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ABSTRACT 
 
 
 

SELENIUM SPECIATION DETERMINED BY ICPMS: EFFECTS ON FISH DIVERSITY, 

SOLUBILITY, AND BIOAVAILABILITY TO THE BRYOPHYTE HYGROHYPNUM 

OCHRACEUM IN FOUNTAIN CREEK, COLORADO 

 
 
 

 Selenium (Se) is a micronutrient that can be present in high levels in aquatic 

environments which may result in toxic effects observed in aquatic wildlife. The levels in 

Fountain Creek Colorado are of special concern as these levels are above the EPA limit 

of 5 µg/L. The high Se levels are a result of the exposure of the water to Pierre Shale 

deposits that underlie parts of the creek. The effects of this creek water on fish diversity 

were examined at different locations along the creek. The hypothesis tested was that 

high Se present in the water and bryophytes should be an indicator of fish species 

diversity. In addition, the possibility of low toxicity resulting from Se species was 

explored. The speciation analysis determined the levels of Se(IV) and SE(VI) at 12 sites 

and the statistical results show that sites with higher Se(IV)/Se total exhibit lower fish 

diversity and fish number than the other sites.  

There is a statistically significant difference in Ca, Mg, and Se levels in each of 

the 3 main tributaries in the Fountain Creek Watershed.  The tributaries are Monument 

Creek and Upper Fountain Creek, which join at a confluence near Eighth Street in the 

city of Colorado Springs, Colorado, to form the Lower Fountain Creek which empties 

into the Arkansas River in eastern Pueblo, Colorado. The following factors were 

considered in determining the forms of Se that could exist: Ca2+, Mg2+, SeO42-, SeO32-, 



iii 

and carbonates in addition to the reported thermodynamic relationships. There is a 

correlation that exists between water hardness and Se level. This correlation can be 

described in terms of the formation of a soluble CaSeO4. The formation of CaSeO4 is 

assisted by the increase in Ca2+ by the presence of Mg2+ regardless of the equilibria 

with the Ca2+ level reducing carbonate.  

The bryophyte Hygrohypnum ochraceum has been shown to accumulate zinc, 

cadmium, and lead is often found growing near acid mine drainages. This natural ability 

to accumulate metals makes H. ochraceum an good organism to use in the study of 

heavy metals and metalloids in the environment. In a previous work the bryophytes 

were shown to differentially uptake Se based on season. In this study the seasonality of 

the uptake of Se was examined and it is suggested to be related to an Iron (Fe) 

cofactor. The H. ochraceum cultures were placed in the creek for 10 days, harvested, 

dried and digested according to EPA Method 3052. The resulting digestates were 

analyzed using EPA Method 6020a for ICPMS metal determination. The results show 

that Fe and Se uptake are correlated. The hypothesis that was developed from these 

results is that Fe is needed by the plant for Se uptake from the creek water. Indeed H. 

ochraceum demonstrated statistically significant log-linear uptake of Se in the presence 

of dissolved Fe (R2=0.8488, p=0.002). Se uptake was negatively sloped in the fall 

compared to the linear relationship in the spring. It was determined that the Fe in the 

water went from a soluble form to an insoluble form. We failed to reject the null 

hypothesis that Fe is not required in a soluble form for the bryophyte H. ochraceum to 

uptake Se. Further examination did show that a significantly different slope exists 
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between the Se(IV) uptake and the Se(VI) uptake.  There was not a significant 

difference between the total dissolved Se and Se(VI).  

In the future directions, this work could be extended to look at specific markers 

for Se induced stress in the fish populations that may aid in determining the cause for a 

lack of diversity in some areas as the habitat along the reaches is similar for that reach. 

Targeted research of water chemistry could investigate the interesting solubility 

phenomenon giving rise to the seasonal variation of the Fe in Fountain Creek. Finally, 

the use of plants as bioremediation in the high Se areas could be further investigated 

with the knowledge that plant nutritional needs must be accounted for when using plants 

such as H. ochraceum as biological indicators or biological remediators. 
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CHAPTER 1 THE EFFECTS OF SELENIUM IN THE BIOSPHERE AND IN FOUNTAIN 
CREEK COLORADO 

 
 
 
The examination of Selenium (Se) in this introductory chapter will illustrate the 

multifaceted role it plays in nutrition and toxicology. Selenium chemistry and speciation 

is a topic that is necessary for the fundamental understanding of Se as a nutrient and 

toxin. It is also a topic that plays a role in Se uptake, environmental stability and 

availability. Since plants are the primary producers in an ecosystem the native 

bryophyte Hygrohypnum ochraceum was used as a model plant to study the 

bioavailability of Se found in Fountain Creek and its two main tributaries. These 

tributaries and specifically lower Fountain Creek are known to have high levels of Se. 

The availability of Se in the Fountain Creek watershed as determined by the bryophytes 

and fish are the topic of this thesis.  

SELENIUM AND HEALTH: NUTRIENT AND TOXIN 

Selenium is essential micronutrient for all mammals including humans and is 

important for many cellular processes (Bird, Ge et al. 1997, Bird and Tyson 1997, 

Combs and Gray 1998, Mousa, O'Connor et al. 2007, Reyes, Mar et al. 2009, Weekley 

and Harris 2013, Block, Booker et al. 2016). However, at elevated levels, Se is also 

toxic and can cause increased risk of cancer and death due to Se poisoning (Combs 

and Gray 1998).  Selenium toxicity manifests itself in two forms; acute and chronic. In 

the acute form Se is absorbed in large doses whereas as in the chronic form the lower 

dose is accumulative over a longer period of time (MacFarquhar, Broussard et al. 2010).  

An example of acute toxicity was presented in a case study involving the consumption 

of a dietary supplement that had Se levels of 40,800 µg/1 oz (MacFarquhar, Broussard 
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et al. 2010). In this case, 201 people in 10 states reported having signs of Se toxicity 

which include: vomiting, nausea, nail discoloration, nail brittleness and loss, fatigue, hair 

loss, irritability, and foul breath odor, also called  “garlic breath” (Yang, Wang et al. 

1983, Fan and Kizer 1990, United States Department of Health and Human Services 

2003, Nuttall 2006). In the aforementioned case the symptoms of toxicity existed for 

more than 90 days due to the differential perfusion of Se into tissues (MacFarquhar, 

Broussard et al. 2010).  The reason for the long recovery period is that the human body 

does not have an efficient mechanism for detoxification and elimination of high levels of 

Se (MacFarquhar, Broussard et al. 2010). Toxicity from chronic exposure is more 

difficult to determine and depends on the soils and geological characteristics of a region 

(Gore, Fawell et al. 2010). The evidence of chronic exposure to high Se levels can 

range from no clinical signs to fatigue, lesions of the skin, loss of hair and nails, loss of 

appetite, gastrointestinal disturbances, cardiac insufficiency and heart failure (Gore, 

Fawell et al. 2010). Lowered levels of glutathione peroxidase have been measured in 

individuals with high Se exposure originating from ground water (Gore, Fawell et al. 

2010).  While the evidence is not concrete Se exposure has also been linked to an 

increased risk for type 2 diabetes (Bleys, Navas-Acien et al. 2007).    

The Se levels required to sustain health exist in a narrow window, where too 

much or too little can be deleterious to health and where toxicity depends on the Se 

species. As a result, Se environmental levels are regulated and strictly enforced by the 

EPA in the USA (Edelmann, Ferguson et al. 2005, Divine and Gates 2006, Colorado 

Department of Public Health and the Environment Water Quality Control Commission 

2013, United States Environmental Protection Agency 2016). Moreover, global dietary 
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guidelines for human daily Se intake vary widely with most countries recommending 60-

70 μg/day (Kim and Mahan 2003). The current United States Recommended Daily 

Allowance for intake of selenium is 55 g/day for a healthy adult person (National 

Institute of Health 2013) with a tolerable upper limit of 400 µg/day in a healthy adult 

(United States Department of Health and Human Services 2003).  

The duality of Se as a toxin and nutrient was developed during the 20th century. 

Initially Se was considered an undesirable element for higher organisms in the first half 

of the 20th century, due to its toxicity at high levels (Oldfield 1987). The toxic effects 

were first confirmed in the western United States in 1933. This finding was determined 

in livestock that consumed selenium hyperaccumulating plants of the genus Astragalus, 

Xylorrhiza, Oonopsis and Stanleya (Oldfield 1987). A new perspective developed in the 

last half of the 20th century which recognized the need for selenium as a nutritional 

element (Oldfield 1987). Selenium was shown to prevent liver necrosis in rats being fed 

a Torula – yeast and vitamin E deficient diet (Schwarz and Foltz 1957). Additional 

support for the benefits of Se was shown in the discovery of its role in the formation of 

glutathione peroxidase, thioredoxin reductase, and other enzymes that protect against 

oxidative stress (Rotruck, Pope et al. 1973). Indeed a lack of dietary selenium can result 

in deficiency diseases that may include reproductive impairment growth depression and 

white muscle disease, which is a myopathy of heart and skeletal muscle primarily 

affecting calves (Reilly 1996). Human selenium deficiency diseases have also been 

found to include endemic cardiomyopathy and  Kashin – Beck disease which is a type 

of osteochondropathy that is believed be caused by Se deficiency allowing mycotoxins 

to cause oxidative damage to the joints (Rayman 2000, Yao, Pei et al. 2011). In 
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mammalian systems, selenium is known to substitute for sulfur in key pathways 

resulting in the formation of selenomethionine (Sem), selenocysteine (Sec), 

selenodiglutathione, and glutathione selenopersulfide.  In addition, more than 30 

selenoproteins have been discovered to date and contain Sec and/or Sem residues 

(Rayman 2000, Tinggi 2008). Limiting dietary Se has serious health consequences as 

Se is often essential for the biological functions of these proteins.  

There has been a great increase in knowledge of antioxidant selenoenzymes and 

the role of these enzymes in protecting cells from oxidative stress as well as the role of 

these enzymes and various diseases (Tinggi 2008).  Gaps in knowledge extend to the 

mechanism of action by which Se aids in the protection of tissues and cells from 

damage due to oxidative stress (Tinggi 2008). Oxidative stress is linked to a host of 

previously mentioned diseases such as heart disease that result in deaths worldwide 

(Tinggi 2008, Yao, Pei et al. 2011) Furthermore the presence of these Se based 

diseases seems to be linked to environmental factors such as the geographical 

distribution of Se and the environmental availability of Se (Reilly 1996, Rayman 2000, 

Yao, Pei et al. 2011).  

SELENIUM CHEMISTRY AND SPECIATION. 

Se exists in several oxidation states II, IV and VI and, in natural environments, 

the oxides SeO2 and SeO3 containing Se(IV) and Se(VI), respectively, are most 

common (Sors, Ellis et al. 2005).  The most common species existing in aqueous 

systems is selenate (SeO42-) which is Se(VI) and is the stable form in the presence of 

oxygen (Sors, Ellis et al. 2005). The more reduced form selenite (SeO32-) is Se(IV) and 

is stable in more reducing environments (Sors, Ellis et al. 2005).  Selenite in the 

presence of oxygen will oxidize to form selenate unless it is in a reducing environment.  
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Although there are significant differences in these two anions with respect to their redox 

reactivity, electronically and structurally they have many similarities. Se(II) is commonly 

observed in organoselenium compounds.  Se(II) bound to C is particularly stable and 

major forms of Se that exist in biological systems are organometallic Se derivatives 

(Sors, Ellis et al. 2005), which are analogous to similar S compounds.  

SELENIUM UPTAKE 

The uptake of Se varies with the Se source, anthropogenic or natural, and 

whether the Se is in the anionic inorganic forms, selenate or selenite, or one of the 

organic alkylated selenium compounds such as selenocysteine (Sors, Ellis et al. 2005). 

Selenocysteine and other amino acid derivatives are known to enter cells using amino 

acid transporters (Pilon-Smits and Quinn 2010) whereas selenate and selenite are 

believed to enter cells through the same transporters that support cell uptake of sulfate, 

sulfite and other oxoanions (Burk and Levander 1999, Rosen and Liu 2009, Pilon-Smits 

and Quinn 2010). Counterions are known to impact uptake and bioprocessing of 

(Chatkon, Chatterjee et al. 2013) other drugs, however little is known about the role of 

counterions for the uptake and processing of the inorganic selenium oxoanions in 

bryophytes or plants (Boudy, Voute et al. 2002).   

SELENIUM AND THE ENVIRONMENT 

Selenium is readily available in many soils in North America resulting from the 

breakdown of selenium containing sedimentary deposits like shales (Dhillon and Dhillon 

2014). Water quality issues exist from the contamination of rivers and streams by 

seleniferous agricultural runoff  and exposure to selenium containing shales (Presser, 

Sylvester et al. 1994). The accumulation of high selenium waters due to runoff can have 

detrimental consequences on wildlife species. A well-known selenium contaminated site 
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is the Kesterson Reservoir in Merced County, California. Studies at Kesterson point to 

an increase in selenium as a cause for low egg hatching success, also called nest 

failure (Ohlendorf, Hothem et al. 1989). One of the most notable impacts of low hatching 

success was in Eared Grebes (Podiceps nigricollis) whose diet consists of insects and 

crustaceans, which likely were a source of dietary Se (Ohlendorf, Hothem et al. 1989).  

This finding illustrates how Se can get magnified in a food chain with resulting 

detrimental impacts.  

On the other hand, there are organisms that do not appear to be negatively 

affected by high environmental levels of Se (Oldfield 1987).  Bryophytes or aquatic 

plants related to mosses have been found to be indicators of environmentally 

biologically available Se and have been used in toxicology studies involving metals 

found in acid mine drainages (Nimmo, Herrmann et al. 2006, Herrmann, Turner et al. 

2012, Nimmo, Herrmann et al. 2016). These organisms seem to have adaptive 

mechanisms for dealing with elevated Se exposure (Nimmo, Herrmann et al. 2006). 

Since, plants are the primary biomass producers and the beginning of the food chain of 

all ecosystems and contribute significantly to uptake of selenium from the environment 

(Pilon-Smits and Quinn 2010). Hygrohypnum ochraceum has a demonstrated ability to 

uptake metals from streams and rivers that have been impacted by anthropogenic 

sources (Claveri, Guerold et al. 1995, Nelson and Campbell 1995, M.A.S. and P.J. 

1997, Samecka-Cymerman and Kempers 2001). Therefore, due to this ability, H. 

ochraceum was specifically used to study Se accumulation in a watershed and a river 

(Nelson and Campbell 1995, Herring, Castle et al. 2001). 

Selenium has become a major concern in Fountain Creek, due to its contact with Se 
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rich Pierre Shale  (Edelmann, Ferguson et al. 2005). Fountain Creek is one of the larger 

tributaries of the Arkansas River Figure 1.1. This creek drains an area of 2,398 km2 and 

includes areas of Pikes Peak, the cities of Colorado Springs, Monument, Fountain and 

Security (Bruce 2002). The Colorado Springs metro area is rapidly growing area and in 

2010 contained 668,353 people (Census Bureau (United States Census Bureau 2011).  

Fountain Creek is a sandy bottom creek that has highly variable flows and is prone to 

flooding from increased storm flows due to expanding urbanization along the creek 

(Edelmann, Ferguson et al. 2005). In 2006, selenium was listed as a special concern 

along with non-point source pollution in The Fountain Creek Crown Jewel Project 

(Salazar 2006). Several water quality sampling efforts have been made on this tributary 

and all have shown levels above in-stream regulatory guidelines of >5.0 g/L as total Se 

(Mueller, De Weese et al. 1991, Van Derveer and Canton 1997, Bossong 2001, Divine 

and Gates 2006).  
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SELENIUM IN FOUNTAIN CREEK, COLORADO (STUDY SITES) 

 

Figure 1.1 Map of study area with sample sites (Herrmann, Turner et al. 2012). 
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The Se load is carried by the Fountain Creek south as it enters the Arkansas 

River in the eastern part of the city of Pueblo (Herrmann, Turner et al. 2012). The area 

east of Pueblo is an agricultural area that raises several important food crops including 

chilies, melons, corn, tomatoes, pumpkins, winter squash and alfalfa(Howe, Lazo et al. 

1990). There is also a large amount of pastureland in the Arkansas River basin east of 

Pueblo, Colorado. These areas are at risk of developing elevated levels of selenium 

released by Fountain Creek into the Arkansas River. The area of interest is managed by 

two water districts the Southeastern Colorado Water Conservation District and the 

Lower Arkansas Water Conservation District (Abbott and Southeastern Colorado Water 

Conservancy District 1985). 

The coexistence of high levels of Se with agricultural land east of Pueblo, 

Colorado, makes it critical that studies examine the complex relationships between this 

element and the environment and its corresponding biota.  

The Fountain Creek study area is shown in Figure 1.1. The study area consists 

of 14 collection sites with 4 sites distributed along the Upper Fountain Creek (UF1 – 

UF4). There are 5 collection sites along Monument Creek (MC1-MC5) and 5 collection 

sites along Lower Fountain Creek (LF1 – LF5). These sites were chosen according to 

the selenium distribution and potential for human impact on water chemistry in the 

Fountain Creek study area.  

Upper Fountain Creek is a mountain creek that starts at a higher altitude in the 

watershed and is well above the exposed Pierre Shale that is present in the lower 

Fountain Creek. The Upper Fountain Creek passes through the town of Manitou and 

has an intermittent flow in the late season in drought years. Upper Fountain Creek is 
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also prone to flooding as a result of storm runoff from burn scars remaining from the 

Waldo Canyon fire.  

