grazing vs. non-grazing 

intervals based only on the movement rate calculated from sequential GPS locations. This 

method increased the proportion of nongrazing locations that are misclassified as grazing 

locations, but still gave a reasonable estimate of where and when cattle were grazing each day 

(Gersie et al., 2019). Data were combined for the two collared steers in each pasture and year 

to generate one data set that represents two steers grazing over the course of two grazing 

seasons. By using two grazing seasons in this analysis, a more general measure of grazing 

distribution is obtained, as inter- and intra-annual weather variation influences the grazing 

distribution of cattle (Gersie et al., 2019). Only fixes categorized as grazing fixes were used in 

analysis. I note that GPS collar data were also used to parameterize some aspects of the model, 

as described below. 

2.3 Overview, Design Concepts, and Details  

A description of the ABM is provided which follows the Overview, Design Concepts, and 

Details (ODD) protocol, an accepted method for standardizing published descriptions of ABMs 

(Grimm et al., 2010). 

2.3.1 Purpose 

 This model was developed to test hypotheses about behavioral rules guiding the grazing 

behavior and distribution of cattle grazing in the short grass steppe ecosystem. Through in silico 
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experimentation (Peck, 2004), hypotheses can be assessed by enabling or disabling behavioral 

rules programmed in the model (Railsback and Grimm, 2012). In silico experimentation, when 

applied to cattle grazing behavior, can provide management-relevant insight into the fine-scale 

decisions cattle are making when grazing, which coalesce to form larger-scale patterns of 

grazing distributions. The model was developed with the goal of yielding the best fitting model 

resembling the real-world patterns of cattle grazing distribution observed at CPER. Additionally, 

this model can provide a baseline for the development of a more intricate ABM of cattle grazing 

that could be combined with an ecosystem model of vegetation growth to model the 

interactions between cattle and vegetation, and to predict the outcomes of different grazing 

management systems in terms of cattle and vegetation growth. NetLogo 6.0.4 (Wilensky, 1999) 

was used for model development and execution. 

2.3.2 Entities, state variables, and scales 

 The entities in this model include agents representing yearling steers, and pixels 

representing 1 m2 patches of land. The patches form a model landscape that attempts to 

replicate one of the three pastures chosen from CPER. The model has been made spatially 

explicit by incorporating three sets of geographic data. Remotely sensed data from the National 

Ecological Observatory Network (NEON) Aerial Observation Platform (AOP), taken in May 2017, 

provided a map of the Normalized Difference Vegetation Index (NDVI) at 1 m2 resolution for 

each of the replicate pastures. The raster of NDVI was clipped to the digitized fence lines of 

each pasture. Pixels outside of the pasture boundaries are included in the model but are 

inaccessible to the agent steers. A digital elevation model (DEM) at 1 m2 spatial scale, also 

obtained from the NEON AOP, was used to generate a slope layer for each of the three 
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pastures. The resulting slope layer was aligned with the previous NDVI layer and clipped to the 

digitized fence lines of each pasture. For each pasture replicate, the center of each permanent 

water source was digitized using aerial imagery, and the center point was buffered by 10 m. The 

resulting polygon was then rasterized and snapped to the NDVI raster, and these pixels were 

assigned the role of a water location. All processing of GIS layers was performed using ArcGIS 

10.6 (ERSI, Redlands, CA). 

 The number of steers (agents) in all simulations was held constant at 24 steers per 

pasture, achieving a stocking rate of approximately 0.65 AUMs ha-1 which emulates the real 

stocking rate of the replicate pastures at CPER. Steers are assigned a starting weight of 281 kg, 

which is the approximate average weight of yearling steers at the beginning of the grazing 

season at CPER (J.D. Derner, unpublished data). Steers are assigned roles, with 5% assigned the 

role of leader, 10% as independent, and the remaining 85% as followers (Sato, 1982; Jablonski 

et al., 2018). Leaders remain in the center of the herd and function differently from the 

followers and independents in that they make some decisions for the entire herd. Depending 

on the hypothesis being tested, leaders have knowledge of the forage in either the entire 

pasture, or in certain locations of the pasture. Leaders use this knowledge to compare forage 

quantity or quality in their current site with the forage quantity or quality available at the 

feeding site level. Independents differ from followers only in that they can access pixels further 

from the herd leader on any given timestep. Global variables, as well as state variables 

belonging to steers and pixels, are described in Table 3.  

 

 



13 

 

Table 3: Global and state variables used in the ABM. 

Entity Variable Description 

Pixels NDVI Normalized Difference Vegetation Index of pixel, taken from NEON 

AOP remotely sensed data. Remains constant throughout a 

simulation (unitless). 

 Slope Slope (degree) derived from DEM taken from NEON AOP remotely 

sensed data. Remains constant throughout a simulation. 

 Fence Fence status is assigned a positive value for pixels outside the 

pasture boundary. These pixels are inaccessible to steers. 

 Biomass Amount of forage (g m-2) present in the pixel. Initially determined by 

the pixels’ NDVI value multiplied by the amount of forage in the 

entire pasture. Updates each tick if grazed, and each day through 

addition or subtraction of forage from the entire pasture through 

forage growth or senescence. Forage growth or senescence each day 

is estimated as a function of smoothed seasonal growth curves 

derived from USDA-NRCS ecological site descriptions. 

 Selection Selection value of each pixel is determined by the hypothesis being 

tested as a function of biomass quantity, slope, or a combination of 

biomass and slope (Unitless, varying between 0 and 100). 

 DOM Digestible organic matter present in each pixel (g m-2). Determined 

through an equation estimating DOM from biomass (Figure 3). 

 IDOM Indigestible organic matter present in each pixel (g m-2). Determined 

by subtracting the DOM from the Biomass of each pixel. 

 Times-Grazed The number of times a pixel has been grazed by a steer. 

Steers Role Role assigned to each steer; leader, follower, or independent. 

 Weight Weight of steer (kg) 

 Water Tracker of need for water. Set to 60 when water is visited and 

decreased by 1 each five-minute tick, indicating thirst twice each 10-

hr day. 

 Rest Tracker of rest behavior. When set to 1, steers rest. When set to 0, 

steers execute model procedures. 

 Daily-TSG / 

Total-TSG 

Trackers of time-spent-grazing. Increased by 1 each tick if not 

resting. Total-TSG is updated throughout the entire grazing season. 

Daily-TSG is reset to 0 at the beginning of each day. 
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 Daily-BioM / 

Total-BioM 

Trackers of biomass consumed by each steer (g). Total-BioM is 

updated throughout the entire grazing season. Daily-BioM is reset to 

0 at the beginning of each day. 

 Daily DOM / 

Total-DOM 

Trackers of digestible organic matter consumed by each steer (g). 

Total-DOM is updated throughout the entire grazing season. Daily 

DOM is reset to 0 at the beginning of each day. 

 Daily IDOM / 

Total-IDOM 

Trackers of indigestible organic matter consumed by each steer (g). 

Total-IDOM is updated throughout the entire grazing season. Daily 

IDOM is reset to 0 at the beginning of each day. 

 Discovered-

Sites 

A list of discovered sites kept by each lead steer. Discovered sites are 

patches remembered by the lead steer, which the herd will return to 

in the Travel to New Site procedure if reference memory is enabled 

(Hypotheses 7, 9, 10). 

 Current-Site-

Condition 

Rating of current patch condition; Good, Bad, or Neutral. This is 

determined by the lead steer comparing the current patch in a radius 

of 20 m with knowledge of patches at the feeding-site scale. The 

patch rating is then shared with the rest of the herd. 

Globals Day Tracker of day number in the model. Days are either 120 5-m ticks or 

156 ticks (Hypothesis 10). The model stops after 140 days have 

passed. 

 Water-

Locations 

Set of pixels with water status. Spatially explicit based on locations of 

real stock tanks at CPER. 

Inputs Number-Steers Number of steers in the pasture. Set to 24 for this exercise. 

 Kgs-Per-

Hectare 

The amount of forage (kg) in the pasture at the start of the model. 

This is input through the forage-growth submodel. 

 Herd-Cohesion-

Factor 

Determines distance between herdmates. Set to 8 for this exercise 

(Jablonski et al., 2018). 

 Selection-Curve The peak biomass-concentration of pixels preferred by steers. Can 

be set from 80-140 g m-2 in increments of 10. Pixels receive 

increasing selection values up to this peak and decreasing selection 

values beyond this peak. Can also be set to “Max-Biomass” where 
selection values increase at a constant rate with biomass-

concentration of pixels. 

 Slope-Modifier Factor that reduces the role slope plays in determining the selection 

value of pixels. Used in Hypotheses 5-10. Ranges from 0.1 to 1.0 in 

0.1 increments. 

