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ABSTRACT

SURVEY ESTIMATORS OF DOMAIN MEANS UNDER SHAPE RESTRICTIONS

Novel methodologies that introduce shape-restricted regression techniques into survey domain

estimation and inference are presented in this dissertation. Although population domain means

are frequently expected to respect shape constraints that arise naturally on the survey data, their

most common direct estimators often violate such restrictions, especially when the variability of

these estimators is high. Recently, a monotone estimator that is obtained from adaptively pooling

neighboring domains was proposed. When the monotonicity assumption on population domain

means is reasonable, the monotone estimator leads to asymptotically valid estimation and infer-

ence, and can lead to substantial improvements in efficiency, in comparison with unconstrained

estimators. Motivated from these convenient properties adherent to the monotone estimator, the

two main questions addressed in this dissertation arise: first, since invalid monotone restrictions

may lead to biased estimators, how to create a data-driven decision for whether a restriction vi-

olation on the sample occurs due to an actual violation on the population, or simply because of

chance; and secondly, how the monotone estimator can be extended to a more general constrained

estimator that allows for many other types of shape restrictions beyond monotonicity.

In this dissertation, the Cone Information Criterion for Survey Data (CICs) is proposed to detect

monotonicity departures on population domain means. The CICs is shown to lead to a consistent

methodology that makes an asymptotically correct decision when choosing between unconstrained

and constrained domain mean estimators. In addition, a design-based estimator of domain means

that respect inequality constraints represented through irreducible matrices is presented. This con-

strained estimator is shown to be consistent and asymptotically normally distributed under mild

conditions, given that the assumed restrictions are reasonable for the population. Further, simula-

tion experiments demonstrate that both estimation and variability of domain means are improved
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by constrained estimates, in comparison with unconstrained estimates, mainly on domains with

small sample sizes. These proposed methodologies are applied to analyze data from the 2011-

2012 U.S. National Health and Nutrition Examination Survey and the 2015 U.S. National Survey

of College Graduates.

In terms of software development and outside of the survey context, the package bcgam is

developed in R to fit constrained generalised additive models using a Bayesian approach. The main

routines of bcgam allow users to easily specify their model of interest, and to produce numerical

and graphical output. The package bcgam is now available from the Comprehensive R Archive

Network.
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Chapter 1

Introduction

1.1 Motivation: small domain estimation
Sample surveys have been widely used to provide timely information about subpopulation

(or domain) parameters of a finite population. Some of the most frequent parameters of interest

are domain totals and means. Direct estimators conform a naive estimation approach of domain

parameters, as they depend only on domain-specific sample data. Further, these are typically

design-based estimators, meaning that estimation and inference are carried out using certain survey

weights that are associated to the known sampling design.

Direct estimators produce reliable estimates only when there is a large enough amount of data

available in domains. In certain surveys, although the overall sample size might be very large,

there could be domains of interest with samples sizes that are too small to produce estimates

with acceptable precision. These domains are known as small domains. For instance, large-scale

national surveys might produce accurate direct estimates for large geographical areas such as states,

or for large subpopulation groups such as sex at the national level, but might not produce estimates

that are reliable enough for small subgroups such as race/ethnicity at the county level. In contrast,

there is a growing demand from both public and private sectors for accurate estimates of small

domains. These increasing demands are due to the growing tendency of formulating data-driven

policies, programs, business decisions, regional planning, among others. For example, as discussed

in Rao (2008), poverty counts of school-age children at the county level in the United States are

used for allocation of federal funds. Thus, the development of appropriate methodologies for small

domain estimation has became a demanded area in survey research.

A seemingly straightforward solution for small domain estimation consists on designing the

survey sampling in such a way that it generates large samples on small domains. However, not

only this is a very unpractical task due to the high cost of human and financial resources, but it

1



can also lead to oversampling problems. For example, consider the case discussed in Rao (2003,

p. 2) about the U.S. Third Health and Nutrition Examination Survey (NHANES III). Here, the

sampling fractions for small domains were made larger than the average fraction, so that certain

domains in the cross-classification of sex, race/ethnicity, and age allow for direct estimates with

adequate precision. However, this oversampling produced a greater sample concentration in certain

states, which aggravated the common problem of small sample sizes in some other states. As a

consequence of that, many states had to be treated as small domains. In general, even if the ‘best’

sampling design may be created to answer some predetermined questions of interest, unplanned

small domains cannot be avoided. As Fuller (1999, p. 344) commented: “the client will always

require more than is specified at the design stage”.

Indirect estimators have been developed as an effective alternative to make estimates for small

domains with acceptable precision. These estimators allow small domains to ‘borrow strength’

from others with similar characteristics through linking models, which take advantage of auxiliary

data sources such as census and administrative records. In that context, borrowing strength can be

regarded as an increase in their ‘effective’ sample size. Rao and Molina (2015, p. 4) identified two

types of indirect estimators, depending on whether they are based on explicit or implicit linking

models. Recently, direct estimators that are based on explicit linking models (known as small area

models) have received a lot of attention. These estimators are model-based, so they usually require

a significant investment in specialized expertise and additional resources. Further, these estimators

are prone to model misspecification. Some examples of the models used for these estimators are

the Fay-Herriot model (Fay and Herriot, 1979) and spline-based models (Opsomer et al., 2008).

In contrast, indirect estimators that are based on implicit linking models are design-based, and

their design variances are usually smaller than variances of direct estimators. Although they are

typically design-biased, their bias tend to be considerably small when the implicit linking model is

approximately true. The classical post-stratified estimator is one significant example of these type

of estimators (see Särndal et al. (1992, Chapter 10.7) for details).
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Shape or order restrictions, that can arise naturally in the survey context, are often expected

to be respected by population domain means. For instance, consider the 2015 U.S. National Sur-

vey of College Graduates, which provides data on the characteristics of the U.S. nation’s college

graduates, with emphasis on those in the science and engineering workforce. Here, it might be

reasonable to assume that, given a job category, wage salaries tend to increase with respect to the

time since the highest degree was awarded, at least up until retirement age. In addition, it may

be expected that mean salaries are higher for STEM jobs than for non-STEM jobs, without any

restriction imposed within STEM jobs or non-STEM jobs. In contrast, direct estimators of domain

mean do not necessarily respect such constraints, especially under the presence of small domains.

As these are highly variable, violations to the expected restrictions are very likely to occur.

Domain mean estimators that respect reasonable shape constraints have the potential to im-

prove precision and stability of the most regularly used direct estimators. To illustrate that point,

consider the simulated scenario shown in Figure 1.1. Population domain means that are approxi-

mately monotone with respect to variable x1 and x2 are plotted in Figure 1.1b. Further, direct (un-

constrained) estimates of these are computed and shown in Figure 1.1a. Two main observations can

be easily made from this figure: unconstrained estimates do not seem to estimate appropriately the

‘truth’, and also, they are very ‘spiky’. In contrast, Figure 1.1c shows (constrained) estimates that

respect the reasonable monotonicity assumption on both x1 ad x2. These estimates are less spiky

and look closer to the population domain means, even when the latter are not strictly monotone.

Further, note the presence on some flat spots among constrained estimates. These demonstrate that

some domains get pooled with their neighbors, allowing small domains to increase their effective

sample size. The latter observation suggests that the variability of constrained estimates might

potentially improve in comparison with unconstrained estimates. In conclusion, domain estimates

that respect assumed shapes are an attractive and intuitive alternative to small domain estimation

that is worth to explore.

A first step to introduce shape-constrained regression techniques into survey estimation and

inference has been done recently by Wu et al. (2016). They propose a design-weighted isotonic

3



(a) Unconstrained. (b) Truth. (c) Constrained.

Figure 1.1: Unconstrained (a) and constrained (c) estimates of simulated population domain means that are
approximately monotone increasing with respect to x1 and x2 (b).

estimator, based on classical design-based domain estimators, that is obtained after adaptively

pooling neighboring domains. This estimator was shown to improve both precision and variabil-

ity of domain means under linearization and replication-based variance estimation, in comparison

with unconstrained estimates. Based on these motivating results on the survey context, two ques-

tions of interest arise: firstly, given that erroneous shape assumptions lead to biased estimators,

what methodology can be used to validate the use of the constrained estimator on top of the uncon-

strained estimator; and secondly, since their isotonic estimator demonstrated to have convenient

properties for estimation and inference, how can it be adapted to allow for many other shape con-

straints other than univariate monotonicity? These two questions conform the base work of this

dissertation.

The following section of this chapter presents the main shape-constrained regression tech-

niques that have been studied outside of the survey context, and constitute an angular stone for the

development of the methodologies proposed in this dissertation.

1.2 Shape-constrained regression
Consider the general problem of estimating the function f from n pairs of observations (xi, yi)

using the following regression model:

4



yi = f(xi) + εi, (1.1)

where a ≤ x1 < x2 < · · · < xn ≤ b, and ε1, . . . , εn
i.i.d.∼ N(0, σ2). Assume that y is assumed

to be increasing with respect to f . Defining θi = f(xi) and following Brunk (1955), consider the

isotonic estimator θ̂ = (θ̂1, . . . , θ̂n)> that solves

min
θ1,...,θn

n∑
i=1

(yi − θi)2, subject to θ1 ≤ · · · ≤ θn. (1.2)

The general solution of this isotonic estimator is given by

θ̂i = max
k≤i

min
l≥i

∑l
j=k yj

l − k + 1
. (1.3)

In the case when there are repeated xi values, the least squares formula in Equation 1.2 can be

substituted by

min
θ1,...,θn

n∑
j=1

ni(yi − θi)2, subject to θ1 ≤ · · · ≤ θn, (1.4)

where ni is the number of repeated xi values, and yi is the mean of the yi values that correspond to

those repeated xi. In this case, the general form of the isotonic estimator θ̂i is given by

θ̂i = max
k≤i

min
l≥i

∑l
j=k njyj∑l
j=k nj

. (1.5)

It can be noted that the isotonic estimator θ̂i is simply an average. Further, observe that the mono-

tone increasing constraints can be expressed in matrix form asAθ ≥ 0, where

A =



−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . −1 1


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and 0 is the zero vector. The matrix A is known as the constraint matrix, and each row represents

a constraint. Here, the constraint matrix is of full-row rank.

Now, consider the following scenario where constraints other than univariate monotonicity

arise: f is a bivariate function of the categorical variables x1 and x2, and is assumed to be monotone

with respect to each of these variables. For instance, assume that x1 and x2 have two and three

categories, respectively. Further, assume that f is decreasing with respect to x1 but increasing

with respect to x2. Defining θij = f(x1 = i, x2 = j) for i ∈ {1, 2}, j ∈ {1, 2, 3} and θ =

(θ11, θ12, θ13, θ21, θ22, θ23)
>, the constraint matrixA can be written as

A =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1



.

In this case, A has more constraints than dimensions, implying that A is not a full-row rank ma-

trix. However, the matrixA is an irreducible matrix. Meyer (1999) defined a matrix as irreducible

where none of its rows is a positive linear combinations of other rows, and the origin is not a posi-

tive linear combination of its rows. Intuitively, a constraint matrix is irreducible when there are no

redundant constraints. As it can be seen from the previous example, irreducible matrices cover the

scenario of having more constraint than dimensions. Also, full-row rank matrices are irreducible

matrices by definition, which means that monotone constraints can be represented by these ma-

trices. In practical terms, irreducible matrices have the capability to represent shape assumptions

such as monotonicity, convexity, inflection points, among others. See Meyer (1999) for further

details.
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For the case whenA is an irreducible matrix, Meyer (1999) proposed the constrained estimator

θ̂ as the unique vector that solves

min
θ
||y − θ||2w, subject to Aθ ≥ 0, (1.6)

where ||x||2w = 〈x,x〉w, and 〈x,y〉w =
∑n

i=1wixiyi is the inner product with weights w1, . . . , wn.

Since a simple linear transformation converts the weighted problem in Equation 1.6 to an un-

weighted problem (i.e. w1 = · · · = wn = 1), then the subscript w might be omitted to simplify the

notation.

A set C ⊆ Rn is defined as convex if for any θ1,θ2 ∈ C, then αθ1 + (1 − α)θ2 ∈ C for all

0 ≤ α ≤ 1. Further, a set C ⊆ Rn is a cone if for any θ ∈ C, then αθ ∈ C for all α ≥ 0. The

constrained estimator θ̂ obtained from solving the problem in Equation 1.6 is the projection of y

onto the constraint convex cone Ω = {θ ∈ Rn : Aθ ≥ 0}, written Π(y|Ω). Also, Ω is a polyhedral

convex cone, i.e., there is a finite number of edges that generate it. Meyer (1999) described the

edges of Ω under the assumption that A is irreducible, and showed that, under certain constraint

scenarios, the number of edges may be considerably larger than the number of constraints for large

values of n. Therefore, finding the edges of Ω may be a computationally expensive task under

certain constraints.

Let Ω0 be the polar cone, which is defined as the set of vectors ρ ∈ Rn that form obtuse angles

with every vector in Ω, i.e., Ω0 = {ρ ∈ Rn : 〈θ,ρ〉 ≤ 0,∀θ ∈ Ω} (see Rockafellar, 1970). As it is

the case with the constraint cone Ω, the polar cone is also a polyhedral convex cone. Further, when

A is irreducible, the edges of Ω are simply the rows of −A. That is, if −A is a m× n matrix with

rows γ1, . . . ,γn, then

Ω0 = {ρ ∈ Rn : ρ =
n∑
j=1

bjγj bj ≥ 0, j = 1, . . . , n}.

Further, let ρ̂ be the unique projection of y onto the polar cone Ω0, written Π(y|Ω0). Meyer (1999)

showed that the residual of θ̂ is ρ̂, and viceversa. That is, for any y ∈ Rn, y = Π(y|Ω)+Π(y|Ω0).
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This result is very useful in practice, as it allows to compute the projection onto Ω by finding first

the projection onto the polar cone Ω0, which has known edges.

In general, a vector θ̂ ∈ Rn solves the problem in Equation 1.6 over Ω (see Robertson et al.,

1988, Chapter 1) if and only if

〈y − θ̂, θ̂〉 = 0, and

〈y − θ̂,θ〉 ≤ 0, ∀θ ∈ Ω.

These necessary and sufficient conditions can be adapted to the polar cone as follows: the vector

ρ̂ ∈ Rn minimizes ||y − ρ||2 over Ω0 if and only if

〈y − ρ̂, ρ̂〉 = 0, and (1.7)

〈y − ρ̂,γj〉 ≤ 0, for j = 1, . . . ,m. (1.8)

These conditions suggest that computing ρ̂ can be performed by finding a set J ⊆ {1, 2, . . . ,m}

such that the projection of y onto the linear space generated by the vectors in {γj, j ∈ J} lands

into the polar cone Ω0 and satisfies the conditions in Equation 1.8 for j /∈ J . That is, the vector

ρ̂ is simply the projection of y onto a linear space induced by certain J , where J might vary

as it depends on the vector y. However, as there are 2m possible sets J , projecting onto each

of these induced linear spaces might be an inefficient task when the number of constraints m

is large. Meyer (2013b) developed the Cone Projection Algorithm as a more efficient way to

compute θ̂ which avoids projecting onto each of the 2m linear spaces. This algorithm computes ρ̂

by sequentially adding/removing indexes j to an initial set J , based on the values of 〈y − ρ̂J ,γj〉

for j /∈ J , where ρ̂J = Π(y|γj, j ∈ J). The Cone Projection Algorithm has been implemented

in the package coneproj in R (Liao and Meyer, 2014), which is compiled in C++ to improve its

speed efficiency.

Given y ∈ Rn, the projection ρ̂ is unique. However, the set J that induces the linear space

where such projection lands is not necessarily unique. WhenA is full-row rank, the projection ρ̂
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lands in more than one linear space spanned by {γj; j ∈ J} only in a set of y values with Lebesgue

measure zero. In contrast, whenA is not a full-row rank matrix, there might exist different sets J1

and J2 such that {γj, j ∈ J1} and {γj, j ∈ J2} span the same linear space and ρ̂ lands into it.

Now, consider the additive regression model with n independent observations given by

yi = f1(x1i) + · · ·+ fL(xLi) + z>i α+ εi, (1.9)

where the fl are functions to be modelled nonparametrically, the zi are covariates to be modelled

parametrically, and εi
i.i.d.∼ N(0, σ2). Also, suppose that the fl functions are assumed to respect

shape constraints such as monotonicity and/or convexity. Under these assumptions, Meyer (2013a)

estimated E(y|x, z) using a single cone projection. Alternatively, the functions fl can be approx-

imated using shape-restricted splines, which only require that the coefficients on the basis spline

vectors are non-negative (Meyer, 2008). This spline regression model can also be estimated using

a single cone projection. If a generalised linear additive model is assumed, then estimates can be

computed through an iteratively re-weighted cone projection algorithm. The package cgam in R

(Meyer and Liao, 2017) fits the constrained generalised additive model in Equation 1.9 using the

latter algorithm.

Meyer (2013a) proposed the Cone Information Criterion (CIC) to select the best combinations

of variables and shapes in a constrained model. That is defined as follows,

CIC = log(||y − φ̂||2) + log

(
2(E(D) + d0)

n− d0 − cE(D)
+ 1

)
, (1.10)

where φ̂ is the constrained estimate of E(y|x, z), E(D) is the expected degrees of freedom of the

constrained estimator φ̂, d0 is the number of parametrically modelled covariates, and c ∈ [1, 2] is

a fixed constant. Note that the expected degrees of freedom E(D) is preferred to be used instead

of the observed degrees of freedom D, since the latter might vary for different realisations of y.

In particular, the use of E(D) aims to avoid the situation in which important variables have large

penalties.
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The CIC is derived as the log of the estimated Predictive Squared Error (PSE), defined as

PSE= n−1E||y∗− φ̂||2, where y∗ is another independent realisation of y generated from the same

model. Being similar to the AIC = log(||y − φ̂||2) + 2d/n, the CIC is a measure that balances

both the accuracy of the constrained estimator φ̂ and the complexity of the model.

1.3 Overview
In Chapter 2, the Cone Information Criterion for Survey data (CICs) is proposed as a consistent

criterion that validates the use of the monotone estimator proposed by Wu et al. (2016) to appro-

priately estimate population domain means. This methodology is based on the Cone Information

Criterion (CIC) shown in Equation 1.10, which was originally developed for shape and model

selection outside of the survey context. The practical performance of the CICs is demonstrated

through simulations. Further, an application to the 2011-2012 U.S. National Health and Nutrition

Examination Survey data is carried out.

Chapter 3 introduces an extension of the previously discussed monotone estimator to allow

for a more general set of restrictions beyond monotonicity. Here, shape constraints that can be

expressed using irreducible matrices are considered. Theoretical foundation that supports the use

of the proposed constrained estimator for estimation and inference of population domain means is

presented. Through a simulation study, the constrained estimator is shown to improve precision

and variability of domain mean estimates, in comparison with unconstrained estimates, as long as

the assumed constraints hold approximately on population domain means. Further, the proposed

estimator is applied to the 2015 U.S. National Survey of College Graduates.

In terms of software development, Chapter 4 describes the package bcgam in R (Oliva-Aviles

and Meyer, 2018), which implements a Bayesian approach to fit generalised partial additive mod-

els with functions that might be modelled nonparametrically using shape-restricted splines. This

package is developed outside of the survey context, and aims to the practical implementation of

the work in Meyer et al. (2011). To illustrate the usefulness of the bcgam package, an analysis of

the ‘duncan’ data set, provided within the package, is performed using its main routines.
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In Chapter 5, general conclusions about the constrained methodologies introduced in this dis-

sertation are stated. Further, potential research directions related to these methodologies are dis-

cussed. The derivation of all theoretical results presented in this dissertation are extensively in-

cluded in Appendix A and Appendix B.
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Chapter 2

Validation of Monotone Domain Mean Estimators

2.1 Introduction
Monotone population characteristics arise naturally in many survey problems. For example,

average salary might be increasing in pay grade, average cholesterol level could be decreasing in

physical activity time, etc. In large-scale surveys, there is often interest in estimating the charac-

teristics of domains within the overall population, including those of domains with small sample

sizes. One possibility to handle small domains is to apply small area estimation methods. However,

that requires switching from the design-based to a model-based paradigm, which can be undesir-

able. An alternative approach is to remain within the design-based paradigm but take advantage of

qualitative assumptions about the population structure, when such are available.

Isotonic regression has been widely studied outside of the survey context. Some remarkable

works on this topic include Brunk (1955), VanEeden (1956), Brunk (1958), Robertson et al. (1988),

and Silvapulle and Sen (2005). In contrast, merging isotonic regression techniques into survey

estimation and inference has just been studied recently. Wu et al. (2016) considered the case when

both sampling design and monotone restrictions are taking into account on the domain estimation.

They proposed a design-weighted constrained estimator by combining domain estimation and the

Pooled Adjacent Violators Algorithm (PAVA) (Robertson et al., 1988). Further, they showed that

their proposed constrained estimator improved estimation and variability of domain means, under

both linearization-based and replication-based variance estimation.

Although the constrained estimator proposed by Wu et al. (2016) improves the precision of the

usual survey sampling estimators, it has to be used carefully since invalid population constraint

assumptions could lead to biased domain mean estimators. The main objective of this work is to

develop diagnostic methods to detect population departures from monotone assumptions. Particu-

larly, we propose the Cone Information Criterion for Survey Data (CICs) as a data-driven method
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to determine whether or not it is better to use the constrained estimator to estimate the population

domain means. The Cone Information Criterion (CIC) was originally developed for the i.i.d. case

by Meyer (2013a).

In Section 2.2, we describe the constrained estimator proposed by Wu et al. (2016) and explain

some of its properties such as adaptive pooling domain and linearization-based variance estimation.

Section 2.3 contains the proposed CICs along with some of its theoretical properties. In particular,

we show that CICs is consistently choosing the correct estimator based on the underlying shape

of the population domain means, in the sense that with probability going to 1 as the sample size

increases, CICs will determine that pooling of domains that violate monotonicity constraints is

unwarranted. Section 2.4 demonstrates the performance of the CICs under a broad variety of

simulation scenarios. In Section 2.5 we apply our CICs methodology to the 2011-2012 National

Health and Nutrition Examination Survey (NHANES) laboratory data.