Monument Creek begins near the top of Monument Hill and passes through the 

town of Monument, the United States Airforce Academy (USAFA) and from the north to 

the south of the city of Colorado Springs. Monument Creek has a continual flow and is a 

carrier of treated wastewater from the previously named cities and the USAFA.  MC-5 

on Monument Creek is the first site with exposed Pierre Shale. Lower Fountain Creek is 

formed from the confluence of Upper Fountain Creek and Monument Creek. 

Lower Fountain is a wastewater impacted stream (Gautam, Carsella et al. 2014) 

and is the reach with the largest extent of exposed Pierre Shale (Figure 1.1). This reach 

has the collection sites with the highest Se levels and discharges into the Arkansas 

River in the eastern part of the city of Pueblo, Colorado. Lower Fountain Creek is prone 

to flooding and large amounts of sediment redistribution (Edelmann, Ferguson et al. 

2005).    

Indeed, others have shown, and we show that Se speciation is important to 

resulting effect of Se levels and therefore it is not enough to simply monitor the levels of 

selenium present in the water system (Torres, Pintos et al. 2010, Torres, Pintos et al. 

2011, Mast, Mills et al. 2014, Carsella, Melnykov et al. 2017, Carsella, Sánchez-

Lombardo et al. 2017). Bioavailability of the selenium is critical to the effects of the 

selenium and must also be considered in any analysis (Lemly 1997, Herrmann, Turner 

et al. 2012, Lemly 2014, Carsella, Melnykov et al. 2017). on Se levels in the water, Se 

speciation levels to be measured in the water and correlations to uptake by primary 

producers (plants) and animals in higher positions in the food chain. This approach 
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required environmental, chemical and biological studies to determine the selenium 

content in the environment, the chemistry that impacts selenium levels in fish, water, 

plants, and the mechanisms of selenium transport or influx and metabolism in plants. 

This thesis describes work relevant to environmental issues associated with selenium, 

specifically, the first two chapters of this thesis have resulted in two published 

manuscripts; Chapter 2 concerns Se effects on fish diversity and Chapter 3 concerns 

the Se speciation in the Fountain Creek water system.  In Chapter 4 the issue of Se 

bioavailability is addressed.  Since environmental studies have often used 

Hygrohypnum ochraceum, a native species (Nimmo, Herrmann et al. 2006), in its 

natural setting, H. ochraceum was chosen as the appropriate organism to determine the 

Se availability to plants in the Fountain Creek water (Chapter 4).   
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CHAPTER 2 SELENIUM SPECIATION IN THE FOUNTAIN CREEK WATERSHED 
AND ITS EFFECTS ON FISH DIVERSITY1 

 
 
 

SYNOPSIS 
Se is an environmental concern as it can be toxic if present in high 

concentrations even though it is a dietary requirement for all animals. Se levels are a 

special concern in the Fountain Creek Watershed located in southeastern Colorado 

whose geological source is the Se rich Pierre Shale. Segments of Fountain Creek have 

Se water levels that exceed the current EPA limit of 5 µg/L. In the studies described 

here, the effects of river water containing selenium were examined on fish populations 

at different sites along the Fountain Creek Watershed. Based on the hypothesis that 

high levels of Se present in the Creek and resident bryophytes should be an indicator of 

diversity in the river fish we explored the possibility that the low toxicity of the selenium 

could be due to speciation.  A speciation analysis was conducted to determine the 

selenium(IV) and selenium(VI). Our results show that sites with higher ratios of the more 

toxic Se(IV) relative to total selenium exhibit lower fish diversity and numbers. Our 

results indicate that, factors, other than total Se, such as Se-speciation may be involved 

in controlling the bioavailability and toxicity of this element to aquatic organisms in 

controlling the bioavailability and toxicity of this element to aquatic organisms in 

Fountain Creek  

                                            
1 This chapter is published in Journal of Biological Inorganic Chemistry and is referenced as  

(Carsella, Melnykov et al. 2017).  Table and figure numbers have been modified to reflect that 

they are specific to this chapter, e.g. figure 1 is now figure 2.1. and the reference were moved to 

the end of this document. This article is reproduced with permission, and only minimal 

modifications were made to meet formatting requirements. No other modifications were made. 
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INTRODUCTION 

Selenium (Se) is an element that has both beneficial and toxic effects (Bird, Ge 

et al. 1997, Bird and Tyson 1997, Combs and Gray 1998, Mousa, O'Connor et al. 2007, 

Weekley and Harris 2013, Block, Booker et al. 2016) and as a result its environmental 

levels are regulated and strictly enforced by the EPA in the USA (Edelmann, Ferguson 

et al. 2005, Divine and Gates 2006, Colorado Department of Public Health and the 

Environment Water Quality Control Commission 2013, United States Environmental 

Protection Agency 2016)  Selenium toxicity in fish is primarily acquired through the 

consumed diet (Janz, DeForest et al. 2010) and is not the result of passive absorption 

from water. However, Se is known to be transferred from adults to the eggs (Hamilton, 

Holley et al. 2005, Hamilton, Holley et al. 2005, Hamilton, Holley et al. 2005, Janz, 

DeForest et al. 2010) and thus can act as a reproductive toxicant (Janz, DeForest et al. 

2010). This toxicity on fish reproduction has caused the EPA to develop a chronic 

exposure criterion for aquatic life (United States Environmental Protection Agency 

2015). The elevated levels of Se in the Lower Fountain Creek Watershed (LFCW) in 

southeastern Colorado have a significant environmental impact as the Creek empties 

into the Arkansas River, on the east side of the city of Pueblo, Colorado, and is a major 

source of the Se in the Arkansas River (Divine and Gates 2006). The geological 

sources of the Se are the shale deposits that underlie the waterways in various areas in 

Colorado (Divine and Gates 2006). We have carried out studies, characterizing and 

monitoring sites along the Lower Fountain Creek for Se content arriving from the Pierre 

Shale in the LFCW (Nimmo, Herrmann et al. 2016) during 2007-2009.  The reported Se 

levels in Fountain Creek for total and dissolved Se ranged from 1.3 to 64.4 µg/L, with 

mean values of 5.4 µg/L(Divine and Gates 2006). The mean value exceeds the EPA’s 
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past (5.0 µg/L) and new recommended values of 1.2 µg/L for Se in water (Divine and 

Gates 2006, United States Environmental Protection Agency 2016) and also exceeds 

the State of Colorado’s recommended water level of 4.6 µg/L (Colorado Department of 

Public Health and the Environment Water Quality Control Commission 2013).  

Se bioaccumulation has been reported in birds in the Kesterson National Wildlife 

Refuge (KWF) in California underlining the importance of reports of elevated  levels of 

Se in fish consumed by resident birds (Presser, Sylvester et al. 1994).  The EPA’s 

current fish tissue exposure limits are given as 15.8 mg Se/Kg for egg/ovary, 8.0 mg 

Se/Kg whole body and 1.2 µg Se/L for water (United States Environmental Protection 

Agency 2015). The Arkansas River in southeastern part of the State of Colorado has 

been identified as an area of concern to the Central Flyway (Presser, Sylvester et al. 

1994).  For example, the eastern Colorado Lower Arkansas River portion of the Central 

Flyway contains approximately 400 species of birds (Andersson, Davis et al. 2015, 

WIldlife 2016). The Se levels vary dramatically and, accordingly, reports have been 

prepared to describe some of the inhospitable environments in these rivers.  Indeed, 

these reports detail the teratogenic deformities or birth defects in fish as a result of Se in 

the eggs or chronic exposure to high Se-levels (e.g. Kesterson, Presser 1994 paper on 

Ark River and Fish) (Lemly 1997, Kennedy, McDonald et al. 2000, Hamilton, Holley et 

al. 2005, Hamilton, Holley et al. 2005, Hamilton, Holley et al. 2005, Mathews, Fortner et 

al. 2014). Observed deformities in these studies and others typically include lordosis, 

scoliosis, kyphosis, missing or deformed fins, missing or deformed gills or opercula, 

abnormally shaped head, missing or deformed eyes, and deformed mouths (Lemly 

1997, Kennedy, McDonald et al. 2000, Hamilton, Holley et al. 2005, Hamilton, Holley et 
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al. 2005, Hamilton, Holley et al. 2005, Mathews, Fortner et al. 2014). Acute toxic Se 

exposure in fish results in edema, exophthalmos, and cataracts, which was observed in 

Red Shiners (Notropis lutrensis) (Lemly 1997).  However, other fish species are found 

to tolerate higher levels of Se and show no adverse effects with a key example being 

the Cutthroat Trout (Oncorhynchus clarki lewisi) (Kennedy, McDonald et al. 2000).  The 

reported literature speaks to different chemical forms being toxic with species-

dependent effects (Bird, Ge et al. 1997, Kennedy, McDonald et al. 2000, Hamilton, 

Holley et al. 2005, Hamilton, Holley et al. 2005, Hamilton, Holley et al. 2005, Mathews, 

Fortner et al. 2014). Furthermore, high levels of Se accumulation have been reported in 

apparently healthy fish species (Kennedy, McDonald et al. 2000, da Silva, Mataveli et 

al. 2013, Maneetong, Chookhampaeng et al. 2013, Maseko, Callahan et al. 2013, 

Thosaikham, Jitmanee et al. 2014). 

Se is directly below sulfur in the periodic table and as a result many of its 

properties are similar to sulfur’s (Baes and Mesmer 1976, Block 2013). The oxidized 

forms of Se, selenite (SeO32-) and selenate (SeO42-), are the most common forms of Se 

in environmental settings although the reduced form H2Se exists in the earth’s crust and 

is co-located with sulfur (Combs and Gray 1998). Se levels in aqueous environments 

are generally between 1 nmol/L to 5000 nmol/L. Se is most soluble in aqueous solution 

under oxidizing conditions and such conditions can enhance its solubilization from rock 

(Holland and Turekian 2004). A number of methods have been reported describing the 

analytical methods available to carry out speciation studies (Bird, Ge et al. 1997, Bird 

and Tyson 1997, Narasaki and Mayumi 2000, Weekley and Harris 2013, Jagtap and 

Maher 2016).  Pourbaix diagrams suggest that selenous acid (H2SeO3) is favored at the 
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conditions that are normally found in oxidizing natural stream waters (pE ≈13.5) at a pH 

< 3.0 (Baes and Mesmer 1976) Hydrogen selenite (HSeO3-) is favored in the same 

oxidizing conditions up to about pH 5.0. Above pH 5.0 selenate (SeO42-) is the most 

favored Se species. Using the information in Pourbaix diagrams, it would follow that in 

less aerated waters (pE ≈13.5) at pH values between 3 and 8, hydrogen selenite, 

HSeO3- is the favored species (Torres, Pintos et al. 2010). Because the redox potential 

determines whether HSeO3- or SeO42- forms, which species predominates between pH 

3-8 depends on the pE. The pE measurement reported often assumes the water is 

aerated because the water is in contact with air. However, in waters that are not surface 

waters the amount of aeration is less therefore, the assignment of Se in this pH range 

should be in the form as Se(IV).  In natural aerated waters the conversion of Se(IV) 

(selenite, SeO32-) to Se(VI) (selenate, SeO42-) is kinetically slow and non-equilibrium 

conditions predominate (Bodek, Lyman et al. 1988). Other dissolved metals can also 

affect the process of oxidation and highlight the need to experimentally measure the Se 

species present in environmental samples under consideration (Torres, Pintos et al. 

2010).  

The Simpson Species Richness Index (SSRI) (Simpson 1949, Lande 1996, 

Smith and Wilson 1996, Gray 2000, Korb, Daniels et al. 2007) is used to characterize 

the sites sampled in Fountain Creek. The SSRI is an index measure based on the 

abundance of fish species present at a given site as well as the number of individuals of 

a given fish species at a site compared to the probability of encountering the species at 

any site in the study area (Lande 1996, Smith and Wilson 1996, Gray 2000, Korb, 

Daniels et al. 2007). Se(II), Se(IV) and Se(VI) are known to facilitate several modes of 
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action including forming adducts with cysteine residues, selenoproteins, and serving as 

cofactors for the reduction of antioxidant enzymes (Doyotte, Cossu et al. 1997, Ip, 

Birringer et al. 2000, Glass, Berry et al. 2008, Zhang, Rocourt et al. 2010, Moon, Ko et 

al. 2012) and function of other critical enzymes such as MAP kinase (Hei, 

Farahbakhshian et al. 1998) and protein phosphatases (Shelton and Capel 1994, 

Mueller, Bosse et al. 2009). Indeed, differential action of selenite and selenate have 

been reported with regard to cellular uptake by phosphate transporters (Zhang, Hu et al. 

2014), effect on tumor progression (Yoon, Kim et al. 2001) and in general impact on 

fresh water organisms [38]. Knowing the oxidation state of Se is very important in 

beginning to elucidate the mode of action of the Se compound.  

In this manuscript we analyze the effects of Se on the diversity of fish populations 

in a series of sites along the Fountain Creek. The analysis shows that Se content can 

be important for diversity in fish species although other variables play a role as well.  

The analysis underlines the importance of measuring the oxidation states of the 

environmental Se if a full understanding of the watershed sites is desired.  When 

speciation measurements were done a distinct variance in Se(IV) and Se(VI) levels in 

the different sites was observed.  Importantly, the low Se(IV) levels are consistent with 

low toxicity at sites where total Se content was much higher than the EPA 

recommended level.  These studies demonstrate the importance of determining both 

Se(IV) and Se(VI) in the aqueous samples and illustrate the need for such analysis 

should a complete understanding of the system be desired. 
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EXPERIMENTAL  

The chemicals were purchased from Sigma-Aldrich unless specified otherwise.  

The HPLC solvents were HLPC grade and purchased from Fisher Scientific. The 

chemicals were also purchased ultra-pure grade and used without purifications. 

Materials   

Sample Collection 

 
Figure 2.1 Map of study area and sample sites showing areas of Se rich Pierre Shale 
deposits (Green 1992). The inset shows the location of the study area in the State of 
Colorado (National Aeronautics and Space Administration Goddard Space Flight Center 
Rapid Response 2013). 

Water samples were collected from Lower Fountain Creek, near Pueblo, 

Colorado see Figure 2.1. Sites for sample collections were selected based on map 

locations and information reported previously on the sites UF-1 to UF-3, MC-1 to MC-5 
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and LF-1 to LF-5 (Nimmo, Herrmann et al. 2016).  Water samples were collected 

according to United States Geological Survey (USGS) water sampling protocols 

(Shelton and Capel 1994) with some modifications (Bednar, Chappell et al. 2010). The 

samples were placed on ice in the field to prevent selenite oxidation to selenate. After 

returning from the field the samples were split into 5 ml aliquots with the first aliquot 

analyzed immediately upon returning to the lab. The remaining aliquots were stored at -

20 °C under nitrogen for future use. 

Methods for Sample Analysis 

 Total water Se was measured by ICPMS using EPA Method 200.8 on an Agilent 

7500ce ICPMS (United States Environmental Protection Agency 1994). The 

chromatographic separation of the selenium species was carried out on a Thermo–

Dionex ICS-5000 coupled to an Agilent 7500ce ICPMS. The analytical column used was 

a Dionex AS-7 anion exchange column. Separation of hydrogen selenite (Se(IV)) and 

selenate (Se(VI)) was adapted from Ge et al. (Ge, Cai et al. 1996) and Bednar et al. 

(Bednar, Kirgan et al. 2009). Improved chromatographic separation was accomplished 

using a 17.5 mM citrate buffer at pH 5.2 as the mobile phase. Furthermore, methanol 

(2% v/v) was used in the mobile phase to enhance the Se signal (Larsen and Stürup 

1994). Mobile phase was isocratically delivered at 300 µl/min during the HPLC 

separation. After separation the species was identified using Agilent 7500ce ICPMS. 

Electrochemistry 
Redox (pE) measurements of collected water samples were carried out on a 

Microlab F-522 system using the electrochemical interface and pH probe reference. The 

redox data obtained from the Microlab interface were normalized for temperature and to 

the E0 hydrogen electrode standard since the Microlab uses a silver electrode. The E0 
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data were then converted to pE (Suslow 2004, Duffy 2011). pH measurements were 

obtained using the Microlab F-522 pH interface with a Microlab electrode.  

Statistical analysis 
All samples were prepared in triplicate and averages are reported.  These 

averages are reported with their standard errors shown. This was done both for the data 

previously reported and the new data obtained as a result of the analysis carried out 

here.  The Simpson Species Richness Index (SSRI) was used to compare the diversity 

of fish and relative number of each species at each site (Simpson 1949). 

Simple Canonical Correlation Analysis (SCCA) (Hotelling 1936) was used to 

examine the possibility of a relationship between dissolved Se, biologically available Se 

as bryophyte Se, fish species number and fish diversity (Knapp 1978, Härdle and Simar 

2007, Huang, Lee et al. 2009). The variable silt/clay percentage was also added as the 

silt/clay content could have a significant effect on fish reproduction.  