 Good-Site-

Memory 

Length (days) of reference memory of steers. Set to 20 days for this 

exercise (Bailey et al., 1996). 
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 Bad-Site-

Tolerance 

Episodic memory threshold of steers. Increases by 1 if steers visit a 

good site, decreases by 1 if steers visit a bad site. If the score falls 

below this threshold, steers move to a new site when testing 

hypotheses where episodic memory is enabled (8-10). Initialized to   

-5 for this exercise. 

 DOM-Threshold Amount of digestible organic matter that can be consumed by a 

steer before resting for the remainder of the day, in terms of percent 

body weight. Set to 2.7% for this exercise (National Resource 

Council, 1996). 

 IDOM-

Threshold 

Amount of indigestible organic matter that can be consumed by a 

steer before resting for the remainder of the day, in terms of percent 

body weight. Set to 0.9% for this exercise (National Resource 

Council, 1996). 

  

The model operates at a discrete time scale (ticks) of 5 minutes each, chosen to match 

the interval between GPS fixes received by the collars deployed at CPER. Days are tracked, with 

the length of a day differing depending on the hypothesis being tested. A day is either 120 ticks 

(10 hours, approximate average time GPS-collared steers were observed to graze each day) or 

156 ticks (13 hours, approximate maximum time GPS-collared steers were observed to graze 

each day). A full 24-hour day was not necessary, as grazing distribution was the primary focus, 

and time spent by cattle when not grazing (resting, traveling, drinking) was not simulated. Each 

model simulation runs for 140 days, representing the time period from mid-May to early 

October, which corresponds to the grazing season at CPER. 

 Steers in the model make grazing decisions at different spatial scales, corresponding to 

the spatial scales defined by Bailey (1996). Every model tick, each steer consumes forages from 

~5 pixels chosen from a cone of varying dimensions. The individual pixels represent a feeding 

station, or the forage available to a steer without moving its front legs. The cone represents the 

movement rate through the patch spatial scale, described as the animal’s reorientation to a 
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new location. The cone’s dimensions change depending on the quality of the patch (Figure 1) 

and reflect the turn angles and velocities of GPS-collared steers at CPER when grazing. The 

quality of the patch is determined by the leader steer comparing the pixels in a 20-pixel radius 

with the pixels within the largest spatial scale, the feeding site. Cone dimensions of the patches 

are illustrated in Figure 1. The feeding site is a collection of patches in a contiguous spatial area 

that animals graze during a foraging bout. Due to the relatively small size of the replicate 

pastures, the feeding site is assumed to be the entire pasture, as steers at CPER have been 

observed to traverse across their entire pasture in one foraging bout. Depending on the 

hypothesis being tested, steers make grazing decisions at the feeding site scale with either 

knowledge of the entire pasture, or with knowledge of a collection of remembered patches 

within the pasture.  

 

Figure 1: Cone sizes of forage available to steers at the patch level spatial scale depending on 

the quality of the patch assessed by the lead steer. 

2.3.3 Process Overview and Scheduling 

 Figure 2 describes the model process for each tick as executed by steers, depending on 

their role and the hypothesis being tested. The procedures executed by the steers are 

described in the form of pseudo-code in Table 4. 
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Figure 2. Flow chart describing the model process for each tick in a simulation, executed by 

steers. Brackets in the upper-right of each box represent the hypotheses in which the 

procedure is executed. Letters underneath each procedure represent the roles of steers 

executing the command (A = Leaders, B = Followers, C = Independents). Procedures in solid 

boxes are executed the same way regardless of the hypothesis being tested. Procedures in 

dashed boxes vary in their execution depending on the hypothesis being tested. 

Table 4: Procedures present in the ABM. 

Procedure Description 

Check Graze 

Thresholds 

This procedure is only present when testing Hypothesis 10. The lead steer 

compares the amount of indigestible and digestible organic matter it has 

consumed against the indigestible organic matter threshold and digestible 

organic matter threshold, respectively, set to 0.9% and 2.7% of the steers 

weight, respectively. If it is below those thresholds, it grazes. 

Check Water 

Thresholds 

Present in all hypotheses. Each steer checks its’ hydration level, which reaches 

0 every 60 ticks. This results in two visits to water each day, which is consistent 

with the average number of water visits observed from the GPS-equipped 

steers. 

Go to Water Present in all hypotheses. The lead steer chooses the closest water location 

(stock tank) in the pasture and all steers in the herd move there. All steers 

graze from two pixels every 126 m on the way to water, which simulates light 

grazing while traveling. Steers travel in a straight line from their current 
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location to the water location. Steers then travel to a new site as chosen by the 

lead steer. 

Analyze Site Present in hypotheses 2 through 10. The lead steer compares the average 

selection value of the pixels in a 20 m radius with the average selection value of 

the pixels in the feeding site (pasture, or collection of patches within the 

pasture, depending on hypothesis). The patch is considered good or bad if its’ 
average selection value is one standard-deviation above or below, respectively, 

the average selection value of the feeding site. Otherwise the patch is 

considered neutral. All herdmates set their site condition to that of the lead 

steer. For hypotheses with reference memory enabled (7,9,10), the cutoff for a 

good site is reduced to 0.5 standard deviations above the average selection 

value of the feeding site after 20 days, as the feeding site average selection 

value increases rapidly as steers only remember the best patches they have 

visited. For hypotheses with episodic memory enabled (8,9,10), the lead steer 

adds or subtracts 1 to its’ site tolerance score if at a good or bad site, 
respectively. If this site-tolerance score falls below a threshold set by the user, 

all steers travel to a new site.  

Set-Eating Present in all hypotheses.  Herdmates set their heading to the heading of the 

leader. All steers view pixels in a cone centered on their medial line with 

dimensions dependent on patch quality (Figure 1).  Steers choose 5 pixels 

within the cone to eat from. Selection of pixels is dependent on the hypothesis 

being tested. If there are not 5 pixels to choose from in the cone because the 

steer is close to a fence, the steer eats from fewer than 5 pixels. 

Eat Present in all hypotheses. All steers remove 20% of the forage from each pixel 

chosen in the set-eating procedure. This amount was chosen as it approximates 

the amount of forage a steer would consume if eating from one pixel min-1 

from pixels with an average amount of forage for 10 hours in order to reach its’ 
estimated daily forage intake (National Resource Council, 1996). Steers update 

their state variables for forage consumed, and pixels update state variables for 

forage remaining, selection value, and times-grazed.  

Change Site Present in all hypotheses. The lead steer moves to the pixel that is the furthest 

distance from its starting point within the cone of patch selection that is has 

eaten from. Herdmates move to a random pixel within a given radius around 

the leader. Radius is set by the user in the form of the herd-cohesion factor, 

which for this exercise was held constant at 8. This results in followers choosing 

a pixel within 80 m of the leader, and independents choosing a pixel within 120 

m of the leader. Steers can only move to a pixel that is within the pasture 

boundary. 

Assess-Herd Present in all hypotheses. This procedure was taken directly from Jablonski et 

al. (2018) and maintains the herd-level arrangement of steers. Follower and 

independent steers move to a pixel unoccupied by other steers that fulfills the 
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distance requirements set by the herd-cohesion-factor. This procedure also 

pushes independent steers to the periphery of the herd. The lead steer remains 

in the center of the herd. 

Travel to 

New Site 

Present in all hypotheses. Steers either move to a random patch in the pasture 

(Hypotheses Null, 1,2,3,4, 5, 6, 8), or to a remembered patch in the pasture 

(Hypotheses 7, 9, 10). If there are no remembered patches, the steers move to 

a random patch. The lead steer chooses a pixel to move to and moves to this 

pixel in a straight line. Followers and independents choose a pixel in a given 

radius around the lead steer’s chosen pixel (80 m or 120 m here, respectively) 

and move to this pixel in a straight line. All steers graze from two pixels every 

126 m while traveling to the new site, simulating light grazing. 

Rest Present in Hypothesis 10 only. All steers remain on the pixel they currently 

occupy and do nothing. 

  

At the start of each day in the model, steers add 0.91 kg to their weight, approximating 

the average daily weight gain of steers at CPER. Steers also reset their state variables 

representing daily forage intakes. When testing hypotheses that include steers’ ability for using 

reference memory, steers with the role of leader remove patches from their memory that were 

discovered by the steer longer ago than their reference memory length, determined by the 

analyst and set to 20 days for this exercise (Bailey et al., 1996).  

Pixels add forage at the start of each day in the model. Patches are assigned an amount 

of forage added based on the pixels’ NDVI and the amount of overall forage added to the 

pasture as a whole, calculated from a corresponding model of forage production (D. Augustine, 

unpublished measures of forage production, 2013 – 2018). The forage production model uses 

the Ecological Site Descriptions ([ESDs]; USDA 2007a; USDA 2007b) and the ratio of areas  

represented by the ecological sites present in each pasture replicate (Loamy Plains and Sandy 

Plains) to estimate the amount of forage present in each pasture replicate each day of an 

average precipitation year. The amount of forage added to or removed from the pasture is 
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input as g m-2 and allocated to each pixel by multiplying this input with each pixels’ NDVI value 

divided by the average NDVI value of all pixels. This method distributes the forage so that pixels 

with higher relative NDVI values grow more forage throughout the grazing season than pixels 

with low NDVI values. 