2.2 Constrained Domain Mean Estimator for Survey Data
We begin by reviewing the survey setting and the constrained estimator proposed by Wu et al.

(2016). Consider a finite population UN = {1, 2, . . . , N}, and let Ud,N denote a domain for d =

1, . . . , D. Assume that {Ud,N ; d = 1, . . . , D} constitute a partition of the population UN . Denote

Nd as the population size of domain Ud,N . Given a study variable y, let yUd be the population

domain means,

yUd =

∑
k∈Ud,N yk

Nd

, d = 1, . . . , D.

Suppose we draw a sample sN ⊂ UN using the probability sampling design pN(·). Let nN be the

sample size of sN . We are going to consider the case where the sampling design is measurable,

i.e., both first-order πk = E(Ik) and second-order πkl = E(IkIl) inclusion probabilities are strictly

positive, where Ik is the indicator variable of whether k ∈ sN or not. Denote sd,N as the corre-

sponding sample in domain d obtained from sN . Further, let nd,N = |sd,N |. For simplicity in our

notation, we will omit the subscript N from these and related quantities from now on.
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Consider the problem of estimating the population domain means yUd . When no qualitative

information is assumed on the population domains, we can consider either the Horvitz-Thompson

estimator ŷsd (Horvitz and Thompson, 1952) or the frequently preferred Hájek estimator ỹsd (Há-

jek, 1971), which are given by

ŷsd =

∑
k∈sd yk/πk

Nd

, ỹsd =

∑
k∈sd yk/πk

N̂d

, (2.1)

respectively, where N̂d =
∑

k∈sd 1/πk. We will refer to them as unconstrained estimators of yUd .

Note that both estimators in Equation 2.1 consider only the information contained in domain d,

leading to large standard errors on domains with small sample sizes.

Suppose now that we want to include monotonicity assumptions into the estimation stage of do-

main means. For instance, assume the population domain means are isotonic over the D domains.

That is, yU1
≤ yU2

≤ · · · ≤ yUD (analogously, yU1
≥ yU2

≥ · · · ≥ yUD , but which we will not

further consider explicitly here). Wu et al. (2016) proposed a domain mean estimator that respect

monotone constraints, given by the ordered vector θ̃s = (θ̃s1 , θ̃s2 , . . . , θ̃sD)> which optimizes

min
θ1,θ2,...,θD

D∑
d=1

N̂d(ỹsd − θd)2, subject to θ1 ≤ θ2 ≤ · · · ≤ θD. (2.2)

The objective function in Equation 2.2 can be written in matrix terms as (ỹs − θ)>W s(ỹs − θ),

where ỹs = (ỹs1 , ỹs2 , . . . , ỹsD)>, θ = (θ1, θ2, . . . , θD)>, W s = diag(N̂1/N̂, N̂2/N̂, . . . , N̂D/N̂)

is a consistent estimator ofW U = diag(N1/N,N2/N, . . . , ND/N), and N̂ =
∑D

d=1 N̂d.

Following Brunk (1955), the general closed form solution for the constrained problem in Equa-

tion 2.2 can be expressed as the set of pooled weighted domain means given by

θ̃sd = max
i≤d

min
d≤j

ỹsi:j , where ỹsi:j =

∑j
d=i N̂dỹsd∑j
d=i N̂d

=

∑
k∈si:j yk/πk∑
k∈si:j 1/πk

, (2.3)

where si:j = si ∪ · · · ∪ sj for 1 ≤ i ≤ j ≤ D. Moreover, we can make use of the Pooled Adjacent

Violator Algorithm PAVA (Robertson et al., 1988) along with ỹs and the weights N̂1, N̂2, . . . , N̂D
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to compute efficiently the constrained estimator θ̃s. Observe that the constrained estimator in

Equation 2.3 consists of adaptively collapsing neighboring domains. Furthermore, the above pro-

cedure can be simplified in the obvious way when applied to the Horvitz-Thompson estimator

ŷs = (ŷs1 , ŷs2 , . . . , ŷsD)> with weights N1, N2, . . . , ND, leading to the constrained estimator vec-

tor θ̂s with entries of the form ŷsi:j . We refer to Wu et al. (2016) for a discussion of the properties

of these constrained estimators, including design consistency and asymptotic distribution.

We conclude this section by defining some of the quantities we will use in the development of

the CICs. Note that the estimator θ̂s has a random weighted projection matrix P̂ s associated with it,

which is defined by the pooling obtained from the PAVA and the weights N1, N2, . . . , ND. That is,

P̂ s is the matrix such that θ̂s = P̂ sŷs. For example, supposeD = 3 and that PAVA chooses to pool

domains 1 and 2, but not to pool domain 2 and 3. Hence, θ̂s1 = θ̂s2 = (N1ŷs1 +N2ŷs2)/(N1 +N2),

and θ̂s3 = ŷs3 . Then,

P̂ s =


N1

N1+N2

N2

N1+N2
0

N1

N1+N2

N2

N1+N2
0

0 0 1

 .

Let Σ̂ = {Σ̂ij} be the unbiased estimator of the covariance matrix of ŷs, given by

Σ̂ij =
1

NiNj

∑
k∈si

∑
l∈sj

∆kl

πkl

yk
πk

yl
πl

, i, j = 1, 2, . . . , D,

where ∆kl = πkl−πkπl. Further, for any i ≤ j, let yUi:j be the pooled population mean of domains

i through j. That is,

yUi:j =

∑
k∈Ui:j yk

Ni:j

, where Ni:j =

j∑
d=i

Nd,

and Ui:j = Ui ∪ · · · ∪ Uj .

For any indexes i1, i2, ji, j2 such that i1 ≤ j1 and i2 ≤ j2, let ỹsi1:j1 , ỹsi2:j2 be the Hájek

estimators of yUi1:j1 and yUi2:j2 , respectively. By standard linearization arguments (Särndal et al.,

1992, Chapter 5), the approximated covariance of ỹsi1:j1 and ỹsi2:j2 is given by
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AC(ỹsi1:j1 , ỹsi2:j2 ) =
1

Ni1:j1Ni2:j2

∑
k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yk − yUi1:j1

πk

)(
yl − yUi2:j2

πl

)
. (2.4)

Moreover, given that πkl > 0 for all k, l ∈ U , a design consistent estimator of the approximate

covariance in Equation 2.4 is

ÂC(ỹsi1:j1 , ỹsi2:j2 ) =
1

N̂i1:j1N̂i2:j2

∑
k∈si1:j1

∑
l∈si2:j2

∆kl

πkl

(
yk − ỹsi1:j1

πk

)(
yl − ỹsi2:j2

πl

)
, (2.5)

where N̂i:j =
∑j

d=i N̂d.

2.3 Main results
In this section, we present the Cone Information Criterion for Survey Data (CICs). The CICs

is a tool that may be used to validate the monotone estimator in Equation 2.2 as an appropriate

estimator of population domain means. In what follows, we define the CICs for the Horvitz-

Thompson estimator and propose a natural extension that applies to the Hájek setting. Further,

main properties of the CICs are shown along with their theoretical foundation.

2.3.1 Cone Information Criterion for Survey Data (CICs)

For the Horvitz-Thompson estimator, we define the CICs as

CICs(θ̂s) = (ŷs − θ̂s)>W U(ŷs − θ̂s) + 2 Tr
(
W U P̂ sΣ̂

)
, (2.6)

where P̂ s is the projection matrix associated with θ̂s.

The proposed CICs has similar features as the Akaike Information Criterion (AIC) (Akaike,

1973) and the Bayesian Information Criterion (BIC) (Schwarz, 1978), which have been broadly

used for model selection. The first term measures the deviation between the constrained estimator

θ̂s and the unconstrained estimator ys, while the second term can be seen as a penalty for the

complexity of the constrained estimator. The penalty term is large when the number of different
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groups chosen by the constrained estimator is also large, meaning that the number of different

parameters to estimate (or effective degrees of freedom) of the constrained estimator is high.

The development of CICs proceeds similarly as for the Cone Information Criterion (CIC) pro-

posed by Meyer (2013a). Its motivation comes from properties of the Predictive Squared Error

(PSE) under the Horvitz-Thompson setting, which is defined as

PSE(θ̂s) = E
[
(ŷs∗ − θ̂s)>W U(ŷs∗ − θ̂s)

]
(2.7)

where ŷs∗ is the vector of Horvitz-Thompson domain mean estimators obtained from a sample

s∗ that is independent to s, where s∗ is drawn using the same probability sampling design as s.

Furthermore, define the Sum of Squared Errors (SSE) as

SSE(θ̂s) = (ŷs − θ̂s)>W U(ŷs − θ̂s).

We define CICs(θ̂s) as an estimator of PSE(θ̂s) that involves SSE(θ̂s). Proposition 2.1 estab-

lishes a relationship between PSE(θ̂s) and SSE(θ̂s); its proof and all subsequent ones are included

in Appendix A.

Proposition 2.1. PSE(θ̂s) = E
[
SSE(θ̂s)

]
+ 2 Tr

[
W Ucov(θ̂s, ŷs)

]
.

Motivated by Proposition 2.1, an estimate of PSE(θ̂s) can be derived by estimating both

E
[
SSE(θ̂s)

]
and cov(θ̂s, ŷs). The first term has a straightforward unbiased estimator SSE(θ̂s),

and an estimator for the covariance term can be obtained using the observed pooling on θ̂s. As

we will show later, the latter term can be estimated by the asymptotically unbiased estimator P̂ sΣ̂

under certain assumptions. That produces the proposed CICs in Equation 2.6.

However, recall that the use of the Horvitz-Thompson estimator requires information about the

population domain sizesNd, which is not frequently the case in many practical survey applications.

Therefore, analogously to Equation 2.6, we extend the CICs to the Hájek setting by using the

estimator (ỹs − θ̃s)>W s(ỹs − θ̃s) instead of SSE(θ̂s), andW sĉov(θ̃s, ỹs) instead ofW U P̂ sΣ̂;
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where ĉov(θ̃s, ỹs) denotes the estimator of the covariance matrix of θ̃s and ỹs, which is based on

the observed pooling of θ̃s and is defined element-wise as

ĉov(θ̃s, ỹs)ij = ÂC(θ̃si , ỹsj), for i, j = 1, 2, . . . , D.

Hence, the proposed CICs for the Hájek estimator setting is

CICs(θ̃s) = (ỹs − θ̃s)>W s(ỹs − θ̃s) + 2 Tr
[
W sĉov(θ̃s, ỹs)

]
. (2.8)

2.3.2 Assumptions

In order to state properly our theoretical results, we need to consider some required assump-

tions.

(A1) The number of domains D is a fixed known constant.

(A2) The non-random sample size nN satisfies 0 < lim
N→∞

nN
N
< 1.

(A3) lim sup
N→∞

1
N

∑
k∈UN

y4k <∞.

(A4) 0 < γd = lim
N→∞

Nd
N
< 1 for d = 1, 2, . . . , D. Also, for some constants µ1, µ2, . . . , µD and any

integers i, j such that 1 ≤ i ≤ j ≤ D, then yUi:j − µi:j = O(N−1/2) with µi:j =
∑j

d=i γdµd.

(A5) For all N , min
k∈UN

πk ≥ λ > 0, min
k,l∈UN

πkl ≥ λ∗ > 0, and lim sup
N→∞

nN max
k,l∈UN : k 6=l

|∆kl| <∞.

(A6) lim
N→∞

max
(k1,k2,k3,k4)∈D4,N

|E [(Ik1Ik2 − πk1k2)(Ik3Ik4 − πk3k4)]| = 0, where D4,N denotes the set

of all distinct 4−tuples (k1, k2, k3, k4) from UN .

(A7) limN→∞max(k1,k2,k3)∈D3,N
|E[(Ik1 − πk1)2(Ik2 − πk2)(Ik3 − πk3)]| = 0.

(A8) lim supN→∞ nN max(k1,k2,k3,k4)∈D4,N
|E[(Ik1 − πk1)(Ik2 − πk2)(Ik3 − πk3)(Ik4 − πk4)]| = 0.

Assumption (A1) states that the number of domains D will not change as the population size
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changes. Assumption (A2) declares that the sample size is asymptotically strictly less than the

population size but greater than zero, which intuitively means that the sample and the population

size are of the same order. The boundedness property of the finite population fourth moment in As-

sumption (A3) is used several times in our proofs to show that the approximated scaled covariances

in Equation 2.4 are asymptotically bounded, and also, that their estimators are consistent for them.

In addition, Assumption (A4) is used to assure that the population size and the subpopulation size

are of the same order. Further, it establishes that the pooled population domain means converge to

some constant limiting domain means with rate N−1/2. The consistency result of CICs is based on

whether the constants µ1, µ2, . . . , µD are strictly monotone or not. Assumption (A5) implies that

both first and second-order inclusion probabilities can not tend to zero as N increases. Moreover,

this assumption states that the sampling design covariances ∆kl (k 6= l) tend to zero, i.e., sampling

designs that produces asymptotically highly correlated elements are not allowed. Lastly, Assump-

tions (A6)-(A8) are similar to the higher order assumptions considered by Breidt and Opsomer

(2000). These assumptions involve fourth moment conditions on the sampling design. These as-

sumptions hold for simple random sampling without replacement and for stratified simple random

sampling with fixed stratum boundaries (Breidt and Opsomer, 2000).

2.3.3 Properties of CICs

Under above assumptions, CICs(θ̂s) has the property of being an asymptotically unbiased

estimator of PSE(θ̂s) when the pooling obtained from applying the PAVA to the vector µ =

(µ1, µ2, . . . , µD)> with weights γ1, γ2, . . . , γD is unique. To show that, we first prove that there

are certain poolings which are chosen with probability tending to zero as N tends to infinity. This

is stated in Theorem 2.1, which makes use of the Greatest Convex Minorant (GCM).

The GCM provides of an illustrative way to express monotone estimators. Figure 2.1 displays

an example of sample domain means with their respective monotone estimates (Figure 2.1a), and

a plot of their corresponding cumulative sum diagram and GCM (Figure 2.1b). The GCM is

conformed by D + 1 points, indexed from 0 to D, and their left-hand slopes are the θ̂sd values.
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The points indexed by 0 and D are the boundaries of the GCM, and the rest are its interior points.

Three possible scenarios can be identified for each of the interior points: the slope of the GCM

changes (corner points); the GCM slope does not change and the cumulative sum coincides with

the minorant (flat spots); or the GCM slope does not change but the cumulative sum is strictly

above the minorant (points above the GCM ). The example displayed in Figure 2.1b shows that the

indexes 1, 2, 5 correspond to corner points, the index 6 to a flat spot, and the indexes 3, 4 to points

above the GCM. In particular, note that flat spots correspond to cases where consecutive domain

means are equal (ŷs6 = ŷs7).
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(a) Sample domain means and monotone estimates.
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Figure 2.1: GCM example.

Theorem 2.1. Let tµ(d) = µ1:d and rµ(d) = γ1:d, for d = 1, 2, . . . , D, where µi:j =
∑j

d=i γdµd,

γi:j =
∑j

d=i γd and tµ(0) = rµ(0) = 0. Let Gµ(d) = (rµ(d), gµ(d)) be the GCM points of the

cumulative sum diagram with points (rµ(d), tµ(d)). Define J0
µ and J1

µ to the indexes of points

strictly above Gµ and indexes of its corner points, respectively. Based on the sample s, define

ts(d) = ŷs1:d and rs(d) = N1:d, with ts(0) = rs(0) = 0, and let gs(·), Gs, J0
s , and J1

s be the

analogous sample quantities of gµ(·), Gµ, J0
µ, and J1

µ. Denote A0 and A1 to be the events where
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J0
µ ⊆ J0

s and J1
µ ⊆ J1

s , respectively. Then, P (Ac0) = o
(
n−1N
)

and P (Ac1) = o
(
n−1N
)
.

To have a better understanding of Theorem 2.1, note that for every pair of mutually exclusive

sets J0
s , J1

s , there are certain poolings (groupings) allowed by ŷs to obtain θ̂s. In particular, if

J0
s ∪ J1

s = {1, 2, . . . , D − 1} (i.e. no flat spots), then there is a unique pooling allowed by ŷs.

Speaking somewhat loosely and referring to ‘bad poolings’ to those poolings of ŷs that are chosen

with zero asymptotic probability, Theorem 2.1 states that bad poolings correspond to those pairs of

disjoint sets J0
s , J1

s that do not satisfy J0
µ ⊆ J0

s and J1
µ ⊆ J1

s . One case of particular interest is when

there are no flat spots on the GCM corresponding to µ, i.e., J0
µ ∪ J1

µ = {1, 2, . . . , D − 1}. Such

scenario is equivalent than saying that, asymptotically, there is a unique pooling allowed by ŷs.

Moreover, under this scenario, it can be proved (Theorem 2.2) that the proposed CICs in Equation

2.6 is an asymptotic unbiased estimator of the PSE in Equation 2.7.

Theorem 2.2. If J0
µ ∪ J1

µ = {1, 2, . . . , D − 1}, then E[CICs(θ̂s)] =PSE(θ̂s)+o(n−1N ).

In practice, the proposed CICs can be used as a decision tool that validates the use of the

constrained estimator as an estimate of the population domain means. The decision rule would be

to choose the estimator, either the constrained or the unconstrained, that produces the smallest CICs

value. As we mentioned, CICs is an overall measure that balances the deviation of the constrained

estimator from the unconstrained, as well as the complexity of such estimator. The fact that CICs

measures the estimator complexity would avoid the undesired situation of choosing always the

unconstrained estimator above the constrained estimator. Although we will focus on the Hájek

version of the CICs (Equation 2.8) for the rest of this section, it is important to remark that the

following properties are also valid under the Horvitz-Thompson setting.

Let CICs(ỹs) and CICs(θ̃s) denote the CICs values for the unconstrained and constrained esti-

mators, respectively. From Equation 2.8, that is,

CICs(ỹs) = 2 Tr [W sĉov(ỹs, ỹs)] ,

CICs(θ̃s) = (ỹs − θ̃s)>W s(ỹs − θ̃s) + 2 Tr
[
W sĉov(θ̃s, ỹs)

]
,
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where ĉov(ỹs, ỹs)ij = ÂC(ỹsi , ỹsj). Similarly as AIC and BIC, we might choose the estimator

that produces the smallest CICs value. We show that this decision rule is asymptotically correct

when choosing the shape based on the limiting domain means µ (Theorem 2.5), and also, that the

decision made from CICs is consistent with the decision made from PSE (Theorem 2.6). Theorems

2.3 and 2.4 contain theoretical properties of AC(·, ·) that are required to establish Theorem 2.5.

Theorem 2.3. For any domains i1, i2, j1, j2 where i1 ≤ j1, i2 ≤ j2,

lim sup
N→∞

nNAC(ỹsi1:j1 , ỹsi2:j2 ) <∞.

Furthermore,

nN

(
ÂC(ỹsi1:j1 , ỹsi2:j2 )− AC(ỹsi1:j1 , ỹsi2:j2 )

)
= op(1).

Theorem 2.4. Let θU = (θU1 , θU2 , . . . , θUD)> be the weighted isotonic population domain mean

vector of yU with weights N1, N2, . . . , ND. Then,

θ̃sd − θUd = Op(n
−1/2
N ), for d = 1, . . . , D.

Theorem 2.5. As N →∞,

P
(

CICs(ỹs) < CICs(θ̃s)
)
→

 0, if µ1 < µ2 < · · · < µD;

1, if µ1, µ2, . . . , µD are not monotone.
.

Theorem 2.3 states that the scaled AC(·, ·) is asymptotically bounded and also, that ÂC(·, ·)

is a consistent estimator of AC(·, ·) with a rate of n−1N . Hence, both the covariance between ỹsi1:j1

and ỹsi2:j2 , and its proposed estimate are well defined. Theorem 2.4 establishes that the constrained

estimator gets closer to the weighted isotonic population domain mean with a rate of n−1/2N . This

theorem generalizes the results in Wu et al. (2016), where it was only considered the case when the

limiting domain means are monotone. Recall that θU = yU if and only if the population domain

means are monotone increasing. Theorem 2.5 shows that CICs consistently chooses the correct

estimator based on the order of the limiting domain means µ1, µ2, . . . , µD.
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Finally, Theorem 2.6 establishes that the chosen estimator driven by PSE in Equation 2.7 is

analogous to the decision made by CICs.

Theorem 2.6. As N →∞,

nN [PSE(θ̂s)− PSE(ŷs)]→

 0, if µ1 < µ2 < · · · < µD;

∞, if µ1, µ2, . . . , µD are not monotone.
.

Observe that neither Theorem 2.5 nor Theorem 2.6 deal with the case where the vector entries

of µ are non-strictly monotone. Although in that case we would like both PSE and CICs to choose

the constrained estimator, neither of them is able to choose it universally. Nevertheless, we show

in the Simulations section that the constrained estimator is chosen with a high frequency under the

non-strictly monotone scenario.

2.4 Simulations
We demonstrate the CICs performance through simulations under several settings. We consider

the set-up in Wu et al. (2016) as a baseline to produce our simulation scenarios. For the first set

of simulations, we generate populations of size N using limiting domain means µ1, . . . , µD. Each

element ydk in the population domain d is independently generated from a normal distribution

with mean µd and standard deviation σ. That is, for a given domain d, ydk
iid∼ N(µd, σ

2) for

k = 1, 2, . . . , Nd. Samples are generated using a stratified simple random sampling design without

replacement in all H strata. The strata constitutes a partition of the total population of size N . We

make use of an auxiliary random variable z to define the stratum membership of the population

elements, with z created by adding random noise N(0, 1) to σ(d/D), for d = 1, 2, . . . , D. Stratum

membership of y is then determined by sorting the vector z, creating H blocks of N/H elements

based on their ranks, and assigning these blocks to the strata. Also, we set σ = 3, H = 4,

Nd = N/4, and D = 4. The number of replications per simulation is 10000.

