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ABSTRACT OF DISSERTATION

ON THE NATURE AND MECHANICS OF FLOODPLAIN RESPONSE AND STABILITY IN THE

SEMI-ARID ENVIRONMENT OF SOUTHERN CALIFORNIA

The core research questions motivating this dissertation are: (1) How can we assess
the existing stability state of a floodplain? ; and (2) How can we estimate the trend and
magnitude of the change in floodplain geometry due to urbanization? Field investigations
conducted early in this research indicated that it was essential to build a basic framework of
understanding for the fluvial systems in the semi-arid environment of southern California,
prior to addressing the core research questions. To build this framework, various
classification systems and conceptual models have been developed to characterize the
nature and form of floodplains at multiple spatial scales.

A reach-scale classification system and conceptual model were created to synthesize
the observed floodplain forms into three basic floodplain continuums (armored, non-
armored, and active-regional alluvial fan), where each of these continuums are comprised of
three to five alluvial floodplain forms (cascade, step-pool, plane-coarse-bed, plane-mixed-
bed, plane-fine-bed, pool-riffle, braided, and dune-ripple). A catchment-scale conceptual
model was created to describe the interrelationship between the three basic floodplain
continuums in terms of climatic and geologic metrics. This conceptual model provided the
basis to develop a practical GIS-based technique for predicting the floodplain continuum
type within a catchment.

For the non-armored and armored floodplain continuums, floodplain state plots

have been generated to quantitatively describe the natural downstream progression of
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floodplain forms, using specific stream power and the width-to-depth ratio as the state and
shape metrics. These floodplain state plots provided the bases to create conceptual models
for intra-catchment processes and to develop techniques for assessing the stability state of a
floodplain.

Using the series of conceptual models as a framework, regime-type modeling tools
have been developed for estimating the trend and magnitude of the change in floodplain
geometry due to changes in water and sediment supply. At the core of these tools are the
basic flow relationships of continuity, flow resistance, and sediment transport for
floodplains with trapezoidal geometry. To factor in bank erosional resistance and stability
characteristics, the basic flow relationships are coupled with floodplain response and

stability constraints developed from the conceptual models for intra-catchment processes.

David Walter Dust

Department of Civil and Environmental Engineering
Colorado State University

Fort Collins, CO 80523

Fall 2009
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Chapter 1: Introduction
1.1 Overview

This dissertation was prepared in partial fulfillment of the requirements for the
degree of Doctor of Philosophy. The objectives of this introductory chapter are to:
e describe the practical and applied research questions at the core of this research
study;
e provide descriptions of key terms and concepts that are at the base of this research;
e provide a brief description of the geopolitical boundaries for the study area;
e describe the overall methodology and approach for the investigations described in
this dissertation; and

e provide an overview of the structure of this dissertation.

1.1.1 The Hydromodification Project and the Practical Research Questions Motivating
This Research

This dissertation represents my principal contributions to the Southern California
Coastal Water Research Project (SCCWRP) “Hydromodification Project”, lead by Dr. Eric
Stein (SCCWRP) and Dr. Brian Bledsoe (Colorado State University). In the context of this
study, “hydromodification” is used to refer to the changes in sediment yield and runoff
characteristics for a catchment associated with urbanization.

For this dissertation it is useful to recognize that there are the three basic types of
questions that researchers can ask (Turabian, 2007):

e Practical Questions: What should we do?

e Applied Questions: What must we understand before we know what we should do?



e Conceptual Questions: What should we think?

When putin the form of a practical research question, the primary objective of the
SCCWRP Hydromodification Project is to address: How should we evaluate and then
mitigate the potential risk for severe floodplain instability, due to
urbanization/hydromodification?

For the SCCWRP Hydromodification Project, the principle investigators proposed
the approach of developing a series of “tools” to address the aforementioned practical
research question. More specifically, the following series of tools were proposed for
evaluating and mitigating the potential risk for severe floodplain instability in response to
hydromodification:

e “Screening Tools” for identifying the risk for and the potential trend of severe
floodplain instability.

e “Modeling Tools” for evaluating the trend and magnitude of the change in floodplain
geometry due to urbanization/hydromodification.

e “Mitigation Tools” for guiding recommended mitigation and management measures,

including “Monitoring Protocol” for future data collection efforts.

In general terms, the geometry of a floodplain may change in terms of width, depth, and/or
bed slope. Hence, the “trend” of the geomorphic response of a floodplain would be
described in terms of the changes in the width, depth, and/or bed slope of the floodplain.

Like most dissertations prepared by engineering students, this dissertation has at its
core the goal of addressing a practical research question. [ was asked to make the task of
developing the “Modeling Tools” the primary focus of my research; hence, the practical
research question motivating my research is: How can we estimate the trend and

magnitude of the change in floodplain geometry due to urbanization or



hydromodification? However, | found over the course of my research that it was essential
to have a basic understanding of the existing stability state of a floodplain prior to assessing
the potential response of a floodplain. Therefore, addressing the following practical
research question became inherently and inextricably tied to the overall motivation for my
research: How can we assess the existing stability state of a floodplain?

In order to discuss these two practical research questions effectively, it is
imperative to have clear definitions for the terms “floodplain” and “severe instability”;
hence, the following two sections discuss the meanings of these terms in the context of this

dissertation.

1.1.2 Floodplains From an Engineering Perspective

In dictionaries and the literature, the term “floodplain” can have a wide range of
typically overlapping definitions and can be spelled as one word, two words, or hyphenated
(Graf 1988). Graf (1988) has identified a total of six different perspectives from which to
view “floodplains”, with the following being brief descriptions of the perspectives being
most pertinent to this study:

¢ From a geomorphic perspective, the noun “flood plain” is used to describe “that
portion of a river, adjacent to the channel, which is built of sediment deposited
during the present regime of the river and is covered with water when the river
overflows its banks at flood stages” (Bates and Jackson, 1984).

¢ From a hydrologic perspective, a cross section of a river has a channel flanked by
“flood plains” that are inundated by water with a given return period (Graf, 1988;
Ward, 1978).

¢ From an engineering perspective, the term “floodplain” is used to describe the land
surface inundated by a flow event with a specific return period (e.g. 100 years) and a

specific water surface profile. The water surface profile corresponding to the
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floodplain is typically assessed with computer programs HEC-2 or HEC-RAS. Within
these programs, a river cross section is typically divided into the main channel and
the right and left overbanks (from the perspective of looking downstream) for
computational purposes (Brunner, 2008).

Since this dissertation is concerned with floodplains from primarily an engineering
perspective, the single word spelling of “floodplain” is used and the engineering perspective
is intended, which is consistent with the Federal Emergency Management Agency’s (FEMA)
national flood insurance program (FEMA, 1986). When the term “floodplain” is intended to
have a perspective different from the engineering perspective, the perspective will be
specifically noted.

The engineering perspective of floodplains is illustrated in Figure 1.1 for a general
downstream progression of floodplain forms observed in southern California. As illustrated
in Figure 1.1, floodplains in southern California may be comprised of just a single-thread
channel or floodplain, a compound floodplain comprised of a main channel and overbanks,

and a braided floodplain with multiple channels and migrating bars.

1.1.3 The Applicability of Equilibrium Concepts and Defining States of Stability in the
Semi-Arid Environment

In the context of this dissertation, it is important to ask: Does the concept of
equilibrium even apply to the perennial, ephemeral, or intermittent watercourses in the semi-
arid environment, such as that in southern California? 1 have debated the answer to this
question with both fellow engineering students and professional colleagues on numerous
occasions over the years, because it is generally well recognized that floodplains in the
semi-arid environment can be rather dynamic in nature. During these debates, it was
generally agreed that the concept of equilibrium can be useful from both an engineering and

geomorphic perspective, when attempting to evaluate flooding and erosion hazards in the



semi-arid environment. However, it was also agreed that it was absolutely essential when
invoking equilibrium concepts to both: (a) clearly define equilibrium and the associated
stability states specifically in terms of the semi-arid environment; and (b) acknowledge the

limitations of doing such.
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Figure 1.1 - Schematic illustrating the engineering perspective of a floodplain for a
range of floodplain geometries

These investigations have found that equilibrium concepts can be useful for
evaluating both the probability for floodplain instability and estimating the response of
floodplains to changes in intra-catchment processes. Therefore, the objective of this section
is to define how this author is invoking equilibrium concepts in the context of the semi-arid
environment.

The fundamental fluvial geomorphic concept underlying the evaluation of
watercourse stability is that an alluvial system can over time establish and maintain an

equilibrium condition, where the geomorphic characteristics of a floodplain remain



relatively stable over time (Tanner, 1968; Shen, 1979; Dingman, 1984). However, the
geometry of a stable watercourse does not have to be static over time and may temporarily
change in response to low flow events and/or natural variations in water and sediment
supply. Therefore, the key characteristic of a stable watercourse is that fluvial processes,
during floodplain formative flows, restore the geomorphic characteristics of a floodplain
rather than perpetuating and amplifying changes in geomorphic characteristics (Watson,
Biedenharn, and Thorne, 2005).

This type of stability is often referred to as dynamic equilibrium. The basic
assumption underlying the concept of dynamic equilibrium is that the geometry of a
floodplain will adjust to convey both the water and sediment supplied from the upstream
catchment, while maintaining a balance with the erosional resistance and stability
characteristics of the banks within and/or along the periphery of the floodplain (Schumm,
1977).

Herein, the term severe instability is used to describe the state of a watercourse
that is unstable and is not in a state of dynamic equilibrium. Hence, the key characteristic
of a watercourse that is in the state of severe instability is that fluvial processes do not
restore the geomorphic characteristics of the floodplain, but instead perpetuate and/or
amplify changes in the geomorphic characteristics of the floodplain and permanently (in an
engineering timescale) alter the water and/or sediment supply to the fluvial system. I
contend that when the intra-catchment processes that govern the geomorphic
characteristics of a floodplain are sufficiently perturbed and a state of severe instability is
induced, the intra-catchment processes will undergo a long-term and complex transition.
During this long-term transition period of potentially several decades to even centuries, the
watercourse may undergo a complex series of significant, if not dramatic, changes in

geomorphic characteristics. I believe that this definition for the state of severe instability is



consistent, if not overlapping, with concepts described by Graf (1988) and other authors
regarding temporal and spatial characteristics of flood plains (from a geomorphic
perspective) along arid-region rivers, where a key concept is that “arid-region rivers ... may
not exhibit long-term (several decades) tendencies toward some equilibrium condition
(Stevens, Simons, and Richardson, 1975; Graf, 1981).”

In a semi-arid environment where most watercourses are ephemeral in nature, the
concept of dynamic equilibrium is further complicated by potentially long response times,
because flow events are typically sporadic and characterized as having relatively short
durations and high peaks. Hence, it is important to recognize that it may take years or
maybe even decades for a floodplain to even begin to respond to significant changes in the
catchment (such as urbanization), depending upon the number and magnitude of
floodplain-forming flow events that have occurred since the changes in the catchment.
During the period when a watercourse is responding to some perturbation in the
catchment, the watercourse will be referred to as responding and in a state of dynamic
response. If the perturbation to the intra-catchment processes results in the watercourse
passing some stability threshold, the watercourse will then become unstable and shift into
the state of severe instability, for decades if not centuries, until the watercourse re-attains a
new state of dynamic equilibrium. If the perturbation does not result in the watercourse
passing some stability threshold, the geometry of the watercourse will adjust and attain a
new state of dynamic equilibrium relatively quickly.

To summarize, I contend that within an engineering timescale a watercourse is in
one of the following three stability states, as illustrated in Figure 1.2:

e Stable and in a state of dynamic equilibrium: In this state, fluvial processes restore

the geomorphic characteristics of the floodplain rather than perpetuating and



amplifying changes in geomorphic characteristics, during floodplain formative flows
(Watson, et al.,, 2005).

® Responding and in a state of dynamic response: In this state, a watercourse is
responding to a perturbation in the catchment, which may not be immediately or
fully reflected in its geomorphic characteristics due to relatively long response times.
If the cumulative influence of the perturbations are relatively minor, the watercourse
will adjust in a relatively short period of time (i.e., years or decades) and obtain a
new state of dynamic equilibrium. However, in cases where the cumulative influence
of the perturbations cause the watercourse to exceed a threshold, the watercourse
may become unstable and shift into a state of severe instability.

e Unstable and in a state of severe instability: In this state, fluvial processes do not
restore the geomorphic characteristics of the floodplain, but instead perpetuate
and/or amplify changes in the geomorphic characteristics of the floodplain and
permanently (in an engineering timescale) alter the water and/or sediment supply
to the fluvial system. A watercourse may be in a state of severe instability for a long
period of time (i.e., decades or centuries) before eventually attaining a new state of
dynamic equilibrium, during which time the watercourse may undergo a complex

series of dramatic changes in geomorphic characteristics.



»

y
greater

Period of | Period of| Period of Period of Severe Instability Period of
Dynamic | Dynamic| Dynamic Dynamic
Equilibrium| Response|Equilibrium Equilibrium

Floodplain
State W/I’MMMWM/W

Variable
TI m\ Perturbations to

B¢ Intra-Catchment

Vi

v

A 4
lesser
Time

Figure 1.2 - Schematic illustrating the three stability states of dynamic equilibrium,
dynamic response, and severe instability

Bull (1979) described the philosophical differences between the threshold and
graded stream conceptual framework as follows:

“Both approaches consider the interaction between process and form, but the threshold
concept emphasizes the possibility of change in a fluvial system. Those using the threshold
approach are more likely to be interested in when and where change occurs in fluvial systems
and the reasons for change, rather than searching for approximations of equilibrium. The
graded stream approach generally encourages study of self-regulating feedback mechanisms,
but the threshold approach generally encourages study of self enhancing feedback
mechanisms.”

Given this description of the threshold conceptual framework, it is clear that the definitions
of the three stability states, described herein, have been tailored to fit within the threshold
conceptual framework.

Within the literature, there is a wide range of frameworks set forth for describing
the stability states for watercourses. The stability state framework used in this research
contains elements that are based on, consistent with, and/or similar to previous stability
state frameworks, in addition to those already mentioned. Though posed in a slightly

different context, it is believed that the stability state framework used in this research is



consistent with the framework that “within any landscape there are eroding, stable, healing,
and potentially unstable landforms...” as described by Schumm, Harvey, and Watson (1984).
In addition, the stability states used in this research are also similar in some respects to the
“equilibrium, disequilibrium, and non-equilibrium” landforms defined by Renwick (1992);
however, there are also distinct differences.

This discussion of stability states leads to a very important point regarding the
practical research questions motivating this research. To assess the trend and magnitude of
the change in the geometry of a floodplain due to some perturbation in water and/or
sediment supply, it is essential to be able to assess the current or existing stability state of
the floodplain. This is why the following two practical research questions motivating this
research are inherently and inextricably linked:

¢ How can we assess the existing stability state of a floodplain?

¢ How can we estimate the trend and magnitude of the change in floodplain geometry
due to perturbations in intra-catchment processes associated with
urbanization/hydromodification?

These practical research questions are addressed in Chapters 3 and 4, respectively.

1.1.4 Geopolitical Boundaries for This Study

As defined in the Hydromodification Project’s scope of work, the study area was
limited to the six southern-most counties in southern California with watersheds that drain
to the Pacific Ocean. Hence, the study area includes portions of Ventura, Los Angeles, San

Bernardino, Riverside, Orange, and San Diego Counties (as shown in Figure 1.3).
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Figure 1.3 - Map showing geopolitical boundaries for this study within the State of
California

1.2 Overall Approach and Methodology
1.2.1 Initial Site Investigations and Formulation of Applied Research Questions

As a member of the SCCWRP Hydromodification Project team, | was asked to make
the task of developing “Modeling Tools” the primary focus of my research. As described
earlier in this Chapter, I reformulated this task into the following interrelated practical
research questions that are, therefore, at the core of my research and investigations:

¢ How can we assess the existing stability state of a floodplain?

¢ How can we estimate the trend and magnitude of the change in floodplain geometry
due to perturbations in intra-catchment processes associated with
urbanization/hydromodification?

Given these practical research questions, [ then found it necessary to identify the
underlying applied research question. Thatis, What must we understand before we know

what to do? | found it necessary to at least attempt to “understand the key processes and
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mechanisms that govern floodplain formation, response, and stability in southern
California” before I could really begin to address the practical research questions at the
core of this research.

The task of trying to identify and understand the key processes and mechanisms
that govern floodplain formation, response, and stability in southern California is both
daunting and complex. In the course of my career, | have found it is best to approach
complex tasks by breaking them up into first logical and then manageable pieces. To do this
effectively, it is imperative to have a basic understanding of the scope and bounds of the
task. To gain this basic understanding for the project team, I (and Mr. Robert Hawley)
conducted initial site investigations at fifty two (52) individual sites within the study area.
These initial site investigations were primarily conducted at locations recommended by Dr.
Eric Stein (a principle investigator) and the county floodplain administrators involved with
the project. However, additional initial site investigations were conducted along reaches of
watercourses identified either while in transit between the recommended sites or in aerial
photographs while [ was preparing to visit the recommended sites, when time and site
access permitted. Hence, the initial site investigations were conducted at a combination of
sites that were either pre-selected by others (and thereby, typically associated with
instability issues) or essentially randomly identified.

During the initial site investigations, | made several key observations regarding the
floodplain-reach morphologies for watercourses in the semi-arid environment of southern
California, as listed in Table 1.1. However, the observation regarding the three basic
floodplain continuums has been by far the most influential in terms of the approach and

methodology adopted for this research.
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Table 1.1 - Summary of key observations from initial site investigations

ID

Key Observations Regarding Floodplain Morphologies in the Semi-Arid
Environment of Southern California

a

Though potentially more complex and/or significantly different than other regions of
the United States, southern California catchments appear to have at least three basic
floodplain continuums that are comprised of multiple floodplain forms which have a
typical sequence along the length of the watercourse.

Catchments within the study area varied greatly in terms of both relief and the
predominant sedimentation processes, which appear to be the direct result of the
complex geologic history for the region.

The observed floodplain continuums and forms appear indicative of intra-catchment
sedimentation processes, which can be impacted by hydromodification, floodplain
encroachment, and/or base level changes.

Each of the various floodplain continuums and forms appear to have different response
thresholds and mechanisms when impacted by hydromodification, floodplain
encroachment, and/or base level changes.

The potential for and the magnitude of the change in the geometry of a floodplain in
response to perturbations in water and/or sediment supply appear to be influenced by
the catchment characteristics and the corresponding floodplain continuums.

Most, if not essentially all, watercourses naturally pass through a floodplain braiding
threshold, where:
e the threshold typically corresponds to a significant transition in both floodplain
geometry and associated hydraulic characteristics; and
e the spatial location of the corresponding floodplain transition can move
upstream or downstream in response to both natural and/or induced
perturbations to intra-catchment processes.

Armed with these observations and the knowledge gained from the initial site

investigations, | then broke up the original task of identifying the key processes and

mechanisms associated with floodplain formation, response, and stability into logical pieces

by formulating the following series of applied research questions (i.e., what must we

understand before we know what to do?):

¢ What are the forms and nature (i.e., geomorphic properties) of floodplains in

southern California?
What are the primary “process drivers” that govern the type of floodplain continuum
within a catchment?

What are the intra-catchment processes that govern the natural downstream
floodplain form progression, including specifically the transition from single-thread

to braided floodplains?
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e What is the impact of urbanization on the primary intra-catchment processes that
govern the natural downstream floodplain form progression?

The overall objective of formulating and addressing the aforementioned applied
research questions is to obtain the insights and understanding needed to attempt to break
up the task of addressing the practical research questions at the core of this into
manageable pieces. To address the four applied research questions listed above, it was

necessary to develop and execute an effective field data collection and analyses program.

1.2.2 Field Data Collection and Analyses Program

Following the initial site investigations and formulation of the applied research
questions, the next key step was to develop the field data collection program. The primary
elements of the field data collection program are as follows:

e Selection of the number and location of study sites.

¢ Identification of the level, extent, and format of the qualitative data collected at each
study site.

¢ Identification of the level and extent of quantitative data collected at each study site.

As with essentially all projects, there was a limit to the time and effort that could be
allocated to data collection. To get the most comprehensive data set for the given budget,
significant effort and thought was given to the site selection process. During the initial site
investigations, basic information was collected for each of the initial fifty two (52) sites,
allowing them to be categorized and ranked. The Hydromodification Project Team
determined that the budget allowed for data collection at approximately thirty (30) sites, if
two (i.e., screening and modeling) levels of data collection were used. Thirty (30) data

collection sites were selected by the project team, based on the criteria listed in Table 1.2.
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Table 1.2 - Study site selection criteria

ID Study Site Selection Criteria

1 Approximately 50% of sites should exhibit signs of instability, with the cause(s) or
history of the instability being relatively identifiable or definable. That is, sites with
long and/or complex histories of instability should not be considered.

2 Data sites should provide a representative range of:
e Catchment urbanization levels.
e Floodplain or channel forms.
e Bed material composition.
[ ]

Channel vegetation densities.

3 Sites should be representative of geo-political boundaries.

4 Most of the sites should have catchments less than 20 km? and all catchments
should be less than 70 km?Z.

5 Sites with floodplain form transitions and/or confluences are given priority.

6 Approximately 50% of the sites should be suitable for post flow event and/or long-
term monitoring.

7 Sites where legal permission to access the site was either confirmed or obtained
prior to the selection process are given priority.

As indicated in the previous paragraph, the Hydromodification Project Team
determined that more sites could be included in the study, if two levels of data collection
were employed. These two levels of field data collection are referred to as screening and
modeling levels. As implied by the name, the modeling level of field data collection is
intended to provide sufficient data to permit hydraulic modeling with rigid bed, movable
bed, and/or movable boundary models. However, the primary difference between the two
levels of data collection is that only one to three cross sections were surveyed at screening
level sites; whereas, five to eighteen cross sections were surveyed at modeling level sites.
The field data collection protocol for screening and modeling level sites are summarized in

Table 1.3.

15



Table 1.3 - Summary of field data collection protocol

Field Data Collection Protocol
Qualitative data collected at each cross section within sites via a multiple-choice formatted
data collection form:
Observed floodplain forms and sequences.
Estimation of Manning’s roughness coefficient (n) for floodplain.
Bank characteristics, including a visual assessment of stability and/or modes of failure.
Basic bed material characteristics, including basic rock types, size ranges, and the
level /extent of bed armoring.
e Preliminary assessment of current stability state in terms of the Channel Evolution Model
(CEM) Phases (Schumm, 1981; Schumm et al., 1984).
The level, extent, and characteristics of the vegetation within the floodplain.
Digital photographs of study reach documenting bed material, bed forms, bank conditions,
and vegetation characteristics

Quantitative Data Collected at Screening Level Sites:
e 1 to 3 bed material gradations, based on pebble count and/or dry sieve analyses of bed
material samples.
e Survey/geometry data collected using a pole mounted hand-level and Pocket Rod.
o 1to 3 floodplain cross sections.
o bed profile extending approximately 50 meters upstream and downstream of
cross section(s).

Quantitative Data Collected at Modeling Level Sites:

¢ 2 to 3 bed material gradations, based on pebble count and/or dry sieve analyses of bed
samples.

e Survey/geometry data collected using either a total station or a survey level global
positioning system by either Stillwater Consultants or Riverside County Public Works
Department.

o 5to 18 floodplain cross sections
o bed profile extending approximately 50 meters upstream and downstream of
cross sections.

To provide the basis for developing and evaluating both conceptual models and
computational procedures for estimating floodplain responses, the field data were used to
compile a hydraulic analysis database. This hydraulic analysis database contains records for
six flow conditions for each of the 124 surveyed cross sections, thereby creating a database
with 744 records. Each record in this database has the following information or fields:

e Basic site data, including: floodplain form, bed slope, valley slope, valley width,
existing stability state in terms of CEM stage, dsp, and a visually estimated value for

Manning’s roughness coefficient (n).
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e Computed hydraulic parameters, including stage or maximum flow depth, wetted
perimeter, hydraulic radius, hydraulic depth, topwidth, width-to-depth ratio, total
boundary shear stress, Shields parameter, Froude Number, specific stream power,

and total stream power.

1.2.3 C(lassification Systems and Conceptual Models

Key elements of this dissertation are the classification systems and conceptual
models. A useful classification system provides a framework for identifying, describing, and
organizing observed parameters and/or patterns. Whereas, “conceptual models” are a
simplified representation of some aspect of the “real world”. In the context of this
dissertation, conceptual models can take the form of graphs, charts, tables, diagrams,
proportionalities, and/or flow charts.

In this dissertation, conceptual models are used to address many of the “applied”
research questions posed earlier in this chapter. In general terms, the objectives of the
conceptual model are to:

e provide a useful visualization of a complex concept or system;

e describe the interactions or interrelationships between the observed floodplain
forms and continuums;

e describe the interrelationships between the observed floodplain forms and
continuums with intra-catchment process and/or process drivers;

e provide an effective method to identify and describe geomorphic thresholds and the
associated physical processes or mechanisms;

e provide a framework for identifying and describing the observed downstream
progression of floodplain forms, both qualitatively and quantitatively; and

e provide a framework for identifying and describing both the magnitude and trend of

the change in floodplain geometry in response to urbanization or hydromodification.
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1.2.4 Probabilistic Approach to Geomorphic Thresholds and a Regime-Type Approach
for the Modeling Tools

Probabilistic Approach to Geomorphic Thresholds

Though it is more common for logistic regression analyses to be applied in the
behavioral and health sciences, Tung (1985) and Bledsoe and Watson (2001) have applied
logistic regression techniques in the evaluation and definition of geomorphic thresholds. In
context of this research, a binary linear logistic regression analysis is a statistical technique
that can be used to define geomorphic thresholds in terms of probability; hence, using this
technique at least acknowledges that there maybe transition zones or natural variability
associated with geomorphic thresholds.

When sufficient data existed, binary linear logistic regression analysis techniques
have been applied to define stability and braiding thresholds. As described in Chapter 3, the
approach adopted in these investigation was to attempt to define stability and braiding
thresholds in terms of a state and a shape metric for floodplains. Like Nanson and Croke
(1992), the primary state metrics considered in these investigations were specific stream
power and total boundary shear stress, while the width-to-depth ratio was the primary
shape metric considered.

Regime-Type Approach for the Modeling Tools

The basic assumption underlying the concept of dynamic equilibrium is that the
geometry of a floodplain will adjust to convey both the water and sediment supplied from
the upstream catchment, while maintaining a balance with the erosional resistance and
stability characteristics of the banks (Schumm, 1977). Hence, it is generally argued that the
basic flow relationships of continuity, resistance, and sediment transport are not sufficient
to describe the processes by which the hydraulic geometry (including bed slope) of a
watercourse adjusts to maintain dynamic equilibrium, because the basic flow relationships

do not reflect the influence of the erosional resistance and stability characteristics of the
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banks (as argued and described by Laursen (1958) and Henderson (1966)). Therefore, the
challenge in applying a regime-type modeling approach is to identify a relationship or
constraint that defines how the width, depth, and slope of a floodplain adjust
simultaneously to take into account the influence of the erosional resistance and stability
characteristics of the banks.

A regime-type modeling approach has been adopted in this research to develop
modeling tools for estimating the trend and magnitude of the change in floodplain geometry,
where the solution of the basic flow relationships is facilitated by incorporating into the
solution procedure what are referred to herein as floodplain response constraints. These
floodplain response constraints are intended to take into account bank characteristics and
have been derived from analysis of field data for a wide range of floodplain geometries,
within the semi-arid environment of southern California. Similar to the geomorphic
thresholds, the floodplain response constraints have also been defined in terms of state and
shape metrics (e.g., specific stream power and width-to-depth ratio).

The solution procedures for the modeling tools include steps where what are
referred to as floodplain stability constraints are used to assess the stability state of the
floodplain and, thereby, evaluate the basic applicability of the regime-type modeling
approach under specific conditions. Where possible, the floodplain stability constraints are
quantitative in nature and are based on stability threshold defined by logistic regression
analyses; otherwise, the floodplain stability constraints are qualitative in nature and are

based on the comparison with field data.

1.3 Structure of This Dissertation

With the exception of this “Introduction” and the “Conclusions” chapter, each

chapter describes classification systems, conceptual models, and/or modeling tools. The
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chapters have been organized in a progression such that each chapter builds on the
concepts developed in the previous chapters.

To aid the reader in applying the equations and techniques provided in the text,
definitions for variables or symbols are provided in the “list of symbols” near the front of
this document and with each reference by an equation. In addition, equations that are
referenced in multiple chapters are provided in each chapter with a new equation number;
for example, the Manning equation is provided as both Equations 3.12 and 4.3.
Furthermore, equations are often grouped into tables for ease of reference and application.

Within this document, Chapters 2, 3, and 4 are comprised of the following sections:

¢ An Overview section, which includes both an abstract and introduction for the
chapter.

e A Previous Studies or literature review section.

e A Study Area section that describes key aspects of the study area pertinent to the
specific chapter

e A Methods section that describes the field, computational, and/or statistical
techniques pertinent to the chapter.

¢ A Results and Discussion section that presents the key findings and addresses the
limitations and potential applications of the key findings.

e A Conclusions section that summarizes and relates the key findings back to both the
practical and applied research questions at the core of this study, plus describes

potential avenues for further investigations.
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Chapter 2: Reach and Catchment Scale Conceptual Models
Describing the Form and Nature of Floodplains in Southern
California

2.1 Chapter Overview
2.1.1 Abstract

With the overall goal of building a framework for developing modeling tools for
estimating the trend and magnitude of the change in floodplain geometry due to
hydromodification, classification systems and conceptual models have been developed to
characterize the nature and form of floodplains (i.e., channel plus overbank areas) at
various scales in the semi-arid environment of southern California. To provide a basic
spatial scale for comparing floodplain properties, a hierarchy of spatial scales was
developed specifically for southern California. From the largest to the smallest scale, this
hierarchy is comprised of the watershed, geomorphic province, catchment or valley
segment, floodplain reach, and floodplain unit scales. A reach-scale classification system
and conceptual model were created to synthesize the observed floodplain forms into three
basic floodplain continuums (armored, non-armored, and active-regional alluvial fan),
where each of these continuums are comprised of three to five alluvial floodplain forms
(cascade, step-pool, plane-coarse-bed, plane-mixed-bed, plane-fine-bed, pool-riffle, braided,
and dune-ripple). A catchment-scale conceptual model was developed to describe the
interrelationship between the three basic floodplain continuums in terms of climatic and
geologic metrics for a catchment. This conceptual model provided the basis to develop a
practical GIS-based technique for predicting the floodplain continuum type within a

catchment, utilizing GIS data available for the region.
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2.1.2 Introduction/Research Questions

The fundamental fluvial geomorphic concept underlying the evaluation of
watercourse stability is that an alluvial system can over time establish and maintain an
equilibrium condition, where the geomorphic characteristics of the floodplain remain
relatively stable over time (Tanner, 1968; Shen, 1979; Dingman, 1984). Another
fundamental fluvial geomorphic concept pertinent to the evaluation of watercourse stability
is that the natural downstream progression of alluvial floodplain forms represents a
continuum rather than just discrete floodplain forms (Ferguson, 1987; Nanson and Croke,
1992; Montgomery and Buffington, 1997). Initial field investigations indicated that:

¢ Though potentially more complex and/or significantly different than other regions of
the United States, southern California catchments do appear to have typical
floodplain forms that are comprised of multiple continuums of floodplain forms. In
this context, continuum is used to describe a coherent whole that is characterized by
a sequence or progression of elements.

e Each of the various floodplain forms and continuums appear to have different
response thresholds and mechanisms when impacted by hydromodification,
floodplain encroachment, and/or base level changes.

Hence, these observations indicate that it is essential to have a basic understanding
of the geomorphic characteristics of the floodplains to provide a framework for further
investigating methods for estimating the changes in floodplain geometry due to
urbanization or hydromodification. Therefore, the objectives of the investigations
described in this chapter are to address the following applied research questions:

¢ What are the forms and nature of floodplains in southern California on both a

catchment and a reach scale?
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e What are the primary geomorphic province-scale parameters or "process drivers”
that govern floodplain forms and continuums on a valley segment or catchment-
scale?

To address these questions, the objectives of the investigations described in this
chapter were to develop classification systems and conceptual models to characterize the
form and nature of floodplains at various spatial scales for the semi-arid environment of
southern California. More specifically, the objectives were to:

e Establish a hierarchical classification system, specific for southern California, to
provide a basic framework for comparing floodplain properties at varying spatial
scales, including catchment and reach scales.

e Develop a reach-scale classification system and a conceptual model that synthesizes
the observed floodplain forms into basic floodplain sequences or continuums.

¢ Develop a catchment-scale conceptual model that describes the interrelationship
between the basic floodplain sequences or continuums in terms of the dominant
process drivers.

¢ Quantify the catchment-scale conceptual model to develop a GIS-based technique or
planning-level tool for predicting the floodplain continuum within a catchment using
available GIS layers.

2.2 Previous Classification Systems and Conceptual Models for Channel and
Floodplain Morphologies

There are a number of classification systems and conceptual models, documented in
the literature, for floodplain (geomorphic perspective) and channel morphologies.
Generally, the classification systems are used to identify and organize the key elements of
the fluvial systems; whereas, conceptual models are typically used to describe

interrelationships between key elements of the fluvial system and/or the relationship
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between key elements with dominant processes. The variety and complexity of the
classification systems and conceptual models attests to both the variety and complexity
exhibited by alluvial floodplain systems and the variety of purposes for which they may be
useful. Since this study is primarily concerned with stream stability and geomorphic
response to urbanization in high gradient systems (> 0.5 % slopes), classification systems
that are fluvial process based and segregate floodplain forms in a manner consistent with
response mechanisms are the most pertinent to this study. The following classification
systems and/or conceptual models provided a starting point and a basis for developing the
conceptual models for the floodplain morphologies observed in southern California:
¢ The “hierarchical channel classification” described by Montgomery and Buffington
(1998).
e “Channel-reach morphology in mountain drainage basins” by Montgomery and
Buffington (1997)
e “A genetic classification of floodplains” by Nanson and Croke (1992).
The following sections provide brief descriptions of these classification systems and
conceptual models and how they pertain to the conceptual models developed for alluvial

floodplains in southern California.

2.2.1 Spatial Scales of Hierarchical Levels of Floodplain Classification

The basic objective of a hierarchical approach to floodplain classification is to relate
the various factors influencing floodplain properties to a range of spatial scales. For an area
in the Pacific Northwest (Olympic Peninsula, Washington), Montgomery and Buffington
(1998) developed a hierarchy of spatial scales that reflects differences in processes and
controls on channel morphology using the following six scales: Geomorphic Provinces (>
1000 km?), Watersheds (50 to 500 km?), Valley Segments (102 to 10* m), Channel Reaches
(101 to 103 m), and Channel Units (10° to 101 m).
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This type of hierarchy provides a framework for comparing channel (and
floodplain) properties at various spatial scales. However, Montgomery and Buffington
(1998) recognized and explicitly indicated that aspects of this hierarchical approach to
channel classification are site dependent. Hence, an important step for investigating the
properties of floodplains in southern California was to define a hierarchy of spatial scales
appropriate for the study area. As documented in the “Results” section, the hierarchy of
spatial scale defined for this study is comprised of the same basic elements defined by
Montgomery and Buffington (1998); however, the order and spatial scales of the elements

have been adjusted to meet the site-specific conditions in southern California.

2.2.2 Previous Classification System and Conceptual Model for Channel-Reach
Morphology in Mountain Streams

Montgomery and Buffington (1997) developed a classification system for reach-
scale channel morphologies in mountain streams. This classification system identifies three
basic valley segment types: colluvial, bedrock, and alluvial. The alluvial valley segment type
is further divided into five reach-scale channel types: cascade, step-pool, plane-bed, pool-
riffle, and dune-ripple. As illustrated in Figure 2.1, Montgomery and Buffington (1997)
developed a watershed-scale conceptual model of reach morphology by linking the spatial

distribution of reach-scale morphologies to key intrabasin processes.
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Figure 2.1 - Schematic of watershed-scale conceptual model relating reach types and
generalized trends in sediment supply and transport capacity in mountain drainage
basins (after Montgomery and Buffington (1997))

Even though the climatic and geologic conditions for the Pacific Southwest are
significantly different than those for the Pacific Northwest, there is one type of alluvial
floodplain continuum observed in southern California that exhibits a very similar catchment
and reach-scale morphology to that described by Montgomery and Buffington (1997). In
addition, the bedform-based nomenclature used in their reach-scale classification system
was found to be very appropriate for this study since it is: (a) descriptive, (b) intuitive with
respect to field identification, and (c) easily adaptable to the wider range of bedforms
observed in the semi-arid environment. Therefore, the classification system and
corresponding conceptual models documented herein are considered by this author to be

an extension of the Montgomery and Buffington (1997) concepts to the semi-arid

environment of southern California.