2.3.4 Design Concepts 

 Basic Principles – This model was developed with the principle of parsimony, in that the 

patterns of cattle grazing distribution may be the result of the simplest explanation. Guided by 

this principle, the model is first run with the null hypothesis that cattle grazing distributions are 

the result of steers grazing in a fenced pasture, having the need to visit water twice a day, form 

a herd, and otherwise select pixels for grazing at random. Additional hypotheses then add 

complexity to this null hypothesis. These hypotheses can then be assessed on whether the 

added complexity results in a better fit of simulated grazing distributions to observed grazing 

distributions. For hypotheses in which multiple values for a variable were tested, the value of 

the variable that resulted in the best model fit was carried forward to the next hypothesis; 

while it is often appropriate to test all possible combinations of variables, this approach was 

adopted due to time limitations for running simulations. 

 Emergence – As this model assigns basic behavioral rules to steers, the resulting 

patterns are considered emergent. These patterns include the grazing distribution, the amount 

of forage consumed, the distances steers travel, and the times spent grazing. 

 Adaptation, Objectives, Learning, and Predictions – Adaptation is present in several of 

the hypotheses tested here. Steers have the objective of eating from the best pixels available to 

them. The determination of which pixels are best is dependent on the hypothesis being tested, 
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but this assessment is adaptive in that it changes depending on their location in the pasture, 

the growth and senescence of forage, and the foraging of herdmates. In hypotheses with 

memory included, steers adapt to their environment by returning to a good patch after visiting 

water or after leaving a bad patch due to their intolerance for grazing in bad areas. Steers have 

the objectives of grazing from the best pixels, and maintaining their water, rest, and herding 

requirements. Steers exhibit learning in hypotheses in which memory is enabled. The learning 

comes in the form of remembering the best patches they have visited and using this learning to 

evaluate new patches they encounter. Steers use prediction in hypotheses with episodic 

memory enabled, in that they predict that moving to a new patch will result in better pixels to 

forage from than are available to them currently. 

 Sensing and Interaction – Steers are able to sense the pixels in their cone of vision and 

the other steers in their herd. Lead steers are able to sense the pasture at the feeding site level. 

Steers interact with each other in that they only occupy pixels without other steers on them, 

and that fulfill the requirements of being an appropriate distance from the lead steer and other 

herdmates to form a herd. Steers can sense the water location that is closest to them.  

 Stochasticity – The stochastic elements of this model are present in the null hypothesis, 

where steers choose from random pixels within their patch-level cone when grazing. There is 

also stochasticity in several hypotheses where steers return to a random patch after visiting 

water, or after leaving a bad site. In models with more than one lead steer, not presented here, 

the herd each steer belongs to is a function of the random location of steers at the start of the 

model. 
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 Observation – Each tick in the model the lead steer(s) add their coordinates within the 

pasture to an export file. At the end of each day in the model, the lead steer(s) write to a file 

their daily time spent grazing, daily indigestible organic matter consumed, daily digestible 

organic matter consumed, daily biomass consumed, and the mean daily biomass consumed by 

the herd. At the end of the model run (140 days) a raster of the number of times each pixel was 

grazed is exported. This raster serves as a measure of the grazing distribution. 

2.3.5 Initialization 

 At the start of the model, pixels within the pasture boundary are assigned an NDVI value 

from the underlying 1 m2 NDVI raster. Pixels are assigned a slope value from the 1 m2 slope 

raster. Pixels are assigned water status from the raster of water locations. The initial amount of 

forage in the pasture is set to the value provided from the corresponding model of forage 

production (Augustine, unpublished measures of forage production, 2013 – 2018) and 

converted to g m-2. The forage is distributed to the pixels using Equation 1.  

𝐹𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ( 𝑔𝑚2) ∗ ( 𝑃𝑖𝑥𝑒𝑙 𝑁𝐷𝑉𝐼 𝑉𝑎𝑙𝑢𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝐷𝑉𝐼 𝑉𝑎𝑙𝑢𝑒)    (Eq 1) 

 Two equations (2 and 3) were tested using the amount of biomass in each pixel to 

determine the amount of digestible organic matter in each pixel, using Equation 2a or 3a for 

days 1 - 50 in the model, and Equation 2b or 3b for days 50 - 140. The amount of indigestible 

organic matter in each pixel is assigned by taking the total biomass and subtracting the 

digestible organic matter. Equation 2 is displayed graphically in Figure 3. Equation 3 is displayed 

graphically in Figure 4. 
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𝐷𝑂𝑀 = (0.75 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠) − (0.001818 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠2)  (Eq 2a) 

𝐷𝑂𝑀 = (75 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠) − (𝐷𝑎𝑦∗7∗𝐵𝑖𝑜𝑚𝑎𝑠𝑠)50 − (0.1818 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠2) (Eq 2b) 

 

Figure 3: Graphical representation of Equation 2, used to determine the percent of biomass in 

each pixel considered digestible organic matter. 𝐷𝑂𝑀 = (0.8 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠) − (0.001818 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠2)  (Eq 3a) 

𝐷𝑂𝑀 = (80 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠) − (𝐷𝑎𝑦∗7∗𝐵𝑖𝑜𝑚𝑎𝑠𝑠)50 − (0.1818 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠2) (Eq 3b) 
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Figure 4: Graphical representation of Equation 3, used to determine the percent of biomass in 

each pixel considered digestible organic matter. 

 The selection value of the pixel, dependent on the hypothesis being tested, is 

determined from either the biomass, slope, or both biomass and slope together. All other pixel 

variables are set to 0. 

 The number of steers, chosen by the model user, are created and placed on random 

pixels within the pasture. The steers are randomly assigned roles in the ratio of 85% followers, 

10% independents, and 5% leaders. Followers and independents are assigned the lead steer 

closest to them as their leader and form a herd with this leader throughout the model. All 

steers with the same leader are set with each other as herdmates. Steers are set an initial 

weight of 281 kg, the average starting weight of yearling steers in the beginning of the grazing 

season at CPER. All other steer variables are set to 0. An image of each of the pasture replicates 

initial conditions is in Figure 5. 
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Figure 5: Pasture replicates at the initial state of model. Pixels are shaded green based on their 

NDVI value. Brown areas are outside the pasture. Water locations are shown in blue. Lead 

steers are white, independents are orange, and followers are black.  

2.3.6 Input Data 

Mean daily forage biomass production was estimated in each simulated pasture using 

the monthly growth curves from the Ecological Site Descriptions for the Loamy Plains, Sandy 

Plains, and Salt Flat Ecological Sites in eastern Colorado (USDA 2007a,b,c). These were to 

generate smoothed daily growth curves for each ecological site, assuming total annual 

production of 84 g m-2 on Loamy Plains and 123 g m-2 on Sandy Plains and Salt Flats (USDA 

2007a,b,c). For each simulated pasture, the total annual production as a weighted mean of the 
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percent of the pasture in each of the three ecological sites was calculated. Simulations start on 

May 15th of a given year, at which point it was assumed that 21% of total current-year forage 

production had already occurred. Daily forage production was calculated according to Figure 6, 

where production increased at an exponentially saturating rate from day 1 to 42, declined 

linearly from day 42 to 80, and then declined exponentially from day 80 to day 140. This 

function was selected to follow the phenological patterns in the Ecological Site Descriptions 

while providing smoothed values on a daily instead of a monthly basis.  

 

Figure 6:  Assumed percent of total annual forage produced on a daily basis for a 140-day 

grazing season beginning on May 15th.   
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The amount of standing dead forage biomass carried over from the previous year on a 

daily basis was also calculated. Starting on May 15th, 42 g m-2 of standing dead residual biomass 

on Loamy Plains, and 51 g m-2 of standing dead on Sandy Plains and Salt Flats was assumed 

(USDA 2007a,b,c). In the absence of grazing, it is assumed that this residual biomass is 

transferred to the litter layer (and becomes unavailable as forage) according to Figure 7, which 

adopts a slow loss rate in May, a more rapid loss rate in June with warming temperatures, and 

then a slower rate again in July as the more recalcitrant portion of the biomass is finally 

transferred to litter. It is assumed that residual biomass from the previous year declines to zero 

on August 1st.   

 

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 20 40 60 80 100

P
ro

p
o

rt
io

n
 o

f 
p

re
v

io
u

s-
y
e

a
r 

st
a

n
d

in
g
 d

e
a

d
 r

e
si

d
u

a
l 

b
io

m
a

ss
 a

v
a

il
a

b
le

 t
o

 c
a

tt
le

 

Day of Grazing Season



28 

 

Figure 7: Assumed proportion of previous-year standing dead residual biomass available to 

cattle over the grazing season beginning on May 15th. 