The vector of limiting domain means µ is created using the sigmoid function S1(·) given by

S1(d) = 2 exp(5d/D − 2)/(1 + exp(5d/D − 2)) for d = 1, 2, . . . , D. We consider three different
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scenarios for µ: the monotone scenario, where µd’s are strictly increasing; the flat scenario, where

µd’s are non-strictly increasing; and the non-monotone scenario, where µd’s are not monotone

increasing. The limiting domain means on the monotone scenario are given by µd = S1(d) for

d = 1, 2, . . . , D. The flat scenario is formed by “pulling down” µD until it is equal to µD−1, that

is, µD = S1(D)−∆ where ∆ = S1(D)−S1(D− 1). For the non-monotone scenario, we pull µD

down until it gets below µD−1 by using µD = S1(D) − 2∆. Note that the only difference among

these three scenarios relies on the right tail. For each of the above scenarios, the total population

size varies from N = 10000, 20000, 40000. Further, the total sample size nN = 200N/k is divided

among the 4 strata as (25N/k, 50N/k, 50N/k, 100N/k) for k = 1000, 2000, 10000, which makes

the sampling design informative. Once the sample is generated, the Hájek domain mean estimators

are computed along with the CICs in Equation 2.8.

We consider the design Mean Squared Error (MSE) of any estimator φ̃s given by

MSE(φ̃s) = E
[
(φ̃s − yU)>W U(φ̃s − yU)

]
.

For each scenario mentioned above, we compute both the MSE for the unconstrained estimator

MSE(ỹs) and for the constrained estimator MSE(θ̃s) through simulations. In addition, we compute

the MSE for the CICs-adaptive estimator θ̇s, given by

θ̇s = ỹsI{CIC(ỹs) < CIC(θ̃s)}+ θ̃sI{CIC(ỹs) ≥ CIC(θ̃s)}.

Although there are no other existing methods that aim to choose between the unconstrained and

the constrained estimator for survey data, we compare the performance of CICs versus two condi-

tional testing methods that are based on the following hypothesis test under the linear regression

model setting,

H0 : µ1 ≤ µ2 ≤ · · · ≤ µD H1 : no restrictions on µd ′s.
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The first test is a naive Wald test which depends on the sample-observed pooling. For this, we

compute the test statistic

Q = (ỹs − θ̃s)>[ĉov(ỹs, ỹs)]
−1(ỹs − θ̃s)

and then compare it to a χ2(D − k), where k is the number of different estimated values on θ̃s.

The second test is the conditional test proposed by Wollan and Dykstra (1986). Even though the

latter test is established for independent data with known variances, we use instead the estimated

design variances of the sample-observed pooling obtained from Equation 2.5. To perform this,

we compute the test statistic Q -as in the Wald test- but then we compare it to a χ2(D − k)

with point mass of p0 at Q = 0, where p0 is the probability that Q = 0 under the hypothesis

µ1 = µ2 = · · · = µD. Note that the conditional test might perform similar as the Wald test when

the number of domains D is large.

Since both Wald and conditional tests require the variance-covariance matrix of the domain

mean estimators to be non-singular, these could be performed only when the variance-covariance

matrix formed by the estimates in Equation 2.5 is in fact a valid covariance matrix. We set the

significance level of these tests at 0.05.

Tables 2.1, 2.2 and 2.3 contain the proportion of times that the unconstrained estimator is cho-

sen over the constrained estimator under the monotone, flat and non-monotone scenarios, respec-

tively. In cases where the unconstrained and constrained estimators agree (i.e. the unconstrained

estimator satisfies the constraint), this is counted as a constrained estimator in the calculation of

this proportion. The last two rows of these tables show the MSE of the constrained estimator and

the CICs-adaptive estimator, relative to the MSE of the unconstrained estimator. The former ratio

can be viewed as a measure of how much better (or worse) naively applying the constrained esti-

mator is under the different scenarios, while the latter ratio shows how well the adaptive estimator

is in terms of balancing the MSE’s of the constrained and unconstrained estimators.

From Table 2.1, we can note that CICs tends not to choose the unconstrained estimator under

the monotone scenario as N increases. In contrast, the unconstrained estimator is chosen most of
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the times under the non-monotone simulation scenario (Table 2.3). Flat scenario results (Table 2.2)

show that although the proportion of times the unconstrained estimator is chosen do not tend to

zero as N grows, it is fairly small, meaning that CICs is choosing the constrained estimator most

of the times. From these three tables, we can observe that CICs tends to be more conservative

when choosing the unconstrained estimator over the constrained, in comparison with both Wald

and conditional tests.

Table 2.1: Monotone scenario. D = 4. ydk generated fromN(µd, 3
2). Based on 10000 replications. Rows

1-3: Proportion of times that unconstrained estimator is chosen using CICs, Wald test, and conditional test.
Rows 4-5: MSE ratios.

ydk ∼ N(µd, 3
2) N = 10000 N = 20000 N = 40000

n = 200 n = 1000 n = 2000 n = 400 n = 2000 n = 4000 n = 800 n = 4000 n = 8000

CICs 0.061 0.016 0.005 0.045 0.014 0.004 0.022 4× 10−4 0
Wald 0.018 0.003 0.001 0.012 0.002 0.001 0.005 10−4 0

Conditional 0.020 0.004 0.001 0.013 0.003 0.001 0.005 10−4 0

MSE(θ̃s)/MSE(ỹs) 0.721 0.896 0.962 0.774 0.938 0.968 0.875 0.994 1
MSE(θ̇s)/MSE(ỹs) 0.796 0.917 0.970 0.831 0.953 0.972 0.902 0.994 1

Table 2.2: Flat scenario. D = 4. ydk generated from N(µd, 3
2). Based on 10000 replications. Rows

1-3: Proportion of times that unconstrained estimator is chosen using CICs, Wald test, and conditional test.
Rows 4-5: MSE ratios.

ydk ∼ N(µd, 3
2) N = 10000 N = 20000 N = 40000

n = 200 n = 1000 n = 2000 n = 400 n = 2000 n = 4000 n = 800 n = 4000 n = 8000

CICs 0.098 0.045 0.121 0.102 0.081 0.079 0.073 0.134 0.015
Wald 0.033 0.011 0.044 0.036 0.026 0.024 0.023 0.048 0.003

Conditional 0.038 0.013 0.047 0.040 0.029 0.026 0.025 0.052 0.004

MSE(θ̃s)/MSE(ỹs) 0.720 0.860 0.906 0.789 0.898 0.906 0.844 0.918 0.942
MSE(θ̇s)/MSE(ỹs) 0.813 0.902 0.972 0.869 0.953 0.959 0.901 0.985 0.959
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Table 2.3: Non-monotone scenario. D = 4. ydk generated from N(µd, 3
2). Based on 10000 replications.

Rows 1-3: Proportion of times that unconstrained estimator is chosen using CICs, Wald test, and conditional
test. Rows 4-5: MSE ratios.

ydk ∼ N(µd, 3
2) N = 10000 N = 20000 N = 40000

n = 200 n = 1000 n = 2000 n = 400 n = 2000 n = 4000 n = 800 n = 4000 n = 8000

CICs 0.118 0.126 0.602 0.126 0.497 0.513 0.172 0.623 0.963
Wald 0.042 0.045 0.386 0.051 0.299 0.302 0.070 0.420 0.894

Conditional 0.048 0.049 0.403 0.056 0.310 0.315 0.073 0.434 0.899

MSE(θ̃s)/MSE(ỹs) 0.712 0.854 1.346 0.695 1.211 1.224 0.860 1.400 2.705
MSE(θ̇s)/MSE(ỹs) 0.814 0.928 1.128 0.807 1.115 1.118 0.945 1.137 1.037

On a second set of simulations, we consider the case where the population elements are gen-

erated from a skewed distribution. For a given domain d, ydk is generated from a χ2 distribution

with µd degrees of freedom, for k = 1, 2, . . . , Nd and D = 4. As in the first set of simulations, we

consider the same three scenarios for µ using the S1(·) sigmoid function. For each of them, we

consider the case where N = 10000 and nN = 200, 1000, 2000. Table 2.4 contains the results of

this skewed case. Again, we can observe that CICs behaves as expected despite the skewness of

the population generating distribution.

Table 2.4: Skewed case. D = 4. ydk generated from χ2(µd). Based on 10000 replications. Rows 1-3:
Proportion of times that unconstrained estimator is chosen using CICs, Wald test, and conditional test. Rows
4-6: MSE ratios.

ydk ∼ χ2(µd) Monotone Flat Non-monotone

n = 200 n = 1000 n = 2000 n = 200 n = 1000 n = 2000 n = 200 n = 1000 n = 2000

CICs 0.029 0.003 0 0.052 0.079 0.138 0.193 0.326 0.693
Wald 0.014 0.001 0 0.024 0.031 0.055 0.114 0.172 0.573

Conditional 0.014 0.001 0 0.025 0.033 0.057 0.117 0.177 0.579

MSE(θ̃s)/MSE(ỹs) 0.808 0.958 1 0.806 0.853 0.886 0.817 1.034 1.890
MSE(θ̇s)/MSE(ỹs) 0.855 0.966 1 0.872 0.936 0.982 0.927 1.086 1.230

A third set of simulations considers the case where the domain mean estimators are more

correlated in comparison with the stratified simple random sample simulations. The setting for

this simulation set is basically equal to the first set, except that we use the auxiliary variable z
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to create 100 clusters. Then, we sample r clusters with equal probability. We let r = 2, 10, 20.

We only consider the case where N = 10000 and nN = 200, 1000, 2000 for each of the three

scenarios. Table 2.5 contains the simulation results for this correlated case. Note that CICs is

choosing the unconstrained estimator with a low proportion under the monotone scenario, which

is desired. However, the proportion of times that the unconstrained estimator is chosen under the

non-monotone scenario is almost half in comparison of its corresponding stratified simple random

sample simulation (see Table 2.3). The stars (∗) in Table 2.5 mean that results for the Wald and

the conditional tests are not available since the estimated variance-covariance matrix of the Hájek

domain means is in fact a singular matrix. Recall that both tests need such matrix to be a valid

covariance matrix in order to be performed. Note that on those cases with stars, CICs continues to

be a plausible option to choose between the two estimators.

Table 2.5: Correlated case. D = 4. ydk generated from N(µd, 3
3). Based on 10000 replications. Rows

1-3: Proportion of times that unconstrained estimator is chosen using CICs, Wald test, and conditional test.
Rows 4-6: MSE ratios.

ydk ∼ N(µd, 3
2) Monotone Flat Non-monotone

r = 2 r = 10 r = 20 r = 2 r = 10 r = 20 r = 2 r = 10 r = 20

CICs 0.194 0.025 0.005 0.245 0.085 0.069 0.284 0.461 0.696
Wald * 0.011 0.001 * 0.071 0.035 * 0.417 0.574

Conditional * 0.019 0.002 * 0.072 0.037 * 0.422 0.582

MSE(θ̃s)/MSE(ỹs) 0.717 0.901 0.958 0.690 0.838 0.842 0.694 1.263 1.911
MSE(θ̇s)/MSE(ỹs) 0.862 0.937 0.966 0.836 0.930 0.929 0.856 1.178 1.233

Table 2.5 shows that although the CICs performs as expected for the correlated case, the un-

constrained estimator is being chosen only 69.6% of the times under the non-monotone scenario

when the sample size is 20% of the total population. One plausible reason could be the fact that the

monotonicity violation on this scenario is weak. Therefore, we would like to analyze the efficacy

of the CICs as the violation of monotonicity increases. To do that, we consider again the correlated

case. To increase the violation on the limiting domain means, we create µD from pulling

28



down S1(D) by a quantity t∆, where t = 3, 4, 5. That is, µD = S1(D) − t∆. The results

of this simulation case (Table 2.6) shows that the MSE ratio between the unconstrained and the

constrained estimators overpass 1 as the violation increases. Moreover, the proportion of times

that the unconstrained estimator is chosen also increases and approaches to 1 as expected.

Table 2.6: Increasing Monotonicity Violation - Correlated case. D = 4. ydk generated from N(µd, 3
2).

Based on 10000 replications. Rows 1-3: Proportion of times that unconstrained estimator is chosen using
CICs, Wald test, and conditional test. Rows 4-6: MSE ratios.

ydk ∼ N(µd, 3
2) µD = S1(D)− 3∆ µD = S1(D)− 4∆ µD = S1(D)− 5∆

r = 2 r = 10 r = 20 r = 2 r = 10 r = 20 r = 2 r = 10 r = 20

CICs 0.388 0.708 0.934 0.450 0.881 0.936 0.507 0.963 1
Wald * 0.658 0.882 * 0.852 0.835 * 0.952 1

Conditional * 0.664 0.885 * 0.854 0.890 * 0.953 1

MSE(θ̃s)/MSE(ỹs) 0.798 1.963 3.554 0.882 2.999 3.617 1.022 4.302 9.037
MSE(θ̇s)/MSE(ỹs) 0.962 1.233 1.107 1.002 1.169 1.109 1.059 1.081 1.000

We also perform simulations to study the behavior of CICs when the number of domains is

larger than 4. We consider the case where D = 8. The values of µ are obtained from the sigmoid

function S2(d) = 4 exp(5d/D − 2)/(1 + exp(5d/D − 2)). The setting in this 8-domain case is

basically the same as the first simulation set, but using S2(·) instead of S1(·), N = 20000, and

nN = 400, 2000, 40000. We choose these values for N and nN in order to have a similar rough

average sample size in each domain as it was in simulations where D = 4. As shown in Table 2.7,

CICs follows a similar behavior as in the previous simulations.
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Table 2.7: 8-domain case. D = 8. ydk generated from N(µd, 3
2). Based on 10000 replications. Rows

1-3: Proportion of times that unconstrained estimator is chosen using CICs, Wald test, and conditional test.
Rows 4-5: MSE ratios.

ydk ∼ N(µd, 3
2) Monotone Flat Non-monotone

n = 400 n = 2000 n = 4000 n = 400 n = 2000 n = 4000 n = 400 n = 2000 n = 4000

CICs 0.054 0.042 0.003 0.075 0.127 0.060 0.084 0.287 0.631
Wald 0.021 0.010 4× 10−4 0.031 0.048 0.017 0.037 0.158 0.439

Conditional 0.023 0.010 4× 10−4 0.034 0.049 0.017 0.041 0.159 0.441

MSE(θ̃s)/MSE(ỹs) 0.666 0.902 0.975 0.648 0.877 0.961 0.666 0.935 1.162
MSE(θ̇s)/MSE(ỹs) 0.719 0.921 0.978 0.710 0.918 0.978 0.731 0.970 1.047

We end this section by showing simulation results obtained using the exact same set-up as in

Wu et al. (2016). To get the µd values, we use the sigmoid function S3(d) = exp(20d/D−10)/(1+

exp(20d/D − 10)). We set the population size as N = 1000 and the domain size as Nd = N/D.

We simulate the ydk values from a normal distribution with mean µd and standard deviation σ. As

it was done before, samples are generated from a stratified sampling design with simple random

sampling without replacement in each of four strata; and the stratum membership was assigned

using the auxiliary random variable z.

We study four cases obtained by varying the number of domains D = 5, 20; and the standard

deviation σ = 0.5, 1. The sample size is set to nN = 200 when D = 5, splitted as 25, 50, 50,

75 samples in each stratum; and nN = 800 when D = 20, splitted as 100, 200, 200, 300 samples

in each stratum. For each case, we create 7 different cases for µ. These cases are determined by

setting µd = S3(d) for d = 1, . . . , D− 1; and µD = S3(D− 1)− δ for δ = 0,±0.15,±0.3,±0.45.

Note that δ = 0 corresponds to the flat scenario, meanwhile δ < 0 define monotone scenarios and

δ > 0 define non-monotone scenarios.

Figure 2.2 contains examples of one fitted samples for each of the four cases mentioned above.

Note that the fact that the S3 sigmoid function is considerably flat at its extremes makes especially

complicated to decide whether the population domain means are isotonic or not, when D = 20.

Tables 2.8-2.11 present the proportion of times that the unconstrained estimator is chosen in each
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case, along with MSE ratios. To visualize these results better, we create Figure 2.3 which contains

plots of the proportion of times that the unconstrained estimator is chosen under CICs and Wald

test, for the set values of δ. We ignore the results obtained by the conditional test since these are

shown to be practically the same as lead by the Wald test (see Tables 2.8-2.11).

Plots in Figure 2.3 demonstrates that both CICs and Wald test perform better when the standard

deviation is smaller. Figure 2.3a shows that CICs tends to choose more the unconstrained estimator

than the Wald test, when D = 5. This fact provides evidence that the CICs does better than the

Wald test under non-monotone scenarios. In contrast, Figure 2.3b shows an opposite behavior

between CICs and Wald test. The worst performance for both CICs and Wald test is shown when

D = 20 and σ = 1. In this case, CICs chooses the constrained estimator more than 80% of times,

meanwhile Wald test choose it a little less than 60% of times, although is desirable to never choose

it. However, it can be seen in Table 11 that the MSE ratio of the constrained estimator over the

unconstrained estimator does not show neither a clear preference for the latter estimator.

Table 2.8: S3(·), D = 5, σ = 0.5. nN = 200. Based on 10000 replications. Rows 1-3: Proportion of
times that unconstrained estimator is chosen using CICs, Wald test, and conditional test. Rows 4-5: MSE
ratios.

ydk ∼ N(µd, 0.5
2) Monotone Flat Non-monotone

δ = −0.45 δ = −0.30 δ = −0.15 δ = 0 δ = 0.15 δ = 0.30 δ = 0.45

CICs 0.023 0.023 0.024 0.072 0.352 0.787 0.980
Wald 0.006 0.006 0.006 0.026 0.212 0.667 0.958

Conditional 0.006 0.006 0.006 0.026 0.213 0.668 0.959

MSE(θ̃s)/MSE(ỹs) 0.882 0.880 0.857 0.781 0.957 1.822 3.479
MSE(θ̇s)/MSE(ỹs) 0.911 0.909 0.887 0.849 1.013 1.153 1.036
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(a) σ = 0.5, D = 5. (b) σ = 0.5, D = 20.

(c) σ = 1, D = 5. (d) σ = 1, D = 20.

Figure 2.2: One fitted samples for each of four cases obtained using S3(·). Dots correspond to unconstrained
estimates, triangles to constrained estimates.
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Table 2.9: S3(·), D = 5, σ = 1. nN = 200. Based on 10000 replications. Rows 1-3: Proportion of
times that unconstrained estimator is chosen using CICs, Wald test, and conditional test. Rows 4-5: MSE
ratios.

ydk ∼ N(µd, 1
2) Monotone Flat Non-monotone

δ = −0.45 δ = −0.30 δ = −0.15 δ = 0 δ = 0.15 δ = 0.30 δ = 0.45

CICs 0.065 0.065 0.070 0.099 0.181 0.358 0.600
Wald 0.021 0.021 0.021 0.036 0.095 0.236 0.473

Conditional 0.022 0.021 0.021 0.036 0.095 0.237 0.474

MSE(θ̃s)/MSE(ỹs) 0.806 0.788 0.747 0.704 0.732 0.915 1.296
MSE(θ̇s)/MSE(ỹs) 0.875 0.858 0.826 0.807 0.861 1.012 1.145

Table 2.10: S3(·), D = 20, σ = 0.5. nN = 800. Based on 10000 replications. Rows 1-3: Proportion
of times that unconstrained estimator is chosen using CICs, Wald test, and conditional test. Rows 4-5: MSE
ratios.

ydk ∼ N(µd, 0.5
2) Monotone Flat Non-monotone

δ = −0.45 δ = −0.30 δ = −0.15 δ = 0 δ = 0.15 δ = 0.30 δ = 0.45

CICs 0.037 0.037 0.036 0.034 0.087 0.422 0.881
Wald 0.074 0.074 0.073 0.078 0.229 0.697 0.972

Conditional 0.074 0.074 0.073 0.078 0.229 0.697 0.972

MSE(θ̃s)/MSE(ỹs) 0.503 0.503 0.495 0.468 0.556 0.905 1.533
MSE(θ̇s)/MSE(ỹs) 0.539 0.539 0.530 0.503 0.625 0.994 1.075

Table 2.11: S3(·), D = 20, σ = 1. nN = 800. Based on 10000 replications. Rows 1-3: Proportion of
times that unconstrained estimator is chosen using CICs, Wald test, and conditional test. Rows 4-5: MSE
ratios.

ydk ∼ N(µd, 1
2) Monotone Flat Non-monotone

δ = −0.45 δ = −0.30 δ = −0.15 δ = 0 δ = 0.15 δ = 0.30 δ = 0.45

CICs 0.031 0.030 0.028 0.028 0.034 0.067 0.156
Wald 0.081 0.079 0.078 0.084 0.119 0.235 0.466

Conditional 0.081 0.079 0.078 0.084 0.119 0.235 0.466

MSE(θ̃s)/MSE(ỹs) 0.415 0.410 0.398 0.386 0.402 0.475 0.617
MSE(θ̇s)/MSE(ỹs) 0.451 0.445 0.431 0.420 0.441 0.540 0.723
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(a) D = 5. (b) D = 20.

Figure 2.3: Proportion of times that the unconstrained estimator is chosen under the 4 scenarios of S3(·),
for several values of δ. Solid lines: CICs, dotted lines: Wald test. Dots: σ = 0.5, triangles: σ = 1.

2.5 Application of the CICs to the NHANES data
We apply the proposed CICs methodology to the 2011-2012 NHANES laboratory data obtained

from the Center of Disease Control website. There are nN = 1637 complete observations for

variables age and LDL-cholesterol measures (mg/dL), where we only consider observations with

age range between 21-60 years old. The LDL-cholesterol measure is the variable of interest y.

Under the consideration that LDL-cholesterol measures might increase with age, we intend to

use that information on the construction of domain means estimates. We create 10 domains by

partitioning the age variable in 10 categories of three years each, i.e., 21-24, 25-28, . . . , 57-60.

Since there is no information available regard the population domain sizes Nd, we compute

both unconstrained and constrained estimators of the population domain means using the Hájek

estimator. The constrained estimator in Equation 2.3 is obtained by using the PAVA. The covari-

ance term in CICs for both estimators is estimated using Equation 2.5.