2.2.3 Previous Classification of Floodplains From a Geomorphic Perspective

Nanson and Croke (1992) developed a “genetic classification of floodplains” based
on the concept that floodplains (geomorphic perspective) are formed by a complex

interaction of fluvial processes; however, floodplain properties are primarily a function of
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specific stream power and sediment character. This genetic classification system is
comprised of three valley segment scale classes: Class A - high-energy non-cohesive; Class B
- medium-energy non-cohesive; and Class C - low energy cohesive floodplains. These
classes are further divided into thirteen (13) reach-scale “orders and sub-orders” that range
from confined, coarse grained, and non-cohesive floodplains in high specific stream power
environments to unconfined, fine grained cohesive floodplains in low specific energy
environments.

The genetic classification system defined by Nanson and Croke (1992) is unique in
that it identifies braided floodplains as “Class B - medium energy”, with non-braided
floodplains being in both higher and lower energy classes. This is an important distinction
that is directly pertinent to these investigations and the downstream progression of

floodplain forms observed in the semi-arid environment of southern California.

2.3 Study Area
2.3.1 Geographical Boundary for This Study

The geographical boundary for this study was defined by two constraints. First, the
study area was limited to the six southern-most counties in southern California with
watersheds that drain to the Pacific Ocean. Hence, the study area includes portions of
Ventura, Los Angeles, San Bernardino, Riverside, Orange and San Diego Counties. Second,
the study area was further limited to those watersheds that drain to the ocean. The
geographical boundary for the study area, based on these two constraints, is shown in
Figure 2.2. As indicated in Figure 2.2, the study area includes essentially all of the large

metropolitan areas south of the City of Santa Barbara.
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Figure 2.2 - Map showing geographical boundaries for this study within the State of
California (relief map via Google Maps)

2.3.2 Geologic Setting - Geologic Province and Watershed Scale

In terms of the geologic provinces defined by the U. S. Geological Survey (USGS), the
study area is located within the Pacific Province and includes the Transverse and Peninsular
Ranges, as shown in Figure 2.3. The Transverse and Peninsular Ranges are the result of the
complex interaction of the North American Plate and the Pacific Plate along the San Andreas

Fault system over approximately the past 20 to 30 million years (Mount, 1995).
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Figure 2.3 - Map showing geologic provinces and primary mountain ranges in the
vicinity of the study area (San Andreas fault alignment and province boundaries after USGS
(2009))

The Transverse Ranges are oriented along an east-west axis, as opposed to the
southeast to northwest orientation typical of most California Ranges. Within the study area,
the Los Angeles or Transverse Ranges include the Topatopa Mountains, the Santa Susana
Mountains, Simi Hills, and the Santa Monica Mountains. The Topatopa Mountains (Ventura
County), the Santa Susana Mountains (Ventura and Los Angeles Counties), Simi Hills
(Ventura County), and the Santa Monica Mountains (Ventura and Los Angeles Counties) are
composed primarily of sedimentary rock and have peaks as high as 2,047 meters (6,716
feet). The San Gabriel Mountains (Los Angeles and San Bernardino Counties) and the San
Bernardino Mountains (San Bernardino and Riverside Counties) are composed of primarily
igneous and metamorphic rock and have peaks as high as 3,505 meters (11,499 feet).

The Peninsular Ranges include the Santa Ana, the San Jacinto and the Laguna
Mountain ranges. The Santa Ana Mountains (Orange, Riverside, and San Diego Counties)

have a predominantly southeast to northwest orientation, are composed primarily of

igneous and metamorphic rock, and have peaks as high as 1,733 meters (5,687 feet). The
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San Jacinto Mountains (Riverside and San Diego Counties) and Laguna Mountains (San
Diego County) have a predominantly a north-south orientation, are composed primarily of

metamorphic and igneous rock, and have peaks as high as 3,302 meters (10,833 feet).

2.4 Methods
2.4.1 Study Catchment Selection

An objective of this study was to identify and describe the stable floodplain forms
and continuums for the study area. Hence, it was imperative to investigate and evaluate a
representative sample of watercourses at both a reach and catchment-scale. As with any
study, there is a limit to the amount of resources that can be allocated to the site selection
and data collection process. Therefore, a systematic and multi-step process (Table 2.1) was
employed to select both the most representative study catchments and the most
advantageous level of data collection at each study site.

In all, the site selection process yielded a total of fifty one (51) study catchments
corresponding to thirty seven (37) individual watercourses. Of these, eight watercourses
have multiple (i.e., 2 to 5) sub-catchments. As indicated in Figure 2.4, the fifty one (51)
study catchments are relatively evenly distributed within the study area and at least one of
the study catchments is located in each of the major mountain ranges within the Transverse

and Peninsular Ranges.
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Table 2.1 - Summary of study catchment selection process

Steps in Study Catchment Selection Process

Initial Site Investigations: Conduct initial site investigations at as many locations as possible
(within an allotted time period), with the objective of collecting sufficient information to evaluate
the potential study sites in terms of the follow key characteristics or considerations:
¢ floodplain form, including floodplain form transitions;
bedform, including extent and degree of bed armoring;
degree of upstream urbanization;
current stability state (i.e., CEM stage or phase); and
site accessibility constraints and geo-political location.

Site Evaluation and Selection: Based on the data collected at fifty two (52) locations during the
initial site investigation, key aspects of the potential study sites were tabulated and 30 study sites
or reaches were selected to provide as representative a range of the key characteristics as
possible, while taking into consideration site accessibility constraints.

Level of Data Collection: The level of data collection, at a reach scale, for each site was then
selected to include as many floodplain form transitions as possible. Study catchments
corresponding to both the upstream and downstream limits were delineated for the study sites
with relatively long study reaches.

Additional Catchments: Two additional study catchments were included based on a study of
step-pool floodplains in the Santa Monica Mountains by Chin (2002).

Alluvial Fan Continuum: The alluvial fan floodplain continuum was intentionally excluded from
the reach-scale site selection process; however, it was important to include the alluvial fan
continuum in this study on at least a catchment-scale. Therefore, aerial photographs and Google
Earth were used to identify six active-regional alluvial fans within the study area.

Study Area

San Bernardino

os Angeles
¢

Riverside

Pacific Ocean

A

z

40 20 0 40 Kilometers
N

Figure 2.4 - Study area map showing the county boundaries and the locations of the
51 study catchments in southern California
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2.4.2 GIS Methods and Techniques for Quantifying Process Drivers

For the Pacific Northwest, Buffington, Woodsmith, Booth, and Montgomery (2003)
identified geology, climate, fire, and land-use as the “process drivers” essentially
responsible for channel characteristics and types within the one channel continuum defined
for the Pacific Northwest. Itis believed that the same process drivers govern floodplain
forms, at a reach-scale level, in the Pacific Southwest; however, climatic and geologic
characteristics appear to be the primary process drivers governing which of the three
floodplain continuums exists on a catchment-scale, in relatively undeveloped catchments.
To provide a basis for developing a Geographical Information System (GIS) based technique
for predicting the floodplain continuum within a catchment, indices appropriate for
quantifying the climatic and geologic process drivers were investigated.

To quantify the process drivers, the first step requires defining both the most
pertinent characteristic of the process driver to be quantified and a quantitative metric for
that particular characteristic. In the case of the climate, the pertinent characteristic was
selected to be a measure of “how conducive the climate is to the weathering of bedrock and
the generation of a flow regime capable of transporting larger diameter bed material (e.g.,
coarse gravels and cobbles)”, with average annual precipitation being a quantitative metric.
In the case of the geologic process driver, the pertinent characteristic was selected to be a
measure of “how conducive the bedrock is to the generation of larger diameter bed material
capable of armoring channel beds”, with a quantitative metric being based on either a
measure of the cementation-level of the rock or rock type. The reasoning behind selecting
these characteristics and corresponding metrics to represent the dominant process drivers

is further described in Section 2.5.3.
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The following government-sponsored data gateways were explored to find GIS
layers corresponding to each of the potential metrics for the process drivers:

e The United States Department of Agriculture (USDA) - National Resource
Conservation Service (NRCS) “Geospatial Data Gateway”
(http://datagateway.nrcs.usda.gov/GatewayHome.html).

e The United States Geological Survey (USGS) "Preliminary integrated geologic map

databases for the United States” (http://pubs.usgs.gov/of/2005/1305/#CA).

Area-Weighted Average Annual Precipitation

Average annual precipitation data compiled by the USDA/NRCS - National
Cartography and Geospatial Center is available via the USDA Geospatial Data Gateway. The
GIS data set is based on precipitation records for 1961 through 1990 (USDA/NRCS, 1998)
and provides a complete layer for the study area. Meta data provided with the data set
indicate that the data set was generated as part of the “NRCS PRISM Climate Mapping
Project”. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) “uses
point measurements of climate data and a digital elevation model (DEM) to generate
estimates of annual, monthly and event-based climatic elements” USDA/NRCS (1998).
Hence, an important characteristic of this precipitation data is that they reflect, to some
degree, both regional and orographic variations in precipitation.

The ESRI ArcGIS ® software package was used to estimate the area-weighted mean
annual precipitation by using “overlay/intersect” functionality to first compute the area
associated with each “precipitation” polygon within the catchment polygon. Then the area-

weighted average annual precipitation was computed using Equation 2.1.
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To quantify the geologic process driver, two parameters were used: (a) the
cementation-level of the underlying strata provided in the “SSURGO” soil data (USDA/NRCS,
2007) and (b) “rock types 1 and 2” provided in the “Preliminary integrated geologic map
databases” (USGS, 2005). The cementation-level data have been used as the primary
parameter to quantify the geologic process driver, because the cementation-level data are
the most detailed information. The rock type data have only been used as supplemental
data source, when a cementation-level is not specified for a soil unit.

The rock type data are a direct attribute in the USGS’s geology layer. However, the
cementation-level data are provided in the stand-alone SSURGO database and are not an
attribute directly in the soil data GIS layer. Furthermore, the soil data GIS layer does not
have a “1 to 1” relationship with the cementation-level data, because each soil unit polygon
is defined by a composition of specific soil types (which each have a cementation-level).
Therefore,a 1 to 1 (as opposed to a 1 to many) relationship between the individual soil
units and the cementation-level data had to be defined to use the cementation-level data
directly in a GIS application.

The cementation-level data were extracted from the SSURGO database for each soil
type composition in each soil unit. Based on the composition percentages for each of the

soil types within each of the soil units, a 1 to 1 relationship table was developed relating the
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1632 individual soil units, within the study area, with a representative cementation level.
The cementation-level data are provided in the SSURGO database as seven levels of
descriptive values ranging from “extremely weakly cemented” to “indurated”.

A scoring system had to be devised to quantify the cementation-level and rock type
data, because the cementation-level and rock-type data associated with the GIS layers are
descriptive in nature. The quantitative metric created to reflect the geologic process driver
for a catchment is referred to as the Geo-Soil Score. The scoring system developed to
quantify the cementation-level and rock type data is provided in Table 2.2. As indicated in
Table 2.2, the Geo-Soil Value ranges from 1 to 3, with a value of “1” being assigned to
“extremely weakly cemented” and a value of “3” being assigned to “indurated”. When a soil
unit was not assigned a cementation-level in the SSURGO database (i.e., the field was blank),
rock type attributes were used to assign a Geo-Soil Value as specified in Table 2.2.

The following procedure was used to compute an area-weighted Geo-Soil Score for
each of the study catchments:

¢ Using the “overlay/intersect” functionality within ESRI ArcGIS ®, the catchment
polygon was intersected with both the geology and soil data layers, thereby dividing
the catchment into a group of geo-soil polygons that have a unique soil unit and rock
type attributes. The area for each of these geo-soil polygons was computed using
ArcGIS ® functionality.

e Usingthe 1 to 1 relationship table relating soil units to cementation levels, a
cementation level was assigned to each of the geo-soil polygons comprising the
catchment.

e A geo-soil value was assigned to each geo-soil polygon using the scoring system

provided in Table 2.2.
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e The area-weighted Geo-Soil Score was then computed for the catchment using

Equation 2.2.

where: G, = area-weighted Geo-Soil Score

A, = area for Geo-Soil polygon “i

G, = Geo-Soil Value for Geo-Soil polygon “i

“:n

“:n

Table 2.2 - Geo-Soil Values assigned to soil and geologic data

Equation 2.2

“Cementation Level”

“Rock Types 1 - 2” Attributes From

Attribute From SSURGO Soil USGS Integrated Geologic Map VGEI(;::-GS(O él)
Database Database for California '
Extremely Weakly Cemented “Any Rock Type” 1.00
Very Weakly Cemented “Any Rock Type” 1.33
Weakly Cemented “Any Rock Type” 1.66
Moderately Cemented “Any Rock Type” 2.00
Strongly Cemented “Any Rock Type” 2.33
Very Strongly Cemented “Any Rock Type” 2.66
Indurated “Any Rock Type” 3.00
“blank” Alluvium-Terrace (Alluvium) 1.00
“blank” Mudstone-Sandstone (Sedimentary) 1.00
“blank” Sandstone-Mudstone (Sedimentary) 1.00
“blank” Sandstone- Conglomerate (Sedimentary) 1.33
“blank” Conglomerate-Sandstone (Sedimentary) 1.66
“blank” Argillite-Greywacke (Metamorphic) 2.00
“blank” Schist-Gneiss (Metamorphic) 2.00
“blank” Gneiss-Granitoid (Metamorphic/Igneous) 2.00
“blank” Rhyolite-Tuff (Igneous) 2.66
“blank” Gabbro-Diorite (Igneous) 3.00
“blank” Plutonic Rock (phaneritic)-Gneiss 3.00
(Igneous/Metamorphic)
“blank” Tonalite-Quartz Diorite (Igneous) 3.00
“blank” Granodiorite-Quartz Monzonite(Igneous) 3.00
“blank” Felsic Volcanic Rock- 3.00
Intermediate Volcanic Rock (Igneous)
“blank” Basalt-Andesite (Igneous) 3.00
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2.5 Results and Discussion
2.5.1 Hierarchy of Spatial Scales for Southern California

The basic objective of a hierarchical approach to floodplain classification is to relate
the various factors influencing floodplain properties to a range of spatial scales. For
southern California, this type of hierarchy of spatial scales provides an important
framework for classifying and comparing floodplain properties at various spatial scales.
Based on the classification system developed by Montgomery and Buffington (1998) for a
region in the Pacific Northwest, a hierarchy of spatial scales was developed specifically for
southern California that reflects differences in processes and controls on floodplain
morphology. This hierarchy of spatial scales is comprised of and defined by the five levels
listed and illustrated in Table 2.3.

Due to the complex geologic history for the study area and a relatively strong
orographic effect on precipitation, a significant percentage of even the moderate sized study
catchments (i.e., approximately 20 to 100 km?) are comprised of multiple geomorphic
provinces. Hence, the hierarchy of spatial scales developed for southern California has
geomorphic province-scale being smaller than the watershed-scale, unlike the hierarchy of

spatial scales developed for the Pacific Northwest (Montgomery and Buffington, 1998).
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Table 2.3 - Hierarchy of spatial scales for watercourses in southern California

Scale Description Schematic
Watershed A watershed encompasses the drainage | Watershed
(>~500km?) | area for a major watercourse that either

drains into the Pacific Ocean or drains
into a land-locked lake.
Geomorphic | Geomorphic Provinces, as defined by
Province Montgomery and Buffington (1998), are
(< 500 km?) “regions with similar land forms that
reflect comparable hydrologic,
erosional, and tectonic processes”.
Catchment This level in the hierarchy of spatial
(<500 km?) scales is unique in that it can be
or described as either a length of a
Valley watercourse or in terms of the
Segment

(102 to 10°m)

corresponding drainage area. A valley
segment is a portion of a drainage
network that has related floodplain
form and nature; whereas, a catchment
is the drainage area corresponding to a
point on a valley segment or floodplain
reach. If the valley segment or
floodplain reach is located near the
terminus of the watercourse, the
catchment is essentially the same as the
watershed; however, a catchment is
always a subset of the watershed.

In the context of southern California,
valley segments are comprised of three
primary types: colluvial, bedrock, and
alluvial. The alluvial valley segment is
further divided into “non-armored”
(Type 1), “armored” (Type 2), and
“active-regional regional alluvial fan”
(Type 3) continuums (Section 2.5.2).

Floodplain
Reach
(10*to 103 m)

Floodplain reaches are defined
primarily by dominant bedforms and
are sub-divided into three main
categories, as with the valley segments:
colluvial, bedrock, and alluvial. Alluvial
reaches are further divided into
cascade, step-pool, plane-coarse-bed,
plane-mixed-bed, plane-fine-bed, pool-
riffle, braided, dune-ripple reaches, and
floodout reaches (Section 2.5.2).

Floodplain
Unit
(10°to 10* m)

Floodplain units include various types
of pools, bars, banks, overbanks,
primary and secondary channels, riffles,
and shallows.

Catchment

Floodplain Reach

overbank

pool

step
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2.5.2 Reach-Scale Classification System and Conceptual Model for Floodplain Forms

The concept that there is a continuum of bedforms, channel forms, or floodplain
forms along a fluvial system is not new. However, researchers have typically focused on
investigating watercourse characteristics at various scales along a single continuum. For
example, Naden and Brayshaw (1987), Bluck (1987), Richards and Clifford (1991),
Montgomery and Buffington (1997, 1998), Chin (1998, 2002), and Thompson, Croke,
Ogden, and Wallbrink (2006) have investigated the form and characteristics associated with
“gravel-bed rivers” or “mountain streams”. Whereas, Cooke and Reeves (1976), Schumm et
al. (1984), and Graf (1988) have investigated “arroyos”. Within southern California,
multiple watercourse continuums occur and often occur within one watershed. , Therefore,
it is important to recognize which continuums occur, basic characteristics of the floodplain
forms in each continuum, and how these continuums interrelate on both a reach and
catchment-scale.

Montgomery and Buffington (1997, 1998) developed a classification system for
reach-scale channel morphology that uses the dominant bedform as the basic nomenclature
for defining specific alluvial reach types within the “mountain stream” continuum (Figure
2.1). This approach has been both adapted and extended to apply to the floodplain
morphology observed in southern California as follows:

¢ First, the Montgomery and Buffington (1997, 1998) classification system has been
adapted to apply to “floodplains”, from an engineering perspective, as opposed to
just channels. I contend that it is essential to consider both the form and processes
associated with the entire active portion of the fluvial system during a flood, because
the stability of watercourses from an engineering perspective is at the core of this

study. Hence, the nomenclature of the classification system described herein is
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based on bedform, but is used to refer to the entire floodplain (i.e., channel plus
overbanks).

e Secondly, the Montgomery and Buffington (1997, 1998) classification system has
been extended to include multiple watercourse continuums, not just one, and a wider

range of floodplain forms.

More specifically, three basic floodplain continuums or typical floodplain sequences
have been identified in southern California: non-armored (Type 1), armored (Type 2), and
active-regional alluvial fan (Type 3). These three basic continuums and the typical
interrelationships between these continuums are shown schematically in Figure 2.5. The
remainder of this section is used to describe the three basic continuums, the floodplain
forms within each continuum, and other interrelationships or characteristics that are
shown schematically in Figure 2.5.

As illustrated schematically in Figure 2.5, I contend that the three continuums are
comprised of three or more reach-scale floodplain forms. In this context, the term
“continuum” is intended to describe a coherent whole that is characterized by a sequence or
progression of elements with distinct characteristics; however, the term is not intended to
imply that there is a smooth or gradual transition from one element (or floodplain form) to
another, as implied in the typical dictionary definition of the term. Quite to the contrary, it
is the pronounced and often rapid transition from one floodplain form to another (such as
the transition from a single-thread to a braided floodplain form) that is of interest in these

investigations.
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The terms non-armored, armored, and active-regional alluvial fan are intended to be
form-oriented, and thereby consistent with the bedform-oriented nomenclature adapted for
the floodplain forms. Furthermore, a nomenclature for the continuums oriented on bed
material size, such as sand- and gravel-bed, seemed inadequate and susceptible to
confusion, because coarse gravel and cobble sized particles can be quite prevalent in the
bed and banks of floodplain forms in the non-armored continuum.

As shown schematically in Figure 2.5, the progression of floodplain forms for each of
the continuums represents the typical sequence for a watercourse. Due to the complex
geologic history for the study area, it is simply not practical, nor useful, to try to show
schematically all of the possible permutations of floodplain transitions. Hence, it is fully
recognized that the continuums shown schematically in Figure 2.5 may not specifically
illustrate all of the floodplain form transitions that do or can occur along a major
watercourse within the study area. Furthermore, Figure 2.5 is intended to only represent
the continuums associated with relatively stable watercourses. For a watercourse in a state
of severe instability, the sequence of floodplain forms may be quite complex and change
significantly during individual flow events (Schumm et al., 1984); hence, in this case the
floodplain forms shown for each continuum in Figure 2.5 simply represent the range of
forms the floodplain may exhibit.

In addition to the three basic floodplain continuums, Figure 2.5 is also intended to
illustrate schematically several important aspects of the floodplain continuums observed in
southern California:

e Transitory Floodplain Forms: Transitory floodplain forms typically occur on a
sporadic basis in both space and time. In terms of stability, they are a “responding”

floodplain form and represent a state of dynamic response. Transitory floodplain
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forms are designated by “(t)” in Figure 2.5 and include the Type 1 pool-riffle and the
Type 2 plane-mixed-bed floodplain forms.

e Floodouts: As defined by Pickup (1991), the term “floodout” is used to describe the
circumstance when the surface relief associated with a floodplain form terminates,
typically within an alluvial fill valley (Figure 3.2b). Though not a true reach type or
floodplain form, the potential for “floodouts” to occur along the various continuums
is also shown in Figure 2.5. Floodouts were only observed to occur in association
with the non-armored (Type 1) and active-regional alluvial fan (Type 3) continuums;
however, it is possible for a floodout to be associated with the armored (Type 2)
continuum. Floodouts are indicated with “(+/-)” in Figure 2.5 to signify that this is
not a typical floodplain form and typically does not occur along a watercourse.

® Reverse Transitions: It is recognized that a wide range of external controls may
alter the downstream sequence of floodplain forms from the typical sequence shown
in Figure 2.5. For example, it was observed along Santiago Wash (Orange County)
that when the valley walls narrowed, the braided floodplain transitioned to a pool-
riffle floodplain; however, the floodplain transitioned back to a braided floodplain as
the valley walls widened again. To reflect the potential for this type of reverse
transition in form, double ended arrows are used in Figure 2.5 to connect the
floodplain forms where this type of reverse transition can potentially occur.

e Type 1 and Type 2 Braided Floodplains: In the conceptual model shown in Figure
2.5, a distinction is made between non-armored and armored braided floodplains.
Bristow and Best (1993) noted that “within the geology and geomorphology oriented
literature has been a long held distinction between gravel-bed braided rivers and sand-
bed braided rivers.” The distinction between armored and non-armored braided

floodplains is similar to but not completely analogous to the distinction between
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“gravel-bed braided rivers and sand-bed braided rivers.” However, Bristow and Best
(1993) also noted that the terminology of “gravel-bed braided rivers and sand-bed
braided rivers” is not always that distinctive with the following statement: “... many
natural gravel bed rivers include those with bedloads of sand, granule, pebble, cobble
and even boulder grade material while fine-grained sand-bed rivers braided rivers are
held to contain less than 25% gravel (Bluck, 1979).”

e Type 1 to Type 2 Continuum Transition: As show schematically in Figure 2.5 with
an arrow, Type 2- braided floodplains will typically transition into a Type 1- braided
floodplain, as the bed gradation fines and the armor layer in the low flow channel(s)
fails or disintegrates.

¢ Intermixed and Complex Morphology: At the far right side of Figure 2.5, there is a
box in the flow diagram at the terminus of all three continuums containing “floodout,
dune-ripple, engineered, and/or coastal influenced morphology”. This box is used to
simply acknowledge the wide range of floodplain forms that occur in the
metropolitan and coastal areas. The term engineered floodplain is used to describe
the condition where all or part of the floodplain has been stabilized with concrete,
dumped rip-rap, grouted rip-rap, soil cement, and/or other materials. Whereas, the
term “coastal influenced morphology” is used to describe floodplains and estuaries
where the morphology is significantly influenced by a combination of fluvial

processes, tidal patterns, and/or near shore processes.

As indicated by the names, the armored and non-armored floodplain sequences are
primarily distinguished by the presence of bed armoring within the floodplain or the lack
thereof, respectively. Whereas, the active-regional alluvial fan continuum is distinguished

strictly by its unique floodplain sequence, which is by definition and nature in a state of
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perpetual non-equilibrium. From a floodplain stability and management standpoint, it is
very important to recognize and to differentiate between the three basic floodplain
continuums, since field observations and analyses presented in later sections indicate that:
¢ The trend and magnitude of the change in floodplain geometry, due to urbanization,
appear significantly different for each of the continuums.

e The probability for and the magnitude of floodplain instability appear significantly
different for each of the continuums.

e The threshold for and the mechanisms associated with floodplain braiding appear
different for each of the continuums.

e The observed floodplain forms in each of the continuums appear indicative of
catchment runoff and sedimentation processes, which can be impacted by
urbanization.

These are key points of these investigations and each of these points is further defined and
described in later sections or chapters.

Non-Armored Floodplain Continuum (Type 1)

Based on field observations, the non-armored floodplain sequence appears to be
both the most common and the most extensive continuum within southern California. The
non-armored floodplain continuum is intended to include all watercourses that have
insufficient coarse bed material to allow bed armoring to occur, excluding only active-
regional alluvial fan systems.

Watercourses that fall within the non-armored continuum may be in a state of
dynamic equilibrium; however, watercourses in this continuum are typically highly
susceptible to transitioning into a state of severe instability. Watercourses within the non-

armored continuum and in a state of severe instability are often referred to as “arroyos”,

45



“incised channels”, and/or “gullies” in the literature. Specific definitions for these terms are
as follows:

e “Arroyos” are described by Cooke and Reeves (1976) as “valley bottom gullies
characterized by steeply sloping or vertical walls in cohesive, fine sediments and by
flat and generally sandy floors.”

e “Incised channels” are described by Schumm et al. (1984) as channels that “have
lowered their bed by degradation, thereby setting in motion a period of considerable
channel instability with the potential for serious damage ...".

e “Gullies” are described by Harvey, Watson, and Schumm (1985) as “incised channels

that form where no well-defined channel previously existed.”

An example of a catchment with a non-armored floodplain continuum is shown in
Figure 2.6. Figure 2.6 shows the floodplain form at two locations within the catchment,
where the upstream channel is believed to be in a state of dynamic equilibrium; whereas,
the downstream cross section was assessed as being in a state of severe instability. Key
characteristics and geometry of the floodplain forms defining the non-armored continuum
are described and illustrated in Table 2.4. Within Table 2.4 reference is made to Type 1a
and 1b catchments. Definitions and descriptions for these catchment types are provided in

Section 2.5.3 - “Geomorphic Province-Scale Model for Floodplain Continuums”.
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Table 2.4a - Floodplain field identification table for bedrock and plane-mixed-bed
floodplains in the non-armored continuum

ID

Key Characteristics

Geometry

1-BR

Bedrock (BR) - General: Bedrock reaches
can occur intermittently along a valley
segment and disrupt the general
downstream transition in floodplain forms.
In Type 1a catchments, the bedrock is
predominantly sedimentary rock; whereas,
in Type 1b catchments it is predominantly
metamorphic and/or igneous rock.
Planform: Planform is typically straight or
meandering, with low to moderate
sinuosity.

Cross Section: Cross section is typically
trapezoidal, but may vary.

Bedform: The bedform can vary
significantly depending upon the hardness
and extent of the exposed bedrock.

Bed Material: The bed material is
predominantly exposed bedrock; however,
there is typically a thin veneer of sand,
gravel, and/or cobbles.

Example: Santiago Creek, Orange County

(Type 1a)

1-
PMB

Plane-Mixed-Bed(PMB) - General: Type 1
“PMB?” floodplains differ from “PFB”
floodplains in that the bed material is a
“mixture” of sand, gravel, cobbles, and
possibly small boulders.

Planform: Typically meandering, with
varying sinuosity.

Cross Section: Cross section is typically
compound, but can be trapezoidal.
Bedform: Bedform is non-armored plane or
flat bed with only relatively minor
irregularities or bars (< 10mm). However,
groupings of small boulders (256-512 mm)
and/or cobbles (64-256 mm) may form
small steps (< ~250 mm) that are
irregularly spaced. These small groupings
of coarse material may have small
downstream local scour holes; however,
there isn't a pool located upstream of the
boulder and/or cobble groupings.

Bed Material: Channel and overbank
material is a mixture of sand, gravel,
cobbles, and possibly small boulders;
however, there are insufficient quantities of
coarse material to armor the bed.

Example: Hicks Canyon Wash (HCMR),
Orange County
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Table 2.4b - Floodplain field identification table for plane-fine-bed and pool-riffle
floodplains in the non-armored continuum

ID Key Characteristics Geometry

1-PFB | Plane-Fine-Bed(PFB) - General: One
unique characteristic of plane-fine-bed
floodplains is that none were observed to
have a compound geometry.

Planform: Meandering, typically with
varying sinuosity.

Cross Section: Rectangular to trapezoidal
cross section depending upon bank material
properties and/or current stability
condition. Valley section may have
compound configuration; however, high
magnitude flow events (including 100 year
event) are confined to the rectangular or
trapezoidal channel.

Bedform: Bed form is plane or flat bed with
only relatively minor irregularities or bars
(< 10 mm). A 4
Bed Material: Bed material is primarily R e
composed of sands (0.062-2 mm) to fine 4
gravel (4-8 mm), with few (if any) coarser T
material. ...-'.':‘:':':':‘:':‘:':‘:'-._‘::-._'-:-._-_5_-_-._-_5_-_5_-_ P
Example: Un-named wash (PLSB) in Lake TS
Perris State Recreational Area, Riverside

County

1-PR | Pool-Riffle (PR) - General: A Type 1 pool-
riffle floodplain was only observed at one
study site. This appears to be a transitory
floodplain form (for the Type 1 floodplain
continuum) and may only form during the
falling limb of high or infrequent flow
events.

Planform: Meandering, typically with
varying sinuosity.

Cross Section: Rectangular to trapezoidal
cross section depending upon bank material
properties and the current stability state.
Bedform: Subtle, but measurable, pool-riffle
sequence with non-armored riffles and very
shallow pools (< 10 cm).

Bed Material: Bed material is primarily :: -Z—.‘:-:'
composed of sands (0.062-2 mm) to fine e\
gravel (4-8 mm), with few (if any) coarser 4 R

material. Essentially no gradation

difference between pool and riffle sections.
Example: Un-named wash (SJBL), Riverside T ""'-'"{':".'".'-T.'.'-T.'-'-'.'-'-'.'-'-'.'-'-'.‘-'E‘-'-'.‘-'-'.‘-'-'.!
County
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Table 2.4c - Floodplain field identification table for braided and dune-ripple
floodplains in the non-armored continuum

ID

Key Characteristics

Geometry

1-BF

Braided Floodplain(BF) - General: This
appears to be the most prevalent floodplain
form within the study area.

Planform: Straight, with undulating bank
lines and meandering low-flow channels.
Low flow channels are transitory and shift
locations during flow events.

Cross Section: Braided cross section with
multiple low flow channels.

Bedform: Plane-bed with varying degrees
of bar development. Relatively stable
braided floodplains (CEM 1,2, and 5)
typically have a complex system of bars,
with some of the bars being low to
moderately vegetated. In unstable braided
floodplains (CEM 3 and 4) the bar formation
is typically associated with pulses of
sediment into the channel, often due to bank
failures and confluences. (See Table 3.4
regarding CEM phases.)

Bed Material: Bed material can be a
mixture of sand, gravel, cobbles, and
possibly small boulders; however, the
coarse gravels, cobbles, and/or small
boulders are in insufficient quantities to
armor the bed.

Example: Hasley Canyon (HCSA) Los
Angeles County

1-DR

Dune-Ripple (DR) - General: The dune-
ripple floodplain form is common to both
Type 1 and 2 floodplain continuums. This
floodplain form was only observed at or
near the coast.

Planform: Meandering, typically with
varying sinuosity.

Cross Section: Typically compound.
Bedform: Predominantly sand bed forms
including dunes and ripples.

Bed Material: Channel and overbank
material is composed primarily of sands
(0.062-2 mm) and fine gravel (4-8 mm).
Example: Santa Ana River, Orange County
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Armored Floodplain Continuum (Type 2)

Comparison of Figures 2.1 and 2.5 indicates that the reach-scale channel
morphology identified by Montgomery and Buffington (1997, 1998) is most similar to the
“armored” floodplain continuum shown in Figure 2.5. However, it is important to recognize
that even though the floodplain forms in Figures 2.1 and 2.5 may share the same name and
general bedform characteristics, many other aspects of the floodplain forms may be
significantly different, due to regional differences in climatic and geologic conditions.

As would be expected, the distinguishing characteristic of floodplain forms in the
armored continuum is the presence of a well developed armor layer along the thalweg of
the watercourse. The term armoring is used describe the process associated with the
surface coarsening of the bed material and the formation of an armor layer (Knighton, 1998,
p. 131; Bunte and Abt, 2001, p. 188). Hence, an armored channel bed or overbank has a
coarse surface layer overlaying a significantly finer substrate. The thickness of an armor
layer is often defined as extending from the bed surface plane down to the embedded depth

(De) of the largest or dominant grain size in the surface layer, as illustrated in Figure 2.7.

Bed surface plane

Figure 2.7 - Illustration of an armor layer (after Bunte and Abt (2001))
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In a semi-arid environment with a complex geologic history, I contend that the
following two conditions must occur for an armored floodplain sequence to form and
persist on a catchment-scale:

¢ (Climatic conditions are conducive to the weathering of bedrock and the generation of
a flow regime capable of transporting larger diameter bed material, such as coarse
gravels and cobbles.

¢ Geologic and lithologic conditions are conducive to the generation of larger diameter
bed material capable of armoring channel beds and/or overbanks.

As discussed in Section 2.5.3, both of these conditions really represent a continuum.
Hence, there are catchments where one condition is completely met, while the other
condition may only be marginally met. As a result, there are many catchments within the
study area that have an armored floodplain sequence; however, the floodplains with
organized bedforms (i.e., step-pool and pool-riffle floodplains) may not be as persistent in
time and space as their counterparts in the Pacific Northwest.

Another significant difference between the armored floodplain continuum observed
in southern California and the “mountain stream” continuum (Montgomery and Buffington,
1997) is that stable or relatively stable braided floodplains occur and are prominent in
southern California. Montgomery and Buffington (1998) did observe that pool-riffle
channels may temporarily become braided in response to massive inputs of sediment, such
as from a landslide. Buffington et al. (2003) further recognized that braided channels in the
Pacific Northwest commonly occur (a) “as glacial outwash channels”, (b) “in alluvial valleys
where banks have been destabilized by riparian cutting and livestock trampling”, and (c) “in
semi-arid regions with insufficient riparian vegetation to stabilize banks composed of
cohesionless sediments”. Hence, braided floodplains appear to be primarily a transitory,

unstable, or “special case” floodplain form in the humid regions of the Pacific Northwest. As
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indicated in item (c) above by Buffington et al. (2003), I also contend that the vegetation
growth along the banks and in overbank areas, supported by the more humid conditions,
provides an important stabilizing effect and, thereby, may prevent the braided floodplain
form from being part of the typical floodplain continuum in the Pacific Northwest

An example of a catchment with the armored floodplain continuum is shown in
Figure 2.8. Figure 2.8 shows the floodplain form at three locations within the catchment.
Key characteristics and geometry of the floodplain forms defining the armored continuum
are described and illustrated in Table 2.5.

Active-Regional Alluvial Fan Continuum (Type 3)

The active-regional alluvial fan or Type 3 continuum is unique in that it is inherently
and by definition in a state of “dynamic response” and does not have a stable state in an
engineering timeframe (i.e., typically 50 to 100 years). This continuum is intended to only
describe those watercourses that have fan surfaces that are actively aggrading during flow
events and are “regional” in the sense that the fan surfaces are larger than approximately 1
kmz2.

This continuum was not the focus of this study, since active alluvial fan floodplains
have unique flood hazards and are highly regulated under the FEMA flood insurance
program. However, the alluvial fan continuum was included in the conceptual model shown
in Figure 2.5 in recognition that it is a prevalent continuum in the tectonically active and

semi-arid environment of southern California.
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Table 2.5a - Floodplain field identification table for bedrock and cascade floodplains
in the armored continuum

ID

Key Characteristics

Geometry

2-BR

Bedrock (BR) - General: Bedrock reaches
can occur intermittently along a valley
segment and disrupt the general
downstream transition in floodplain forms.
In Type 2 catchments the bedrock may be
sedimentary, metamorphic, and/or igneous.
Planform: Planform is typically straight or
meandering with low to moderate sinuosity.
This floodplain is typically confined by
valley walls or hill slopes.