RESULTS AND DISCUSSION 

Data Analysis 
In Table 2.1 we list the Se content in Fountain Creek Watershed (Nimmo, 

Herrmann et al. 2016) and compare the Se content with the number of fish species at 

these sites, the number of fish species found at a site divided by the probability of 

finding a fish at this site (PI) and The SSRI factor PI2. It is the objective to use the SSRI 

index and the SSRI factor PI2 to derive conclusions regarding fish diversity.  The data 

from the previous studies (Nimmo, Herrmann et al. 2016) along the Fountain Creek in 

Colorado was subjected to this analysis. The calculatedPI2 values are listed in Table 1 

with the data used for these calculations (Nimmo, Herrmann et al. 2016). The use of the 
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SSRI index for the three reaches of Fountain Creek shown below Table 1 indicate that 

conclusions regarding fish diversity cannot be made for the data in Table 1 with respect 

to dissolved Se water levels. The idea that high Se levels should be detrimental to fish 

diversity and health is not reflected in the SSRI values for each reach as evidenced by 

the medial value of SSRI in the high Se reach of Lower Fountain Creek.  The higher 

SSRI values of Monument Creek and Lower Fountain Creek suggest the need for 

additional information that is speciation analysis, which was therefore carried out in this 

manuscript. 

Simpson Species Richness Index (SSRI) 
Our previous study identified some sites to contain high concentrations of Se in 

the Fountain Creek, Table 1 (Nimmo, Herrmann et al. 2016). High levels of Se in creek 

water generally correspond to high level of Se in the aquatic (bryophyte) plant (Nimmo, 

Herrmann et al. 2016).  However, there is a surprising difference in water Se content 

between some sites with similar Se in the plants (UF-4, LF-1 and LF-5).  These results 

support the interpretation that the varying Se levels are real and point to the need for 

additional data analysis and possibly a new analytical approach.  The Simpson Species 

Richness Index (SSRI) [37] is a weighted index measure based on the abundance of 

fish species present at a given site as well as the number of individuals of a given fish 

species at a site compared to the probability of encountering the species at any site in 

the study area.  The SSRI value increases when both species number and population of 

a given species increase (Simpson 1949). In the following Table 2.1 we will include the 

fish diversity in the Fountain Creek data in the analysis. 

The SSRI for the sites sampled in Fountain Creek provide a new aspect of the 

observations regarding Se content in aqueous samples and in the plants. The table 
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indicates what is expected at the Monument Creek sites (MC) which are among the 

lower containing Se sites in the aqueous sample series. The Se content in the water 

and in the native bryophyte species Hygrohypnum ochraceum is relatively low. The 

lower Se levels would suggest an area of favorable fish health in a reach of stream 

where fish habitat is similar. The SSRI values for MC (SSRI=0.054), LF(SSRI=0.025) 

and UF (SSRI=0.010) demonstrate that the greatest diversity of fish is in Monument 

Creek followed by Lower Fountain Creek.  

The PI2 values were used as a predictor of diversity at each site for statistical 

analysis. The MC 1- MC-3 PI2 values of 0.011, 0.015, and 0.022 respectively are 

accurate predictors of the higher SSRI value of MC. 

The Lower Fountain Creek sites (LF) also share similar habitats and are more 

sand-based than Monument Creek and Upper Fountain Creek(Edelmann, Ferguson et 

al. 2005). The unexpected high PI2 value at LF-4 (PI2=0.011) is interesting since it is the 

highest value in the LF reach and it is equivalent to the 3rd highest PI2 value in the 

entire Fountain Creek Watershed. This high PI2 level is unexpected in an area where 

the water Se is dramatically above EPA and CDPHE water standards.
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Table 2.1 Se content and fish sampled in Fountain Creek Watershed reported previously (Nimmo, Herrmann et al. 2016) 
Simpson Species Richness Index Factor (PI2). a-c 

Sample Sites 
Water Se 

(µg/L) 

Standard 
Error 

Water Se 

Plant: H. 

ochraceum 
Se (mg/Kg) 

Standard 
Error 

Plant Se 

Number of 
Fish 

Species 
PIa PI2b 

UF-1 0.193 0.011 400.940 43.071 1.000 0.043 0.002 
UF-2 0.140 0.011 528.660 33.366 1.000 0.052 0.003 
UF-3 0.673 0.004 867.520 75.233 1.000 0.043 0.002 
UF-4 1.323 0.021 934.680 61.917 2.000 0.052 0.003 
MC-1 0.207 0.011 738.260 43.288 2.000 0.104 0.011 
MC-2 0.277 0.048 746.400 52.137 3.000 0.122 0.015 
MC-3 0.343 0.017 426.300 56.580 2.000 0.148 0.022 
MC-4 0.443 0.029 736.760 82.547 3.000 0.052 0.003 
MC-5 1.863 0.028 410.200 11.400 1.000 0.052 0.003 
LF-1 2.050 0.142 907.460 119.82 3.000 0.052 0.003 
LF-2 2.780 0.011 1305.800 108.17 2.000 0.061 0.004 
LF-3 3.290 0.011 1096.680 58.88 2.000 0.043 0.002 
LF-4 9.687 0.004 2033.880 510.77 3.000 0.104 0.011 
LF-5 7.910 0.021 937.620 60.431 2.000 0.070 0.005 

Reference 
(Nimmo, 
Herrmann 
et al. 2016) 

 (Nimmo, 
Herrmann 
et al. 2016) 

 (Nimmo, 
Herrmann 
et al. 2016) 

This 
work   

This 
work 

a PI is the probability of finding a given species at a given location and is based on observed data.  
b PI2 is the square of PI the sum of which is equal to the SSRI for a given reach of the creek.  
c SSRI values for each reach: UF SSRI=0.010, LF SSRI=0.025, MC SSRI=0.054. 
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These observations do have precedent in a report in 2009, where the highest fish 

whole body Se values of 3,393 µg/Kg dry weight and 906 µg/Kg wet weight were found 

and there was no evidence of teratogenic effects on any fish sampled (Nimmo, 

Herrmann et al. 2016).These observations point to an interesting paradox between 

water and fish Se levels and the expected outcome on fish health and diversity. Further 

analysis was thus carried out to include the fish diversity in the SSCA analysis.  

Table 2.2 The simple canonical correlation analysis on dissolved selenium and fish 
diversity of the data reported previously (Nimmo, Herrmann et al. 2016). 
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Number of  
Fish Species  1 0.002 0.168 0.191 0.202 0.040 -0.379 0.798 0.946 

Se in Water 1 0.003 
0

0.825 
-

0.888 0.993 0.958 -0.073 0.007 0.039 
Se in 
Bryophyte 1 0.995 0.002 0.002 0.748 0.002 0.001 0.252 0.003 

PI2 0.403 0.000 0.005 0.385 0.081 0.000 -0.767 0.322 0.012 
 
A Simple Canonical Correlation Analysis (SCCA) (Hotelling 1936) was used to 

examine the possibility of a relationship between dissolved Se, biologically available Se 

as bryophyte Se, fish species number and fish diversity. The variable silt/clay 

percentage was also added as the silt/clay content could have a significant effect on fish 

reproduction.  The results are summarized in Table 2.2. These results, based on 

previous data, statistically support the conclusion that two main components contribute 

to fish diversity in Fountain Creek. Component 1 is described as the available selenium 

in water and is indicated by the high correlation of Se in water and Se in bryophyte 

shown in Table 2.2 (Corr. 0.993, 0.748).  The second component (Component 2) 
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describes the fish species diversity and is indicated by the strong correlation between 

fish species number and diversity index in Table 2.2 (Corr. 0.798, 0.322).  This SCCA 

analysis provides two parameters, Component 1 and Component 2, which can be used 

to further understand the nature of the Se levels and the Fountain Creek sites. 

Table 2.3 The simple canonical correlation analysis on dissolved selenium species and 
fish diversity of the data reported previously (Nimmo, Herrmann et al. 2016). 
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Number of  

Fish Species 0.849 0.002 0.064 -0.086 0.051 0.004 0.343 0.798 0.739 

Dissolved Se 

Water 0.987 0.003 0.367 0.759 0.986 0.41 -0.022 0.001 0.004 

Se in 

Bryophyte 0.978 0.992 0.004 -0.005 0.966 0.005 0.000 0.012 0.001 

PI2 0.339 0.000 0.000 0.198 0.282 0.000 0.089 0.056 0.000 

Silt/Clay 0.59 0.000 0.063 -0.56 0.32 0.023 -0.515 0.27 0.247 

Se(IV) 0.692 0.000 0.015 0.483 0.658 0.012 -0.11 0.034 0.008 

Se(VI) 0.997 0.003 0.485 0.914 0.997 0.547 0.012 0.000 0.001 

 
The SCCA results presented in Table 2.3 indicate that Component 1 in these 

results is similar to the results presented in Table 2.2. There is a high degree of 

correlation between dissolved Se in water, Se in bryophyte and the Se species Se(IV) 

and Se(VI). There is also a small correlation with the silt/clay content which is probably 

related to the silt/clay content affecting the dissolution of the Se forms into the water.  

The major contributions to Component 1 come from dissolved Se in water (0.41) and 
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the predominant Se(VI) (0.547).  Component 1 in this table can be thought of as Se in 

water.  

Component 2 in these results shows a high correlation of fish species number 

(0.798) to silt/clay content (0.27) in the creek bed and provide the greatest contributions 

to this component.  

Figure 2.2  A) Row plot showing the Se content in water and bryophyte (Component 1) 
compared to fish diversity (Component 2) highlight the relationship between the different 
sites; B) Row plot showing the Se(IV) species content in water and Se content in 
bryophyte (Component 1) compared to fish diversity and Se(VI) content in the water 
(Component 2) highlights the relationship between the different sites. 

 
The Row plot shown in Fig. 2.2a has Component 1 and Component 2 on the X 

and Y axis. This plot splits the sites into 4 distinct quadrants each reflecting the 

similarity of the diversity in fish species by site. The 4 regions also correspond to the 3 

areas of Pierre shale found in the Fountain Creek Watershed (FCW).  There exists 

hydrological and geochemical similarities between the Lower Arkansas River (LAR) and 

the Fountain Creek (FC)  (Presser, Sylvester et al. 1994). The source of the LAR Se is 

Se rich tributaries with high Se effluent such as FC(Presser, Sylvester et al. 1994). The 

Se source in FC is Pierre Shale, a Se-rich shale that was deposited in the late 

 

A) B) 
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Cretaceous period (Tourtelot 1962). This shale is also exposed in the Lower Fountain 

Creek Watershed (LFCW) in southeastern Colorado and results in elevated levels of Se 

in Lower Fountain Creek water and in natural springs that feed the Creek (Edelmann, 

Ferguson et al. 2005). The two left quadrants describe sites with generally higher levels 

of Se content in the aqueous samples and in the biosamples. The two right quadrants 

separate out the samples with the greater PI2 and are predominantly populated by the 

samples from the Upper Fountain Creek. The elevated levels of Se in the LFCW have a 

significant environmental impact as the creek empties into the Arkansas River, on the 

east side of the city of Pueblo, Colorado, and is a major source of Se in the Arkansas 

River (Divine and Gates 2006) 

Figure 2.2b separates the Se species from total dissolved Se in the water in the 

FCW. The figure clearly indicates that predominant Se species found in the Lower 

Pierre Shale have little to no effect on fish species diversity while the Upper Pierre 

Shale has a positive effect on fish species diversity. The continuous Pierre Shale has a 

negative effect on fish species diversity. These effects on fish species diversity could be 

due to the form of Se dissolving from the parent rock material and the dissolved Se 

interactions that depend on local environment and water chemistry.  

 
Plotting the results of the SCCA in a Loading Plot (Figure 2.3a) with Component 

1 on one axis and Component 2 on the other axis the relationship between different  
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Figure 2.3 A) Loading plot illustrating the relationship between First and Second 
Components describing the relationship between the different variables at the Fountain 
Creek sites; B) Loading plot, including Se(IV) and (VI), illustrating the relationship 
between First and Second Components describing the relationship between the 
different variables at the Fountain Creek sites 

 

parameters used in the simple canonical correlation analysis is illustrated. Group 

1 is Se found in H. ochraceum (abbreviated Se Bry) and number of fish species (Num 

Spp). Group 2 is a correlation between PI2, Se (IV) (SeO3) and total dissolved Se (Se D 

Water).  The results show that the variable of silt/clay percentage which was thought to 

be a major factor in fish diversity in Fountain Creek is nearly orthogonal in relation to the 

other lines. The interpretation of this result is that the silt/clay variable is independent of 

fish diversity while the other variables are correlated in two groups.   

In contrast, the Se levels in the H. ochraceum (Se Bry) are responding similarly 

as the number of fish species (Num. Spp.) at each site.  These two variables are 

different from the correlation between PI2, Se (IV) levels (SeO3-2) and total dissolved Se 

(Se D Water), which all respond similarly.  Together, analysis of this data demonstrates 

that fish species diversity is related to Se levels with the Se levels in the bryophytes 

related more closely to fish species number, the Se(IV) in the aqueous phase and the 

total dissolved Se. This correlation follows the mapping of Pierre Shale deposits found 
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in this watershed. The source of the Se in the watershed comes from three Pierre Shale 

deposits known as upper, lower and continuous. Each of these deposits is represented 

in the row plot (Figure 2.2) along with the associated level of fish species diversity. The 

Se does increase in the fish with increasing dissolved Se water levels.  No teratogenic 

effects were found in these high Se areas (LF-4 and LF-5) even though the Se levels 

are more than double the EPA-recommended water limit of 5.0 ppb. 

Plotting the results of the SCCA Se speciation analysis in a Loading Plot (Figure 

2.3b) with Component 1 on one axis and Component 2 on the other axis the relationship 

between different parameters used in the simple canonical correlation analysis is 

illustrated. Group 1 is Se found in H. ochraceum (abbreviated Se Bry), the number of 

fish species and Se(IV). Group 2 is a correlation between PI2, Se (VI) and total 

dissolved Se (Se D Water).  The results still indicate that the variable of silt/clay 

percentage is independent of the other groups shown by nearly orthogonal position in 

relation to the other lines. The interpretation of this plot infers that Se species are 

important in determining fish health and diversity in the watershed. This statement is 

supported by the grouping of Se(IV) with fish species number and Se(VI) with the SSRI 

predictor (PI2). 
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Figure 2.4 a) and b) show the SSRI factor PI2 is plotted as a function of nM Se for 
Monument Creek and Lower Fountain Creek.  The symbol for Monument Creek is a 
solid square and the symbol for Lower Fountain is a solid circle. 

 
In Figure 2.4 the PI2 factor is shown as a function of the Se concentration for 

Monument Creek and Lower Fountain Creek sites. As shown in Table 2.1 the Upper 

Fountain Creek sites show little change. Monument Creek shows an upward trend in 

diversity except for the sites with Se > 0.005 nM, Figure 2.4a.  When the Se 

concentration is higher than 0.005 nM, the sites have higher Se(IV) concentrations and 

fish diversity is lower.  In contrast the sites along the Lower Fountain Creek show a 
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different pattern with diversity increasing as a function of total Se concentration.  As 

shown in Figure 2.4b there is a linear relationship with an R2 = 0.743.  At these sites 

there is a higher Se(VI) concentration. 

Speciation has been reported to be important in interactions with other elements 

and influences not only uptake but also biological responses to different species that 

may differ in geometry, charge and oxidation state for elements (Willsky, Chi et al. 2011, 

Crans 2015, Doucette, Hassell et al. 2016). It has been reported that the toxicity effects 

of Se are dependent on a compound’s oxidation state and presumably on the 

bioavailability of the chemical species (Rosenfeld and Beath 2013). That is, the Se(IV) 

has been reported to be more toxic than Se(VI), which may be surprising since many 

beneficial effects particularly related to the antioxidant effects are mainly observed with 

Se(IV) (Doyotte, Cossu et al. 1997, Ip, Birringer et al. 2000, Glass, Berry et al. 2008, 

Zhang, Rocourt et al. 2010, Moon, Ko et al. 2012) . The Se availability from the aqueous 

samples varies with the pH and concentration according to the speciation diagrams [28].  

Thus, the observed toxicity is likely site-specific and may be related to the specific Se 

speciation chemistry occurring at each site.  Because some of the differences in fish 

diversity may be related to the uptake and nature of the internalized species, more 

information on Se speciation at each sample collection site is desirable. Given the 

potential relationship between Se species, uptake, and toxicity, we subsequently 

investigated the oxidation state of the Se in water samples recently collected at each 

site to determine whether site-specific speciation of Se in the Fountain Creek samples 

factors in the observed variation in fish diversity between sites.  
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Sample collection from Fountain Creek:  

Water samples were collected at each of the sites labeled in Figure 1 except for 

MC-1- MC-3. The reason these sites were not collected was the inability to access the 

private property at MC-1 and the closure of the restricted areas of the United States Air 

Force Academy (MC-2 and MC-3). The water sample were collected according to 

USGS surface water sampling protocols (United States Geological Survey 2006). 

Samples were collected in clean 250 ml high density polyethylene containers.  The 

water samples were obtained by rinsing the containers at the site with creek water to 

equilibrate the container and the samples were taken with non-isokinetic sampling 

methods. The containers were immediately placed on ice for transport. In addition, pH, 

specific conductance and dissolved oxygen were measured on site. In the lab the 

samples were fractionated into total, dissolved fractions. The dissolved fractions were 

filtered using a 0.45-micron syringe filter. The dissolved fractions were separated into 5 

ml speciation aliquots. 1 aliquot was used for total dissolved analysis and 1 was used 

for Se speciation. The remainder of aliquots was frozen for stability and future use. The 

total and dissolved fractions used for EPA 200.8 analysis were acidified with optima 

grade nitric acid. Hardness was calculated from ICPMS data.   

Method for determining both Se(IV) and Se(VI) Oxidation States.   