Figure 2.4 contains both unconstrained and constrained estimators along with their pointwise

95% Wald confidence intervals. The variance estimates to construct these intervals are based on
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Equation 2.5, and the observed pooling is used to compute the estimated variance of the constrained

estimator. Note that there are notable differences between them on the last three domains. Since

CICs(ỹs) = 23.354 and CICs(θ̃s) = 18.874, then our proposed method chooses the constrained

estimator above the unconstrained as an estimate of the population domain means. Moreover,

note that the confidence interval is tighter for the constrained estimator than for the unconstrained,

which shows the fact that pooling domains decrease the uncertainty of the estimates.

Figure 2.4: 2011-2012 NHANES laboratory data. Solid lines: constrained and unconstrained estimators.
Dotted lines: pointwise 95% Wald confidence intervals. CICs(ỹs) = 23.354, CICs(θ̃s) = 18.874.
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Chapter 3

Estimation and inference of domain means subject to

shape constraints

3.1 Introduction
Fine-scale domain estimates are frequently of interest for large-scale surveys, as these are

highly useful for many data users in data-producing agencies. Although the overall sample size

of such surveys might be very large, samples sizes for numerous domains are often too small for

reliable estimates. For instance, the National Compensation Survey (www.bls.gov/ncs), produced

by the U.S. Bureau of Labor Statistics, is designed to provide wage and salary estimates by occu-

pation for many metropolitan areas and for the nation. However, for certain cities or regions, the

sample sizes might not be large enough to produce estimates with acceptable precision.

Domain estimators that are based only on the domain-specific sample data (direct estimators)

tend to lack adequate precision for small domains (Rao, 2003). One possible approach to avoid

such a problem could be to aggregate small domains into bigger scales so that more reliable direct

estimators can be produced for those scales, leading to the generation of more aggregated infor-

mation than the actual desired scale. An alternative to producing small domain estimates could be

changing from a design-based to a model-based estimation methodology such as small area mod-

els. In this paper, we present an approach where domains are allowed to borrow information from

their neighbors by imposing shape or order assumptions that are reasonable for the population.

Information regarding the shape of population domain means arises naturally in surveys. For

instance, certain jobs might be expected to receive better salaries than others, or younger peo-

ple are expected to have, on average, lower glucose level than older people. However, given that

small domains tend to produce direct estimates with high variability, such shape constraints are

often violated at the sample level. Recently, Wu et al. (2016) proposed a domain mean estimation
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methodology that relies on the assumption of monotone population domain means. By combin-

ing the monotonicity information of domain means and design-based estimators in the estimation

stage, they proposed a constrained estimator that respects the monotone assumption. Such an es-

timator was shown to improve precision and variability of domain mean estimates in comparison

with direct estimators, given that the assumption of monotonicity is reasonable.

Many other types of shape constraints beyond monotonicity may also be expected to hold in es-

timates of population domain means. In general, any set of constraints can be represented through

a constraint matrix, where each of its rows defines a constraint. Meyer (1999) introduced the con-

cept of irreducible matrices to cover the possible case of having more constraints than dimensions.

Intuitively, a constraint matrix is called irreducible when it does not contain redundant restric-

tions. For illustration of a constraint matrix, suppose the variable of interest is the annual average

salary of faculty in certain university. Further, consider the 6 domains generated from the cross-

classification of the variables job position (x1; 1=Assistant and 2=Associate) and department (x2;

1=Anthropology, 2=English and 3=Engineering). Under the assumptions that, within a discipline,

professors with an associate rank have higher salaries than those with an assistant rank; and that,

within a rank, Engineering faculty members are expected to have higher salaries than those in ei-

ther the Anthropology or English departments, then we can express the corresponding restrictions

as,

Aµ ≥ 0, where A =



−1 1 0 0 0 0

0 0 −1 1 0 0

0 0 0 0 −1 1

−1 0 0 0 1 0

0 0 −1 0 1 0

0 −1 0 0 0 1

0 0 0 −1 0 1



, (3.1)
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µ = (µ11, µ21, µ12, µ22, µ13, µ23)
>, with µij representing the mean of the domain that corresponds

to x1 = i and x2 = j; 0 being the zero vector, and the inequality being element-wise. In this

example, the constraint matrixA is irreducible.

This paper contains theoretical properties and applications of a new constrained estimator for

population domain means that respect shape constraints that are expressed with irreducible matri-

ces. Through combining design-based domain mean estimators with these shape constraints, we

propose a broadly applicable estimator that improves precision and variability of the most common

direct estimators. Moreover, we provide a design-based variance estimation method that depends

on the sample-determined linear space where the constrained estimator lands. If the constraints

correspond to partial orderings, as in Equation 3.1, then the proposed estimator is simply a design-

based estimator computed after adaptively pooling domains to respect the imposed restrictions,

and the variance estimator depends on the pooling chosen by the constrained estimator. As mono-

tone constraints can be written as one particular case from the broad class of shapes covered by

irreducible matrices, our proposed estimator is an extension of the monotone estimator developed

by Wu et al. (2016). Constrained estimators that respect constraints driven by irreducible matrices

have been already proposed for non-survey data. For instance, Meyer (2013a) made use of them to

perform convex regression or isotonic regression on partial orderings. However, this general class

of shape constraints have not been considered yet for survey data.

This paper is organized as follows: in Section 3.2 we introduce the constrained estimator and

propose a linearization-based method for variance estimation. This section also contains some

scenarios of interest where shape constraints can naturally arise for survey data. Section 3.3 states

the main theoretical properties of the constrained estimator that guarantee its use for estimation

and inference of population domain means. The necessary assumptions used in these theoretical

derivations are also stated in this section. Proofs of main theorems and auxiliary lemmas are fully

contained in the Appendix. Section 3.4 shows through simulations that the constrained estimator

improves domain mean estimation and variability in comparison with the unconstrained estima-

tor, even though the assumed shape holds only approximately at the population level. Section 3.5
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demonstrates the advantages of the proposed methodology on real survey data through an applica-

tion to the 2015 National Survey of College Graduates. The proofs of the theoretical results shown

in this paper are included in Appendix B.

3.2 Constrained estimator for domain means

3.2.1 Notation and preliminaries

Let UN be the set of elements in a population of size N . Consider a sample sN of size nN

that is drawn from UN using a probability sampling design pN(·). Denote πk,N = Pr(k ∈ sN)

and πkl,N = Pr(k ∈ sN , l ∈ sN) as the first and second order inclusion probabilities, respectively.

Assume that πk,N > 0, πkl,N > 0 for k, l ∈ UN . Denote {Ud,N}Dd=1 as a domain partition of UN ,

where D is the fixed number of domains and each Ud,N is of size Nd. Also, let sd,N be the subset

of size nd,N of sN that belongs to Ud,N .

For any study variable y, denote yUN = (yU1,N
, . . . , yUD,N )> to be the vector of population

domain means, where

yUd,N =

∑
k∈Ud,N yk

Nd

. (3.2)

In addition, consider the Horvitz-Thompson (HT) and Hájek estimators of yUd,N , respectively given

by

ŷsd,N =

∑
k∈sd,N yk/πk

Nd

, ỹsd,N =

∑
k∈sd,N yk/πk

N̂d

; (3.3)

where N̂d =
∑

k∈sd,N 1/πk. Denote ŷsN and ỹsN to be the vectors of HT and Hájek estimators,

respectively. Taking into consideration that the Hájek estimator is more useful in practice since it

does not require information about the population domain sizes Nd, then we exclusively focus this

paper on properties based on it. However, all developed results can be adapted to the HT estimator

by replacing N̂d with Nd. For simplicity in our notation, we will avoid using the subscript N for

the rest of this paper unless needed for clarification.
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3.2.2 Proposed estimator

Assume there is information available regarding the shape of the population domain means

that can be expressed with m constraints through a m × D irreducible constraint matrix A. A

matrixA is irreducible if none of its rows is a positive linear combination of other rows, and if the

origin is also not a positive linear combination of its rows (Meyer, 1999). To take advantage of ỹs

to obtain an estimator that respects these shape constraints, we propose the constrained estimator

θ̃s = (θ̃s1 , . . . , θ̃sD)> to be the unique vector that solves the following constrained weighted least

squares problem,

min
θ

(ỹs − θ)>W s(ỹs − θ) subject to Aθ ≥ 0; (3.4)

where W s is the diagonal matrix with elements N̂1/N̂, N̂2/N̂, . . . , N̂D/N̂ , and N̂ =
∑D

d=1 N̂d.

The constrained problem in Equation 3.4 can be alternatively written as finding the unique vector

φ̃s that solves

min
φ
||z̃s − φ||2 subject to Asφ ≥ 0; (3.5)

where z̃s = W 1/2
s ỹs, φ = W 1/2

s θ, and As = AW−1/2
s . Note that solving the optimization prob-

lem in Equation 3.5 allows straightforward computation of the constrained estimator θ̃s. Moreover,

observe that the transformed constrained matrix As is also irreducible if A is, and that it depends

on the sample althoughA does not.

From a geometrical viewpoint, φ̃s can be seen as the projection of the vector z̃s onto the

constraint cone Ωs defined by the irreducible matrixAs as

Ωs = {φ ∈ RD : Asφ ≥ 0}. (3.6)

That is, φ̃s = Π(z̃s|Ωs), where Π(u|V ) stands for the projection of u onto the space V . Further,

the polar cone Ω0
s (Rockafellar, 1970, p. 121), which is the dual vector space of Ωs, is defined as

Ω0
s = {ρ ∈ RD : 〈ρ,φ〉 ≤ 0, ∀φ ∈ Ωs}, (3.7)

40



where 〈u,v〉 = u>v. Such a definition characterizes the polar cone as the set of vectors that form

obtuse angles with all vectors in Ωs. Meyer (1999) showed that the negative rows of an irreducible

matrix are the edges (generators) of the polar cone, leading to the following characterization of the

polar cone in Equation 3.7:

Ω0
s = {ρ ∈ RD : ρ =

m∑
j=1

ajγsj , aj ≥ 0, j = 1, 2, . . . ,m}, (3.8)

where γs1 ,γs2 , . . . ,γsm are the rows of −As. Equation 3.8 shows that Ω0
s is a finitely generated

cone, which implies that it is a polyhedral cone. Robertson et al. (1988, p. 17) established neces-

sary and sufficient conditions for a vector φ̃s to be the projection of z̃s onto Ωs. That is, φ̃s ∈ Ωs

solves the constrained problem in Equation 3.5 if and only if

〈z̃s − φ̃s, φ̃s〉 = 0, and 〈z̃s − φ̃s,φ〉 ≤ 0, ∀φ ∈ Ωs.

Moreover, the above conditions can be adapted to the polar cone as follows: the vector ρ̃s ∈ Ω0
s

minimizes ||z̃s − ρ||2 over Ω0
s if and only if

〈z̃s − ρ̃s, ρ̃s〉 = 0, and 〈z̃s − ρ̃s,γsj〉 ≤ 0 for j = 1, 2, . . . ,m. (3.9)

Although the constrained problem in Equation 3.5 does not have a general closed form solution,

there are some particular cases where this can be explicitly characterized. For instance, Robertson

et al. (1988, p. 23) demonstrated that, under partial ordering constraints, the solution θ̃s of the

constrained problem in Equation 3.4 takes the form

θ̃sd = max
U :d∈U

min
L:d∈L

∑
d∈L∩U N̂dỹsd∑
d∈L∩U N̂d

, for d = 1, . . . , D; (3.10)

where L and U are lower and upper sets with respect to the partial ordering, respectively. Equation

3.10 shows that the proposed constrained estimator is simply pooling neighboring domains in such
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a way that the imposed constraints are respected. Heuristically, this is an advantageous property

for small domains, as it allows them to borrow strength from other domains.

One approach to computing φ̃s is based on the edges of the constraint cone Ωs. However, the

number of edges can be considerably larger than the number of constraints for large values of D,

especially for the case when there are more constraints than domains (see Meyer, 1999). Moreover,

given the lack of a general closed form solution for the edges of Ωs (when m > D), then the edges

need to be computed numerically. This task can be a computationally demanding job, which makes

this approach an inefficient way to compute φ̃s. Fortunately, a more efficient algorithm based on

computing the projection onto the polar cone has been developed: the Cone Projection Algorithm

(CPA) (Meyer, 2013b). This alternative approach takes advantage of the easy-to-find edges γsj of

the polar cone, the conditions in Equation 3.9, and the fact that Π(z̃s|Ωs) = z̃s − Π(z̃s|Ω0
s). We

remark that the latter fact is a key component on the proofs of the main theoretical results shown

in this paper. CPA has been implemented in the software R into the coneproj package. See Liao

and Meyer (2014) for further details.

3.2.3 Variance estimation of θ̃sd
The conditions in Equation 3.9 can be used to show that the projection of z̃s onto the polar

cone Ω0
s coincides with the projection onto the linear space generated by the edges γsj such that

〈z̃s − ρ̃s,γsj〉 = 0. This set of edges could be empty, meaning that the projection onto Ω0
s is

equal to the projection onto the zero vector. Moreover, this set of edges might not be unique. To

formalize this idea, denote Vs,J = {γsj : j ∈ J} for any J ⊆ {1, 2, . . . ,m}. Define the set F s,J

as,

F s,J = {ρ ∈ RD : ρ =
∑
j∈J

ajγsj , aj ≥ 0, j ∈ J}, (3.11)

where F s,∅ = 0 by convention. That is, F s,J is the polyhedral sub-cone of Ω0
s that starts at the

origin and is defined by the edges in Vs,J . Further, let L(Vs,J) be the linear space generated by

the vectors in Vs,J . Hence, projecting onto Ω0
s is equivalent to projecting onto L(Vs,J), for an

appropriate set J .
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Estimating appropriately the variance of θ̃sd is a complicated task, derived from the fact that the

projection of z̃s onto Ω0
s (or onto Ωs) might not always land on the same linear space L(Vs,J) for

different samples s. To better understand that, define G̃s to the set of all subsets J ⊆ {1, 2, . . . ,m}

such that Π(z̃s|Ω0
s) = Π(z̃s|L(Vs,J)) ∈ F s,J . The latter definition is motivated by the following

non-efficient procedure to find ρ̃s: project z̃s onto each of the 2m linear spaces generated by the

edges in Vs,J , and then check if such a projection lands inside the portion of the polar cone Ω0
s

defined by Vs,J (that is, F s,J ) and that satisfies the conditions stated in Equation 3.9. Note that, for

different samples s, the sets G̃s might be different. In addition, the cardinality of G̃s can be greater

than one. That is, there could be different sets J1 and J2 such that the projection onto the polar

cone Ω0
s is equal to projecting onto either L(Vs,J1) or L(Vs,J2). However, independently of which

set is chosen, the projection ρ̃s is unique. For instance, consider the case where m > D, so the

set of all edges γsj constitutes a linear dependent set of vectors. Hence, there could exist different

subsets J1, J2 that induce the same linear space such that J1, J2 ∈ G̃s. A different example where

the cardinality of G̃s is greater than 1 is based on the drawn sample. For illustration, consider

monotone increasing restrictions with D = 3. Suppose that ỹs1 = ỹs2 < ỹs3 . As there are only 3

domains, the transformed vector z̃s has elements of the form

z̃s1 =

√
N̂1

N̂
ỹs1 , z̃s2 =

√
N̂2

N̂
ỹs2 . z̃s3 =

√
N̂3

N̂
ỹs3 .

In this setting, it is straightforward to see that Π(z̃s|Ω0
s) = 0. However, to compute it, we project

z̃s onto each of the 22 = 4 linear spaces generated by the polar cone edges

γs1 =

√ N̂

N̂1

,−

√
N̂

N̂2

, 0

> , γs2 =

0,

√
N̂

N̂2

,−

√
N̂

N̂3

> .
Hence, it can be seen that the conditions Π(z̃s|Ω0

s) = 0 = Π(z̃s|L(Vs,J)) ∈ F s,J are satisfied only

for J = ∅ and J = {1}, which implies that G̃s = {∅, {1}}. Moreover, note that Vs,∅ and Vs,{1}

do not span the same linear spaces, which is what complicates the variance estimation of θ̃sd . In
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general, the set of sample vectors where these scenarios occur has measure zero. However, they

cannot be excluded at the population level.

We propose a variance estimator for θ̃sd that relies on the sets in G̃s and is based on linearization

methods. Consider any J ∈ G̃s, and let P s,J be the projection matrix corresponding to the linear

space L(Vs,J), where P s,∅ is the matrix of zeros by convention. By the selection of J , then ρ̃s can

be expressed as P s,J z̃s, which implies that θ̃s can be written as θ̃s,J = ỹs −W−1/2
s P s,JW

1/2
s ỹs,

where we add the subscript J in θ̃s to be aware that the expression depends on the chosen J .

Now, observe that θ̃s,J is a smooth non-linear function of the t̂d’s and the N̂d’s, where t̂d is the

HT estimator of td =
∑

k∈Ud yk. Therefore, treating J as fixed, we can approximate the variance

of θ̃sd,J via Taylor linearization (Särndal et al., 1992, p. 175) by

AV (θ̃sd,J) =
∑
k∈U

∑
l∈U

∆kl
uk
πk

ul
πl
, (3.12)

where ∆kl = πkl − πkπl, and

uk =
D∑
i=1

αiyk1k∈Ui +
D∑
i=1

βi1k∈Ui for k = 1, 2, . . . , N,

with 1A being the indicator variable for the event A, and

αi =
∂θ̃sd,J

∂t̂i

∣∣∣
(t̂1,...,t̂D,N̂1,...,N̂D)=(t1,...,tD,N1,...,ND)

; βi =
∂θ̃sd

∂N̂i

∣∣∣
(t̂1,...,t̂D,N̂1,...,N̂D)=(t1,...,tD,N1,...,ND)

.

In addition, a consistent estimator of the approximated variance in Equation 3.12, is given by

V̂ (θ̃sd,J) =
∑
k∈s

∑
l∈s

∆kl

πkl

ûk
πk

ûl
πl
, (3.13)

where

ûk =
D∑
i=1

α̂iyk1k∈si +
D∑
i=1

β̂i1k∈si for k = 1, 2, . . . , N,
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with α̂i, β̂i obtained from αi, βi by substituting the appropriate Horvitz-Thompson estimators for

each total population. Thus, we propose the estimator in Equation 3.13 as a variance estimator of

θ̃sd .

3.2.4 Some shape constraints of interest

As it was mentioned before, irreducible matrices can be used to express a broad range of

shape constraints. We include some scenarios of interest with the sole purpose of highlighting the

potential utility of our proposed estimator. Several other restrictions can be also considered by our

constrained methodology as long as they conform to an irreducible matrix.

• Double monotone: domain means are expected to be monotone with respect to two covari-

ates. For instance, average glucose level may increase with people’s age, and decrease with

mean weekly exercising time.

• Tree-ordering: there is one domain mean that is expected to be smaller (or larger) than the

others. For example, a placebo effect could be expected to be smaller than treatment effects.

• Relaxed motonone: assuming monotonicity on domain means is a strong restriction which

could be relaxed so that better estimates can be potentially obtained. As an example, assume

it is known from past records that wage salary jobs have certain increasing trend based on

job category, but researchers feel uncomfortable by imposing such a strict order. However,

if changes are not too severe, then a relaxed monotone ordering can provide more efficients

estimates. One way to relax a monotone order could be through the use of weights. Consider

2D − 1 weights ωt, t = −(D − 1), . . . , D − 1, such that 0 ≤ ω−(D−1) ≤ · · · ≤ ω−1 ≤ ω0

and ω0 ≥ ω1 ≥ · · · ≥ ωD−1 ≥ 0. For 1 ≤ i ≤ D − 1, assume the following constraints:

∑D
d=1 ωd−iθd∑D
d=1 ωd−i

≤
∑D

d=1 ωd−(i+1)θd∑D
d=1 ωd−(i+1)

. (3.14)
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Two estimators of interest arise from the constraints in Equation 3.14: the monotone estima-

tor developed by Wu et al. (2016) is obtained when all weights but ω0 are equal to zero (i.e.

θ1 ≤ · · · ≤ θD), meanwhile the unconstrained estimator appears in the particular case when

all weights are equal. As these two extreme cases are covered by the relaxed monotone con-

straints, it is of interest to be able to control the amount of relaxation imposed. This could be

done by defining a kernel function K(·) such that K(0) = 1, and that decreases away from

zero. Now, for any bandwidth h > 0, define ωt = K( t
h
). Hence, the constrained estimator is

obtained as h→ 0, meanwhile the unconstrained estimator arises as h→∞, which implies

that h is a tuning parameter that controls the amount of monotone relaxation.

In general, combinations of the above shape scenarios could also be considered. For instance,

Figure 3.1 contains four different estimates of the population domains means in Figure 3.1(a): un-

constrained estimates are shown in Figure 3.1(b), and three constrained estimates obtained from

different shape restrictions on variables x1 and x2 are shown in Figure 3.1(c)-(e). Note that uncon-

strained estimates are wiggly and do not look closer to the population domain means, meanwhile

constrained estimates seem to be a more reasonable choice. Further, the relaxed monotone as-

sumption on x1 appears to be an appropriate option to consider given the non-strict monotonicity

on the population domain means.
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(a) Population domain means. (b) Unconstrained.

(c) x1: monotone, x2: monotone. (d) x1: relaxed, x2: monotone. (e) x1: unconstrained, x2: monotone.

Figure 3.1: Population domain means and unconstrained estimator (top). Constrained estimator under three
different settings of shape constraints (bottom).
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3.3 Properties of the constrained estimator

3.3.1 Assumptions

To derive our theoretical results, we make assumptions on the asymptotic behavior of the pop-

ulation UN and the sampling design pN . Such assumptions are:

A1. The number of domains D is fixed.

A2. lim sup
N→∞

N−1
∑

k∈U y
4
k <∞.

A3. There exist constants µd and rd > 0 such that yUd,N − µd = O(N−1/2) and Nd,N/N − rd =

O(N−1/2), for all d.

A4. The sample size nN is non-random and satisfies 0 < limN→∞ nN/N < 1. In addition, there

exists ε, 0 < ε < 1, such that nd,N ≥ εnN/D for all d and all N .

A5. For all N , mink∈UN πk ≥ λ > 0, mink,l∈UN πkl ≥ λ∗ > 0, and

lim sup
N→∞

nN max
k,l∈UN :k 6=l

|∆kl| <∞

where ∆kl = πkl − πkπl.