Total mean forage biomass on a daily basis (in g m-2) is then calculated as the sum of 

current-year production and previous-years residual biomass. This calculated amount is then 

distributed to each pixel in the simulated pasture, based on the pixel’s NDVI value, using 

Equation 1. 

2.4 Hypothesis Testing 

 I adjusted model processes to fit each hypothesis, as described below. In situations of 

uncertainty for a given variable, I conducted simulations over a range of values, and the best 

fitting model was then carried forward through the rest of the hypothesis testing. For each 

hypothesis, I assumed that cattle graze in a herd, visit water twice per day, eat from one pixel 

per minute, and consume 20% of the biomass in each pixel from which they eat. For all 

hypotheses except Hypothesis 10, I assumed cattle graze for ten hours per day. For each 

hypothesis, I ran ten simulations to account for stochasticity in the model. For hypotheses 

where I tested ranges of variables, I ran ten simulations for each value. 

Null Hypothesis – Cattle select pixels to graze at random at the feeding station level. 

Description - Pixels within each pasture replicate were assigned selection values at random. 

Cattle did not select at the patch level, and therefore ate from pixels within a cone with neutral 

site dimensions throughout the model (Figure 1).  

Hypothesis 1 – Cattle select pixels to graze with the most biomass at the feeding station level. 



29 

 

Description - Cattle select for pixels with the most biomass in a cone with neutral site 

dimensions throughout the model (Figure 1). 

Hypothesis 2 – Cattle select pixels at random at the feeding station level and select at the patch 

level for most biomass. 

Description - Cattle select for pixels within a cone at random, but the cone’s dimensions vary 

based on the patch quality, simulating movement rate through the patch. Patch quality is 

determined with the assumption that the lead steers have complete knowledge of the entire 

pasture. The lead steer compares the selection value of pixels in a patch radius of 20 m with the 

average selection value of the entire pasture. Patches with values 1 standard deviation higher 

or lower than the pasture are considered good, or bad, respectively. Selection value of pixels is 

a linear function of maximum biomass. 

Hypothesis 3 – Cattle select pixels for maximal biomass at both the feeding station and patch 

level. 

Description - Cattle select at the patch level for maximum biomass as they do in Hypothesis 2. 

Cattle also choose pixels with most biomass at the feeding station level. 

Hypothesis 4 – Cattle select pixels based on a combination of forage quantity and quality at 

both the feeding station and patch levels, where the optimum combination occurs at an 

intermediate biomass. 

Description – Because forage quality often varies inversely with forage biomass in both space 

and time, ruminant herbivores often select swards with lower biomass than those where they 

could maximize their short-term intake rate in terms of forage quantity (Laca 1992; Bergman 
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2000; Wilmshurst et al., 2000). Here, I hypothesize that cattle prefer to graze pixels at both the 

feeding station and patch level which have an optimal, intermediate biomass based on the 

quality/quantity tradeoff. For yearling cattle with a body size of 280 – 400 kg, this optimal 

biomass is estimated to be 100 g m-2based on Figure 2 of Wilsmhurst et al. (2000). I assigned 

pixels a selection value ranging from 0-100 based on their biomass, and conducted four 

different sets of simulations assuming the optimal biomass value was 80, 100, 120, or 140 g m-2. 

Pixel selection values were assigned using a broken stick model, where pixels with no biomass 

and the pixel with the most biomass in the pasture were given a selection value of zero, pixels 

with the optimal forage concentration were given a selection value of 100, and linear functions 

were fit between these points (Figure 8).  
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Figure 8: Broken stick models determining pixel selection value based on biomass concentration 

for each of the replicate pastures. 

Hypothesis 5 - Cattle select for pixel quality at the feeding station and patch level, determined 

by the slope of the pixels. 
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Description - Cattle select from pixels with the least amount of slope at both the feeding station 

and patch level. Pixels were assigned a selection value from 0 to 100, where pixels with a slope 

of zero were assigned a selection value of 100, and the pixel with the highest slope was 

assigned a selection value of zero. Linear equations were fit to these points for each pasture 

replicate and used to assign selection values to the remaining pixels in each pasture.  

Hypothesis 6 - Cattle select for pixel quality at the feeding station and patch level, determined 

by a combination of biomass concentration and slope. 

Description – Cattle select for pixels with the highest selection value at both the feeding station 

and patch level. Selection for each pixel was determined by combining the best fitting selection 

function for biomass concentration from Hypotheses 3 and 4 with the slope of the pixel through 

a weighting function using Equation 4: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛∗(𝑆𝑙𝑜𝑝𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛∗𝑆𝑙𝑜𝑝𝑒 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟)100    (Eq 4) 

Where the biomass selection is taken from the best model of Hypotheses 3 and 4, and slope 

selection was taken from Hypothesis 5. The slope modifier was included to decrease the 

magnitude of slope in the selection equation, as cattle should be primarily focused on 

consuming forage. This prevented cattle from continually selecting the same pixel with little 

slope several times over, even if it had little to no biomass remaining. Slope modifier values of 

0.1, 0.3, and 0.5 were tested in this hypothesis.  
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Hypothesis 7 – Cattle select for pixel quality at the feeding station and patch level, determined 

by a combination of biomass concentration and slope. Cattle use reference memory to return to 

good quality patches after visiting water. 

Description – Cattle select pixels at the feeding station level as described in Hypothesis 6. Cattle 

select at the patch level for the same qualities in Hypothesis 7, but the feeding site level that 

they base patch quality on is different. In this hypothesis, the lead steer begins the model run 

with ten patches, evenly spaced across the pasture, as remembered sites. The lead steer then 

compares the quality of each patch it visits with its set of remembered sites. Patches with 

average selection values one standard deviation above the average selection value of the 

remembered sites are considered good, and these patches are added to the list of remembered 

sites. Individual remembered sites are “forgotten” every 20 days in the model (Laca, 1995; 

Bailey et al., 1996). After 20 days, the list of remembered sites has consistently high measures 

of selection. When these sites are compared against new patches, the new patches are rarely a 

standard deviation better than the list of remembered sites. To account for this, after 20 days, 

the threshold for considering a new patch a “good quality” patch is reduced to 0.5 standard 

deviations above the average of remembered sites. Steers adjust their patch level cone 

dimensions in respect to the quality of the patch they are visiting. 

Hypothesis 8 - Cattle select for pixel quality at the feeding station and patch level, determined 

by a combination of biomass concentration and slope. Cattle use episodic memory to leave bad 

quality patches. 

Description – Cattle select at the feeding station and patch level as described in Hypothesis 6 

using the best fitting slope modifier. Cattle use the entire pasture as the feeding site level to 
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compare patch quality. The lead steer is assigned a “Bad-Site-Threshold”, which is a threshold 

that if fallen below, cattle will leave the patch they are at and move to a random patch in the 

pasture. The lead steer keeps track of the quality of patches it visits. Starting with a counter at 

zero, if the steer visits a bad quality patch, it reduces this counter by 1, and if it visits a good 

quality patch, increases this counter by 1. Neutral sites do not impact this counter. If the count 

falls below the Bad-Site-Threshold, set to -5, the steers will stop grazing leave the patch they 

are at and relocate to a random patch in the pasture. This hypothesis attempts to mimic the 

steers’ ability for episodic, or working memory, which lasts approximately eight hours (Bailey et 

al., 1996). 

Hypothesis 9 - Cattle select for pixel quality at the feeding station and patch level, determined 

by a combination of biomass concentration and slope. Cattle use episodic memory to leave bad 

quality patches. Cattle use reference memory to return to good quality patches after leaving 

water, and when leaving a bad patch. 

Description – This hypothesis combines the memory abilities demonstrated in Hypotheses 7 

and 8. Cattle begin with a subset of remembered patches at the feeding site level, as in 

Hypothesis 7. Cattle keep track of the quality of patches they visit, as in Hypothesis 8. When the 

Bad-Site-Threshold is met, cattle return to a good quality patch from the list of remembered 

patches. Cattle also return to a patch from the list of remembered patches when leaving water, 

as in Hypothesis 7. 

Hypothesis 10 - Cattle select for pixel quality at the feeding station and patch level, determined 

by a combination of biomass concentration and slope. Cattle use episodic memory to leave bad 
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quality patches. Cattle use reference memory to return to good quality patches after leaving 

water, and when leaving a bad patch. Cattle are limited in time-spent-grazing by reaching 

thresholds of either digestible or indigestible organic matter consumed. 

Description – Cattle select at the feeding station and patch level as in Hypothesis 9. Cattle are 

limited in their time-spent-grazing by either reaching thresholds of digestible or indigestible 

organic matter consumed. The digestible organic matter consumed threshold is set to 2.7% of 

the steers body weight (National Resource Council, 1996). The indigestible organic matter 

consumed threshold was assessed with two thresholds, 1% and 0.9% of steers body weight 

(National Resource Council, 1996). The two digestible organic matter equations (Equations 2 

and 3), discussed earlier, assigning the ratio of digestible and indigestible organic matter per 

pixel, were assessed in this hypothesis. This resulted in four combinations of indigestible 

organic matter thresholds and digestible organic matter equations, described in Table 5. If 

cattle do not reach either threshold, they will graze for 13 hours, which is the approximate 

maximum time spent grazing observed from GPS-collar equipped steers. 