To explore Se speciation, a new study that would allow speciation to be 

determined was designed.  Water samples containing Se were collected from the Lower 

Fountain Creek, near Pueblo, Colorado. The sites sampled have the highest levels of 

Se recorded in the Creek and have a high bryophyte Se concentration as shown in a 

previous study (Herrmann, Turner et al. 2012). Although the samples were collected 

according to USGS water sampling protocols (Shelton and Capel 1994), recent reports 
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suggest that these samples may not be as stable as previously anticipated (Mast, Mills 

et al. 2014, Nimmo, Herrmann et al. 2016).  

Due to the high levels of Se in the water and the fact that fish living in these 

waters seems to be unaffected, it is important to determine the speciation of the Se at 

each site.  The chromatographic separation of the selenium species is readily 

accomplished using ICPMS after chromatographic separation of the Se(IV) and Se(VI). 

Using a Dionex AS-7 anion exchange column, the separation was readily accomplished 

using a mobile phase of 17.5 mM citrate buffer at pH 5.2.  The buffer improved the 

separation presumably through the interaction between Se and citrate, and 1H NMR 

studies confirmed that complexes do form between selenate and citrate (unpublished).  

Furthermore, the Se signals were enhanced using 2% aqueous methanol in the mobile 

phase as reported previously for arsenic (Larsen and Stürup 1994, Suzuki and Ogra 

2002).  
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Table 2.4 Se-oxidation state for water samples from the sites on Monument Creek (MC) Upper Fountain Creek (UC) and 
Lower Fountain Creek (LF)a,b,c 

Site 
Total Se 
(ICPMS) 
(µg/l)b 

Standard 
Error Total 
Se 
(ICPMS) 

Total Se 
(sum of 
Se(IV) & 
Se(VI)) 
(µg/l) 

SeO32- 
Se(IV) 
(µg/l)b 

Standard 
Error 
SeO32- 

SeO42- 

Se(VI) 
(µg/l)b 

Standard 
Error 
SeO42- 

pH Se(IV)/ tot 
Se (%) 

Se(VI)/ tot 
Se (%) 

UF-1 0.193 0.011 0.055 0.023C 0.018 0.032c 0.075 8.04 41.82c 58.18c 

UF-2 0.102 0.011 0.229 0.226c 0.02 0.0003c 0.031 7.66 99.87c 0.13c 

UF-3 0.218 0.004 0.099 0.0646c 0.021 0.034c 0.048 8.03 65.52c 34.48c 

UF-4 0.556 0.021 0.127 0.073 0.046 0.054 0.058 7.94 57.48 42.52 

MC-4 0.618 0.011 0.555 0.123 0.047 0.432 0.138 8.07 22.16 77.84 

MC-5 1.874 0.048 1.648 0.112 0.026 1.536 0.116 8.08 6.8 93.2 

LF-1 2.1 0.017 1.836 0.044 0.096 1.792 0.026 8.22 2.4 97.6 

LF-2 3.602 0.029 3.321 0.365 0.046 2.956 0.026 8.13 10.99 89.01 

LF-3 3.627 0.028 3.429 0.358 0.074 3.071 0.008 8.23 10.44 89.56 

LF-4 10.778 0.142 10.585 0.51 0.115 10.075 0.11 8.33 4.82 95.18 

LF-5 9.252 0.029 8.354 0.413 0.06 7.941 0.13 8.12 4.94 95.06 
a Samples were collected in October 2016 
b Detection Limits are as follows: ICPMS Total Se 0.073 µg/l, SeO32- Se(IV) 0.023(µg/l), SeO42- Se(VI) 0.034(µg/l) 
c Transformed data used for statistical analysis. The process for data transformation is described in the paragraph below.  
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Se(IV) and Se(VI) Speciation of Se in Fountain Creek Water Samples.  
 Samples were collected from 11 different sites along the Fountain Creek.  

Initially, we measured the speciation of samples along the entire Creek and in Table 2.4 

we show the data for measurement of not only total Se, but the distribution of the Se as 

selenite, Se(IV), and selenate, Se(VI), and the pH of the respective samples.  The Se-

content in the samples is very similar in the sites examined except for the MC-4 site; the 

amounts are higher in this recent study.  Because the Se-content varies with seasonal 

and weather/ precipitation patterns, variations would have been anticipated from the 

previous study, however, very few are observed (Nimmo, Herrmann et al. 2016).  

For the purposes of the SCCA, the readings for Se(IV) and Se(VI) at sites UF-1, 

UF-2, and UF-3 that went below the instrument detection limits were estimated using 

the regression with the Total Se as a single predictor. Due to the uneven distribution of 

data in the range of available values, the readings had to be transformed to the 

logarithmic scale in the case of Se(IV) and square root scale for Se(VI). In two cases 

such estimates yielded values above the detection limit and were trimmed at the limit 

values: 0.023 and 0.034 µg/l for Se(IV) and Se(VI), respectively. 

The Upper Fountain Creek sites were reported to have the lowest total Se, 

Se(IV) and Se(VI) and collectively the highest percentage of Se(IV). As seen from the 

data in Table 2.1, the Upper Fountain Creek sites also had a less diverse fish habitat 

(except for the UF-4). Once the water flows down to the Monument and Lower Fountain 

sites, the majority of the Se had oxidized to selenate. Since selenite at neutral pH 

readily oxidizes to selenate, and the oxidation is more likely to happen at lower 

concentrations and at higher salinity levels in the presence of nitrate, conversion of  

Se(IV) to Se(VI) is expected (Torres, Pintos et al. 2010, Torres, Pintos et al. 2011). The 
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presence of a higher concentration of Se(VI) at the Lower Fountain sites was therefore 

anticipated although this could be due to additional oxidation of Se(IV) or dissolution of 

more Se(VI) from the shale or a combination of both oxidation and dissolution 

processes to form more Se(VI). Indeed, the data in Table 2.4 confirm that in all but one 

Lower Fountain sites more than 90% of the Se was in the form of selenate, Se(Vl). 

The results for the LF-4 and UF-4 sites were a little different than that of the 

others in that the standard errors were a little higher for these sites. This increase in 

standard error at higher concentration is most likely due to the increase in dissolved 

solids and is the result of a matrix effect caused by a combination of easily ionized 

elements that are abundantly present and the more difficult to ionize Se. The Se 

species are measured after a column separation resulting in a cleaner sample entering 

the plasma of the ICPMS.     

Using speciation analysis, we considered the speciation using the known 

constants reported for the distribution of species in aqueous solution (Baes and Mesmer 

1976).  In Figure 2.5 we calculated the equilibrium concentrations of solutions at the 

concentrations measured at the sites we were investigating (UF, LF-1 and LF-4).  As 

shown in Figure 2.6 the equilibrium concentrations favor selenate as the major form 

because the pH was near 8 in the sites.   As the concentration of the Se increased 

although more Se(IV) was present, the difference in the concentration between the 

Se(IV) and Se(VI) species was less.  At the neutral to basic concentrations observed in 

the Fountain Creek sites the deprotonated selenate and selenite were the major 

species.  A small amount of monoprotonated selenate was found at the site with the 

higher Se(VI) concentration. This is interesting because the pKa values for selenite are 



37 

higher, however, because the concentration of Se(IV) is 100-fold less there would be 

more HSeO4- than HSeO3- at this site if equilibrium conditions existed.  Although the 

conversion of Se(IV) to Se(VI) may be slow, it is of interest to investigate the system 

further, and at least establish what is expected should the system be governed by the 

thermodynamic stability. 

The Pourbaix diagram describes the thermodynamically stable forms of Se in a 

graphical form shown in Figure 2.6.  In this Figure it is shown that the conditions 

controlling the major species of Se at neutral pH are complicated and depending on the 

redox potential the thermodynamic stable form which may be Se(IV) or Se(VI). In order 

to investigate the nature of the aqueous redox environment, the electrochemical 

potential of samples, LF-4 and LF-5, which contained the highest observed levels of 

oxidized Se(VI), were measured. These studies were performed to determine whether 

the high levels of observed Se(VI) are due to oxidation reactions in the water, or to 

unchanged Se (VI) from the shale.  

 
Figure 2.5 Speciation diagrams were calculated for three different sites along the 
Fountain River.  a)The low concentration UF sites with [Se]tot 1.27 •10-10 M, with b) LF 
and MC sites with [Se]tot 2.65 •10-9 M and with c) LF-4 with [Se]tot 5.05 •10-7 M. 
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Table 2.5 Se content and redox potential for Lower Fountain Creek sites with the 
highest Se levels 

Site pH 
Temperature 
(C) pE 

Se(IV) 
µg/l 

Se(VI) 
µg/l 

Se(IV) 
percentage 
of total Se 

Se(VI) 
percentage 
of total Se 

LF-4 7.47 8 6.35 0.89 11.30 7.3 93 
LF-5 7.52 8 6.37 0.79 9.88 7.4 93 

a Samples were collected in April 2016 

The E0 data were converted to pE and these values are shown in Table 5. pH 

data were also obtained using the Microlab F-522 pH interface with a Microlab 

electrode.  As shown in Table 2.5, sampling the Lower Fountain Creek sites LF-4 and 

LF-5 in April gave a pH value that was slightly above neutral.  Determining the E0 / pE 

and pH data allows us to reference sample data with a Pourbaix diagram which 

describes the thermodynamically state species of the Se.  This allows us to determine 

whether the sample contains Se(VI) or Se(IV).  For low concentrations of Se at neutral 

pH and pE below 7 / 8, the Pourbaix diagram predicts that the thermodynamically stable 

form is Se(IV).  It was surprising that the pE for the LF samples collected in the spring of 

2016 had values of 6.35 / 6.37.  This suggests that in the creek water samples the 

stable form of the Se in LF-4 and LF-5 sites is Se(IV). However, because it was 

experimentally determined that Se(VI) was the major component, it is likely that the 

predominance of the Se(VI) form is dependent on other environmental factors and 

supports the findings of Mast et. al(Mast, Mills et al. 2014).  
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Figure 2.6 The Se Pourbaix diagram of Se in water reported previously (Drever 1997)  

was added the specific conditions of the LF samples investigated in the Spring of 2016 
where the crosshair intercept. The Pourbaix diagram was reproduced with permission 

 
Using the SSRI predictor data (PI2) data in Table 2.3 SCCA was carried out and 

the results show that a Se species effect on diversity exists and that effect is 

independent of the silt/clay content of the creek bed material present at the sites. The 

Se species effect can be positive or negative depending on the origin of the creek bead 

parent material. This is most notable between the LF-3, LF-4, and LF-5 sites compared 

to the UF-3 and UF-4 sites, the latter of which has a higher percentage composition of 

Se(IV).Thus this analysis confirms that there is less observed toxicity at the LF-3 - LF-5 

sites despite the higher total Se levels.  Although this analysis does not prove that the 

Se(VI) is less toxic to the fish, the analysis does provide a statistical basis to suggest 

that the toxicity effect is correlated with observed oxidation state. 

Previously a report on Se-levels in the Fountain Creek fish study did indicate 

increased levels of Se in ovarian and liver tissue of the fish (Nimmo, Herrmann et al. 



40 

2016). The Se level increase in these tissues may be a result of increasing levels of Se 

containing enzymes. The Se-level increase in ovarian tissue may explain teratogenic 

effects in new hatchlings if the Se-levels continue to rise. The most common mode of 

toxicity of Se is oxidative damage (Simpson 1949).  This type of toxicity requires that Se 

be internalized and assimilated into the organs and the fish.  Se is generally non-toxic 

when it is stored in a “safe” form, and either because it cannot be absorbed or 

transported, it is rapidly excreted or is not metabolized. However, some transporters 

prefer Se(IV) over Se(VI).(Zhang, Hu et al. 2014) The high Se water levels at several 

sites and the lack of observation of teratogenic levels in the fish raise the question of 

how Se levels in this biota can be so high without causing toxic effects in fish. The data 

provided here show that there are significant differences in the speciation in the creek 

water and the lack of teratogenic response to the Se level may be because the Se is in 

the Se(VI) form which is less toxic than Se(IV). 

In summary, current speciation studies with Se generally investigate only one 

oxidation state; however, as described in this manuscript, speciation studies of the 

water at representative Fountain Creek sites demonstrate that total Se levels cannot 

fully describe the interactions of Se in the complex environmental system and will 

require additional analyses in the future.  Our experimental data show that a correlation 

exists between fish species diversity and dissolved Se in Fountain Creek water and this 

is backed up by statistical analyses. The increase in fish diversity with the dissolved Se 

may be a result of a limited amount of total Se or particular Se species in other areas of 

the watershed (Baes and Mesmer 1976, Nimmo, Herrmann et al. 2016). Se is known to 

have protective effects such as reducing oxidative stress and is a required component 
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of some enzymes (Kennedy, McDonald et al. 2000, Hamilton, Holley et al. 2005, 

Hamilton, Holley et al. 2005, Hamilton, Holley et al. 2005, Mathews, Fortner et al. 2014).  

The high diversity at the LF-4 site where the dissolved Se concentration is well above 

EPA limits may be consistent with a low amount of Se(IV) and high amount of Se(VI) 

observed at these sites. EPA and other studies have indicated that Se(IV) is the more 

toxic of the two forms [38].  

CONCLUSION 

Based on previous data on the Se levels along the Fountain Creek (Nimmo, 

Herrmann et al. 2016) a Canonical Correlation Analysis was done to examine the 

possibility of a relationship between dissolved Se, biologically available Se as bryophyte 

Se, fish species number and fish diversity.  The analysis revealed that two different 

components were involved and that diversity in fish species was related to the total 

dissolved Se levels in the creek water samples.  Because some sites were found to 

contain high levels of Se and high fish diversity when the opposite was expected for 

some sites, we investigated the possibility that such differences between sites could 

arise due to Se-speciation differences.  As a result, we designed and performed studies 

where we measured the amounts of two different Se species (that is Se(IV) and Se(VI)) 

as well as total dissolved Se content at selected sites along the Fountain Creek, and 

determined the oxidation state of the Se.  The speciation studies showed a distinct 

variance in Se(IV) and Se(VI) levels in the different sites consistent with the 

observations that low toxicity is observed when low levels of Se(IV) are present at the 

sites.  Although these studies do not prove that the level of selenite in the water is the 

principal factor for toxicity, they do provide the data consistent with this interpretation.  

These studies underline the importance of determining both Se(IV) and Se(VI) in the 
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aqueous samples, and the need for such speciation analyses should a complete 

understanding of the complex system be desired.  
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CHAPTER 3 SELENIUM SPECIATION IN THE FOUNTAIN CREEK WATERSHED 
CORRELATES WITH WATER HARDNESS, CA AND MG LEVELS 2 

 
 
 

SYNOPSIS 
The environmental levels of selenium (Se) are regulated and strictly enforced by 

the Environmental Protection Agency (EPA) because of the toxicity that Se can exert at 

high levels. However, speciation plays an important role in the overall toxicity of Se, and 

only when speciation analysis has been conducted will a detailed understanding of the 

system be possible. In the following, we carried out the speciation analysis of the creek 

waters in three of the main tributaries—Upper Fountain Creek, Monument Creek and 

Lower Fountain Creek—located in the Fountain Creek Watershed (Colorado, USA). 

There are statistically significant differences between the Se, Ca and Mg, levels in each 

of the tributaries and seasonal swings in Se, Ca and Mg levels have been observed. 

There are also statistically significant differences between the Se levels when grouped 

by Pierre Shale type. These factors are considered when determining the forms of Se 

present and analyzing their chemistry using the reported thermodynamic relationships 

considering Ca2+, Mg2+, SeO42−, SeO32− and carbonates. This analysis demonstrated 

that the correlation between Se and water hardness can be explained in terms of 

formation of soluble CaSeO4. The speciation analysis demonstrated that for the 

Fountain Creek waters, the Ca2+ ion may be mainly responsible for the observed 

                                            
2 This chapter is published in Molecules and is referenced as (Carsella, J.S., Sanchez-Lombardo, 

I., et al. 2017).  Table and figure numbers have been modified to reflect that they are specific to 

this chapter, e.g. figure 1 is now figure 3.1. and the reference were moved to the end of this 

document. This article is reproduced with permission, and only minimal modifications were made 

to meet formatting requirements. No other modifications were made. 
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correlation with the Se level. Considering that the Mg2+ level is also correlating linearly 

with the Se levels it is important to recognize that without Mg2+ the Ca2+ would be 

significantly reduced. The major role of Mg2+ is thus to raise the Ca2+ levels despite the 

equilibria with carbonate and other anions that would otherwise decrease Ca2+ levels.  

INTRODUCTION 

The environmental levels of Se are regulated and strictly enforced by the 

Environmental Protection Agency (EPA) in the USA (Edelmann, Ferguson et al. 2005, 

Divine and Gates 2006, Colorado Department of Public Health and Environment 2013, 

United States Environmental Protection Agency 2016) because even though low levels 

are beneficial high levels are toxic (Bird, Ge et al. 1997, Bird and Tyson 1997, Combs 

and Gray 1998, Mousa, O'Connor et al. 2007, Weekley and Harris 2013, Block, Booker 

et al. 2016). High Se toxicity on aquatic life and particularly fish reproduction (Hamilton, 

Holley et al. 2005, Hamilton, Holley et al. 2005, Hamilton, Holley et al. 2005, United 

States Environmental Protection Agency 2015) has led to the development of a chronic 

exposure criterion (United States Environmental Protection Agency 2015). High Se-

levels are often found when the waterways run over the Se rich shale deposits (Divine 

and Gates 2006) or when agricultural runoff carries Se into waterways from Se rich soils 

(Presser, Sylvester et al. 1994, Lemly 1997, Kennedy, McDonald et al. 2000, Mast, Mills 

et al. 2014). Specifically, the Lower Fountain Creek (LF) in southeastern Colorado is a 

known and major contributor to the Se levels downstream from its confluence with the 

Arkansas River (AR); this confluence is in the eastern part of the city of Pueblo, 

Colorado (for a map see Refs. (Divine and Gates 2006, Herrmann, Turner et al. 2012)). 

