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ABSTRACT 

 
 

BIOLOGY AND MANAGEMENT OF BLACKLEG DISEASE OF POTATO CAUSED BY 

DICKEYA DIANTHICOLA (ME23) 

 
 

Potato is the most commonly consumed vegetable in the United States, where people each 

an average of 49.2 pounds per person per year.  About 80% of potatoes in the US are produced in 

Idaho, followed by Washington, Wisconsin, and Oregon. Potato is a vegetatively propagated crop, 

and progeny tubers serve as seed for cultivation the following year. Therefore, tuber-borne 

pathogens, such as bacteria that cause blackleg, result in serious economic losses when progeny 

tubers are contaminated by pathogens.  Blackleg of potato is characterized by blackening of the 

basal part of stem and rotting of seed tubers. It is caused by Pectobacterium and Dickeya species, 

which are in the Pectobacteriaceae family and are collectively referred to as the soft rot 

Pectobacteriaceae (SRP). 

In 2015, multiples outbreaks of blackleg and soft rot occurred in Northeastern United Sates. 

This outbreak of the disease also impacted potato production all across the neighboring states, as 

well as other northeastern and mid-Atlantic states where Maine seed potatoes were shipped. It is 

most likely that prior to the Dickeya dianthicola (ME23) outbreak in the US in 2015, Dickeya was 

present in seed potatoes and farms in the affected states for at least a few years. However, rain in 

2013 and 2014 spread the pathogen and cool temperatures caused the bacterium to remain latent 

in the tubers. Warm temperature in 2015 on commercial farms that used this Dickeya-infested seed 

resulted in significant outbreaks.  
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The fields with outbreaks had no previous history of blackleg, the pathogen was suspected 

to have been present somewhere in the environment, then multiplied suddenly in response to 

favorable conditions, such as a heavy rain with subsequent surface pooling, and thus caused an 

outbreak. To prevent further spread of the disease, the primary infection source and the route of 

infection of the blackleg pathogen must be identified. Being able to discriminate exact subspecies 

of Dickeya from the others could help reduce the infection and to understand the epidemiology of 

the pathogen. Therefore, my research focused on development of reliable and accessible detecting 

tools for D. dianthicola (ME23).  

Unfortunately, many commercial potato varieties are susceptible to the diseases caused by 

SRP. Very few are tolerant, and production is compromised due to infection caused by D. 

dianthicola and high risk of spreading bacteria in other farms if potato seeds are infected. This led 

to an urgent need to screen for resistance against blackleg disease. There is insufficient information 

available for potato breeders on relative resistance or tolerance of commercial potato varieties to 

Dickeya and Pectobacterium spp. For the purpose of our work with SRP, we use the term resistance 

for plants that remain asymptomatic, or nearly so, after inoculation with Dickeya or 

Pectobacterium in typical temperature, humidity, and oxygen-level conditions.   

In addition, there is almost zero evidence of single gene resistance against this pathogen. 

Rather, disease resistance is quantitative and multigenetic, making it difficult for plant breeders to 

select for resistance. In addition, blackleg development is highly sensitive to multiple 

environmental factors including, plant age, availability of favorable environmental conditions and 

other bacterial pathogen present in the environment, making it difficult to screen varieties for 

resistance. The molecular and biochemical mechanisms underlying these quantitative resistances 
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are also poorly understood. Therefore, are not efficiently utilized in potato breeding programs, 

altogether this makes it difficult to achieve true blackleg disease resistance.  

Nevertheless, it has been previously reported that plant resistant relies on production of 

small molecules such as phytoalexins or phytoanticipins associated with core resistant pathways. 

For example, these pathways may induce plant hormones associated with resistance, or 

antimicrobial peptides or enhance cell wall modifications as a physical barrier against plant 

pathogens.  Interestingly, some accessions of the wild diploid species of potato (Solanum 

chacoense) are resistant to blackleg and soft rot diseases caused by SRP. My research focuses on 

identification of resistant lines of wild diploid potato relatives using physiological, biochemical 

and metabolic profile.  

In my work, I found that the metabolic profile of resistant stem extracts of S. chacoense 

consists of small molecules including phenolics, alkaloids, lipids, amino acids and organic acids, 

some of which may play a significant role in antimicrobial and anti-virulence properties. I found 

that the biochemical assays including quorum sensing (QS) and plant cell wall degrading enzymes 

(PCWDE) correlated with metabolites identified in metabolic profile of resistant accessions. 

Hence, these assays can be used as a less time consuming and easy tool for screening resistant 

lines against SRP. 

From these findings, I hypothesize that QS inhibiting molecules are responsible for 

triggering resistance against blackleg in S. chacoense and can be used as a potential tool in future 

breeding programs to achieve maximum resistance in our commercially grown potato varieties.   
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CHAPTER I: ROLE OF SPECIALIZED METABOLITES IN PLANT DEFENSE 

RESPONSES AGAINST BACTERIAL PATHOGENS 

 

 

Synopsis 

Crop losses due to pathogen attack and pest are a major problem worldwide. Plant 

resistance is the best defense against diseases and specialized plant metabolites contribute to plant 

resistance. Plant resistance is especially important for management of bacterial pathogens since 

there are few pesticides available for bacterial diseases of plants. Defense metabolites present prior 

to pathogen attack are called phytoanticipins and those produced in response to pathogens are 

called phytoalexins. In both cases, these metabolites are low molecular weight compounds with 

unique chemical structures and activities (Pedras et al. 2011; Hammerschmidt 1999; Ahuja et al. 

2012). Most work to date with antimicrobial metabolites focuses on human pathogens, so we know 

far more about how plant metabolites affect virulence of animal pathogens than plant pathogens. 

The similarities between plant and animal pathogens mean that this work can still inform research 

in plant pathology.  Phytoalexins were first discovered over 70 years ago in experiments with the 

potato pathogen, Phytophthora infestans, inoculated onto an incompatible host plant. Based on 

their results, the researchers hypothesized that potato tuber cells produce phytoalexins in response 

to an incompatible Phytophthora strain and that these phytoalexins protect the tuber from other 

compatible races of the pathogen (Pedras et al. 2011). Since then, scientists have investigated the 

role of phytoalexins in plant-microbe interactions and defense mechanisms against multiple types 

of pathogens (Holland and O’Keefe 2010; Yang et al. 2009; Jahangir et al. 2009; Boue et al. 2009). 

Phytoanticipins were discovered in the 1940 and are low molecular weight antimicrobial 

compounds present in plants before pathogen infection (VanEtten et al. 1994). For example, the 
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saponins in potato tubers that protect plants against microbes and insects, are a well-known 

example of a phytoanticipins (Osbourn 2003).  

1. Introduction 

Plants are in continuous interaction with microorganisms in their natural environment. 

Some interactions harm plants and trigger their defense reaction, other are beneficial for plants 

survival. Therefore, interaction between plant and microbes is critical for plant fitness. The defense 

mechanisms plants developed against microbial pathogens rely, to a large extent, on an enormous 

variety of plant derived compounds, such as phenolics, alkaloids, terpenes and fatty acids. Plants 

produce vast number of these bioactive molecules and various roles in plant defense against 

pathogens are attributed to these molecules. Advances in genome sequencing and metabolomics, 

as well as software that simplifies analysis of large datasets, have led to a resurgence in interest in 

these plants derived molecules and their role in inhibition of bacterial virulence factors, including 

bacterial biofilms, enzymes, motility, toxins and quorum sensing (Fig. 1).  

1.1. Phenolic acids – metabolites with multiple roles in plant biology   

Phenolic acids are a type of aromatic compounds that contain a phenol ring and organic 

carboxylic acid (Table. 1). They are found in variety of plant organs, including seeds, fruit 

periderm, and leaves (Table. 2). Usually, phenolic acids are present in a bound form, for example 

amides, esters, or glycosides (Pereira et al. 2009). Phenolic acid and their derivatives have diverse 

structure and are produced by at least four pathways in plants, including as products of the shikimic 

acid pathway or the phenylpropanoid pathway, as byproducts of the monolignol pathway, or as 

breakdown products of lignin and other plant cell wall polymers (Mandal et al. 2010). Even though 

the complete role of phenolic acids in plants remain unknown, they are known to control or 

participate in diverse functions in addition to plant defense, such as nutrient uptake, enzyme 
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activity, protein synthesis, photosynthesis, and allelopathy (Lyu et al. 1990; Kiokias et al. 2020). 

They also have multifunctional roles in plant-microbe interactions outside of the plant structure. 

For example, they are released into the rhizosphere, where they may repel, interfere with 

development of, or kill microorganisms (Martens 2002; Bhattacharya et al., 2010).  

 Quantitative trait loci and individual genes required for phenolic acid synthesis have been 

identified through biochemical analysis, genome sequencing and mapping, and genome synteny 

studies (Comino et al., 2007; Niggeweg et al., 2004; Gramazio et al., 2014; Morrell et al., 2011). 

Given the importance of phenolic acids, developing new plant varieties with increased phenolic 

acid content is of the utmost importance and has become a focus among many researchers in 

vegetables such as tomato, pepper, cucumber and other crops (Kaushik et al., 2015). This is 

challenging, however, since these multiple genes contribute to production of phenolic acids, which 

complicates plant breeding, and new varieties must still produce food that meets market 

requirements, including taste and yield.  

Plant phenolic acids act as potent quorum sensing (QS) inhibitors and two component 

system inhibitors, thereby interfering with bacterial gene regulation required for expression of 

virulence genes (Rutherford and Bassler 2010). Plant phenolics also are efflux pump inhibitors, 

which may inhibit bacterial resistance to plant antimicrobials (Sharma et al. 2019). In all cases, 

multiple phenolics produced by plants have these inhibitory activities. The relative activity of the 

different phenolics, whether they have synergistic effects, and efficient breeding strategies for 

increasing phenolics that act as phytoanticipins or phytoalexins in crops or ornamental plants are 

all important areas for future work.  
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1.2. Alkaloids, a bitter plant toxin with important roles in plant defense 

Alkaloids are low molecular weight nitrogen-containing compounds that play important 

roles in plant defense mechanisms against pathogens. These compounds can be categorized into 

different classes according to their precursor, such as pyrrolidine, tropane, piperidine, pyridine, 

quinolizidine, and indoles (Yang and Stöckigt 2010).  Plants containing alkaloids has improves 

defense responses against biotic and abiotic stresses (Table. 4). Unfortunately, the significant 

benefits of alkaloids in plant defense mechanism are not widely explored or used in crop 

production because many plant alkaloids are both bitter and toxic to human and animals, such as 

hepatotix pyrrolizine, indolidine, piperidine and tropane (Matsuura and Fett-Neto 2013; Cortinovis 

and Caloni 2015; Diaz 2015; Vilariño and Ravetta 2008).  

Wild relatives of several major agriculture crops contain toxic alkaloids that may contribute 

to disease resistance. For example, the tubers of wild potato contain toxic glycoalkaloids such as 

a-chaconine and a-solanine, which are responsible for acute toxicity and bitter flavor (Zarin and 

Kruma 2017).  Although they may not be useful in all aspects of crop protection, alkaloids could 

be used to protect ornamental plants or they could be included in a strategic manner to protect 

other parts of plants, for example, the leaves, tuber and root and or the roots and leaves of fruit 

crops.  

In many cases, alkaloids inhibit bacteria virulence without affecting the growth and 

viability of bacteria (Joshi et al. 2020). In the majority of cases, it appears that alkaloids interfere 

with QS related molecules/ genes to attenuate diseases. This may provide resources to overcome 

the problems by targeting bacterial virulence factors such as biofilm production or QS, however, 

the mechanism behind not being able to kill bacteria or limit the growth of bacteria in many cases 

is still unexplored. In order to efficiently utilize alkaloids in breeding programs, researchers need 
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to address questions such as:  Are bacteria able to infect the progeny or other closely related crops 

after being exposed to alkaloids? What types of genes are involved in making bacteria survive in 

highly toxic environment?  There is risk associated with alkaloids because of their toxic nature, 

multiple screening tests must be done before implying them in breeding program and therefore to 

achieve anti-virulence properties of alkaloids in commercially grown vegetables, which are 

threaten by many pathogens.  

1.3. Terpenes, aromatic plant compounds that contribute to plant defense 

Plants produce volatile compounds, such as terpenes, that have significant role in 

interaction with their environment and that help give each plant species its distinctive odor and 

taste. The physiochemical properties of terpenes including aroma, reactivity, toxicity and volatility 

aid in diverse protective functions against biotic and abiotic stresses in plants (Holopainen 2004). 

Terpenoids (Isoterpenes) are the most diverse and largest group of plant volatile compounds 

(Pichersky and Gershenzon 2002; Rodríguez-Concepción 2006). Essential oils are the major 

constituency of terpenes, which are complex hydrophobic compounds containing multiple low 

molecular weight compounds. They have useful antimicrobial activities against many plant 

pathogenic bacteria (Amaya et al. 2012; Aoki et al. 2010; Joshi et al. 2016).  

In plants, terpenes are produced through the cytosolic mevalonate pathway (MVA) and 

plastid localized 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway (Vranová et al. 2013; Kirby 

et al. 2015;). Terpenes are highly diverse and over 50,000 unique terpenoids have been discovered 

in plants so far. They play a key role in plant defense mechanisms against insects, herbivores, 

bacteria and pathogenetic fungi (Franceschi et al. 2005; Table 5). However, in order to be effective 

against pathogens, sufficient amount of accumulation prior to invasion of the pathogen is 

necessary; but these levels might be phytotoxic. Therefore, plants evolved to minimize this toxicity 
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by sequestering terpenes during differentiation of tissues in extracellular spaces (Fahn 1997, 1988; 

Doehlemann and Hemetsberger 2013). Many plants accumulate terpenes by differentiating them 

into trichome, oil glands and resin ducts (Glas et al. 2012; Huchelmann et al. 2017; Mewalal et al. 

2017; Zulak and Bohlmann 2010). These tissues are hence dedicated in storage and synthesis of 

terpenes in plants.  

Advances in molecular genetics have provided tools to better understanding genome 

complexity and thereby, equipped plant breeders to effectively use molecular genetic screening 

approaches to select the best breeding candidates. Unlike alkaloids, terpenoids are commonly 

used as natural flavoring compounds in food industries and they tend not to be toxic to animals. 

Given the importance of terpenes, researchers are now focusing on improving terpene contents in 

vegetables through breeding programs to enhance plant defense responses against stresses 

including biotic and abiotic stress (Cebolla-Cornejo et al. 2013). Effective treatment and 

management against plant pathogens are among the main priorities of plant pathologist. Terpene 

derivatives are an important and promising source against novel phytopathogens.   

Despite many discoveries about anti-virulent role of terpenes in plant pathogens, the 

ongoing chemical investigation using “omics” tools will continue adding novel information to the 

field of new discoveries. The highly toxic nature of terpenes to bacteria pathogens by disturbing 

cell wall integrity and eventually leads to cell lysis is troublesome in some way; however, it is 

unexplored under what concentration of terpenes might be toxic to animals and humans. 