Table 5: Descriptions of model scenarios assessed for Hypothesis 10. 

Model Run Description 

Scenario 1 Digestible Organic Matter Equation: Equation 1 

Indigestible Organic Matter Consumed Threshold: 0.9% of Body Weight 

Scenario 2 Digestible Organic Matter Equation: Equation 2 

Indigestible Organic Matter Consumed Threshold: 0.9% of Body Weight 

Scenario 3 Digestible Organic Matter Equation: Equation 1 

Indigestible Organic Matter Consumed Threshold: 1% of Body Weight 

Scenario 4 Digestible Organic Matter Equation: Equation 2 

Indigestible Organic Matter Consumed Threshold: 1% of Body Weight 
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2.5 Model Validation 

 At the end of the simulated grazing season, a raster is exported from the model which 

represents the number of times each 1 m2 cell was grazed. The output of each model is 

aggregated to a 30 m2 spatial scale, using a sum of total times grazed. This scale was chosen 

because managers are more concerned with the general intensity of grazing occurring in the 

pasture rather than at a fine spatial scale of 1 m2. Data processing was performed in R using the 

package raster (Hijmans et al., 2015). Cells occurring within 50 m of a pasture corner, or within 

75 m of a water source were clipped from the data, as these areas are heavily used by steers, 

and are generally void of palatable vegetation due to trampling, so grazing here is improbable 

(Augustine and Derner, 2014). Data were t normalized and broken into decile categories using 

Equation 5. 

   (Eq 5) 

 For each pasture replicate, I used the GPS-collar data from two steers grazing over a 

time period of two grazing seasons to calculate the total number of grazing fixes occurring in 

each 30 m2 grid cell. Data were normalized into decile categories using Equation 5. In each 

pasture, the number of pixels falling into each decile category was heavily skewed, as shown in 

Figure 9. 
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Figure 9: Decile categories of pixels from 30 m2 raster of GPS collar grazing fixes.  

This skew is due to a few pixels receiving a high number of grazing fixes, and the majority of the 

pasture receiving 0 – 2 grazing fixes. To account for this skew, both the model output data and 

the collar data was reclassified so that categories 0, 1, and 2 remained the same, and classes 3 

through 10 were summed into one class, renamed class 3. The resulting distribution of grazing 

fixes in each pasture is shown in Figure 10. 

 

Figure 10: Reclassified categories of pixels from 30 m2 raster of GPS-collar grazing fixes. 
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 I compared rasters of predicted versus observed distributions of grazing fixes using the 

Fuzzy Kappa statistic (Kfuzzy). While other spatially-explicit ABMs have been validated using 

root mean square error (Kang and Aldstadt, 2018; Frescino et al., 2001), this method is subject 

to misinterpretation (Willmott and Matsuura, 2005). Root mean square error has been used for 

point-based ABMs, but is less appropriate for a continuous spatial arena, such as the raster 

format used in this exercise. Kfuzzy is similar to the traditional Kappa statistic (Cohen, 1960), 

often used for assessing the similarities between observed and predicted raster results (Visser 

and Nijs, 2006). Traditional Kappa compares two maps to determine their percentage 

agreement, while accounting for the proportion of agreement explained through pure chance 

(Visser and Nijs, 2006). A disadvantage of the traditional Kappa statistic is that it is very 

sensitive to location and category of compared raster cells (illustrated in Figure 11). Most 

observers of the rasters in Figure 11 would agree that the Predicted 1 Matrix is more similar to 

the Observed Matrix than the Predicted 2 Matrix is. When comparing these rasters with either 

the traditional Kappa statistic or the Percent Agreement statistic, both predicted matrices 

receive the same measure of similarity. However, using Kfuzzy, Predicted 1 is considered more 

similar to the observed matrix than Predicted 2 is, because Kfuzzy allows for vagueness of 

location through the use of a neighborhood and distance decay function, so that the observer’s 

tolerance for spatial error is considered. A Kfuzzy value of 0 indicate that the rasters are as 

similar as chance alone, and a value of 1 indicates the rasters are identical. 
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Figure 11: A demonstration of the comparison between Percent Agreement, Kappa, and Kfuzzy 

in measuring similarity to observed data. By allowing for fuzziness of location, Kfuzzy considers 

Predicted 1 to be more similar to the Observed Matrix than Predicted 2.  Adapted from Figure 6 

in Visser and Nijs, 2006. 

Validating a spatially explicit model can help to understand the uncertainty embedded 

in model assumptions, and to explore linkages between model parameters and spatial patterns 

(Kang and Aldstadt, 2018). kFuzzy provides a single metric of model similarity to observed data 

that can be used to compare across models and test hypotheses of variables and rules 

embedded within the models. kFuzzy was restricted to using a crisp matrix of category 

comparison (Visser and Nijs, 2006).  

 Using the software Map Comparison Kit (v3.2; Visser and Nijs, 2006), I calculated the 

Kfuzzy statistic for each pair of predicted versus observed rasters. The software allows for 

varying the settings for fuzziness of location and fuzziness of category under which Kfuzzy is 

calculated. I used a linear distance decay function with a radius of four pixels for the fuzziness 

of location in all analyses. No fuzziness of category was used due to the small number of 

reclassified categories. 

 In Hypothesis 10, the amount of time each steer grazes per day is allowed to vary 

depending on the quantity and quality of forage consumed over the day. Output from 
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simulations of this hypothesis was validated by comparing the daily time-spent-grazing from 

the model with the range of daily time-spent-grazing observed from GPS collared steers in 2014 

and 2016.   
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3. RESULTS 

  I first examined a null model, and then examined models parameterized 

according to hypotheses 1 through 10 sequentially. For each hypothesis, ten simulations were 

run, and the average Kfuzzy was calculated. In instances where multiple parameter estimates 

were tested for a given hypothesis, ten simulations were run for each parameter value, and the 

result that maximized the average Kfuzzy statistic across all replicates was carried onto the next 

hypothesis (Figure 12). 

 The null model was the best performing model in replicate 1 and performed better than 

chance alone (Kfuzzy greater than 0) in replicates 2 and 3 (Figure 12). Hypothesis 1, where 

steers selected for maximum biomass at the feeding station level, performed worse than the 

null model in replicates 1 and 2, but was better than the null model, and was the second-best 

model overall in replicate 3 (Figure 12). Hypothesis 2, in which steers select for maximum 

biomass at the patch level and graze randomly at the feeding station level, showed an 

improvement from Hypothesis 1 in replicates 1 and 2, but a sharp decrease in model fit in 

replicate 3 (Figure 12).  
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Figure 12: Model validation results from all hypotheses analyzed. The best fitting model results 

are shown for hypotheses with multiple variable values tested (Hypotheses 4, 6, and 10). Points 

represent mean kFuzzy values for each hypothesis. Error bars represent 95% confidence 

intervals from ten model runs.  

 Hypothesis 3, in which steers selected for maximum biomass at both the feeding station 

and patch levels, was compared directly with Hypothesis 4, in which steers select at both levels 

for pixels with an optimal biomass concentration defined by the broken stick models in Figure 

8. In all replicates, Hypothesis 3 outperformed all optimal biomass concentration values tested 

in Hypothesis 4 (Figure 13). Based on these results, steers select for maximum biomass in all 

subsequent hypotheses involving selection based on biomass (Hypotheses 6 through 10). 
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Figure 13: Model validation results from Hypotheses 3 and 4 from each pasture replicate. Points 

represent mean kFuzzy value for each biomass concentration value simulated steers select for. 

Error bars represent 95% confidence intervals from ten model runs.  

 

 In Hypothesis 5, steers select for pixels with the least amount of slope at the feeding 

station and patch levels. This resulted in a better model fit than selecting based on biomass 

(Hypothesis 3) in replicate 2, but a worse model fit in replicates 1 and 3 (Figure 12). An 

underlying issue with this hypothesis is that steers repeatedly grazed from the same pixels, 

despite there being little to no biomass remaining in these pixels after being grazed the first 

few times. This is due to biomass concentrations having no influence on selection and slope 
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remaining constant for each pixel throughout the simulations. While Hypothesis 5 resulted in a 

better model fit than selecting for biomass in replicate 2, the fine scale grazing distribution was 

considered unrealistic. 