Cross Section: Cross section is typically
trapezoidal, but may vary.

Bedform: The bedform can vary
significantly depending upon the hardness
and extent of the exposed bedrock.

Bed Material: The bed material is
predominantly exposed bedrock; however,
there may often be a relatively thin veneer
of sand, gravel, cobbles, and boulders..
Example: Silverado Creek (SCOL), Orange
County

2-CA

Cascade(CA) - General: A key
distinguishing characteristic of cascade
reaches is that the flow depth is generally
shallow relative to the large bed material;
hence, the flow has circuitous paths over
and around individual cobbles and boulders.
Planform: Planform is typically straight or
meandering, with low to moderate
sinuosity.

Cross Section: The effective cross section is
primarily irregular in shape due to the
irregular distribution of large diameter
clasts within the cross section.

Bedform: The bedform is characterized by
large diameter bed material that is not
organized either longitudinally or laterally
(Montgomery and Buffington, 1997).
However, cascade reaches typically have
small pools, that only partially span the
cross section, during low to moderate flows.
Bed Material: Bed material is typically
dominated by cobbles (64-256 mm) to very
large boulders (128-4096 mm).

Example: Stewart Canyon Wash (SCNS),
Ventura County
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Table 2.5b - Floodplain field identification table for step-pool and plane-coarse-bed
floodplains in the armored continuum

ID

Key Characteristics

Geometry

2-Sp

Step-Pool (SP) - General: The
distinguishing characteristic of step-pool
floodplains is the rhythmic spacing of
discrete channel spanning accumulations
(i.e., steps) that separate pools composed of
finer bed material (Montgomery and
Buffington, 1997; Chin, 2002).

Planform: The planform is typically straight
to meandering, with low to moderate
sinuosity.

Cross Section: The cross section may be
compound or trapezoidal.

Bedform: The bedform is a rhythmic
sequence of discrete channel spanning steps
that separate pools comprised of finer bed
material. The periodicity of step-pool
sequences in the Santa Monica Mountains
has been investigated by Chin (2002).

Bed Material: The steps in a step-pool
sequence are primarily composed of cobbles
(64-256 mm) and boulders (256-4096 mm).
The pools and overbanks are armored with
coarse gravels and/or cobbles, but will often
have a veneer of sand and gravel.

Example: Silverado Creek (SCOL), Orange
County

2-PCB

Plane-Coarse-Bed(PCB) - General: The
plane-coarse-bed floodplain is comparable
in nature and form to the “plane-bed
channel” described by Montgomery and
Buffington (1987). This does not appear to
be a common floodplain form and was only
observed at one study site.

Planform: The planform is typically straight
to meandering, with low to moderate
sinuosity.

Cross Section: The cross section may be
compound or trapezoidal.

Bedform: The bedform is planar and
typically relatively featureless for at least
several floodplain topwidths.

Bed Material: The bed is typically armored
with coarse gravel (16-64 mm), cobbles (64-
256 mm), and potentially small boulders
(256-512 mm).

Example: Little Cedar Canyon (LCOL), San
Diego County
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Table 2.5c - Floodplain field identification table for plane-mixed-bed and pool-riffle
floodplains in the armored continuum

ID

Key Characteristics

Geometry

2-
PMB

Plane-Mixed-Bed (PMB) - General: This is
strictly a transitory floodplain form in the
“armored” floodplain continuum and was
observed at locations subjected to large
influxes of sediment associated with rainfall
events following recent fires.

Planform: Like the underlying step-pool,
plane-coarse-bed, or pool-riffle floodplain,
the planform is typically meandering, with
low to moderate sinuosity.

Cross Section: May have a compound or
trapezoidal cross section.

Bedform: Non-armored plane or flat bed
with only relatively minor irregularities or
bars (< 10 cm); however, the bed may have
multiple head-cuts that actively advance
during even low and shallow flows. Base
flow or low flow events actively transport
the bed material, even though the flow
depth may be less than 10 cm.

Bed Material: There is a relatively thin
surface layer (0.5 to 0.65 m thick observed
at the site shown in the photograph),
composed primarily of sand and gravels,
overlaying the armored bed surface of the
buried channel bed.

Example: Santiago Creek (SCSC), Orange
County

2-PR

Pool-Riffle(PR) - General: Though they
share a general geometry, pool-riffle
floodplains in southern California appear to
have significantly shallower pools sections
and much coarser bed material than their
humid region counterpart (Montgomery and
Buffington 1987).

Planform: Planform is meandering (with
low to moderate sinuosity) with distinct
point bars adjacent to the pool sections.
Cross Section: A compound cross section is
typical; however, the floodplain may be
more trapezoidal in cross section, when
confined by valley walls or embankments..
Bedform: The bedform is undulating with a
sequence of pools and riffles.

Bed Material: The bed is typically armored
with coarse gravel (16-64 mm), cobbles
(64-256 mm), and potentially small
boulders (256-512 mm).

Example: Santiago Creek (SCSA) Orange,
County
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Table 2.5d - Floodplain field identification table for braided floodplains in the
armored continuum

ID

Key Characteristics

Geometry

2-BF

Braided Floodplain(BF) - General: The
Type 2 - braided floodplain is less common
than Type 1 braided floodplains and differs
from the Type 1- braided floodplain in that
at least one of the low flow channels has bed
armoring. As indicated in Figure 2.5, the
Type 2- braided floodplain will typically
transition into a Type 1- braided floodplain
as the bed gradation fines and the armor
layer in the low flow channel(s) fail or
disintegrate.

Planform: Planform is typically straight,
with undulating bank lines. Low-flow
channel(s) typically meander with low to
moderate sinuosity. The low flow channels
are relatively transitory and may shift
locations during high magnitude flow
events.

Cross Section: Braided cross section with
multiple low flow channels. One of the low
flow channels is typically dominant in that it
conveys all or most of the base and low
flows.

Bedform: The low flow channels, especially
the dominant low flow channel, may have a
wide range of bedforms, including step-pool,
plane-coarse-bed, and/or pool-riffle.

Bed Material: Bed material is typically a
mixture of sand, gravel, cobbles, and
possibly small to medium boulders. The
coarse gravels, cobbles, and/or boulders are
in sufficient quantities to at least armor the
dominant low flow channel.

Example: Santiago Creek (SCSA) Orange,
County
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As is reflected in Figure 2.5, the Type 3 continuum is in many aspects a subset of the
non-armored continuum, since almost all of the floodplain forms are essentially the same.
However it is important to note that even though the Type 1 and Type 3 continuums share
floodplain forms, Type 3 floodplains have been observed to have much higher bed slopes
than their Type 1 counterparts. More specifically, braided channels in the Type 3
continuum were observed to have slopes greater than 10 percent; whereas, Type 1 braided
floodplains typically have slopes between 1 and 3 percent. Another unique aspect of the
Type 3 continuum is that on the fan surface it is common to have a distributary network of

braided floodplains, as shown in Figure 2.9.

2.5.3 Catchment-Scale Conceptual Model for Floodplain Continuums

For the Pacific Northwest, Buffington et al. (2003) identified geology, climate, fire,
and land-use as the “process drivers” essentially responsible for channel characteristics and
types within their one channel continuum. It is believed that the same process drivers
control floodplain forms, at a reach-scale level, in the Pacific Southwest; however, climate
and geology are the primary process drivers dictating which of the three floodplain
continuums exists on a catchment-scale.

Of course, the primary difference between the “non-armored” and “armored”
floodplain continuum is the presence of bed armoring. In terms of the geologic and climatic
process drivers, the conditions required for the formation of bed armoring can be described
as follows:

¢ (Climatic conditions are conducive to the weathering of bedrock and the generation of
a flow regime capable of transporting larger diameter bed material, such as coarse
gravels and cobbles.

¢ Geologic and lithologic conditions are conducive to the generation of larger diameter
bed material capable of armoring channel beds.
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Similarly, I contend that the conditions most conducive to the formation of large and
active alluvial fans can be described in terms of the process drivers as follows:
¢ Geologic and lithologic conditions are conducive to the generation of the maximum
sediment yield from a catchment. That is, the bedrock must be soft enough to
weather and generate sediment; yet, the bedrock must be hard enough to maintain
steep hill-slopes and generate the maximum runoff during a precipitation event.
¢ (Climatic conditions are conducive to the weathering of bedrock and the generation of
a flow regime with the maximum transport capacity.
Based on these assessments of conditions most conducive to the formation of each
of the three basic floodplain continuums, a conceptual model showing the interrelationship
of the three floodplain continuums, on a catchment-scale, can be hypothesized in terms of

process drivers as shown in Figure 2.10.

greater
Type 3: Active-Regional
Climatic Alluvial Fan Floodplain
conditions Continuum
conducive to the
AR

weathering of

bedrockand the | Type 1: Non- Type 2: Armored Floodplain

ﬁeneratign ofa | Armored Floodplain Continuum
ow regime Continuum
capable of
transporting
larger diameter
bed material Type 1a: Lithological -
Restrictions : Type 1b: Climatically
: Restricted
lesser Y - >
lesser greater

Geologic/lithologic conditions conducive to the generation of larger
diameter bed material capable of armoring channel beds

Figure 2.10 - Catchment or valley segment-scale conceptual model for floodplain
continuums
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In Figure 2.10, “Type 1 Catchments” are those catchments with non-armored
floodplain sequences; whereas, “Type 2 Catchments” are those catchments with armored
floodplain sequences. “Type 1a Catchments” are those catchments with a non-armored
floodplain sequence due to the geologic and lithologic properties of the catchment being not
conducive to the formation of coarser bed material required for bed armoring. “Type 1b
Catchments” are those with climatic conditions not conducive (i.e., very low precipitation)
to the generation of a flow regime capable of transporting larger diameter bed material and
forming an armor layer.

In Figure 2.10, the boundaries between the three basic catchment types are
intentionally shown with indefinite boundaries to illustrate that there are probably bands
where catchment types can overlap. Itis further anticipated that within the band between
Type 1 and Type 2 catchments, the bed forms characteristic of the armored floodplain
continuum can be less well developed, since the conditions can be less than ideal for the

formation of armor layers.

2.5.4 Interrelationship of Floodplain Continuums in Terms of Quantifiable Metrics for
Dominant Process Drivers

Figure 2.10 is a qualitative conceptual model relating the three basic floodplain
continuums to the two dominant process drivers on a catchment or valley segment scale.
However, it was recognized that the conceptual model shown in Figure 2.10 could provide a
useful planning-level tool for predicting the floodplain continuum at a catchment-scale, if
metrics for the two dominant process drivers could be quantified using available
Geographical Information System (GIS) data.

In the case of the climatic process driver, the objective for the metric is to quantify

both flow regime and weathering of bedrock characteristics. Area-weighted average annual
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precipitation was identified as a metric for the climatic process driver for two primary
reasons:
e Average annual precipitation is directly related to the flow regime for a catchment.
e Due to the orographic effect captured in the precipitation data layer (USDA/NRCS,
1998), the higher annual precipitation rates almost always correspond to higher
altitudes, where freeze-thaw effects can be significant with respect to the weathering

of bedrock.

In the case of the geologic process driver, the objective for the metric is to quantify
how conducive the underlying strata is to the generation of larger diameter bed material
capable of armoring channel beds”. The Geo-Soil Score, as defined in the “Methods” section
of this chapter, is the metric developed for the geologic process driver. The effectiveness of
the Geo-Soil Score as a metric for the geologic process driver is based on the general
accuracy of the following two contentions:

e Contention #1: Underlying strata with higher levels of cementation, as defined in the
soil data layer (USDA/NRCS, 1998), are more likely to weather into larger diameter
clasts under conducive climatic conditions.

e Contention #2: In terms of the three basic rock types, igneous rocks generally have a
higher probability of weathering into larger diameter clasts than metamorphic and
sedimentary rocks; whereas, metamorphic rocks generally have a higher probability

of weathering into larger diameter clasts than sedimentary rocks.

Both of these points of contention are generally consistent with field observations
regarding the rock types comprising the bed armor layers at the study sites. However,
Contention #1 is deemed the be less prone to error and/or less subject to exceptions; hence,

the cementation-level data were used as the primary data source for computing the Geo-Soil
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Score for a catchment, as indicated in Table 2.2. It was further recognized that there are
some special cases regarding Contention #2; hence, the Geo-Soil Value assigned to various
rock types in Table 2.2 was adjusted, within a limited degree, to reflect the potential for
these special cases. For example, the Geo-Soil Score for “conglomerate” sedimentary rock
was set at 1.66 (as opposed to 1.00 like most sedimentary rocks), because it was recognized
that many of the conglomerates within in the study area are composed of and weather to
granitic gravels, cobbles, and boulders.

Based on field observations and/or aerial photography, the floodplain continuum
was identified for each of the study catchments. The computed catchment area, average
annual precipitation, and Geo-Soil Score parameters for the study catchments are
summarized in Table 2.6. (Table A.1 in Appendix A lists catchment area, precipitation data,
and the Geo-Soil Score for each of the fifty one study catchments.) Figure 2.11 is a plot of
average annual precipitation versus Geo-Soil Score for each of the fifty one (51) study
catchments; hence, Figure 2.11 is a quantified version of the qualitative conceptual model
provided in Figure 2.10.

Table 2.6 - Summary of study catchment parameters

Catchment | Catchment Area (kmz2) Average Annual Geo-Soil Score
Type Precipitation (m) (Range 1 to 3)
Min. Max. Mean Min. Max. Mean Min. Max. Mean
la 0.15 16.80 5.11 0.36 0.60 0.43 1.00 1.94 1.50
1b 0.14 26.28 4.81 0.28 0.38 0.34 1.88 2.76 2.28
2 0.76 155.05 | 41.01 0.36 0.68 0.50 1.98 2.97 2.39
3 1.72 12.43 5.45 0.92 1.07 0.92 2.11 2.64 2.11
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Figure 2.11 - Interrelationship of floodplain continuums in terms of average annual
precipitation versus Geo-Soil Score

From a statistical standpoint, the data sets for the classes of study catchments
shown in Figure 2.11 are relatively cohesive and isolated, in a statistical sense as described
by Gordon (1999, p. 4). Furthermore, the pattern of the data points is rather complex and
is, thereby, not conducive to the application of discriminant analysis techniques. Hence, the
boundaries shown in Figure 2.11 separating the various floodplain continuums have been
visually estimated based on the readily observable and clear breaks in the data points. The
boundary shown between the Type 2 and Type 1b floodplain continuums corresponds to an
average annual precipitation value of 0.39 m; whereas, the boundary shown between the

Type 1a and Type 2 floodplain continuums corresponds to a Geo-Soil Score of 1.95.
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All of the data points corresponding to the active-regional alluvial fan floodplain
continuum have average annual precipitation values greater than 0.75 m. As can be clearly
seen in Figure 2.11, this study does not include a sufficient number of study catchments to
meaningfully describe the boundary between the active-regional alluvial fan continuum and
the other continuums. Hence, the boundary shown in Figure 2.11 only represents a
working hypothesis as to where the actual transitions may occur.

Close inspection of Figure 2.11 indicates that only one of the 51 data points (i.e.,
98% accuracy) is not in the appropriate region of the graph. That is, the Type 2 data point
at coordinate Geo-Soil Score = 2.22 and average annual precipitation = 0.355 meters is in the
Type 1b floodplain continuum region. This data point corresponds to the Escondido Creek
catchment and is unique in that this study catchment has the largest area (155 km?) and the
highest level of urbanization, with the majority of the metropolitan area of Escondido is
within the catchment. I contend that the high level urbanization has altered the flow regime
for Escondido Creek; hence, the area-weighted average annual rainfall for the catchment is
no longer a meaningful metric for the climatic process driver. However this data point is
useful for illustrating: (a) the potential impact of urbanization on even a floodplain
continuum level; and (b) the limitation associated with using average annual precipitation

as a metric for the climatic process driver in a large and highly urbanized catchment.

2.5.5 Application and Applicability of the GIS-Based Technique for Floodplain
Continuum Identification

Application of the GIS-Based Technique for Predicting the Floodplain Continuums

The boundaries separating the three basic floodplain continuums shown in Figure
2.11 provide a means for predicting the floodplain continuum within a catchment in terms
of average annual precipitation and Geo-Soil Score. Field observations and literature

(Schumm et al., 1984; Harvey et al., 1985) suggest that the non-armored floodplain

66



continuum has a significantly higher relative risk for transitioning to a state of severe
instability in response to hydromodification than the armored floodplain continuum; hence,
the GIS-based technique for predicting the floodplain continuum within a catchment may be
a useful planning-level tool for assessing the relative risk for watercourse instability in
response to hydromodification on a regional basis.

As with any GIS-based technique, there are limitations to its application. The
following are basic guidelines for applying the GIS technique (illustrated in Figure 2.11) for
predicting the floodplain continuum within a catchment:

¢ Analyze Watercourses Individually: Due primarily to the complexity of the
geology within southern California, it is recommended that catchments for individual
watercourses be evaluated individually; that is, do not compute the metrics for one
polygon that includes catchments for multiple adjacent watercourses.

e Maximum Catchment Size: If the watercourse of interest has a catchment greater
than 50 km?, analyze the catchment as a series of increasing and overlapping
catchments, where the upstream-most catchment is less than 25 km2 and the
incremental increase in area of the series of catchments is less than 25 km? . For
example: if the watercourse of interest has a catchment that is approximately 100
km?, divide the catchment into 4 overlapping catchments that have areas of
approximately 25 km?, 50 km?, 75 km?2, and 100 km?.

¢ Field Verification of Predicted Floodplain Continuums: It is essential to develop a
program for field verifying the predicted floodplain continuums. The percentage and
locations of the predicted floodplain continuums to be field verified should be based
on both the level of completeness of the GIS data and the range of variation in both

the precipitation and Geo-Soil Score metrics.

67



e Verification of the Level of Completeness of the Cementation-Level Attribute:
As described in the Methods section, SSURGO soil data are the primary source of data
for computing the Geo-Soil Score. Since the cementation-level attribute within the
SSURGO soil data is not fully populated and the SSURGO soil data do not provide
complete coverage for southern California, it is important to assess the level of
completeness of the cementation-level data when applying the GIS technique for
predicting floodplain continuums. An approach for verifying the completeness of the
SSURGO soil data is described in the following section.
Verification of the Level of Completeness of the SSURGO Soil Data
The applicability of any GIS-based technique can be limited by: (a) the degree of
completeness of individual attributes within in the GIS data, and/or (b) the extent of the
geographical coverage of the GIS layer. The floodplain continuum prediction tool illustrated
in Figure 2.11, utilizes three GIS layers to compute the metrics for the process drivers as
follows:
¢ (Climatic Process Driver: The average annual precipitation data compiled by the
USDA/NRCS (1998).
e Geologic Process Driver: The cementation-level attribute provided in the “SSURGO”
soil data (USDA/NRCS, 2007) and the rock type attribute provided in the

“Preliminary integrated geologic map databases” (USGS, 2005).

The precipitation data and the USGS geology data layers provide fully attributed and
complete coverage for California. However, the SSURGO soil data are provided in separate
layers corresponding to individual soil reports and do not provide complete coverage for all
of southern California. Furthermore, the cementation-level attribute within the SSURGO soil
data is not fully attributed, which is why the USGS geology data have been used to

supplement the soil data when computing the Geo-Soil Score in this research. Hence, it is
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important to assess the level of completeness of the cementation-level attribute when
applying the GIS-based technique for predicting the floodplain continuum type within a
catchment.

The SSURGO soil data do provide complete coverage for the 51 study catchments
and a high level of coverage for the study area shown in Figure 2.1, with only minor overlap
or sliver issues. As described in Section 2.4.2, the geology layer data are used to supplement
the SSURGO cementation-level attribute data during computation of the Geo-Soil Score, since
the cementation-level attribute data are not completely populated. To assess the
completeness of the SSURGO cementation-level data, the percentage of each study
catchment that does not have a cementation-level attribute specified and the corresponding
rock type from the USGS database were tabulated and evaluated. The results of these
analyses are summarized in Table 2.7 and provided in detail in Table A.2. In general terms,
the analyses summarized in Table 2.7 indicate that the cementation-level attribute has a
relatively high level of completeness within the study catchments. More specifically, the
results of the analyses summarized in Table 2.7 indicate that:

e The SSURGO cementation-level attribute data have a relatively high level of
completeness (i.e., 85% complete), by area, within the 51 study catchments.

¢ On an individual study catchment basis, the percentage (by area) of a study
catchment without a cementation-level attribute specified ranges from 0.00 to 96.7%.
This indicates that the level of completeness of the cementation-level attribute varies
widely on a geographical basis, even though the overall level of completeness for the
study catchments is relatively high (i.e., 85% complete).

e Comparison of statistics 2a through 2d in Table 2.7 indicates that, within the study
catchments, the cementation-level attribute is least complete (i.e., 9.86 % incomplete)

when the geology rock type attribute is “igneous”. This may simply indicate that
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when the soil scientists were conducting the soil studies and assessing the

cementation level of the underlying strata, they were unsure how to assess igneous

rock. The cementation-level attribute data are probably most pertinent when the

underlying strata are composed of sedimentary rock, since the cementation-level

attribute can typically vary more widely for sedimentary rock than an other general

rock type. In the case of sedimentary rock, the cementation-level attribute is only

1.54% incomplete.

Table 2.7 - Summary of statistics used to evaluate the completeness of the SSURGO
cementation-level attribute data for the study catchments

Stalt]l)s tic Statistic Value

1 The percentage of the total study catchments area ( 933.7 km2) with a 85.4 %
cementation-level specified in the SSURGO database '

2a The percentage of the total study catchments area ( 933.7 km?) without a
cementation-level attribute specified in the SSURGO database and with an 1.04 %
“Alluvium” rock type-1 attribute per the USGS database:

2b The percentage of the total study catchments area ( 933.7 km?) without a
cementation-level attribute specified in the SSURGO database and with a 1.54 %
“Sedimentary” rock type-1 attribute per the USGS database:

2c The percentage of the total study catchments area ( 933.7 km?) without a
cementation-level attribute specified in the SSURGO database and with a 217 %
“metamorphic” rock type-1 attribute per the USGS database:

2d The percentage of the total study catchments area ( 933.7 km?) without a
cementation-level attribute specified in the SSURGO database and with an 9.86 %
“Igneous” rock type-1 attribute per the USGS database:

3a The minimum percentage of a study catchment without a cementation- 0.00 %
level attribute specified in the SSURGO database: '

3b The maximum percentage of a study catchment without a cementation- 96.7 %
level attribute specified in the SSURGO database: '

3c The mean percentage of a study catchment without a cementation-level 23.9%
attribute specified in the SSURGO database: '

3d The standard deviation of the percentage of a study catchment without a 26.0 %

cementation-level attribute specified in the SSURGO database:
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2.6 Summary and Conclusions
2.6.1 Primary Findings

The primary objectives of the investigations described in this chapter were to
develop classification systems and conceptual models to characterize the nature and form
of floodplains at various scales in the semi-arid environment of southern California. Due to
the complex geologic history, the hierarchy of spatial scales developed for southern
California emphasizes that watersheds and even catchments often encompass multiple
geomorphic provinces, unlike in the Pacific Northwest.

The complex geologic history of southern California is also reflected in the reach-
scale classification system and conceptual model. That is, the region’s watercourses have
been characterized with a complex interrelationship of three basic floodplain continuums
and twelve basic alluvial floodplain forms. The classification system developed for southern
California is an adaptation and extension of the classification system developed by
Montgomery and Buffington (1997) to include three continuums (instead of just one), apply
to floodplains (not just channels), and a wider range of floodplain forms. In addition, the
reach-scale classification system, developed for southern California, incorporates a key
concept regarding the braided floodplain form described by Nanson and Croke (1992); that
is, braided floodplains have two thresholds: an upstream and a downstream threshold.

The complex geologic history of southern California is even further reflected in the
catchment-scale conceptual model that relates the three basic continuums to the dominant
process drivers of climate and geology. In southern California these two process drivers are
strongly interlinked in the sense that plate tectonic activity has resulted in the formation of
several high mountain ranges, which have in turn altered the climate and, more specifically,
the geographic precipitation patterns. Hence, the wide range in annual precipitation, a

metric for the climatic process driver, currently observed in the study area is directly linked
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to the geologic history for the region. Furthermore, the complex geologic history has also
resulted in the mountain ranges being composed of a wide range of rock types. Therefore,
the wide range in values for both of the dominant process drivers are directly linked to
southern California’s complex geologic history.

At the beginning of this chapter, I stated that the classification systems and
conceptual models are intended to provide a framework for further investigating methods
for estimating the trend and magnitude of changes in the geometry of a floodplain due to
urbanization. The conceptual models and the GIS technique described in this chapter
provide this essential framework by distinguishing the three basic floodplain continuums at
multiple spatial scales and by providing multiple means for identifying the continuum
within which a floodplain form is a member. By describing and characterizing the
differences in floodplain forms in each of the floodplain continuums, the conceptual models
also lead to the following series of important working hypotheses:

¢ The three basic floodplain continuums have different sequences of floodplain forms,
due to differences in the corresponding intra-catchment runoff and sedimentation
processes.

e The natural downstream floodplain geometry transitions are a direct reflection of
the natural downstream changes in intra-catchment runoff and sedimentation
processes, which can be significantly altered by urbanization.

e Each of the floodplain continuums can have different stability thresholds, floodplain
form transition thresholds (e.g., braiding thresholds), and, most importantly,
response mechanisms.

Therefore, the conceptual models described in this chapter provide an important
“process oriented” framework for further investigating the mechanics and geomorphic

thresholds associated with the natural downstream progression of floodplain forms.
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2.6.2 Avenues for Further Investigation
GIS Tool for Relating Floodplain Continuum to Process Drivers

In Sections 2.4.2 and 2.5.4, a GIS-based technique is described for quantitatively
relating the floodplain continuum to two process drivers on a catchment-scale. From a
floodplain management perspective, this GIS-based technique is potentially a useful
planning tool because it may provide a relatively efficient and accurate means to assess the
floodplain continuum type for watercourses on a catchment to a regional scale. The
potential value of this tool is demonstrated by findings in later chapters, which indicate that
the potential for severe instability and the geomorphic response of a floodplain (in both
trend and magnitude) to urbanization are distinctly different for the non-armored and
armored floodplain continuums.

From a fluvial geomorphic standpoint, the GIS technique developed as part of this
research may provide a unique tool for investigating the interrelationships between the
floodplain continuums and the corresponding thresholds, in terms of process drivers on a
catchment-scale. One geomorphic threshold of interest that the GIS-based technique may
be useful for evaluating is the transition of a “Type 2” braided floodplain to a “Type 1”
braided floodplain; however, this research did not collect any data to permit investigations
into this geomorphic threshold.

Though these investigations have sufficient data to demonstrate the feasibility of the
technique and define the boundaries between some of the continuums reasonably well, |
fully recognize that there clearly are not sufficient data to describe all of the boundaries
well. Therefore, there are several avenues for further investigations involving the GIS-
based technique described in Section 2.5.5, in terms of both further refinement and

potential applications.
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Chapter 3: Conceptual Models for Intra-Catchment Processes that
Govern the Downstream Progression of Floodplain Forms and
Methods for Assessing the Current Stability State for a
Floodplain

3.1 Chapter Overview
3.1.1 Abstract

For the non-armored and armored floodplain continuums, floodplain state plots
have been generated to quantitatively describe the natural downstream progression of
floodplain forms using specific stream power and width-to-depth ratio as the state and
shape metrics, respectively. Based on the premise that the observed natural downstream
progression of floodplain forms is a direct reflection of changes in intra-catchment runoff
and sedimentation processes, these floodplain state plots provided the basis to: (a) develop
techniques to assess the stability of a floodplain; (b) assess general floodplain response
trends; (c) infer the interaction of key intra-catchment processes that govern the
downstream progression of floodplain forms; and (d) develop hypotheses regarding the
mechanisms governing the upstream braiding threshold for non-armored and armored
floodplains. These finding were compiled diagrammatically to create conceptual models for
intra-catchment process for the non-armored and armored floodplain continuums. In terms
of the practical research questions at the core of these investigations, these conceptual
models provide: (a) a means to assess the stability state of a floodplain; and (b) a
framework within which to develop methods for estimating the trend and magnitude of the

change in floodplain geometry due to urbanization.
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3.1.2 Introduction/Research Questions

The core practical research questions motivating the research documented in this
dissertation are:
¢ How can we quantitatively assess the existing stability state of a floodplain?
¢ How can we estimate the trend and magnitude of the change in floodplain geometry
due to perturbations in intra-catchment processes associated with
urbanization/hydromodification?

To address these core questions it was first important to develop a basic
understanding of the form and nature of the floodplains in the semi-arid environment of
southern California. As described in Chapter 2, three basic floodplain continuums have
been identified for southern California: non-armored, armored, and active-regional alluvial
fan. As shown in Figure 2.5, each of these continuums are comprised of three or more
alluvial floodplain forms that have a general downstream sequence in stable systems. Ifit is
argued or assumed that the observed natural downstream progression of floodplain forms
is a direct reflection of natural changes in intra-catchment runoff and sedimentation
processes, it is then logical to conclude that developing conceptual models describing key
intra-catchment processes should provide a framework for addressing the practical
research questions at the core of this research.

Therefore, the primary objective of the research documented in this chapter was to
develop conceptual models describing key intra-catchment processes by addressing the
following applied research questions:

e What are the intra-catchment processes that govern the observed downstream
progression of floodplain forms in a stable system, including specifically the

progression from single-thread to braided floodplains?
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e How do the erosional resistance and stability characteristics of the banks influence
the natural downstream progression of floodplain geometry and can this influence
be quantified into general floodplain response trends and constraints?

e What is the interrelationship between the stability state with the form and geometry
of a floodplain, under various hydraulic conditions?

¢ What is the impact of urbanization on the primary intra-catchment processes that
govern the natural downstream floodplain form progression?

The research described in this chapter strictly focuses on the non-armored and
armored floodplain continuums. The active-regional alluvial fan continuum has been
included in this research on a qualitative and conceptual level, for the sake of completeness.
However, this floodplain continuum has been excluded from quantitative reach-scale
investigation in this research, since active alluvial fan floodplains are already highly

regulated by FEMA and/or local agency guidelines.

3.1.3 The Threshold Approach and the Search for State and Shape Metrics That
Quantitatively Describe the Natural Downstream Progression of Floodplain
Forms

The approach adopted in this research was to first find a quantitative method to
describe the natural downstream progression of floodplain forms, then use these findings
to infer the key intra-catchment processes for the non-armored and armored floodplain
continuums. This approach is based on the fundamental concept that the observed natural
downstream progression of floodplain forms is a direct reflection of natural changes in
intra-catchment runoff and sedimentation processes. Though posed in slightly different
wording and context, this concept appears to be consistent with the threshold conceptual
framework described by Bull (1979) as follows: “... the threshold concept emphasizes the
possibility of change in a fluvial system. Those using the threshold approach are more likely
to be interested in when and where change occurs in fluvial systems and the reasons for
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change, rather than searching for approximations of equilibrium. The graded stream
approach generally encourages study of self-regulating feedback mechanisms, but the
threshold approach generally encourages study of self enhancing feedback mechanisms.”
Having adopted the threshold approach, the objective of these investigations was to
quantitatively describe the natural downstream progression of floodplain forms. My
approach involved searching for two quantitative metrics that described the natural
progression of floodplain forms in terms of topwidth, depth, and bed slope. The objective of
one metric is to quantify the state of a floodplain, in a manner related to both the stability
state and the geometry of the floodplain; while the objective of the second metric is to
quantify a key aspect of the shape or geometry of a floodplain form. To be of practical use,
these metrics should be readily computable from field measurements of a floodplain and/or
GIS-based measurements of the corresponding catchment. In addition, at least one of these
metrics should be capable of reflecting the impacts of urbanization on the intra-catchment
processes. Therefore, a critical objective of this research involved finding metrics that can

quantify the state and shape of a floodplain.

3.2 Previous Studies: State and Shape Metrics for Floodplains

The concept of using state and/or shape metrics for describing floodplains and
channels has a relatively long history and, as a result, a wide range of metrics has been
evaluated in the literature. However, the work done by several researchers has strongly
influenced the approach adopted in these investigations. This section briefly describes key
aspects of these previous investigations into geomorphic thresholds, influential to this
research, and the metrics used to describe these thresholds. The equations for each of the

state and shape metrics described in this section are listed in Table 3.1.
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Table 3.1 - List of state and shape metrics evaluated in the literature

Total Stream Power (Bagnold, 1973; Bagnold, 1977):
Q=308 in (W/m) Equation 3.1

Specific Stream Power (Bull, 1979):

0 ) Equation 3.2
0= 7/WS/. in (W/m?)

Total Boundary Shear Stress (Chow, 1959):

7= )RS, in (Pa = kg/ms?) Equation 3.3
Slope/Froude Number (Parker, 1976):
d)"? Equation 3.4
S,IF, = S, (gd)™
Vv

Width-to-Depth Ratio for Channels (Harvey, Watson and Schumm, 1985):
W./d=255-M"" Equation 3.5
where: Q= flow rate (m3/s)

S ; = friction slope (m/m)

¥ =9810 (kg/m2s?) = specific weight of water
W = topwidth of flow area (m)

R = A/ P, =hydraulic radius (m)

A =flow area (m2)

P, = wetted perimeter (m)

d = maximum flow depth (m)

V' =flow velocity (m/s)

g =9.81 (m/s?) = acceleration of gravity

W, = topwidth of channel (m)

M = percentage of silt and clay in the perimeter of the
channel

78



The Concept of a Critical Power Threshold

Bagnold (1973, 1977) argued the concept that watercourses are primarily
“sediment-transporting machines” that can be considered in terms of the availability of
stream power (per Equation 3.1 in Table 3.1) to do work. Based on this concept, Bull
(1979) developed the concept of a critical-power threshold that separates “the modes of
erosion and deposition in streams and is dependent on the relative magnitudes of power
needed to transport the average sediment load and on the stream power available to
transport the load.” That is, Bull (1979) used stream power as a state metric and considered
stream power in terms of both total stream power (per Equation 3.1 in Table 3.1) and total
stream power per unit area of streambed (or specific stream power per Equation 3.2 in Table
3.1).

Classification of Floodplains Based on Specific Stream Power

Nanson and Croke (1992) developed a “genetic classification of floodplains” based
on the concept that floodplains (geomorphic perspective) are formed by a complex
interaction of fluvial processes; however, their properties are primarily a function of
specific stream power and sediment character (i.e., cohesive versus non-cohesive). That is,
they used specific stream power (per Equation 3.2 in Table 3.1) as a state metric and
identified thresholds for differentiating between the various floodplain forms.

The classification system defined by Nanson and Croke (1992) is unique in that it
describes an array of floodplain forms (from a geomorphic perspective) and links them into
potential continuums using identified ranges of specific stream power. Furthermore, their
classification system identifies braided floodplains as “Class B - medium energy”, with non-
braided floodplains being in both higher and lower energy classes. Hence, a logical (if not
direct) implication of their classification system is that braided floodplains have both an

upstream and downstream braiding threshold, as observed in southern California. This is
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an important distinction to this research, because other investigations into braiding
thresholds in the literature only show braided floodplains as having higher power or energy
levels than non-braided (or typically meandering) floodplains (Parker, 1976; Chang, 1988,
p. 278; van den Burg, 1995; Bledsoe and Watson, 2001).

It was influential to this research that Nanson and Croke (1992) indicated that they
would have preferred to use specific stream power values specifically for the floodplains
(geomorphic perspective) in their classification system; however, they had to use specific
stream power values computed for bankfull flow conditions within the channel as a
surrogate. They further indicated they also considered evaluating boundary shear stress
(per Equation 3.3 in Table 3.1) as a state metric ; however, they also lacked sufficient
hydraulic data with which to estimate boundary shear stress.

Parker (1976) State Diagram and Braiding Threshold

Parker (1976) developed a state diagram for differentiating meandering, braided,
and straight channels at formative discharges. For this state diagram, the state metric is
defined as slope divided by the Froude Number (Equation 3.4 in Table 3.1) and the shape
metric is the inverse of the width-to-depth ratio. Itis important to note that this state
diagram is strictly for the downstream braiding threshold, where the braided channel has
the higher state metric for a given value of the shape metric. However, this state diagram
clearly demonstrates the concept of defining geomorphic thresholds in terms of a state and
a shape metric, even though the author didn’t specifically describe it in these terms.

Shape Metric for Describing Downstream Changes in Channel Geometry

Cooke and Reeves (1976) and Tooth (2000) used width-to-depth ratios (and cross
section plots) to describe downstream changes in channel geometry for arroyos in the
American Southwest and dryland river channels in the northern plains of arid central

Australia, respectively. In both of these publications, the width-to-depth ratio was in
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reference to bankfull conditions; however, their research clearly demonstrated that the
width-to-depth ratio may be a useful shape metric in the arid and semi-arid environment.