A6. For any vector of q variables x with finite fourth population moment,

varpN (x̂sN )−1/2(x̂sN − xUN )
d→ N (0, Iq),

and

v̂ar(x̂sN )− varpN (x̂sN ) = op(n
−1
N );

where x̂sN is the HT estimator of xUN = N−1
∑

k∈UN xk/πk, Iq is the identity matrix

of dimension q, the design variance-covariance matrix varpN (x̂sN ) is positive definite, and

v̂ar(x̂sN ) is the HT estimator of var(x̂sN ).
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Assumption A1 establishes that the number of domains remains constant as the population

size changes. The condition in Assumption A2 is made to have the property that the difference

between design variances and their estimates are on the order of op(n−1N ). In particular, note that

this condition is satisfied when the variable y is bounded, which can be naturally assumed for

most types of survey data. Assumption A3 guarantees that the population domain means and sizes

converge to the limiting values µd and rd, respectively. Alternatively, the µ values can be thought as

superpopulation parameters that generate the population elements yk. In fact, our theoretical results

depend on whether the assumed constraints hold for these superpopulation parameters and not for

the population domain means. Although this might seem to be inappropriate given our interest

on using constraints at the population level, Assumption A3 ensures that the shape of the domain

means would be reasonable close to the shape of the superpopulation means. Assumption A4 states

that the sample size in each domain cannot be smaller than a fraction of the ratio nN/D, which

would be obtained by dividing equally the sample size over all domains. This assumption aims to

ensure that the moments of smooth functions of the N−1t̂d and the N−1N̂d are bounded. Also, it

assumes that the sample size is non-random. However, this can be adapted to a random sample size

by imposing certain conditions on the expected sample size EpN (nN). Assumption A5 establishes

non-zero lower bounds for both first and second order inclusion probabilities, and states that the

design covariances ∆kl must converge to zero at least as fast as n−1N . Assumption A6 ensures

asymptotic normality for a general finite fourth moment vector of variables x, which is needed

to maintain normality properties on non-linear estimators. Moreover, it establishes consistency

conditions on the variance-covariance estimator.

3.3.2 Main results

Based on the property that Π(z̃s|Ωs) = z̃s − Π(z̃s|Ω0
s) = z̃s − ρ̃s, we derive some theoretical

properties of the constrained estimator by focusing on the projection onto Ω0
s instead of Ωs. Recall

that the edges of the polar cone Ω0
s are simply the m rows of −As, denoted by γsj ; and that ρ̃s

can be described by the sets J ∈ G̃s. Being able to characterize the property that J ∈ G̃s in

49



terms of the vectors in Vs,J allow us to obtain theoretical convergence rates, which are used to

develop inference properties of the constrained estimator. When the set J ∈ G̃s produces a set

of linear independent vectors Vs,J , then it is straightforward that ρ̃s can be written as P s,J z̃s =

A>s,J(As,JA
>
s,J)−1As,J z̃s, where As,J denotes the matrix formed by the rows of As in positions

J . Hence, based on the conditions in Equation 3.9, J ∈ G̃s if and only if

〈z̃s − P s,J z̃s,γsj〉 ≤ 0 for j /∈ J, and (As,JA
>
s,J)−1As,J z̃s ≥ 0; (3.15)

where the latter condition assures that Π(z̃s|L(Vs,J)) ∈ F s,J . However, it is possible that the set

J ∈ G̃s produces a set of linearly dependent vectors Vs,J . In that case, Theorem 3.1 guarantees that

it is always possible to find a subset J∗ ⊂ J such that Vs,J∗ is a linearly independent set that spans

the same linear space as Vs,J , and also, that satisfies J∗ ∈ G̃s. Thus, analogous conditions as in

Equation 3.15 can be established using J∗ instead of J .

Theorem 3.1. Let A be a m×D irreducible matrix with rows −γj . Let Ω0 be its corresponding

polar cone. For any set J ⊆ {1, 2, . . . ,m}, define VJ = {γj : j ∈ J}. Further, denote FJ to be

the subcone of Ω0 generated by the edges given by the set J . For a vector z, define its set G to be

conformed by all sets J ⊆ {1, 2, . . . ,m} such that Π(z|Ω0) = Π(z|L(VJ)) ∈ FJ . Suppose J is a

non-empty set such that VJ is a linearly dependent set and J ∈ G. Then, there exists J∗ ⊂ J such

that VJ∗ is a linearly independent set, L(VJ∗) = L(VJ), and J∗ ∈ G.

All different concepts that have been defined at the sample level, can be analogously defined

at the superpopulation level. For instance, let Gµ be the set of all subsets J ⊆ {1, . . . ,m} such

that Π(zµ|Ω0
µ) = Π(zµ|L(Vµ,J)) ∈ Fµ,J , where zµ, Ω0

µ, Vµ,J and Fµ,J are the analogous ver-

sions of z̃s, Ω0
s, Vs,J and F s,J obtained by substituting ỹs and W s by µ = (µ1, . . . , µD) and

W µ = diag(r1, r2, . . . , rD). Moreover, necessary and sufficient conditions as in Equation 3.9 can

be analogously established to characterize the vector ρµ to be the projection onto Ω0
µ.

Recall the set G̃s could vary for different samples. Also, note that highly variable small samples

are likely to choose sets J ∈ G̃s that are not chosen in the ‘asymptotic true’ Gµ. However, as the
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sample size increases, these wrong choices are less likely to occur since the sample domain means

get closer to the limiting domain means. This intuitive idea is formalized in Theorem 3.2, which

states that sets that are not in Gµ have an asymptotic zero probability of being chosen by the sample.

Theorem 3.2. Consider any set J ⊆ {1, 2, . . . ,m} such that J /∈ Gµ. Then, P (J ∈ G̃s) = O(n−1N ).

Theorem 3.3 contains the main result of this paper, which permits the use of the constrained

estimator θ̃s to make inference of the population domain means. This generalizes Theorem 2

of Wu et al. (2016), where only monotone restrictions were considered. Note the presence of

a bias term B on the mean of the asymptotic normal distribution. We conjecture that this term

arises as a consequence of using the estimated variance V̂ (θ̃sd,J), solely based on the J chosen

by the observed sample, which does not always converge to the asymptotic variance of θ̃sd . This

undesirable situation occurs when there is more than one set J ∈ Gµ such that their corresponding

edges in Vµ,J span different linear spaces, or equivalently, that the projection onto the polar cone

Ω0
µ belongs to the intersection of those different linear spaces. In particular, note that the condition

Aµ > 0 means that the vector zµ is strictly inside the constraint cone Ωµ, and then, there is no set

J 6= ∅ such that Π(zµ|L(Vµ,J)) = 0. Thus, in this case, the bias term vanishes.

Theorem 3.3. Suppose that µ satisfiesAµ ≥ 0. Consider any set J such that J ∈ G̃s. Then

V̂ (θ̃sd,J)−1/2(θ̃sd − yUd)
L→ N (B, 1),

for any d = 1, 2, . . . , D, where B = O(
√

nN
N

) is a bias term that vanishes whenAµ > 0.

Note that Theorem 3.3 relies on the fact that the assumed shape constraints hold for the vector of

limiting domain means µ instead of for the vector of population domain means yU . Nevertheless,

in the next section, we show through simulations that the constrained estimator improves both

estimation and variability when the population domains are approximately close to the assumed

shape, in comparison with unconstrained estimators.
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3.4 Performance of constrained estimator

3.4.1 Simulations

We run simulation experiments to measure the performance of the proposed methodology to

carry out estimation and inference of population domain means. Given a pair of natural numbers

D1 and D2, we generate the limiting domain means µd from the monotone bivariate function

µ(x1, x2) given by

µ(x1, x2) =
√

1 + 4x1/D1 +
4 exp(0.5 + 2x2/D2)

1 + exp(0.5 + 2x2/D2)
.

The µd’s are created by evaluating µ(x1, x2) at every combination of x1 = 1, 2, . . . , D1 and x2 =

1, 2, . . . , D2, producing a total number of domains equal to D = D1D2. We set D1 = 6 and

D2 = 4. Note that although the function µ(x1, x2) produces a matrix rather than a vector of

domain means, it can be vectorized in order to represent the limiting domain means as the vector

µ. For each domain d, we generate its Nd = N/D = 400 elements by adding i.i.d. normal

distributed noise with mean 0 and variance σ2 to the µd. Once the elements of the population

have been simulated, then the population domain means yU are computed. The population domain

means used for simulations when σ = 1 are displayed in Figure 3.2. Observe that these domain

means are reasonably (not strictly) monotone with respect to x1 and x2.

Samples are drawn from a stratified sampling design without replacement, with 4 strata that cut

across the D domains. Strata are constructed using an auxiliary variable ν that is correlated with

the variable of interest y. The vector ν is created by adding i.i.d. standard normally distributed

noise to σd/D, for each element in domain d. Then, stratum membership is assigned by ranking

the vector ν, and creating 4 blocks of N/4 = 2400 elements each based on such ranks. To make

the design informative, we sample nN = 480 elements divided across strata in (60, 120, 120, 180).

This probability sampling design is similar to the one described in Wu et al. (2016).

We consider 4 different scenarios obtained from the combination of two possible types of shape

constraints and σ = 1 or 2. The first type of constraints assumes the population domain means
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Figure 3.2: Population domain means for simulations when σ = 1.

are monotone increasing with respect to both x1 and x2 (double monotone), while the second type

of constraints assumes monotonicity only with respect to x1 (only x1 monotone). Moreover, for

a fixed σ, the exact same population is considered for the two possible types of constraints. For

each scenario, the unconstrained ỹs and constrained θ̃s estimates are computed along with their

linearization-based variance estimates (Equation 3.13). Constrained estimates are computed using

the CPA, and their variance estimates are computed by relying on the sample-selected set J ∈ G̃s.

In addition, 95% Wald confidence intervals based on the normal distribution are constructed for

both estimators. The lengths of these confidence intervals are omitted because they have the same

behavior (up to the constant 1.96) as the variance estimates.

To measure the precision of ỹs and θ̃s as estimators of the population domain means yU , we

consider the Weighted Mean Squared Error (WMSE) given by

WMSE(ϕ̃s) = E
[
(ϕ̃s − yU)>W U(ϕ̃s − yU)

]
,

where ϕ̃s could be either the unconstrained or constrained estimator, W U is the diagonal matrix

with elements Nd/N , d = 1, . . . , D.The WMSE values are approximated by simulations.
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Simulation results are summarized in Figures 3.3 - 3.6, and are based on R = 10000 replica-

tions. These display the 24 domains divided in groups of 6, where each is assumed to be monotone.

For the double monotone scenario, similar plots with groups of 4 monotone domains each can be

also pictured. From the fitting one sample plots, it can be seen that the constrained estimates can

be exactly equal to the unconstrained estimates for some domains. In those cases, their variance

estimates are also equal. Also, confidence intervals for the constrained estimator tend to be tighter

in comparison with those for the unconstrained estimator. On average, the constrained estimator

behaves slightly differently than the population domain means, due to their non-strict monotonic-

ity. As an advantage, the percentiles for the constrained estimator are narrower, demonstrating the

distribution of the proposed estimator is tighter than the distribution of the unconstrained estima-

tor. For small values of σ, unconstrained estimates are closer to satisfy the assumed restrictions,

which leads to small improvements on the constrained estimator over the unconstrained. In con-

trast, shape assumptions tend to be more severely violated in unconstrained estimates for larger

values of σ, allowing the proposed estimator to gain much more efficiency on these cases. This

latter property can be noted by observing that the constrained estimator percentile band gets farther

away from the unconstrained estimator band as σ increases.

In terms of variability, the constrained estimator has smaller variance of the two estimators.

However, on average, it gets overestimated by its corresponding linearization-based variance esti-

mate. This might be a direct consequence of estimating the variance based only on the set J ∈ G̃s,

which is actually a random set that might change from sample to sample. In contrast, the variance

estimate of the unconstrained estimator underestimates the true variance, on average. Although it

would be ideal to improve both of these variance estimates, we consider it to be less alarming to

produce greater variance estimates, at least for inference purposes. In addition, confidence inter-

vals for both estimators demonstrate a similar good coverage rate when σ = 1, meanwhile such

coverage gets slightly improved by the constrained estimator when σ = 2.

Table 3.1 shows that the constrained estimator is more precise on average than the uncon-

strained estimator, even though the population domain means are not strictly monotone with re-
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Figure 3.3: Plots of simulation results for the unconstrained and constrained estimators under the double
monotone scenario with σ = 1, based on 10000 replications.
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Figure 3.4: Plots of simulation results for the unconstrained and constrained estimators under the only x1
monotone scenario with σ = 1, based on 10000 replications.
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Figure 3.5: Plots of simulation results for the unconstrained and constrained estimators under the double
monotone scenario with σ = 2, based on 10000 replications.
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Figure 3.6: Plots of simulation results for the unconstrained and constrained estimators under the only x1
monotone scenario with σ = 2, based on 10000 replications.
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spect to x1 and x2. Moreover, the precision of the constrained estimator gets improved when the

monotonicity with respect to the two variables is assumed, instead of only with respect to x1. This

can be translated on stating that the precision of the proposed estimator is benefited by taking into

account the most appropriate shape assumptions.

Table 3.1: WMSE values.

Unconstrained Only x1 monotone Double monotone

σ = 1 0.0593 0.0362 0.0298
σ = 2 0.2384 0.1175 0.0832

3.4.2 Replication methods for variance estimation

Recently, it is more common that large-scale surveys make use of replication-based methods

for variance estimation. Some examples of such surveys are the last editions of the NHANES and

the National Survey of College Graduates (NSCG), the latter sponsored by the National Science

Foundation (NSF). To study the performance of replication-based variance estimators under the

proposed constrained methodology, we carry out simulation studies based on the delete-a-group

Jackknife (DAGJK) variance estimator proposed by Kott (2001).

We perform replication-based simulation experiments using the setting described in Section

4.1. To compute the DAGJK variance estimator, we first randomly create G equal-sized groups

within each of the 4 strata. Then, for each possible g, we delete the g-th group in each of the strata,

adjust the remaining weights by w(g)
k = ( G

G−1)wk, where wk = π−1k ; and compute the replicate

constrained estimate θ̃
(g)

s using the adjusted weights. Hence, the DAGJK variance estimate of θ̃sd ,

V̂JK(θ̃sd), is obtained by calculating

V̂JK(θ̃sd) =
G− 1

G

G∑
g=1

(
θ̃(g)sd
− θ̃sd

)2
.
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Analogously, a replication-based variance estimator of ỹsd can be derived by substituting the role

of θ̃s by ỹs.

Our simulations consider only the double monotone scenario, with σ = 1 or 2, and G = 10, 20

or 30. Moreover, the sample size is set to either nN = 480 or nN = 960, where the latter case

is obtained by doubling the original sample size in each strata. Figures 3.7 - 3.10 contain our

replication-based simulation results based on 10000 replications. From these, it can be noted that

the DAGJK estimates tend to overestimate the variance of the unconstrained estimator, mean-

while the linearization-based variance estimate has an underestimating behavior. In contrast, both

replication-based and linearization-based variance estimates of the constrained estimator overesti-

mate the true variance. Moreover, note that as the number of groupsG increases, DAGJK estimates

tend to be greater, especially for small values of σ. Such increments on DAGJK estimates have

the direct consequence of increasing the coverage rate as G gets larger. In addition, the coverage

rate for both estimators is improved (closer to 0.95) when the sample size is increased. As a gen-

eral conclusion in terms of the constrained estimator, DAGJK variance estimators have a similar

behavior than linearization-based estimators. Thus, it seems appropriate to adapt the proposed

constrained methodology to allow the use of replication-based variance estimation methods.
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Figure 3.7: Variance estimation (top) and coverage rate (bottom) simulation results based on lineariza-
tion and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the double
monotone scenario with nN = 480 and σ = 1.
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Figure 3.8: Variance estimation (top) and coverage rate (bottom) simulation results based on lineariza-
tion and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the double
monotone scenario with nN = 480 and σ = 2.
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Figure 3.9: Variance estimation (top) and coverage rate (bottom) simulation results based on lineariza-
tion and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the double
monotone scenario with nN = 960 and σ = 1.
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Figure 3.10: Variance estimation (top) and coverage rate (bottom) simulation results based on lineariza-
tion and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the double
monotone scenario with nN = 960 and σ = 2.
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3.5 Application of constrained estimator to NSCG 2015
To demonstrate the utility of the proposed constrained methodology in real survey data, we con-

sider the 2015 National Survey of College Graduates (NSCG), which is sponsored by the National

Center for Science and Engineering Statistics (NCSES) within the National Science Foundation,

and is conducted by the U.S. Census Bureau. The 2015 NSCG data and documentation are openly

available on the NSF website (www.nsf.gov/statistics/srvygrads). The purpose of the NSCG is to

provide data on the characteristics of U.S. college graduates, with particular focus on those in the

science and engineering workforce.

We set the total earned income before deductions in previous year (2014) to be the variable of

interest (denoted by EARN). To avoid the high skewness of this variable, a log transformation is

performed. Moreover, we take into account only those who reported a positive earning amount.

A total of 76, 389 observations was considered in our analysis. In addition, 252 domains are

considered. These are determined by the cross-classification of four predictor variables. Such

variables and their assumed constraints are:

• Time since highest degree. This ordinal variable defines the year category of award of

highest degree. The period from 2015 to 1959 is divided into 9 categories, where the first 8

categories (denoted by 1-8) are of 6 years each, and the last category (denoted by 9) is of 9

years. Constraint: given the other predictors, the average total earned income increases with

respect to the time since highest degree from year category 1 to 7. No assumption is made

with respect to categories 8 and 9, as those people are likely to be retired (at least 42 years

since their highest degree).

• Field category. This nominal variable defines the field of study for highest degree, based

on a major group categorization provided within the 2015 NSCG. The 7 categories for this

variable are:

1. Computer and mathematical sciences,

2. Biological, agricultural and environmental life sciences,
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3. Physical and related sciences,

4. Social and related sciences,

5. Engineering,

6. S&E-related fields,

7. Non-S&E fields.

Constraint: given the other predictors, the average total earned income for each of the fields

2 and 4 is less than for the fields 1, 3 and 5. No assumption is made with respect to cate-

gories 6 and 7, as they cover many fields for which a reasonable order restriction might be

complicated to impose.

• Postgrad. This binary variable defines whether the highest degree is of the postgraduate

level (YES) or of the Bachelor’s level (NO). Constraint: given the other predictors, the

average total earned income is higher for those with postgraduate studies.

• Supervise. This binary variable defines whether supervising others is a responsibility in the

principal job (YES) or not (NO). Constraint: given the other predictors, the average total

earned income is higher for those who supervise others in their principal job.

Figures 3.11 and 3.12 contain the unconstrained and constrained estimates for each of the four

groups obtained from the cross-classification of the Postgrad and Supervise binary variables. Note

that since the assumed constraints constitute a partial ordering, then the constrained estimates are

obtained by pooling domains. These figures show that the constrained estimator has a smoother

behavior than the unconstrained. Moreover, it tends to correct for the large spike domains produced

by the unconstrained estimator, which are usually a consequence of a very small sample size.

Standard errors for both unconstrained and constrained estimates are computed using the 2015

NSCG replicate weights, which are based on Successive Difference (Opsomer et al., 2016) and

Jackknife replication methods. Both the replicate weights and adjustment factors were provided
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(d) Supervise=NO (constrained).

Figure 3.11: Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data,
given that Postgrad=NO is fixed.
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(d) Supervise=NO (constrained).

Figure 3.12: Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data,
given that Postgrad=YES is fixed.
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by the Program Director of the Human Resources Statistics Program from the NCSES and are

available upon request.

Figure 3.13 displays the ratio of these estimates for each of the 252 domains. Note that in the

vast majority of cases, the standard error estimates of the proposed estimator are lower than those

for the unconstrained estimator, with improvements of as much as 7 times smaller. However, there

are some cases where the opposite behavior occurs. These are explored in Figure 3.14, which

shows plots of two different slices: one with respect to the Time since highest degree variable and

other with respect to Field category. These plots include unconstrained and constrained estimates,

Wald confidence intervals and sample sizes. Further, each of these two slices contain one of the

two domains that can be easily identified in Figure 3.13 to have the smallest ratios. The first of

these domains is displayed in Figure 3.14a, indexed by 5. Here, the confidence interval is narrower

for unconstrained estimates, which is as a direct consequence of having smaller standard deviation

estimates. Note that the unconstrained estimates for the domains indexed by 5 and 6 violate the

monotonicity assumption, and thus, are being pooled to obtain the constrained estimates. In con-

trast, Figure 3.14c shows that the samples sizes on these domains are considerably large, meaning

that the noticed violation might be in fact true. Therefore, as the imposed restrictions are enforcing

these two domains to get pooled, then domain indexed by 5 ends up producing a larger standard

deviation on its constrained estimate. The second domain where unconstrained estimates produce

smaller standard deviation estimates is displayed in Figure 3.14b, indexed by 1. Here, this domain

is being pooled with its consecutive domain to obtain the constrained estimate. However, as these

two domains have very low sample sizes (Figure 3.14d), they produce a constrained estimate that

is based on a very small ‘effective’ sample size. Therefore, both the unconstrained and constrained

estimates might be considered as unreliable, given the small sample circumstances.
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Figure 3.13: Ratio of the estimated standard errors of unconstrained estimates over those for constrained
estimates for the 2015 NSCG data.
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and sample sizes (bottom) for the 2015 NSCG data, given that Postgrad=YES and Supervise=YES.
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Chapter 4

bcgam: An R package for Bayesian Constrained

Generalised Additive Models

4.1 Introduction
A probability distribution is a member of the exponential family if it can be written

p(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
. (4.1)

where the parameter of interest θ depends on the expected value of y, φ is a scale parameter, and b

and c are any arbitrary functions. Some of the most known members of the exponential family are:

the gaussian distribution with b(θ) = θ2/2 and c(y, φ) = −{y2φ + log(2π/φ)}/2, the binomial

distribution with b(θ) = log(1 + eθ) and c(y, φ) = 0, and the Poisson distribution with b(θ) = eθ

and c(y, φ) = − log(y!). Note that both the binomial and Poisson distributions do not require a

scale parameter; i.e., φ = 1.