These high Se levels in the Fountain Creek and in the Arkansas River increase the 

potential of damaging environmental effects downstream in the Arkansas River basin 
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(Divine and Gates 2006). While Se toxicity is linked to particular species (Bird, Ge et al. 

1997, Kennedy, McDonald et al. 2000, Hamilton, Holley et al. 2005, Hamilton, Holley et 

al. 2005, Hamilton, Holley et al. 2005, Mathews, Fortner et al. 2014) and the presence 

of selenite (SeO32-)  (Rosenfeld and Beath 1964, Carsella, Melnykov et al. 2017), many 

environmental studies only measure and report the total amount of elemental Se. When 

analyzing and investigating Se speciation, a better understanding of the interaction of 

Se species in a natural environment is gained (Bird, Ge et al. 1997, Kiss and Odani 

2007, Kiss, Jakusch et al. 2008, Block 2013, Crans, Woll et al. 2013, Crans 2015, 

Block, Booker et al. 2016, Doucette, Hassell et al. 2016, Carsella, Melnykov et al. 

2017). Recent studies of fish in the Fountain Creek Watershed demonstrated that high 

numbers of fish species can be observed at sites with high levels of Se (Carsella, 

Melnykov et al. 2017).  This work led to the hypothesis that the toxicity is dependent on 

the presence of toxic Se species and not the total Se level (Carsella, Melnykov et al. 

2017) and support the need for additional studies considering the effects of Se species 

on different types of fish. The following manuscript analyzes the chemistry of Se 

speciation in these waters and that of two major cations, Ca2+ and Mg2+, using the 

thermodynamic parameters.   

Total Se concentrations in aqueous environments generally vary between 0.06 

µ/L to 400 µ/L (Smith and Westfall 1937, Scott and Voegeli 1961, Lindberg and 

Bingefors 1970, Fawell and Combs 2011). The most common forms of Se in surface 

waters are Se(IV) and Se(VI) with some reports also including Se(II) in either organic or 

inorganic form (Combs and Gray 1998, Kulp and Pratt 2004, Torres, Pintos et al. 2010, 

Torres, Pintos et al. 2011, Mast, Mills et al. 2014). Selenium is most soluble in aqueous 
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solution under oxidizing conditions and the distribution of the oxidized forms of Se, 

selenite (SeO32-) and selenate (SeO42-) depend on specific conditions (Combs and Gray 

1998, Torres, Pintos et al. 2010, Torres, Pintos et al. 2011, Mast, Mills et al. 2014). The 

less soluble and reduced form of Se, H2Se, exists complexed in the earth’s crust, and 

may also be found at low levels in reducing water environments (Combs and Gray 

1998). Pourbaix diagrams are important to describe the speciation of Se in idealized 

systems (Combs and Gray 1998, Torres, Pintos et al. 2010, Torres, Pintos et al. 2011, 

Mast, Mills et al. 2014, Carsella, Melnykov et al. 2017). However, considering that the 

Pourbaix diagrams are calculated assuming specific conditions, for example, the 

concentration and ionic strength do not affect the speciation; such representations are 

at best, a first approximation (Torres, Pintos et al. 2010, Torres, Pintos et al. 2011, 

Mast, Mills et al. 2014, Carsella, Melnykov et al. 2017). From the reported Pourbaix 

diagrams, it is clear that selenous acid (H2SeO3) is favored at the conditions that are 

normally found in oxidizing natural stream waters (pE ≈13.5) at a pH < 3.0 (Baes and 

Mesmer 1976). Hydrogen selenite (HSeO3-) is favored in the same oxidizing conditions 

up to about pH 5.0. Above pH 5.0 selenate (SeO42-) is the most favored Se species. 

Using this information, it follows that in less aerated waters (pE ≈13.5) at pH values 

between 3 and 8, hydrogen selenite, HSeO3- is the favored species (Torres, Pintos et al. 

2010, Carsella, Melnykov et al. 2017). However, recently we demonstrated that for 

Fountain Creek the speciation was about 90% Se(VI) and 10% Se(IV) even through the 

Pourbaix diagrams predicted more Se(IV) (Carsella, Melnykov et al. 2017). In the 

following, we explore the hypothesis that classical speciation plots are effective in 

describing the Se speciation when considering two influential cations, Ca2+ and Mg2+. 
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The conversions between the different oxidation states of Se are reported to be slow 

(Torres, Pintos et al. 2011) and it is possible that the speciation in the watershed does 

not represent equilibrium conditions.  Previously a correlation between total elemental 

Se and with water hardness (Herrmann, Turner et al. 2012) was reported. However, the 

detailed chemistry of this correlation involving a combination of Ca2+ and Mg2+ was not 

investigated (Herrmann, Turner et al. 2012). Specifically, the possibility of the formation 

of the soluble and insoluble forms of CaSeO4 correlate with the observed aqueous Se 

levels and equilibrium conditions. 

In the following, the Se speciation chemistry of waters in the Fountain Creek 

Watershed sites was explored. Since the two most common cations determining water 

hardness are calcium (Ca2+) and magnesium (Mg2+), Se, Ca, and Mg levels were 

measured at the Fountain Creek sites. Furthermore, the speciation chemistry and its 

relationship to Se content with Ca2+ and Mg2+ contents were explored. Samples were 

collected from three different Fountain Creek reaches Upper Fountain Creek (UF), 

Monument Creek (MC) and the previously mentioned LF portion of Fountain Creek. The 

Se concentrations, the pH, and the concentration of Ca2+ and Mg2+ were determined. 

Since correlations have been reported between Se levels and water hardness, the 

current manuscript explores the chemical speciation of Se, Ca, and Mg. The goal was to 

examine if specific chemical relationships between Se and Ca2+ and Mg2+ combined can 

explain the reported correlation with water hardness. Speciation diagrams show that the 

Se content indeed correlates with the soluble CaSeO4 levels even though the 

thermodynamic equilibria of Se speciation alone are not sufficient to describe all the 

properties of this system. 



48 

EXPERIMENTAL  

Materials.  
The standards for EPA method 200.8 were purchased as a NIST traceable 

multielement custom made standard from Inorganic Ventures, Christiansburg, Virginia, 

USA (IV, CSTU-STD-1) and from SPEX CertiPrep, Metuchen, NJ, USA (part# CL-CAL-

2A). The IV standard was made to contain 1000µg/ml of Ca, Mg, Na, Fe, K. 

Furthermore, it contains 10µg/ml Al, Sb, As, Ba, Cd, Se, Ag, Pb, Be, Co, Cr, Zn, Cu, 

Mn, Mo, Ni, V, U, Th, Tl. The SPEX standard was diluted to 50 ppb and used as a 

check standard to verify calibration. The Internal standards used were (Inorganic 

Ventures 2008ISS-125, 6Li, Sc, Y, In, Tb, Bi, Ho) and Germanium(Ge) (Inorganic 

Ventures MSGE-10PPM-125ML). The nitric acid (Fisher A467-500) and hydrochloric 

acid (Fisher A466-500) used in these procedures were purchased as Optima grade 

from Fisher Scientific, USA. 

Fountain Creek Sampling.  
Water quality measurements of surface waters included measuring temperature, 

pH, specific conductance, and dissolved oxygen per the protocols described by the 

United States Geological Survey (USGS) protocols (Fishman 1993, Herrmann, Turner 

et al. 2012). Each parameter was measured three times at each site over a 10-day 

period. The measurements were made at 0, 5 and 10-day intervals. Water samples 

were taken at equivalent distance points on a line across the creek at each sampling 

site. The samples were collected in 250 ml LDPE plastic bottles and stored on ice for 

transport. The collection was performed per limnological sampling protocol by holding 

the bottle with the mouth of the container facing downstream at an angle near 45o. The 

container was rinsed with creek water 3 times prior to taking the sample. Triplicate 

samples were collected at each site during each sampling interval and filtered through a 

https://www.inorganicventures.com/productdisplay/10-ppm-germanium-icp-ms-0
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0.45 micron reconstituted cellulose membrane syringe filter purchased from 

Phenomenex (Phenex AF0-8103-12)(Fishman 1993). After filtering, water samples 

including field blanks for each trip were preserved with 1% Optima grade HNO3. The 

sample was divided in two, one was analyzed and the other stored at 4°C. Six milliliters 

were used for cation determination by ICPMS.  

Analysis for Se, Ca and Mg.   
Water samples were analyzed for Se, Ca and Mg on an Agilent 7500ce ICP-MS 

following EPA Method 200.8 (United States Environmental Protection Agency 1994). 

Since these samples were not intended for evaluation for municipal drinking water, the 

ICPMS was run with the Octopole Reaction System (ORS). Hydrogen was used as a 

reaction gas for 40Ca and 78Se measurements. The elements of 24Mg and 44Ca were 

measured using helium as a collision gas, to reduce interferences. Multi-element 

environmental external calibration standard (CSTU-STD-1) and internal standards were 

diluted in 1 % nitric and 0.5 % hydrochloric acid prior to analysis. The internal standard 

was diluted to a final concentration of 20 ppb from a 10ppm stock. Germanium was 

added to the final internal standard mix before dilution to make a final concentration of 

20ppb. The Ge was used as an internal standard for Se because of Ge having a closer 

ionization potential to Se. Scandium was used as the internal standard for Ca and Mg.  

Alkalinity.  
Alkalinity was measured by titration on all samples collected using the protocols 

listed in the book Standard Methods for the Examination of Water and Wastewater for 

alkalinity (American Public Health Association 2005).  
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Statistical Calculations. 
 Analysis of Variance was used to determine if a statistically significant difference 

exists between the water components (Ca, Mg, and Se) exposed to Pierre Shale type, 

creek reach, and sites. Creek discharge rates were obtained from USGS monitoring 

sites via web interfaces (Fishman 1993, Herrmann, Turner et al. 2012). The sites 

nearest the monitoring stations (UF-1, UF-4, MC-1, MC-2, MC-4, LF-1, LF-2, and LF-4) 

used the data directly from the monitoring stations. The sites between the stations (UF-

2, UF-3, MC-3, MC-5, LF-3, and LF-5) used a weighted average of the flow rates 

measured at the USGS stations above and below the sampling site used in this study. 

Speciation Calculations.   
Species distribution diagrams were calculated by using HYSS 2003 software 

(Alderlghi, Gans et al. 1999).  The concentration using for the consideration described 

here for the UF-2 site was [Se]tot 3.36 •10-10 M, and for LF-4 site was [Se]tot 1.22•10-7 M. 

When the speciation diagrams with Ca and Mg cations were constructed the 

concentrations were [Se(IV)] 1.2 • 10-8 M, [Se(VI)] 1.1 • 10-7 M, [Ca]tot 1.7 • 10-3 M and 

[Mg]tot 9.4 • 10-4 M. 
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The speciation diagrams were constructed using the following equilibrium 

reactions and constants: 

H2SeO3  H+ + HSeO3-     K2 = 10-2.75 

HSeO3-  H+ + SeO32-     K1 = 10-8.5 

HSeO4-  H+ + SeO32-     K1 = 10-1.66 

Ca2+ + H2O(l) + SeO32-   CaSeO3•H2O(cr)    K = 106.4 

Ca2+ + 2H2O(l) + SeO42-   CaSeO4•2H2O(cr)   K = 102.68 

Ca2+ + SeO42-   CaSeO4(aq)      K = 102.0 

Mg2+ + 6H2O(l) + SeO32-   MgSeO3•6H2O(cr)  K = 105.82 

Mg2+ + 6H2O(l) + SeO42-   MgSeO4•6H2O(cr)  K = 101.13 

Mg2+ + SeO42-   MgSeO4(aq)  K = 102.2 

*Cr is crystalline phase, constants for 25 C and I=0 (Olin, Noläng et al. 2005) 

Mg2+ + CO32-  MgCO3(aq)    K = 103.24 

Mg2+ + HCO3-  MgHCO3(aq)    K = 101.23 

Ca2+ + CO32-  CaCO3(aq)    K = 104.48 

Ca2+ + HCO3-  CaHCO3(aq)    K = 101.25 

CaCO3  Ca2+ + CO32-     Ksp = 4.55  10-9 (Nakayaam 1968, Nakayama 

1971) 
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Table 3.1 Se levels in the water along the Fountain Creek Watershed (Nimmo, Herrmann et al. 2016, Carsella, Melnykov 
et al. 2017).3  

  Spring Fall 

Sampl 
Sites 

T 
(C) 

pH 
Water 
Se 
(g/L) 

Water 
Ca 
(g/L) 

Water 
Mg 
(g/L) 

Alkalinity 

T (C) pH 
Water 
Se 
(g/L) 

Water 
Ca 
(g/L) 

Water 
Mg 
(g/L) 

Alkalinity 

(mg 
CaCO3/L) 

(mg 
CaCO3/L) 

UF-1 4.6 7.2 0.193 28440 5354 72 5.8 8.2 0.063 19307 5481 76 

UF-2 4.9 7.2 0.14 28867 5474 50 5.7 8.1 0 13003 3481 63 

UF-3 5.7 7.6 0.673 34863 6890 81 6 8.1 0.043 13897 4041 146 

UF-4 6.6 7.6 1.323 39017 10134 83 7 8.1 0.34 15303 5490 154 

MC-1 4.2 7.4 0.207 12227 1742 66 5.5 7.9 0.177 15757 4772 86 

MC-2 3.9 7.5 0.277 19380 3400 74 5.3 8 0.33 21547 7599 89 

MC-3 4.1 7.2 0.343 21623 3818 73 4.5 8.1 0.597 22450 8043 88 

MC-4 4.1 7.5 0.443 26327 4365 78 5 8 0.86 27047 8450 86 

MC-5 4.8 7.4 1.863 38503 6712 110 6.4 8.1 5.283 41080 13217 105 

LF-1 7.7 7.5 2.05 42303 8135 104 9.9 8.1 2.97 29947 10960 108 

LF-2 12.2 7.2 2.78 53465 14540 141 15.2 8.1 3.773 38537 18177 179 

LF-3 10.6 7.6 3.29 64447 17703 138 15.1 8.1 3.8 41837 19770 180 

LF-4 11.3 7.7 9.687 69083 22943 140 15.2 8.1 18.59 46683 29830 183 

LF-5 11.8 7.8 7.91 69373 23183 - 15.8 8.2 14.05 47137 29900 - 

Ref. 4 2   5  2 2   3 

                                            
3  Measurements are averages of three as indicated in the experimental section. 
4 (Nimmo, Herrmann et al. 2016) 
5 (Survey 2017, Survey 2017, Survey 2017, United States Geological Survey 2017, United States Geological Survey 2017,  

United States Geological Survey 2017) 
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RESULTS AND DISCUSSION 

Characterization of the Se-levels and speciation in the Fountain Creek.  
Fountain and Monument Creeks were sampled for dissolved Se in the past 

(Presser, Sylvester et al. 1994, United States Environmental Protection Agency 2002, 

Edelmann, Ferguson et al. 2005, Divine and Gates 2006, Herrmann, Turner et al. 2012, 

Herrmann, Nimmo et al. 2016, Herrmann, Sublette et al. 2016, Nimmo, Herrmann et al. 

2016, Carsella, Melnykov et al. 2017).  High levels were reported of the Se (3.4 – 12 

µg/L) (Divine and Gates 2006) up to 64 µg/L (Divine and Gates 2006) between 

Colorado Springs and Pueblo, Colorado. Selenium originates from the Pierre Shale 

located in southeastern Colorado (Colorado Department of Public Health and 

Environment 2013) which is underlying both Fountain and Monument Creeks.  Fourteen 

sites were monitored in the spring and fall of 2007 (Table 3.1, Figure 3.1) and part of 

this data was reported previously (Nimmo, Herrmann et al. 2016, Carsella, Melnykov et 

al. 2017). Se concentrations and cation concentrations were measured using ICP-MS 

and the results with Ca2+ and Mg2+ are now reported in this manuscript.  In Table 1 the 

Se, pH, and alkalinity reported previously are listed for all water samples. The Ca and 

Mg concentrations and temperature are reported here. As previously shown, the 

temperature and pH influence speciation of different elements and these parameters 

were investigated here.  

Several Analyses of Variances (ANOVA) were conducted on the Se levels from all 

reaches to consider which Se measurements are statistically different between site, 

reach, the type of shale and Ca, and Mg levels. In Figure 1, the observed Se 

concentrations are plotted at each site, for both, spring and fall.  Due to the exponential 

increase in the Se, Ca, and Mg concentrations in the reaches of the sampled creeks, 
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natural log transformations were used to fit the data to a normal distribution to carry out 

the ANOVA analysis. An ANOVA was also conducted on the Se, Ca, and Mg levels 

from the Pierre shales (Pierre Shale (PS), Upper Pierre Shale (UPS), Lower Pierre 

Shale (LPS), Continuous Pierre Shale (CPS) and No Pierre Shale (NPS)). A statistically 

significant difference in Se levels exists between LF and both the UF and MC reaches 

(p<0.0005). No statistically significant difference exists between the UF and MC reaches 

of the Fountain Creek Study area. The ANOVA with Tukey’s pairwise comparisons 

results also show a statistically significant difference between the Se levels and the 

Shale type (p<0.0005). The results indicate that a statistically significant difference 

exists between the Se levels in the water exposed to LPS and the rest of the PS 

formations as well as NPS area of the study area. In addition, there is a statistically 

significant difference between the Se levels in the water in the UPS and the area of 

NPS. No statistically significant differences were found between the NPS and CPS 

shale. A statistically significant difference exists between all reaches for Ca and Mg 

levels (p<0.0005) with the lowest levels in MC. The ANOVA between shale type and Mg 

indicates a statistically significant difference exists between LPS and UPS and NPS. 