 To account for the unrealistic fine-scale selection occurring in Hypothesis 5, Hypothesis 

6 uses a combination of slope and biomass to determine pixel selection and uses a slope 

modifier to limit the influence of slope relative to biomass (Equation 4). Slope modifiers of 0.1, 

0.3, and 0.5 were tested. While no slope modifier resulted in significant model improvement 

over the others, 0.5 was the best slope modifier in replicates 2 and 3, and 0.1 was best in 

replicate 1 (Figure 14). Based on these results, a slope-modifier of 0.4 was used in Hypotheses 7 

through 10. In every replicate, pixel selection based on a combination of slope and biomass 

(Hypothesis 6) performed better than selection based on biomass alone (Hypothesis 3) (Figure 

12).  
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Figure 14: Model validation results from Hypothesis 6 for each pasture replicate. Points 

represent mean kFuzzy value for each slope modifier value that influences the selection value 

of pixels (Equation 4). Error bars represent 95% confidence intervals from ten model runs. 

 In Hypothesis 7, steers select for pixels in the same way as Hypothesis 6, but also use 

reference memory to return to good-quality patches. In all replicates, Hypothesis 7 improved 

the model fit over Hypothesis 6.  In Hypothesis 8, steers select for pixels in the same way as 

Hypothesis 6 and use episodic memory to leave bad-quality patches. Hypothesis 8 performed 

worse than Hypotheses 6 and 7 in replicates 1 and 3, but better in replicate 2 (Figure 12).  
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 Hypothesis 9 uses both reference and episodic memory, as steers use episodic memory 

to leave bad-quality patches, and reference memory to return to good-quality patches after 

visiting water or when leaving a bad-quality patch. Hypothesis 9 performed better than episodic 

memory alone, and worse than reference memory alone in replicates 1 and 3 (Figure 12). In 

replicate 2, Hypothesis 9 performed worse than either reference memory or episodic memory 

alone (Figure 12). 

 In Hypothesis 10, steers select for pixels and use memory in the same way as Hypothesis 

9, but grazing time is varied based on forage intake limits instead of being held constant at 10 

hours per day. Hypothesis 10 resulted in the best model fit for replicates 2 and 3 and was only 

outperformed by the null model in replicate 1 (Figure 12). 

 Scenarios for Hypothesis 10 were assessed to determine if the time spent grazing by 

simulated steers aligned with the time spent grazing by real steers, as estimated from GPS 

collar data. Two collared steers in each pasture, in 2014 and 2016, were used in the analysis. 

For the pasture with lowest total biomass production and low heterogeneity (replicate 1), 

model simulations aligned with observed grazing times. However, for the two replicates with 

greater mean forage biomass and greater heterogeneity (replicates 2 and 3), simulated grazing 

time was approximately two to three hours less than observed grazing time (Figure 15). 
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Figure 15: Time spent grazing by GPS-collared steers and simulated steers for three replicate 

pastures in the shortgrass steppe of eastern Colorado, over the course of the grazing season. 

GPS-collar data comes from two steers in each replicate pasture in 2014 and in 2016, and 

grazing time was inferred using the velocity method (Gersie et al., 2019). The range displayed is 

the least and most time spent grazing by a steer for each day of grazing.  For replicate 1, GPS 

collar data were only available through day 113. Simulated steers’ grazing time is based on the 
scenario tested in Hypothesis 10 (Table 5). 

 Scenarios in Hypothesis 10, which limited time spent grazing by steers, were compared 

with Hypothesis 9, which assumed that steers graze for ten hours a day, to compare the 

amount of forage consumed by simulated steers (Figure 16). Daily forage intake rates range 

from 1 to 3% of body weight (Holechek and Vavra, 1982; Cordova and Pieper, 1978; National 
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Resource Council, 1996). Without thresholds limiting the time spent grazing by steers 

(Hypothesis 10), steers exceeded this range in pasture replicates 2 and 3 but remained within 

this range in pasture replicate 1 (Figure 15). Enabling rules that limit time spent grazing based 

on indigestible or digestible organic matter consumed (Hypothesis 10) decreased the amount of 

forage consumed by steers in replicates 2 and 3 but raised the amount of forage consumed in 

pasture replicate 1 (Figure 16). These rules also resulted in a similar pattern of time spent 

grazing by steers (Figure 15). In pasture replicate 1, steers needed to graze more than ten hours 

a day at some point in the grazing season to achieve intake thresholds in all four scenarios 

tested under Hypothesis 10 (Table 5; Figure 15). Steers grazed less than 10 hours per day under 

all Hypothesis 10 scenarios in replicates 2 and 3 (Figure 15). These simulated grazing times were 

generally within the range of observed grazing times inferred from GPS-collared steers in 

pasture replicate 1, but below the observed range in replicates 2 and 3.   
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Figure 16: Forage consumed by simulated steers in Hypotheses 9 and 10 for each pasture 

replicate, displayed as percent of body weight of steers. Hypothesis 9 placed no limit on forage 

intake and assumed that steers grazed for 10 hours each day. In contrast, under Hypothesis 10 

data, daily forage intake of steers could be limited either by maximum daily indigestible or 

digestible organic matter intake thresholds.  Scenarios 1 – 4 vary in the specific 

parameterization of these thresholds, as described in Table 5. 
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4. DISCUSSION 

Modeling herbivore foraging behavior within an ABM has enabled researchers to reveal 

the underlying mechanisms guiding foraging decisions by individuals (Dumont and Hill, 2003). 

Here, I present the first known spatially-explicit ABM of cattle grazing in the short grass steppe 

ecosystem designed for this purpose. Formulation of a generalized model of cattle grazing in 

the short grass steppe depends upon a wide range of assumptions regarding the spatial and 

temporal scales at which cattle make decisions, and these assumptions often influence one 

another. While applying a generalized model to cattle grazing behavior has proven difficult, this 

exercise has revealed insights into the foraging behavior of yearling steers and can serve as a 

framework for the development of a more complex ecosystem model of grazing systems in the 

short grass steppe. 

4.1 Forage Selection 

Hypotheses 3 and 4 analyzed the foraging decisions made by steers at the feeding 

station and patch level based on forage quality and quantity. Wilmshurst et al. (2000) discussed 

this selection as an interaction between the nutritional quality of the grass and the rate at 

which the grass can be processed in the ruminant’s gut. As grass swards grow biomass, the 

quality of the grass decreases due to the accumulation of structural carbohydrates, which take 

longer to digest (Waite, 1963; Illius and Gordon, 1992). The size of the herbivore also plays a 

role, as ruminants with larger guts can hold more forage. Based on the model presented by 

Wilmshurst et al. (2000), a 280 kg steer is predicted to select for grass patches with an optimal 

biomass of 100 g m-2. However, my ABM-based analysis of this optimal forage concentration 

revealed that steers in the short grass steppe may be selecting for patches with the highest 
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forage concentration instead of selecting for patches that optimized the balance between 

forage quality and quantity (Figures 12 and 13). However, selecting for pixels with the most 

biomass often resulted in selecting for pixels with a biomass concentration close to the 

estimated optimal concentration of 100 g m-2, as the highest initial biomass concentrations in 

pasture replicates 1 and 2 was approximately 127 g m-2 and 124 g m-2, respectively (Table 2). 

Pasture replicate 3, which had a maximum biomass concentration of approximately 211 g m-2, 

revealed a stronger selection for maximum biomass concentrations, although this model fit was 

not significantly stronger than when selecting for biomass concentrations of 140 g m-2.  

The short grass steppe ecosystem is a relatively low biomass ecosystem, where primary 

production generally ranges from 50 to 155 g m-2 (Milchunas and Lauenroth, 1989), and 

supports forage of relatively high quality. The tallgrass prairie, by contrast, contains forage 

concentrations that range from approximately 300 g m-2 to 600 g m-2 (Abrams et al., 1986). In 

the short grass steppe, swards with the highest forage concentrations are not far off from the 

optimal concentration suggested by Wilmshurst et al. (2000), when viewed within the context 

of grassland varying to nearly 6-fold more than the optimal patch biomass for yearling steers. 

As a result, steers in the shortgrass steppe may be driven to select for patches with maximum 

biomass and forego selection for optimal quality, as patches with maximum biomass 

concentrations may still be of sufficient quality. A caveat of these results is that biomass 

concentrations were not measured directly and were instead estimated using NDVI (Gaffney et 

al., 2018) and production estimates from ecological site descriptions (USDA 2007a,b,c). These 

estimates are based on NDVI-based predictions of ANPP over the entire grazing season, rather 

than for a specific day within the growing season.  As a result, it remains unclear how well 
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spatial variation in NDVI from imagery collected at a single point in time early in the growing 

season adequately correlates with total ANPP for the entire year. Unless the assumption used 

to assign forage concentrations to pixels using NDVI (Equation 1) is validated, selection 

behaviors regarding specific biomass concentrations cannot be confirmed. 