Width-to-depth Ratio as a Reflection of Bank Characteristics

Schumm (1977) and Harvey et al. (1985) observed and quantified a relationship
between width-to-depth ratio and the percentage of silt and clay in the channel perimeter
(Equation 3.5 in Table 3.1). In regards to Equation 3.5, the authors emphasized that the
percentage of silt and clay in the perimeter of the channel represents both a metric of the
type of sediment being transported within the channel and an indication of stability
characteristics of the bank material. Hence, this implies that the observed width-to-depth
ratio, in stable fluvial systems, is also a metric of the erosional resistance and/or stability

characteristics of the bank material, to some degree.

3.3 Study Area: Geomorphic Limits and Geologic Setting
3.3.1 Geomorphic Limits for This Study

The geographical boundary for this study was defined by two constraints. First, the
study area was limited to the six southern-most counties in southern California with
watersheds that drain to the Pacific Ocean. Second, the study area was further limited to
those watersheds that drain to the ocean. The geographical boundary for the study area,
based on these two constraints, is shown in Figure 2.2.

Since urbanization in southern California is now extending into the upper reaches of
the watersheds, this research intentionally focused on studying the upper reaches of non-
armored and armored watercourses, which have relatively small catchments. This focus
resulted in essentially a geomorphic limit being imposed on the range of floodplain forms
included in this study. As illustrated in Figure 3.1, this geomorphic limit encompasses the
braided and upstream floodplain forms for the armored and non-armored floodplain

continuums shown in Figure 2.5.
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Geomorphic Limits of this Study |
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Figure 3.1 - Schematic illustrating a general floodplain continuum and the
geomorphic limits for this study

3.3.2 Geologic Setting - Geomorphic Province and Catchment Scale

The study area is located within the Pacific Province and includes the Transverse
and Peninsular Ranges, as shown in Figure 2.3. The Transverse and Peninsular Ranges are
the result of the complex interaction of the North American Plate and the Pacific Plate along
the San Andreas Fault system over approximately the past 20 to 30 million years (Mount,
1995).

This complex geologic history has resulted in the mountain ranges within the study
being composed of a wide variety of sedimentary, metamorphic, and igneous rocks. In
addition, the study area has an extensive network of fault lines. As a result, the geologic
setting within the study area can be complex on even the catchment or valley segment scale.

On a very general level, there are two basic valley types within the study area:

¢ river valleys, where fluvial processes have been the dominant driver in the formation

of the drainage network within the valley (Figure 3.2a); and
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e alluvial fill valleys, where a combination of active faults and fluvial processes are
currently and have been the dominant drivers in the formation of the valley
(Figure 3.2b).

These two basic types of valleys are illustrated in Figure 3.2. It is important to
recognize that these representations are highly simplified, especially in terms of the sub-
surface features. That is, there may also be faulting associated with river valleys, even
though this faulting is not depicted in Figure 3.2a; however, these faults may be relatively
inactive and occur in areas where the geologic and climatic conditions are not exceptionally
conducive to the formation of alluvial fans. Figure 3.2b depicts an alluvial fill valley with
alluvial fans and reverse or thrust faulting , which is representative of the south front of the
eastern San Gabriel Mountains, as also shown in Figure 2.9 (Crooks, Allen, Kamb, Payne, and
Proctor, 1987; Cramer and Harrington, 1987); however, the faulting associated with the

major alluvial fill valleys within the study area is actually a complex network of normal,

reverse, and transform faults (USGS, 1987).

active
alluvial fan

Figure 3.2 a: River valley Figure 3.2 b: Alluvial fill valley showing
reverse fault and alluvial fans

Figure 3.2 - Schematic illustrating river and alluvial fill valley types
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Figure 3.2 illustrates the key characteristics of, and key differences between, the two
basic valley types. As depicted in Figure 3.2a, river valleys have relatively narrow valley
bottoms and typically do not have active alluvial fans, such as the valleys associated with
the Santa Clara River, Escondido Creek, and Dulzura Creek. Whereas, alluvial fill valleys (as
depicted in Figure 3.2b) have relatively broad valley floors with deep alluvium, such as the
San Fernando, Simi, San Gabriel, Pomona, San Bernardino, Perris, and San Jacinto Valleys. In
addition, alluvial fill valleys may often have alluvial fans along the mountain fronts with

active faulting, as depicted in Figure 3.2b.

3.4 Methods
3.4.1 Site Selection Process

An objective of this research is to describe the geomorphic characteristics for both
the stable and unstable floodplain forms within the armored and non-armored floodplain
continuums. Hence, it was imperative to investigate and evaluate a representative sample
of watercourses on both a reach- and catchment-scale basis. As with any study, there is a
limit to the amount of resources that can be allocated to the site selection and data
collection process. Therefore, a systematic and multi-step process was employed to select
both the most representative study sites and the most advantageous level of data collection
at each site.

Based on the data collected at fifty two (52) locations during the initial
reconnaissance-level site investigations, key aspects of the potential study sites were
tabulated and 30 study sites or reaches were selected to provide as representative a range
of the key floodplain characteristics as possible using the criteria summarized in Table 3.2.
The level of data collection, at a reach scale, for each site was then selected to include as

many floodplain form transitions as possible.
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Table 3.2 - Summary of study site selection criteria

Criteria Study Site Selection Criteria

1 Approximately 50% of sites should exhibit signs of instability, with the cause(s) or
history of the instability being relatively identifiable or definable. That is, sites with
very complex histories of instability should not be considered

2 Sites with floodplain form transitions and/or confluences are given priority.
3 Data sites should provide a representative range of:

e (Catchment urbanization levels between none to moderate.

e Floodplain or channel forms.

e Bed material composition.

[ ]

Floodplain (i.e., channel and overbank) vegetation densities.

4 Most of the sites should have catchments less than 20 km? and all catchments should
be less than approximately 70 kmz2.

5 Approximately 50% of the sites should be suitable for post flow event and/or long-
term monitoring.

6 Sites where legal permission to access the site was either confirmed or obtained prior
to the site selection process are given priority.

7 Sites should be representative of the geo-political boundaries within the study area.

3.4.2 Field Data Collection

Due to the wide range of geomorphic conditions at each of the thirty (30) study
sites, it was determined that a wider range of field data could be collected, if two levels of
data collection were employed. These two levels of field data collection are referred to as
“screening” and “modeling” levels. As implied by the name, the “modeling” level of field
data collection is intended to provide sufficient data to permit hydraulic modeling with both
rigid bed hydraulic models and/or movable boundary models. However, the primary
difference between the two levels of data collection is that only one to three cross sections
were surveyed at screening-level sites; whereas, five to eighteen cross sections were
surveyed at modeling-level sites. The field data collected at both the screening-level and

modeling-level sites are summarized in Table 3.3.
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Table 3.3 - Summary of the levels of field data collection for each type of study site

Site Type Levels of Field Data Collection for Each Type of Study Site

All Qualitative data collected at each cross section within sites via a multiple-
choice formatted data collection form:
e Observed floodplain forms within the reach.
¢ Estimation of Manning-n values for channels and overbanks.
e Bank characteristics, including a visual assessment of stability and/or
modes of failure.
e Basic bed material characteristics, including basic rock types, size ranges,
and the level/extent of bed armoring.
e Field assessment of the current stability state of the floodplain, per criteria
in Table 3.4.
e The level, extent, and characteristics of the vegetation within the floodplain.
e Digital photographs of study reach documenting bed material, bed forms,
bank conditions, and vegetation characteristics

Screening | Quantitative Data Collected at “Screening-Level” Sites:
Level Sites ¢ 1 to 3 bed material gradations, based on pebble count and/or dry sieve
analyses bed samples.
e Survey/geometry data collected using a pole mounted hand-level and
Pocket Rod.
o 1to 3 floodplain cross sections.
o bed profile extending a minimum of approximately 50 meters
upstream and downstream of cross section(s).

Modeling | Quantitative Data Collected at “Modeling-Level” Sites:

Level Sites e 2to 3 bed material gradations, based on pebble count and/or dry sieve
analyses of bed samples.

e Survey/geometry data collected using either a total station or a survey level
global positioning system by either Stillwater Consultants or Riverside
County Public Works Department.

o 5to 18 floodplain cross sections
o bed profile extending a minimum of approximately 50 meters
upstream and downstream of the cross sections.

Criteria for Field Identification of Current Stability State of a Floodplains

A critical step in the field data collection involved assessing the current stability
state of the floodplains at each of the study sites. Schumm, Harvey, and Watson (1981,
1984) recognized that incised floodplains have transitioned through a sequence of forms
and employed the technique termed location-for-time substitution to develop a Channel
Evolution Model (CEM) for Oaklimeter Creek in northern Mississippi. This CEM is defined
in terms of five evolutionary phases typically encountered in an incised floodplain, with

each CEM phase being defined in terms of the dominant fluvial processes. Using the CEM
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phases as a basis, the field observation criteria listed in Table 3.4 have been developed and
used to assess the CEM phase and the corresponding current stability state at each of the
cross sections within the study sites.

[t is important to note that the CEM phases described in Table 3.4 have been
modified and adapted to be applicable to the floodplain continuums observed in the semi-
arid environment of southern California and compatible with the three states of stability
described in Section 1.3.1. The most notable difference between the CEM phases described
in Table 3.4 and the original CEM is that the primary head-cut or knickpoint appears in
Phase III as opposed to Phase II. This modification was done in recognition that floodplains
may experience relatively minor head-cut migrations that do not significantly destabilize
the banks, in response to natural perturbations in the runoff and sediment supply within
the catchment. As listed in Table 3.4, this modification also assisted in distributing the five
CEM phases into the three states of stability as follows:

e Stable and in a state of dynamic equilibrium includes CEM Phases I, Ia, and V.
¢ Responding and in a state of dynamic response includes CEM Phase II.
¢ Unstable and in a state of severe instability includes CEM Phases Ill and IV.

The Classification and Stability of Braided Floodplains

It is important to recognize that during the course of the field data collection, both
stable and unstable braided floodplains were observed and included in these investigations.
In addition, stable and unstable braided floodplain were observed to have distinguishing
characteristics. Unstable braided floodplains were distinguished by clear evidence of

floodplain degradation, accompanied by severe and extensive bank failures.
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Table 3.4 - Field observation criteria used to assess the current stability state of a
floodplain in the semi-arid environment of southern California

CEM Stage &
Stability
State

Dominant Processes

Fluvial

Banks/Terraces

Indicators for Assessing
CEM Stage or Phase

I
Pre-Modified

Floodplain in dynamic
equilibrium.

Bank alignments relatively
unchanged in engineering

No evidence of head-cut
migration.

(Stable - time scale. Only minor bank cutting.
State of Bank height less than or
Dynamic equal to critical (h < h¢).
Equilibrium)
Ia Floodplain in dynamic | Floodplain/channel Floodplain improvements
Constructed | equilibrium improvements are in good | functioning and in good
(Stable - condition with no condition, with no evidence
State of evidence of under-cutting. | of significant aggradation or
Dynamic degradation.
Equilibrium)
11 Channel degradation, | Heightening and Evidence of minor head-cut
Degrading | inresponse to asmall | steepening of banks. migration.
(Responding | head-cut or knickpoint | Bank height less than Limited or intermittent
- State of migration. This head- | critical (h < h¢). shear erosion or under-
Dynamic cut may or may not be cutting of banks.
Response) a precursor for a Intermittent or minor slab
primary head-cut. and/or slump bank failures.
1 Channel degradation Bank retreat and Evidence of substantial
Threshold | and widening, with scalloping occurring. head-cut migration.
(Unstable - | primary and/or Thalweg low relative to Vertical bank surfaces.
State of secondary head-cut or | top of bank. Frequent or extensive shear
Severe knickpoint migration. | Bank height greater than erosion or under-cutting of
Instability) critical (h > h¢). banks.
Significant slab, slump
and/or rotational bank
failures
I\ Channel aggradation Bank retreat and Limited or intermittent
Aggrading | and widening. scalloping. shear erosion or under-
(Unstable - | Initial development of | Vertical bank surfaces, but | cutting of banks.
State of bars within channel. slopes beginning to flatten | Slab, slump and/or
Severe Re-working of in locations. rotational bank failures;
Instability) | material from bank Thalweg low relative to however, evidence of bank
failures. top of bank. healing or re- stabilizing.
Bank height greater than
or equal to critical (h > h.).
\' Minor channel Bank healing and re- No evidence of active head-
Re-Stabilized | aggradation. vegetation occurring. cut migration.
(Stable - Continuing Continued flattening of Banks are or are nearly
State of development of bars bank angles. healed and re-stabilized
Dynamic within channel. Thalweg high relative to
Equilibrium) | Continued re-working | top of bank.

of material from bank
failures.

Bank alignments have
stabilized.

Bank height less than
critical (h < h¢).
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The concept that there are stable and unstable braided floodplains is not new. In
terms of the classification system developed by Lane (1957), the stable braided floodplains
observed in these investigations would be an example of “Type 2” braiding, while the

unstable braided floodplains would be an example of “Type 1” braiding per Table 3.5.

Table 3.5 - Classification of braided watercourses by Lane (1957).

1. Braiding due to steep slope with
degradation

2. Braiding due to steep slope with
L. Braiding due to steep slopes approximate equilibrium

3. Braiding due to steep slope with

Braided Streams .
aggradation

II. Braiding due to aggradation 4. Braiding due to moderate slope with
aggradation

5. Braiding due to low slope with
aggradation

Bed Material Gradation Analyses

As reflected in the floodplain descriptions in Tables 2.4 and 2.5, the watercourses
studied in these investigations have a wide range of bed material compositions. Hence an
assortment of bed material sampling and analysis techniques had to employed. The
conditions under which the various sampling and analyses techniques have been employed

are summarized in Table 3.6.

3.4.3 Estimation of a Range of Flow Rates

As indicated in Section 3.2, essentially all of the candidates for the state and shape
metrics for a floodplain are hydraulic parameters and are, therefore, associated with
specific flow conditions; hence, estimation of these metrics requires hydraulic computations
corresponding to a specific flow rate or a range of flow rates. In addition, field observations
imply that relatively infrequent, high magnitude flow events are probably responsible for
both forming and maintaining the geometry of floodplains in the semi-arid environment;

hence, it was deemed important to at least initially consider and evaluate candidates for
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state and shape metrics over a relatively wide range of flow rates. Therefore, finding a
systematic method for estimating a range of flow rates for a floodplain and corresponding

catchment became a critical step in the search for finding useful state and shape metrics for

a floodplain.
Table 3.6 - Bed material sampling and analysis techniques
Method | Bed Material Composition Sampling Technique Analysis Technique
1 Mixture of gravel, cobbles, Surface sample (pebble Percent passing for a range
and/or boulders, and bed count) per Bunte and Abt of sizes obtained directly
armoring is prevalent. (2001). from pebble count.

Note: Applied this method
only if the pebble count
indicated that less than 10%
of the bed material is less
than 2 mm in diameter.

2 Mixture of sand, gravel, and | Surface sample (pebble Percent passing for a range
cobbles, with no evidence of | count) and volumetric of particle diameters
bed armoring. sample, per Bunte and Abt obtained from pebble count
Note: Applied this method (2001). and dry sieve analyses. Use
when the pebble count Flexible Combination
indicated that more than analysis procedure to
10% of the bed material is combine data to obtain a
less than 2 mm in diameter single gradation, per Bunte
and there are coarse gravel and Abt (2001).

or larger material present.

3 Sand and/or fine to medium | Volumetric sample, per Dry sieve analysis to obtain
gravel, with no evidence of Bunte and Abt (2001). the percent passing for a
bed armoring. range of particle diameters.

Many studies have used catchment area alone, or a relationship based on catchment
area, as a surrogate for flow rate when trying to identify state variables for a watercourse.
As described in section 2.4.2, average annual precipitation varies widely and has strong
orographic patterns; therefore, catchment area alone is not an appropriate surrogate for
discharge within the study area.

Several methods for systematically identifying a reasonable range of flow rates for a
given cross section of a floodplain were considered, including the “regional flood-frequency

equations” developed for several regions in California by the USGS (Waananen and Crippen,
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1977). As indicated in Table 3.7, the regional flood-frequency equations for the “South
Coast Region” include both catchment area and average annual precipitation as input
parameters; in addition, equations have been developed for a wide range of return periods,
including the 2, 5, 10, 25, 50, and 100 year events. It is recognized that these equations
represent a simplified approach for estimating discharges corresponding to specific return
periods and may be prone to significant error. However, the objective of using the USGS
regional flood-frequency equations in this study is to identify the range of flows associated
with the formation and/or maintenance of the floodplain and not to identify a peak flow
rate associated with a specific return period; therefore, the equations were deemed a
reasonable approach for estimating a range of discharges for a given catchment and have

been used in this study.

3.4.4 Hydraulic Analyses and Development of Hydraulic Database

To address both the practical research questions at the core of this research and the
corresponding applied research question regarding the intra-catchment processes that
cause natural floodplain transitions, one approach is to find both state and shape metrics to
quantitatively describe the downstream progression of floodplain forms. As described in
Section 3.2, essentially all of the candidates for the state and shape metrics for a floodplain

are associated with specific flow conditions.
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Table 3.7 - Regional flood-frequency equations for the California South Coast Region
(Waananen and Crippen, 1977)

Regional Flood-Frequency Equations in English Units

Q, =0.41A27P.%  in (ft3/s)

_ 0.77 p1.69
Q5 = 040AC sz in (ft?’/s)

Oy = 0-63Ag-7gpalvb75

Equation 3.6a
Equation 3.7a

Equation 3.8a

in (ft3/s)
Q,; =1.10A2% P! in (f65/5) Equation 3.9a
Q,, =1.50A2% P} in (f63/5) Equation 3.10a

QIOO = ]"95A2.83Pgly‘v87 in (ft3/s) Equation 3.11a

where: O, = flow rate for return period T years (ft3/s)
A, = catchment area, in square miles (mi?)
P, =area-weighted average annual precipitation per
Equation 2.1 (in)

Regional Flood-Frequency Equations Converted into Metric Units

Q, =2.246A%7P.”  in (m3/s) Equation 3.6b
Q, =2.702A27P:®  in (m3/s) Equation 3.7b
Q,, =5205A2"P.7  in (m3/s) Equation 3.8b
0, =11.115A2' P} in (m3/s) Equation 3.9b
Q,, =17.390A%P}%  in (m3/s) Equation 3.10b
Qi = 24.099A2% P in (m3/s) Equation 3.11b

where: O, = flow rate for return period T years (m3/s)
A, = catchment area, in square miles (km?)
P, =area-weighted average annual precipitation per
Equation 2.1 (m)

Under ideal conditions, it would be best to compute state and shape metrics based
on field measurements of flow rate, flow depth, topwidth, friction slope, flow velocity, and
other hydraulic parameters for a wide range of flow conditions at each of the study sites.
However, this simply isn’t practical and/or possible in the semi-arid environment of
southern California, especially at locations where the floodplain is in a state of severe
instability and the geometry of the floodplain changes during each significant flow event.

Hence, estimation of state and shape metrics requires hydraulic computations to estimate
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flow depth, topwidth, and other hydraulic parameters corresponding to a field- measured
cross section and a range of flow rates.

To provide a basis for evaluating various hydraulic parameters as potential state
and shape metrics for floodplains, the Manning equation (Equation 3.14 in Table 3.8) was
selected to be the basis for the hydraulic analyses used to estimate hydraulic parameters for
each of the study cross sections, given field-measured geometry and estimated n value.
Technically speaking, the Manning equation is only applicable to steady uniform flow
conditions; that is, the flow conditions are such that: (a) the flow depth does not change

with time; (b) the flow depth, area, velocity, and rate are constant in space over a significant

reach length; and (c) the energy line or friction slope (S, ), water surface slope (S ), and

bed slope (S, ) are all parallel (Chow, 1959). Itis fully recognized that strict uniform flow

conditions rarely occur in natural watercourses and essentially cannot strictly occur in
watercourses in the armored floodplain continuum, where the floodplain has pronounced
bedforms with respect to flow depths. However, the primary objective in this study for
applying the Manning equation is to estimate reach-averaged state and shape metrics
associated with a given floodplain geometry. Therefore, it is recognized that the results
from these hydraulic analyses are approximate and general.

The results of the individual hydraulic analyses for each of the study cross sections
(provided in Appendix B) have been compiled to create one hydraulic analyses database.
This hydraulic analyses database contains records for six flow conditions for each of the 124
surveyed cross sections, thereby creating a database with 744 records. Each record in this
database has the following information:

e Basic site data, including floodplain form, bed slope, valley slope, valley width,

existing stability state in terms of CEM stage, dso, and an estimated Manning-n value.

93



e The hydraulic parameters listed in Table 3.8, including stage or maximum flow depth
(d), wetted perimeter ( P, ), hydraulic radius (R), hydraulic depth (D), topwidth (W),

width-to-depth ratio (W/d), total boundary shear stress (Equation 3.3), Shields
parameter (Equation 3.17), and specific stream power (Equation 3.2), and Froude
Number (Equation 3.18).
The hydraulic analyses database was compiled within a spreadsheet application. To
aid in the graphic analyses of the data within the hydraulic analyses database, Visual Basic ®
macros were coded to perform user specified-queries and to rapidly generate complex plots

of the data.

3.4.5 Binary Linear Logistic Regression Analysis

Though it is more common for logistic regression analyses to be applied in the
behavioral and health sciences, Tung (1985) and Bledsoe and Watson (2001) have applied
logistic regression techniques in the evaluation of geomorphic thresholds. The binary linear
logistic regression analysis technique is an extension of linear regression techniques and its
application can be best illustrated with an example.

Basic Concept Illustrated with an Example

As illustrated in Figure 3.3, consider the case when there are two sets of two
dimensional data points, where each set of data points corresponds to one of two known
states for a dichotomous dependent variable Y. In this case, the two qualitative states of the
dichotomous dependent variable Y are State A and State B; and, the two dimensions are

defined by independent variables X; and X; .
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Table 3.8 - List of the primary hydraulic parameters in the hydraulic database for

each cross section and a range of flow rates

Hydraulic Depth
D=A/W in (m)
Hydraulic Radius
R=A/P, in (m)
Manning Equation (Chow, 1959):
1

1% =;R2’3S}’2 in (m/s)

Continuity Equation (Chow, 1959):
QO=V-A in(m3/s)
Width-to-Depth Ratio (Knighton, 1998):
T=(W /d) = Width-to-Depth Ratio (m/m)
Total Boundary Shear Stress (Chow, 1959):
T=)RS, in(Pa=kg/ms?)
Shields Parameter (Chow, 1959):
ro M
(7, - 7Md,,
Specific Stream Power (Bull, 1979):

0= 7/% S, in(W/m?)

Froude Number (Chow, 1959):

PV

8D
a
where: V' =flow velocity (m/s)
n = Manning’s roughness coefficient
A =flow area (m2)
P, = wetted perimeter (m)
§ , = friction slope (m/m)
d, = grain size (m)
0 = flow rate (m3/s)
W = topwidth of flow area (m)
d = maximum flow depth (m)

¥ =9810 (kg/m2s?) = specific weight of water

¥, = 25,967 (kg/m?2s?) = specific weight of sediment
g =9.81 (m/s?) = acceleration of gravity

a = 1.15 = kinetic energy coefficient

Equation 3.12

Equation 3.13

Equation 3.14

Equation 3.15
Equation 3.16

Equation 3.3

Equation 3.17

Equation 3.2

Equation 3.18
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If the two data sets are relatively cohesive and overlap (as shown in Figure 3.3a), a
binary linear logistic regression analysis can be used to identify a series of lines, where each
line has an estimated probability of being in one of the two states (Menard, 1995). That s,
the example logistic regression line labeled “P(Y= S4) = 90%", in Figure 3.3b, represents the
values of coordinate pairs of variables X1 and X, , where the probability of being in state A is
90%. Hence, this line also corresponds to a probability of being in state B of 10% (i.e.,
100% - 90%), because this is a binary logistic regression model. Therefore, a binary linear
logistic regression analysis is a statistical technique that can be used to define geomorphic
thresholds in terms of probability; hence, using this technique at least acknowledges that

there may be transition zones or natural variability associated with geomorphic thresholds.

Logistic Regression Lines
“Data Point Data Point 4 4/ P(Y=S54)=10%
. Data Point

in State B
X 08 X>
2 (j()) (] (B OQ)O
Ono Ong \ \D Og
P(Y=54) =90% \ \
X1 - Xl -
Figure 3.3a - Plot of two data sets Figure 3.3b - Plot with logistic regression lines

Figure 3.3 - Illustration showing an example application of a binary linear logistic
regression analysis

Transformation of the Linear Regression Equation into a Binary Logistic Regression
Model

The basis for the binary linear logistic regression model lies in the multiple linear

regression equation for a continuous dependent variable. The multiple linear regression
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equation for a continuous dependent variable Y in terms of independent variables X; and X

can be expressed as (Menard, 1995):

Y=48+BX,+5X, Equation 3.19
where:  f, is called the intercept

B, and f, are called partial slope coefficients

In the case of a dichotomous or binary dependent variable Y as depicted in Figure
3.3, the definition or actual numerical value of variable Y is arbitrary and not intrinsically
meaningful. However, the probability of Y being in State A or B, in terms of the independent
variables X1 and X>, can be intrinsically interesting and the basis for defining geomorphic
thresholds in terms of probability. To transform Equation 3.19 into a logistic regression
equation with which the intercept and partial slope coefficients can be solved as a function
of the probability of Y being in State A (i.e., P(Y = S4)), it is necessary to transform the
dependent variable (left side of Equation 3.19) into a function of the P(Y = S4). To make the
logistic regression equation useful in this context, it is also necessary that the transformed
dependent variable varies from - oo to + o0 as P(Y = §4) varies from 0 to 1. The logit function

provides a transformation that meets this requirement and is expressed as (Menard, 1995):
P(Y = SA) }

1-P(r=5,)
where: P(Y = SA) is the probability of variable Y being in State A

logit(Y) = ln{ Equation 3.20
Substituting the logit of Y (i.e., logit(Y) per Eq. 3.20) for the dependent variable Y in

Equation 3.19 yields the following binary linear logistic regression model for two

independent variables X1 and Xa:

] PlY=S§ _
logit(Y) = h{ﬁ} =B, +5X, +5,X, Equation 3.21

where: S and S are the dichotomous states of variable Y
P(y=5,)=1-P(r=5,)
P(Y =S, ) is the probability of variable Y being in State B
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The objective of a binary linear logistic regression analysis is to find the values of the

intercept and the partial slope coefficients (i.e., 3,, B,,and f,) that best satisfy Equation

3.21 for observed sets of independent variables X; and X». Unlike typical linear regression
analyses, the intercept and the partial slope coefficients cannot be solved directly for
logistic regression analyses and an iterative solution technique must be used. In this study,
the Minitab-15 ® software package was used to perform the binary logistic regression
analyses. The Minitab-15 ® software package uses an iterative reweighted least squares
algorithm to obtain maximum likelihood estimates for the intercept and the partial slope
coefficients (Minitab, 2007).

Interpretation and Application of Logistic Regression Analysis Results

The primary results of a logistic regression analysis are the intercept and the partial

slope coefficients (i.e, f,, f,,and f,). As shown in Equation 3.21, these coefficients

define the linear relationship between the logit of Y function and the independent variables
X1 and X», where the logit of Y is a function of the probability of independent variable Y
being in State A. Hence, Equation 3.21 can be used to generate a series of parallel lines, in
terms of X1 and X, coordinates, where each line corresponds to a given probability of
variable Y being in State A (as shown in Figure 3.3b).

In addition, the results of the logistic regression analysis also provide the means for
estimating the probability of being in State A (or State B) associated with any given
coordinate pair of independent variables X; and X,. That is, Equation 3.21 can be solved for
the probability of variable Y being in State A (i.e., P(Y = S4)) to yield Equation 3.22, and
Equation 3.22 can then be used directly to estimate P(Y = S,) given the regression

coefficients and values for X; and X> .
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Py = SA)= Equation 3.22

14 Pt BXHBXy

where: S4and Sp are the dichotomous states of variable Y
P(r=5,)=1-P(r=S5,)
P(Y =S, ) is the probability of variable Y being in State A
P(Y =S, ) is the probability of variable Y being in State B

Basic Evaluation of the Statistical Significance of a Logistic Regression Analysis

As with any statistical model, it is essential to evaluate the statistical significance of
the model. In the case of logistic regression analyses, the evaluation of the resulting
statistical model can be complex and authors have described the process as being “more of
an art than a science” (Menard, 1995; Bledsoe and Watson; 2001). As a direct reflection of
this, the Minitab-15 ® software package provides no less than eight measures of the
“characteristics of the estimated equation”, eight “diagnostic measures”, four “goodness-of-
fit statistics”, and four “measures of association” (Minitab, 2007). Since the objective herein
is to describe how logistic regression analyses can be used to define geomorphic thresholds
and not how to actually perform logistic regression analyses, this section simply includes a
discussion of one basic measure for evaluating the basic statistical significance of a logistic
model.

One basic measure for evaluating the statistical significance of a logistic regression
analysis (based on a relatively large sample size) involves identifying whether or not each of
the independent variables (i.e., X1 and X>) are related to the dependent or response variable
(i-e., logit(Y)). Within the Minitab-15 ® software package, this measure is referred to as the

“Z” statistic and is defined as follows (Minitab, 2007):

B
Z' — 1 .
i _SE. Equation 3.23

1

where: [ are the intercept and the partial slope coefficients
lli"

SE, is the standard error of coefficient
(Agresti, 1990; Menard, 1995).
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Larger absolute values of Z; indicate that there is a significant relationship between
the “it"” independent variable (i.e., X;) and the dependent variable. In this study, an absolute
value of Z; greater than two (2) was deemed to indicate that there is a significant
relationship (Minitab, 2007).

Evaluation of the Physical Basis for Logistic Regression Type Thresholds

Like any statistical model, logistic regression models can be very misleading and
may only be an artifact of a limited sample size, even if the model is statistically significant.
Hence, it is very important to evaluate statistical models in terms of the physical processes
or mechanisms governing the threshold being modeled. In the case of linear logistic
regression models, it is important to evaluate both the relative position of the regressions

lines, in terms of the vertical or horizontal axes, and the slope of the regression lines.

3.5 Results and Discussion

3.5.1 Floodplain State Plots for the Non-Armored and Armored Floodplain
Continuums

The approach adopted in this research was to first find a quantitative means by
which to describe the natural downstream progression of floodplain forms, then use these
findings to infer the key intra-catchment processes for the non-armored and armored
floodplain continuums. This approach is based on the fundamental concept that the
observed natural downstream progression of floodplain forms is a direct reflection of
natural changes in intra-catchment runoff and sedimentation processes (i.e., spatial
variations in water and sediment supply).

As described in Section 3.4.4, a database was developed by performing hydraulic
analyses for six flow conditions for each of the 124 surveyed cross sections, thereby

creating a database with 744 records. To aid in the evaluation of the data within this
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hydraulic analyses database, Visual Basic ® macros were coded to perform user-specified
queries and to rapidly generate complex plots of the data.

Initial Floodplain State Plots Utilizing All Data Points

A graphical approach was initially used to evaluate which combination of state and
shape metrics may provide a quantitative means by which to describe the natural
downstream progression of floodplain forms. These initial graphic analyses involved
plotting all of the data points on shape versus state metric plots for various combinations of
metrics, where each point was symbol/color coded by floodplain form. The results of these
initial graphic analyses identified two combinations of shape and state metrics that appear
to provide a basic means to quantitatively describe the downstream progression of
floodplain forms. As shown in Figure 3.4, these two combinations of state and shape
metrics are:

e Figure 3.4a: Width-to-Depth Ratio (Eq. 3.16) vs. Specific Stream Power (Eq. 3.2)
e Figure 3.4b: Width-to-Depth Ratio (Eq. 3.16) vs. Boundary Shear Stress (Eq. 3.3).

As can be seen in Figure 3.4, the data points corresponding to the same floodplain
forms (i.e., cascade, step-pool, plane-coarse-bed, plane-mixed-bed, plane-fine-bed, pool-
riffle, and braided) are relatively cohesive, but are not isolated. It also can be seen in Figure
3.4 that the distribution of the data points within the floodplain state plots for the two

combinations of metrics are very similar.
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Figure 3.4a - Width-to-depth ratio vs. Specific stream power (Eq. 3.2)
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Figure 3.4 - Initial floodplain state plots utilizing all data points for both non-armored
and armored floodplain continuums
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Refinement of Floodplain State Plots

The floodplain state plots shown in Figure 3.4 may provide a useful means for
quantitatively describing the downstream progression of floodplains. However, the data
points for each of the floodplain forms are not isolated; hence, it is difficult to interpret the
results shown in Figure 3.4 in terms of observed floodplain form progressions. To aid in the
interpretation and improve the usefulness of the floodplain state plot, the following
approaches and criteria for either segregating or distinguishing the data points were
employed:

e Non-Armored vs. Armored Floodplain Continuum: Based on field observations, it
had been anticipated that there would be different thresholds associated with the
different floodplain continuums; hence, the data points were segregated based on the
floodplain continuums described in Chapter 2.

¢ Stable vs. Unstable Floodplain States: An objective at the core of this research is to
develop a technique for either qualitatively or quantitatively assessing the current
stability state for a floodplain; hence, the data points were distinguished in terms of
their current stability state, per the criteria provided Table 3.4.

¢ Flows that Form and Maintain Floodplains: I contend that it is the higher
magnitude and less frequent flow events that form and maintain the floodplain.
While performing the hydraulic analyses described in Section 3.4.4, it was observed
that only the estimated peak discharges, with return periods greater than or equal to
approximately 25 years, fully inundated all of the various floodplain forms. Hence, it
is argued that flow events with return periods of approximately 25 years and greater
are the flow events primarily responsible for forming and maintaining the geometry

of a floodplain in the semi-arid environment of southern California. Therefore, the
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data points corresponding to peak flow rates with return periods less than 25 years
were excluded from further analysis.

Segregating and distinguishing the data points per the aforementioned approaches
and criteria yield the two floodplain state plots shown in Figures 3.5a and 3.5b. The
floodplain state plots in Figures 3.5a and 3.5b are in terms of specific stream power
(Equation 3.2) as the state metric; however, very similar plots can also be generated using
total boundary shear stress (Equation 3.3) as the state metric.

As can be seen in Figure 3.53, the data points corresponding to a) stable and
unstable floodplains and b) non-braided and braided floodplains in the non-armored or
Type 1 floodplain continuum are both relatively cohesive and relatively isolated. However
in Figure 3.5b, the data points are only cohesive and relatively isolated in terms of
floodplain form under stable conditions. Yet in both cases these floodplain state plots
provide important insights into the intra-catchment processes and mechanisms associated
with the natural downstream progression of floodplain forms. In addition, these plots also
provide a basis for assessing stability and braiding thresholds.

To aid in the interpretation of the floodplain state plots shown in Figure 3.5, the
natural downstream progression of floodplain geometry for stable systems is shown
schematically at the top of the figure. To further illustrate that the natural downstream
progression of floodplain forms is left to right in the floodplain state plots, arrows have
been used to connect data points along select individual watercourses. The example
watercourses shown with solid arrows in Figure 3.5 are for stable watercourses; whereas,
the dashed arrows are paths associated with unstable or responding watercourses. As
would be expected based on the geometry changes described in Table 3.4 for unstable

watercourses (i.e., CEM Phases III and 1V), the path associated with unstable watercourses
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Figure 3.5 - Floodplain state plots for non-armored and armored floodplain
continuums that illustrate the natural downstream progression of floodplain
geometry
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can be quite complex when plotted on the floodplain state plots and would be expected to

change significantly following a high magnitude flow event.

3.5.2 Interpretation of Floodplain State Plots In Terms of Intra-Catchment Processes
and Hydraulic Controls of Floodplain Form

An important step in all research involves questioning and critically evaluating all
findings and analyses. In the process of critically evaluating the floodplain state plots
(Figure 3.5), implications of the data analyzed during this research led to the development
of three working hypotheses regarding the downstream progression of floodplain geometry
and forms. These working hypotheses can be summarized as follows:

e Water to sediment supply divergence process;

e Selfenhancing feedback mechanisms to the hypothesized water to sediment supply
divergence process; and

¢ Floodplain braiding mechanisms in terms of the hypothesized water to sediment
supply divergence process and associated self enhancing feedback mechanisms.

As can be ascertained from the preceding list, all of these hypotheses are
interrelated and build upon each other. The remainder of this section describes these
hypotheses, in the order listed above, and their physical premise in terms of the observed
patterns in floodplain state plots and field observations.