There is an overlap between CPS and all shale types with respect to Mg levels. The Ca 

levels are statistically significantly different in all shale types except for the CPS in the 

spring data set. In the fall Ca dataset, there is an overlap between the levels in the CPS 

and NPS as well as LPS and UPS. A statistically significant difference exists between 

CPS-NPS and UPS-LPS (p<0.0005).  

The highest Se concentrations were observed at the MC-5 site that is in Colorado 

Springs and LF-4 and LF-5 sites. These sites are in the city of Pueblo (during both, 
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spring and fall), see Figure 3.2, and for a map see Refs. (Divine and Gates 2006, 

Herrmann, Turner et al. 2012).  These sites with very high Se levels are located where 

the human use is becoming more prevalent and thus include both contributions from 

natural and human waste sources (Nimmo, Herrmann et al. 2016, Carsella, Melnykov et 

al. 2017). The highest Se concentration in Monument Creek at MC-5 could be attributed 

to the presence of UPS under Monument Creek. While the elevated Se concentrations 

in the LF-4 and LF-5 sites are due to the LPS formation under the creek (Herrmann, 

Turner et al. 2012).  

 

Figure 3.1 Total Se concentrations in the stream water ( - solid symbol) spring and ( - 
open symbol) fall 2007 in µ/L. UF stands for Upper Fountain Creek (squares), MC 
Monument Creek (circles) and LF, Lower Fountain Creek (triangles) (Carsella, 
Melnykov et al. 2017). Data points were measured in triplicates. 

Se, Ca and Mg levels and hardness in the Fountain Creek water.   

Because correlations were reported between Se levels and water hardness by 

Herrmann and coworkers (Herrmann, Turner et al. 2012), the current manuscript 

explores the chemical speciation of Se, Ca and Mg to examine if specific chemical 

relationships between Se and Ca or Mg can explain the reported correlation with 
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water hardness. In Figure 3.2, the Se concentrations are plotted as a function of 

total hardness, and a correlation was suggested for the final sites at the Fountain 

Creek Watershed. Because water hardness is generally attributed to the amount of 

calcium (Ca2+) and magnesium ions (Mg2+) dissolved in the water, we investigated 

the relationships by plotting Se level as a function of the hardness (in Figure 3.2A), 

the concentrations of Ca2+ (Figure 3.2B) and the concentration of Mg2+ (Figure 

3.2C).  The plots show that more Ca was measured in the water in spring as 

compared to the fall and that this difference correlates with the difference observed 

in the hardness.  

 

Figure 3.2 Total Se level ([Se]/1000 mg/L) vs Total hardness (a), Total Ca level (b) and 
Total Mg level (c) in the stream water ( - solid symbol) spring and ( - open symbol) fall 
2007 in mg/L. UF is the Upper Fountain Creek (squares), MC Monument Creek (circles) 
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and LF Lower Fountain Creek (triangles) (Carsella, Melnykov et al. 2017). Data points 
were measured in triplicates. 

Based on Figure 3.2 plots of Se versus Ca2+ and Se versus Mg2+ as well as plots of 

each cation versus collection site shown in Figure 3.2, the Se levels increase as the 

creek runs downstream and across the PS formation.  Variations in Se levels exist 

for each cation and water sample location and some different patterns emerge 

between the three parameters.  Specifically, in the fall the Se concentrations are 

higher than in the spring for most samples. Linear relationships can be suggested 

between Se levels and hardness, between Se and Mg2+ levels for both fall and 

spring.  Linearity is also observed for Se levels and Ca2+ -levels measured in the 

spring, but not in the fall.  This change in the pattern is of interest because it could 

be related to uptake of Se by plants in the creek waters, and this will be the topic of 

a future investigation as well as considering the measurements of Se(IV) and Se(IV) 

[51].  Most UF and MC sites that have not been exposed to the PS formation, 

exhibit characteristically low Se concentrations in the water. The Se levels begin to 

rise at the UF-4 and MC-5 sites which are where the UF reach crosses the CPS 

formation and the MC reach crosses the UPS formation. The water from both 

reaches confluence with the LF reach and into the LF-1 site. The most interesting 

pattern shown here is the correlation of the Se level with Ca2+ concentrations in the 

spring measurements and with the Mg2+ concentrations in both spring and fall 

seasons.  
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Figure 3.3 A) Total calcium concentrations (presumed Ca2+) in the creek water ( - solid 
symbols) spring and ( - open symbols) fall year in mg/L. and B) total magnesium 
concentration (presumed Mg2+) in the stream water ( - solid symbols) spring and ( - 
open symbols) fall year in mg/L. UF is the Upper Fountain Creek (symbol squares), MC 
Monument Creek (symbol triangles) and LF Lower Fountain Creek (symbol circles).  
Data points were measured in triplicates. 

In the case of the Mg2+, there is less of a variation with changing seasons 

(Figure 3.2C). In Figure 3.3B the concentrations of Mg at the different sample sites 

were plotted, and the same trend for the sample locations was found for the Mg 

levels in samples collected in the fall or spring (see Figures 3.2 and 3.3).  The UF-4, 

MC-5, LF-4 and LF-5 sites contain the highest levels of Ca in spring. Therefore, the 

fact that the Se levels correlate differently with the hardness in the fall versus the 

spring streams can be attributed to the seasonal variations in Ca2+ levels shown in 

Figure 3.2B.  We suggest that although Mg2+ is important for defining the 

environment in these systems because the concentrations of Mg2+ remain constant, 

it influences hardness by facilitating dissolution of insoluble Ca2+ species as has 

been reported previously for MgCO3-CO2 systems [52].  

Speciation Profile for sites with low and high levels of Se.  
 In Figure 3.4 we show the distribution of Se species that would be anticipated if the 

most of the oxidized Se species present are in a thermodynamic equilibrium using the 
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reported formation constants (see experimental for formation constants). The figures 

show that under oxidizing conditions the major species is predicted to be SeO42- from 

pH 5 to 8, but that at higher concentrations the contribution of Se(IV) to Se(VI) is 

smaller.  However, it must be noted, that these calculations are done at oxidizing 

conditions, and as reported previously using Pourbaix diagrams, when the pE measured 

at these sites along the Fountain Creek is used, the predicted major Se component was 

Se(IV) (Carsella, Melnykov et al. 2017).  However, speciation studies showed that 

regardless, about 90% of the Se was found to be in oxidation state VI (Carsella, 

Melnykov et al. 2017) and using these results we calculated the speciation observed for 

the UF-2 and LF-4 sites.    

 

Figure 3.4  Speciation diagrams were calculated for two different sites along the 
Fountain Creek in the stream water. A) The low concentration UF-2 sites with [Se]tot 
3.36 •10-10 M, and B) LF-4 with [Se]tot 1.22 •10-7 M. Recently the speciation was 
determined to around 90% Se(VI) for several of the sites studied in this work [25].  

 

Ca2+ is known to form both soluble and insoluble Ca2+-SeO42- species and the 

distribution of these species were investigated using the LF-4 site concentrations of Se, 

Figure 5A.  The levels of the soluble form of CaSeO4 were determined previously in 
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other waters in studies using isotopically pure materials. These studies confirmed the 

presence of a significant amount of oxidized Se(VI) in such waters (Nakayaam 1968, 

Nakayama 1971). Studies with the Fountain Creek waters have previously shown that 

the formation of CaSeO4 is competing with the formation of Ca2+ complexes with 

CaSeO3, CO32-, and with HCO3-; and the latter will be discussed below. Figure 5A 

shows the speciation of Se(IV) and Se(VI) in the presence of Ca2+ showing more 

CaSeO4 than CaSeO3.  As in the case of the Ca2+, the Mg2+ speciation was considered 

in Figure 5. The speciation diagram was constructed for the Mg and Se species using 

the LF-4 site concentrations, showing that the most favorable species in the water under 

these conditions were MgSeO4 and the insoluble MgSeO3.  

 

Figure 3.5 Speciation diagram was calculated for LF-4 site along the Fountain Creek in 
the stream water with concentrations A) of [Se(IV)] 1.2 • 10-8 M, [Se(VI)] 1.1 • 10-7 M 
and [Ca]tot 1.7 • 10-3 M and B) [Se(IV)] 1.2 • 10-8 M, [Se(VI)] 1.1 • 10-7 M and [Mg]tot 9.4 • 
10-4 M. 

 

As elevated concentrations of Ca2+ and Mg2+ were measured, the speciation 

diagram for both cations was plotted in Figure 5A and by comparison, we include the 

speciation diagram for the Se, HCO3- and CO32- species with both Ca2+ and Mg2+ 
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together in Figure 6. As expected, the carbonate species with both cations are the most 

abundant since their equilibrium constants are the highest.  The carbonates thus shift 

the selenite equilibrium for the Mg2+ since no insoluble MgSeO3 is present; however, 

this is not the case for the CaSeO3 that continues to have insoluble material.  The 

presence of carbonates with their large equilibrium constants and the higher 

concentration of Ca2+ versus Mg2+ would support the formation of insoluble calcium 

selenite. This behavior could be a consequence of a cycle whereby carbonates are 

consumed by organisms present in the water leading to more release of Ca2+. This is a 

logical explanation given that the pH of the Fountain Creek water (Table 3.1) is slightly 

alkaline and the alkalinity measurements indicate that under these conditions the waters 

are oversaturated with Ca2+ according to the Langelier saturation index L.S.I.(Panthi 

2003)  The L.S.I.  
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Figure 3.6 Speciation diagram was calculated for the LF-4 site along the Fountain Creek 
in the stream water with concentrations of [Se(IV)] 1.2 • 10-8 M, [Se(VI)] 1.1 • 10-7 M, 
[Ca]tot 1.7 • 10-3 M and [Mg]tot 9.4 • 10-4 M.  

was calculated for the LF-4 site in the summer using the alkalinity value of 140 

mg/L of CaCO3 and the Ksp for CaCO3 (6.92 • 10-9) where L.S.I.= log([Ca2+][CO32-]/Ksp)= 

2.45 indicating that the water is saturated with CaCO3 which would allow precipitation of 

some CaCO3 particles in the water.   

Although the formation constant for CaCO3 is large, at pH values near neutral the 

concentration of CO32- in the creek waters is very low.  The protonated form of HCO3- is 

present, but the complex that it forms with Ca2+ is much less stable. The methods used 

in this study specifically preclude measurements of carbonate and the values are thus 

not routinely measured.  However, carbonate levels in river waters have been reported 

previously and are in the range of 20-200 mg/L CaCO3  (Wurts and Durborow 1992, 
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Panthi 2003). To illustrate the levels of calcium carbonates in these systems, we 

assume a carbonate level of 140mg/L in the speciation diagram calculated in Figure 3.6.   

Since the formation constant for the soluble CaSeO4 is high (K = 102.68) a significant 

portion of the soluble Se presumably exists as a soluble form of CaSeO4, however, the 

solubility product for the insoluble CaSeO4 may be reached at some of the sites with 

high Se concentrations. The possibility that the CaSeO4 species is a major species 

involved in the correlation between Se levels and hardness was considered, and the 

speciation diagrams including the Ca2+ cations were examined at the LF-4 site 

concentrations and are shown in Figure 6.  As seen from Figure 3.6 the major species 

in solution are indeed CaSeO4 and Ca(HCO3)2.  

At the pH values (5 < pH < 8) of the water that has been investigated, most of the 

carbonate would be protonated and not as prone to precipitation. In addition, Castanier 

and coworkers show that production of carbonate particles by heterotrophic bacteria 

follows different paths and these induce a pH increase and an accumulation of CO32- 

and HCO3- ions in the system (Castanier, Le Métayer-Levrel et al. 1999). This is 

important because the high concentration of Ca2+ found in the water correlates with the 

total Se and because in our previous work (Carsella, Melnykov et al. 2017) we found 

that the major Se species is present in the nontoxic form of Se(VI) as SeO42-. However, 

additional analysis is needed and will be the topic of future communications.  

Particularly the subject of other cations will be considered particularly when the 

processing of the Se when taken up by the plants in the creek bed are to be considered. 

Thus, speciation of iron and other metal ions become important and their corresponding 

speciation (Ip, Birringer et al. 2000, Kotrebai, Birringer et al. 2000, Hamada, Bayakly et 
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al. 2006, Crans, Woll et al. 2013, Choudhury, Thomas et al. 2015, Fleming, Groves et 

al. 2015, MacDonald, Korbas et al. 2015)    

 
Figure 3.7 Total Se concentration in nM v. Creek discharge in m3/second (3.7a) and 
Se concentration in nM v. water temperature (o C in the creek water ( - solid 
symbols) spring and ( - open symbols) fall year and UF is the Upper Fountain 
Creek (symbol squares), MC Monument Creek (symbol circles) and LF Lower 
Fountain Creek (symbol triangles). Regression lines are shown as solid for spring 
and dashed for fall.  
Exploration of other physical parameters and their impact on the speciation.  

 To further explore the effects of other physical parameters the Se, Ca and Mg 

levels were measured in addition to pH, temperature, and discharge.  The fourteen sites 

were monitored in spring and fall of 2007 in this study (Table 1) and we found that the 

highest Se concentrations in each reach were observed at the UF-4 and MC-5 site in 

Colorado Springs and LF-4 and LF-5 sites in the city of Pueblo in both seasons as 

shown in Figure 3.2.  The water temperature values are more consistent within one 

season (Table 3.1) and the water temperatures are colder during the spring.  The 

discharge rates are higher during the spring runoff and the lower discharge during the 

fall resulted in higher Se concentrations (Figure 3.7a).  This is consistent with the 

observation of higher Se levels when there are higher water temperatures and smaller 

discharge rates; this allows for more dissolution of Se into the creek water. The total Se 
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content in the water during spring and fall correlates with the water temperature and the 

creek discharge rate as shown from the plot in Figure 7. The best relationship to 

dissolved Se in the creek exists with flow rate (Figure 3.7a, R2spring=0.8094, 

R2Fall=0.7941). Temperature is also correlated with dissolved Se, but the correlation is 

not as strong as the flow rate (Figure 3.7b). Together the data for temperature and flow 

rate suggest that there are symbiotic effects on dissolved Se and that these parameters 

assist in increasing the amount of dissolved Se, and because these parameters affect 

the Ca2+ and Mg2+ in a similar manner, they contribute to increasing the Ca2+ level 

above that expected for the solubility product (Figure 3.8).  
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Figure 3.8. Total Ca concentration in nanomoles plotted v. creek discharge in m3/s 
(3.8a). For comparison, total Mg concentration in nanomoles plotted v. creek 
discharge in m3/s (3.8b). Total Ca concentration in nanomoles plotted v. water 
temperature (oC) (3.8c). Total Mg concentration in nanomoles plotted v. water 
temperature (oC) (3.8d). In all graphs spring, Ca and Mg concentrations are plotted 
as solid colors with shapes for each segment. UF is the Upper Fountain Creek 
(symbol squares), MC Monument Creek (symbol circles) and LF Lower Fountain 
Creek (symbol triangles). Regression lines are shown as solid for spring and 
dashed for fall.  

 

CONCLUSIONS 

A speciation analysis was carried out on Se and pH data on creek samples from 

14 sites in the Fountain Creek Watershed which were supplemented with new 

measurements of Ca, Mg and temperature on these same sites.  The subsequent 
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analysis supports the interpretation that the Ca2+ ion is mainly responsible for the 

observed high Se levels in these waters presumably by the formation of the soluble and 

insoluble CaSeO4.  Although the Mg2+ levels also correlate with the Se level, this cation 

is not present at the same high level and thus serves mainly to increase the Ca2+ levels 

beyond the solubility limit through ion-pair formation [52]. These findings are important 

because several of these sites are found to have high levels of Se. However, the fish 

population has demonstrated that there are no apparent toxicity effects associated with 

these high Se levels [19] (Ip, Birringer et al. 2000, Kotrebai, Birringer et al. 2000, 

Hamada, Bayakly et al. 2006, Crans, Woll et al. 2013, Choudhury, Thomas et al. 2015, 

Fleming, Groves et al. 2015, MacDonald, Korbas et al. 2015).  The data presented here 

thus further characterize the Se-rich waters in which most of the Se is in the Se(VI) 

oxidation state.  The studies here suggest that the observation that Se toxicity is 

reduced because the major part of the Se is Se(VI) and the studies presented here 

suggest that a major part of the Se(VI) is in the form of CaSeO4. 

The detailed analysis of the Se-species and its ability to explain observations 

underline the importance of consideration of the speciation chemistry in these 

environmental systems. The studies demonstrate that measurement of Se species 

allows for additional insights into the processes in a hydrological system. As illustrated 

in this manuscript the use of speciation analysis significantly enhanced the 

understanding of previously reported results for other systems (Ip, Birringer et al. 2000, 

Kotrebai, Birringer et al. 2000, Hamada, Bayakly et al. 2006, Crans, Woll et al. 2013, 

Choudhury, Thomas et al. 2015, Fleming, Groves et al. 2015, MacDonald, Korbas et al. 