Consider the class of generalised partial linear models with n independent observations from

a distribution member of the exponential family described in Equation 4.1, where the mean value

E(yi) = µi is related to certain predictor variables through a link function g(µi) = ηi. Following

Meyer et al. (2011), assume the additive model for ηi, i = 1, . . . , n, given by

ηi = f1(x1i) + · · ·+ fL(xLi) + γ>zi, (4.2)

where xli is the i-th observation of the l-th continuous predictor variable to be modelled non-

parametrically, γ is a parameter vector, and zi is a vector of covariates to be modelled parametri-

cally. The functions fl are modelled nonparametrically, under smoothness assumptions and shape

constraints such as monotonicity and/or convexity that are imposed through shape-restricted re-
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gression splines. Meyer et al. (2011) considered two types of shape-restricted splines: quadratic

I-splines (Ramsay, 1988) and cubic C-splines (Meyer, 2008). The former spline basis functions

have the property that the space of smooth piecewise quadratic functions is spanned by the set

formed by quadratic I-spline basis functions and the constant function. Further, any linear combi-

nation of such functions is non-decreasing if and only if the coefficients on the basis functions are

non-negative. Similarly, the space of smooth of piecewise cubic basis functions is spanned by the

set formed by cubic C-spline basis functions, the constant function, and the identity function. Also,

any linear combination of such functions is convex if and only if the coefficients on the basis func-

tions are non-negative. Figures 4.1a and 4.1b contain examples of quadratic I-splines and cubic

C-splines, respectively; obtained using 5 equally spaced knots and n = 50 equally spaced obser-

vations in the unit interval. In addition, basis functions for monotonicity and convexity restrictions

may also be constructed (Meyer, 2008). Figure 4.1c contains an example of basis functions that

together with the constant function, span the space of piecewise cubic spline functions (with the

given knots). Moreover, these basis functions have a similar property than I-splines and C-splines:

any linear combination of them is decreasing and concave if and only if the coefficients on the basis

functions are non-negative. Hence, each restricted function fl can be expressed by a non-negative

linear combination of one of the sets of spline basis functions described before.

Consider any shape-restricted function fl. Given a set of kl interior knots, let sl1(x), . . . , slml(x)

be the spline basis functions that correspond to the assumed shape on fl, whereml is the total num-

ber of basis functions. Given the vector of data points xl = (xl1, . . . , xln)>, denote δl1, . . . , δlml

to be the spline basis vectors, where the i-th element of δlj is slj(xli), for i = 1, . . . , n and

j = 1, . . . ,ml. Meyer et al. (2011) proposed to approximate η = (η1, . . . , ηn)> in Equation

4.2 by
m1∑
j=1

β1jδ1j + · · ·+
mL∑
j=1

βLjδLj +

p∑
j=1

αjνj, where βlj ≥ 0 for all l, j; (4.3)

where the νj are the predictor variables to be parametrically modelled and the one vector. If there

is any function fl that is assumed to be either convex or concave, then the predictor variable xl is

also one of the νj .
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Figure 4.1: Shape-restricted regression splines. Knots are represented by the "X" marks, and dots represent
the basis vectors. (a) Quadratic I-spline basis functions. (b) Cubic C-spline basis functions. (c) Spline basis
functions for decreasing and concave restrictions.

Meyer (2013a) developed a frequentist methodology to fit the model in Equation 4.3 using a

single cone projection. Such methodology has been implemented into the cgam package (Meyer

and Liao, 2017) in R (R Core Team, 2018). Alternatively, a Bayesian framework for estimation

and inference of the partial linear model in Equation 4.3 has been proposed by Meyer et al. (2011).

Here, gamma prior distributions are assumed on the β coefficients with hyperparameters cl1 (shape)

and cl2 (scale). These hyperparameters are chosen in such a way that the mean is small and the

variance is large, making the prior distribution to be close to non-informative. In addition, normal

priors with mean zero and a large variance M are assumed for the α coefficients.

The package bcgam (Oliva-Aviles and Meyer, 2018) in R implements the Bayesian approach

mentioned above, and allows users to easily set up their models of interest and to select the type of

shape constraints on each of the variables to be modelled non-parametrically. Also, it offers three

options of generalised linear models: the gaussian model with constant variance σ2, the binomial

model, and the Poisson model. The package bcgam is now available from the Comprehensive R

Archive Network (CRAN) at https://cran.r-project.org/package=bcgam.

In Section 4.2, we explain the fundamental dependencies of the bcgam package and introduce

its main functions. Further, Section 4.3 contains an illustrative analysis of the ’duncan’ data set

using these functions. The ’duncan’ data is provided within the bcgam package.
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4.2 Dependencies and main routines

4.2.1 NIMBLE dependency

As described in section 4.1, the bcgam package fits a Bayesian hierarchical generalised ad-

ditive models. To set up such hierarchical Bayesian model and run Markov Chain Monte Carlo

(MCMC) algorithms, the bcgam package depends on the NIMBLE system (NIMBLE Develop-

ment Team, 2018). NIMBLE is a system for building and sharing analysis methods for statistical

models, especially for hierarchical models and computationally-intensive methods. Although it is

built in R, it gains speed by compiling models and algorithms in C++. NIMBLE also provides of

a system for using models written in the BUGS model language as programmable objects in R.

Hence, the bcgam package takes advantage of the convenient BUGS language to write hierarchi-

cal models and the efficient speed provided by C++, without actually requiring the user to neither

know nor install these softwares. The only system requirement to appropriately install bcgam in

R is the previous installation of Rtools for Windows or Xcode for Mac OS X. In fact, this is

a system requirement for the correct installation of NIMBLE in R. The NIMBLE version 0.6-9 is

available from CRAN, and is installed along with the package bcgam.

4.2.2 The primary function: bcgam

The function bcgam contains the primary routine in the bcgam package, which allows users

to conveniently specify their generalised partial additive model of interest. The model specification

syntax of this function is very similar to what is used in the cgam function of the cgam package. To

fully specify a model, users might determine shape-restrictions on the non-parametrically modelled

predictors, and also, add optional parametrically modelled covariates. In addition, the type of

generalised additive model, the length of the MCMC, and the burn-in value of the MCMC might

be also determined by the user through within this function.

To specify the shape constraint of a nonparametrically modelled predictor, any of the following

auxiliary functions migth be used: sm.incr, sm.decr, sm.conv, sm.conc,
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sm.incr.conv, sm.incr.conc, sm.decr.conv, and sm.decr.conc. These functions

do not actually create the splines basis vectors. Instead, they act as indicators of which knots

and spline basis vectors will be considered for each nonparametrically modelled variable. For

illustration, consider the simulated vectors x1,x2, z,y obtained from the following code in R.

Note that both z and y are binary variables.

R> n<−50

R> x1<− ( 1 : n / n )^{1 / 3}

R> x2<− l o g ( 1 : n / n )

R> z<−as . f a c t o r ( rbinom ( n , 1 , 0 . 6 ) )

R> e t a<−x1+x2 +0 .2 ∗ as . numeric ( z )+ rnorm ( n , sd = 1 . 5 )

R> mu<−exp ( e t a ) / (1+ exp ( e t a ) )

R> y<− (mu< 0 . 6 )

Suppose that y is the response variable, so that fitting a binomial additive model is of interest.

Also, suppose that the predictor variables x1 and x2 are assumed to be increasing and convex with

respect to the systematic component η (log odds), respectively; and that z wants to be included in

the model as a parametrically modelled covariate. The following lines of code can be used to fit

such a model using the bcgam function, and to save the output in an ‘bcgam’ class object named

bcgam.fit.

R> bcgam . f i t <− bcgam ( y~sm . i n c r ( x1 , k n o t s =c ( 0 . 4 , 0 . 6 , 0 . 8 ) ) +

R> sm . conv ( x2 , numknots =5)+ z , f a mi ly =" b i n o m i a l " , n loop =10000)

Note the specification of the arguments knots and numknots inside the functions sm.incr

and sm.conv. These indicate whether the exact knots or the number of knots are being specified

by the user, respectively. When none of these commands are specified, then 4+n1/7 equal quantile

knots are created. In addition, note that the family argument determines the type of generalised

model, and the nloop argument indicates the length of the MCMC.
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4.2.3 Generic functions to summarize results

Five generic functions are provided in the bcgam package to summarize output from a bcgam

class object. These are: print.bcgam, summary.bcgam, predict.bcgam, plot.bcgam

and persp.bcgam.

print.bcgam shows the posterior means of the α coefficients. As it can be noticed in the

output below, the posterior mean of predictor x2 is also shown, even when it is being modelled

nonparametrically. This happens since x2 is being constrained to be convex with respect to η, so

the identity function has to be included among the parametrically modelled variables.

R> p r i n t ( bcgam . f i t )

Cal l :

bcgam ( formula = y ~ sm . i n c r ( x1 , k n o t s = c ( 0 . 4 , 0 . 6 , 0 . 8 ) ) +

sm . conv ( x2 , numknots = 5) + z , f a mi ly = " b i n o m i a l " )

C o e f f i c i e n t s :

( I n t e r c e p t ) z1 x2

−0.9884950 −0.2907676 −2.2308344

The summary.bcgam function compute and print summary statistics based on the posterior

distributions of each of the α coefficients. Posterior means, standard errors, medians and 95%

credible bounds are shown as part of the output of this generic function. The output below shows

the summary obtained from the bcgam.fit object computed before.

R> summary ( bcgam . f i t )

Cal l :

bcgam ( formula = y ~ sm . i n c r ( x1 , k n o t s = c ( 0 . 4 , 0 . 6 , 0 . 8 ) ) +

sm . conv ( x2 , numknots = 5) + z , f a mi ly = " b i n o m i a l " )

C o e f f i c i e n t s :

Mean Std . E r r o r 2.5% Median 97.5%

( I n t e r c e p t ) −0.9884950 0 .7186822 −2.429825 −0.9611992 0 .3342667

z1 −0.2907676 0 .6914935 −1.641616 −0.2632538 1 .0199202

x2 −2.2308344 0 .7839453 −3.906400 −2.1856031 −0.8717961
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Prediction of new observations can be performed using the predict.bcgam function by pro-

viding a data frame with the observations of interest. For instance, suppose that we want to com-

pute a prediction of the estimated probability at x1 = 0.5, x2 = −1 and z = 0. The following code

shows an example of how to get such prediction using the generic function predict.bcgam.

Note that the posterior standard error and credible interval bounds (95% by default) are also part

of the output of this function.

R> p r e d i c t ( bcgam . f i t , newdata =data . frame ( x1 = 0 . 5 , x2=−1, z=" 0 " ) ,

p a r a m e t e r ="mu" )

$ c r e d . mean

[ 1 ] 0 .6984425

$ c r e d . sd

[ 1 ] 0 .1256429

$ c r e d . lower

[ 1 ] 0 .43031

$ c r e d . upper

[ 1 ] 0 .9022911

$y . l a b

[ 1 ] " E s t i m a t e d p r o b a b i l i t y "

The functions plot.bcgam and persp.bcgam create 2D and 3D plots of predicted values

and interval estimates based on an object of the ’bcgam’ class, respectively. To use these functions,

nonparametric modelled predictors need to be specified (1 for a plot, 2 for a perspective). The

rest of the continuous variables are evaluated at their largest value that is smaller than or equal

to their median value. For the case of categorical covariates, these are evaluated at their mode.

Figure 4.2 contains a plot and a perspective created by applying these two generic functions to the

bcgam.fit object. The code is shown below.

R> p l o t ( bcgam . f i t , x2 , p a r a m e t e r ="mu" , lwd =2)

R> persp ( bcgam . f i t , x1 , x2 , t h e t a =−60, p a r a m e t e r =" e t a " )
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Figure 4.2: 2D and 3D plots created using the functions plot.bcgam and persp.bcgam with the
bcgam.fit object, respectively.

4.3 Application to ‘duncan’ data
The ‘duncan’ data set provided within the bcgam package contains information about the

prestige and other characteristics of 45 U.S. occupations in 1950 (Duncan, 1961, p. 119). The

variables included in this data set are: prestige, percent of raters in NORC study (at the Univer-

sity of Chicago) rating occupation as excellent or good in prestige; income, percent of males in

occupation earning $3500 or more in 1950; type, a categorical variable for type of occupation

(‘wc’, white-collar; ‘prof’, professional and managerial; ‘bc’, blue-collar); and education, percent

of males in occupation in 1950 who where high-school graduates.

Suppose it is of interest to study the relationship between the variable prestige and the rest of

them. Further, suppose that it is reasonable to assume that prestige tends to increase with income,

given a type of occupation. Hence, we decide to constraint the variable income to be smooth and

increasing with respect to prestige, and to include the categorical variable for type of occupation as

a parametrically modelled covariate. Using the function bcgam, this is done using the following

code:
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R> duncan . f i t <−bcgam ( p r e s t i g e ~sm . i n c r ( income )+ type ,

data=duncan , n loop =100000)

As there is no specification on the number of knots to be used for the variable income, then 5

equal quantile knots are considered (by default) by the model. Furthermore, a MCMC algorithm

of length 100,000 is specified, where the first 10,000 runs are burned-in (by default).

Before making any kind of conclusion from the fitted model, we would like to check whether

the generated chains are mixing appropriately. For illustration, Figure 4.3 contains the trace plot

of the chain that corresponds to the coefficient related to the ‘prof’ dummy variable (denoted by

αprof ). Using the bcgam output, this can be done by accessing to the complete chains (after burn-

in) of the coefficients on the parametrically modelled covariates, which are obtained using the

command duncan.fit$alpha.sims. As this plot does not show evidence of lack of mixing,

then we can proceed to make conclusions based on the fitted model.

0 20000 40000 60000 80000

20
30

40
50

60

MCMC for prof coefficient

Index

Figure 4.3: Trace plot of αprof coefficient.

Table 4.1 contains the summary of results of the coefficients that correspond to the parametri-

cally modelled covariates, based on the fitted model. In this model, the baseline type of occupation

is ‘bc’, which implies that the intercept parameter explains the effect of such occupation category.
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Figure 4.4 shows the fitted model for the blue-collar type of occupation along with its 95%

credible interval. Moreover, Figure 4.5 contains the fitted models for each type of occupation.

Note that these fitted models consist on parallel curves, which is expected given the design of

our model. For illustration purposes, suppose that a follow-up question that arises from these

fitted models is whether the effect of the ‘wc’ occupation type is different than the effect of the

‘bc’ occupation type, given a certain prestige value. This question is equivalent to whether the

coefficient αwc is expected to be different than zero or not. From Table 4.1, a 95% credible interval

for this coefficient is given by (−16.36, 6.89). Therefore, there is not enough evidence to conclude

that the effect of the ‘wc’ occupation type is different than the effect of the ‘bc’ occupation type.
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Figure 4.4: Fitted model and 95% credible bounds for blue-collar occupation.
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Table 4.1: Results summary of α coefficients, based on the fitted model.

Coefficient Mean S.E. 2.5% 97.5%

Intercept 34.79 3.04 28.77 40.73
αprof 33.87 5.08 24.03 43.93
αwc -4.90 5.89 -16.36 6.89
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Figure 4.5: Fitted models for all types of occupation.
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Chapter 5

Conclusion and Future Work

Merging shape-restricted regression techniques into survey estimation and inference has been

shown to be a promising approach that aims to improve the quality of population estimates, in

comparison with the most common used direct estimators. The paid price for these improvements

is that they rely on prior shape constraints, such as qualitative or order assumptions, which arise

often naturally on the survey data.

In this dissertation, we proposed the Cone Information Criterion for Survey data (CICs) as a

data-driven criterion for choosing between the constrained and the unconstrained domain mean

estimators. We showed that the CICs is consistently selecting the correct estimator based on the

order of the limiting domain means µ. Also, the CICs also shares similar characteristics with other

information criteria such as the AIC and the BIC, as it balances the deviation of the constrained

estimator and its complexity. In addition, we proposed a methodology to estimate domain means

that takes into account both design-based estimators and reasonable shape restrictions, and it was

shown to largely improve their estimation and variability, especially on small domains. As this new

methodology covers a broad range of shape restrictions beyond univariate monotonicity, it aims to

jointly take advantage of several types of qualitative information that arises naturally for survey

data. We also proposed a design-based variance estimation method of the estimator. However,

as this estimation method depends solely on the half-space of the cone where the constrained

estimator lands, then it tends to overestimate the variance. Replication-based methods are shown

to behave similarly. Hence, further research might be carried out to develop variance estimation

methods that do not ignore the randomness associated to the half-space where the constrained

estimator could land. From the computational side, our proposed methodology is based on the

Cone Projection Algorithm which is efficiently implemented in the package coneproj. Thus, we

present this constrained methodology as an easy-to-implement attractive alternative for small area

estimation. Finally, the package bcgam in R is developed to fit constrained generalised additive
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models using a Bayesian approach, outside of the survey context. This package depends on the

nimble system to efficiently run the MCMC algorithm that computes the posterior distribution.

Further, the main routines of the bcgam package allow users to easily specify models, shape

restrictions on nonparametrically modeled variables, and also, to obtain numerical and graphical

output.

Our presented shape-constrained methodologies for survey data can be extended to other sce-

narios of interest. For instance, the trace term in the CICs could be multiplied by any positive

constant C (instead of C = 2, as proposed) so that the consistency of the CICs remains true. The

larger the value of C would imply a larger penalization of the constrained estimator complexity.

Since we are able to control the amount of such penalization by changing the value of C, one ques-

tion might be how to choose the optimum value C. In addition, the constrained estimator proposed

in Chapter 3 might be used for missing data. Our methodology has the potential of ‘bounding’

domains with no observations, which will provide some knowledge (instead of none) regard those

domain means.

Shape selection tools for survey data might also be developed from this dissertation. By com-

bining both the proposed CICs and constrained estimator, the CICs might be extended to other

shape constraints beyond monotonicity, so that it can be used to choose among many other types

of shapes on the survey context. An immediate consequence of this would be the creation of

a sample-based technique that chooses the most appropriate amount of relaxation when relaxed

monotone assumptions are considered, such as the kernel bandwidth h shown in Section 3.2.

Methodologies for survey data that are analogous to partial additive linear models with shape

restrictions might be also developed from this dissertation, such as model-assisted based estima-

tors. Further, if population-level information is available, then a model-assisted based estimator

that makes use of our proposed methodology can be developed. Under partial orderings, such esti-

mator would be equivalent to a poststratified estimator (Särndal et al., 1992, Ch. 7.6) that uses the

sample-selected pooling as the post strata. An R package that implements the proposed method-
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ologies for survey data and have the capability of including future ones is of high priority, since it

would allow practitioners to make use of these novel and useful techniques.
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Appendix A

Supplemental materials for Chapter 2

The first part of this appendix contains all lemmas (with proofs) used to prove the theoretical

results discussed in Chapter 2. Complete proofs of these results are included at the end of this

appendix.

Lemma A.1. E[(ŷsi:j − yUi:j)
4] = o(n−1N ), for any i ≤ j, i, j = 1, 2, . . . , D.

Proof of Lemma 1. For simplicity of notation and without loss of generality, we will use s instead

of si:j and U instead of Ui:j . Note that

nNE[(ŷs − yU)4] =
nN
N4

∑
k∈U

∑
l∈U

y2ky
2
l

π2
kπ

2
l

E[(Ik − πk)2(Il − πl)2]

+
nN
N4

∑
k∈U

∑
p,q∈U :p 6=q

y2kypyq
π2
kπpπq

E[(Ik − πk)2(Ip − πp)(Iq − πq)]

+
nN
N4

∑
k,l∈U :k 6=l

∑
p,q∈U :p 6=q

ykylypyq
πkπlπpπq

E[(Ik − πk)(Il − πl)(Ip − πp)(Iq − πq)]

= c1N + c2N + c3N .

We will now prove that c1N , c2N , c3N converge to zero as N goes to infinity. For c1N , we have that

|c1N | ≤
nN
N4

∑
k∈U

y4k
π4
k

E
[
(Ik − πk)4

]
+
nN
N4

∑
(k,l)∈D2,N

y2ky
2
l

π2
kπ

2
l

E
[
(Ik − πk)2(Il − πl)2

]
≤ nN
Nλ4

∑
k∈U y

4
k

N

(
1

N2
+

1

N

)
,

where the term to the right goes to zero from Assumptions (A2)-(A3). Further,
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|c2N | ≤
2nN
N4

∑
(k,p)∈D2,N

y3kyp
π3
kπp
|E[(Ik − πk)3(Ip − πp)]|

+
nN
N4

∑
(k,p,q)∈D3,N

y2kypyq
πkπpπq

|E[(Ik − πk)2(Ip − πp)(Iq − πq)]|

≤ nN
Nλ4

∑
k∈U y

4
k

N

(
2

N
+ max

(k,p,q)∈D3,N

|E[(Ik − πk)2(Ip − πp)(Iq − πq)]|
)
,

which converges to zero by Assumption (A7). Finally, note that

|c3N | ≤
2nN
N4

∑
(k,l)∈D2,N

y2ky
2
l

π2
kπ

2
l

|E[(Ik − πk)2(Il − πl)2]|

+
2nN
N4

∑
(k,l,p)∈D3,N

y2kylyq
π2
kπlπq

|E[(Ik − πk)2(Il − πl)(Iq − πq)]|

+
nN
N4

∑
(k,l,p,q)∈D4,N

ykylypyq
πkπlπpπq

|E[(Ik − πk)(Il − πl)(Ip − πp)(Iq − πq)]|

≤ 1

λ4

∑
k∈U y

4
k

N

(
2nN
N2

+
2nN
N

max
(k,p,q)∈D3,N

|E[(Ik − πk)2(Ip − πp)(Iq − πq)]|

+ nN max
(k,l,p,q)∈D4,N

|E[(Ik − πk)(Il − πl)(Ip − πp)(Iq − πq)]|
)
,

where the last term diminishes as N → ∞ by Assumptions (A7)-(A8). This concludes the proof.

Lemma A.2. Let m ∈ N. Assume that Xi − Yi = Op (an) for i = 1, 2, . . . ,m. Then,

f (X1, X2, . . . , Xm)− f (Y1, Y2, . . . , Ym) = Op (an)

where f(·) could be either min(·) or max(·) coordinate-wise function.