Nevertheless, further research on the role of terpenes in plant metabolism and induction signals of 

terpene synthesis will facilitate to manipulate biosynthetic pathways for improvement of 

agronomical traits, plant defense against pest and pathogen, hence discovery of novel 

phytocompounds. 
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1.4. Fatty acids and derivatives  

Fatty acids are major component of lipids in microorganisms, plant and animals. They 

compose of large straight chain of even numbers of carbon with hydrogen atom at one side of the 

chain and carboxylic groups on other. The most abundant types of fatty acids are derived from 

glycerolipid biosynthetic pathway. Fatty acids are well known for their significant functions in 

basal and systemic plant immunity (Kachroo and Kachroo 2009, Table. 6). Therefore, fatty acids 

and their dedicated role against phytopathogens have been investigated to develop promising 

antibacterial compounds (Kachroo and Kachroo 2009; Huang and Ebersole 2010; Sethupathy et 

al. 2017). The most well-known mechanism of fatty acids against bacteria is the disruption of cell 

membrane and leakage of intracellular metabolites results in cell lysis (Desbois and Smith 2010; 

Supardy et al. 2019; Kim et al. 2019). Fatty acids also reduce energy production by interfering 

electron transport chain system and hence block the nutrient uptake by pathogen and starve them 

to death (Desbois and Smith 2010). 

Like other metabolites, fatty acids provide a protective role through attenuating major 

virulence factors, including AHL modulating QS and biofilm formation. Recent advances in omics 

tools have uncovered several targets of fatty acids. However, the initial cues for signal induction 

and molecular interaction of these fatty acids are still unexplored. Further identification of FAs 

and more detailed information about their exact mode of action could aid in pathogen management. 

2. Quorum sensing: master regulator of virulence factors in plant pathogenic bacteria 

Quorum sensing (QS) is a process of cell-to-cell communication that enable bacteria to share 

information about the cell density in a given population and express their genes accordingly 

(Rutherford and Bassler 2012). Interestingly, Gram-negative and Gram-positive bacteria utilize 

unique types of QS mechanisms. Gram-positive bacteria produce autoinducer peptides as a 
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signaling molecule, while Gram-negative bacteria use small molecules called autoinducers to 

communicate (Rutherford and Bassler 2012; Wei et al. 2011). In addition to sensing and 

responding to neighboring bacterial cells, both Gram-negative and Gram-positive bacteria form a 

multicellular surface bounded aggregates, or biofilms (Hall-Stoodley et al. 2004; Davey and 

O’toole 2000), which help bacteria to resist challenges from predators, antibiotics and host-

immunity (Hall-Stoodley et al. 2004; Donlan and Costerton 2002). Although phytoalexins may 

interfere with virulence in multiple ways, the main mechanism explored is QS inhibition and QS 

may account for the majority of the other phenotypes observed. For example, QS can regulate 

motility, biofilm formation, and toxin and virulence enzyme production (Davies et al. 1998; Parsek 

and Greenberg 2005; Singh et al. 2000; Joshi et al. 2016). The proteins required for QS in the 

Gram-negative bacteria acyl-homoserine lactone-based QS system appear to be frequently 

horizontally transferred, suggesting that bacteria are under external pressure from hosts to escape 

suppression of QS systems (Joshi 2021 review).  

3. Effects of plant-derived molecules on bacterial virulence factors 

3.1. Effects on QS signaling molecules  

AHL-based QS in bacteria is a relatively simple system. A homoserine lactone synthase 

(LasI/ExpI family) is needed for production of AHL from the precursors s-adenosyl-L-methionine 

and a fatty acid by LuxI and their signal is perceived when binding to LuxR, which is a cytoplasmic 

transcriptional regulator (Fuqua et al. 2001). The AHL can transverse bacterial membranes and 

once the local concentration is high enough, it binds to a regulatory protein (LasR/ExpR family) 

and the ability of regulatory protein to bind to DNA changes once bound to AHL. These systems 

are autoinducible, meaning that the regulatory protein up-regulates AHL production once bound 

to AHL, resulting in swift regulatory and cell development changes once the system is triggered. 
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In plant pathogens, AHL-based QS is considered the key regulator that shifts bacterial cells from 

a saprophytic or stealth mode to a pathogenic mode.  

Multiple phenolic acids interfere with bacterial QS and other major virulence factors (Table. 

3). Phenolics differ from antibiotics in that they can inhibit specific bacterial activities without 

inhibiting growth. One of the most exciting recent discoveries in this area is that the plant defense 

hormone, salicylic acid (SA), directly binds to and inhibits the Pectobacterium AHL production 

(Joshi et al. 2020). Salicylic acid derivatives such as methyl salicylate and salicylamide reduce 

protease activity in P. aeruginosa and this could also occur through QS inhibition (Hu et al. 2013; 

Kumar et al. 2013; Amalaradjou et al. 2010).   

Many well-known phenolic acids have comparable effects on AHL production and QS, but 

unlike SA and expI (Joshi et al. 2020), the binding mechanism remains unknown. For example, 

curcumin, a polyphenol found in turmeric, targets multiple signaling molecules when tested 

against Pseudomonas aeruginosa (PAO1), an opportunistic pathogen (Gupta et al. 2013). 

Curcumin attenuates PAO1 virulence by down-regulating QS initiation genes in P. aeruginosa 

infections in both animals and plants (Rudrappa and Bais 2008). Other similar examples include 

glycosylated flavanones in orange extract, ellagic acid in pomegranate extract, cinnamaldehyde, 

rutin and resveratrol, which were tested under their minimum inhibitory concentration against 

plant and animal pathogens. These chemicals reduced AHL production in both Yersinia 

enterocolitica and Pectobacterium carotovorum (Truchado et al. 2012a; Truchado et al. 2012b). 

A similar study found that SA inhibits AHL production by Rh1I in P. aeruginosa and that two 

other common plant phenolics, trans-cinnamaldehyde and tannic acid have the same inhibitory 

effect in P. aeruginosa (Chang et al. 2014) 
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Carvacrol, monoterpenoid phenol inhibits Chromobacterium violaceum cviI gene 

expression. cvil gene encodes for the AHL synthase, signifying that this carvacrol obstructs the 

production of AHL molecules (Tapia-Rodriguez et al., 2017). Similar effects were found against 

plant pathogens including Pectobacterium caratovorum subspp. brasiliense (Pcb) and 

Pectobacterium aroidearum, where this compound reduced QS signal molecules productions and 

inhibits expression QS related genes (Joshi et al. 2016). Moreover, this compound is shown to 

directly relate with transcriptional regulator (ExpR) and homoserine lactone synthase (ExpI). 

Docking scores of the compound helps in binding to ExpI/ExpR and, therefore, as a potential QS 

inhibitor compound (Joshi et al. 2016).  

Flavonoids, another group of natural compounds wit diverse phenolic structures, found in 

stem, roots, flowers, roots, bark vegetable and fruits. The flavonoid derivative, chalcones and its 

isomers compounds exhibit strong inhibition toward the enzymes secreted by P. aeruginosa 

through QS (Kerekes et al. 2013; Kim et al. 2015).  Several other related studies have demonstrated 

that flavonoids particularly inhibit QSthoiugh antagonism of the autoinducers binding receptors, 

RhlR and LasR. The presence of flavone A-ring back bone play a key role in potent inhibition of 

LasR/RhiR DNA binding in P. aeruginosa, C. violaceum, Escherichia coli and Staphylococcus 

aureus (Liu et al. 2017; Manner and Fallarero 2018; Górniak et al. 2019; Cushnie and Lamb 2011; 

Paczkowski et al. 2017).  

another group of natural substances with variable phenolic structures, are found in fruits, 

vegetables, grains, bark, roots, stems, flowers, tea and wine. The flavonoid derivative, chalcones 

and its isomers compounds exhibit strong inhibition toward the enzymes secreted by P. aeruginosa 

through QS (Kim et al. 2015; Kerekes et al. 2013).  Several other studies have demonstrated that 

flavonoids specifically inhibit quorum sensing via antagonism of the autoinducers binding 
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receptors, LasR, RhlR, the presence of flavone A-ring back bone are essential for potent inhibition 

of LasR/RhiR DNA binding in P. aeruginosa, C. violaceum, Escherichia coli and Staphylococcus 

aureus (Liu et al. 2017; Paczkowski et al. 2017; Manner and Fallarero 2018; Górniak et al. 2019; 

Cushnie and Lamb 2011).  

 Fenugreek (Trigonella foenum-graecum L.) belongs to family Fabaceae is well known for 

its medicinal properties. Seed extract of fenugreek was tested and revealed that methanolic fraction 

of the extract inhibits AHL by attenuating virulence such as, protease, LasB elastase, chitinase, 

extracellular polymeric substances (EPSs) and swarming motility of P. aeruginosa PAO1 (Husain 

et al. 2015). Garlic, one of the widely accepted herbs globally also contains many antimicrobial 

metabolites. Crushed garlic contains ajoene and several other organosulfide compounds. Ajoene 

has shown effective antimicrobial activities towards many Gram-negative and Gram-positive 

bacteria including Xanthomonas spp, Klebsiella pneumoniae and E. coli (Naganawa et al. 1996). 

Ajoene also attenuates the virulence related genes of P. aeruginosa by reducing the expression of 

important QS related virulence genes mediated through LasR and RhIR (Jakobsen et al. 2012). 

Indole alkaloids are one of the major sub-class of alkaloids found in nature that contain 

structural moiety of indoles, many of them also include isoprene group and are thus called terpene 

indoles.  Indole-3- carbinol, an indole alkaloid commonly found in cruciferous vegetables, reduce 

virulence of P. aeruginosa by lowering the expression of QS related genes and inhibit biofilm 

formation in E. coli (Lee et al. 2011). Another major class of alkaloids is steroidal alkaloids, 

biosynthesized by the inclusion of one or two nitrogen atom into a steroid molecule. Tomatidine, 

a steroidal alkaloid blocks the expression of many virulence genes usually induced by QS related 

genes (geh, muc, hla, hld, plc and agr). This way these compounds interefers with virulence of S. 

aureus, for example hemolysis production (Husain et al. 2015). Erucin and Sulforaphane are 
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natural isothiocyanates, usually found in cruciferous vegetables such as broccoli. Both compounds 

inhibit QS activity in E. coli and P. aeruginosa where they effectively bind with LasR receptor, 

resulting in inhibition of QS activation genes (Ganin et al. 2013). Carum copticum L.  is a well-

known herb with many pharmacological effects. The essential oil extract of this herb composed of 

γ-terpinene, thymol, β-pinene and p-cymene has shown significant anti-QS activity against C. 

violaceum (Deryabin et al. 2019). 

Sesquiterpenes are the main constituent of essential oils (e.g., citrus fruits, spices and herbs) 

and have many ecological functions in plants, including as allelopathic agents and as repellents 

herbivores or resistance to plant pathogens (Dudareva et al. 2004; Paré and Tumlinson 1999). 

Sesquiterpene lactones, a class of sesquiterpenoids that contain lactone ring was reported to reduce 

the concentration AHL molecules in P. aeruginosa ATCC 27853, indicating it as a good candidate 

for development of antimicrobial agents (Amaya et al. 2012).   

Generally, QS inhibiting chemicals can inhibit QS in diverse bacterial species. For 

example, ginger (Zingiber officinales) rhizomes produce many phenolic acids, including 6-

gingirol, 6-shoagol and zingerone, all of which inhibit QS activity in C. violaceum bioassays 

(Kumar et al. 2014). 6-gingerol, a pungent oil from ginger has shown to notably reduce biofilm 

formation and other major virulence factors by binding with QS receptors in P. aeruginosa (Kim 

et al. 2015). This finding led to the investigation of the role of zingerone in AHL productions using 

different pathogens such as, Agrobacterium tumefaciens, E. coli, and P. aeruginosa. Interestingly, 

zingerone showed anti-QS activity against all three pathogens as it interferes with ligand receptor 

activity interactions with QS receptors (PqsR, LasR,  RhlR and TraR), hence, proposing a suitable 

anti-virulent chemical against P. aeruginosa infection (Kumar et al. 2015). 
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3.2. Anti-biofilm activity of plant derived molecules  

Biofilms are thick aggregates of microorganisms attached to a substratum embedded within 

self-produced polysaccharides and cells in a biofilm function in cooperative manner to benefit 

community (McDougald et al. 2012). Biofilm formation is tightly linked with QS in several 

pathogens (Barnard et al. 2007; Liu et al. 2008), There are many examples of plant derived 

molecules that inhibit/ reduce biofilm formation. For example, both eugenol and carvacrol reduce 

biofilm formation of Pectobacterium brasiliense and Pectobacterium aroidearum and it appears 

to be due to reduction of AHL synthase and QS regulator expression (Joshi et al. 2016). 

Gallic acid is a well-known natural antioxidant that reduces biofilm mass in Gram-negative 

bacteria and Gram-positive bacteria to a lesser extent. This phenolic acid controls biofilm 

production and inhibits motility of four human pathogenic bacteria including Listeria 

monocytogenes, Staphylococcus, E. coli and P. aeruginosa (Borges et al. 2012; Dusane et al. 

2015). Salicylic acid was tested against E. coli and S. aureus and found to control the growth of 

both bacteria in planktonic and biofilm states (Monte et al. 2014) and since neither of these 

pathogens encode AHL synthase, the mechanism of inhibition must differ than that reported in 

Pectobacterium spp. (Joshi et al. 2020). Plants produce small molecular hormones for cellular 

signal transduction in response to development and environmental cues.  For example, plant auxin, 

3-indoleacetonitrile (IAN) is involved in developmental processes and stress tolerance (Cohen et 

al. 2003). DNA microarray and whole transcriptomics data analysis showed that plant auxin, IAN 

inhibits biofilm formation in E. coli and reduces virulence in P. aeruginosa by down regulating 

QS related genes (Lee et al. 2011).  

Interestingly, fatty acids serve as signaling molecules to inhibit biofilm formation. For 

example, cis-2- decenoic acid inhibits biofilm formed by several bacterial pathogens, including S. 
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aureus, E. coli, P. aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, Proteus mirabilis, and 

Streptococcus pyogenes (Jennings et al. 2012; Sepehr et al. 2014; Marques et al. 2015; Rahmani-

Badi et al. 2014). To date, a variety of fatty acids are known to participate in QS related virulence 

control, such as cis-11-methyl-2-dodecenoic acid, trans-2-decenoic acid, cis-2-dodecenoic acid, 

cis-10-methyl-2-dodecenoic acid, cis-11-methyldodeca-2,5-dienoic acid (Cui et al. 2019; He et al. 

2010; Beaulieu et al. 2013; Ionescu et al. 2016; Huang and Lee Wong 2007; Ling et al. 2019). 

Exogenous application of oleic acid (cis-9-octadecenoic acid) inhibits bacterial adhesion and hence 

biofilm formation of many S. aureus strains, and this must occur through a non-AHL-based 

mechanism in this Gram-positive species (Rabin et al. 2015; Stenz et al. 2008). Further 

investigation of oleic acid showed that it completely inhibits bacterial biofilm formation of P. 

aeruginosa, specifically by interfering with LuxR, which serves as transcriptional activator protein 

and blocks AHLcontrolled QS (Singh et al. 2013). Recently an omega fatty acid, petroselinic acid 

(cis-6-octadecenoic acid) has been discovered to prevent QS regulated virulence, protease and 

biofilm production by downregulating genes including QS regulator gene (bsmB), flagellar 

transcription regulatory genes (flhD, fimC and fima) which encode for fimbriae production 

(Ramanathan et al. 2018). 