2015).  The detailed considerations including Mg2+ and Ca2+ allowed for an insight into 
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the form of Se and the environmental system at hand.  These considerations do require 

measurements of the oxidation state of the Se-species and do need for continued 

development of advanced methods for detection and measurements of components in 

complex matrices.   
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CHAPTER 4 SELENIUM UPTAKE IN THE BRYOPHYTE HYGROHYPNUM 
OCHRACEUM AND THE RELATIONSHIP TO IRON AVAILABILITY 

 
 
 

SYNOPSIS 
Plants, specifically bryophytes, have been used to study the impacts of trace 

level contamination of heavy metals in aquatic ecosystems. Bryophytes placed in mine 

drainages have been shown to accumulate zinc, cadmium, and lead. In North America, 

the bryophyte Hygrohypnum ochraceum has been widely used to study heavy metals in 

aquatic environments. In a previous study on Fountain Creek, CO water quality, we 

reported H. ochraceum to uptake selenium from Se-rich water found in the Fountain 

Creek Watershed. In this study the seasonal H. ochraceum concentration dependent 

uptake is examined. All cultures were maintained for 10 days, harvested, dried, and 

digested according to EPA Method 3052. ICPMS was used to determine metals, Se and 

Fe in digest solutions. Data analyses suggested that selenium uptake is correlated with 

Se and Fe concentrations in the water, which led to the hypothesis that Se transport into 

bryophytes is mediated by soluble Fe. H. ochraceum showed a statistically significant, 

log-linear uptake of Se in the presence of dissolved Fe (R2=0.8488, p=0.002). Se 

uptake was negatively correlated in the absence of dissolved Fe, which supports the 

hypothesis that soluble iron is required for Se uptake by H. ochraceum. This is result 

indicates the importance of considering nutritional factors when determining 

bioavailability of Se in aquatic systems. The presence of micro-nutrients and the form of 

these nutrients has far reaching consequences in the use of bryophytes to determine 

the availability of elements such as Se 
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INTRODUCTION 

Selenium (Se) is an unequally distributed element in the earth’s crust that has 

nutritionally beneficial and toxic effects.(Presser, Sylvester et al. 1994, Bird, Ge et al. 

1997, Bird and Tyson 1997, Combs and Gray 1998, Mousa, O'Connor et al. 2007, 

Weekley and Harris 2013, Block, Booker et al. 2016) Previous research has indicated 

that Se enrichment in food crops is needed to combat deficiencies of Se in the diets of 

people living in Se depleted areas.(White and Broadley 2009, Norton, Deacon et al. 

2010, Briat, Dubos et al. 2015, Briat, Rouached et al. 2015, Connorton, Balk et al. 2017, 

de Figueiredo, Boldrin et al. 2017, White 2017) In contrast areas with high Se often 

exhibit increased toxicity in aquatic life.(Presser, Sylvester et al. 1994, Carsella, 

Melnykov et al. 2017). This toxicity often depends on the species of Se present, the 

environment in which the Se is deposited as well as the bioavailability of the Se to 

plants and the diets of the fish and aquatic birds present.(Presser, Sylvester et al. 1994, 

Hamilton, Holley et al. 2005, Hamilton, Holley et al. 2005, Hamilton, Holley et al. 2005, 

Janz, DeForest et al. 2010, Pettine, Gennari et al. 2012, Cesa, Baldisseri et al. 2013, 

Debén, Aboal et al. 2015, Debén, Aboal et al. 2017) This justifies the need for 

biomonitoring of Se in aquatic systems.(Cesa, Baldisseri et al. 2013, Debén, Aboal et al. 

2015, Debén, Aboal et al. 2017) This toxicity has lead the United States Environmental 

Protection Agency (EPA) to produce and enforce strict guidelines for Se in aquatic 

systems .(United States Environmental Protection Agency 2015) However, the 

guidelines fall short because they do not consider the various factors such as speciation 

of Se and associated micronutrients that may affect  bioavailability of Se in specific 

cases.(Cesa, Baldisseri et al. 2013, Debén, Aboal et al. 2015, Carsella, Melnykov et al. 

2017, Debén, Aboal et al. 2017). Since most effects of Se in aquatic systems are seen 
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in fish and birds as a result of dietary exposure, the best way to monitor these complex 

systems is to use plants, which are primary producers in ecosystems and are at the 

beginning of the food chain. Simple plants like bryophytes are often used for 

biomonitoring freshwater systems.(Herrmann, Turner et al. 2012, Cesa, Baldisseri et al. 

2013, Whitton 2013, Gecheva and Yurukova 2014, Debén, Aboal et al. 2015, Debén, 

Aboal et al. 2017) Frequently, bryophytes are placed in freshwater aquatic systems and 

sampled to look at uptake without regard to other physiological needs of the 

plant.(Nelson and Campbell 1995, Whitton 2013, Gecheva and Yurukova 2014, Debén, 

Aboal et al. 2015)  

There are documented instances of interactions between Sulfur (S) and Iron (Fe) 

homeostasis in plants.(Zuchi, Cesco et al. 2009, Couturier, Touraine et al. 2013, Forieri, 

Wirtz et al. 2013) Fe-S clusters are essential in many plant metabolic processes 

including photosynthesis, respiration and many enzymatic reactions.(Couturier, 

Touraine et al. 2013, Vigani and Briat 2016) It has been demonstrated that leaf Fe 

decreases in S starved tomatoes.(Zuchi, Cesco et al. 2009) In addition, Fe starvation 

effects S metabolism in Arabadopsis.(Forieri, Wirtz et al. 2013) There has been some 

work showing that gene regulation is involved in the homeostasis of Fe and S when one 

or the other is significantly reduced from the plants environment.(Astolfi, Cesco et al. 

2006, Schuler, Keller et al. 2011, Kobayashi and Nishizawa 2012, Forieri, Wirtz et al. 

2013, Paolacci, Celletti et al. 2014) These factors have overlap with mitochondrial 

function and may have internal feedback loops that aid in the regulation and 

homeostasis of Fe and S.(Vigani and Briat 2016) 
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Due to Se atomic similarity with S, it is believed that Se is transported by a high-

affinity sulfate transporter which is found in the roots of most plants.(Li, McGrath et al. 

2008, Pilon-Smits and LeDuc 2009, Pilon-Smits and Quinn 2010) Therefore, sulfate is a 

competitive inhibitor to Se uptake.(Li, McGrath et al. 2008, Pilon-Smits and LeDuc 2009, 

Pilon-Smits and Quinn 2010) The inhibition of Se transport by S is seldom recognized in 

most Se biomonitoring studies but is referenced in Se crop enrichment research.(White 

and Broadley 2009, Norton, Deacon et al. 2010, Herrmann, Turner et al. 2012, Whitton 

2013, Gecheva and Yurukova 2014, Debén, Aboal et al. 2015, de Figueiredo, Boldrin et 

al. 2017, White 2017)  There are chemical similarities between sulfates and selenates, 

likewise between sulfites and selenites.(Baes and Mesmer 1976, Block 2013) 

The data presented this study is a continuation of a previous study in  which 

environmental Se in the Fountain Creek Watershed was biomonitored with the 

bryophyte Hygrohypnum ochraceum, which indicated seasonality of Se 

uptake.(Herrmann, Turner et al. 2012) The hypothesis examined is that the nutritional 

factor dissolved Fe must be present as a dissolved nutrient for Se to be uptaken by H. 

ochraceum.  

EXPERIMENTAL.   

Living sections of H. ochraceum were collected from Nate Creek ditch near Owl 

Pass in Ouray County, Colorado.  Plants were removed from the banks, logs, and rocks 

by hand, washed in native water and placed in plastic coolers and transported to the 

lab. Plants were washed vigorously with pressurized deionized water at Colorado State 

University-Pueblo (CSU-P) to remove sand, sediment, leaves, and macroinvertebrates.  

The plants were mechanically separated into strands and washed with pressurized 

deionized water. The plants were formed into 10cm square sections and placed in 
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culture trays where they were grown and maintained hydroponically in reconstituted 

water. (United States Environmental Protection Agency 1985, G.R. Rehe Jr. and Nimmo 

2001, Herrmann, Turner et al. 2012)  While in culture over the winter the bryophytes 

increased in biomass by about 30% before being placed into nylon mesh bags for 

deployment into the Fountain and Monument Creeks,  

CO. 

Field Measurements and Sampling of Plant and Water 
Experimental Concept.   

Two control groups were created for each sample deployment in spring and fall. Control 

group 1 consisted of five randomly chosen samples that were kept in an incubator in 

hydroponic conditions.(Herrmann, Turner et al. 2012) Control group 2 consisted of five 

randomly chosen samples that were bagged, placed in coolers, transported and raised in 

the reconstituted water in the lab.(Herrmann, Turner et al. 2012) These two groups were 

used to quantify sample contamination due to deployment methods.  

Sampling of Bryophytes.   
Seventy 30-gram samples of plants were placed in nylon mesh bags tied with jute 

drawstrings and deployed in the Fountain Creek watershed utilizing the same 14 sites as 

previous studies.(United States Environmental Protection Agency 2002, Herrmann, 

Turner et al. 2012, Herrmann, Nimmo et al. 2016, Herrmann, Sublette et al. 2016, 

Carsella, Melnykov et al. 2017) Deployed bags, 5 per site, were attached to existing rocks 

on stream banks or tied to bricks in Monument Creek and Fountain Creek for 10 

days.(Herrmann, Turner et al. 2012) After removal from the streams, plants were washed 

vigorously on site with native water then returned to the laboratory and frozen.(Herrmann, 

Turner et al. 2012)  After thawing, the samples were washed with pressurized deionized 

water to remove sand, sediment and other debris, dried for 48 hours at 60oC in an oven, 
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ground to a powder using a mortar and pestle and stored in clean Ziploc® 

bags.(Herrmann, Turner et al. 2012)  

Sampling of water in the stream around the Bryophytes.   
Water quality measurements consisting of temperature, pH, specific conductance, and 

dissolved oxygen were gathered at deployment (day 1), mid-point (day 5), and retrieval 

(day 10) of the bryophytes.(Herrmann, Turner et al. 2012) Three water samples per site 

were also gathered during the study at the same times. Field blanks were also created at 

3 sample sites one on each reach of the watershed (Upper and Lower Fountain and 

Monument Creeks) and used as controls during the collection of the samples. The field 

blanks were created by pouring deionized water (DIW) that was transported into the field 

from the lab and sampled using the same sampling apparatus as the samples collected 

in the field and poured into sampling containers and treated the same way as field water 

samples. The water samples were returned to the lab in coolers. Each sample was 

subdivided into 3 parts. One part of 30ml was filtered through a 0.45 µm filter (Phenex 

AF0-8103-12) becoming the dissolved fraction.(Fishman 1993) The second part of 30 ml 

was left unaltered and labeled total fraction. The fractions were then acidified to a pH of 

2.0 with concentrated nitric acid and stored at 4°C until analyzed.(Fishman 1993) The 

remaining third part was used for the determination of alkalinity, and hardness by 

titration.(Fishman 1993) 

Analysis of Water and Plant Samples 

Water and plant digestate samples were analyzed on an Agilent 7500ce ICP-MS 

following EPA Methods 200.8 (United States Environmental Protection Agency 1994) 

and 6020a.(United States Environmental Protection Agency 2007)  Multi-element 

environmental external calibration standards (CSTU-STD-1) and internal standards 
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(2008ISS-125) were purchased from Inorganic Ventures and diluted in 2% nitric acid 

(HNO3) and 0.5% hydrochloric acid (HCl) prior to analysis. 

Analysis of Water.  

Acidified water samples were transferred into 15ml screw capped disposable centrifuge  

tubes (Fisher Scientific 14-959-49B) and analyzed directly by ICP-MS following EPA 

Method 200.8 (United States Environmental Protection Agency 1994). Since these 

samples were not drinking water samples, they were analyzed using the Agilent Octopole 

Reaction System (ORS) for interference removal on Se, Fe, Ca, Zn, Cu, Cr, Co, Mn, Ni, 

As, and V. The use of the ORS system is valid to use under these circumstances under 

the method modification section of Code of Federal Regulations Title 40 Part 136.6 

(United States Environmental Protection Agency 2007).  

Analysis of Bryophyte samples.  
 Bryophyte samples were digested in a Milestone Ethos EZ microwave by placing 0.1 

g of the homogenized, prepared tissue sample in a quartz insert; 2 ml of concentrated 

HNO3 and 3 ml of 35% hydrogen peroxide (H2O2) and 0.25 ml HCl were added to each 

insert. The insert was placed in a microwave vessel containing 10 ml D.I. water and 2 ml 

35% H2O2. The vessels were heated to 180oC and maintained at 180oC for 10 minutes. 

After cooling the digested samples were diluted to a volume of 10 ml.  Prior to ICP-MS 

analysis a 1:10 dilution of the sample was made.  National Institute of Standards and 

Technology (NIST) tomato leaves (SRM-1573a) were used to check digestion efficiency 

and elemental recovery during ICP-MS analysis. ICP-MS analysis was performed 

following USEPA Method 6020a.(United States Environmental Protection Agency 2007) 

ICP-MS operating conditions are presented in Table 4.1.  

Table 4.1  Agilent 7500ce operating conditions 

https://www.fishersci.com/shop/products/falcon-15ml-conical-centrifuge-tubes-5/1495949b?keyword=true
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 USEPA Method 200.8 USEPA Method 6020 

Plasma RF power 1500 W 1500 W 

Sample Depth 8.0 mm 9.8 mm 

Carrier gas flow 0.82 L/min 0.85 L/min 

Sample flow rate 400ul/min 400ul/min 

Spray chamber 
temperature 

2 oC 2 oC 

Nebulizer Glass Expansion Micromist Glass Expansion 
SeaSpray 

Interface Nickel Sample and 
skimmer cones 

Platinum Sample and 
skimmer cones 

 

Statistical analysis.  
Principle component analysis (PCA)(Jolliffe 2002) was performed to determine the 

significant interactions between elements found in the water with the uptake of selenium 

in the bryophytes. The groups developed by PCA were then tested for significance using 

statistical correlations, modeling and regression methods. Minitab version 18 statistical 

analysis software was used to complete the statistical calculations presented in this 

paper. 
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RESULTS AND DISCUSSION 

 

Figure 4.1. Loading plot of correlations of elements in Fountain Creek dissolved fraction 
of water samples. for spring (4.1a) and fall (4.1b). 

The spring Loading Plot (Figure 4.1a) indicates that dissolved Fe is nearly inversely 

related to Se and related constituents (Ca, K, Na, Mg, and Ni) as indicated by Fe being 

negative in the first component. The Loading Plot also indicates that in the spring 

dissolved water fraction Se and Fe are both positive in the second component.  Loading 

Plots also indicates that dissolved Fe is inversely related to dissolved Se in the fall. The 
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loading plot for the fall dissolved fraction (Figure 4.1b) shows the Fe vector in the 

negative for both components which. This is a significant change from the positive in the 

second component in the spring (Figure 4.1a). In contrast the Se vector increases in the 

positive of both components in the fall (Figure 4.1b) as opposed to the spring (Figure 

4.1a) where Se is more weakly positive in both components.  

 

Figure 4.2. Loading Plot of the of H. ochraceum exposed to Fountain Creek Water in the 
Spring (4.2a) and fall (4.2b).  

The Fe vector is near orthogonal to the Se vector in both plots indicating that they are 

independent of each other in the bryophyte (H. ochreaceum). The Loading Plot for the 

spring (Figure 4.2a) shows the Fe vector in the negative for both first and second 
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components while Se is in the positive for the first component and negative in the second 

component. The fall Loading Plot (Figure 4.2b) is in stark contrast to the spring plot 

(Figure 4.2a). In the fall (Figure 4.2b) the Fe vector is highly positive in the first component 

and negative in the second component while Se is largely positive in the second 

component but not the first. The plots in Figure 4.2 indicate a substantial change in the 

plants handling of Se and Fe uptake in response to the dissolved fraction of Fountain 

Creek water.  

Table 4.2. PCA of Spring and Fall Fountain Creek Water eigenanalysis correlation 
matrix. 

 
Fountain Creek Water Fountain Creek Water 

 
Spring Fall 

Component PC1 PC2 PC3 PC1 PC2 PC3 

Eigenvalue 7.837 1.109 0.664 6.616 1.847 0.746 

Proportion 0.784 0.111 0.066 0.662 0.185 0.075 

Cumulative 0.784 0.895 0.961 0.662 0.846 0.921 

 

The PCA results shown in Table 4.2 indicate that 2 components are responsible for the 

variation seen in the data for spring and fall. According to the Kaiser criteria component, 

PC3 should be rejected in both spring and fall since these eigenvalues are less than 

1.(Yeomans and Golder 1982) The 2 components PC1 and PC2 are responsible for 

89.5% of the variation in the spring and 84.6% responsible for the variation in the data in 

the fall.  
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Table 4.3. Eigenvectors from PCA of Spring and Fall Fountain Creek Water 

Eigenvectors 

Fountain Creek Fountain Creek 

Water Spring Water Fall 

Variable PC1 PC2 PC1 PC2 

Ca-44 0.346 0.047 0.327 0.288 

Mg-24 0.350 0.033 0.324 -0.345 

Na-23 0.352 0.094 0.358 0.251 

K-39 0.344 0.089 0.371 0.177 

Fe-56 -0.251 0.254 -0.189 -0.346 

Co-59 0.315 -0.339 0.334 -0.318 

Ni-60 0.341 0.222 0.361 -0.152 

Cu-63 0.324 0.243 0.358 -0.189 

Zn-66 0.171 -0.809 0.155 -0.540 

Se-78 0.321 0.195 0.303 0.364 

 

The eigenvectors produced from the PCA shown in Table 3 indicate that the water 

hardness elements Ca and Mg as well as Na, K, Co, Ni, Cu, and Se are strongly positively 

correlated while Fe is negatively correlated in PC1 in the spring and fall indicating an 

inverse relationship between Fe and the other elements listed in Table 2.  The results 

also show that Zn is strongly negatively correlated as well as Co in the spring in PC2. In 

the fall PCA results Mg, Fe, Ni, and Cu all switch from a positive correlation to a negative 

relationship to the other elements in PC2 listed in Table 3.  
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Table 4.4. PCA of H. ochraceum exposed to Spring and Fall Fountain Creek Water. 