Hypothesis for the Water to Sediment Supply Divergence Process

Figure 3.5 provides a useful means to compare and evaluate the hydraulic controls
associated with the various floodplain forms. For both the non-armored and armored
continuums, the floodplain state plots (Figure 3.5) indicate that that the width-to-depth
ratios for stable watercourses generally increase in the downstream direction, within the
geomorphic limits of this study. As demonstrated in Chapter 4 - Section 4.5.3 with multiple

transport functions, the transport capacity for a trapezoidal cross section decreases as the
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width-to-depth ratio increases. Therefore, the floodplain state plots imply that the
geometry of stable floodplains adjusts to become less efficient at transporting sediment in
the downstream direction (within the geomorphic limits of this study).

The question then becomes: What intra-catchment processes could necessitate that
the geometry of a watercourse must adjust to become less efficient at transporting sediment
in the downstream direction to maintain stability? One possible answer involves considering
the downstream trend in water and inflowing sediment supply along a watercourse, during
a high magnitude flow event in a relatively small catchment. If the peak flow rate in a
watercourse increases in the downstream direction during a flow event and the inflowing
sediment supply initially increases and then levels off (as illustrated in Figure 3.6), the
geometry of the watercourse must adjust to become less efficient at transporting sediment in
the downstream direction to maintain a state of dynamic equilibrium. To facilitate further
discussion, this hypothesized divergence between the flow regime and the sediment supply
will be referred to herein as the water to sediment supply divergence process.

The next logical question then becomes: Can natural intra-catchment runoff and soil
erosion processes explain and provide a basis for the hypothesized water to sediment supply
divergence process and, if yes, how? | contend that the answer to this question can typically
be yes, due to the interrelationship between hillslope processes and floodplains in the

upper reaches of a catchment.

107



Non-Braided I Braided : Non-Braided
Floodplains : Floodplains | Floodplains
\ 2 / '\ 2 /¢ /
E | ‘\./\_/\/ [ \—\/_J
| I
v
) —-- : | Divergence of
High | Vwz || water to Sediment
Vwi | ;
Qw—_ | Supply in Terms of
Qs | Vsz : Hydrographs
..... Vs1 : | Vwi<Vwz
Low : | Vs1 = Vs2
time time | <> Bars | .
I Bars Re-Form | time
Divergence of Wate.r to : Erode :
Sediment Supply in : | Qu: Water
High A Terms of Downstream Supply
Trends |
| s wyd
Relative ' {' Qs
Linear | Sediment
Scale | Supply
I
I
[
Low Curves for an idealized catchment with no major tributaries

v

Distance Downstream

Figure 3.6 - Schematic illustrating the hypothesis for the mechanism behind the
water to sediment supply divergence process in terms of hydrographs for a single
major event and downstream trends

As illustrated in Figure 3.7, a watercourse is often in close contact with hillslope
processes that deliver both water and sediment to the watercourse during rainfall events, in
the upper reaches of a catchment. However, as the river valley widens, the extent of close
contact between the watercourse and hillslope processes decreases, yet water is still being
delivered to the watercourse as sub-surface flow and direct rainfall (Horton, 1945;
Zaslavsky and Sinai, 1981; Knighton, 1998). Therefore, the net result can be the divergence
between the flow rate and the sediment supply in the watercourse.

[t is important to recognize that this hypothesis of the water to sediment supply

divergence process can be viewed from and described in many timeframes; however, [
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contend that this divergence of flow rate to sediment supply may be most important on a
timeframe as small as a single flow event of sufficient magnitude to inundate the entire
active floodplain. Schematics illustrating this hypothesized water to sediment supply

divergence process on a flow event basis are also provided in Figure 3.6.
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Figure 3.7 - Schematic illustrating the hypothesis for the mechanism behind the
water to sediment supply divergence process in terms of hillslope processes

[ recognize that this hypothesized water to sediment supply divergence process in the
“real world” would have to be far more complex in both space and time than reflected in
Figures 3.6 and 3.7. Moreover, field observations imply that the actual rate of water to
sediment supply divergence would probably vary dramatically depending upon the
geomorphic and geologic characteristics of the catchment. As described in Sections 2.3.2
and 3.3.2, the semi-arid environment of southern California has a complex geologic history

and, as a result, the catchments within the study area have a very wide range of geomorphic
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and geologic characteristics, as illustrated in Figure 3.2. Therefore, it would be expected
that quantitatively assessing this hypothesized water to sediment supply divergence process
using catchment parameters would be challenging.

Quantitative investigations into the hypothesized water to sediment supply
divergence process are beyond the scope of these investigations. Hence, the preceding
discussion is only intended to represent a “working hypothesis” and, thereby, potentially
provide a starting point for further research.

Furthermore, the geomorphic limits of this study are quite narrow (and possibly
unique) in that almost all of the study sites are located well within the foothills region and
have relatively small catchments. Hence, it is recognized that the hypothesized water to
sediment supply divergence process may only be of significance within the geomorphic
confines of this study and within the semi-arid environment.

However, the value of the preceding discussion of the hypothesized water to
sediment supply divergence process to this research is that it may provide a framework for
identifying the interrelationship between the typical impacts of urbanization with the intra-
catchment processes that may govern or at least influence the downstream progression of
floodplain geometry and form, as observed in the field data.

Hypotheses for Self Enhancing Feedback Mechanisms

If it is argued or assumed, for the sake of discussion, that the hypothesized water to
sediment supply divergence process (as illustrated in Figure 3.6) is the or one of the primary
intra-catchment processes that governs the downstream progression of floodplain forms,
then any self enhancing feedback mechanisms to this process may have a significant effect on
floodplain geometry and stability. A self enhancing feedback mechanism to the water to
sediment supply divergence process would include any intra-catchment process that

increases sediment transport capacity, while not proportionately increasing sediment
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supply to the watercourse. These investigations identified downstream bed material fining
in armored floodplains, confluences, and the impacts of urbanization as having the potential
to be self enhancing feedback mechanisms to the hypothesized water to sediment supply
divergence process. The following paragraphs describe each of these “mechanisms” in terms
of how and under which circumstances they may be self enhancing feedback mechanisms to
the hypothesized water to sediment supply divergence process.
¢ Bed Material Fining in Armored Floodplains: In the context of braided gravel-bed
rivers, Ferguson (1993, p. 83) noted that: “Sediment sorting in braided rivers does
not only occur at the local scale. Downstream fining is usually apparent and can be
very pronounced and rapid.” In reference to investigations by Dawson (1988),
Ferguson (1993), further noted that: “Downstream fining in this and other braided
rivers can be orders of magnitude more rapid than can be accounted for by abrasion ...
and by bedload, so is conventionally attributed to selective transport.”
Furthermore, Wilcock and Kenworthy (2002) identified and quantified the non-
linear effect of sand content on gravel transport rates for watercourses with the bed
material composed of sand/gravel mixtures. That is, the investigations by Wilcock
and Kenworthy (2002) predict a large increase in the sediment transport capacity of
the coarser bed material, when the percent sand in the surface layer reaches
approximately 6 to 26 % in a sand/gravel mixture. Hence, the introduction of fine
material (i.e., sand and other particles less than approximately 2 mm in diameter)
into an armored floodplain can significantly increase sediment transport capacity,
when the supply of fine material reaches a threshold level.
This implies that selective transport can be induced in an armored floodplain by the
introduction of relatively fine material (via possibly a tributary) and can have the net

impact of increasing the bed material transport capacity and breaking up the armor
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layer, while not proportionately increasing the sediment supply rate from upstream.
Therefore, downstream bed material fining can be both a distinct characteristic of
braided gravel bed rivers and a self enhancing feedback mechanism to the
hypothesized water to sediment supply divergence process.

e Confluences: A confluence with a tributary can increase the difference between the
water and the sediment supply in a watercourse, when the flow in the tributary has a
higher water to sediment supply divergence level than the flow in the main
watercourse. Therefore, confluences can, under certain circumstances,
disproportionately increase the sediment transport capacity in a watercourse, while
contributing relatively little to the sediment supply to the watercourse.

¢ Impacts of Urbanization: In the absence of retention or detention basins,
urbanization typically results in increasing the magnitude and duration of flow
events in the long-term, without proportionately contributing sediment supply.
Therefore, the net impact of urbanization can be to directly increase the water to
sediment supply divergence along a watercourse.

In summary, this section provides basic arguments for how and under which
circumstances bed material fining, confluences, and the impacts of urbanization can be self
enhancing feedback mechanisms to the hypothesized water to sediment supply divergence
process. It is generally recognized and was observed as part of this research that bed
material fining, confluences, and the impacts of urbanization are often associated with
changes in the geometry and/or form of the downstream floodplains; hence, it is possible, if
not logical, that they could be self enhancing feedback mechanisms to an underlying intra-

catchment process responsible for the downstream progression of floodplain geometry.
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Hypotheses for Floodplain Braiding Mechanisms in Terms of Intra-Catchment
Processes

Figure 3.5 provides a useful means to compare and evaluate the hydraulic controls
associated with the various floodplain forms within the non-armored and armored
floodplain continuums. Comparison of Figures 3.5a with 3.5b clearly illustrates that the
downstream progression of floodplain forms differs dramatically between the non-armored
and armored floodplain continuums in terms of the state metric (i.e., specific stream power
or boundary shear stress). This, in turn, implies that that the processes and mechanisms
associated with the downstream progression of floodplain forms differs significantly
between the non-armored and armored floodplain continuums. Using the preceding
discussions for the hypothesized water to sediment supply divergence process and the
associated self enhancing feedback mechanisms as a foundation, the following working
hypotheses have been developed to describe the braiding mechanisms for stable
watercourses in terms of intra-catchment processes:

¢ Braiding Mechanism for Stable Non-Armored Floodplains: I hypothesize that the
water to sediment supply divergence process alone may be the intra-catchment
process governing the downstream progression of floodplain forms for stable non-
armored watercourses, within the geomorphic limits of this study. Hence, the
braiding threshold for non-armored floodplains corresponds to the condition where
the water to sediment supply divergence is of sufficient magnitude that the
formation and erosion of bars are required to maintain a sediment balance within
the floodplain, during the course of a flow event and/or over long periods of time. As
emphasized in the above discussion, I contend that there are both stable and
unstable braided floodplains, as described by Lane (1957) and in Section 3.4.2. In
the case of braiding in unstable floodplains, braiding can result strictly from bank

erosion and channel widening, as described and compiled by Bridge (1993, p. 16).
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Braiding Mechanism for Stable Armored Floodplains: Based on the distribution
of the data points corresponding to pool-riffle and braided floodplains shown in
Figure 3.5b, it is apparent that the hypothesized water to sediment supply
divergence process cannot alone be responsible for the transition of pool-riffle to
braided floodplains and the corresponding “jump” in width-to-depth ratios. That is,
the data points shown in Figure 3.5b for the pool-riffle and braided floodplains are
isolated and cohesive, with no overlapping in terms of width-to-depth ratio. Based
on field observations and the data in Figure 3.5b, I hypothesize that the effects of bed
material fining (i.e., an increase in the percent sand in the surface layer) acting in
conjunction with the water to sediment supply divergence process may be the
mechanisms responsible for the transition of pool-riffle to braided floodplains. As
described by Ferguson (1993) and as I directly observed during these investigations,
downstream bed material fining within the braided floodplain can be pronounced
and rapid.

As described in the preceding sub-section, bed material fining may also be a self
enhancing feedback mechanism to the process of water to sediment supply
divergence, when there is sufficient fine material in the surface layer. As shown in
Figure 3.9, the braided channels in the armored floodplain continuum were
estimated to have percent sand values ranging from 11% to 20 % in the surface
layer. This observed range of percent sand values is within the range of percent sand
(i-e., 6% to 26%) where Wilcock and Kenworthy (2002) predict a large increase in
the sediment transport capacity of the coarser bed material. Itis also important to
note that the data in Figure 3.9 also indicate that percentage of sand alone is not a
good indicator for floodplain braiding, which is why I contend that the hypothesized

water to sediment supply divergence process in conjunction with bed material fining
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may be the two intra-catchment processes responsible for stable floodplain braiding

in the armored continuum.

Amored Floodplain Continuum:
Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)
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Figure 3.9 - Width-to-depth ratio versus percent sand for armored floodplains

In general, the catchment-scale processes associated with floodplain braiding,
described herein, are believed to be complementary to the reach or floodplain unit-scale
conceptual models for the mechanisms of braid development described by Leopold and
Wolman (1957), Ashmore (1991), Bridge (1993), and Ferguson (1993). That is, these
conceptual models for mechanisms of braid development focus on “How do rivers braid?;”

whereas, the working hypotheses developed by this author focus on “Why do rivers braid?’

in terms of intra-catchment processes.

3.5.3 Non-Armored Floodplain Continuum: Stability and Braiding Thresholds

The floodplain state plots shown in Figure 3.5 quantitatively describe the natural
downstream progression of floodplain forms using specific stream power (Equation 3.2) and
width-to-depth ratio as the state and shape metrics. In addition, Figure 3.5a also provides a
means to quantitatively differentiate between stable and unstable floodplains. As a result,

the floodplain state plots thereby provide a basis for defining both stability and braiding
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thresholds using binary linear logistic regression analysis techniques, as described in Section
3.4.5.

Based on the data set shown in Figure 3.5a, logistic regression analyses have been
performed to quantify both stability and braiding thresholds for the non-armored
floodplain continuum, as shown in Figure 3.10. The logistic regression analyses are also
summarized in Table 3.9. Asindicated in Table 3.9, evaluation of the regression coefficients
indicates that the logistic regression models are statistically significant. As described
previously, the distribution of data points within the floodplain state plots for W/d versus
Specific Stream Power and W/d versus Boundary Shear Stress are very similar; hence,
logistic regression analyses have also been performed with boundary shear stress (Equation
3.3) as the state metric. The results of these analyses are also provided in Figure 3.10 and
Table 3.9. Itis very important to recognize that the floodplain state diagrams shown in
Figure 3.10 only apply to the geomorphic limits for this research, as described and shown in
Section 3.3.1 and Figure 3.1.

Interpretation and Physical Basis for the Non-Armored Continuum Stability
Thresholds

The floodplain state diagrams provided in Figure 3.10 can be used to address one of
the two practical research questions at the core of these investigations: How can we

quantitatively assess the existing stability state of a floodplain? That is, Equation 3.22, plus

the intercept and partial slope coefficients (i.e., £,, 5,, and f3,) given in Table 3.9, can be

used to estimate the probability that the floodplain is unstable and in a state of severe
instability (i.e., P(Y =S, )) using values for the state and shape metrics based on cross

section and flow data for a floodplain. Hence, the probability that the floodplain is stable and
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Figure 3.10 - Floodplain stability and braiding threshold diagrams for the non-
armored continuum within the geomorphic limits of this research
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Table 3.9 - Results of the logistic regression analyses: Non-armored floodplain
continuum stability and braiding thresholds

Logistic Regression Non-Armored or Type 1 Floodplain Continuum
Parameters and Stability and Braiding Thresholds
Results
Threshold Type & ID Stability-w-1 | Braiding- o-1 Stability-1-1 Braiding-t-1
Figure Shown Figure 3.10a Figure 3.10a Figure 3.10b Figure 3.10b
Shape Metric W/d (Eq.3.16) | W/d (Eq.3.16) | W/d (Eq.3.16) | W/d (Eg.3.16)
State Metric @ (Eq.3.2) @ (Eq.3.2) 7 (Eq.3.3) 7 (Eq.3.3)
State A (S4) unstable non-braided unstable non-braided
State B (Sg) stable braided stable braided
Total Sample Size (n) 273 273 273 273
Sample Size in State A 156 222 156 222
Samples Size in State B 117 51 117 51
X log10(W/d) log10(W/d) log1o(W/4) log1o(W/d)
X2 IOgm(a)) IOgm(a)) 10g1o(’l' ) 10g1o(’l' )
B, -32.7596 42.1887 -43.2234 48.0928
B 6.4391 -19.0285 6.4544 -19.2031
B, 11.9589 -5.8813 19.6626 -10.0109
Slope=—f3,/ B3, -0.538 -3.235 -0.328 -1.918
Zy (Eq. 3.23) -7.59 5.57 -7.50 5.66
Z; (Eq.3.23) 6.15 -5.65 5.78 -5.87
Z; (Eq. 3.23) 7.75 -4.56 7.66 -4.62
Statistically Significant: yes yes yes yes
|Zi] >>2? Fori=0to 2

in a state of dynamic equilibrium (i.e., P(Y =S, )) can then be estimated by the following

equation:P(YzSB)zl—P(Y =SA).

To evaluate the physical significance of the stability thresholds, it is important to

evaluate both the intercept (i.e., position of the regressions lines in relation to the vertical

axis) and the slope of the regression lines in terms of physical processes. First consider the

position of the stability threshold lines (shown in Figure 3.10) in terms of the y-axis or state

metric. As described in Section 3.4.2, the criteria used to differentiate between stable and

unstable floodplains in the field were based on the degree/extent of bank failures and head-

cut migrations. Hence, the position of the stability threshold lines should be directly related

to both the erosional resistance and stability characteristics of the banks, as similarly

observed by Schumm (1977) and Harvey et al. (1985). Therefore, it would be anticipated
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that the probability for the floodplain to be unstable would increase as the specific stream
power or boundary shear stress increases, as shown in Figure 3.10.

Secondly, consider the slope of the stability threshold lines, which indicates that the
specific stream power (or boundary shear stress) decreases as the width-to-depth ratio
increases for stable systems. This indicates that the slope of the stability threshold lines are
consistent with the general downstream trends along a watercourse (within the
geomorphic limits of this study), where specific stream power decreases as width-to-depth
ratio increases. Itis demonstrated in detail in Section 4.5.3 that the slope of the stability
threshold lines appear to have a unique correlation with the basic flow relationships of
continuity and flow resistance.

Interpretation and Physical Basis for the Non-Armored Continuum Braiding
Thresholds

As with the stability thresholds, the results from the logistic regression analyses for

the braiding thresholds can be used to estimate the probability that the floodplain is single-
thread or non-braided (i.e., P(Y =S, )), via Equation 3.22 plus the intercept and partial
slope coefficients (i.e, £,, f,,and f,) given in Table 3.9. Hence, the probability that the
floodplain is braided (i.e., P(Y =S, )) can then be estimated by the following

equation: P(Y = SB)= 1-P(Y = SA).

As described in Section 3.3.1 and shown in Figure 3.1, the geomorphic limits
associated with this research encompass the upstream braiding threshold. Thatis, a
concerted effort was given to selecting study reaches where high gradient single-thread
floodplains transitioned into braided floodplains, and for this reason this research may be

relatively unique. The braiding thresholds shown in Figure 3.10 are also unique in that they

are superimposed on the stability thresholds.
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In terms of the physical significance of the braiding threshold, the positions of the
braiding threshold lines in Figure 3.10 are consistent with the general downstream
directionality (i.e., left to right) of Figure 3.10. As also would be expected and as correctly
reflected in the slope of the logistic regression lines for the braiding thresholds (Figure
3.10), the data indicate that the progression of a single-thread (i.e., non-braided) to a
braided floodplain occurs at significantly lower width-to-depth ratios and at higher specific

stream power for unstable watercourses than for stable watercourses.

3.5.4 Armored Floodplain Continuum: Stability and Braiding Thresholds

The floodplain state plots shown in Figure 3.5 quantitatively describe the natural
downstream progression of floodplain forms using specific stream power (Equation 3.2) as
the state metric and the width-to-depth ratio as the shape metric. Comparison of Figures
3.5a with 3.5b clearly illustrates that the downstream progression of floodplain forms
differs dramatically between the non-armored and armored floodplain continuums in terms
of the state metric (i.e., specific stream power or boundary shear stress). This, in turn,
implies that that the processes and mechanisms associated with the downstream
progression of floodplain forms differ significantly between the non-armored and armored
floodplain continuums, as would be expected.

It is important to recognize that in the armored floodplain continuum, the plane-
mixed-bed is by definition a transitory floodplain form and describes the condition when an
underlying armored floodplain form is temporarily buried by a relatively thin layer of finer,
but still relatively coarse, material. During the course of this research, plane-mixed-bed
floodplain forms developed along several watercourses as a result of a combination of
recent wildfires and significant rainfall events. This floodplain form is considered
“transitory” instead of “unstable”, since field observations suggest that the finer fill material

is transported away, during even relatively low magnitude flow events, leaving the original
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floodplain form essentially unaltered. As indicated in Figure 3.5b, the plane-mixed-bed
floodplain form has shape and state metrics that overlap with cascade, step-pool, plane-
coarse-bed, and pool-riffle floodplain forms.

Unlike the non-armored continuum, Figure 3.5b does not provide a means to
quantitatively differentiate between stable and unstable floodplains in the armored
continuum. That is, the data points corresponding to unstable floodplains are not cohesive
in terms of the state and shape metrics used for Figure 3.5b. This implies that the processes
and mechanisms associated with floodplain stability are more complex in the armored
continuum than in the non-armored continuum, as described by Chin(1998).

However, Figures 3.5b and 3.11a provide a basis for characterizing the state/shape
metrics for stable floodplain forms in the armored floodplain continuum (as summarized in
Table 3.10) and, thereby, provide a qualitative means for evaluating the stability state of a
floodplain.

Also unlike the non-armor continuum, Figure 3.5b does not provide a means to
quantitatively define a braiding threshold for armored floodplains using logistic regression
techniques, since there is not an overlap of data points for stable non-braided and braided
floodplains. However, it can be deduced from Figure 3.4 by the general proximity of the
data points for all of the braided floodplains, regardless of floodplain continuum, that there
may be at least a basic correlation between the braiding thresholds for non-armored and

armored floodplains.
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Table 3.10 - Summary of width-to-depth ratios for floodplain forms in the armored
continuum

Width-To- Specific Stream Power | Mean Armor Layer
. Depth Ratio (Eq. 3.2) Diameter - ds
Floodplain Form (W/d) (W/m?) (mm)
Range Mean Range Mean Range Mean
cascade and step- 5.7-7.9 6.6 1051-3412 2083 124-152 139
pool (stable only)
plane-coarse-bed | 11.6-18.5 | 15.8 317-463 404 22-22 22
(stable only)
plane-coarse-bed | 11.6-57.3 | 24.1 116-464 271 20-22 21
(stable and
unstable)
plane-mixed-bed 7.1-22.1 13.9 37-1412 686 7.2-51 19.7
(transitory)
pool-riffle 8.2-24 15.8 50-1915 504 34-100 55.4
(stable only)
braided 33.4-41.8 | 36.7 149-425 244 22-34 25
(stable only)
braided 33.4-55.7 | 39.1 127-425 237 16-34 23
(stable and
unstable)

To test this deduction, logistic regression techniques were used to evaluate a
braiding threshold using data points corresponding to both the non-armored and armored
floodplain continuums. The results of this regression analysis are provided in Figure 3.11b
and Table 3.11. In Figure 3.11a, two sets of the logistic regression lines for the braiding
threshold are compared and superimposed with the floodplain state plot for the armored
floodplain continuum. These two sets of regression lines correspond to: (a) an analysis of
just the data points for the non-armored (i.e., Type 1) floodplain continuum (Figure 3.10a
and Tables 3.7 and 3.9); and (b) an analysis of data points for both the non-armored and
armored (i.e.,, Type 1 and 2) floodplain continuums. As indicated in Figure 3.11a and Table
3.11, the results of the logistic regression analyses for these two data sets are very nearly
identical and may imply that the braiding thresholds for the non-armored and armored
floodplain continuums are one in the same (in terms of the state and shape metrics used in
this research), even though I contend that the mechanisms associated with the initiation of

braiding in the two different floodplain continuums are significantly different. However,
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Figure 3.11 - Comparison of logistic regression analyses for the non-armored
floodplain continuum vs. the non-armored and armored floodplain continuums
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this comparison is not entirely conclusive, since the number of data points corresponding to

armored-braided floodplains represents only 4 percent of the total sample size (i.e., 15 out

of 354 per Table 3.11).

Gradation data were collected at multiple locations at each of the study sites; that is,

an upstream and a downstream sediment sample were typically collected at each site.

However, it was time-prohibitive to collect gradation data at each cross section; hence,

gradation data were assigned to groups of cross sections. Attempts were made to include

the measured “percent sand” (i.e., the percentage of the particles smaller than 2 mm) as a

third independent variable in the logistic regression analyses; however, these analyses did

not successfully converge. [ suspect that assigning gradation data to groups of cross

sections prevented the logistic regression analyses from converging.

Table 3.11 - Comparison of logistic regression analyses for the non-armored
floodplain continuum vs. the non-armored and armored floodplain continuums

Logistic Regression
Parameters and

Braiding Threshold for Only
the Non-Armored

Braiding Threshold Based
on Data Points for Both the

Results Floodplain Continuum Non-Armored and Armored
Floodplain Continuums
Threshold Type & ID Braiding-w-1 Braiding-®-2

Figure Shown

Figure 3.10a & 3.11a

Figure 3.11a & 3.11b

Line IDs in Figure 3.11 P(Braided T1) P(Braid T1-2)
Shape Metric W/d (Eq. 3.16) W/d (Eq. 3.16)
State Metric @ (Eq.3.2) @ (Eq.3.2)
State A (S4) non-braided non-braided
State B (Sg) braided braided
Total Sample Size (n) 273 354
Sample Size in State A 222 288
Samples Size in State B 51 66
Xi log1o(W/d) logo(W/d)
X2 10g1o(CU) IOgm(a))
B, 42.1887 39.7135
B -19.0285 -18.2570
B, -5.8813 -5.2022
Slope= — B,/ 3, -3.235 -3.509
Zy (Eq. 3.23) 5.57 6.77
Z; (Eq.3.23) -5.65 -7.02
Z; (Eq. 3.23) -4.56 -5.13
Statistically Significant: yes yes

|Zi| >>2? Fori=0to 3
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3.5.5 Conceptual Models for Intra-Catchment Processes

To summarize the key findings of this research in terms of intra-catchment
processes, the results of these investigations have been compiled into conceptual models for
intra-catchment processes. The conceptual model for intra-catchment processes for the non-
armored and armored floodplain continuum are provided in Figures 3.12 and 3.13,
respectively. The objectives of these conceptual models are to illustrate in one figure:

e the natural downstream progression of floodplain forms in terms of the specific
stream power and width-to-depth ratio (i.e., state and shape metrics);

¢ the inferred downstream trends for key intra-catchment parameters (i.e., water
supply or peak flow rate, width-to-depth ratio, sediment supply, specific stream
power, bed slope, and percent sand) corresponding to the downstream progression
of floodplain forms;

¢ the logistic stability and braiding thresholds, for the non-armored continuum,
defined in terms of specific stream power (Equation 3.2) and the width-to-depth
ratio (W/d); and

e the logistic braiding threshold for the non-armored floodplain continuum
superimposed onto the data points for the armored continuum, for reference

purposes only.
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Figure 3.12 - Non-armored floodplain continuum: conceptual model for intra-
catchment processes: including typical floodplain geometries, downstream trends,

and braiding/stability thresholds
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3.5.6 Floodplain Response Trends and Constraints Associated With Incremental
Increases in Flow Rate

The basic assumption underlying the concept of dynamic equilibrium is that the
geometry of a floodplain will adjust to convey both the water and sediment discharges
supplied from the upstream catchment, while maintaining a balance with the erosional
resistance and stability characteristics of the banks (Schumm, 1977). Since the floodplain
state plots shown in Figure 3.5 quantitatively describe the natural downstream progression
of floodplain geometry, comparison of Figures 3.5a with 3.5b should be useful for gaining
insights into the response trends and constraints associated with relatively small increases
in flow rates for each of the floodplain continuums.

First consider the non-armored continuum. In Figure 3.12b, the data points for the
stable non-armored floodplains have values for specific stream power ranging from
approximately 300 to 10 (W/m?2), while the width-to-depth ratio varies from approximately
4 to 310. Clearly, both the slope and the width-to-depth ratio vary in the downstream
direction within the geomorphic limits of this study; however, these data also illustrate that
the primary response trend of non-armored floodplains to incremental increases in flow
rate(i.e., < 10%) is to increase the width-to-depth ratio of the floodplain. In addition, this
trend is reflected when the data points along an individual (stable) watercourse are
overlaid onto the state diagram (as shown in Figure 3.5a). This floodplain response trend

can be expressed as a floodplain response constraint as follows:

S, =S, = constant Equation 3.24
where: S, =energy or friction slope (m/m)

S, =bed slope (m/m)

It is important to recognize that the preceding discussion and the floodplain

response constraint for floodplains in the non-armored continuum are not intended to imply
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that non-armored floodplains are not susceptible to degradation or incising. To the
contrary, non-armored floodplains are very susceptible to shifting into a state of severe
instability (as described in Chapter 1). When unstable, non-armored floodplains may
undergo severe degradation and the upstream migration of multiple head-cuts, as described
in the Channel Evolution Model (CEM) developed by Schumm et al. (1981, 1984). This is
why these investigations have focused on finding a means to assess the stability state of a
floodplain.

However, a non-armored floodplain may undergo significant changes in geometry in
response to changes in water and sediment supply without shifting into a state of severe
instability, as demonstrated by the observed downstream progression of floodplain forms
illustrated in Figure 3.12. It is under this scenario that the floodplain response constraint
(Equation 3.24) is of importance and value.

The data points for pool-riffle floodplains (in Figure 3.13b) have values for specific
stream power ranging from approximately 1,900 to 50 (W/m?2), while the width-to-depth
ratio only varies from approximately 8 to 24. Since the range of specific stream power is so
wide in comparison to the range of the width to depth ratios, the data shown in Figure 3.5b
imply that the primary response of pool-riffle floodplains, to small increases flow rate, is to
decrease the bed slope; however, the changes in width-to-depth ratios are also relatively
significant. The slope of the pool-riffle data points shown in the floodplain state diagram
parallels that of the braiding threshold shown in Figure 3.13b and can be expressed as a

floodplain response constraint as follows:

Alog(w)
Alog(W /d)

where: @ = specific stream power (Equation 3.2)
W /d = width-to-depth ratio

I

—3.2 Equation 3.25
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The value of “-3.2” corresponds to the slope (i.e., -5://:) of the “Braiding-®-1"
threshold, as shown in Figure 3.13b and Table 3.11. (Another method for setting the value
for the floodplain response constraint is discussed in Section 4.5.4.) Unfortunately, there
are an insufficient number of data points to identify any basic trends for cascade, step-pool,
or braided floodplains in the armored floodplain continuum, as can be seen in Figure 3.13b..

The significance, application, and validity of these floodplain response constraints
(i.e., Eq. 3.25) are further addressed in Chapter 4; however, it is fully recognized that the
empirical floodplain response constraints defined by Equations 3.25 and 3.26 are simple
representations of the very complex processes by which the erosion and stability
characteristics of the banks influence the trend of the width, depth, and/or slope
adjustments of a floodplain. Itis further recognized that these floodplain response
constraints are regional in nature and only reflect the characteristics of the banks within the

study area.

3.5.7 Comparison of Floodplain State and Shape Metrics with Previous Studies

As reflected in Figures 3.12 and 3.13, these investigations focused on the upstream
braiding threshold where high gradient single-thread floodplains transition to lower
gradient braided floodplains, in the semi-arid environment of southern California. In
addition, these investigations focused on “floodplains,” as opposed to channels, and
differentiated between:

e Stable and unstable floodplains as defined in Table 3.4; and
¢ Floodplains in the non-armored and armored continuums per Figure 2.5 and Tables
2.4 and 2.5, which are similar to but not completely analogous to “sand-bed” and
“gravel-bed” rivers.
As a result, it is difficult to make direct comparisons to data from previous studies in terms

of the state and shape metrics used in these investigations.
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Within the literature, the previous study most analogous to these investigations is
by Nanson and Croke (1992), within which they describe “A genetic classification of
floodplains.” The classification system defined by Nanson and Croke (1992) is unique in
that it describes an array of floodplain forms (from a geomorphic perspective) and links
them into potential continuums using identified ranges of specific stream power.

In Tables 3.12a and 3.12b, the values of specific stream power estimated for the
floodplains included in this study are summarized and compared with those compiled by
Nanson and Croke (1992). Itis important to note that this is not a direct comparison. That
is, the values of specific stream power (@) computed in this study correspond to a range of
reference flows that inundate the entire active floodplain (i.e., estimates for Qzs, Qs9, and
Q100); whereas, the values of “@’ reported by Nanson and Croke (1992) correspond to
bankfull flow conditions within the channel, which were used as a surrogate for the
floodplain. In addition, Nanson and Croke (1992) do not differentiate their floodplains
(geomorphic perspective) in terms of their stability state or the presence of bed armoring,
as was done in this study.

In spite of this differences, there is relatively close agreement between the
estimated values of “@’ for both the braided and non-braided floodplain forms in many
respects, as indicated in Tables 3.12a and 3.12b. That is, Nanson and Croke (1992) report a
range of 50 to 300 (W/m?2) for braided floodplains, whereas the data for this study indicate
a range of approximately 10 to 430 (W/m?2) for stable braided floodplains and a range of 60
to 1400 (W/m?2) for unstable braided floodplains. For the non-braided floodplains, the
estimated range of values for “@’ overlap; however, the range of values estimated for this
study extend an order of magnitude lower than that reported by Nanson and Croke (1992).
This may at least be in part due to how the values of “@’ have been computed (i.e.,

floodplain vs. channel) and/or due to the influence of bed armoring.
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Table 3.12a - Comparison of state and shape metrics for braided floodplains with

previous studies

State Metric Shape Metric
Description Specific Stream Power (®) Width-to-Depth Ratio
(W/m?) (W/d)
g;;il;dsig:‘}l,(:gdplams Range Mean Range Mean
Non-armored 7 to 1397 165 27 to 308 78
Stable 7 to 46 22 66 to 308 164
Unstable 63 to 1397 209 27to 111 51
Armored 127 to 425 236 33to 56 39
Stable 148 to 425 245 33 to 42 37
Unstable 127 to 285 204 42 to 56 48
Non-Armored and 7 to 1397 27 to 308
Armored
Bralc_led Flood_plams 50 to 300 @ > ~50t060®
Previous Studies

Notes: (1) Estimated state and shape metrics correspond to Qzs, Qso, and Q1go.
(2) Nanson and Croke (1992) based on estimated bankfull conditions for
Class B braided floodplains
(3) Theoretical analyses by Engelund and Skovgaard (1973), Fredsoe (1978),

Fukuoka (1989)

Table 3.12b - Comparison of state and shape metrics for non-braided floodplains

with previous studies

State Metric Shape Metric
Description Specific Stream Power (o) Width-to-Depth Ratio
(W/m?) (W/d)
?ﬁig{j&iﬁ? Floodplains Range Mean Range Mean
Non-armored 15 to 2300 15 4to73 18
Stable 15to 318 94 4to73 21
Unstable 65 to 2300 383 4to 33 15
Armored 37 to 3412 698 6to57 16
Stable 37 to 3412 785 6to24 14
Unstable 116 to 381 238 12to 57 26
Non-Armored and 15 to 3412 4t073
Armored
Non-_Bralded P:loodplams > ~300@ <~50t060®
Previous Studies

Notes: (1) Estimated state and shape metrics correspond to Qzs, Qso, and Qioo.
(2) Nanson and Croke (1992) based on estimated bankfull conditions for

Class A floodplains

(3) Theoretical analyses by Engelund and Skovgaard (1973), Fredsoe (1978),

Fukuoka (1989)
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For the width-to-depth ratio (W/d), the findings of these investigations are
compared in Tables 3.12a and 3.12b with the theoretical analyses by Engelund and
Skovgaard (1973), Fredsoe (1978), and Fukuoka (1989). These theoretical analyses
indicate that the major control on braiding is the width-to-depth ratio and that braiding
occurs when W/d > ~ 50 to 60. As also noted by Bridge (1993), the theoretical threshold
for braiding (i.e., W/d > ~ 50 to 60) can be influenced to a limited degree by bed material
mobility criteria, bedform via roughness coefficient values (Fredsoe, 1978), and slope
(Fukuoka, 1989).

As indicated in Tables 3.12a and 3.12b, the results of this study are for the most part
consistent with the theoretical threshold of W/d > ~ 50 to 60. However, the results of these
investigations indicate that braiding may occur at significantly lower width-to-depth ratios
for unstable and/or armored braided floodplains, as listed in Table 3.12a and illustrated in
Figures 3.12b and 3.13b. This point is further reflected by the “negative” slope for the
logistic braiding threshold lines shown in Figure 3.12b, which indicates that braiding may

occur at lower width-to-depth ratios as specific stream power increases.