Proof of Lemma 2. We are going to prove this proposition by induction in m. The case m = 1 is

clear since f(X1)− f(Y1) = X1 − Y1 = Op(an). Assume the result is true for m = k. That is,

f (X1, X2, . . . , Xk)− f (Y1, Y2, . . . , Yk) = Op (an) .
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We need to prove that the result is true for m = k + 1. Note that

f(X1, . . . , Xk, Xk+1) = f(f(X1, . . . , Xk), Xk+1),

which is also true for the sequence of Y ’s.

Denote uk = f(X1, . . . , Xk) and vk = f(Y1, . . . , Yk). By the induction assumption, uk − vk =

Op(an). For the rest of the proof we are going to consider only the case when f(·) = min(·). Later

we will note that the proof for f(·) = max(·) is analogous to what follows.

Note that we can write min(uk, Xk+1) = 1
2

(uk +Xk+1 − |uk −Xk+1|) and min(vk, Yk+1) =

1
2

(vk + Yk+1 − |vk − Yk+1|). Hence,

|min(uk, Xk+1)−min(vk, Yk+1)|

=
1

2
|(uk − vk) + (Xk+1 − Yk+1) + (|vk − Yk+1| − |uk −Xk+1|)|

≤ 1

2
{|uk − vk|+ |Xk+1 − Yk+1|+ ||vk − Yk+1| − |uk −Xk+1||}

≤ 1

2
{|uk − vk|+ |Xk+1 − Yk+1|+ |(vk − uk)− (Xk+1 − Yk+1|}

≤ 1

2
{|uk − vk|+ |Xk+1 − Yk+1|+ |vk − uk|+ |Xk+1 − Yk+1|}

= |uk − vk|+ |Xk+1 − Yk+1| .

Since both uk − vk = Op(an) and Xk+1 − Yk+1 = Op(an), then for any ε > 0 there exist δ1 > 0

and δ2 > 0 such that

P (a−1n |uk − vk| > δ1) <
ε

2
and P (a−1n |Xk+1 − Yk+1| > δ2) <

ε

2
.

Therefore,
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ε =
ε

2
+
ε

2
> P (a−1n |uk − vk| > δ1) + P (a−1n |Xk+1 − Yk+1| > δ2)

≥ P
(
a−1n |uk − vk|+ a−1n |Xk+1 − Yk+1| > δ1 + δ2

)
≥ P

(
a−1n |min(uk, Xk+1)−min(vk, Yk+1)| > δ1 + δ2

)
.

Setting δ∗ = δ1 + δ2, then we can conclude that min(uk, Xk+1)−min(vk, Yk+1) = Op(an). Thus,

the result is true for m = k + 1. For the case when f(·) = max(·), we just need to use the

fact that max(uk, Xk+1) = 1
2

(uk +Xk+1 + |uk −Xk+1|) and then follow an analogous proof as

above.

Lemma A.3. Let θµ = (θµ1 , θµ2 , . . . , θµD)> be the weighted isotonic vector of the limiting domain

means µ with weights γ1, γ2, . . . , γD. Then,

θ̃sd − θµd = Op(n
−1/2
N ), for d = 1, 2, . . . , D.

Proof of Lemma 3. Fix d. Following the proof of Lemma A.2, it can be proved that θUd − θµd =

O
(
N−1/2

)
from Assumption (A4). By Theorem 2.4, θ̃sd − θUd = Op(n

−1/2
N ). Therefore, we can

conclude that θ̃sd − θµd = Op(n
−1/2
N ).

Lemma A.4. (ỹs − θ̃s)>W s(ỹs − θ̃s) = (µ− θµ)> Γ (µ− θµ) + Op(n
1/2
N ), where Γ is the

diagonal matrix with elements γ1, γ2, . . . , γD.

Proof of Lemma 4. From ỹs − yU = 1Op

(
N−1/2

)
and yU − µ = 1O

(
N−1/2

)
, we get that

ỹs − µ = 1Op(n
−1/2
N ). Further, θ̃s − θµ = 1Op(n

−1/2
N ) by Lemma A.3. Therefore, ỹs − θ̃s =

µ − θµ + 1Op(n
−1/2
N ). In addition, N̂d/N̂ = γd + Op(n

−1/2
N ) for d = 1, . . . , D. Thus, (ỹs −

θ̃s)
>W s(ỹs − θ̃s) = (µ− θµ)> Γ (µ− θµ) +Op(n

−1/2).

Lemma A.5. cov(θ̂si , θ̂sj) = O(n−1N ), for any i, j = 1, 2, . . . , D.

Proof of Lemma 5. Define F to the set of representative elements Fi, and P Fi as it was done in the

proof of Theorem 2.2. In addition, let F1 be the set of representative elements Fi of those poolings
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that correspond to the disjoint sets J0 and J1 such that J0
µ ⊆ J0 and J1

µ ⊆ J1. That is, Fi ∈ F1 if

and only if the pooling represented by Fi is allowed by µ to produce θµ. Further, let F2 = F \ F1.

Suppose that there exist indexes i 6= j such that Fi, Fj ∈ F1. First, note that both P FiyU

and P FjyU converge to the vector θµ. From Assumption (A4), P FiyU − θµ = 1O(N−1/2) and

P FjyU − θµ = 1O(N−1/2), which implies that P FiyU − P FjyU = 1O(N−1/2).

Consider any index i such that Fi ∈ F1. Denote pi,kl to the (k, l)-element of P Fi . Fix d. From

the fact that the function E[(θ̂sd − x)2] is minimized by the constant x = E(θ̂sd), then we have
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var(θ̂sd) = E
{[
θ̂sd − E(θ̂sd)

]2}

≤ E


[
θ̂sd −

(
D∑
j=1

pi,djyUj

)]2
= E


 |F|∑

k=1

θ̂sdI{ŷs ∈ Fk}

− |F|∑
k=1

(
D∑
j=1

pi,djyUj

)
I{ŷs ∈ Fk}

2
= E


 |F|∑
k=1

(
D∑
j=1

pk,dj ŷsj −
D∑
j=1

pi,djyUj

)
I{ŷs ∈ Fk}

2
≤ |F|

|F|∑
k=1

E

( D∑
j=1

pk,dj ŷsj −
D∑
j=1

pi,djyUj

)2

I{ŷs ∈ Fk}


= |F|

 ∑
Fk∈|F1|

E

( D∑
j=1

pk,dj ŷsj −
D∑
j=1

pi,djyUj

)2

I{ŷs ∈ Fk}


+
∑

Fk∈|F2|

E

( D∑
j=1

pk,dj ŷsj −
D∑
j=1

pi,djyUj

)2

I{ŷs ∈ Fk}


≤ |F|

∑
Fk∈|F1|

E

( D∑
j=1

pk,dj ŷsj −
D∑
j=1

pi,djyUj

)2
+ o(n−1N )

= |F|
∑

Fk∈|F1|

var

(
D∑
j=1

pk,dj ŷsj

)
+

(
D∑
j=1

pk,djyUj −
D∑
j=1

pi,djyUj

)2
+ o(n−1N )

= |F|

 ∑
Fk∈|F1|

var

(
D∑
j=1

pk,dj ŷsj

)
+
∑

Fk∈|F1|

(
D∑
j=1

pk,djyUj −
D∑
j=1

pi,djyUj

)2
+ o(n−1N )

= O(n−1N ) +O(N−1) + o(n−1N ),

which implies that var(θ̂sd) = O(n−1N ). Thus, by the Cauchy-Schwartz inequality, we conclude

that cov(θ̂si , θ̂sj) = O(n−1N ) for i, j = 1, 2, . . . , D.

Proof of Proposition 1. Note that
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PSE(θ̂s) = E
[
(ŷs∗ − θ̂s)>W U(ŷs∗ − θ̂s)

]
= E

[
(ŷs∗ − yU)>W U(ŷs∗ − yU)

]
+ 2E

[
(ys∗ − yU)>W U(yU − θ̂s)

]
+ E

[
(yU − θ̂s)>W U(yU − θ̂s)

]
= Tr [W Ucov(ŷs, ŷs)] + E

[
(yU − θ̂s)>W U(yU − θ̂s)

]
.

By adding and subtracting ŷs in the expectation term of the above equality, we have that

E
[
(yU − θ̂s)>W U(yU − θ̂s)

]
= Tr [W Ucov(ŷs, ŷs)]

+ 2E
[
(yU − ŷs)>W U(ŷs − θ̂s)

]
+ E

[
SSE(θ̂s)

]
.

Further,

E
[
(yU − ŷs)>W U(ŷs − θ̂s)

]
= E

[
(yU − ŷs)>W U ŷs

]
+ E

[
(ŷs − yU)>W U θ̂s

]
= −Tr [W Ucov(ŷs, ŷs)] + Tr

[
W Ucov(θ̂s, ŷs)

]
.

Hence, PSE(θ̂s) = E
[
SSE(θ̂s)

]
+ 2 Tr

[
W Ucov(θ̂s, ŷs)

]
.

Proof of Theorem 1. First, consider an index i such that i ∈ J0
µ and assume that i /∈ J0

s . Define

Lµ = J1
µ ∪ {0, D}. Consider the largest index l ∈ Lµ that is less than i, and the smallest index

u ∈ Lµ that is greater than i. Then, the slope from point Gµ(l) to Gµ(i) is greater than the slope

from point Gµ(i) to Gµ(u). That is, µl+1:i > µi+1:u. Now, since i /∈ J0
s , then the slope from point

Gs(l) toGs(i) is at most equal to the slope from pointGs(i) toGs(u). That implies ŷsl+1:i
≤ ŷsi+1:u

.

Therefore, we have

P (i /∈ J0
s ) = P

(
ŷsi+1:u

≥ ŷsl+1:i

)
= P

(
(ŷsi+1:u

− µi+1:u)− (ŷsl+1:i
− µl+1:i) ≥ µl+1:i − µi+1:u

)
≤

E
{

[(ŷsi+1:u
− µi+1:u)− (ŷsl+1:i

− µl+1:i)]
4
}

(µl+1:i − µi+1:u)4
= o(n−1N ),
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where the last equality comes from Lemma A.1 and Assumption (A4). Thus, P (Ac0) = o(n−1).

Now, consider an index i such that i ∈ J1
µ but i /∈ J1

s . LetLs = J1
s∪{0, D}. Let l, u ∈ Ls be the

largest index less than i and the smallest index greater than i, respectively. Since i is not a corner

point of Gs, then Gs(i) is either on or above it, i.e. ŷsl+1:i
≥ ŷsi+1:u

. Moreover, µl+1:i < µi+1:u

because i is a corner point of Gµ. Hence,

P (i /∈ J1
s ) = P

(
ŷsl+1:i

≥ ŷsi+1:u

)
= P

(
(ŷsl+1:i

− µl+1:i)− (ŷsi+1:u
− µi+1:u) ≥ µi+1:u − µl+1:i

)
≤

E
{

[(ŷsl+1:i
− µl+1:i)− (ŷsi+1:u

− µi+1:u)]
4
}

(µi+1:u − µl+1:i)4
= o(n−1N ),

which leads to the conclusion that P (Ac1) = o(n−1N ).

Proof of Theorem 2. Let F1, F2, . . . , F2D−1 be representative elements for each of the possible

poolings (groupings) for a vector of length D. Also, define F to the set of all of these repre-

sentative elements. Since J0
µ ∪ J1

µ = {1, 2, . . . , D − 1} and without loss of generality, let F1 be

the representative element of the unique pooling allowed by µ. Denote P Fi to be the weighted

projection matrix that corresponds to the pooling represented by Fi with weights N1, N2, . . . , ND.

Also, define P (ŷs ∈ Fi) to the probability that the pooling represented by Fi is allowed by ŷs to

obtain θ̂s. By Theorem 2.1,

P(ŷs ∈ Fi) =

 1 + o(n−1N ), if i = 1;

o(n−1N ), if i 6= 1.

Also, since |ŷsd | ≤ λ−1N−1d
∑

k∈Ud |yk| for d = 1, . . . , D, then for i 6= 1,

|E(ŷsdI{ŷs ∈ Fi})| ≤ E(|ŷsd|I{ŷs ∈ Fi})

≤

(
1

λNd

∑
k∈Ud

|yk|

)
P (ŷs ∈ Fi)

≤ λ−1

(
1

Nd

∑
k∈Ud

y4k

)1/4

P (ŷs ∈ Fi) = o(n−1N ),
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which implies that E(ŷsI{ŷs ∈ Fi}) = 1o(n−1N ). Hence,

E(ŷs) =

|F|∑
i=1

E(ŷsI{ŷs ∈ Fi}) = E(ŷsI{ŷs ∈ F1}) + 1o(n−1N ).

Then, we obtain that

E(θ̂s) =

|F|∑
i=1

E(θ̂sI{ŷs ∈ Fi}) =

|F|∑
i=1

E(P FiŷsI{ŷs ∈ Fi})

= P F1E(ŷsI{ŷs ∈ F1}) + 1o(n−1N ) = P F1E(ŷs) + 1o(n−1N ).

Analogously, E(θ̂sŷ
>
s ) = P F1E(ŷsŷ

>
s ) + Jo(n−1N ), where J is the D×D matrix of ones. There-

fore, we can conclude that

cov(θ̂s, ŷs) = E(θ̂sŷ
>
s )− E(θ̂s)E(ŷs)

>

= P F1E(ŷsŷ
>
s )− P F1E(ŷs)E(ŷs)

> + Jo(n−1N )

= P F1 [E(ŷsŷ
>
s )− E(ŷs)E(ŷs)

>] + Jo(n−1N )

= P F1var(ŷs) + Jo(n−1N ).

Now, note that

∣∣∣Σ̂dd

∣∣∣ ≤ 1

λ2

∑
k∈Ud y

2
k

Nd

(
1

Nd

+ 1

)
≤ 1

λ2

(∑
k∈Ud y

4
k

Nd

)1/2(
1

Nd

+ 1

)
,
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which implies that E(Σ̂I{ŷs ∈ Fi}) = Jo(n−1N ) for i 6= 1. Moreover,

E(Σ̂) =

|F|∑
i=1

E(Σ̂I{ŷs ∈ Fi}) = E(Σ̂I{ŷs ∈ F1}) + Jo(n−1N ).

Then,

E(P̂ sΣ̂) =

|F|∑
i=1

E(P FiΣ̂I{ŷs ∈ Fi}) =

|F|∑
i=1

P FiE(Σ̂I{ŷs ∈ Fi})

= P F1E(Σ̂I{ŷs ∈ F1}) + Jo(n−1N ) = P F1E(Σ̂) + Jo(n−1N )

= P F1var(ŷs) + Jo(n−1N ).

Thus, from Proposition 2.1,

E[CICs(θ̂s)]− PSE(θ̂s) = 2 Tr{W U [E(P̂ sΣ̂)− cov(θ̂s, ŷs)]} = o(n−1N ).

Proof of Theorem 3. The AC(ỹsi1:j1 , ỹsi2:j2 ) term can be broken into two sums: one with the com-

mon and one with the uncommon elements of Ui1:j1 and Ui2:j2 . By doing that, we get
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nN
∣∣AC(ỹsi1:j1 , ỹsi2:j2 )

∣∣ =
nN

Ni1:j1Ni2:j2

∣∣∣∣∣∣
∑

k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yk − yUi1:j1

πk

)(
yl − yUi2:j2

πl

)∣∣∣∣∣∣
≤ nN
Ni1:j1Ni2:j2

∣∣∣∣∣∣
∑

k∈Ui1:j1∩Ui2:j2

1− πk
πk

(
yk − yUi1:j1

)(
yk − yUi2:j2

)∣∣∣∣∣∣
+

nN
Ni1:j1Ni2:j2

∣∣∣∣∣∣∣∣∣
∑

k∈Ui1:j1

∑
l∈Ui2:j2

k 6=l

∆kl

(
yk − yUi1:j1

πk

)(
yl − yUi2:j2

πl

)∣∣∣∣∣∣∣∣∣
≤ nN
Nλ

N2

Ni1:j1Ni2:j2


∑

k∈Ui1:j1∩Ui2:j2

(
yk − yUi1:j1

)2
N

+

∑
k∈Ui1:j1∩Ui2:j2

(
yk − yUi2:j2

)2
N



+
nN max

k,l∈UN : k 6=l
|∆kl|

λ2


∑

k∈Ui1:j1

(
yk − yUi1:j1

)2
Ni1:j1

+

∑
l∈Ui2:j2

(
yl − yUi2:j2

)2
Ni2:j2


where the last inequality is obtained from Assumption (A5). Given that each of the terms in the

above upper bound is asymptotically bounded by Assumptions (A2)-(A5), then the first result is

true.

To show the second result, note that
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nN

∣∣∣∣∣N̂i1:j1N̂i2:j2

Ni1:j1Ni2:j2

ÂC(ỹsi1:j1 , ỹsi2:j2 )− AC(ỹsi1:j1 , ỹsi2:j2 )

∣∣∣∣∣
=

nN
Ni1:j1Ni2:j2

∣∣∣∣∣∣
∑

k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yk − ỹsi1:j1

πk

)(
yl − ỹsi2:j2

πl

)
IkIl
πkl

−
∑

k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yk − yUi1:j1

πk

)(
yl − yUi2:j2

πl

)∣∣∣∣∣∣
≤ nN
Ni1:j1Ni2:j2

∣∣∣∣∣∣
∑

k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yk − yUi1:j1

πk

)(
yl − yUi2:j2

πl

)(
IkIl − πkl

πkl

)∣∣∣∣∣∣
+

nN
Ni1:j1Ni2:j2

∣∣∣∣∣∣
∑

k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yk − yUi1:j1

πk

)(
yUi2:j2 − ỹsi2:j2

πl

)
IkIl
πkl

∣∣∣∣∣∣
+

nN
Ni1:j1Ni2:j2

∣∣∣∣∣∣
∑

k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yUi1:j1 − ỹsi1:j1

πk

)(
yl − yUi2:j2

πl

)
IkIl
πkl

∣∣∣∣∣∣
+

nN
Ni1:j1Ni2:j2

∣∣∣∣∣∣
∑

k∈Ui1:j1

∑
l∈Ui2:j2

∆kl

(
yUi1:j1 − ỹsi1:j1

πk

)(
yUi2:j2 − ỹsi2:j2

πl

)
IkIl
πkl

∣∣∣∣∣∣
= a1N + a2N + a3N + a4N ,

where we used the identities yk − ỹsi1:j1 =
(
yk − yUi1:j1

)
+
(
yUi1:j1 − ỹsi1:j1

)
, and yl − ỹsi2:j2 =(

yl − yUi2:j2
)

+
(
yUi2:j2 − ỹsi2:j2

)
.

To conclude the proof, we just need to show that a1N , a2N , a3N , a4N converge in probability to

zero as N →∞. The Markov inequality guarantees that a1N converges in probability to zero if its

second moment does. Such moment can be written as
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E(a21N)

=
n2
N

N2
i1:j1

N2
i2:j2

∑
p,k∈Ui1:j1∩Ui2:j2

1− πp
πp

1− πk
πk

(
yp − yUi1:j1

)2 (
yk − yUi2:j2

)2 ∆pk

πpπk

+
2n2

N

N2
i1:j1

N2
i2:j2

∑
p∈Ui1:j1∩Ui2:j2

∑
k∈Ui1:j1 , l∈Ui2:j2

k 6=l

(yp − yUi1:j1 )(yp − yUi2:j2 )(yk − yUi1:j1 )(yl − yUi2:j2 )

× 1− πp
πp

∆kl

πkπl
E
(
Ip − πp
πp

IkIl − πkl
πkl

)
+

n2
N

N2
i1:j1

N2
i2:j2

∑
p∈Ui1:j1 , q∈Ui2:j2

p 6=q

∑
k∈Ui1:j1 , l∈Ui2:j2

k 6=l

∆pq

πpπq

∆kl

πkπl

× (yp − yUi1:j1 )(yq − yUi2:j2 )(yk − yUi1:j1 )(yl − yUi2:j2 )E
(
IpIq − πpq

πpq

IkIl − πkl
πkl

)
= b1N + b2N + b3N .

Furthermore,

|b1N | ≤
n2
N

N3λ3
N4

N2
i1:j1

N2
i2:j2


∑

k∈Ui1:j1∩Ui2:j2

(
yk − yUi1:j1

)4
N

+

∑
k∈Ui1:j1∩Ui2:j2

(
yk − yUi2:j2

)4
N


+
n2
N max
p,k∈UN :p 6=k

|∆pk|

N2λ4
N4

N2
i1:j1

N2
i2:j2

×


∑

p∈Ui1:j1∩Ui2:j2

(
yp − yUi1:j1

)4
N

+

∑
k∈Ui1:j1∩Ui2:j2

(
yk − yUi2:j2

)4
N


≤ N4

N2
i1:j1

N2
i2:j2

nN
Nλ3

nN
N2

+
nN max

p,k∈UN :p 6=k
|∆pk|

Nλ



×


∑

p∈Ui1:j1∩Ui2:j2

(
yp − yUi1:j1

)4
N

+

∑
k∈Ui1:j1∩Ui2:j2

(
yk − yUi2:j2

)4
N


which converges to zero as N →∞ by Assumptions (A2)-(A5). Also, after separating the double

sum in b3N into two sums where (p, q) = (k, l) and (p, q) 6= (k, l), we get that
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|b3N | ≤ O

(
1

N

)
+

(nN max
p,q∈UN :p 6=q

|∆pq|)2

λ4λ∗2
N4

N2
i1:j1

N2
i2:j2

max
(p,q,k,l)∈D4,N

|E[(IpIq − πpq)(IkIl − πkl)]|

×


∑

p∈Ui1:j1

(
yp − yUi1:j1

)4
N

+

∑
q∈Ui2:j2

(
yq − yUi2:j2

)4
N


where the last term goes to zero by Assumptions (A2)-(A6). In addition, an application of the

Cauchy-Schwarz inequality along with the fact that both b1N , b3N tend to zero, shows that b2N

converges to zero. Therefore, the Markov-inequality let us conclude that a1N = op(1).

Now, note that

a4N ≤
N2

Ni1:j1Ni2:j2

|ỹsi1:j1 − yUi1:j1 ||ỹsi2:j2 − yUi2:j2 |

 nN
Nλ

+
nN max

k,l∈UN :k 6=l
|∆kl|)

λ2λ∗

 .