  H. ochraceum Exposed to H. ochraceum Exposed to 

  FC Water Spring FC Water Fall 

Component PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 

Eigenvalue 3.471 2.071 1.256 1.033 0.798 4.428 1.957 1.248 0.725 

Proportion 0.347 0.207 0.126 0.103 0.08 0.443 0.196 0.125 0.072 

Cumulative 0.347 0.554 0.68 0.783 0.863 0.443 0.639 0.763 0.836 

 

The PCA results presented in Table 4 indicate that according to the Kaiser criteria 4 

components are needed to describe the variation in the spring dataset while 3 

components are needed in the fall.(Yeomans and Golder 1982) This is shown by the 

eigenvalues of PC5 (spring) and PC4 (fall) having values less than 1. The 4 components 

in the spring are responsible for 78.3% of the variation while the 3 components in the fall 

are responsible for 76.3% of the variation.  
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Table 4.5 Eigenvectors from PCA of Spring and Fall Fountain Creek Water 

Eigenvectors 
H. ochraceum Exposed H. ochraceum Exposed 

to FC Water Spring to FC Water Fall 

Variable PC1 PC2 PC3 PC4 PC1 PC2 PC3 

Ca-44 0.380 0.205 0.341 0.154 0.167 0.440 -0.324 

Mg-24 0.506 0.005 -0.034 -0.028 0.462 -0.052 -0.016 

Na-23 0.295 0.086 -0.624 -0.236 0.346 0.101 -0.517 

K-39 0.305 0.292 -0.060 0.082 0.177 0.422 0.414 

Fe-56 -0.072 -0.581 -0.069 0.339 0.391 -0.294 0.170 

Co-59 0.089 -0.610 0.071 -0.003 0.433 -0.230 0.089 

Ni-60 0.232 -0.178 0.525 -0.268 0.298 -0.018 0.242 

Cu-63 0.434 -0.060 0.250 0.031 0.418 0.062 -0.078 

Zn-66 0.255 -0.024 -0.209 0.761 0.053 0.449 0.531 

Se-78 0.315 -0.346 -0.312 -0.383 0.022 0.520 -0.269 

 

The eigenvectors shown in Table 5 indicate a complex balance between elements in 

the plants with changing water chemistry based on seasons. The weights of the factors 

are from highest on the left (PC1) to Lowest on the right (PC4; spring PC3; fall). The 

vectors show a strong correlation between Se with most elements except Fe and Co in 

the spring (PC1 spring).  While Fe has a strong correlation with most elements in the fall 

except Ca, K, Zn, and Se (PC1 fall). It is interesting to observe that Fe went from a weak 

negative correlation to a strong positive as the switch in seasons and water chemistry 

occurred. In component 2 (PC2) the Fe-Se correlation is much stronger and is negative 

in the spring.  However, negative Fe and positive Se in the fall indicate an inverse 
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correlation between the two elements. The graphical representation of these relationships 

can be seen in Figure 4.2a and 4.2b.  

 

Figure 4.3. Spring Fe-Se-pH interaction plot with pH as the independent variable. Se 
concentration in the dissolved fraction of Fountain Creek water is on the left axis and 
the Fe concentration in Fountain Creek Water is on the right axis.  

It is evident in Figure 4.3 that the Fe concentration goes down with increasing pH. While 

the Se concentration rises under the same conditions. Overall the pH rises as the sample 

sites decrease in elevation. This decrease is caused by the water interaction with the 

creek bed which contains basic minerals such as calcium and magnesium carbonates 

which have interesting effects on the solubility of Se species.(Carsella, Sánchez-

Lombardo et al. 2017)  
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Figure 4.4. Spring Fe-Se-pH interaction plot with pH as the independent variable.  

In Figure 4.4 the Fe concentration is very low to nonexistent in the dissolved fraction of 

the water samples which is likely due to the formation of insoluble forms of Fe as a result 

of the seasonal change in pH. There is still a significant amount of Fe in the total fraction, 

which is not shown in the interaction plot in Figure 4.4, supporting the idea that a large 

insoluble portion of Fe exists.  

To develop a simpler working model, the variables with the highest weights in the 

selenium and iron groups were used in combination to form a model of plant selenium 

uptake. The variables were fitted to a linear regression model and each variable tested 

for significance. Variables with a p-value > 0.05 were rejected.  
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Figure 4.5. Fitted line plot of water ln(Fe/Se) ratio vs.bryophyte Fe/Se ratio . 
(R2=0.8488) 

The first model presented in this study focuses on Fe and Se groups in the spring data. 

Since the Fe relationship in the Se group is negative, the two elements are inversely 

related. Se was chosen for the denominator as it is never 0. The natural log was used on 

the water fraction to normalize the Se and Fe concentrations in the water as these 

elements increase in a large amount from west to east and north to south over the study 

area.   
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Figure 4.6. Water Se vs. ln (Bryo Fe/Se) Showing the negative linear relationship (R² = 
0.5949, y = -14.035x + 9.7887) with Se plant uptake and no dissolved Fe in the water.  

In contrast to the spring data, there is no dissolved Fe in the water in the fall. Because 

of the absence of dissolved Fe, it is not included in the model. The dissolved Se is more 

linear in the fall and the natural log is not used. The result of the model shows Se uptake 

in H. ochraceum to have a negative slope when the Se concentration increases in the 

absence of dissolved Fe.  
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Figure 4.7. Water Se(IV) vs ln (Bryo Fe/Se) Showing the negative linear relationship (R² 
= 0.4462, y = -421.39x + 9.9543) with Se plant uptake and no dissolved Fe in the water.  

 

 

Figure 4.8. Water Se(VI) vs ln (Bryo Fe/Se) Showing the negative linear relationship (R² 
= 0.5769, y = -27.112x + 9.7382) with Se plant uptake and no dissolved Fe in the water.  
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Figures 4.7 & 4.8 illustrate the same plot as Figure 6 using selenite (Se(IV)) and selenite 

(Se(VI)) respectively. Figure 7&8 also show a negative relationship like the Se 

relationship shown in Figure4.6. 

Table 4.6. Statistical analysis of regression lines in figures 6-8 presented above.  

Term Coefficient SE Coefficient P-Value 

Constant 9.789 0.242 0.000 

Water Se -14.04 4.12 0.002 

Species 
   

Se(IV) 0.166 0.385 0.671 

Se(VI) -0.051 0.336 0.882 

Water Se*Species 
   

Se(IV) -407 143 0.008 

Se(VI) -13.08 9.06 0.161 

 

The regression lines in Figures 4.6-4.77 were tested for statistical significance using a 

T-test. The test indicates that no statistically significant difference exists between the fall 

total dissolved Se model (Figure 4.6) and the selenate model (Figure 8) (p=0.161, Table 

4.3). There is a statistically significant difference between the fall total dissolved Se model 

(Figure 4.6) and the selenite model (Figure 4.7) (p=0.008, Table 4.3). Table 4.6 also 

indicates that there is not a significant difference between the uptake of Se with respect 

to species however the terms used in the model for dissolved Se are statistically 

significant.  

Experimental evidence supports the hypothesis that Fe is required for uptake of Se by 

the bryophyte H. ochraceum. This evidence is provided in the experimental results that 
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are showing a positive dose-dependent relationship between Se uptake with increasing 

Se in water in the presence of Fe (Figure 4.5). This result is consistent with previous, 

studies indicating that Se can be assimilated like S in plants.(Pilon-Smits and LeDuc 

2009, Pilon-Smits and Quinn 2010, Briat, Rouached et al. 2015, Vigani and Briat 2016) 

The negative slope of the lines in Figures 6-8 shows a trend of less Se uptake in water 

with higher Se. This trend is likely a result of oversaturation of Se with respect to Fe. The 

only difference between Figure 5 and Figure 6 is the absence of dissolved Fe. The loss 

of dissolved Fe is probably caused by a seasonal change in pH that results in the Fe 

adsorbed to suspended sediments in the water or into plaques. The Fe becomes part of 

a particle and can be adsorbed to suspended sediments in the water or into plaques(Xin-

Bin, Wei-Ming et al. 2007). The Fe becomes part of a particle and is not available to the 

plant(Xin-Bin, Wei-Ming et al. 2007).(Xin-Bin, Wei-Ming et al. 2007). It is important to 

realize that bryophytes like H. ochraceum do not have any roots, so these plants must 

absorb all their nutrients by other means and not by conventional roots. The lower pH 

allows the Fe to stay dissolved in the water in the spring and therefore allows the uptake 

of Se by H. ochraceum. These findings are consistent with several works indicating that 

S and Fe homeostasis are linked by some gene expression mechanism.(Kobayashi and 

Nishizawa 2012, Couturier, Touraine et al. 2013, Forieri, Wirtz et al. 2013, Paolacci, 

Celletti et al. 2014, Briat, Rouached et al. 2015, Vigani and Briat 2016)  Since S and Se 

are related elements it is likely that Se uptake is controlled by the same mechanism as S 

as Se is thought to be transported by S transporters in plants.(Bird, Ge et al. 1997, Pilon-

Smits and LeDuc 2009, Vigani and Briat 2016) 
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There is no observable effect in the creek water between selenite and total dissolved 

Se (Table 5). This is most likely due to the fact that the majority of the Se present in 

Fountain Creek is in the selenate form(Carsella, Melnykov et al. 2017, Carsella, 

Sánchez-Lombardo et al. 2017)..(Carsella, Melnykov et al. 2017, Carsella, Sánchez-

Lombardo et al. 2017) There is a statistically significant difference between the uptake 

of total dissolved Se and selenite (Table 3). Based on the slope of the line in Figure 4.7 

compared to Figure 4.8 the amount of selenite uptaken by the plant should be less than 

selenate. The findings presented here are important in two areas: 1. The nutritional 

requirements of the plant being used for biomonitoring must be satisfied and 

understood. Without this understanding, seasonal variations can confound the model. 2) 

It is necessary to understand the impact that speciation may play in the plant's ability to 

uptake the element of interest. This effect may be direct or may be indirect. In the case 

presented here, we can see that there is a difference between uptake of selenite when 

Fe is present and selenite in the absence of Fe. The solubility of Fe is also affected by 

the form that it is in, which is determined by pH, and. Furthermore, the presence of Fe 

influences how S and therefore likely how Se is uptaken by the plant. This has 

implications for watershed management if other plants work the same way and if the 

hydrological management of the watershed changes to allow slightly more acidic water 

to continue to move down the watershed. This change in pH may come from sources 

such as increased creek flow volume that results from increased flow from wastewater 

treatment plants and water added to the creek from other municipal uses.   
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CHAPTER 5 IS LIVING WITH SELENIUM CONTAINING RIVER WATERS 
SUSTAINABLE 

 
 
 

PERSPECTIVES ON LIFE IN A WASTEWATER IMPACTED SELENIUM 
CONTIANING CREEK 

The information gained from the studies presented in the previous three chapters 

has far reaching implications in water management, that enhance understanding of 

plant nutrient control and bioremediation. The Fountain Creek Watershed is a complex 

system of creeks,  intermittent streams and springs. Most of these water sources drain 

into one of three reaches of Fountain Creek. The geology and hydrology of this area 

has a profound impact on the water quality of the lower Fountain Creek (Edelmann, 

Ferguson et al. 2005, Herrmann, Turner et al. 2012). Human activity, wastewater, and 

stormwater runoff  also affect the water quality in the lower Fountain Creek (Gautam, 

Carsella et al. 2014). This project has illustrated that this complexity extends to the 

chemistry of the water and the Se species present in different reaches of Fountain 

Creek (Carsella, Sánchez-Lombardo et al. 2017). The speciation of Se and the 

interaction with other cations greatly affect the solubility of Se in the Fountain Creek 

(Carsella, Sánchez-Lombardo et al. 2017). It is well known that Se speciation is 

dependent on pH and the redox conditions found in the water column (Drever 1997, 

Carsella, Sánchez-Lombardo et al. 2017). The work with the bryophytes presented in 

Chapter 4 illustrate the concept that a plant nutritional requirement, specifically Fe in 

this case, affects the uptake of Se. This effect is also species dependent for both Fe 

and Se. This is important to consider as plants as primary producers are a gateway to 

higher parts of the food chain which can have effects on fish diversity (Carsella, 

Melnykov et al. 2017). 
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First, from a management perspective, these studies highlight the need to obtain 

measurements on aquatic systems including determining the source of elements of 

concern and the speciation of these elements to set a baseline and identify potential 

problems. After determining the baseline assessment of existing conditions how future 

change may impact valuable water resources. In the specific case of Fountain Creek, 

the flow rate helps govern the pH. Historically seasonality helped govern temperature 

and therefore spring runoff which increased discharge. This allowed for a seasonal 

fluctuation in flow and we now know a seasonal fluctuation in Se availability (Chapter 4). 

Since this historic Se availability is discharge (flow rate) dependent, anything that 

effects the discharge could affect the Se availability (Mau, Stogner et al. 2007). There 

are a number of items along Fountain Creek that can increase discharge out of the 

normal historical seasonal fluctuations (Mau, Stogner et al. 2007). Recent forest fires 

have left burn scars that readily increase the risk of flooding in the creek (Cole, Friesen 

et al. 2014, Arnette and Zobel 2016). The increase of development and lack of a 

citywide storm runoff plan for the Colorado Springs area, also increases the amount of 

water entering Fountain Creek (Mau, Stogner et al. 2007). This increase in discharge  

probably causes spikes in available Se as well as scours the creek bed and exposing 

more Se containing shale (Mau, Stogner et al. 2007). Urban development along 

Fountain Creek should consider what the consequences of increased discharge from 

storm and wastewater could mean to the available Se levels in the creek. Such an 

increase in discharge maybe small but could result in a smaller but sustained discharge 

into the creek increasing overall discharge, resulting in a pH change that could affect Se 

speciation. In this case the species of Se should be monitored along with total Se levels. 
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With increased development the increased need for water brings challenges as well. 

One such project is  a pipeline called the Southern Delivery System (SDS) is used to 

bring needed water from Pueblo Reservoir to the Colorado Springs area and return 

processed wastewater to the Arkansas River system via Lower Fountain Creek and was 

the phase 1 part of a two phase plan (Colorado Springs Utilities 2018). This phase I of 

the SDS began operation in 2016 and the phase II future plan expands SDS to include 

two reservoirs to enhance raw water delivery to the Colorado Springs area (Colorado 

Springs Utilities 2018). Both SDS phases may have significant impacts on the flow rates 

and therefore affect the solubility of Se in water found in Lower Fountain Creek. Another 

area of interest might entail agriculture as this was the source for increased Se found in 

the water entering the Kesterson National Wildlife Refuge (Ohlendorf, Hothem et al. 

1989, Presser, Sylvester et al. 1994). If agricultural runoff along Fountain Creek were to 

significantly increase, it would affect Se in the creek. The effects of fertilizer on Se 

shales was shown to be significant in the Mancos area (Mast, Mills et al. 2014).  

Agriculture can increase bacteria found in streams but a recent study did confirm that 

the bacteria present in Fountain Creek does not come from agriculture but from birds 

nesting under bridges along the water way (Stoeckel, Stelzer et al. 2011).  

Second, in the area of plant nutrients and uptake it is important to know what 

species of Se is present and which are most available for the plant to incorporate into its 

biomass. Thus, knowledge of how to control the uptake of these essential elements by 

plants is vital and requires additional investigations to understand the complex transport 

mechanisms at work in plants. An extension of this work would be to see how 
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conserved these traits are genetically and how easily they might be regulated and 

harnessed to the benefit of the environment and mankind.  

Third, the ability to use plants for bioremediation of Se has been studied to some 

degree (Pilon-Smits and LeDuc 2009, Pilon-Smits and Quinn 2010). Indeed some 

plants such as Stanleya pinnata have been shown to uptake selenate and mitigate Se 

toxicity by releasing dimethyl selenide (Parker, Feist et al. 2003). This groundwork but 

needs to be further developed to determine answers to the following questions:  

1) What are the limits for uptake of Se and related compounds by plant species of 
interest and how does plant nutrition effect the uptake of Se? 

2)  What should be done with the plant biomass that accumulates in these areas? 
3) Is it possible to extract useful compounds from plants such as bryophytes that 

favor acid mine drainages that would allow the passive mining of rare metals 
from mine effluents? 

Fourth, stress makers related to Se exposure could be studied in the fish 

populations in Fountain Creek to confirm, if the lack of diversity in some areas is due to 

Se exposure and furthermore if some species have become Se adapted.  

Fifth, the biodiversity of the microbiome needs to be evaluated. This could greatly 

further explain the species of Se present in the reaches of Fountain Creek and help in 

understanding the geochemistry present in this system (Knack, Wilcox et al. 2015). The 

microbiome also can have a profound effect on the availability of nutrients to plants and 

animals with profound effects on the ecosystem. 
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