 Oleic acid is the most abundant among all the natural fatty acids and also present in all 

lipids. It is the principal fatty acid found in ripe fruit (Olea europaea) of olive oil . Oleic acid 

significantly inhibits biofilm development by inhibiting the number of cells of Staphylococcus 

aureus and inhibit biofilm accumulation in Streptococcus mutans (Stenz et al. 2008; Pandit et al. 

2015). Linoleic acid, which is structurally related with oleic acid also reduces biofilm formation 

in Streptococcus mutans and in K. pneumoniae (Jung et al. 2014; Magesh et al. 2013). It strongly 

diminishes dry weight, EPS production and thickness of Streptococcus mutants’ biofilm (Jung et 
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al. 2014). Unsaturated fatty acids, including palmitoleic and myristoleic acid, also inhibit the 

expression of QS transcription regulators by reducing autoinducers synthesis and therefore biofilm 

formation of Acinetobacter baumannii (Nicol 2018). Ginkgo biloba is among the oldest living 

species of tree and has been used to cure dementia and other circulatory disorders. The phenolic 

acid from Ginkgo biloba has shown significantly reduce biofilm formation in E. coli and S. aureus 

without interfering with bacterial growth (Lee et al. 2014). Other phytochemicals including 1,3,4-

oxadiazolen, 7-Hydroxyindole and solenopsin A has shown to reduce quorum sensing and hence 

reduce biofilm formation by interfering with transcriptional regulators of QS (pqsR and rhI) and 

Pseudomonas quinolone signal (PQS) system (Zender et al. 2013; Lee et al. 2009; Park et al. 2008). 

Other plant derived indoles, such as indole-3-carboxyaldehyde, indole-3-acetamide and 3-

Indolylacetonitrile significantly reduce the ability of P. aeruginosa to form biofilm (Lee et al. 

2012). 3-indolylacetonitrile isolated from cruciferous vegetables was further investigated and 

reported as a potential inhibitor of biofilm production in both E. coli and P. aeruginosa by reducing 

EPS production and reduction of curli formation (Lee et al. 2011). Aporphinoid alkaloids including 

oliverine, iriodenine and pachypodanthine inhibit the biofilm formation of Yersinia enterocolitica, 

a foodborne human pathogen, without reducing the growth of the bacteria. Moreover, 

pachypodanthine was further tested to reduce QS by inhibiting AHL production in the extracellular 

cell and hence inhibit biofilm formation in Y. enterocolitica (Marco et al. 2020).  

3.3. Role of plant derived molecules on motility 

Many phytopathogenic bacteria use flagellar motility during infection and this motility 

contributes to virulence (Jahn et al. 2008; Chesnokova et al. 1997; Mulholland et al. 1993). Several 

animal and plant pathogens, including Salmonella, Pectobacterium spp. and E. coli, are motile 

during host-pathogen interactions. Conversely, plant derived compounds have been shown to 
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interfere with bacterial motility and, therefore, reduce pathogenicity. In some cases, motility 

inhibition may occur through QS inhibitions. For example, coumarin inhibits swarming motility 

of P. aeruginosa by reducing QS genes related genes rhII and pqsA.  

Transcriptional profile of E. coli treated with coumarins showed that when applied at 50 

μg/ml repressed curli genes, motility genes, fimbriae production, swarming motility and hence 

biofilm formations in E. coli O157:H7 (Lee et al. 2014). Piperine is an alkaloid found in Piper 

nigrum and reserpine extracted from dried roots of Rauwoflia serpentine were tested against E. 

coli’s CFT073 ability to colonize under abiotic conditions. Both compounds under sub-inhibitory 

concentration significantly reduced swimming and swarming motility by inhibiting the expression 

motility genes (fimA, papA and uvrY) flagellar gene such as fliC (Dusane et al. 2014). They were 

also reported to reduce swarming and swimming ability of E. coli but did not reduce sliding 

motility of S. aureus (Monte et al. 2014). Caffeine (1,3,7-trimethylxanthine) is among few plant 

products that the general public is very familiar. Caffeine inhibits swarming motility of P. 

aeruginosa by limiting the bacterial colonies with undefined and short tendrils (Husain et al. 2015; 

Norizan et al. 2013). This inhibition in motility may be due to anti-QS properties of caffeine 

(Husain et al. 2015). Whole-transcriptomic data of P. aeruginosa showed that 3-indolylacetonitrile 

reduce genes tightly linked with virulence (pqsE and pvcC) and genes required for motility (z2200, 

motD, flhF, and pilI) in P. aeruginosa and therefore reduce virulence (Lee et al. 2011). IAN also 

represses motility, virulence related genes and other small molecules transporters in P. aeruginosa 

(Lee et al. 2011).  

Fatty acids also inhibit bacterial motility. For instance, 11-methyldodecanoic partly inhibits 

P. aeruginosa swarming motility, while vaccenic and oleic acid are known to completely inhibit 

motility without reducing bacterial growth (Inoue et al. 2008). Further investigation was conducted 
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to determine the inhibition mechanisms fatty acids. Myristic acid, lauric acid, stearic acid and 

palmitic acid were tested against Proteus mirabilis virulence related genes. All compounds inhibit 

swarming motility of P.  mirabili, however lauric acid, myristic acid, and palmitic acid were not 

able to inhibit swarming motility of rsbA defective mutant (Liaw et al. 2004). rsbA regulates 

swarming behavior which encodes for bacterial two-component signaling system. On the other 

hand, stearic acid reduces swarming motility in rsbA defective mutant, indicating it might occur 

through Rsb-A independent pathway. Therefore, fatty acids serves as intracellular signals to mimic 

bacteria and control swarming motility and hence control the expression of virulence factors 

through either RsbA depend or independent pathways (Liaw et al. 2004). In other cases, the 

mechanism of motility inhibition is unclear. For example, gallic acid, under subinhibitory 

concentrations, interrupts three different types of motilities such as, swimming, swarming and 

twitching of P. aeruginosa and swarming and swimming motilities in E. coli (Borges et al. 2014; 

O’May and Tufenkji 2011)  

3.4. Plant cell wall degrading enzymes, effector proteins and plant secretion system 

To cause disease successfully, many plant pathogens are dependent on production of 

extracellular enzymes that are capable of degrading plant tissue. Such as, soft rot bacteria including 

genus Dickeya and Pectobacterium relies on QS for PCWDEs regulations. Many plants derived 

phenolic acids act as inhibitors of exoenzymes production in Pectobacterium (Joshi et al. 2016; 

Joshi et al.2015; Joshi et al. 2016). Salicylic acid, tannin and catechin are reported to reduce 

production of elastase and protease of Pseudomonas (Prithiviraj et al., 2005; Vandeputte et al., 

2010).  Many nightshade family members including potatoes and Datura stramonium L. consist 

of steroidal alkaloids, such as α-Solamarine, α-Solanine, β-Chaconine, Saponin and tropane 

alkaloids including Calystegine A3/A6/A7 and Calystegine B2/B5 (Joshi et al. 2020; Christhudas 
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et al. 2012). Stem and tuber extract of M6, wild diploid potato species of Solanum chacoense 

composed of these steroidal and tropane alkaloids. These compounds significantly inhibit QS 

activity by reducing AHL synthesis and expression of pel1, pel2, prt1 and perE genes of Pcb (Joshi 

et al. 2020).  

Monoterpenes such as thymol and its isomer carvacrol have been reported to strongly 

inhibit enzymatic secretion such as lipase and coagulase production in S. aureus (Souza et al. 

2013). Reduction in enzymatic activity may result either from the direct interaction of compounds 

or it may prevent protein secretion (Souza et al. 2013). The hydroxyl groups in terpenoids such as 

carvacrol, thymol, terpineol and eugenol are extremely reactive and develop hydrogen bond with 

different active sites of enzymes and therefore deactivate them (Ouattara et al. 1997; Kim et al. 

1995).  

Bacterial plant pathogens encode protein secretion systems dedicated to secretion of 

virulence proteins into the plant apoplast or directly into plant cells (Green and Mecsas 2016). In 

several cases, expression of these secretion systems or the proteins secreted through them are 

controlled by QS (Asfour 2018; Hneke and Bassler 2004; Ruwandeepika et al. 2015). For example, 

QS controls expression of PCWDEs, such as the metalloproteases secreted through the type I 

secretion system (T1SS) and the pectinases secreted through the type II secretion system (T2SS) 

by soft rotting Pectobacteriaceae plant pathogens. QS may also regulate proteins secreted through 

the T3SS, such as DspA/E and helper/harpin proteins (Kim et al. Johnson et al. 2006; 2011; 

Charkowski et al. 2012). The QS dependent T3SS includes the hrp cluster with constituents of the 

structural apparatus, the helpers HrpW, HrpN and effector DspA/E and some other few regulators 

hrpL, hrpS and hrpY. This indicate that T3SS can be among the major targets to control plant 

pathogenic bacteria to attenuate disease. Plant derived inhibiting the expression of T3SS 
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components and helper genes (hrpA, hrpS, hrpL, hrpN, and rpoN) in Dickeya dadantii (Asfour 

2018; Li et al. 2009; Yamazaki et al. 2012; Li et al. 2015).  

AraC is a global transcription regulator which controls the expression of many virulence-

associated genes of pathogenic bacteria (Yang et al. 2011). Cis-9-octadecenoic acid and cis-9-

hexadecenoic acid inhibit VirF in Y. enterocolitica, HilD in S. enterica and Rns in E. coli, whay 

are AraC like regulatory proteins (Golubeva et al. 2016). Further investigation on exogenous 

application of cis-9-octadecenoic acid revealed that it inactivates the expression of HilD, a 

transcription regulator and β-oxidation pathway, therefore reducing the expression of T3SS in 

Salmonella (Golubeva et al. 2016; Boyen et al. 2008).  In addition, oleic acid also inactivates 

TfmR, another transcriptional regulator, led to down regulating HrpG/HrpX, which is the T3SS 

master regulator, and hence reduced virulence (Teper et al. 2019). 

3.5. Pigments, toxins and other virulence factors 

Several Gram-negative bacterial species produce violacein, a natural purple pigment which 

is one of the QS dependent phenotypes (McClean et al. 1997; Gopu et al. 2015). Conversely, plant 

derived terpenoids including, α-terpineol and cis-3-nonen-1-ol have been shown to exhibit >90% 

violacein inhibition, suggesting these compounds can be used as a potential QS inhibitor against 

C. violaceum and P. aeruginosa (Ahmad et al. 2015). Carvacrol, monoterpene also inhibits 

violacein production in C. violaceum (Burt et al. 2014). Further research on carvacrol has explored 

that in addition to inhibiting QS-dependent violacein biosynthesis, it regulates QS-controlled 

pyocyanin production and chitinase activity in P. aeruginosa (Burt et al. 2014; Tapia-Rodriguez 

et al. 2017).  

Essential oils can be categorized into two groups based on their inhibitory effects on 

microbes, slow acting compounds and fast acting compounds. Carvacrol, geraniol, linalool, and 
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terpinen-4-ol have been categorized as fast-acting compounds. These compounds kill E. coli 

almost on direct contact with bacteria (Friedman et al. 2004). In addition, geraniol, terpineol, 

citronellol and eugenol inactivate E. coli in 2 hours period and hence also categorize as fast acting 

compounds (Guimarães et al. 2019). Seven wine terpenoids including α-pinene, limonene, 

myrcene, geraniol, linalool, nerol, and terpineol exhibit high antibacterial activities under 

minimum inhibitory concentration as these compounds are highly toxic to the pathogen and results 

in killing three foodborne pathogens including Salmonella enterica, S. aureus and E. coli (Wang 

et al. 2019).  

Interestingly, Gram-positive bacteria are slightly more sensitive to some plant derived 

compounds such as terpenoids compared to Gram-negative bacteria, due to hydrophilic cell wall 

structure of Gram-positive bacteria (Silhavy et al. 2010). Conversely, Gram-negative bacterial cell 

wall consists of lipo-polysaccharides, which helps in blocking the penetration of hydrophobic 

component of terpenoids (Beveridge 1999). Numerous plants derived antimicrobial compounds 

act on bacterial cytoplasmic membrane, which serves as permeability barrier for most plant derived 

small molecules. In contrast, terpenes use diverse mode of action to defeat bacteria, for example 

terpenes act on cell membrane of bacteria and induce leakage of K+ from bacterial cells (Cox et al. 

2000). These ions lead to intracellular acidification, which alters bacterial membrane and causes 

severe cell membrane damage, hence results in cell death (Perumal et al. 2017). For instant, K+ 

damages the cell membrane of bacterial pathogen such as E. coli and S. aureus (Hada et al. 200; 

Carson et al. 2002; Cox et al. 2001). Other terpenoids exhibit same mechanism such as terpenes 

alcohol including farnesol, nerolidol, plaunotol have shown anti-bacterial activity against S. aureus 

by damaging cell membrane because of K+ ions leakage. Therefore, it is hypothesized that the 
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antibacterial activity of terpenoids is tightly linked with the affinity of lipid layers in the cell 

membrane.  

Saponin, a triterpene glycoside usually found in beans, spinach, quinoa, and other crops 

including potatoes and sorghum. Saponin extracts from sorghum and potatoes have anti-bacterial 

activity against pathogenic bacteria including E. coli and S. aureus and P. brasiliense (Aoki et al. 

2010; Joshi et al. 2020).  

4. Conclusions and future prospective  

With increasing demand of food and the emergence of several new bacterial plant diseases 

in recent decades, the development of new vegetable varieties with comprehensive resistance to 

various bacterial pathogens is urgently needed. Exploring plant specialized metabolites has 

attained a prominent place in plant biology research due to its novel potential to attenuate plant 

diseases caused by various pathogens. Advances in genomic and molecular tools can allow plant 

breeders to select for specific genes of interest and traits to develop new varieties. Omics tools 

such as metagenomics, transcriptomics, proteomics and metabolomics have huge potential of 

exploring plant defense mechanisms by exploiting the host-microbe interactions and hence 

incorporating this information in plant breeding programs. Further integration of metabolomic 

knowledge in plant breeding programs has immense potential in the development of new elite 

cultivars which will be resistant to diseases. In addition, the combination of metabolomics with 

other omics tools can help us to deploy genetic attributes of host-microbe interactions to mitigate 

yield losses caused to pathogens. Future application of metabolomics may include identification 

of metabolic markers to understand plant metabolic response to pathogens, which will assist in 

predictions including, approaches like metabolomics-assisted breeding for crop improvement 

programs, development of high yielding crops, stress tolerant germlines and to create climate smart 
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crop varieties. Speed breeding is yet another fascinating area where metabolomics is ready to do 

wonders in development of elite crop cultivars to attain maximum production. 

  Nevertheless, I believe that further investigated must be done in order to unfold some of 

the important scientific question associated with small molecules such as: 

1. Do metabolites inhibit virulence factors in a species specific manner? 

2. Metabolites are known to interfere with QS signaling molecules as discussed above, can plant 

pathogenic bacteria escape the impact of small molecules by controlling different QS routes?  

3. Based on current understanding of plant derived small molecules in response to pathogen and other 

abiotic stresses, how we can exploit the knowledge to develop new tools for breeding program to 

eradicate plant pathogenic bacteria?  