3.6 Summary and Conclusions
3.6.1 Primary Findings

The primary objective of the research documented in this chapter was to develop
conceptual models describing key intra-catchment processes by addressing the following
applied research questions:

e What are the intra-catchment processes that govern the observed downstream
progression of floodplain forms in a stable system, including specifically the

progression from single-thread to braided floodplains?
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e How do the erosional resistance and stability characteristics of the banks influence
the natural downstream progression of floodplain geometry and can this influence
be quantified into general floodplain response trends and constraints?

e What is the interrelationship between the stability state with the form and geometry
of a floodplain, under various hydraulic conditions?

¢ What is the impact of urbanization on the primary intra-catchment processes that
govern the natural downstream floodplain form progression?

To develop conceptual models for intra-catchment processes, the approach adopted
in this research was to use field data to first find a quantitative means to describe the
natural downstream progression of floodplain forms, then use these findings to infer the
key intra-catchment processes for the non-armored and armored floodplain continuums
that govern the downstream progression of floodplain forms. This approach is based on the
fundamental concept that the observed natural downstream progression of floodplain
forms is a direct reflection of natural changes in intra-catchment runoff and sedimentation
processes in alluvial or mostly alluvial floodplains.

In Figures 3.12 and 3.13, the primary findings of the research described in this
chapter have been compiled into conceptual models that illustrate the interrelationship of
intra-catchment processes with the downstream progression of floodplain forms for both
the non-armored and armored floodplain continuums. For the non-armored floodplain
continuum, the floodplain state diagrams within the conceptual model provided the bases
to:

e develop logistic stability and braiding thresholds (Figure 3.5 and Figure 3.12b) that
provide a means to quantitatively assess the state of a floodplain in terms of both

stability and braiding; and
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¢ infer that the primary response of a non-armored floodplain to incremental
increases in flow (while the sediment supply is relatively unchanged) is an increase
in the width-to-depth ratio and, thereby, provide a means to define a floodplain
response constraint (Equation 3.24).
For the armored floodplain continuum, these floodplain state diagrams provided
the bases to:
e qualitatively assess the state of a floodplain in terms of both stability and braiding;
and
¢ define a floodplain response constraint (Equation 3.25) in terms of changes in
specific stream power and width-to-depth ratio, for pool-riffle floodplains.
Therefore, the conceptual models for intra-catchment processes directly address, to a
reasonable degree, the first of the practical research questions at the core of this research:
How can we assess the existing stability state of a floodplain? Via the floodplain response
constraints, the conceptual models also provide a framework for addressing the second
practical research question at the core of this research: How can we estimate the trend and

magnitude of the change in floodplain geometry?

3.6.2 Avenues for Further Investigation
Further Investigations for Armored Floodplain Forms

[ fully recognizes that the conceptual model for intra-catchment processes is
significantly more developed for the non-armored floodplain continuum than for the
armored. This is a direct result of the fact that far more data were collected for floodplains
in non-armored continuum than any of the other continuums. It is believed that this
primarily stems from the non-armored continuum being generally the most prevalent
continuum in study area and by far the most prevalent continuum in the areas that have the
higher levels of urbanization.
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As part of these investigations, sufficient data have been collected to assess a
floodplain response constraint for only the pool-riffle floodplain form, with reasonable
confidence. Unfortunately, these investigation did not collect sufficient data to assess
floodplain response trends and constraints for all other floodplain forms, with braided
being the most important of the floodplain forms in terms of floodplain management. There
are also insufficient data to quantitatively assess the braiding threshold for the armored
floodplains using logistic regression techniques, with the independent variables being @,
W/d, and some metric for the bed material gradation. Therefore, there are multiple avenues
for further investigations of the armored floodplain continuum.

The Hypothesized Water to Sediment Supply Divergence Process and Self Enhancing
Feedback Mechanisms

The objective of the discussion in Section 3.5.2 is to simply describe a plausible, if
not logical, interpretation of key aspects of the floodplain state plots (Figure 3.5), in terms
of basic intra-catchment processes. Hence, the discussions of the water to sediment supply
divergence process (Section 3.5.2) and the corresponding self enhancing feedback
mechanisms are basically an attempt to relate the typical impacts of urbanization to the
intra-catchment processes that may be responsible for the downstream progression of
floodplain geometry and forms. However, I strongly believe that further investigation into
and quantification of the hypothesized water to sediment supply divergence process, and its
interrelationship with floodplain response mechanisms and braiding thresholds, could
prove interesting from both a fluvial geomorphology and a floodplain management

perspective.
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Chapter 4: Modeling Tools for Estimating the Trend and Magnitude
of the Change in Floodplain Geometry Due to Incremental
Changes in Water and Sediment Supply

4.1 Chapter Overview
4.1.1 Abstract

For the non-armored and armored floodplain continuums observed in the semi-arid
environment of southern California, regime-type modeling tools have been developed for
estimating the trend and magnitude of the change in floodplain geometry, due to changes in
water and sediment supply. At the core of these techniques are the basic flow relationships
of continuity, flow resistance, and sediment transport for floodplains with trapezoidal
geometry. To factor in bank erosional resistance and stability characteristics, the basic flow
relationships are coupled with floodplain response constraints derived from the conceptual
models for intra-catchment processes and the corresponding floodplain state diagrams,
provided in Chapter 3. Since I contend that the response of a floodplain to changes in water
and sediment supply can differ depending upon the initial stability state of the floodplain,
the modeling tools also incorporate techniques for assessing both the initial and projected

stability state for a floodplain.

4.1.2 Introduction/Research Questions

The core practical research questions motivating the investigations documented in
this dissertation are:
e How can we assess the existing stability state of a floodplain?
e How can we estimate the trend and magnitude of the change in floodplain geometry

due to perturbations in intra-catchment processes associated with urbanization?
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To address these core questions it was first important to gain a basic understanding
of the form and nature of the floodplains in the semi-arid environment of southern
California. As described in Chapter 2, three basic floodplain continuums have been
identified for southern California: non-armored, armored, and active-regional alluvial fan.
As shown in Figure 2.5, each of these continuums are comprised of three or more alluvial
floodplain forms that have a general downstream progression in stable systems.

Based on the argument that the observed natural downstream progression of
floodplain forms is a direct reflection of natural changes in intra-catchment runoff and
sedimentation processes, the next step taken to address the core practical research
questions involved searching for a quantitative means to describe this observed
progression of floodplain forms in terms of a state and a shape metric. This search led to
the development of floodplain state diagrams, where the downstream progression of
floodplain forms is described in terms of specific stream power (or boundary stress) and
the width-to-depth ratio. These floodplain state diagrams provided the basis to: (a) assess
the stability state of a floodplain; (b) assess general floodplain response trends; (c) describe
the interaction of key intra-catchment processes that govern the downstream progression
of floodplain forms; and (d) develop hypotheses regarding the mechanisms governing the
upstream braiding threshold for non-armored and armored floodplains. As described in
Chapter 3, these findings were compiled diagrammatically to create conceptual models for
intra-catchment process for the non-armored and armored floodplain continuums. In terms
of the practical research questions at the core of these investigations, these conceptual
models provide: (a) a means to assess the current stability state of a floodplain; and (b) a
framework within which to develop methods for estimating the trend and magnitude of the
change in floodplain geometry due to perturbations in the catchment associated with

urbanization.
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Based on the framework described in Chapter 3, the objective of this chapter is to
address the second and final practical research question at the core of these investigations:
How can we estimate the trend and magnitude of the change in floodplain geometry
due to perturbations in intra-catchment processes associated with urbanization? This
research question is only addressed for the non-armored (or Type 1) and armored (i.e.,
Type 2) floodplain continuums. The active-regional alluvial fan continuum has been
included in this research on a qualitative and conceptual level (in Chapter 2) for the sake of
completeness. However, this floodplain continuum has been excluded from quantitative
reach-scale investigation in this research, since active alluvial fan floodplains are already

highly regulated by FEMA and/or local agency guidelines.

4.1.3 Modeling Tool Objectives, Approach, and Physical Basis
Modeling Tool Objectives

The fundamental fluvial geomorphic concept underlying the evaluation of
watercourse stability and response is that an alluvial system can over time establish and
maintain an equilibrium condition, where the geomorphic characteristics of a floodplain
remain relatively stable over time (Tanner, 1968; Shen, 1979; Dingman, 1984). However,
the geometry of stable watercourses do not have to be static over time and may temporarily
change in response to temporal variations in water and sediment supply. Therefore, the
key characteristic of a stable watercourse is that fluvial processes, during channel and/or
floodplain formative flows, restore the geomorphic characteristics of a floodplain rather
than perpetuating and amplifying changes in geomorphic characteristics (Watson, et al.,
2005).

Inherent in this definition of stability and equilibrium is that a watercourse has a
critical stability threshold, such that when exceeded the watercourse will undergo a long-

term and complex series of significant (if not dramatic) changes in geomorphic
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characteristics. Conversely, I contend that incremental spatial variations in water and
sediment supply are responsible for the natural downstream progression of floodplain
forms in stable watercourses, as described in Chapters 2 and 3. When considering the
response of a watercourse to changes in water and sediment supply associated with
urbanization, it is, therefore, essential to be able to differentiate between a change that
results in:

e severe instability and potentially a dramatic change in geomorphic characteristics

once equilibrium is ultimately re-achieved; or

e arelatively minor adjustment in floodplain form, from a geomorphic perspective.
However, it is important to recognize that “a relatively minor adjustment in floodplain form,
from a geomorphic perspective” may be a very significant adjustment from a floodplain
management perspective.

Further inherent in the aforementioned definition of stability and dynamic
equilibrium is that stable and unstable watercourses will respond differently to a new
perturbation in water and/or sediment supply. Therefore, it is also essential to be able to
assess the initial stability state of a watercourse, when evaluating the potential change in
the geometry of a floodplain due to changes in water and sediment supply.

The objective of the research documented in this chapter was to develop a
technique or modeling tool for estimating the trend and magnitude of the change in
floodplain geometry due to changes in intra-catchment processes associated with
urbanization. Inherent in this objective for the modeling tool is the constraint that the
initial floodplain is stable (or relatively stable) and the corresponding floodplain geometry
is known. Hence, it is essential that the modeling tool include a means to assess the

stability state of both the initial and the projected floodplain geometry.
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Regime-Type Approach for the Modeling Tools

The basic assumption underlying the concept of dynamic equilibrium is that the
geometry of a floodplain will adjust to convey both the water and sediment discharges
supplied from the upstream catchment, while maintaining a balance with the erosional
resistance and stability characteristics of the banks within and/or along the periphery of
the floodplain (Schumm, 1977). Hence, it is generally argued that the basic flow
relationships of continuity, resistance, and sediment transport are not sufficient to describe
the processes by which the hydraulic geometry (including bed slope) of a watercourse
adjust to maintain dynamic equilibrium, because the basic flow relationships do not reflect
the influence of the erosional resistance and stability characteristics of the banks, as argued
and described by Laursen (1958) and Henderson (1966). Therefore, the challenge in
applying a regime-type modeling approach is to identify a constraint that defines how the
width, depth, and/or slope of a floodplain adjusts simultaneously to take into account the
influence of the erosional resistance and stability characteristics of the banks.

A regime-type modeling approach has been adopted to develop modeling tools for
estimating the trend and magnitude of the change in floodplain geometry, where the
solution of the basic flow relationships is facilitated by incorporating into the solution
procedure what are referred to herein as floodplain response constraints. The floodplain
response constraints are intended to account for the erosional resistance and stability
characteristics of the banks. As reflected in the floodplain state diagrams for the non-
armored and armored floodplain continuums (Figures 3.12b and 3.13b), the floodplain
response constraints have been derived from analyses of field data for a wide range of
floodplain geometries within the semi-arid environment of southern California, as

described in Chapter 3.
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Within the regime-type modeling approach for the modeling tools, what are
referred to as floodplain stability constraints are used to assess the stability state of the
floodplain and, thereby, evaluate the basic applicability of the regime-type modeling
approach. The form of the floodplain stability constraints is dependent on the continuum of
the floodplain being evaluated.

Physical Basis: Floodplain Response and Stability Constraints

To provide a framework for developing modeling tools, the reach-scale conceptual
model for stable floodplain continuums and conceptual models for intra-catchment processes
have been developed and are described in Chapters 2 and 3, respectively. The reach-scale
conceptual model for stable floodplain continuums (as illustrated in Figure 2.5), in
conjunction with Tables 2.4 and 2.5, provides the framework required to assess whether a
given floodplain is within the non-armored or armored floodplain continuum.

The conceptual models for intra-catchment processes (as illustrated in Figures 3.12
and 3.13) provide the framework for assessing both the floodplain response constraints
and floodplain stability constraints . As described in Section 3.5.6, the floodplain response
constraints for stable non-armored and armored floodplains have been defined as follows:

e For stable floodplains in the non-armored continuum, the floodplain response
constraint is such that the primary response to incremental increases in flow is to
increase the width-to-depth ratio, while holding the bed slope relatively constant.

This floodplain response constraint can be expressed as follows:

S, =S, = constant Equation 4.1a
where: S, = energy or friction slope (m/m)

S, =bed slope (m/m)
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For pool-riffle floodplains in the armored floodplain continuum, the floodplain
response constraint can be expressed as follows:

Alog(w)
Alog(W /d)

where: @ = specific stream power (Equation 3.2)
W /d =width-to-depth ratio

=-3.2 Equation 4.1b

As described in Sections 3.5.3 and 3.5.4, the floodplain state diagrams within the

conceptual models (Figure 3.12b and 3.13b) have provided a means for assessing the
stability state for both initial and projected floodplain geometries, within the geomorphic
limits of this study. The following paragraphs summarize the findings described in Sections
3.5.3 and 3.5.4, and the specific techniques developed for assessing the stability state of

floodplains within the non-armored and armored continuums:

For the non-armored floodplain continuum, the floodplain state plots (Figure 3.5)
provided the basis to develop a probabilistic and quantitative means to assess the
stability state of a floodplain using logistic regressions techniques. The results from
the logistic regression analyses for the stability threshold can be used to estimate the

probability that the floodplain is unstable and in state of severe instability (i.e.,

P(Y =S, )) via Equation 3.22 and the intercept and the partial slope coefficients (i.e.,
B,, B,,and B,) given in Table 3.9. Conversely, the probability that the floodplain is
stable and in a state of dynamic equilibrium (i.e., P(Y =3, )) can then be estimated
with the following equation: P(Y = Sy )=1-P(Y = SA).

For the armored floodplain continuum, the floodplain state diagram (Figure 3.13b)
provides a qualitative means to assess stability state for both the initial and

projected floodplain geometries. That is, Figure 3.13b illustrates the graphical

regions associated with observed stable and unstable floodplain forms in terms of
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specific stream power (as a state metric) and width-to-depth ratios (as a shape
metric).

Key components of the modeling tools described in this chapter are the floodplain
state diagrams that quantitatively describe the natural downstream progression of
floodplain forms in terms of specific stream power and the width-to-depth ratio. Based on
field observation and evaluation of the field data collected as part of these investigations, it
is important to recognize that [ argue that that flow events with return periods of
approximately 25 years and greater are the flow events primarily responsible for forming
and maintaining the geometry and form of a floodplain in the semi-arid environment of
southern California. Therefore, the floodplain state diagrams in Figures 3.12 and 3.13 only
include data points corresponding to estimated peak flow rates with return periods of 25,
50, and 100 years. Hence, the modeling tools described in this chapter are based on using a
reference discharge that has a return period of approximately 25 years or greater.

Physical Basis: The Role of Bed Gradation in the Modeling Tools

It is generally agreed that bed material gradation has a direct effect on the geometry,
form, and stability characteristics of a floodplain. However, it is also reasonable to say that
the specific relationships between bed material gradation and the geometry, form, and
stability characteristics of a floodplain are very complex and not necessarily well
understood. Hence, some state-type diagrams for watercourses have a metric reflecting the
bed material gradation, such as dsy (van den Burg, 1995; Bledsoe and Watson, 2001).

[t is important to recognize that bed material gradation is also specifically, but more
subtly, reflected in the state diagrams (Figures 3.12b and 3.13b) developed as part of these
investigations and used as a framework for the modeling tools described in this chapter.
That is, the influence of the bed material gradations for the study sites are indirectly

reflected in every aspect of the state diagrams (Figures 3.12b and 3.13b) as follows:
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e Asdescribed in Chapter 2, the floodplain forms are inherently related to both
bedforms and the associated bed material gradation; hence, bed gradation is
specifically reflected in the state diagrams (Figures 3.12b and 3.13b) via the different
symbols for each of the floodplain forms.

e Asdescribed in Chapter 3, both the state and shape metrics (i.e., specific stream
power and width-to-depth ratio) used to define the state diagrams are hydraulic
parameters; therefore, both metrics reflect the influence of bed material gradation in
terms of the Manning’s roughness coefficient (n) and the surveyed cross sectional
geometry used in the hydraulic computations.

In terms of the modeling tools described in this chapter, bed material gradation has
both a direct and an indirect role. That is, metrics based on bed gradation data are directly
used in sediment transport computations within the modeling tools; whereas, bed material
gradation has an indirect role in determining the whether the modeling tools for the non-
armored or armored floodplain continuum are appropriate for a specific application.
Therefore, the state diagrams and the modeling tools developed as part of these
investigations directly reflect the influence of bed material gradation, even though a metric
specifically based on bed material gradation data is not prominent in the state diagrams
(Figures 3.12b and 3.13b) which form the framework for the modeling tools described in
this chapter.

4.2 Previous Studies: Empirical, Analytical, and Rational Regime Modeling
Approaches

Regime models are the category of models that are predicated on the assumption
that the cross sectional form of an alluvial channel or floodplain can be predicted, with some
level of confidence, based on a single reference flow rate and the corresponding sediment

transport rate. At the foundation of regime models are the basic flow relationships of
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continuity, resistance, and sediment transport; however, it is generally agreed that the basic
flow relationships alone are not sufficient to describe the processes by which the hydraulic
geometry of a watercourse is adjusted to maintain dynamic equilibrium and, therefore,
cannot identify a unique floodplain geometry associated with a given set of hydraulic
conditions.

Numerous quantitative analysis techniques have been devised to resolve this issue.
However, these techniques basically fall into three basic approaches: empirical, analytical,
and rational regime modeling approaches (Eaton and Millar, 2004). There are, of course,
some hybrid approaches which use a combination of these approaches.

Empirical Regime Modeling Approach

In the empirical modeling or “hydraulic geometry” approach, statistical analysis
techniques are used to estimate empirical relationships relating geomorphic characteristics
(typically channel width, depth, and slope) to a state variable (typically bankfull or
dominant discharge), as developed by Leopold and Maddock (1953), Leopold and Wolman
(1957), and Hey and Thorne (1986). These empirical relationships generally fall into two
sub-categories: downstream or at-a-station hydraulic geometry. The objective of a
downstream hydraulic geometry relationship is to quantify spatial variations in channel
properties along the longitudinal profile of the watercourse; whereas, the objective of at-a-
station relationships is to quantify temporal variations in flow variables at a cross section.
Even though these two sub-categories of empirical relationships have distinctly different
objectives, these relationships can have basically the same power function form (Knighton,
1998).

Analytical Regime Modeling Approach

In the analytical regime modeling or stable-channel approach, the basic flow

relationships are supplemented by a bank stability criterion as described by Laursen (1958)
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and Henderson (1966). In this approach, the bank stability criterion is defined in terms of
incipient motion via critical shear stress at various bank slopes; hence, the approach does
not identify a unique channel geometry, but instead identifies the channel geometry such
that the bank material is at the threshold of motion (Henderson 1966).

Rational Regime Modeling Approach

In the rational regime modeling approach, the basic flow relationships are
supplemented by various optimality criterion collectively referred to as “extremal
hypotheses” to allow the solution of a unique floodplain geometry (Knighton, 1998). The
fundamental premise of the extremal hypotheses, with a physical basis, is that there is a
metric that describes a key aspect of the state of a watercourse that is either minimized or
maximized in stable watercourses. Some of the predominant extremal hypotheses, with a
physical basis, are based on the following premises:

* minimize unit stream power (VS - by Yang (1976);

* minimize total stream power ( #2Ss) - by Chang (1979);

e minimize the energy dissipation rate ((Q#Qs%)LSs) - by
Yang, Song, and Woldenberg (1981);

¢ maximize sediment transport efficiency (Qs/(,0QSs)) - by Kirby (1977) and
Millar (2005);

® maximize sediment transport rate or capacity (Qs) - by
White, Bettess, and Paris (1982) and Eaton and Millar (2004);

* maximize friction factor (ff) - by Davies and Sutherland (1983); and

* maximize resistance to flow in the fluvial system

(fiys = forain*fehanner*fsinuosity= (8 8RS, )/ v? ) - by Eaton, Church, and Millar (2004).
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Though these principles may appear to be distinctly different, it has been shown that a
couple of these principles are the same or closely related under certain conditions (Huang
and Nanson, 2000; Millar, 2005).

Regime Modeling Approach Adopted for These Investigations

In the context of previous studies, I contend that the approach adopted in these
investigations is basically a hybrid regime modeling approach. That is, the basis of the
approach is analytical in the sense that the solution of the basic flow relationships includes
relationships intended to account for observed bank erosion and stability characteristics
and floodplain stability thresholds (i.e., the floodplain response and stability constraints).
However, these constraints are empirical in nature and are different for the non-armored
and armored continuums. In addition, the approach adopted herein is notably unique in
that regime techniques are used to find the “projected” floodplain geometry given both the
change in the reference discharge and the “initial” floodplain geometry. Inherent in this
approach is the concept that the stable geometry at a point along a watercourse is
influenced by the upstream floodplain geometry, within the geomorphic limits of this study.

It also worth noting that the findings of these investigations (as illustrated in
Figures 3.12) appear to be generally consistent with some aspects of various extremal
hypotheses. However, extremal hypotheses have not been invoked in the development of

the modeling tools described herein.

4.3 Study Area: Geomorphic Limits and Range of Application

As described in Chapter 1, this research intentionally focused on watercourses with
relatively small catchments and, as a result, the field data collection efforts only

encompassed the upper reaches of non-armored and armored watercourses. This focus on
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relatively small catchments resulted in a geomorphic limit being imposed on the range of
floodplain forms included in this study. As illustrated in Figure 4.1, this geomorphic limit
encompasses the braided and upstream floodplain forms for the armored and non-armored
floodplain continuums shown in Figure 2.5. Since the modeling tools described herein
incorporate empirical relationships solely derived from the field data collected and
analyzed as part of this research, the range of application of the modeling tools developed

as part of this study are strictly limited to the geomorphic limits shown in Figure 4.1.

’ Geomorphic Limits of this Study R ‘

Single-Thread I Braided Floodplains
Floodplains |

Single-Thread
Floodplains

K

Pacific Ocean

........

Figure 4.1 - Schematic illustrating a general floodplain continuum and the
geomorphic limits for this study
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4.4 Methods

4.4.1 Basic Flow Relationships of Continuity and Resistance for a Trapezoidal
Floodplain

At the core of the modeling tools described in this chapter are the basic flow
relationships of continuity and flow resistance for steady uniform flow, as follows:

Continuity Equation for one-dimensional steady flow
Q0=AV Equation 4.2
Manning Equation (Chow, 1959):
y=1
n
where: V' = flow velocity (m/s)
n = Manning’s roughness coefficient
R=A/P, =hydraulic radius (m)

A =flow area (m2)

Equation 4.3
R2/3S‘1f/2 in (m/s) a

P = wetted perimeter (m)
§ ; = friction slope (m/m)
0 = flow rate (m3/s)

For a floodplain with a trapezoidal cross section (as illustrated in Figure 4.2), the
relationships for flow area, wetted perimeter, topwidth, and hydraulic radius can be

expressed as follows:

A=(b+z-d)d Equation 4.4
P =b+(2- d)m Equation 4.5
b=W-(2-z-d)) Equation 4.6a
W=0b+(2-z-d)) Equation 4.6b
R=A/P (b+z-d)d Equation 4.7

b+(2-dW1+22
where: b =bottom width (m)

d = flow depth (m)
z =side slope (z horizontal : 1 vertical units)
R =hydraulic radius (m)
A =flow area (m2)
P, = wetted perimeter (m)
W =topwidth (m)
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\‘ W = topwidth

1 1
, I d = flow depth

|
| b = bottom width

Figure 4.2 - Schematic illustrating elements of a trapezoidal cross section

4.4.2 Floodplain Response Trajectory Relationship for Non-Armored Floodplains

At this point, the width-to-depth ratio (T = (W /d )) is introduced to facilitate the
solution of the basic flow relationships and allow superimposing the hydraulic analyses

onto the floodplain state diagrams (Figures 3.12b and 3.13b). Solving Equations 4.4

through 4.7 in terms of the width-to-depth ratio yields:

For T=(W/d): Equation 4.8
A=(T-z)d? Equation 4.9
P, =d((T—2-z)+(2 1+ z? » Equation 4.10
b= (T - (2' Z))d Equation 4.11
R=A/P = (T - Z)d Equation 4.12

(T-2-2)+ 1+ 27

where: b =bottom width (m)
d = flow depth (m)
z =side slope (z horizontal : 1 vertical units)
R = hydraulic radius (m)
A =flow area (m2)
P, = wetted perimeter (m)
W = topwidth (m)
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Substituting Equation 4.3 into Equation 4.2 yields Equation 4.13. Substituting

Equations 4.9 and 4.12 into Equation 4.13 yields Equation 4.14 as follows:

1

n

Q ARZBS}/Z

(T_Z)dz (T_Z)d " 172
S ((T—2~z)+(2\/1+z2)j >

Solving Eq. 4.14 for flow depth (d) yields:

3/8

PR -
(T-2)57 | (T-2-2)+ |21+ 22

Substituting Equation 4.15 into Equation 4.8 and solving for topwidth

yields:
) 0n (T—Z) -2/3
vt (T-z)s}” ((T—2-z)+(2\/1+z2 )j

3/8

Furthermore, substituting Equation 4.16 into the equation for specific
stream power (Equation 3.2) yields:

, o (T_Z) -2/3
=y=S.=90S,|T
AT (T—z)s;”(<T—z-z>+(2¢1+fﬂ

3/8

where: 7 =Manning’s roughness coefficient
d = flow depth (m)
z =side slope (z horizontal : 1 vertical units)
S, = friction slope (m/m)
Q =flow rate (m3/s)
@ = specific stream power (W/m?)
T =(W/d) = width-to-depth ratio

Equation 4.13

Equation 4.14

Equation 4.15

Equation 4.16

Equation 4.17

Though cumbersome to apply, Equation 4.17 does allow specific stream power to be

computed directly as a function of width-to-depth ratio (W/d), discharge (Q), side slope (z),

Manning’s roughness coefficient (n), and friction slope (S7). For relatively trapezoidal

floodplains in the non-armored continuum, Equation 4.17 can be used to generate what are
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referred to herein as floodplain response trajectories, that can be plotted directly onto the
floodplain state diagram (3.12b). Floodplain response trajectories are curves that describe
the range of geomorphic characteristics (in terms of wand W/d) that a trapezoidal
floodplain may have for a constant Q, n, z, and Sy. It is important to recognize that the
response trajectory for non-armored floodplains described with Equation 4.17 incorporates
the constraint that the primary response to incremental increases in discharge is an

increase in the width-to-depth ratio, while the bed slope remains relatively constant.

4.4.3 Sediment Transport Relationships

As described in Chapters 2 and 3, the floodplain forms observed in southern
California are diverse in both form and bed material composition. Since all sediment
transport relationships have inherent limitations in their range of application in terms of
bed material composition, it is recognized that no one sediment transport relationship
would be appropriate in all cases. It is further recognized that the ability to accurately
compute the sediment transport rate for a reach is also influenced by many factors
including the natural variations in floodplain geometry, bed material composition, and
hydraulic conditions; therefore, the modeling techniques documented herein consider the
ratio of sediment transport rates for initial and projected conditions, as opposed to an
absolute transport rate.

For the non-armored floodplain continuum, two sediment transport relationships
developed by Yang (2003) have been used in these investigations. As indicated in Table 4.1,
Equation 4.18 is for sand bed watercourses, while Equation 4.19 is for watercourses with
beds composed of medium to fine gravel. Within the proposed modeling tool approach for
non-armored floodplains, the selection of either Equation 4.18 or 4.19 is based upon the dsg

or median grain size for the bed material, as indicated in Table 4.1.
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Table 4.1 - Sediment transport relationships for sand or gravel beds
by Yang (2003, p. 158 & p. 167)

For sand bed floodplains (0.062 mm < d;, < 2 mm):

w,d .
1" _0.457 logU—:

v @y

logC,, =5.435-0.2861log

w,d , VS, V.S .
+(1.799—0.409 log —L—" —0.31410g£] 10g(_f_ er fj Equation 4.18
(%

W, W, W,

For gravel bed floodplains (2Zmm < d, < 10 mm):

@,d, U,
logC,, =6.681-0.633log—————4.816log—:
(% (l)f
w,d , Vs, V.S :
1] 2784 - 0.30510g 27 —0.28210g Y= |log| ~2f — L1 | Equation 4.19
v (l)f (l)f (l)f
For shear velocity: Equation 4.20
U. =(grs, )"
For critical dimensionless unit stream power:
Equation 4.21
Yoo 251066 forl2< Uy 70 auation
@y log(*’"j—o.% v
()
or
V. =905 for 70 < Uud, Equation 4.22
a)f ()

Conversion of Ciin (ppm) to Q, in (m3/s), for p, =2647(kg/m3):

3/c)= 3 L 3 .10° 3 L . i
Q, (m3/s)=0Q (m3/s) YTT (m3/kg)-10" (1/m3) 07 (kg/mg)- O, (mg/1) Equation 4.23

_ G-C _ Y
Q, (mg/l) = ( G- G)lO“‘-C)j For G . 2.65

where: C, =total sand concentration (ppm by weight)
C,, = total gravel concentration (ppm by weight)
@, = fall velocity (m/s)
d, =median particle diameter (m)
S, = friction or energy slope (m/m)
R =hydraulic radius (m)
V = flow velocity (m/s)
v = kinematic viscosity = 1.0x10-¢ (m2/s) at 20° C.
g = acceleration of gravity = 9.81 (m/s?)
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For the armored floodplain continuum, the two-fraction sediment transport
relationships developed by Wilcock and Kenworthy (2002) have been used in these
investigations. The equations and the steps for applying this sediment transport
relationship are provided in Table 4.2. The two-fraction approach adopted by Wilcock and
Kenworthy (2002) is unique in that it is able to capture variations in sand and gravel
transport rates, as well as interactions between the two size fractions in a sand/gravel
mixture. As reflected in Table 4.2, the added detail associated with the two-fraction
approach is gained at the expense of greater computational complexity and the requirement

of a full size distribution for the bed material.

4.5 Results and Discussion
4.5.1 Modeling Tool Solution Procedures for Non-Armored and Armored Floodplains

The core objective of this research was to develop modeling tools for estimating the
trend and magnitude of the change in floodplain geometry due to an incremental change in
intra-catchment processes (i.e., water and/or sediment supply). The approach adopted in
this research is considered to be a hybrid regime modeling approach. To take into account
the erosional resistance and stability characteristics of the banks, empirically based
floodplain response constraints are used to define the interrelationship between
adjustments in floodplain width, depth, and bed slope. These floodplain response
constraints allow the computations to converge on a unique floodplain geometry for a given
set of hydraulic conditions, when used in conjunction with the basic flow relationships of
continuity, flow resistance, and sediment transport. The floodplain response constraints
have been defined based on the analysis of field data for a wide range of floodplain

geometries, within the semi-arid environment of southern California.
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Table 4.2 - Two fraction sediment transport relationship for a surface layer

composed of a sand/gravel mixture by Wilcock and Kenworthy (2002)

Step 1: Compute Dimensionless Incipient Motion Criteria (T:l)

for i = sand (s) and gravel (g), given d,, d, and F;:

TZ’ = (T

)+ e), - ) e
where  (¢1), = (¢, )o(d—gj

d

s

Constants per Table 3 in Wilcock and Kenworthy(2001, p. 12-10)

() =0065  (z;) =0.035  (z,) =0011

Step 2: Compute Shear Stress-to-Reference Shear Stress Ratio (qﬁl )

for i = sand (s) and gravel (g), given total shear stress (T) :

6 =—:

T

r

where 7 =)RS,

T, = TZ‘ (G - 1)7di

Step 3: Compute Volumetric Transport Rate per Unit Width (%i)
for i = sand (s) and gravel (g), with constants based on field data (p. 12-6):

T
For ¢ = —
T,

r

T
For ¢ = —

ri

3/2
0.002- F. T 75
<127: q, =|—— || =] (o
’ (g(G—l) (pj )

115-F ) ()" 0923)"
>1.27: I bl S Y ]
o (g«;—l)j ,,J ( (¢z>°-25]

Q,; =W -gq,, =volumetric transport rate (m?3/s)

where:

q,; = volumetric transport rate per unit width for
i = sand (s) or gravel (g) fraction (m2/s)

4y = 4y T4, = total unit transport rate (m?/s)

F; = sand fraction of surface bed material (range 0 to 1)

F, =1-F, = gravel fraction of surface bed material (0 to 1)
d, = characteristic grain size for the surface fraction “i” (m)
S, = friction or energy slope (m/m)

R = hydraulic radius (m)

£ =1000 (kg/m?3) = density of water at 20° C.

g = acceleration of gravity = 9.81 (m/s2)
G =y, /y=2.65 =specific gravity

7 =9810 (kg/m?2s2) = specific weight of water

Equation 4.24

Equation 4.25

Equation 4.26

Equation 4.27
Equation 4.28

Equation 4.29

Equation 4.30

Equation 4.31
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In summary, the solution procedures for the modeling tools developed for the non-
armored and armored floodplain continuums are comprised of the following four basic
steps:

1. hydraulic and sediment transport computations for “initial” conditions;

2. identification and evaluation of a “best fit” trapezoidal cross section;

3. identification of the “projected” floodplain geometry; and

4. computation of the floodplain response trajectory.
Due in part to the geomorphic limits of this study (Figure 4.1) and the regime-type
approach adopted in these investigations, the range of applicability of the modeling tools is
limited to:

¢ floodplains that are at least initially stable and in a state of dynamic equilibrium;

¢ floodplains that can be reasonably well represented with a trapezoidal cross section;

e plane-fine-bed, plane-mixed-bed, pool-riffle, or braided floodplains in the non-

armored floodplain continuum; and

¢ pool-riffle floodplains in the armored continuum.

The detailed solution procedures for the modeling tools are provided in Tables 4.3
and 4.5 for the non-armored armored floodplain continuums, respectively. To minimize the
opportunity for misapplication, the modeling tool solution procedures (in Tables 4.3 and
4.5) include procedures to assess the initial stability state of the floodplain and to verify that
that the floodplain can be represented with a trapezoidal cross section.

To illustrate the application of the modeling tools, example sets of computations are
provided for a non-armored and armored floodplain in Tables 4.4 and 4.5, respectively.
Each example set of computations use the data for one of the study sites and correspond to
a 10 percent increase in the reference flow rate (i.e., Q100 in these cases), with no change in

sediment supply.
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Table 4.3a - Modeling tool solution procedure for non-armored floodplains

Step

Data Requirements and Solution Procedures - Part 1 of 2

A

Data Requirements: Initial condition floodplain cross sectional data and bed slope,
estimated Manning’s roughness coefficient (n) for the floodplain, bed gradation (i.e., dso),
and a reference flow rate.

Analyses for Initial Conditions: The objectives of this step are to

a. Hydraulic Analysis for Initial Conditions: For the reference flow rate and given
floodplain geometry, compute flow velocity (V), flow depth (d), hydraulic radius
(R), topwidth (W), width-to-depth ratio (W/d), and specific stream power ().
This can be accomplished iteratively using Manning Equation (Eg. 4.3) or with
various hydraulic software packages.

b. Compute Sediment Transport Rate/Capacity: Compute/estimate the sediment
transport rate for initial conditions (Qs)initia;, in (m3/s) using Equations 4.18 or
4.19 and 4.23 per steps in Table 4.1.

c. Compute Stability State for Initial Conditions: For X; = log19(W/d) and X; =
logi0( @), compute the probability that the floodplain is unstable and in state of
severe instability (i.e., P(Y=S4)) using Equation 3.22 plus the intercept and partial
slope coefficients (£,=-32.7596, 5, = 6.4391, and ,=11.9589) given in Table 3.9.
If the value for P(Y=Ss=unstable) is substantial (say > 30%), the floodplain may
be unstable and this regime-type approach may be inappropriate for assessing
potential floodplain responses.