Then, a4n = op(1) since ỹsi1:j1 − yUi1:j1 = Op(n
−1/2) and ỹsi2:j2 − yUi2:j2 = Op(n

−1/2). Analo-

gously, a2N = op(1) and a3N = op(1). Thus,

nN

(
N̂i1:j1N̂i2:j2

Ni1:j1Ni2:j2

ÂC(ỹsi1:j1 , ỹsi2:j2 )− AC(ỹsi1:j1 , ỹsi2:j2 )

)
= op(1).

Finally, we have that N̂i1:j1N̂i2:j2
Ni1:j1Ni2:j2

−1 = Op(n
−1/2) since N̂i1:j1

Ni1:j1
−1 = Op(n

−1/2) and N̂i2:j2
Ni2:j2

−1 =

Op(n
−1/2). Therefore,

nN

(
ÂC(ỹsi1:j1 , ỹsi2:j2 )− N̂i1:j1N̂i2:j2

Ni1:j1Ni2:j2

ÂC(ỹsi1:j1 , ỹsi2:j2 )

)
= op(1),

which concludes the proof.

Proof of Theorem 4. Fix d. First, recall that
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θ̃sd = max
i≤d

min
d≤j

ỹsi:j and θUd = max
i≤d

min
d≤j

yUi:j .

By linearization arguments, it is true that ỹsi:j − yUi:j = Op(n
−1/2
N ).

Define vsi = (ỹsi:d , ỹsi:d+1
, . . . , ỹsi:D)> and vUi = (yUi:d , yUi:d+1

, . . . , yUi:D)> for i = 1, 2, . . . , d.

Hence, we have that

vsi − vUi = 1Op(n
−1/2
N ).

By Lemma A.2, it is true that

min(vsi)−min(vUi) = Op(n
−1/2
N )

Now, define Ls = (min(vs1), . . . ,min(vsd))
> and LU = (min(vU1), . . . ,min(vUd))

>. Therefore,

Ls − LU = 1Op(n
−1/2
N ).

Finally, applying again Lemma A.2 let us conclude that

maxLs −maxLU = Op(n
−1/2
N ),

which concludes the proof.

Proof of Theorem 5. The CICs difference between the constrained and the unconstrained estimator

can be expressed as

CICs(θ̃s)− CICs(ỹs) = (ỹs − θ̃s)>W s(ỹs − θ̃s)

− 2 Tr
[
W s

(
ĉov(ỹs, ỹs)− ĉov(θ̃s, ỹs)

)]
= δ1N − 2δ2N .

First, assume that µ1 < µ2 < · · · < µD. Define A to the event where ỹs1 < ỹs2 < · · · < ỹsD ,

that is, J0
s = ∅ and J1

s = {1, 2, . . . , D − 1}. Then, from Theorem 2.1, we can conclude that
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P (Ac) = o (1). Moreover, note that the CICs difference is zero when A holds. Hence,

P
(

CICs(ỹs) < CICs(θ̃s)
)
≤ P (Ac) = o(1).

Now, suppose that µ1, µ2, . . . , µD are not monotone. From Theorem 2.1 and Lemma A.3, δ1N −

2δ2N = (µ− θµ)> Γ (µ− θµ) + Op(n
−1/2
N ). Further, (µ− θµ)> Γ (µ− θµ) > 0, since the µd

are not monotone. Thus,

P
(

CICs(ỹs) ≥ CICs(θ̃s)
)

= P (2δ2N ≥ δ1N) = o(1)

which concludes the proof.

Proof of Theorem 6. We can write the PSE difference as

PSE(θ̂s)− PSE(ŷs) = [E(ŷs)− E(θ̂s)]
>W U [E(ŷs)− E(θ̂s)] + 2 Tr{W U [var(ŷs)− var(θ̂s)]}

= AN +BN .

Assume first that µ1 < µ2 < · · · < µD. This implies that J0
µ = ∅ and J1

µ = {1, 2, . . . , D − 1} i.e.

all points of the GCM are corner points. Based on the proof of Theorem 2.2 (with P F1 = ID), we

have that E(θ̂s) = E(ŷs) + 1o(n−1N ) and var(θ̂s) = var(ŷs) + Jo(n−1N ). Therefore, AN = o(n−1N )

and BN = o(n−1N ), which concludes the first part of the proof.

Assume now that µ1, µ2, . . . , µD are not monotone. Lemma A.5 and a direct application of

Chebyshev’s inequality imply that θ̂s − E(θ̂s) = 1Op(n
−1/2
N ). Moreover, since θ̂s − θµ =

Op(n
−1/2
N ), then E(θ̂s) − θµ = 1O(n

−1/2
N ). Hence, AN = (µ − θµ)>Γ(µ − θµ) + o(1), where

the quadratic form is strictly greater than zero by the non-monotone assumption on the µ’s. On the

other hand, since both var(ŷs) and var(ŷs) are of the order O(n
−1/2
N ), then BN = O(n−1N ). This

concludes the proof.
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Appendix B

Supplemental materials for Chapter 3

The first part of this appendix contains all lemmas (with proofs) used to prove the theoretical

results discussed in Chapter 3. Complete proofs of these results are included at the end of this

appendix. The proof of Lemma B.1 can be also found in Fenchel (1953, Ch. 1).

Lemma B.1. If a non-zero vector can be written as the positive linear combination of linearly

dependent vectors, then it can be expressed as the positive linear combination of a linearly inde-

pendent subset of these.

Proof. Let v be a non-zero vector such that it can be written as v =
∑k

i=1 ai`i; where ai > 0

for i = 1, 2, . . . , k, and {`1, `2, . . . , `k} is a set of linearly dependent vectors. Since this set of

vectors is not linearly independent, then there exists constants bk (not all different than zero) such

that
∑k

i=1 bi`i = 0. Without loss of generality, assume that there is at least one bi that is positive.

Now, let I0 be the set of indexes given by

I0 = arg min
i : bi>0

ai
bi
.

Note that I0 cannot contain all indexes {1, 2, . . . , k} because v is a non-zero vector. Hence, for

any index i0 ∈ I0,

v =
k∑
i=1

(
ai −

ai0
bi0
bi

)
`i =

∑
i/∈I0

(
ai −

ai0
bi0
bi

)
`i

which means that the vector v can be also written as a positive linear combination of a proper subset

of {`1, `2, . . . , `k}. Finally, note that we can repeat the above argument until it is not possible to

find constants bi 6= 0 such that
∑

i bi`i = 0. Thus, the resulting subset of vectors of {`1, `2, . . . , `k}

has to be linearly independent, and v can be written as a positive linear combination of them.

Lemma B.2. If A is a m×D irreducible matrix and S is a D ×D diagonal matrix, then AS is

also irreducible.
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Proof. This is an immediate result derived from the fact that S is non-singular.

Lemma B.3. Let A be a m × D matrix. Also, let S1 and S2 be D × D diagonal matrices. For

any set J ⊆ {1, 2, . . . ,m}, denote Vi,J to be the set of vectors in rows J of Ai = ASi, i = 1, 2.

Then, for any J∗ ⊆ J ,

L(V1,J∗) = L(V1,J) ⇐⇒ L(V2,J∗) = L(V2,J).

Proof. Let Ai,J = AJSi, i = 1, 2; where AJ denotes the submatrix of A that contains the rows

in positions J . First, assume that L(V1,J∗) = L(V1,J). Since J∗ ⊆ J , it is straightforward that

L(V2,J∗) ⊆ L(V2,J). Now, consider any v ∈ L(V2,J). Hence, v = A>2,Ja = S2A
>
J a for some

vector a. Then, we have S1S
−1
2 v = S1A

>
J a ∈ L(V1,J). By assumption, there exists a vector b

such that S1S
−1
2 v = S1A

>
J∗b. Therefore, v = S2A

>
J∗b ∈ L(V2,J∗). Thus, L(V2,J) ⊆ L(V2,J∗).

Analogously, we can prove that L(V2,J∗) = L(V2,J) implies L(V1,J∗) = L(V1,J).

Lemma B.4. Under Assumptions A1-A5, then:

1. The N−1t̂d are uniformly bounded in sN .

2. The N−1N̂d are uniformly bounded above and uniformly bounded away from zero in sN .

3. var(N−1t̂d) = O(n−1N ) and var(N−1N̂d) = O(n−1N )

4. E[(N−1t̂d − rdµd)2] = O(n−1N ) and E[(N−1N̂d − rd)2] = O(n−1N ).

Proof. 1. Note that
|t̂d|
N

=

∣∣∣∣
∑

k∈sd yk/πk

N

∣∣∣∣ ≤ ∑k∈U |yk|
λN

which does not depend on sN , and is bounded independently of N by Assumption A2.

2. From Assumptions A4 and A5, note that

εnN
DN

≤ nd
N
≤ N̂d

N
= N−1

∑
k∈sd

1/πk ≤ λ−1N−1Nd ≤ λ−1,
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where both lower and upper bounds do not depend on sN , and are bounded for all N by

Assumptions A1, A2 and A4.

3. Note that

nNvar(N−1t̂d) = nNvar

(
N−1

∑
k∈sd

yk/πk

)
≤
∑

k∈Ud y
2
k

λ2N

(
nN
N

+ nN max
k,l∈Ud:k 6=l

|∆kl|
)

which is bounded by Assumptions A2, A4 and A5. Setting yk ≡ 1 and following an analo-

gous argument, it can be shown that nNvar(N−1q̂d) = O(1).

4. Since

E
[(
N−1t̂d − rdµd

)2]
= var

(
N−1t̂d

)
+

(
Nd

N
yUd − rdµd

)2

,

then Assumption A3 and (iii) lead to the desired conclusion. Analogously, it can be proved

that E
[
(N−1q̂d − rd)2

]
= O(n−1N ).

Proof of Theorem 3.1. First, suppose that Π(z|Ω0) = Π(z|L(VJ)) = 0. In that case, any subset

J∗ ⊂ J such that VJ is linearly independent will satisfy Π(z|L(VJ∗)) = 0 ∈ FJ∗. Hence, it is

enough to choose J∗ ⊂ J such that VJ∗ is linearly independent and spans L(VJ). Now, suppose

that Π(z|Ω0) 6= 0. Since Π(z|Ω0) = Π(z|L(VJ)) ∈ FJ , then Π(z|L(VJ)) can be written as the

positive linear combination of vectors γj , j ∈ J . Moreover, 〈z − Π(z|L(VJ)),γj〉 = 0 for j ∈ J ,

and 〈z − Π(z|L(VJ)),γj〉 ≤ 0, for j /∈ J . From Lemma B.1, there exists J0 ⊂ J such that VJ0 is

linearly independent and Π(z|L(VJ)) can be written as a positive linear combination of the vectors

in VJ0 , which implies that Π(z|L(VJ)) ∈ FJ0 . In addition, since 〈z − Π(z|L(VJ)),γj〉 = 0 for

j ∈ J0, then Π(z|L(VJ0)) = Π(z|L(VJ)). Thus, Π(z|Ω0) = Π(z|L(VJ0)). If L(VJ0) = L(VJ)

then J∗ = J0 satifies all required conditions. Now, assume that L(VJ0) ⊂ L(VJ). The fact that

Π(z|L(VJ0)) = Π(z|L(VJ)) implies that Π(z|L(VJ1)) = Π(z|L(VJ0)) for any set J1 such that

J0 ⊆ J1 ⊆ J . Further, since Π(z|L(VJ0)) ∈ FJ0 then Π(z|L(VJ1)) ∈ FJ1 . Thus, it is enough to
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choose the set J∗ such that J0 ⊂ J∗ ⊂ J and VJ∗ is a linearly independent set that spans L(VJ).

This concludes the proof.

Proof of Theorem 3.2. Let Aµ, Aµ,J and γµd be the analogous versions of As, As,J and γsd ob-

tained by substituting ỹs and W s by µ and W µ, respectively. Further, note that Lemma B.2

assures that bothAs andAµ are irreducible sinceA is.

First, suppose ∅ /∈ Gµ and let J = ∅. Then, from conditions in Equation 3.9, ∅ ∈ G̃s if and only

if 〈z̃s,γsj〉 ≤ 0 for j = 1, 2, . . . ,m. In contrast, suppose that 〈zµ,γµj〉 ≤ 0 for j = 1, 2, . . . ,m.

Hence, ∅ ∈ Gµ, which contradicts our choice of J . Therefore, there exists j0 such that 〈zµ,γµj0 〉 >

0. Then, we have

P
(
∅ ∈ G̃s

)
≤ P

(
0 ≥ 〈z̃s,γsj0 〉

)
= P

(
〈zµ,γµj0 〉 − 〈z̃s,γsj0 〉 ≥ 〈zµ,γµj0 〉

)
≤ 1

〈zµ,γµj0 〉
2
E
[(
〈z̃s,γsj0 〉 − 〈zµ,γµj0 〉

)2]

where the last inequality is obtained by an application of Chebyshev’s inequality. We show

now that the expected value in the last term is O(n−1N ). Note that 〈z̃s,γsj0 〉 is a function of

the N−1t̂d and the N−1N̂d. Let f1(N−1t̂1, . . . , N−1t̂D, N−1N̂1, . . . , N
−1N̂D) be such a func-

tion. An application of the Mean Value Theorem to the continuous function f1(·) (and to its

first and second derivative functions) along with Lemma B.4 (i)-(ii), lead to the conclusion that

|f1(·)| and its first and second derivative functions are uniformly bounded for all N . Moreover,

f1(N
−1t̂1, . . . , N

−1t̂D, N
−1N̂1, . . . , N

−1N̂D) and its first and second derivative functions, evalu-

ated at N−1t̂d = rdµd and N−1N̂d = rd, are uniformly bounded for all N . By defining g1(·) to the

function g1(·) = [f1(·) − f1(r1µ1, . . . , rDµD, r1, . . . , rD)]2 = [f1(·) − 〈zµ,γµj0 〉]
2, we can make

use of Lemma B.4 (iv) to fulfill the assumptions of Theorem 5.4.3 in Fuller (1996) with α = 1,

s = 2, and aN = O(N−1/2). Therefore, E
[(
〈z̃s,γsj0 〉 − 〈zµ,γµj0 〉

)2]
= O(n−1N ), since g1(·) and

its first derivative with respect to the N−1t̂d and the N−1N̂d evaluate to zero when N−1t̂d = rdµd,

N−1N̂d = rd.
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Now, take J 6= ∅ where J /∈ Gµ. Assume that J ∈ G̃s. Theorem 3.1 guarantees that

we can always choose a subset J∗ ⊆ J such that J∗ ∈ G̃s, Vs,J∗ is linearly independent, and

L(Vs,J∗) = L(Vs,J). Note that Π(z̃s|L(Vs,J∗)) = A>s,J∗(As,J∗A
>
s,J∗)

−1As,J∗ z̃s. Let b̃s,J∗ =

(As,J∗A
>
s,J∗)

−1As,J∗ z̃s. Hence, from conditions in Equation 3.9, we have that J ∈ G̃s im-

plies both b̃s,J∗ ≥ 0, and 〈z̃s − A>s,J∗ b̃s,J∗ ,γsj〉 ≤ 0 for j = 1, 2, . . . ,m. Now, assume that

bµ,J∗ = (Aµ,J∗A
>
µ,J∗)

−1Aµ,J∗zµ ≥ 0, and 〈zµ − A>µ,J∗bµ,J∗ ,γµj〉 ≤ 0 for j = 1, 2, . . . ,m.

These conditions imply that J∗ ∈ Gµ which contradicts the original assumption that J /∈ Gµ,

since L(Vµ,J∗) = L(Vµ,J) by Lemma B.3. Therefore, either there is an element of bµ,J∗ that is

strictly negative or there exists j0 such that 〈zµ − A>µ,J∗bµ,J∗ ,γµj0 〉 > 0. Hence, proving that

P (Jt ∈ G̃s) = O(n−1N ) in any case will conclude the proof.

First, suppose the j0-th element of bµ,J∗ is strictly negative. That is, e>j0bµ,J∗ < 0, where ej

denotes the indicator vector that is 1 for entry j and 0 otherwise. Then, we have

P
(
J ∈ G̃s

)
≤ P

(
e>j0 b̃s,J∗ ≥ 0

)
= P

(
e>j0 b̃s,J∗ − e

>
j0
bµ,J∗ ≥ −e>j0bµ,J∗

)
≤ 1

(e>j0bµ,J∗)
2
E
[
(e>j0 b̃s,J∗ − e

>
j0
bµ,J∗)

2
]

where the last inequality is obtained by an application of Chebyshev’s inequality. Let f2(N−1t̂1,

. . . , N−1t̂D, N
−1N̂1, . . . , N

−1N̂D) = e>j0 b̃s,J∗ and g2(·) = [f2(·) − e>j0bµ,J∗ ]
2. An analogous ar-

gument than the one used before to the smooth functions f1 and g1 can be applied to the smooth

functions f2 and g2, to conclude that the expected value of the last term of the inequality isO(n−1N ).

Lastly, suppose that there exists j0 such that κzµ,j0 = 〈zµ − A>µ,J∗t bµ,J∗ ,γµj0 〉 > 0. Also,

denote κz̃s,j0 = 〈z̃s −A>s,J∗t b̃s,J∗ ,γsj0 〉. Then, we have
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P
(
J ∈ G̃s

)
≤ P (0 ≥ κz̃s,j0)

= P
(
κzµ,j0 − κz̃s,j0 ≥ κzµ,j0

)
≤ 1

κ2zµ,j0
E
[
(κz̃s,j0 − κzµ,j0)2

]
where the last inequality is an application of the Chebyshev’s inequality. By applying an analogous

argument than before to the smooth functions f3(N−1t̂1, . . . , N−1t̂D, N−1N̂1, . . . , N
−1N̂D) =

κz̃s,j0 and g3(·) = [f3(·)− κzµ,j0 ]2, we conclude that E
[
(κz̃s,j0 − κzµ,j0)2

]
= O(n−1N ).

Proof of Theorem 3.3. Take any J ∈ G̃s and any domain d. Note that the condition Aµ ≥ 0

implies that ∅ ∈ Gµ. Then, we can write θ̃sd − yUd as

θ̃sd − yUd = (ỹsd − yUd)1J=∅ +
∑

JG∈Gµ\∅

(θ̃sd,JG − yUd)1JG=J +
∑
JG∈Gcµ

(θ̃sd,JG − yUd)1JG=J ,

where we used that θ̃sd,∅ = ỹsd . Now, note that the unfeasible variance estimator AV (θ̃sd,J) can be

written as

AV (θ̃sd,J) = AV (ỹsd)1J=∅ +
∑

JG∈Gµ\∅

AV (θ̃sd,JG)1J=JG +
∑
JG∈Gcµ

AV (θ̃sd,JG)1J=JG .

Hence,
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AV (θ̃sd,J)−1/2(θ̃sd − yUd) = AV (ỹsd)
−1/2(ỹs − yUd)1J=∅

+
∑

JG∈Gµ\∅

AV (θ̃sd,JG)−1/2(θ̃sd,JG − yUd)1J=JG +
∑
JG∈Gcµ

AV (θ̃sd,JG)−1/2(θ̃sd,JG − yUd)1J=JG

=

AV (ỹsd)
−1/2(ỹs − yUd)1J=∅ +

∑
JG∈Gµ\∅

AV (θ̃sd,JG)−1/2(θ̃sd,JG − θUd,JG)1J=JG

+
∑
JG∈Gcµ

AV (θ̃sd,JG)−1/2(θ̃sd,JG − θUd,JG)1J=JG


+

 ∑
JG∈Gµ\∅

AV (θ̃sd,JG)−1/2(θUd,JG − yUd)1J=JG


+

 ∑
JG∈Gcµ

AV (θ̃sd,JG)−1/2(θUd,JG − yUd)1J=JG


= c1N + c2N + c3N ,

where θUd,JG is the population version of θ̃sd,JG . Note that, for any JG, the term of the form

AV (θ̃sd,JG)−1/2(θ̃sd,JG − θUd,JG) converges in distribution to a standard normal distribution by

Assumption A6. Thus, c1N converges in distribution to a standard normal distribution. Now, note

that for each JG ∈ Gcµ, then

AV (θ̃sd,JG)−1/2(θUd,JG − yUd) = [nNAV (θ̃sd,JG)]−1/2[n
1/2
N (θUd,JG − yUd)] = O(n

1/2
N ).

In contrast, for JG ∈ Gcµ, we have that 1J=JG = Op(n
−1
N ) by Theorem 3.2 (since J ∈ G̃s). Thus,

c3N = Op(n
−1/2
N ). Now, note that θUd,JG− yUd = O(N−1/2) when JG ∈ Gµ \∅ by Assumption A3.

Hence, for any JG ∈ Gµ \ ∅,

AV (θ̃sd,JG)−1/2(θUd,JG − yUd) = [nNAV (θ̃sd,JG)]−1/2[n
1/2
N (θUd,JG − yUd)] = O

(√
nN
N

)
,

which implies that c2N = O
(√

nN
N

)
(bias term). Thus, by combining these properties of c1N , c2N

and c3N , we conclude that
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AV (θ̃sd,J)−1/2(θ̃sd − yUd)
L→ N (B, 1),

where B = O(
√

nN
N

).

Now, write the feasible variance estimator V̂ (θ̃sd,J) as

V̂ (θ̃sd,J) = V̂ (ỹsd)1J=∅ +
∑

JG∈Gµ\∅

V̂ (θ̃sd,JG)1J=JG +
∑
JG∈Gcµ

V̂ (θ̃sd,JG)1J=JG .

By Assumption A6, we have that V̂ (θ̃sd,JG)−AV (θ̃sd,JG) = O(n−1N ) for any JG. The latter implies

that V̂ (θ̃sd,J)1/2−AV (θ̃sd,J)1/2 = O(n
−1/2
N ). Hence, an application of Slutsky’s theorem allows to

replace AV (θ̃sd,J)−1/2 by V̂ (θ̃sd,J)−1/2.

To prove the last part of this theorem, just note thatAµ > 0 implies Gµ = {∅}. Thus, the term

c2N does not exist, so the bias term vanishes.
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