The real world is fully composed of microbial interactions, it is imperative to further 

explore the effects of metabolites in plant defense responses. Increasing research about plant-

pathogen interactions derived molecules could pave a unique way of designing new tools in our 

fight against phytopathogens. My metabolomic work with potato and the important pathogen 

Dickeya dianthicola, will aid in answering some of these important questions and should lead to 

improved management of soft rot and blackleg diseases. 
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Figure 1.1. Bacterial virulence factors addressed in this review as targets for anti-virulence agents. 
The plant derived small molecules are active against well recognized pathogenicity factors, such 
as 1, quorum sensing which regulates other virulence factors, such as 2, bacterial biofilm 
formation, 3, production of secreted enzymes, and in some cases 4, motility, 5, toxins, 6, surfactant 
and 7, pigments.  
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Table 1.1. Summary of plant derived compounds displaying anti-virulence activity  

Serial 

number 
Compound Structure 

 Quorum sensing signal 

0 Acyl homoserine lactone 
 

Phenolic acids 
 

1 Cinnamaldehyde  
 

2 Ellagic acid 
 

3 Resveratol 
 

4 Rutin 

 

 

5 Salicylic acid 

 

 

6 Tannic acid 

 

7 Trans-cinnamaldehyde 
 

8 Curcumin  
 

9 6-gingerol  
 

10 6-shoagoal  

11 Zingerone 
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12 Gallic acid 
 

13 Ferulic acids 
 

 

14 Methylate gallate 

 

 

15 Ginkgolic acid 
 

 

16 Eugenol 
 

17 
Carvacrol 

  

18 
Eugenol 

 

 

 

19 
Ginkgolic acid 

 

 

 

20 
Methyl gallate 

 

 

 

21 
Ferulic acid 

 

 

 

22 
Methyl salicylate 

 
 

23 Salicylamide 

 

 
Alkaloids 

 

1 
3-Indoleacetonitrile 

 
 

2 7-hydroxycoumarins 
 

 

3 
 

Indole-3-carbinol  
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4 Saponin 
 

5 Piperine 
 

6 Reserpine 
 

7 Caffeine 
 

8 α-Solamarine 

 

 

9 α-Solanine 
 

10 b-Chaconine 

 

11 1,3,4-oxadiazolen 

 

 

12 Solenopsin A 

 

 

13 Tomatidine 

 

 

14 Sulforaphane 

 

 

15 Erucin 
 
 

16 3-indoleacetonitrile 
 

 

17 Indole-3-carboxyaldehyde 

 

 

18 Indole-3-acetamide 

 

 

29 Pachypodanthine 

 

 

20 Iriodenine 
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21 Oliverine 

 

 

22 Piperine 
 

23 Reserpine 
 

2 3-indolylacetonitrile 

 

 
 

 
Terpenoids 

 

1 Farnesol 

 

 

2 Violacein 
 

3 α-Terpineol 

 

4 Cis-3-nonen-1-ol 
 

5 Sesquiterpene lactones 

 

 

6 Saponin 

 

7 Carvacrol 

 

 

8 Thymol 

 

9 p-cymene 

 

 

10 γ-terpinene 

 

 

OH
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11 β-pinene 
 

12 geraniol 

 

 

13 linalool 

 

 

14 Eugenol 
 

15 Farnesol  

16 Nerolidol 
 

17 Plaunotol 

 

 
 

 
 

Fatty acids 

1 Oleic acid 
 

 

2 Linoleic acid 
 

3 Dodecanoic acid 

 

 

4 lauric acid 
 

5 Myristic acid 
 

 

6 Palmitic acid 
 

7 Stearic acid 
 

 

8 
cis-2-Decenoic acid 

 

 

 

9 Myristoleic acids 
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Table 1.2. Phenolic compounds and their activity against phytopathogens 
 

Compound Source Pathogen Mode of 

Action 

Reference 

Glycosylated 

flavanones 

oranges Y. enterocolitica  Truchado et al. 

2012 

Cinnamaldehyde, 

ellagic acid 

pomegranate extract, 

resveratrol 

rutin 

 Y. enterocolitica and 

Pectobacterium carotovorum 

 Truchado et al. 

2012 

Trans-cinnamaldehyde  P. aeruginosa pyocyanin Chang et al. 2014 

Salicylic acid, tannic 

acid and trans-

cinnamaldehyde 

 P. aeruginosa RhlI Chang et al. 2014 

curcumin  P. aeruginosa  Rudrappa and Bais 

2008 

6-gingirol, 6-shoagol 

and zingerone 

ginger C. violaceum, P. aeruginosa  Kumar et al. 2014 

Zingerone ginger A. tumefaciens, E. coli 

P. aeruginosa 

TraR 

LasR 

PqsR, 

RhlR 

Kumar et al. 2015 

6-gingerol ginger P. aeruginosa Binds 

AHL 

receptor 

TraR 

Kim et al. 2015 

salicylic acid  Pectobacterium AHL Joshi et al. 2020 
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methyl salicylate and 

salicylamide 

 P. aeruginosa protease 

activity 

Amalaradjou et al. 

2010; Kumar et al. 

2013; Hu et al. 

2013 

Carvacrol and eugenol   expI and 

expr, QS 

regulators 

Joshi et al. 2016 

Gallic acid  E. coli, P. aeruginosa, L. 

monocytogenes and 

Staphylococcus spp. 

QS 

regulatory 

genes 

Borges et al. 2012; 

Dusane et al. 2015 

coumarin  P. aeruginosa rhII and 

pqsA 

Borges et al. 2014; 

O’May and 

Tufenkji 2011 
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Table 1.3. Alkaloids and their role as phytopathogens 
 

Chemicals Plant sources Target 

microorganism 

Genes effected Citation 

Indole-3- carbinol cruciferous 

vegetables 

E. coli, P. 

aeruginosa 

QS related 

genes 

Lee et al. 2011 

Tomatidine Solanaceous 

vegetables 

S. aureus QS accessory 

gene 

Husain et al. 2015 

Sulforaphane and 

erucin 

broccoli P. aeruginosa 

and E. coli 

QS activity Ganin et al. 2013 

3-indolylacetonitrile  E. coli and P. 

aeruginosa 

EPSs 

production 

Lee et al. 2011 

oliverine, 

iriodenine and 

pachypodanthine 

 Y. enterocolitica AHLs 

concentration 

Marco et al. 2020 

Fenugreek extract Fenugreek P. aeruginosa inhibits AHL, 

swarming 

motility 

Husain et al. 2015 

Ajoene extract  P. aeruginosa LasR and RhIR Jakobsen et al. 2012 

Piperine and 

reserpine 

Piper nigrum 

and Rauwoflia 

serpentine 

E. coli flagellar gene 

(fliC) and 

motility genes 

(fimA, papA and 

uvrY) 

Dusane et al. 2014 

1,3,7-

trimethylxanthine 

Caffeine  

P. aeruginosa 

QS properties Norizan et al. 2013; 

Husain et al. 2015 
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Calystegine 

A3/A6/A7 and 

Calystegine B2/B5 

Potato tubes Pectobacterium 

spp. 

AHL synthesis, 

pel1, pel2, prt1 

and perE genes 

Joshi et al. 2020 

α-Solamarine, α-

Solanine, β-

Chaconine, Saponin 

Potato tuber 

and Datura 

stramonium L 

Pectobacterium 

spp. 

AHL synthesis Joshi et al. 2020; 

Christhudas et al. 2012 

1,3,4-oxadiazolen, 7-

Hydroxyindole and 

solenopsin A 

 Pseudomonas 

spp. 

QS regulatory 

genes (pqsR 

and rhI) 

Zender et al. 2013; Lee et 

al. 2009; Park et al. 2008 

3-indoleacetonitrile  E. coli, P. 

aeruginosa 

QS related 

genes 

Lee et al. 2011 
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Table 1.4. Role of terpenes extracted from essential oil extract against pathogen adapted from 

(Mehnaz et al. 2019) 

Plant species Common 

names 

Pathogens Tested Citation 

Eugenia caryophyllata Clove Burkholderia cepacia complex Maida et al. 2014 
 

Origanum vulgare Oregano B. cepacia complex Maida et al. 2014 
 

Thymus vulgaris 
 

Thyme B. cepacia complex Maida et al. 2014 
 

Mentha spicata Spearmint E. coli Shrigod et al. 2017 
 

Mentha spicata and 
Cymbopogon citratus 

Spearmint 
Lemongrass 

S. aureus  

Acinetobacter baumannii Adukwu et al. 2016 
 

Foeniculum vulgare 
 

 

B. cepacia complex Vasireddy et al. 2018 
 

Prototheca zopfii Grzesiak et al. 2016 
 

Eugenia caryophyllata Clove S. typhimurium Rafiq et al. 2016 
 

E. coli  

Pelargonium 
graveolens 

Geranium Campylobacter spp. Kurekci et al. 2013 
 

Campylobacter spp.  

Laurus nobilis Bay laurel Campylobacter spp. Kurekci et al. 2013 
 

S. aureus de Rapper et al. 2016 
 

Backhousia citriodora 
Lavandula angustifolia 
 

 
Lemon myrtle 

Lavender 

Pseudomonas spp. Garzoli et al. 2018 
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Backhousia citriodora 
Lavandula angustifolia 

 

 
Lemon myrtle 

Lavender  

Pseudomonas spp. 

E. coli 
Kačániová et al. 2017 

 

Pseudomonas spp. Zrira and Ghanmi 
2016 
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Table 1.5. Effects of fatty acids as anti-virulence agents against plant pathogens adapted from 

(Kumar et al. 2020) 

Fatty acids Natural source Target 

miacroorganism 

 Growth Process and 

genes affected 

Citation 

Caprylic acid Milk, palm and 
kernel oil 

Klebsiella pneumoniae  Inhibited Capsule 
production and 
cell adhesion 

Gupta et al. 
2020  

Undecylic acid    
 
 

Human sweat 
and breast milk 

Serratia marcescens  Unchanged QS-dependent 
virulence 

factors 

Salini et al. 
2015  

C. albicans, Candida 

glabrata, Candida 

tropicalis, C. 

albicans clinical 
isolates 

 Inhibited Virulence 
genes 

Muthamil et al. 
2018  

Lauric acid   Coconut oil, 
laurel oil and 

palm oil 

Clostridium difficile  Inhibited Cell 
membranes and 

bacterial 
adhesins 

Yang et al. 2018  

Myristic acid Palm oil, bovine 
milk and 
butterfat 

Pseudomonas 

aeruginosa PAO1 
 Unchanged Unknown Wenderska et al. 

2011  

Sarcinic acid  P. aeruginosa PAO1  Unchanged Production of 
flagella and 

surface 
polysaccharides 

Inoue et al. 
2008 

 

Isopentadecylic 
acid 

Traditional soy 
fermentate 

P. aeruginosa PAO1  Unchanged Unknown Inoue et al. 
2008 

 

Palmitic acid Palm oil, butter, 
milk and 

soybean oil 

Vibrio spp.  Unchanged AI-2-based QS Santhakumari et 
al. 2017 

 

  P. aeruginosa PAO1  Unchanged Unknown Wenderska et al. 
2011 

 

  Escherichia coli  Unchanged Unknown Wenderska et al. 
2011 

 

Montanic acid  Streptococcus mutans 

UA159 

 Unchanged Unknown Khan et al. 2012 
 

cis-2-Decenoic 
acid 

 Staphylococcus aureus  Inhibited Unknown Jennings et al. 
2012 
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  K. pneumoniae  Unchanged Biofilm 
dispersal 

Rahmani-Badi 
et al. 2014 

Myristoleic acid Serenoa 

repens extract 
Acinetobacter 

baumannii 

 Unchanged Unknown Nicol 2018 
 

Palmitoleic acid Sea buckthorn 
oil and 

macadamia oil 

A. baumannii  Unchanged QS genes and 
material 

interfaces 

Nicol 2018 
 

Petroselinic acid Parsley seed oil S. marcescens  Unchanged QS genes Ramanathan et 
al. 2018 

 

Linoleic acid Safflower oil, 
grapeseed oil 

and centipede oil 

K. pneumonia  Inhibited Unknown Hobby et al. 
2019 

 

α-Linolenic acid Safflower oil, 
grapeseed oil 
and  centipede 

oil 

S. aureus MSSA 6538  Inhibited Unknown Kim et al. 2020 
 

Gondoic acid) 
 

Jojoba oil, plant 
oil and nuts 

S. aureus  Unchanged Hemolytic 
activity 

Lee et al. 2017 
 

cis, cis-11,14-
Eicosadienoic 

acid 

Coriander oil 
and camelina oil 

S. aureus MSSA 6538  Unchanged Hemolytic 
activity 

Lee et al. 2017 
 

All-cis-
5,8,11,14,17-

Eicosapentaenoic 
acid  

 

Herring oil, 
salmon and algae 

S. aureus   
Unchanged 

Expression of 
α-hemolysin 

 
Kim et al. 2018) 

 

Erucic acid Herring oil and 
rapeseed oil 

S. aureus  Unchanged Expression of 
α-hemolysin 

Kim et al. 2018 
 

All-cis-
4,7,10,13,16,19-
docosahexaenoic 

Herring oil and 
rapeseed oil 

S. aureus  Unchanged Expression of 
α-hemolysin 

Kim et al. 2018 
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CHAPTER II: DEVELOPMENT OF AUTOMATED PRIMER DESIGN WORKFLOW 

UNIQPRIMER AND DIAGNOSTIC PRIMERS FOR THE BROAD HOST RANGE 

PLANT PATHOGEN DICKEYA DIANTHICOLA12 

 
 

Synopsis 

Uniqprimer, a software pipeline developed in Python, was deployed as a user-friendly 

internet tool in Rice Galaxy for comparative genome analysis to design primer sets for PCR assays 

capable of detecting target bacterial taxa. The pipeline was trialed with Dickeya dianthicola, a 

destructive broad-host range bacterial pathogen found in most potato-growing regions. Dickeya is 

a highly variable genus, and most primers reported to detect this genus and species exhibit common 

diagnostic failures. Upon uploading a selection of target and non-target genomes, six primer sets 

were rapidly identified with Uniqprimer, of which two were specific and sensitive when tested 

with D. dianthicola. The remaining four amplified a minority of the non-target strains tested. The 

two promising candidate primer sets were trialed with DNA isolated from 116 field samples from 

across the United States (US) that were previously submitted for testing. D. dianthicola was 

detected in 41 samples demonstrating the applicability of our detection primers and suggesting 

widespread occurrence of D. dianthicola in North America. 

1. Introduction 

Bacterial plant diseases cause large global financial losses in numerous crop species. 

Pathogen detection is one of the most important management tools for both endemic and invasive  

bacterial diseases, allowing growers and regulators to exclude infected planting material and to  

 
1 This chapter has been published in the Plant Disease Journal.  
2 List of authors: Shaista Karim, Ryan R McNally, Afnan S Nasaruddin, Alexis DeReeper, Ramil    
  P. Maulen, Amy O Charkowski, Jan E Leach, Asa Ben-Hur, Lindsay R Triplett  
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avoid planting in contaminated soil or irrigating with contaminated water. At state and national 

borders, bacterial detection is crucial to identifying and quarantining seeds or other plant 

propagative materials infected with exotic bacterial pathogens. Cost- and time-sensitive decisions 

about crop destruction or quarantine may hinge on diagnostic test results, so the tests used must be 

sensitive (i.e., able to detect all strains of the target group), specific (does not produce false 

positives on non-target groups), and rapid.  Widely used molecular tools for bacterial 

phytopathogen detection include Enzyme Linked Immunosorbent Assay (ELISA), Polymerase 

Chain Reaction (PCR), isothermal detection methods such as recombinase polymerase 

amplification (RPA) and loop-mediated isothermal amplification (LAMP), or a combination of 

these methods. Of these, PCR and other DNA-based methods are preferred for their sensitivity, 

specificity, and the ease with which the required reagents can be obtained. Thousands of available 

pathogen genomes have enabled comparative genomic analysis as a means to design PCR-based 

detection assays, and over a dozen published pipelines or programs have been designed for 

genomic based differential primer design. Alignment-based pipelines such as KPATH, Insignia, 

and TOPSI generate and parse alignments of whole genomes or coding sequences to identify 

signatures unique to the diagnostic targets (Phillippy et al. 2009; Satya et al. 2010; Slezak et al. 