Identification and Evaluation of “Best Fit” Trapezoidal Cross Section: The objectives
of this step are to (i) identify the “Best Fit” trapezoidal section for the natural cross section
in terms of width-to-depth ratio (W/d) and side-slope (z); and (ii) assess if the trapezoidal
cross section assumption is valid.
a. Identification of “Best Fit” Trapezoidal Section: This step requires an iterative
solution for W/d and z as follows, for given values of Q, n, and S
e Forinitial values of W/d and z, compute values of d, W, R, 4, V, and wusing
Equations 4.15, 4.16, 4.12, 4.9, 4.3, and 4.17, respectively. Use these hydraulic
parameters and ds to compute Q, in (m3/s) using Equations 4.18 or 4.19 and
4.23 per steps in Table 4.1.
e Vary values for W/d and z until the following constraints are met:

(Q‘Y )initial = (W )initial = (d )initial ~ 1
(QS )hest—ﬂt (W )besr—ﬁr (d )besr—ﬁr

where “initial” refers to values computed in Step 1
“best-fit” refers to values computed in this step
This step can be accomplished using Solver in Excel ® by setting the cells for
W/d and z as the “changing cells”, while setting the “target” cell to that with
the sum of the absolute or squared value for the cumulative error associated
with the ratios for Qs, W, and d .

b. Compute Stability State for Initial Conditions: For X; = log19(W/d) and X; =
log10( @), compute the probability that the floodplain is unstable and in state of
severe instability (i.e., P(Y=S4)) using Equation 3.22 plus the intercept and partial
slope coefficients (£,=-32.7596, 5, = 6.4391, and 3,=11.9589) given in Table 3.9.

c. Compute Probability for Floodplain Braiding: For X; = log19o(W/d) and X =
log10( @), compute the probability that the floodplain is braided (i.e., P(Y=Sg)) using
Equation 3.22, plus the intercept and partial slope coefficients
(By=42.1887, 5,=-19.0285, and £,=-5.8813) given in Table 3.9.

d. Assess “Best Fit” Floodplain Geometry: The assumption of a trapezoidal cross
section is valid only if: (i) the ratios for the values of Qs, W, and d computed in
Step 2a are nearly 1; and (ii) the values for P(Y=Sa=unstable) computed in Steps
1c and 2b are nearly equal.
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Table 4.3b - Modeling tool solution procedure for non-armored floodplains

Step

Data Requirements and Solution Procedure - Part 2 of 2

3

Compute and Assess Floodplain Response: The objective of this step is to identify the
projected floodplain geometry (in terms of W/d) corresponding to a new flow discharge
and the same sediment transport rate computed in Step 2e.

a.

Identification of “Projected” Floodplain Geometry: This step requires an
iterative solution for W/d as follows, for given values of (Q)projected, Z (from Step
3a), n,and S¢.

e For an initial value of W/d, compute values of d, W, R, 4, V, and @wusing
Equations 4.15, 4.16, 4.12, 4.9, 4.3, and 4.17, respectively. Use these hydraulic
parameters to compute Qs in (m3/s) using Equations 4.18 or 4.19 and 4.23 per
steps in Table 4.1.

e Vary the values for values W d, until the following constraint is met:

(QS )initial — 1
(QS )compm‘ed

where “initial” refers to values computed in Step 1
“computed” refers to values computed in this step
This step can be accomplished using Solver in Excel ® by setting the cell for
W/d as the “changing cell”, while setting the “target” cell to that with the
absolute or squared value for the error associated with the ratio for Q.
¢ Note: this step is simplified by the floodplain response constraint identified for
the non-armored floodplain continuum that specifies: For incremental
increases in flow rate, the width-to-depth ratio varies , while the bed slope
remains relatively constant (as described in Section 3.5.6).
Compute Stability State for Project Floodplain Geometry: For X; = log1o(W/d)
and X; = log10( @), compute the probability that the floodplain is unstable and in
state of severe instability (i.e., P(Y=S4)) using Equation 3.22 plus the intercept and
partial slope coefficients (£,=-32.7596, ;= 6.4391, and f3,=11.9589) given in
Table 3.9.
Compute Probability for Floodplain Braiding: For X; = log:o(W/d) and X, =
logi0( @), compute the probability that the floodplain is braided (i.e., P(Y=S5)) using
Equation 3.22, plus the intercept and partial slope coefficients
(By=42.1887, §,=-19.0285, and £,=-5.8813) given in Table 3.9.

Compute and Plot Floodplain Response Trajectories (optional step): Floodplain
response trajectories are a curve that describes the range of geomorphic characteristics
(in terms of wand W/d) that a trapezoidal floodplain may have for a constant Q, n, z, and
S Response trajectories can provide a useful visual reference for evaluating the results of
this modeling tool; however, they are not required.

a.

Computation of Floodplain Response Trajectory: For given values of Q, n, z, and
Sf; compute @for a range of W/d values using Equation 4.17. The range of W/d
values should start at approximately the same value of W/d computed in Step 1a.
Plotting of Floodplain Response Trajectory: The floodplain response trajectory
curve can be plotted on the floodplain state diagram (3.12b) for non-armored
floodplains and should pass through the point corresponding to the projected
floodplain geometry.
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Table 4.4a - Example floodplain response analysis for a non-armored floodplain

Step 1a: Hydraulic Analysis for Initial Conditions

Site/Prof. ID Q n Sr %4 d R w w/d w
(m3/s) (m/s) | (m) | (m) | (m) (W/m2)
PLSD03P06 6.18 0.030 | 0.0056 1.29 0.57 | 0356 | 12.57 | 22.06 26.8
Step 1b: Sediment Transport Rate/Capacity for Initial Conditions
dm a¥ [U*dm)/V Vcr/a}" Log(cppm) Cppm (Qs)initial
(m) (m/s) (m3/s)
0.00076 0.0703 108.8 2.05 3.76 5792.7 | 0.0135
Step 1c: Stability State for Initial Conditions
Bo B )3 Xi=log(W/d) | X,=log(w) | P(Unstable)
-32.7596 6.4391 119589 1.344 1.427 0.088 %
Step 2a: Identification of “Best Fit” Trapezoidal Section (See cross section plot below)
Changing Cells Computed Parameters
wyd z d | w R A 4 @ (Usdn)/v | Log(Copm) | (QsJbestpe
(m) | (m) | (m) | (m?) | (m/s) | (W/m?) (m3/s)
22.06 | 7.388 | 0.57 | 12.5 | 0377 | 4.77 1.30 26.8 108.9 3.76 0.0136
Step 2a: Constraint Ratios and Error Target Cell
Constraint Ratios Target Cell
Qs w d Error
Ratio Ratio Ratio (sum of the errors squared)
1.002 1.000 1.000 3.6x10-6
Steps 2b & 2c: Stability State and Probability for Braiding: “Best Fit” Floodplain Geometry
Threshold Bo i B Xi=log(W/d) | Xo=log(w) | P(Unstable) | P(Braided)
Stability -32.7596 | 6.4391 119589 1.344 1.427 0.088 %
Braiding 42.1887 | -19.0285 | -5.8813 1.344 1.427 0.026 %
‘—o—lnitial —O— Best Fit = =a- = Reference WSEL‘
102.8
4
102.6 \8‘----------------------------------------/-‘@
E \ . //
v 1024 N Ly
g \ / -
wm
102.2 N ~
e
[ ——
1020 T T T T T T
0 2 4 6 8 10 12 14

Sta (m)

Step2a - Cross Section Plot (PLSDO03): "Best Fit" vs. Existing
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Table 4.4b - Example floodplain response analysis for a non-armored floodplain

Step 3a: Identification of “Projected” Floodplain Geometry (See plots below)

(@)new = 6.80 (m3/s) : an increase of approximately 10%

Changing Cells Computed Parameters
W/d V4 d w R A %4 [0} (U*dm)/V Log(Cppm) (Qs)Projected
(m) | (m) | (m) | (m?) | (m/s) ]| (W/m? (m3/s)
445 | 7388 | 039 | 17.5|0.327 | 5.75 1.18 21.1 101.5 3.72 0.0135
Step 3a: Constraint Ratios and Error Target Cell
Constraint Ratio Target Cell
QsRatio Error (sum of the errors squared)
1.0000 8.9x10-20
Steps 3b & 3c: Stability State and Probability for Braiding: “Projected” Floodplain Geometry
Threshold Bo B B Xi=log(W/d) | Xz=log(w) | P(Unstable) | P(Braided)
Stability -32.7596 | 6.4391 119589 1.648 1.325 0.18 %
Braiding 42.1887 | -19.0285 | -5.8813 1.648 1.325 4.60 %
‘—o—lnitial —O— Best Fit = =a- = Reference WSEL —=¢- - Projected‘
102.9
102.6 '& /@
= /
£ N\
@ 1024 KN\ & 2
;)43 . \\\ g / ) /
102.2 NN ~ -
N /
0 - T e el — — <
102.0 T T \
0 5 10 15 20
Sta (m)

Step3a - Cross Section Plot (PLSD03): "Projected” vs. Existing

Logistic Stability and Braiding Thresholds:

Stable Floodplains (Solid Symbols) vs.
10000 S N

Unstable Floodplains (Hollow Symbols)

plane-mixed-bed

plane-fine-bed

1000

pool-riffle (t)

braided

bed-rock

100

plane-mixed-bed
braided

> 0 o B> & 0 o

- — P(Stable)=0.1
— - - P(Stable)=0.9

Initial

— — P(Braided)=0.1

Specific Stream Power (W/mz)

Projected

—— P(Braided)=0.9
@ Initial

w/d

¢ BestFit
& Projected

100 1000

Step 3a - Regime diagram for non-armored continuum
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Table 4.4c - Example floodplain response analysis for a non-armored floodplain

Specific Stream Power (W/mz)

Step 4a: Computation of Floodplain Response Trajectory (See plot below)
(Q)new (m3/s) n z i
6.80 0.030 7.388 0.00556
w/d d (m) W (m) o (W/m?)
22 0.592 13.02 28.5
25 0.544 13.59 273
50 0.372 18.60 20.0
100 0.272 27.22 13.6
200 0.205 41.00 9.0
400 0.156 62.41 5.9
600 0.134 80.10 4.6

Logistic Stability and Braiding Thresholds:
Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)

10000

plane-mixed-bed

plane-fine-bed

1000

pool-riffle (t)

braided

bed-rock

plane-mixed-bed

> 0 o > & O @

braided
- P(Stable)=0.1
- P(Stable)=0.9

Response Trajectory

1

10

Step 4a - Regime diagram for non-armored continuum

w/d

100

1000

— — P(Braided)=0.1
—— P(Braided)=0.9
@ Initial
¢ BestFit

¢ Projected
Trajectory
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Table 4.5a - Modeling tool solution procedure for armored floodplains

Step

Modeling Tool for Armored Floodplains:
Data Requirements and Solution Procedure - Part 1 of 3

A

Data Requirements: Initial condition floodplain cross sectional data and bed slope,
estimated Manning n-value for floodplain, bed gradation data (i.e., Fs, Fy, d5, and d;), and a
reference flow rate.

Analyses for Initial Conditions: The objectives of this step are to

a. Hydraulic Analysis for Initial Conditions: For the reference flow rate and given
floodplain geometry, compute flow velocity (V), flow depth (d), hydraulic radius
(R), topwidth (W), width-to-depth ratio (W/d), and specific stream power ().
This can be accomplished iteratively using Manning Equation (Eq. 4.3) or with
various hydraulic software packages.

b. Compute Sediment Transport Rate/Capacity: Compute/estimate the sediment
transport rate for initial conditions (i.e., (Qps)initiar and (Qpg)initiar, in (M3/s)) using
Equations 4.29 or 4.30 and Equation 4.31 per procedure in Table 4.2.

c. Assess Stability State for Initial Conditions: Using the values computed for W/d
and o, plot this point on the floodplain state diagram for the armored floodplain
continuum (Figure 3.13b). If this point lies outside of the general regions defined
by the data points for the pool-riffle floodplain form, then the floodplain may be
either unstable or not a pool-riffle floodplain. In either of these cases, this
regime-type modeling approach may be inappropriate.

Identification and Evaluation of “Best Fit” Trapezoidal Cross Section: The objectives
of this step are to (i) identify the “Best Fit” trapezoidal section for the natural cross section
in terms of width-to-depth ratio (W/d) and side-slope (z); and (ii) assess if the trapezoidal
cross section assumption is valid.
a. Identification of “Best Fit” Trapezoidal Section: This step requires an iterative
solution for W/d and z as follows, for given values of Q, n, and S
e Forinitial values of W/d and z, compute values of d, W, R, 4, V, and wusing
Equations 4.15, 4.16, 4.12, 4.9, 4.3, and 4.17, respectively. Use these hydraulic
and gradation parameters to compute Qps and Qpg in (m3/s) using Equations
4.29 or 4.30 and Equation 4.31 per the procedure in Table 4.2.
e Vary values for W/d and z until the following constraints are met:

(QhS )initial — (th )initial — (W )initial — (d )iniriul — 1

(QhS )besr—ﬁ't - (th )besr—ﬁ't (W )bext—fit (d )bext—fit

where “initial” refers to values computed in Step 1
“best-fit” refers to values computed in this step
This step can be accomplished using Solver in Excel ® by setting the cells for
W/d and z as the “changing cells”, while setting the “target” cell to that with
the sum of the absolute or squared value for the cumulative error associated
with the ratios for Qus, Qng, W, and d.
b. Assess “Best Fit” Floodplain Geometry: The assumption of a trapezoidal cross
section is valid only if the ratios for the values of Qs, W, and d computed in Step 3a
are nearly 1.
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Table 4.5b - Modeling tool solution procedure for armored floodplains

Step

Modeling Tool for Armored Floodplains:
Data Requirements and Solution Procedure - Part 2 of 3

3

Compute and Assess Floodplain Response: The objective of this step is to identify the
projected floodplain geometry (in terms of W/d) corresponding to a new flow discharge
and the same sediment transport rate computed in Step 2e.

a.

Identification of “Projected” Floodplain Geometry: This step requires an

iterative solution for W/d as follows, for given values of (Q)projected, Z (from Step

3a),andn, :

¢ Forinitial values b, d, and Sy compute values of W, R, 4, W/d, Q, and @, using
Equations 4.6, 4.7, 4.4, 4.8, 4.13, and 4.17, respectively. Use these hydraulic
and gradation parameters to compute Qps and Qpg in (m3/s) using Equations
4.29 or 4.30 and Equation 4.31 per the procedure in Table 4.2.

e Vary the values for values b, d, and Syuntil the following constraints are met:

(be )im'riul — (ng )iniriul — (Q)prvjecred =1 and
(0 )epuea ) | (1)

8 /computed (Q )Computed

— (log(a))wmpured - log(w)iniriul ) = _32
5 (log(T)compured - log(T)initial )

where “initial” refers to values computed in Step 1
“computed” refers to values computed in this step
“Cr “ constraint ratio per Equation 4.1b.

This step can be accomplished using Solver in Excel ® by setting the cells for

b, d, and Sras the “changing cells”, while setting the “target” cell to that with

the absolute or squared value for the cumulative error associated with the

four constraints listed above.
Assess Stability State for Project Floodplain Geometry: Using the values
computed for W/d and o, plot this point on the floodplain state diagram for the
armored floodplain continuum (Figure 3.13b). If this point lies outside of the
general regions defined by the data points for the pool-riffle floodplain form, then
the floodplain may be either unstable or not a pool-riffle floodplain. In either of
these cases, this regime-type modeling approach may be inappropriate.
Visual Assessment of “Projected” Floodplain Geometry: Given W/d and w for
both the initial and projected floodplain geometries, points corresponding to both
the initial and projected floodplain geometries can be plotted on Figure 3.21b to
provide a visual assessment of the floodplain in terms of both the stability and
braiding thresholds. Potential for Braiding: As described in Section 3.5.4, this
author contends that the effects of bed material fining (i.e., an increase in the
percent sand in the surface layer) acting in conjunction with the hypothesized
water to sediment supply divergence process are the two mechanisms responsible
for floodplain braiding in the armored floodplain continuum. Hence it is
important to recognize that even though the logistic braiding thresholds shown in
Figure 3.13b may provide a useful visual reference, the logistic braiding
thresholds should not be used alone to assess the probability for floodplain
braiding, since the logistic analysis did not consider the influence of bed material
gradation. The data shown in Figure 3.9 suggests that as the percentage of sand
sized particles in the surface layer increases above approximately 8 to 12 percent,
the probability that a pool-riffle floodplain will transition to a braided floodplain
increases significantly. Therefore, this modeling tool may be inappropriate if the
percentage of sand sized particles in the bed gradationis > ~10%.
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Table 4.5¢c - Modeling tool solution procedure for armored floodplains

Step

Modeling Tool for Armored Floodplains:
Data Requirements and Solution Procedure - Part 3 of 3

4

Compute and Plot Floodplain Response Trajectories (optional step): Floodplain
response trajectories are a curve that describes the range of geomorphic characteristics
(in terms of wand W/d) that a trapezoidal floodplain may have for a constant Q, n, and z.
Response trajectories can provide a useful visual reference for evaluating the results of
this modeling tool; however, they are not required.
a. Computation of Floodplain Response Trajectory: This step requires an iterative
solution for W/d as follows, for given values of (Q)projected, Z , and n, :

e Forinitial values b and d, compute values of W, R, A, W/d, Q, and @ using
Equations 4.6, 4.7, 4.4, 4.8, 4.13, and 4.17, for a range of bed slopes that span
the initial bed slope.

e Vary the values for values b, d, and Sruntil the following constraints are met:

(Q)projecred (log(a))compured - log(w)iniriul ) ~ _3 2
(Q )computed (log(T)compured - log(T)initial )

where “initial” refers to values computed in Step 1
“computed” refers to values computed in this step
“Cr “ = constraint ratio per Equation 4.1b
This step can be accomplished using Solver in Excel ® by setting the cells for b
and d as the “changing cells”, while setting the “target” cell to that with the
absolute or squared value for the cumulative error associated with the two
constraints listed above.

b. Plotting of Floodplain Response Trajectory: The floodplain response trajectory
curve can be plotted on the floodplain state diagram (3.13b) for armored
floodplains and should pass through the point corresponding to the projected
floodplain geometry.

=1 and Cy =
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Table 4.6a - Example floodplain response analysis for an armored floodplain

Step 1a: Hydraulic Analysis for Initial Conditions

Site/Prof. ID Q n Sr %4 d R w w/d w
(m3/s) (m/s) | (m) (m) (m) (W/m?)
SCSAQ7P06 135.95 0.04 | 0.014 3.8 2.03 1.46 23.4 11.54 797.9
Step 1b: Sediment Transport Rate/Capacity for Initial Conditions
s ds T* T T ¢ dbs (Qbs)initial
rs — 2 rs s 2 3
(m) (Pa=kg/ms?) | oy o (m?/s) | (m/s)
0.0909 0.001 0.4487 199.95 7.26 27.53 | 0.00567 0.1327
Fy dg T*g T T ¢ ¢g Qbg (Qbg)initial
m " Pa = kg/ms? " m2/s m3/s
(m) (Pa=kg/ms?) | oo\ (m2/s) | (m/s)
0.9091 0.041 0.0177 199.95 11.76 17.00 | 0.03775 0.8834
Step 2a: Identification of “Best Fit” Trapezoidal Section
Changing Cells Computed Parameters
W/d VA d w R w T ¢s [Qbs)best ¢g (ng)best
(m) | (m) | (m) | (W/m?) | (Pa=kg/ms?) fi fi
(m3/s) (m3/s)
11.71 | 3.02 | 2.03 | 23.7 | 1.46 787.3 200.96 27.67 | 0.1360 | 17.08 | 0.9064
Step 2a: Constraint Ratios and Error Target Cell
Constraint Ratios Target Cell
Qbs Qby w d Error
Ratio Ratio Ratio Ratio (sum of the errors
squared)
0.975 0.976 0.987 1.001 1.4x10-3
——Initial —G— BestFit ---&---Reference WSEL ‘
374.0
373.5 —
373.0 //

4
372.5 <\§\ ____________________________________________________________________
372.0

Stage (m)

371.5
\

371.0 \__m y
/
3705 b ______ N/
370.0 T \ T \
0.0 5.0 10.0 15,0 20.0 250
Sta (m)

Step 2a - Cross Section Plot (SCSA07): "Best Fit" vs. Existing

30.0
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Table 4.6b - Example floodplain response analysis for an armored floodplain

Step 3a: Identification of “Projected” Floodplain Geometry

(@)new = 149.55 (m3/s) : an increase of approximately 10%

Changing Cells Computed Parameters
Sy b d w R |wyd| A Q ) T (Qvs)ery | (Qbg)er
(m) | (m) | (m) | (m) (m?) | (m3/s) | (W/m?) | (Pa=kg/ms?) | (m?/s) | (m?/s)
0.0131 | 12.20 | 2.12 | 2498 | 1.53 | 11.8 | 39.3 | 149.5 767.6 196.6 0.1363 | 0.9047
Step 3a: Constraint Ratios and Error Target Cell
Constraint Ratios Target Cell
Qbs Qg Q Cr Error
Ratio Ratio Ratio (sum of the errors
squared)
0.9979 1.0019 1.0002 -3.20 7.8x10-¢
——Initial —G— BestFit ---&--- Reference WSEL —<& — Projected ‘
374.0
3735 ~
373.0 ///
‘s 3725 N
I on
g 372.0 AN -
;:‘3 371.5 \ D A
\ N //
371.0 a
370.5 \m M{/
370.0 \ \ T T T
0.0 5.0 10.0 15.0 20.0 25.0 30.0
Sta (m)

Step 3a - Cross Section Plot (SCSA07): "Projected” vs. Existing

Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)
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P(Braided:1)=0.9
Initial

Best Fit
Projected

w/d
Step 3a - Regime diagram for armored floodplain continuum
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Table 4.6¢ - Example floodplain response analysis for an armored floodplain

Step 4a: Compute Floodplain Response Trajectory (See plot below)

(@)new = 149.55 (m3/s) : an increase of approximately 10%

Set Changing Computed Parameters Constraint

Cells Ratios
S/ b d | W | R |wd]| A 0 o 0 cn | Error

(m) | (m) | (m) |(m) (m?) | (m*/s) | (W/m?) | Ratio

0.01600 | 10.30 | 2.15 | 23.3 | 1.5 | 10.8 | 36.0 | 149.5 | 1009.2 | 1.000 | -3.200 | 2.4E-10
0.01500 | 10.89 | 2.14 | 238 | 1.5 | 11.1 | 37.0 | 1495 925.2 1.000 | -3.200 | 3.1E-10
0.01400 | 11.54 | 2.13 | 244 | 1.5 | 11.5 | 38.2 | 1495 842.7 1.000 | -3.200 | 5.1E-11
0.01300 | 12.26 | 2.12 | 25.0 | 1.5 | 11.8 | 394 | 1495 762.1 1.000 | -3.200 | 1.0E-10
0.01200 | 13.06 | 2.10 | 258 | 1.5 | 12.2 | 409 | 1495 683.4 | 1.000 | -3.200 | 4.7E-09
0.01100 | 1396 | 2.09 | 26.6 | 1.6 | 12.7 | 425 | 1495 606.8 | 1.000 | -3.200 | 4.6E-10
0.01000 | 1499 | 2.08 | 276 | 1.6 | 13.2 | 443 | 1495 532.4 | 1.000 | -3.200 | 4.5E-10
0.00900 | 16.17 | 2.07 | 28.7 | 1.6 | 138 | 464 | 149.5 460.5 1.000 | -3.200 | 1.2E-10
0.00800 | 17.57 | 2.06 | 30.0 | 1.6 | 146 | 49.0 | 149.5 3914 | 1.000 | -3.200 | 1.3E-09
0.00700 | 19.24 | 2.05 | 316 | 1.6 | 154 | 52.0 | 1495 325.1 1.000 | -3.200 | 5.9E-11
Sumof 1 7 gg-09

Errors =
Target

Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)

TS
10000 -
S~
1000 - o2 °
g N 3
g A“ A
a o # 8
100 4= £ S o
£ = Response ! 5 N
3 I Trajectory \\ 4
g 10 . -
o Y N
2 X
1 o
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wyd e

—@— Trajectory
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Step 4a - Regime diagram for armored floodplain continuum
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Sections 4.5.2 through 4.5.5 describe investigations into both the validity and
implications of the modeling tools and the associated floodplain response constraints. More
specifically, Section 4.5.2 describes the comparison of the results from the modeling tools
with the observed downstream progression of floodplain geometry for the non-armored
floodplain featured in the example computations (Table 4.4). Sections 4.5.3 and 4.5.4
describe the significance and implications of the interrelationships between the floodplain
response trajectories and the geomorphic thresholds for the non-armored and armored
floodplain continuums. Whereas, the results from the two sets of example computations for

the non-armored and armored floodplain are compared and discussed in Section 4.5.5.

4.5.2 Comparison of Projected and Natural Downstream Progression of Floodplain
Geometry

The core objective of this research was to develop modeling tools for estimating the
trend and magnitude of the change in floodplain geometry, due to an incremental change in
intra-catchment processes. However, the results from applying the modeling tool can be
viewed from two perspectives: at-a-station and downstream. From an at-a-station
perspective, the results of applying the modeling tool are interpreted to reflect the changes
in floodplain geometry anticipated at a specific location over time, due to the impacts of
urbanization; however, the results can also be viewed to reflect the anticipated changes in
floodplain geometry in a downstream direction along a watercourse.

As with any computational too], it is important to test and validate the applicability
of the tool. Though survey controls have been established to allow the collection of data at
the modeling level sites over time, these investigations did not include collecting field data
that could be used to assess the results of the modeling tools in terms of an at-a-station

response. However, sufficient data were collected to allow at least the qualitative
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comparison of the results of the modeling tool with downstream changes in floodplain
geometry.

Using observed downstream changes in floodplain geometry as a substitution for at-
a-station changes in floodplain geometry is typically referred to as a “space for time”
substitution and has been employed by other researchers in a similar context (Schumm et
al,, 1984). Furthermore, I contend that the primary impact of urbanization is a self
enhancing feedback mechanism to the intra-catchment processes that may govern the
downstream progression of floodplain geometry, based on the arguments provided in
Section 3.5.2. If this contention is reasonably accurate, then the “space for time”
substitution is also reasonable in this context. In the example case study described in the
remainder of this section, the “observed” downstream progression of floodplain geometry
for a watercourse is compared with "projected” geometry changes estimated with the
modeling tools (Table 4.3) for incremental increases in the reference discharge, which in
this case is the estimated 100 year event.

The example floodplain response analysis, included in Table 4.4, is for a study site
located within the Lake Perris State Recreation Area (Riverside County). At this study site,
data were collected for three cross sections along the un-named watercourse. More
specifically, the analysis in Table 4.4 is for the upstream most cross section, at the study site,
and corresponds to an increase in the reference flow rate of 10 percent. In addition,
floodplain response analyses have been performed corresponding to increases in the
reference flow rate of 20, 30, and 40 percent. The results for these four analyses are shown
in Figure 4.3, along with the floodplain response trajectory corresponding to an increase in
the reference flow rate of 30 percent.

To allow comparison of the “projected” and “observed” downstream progression of

floodplain geometry, the observed floodplain progression for the same study site is also
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shown in Figure 4.3, where the two downstream floodplain geometries correspond to
increases in the reference flow rate of approximately 20 and 30 percent. Since the analyses
for the “projected” floodplain geometries only consider increases in water supply, it is
important to recognize that this isn’t entirely a direct comparison, due to the tributaries
within the study reach that contribute both water and sediment supply. Yet even with this
limitation in the analyses, there is still relatively close agreement between the “projected”
and “observed” progression of floodplain geometry in terms of both trend and magnitude,
as can be seen in Figure 4.3b.

Though the case study described in this section may provide a compelling argument,
it is fully recognized that this one case study does not thoroughly validate the modeling
tools; hence, other means of testing the validity of various aspects of the modeling tools have
been explored. In Sections 4.5.3 and 4.5.4, the floodplain response trajectories associated
with the modeling tools are compared in terms of the field data and the geomorphic

thresholds.

4.5.3 Floodplain Response Trajectories in Terms of the Stability Thresholds and
Sediment Transport Rates for Non-Armored Floodplains

For floodplains with a relatively trapezoidal cross section in the non-armored
continuum, Equation 4.17 can be used to generate floodplain response trajectories that can
be plotted directly onto the floodplain state diagram (3.12b). Equation 4.17 incorporates
the floodplain response constraint that indicates that the primary response to incremental
increases in discharge is an increase in the width-to-depth ratio, while the bed slope

remains relatively constant.
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Logistic Stability and Braiding Thresholds:

Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)
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Figure 4.3a: Regime diagram for non-armored floodplain continuum

Logistic Stability and Braiding Thresholds:

Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)
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Figure 4.3 - Comparison of the results for the example floodplain response analysis
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In Figure 4.44, the results from the example floodplain response analyses provided
in Table 4.4 are shown, including the floodplain response trajectory computed with
Equation 4.17. In addition, the computed sediment transport capacity corresponding to the
floodplain geometry reflected in the response trajectory is also shown in Figure 4.4a. The
following two key observations can be made from Figure 4.4a:

¢ The floodplain response trajectory is a gentle curve that is essentially parallel to the
logistic stability thresholds. If the floodplain trajectory curve (based on Equation
4.17) crossed the logistic stability threshold lines, this would be a clear indication
that either the floodplain response constraint incorporated into Equation 4.17 is
invalid or the slope of the logistic stability thresholds are inconsistent with the basic
flow relationships of continuity and resistance. The logic behind this interpretation
is that the probability that a floodplain geometry is unstable should not increase
simply because the width-to-depth ratio increases, which would be the case if the
floodplain trajectory crossed the stability threshold lines. Therefore, the observation
that the floodplain response trajectories and the floodplain stability thresholds are
nearly parallel indicates that the stability thresholds have a unique correlation with
the basic flow relationships.

¢ The computed sediment transport capacity distinctly decreases with increasing
width-to-depth (W/d) ratio; that is, a trapezoidal cross section becomes less efficient
at transporting sediment as the width-to-depth ratio increases, while Q, n, and Srare
held constant. As described in Section 3.5.2, recognizing this phenomena provided
the basis for identifying the potential influence of the water to sediment supply

divergence process on floodplain geometry.
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Logistic Stability and Braiding Thresholds:

Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)
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Figure 4.4a: Regime diagram for non-armored floodplain continuum
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In Figure 4.4b, the results from the example floodplain response analyses provided
in Table 4.4 are shown; however, two additional floodplain response trajectories are also
shown. These two additional trajectories correspond to the same hydraulic conditions as
the first except: (a) one trajectory corresponds to an increased value for the slope (Sf), and
(b)the other trajectory corresponds to an increased value for the Manning n. The two
additional curves are intended to illustrate that changing the values for Q, n, or Syresults in a
family of concentric response trajectories that remain nearly parallel to the logistic stability
thresholds. The following two key observations can be made from Figures 4.4a and 4.4b:

e For a given floodplain geometry, increasing Q or Sy directly increases the probability
for floodplain instability, as would be expected. The inverse is true for Manning n-
value; that is, decreasing the floodplain roughness directly increases the probability
for floodplain instability, which is also as would be expected. (In the preceding
sentences, the term “directly” is used to indicate movement perpendicular to the
logistic stability lines in Figure 4.4a.)

e To directly increase the probability for braiding (i.e., move perpendicularly toward
the logistic braiding threshold lines in Figures 4.4a and 4.4b), a combination of things
must happen: (a) Q, (1/n), and/or Symust increase; and (b) the sediment transport
rate (corresponding to the new values of @, (1/n), and/or Sy) must decrease.

The first of these observations demonstrates a consistency between the modeling
tools and the logistic stability thresholds that have been derived from the field data for the
non-armored floodplains. The second observation listed above may not be intuitive, but it
is consistent with the discussions in Section 3.5.2 and the observed downstream
progression of floodplain geometry. The second observation may not be intuitive because a
common conception is that floodplain braiding is only associated with excessive amounts of

sediment being supplied to a watercourse, thereby resulting in the deposition of bars. As
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described in Section 3.5.2, I contend that this is only the case in unstable braided floodplains
and that floodplain braiding is in essence a temporary sediment storage mechanism needed
to compensate for temporal imbalances between water and sediment supply, in relatively
stable systems within the geomorphic limits of this study.

In summary, the comparisons described this section demonstrate a consistency
between the floodplain response trajectories with the field data and the corresponding
geomorphic thresholds. Thatis, increases in Q, (1/n), and/or Syresult in increasing the
probability for both floodplain instability and braiding, as would be expected. The
comparisons further demonstrated that the logistic braiding thresholds are related to
changes in both hydraulic and sediment transport characteristics of a floodplain, whereas
the stability threshold is primarily related to the hydraulic characteristics of a floodplain.
Therefore, these comparisons demonstrate a consistency between the “projected” trend in
floodplain geometry and form changes (as computed via the modeling tool procedures)

with both the field data and the corresponding geomorphic thresholds.

4.5.4 Floodplain Response Trajectories in Terms of Braiding Thresholds and Sediment
Transport Rates for Armored Floodplains

As described in Section 3.5.6, the floodplain response constraint for pool-riffle
floodplains in the armored floodplain continuum was set such that the floodplain response
trajectories are parallel to the braiding threshold lines. The logic behind this is that
incremental increases in flow, while holding the sediment supply and gradation constant,
are not sufficient alone to transition a pool-riffle floodplain into a braided floodplain; hence,
the floodplain response constraint was set as the slope of the logistic braiding thresholds
(per Equation 4.1b and Table 3.11), thereby resulting in response trajectories that are

parallel to and will not cross the braiding thresholds.
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Another approach for setting the slope for the floodplain response trajectories
would be to set the floodplain response constraint based on fitting a power function to the
pool-riffle floodplain data points. As illustrated in Figure 4.53, fitting a power function to
the pool-riffle data points results in a line on the log-log plot that has a slope of -3.25 and a
correlation coefficient (R2) of 0.75. As indicated in Table 3.11, the logistic braiding
thresholds shown in Figure 4.5a have a slope of -3.24. Hence, the slopes corresponding to
the braiding thresholds and the regression line for the pool-riffle data points are both
approximately equal to -3.2, as specified in the floodplain response constraint defined by
Equation 4.1b.

As described in Section 3.5.4, | hypothesize that the effects of bed material fining
(i-e., an increase in the percent sand in the surface layer) acting in conjunction with the
hypothesized water to sediment supply divergence process are the two mechanisms
responsible for floodplain braiding in the armored floodplain continuum. It is important to
recognize that even though the logistic braiding thresholds shown in Figure 4.5 may
provide a useful visual reference, the logistic braiding thresholds should not be used alone
to assess the probability for floodplain braiding, since the logistic analysis did not consider
the influence of bed material fining. The field data shown in Figure 3.9 suggest that as the
percentage of sand sized particles in the surface increases above approximately ten to
twelve percent, the probability that a pool-riffle floodplain will transition to a braided
floodplain increases significantly. Therefore, the percentage of sand sized particles in the
surface layer should also be considered when assessing the potential for floodplain

braiding, for floodplains in the armored continuum.
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Stable Floodplains (Solid Symbols) vs. Unstable Floodplains (Hollow Symbols)
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Figure 4.5 - Comparison of floodplain response trajectories with braiding thresholds
and computed sediment transport rates for the armored floodplain continuum
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In Figure 4.5b, the results from the example floodplain response analyses provided
in Table 4.6 are shown, including the floodplain response trajectory. In addition, the
computed sediment transport capacity corresponding to the floodplain geometry reflected
in the response trajectory is shown in Figure 4.5b. As indicated in Figure 4.5, the sediment
transport capacity decreases rapidly as the slope decreases and the width-to-depth ratio
increases. This means that only relatively small adjustments in floodplain geometry
(including bed slope) are needed to compensate for incremental increases in flow, while the
inflowing sediment load is held relatively constant. Though not definitive, this is consistent
with the general observations by myself and by other researchers (Simons and Simons,

1987).

4.5.5 Comparison of Example Floodplain Response Analyses for Non-Armored and
Armored Floodplains

The results from the two sets of example floodplain response analyses are
summarized and compared in Table 4.7. As indicated in Table 4.7, the projected floodplain
response (in terms of the width-to-depth ratio) for the non-armored floodplain is two
orders of magnitude greater than that for the armored floodplain for the same incremental
increase in flow rate of 10 percent.

This differential between the magnitude of computed responses associated with the
two floodplain continuums is consistent with both field observations and the visual
comparison of the field data illustrated in Figures 3.5a and 3.5b. That is, the field data
plotted in Figures 3.5a and 3.5b indicate that the width-to-depth ratio for stable non-
armored floodplains ranges from 4 to 310, while specific stream power only ranges from
330 to 7 (W/m?2); whereas, the width-to-depth ratio for pool-riffle/armored floodplains

only ranges from 8 to 24, while specific stream power ranges from 1915 to 50 (W/m?2).
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Therefore, the relative projected changes in floodplain geometry between non-armored and

armored floodplains are consistent with field observations and the field data.