4.2 Slope Selection 

Slope plays a role in foraging decisions made by cattle, as cattle prefer relatively level 

ground and limit their use of hillsides (Ganskopp and Vavra, 1987). Hypothesis 5 tested the 

influence of slope on grazing distributions in the absence of any influence of forage 

concentration. For pasture replicates 1 and 3, this hypothesis resulted in the lowest model fit 

compared to all others (Figure 12). However, for pasture replicate 2, this resulted in relatively 

high model fit (Figure 12). Simulations of replicates 1 and 3 revealed clearly unrealistic fine-

scale grazing distributions, as steers grazed from the pixels with the least slope repeatedly, 

despite there being little to no biomass there. To account for this, Hypothesis 6 combined 

selection rules regarding slope and forage concentrations and allowed the influence of slope to 

be less than the influence of forage concentration according to Equation 4. Hypothesis 6 

resulted in a better fit than Hypothesis 5 for pasture replicates 1 and 3, but not replicate 2, 

indicating that slope has a stronger influence over grazing distributions than forage 

concentration in replicate 2. However, this may simply be due to the spatial arrangement of 

slopes within a pasture. Pasture replicate 2 has a large hill on the eastern side of the pasture, 

away from any water sources (Gersie et al., 2019). Pasture replicates 1 and 3 have sloped 

features throughout the pasture, and near water sources. This allows steers in replicate 2 to 

avoid slopes, while steers in replicates 1 and 3 must traverse slopes when visiting water.  
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Modifying the degree of influence of slope in selection rules in Hypothesis 6 did not 

result in significant differences (Figure 14). This suggests that in the short grass steppe, slope 

does not strongly influence grazing distribution. This may be due to the relatively gentle terrain 

of the region, as the average slope in each pasture was less than 4 degrees (Table 2). Cattle 

limit their use of slopes in rugged terrain, but this behavior was not exhibited in some habitats 

with gentle terrain (Ganskopp and Vavra, 1987). Season-specific models in the short grass 

steppe have shown that cattle grazing distribution is influenced by topography in periods of 

vegetation senescence (Gersie et al., 2019). 

4.3 Memory Ability 

Cattle exhibit both episodic and reference memory in experiments (Bailey, 1989; Laca, 

1995). Hypotheses 7, 8, and 9 analyzed the influence of memory on grazing distributions. In 

replicates 1 and 3, reference memory alone performed better than either episodic memory, or 

both episodic and reference memory together (Figure 12). In replicate 2, episodic memory 

alone performed better than either reference memory or both reference memory and episodic 

memory together. This result may have arose in part because of the way memory was coded 

into the model. Reference memory involved returning to good quality sites, while episodic 

memory involved leaving bad quality sites. In pasture replicate 2, episodic memory would have 

guided steers to leave the hill in the pasture, as it was of poor quality due to its slope and low 

forage biomass. Having steers repeatedly leave this poor site would result in a better fit than 

the reference memory alternative of returning to good quality sites, as the rest of the pasture 

was likely of homogenous quality and was grazed relatively evenly in real world observation. In 

contrast, pasture replicates 1 and 3 did not have any obvious poor-quality patches, so including 
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episodic memory and guiding simulated steers to leave perceived poor-quality patches led 

them to leave areas that were likely of adequate quality in real world observation, or at least of 

quality that did not necessitate leaving the patch without grazing. Reference memory alone 

performed particularly well in pasture replicate 3, which was the most heterogeneous and 

contained swales with high biomass. As simulated steers selected for high biomass 

concentrations, having them return to the swales using reference memory was also a behavior 

likely occurring in real-world steers.  

Bailey et al. (1996) noted that reference memory is limited at smaller spatial scales by 

the large number of sites to be remembered. Having steers remember individual patches, as 

coded in this model, is likely unrealistic, as there are too many 20 m radius patches within a 

pasture of this size to be remembered. It is more likely that reference memory is exhibited by 

cattle at the feeding site level. As pasture replicate 2 was relatively homogenous, there is little 

difference at a feeding site level, and therefore reference memory did not result in significant 

model improvement. Pasture replicate 3, however, is more heterogeneous, and consists of 

different vegetation communities that could be considered unique feeding sites. Using 

reference memory to delineate the differences between these feeding sites would likely 

improve cattle grazing efficiency in real life, and therefore encoding this behavior into the ABM 

resulted in improved model fit for this pasture replicate. 

4.4 Overall Results 

In pasture replicates 2 and 3, the best performing model was the most complex model, 

analyzed in Hypothesis 10. This model was not significantly better than the Null Hypothesis 

model in pasture replicate 2, and not significantly better than a model selecting solely for most 
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biomass (Hypothesis 1) in replicate 3. In pasture replicate 1, the best performing model was the 

Null Hypothesis model, which was the only model for this pasture with an average kFuzzy value 

above zero.  

These results suggest that in relatively homogenous pastures, at timescales covering 

entire, or multiple, grazing seasons, steers do not exhibit, through grazing distribution, the 

selective behaviors described in this model. Instead, steers graze relatively evenly in these 

pastures, and a random model that accounts for steers’ need of water fits this distribution 

better than a more complex model with selective foraging rules. In pastures with more 

heterogeneity, such as replicate 3, cattle have more opportunity to exhibit selective behaviors, 

and the more complex model performed better than a random model, and better than chance 

alone (Figure 12).  

4.5 Forage Consumption and Time Spent Grazing 

Cattle in the Western United States usually consume quantities of forage dry matter in 

the range of 1 to 3% of body weight each day (Cordova and Pieper, 1978), with other 

estimations around 2.5% (National Resource Council, 1996). These results suggest that in 

pastures with lower amounts of forage, such as replicate 1 (Table 2), this model is representing 

the rate of forage consumption by steers reasonably well, but that in pastures with higher 

biomass levels, such as pasture replicates 2 and 3, steers are consuming forage at a faster 

short-term rate in the model than is observed in reality. In the model it was assumed that cattle 

consume 20% of the biomass from each pixel from which they graze. Reducing or scaling this by 

the amount of available forage could extend the grazing time of simulated steers to more 

closely resemble observed data. 
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For models where forage digestibility could limit daily grazing time, parameter estimates 

that limited indigestible fill to 0.9% of body weight generally resulted in the best model fit in 

terms of simulated steers consuming approximately 2.5% of their body weight in forage (Figure 

16), and in terms of grazing distribution (Figure 12). However, simulated steers grazed less time 

per day than observed steers under this scenario (Figure 15), and in every replicate pasture 

steers stopped grazing because their indigestible organic matter threshold was met. This 

suggests that steers may be grazing selectively at the bite level, which was not included in this 

model, as it was assumed that steers consumed 20% of each of the indigestible and digestible 

organic matter present in each pixel. Future efforts may require adjusting these percentages to 

simulate selective behavior at the bite level, as cattle may consume a larger percentage of 

digestible organic matter and smaller percentage of indigestible organic matter from each 

feeding station they visit by selecting at the bite level (Bailey et al., 1996). This would increase 

the time simulated steers grazed each day, as they could consume more forage without 

reaching the estimated 0.9% of body weight indigestible organic matter intake limit. 

4.6 Model Limitations 

A limitation of this model is that it lacks the inter-annual spatial variability of forage 

quality and quantity throughout the grazing season. Using NDVI measured at a 1 m2 spatial 

scale near the beginning of the grazing season enabled me to quantify fine-scale spatial 

variation in forage quantity, but sacrificed the temporal patterns of forage quantity and quality 

that likely ultimately guide livestock grazing distributions. While the NDVI data used here was of 

fine spatial scale (1 m2), it is only a snapshot of the temporal spatial patterns of forage quality 

that changes throughout the grazing season. At the time this data was collected, vegetation is 
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in a phase of rapid growth, and nearly all the pasture is of adequate forage quality and quantity. 

Carrying this pattern of forage distribution throughout the model may be an inaccurate 

representation of forage growth and senescence patterns observed throughout the grazing 

season. My model assumed that pixels with high relative NDVI values grow more vegetation 

throughout the grazing season (Equation 1). However, this same method subtracted more 

vegetation from relatively high NDVI pixels in times of forage senescence (Figure 6), resulting in 

the same relative distribution of forage in the beginning of the grazing season be carried out 

throughout the simulation, with the only variation attributed  to forage removal by simulated 

steers. These high-NDVI pixels often represent swales and lowlands within the pasture, which 

not only have higher amounts of biomass, but also retain biomass longer throughout periods of 

receding vegetation, due to their higher levels of nutrients and soil moisture (Milchunas and 

Lauenroth, 1989). Gersie et al. (2019) found that grazing distributions at CPER were relatively 

even in the first half of the grazing season under vegetation growth conditions, but that the 

distributions became more concentrated in swales and flat plains, and correspondingly reduced 

in uplands, during the second half of the grazing season when vegetation was senescing. 

Simulated steers, programmed to forage selectively, may be exhibiting these behaviors in 

response to a snapshot of vegetation uniformity throughout the pastures, instead of 

responding to more pronounced patterns of differences in vegetation quantity and quality that 

are present later in the grazing season. A solution to this problem may come from incorporating 

multiple sets of NDVI data throughout the simulation, in the form of Landsat-MODIS fusion 

rasters (Walker et al., 2012). These data sets use temporally fine-scaled, but spatially coarse 

scaled, NDVI data from MODIS (Maccherone and Frazier, 2020), in combination with temporally 
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coarse-scaled, but spatially fine-scaled data from Landsat (Jenner and Dunbar, 2019) to 

interpolate NDVI data at a daily time scale at 30 m resolution. Initializing the model with NDVI 

data taken from NEON, and then updating the vegetation patterns with MODIS-Landsat data at 

fixed intervals throughout the simulation may obtain a more realistic pattern of vegetation 

distribution throughout the simulation. This approach could better account for the need to 

construct models of livestock foraging patterns that adapt to seasonal differences (Senft et al., 

1983; 1985; Gersie et al., 2019). 