2003). Alignment-free approaches, such as RUCS, PrimerHunter, PriMux, and the python package 

find_differential_primers.py, design primers or probes comprehensively or at intervals across a 

reference genome before screening them for target specificity across genomes (Hysom et al. 2012; 

Nelson et al. 2009; Pritchard et al. 2012; Thomsen et al. 2017). While existing programs are 

designed to solve a variety of different diagnostic needs, adoption of comparative genomics 

methods for plant disease assay development has still been limited in scope. Many published tools 

require comfort with a command-line environment, while web tools such as PrimerBLAST or 
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MgenomeSubtractor depend on genome annotation or are limited to the analysis of few sequences 

(Shao et al 2010; Ye et al. 2012). Some previously published web tools are no longer maintained 

(Frech et al. 2009; van Hijum et al. 2003; Phillippy et al. 2009). Together, these factors may have 

limited the widespread adoption of comparative genomics methods for primer design in bacterial 

phytopathology. Our goal was to develop a rapid, web-based platform to generate robust diagnostic 

primers from bacterial sequence data with a minimum of upstream preparation and downstream 

validation. 

 We developed an alignment-based primer design pipeline implemented in Python, named 

Uniqprimer, that combines whole-genome alignment and parsing with primer design and cross-

validation. The pipeline shares commonalities with some previously designed programs, 

particularly the TOPSI package (Satya et al. 2010), in its use of a series of pairwise genome 

alignments to identify sequences specific to diagnostic targets. Also similarly to other pipelines, 

Uniqprimer employs the popular tools Primer3 (used in many published pipelines), EMBOSS 

Primersearch (used by (Pritchard et al. 2012) and BLAST used by (Pritchard et al. 2012; Satya et 

al. 2010; Thomsen et al. 2017) for primer design and screening steps. However, Uniqprimer uses 

a strategy distinct from previous alignment-based programs, first isolating amplicon-length 

regions of sequence that are distinct between target and non-target genomes. This strategy is 

intended to limit the number of initial primer pairs advanced to primer-genome alignment stages, 

as well as to enable further user analyses on the isolated regions. In-house versions of this pipeline 

have previously been used for development of several validated conventional or LAMP primer 

sets (Ash et al. 2014; Lang et al. 2014; Lang et al. 2017; Langlois et al. 2017; Triplett et al. 2011; 

Triplett et al. 2015). Recently, we released an online version of Uniqprimer, as one of many tools 

on the Rice Galaxy resource (galaxy.irri.org, Juanillas et al. 2018) hosted by the International Rice 
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Research Institute. Galaxy is a user-friendly internet platform that facilitates performing 

bioinformatics tasks in a reproducible way (Goecks et al. 2010), and workflows can be performed 

by anyone with a laptop and an internet connection. Although Uniqprimer on Rice Galaxy was 

reported in a recent paper (Gigascience, in press), its parameters and wet-lab validation have not 

been previously reported.  

 Here we describe the Rice Galaxy implementation of the Uniqprimer pipeline and use it to 

develop diagnostic tools for Dickeya dianthicola, a broad host-range pathogen responsible for a 

recent outbreak of blackleg in potato in North America (Ma et al. 2018). D. dianthicola is a 

pectolytic Gram-negative bacterial pathogen that colonizes potato stems and tubers and causes 

stem blackening, plant wilt, and tuber decay in potato (Charkowski 2018). Dozens of Dickeya 

sequences are currently available, as well as numerous genome sequences from closely related 

species (Zhang et al. 2016). Primer development for Dickeya species, however, has been 

continually problematic due to its wide genomic diversity and frequent exchanges. In 2013, 

Pritchard et al. used a comprehensive alignment-free pipeline to design more than 80 primers for 

Dickeya detection, of which DIA-A and DIA-C were successfully adopted for widespread 

diagnostic use.  A primer set that was previously reliable, DIA-A, was found to yield false 

negatives on a subset of recently described North American D. dianthicola strains that had lost the 

target operon for these primers (A. O. Charkowski and N. T. Perna, unpublished data). Recently 

designed primers based on the arbitrarily chosen dnaX failed when tested with field samples (van 

der Wolf et al. 2014). Therefore, the North American potato industry is currently dependent on a 

single primer set, DIA-C, for diagnosis and detection of this highly variable pathogen, which is 

likely to result in selection for strains that lack this target sequence. This is a common problem in 

all genome-based design assays and highlights the need to have multiple distinct detection tools at 
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hand. To provide additional assays for the potato industry, we used Uniqprimer to develop 

additional primer sets that can be used in specific and sensitive assays for D. dianthicola detection 

and disease management. 

2. Materials and Methods 

2.1. Uniqprimer design and implementation on Rice Galaxy 

Uniqprimer is a Python script that can be run as a stand-alone script in a Linux command 

line environment. Uniqprimer incorporates whole-genome alignment and parsing with primer 

design tools and in silico cross-validation. The Uniqprimer Python code is hosted at the Southgreen 

github repository (https://github.com/SouthGreenPlatform/Uniqprimer). A functional Uniqprimer 

tool is publicly available via the open-source bioinformatics internet portal Galaxy (Afgan et al. 

2018). The graphical interface of Uniqprimer in Rice Galaxy accepts inputs of “include” 

(diagnostic target) genomes and “exclude” (diagnostic non-target) genomes, which are uploaded 

by the user as single or multiFASTA sequence format files. The script uses NUCmer, a suffix tree-

based nucleotide alignment program in the MUMmer package to rapidly align one of the target 

genomes against the combined non-target sequences (Delcher et al. 2002). Regions of the target 

genome identified as mismatches to all non-target genomes are then aligned to the additional target 

genomes in iterative fashion, and regions that are not identified as matches in all target genomes 

are eliminated. Regions that are both distinct to and conserved among the group of target genomes 

are parsed into a multiFASTA sequence file. This file is used as input for primer design using the 

Primer3 program (Koressaar and Remm 2007). Primer3 is set at default stringency; users can 

modify primer length and product size range as desired. Finally, primers are mapped to target and 

non-target genomes using the Primersearch program from the package EMBOSS (Rice et al. 

2000), eliminating any primers that are predicted to amplify a non-target genome or that do not 
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perfectly match a target genome. The output is a file of primer pair sequences, including predicted 

product length and melting temperature (Tm), and a logfile with details of the run. 

2.2. Primer design and in silico analyses  

Uniqprimer was used for the design of primers specific to D. dianthicola. To identify 

relevant genomes for successful primer design, 39 complete or draft genomes representing 

Dickeya, Pectobacterium and Brennaria isolates were collected from the ASAP on-line database 

(https://asap.genetics.wisc.edu) and subjected to whole-genome phylogenetic analysis using 

REALPHY 1.12 (Bertels et al. 2014) (Table 1; Fig. 2). Six D. dianthicola genomes, including two 

draft contig assemblies, were uploaded as target genomes, and 33 other enterobacterial genomes 

were concatenated and uploaded as non-target genomes (Table 1). All primer options were left on 

the default settings (product size range 100-300 bp, optimal primer size 20 nucleotides, minimum 

primer size 18 nucleotides, and max primer size 27 nucleotides). The option to cross-check primers 

for specificity was selected. Primer output was checked for specificity to D. dianthicola among 

the Genbank nr and Refseq representative genomes databases using Primer-BLAST (Ye et al. 

2012). D. dianthicola target genes identified through the Primer-BLAST were analyzed for 

conservation among Dickeya and Pectobacterium using BlastN (Altschul et al. 1990).  

2.3. Source and identity of isolates and environmental samples 

Bacterial strains used in this study are listed in Table 1. The collection included multiple 

D. dianthicola strains, Dickeya species, genera related to Dickeya, and other bacteria found on 

potato. The bacterial strains were identified through morphology and either multi-locus sequence 

or genome sequence analyses. To confirm the specificity of our primers on diverse agricultural 

samples, DNA isolated from potato tissues samples and irrigation water was collected from 
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multiple US states including California, Colorado, Florida, Michigan, Missouri, New Mexico, 

New York, North Carolina, Texas, and Wisconsin. 

2.4. Bacterial DNA extraction 

Bacterial isolates were streaked onto nutrient agar and were grown at 25°C for two days 

(Schaad et al. 2001). Bacterial cells were harvested from the plate and DNA was extracted using 

a FastPrep kit (MP Biomedicals). To extract bacterial DNA from plant stems and tubers, a tissue 

sample was excised from the border of the symptomatic regions. The sample was vortexed in 400 

μl of sterile water and DNA was extracted from the water with a FastDNA Spin Kit for Soil  (MP 

Biomedicals). DNA quality and quantity was determined for DNA isolated from pure cultures and 

from diagnostic samples with a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific). 

DNA was stored at -20°C.  

2.5. Specificity of cPCR and qPCR assays 

Purified bacterial genomic DNA was serially diluted in sterile water to concentrations 

ranging from 1 ng to 100 fg, and these standards were used to determine the sensitivity of 

conventional (cPCR) and real-time (qPCR) assays. For cPCR, assays were considered positive if 

a band was visible by imaging on a 2.0% agarose gel after staining with SYBR safe DNA gel stain 

(Thermo Fisher Scientific) and for qPCR, we used a CT value of 28.22±2 as indication of D. 

dianthicola detection.  

 For primer set DDI-1, PCR was conducted in a 25 µl reaction that contained 10 μl of Q-

solution (5x), 1 μl of dNTP mix (10 mM), 5 μl of reaction buffer (10x), 1 μl of DDI-1 primers (10 

μM), 10 ng of DNA template, and 0.5 μl of HotstartTaq DNA polymerase (5 units/μl) (Table 2). 

Thermal cycling parameters consisted of 3 minutes at 95°C, 30 seconds at 95°C, followed by 25 

cycles of 30 seconds at 57°C, incubation for 5 minutes at 72°C and 10°C for infinite hold.  
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 The specificity of primer set DDI-2 was evaluated using the same bacterial isolate 

collection as used for cPCR testing. For qPCR, the reactions were conducted in 20 μl, including 1 

μl primers (10 µM), 2 μl of the DNA template (50 ng), and 10 μl of Power SYBR Green PCR 

master mix (2x) (Applied Biosystems) (Table 2). The thermal cycling conditions were: 2 min and 

30 sec at 98°C, followed by 30 cycles of 10 sec for 98°C, and 1 min at 60°C in an ABI-700 real-

time PCR system (Applied Biosystems). The threshold cycles were analyzed and calculated based 

on absolute quantification, and values less than 24±3 were considered as a positive detection 

response.  

 To validate the ability of qPCR to detect D. dianthicola in field samples, potato tubers and 

stems exhibiting blackleg and soft rot symptoms were collected from farmers throughout the US. 

Tissue samples were suspended in 10 ml sterile water and DNA was extracted using FastDNA 

Spin Kit for Soil (MP Biomedicals) and stored at -20°C. 

2.6. Sensitivity of cPCR and qPCR assays  

The sensitivity of primers sets DDI-1 and DDI-2 was evaluated with D. dianthicola DNA. 

From the template set based on pure DNA, a 10-fold series of dilutions was made by diluting a 

purified genomic DNA solution to concentrations from 1 ng to 100 fg. qPCR and cPCR were 

conducted with both template sets. All samples were run in three separate reactions. cPCR and 

qPCR were conducted with both template sets. 

3. Results 

3.1. Description of the Uniqprimer Rice Galaxy Tool  

Uniqprimer in Rice Galaxy is implemented using standard Galaxy tool development 

practices to wrap the Uniqprimer Python script that executes the primer design pipeline 

(uniqprimer.py; https://github.com/SouthGreenPlatform/Uniqprimer/tree/master/uniqprimer-
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0.5.0). The standalone python script collects as inputs (in the command-line parameters) the 

following:  i) the FASTA files to include (the sequences for which you want to design specific 

primer), ii) one to several FASTA files to exclude (primers designed will not match these 

sequences), iii) the product size range (from 100-300 bases default), the optimal primer size 

(default is 20), the minimum primer size (default = 18) , the maximum primer size (default = 27), 

and iv) a setting to cross-validate primers by Primersearch alignment to exclude files (default is 

YES). The Galaxy XML tool file implements the graphical interface to capture these parameters 

and pass these on to the Uniqprimer python script (uniqprimer.xml, available at  

https://github.com/SouthGreenPlatform/Uniqprimer). 

3.2. Design of D. dianthicola species-specific primers with Uniqprimer  

Prior to primer design, 39 genome sequences representing the Pectobacteriaceae were 

analyzed via whole-genome phylogenetic analysis (Fig. 2). Six genomes were confirmed or 

predicted to be D. dianthicola (Fig. 2). The six confirmed D. dianthicola genomes were used as 

inputs for Uniqprimer analysis with 33 control genomes representing other Dickeya, 

Pectobacterium and Brenneria species (Table 1; Fig. 2). Uniqprimer analysis was executed in nine 

minutes and 42 seconds in our instance; execution time may vary according to the number and size 

of input genomes, the number of initial primers screened, and the number of simultanous users on 

RiceGalaxy. As part of its output, Uniqprimer identified twenty-four genome regions as diagnostic 

candidate regions predicted to be distinct to and conserved among D. dianthicola. Of the initial 

primer pairs designed from those regions (two from each region), six primer pairs were confirmed 

via the Uniqprimer cross-check step to match all target genomes but no excluded genomes 

provided. Uniqprimer generated an output file of six primer pairs that were designated as DDI-1 

through DDI-6, with DDI-1 and DDI-4 originating from the same region and differing only in one 
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nucleotide in the forward primer (Table 2). PrimerBLAST was used to confirm that all six pairs 

had strong predicted templates in D. dianthicola genomes, but not in any other bacterial genomes 

found in the RefSeq and nr databases. Mapping primers to target regions in PrimerBLAST, 

followed by BLASTn searches of the target regions against Genbank, revealed that all of the target 

genes identified by Uniqprimer have homologs widely distributed among enterobacteria with the 

exception of the pehW locus (Table 2). Primers DDI-1 and DDI-4 targeted the same region of 

heme-binding ABC transporter ddpA (WP_024104074). Primers DDI-3 and DDI-5 targeted 

different regions of the coaABCD locus involved in pantetheine 4'-phosphate synthesis. These 

results suggest that ddpA and coaABCD could represent regions of particular diagnostic value in 

the Pectobacteriaceae. No regions present only in Dickeya or present only in the Pectobacteriaceae 

were identified as primer targets by Uniqprimer. 