Table 4.7 - Comparison of the example floodplain response analyses for a non-
armored and an armored floodplain

Floodplain Continuum

Non-Armored Floodplain

Armored Floodplain

Example Computations Table 4.4 Table 4.6
Site/Prof. ID PLSD03P06 SCSA07P06
Initial Parameters
Q (cms) 6.2 136.0
@ (W/m?) 26.8 797.9
w/d 22.06 11.54
W (m) 12.57 23.40
d(m) 0.57 2.03
Sp= S 0.00556 0.014
z 7.39 3.02
dso (m) 0.00076 0.034
Projected Parameters
Q (cms) 6.8 149.6
®(W/m?) 21.1 767.6
w/d 44.49 11.54
W (m) 17.53 23.40
d(m) 0.39 2.03
Sp= S 0.00556 0.0131
Projected Parameters in
Terms of Change From Initial
Conditions
Increase in Q (given) 10 % 10 %
Change in @ (W/m?) -5.6 -30.3
Change in (W/d) 22.4 0.27
Change in W (m) 4.95 1.57
Change ind (m) -0.18 0.09
Change in S 0 -0.00093
Percent Change in @ 21% -3.8
Percent Change in (W/d) 102 % 2.3 %
Percent Change in W 39% 6.7 %
Percent Change in d -30 % 43 %
Percent Change in Sy 0% -6.7%
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4.5.6 Adapting the Modeling Tool for Assessing Other Potential Impacts

In a general context, the impacts of urbanization on a watercourse can be indirect
and/or direct; in addition, the impacts of urbanization can also be long-term or short-term.
Indirect impacts include changes to the water and sediment supply to the watercourse;
whereas, direct impacts can take a wide range of forms that include floodplain
encroachments, bank stabilization, channelization, bridges, culverts, and/or in-line
detention basins. Short-term impacts are those associated with construction activities;
whereas, long-term impacts are those associated with the end result of the construction
activities.

In this context, the modeling tool solution procedures provided in Tables 4.4 and 4.6
indicate how to estimate the trend and magnitude of the change in floodplain geometry
associated with the long-term and indirect impact of increasing the water supply to a reach,
while the net sediment supply is relatively constant. This was chosen as the primary
scenario for the modeling tool solution procedure, since it is believed that the long-term
increase in water supply is the predominant indirect impact of urbanization.

However, the modeling tool solution procedures can be relatively easily adapted to
also include known or estimated changes in sediment supply, if it is reasonable to assume
that the bed gradation for the watercourse will not change significantly as a result. This can
be accomplished by changing the “(Qs)initiai” in Step 3a (in Tables 4.4 and 4.6) to reflect the
change in inflowing sediment load associated with the reference discharge.

The modeling tools are based on using floodplain response constraints intended to
reflect the erosional resistance and stability characteristics of the natural bank material
within the region. Hence, the modeling tool solution procedures are not generally
conducive to evaluating the direct impacts to watercourses typically associated with

urbanization, such as bank stabilization and grade control structures.
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4.5.7 Limitations to the Applicability of the Regime-Type Modeling Tools

The regime-type modeling tools described in this chapter are predicated on the
assumption that the cross sectional form of a floodplain can be predicted based on a single
reference flow rate and the corresponding sediment transport rate. At best, this
assumption at the core of regime-type models is a dramatic simplification of the complex
runoff and sediment supply processes within a catchment, especially in semi-arid
environments where temporal fluctuations in discharge are typically very significant.
However, the primary objective of the modeling tools is to provide a relatively non-
intensive computational means to estimate the trend and magnitude of the change in
floodplain geometry due to incremental changes in water and sediment supply. Initial
evaluations of the modeling tools, with available data, indicate that this primary objective
has been reasonably met.

The applicability of the modeling tools described in this chapter is limited to stable
floodplains that have a relatively trapezoidal cross section. Though the active-regional
alluvial fan continuum is described qualitatively in Chapter 2 and appears similar in many
ways to the non-armored floodplain continuum, the applicability of the modeling tools
described in this chapter is strictly limited to non-armored floodplains and pool-riffle
floodplains in the armored continuum, within the geomorphic limits of this study (Figure
4.1).

In Chapter 1 of this dissertation, the question was raised regarding whether
equilibrium concepts are even applicable to the perennial, ephemeral, or intermittent
watercourses in the semi-arid environment of southern California. I contend that the
investigations presented in this dissertation (and especially the modeling tools described
and assessed in Chapter 4) demonstrate that equilibrium and the related regime concepts

can be useful for evaluating floodplain response and stability hazards in the semi-arid
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environment. However as part of invoking equilibrium and regime concepts, I made a
diligent effort to both define “equilibrium” in the context of the semi-arid environment and
acknowledge the limitations in doing so. More specifically, Section 1.1.3 is dedicated to
defining equilibrium and the associated stability states; whereas, this section and the
floodplain stability assessments embedded directly into the modeling tools solution
procedures are intended to both acknowledge and prevent violation of the equilibrium

concepts invoked during development of the modeling tools.

4.6 Summary and Conclusions
4.6.1 Primary Findings

The core practical research question motivating the investigations documented in
this chapter is: How can we estimate the trend and magnitude of the change in
floodplain geometry, due to perturbations in intra-catchment processes associated
with urbanization? Using the conceptual models described in Chapters 2 and 3 as a
framework, regime-type modeling tools have been developed for estimating the trend and
magnitude of the change in floodplain geometry associated with incremental variations in
intra-catchment runoff and sedimentation processes, for the non-armored and armored
floodplain continuums observed in the semi-arid environment of southern California.

At the core of the modeling tools are the basic flow relationships of continuity, flow
resistance, and sediment transport for floodplains with trapezoidal geometry. To factor in
bank erosional resistance and stability characteristics, the basic flow relationships are
coupled with floodplain response constraints. The nature and form of the floodplain
response constraints are dependent upon the continuum of the floodplain being evaluated
and have been inferred from analysis of field data for a wide range of floodplain geometries,
as reflected in the floodplain state diagrams for the non-armored and armored floodplain

continuums (Figures 3.12b and 3.13b).
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Since the response of a floodplain to changes in water and sediment supply can be
influenced by the “initial” stability state of the floodplain, the modeling tools include a
quantitative means for non-armored floodplains and a qualitative means for armored
floodplains for assessing the “initial” stability state for a floodplain.

The applicability of the modeling tools is limited to initially stable floodplains, with a
relatively trapezoidal cross section. Though the active-regional alluvial fan continuum
appears similar in many ways to the non-armored floodplain continuum, the modeling tools
described in this chapter are strictly limited to floodplain forms in the non-armored and

armored continuums.

4.6.2 Avenues for Further Investigation

One of the practical research questions at the core of these investigations was to
develop modeling tools for estimating the trend and magnitude of the change in floodplain
geometry due to urbanization. Itis believed that this objective has been reasonably well
achieved; however, the modeling tools have distinct limits of applicability, as described in
Section 4.5.7. Therefore, there are multiple avenues for further investigations involving the:
(a) refinement of the tools to include more armored bedforms; (b) extension of the tools to
include compound channel geometries; (c) automation of the tools described in this
dissertation; and (d) collection of additional field data to allow further and more detailed
verification of the modeling tools.

With respect to item “d” above, there are two basic methods to validate the
modeling tools: (a) monitor the changes in floodplain geometry over time at a location and
use the modeling tools to estimate the observed changes based on estimated changes in
water and/or sediment supply overtime; and (b) measure the floodplain geometry of a
relatively stable watercourse at several locations and use the modeling tools to estimate the

downstream changes in floodplain geometry based on downstream changes in water
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and/or sediment supply, as described in Section 4.5.2. However, implementation of either
of these methods poses significant challenges.

In the first method, changes in floodplain geometry are monitored over time and the
primary challenge lies in estimating the long-term changes in water and/or sediment
supply at a given location, due to upstream urbanization and/or land-use changes.
Implementing this method will probably require performing both hydrologic and sediment
yield analyses to estimate the long-term changes in water and/or sediment supply. Itis
important to recognize that attempting to implement this method has the following two
distinct disadvantages:

¢ The watercourse may have to be monitored for a substantial period of time, due to
the lag time required for changes in the catchment to be reflected in the geometry of
the floodplain (as described in Section 1.1.3).

o Ifthe changes in the changes in the water and/or sediment supply are too severe,
the watercourse may become unstable and transition into a state of severe
instability, in which case application of the modeling tools is no longer appropriate
and the field data could not be used to verify the modeling tools.

In the second method, downstream changes in floodplain geometry are measured
and the primary challenge lies in estimating the downstream changes in water and/or
sediment supply. Implementing this method will probably involve collecting cross sectional
data for major tributaries, in addition to performing hydrologic and sediment yield analyses
to characterize the downstream changes in water and/or sediment supply.

As reflected in the preceding discussions, the second or “space for time” substitution
method for validating the modeling tools is significantly more practical to implement.
However, it is clear that the “space for time” substitution method is an indirect method for

inferring the potential response of a floodplain to the impacts of urbanization; hence, it is
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reasonable to question whether the “space for time” substitution method is appropriate in
this context. Based on the arguments provided in Section 3.5.2, I contend that the primary
impact of urbanization is a self enhancing feedback mechanism to the intra-catchment
processes that may govern the downstream progression of floodplain geometry, within the
geomorphic limits of these investigations. If this contention is reasonably accurate, then the
second or “space for time” substitution method for validating the modeling tools is also

reasonable.
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Chapter 5: Conclusions
5.1 Summary of Dissertation

The core practical research questions motivating the investigations documented in
this dissertation are:

¢ How can we assess the existing stability state of a floodplain?

¢ How can we estimate the trend and magnitude of the change in floodplain geometry
due to perturbations in intra-catchment processes associated with urbanization?

Field investigations conducted early in this research helped identify a series of
applied research questions that I believe were essential to address and, thereby, provide
the framework required to address the practical research questions at the core of this
research. These applied research questions that I identified are:

e What are the forms and nature of floodplains in the semi-arid environment of
southern California?

e What are the primary process drivers that govern the type of floodplain continuum
within a catchment?

e What are the intra-catchment processes that govern the natural downstream
floodplain form progression, including specifically the transition from single-thread
to braided floodplains?

e What is the impact of urbanization on the primary intra-catchment processes that

govern the natural downstream floodplain form progression?

The chapters in this dissertation have been organized to address both the core
practical and the associated applied research questions in what I believe is a logical
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progression. Logical in the sense that the subject matter in each chapter builds on the
previous; in addition, the analysis tools presented herein are in the most probable order in
which they would be applied to assess the stability state and the geomorphic response of a
floodplain to changes in water and sediment supply. The following is a brief summary of
the key topics addressed in each of the chapters of this dissertation:

¢ Chapter 1 introduces the research questions and defines key concepts at the core of
these investigations. The two key concepts described in Chapter 1 include the
concepts of :

o The engineering perspective of a floodplain, which by definition
encompasses both the overbank areas and the main channel.

o Dynamic equilibrium in terms of the semi-arid environment and the
corresponding three stability states: stable, responding, and unstable.

e Chapter 2 describes the Reach-Scale Classification System and Conceptual Model
for Floodplain Continuums in the Semi-Arid Environment (Figure 2.5) and the
means to identify the floodplain forms and continuum within a catchment. These
means to identify a floodplain form and/or continuum include:

o Floodplain Field Identification Tables (Tables 2.4 and 2.5) that describe
and illustrate key characteristics for each of the floodplain forms in both the
non-armored and armored floodplain continuumes.

o GIS-Based Technique (Figure 2.11) for identifying the floodplain continuum
within a catchment based on mean annual precipitation and a metric,
called Geo-Soil Score, that quantifies geologic characteristics of the

catchment.
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e Chapter 3 describes the Conceptual Models for Intra-Catchment Processes for
catchments with floodplains in either the non-armored or armored continuums.
These conceptual models provide a basic framework for the modeling tools,
described in Chapter 4, and are comprised of the following components:

o State diagrams that quantitatively describe the downstream progression of
floodplain forms.

o Hypotheses for floodplain braiding mechanisms in terms of intra-catchment
processes and self enhancing feedback mechanisms.

o Either quantitative or qualitative methods for assessing the initial and
projected floodplain stability state.

o Floodplain Response Constraints in terms of S5, ® and/or W/d ratio.

e Chapter 4 describes the regime-type Modeling Tools developed for estimating the
trend and magnitude of the change in floodplain geometry, due to incremental
increases in water and/or sediment supply to a reach.

5.2 Applicability of Movable Bed and Boundary Models to Fluvial Systems in
Southern California

In the search for a means to estimate the trend and magnitude of changes in
floodplain geometry due to urbanization, several paths were initially considered. One path
involved evaluating the potential applicability of various movable bed and/or boundary
models, including HEC-RAS (Brunner, 2008)), Concepts (Langendoen, 2000), and Fluvial 12
(Chang, 2006). It was recognized from the onset that the hydraulic and geomorphic
characteristics of the floodplains, within the geomorphic limits of this study, would be quite
challenging to simulate with available models.

The tests with these models involved using test files for a prismatic floodplain that

had the geometry, bed slope, and bed gradation corresponding to the downstream-most
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cross section for the Hasley Canyon study site (i.e., site and cross section ID HCSA01). This
cross section corresponds to a non-armored braided floodplain with a bed slope of 0.0258
and a dsp = 1.6 mm (as provided in Appendix B, page 252). Normal depth computations (via
an iterative solution of Equation 4.13) for this cross section indicate that the Froude
Number (Equation 3.18) ranges from approximated 0.97 to 1.14 for estimated flows
corresponding to the 2 through 100 year events.

Unfortunately, this path proved to be not very productive, since computational
stability issues (i.e., oscillations) appeared to be encountered with multiple models, for
conditions typical or representative of the non-armored floodplain continuum: hence, tests
were discontinued. The oscillations in the computations appeared to be initiated in the
hydraulic computations; however, the precise cause of the oscillations were not ascertained.

The lessons learned from these model tests and from these investigations as a whole
have been incorporated into a matrix outlining what [ believe are the key modeling
considerations for each of the floodplain forms within the geomorphic limits of these
investigations. This matrix, as provided in Tables 5.1a and 5.1b, was developed with the
intent of providing information helpful to future modeling efforts. That is, the matrix
provides a list of the key model functionality, in terms of physical processes, that [ believe is
potentially essential for adequately simulating floodplain geometry changes due to
urbanization. As reflected in Tables 5.1a and 5.1b, these key modeling considerations have
been divided into three categories: hydraulic, sediment transport, and movable-boundary
modeling considerations. Furthermore, modeling considerations are provided for both the
non-armored and armored floodplain continuums, in general, plus specific considerations

for each of the floodplain forms.
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Table 5.1a - Key considerations for movable boundary modeling of floodplains in the
non-armored continuum

Floodplain Hydraulic Modeling Sediment Transport Movable Boundary
Continuum Considerations Modeling Modeling
and Form Considerations Considerations
Non-Armored | These investigations The bed material ranges Predominant response to
Continuum indicate that near critical | from fine sands to cobbles | increases in Q is

and supercritical flow
conditions are typical
within geomorphic limits
of this study.

in size, in addition
mixtures of sands and
gravels are a common bed
material composition.

floodplain widening or
increases in W/d ratio. In
addition, field
observations indicate that
the primary modes of
bank erosion include
fluvial entrainment,
undercutting, sloughing,
and slab failure (Brierley
and Fryirs, 2005, p. 98).
Hence, a full mobile
boundary model is
appropriate.

plane-mixed-

One dimensional flow

Bed and overbank

Typical floodplain

bed | analyses may be material is typically a geometry is compound,
insufficient due multiple mixture of sand, gravel, thereby complicating the
critical depths associated | and/or cobbles; hence, task of defining limits and
with compound two fraction sediment characteristics of
floodplain geometry at transport relationships banks/movable
near critical or may be appropriate. boundary.
supercritical flow
conditions.
plane-fine- | Near critical and/or Bed material is typically Field observations
bed | supercritical flow composed of medium indicate that plane-fine-
conditions are typical. sands to medium bed watercourses are
gravels(0.25 to 16 mm); especially susceptible to
hence, sediment bank erosion via fluvial
transport relationships entrainment,
should be appropriate for | undercutting, sloughing,
both sand and gravel. and slab failure (Brierley
and Fryirs, 2005, p. 98).
braided | Near critical and/or Bed material can be a Field observations

supercritical flow
conditions are typical.

mixture of sand, gravel,
and/or cobbles; hence,
two fraction sediment
transport relationships
may be appropriate in
some cases.

indicate that plane-fine-
bed watercourses are
highly susceptible to bank
erosion via fluvial
entrainment,
undercutting, sloughing,
and slab failure (Brierley
and Fryirs, 2005, p. 98).
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Table 5.1b -Key considerations for movable boundary modeling of floodplains in the
armored continuum

Floodplain Hydraulic Modeling Sediment Transport Movable Boundary
Continuum Considerations Modeling Modeling
and Form Considerations Considerations
Armored These investigations Bed and overbank Floodplains in the
Continuum indicate that near critical material is typically a armored continuum are

and supercritical flow
conditions are typical
within geomorphic limits
of this study.

mixture of sand, gravel,
cobbles, and/or boulders;
hence, two or multiple
fraction sediment
transport relationships
are appropriate.

primarily defined by the
characteristics of their
bed forms, where the
characteristics of these
bedforms are related to
both hydraulic conditions
and the interaction of
individual particles
within a cross section.

cascade and

Combination of gradually

The transport and

The results of these

step-pool | varied and rapidly varied interaction of cobble and | investigation indicate that
flow conditions prevail. In | boulder sized particles the downstream
addition, the pools are of special importance | progression of floodplain
associated with the bed to these floodplain forms. | forms involves both bed
forms result in head losses slope and width-to-depth
that vary with discharge. ratio adjustments.
pool-riffle | Near critical and/or This author contends that | The results of these
supercritical flow the effects of bed material | investigation indicate that
conditions are typical. fining acting in the downstream
conjunction with the progression of floodplain
water to sediment supply forms involves both bed
divergence process are the | slope and width-to-depth
mechanisms responsible | ratio adjustments.
for the transition of pool-
riffle to braided
floodplains.
braided | It is anticipated that Bed material is typically a | The low flow channels,

divided flow conditions are
prevalent, during
significant portions of both
the rising and falling limbs
of a hydrograph for a major
flow event. In addition,
near critical and/or
supercritical flow
conditions are typical.

mixture of sand, gravel,
cobbles, and possibly
small to medium
boulders. The coarse
gravels, cobbles, and/or
boulders are

in sufficient quantities to
typically armor the
dominant low flow
channel. Due to the
mixture of bed material
two fraction sediment
transport relationships
are appropriate.

especially the dominant
low flow channel, may
have a wide range of
bedforms, including step-
pool, plane-coarse-bed,
and/or pool-riffle. That
is, only portions of the
bed are typically
armored. Hence, models
that permit spatial
variations in
characteristics of the
armor layer within a
cross section may be
appropriate.
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5.3 Overall Vision of Project Tools

As described in Chapter 1, the principle investigators proposed the following series
of tools as the deliverables for the SCCWRP Hydromodification Project:
e “Screening Tools” for identifying the risk for and the potential trend of severe
floodplain instability.
e “Modeling Tools” for evaluating the trend and magnitude of the change in floodplain
geometry due to urbanization/hydromodification.
e “Mitigation Tools” for guiding recommended mitigation and management measures,
including “Monitoring Protocol” for future data collection efforts.
This section briefly describes how I believe the techniques described in this
dissertation fit into the overall framework of the various tools proposed as the deliverables
for the SCCWRP Hydromodification Project.

Screening Tools

The basic objectives for Screening Tools are to identify the risk for instability and the
potential trend of the change in floodplain geometry, due to the potential impacts of
urbanization. Hence, in terms of a screening level assessment, the investigations described
in this dissertation had several important findings:

¢ Non-armored floodplains are susceptible to transitioning into a state of severe
instability at much lower levels of specific stream power than floodplains in the
armored continuum, as can be determined by comparing Figures 3.12b and 3.13b.

¢ Non-armored floodplains have the predominant tendency to widen (i.e., increases in

W/d ratio) in response to incremental increases in water supply and decreases in

sediment supply, as indicated by the results for the example analysis summarized in

Table 4.7.
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e Pool-riffle floodplains in the armored continuum may adjust their slope and width in
nearly equal proportions in response to incremental increases in water supply and
decreases in sediment supply, as indicated by the results for the example analysis
summarized in Table 4.7.

¢ The magnitude of the change in floodplain geometry (due to changes in water and/or
sediment supply) associated with a non-armored floodplain is potentially orders of
magnitude greater than that for a floodplain in the armored continuum (as described
in Chapter 4), even if the floodplain does not become unstable and transition into the
state of severe instability.

Based on these findings, | envision that identifying the floodplain continuum
associated with the catchment in question would be a key step in any screening level
assessment. Itis important to note that I contend that the “dsy” value for a bed gradation is
not necessarily a reliable indicator of whether a floodplain has an armored bed or not, in
the semi-arid environment of southern California. As described in Chapter 2, these
investigations found that non-armored and armored plane-mixed-bed floodplains can have
very similar surface material gradations (and dso values), yet have very different
morphological characteristics and stability hazards. This is one of the reasons why I choose
to differentiate between the “non-armored” and “armored” floodplain continuums with a
term that is both form and process oriented.

In Chapter 2 both a direct and indirect method for assessing the continuum of a
floodplain are described and in both cases bed gradation data are not required. The direct
method involves using the Floodplain Field Identification Tables (Tables 2.4 and 2.5) in
conjunction with a site visit to identify both the floodplain form and continuum
representative of the reach in question. The indirect method described in Section 2.5.4 is a

GIS-based technique that uses available GIS layers to predict the floodplain continuum
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based on catchment characteristics. Therefore, I envision that one or both of these methods
would be used to assess the floodplain continuum within a catchment, as an initial step in
the screening level assessment.

[ would also envision that the screening level assessment would include assessing
the initial stability state of the floodplain in question. An initial assessment of the stability
state of the floodplain could be accomplished by identifying the CEM phase for the
floodplain via field observations and the criteria listed in Table 3.4. However, I would also
include assessing the stability state of the floodplain using the floodplain state diagrams
(Figures 3.12 and 3.13) via the techniques described in Steps 1a and 1c of the modeling tools
(Tables 4.3a and 4.5a).

To employ the floodplain state diagrams (Figures 3.12 and 3.13), floodplain
geometry, including bed slope, and an estimated reference discharge are required. The
floodplain geometry data could be obtained from either: (a) a relatively cost efficient field
survey utilizing a measuring tape and a hand level; (b) detailed field survey using more
sophisticated survey techniques; or (c) detailed topographic mapping, such as that used for
floodplain delineation studies. The reference discharge, such as Qi0o, can be estimated using
the equations provided in Table 3.7, for catchments with little to no urbanization, or by the
various hydrologic analysis techniques adopted and documented in the drainage manuals
for each of the counties within the study area.

In summary, [ envision that identifying the floodplain continuum associated with
the catchment and assessing the initial stability state of the floodplain in question would be
key initial steps in any screening level assessment. I further envision that the screening

level assessment tools would also include means for assessing:
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e The susceptibility of the floodplain to bank failure, by evaluating the erosional
resistance and stability characteristics of the natural banks and/or bank protection
improvements;

e The susceptibility of the floodplain to base level changes, by evaluating the location
and condition of any natural or man-made hard points in the channel bed that may
be controlling the bed profile for the watercourse; and

¢ The susceptibility of the floodplain to future changes in water and sediment supply
due to upstream urbanization and/or flood control facilities.

Modeling Tools

The primary objective of these investigations was to develop modeling tools for
estimating the trend and magnitude of the change in floodplain geometry, due to
urbanization. I believe that this objective has been reasonably well achieved and that the
modeling tools described in this dissertation provide a very useful means for assessing both
the stability state and the potential response of a floodplain to changes in water and/or
sediment supply. Therefore, I envision that the modeling tools described in this dissertation
will form the core of the final modeling tools for the SCCWRP Hydromodification Project.

Mitigation Tools

Just as the conceptual models described in Chapters 2 and 3 provided the
framework for developing the modeling tools described in Chapter 4, I envision that the
conceptual models and modeling tools described in this dissertation will provide the
framework for developing the mitigation tools. More specifically, [ envision that there will
be mitigation tools tailored to each of the floodplain forms and/or continuums. I further
envision that the modeling tools described in this dissertation will be essential in the
development of the mitigation tools by providing a means for assessing and testing the

effectiveness of specific mitigation measures under a range of conditions.
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5.4 Concluding Remarks

As described in Chapter 1, this dissertation has at its core the goal of addressing the
practical research question: How can we estimate the trend and magnitude of the change
in floodplain geometry due to urbanization or hydromodification? The approach I
developed to attain this goal involved first building a framework in the form of classification
systems and an array of conceptual models to describe the nature and form of floodplains in
the semi-arid environment of southern California. This framework of classification systems
and conceptual models has been built based on both my direct field observations and
analysis of the field data collected as part of the SCCWRP Hydromodification Project.

As reflected in the Floodplain Field Identification Tables (Tables 2.4 and 2.5) and the
Conceptual Models for Intra-Catchment Processes (Figures 3.12 and 3.13), an extensive set of
field data has been collected as part of the SCCWRP Hydromodification Project and I
consider myself fortunate to have had the opportunity to select each of the study sites and
be involved with every aspect of the data collection process. Through this involvement in
the data collection process, I developed a deep appreciation for both the high level of effort
put forth by the entire project team to collect such a high quality set of field data and the
unique opportunity that this data set provided for these investigations. Hence, the
approach [ developed for addressing the practical research question at the core of my
research involved utilizing the field data to the fullest extent possible. Therefore, I believe
that the research documented in this dissertation is securely founded in an extensive set of
field data and, thereby, provides a solid framework from which to base both the three

hydromodification project tools and future investigations.
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Table A.1a -Average annual precipitation and Geo-Soil Score data
for study catchments

. . o Co. | Type Catchment Ave._ A_nnl}al (;f)(i)l-
Site ID Site Description ) @) Area Precipitation Score
2

(lem’) (m) (13)

YTLCO00 Yucaipa Crk Trib @ Live Oak SB la 1.45 0.381 1.00
HCSC00 Hasley Canyon Site 3/C LA la 0.36 0.432 1.00
HCSB0O Hasley Canyon Site 1/B LA la 4.47 0.432 1.13
YCMGOO Yucaipa Crk at Mesa Grande SB la 16.80 0.601 1.16
HCSAOT Romero Cnyn @ Hasely Cnyn LA la 8.07 0.432 1.30
HCSA00 Hasley Canyon Site 2/A LA la 11.64 0.432 1.38
SJBL0OO San Jacinto Trib - Bad Lands R la 0.15 0.362 1.61
RCSAO00 Romero Canyon Site A LA la 0.70 0.432 1.63
BCCDOO Borrego Canyon 0 la 7.04 0.368 1.76
ACLAOO Aliso Canyon @ Hovnanian LA la 5.31 0.501 1.79
DCADOO Dry Canyon \ la 3.18 0.432 1.89
HCSROO0 Hicks Canyon D/S 0 la 3.88 0.372 1.93
HCMRIT Hicks Canyon U/S 0 la 3.45 0.376 1.94
PLSB00 Perris Lake Site 2/B R 1b 0.14 0.330 1.88
MCCS00 McGonigle Canyon SD 1b 5.14 0.330 2.02
PLSD0O Perris Lake Site 4/D R 1b 2.06 0.330 2.05
PLSA00 Perris Lake Site 1/A R 1b 0.45 0.330 2.05
AHMDOO0 Agua Hedionda SD 1b 26.28 0.330 2.20
PLSCO00 Perris Lake Site 3/C R 1b 1.46 0.330 2.26
PPSA00 Pigeon Pass Site A- D/S R 1b 6.42 0.381 2.32
PVPV1T Proctor Valley West Trib. SD 1b 1.97 0.381 2.33
PVPV00 Proctor Valley SD 1b 11.28 0.381 2.34
PPSB00 Pigeon Pass Site B - U/S R 1b 3.50 0.381 2.36
SCATI1T Santa Clara Trib @ Acton U/S | LA 1b 1.35 0.279 2.53
SCATO00 Santa Clara Trib @ ActonD/S | LA 1b 2.03 0.279 2.61
PLSD1T Perris Lake Site 4/D Trib. R 1b 0.43 0.330 2.76
LSCSMM Little Sycamore Creek LA 2 28.04 0.506 1.98
BSCSMM | Big Sycamore Crk-Chin(2002) \% 2 54.10 0.461 1.98
TCBDOO Topanga Canyon LA 2 49.89 0.634 2.16
CCMCSM Cold Creek-Chin(2002) LA 2 21.06 0.676 2.20
SJOHO00 San Juan Creek D/S 0 2 104.93 0.402 2.40
SJOH1T San Juan Creek U/S 0 2 103.57 0.403 2.40
SCSA00DS | Santiago Canyon @ BridgeD/S | O 2 34.95 0.524 2.45
SCSA00 Santiago Canyon @ Bridge U/S | O 2 33.66 0.529 2.47
SCSB0OO Santiago Canyon Tucker 0 2 17.87 0.557 2.58
SCSCo0 Santiago Canyon @ Nat. Load. 0 2 17.26 0.560 2.58
SCSDO0 Santiago Site D 0 2 16.22 0.569 2.61
SCOLO00 Silverado Cnyn @ Nat. Loading | O 2 20.65 0.512 2.64
SAOA00 San Antonio Crk @ E Ojai Ave. | V 2 31.64 0.574 2.83
SCNS00 Stewart Canyon Vv 2 4.72 0.533 2.97
BCLCOO0 Bus Canyon @ Challenger Park | V 2 7.29 0.487 1.98
ECLF00 Escondido Creek SD 2 155.05 0.355 2.22
DCCROO0 Dulzura Creek @ Hwy 94 SD 2 70.28 0.412 2.26
SJSR0O0 San Jacinto Trib @ Soboba R 2 0.76 0.436 2.33
LCOLO0 Little Cedar Canyon SD 2 7.22 0.392 2.38
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Table A.1b -Average annual precipitation and Geo-Soil Score data

for study catchments
. . o Co. | Type Catchment Ave._ A_nnl}al (;f)(i)l-
Site ID Site Description ) @) Area Precipitation Score
km?) (m)

( (1-3)

AF1SGM Alluvial Fan1 SG Mnts SB 3 1.72 0.882 1.73
AF2SGM Alluvial Fan2 SG Mnts SB 3 1.94 0.904 1.87
FCOGOO0 Un-Named Creek @ Oak Glen SB 3 1.81 0.763 2.06
AF4SGM Alluvial Fan4 SG Mnts SB 3 5.18 0.839 2.10
DCHRO0 Deer Canyon SB 3 9.65 1.063 2.28
AF3SGM Alluvial Fan3 SG Mnts SB 3 12.43 1.074 2.64

Notes: (1) LA = Los Angeles County

(2) Types 1a and 1b = Non-Armored Floodplain Continuum

O = Orange County

R =Riverside County

SD = San Diego County

SB = San Bernardino County
V =Ventura County

Type2 = Armored Floodplain Continuum
Type 3 = Active-Regional Alluvial Fan Continuum
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Table A.2a - Rock-Type and Geo-Soil Score data for study catchments

. Geo-

Site ID Cof;‘llt(;zﬁﬁlr?llger Perc?nt P.ercent Percent _ Percent Soil
Field Observation Alluvium | Sedimentary | Metamorphic | Igneous ?io;)e

YTLCOO la | non-armored 100% 0% 0% 0% 1.00
HCSCO00 la | non-armored 0% 100% 0% 0% 1.00
HCSB0O la | non-armored 0% 100% 0% 0% 1.13
YCMGOO | 1a | non-armored 31% 0% 69% 0% 1.16
HCSAOT la | non-armored 0% 100% 0% 0% 1.30
HCSA00 la | non-armored 0% 100% 0% 0% 1.38
SJBL0O 1la | non-armored 0% 100% 0% 0% 1.61
RCSA00 la | non-armored 0% 100% 0% 0% 1.63
BCCDOO | 1a | non-armored 0% 100% 0% 0% 1.76
ACLAOO la | non-armored 0% 100% 0% 0% 1.79
DCADOO | 1a | non-armored 0% 100% 0% 0% 1.89
HCSRO0 la | non-armored 0% 100% 0% 0% 1.93
HCMRIT | 1a | non-armored 0% 100% 0% 0% 1.94
PLSBO00 1b | non-armored 100% 0% 0% 0% 1.88
MCCS00 | 1b | non-armored 19% 18% 0% 63% 2.02
PLSD0O 1b | non-armored 57% 0% 0% 43% 2.05
PLSA00 1b | non-armored 77% 0% 0% 23% 2.05
AHMDOO | 1b | non-armored 0% 18% 7% 75% 2.20
PLSC00 1b | non-armored 30% 0% 0% 70% 2.26
PPSA00 1b | non-armored 31% 0% 0% 69% 2.32
PVPVIT | 1b | non-armored 0% 0% 0% 100% 2.33
PVPV00 1b | non-armored 0% 0% 0% 100% 2.34
PPSB00 1b | non-armored 29% 0% 0% 71% 2.36
SCAT1T | 1b | non-armored 0% 0% 0% 100% 2.53
SCATO00 1b | non-armored 0% 0% 0% 100% 2.61
PLSD1T | 1b | non-armored 15% 0% 0% 85% 2.76
LSCSMM 2 armored 0% 25% 0% 75% 1.98
BSCSMM 2 armored 0% 58% 0% 42% 1.98
TCBDOO 2 armored 0% 91% 0% 9% 2.16
CCMCSM 2 armored 0% 52% 0% 48% 2.20
SJOHO0O0 2 armored 0% 1% 35% 64% 2.40
SJOH1T 2 armored 0% 1% 35% 64% 2.40
SCSAQ00DS | 2 armored 0% 18% 51% 31% 2.45
SCSA00 2 armored 0% 15% 53% 32% 2.47
SCSB0OO 2 armored 0% 6% 49% 45% 2.58
SCSCO00 2 armored 0% 6% 48% 46% 2.58
SCSDO0 2 armored 0% 2% 49% 49% 2.61
SCOL00 2 armored 0% 0% 92% 8% 2.64
SAOA00 2 armored 8% 92% 0% 0% 2.83
SCNS00 2 armored 0% 100% 0% 0% 2.97
BCLCO00 2 armored 0% 100% 0% 0% 1.98
ECLF00 2 armored 0% 0% 8% 92% 2.22
DCCROO 2 armored 0% 0% 0% 100% 2.26
SJSRO0 2 armored 0% 0% 0% 100% 2.33
LCOLOO 2 armored 0% 0% 0% 100% 2.38
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Table A.2b - Rock-Type and Geo-Soil Score data for study catchments

. quodplam Percent Percent Percent Percent Geo-Soil
Site ID Continuum per Alluvium | Sedimenta Metamorphic | Igneous Score
Field Observation y P g (1-3)
AF1SGM | 3 alluvial fan 7% 0% 93% 0% 1.73
AF2SGM | 3 alluvial fan 2% 0% 98% 0% 1.87
FCOGOO | 3 alluvial fan 12% 0% 67% 21% 2.06
AF4SGM | 3 alluvial fan 2% 0% 66% 31% 2.10
DCHROO | 3 alluvial fan 2% 0% 68% 31% 2.28
AF3SGM | 3 alluvial fan 3% 0% 32% 65% 2.64

208




Appendix B- Hydraulic Analyses for Field Sites
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Table B.1 - List of the primary hydraulic parameters in the hydraulic database for
each cross section and a range of flow rates

Hydraulic Depth Eq.B.1
D=A/W in (m)
Hydraulic Radius Eq.B.2

R=A/P, in (m)
Manning Equation (Chow, 1959):

1 Eq.B.3
V=—R"S"  in(m/s) a
n
Continuity Equation (Chow, 1959):
Q=V-A in(m3/s) Eq.B.4
Width-to-Depth Ratio (Knighton, 1998):
T = (W /d)= Width-to-Depth Ratio (m/m) Eq.B.5
Total Boundary Shear Stress (Chow, 1959):
T=)RS, in(Pa=kg/ms?) Eq.B.6
Shields Parameter (Chow, 1959):
. RS, Eq.B.7
(7/S - }/)dgx
Specific Stream Power (Bull, 1979):
w=00S,)/W  in(W/m2) Eq. B.8
Froude Number (Chow, 1959):
3 |% Eq.B.9
' (gD)/ o
Estimation of Manning n value per Limerinos (1970)
0.113d"° Eq.B.10

n=
1.16+2-log(d / dy,)
where: V' =flow velocity (m/s)
n = Manning’s roughness coefficient
A =flow area (m2)

P

w

wetted perimeter (m)

S ; = friction slope (m/m)

d, = grain size (m)

dy, = particle size for which 84% of the particles are smaller
0 = flow rate (m3/s)

W = topwidth of flow area (m)

d = maximum flow depth (m)

7 =9810 (kg/m?2s2) = specific weight of water

¥, = 25,967 (kg/m?2s?) = specific weight of sediment
g2 =9.81 (m/s?) = acceleration of gravity

a = 1.15 = kinetic energy coefficient
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