Another related issue with this ABM is not within the model itself, but in its validation. 

Over the course of an entire grazing season, grazing distributions observed at CPER are 

relatively even. The grazing system guiding the traditional management portion of the CARM 

study was developed under a paradigm of rangeland management that promotes homogeneity 

of grazing (Fuhlendorf and Engle, 2001). This system, with relatively small pastures and evenly 

spaced water sources, was devised to increase livestock production by reducing the inherent 

landscape heterogeneity caused by topo-edaphic features and herbivore behavior (Fuhlendorf 

and Engle, 2001). Testing hypotheses regarding steer foraging behavior may not be ideal within 

a system that is inherently designed to suppress selective foraging by livestock. The 

heterogeneity of grazing distributions evident at shorter time scales may be masked by the 

homogenous pattern of grazing distributions demonstrated at larger temporal scales. To better 

assess the ABM designed here, it may be appropriate to validate the model at shorter 

timeframes, particularly during periods when upland vegetation is beginning to senesce, 

instead of analyzing the model relative to grazing distribution averaged over the entire grazing 

season or multiple grazing seasons.   

https://www.nasa.gov/mission_pages/landsat/overview/index.html
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In this modeling effort, the goal was to produce a general model that could be applied 

broadly within semi-arid rangelands. However, due to inconsistencies of model fit between 

pasture replicates (Figure 12), such a model may not be possible. Cattle in this system are only 

able to make grazing decisions on the range of environmental variables contained within their 

pastures, and not over the wider range of variables present across the ecosystem. For example, 

in pasture replicate 3, having cattle select for an optimal biomass concentration seemed 

appropriate because there is a wide range of biomass concentrations present in pixels across 

the simulated pasture (Table 2). Applying a similar broken stick model (Figure 8) to pasture 

replicates 1 and 2 is less appropriate, as nearly all the pixels in those pastures are close to the 

optimal biomass concentration suggested by Wilmhurst et al. (2000). Additionally, having steers 

make grazing decisions based on slope may be appropriate within pastures containing 

significant slopes (replicate 2), but less appropriate in pastures containing only small variations 

of slope. Having steers use reference memory to navigate pastures containing distinct feeding 

sites may be appropriate, but less so in homogenous pastures containing one large feeding site. 

Striking a balance between inter- and intra-pasture variations across environmental variables 

should be a focus of future modeling efforts. 

4.7 GPS Collar Limitations 

 While the GPS collars deployed at CPER achieve an accurate measure of both time and 

steer location, there are gaps in their ability to quantify steer behavior. While Augustine and 

Derner (2014) were able to develop an algorithm that inferred cattle behavior from GPS collars 

equipped with activity sensors, many of these activity sensors malfunctioned during periods 

studied here. This resulted in the need to use steer velocity to infer behavior. This method is 
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more subject to error, as some periods of rest or travel may be incorrectly classified as grazing, 

or vice-versa. This may have caused issues in validating the model spatially, as a disproportional 

amount of traveling fixes near water may have been classified as grazing. The method used may 

have caused issues in validating the model temporally as well, with grazing time by collared 

steers being inaccurate. Another shortcoming is that only two steers in each pasture wore 

collars, so analyses of herd-level social behaviors were not possible. Observations of steers 

under traditional management at CPER indicate that all steers in the pasture form and maintain 

one cohesive herd much of the time, but this may not always be true. This would become more 

of an issue in simulations of larger pastures with more cattle, as herd dynamics likely become 

more complex as the number of cattle in a pasture increases. 

4.8 Future Modeling Efforts 

 A future use of this model will be analyzing model performance under the adaptive 

management scenario within the ongoing CARM experiment at CPER. In this style of 

management, a group of stakeholders manage a herd of ca. 240 steers in an adaptive manner 

that addresses goals to reach desired outcomes for vegetation, wildlife, and livestock. During 

2014 - 2019, the stakeholder group chose to use one large herd of yearling steers to rotate 

among 8 pastures each year, with 2 of the 10 pastures reserved each year for rest (i.e., no 

grazing), or as emergency forage in severe drought. Preliminary analyses of GPS-collar data at 

CPER has suggested that cattle in the adaptive treatment exhibit grazing behaviors that differ 

from steers in traditional management. Measures of cattle weight gain have shown that steers 

in the adaptive herd are also gaining less weight on average. Hypotheses as for why rotational 

grazing is not beneficial include: a) animals in large herds are expending more energy to locate 
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sufficient forage than those in smaller herds, b) differences in diet quality at different stocking 

densities are sufficient to explain these results, independent of energy expenditure, c) 

movement rates among animals in the two groups are sufficiently different to lead to changes 

in weight gain, and d) grazing facilitation (increased production of re-growing plants in grazed 

patches) is present in continuous grazed pastures, but not in rotational pastures, leading to a 

sufficient difference in diet quality. Applying this ABM to the adaptive management treatment 

and using it to track steer movement rates, intake rates, grazing times, and grazing distributions 

could help to address these hypotheses. 

 While cattle behavior and distribution are the focus of this project, many rangeland 

managers are interested in how these phenomena impact ecosystem processes like vegetation 

response to grazing. An existing ecosystem model, APEX (Agricultural Policy/Environmental 

eXtender; http://epicapex.tamu.edu/apex/) has been developed by the Texas A&M AgriLife 

Research Program, the Blackland Research and Extension Center, and partners (e.g., Gassman 

et al., 2010; Zilverberg et al., 2017). This model is spatially explicit and has a daily time-step. 

APEX is used by many Natural Resource Conservation Service professionals to predict outcomes 

of land management. APEX uses inputs regarding hydrology, soil type, past climate, weather, 

land use, and conservation practices to predict future ecosystem conditions. The model 

represents landscape dynamics, including climate variability, plant growth and competition, and 

livestock grazing. APEX uses a more general representation of livestock grazing, where whole 

pastures are considered to have equal grazing pressure. 

 An overarching goal of this project is to link an agent-based model of cattle grazing with 

an ecosystem process model such as APEX to more accurately represent the spatial patterns of 
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grazing distribution in an ecosystem process model. The linking of these models is more 

complex than the scope of this project and may use a different platform than NetLogo. 

However, this agent-based model developed in NetLogo can serve as a testbed to parameterize 

a model of cattle grazing behavior that can be linked with an ecosystem process model like 

APEX. The resulting linked model can then serve as a tool to predict the outcomes of 

management strategies and environmental variability on ecosystem processes. Linking this 

ABM to a model like APEX would also address some of the limitations of the model discussed 

earlier. By having a more accurate representation of vegetation growth patterns, simulated 

steers can make foraging decisions on a more realistic spatial and temporal distribution of 

environmental conditions.  
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5. CONCLUSION 

 In developing an ABM of cattle foraging behavior, I found that selective foraging 

decisions encoded in the model were more appropriate in heterogeneous pastures than 

homogenous pastures. In homogenous pastures, steers graze relatively evenly over the course 

of an entire grazing season, and do not have the opportunity for selective behavior. 

Heterogeneous pastures allow for more selection to occur, and the ABM presented here 

performed best in the most heterogeneous pasture.  

 For each model tested, model performance varied for each simulated pasture. As each 

pasture has its own suite of environmental conditions, it was difficult to obtain consistent 

parameter values to guide selective behaviors. For example, in a pasture with a large hill, 

having cattle select for pixels with no slope resulted in a better model fit than when these same 

rules were applied in a pasture that was relatively flat. 

 Outperforming a null model of random grazing, with respect to trips to water and 

pasture boundaries, required the most complex model.  This means that a combination of 

selective behaviors results in a better model fit than when these behavioral rules are applied in 

isolation. Enabling memory rules in the model improved the model fit, although reference 

memory was found to be more appropriate than episodic memory. Applying rules that 

prevented simulated steers from grazing after meeting digestive restraints resulted in a more 

accurate model of cattle grazing distribution, and better reflected forage consumption and time 

spent grazing by actual steers. 
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 There is seasonal variation in cattle grazing distribution patterns that result from 

changes in forage quality and quantity over time. Using NDVI data captured at the beginning of 

the grazing season was not a sufficient representation of this temporal pattern. Future 

modeling efforts may need to incorporate fine scale NDVI data to better simulate changes in 

vegetation over time. This may be achieved by using coarser scaled Landsat-MODIS fusion NDVI 

data, or by linking this ABM with a more complex ecosystem model, such as APEX. 
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