3.3. Sensitivity and specificity of cPCR and qPCR assays 

DDI primer sets identified by Uniqprimer were tested with purified DNA from D. 

dianthicola and related species. DDI-3, DDI-4 and DDI-6 primer sets amplified DNA from non-

target species in addition to D. dianthicola and thus were excluded from subsequent analysis 

(Table 2). In addition, DDI-6, predicted to anneal to the pehW locus, did not reliably amplify DNA 

from all D. dianthicola strains analyzed (Table 2). Primer sets DDI-1 and DDI-2 were sensitive to 

all strains of D. dianthicola, and no amplification was detected from other non-D. dianthicola 

species (Fig. 3; Fig. 4; Table 2). Using primers DDI-1 and DDI-2, neither cPCR nor qPCR 

amplified non-target DNA from any of the other plant- and soil-associated bacteria that were 

tested, including the soft rot bacterial pathogen Pectobacterium and the closely related plant 

pathogenic genera Brenneria and Erwinia (Fig. 3). 
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3.4. Detection limit of cPCR and qPCR assays 

DDI-1 and DDI-2 were tested to confirm detection limit with known D. dianthicola 

genomic DNA and field samples. To prepare for sensitivity testing, D. dianthicola primers were 

tested to confirm efficiency. Both DDI-1 and DDI-2 exhibited efficiency values within accepted 

limits (100±10%). To determine detection limits for our assays, 100 ng of template DNA was 

serially diluted to one pg and tested via cPCR and qPCR.  cPCR assays with DDI-1 detected D. 

dianthicola DNA at 10 pg.  qPCR assays with DDI-2 exhibited detection limits down to 1 pg of 

DNA template. DDI-1, DDI-2, and DIA-C consistently identified D. dianthicola in field samples, 

while DIA-A, pelADE, and Df/Dr were inconsistent in identification from field samples, 

suggesting poor specificity (Table 3; Fig. 4).   

3.5. Field sample analysis  

To confirm the utility of our D. dianthicola detection primers and to further demonstrate 

their specificity, we validated our Uniqprimer assays with DNA from field samples collected 

across the United States. In total, 52 potato stem samples, 14 potato tuber samples, 9 potato tissue 

culture samples, and 41 irrigation water samples were tested from California, Colorado, Florida, 

Michigan, Missouri, New Mexico, New York, North Carolina, Texas, and Wisconsin (Table 3). 

D. dianthicola was detected in 30 stem and 11 tuber samples from California, Florida, Michigan, 

Montana, New Mexico, New York, North Carolina, Texas and Wisconsin. We compared the 

results with previously published assays and our results were consistent with DIA-C D. dianthicola 

detection primers (Pritchard et al. 2013).  

3.6. Comparison DDI-1 and DDI-2 to extant tools for D. dianthicola detection 

Currently, DNA-based D. dianthicola detection relies on the use of species-specific 

primers DIA-A and DIA-C combined with Dickeya-general primers pelADE and Df/Dr (Nassar et 
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al. 1996; Potrykus et al., 2014; Pritchard et al. 2013). We compared our Uniqprimer assays to DIA-

A and DIA-C in silico using a Primer-BLAST analysis of the NCBI non-redundant whole-genome 

database (Fig. 7); Primer-BLAST detects potential amplification products in NCBI genomic 

databases (Ye et al., 2012). DDI-1, DDI-2, and DIA-A shared 100% nucleotide sequence identity 

with their cognate targets in all available complete D. dianthicola genomes (Fig. 7). DDI-1 and 

DDI-2 also shared a lower level of identity with amplicon-sized regions in a greater number of off-

target genomes than DIA-A or DIA-C (Fig. 7, blue shaded regions). Although this level of identity 

was not sufficient to result in any false positives for DDI-1 or DD1-2 on strains tested in the lab 

(Table 1), they illustrate that Uniqprimer’s output includes diagnostic targets with some level of 

homology in closely related genomes, rather than targets completely missing in those genomes.   

4. Discussion 

 We used the Rice Galaxy implementation of the Uniqprimer diagnostic primer design 

pipeline to efficiently develop primers for sensitive and specific detection of D. dianthicola, a 

difficult-to-detect pathogen that causes tuber soft rot and potato blackleg. Given a set of targets 

and nontarget genome files, Uniqprimer rapidly generated six primer pairs with absolute sensitivity 

and specificity in silico, of which one-third demonstrated absolute sensitivity and specificity 

against a library of strains in the lab. This lab validation rate is comparable with Pritchard et al 

(2013). Uniqprimer can be performed by any user with an internet connection and access to 

genome sequences of diagnostic target bacteria, although the speed of the process may vary 

according to the size of the dataset input and the number of simultaneous users on RiceGalaxy. 

While the in-house Python code of Uniqprimer has previously been used to develop primers for 

specific detection of pathovars and geographic pathogen clades, this work demonstrates the 



77 

utilityof the user-friendly internet-accessible implementation of the pipeline for solving difficult 

diagnostic problems. 

 The Uniqprimer pipeline is similar to previous primer design approaches focused on the 

alignment-based identification of target-specific consensus targets, particularly the TOPSI Perl 

package (Satya et al. 2010),  in that the pipeline uses a series of rapid whole-genome alignments 

to isolate regions that are distinct to and conserved among the diagnostic target strains. However, 

while other alignment-based programs generate a large number of primer-length “signatures” that 

are paired into primer sets after screening, Uniqprimer generates a smaller number of amplicon-

length primer design templates that share increased conservation among targets than between 

targets and non-targets. This is in contrast to the computational approach of alignment-free 

methods, which comprehensively design primer pairs at regular intervals or for all coding 

sequences prior to filtering. While the goal of this project was not to perform a side-by-side 

comparison of primer design pipelines, the approach of limiting primer design to a smaller number 

of highly pre-filtered regions is intended to limit the computationally expensive final screening 

step of aligning the candidate primers to the input genomes. One benefit of isolating amplicon-

length regions is that Uniqprimer output includes multiFASTA files of the candidate diagnostic 

target regions, i.e., sequences predicted to have distinctions between target and non-target 

genomes. This output file can be useful for nonconventional primer design, such as primers for 

LAMP (Ash et al. 2014).  

 Dickeya is a diverse genus with at least seven known species and additional subspecies 

with significant genetic overlap and exchange; developing primers for species in this genus has 

proven difficult. Various immunodetection methods and DNA-based assays are published that 

describe D. dianthicola detection, but most of these assays lack the specificity and the sensitivity 
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necessary to produce pathogen-free stock. For example, we found that the Df/Dr primer set resulted 

in false negatives, the pelADE primer set amplified spurious DNA fragments, and the target locus 

of the DIA-A primer set is missing from some North American strains of D. dianthicola. This was 

unavoidable due to the unavailability of representative genomes from North America during the 

time of DIA-A primer design (Nassar et al. 1996; Potrykus et al. 2014; Pritchard et al. 2013). 

Uniqprimer designed two novel primer sets that performed comparably with the industry standard, 

DIA-C, with DNA from pure bacterial isolates and field samples (Pritchard et al. 2013). The 

remaining four resulted in false positives on non-target species in the lab, always a possibility 

when testing on unsequenced strains. The two successful candidate primer pairs were 100% 

accurate when tested against a wider variety of samples in the lab, demonstrating their strong 

potential as diagnostic tools. The primer pairs targeted loci that have predicted homologs in 

multiple genera of enterobacteria, demonstrating the utility of the pipeline for identifying distinct 

regions of conserved diagnostic targets which may be missed in alignment strategies targeting the 

presence/absence of entire loci.  

 To date, no primer sets are available that amplify DNA from all strains within the Dickeya 

genus. We also attempted to use Uniqprimer to design primers for detection of all Dickeya species, 

but the pipeline failed to identify any primer pairs that did not also amplify other pectolytic or 

enteric bacteria. This suggests that Uniqprimer may require a certain degree of genetic closeness 

within the diagnostic target group, as well as a threshold of genetic distance between target and 

non-target groups. Thus, the application of Uniqprimer may be limited for groups genetically 

broader than the highly specific groups currently validated, including species, pathovar, and sub-

pathovar geographic groups (Lang et al. 2014; Langlois et al. 2017). Uniqprimer prioritizes rapid 

and user-friendly use over exhaustive primer design; previously published strategies using more 
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comprehensive alignment-free or unique signature approaches may be better suited to develop 

diagnostics for genus-level detection, high-resolution differentiation of closely related strains, or 

other difficult diagnostic situations. The use of this pipeline to develop primers both distinct and 

comparable in performance to D. dianthicola primers previously generated through an alignment-

free pipeline (Pritchard et al. 2013) illustrates the value of utilizing multiple complementary primer 

design strategies to maximize diagnostic resources.  Sampling for Dickeya species has been limited 

to only a few crops and a few regions in the world, so the discovery of new diversity and the 

ensuing search for new diagnostics tests will undoubtedly continue.   
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Figure 2.1. Flowchart of the Uniqprimer process for primer design. White boxes represent 
Uniqprimer stages. Gray boxes represent analytical processes. The bottom two boxes represent 
manual primer validation steps performed in the lab. 
  

Nucmer

alignment, 

parsing

Single include genome

Include Files

(Diagnostic target genomes)

Exclude Files

(Non-target genomes)

Combined exclude 

genomes

Sequences distinct to 

single include genomes

Sequences conserved 

among include genomes

Concatenate

Primer3

Primer for distinct, conserved 

regions of include genomes

Primersearch

mapping to 

input files

Primers specific to all include 

genomes

Primers specific to target 

organism

Laboratory testing 

with representative 

DNA samples

Nucmer

alignment, 

parsing



81 

 

 
Figure 2.2. Whole-genome phylogeny of Pectobacteriaceae and control strains used for 
Uniqprimer D. dianthicola-specific detection primer design.  Tree created with REALPHY 1.12. 
A T = Type strain.  B Denotes status in Uniqprimer analysis.  C Previously identified only to genus 
level. 
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Figure 2.3. Sensitivity and specificity of primers detecting D. dianthicola determined through 
conventional polymerase chain reaction.  A, Amplification using DDI-1 detection primers of 
targeted gene presented by 200-250 bp bands. B, Sensitivity of conventional PCR reaction of pure 
genomic DNA (gDNA) from D. dianthicola ME23. 
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Figure 2.4. Detection of Dickeya dianthicola (Ddi) in potato field samples from across the US. 
genomic bacterial DNA (gDNA) control using DDI-1.  + = D. dianthicola detected and – = D. 

dianthicola not detected. 
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Figure 2.5. Primer efficiencies calculated for quantitative polymerase chain reaction Dickeya 

dianthicola detection primers. DDI-1 (diamond), DDI-2 (square), DIA-A (triangle), and DIA-C 
(cross) (Pritchard et al. 2013).  Results repeated in triplicate using D. dianthicola ME23 genomic 
DNA template.  Efficiency calculated [10^(-1/m)-1] × 100. 
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Figure 2.6. Detection of Dickeya dianthicola isolates ME23 and TXG3 using quantitative 
polymerase chain reaction (qPCR). A, qPCR detection of D. dianthicola isolates using diagnostic 
primers DIA-A (Pritchard et al. 2013). B, qPCR detection of D. dianthicola isolates using 
diagnostic primers DDI-2.  CT = cycle threshold as calculated by ABI-700 real-time PCR system. 
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Figure 2.7. In silico analysis of Pectobacteracease diagnostic primers and diagnostic primers and 
predicted targets. A, Nucleotide conservation was detetmind via a Primer3-BLAST analysis and 
NCBI nonredundant complete genome database. Percent nucleotde identity is presented for true-
positive results (red, black border) and false-positive results (blue, grau). Results were compared 
with primersfrom B, pitchard et al. (2013), C, Nassar et al. (1996) and D, Laurila et al. (2010). 
Primer-geneome interactions predicted to produce multiple amplicons are noted (dotted border). T 

= Type starin.  
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Table 2.1. Strains and genomes used in this study 

Species Strain Origin Host UniqprimerA ASAP Genome ID 

DDI-

1B 

DDI-

2 B 

Brenneria        

B. goodwinii OBR1 ndc nd excluded WIS_BgoOBR1_v1.fas – – 

B. quercina Equ 11D3 Beer Oak ntD - – – 

B. salicis 

ATCC 

15712-TE UK Willow excluded WIS_BsaATCC15712_v1.fas – – 

Brenneria sp. Eni D312 nd Walnut excluded WIS_BspEniD312_DRAFTv2.fas – – 

Dickeya        

D. chrysanthemi 

ATCC 

11663-T nd nd excluded WIS_Dch11663_DRAFTv1.fas – – 

D. chrysanthemi NCPPB 3533 nd nd excluded WIS_Dch3533_DRAFTv1.fas – – 

D. chrysanthemi M074 nd nd excluded WIS_DchM074_DRAFTv1.fas – – 

D. dadantii 3937 France African violet excluded WIS_ECH3937_v6b.fas – – 

D. dadantii subsp. 

dieffenbachiae 

NCPPB 

2976-T nd nd excluded WIS_Dda2976_DRAFTv1.fas – – 

D. dianthicola GBBC 2039 nd nd included WIS_Ddi2039_DRAFTv1.fas + + 

D. dianthicola NCPPB 3534 nd nd included WIS_Ddi3534_DRAFTv1.fas + + 
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D. dianthicola 

NCPPB 453-

T nd nd included WIS_Ddi453_DRAFTv1.fas + + 

D. dianthicola IPO 980 nd nd included WIS_Ddi980_DRAFTv1.fas + + 

D. dianthicola RNS04.9 nd nd included WIS_DdiRNS049_DRAFTv1.fas + + 

D. dianthicola undescribed nd nd included WIS_DicCSLRW240_DRAFTv1.fas + + 

D. dianthicola IPO 1741 Netherlands Potato nt - + + 

D. dianthicola IPO 3646 Netherlands Potato nt - + + 

D. dianthicola IPO 502 nd Potato nt - + + 

D. dianthicola ME 23 US Potato nt - + + 

D. dianthicola TXG 3 US Potato nt - + + 

D. paradisiaca 703 nd nd excluded WIS_Dic703_v3.fas – – 

D. paradisiaca 

ATCC 

33242-T nd nd excluded WIS_Dpa2511_DRAFTv1.fas – – 

D. solani MK10 nd nd excluded WIS_DsoMK10_DRAFTv1.fas – – 

D. solani MK16 nd nd excluded WIS_DsoMK16_DRAFTv1.fas – – 

D. solani IPO 2222 Netherlands Potato nt - – – 

D. solani IPO 2187 Israel Potato nt - – – 

D. solani IPO 3648 Netherlands Potato nt - – – 

Dickeya sp. NCPPB 3274 nd nd excluded WIS_Dic3274_DRAFTv1.fas – – 

Dickeya sp. NCPPB 569 nd nd excluded WIS_Dic569_DRAFTv1.fas – – 



89 

Dickeya sp. DW 0440 nd nd excluded WIS_DicDW0440_DRAFTv1.fas – – 

Dickeya sp. MK7 nd nd excluded WIS_DicMK7_DRAFTv1.fas – – 

D. zeae Ech1591 US Corn nt - – – 

D. zeae Ech586 Florida Philodendron excluded WIS_Dic586_v1.fas – – 

D. zeae NCPPB 3531 nd nd excluded WIS_Dze3531_DRAFTv1.fas – – 

D. zeae EC1 nd nd excluded WIS_DzeEC1_v1.fas – – 

D. zeae MK19 nd nd excluded WIS_DzeMK19_DRAFTv1.fas – – 

Pectobacterium        

P. atrosepticum 21A nd nd excluded WIS_Pat21A_v1.fas – – 

P. atrosepticum CFBP 6276 nd nd excluded WIS_Pat6276_DRAFTv1.fas – – 

P. atrosepticum SCRI1043 nd nd excluded WIS_SCRI1043_v2.fas – – 

P. atrosepticum ATCC 33260 UK Potato nt - – – 

P. betavasculorum 

ATCC 

43762-T California Sugar beet excluded WIS_Pbe43762_DRAFTv1.fas – – 

P. betavasculorum Ecb 2 nd nd nt - – – 

P. betavasculorum Ecb 6 nd nd nt - – – 

P. betavasculorum Ecb 1 nd nd nt - – – 

P. carotovorum WPP14 Wisconsin Potato excluded WIS_EccWPP14_v2.fas – – 

P. carotovorum BC1 nd nd excluded WIS_PcaBC1_v1.fas – – 
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P. carotovorum 

ATTCC 

15713 Denmark Potato nt - – – 

P. carotovorum subsp. 

brasiliensis WPP1692 nd nd excluded WIS_WPP1692_v2.fas – – 

P. carotovorum subsp. 

brasiliensis WPP165 nd nd nt - – – 

P. carotovorum subsp. 

brasiliensis WPP5 Wisconsin Potato nt - – – 

P. carotovorum subsp. 

brasiliensis WPP20 Wisconsin Potato nt - – – 

P. carotovorum subsp. 

brasiliensis WPP1 Wisconsin Potato nt - – – 

P. carotovorum subsp. 

carotovorum PCC21 nd nd excluded WIS_PcaPCC21_v1.fas – – 

P. carotovorum subsp. 

carotovorum WPP127 Wisconsin Potato nt - – – 

P. carotovorum subsp. 

carotovorum WPP156 nd nd nt - – – 

P. carotovorum subsp. 

carotovorum WPP2 Wisconsin Potato nt - – – 
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P. carotovorum subsp. 

carotovorum WPP12 Wisconsin Potato nt - – – 

P. carotovorum subsp. 

carotovorum WPP16 Wisconsin Potato nt - – – 

P. carotovorum subsp. 

carotovorum WPP17 Wisconsin Potato nt - – – 

P. carotovorum subsp. 

odoriferum BC S7 nd nd excluded WIS_PcaBCS7_DRAFTv1.fas – – 

P. parmentieri 

RNS 

08.42.1A-T nd nd excluded WIS_PpaRNS08421A_v1.fas – – 

P. parmentieri WPP163 Wisconsin Potato excluded 

 

WIS_PwaWPP163_v1.fas – – 

Pectobacterium sp. PC1 nd nd excluded WIS_PcaPC1_v2.fas – – 

P. wasabiae 

ATCC 

43316-T Japan nd excluded WIS_Pwa43316_v1.fas – – 

P. wasabiae WPP172 Denmark Potato nt - – – 

P. wasabiae WPP161 nd nd nt - – – 

Other        

E. amylovora Ea 246 nd Raspberry nt - – – 

E. amylovora Ea 321 France Hawthorne nt - – – 
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E. amylovora Ea 273 New York Apple nt - – – 

 

A  Status of genome in Uniqprimer analysis  
B  Combined results of conventional and quantitative PCR results; ‘+’ = positive for D. dianthicola detection; ‘-‘ = No D. dianthicola detected.  
C  Not determined 
D  Not tested 
E  T = Type strain 
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Table 2.2. Uniqprimer output of candidate Dickeya dianthicola diagnostic primers 

Primer Sequence (5'-3') Length 

(bp) 

LocationA Amplified (#/#) Source 

Target Non-

targetB 

Tm (°C)C 

DDI-F1D CTGACTATGCCTGCGTGAAA 206 4601359-564 5/5 0/36 55-65 This 

publication DDI-R1 CGGAATCAGGCAGAACAGAT (dppA) 

DDI-F2 D GTATTCAGCTCCGCCACTTC 201 4654393-593 5/5 0/36 50-65 This 

publication DDI-R2 TTTAACCTGACCAGCGGAGT (ubiE) 

DDI-F3 GAACTGCAACTGGCCAAAAT 201 4618221-421 5/5 2/36 ntE This 

publication DDI-R3 AACGACAGGTCGCTTTCAGT (coaD) 

DDI-F4 TGACTATGCCTGCGTGAAAC 205 4601359-564 5/5 1/36 nt This 

publication DDI-R4 CGGAATCAGGCAGAACAGAT (dppA) 

DDI-F5 CTGCATCAGGAAATGCGATA 194 4615678-871 5/5 5/36 nt This 

publication DDI-R5 GTGTTTCCCTGCAAGGTGTT (coaBC) 

DDI-F6 CCGCCATACCACAGGTTATC 200 DDI_4012 5/5 3/36 55-65 This 

publication DDI-R6 CAGAGTCGCACCTTTTGACA (pehW) 

pelADE1 GATCAGAAAGCCCGCAGCCAGAT 420 3120359-765 nt nt - Nassar et 

al. 1996 pelADE2 CTGTGGCCGATCAGGATGGTTTTGTCGTGC (pel cluster) 

Df AGAGTCAAAAGCGTCTTG 130 4674870- 5002 nt nt 60 Laurila et 

al. 2010 Dr TTTCACCCACCGTCAGTC (tRNA-Glu) 
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DIA-A_F GGCCGCCTGAATACTACATT 100 1154606- 708 nt nt 59 Pritchard et 

al. 2013 DIA-A_R TGGTATCTCTACGCCCATCA (oxidoreductase) 

DIA-C_F CCAACGATTAGTCGGATCT 100 1115639-733 nt nt 59 Pritchard et 

al. 2013 DIA-C_R TAGTTGGTGCCAGGTTGGTA (reductase) 

 

A  Location in chromosome of D. dianthicola RNS04.9 (GCA_000975305) 

B    Non-target amplification appeared 30 cycles after target amplification. 

C  Tm = melting temperature range at which primers amplified target DNA 

D  Primers presented in this study. 

E  nt; not tested 
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Table 2.3. Comparison of PCR detection results using Dickeya dianthicola-specific and Dickeya-general diagnostic primers 

Sample type (n) Location (n) Pel ADE Df/Dr DIA-A DIA-C DDI-1 DDI-2 

+A -B *C + - * + - * + - * + - * + - * 

Stems (52) California (2) 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 

 Colorado (17) 0 17 2 nt nt nt 0 17 0 0 17 0 0 17 0 0 17 0 

 Florida (6) 2 0 4 2 0 4 6 0 0 6 0 0 6 0 0 6 0 0 

 Missouri (4) 3 0 1 4 0 1 4 0 0 4 0 0 4 0 0 4 0 0 

 New Mexico (1) 1 0 0 0 0 2 0 1 0 1 0 0 1 0 0 1 0 0 

 New York (5) 0 1 4 1 0 3 4 1 0 4 1 0 4 1 0 4 1 0 

 North Carolina (3) 3 0 0 3 nt nt 3 0 0 3 0 0 3 0 0 3 0 0 

 Texas (2) 2 0 0 2 0 0 0 2 0 2 0 0 2 0 0 2 0 0 

 Wisconsin (12) 3 5 4 nt nt nt 2 10 0 8 4 0 8 4 0 8 4 0 

Tubers (14) Florida (6) 1 0 5 3 2 1 6 0 0 6 0 0 6 0 0 6 0 0 

 Texas (2) 0 0 2 2 0 0 0 2 0 2 0 0 2 0 0 2 0 0 

 Wisconsin (6) 2 2 6 nt nt nt 2 4 0 3 3 0 3 3 0 3 3 0 

Tissue culture (9) Colorado (9) 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 

Water (41) Colorado (23) 0 23 0 0 20 3 0 23 0 0 23 0 0 23 0 0 23 0 

 Michigan (10) 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 

 Wisconsin (8) 0 8 0 nt nt nt 0 8 0 0 8 0 0 8 0 0 8 0 
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B  -; Negative results 
C  *;  Ambiguous results displaying faint or non-specific banding 
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CHAPTER III: IMPROVED DETECTION OF THE POTATO PATHOGEN 

CLAVIBACTER MICHIGANENSIS SUBSP. SEPEDONICUS USING DROPLET 

DIGITAL PCR 

 

 

Synopsis 

The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus (Cms) causes 

bacterial ring rot in potato. There is zero tolerance for Cms in seed potato production, and the 

presence of a single infected plant may disqualify an entire farm from seed production for that 

year. Effective management of Cms is aided by accurate and sensitive molecular detection 

methods. Ambiguous test results have led to costly delays and occasionally to both financial and 

yield losses for farmers in subsequent growing seasons. In this study, we developed a droplet 

digital PCR (ddPCR) assay for accurate and sensitive detection of Cms. The assay was compared 

empirically to existing methods for detection including real-time PCR (RT-PCR), and ELISA, 

using field samples from a previous outbreak. The ddPCR assay improved detection capacity by 

10-fold using serial dilution of genomic DNA compared to RT-PCR. The ddPCR assay is sensitive 

enough to consistently detect one infected potato tuber core among 800 uninfected tuber cores 

whereas RT-PCR is limited to one infected core in 400. As such, larger seed potato lots can be 

comprehensively sampled using ddPCR. Because of the improved sensitivity of ddPCR, Cms was 

found on potatoes sold for consumption in grocery stores in the course of assay development. This 

discovery highlights the improved detection capabilities of ddPCR and the need for expanded Cms 

monitoring. 
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1. Introduction 

 Clavibacter michiganensis subsp. sepedonicus (Davis, Gillaspies, Vidaver & Harris; Cms) 

is a Gram-positive bacterium that causes bacterial ring rot in potato. It was first described in 

Germany in 1906 (Appel 1906/1911) and first detected in the United States (US) in 1938 

(Burkholder 1938). Since the early 1940s Cms has been treated as a zero-tolerance pathogen in 

seed potato production due to the large yield losses caused by the bacterium (De Boer and Slack 

1984). Foliar symptoms of Cms differ across potato varieties and can be difficult to distinguish 

from natural plant senescence, making it challenging to diagnose. In addition, this slow-growing 

and difficult to isolate pathogen can survive for long periods on farm equipment and also can 

remain latent in seed potatoes for multiple cropping cycles (Franc 1999;  Nelson 1980, 1982, 1984, 

1985;  Nelson and Kozub 1990). Therefore, seed producers and certifiers rely on molecular assays 

to screen for Cms in seed potato lots. Identification of Cms in a single plant or tuber of a seed lot 

results in rejection of the entire seed lot for planting, and triggers additional surveying of the farm 

to identify other seed lots that may carry Cms (Frost et al. 2013). A positive detection of Cms can 

result in up to 50% crop loss for the affected farmer and reduces seed potato supplies (Easton 

1979). 

 Currently, Cms identification relies primarily on enzyme-linked immunosorbent assay 

(ELISA) and quantitative real-time PCR (RT-PCR) methods (De Boer et al. 2005;  Gudmestad et 

al. 2009). Both methods use a threshold value to differentiate a negative result from positive result, 

however, values close to the threshold occur and these ambiguous results can lead to either false 

positives or false negatives. In addition, the method for calculating thresholds for RT-PCR and 

ELISA is not standardized across labs. Thresholds for RT-PCR assays are typically arbitrarily 

chosen based on experience (Gudmestad et al. 2009) and ELISA thresholds are either arbitrarily 
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chosen based on experience or one of multiple statistical methods may be used (De Boer and Hall 

1996;  Sutula et al. 1986). Because of these concerns and the stringent quarantine ramifications 

associated with positive Cms test results, seed potato certification agencies typically require Cms-

positive test results from two distinct assays before designating a sample as positive. False negative 

results can be even more problematic as incorrectly diagnosed seed potatoes with Cms can spread 

the pathogen to additional seed lots and farms, resulting in potentially larger disease outbreaks in 

the subsequent cropping season. 

 Given the importance of Cms diagnoses in seed potato certification, a more sensitive and 

precise method is needed for improved identification of Cms in seed potatoes. A recent review of 

ddPCR use in pathogen detection (Kuypers and Jerome 2017) indicates that ddPCR could be well 

suited for improving the detection threshold of Cms in potato tissue. Recently, ddPCR assays for 

Plasmodiophora, as well as bacterial, and viral plant pathogens were reported to be equivalent or 

better than RT-PCR for pathogen detection from environmental samples (Dreo et al. 2014;  Gossen 

et al. 2019;  Liu et al. 2019;  Selvaraj et al. 2018). 

Proposed in the late 1990s (Vogelstein and Kinzler 1999), and developed in the early 2010s 

(Hindson et al. 2011), ddPCR relies on partitioning of a 20 µL PCR mixture into approximately 

20,000 nanoliter-size droplets in which the reactions take place. This provides an improved 

statistical population to sample from compared to the typical single reactions of conventional PCR. 

The threshold cutoff values for ddPCR are easily and consistently determinable, and a false 

positive rate (FPR) can be empirically determined for each assay (Armbruster and Pry 2008;  Zink 

et al. 2017). Due to the high level of partitioning in ddPCR, even a single copy of target DNA can 

be detected, giving a definitive positive or negative result for samples that are ambiguous when 

tested with RT-PCR (Tembrock et al. 2017). Since ddPCR occurs in such small volumes, it is more 
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resistant to the presence of PCR inhibiting compounds and is more sensitive to low template copy 

numbers than RT-PCR due to the lack of competition for reagents within each reaction (Dingle et 

al. 2013). 

 Assays for plant diseases have only recently been developed using ddPCR, with the first 

protocol published in 2014 (Dreo et al. 2014). Other examples of ddPCR applications using 

complex environmental samples include detection of a single insect species from hundreds of 

individuals from a congeneric species (Nathan et al. 2014;  Zink et al. 2017;  Zink et al. 2018], 

detection of invasive aquatics species, detection of genetically modified organisms in diverse plant 

samples (Giraldo et al. 2019), and detection of fecal contamination in water (Cao et al. 2015). Here 

we show that ddPCR is more sensitive than RT-PCR for Cms detection in field samples by 

simulating a seed lot with one inoculated potato tuber core combined with increasing numbers of 

uninfected cores. We evaluated ambiguous field samples with RT-PCR, ELISA, and ddPCR to 

determine where Cms was present. Our results also suggest that Cms was present in asymptomatic 

potatoes in local grocery stores. 

2. Materials and Methods 

2.1. Bacterial cultures  

Bacterial strains used in this project are listed in Table 1. Bacterial isolates were streaked 

onto nutrient agar (NA) and grown at room temperature for one week prior to inoculation into 

tubers or for DNA extraction. Strains were stored at -80°C by suspending the cells in 20% vol: vol 

glycerol: water inside cryovials (Davis and Vidaver 2001). 

2.2. Tuber core sample preparation 

Tuber sample preparation followed that used for screening seed potato lots for Cms (De 

Boer et al. 2005). For the simulation tests a potato tuber was inoculated with Cms (SD-1) by 
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swiping a toothpick across a Cms culture growing on NA and piercing the potato. The tuber was 

then incubated at room temperature for seven days. An approximately 1 cm by 1 cm cylindrical 

core containing the inoculation site was taken from the potato tuber and mixed with 400 or 800 

uninfected cores obtained from healthy tubers to test the sensitivity of the ddPCR assay. For 

negative controls, only uninfected cores were used. The groups of tuber cores were placed in sterile 

flasks, covered with sterile water, placed on a rotary shaker, and incubated at room temperature 

with low speed shaking overnight. DNA was then extracted from a 1 mL subsample of water as 

described in the section below. 

To investigate colonization of Cms bacteria inside the potato tuber, we sampled Cms-

inoculated potatoes at different sites. To do this we inoculated a potato tuber with Cms using a 

sterilized toothpick at the stem end of the tuber. The inoculated tubers were incubated at room 

temperature for 1 week. Two 1 cm by 1 cm cylindrical cores were taken from the tuber with sterile 

knives, one from the stem end and one from the bud end of the tuber. DNA was extracted from 

each individual core as described below to determine if Cms could be detected beyond the 

inoculation site. 

 Tuber samples were obtained from a commercial field that had been inadvertently planted 

with an infected seed lot. These samples were used to test the performance of the ddPCR assay 

with real-world field samples. Samples were obtained by taking 1 cm by 1 cm cylindrical cores 

from the stolon-end of individual asymptomatic tubers. Each core was placed into a sterile test 

tube, covered with sterile water, and incubated at room temperature on a rotary shaker at low speed 

overnight. One mL of the supernatant was removed and used for DNA extractions or ELISA as 

described above. 
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2.3. DNA extraction 

DNA was extracted from 1 mL tuber core supernatant subsamples and from pure cultures 

with a FastDNA Spin Kit for Soil following the manufacturer’s protocol (MP Biomedicals, USA). 

The quantity of DNA was determined for all samples with a NanoDrop 1000 spectrophotometer 

at 230 nm following the manufacturer’s protocol (Software version 3.8.1; Thermo Fisher 

Scientific, Waltham, Massachusetts, USA). Purified genomic DNA was stored at -20°C until use. 

2.4. ELISA and RT-PCR assays  

ELISA for Cms detection was performed using the double antibody sandwich kit (DAS-

ELISA) available from Agdia, Inc. (Elkhart, Indiana, USA).  Each ELISA well was loaded with 

100 µl of bacterial suspension from the soaked tuber cores and the assays were processed following 

the manufacturer’s recommendations. ELISA tests were evaluated using an Awareness 

Technologies Stat Fax 2100 Microplate Reader (GMI, Ramsey, Minnesota, USA) at a wavelength 

of 405 nm. 

For the RT-PCR assays, we used primer pair CelA (Gudmestad et al. 2009) or primer pair 

Cms72 in simplex assays (Mills et al. 1997) and detected the amplified DNA with a probe (Table 

2). We chose to adapt the Cms72 assay for RT-PCR because the primer sets have been successfully 

used previously for Cms detection whereas primer set Cms85 frequently amplifies non-Cms DNA 

from potato tuber samples and primer set Cms50 is less sensitive (Charkowski, personal 

observations). The RT-PCR assay was performed for both CelA and Cms72 assay  in a final 

volume of 25 µL, containing 10 µL of Prime Time Gene Expression Master Mix (IDT Inc., San 

Jose, California, USA), 0.75 µM of each primer, 0.16 µM of probe, and 2 µL of 100 ng/µL of 

genomic DNA. The thermocycling protocol for RT-PCR was an initial incubation of the mix at 

95°C for 10 min followed by 40 cycles at 95°C for 30 s, 60°C for 45 s, and 72°C for 30 s with data 
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capture at the end of each 72°C cycle with lid temperature of 105°C in an ABL-700 real-time PCR 

system (Applied Biosystems, Foster City, California, USA).  

2.5. ddPCR assays 

The CelA primers and probe previously described were compared to the Cms72 primers 

for the ddPCR assay. To adapt the Cms72 assay for ddPCR, we manually designed a probe between 

the Cms 72 forward and Cms 72 reverse primers (Table 2). The RT-PCR assay was optimized for 

ddPCR by fragmenting the input DNA, sequentially decreasing the amount of primers and probes 

in each reaction, and altering the thermal cycling protocol to be consistent with the chemistry and 

the thermal properties of the aqueous droplets. After extraction, all DNA samples used for ddPCR 

were run through QIAshredder columns (Qiagen, Valencia, California, USA) to fragment the DNA 

for efficient packaging into droplets. A master mix was then made using 10 µL Supermix for 

probes (no dUTP) (Bio-Rad Laboratories Inc., Hercules, California, USA), 500 nM forward and 

reverse primers, 250 nM probe (Table 2), and enough water to bring the final volume to 19 

µl/reaction. The master mix was then vortexed for 10 sec, spun down briefly, vortexed for 10 sec 

again, and spun down a final time before it was aliquoted into 0.2 mL tubes and 1 µL of shredded 

sample DNA was added to each reaction. The tubes were centrifuged briefly, and the reaction 

mixture was added to the middle wells of a disposable DG8 cartridge for the QX100/QX200 

Droplet Generator (Bio-Rad Laboratories Inc.). This was followed by the addition of 70 µL of 

droplet generation oil for probes (Bio-Rad Laboratories Inc.) to the bottom wells of the cartridge, 

which was sealed with a disposable DG8 Gasket and placed in the QX200 Droplet Generator 

System (Bio-Rad Laboratories Inc.) and droplet generation was carried out. The droplets were then 

transferred from the top wells of the cartridge to an Eppendorf semi-skirted 96-well plate 

(Eppendorf AG, Hamburg, Germany) using an Eppendorf Xplorer Plus 5-100 µL automatic 
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pipettor (Eppendorf AG) set to the lowest draw and expel speeds to maximize droplet recovery. 

The plate was sealed using Bio-Rad Pierceable Foil Heat Seal (Bio-Rad Laboratories Inc.) in a 

PX1 PCR plate sealer (Bio-Rad Laboratories Inc.). Thermal cycling was carried out in a Bio-Rad 

C1000 thermal cycler with a deep-well reaction module (Bio-Rad Laboratories Inc.) following the 

protocol: (1) 95°C for 10 min, (2) 95°C for 30 sec, (3) 58°C for 45 sec, (4) 72°C for 30 sec, (5) 

repeat steps 2-4 39 times, (6) 98°C for 10 min, followed by an infinite hold at 10°C, lid temperature 

of 105°C throughout. A ramp rate of 2°C/sec was used between all steps of the thermal cycle 

program to ensure consistent heating and cooling of all droplets. 

 After thermal cycling, the plate was placed in the block of a Bio-Rad QX200 Droplet 

Reader (Bio-Rad Laboratories Inc.) and droplets were read at a rate of 32 wells/ hour. Data were 

analyzed using QuantaSoft version 1.7.4 and QuantaSoft Analysis Pro version 1.0 (Bio-Rad 

Laboratories Inc.). The threshold for positive droplets was determined using the Javascript 

“definetherain” (definetherain.org.uk; 2014) based on positive control data for each ddPCR run. 

Purified Cms DNA diluted 1:1000 in water was used as a positive control for all runs. Using the 

set threshold, Poisson statistics were recalculated by QuantaSoft. 

2.6. False positive rate and limit of detection for ddPCR.  

In order to determine a cutoff for the number of false positives for each primer set, both 

were used to run 65 replicates of DNA extraction from uninfected potato cores as negative controls. 

Purified, diluted Cms DNA was run as a positive control for the fluorescence amplitude cut off 

below which droplets are negative and above which they are positive. Using this data, the False 

Positive Rate (FPR) for the CelA and Cms72 assays were determined by combining the total 

number of positive droplets in the negative control wells divided by the total number of wells run. 

This data was used to determine FPR call thresholds, which were then used to define the limit of 
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detection (LoD) for each ddPCR assay using look-up tables. The look-up tables were provided by 

Bio-Rad as modified from Armbruster and Pry (Armbruster and Pry 2008). 

3. Results 

3.1 ddPCR sensitivity in detection of purified Cms DNA  

The CelA primers and probe and the Cms72 primers and probe (Table 2) were first tested 

using RT-PCR with 100 ng/µL of Cms DNA. The crossing threshold (Ct) value of 35 cycles was 

used in all experiments to determine presence of Cms (Gudmestad et al. 2009) (Table 3). The 

ddPCR assay was optimized as reflected in the materials and methods with the Cms strain SD-1 

(Table 1). 

 The sensitivity of the ddPCR assay for the target loci was tested with DNA isolated from 

pure cultures. The DNA was diluted to an initial concentration of 10 ng/µL and then further diluted 

to 1:102, 1:103, 1:104, 1:105, 1:106, 1:107, and 1:108 in sterile water. Cms was detectable in all 

dilutions down to 1:106, with a single droplet present for each primer set at 1:107 (Fig 1A, B). The 

CelA and Cms72 primer sets have been successfully used by the potato industry for many years 

for Cms detection, and their specificity has already been thoroughly tested. We further confirmed 

this by testing for off-target amplification with each primer/probe set with related C. michiganensis 

species, including three strains of C. michiganensis subsp. michiganensis (Cmm), which causes 

tomato canker, and three strains of C. michiganensis subsp. nebraskensis, which causes Goss’s 

wilt of maize (Cmn; Table 2). The Cms72 primer set had no off-target amplification with the 

related subspecies, but there was some off-target amplification by CelA for all four strains of Cmn 

tested (Fig 1A, B).  
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3.2. Use of ddPCR to detect Cms in low-titer field samples  

DNA extracted from individual asymptomatic tubers from a Cms outbreak on a 

commercial farm were tested with ddPCR, RT-PCR, and ELISA. Individual tubers were used 

because we wished to obtain a range of Cms concentrations from field samples. Of the 20 samples 

tested, 11 samples were consistently positive, and three samples were consistently negative with 

ELISA, RT-PCR and ddPCR assays. Unlike with RT-PCR assays, both ddPCR assays gave 

identical results with all 20 of these field samples. Three of the assays were positive by ELISA, 

but not with any of the PCR assays. Two of the samples gave ambiguous results with the RT-PCR 

assays and were rated as negative by ELISA. Of these, one was positive in both ddPCR assays and 

the other was negative in both ddPCR assays. (Table 3). 

3.3. Cms is detectable in bulk samples of up to 800 potato cores  

We inoculated tubers with Cms to test the efficacy of the RT-PCR and ddPCR assays in 

testing by bulk sampling. In our initial experiment, two cores were taken from each tuber, one 

from the stem end and one from the bud end of the tuber (Fig 2A, B). After DNA extraction, both 

core samples were used in a ddPCR assay for Cms detection. High levels of Cms were detected at 

both tuber sample sites using both primer sets (Fig 2A, B). 

European Community Directive 93/85/EEC recommends that commercial testing for Cms 

should carried out in lots of 200 potatoes at a time by PCR. To determine if a greater number of 

tubers can be tested in each sample, a single infected potato core was included with samples of 

400, and 800 uninfected potato cores. Using ddPCR, Cms was detectable in bulk tests using 400 

and 800 cores for both primer sets (Fig 2C, D). A lot consisting of 200 uninfected potato cores was 

used as a negative control to determine whether the potatoes used were free of Cms contamination 
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prior to inoculation and to ensure that non-target DNA did not interfere with the assay (Fig 2C, 

D). 

3.4. Detection of Cms in commercial potatoes using ddPCR  

We tested potato tubers from a local grocery store during the course of assay development. 

Our results revealed that the initial two sets of samples had detectable levels of Cms using CelA 

and Cms72 assays (Table 4). We surveyed additional samples of commercial potatoes of three 

different potato varieties from two states to determine whether Cms contamination is widespread. 

We detected Cms in one of six samples with the CelA assay, and in all six samples with the Cms72 

assay (Table 4). 

3.5. False positive rate  

The false positive rate (FPR) for the CelA assay was determined empirically to be 0.11 

false positive events per well. At this rate, the threshold to call the well positive at a 99% 

confidence interval (CI) is two positive droplets and the limit of detection is seven copies per well. 

For the Cms72 assay, the FPR was determined to be zero. From this a positive call threshold at a 

99% CI is one positive droplet per well a limit of detection of five copies per well (Fig S1).  

4. Discussion 

Bacterial ring rot in potato is caused by Cms, which is treated as a zero-tolerance pathogen 

throughout North America and Europe. Control of Cms is difficult due to its ability to remain latent 

inside host tissues for long periods of time (Franc 1999;  Nelson 1982). Despite attempts at 

eradication, it is still detected in seed potatoes and Cms is still the cause of occasional costly 

outbreaks. Limitations with current Cms detection assays have likely contributed to the spread of 

Cms through planting of infected seed potatoes that were falsely determined to be uninfected. The 

ddPCR assay developed here is at least 10-fold more sensitive than RT-PCR with DNA from pure 
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Cms cultures. The ddPCR assay can also detect Cms in an 800-tuber composite sample. In addition 

to improved sensitivity, ddPCR assays do not require an external calibration curve to define the 

threshold to use for determining whether the pathogen is present (Hindson et al. 2011), unlike 

ELISA or RT-PCR. We took advantage of this to determine whether Cms was present in 

asymptomatic field samples that had ambiguous or conflicting results with RT-PCR and ELISA 

assays. 

We tested two previously developed primer sets Cms72 and CelA, both of which are widely 

used for Cms detection in potato. The CelA primer set amplifies a region upstream of Cms celA, 

which is plasmid-encoded virulence gene (Gudmestad et al. 2009;  Holtsmark et al. 2007;  Laine 

et al. 2000), and Cms72 amplifies a portion of a gene of unknown function (Bentley et al. 2008;  

Mills et al. 1997). We found that the Cms72 primer set is better suited for ddPCR. The CelA assay 

was less sensitive than the Cms72 assay, it amplified non-target DNA from the closely related C. 

michiganensis subsp. nebraskensis, and it had reduced separation between positive and negative 

droplets and a greater number of rain droplets. After observing these results, we used BLASTN to 

reevaluate the CelA primers and found that the CelA primers and probe contain repetitive 

sequences of 9 to 15 nucleotides (Altschul et al. 1990). These sequences are found throughout the 

C. michiganenesis genome and PCR-mediated recombination between these repetitive sites could 

result in off-target amplification (Potapov and Ong 2017). In contrast, the Cms72 primers and 

probe do not contain repetitive sequences. The repetitive sequences in the CelA primers and probe 

could explain all of the deficiencies in the CelA assay compared to the Cms72 assay. As a whole, 

our results demonstrate that assays developed for RT-PCR, such as the CelA assay, may not be 

suitable for ddPCR and that the Cms72 primer/probe set is more appropriate for ddPCR detection 

of Cms.  
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 The inherent resistance of ddPCR to PCR inhibitors (Dingle et al. 2013;  Quan et al. 2018) 

and the ease and consistency with which threshold cutoff values and false positive rate (FPR) can 

be empirically determined  (Armbruster and Pry 2008;  Zink et al. 2017) make ddPCR an excellent 

alternative to ELISA and RT-PCR.  Because of these attributes, ddPCR assays for Cms in large 

bulk samples will have greater throughput and precision than ELISA and RT-PCR assays. We 

tested this with samples containing tuber cores from up to 800 potatoes to mimic pre-planting seed 

potato testing and with field samples that had previously given ambiguous results with RT-PCR 

and ELISA.  

The number of individual tuber samples taken from a seed potato lot determines the 

confidence interval for finding the pathogen (Clayton and Slack 1988), but testing costs impose a 

limit on how many tubers are tested in practice. The most common sample size for seed tuber 

testing in North America is 400 tubers per seed lot, which are generally tested in two pools of 200 

tubers each, and this sample size is primarily chosen to balance assay sensitivity, disease risk, and 

assay costs. If the lot is negative for the pathogen, the inference is that the pathogen is present at 

less than 1% incidence with a 95% confidence level. For the zero-tolerance pathogen Cms, growers 

may test a larger number of tubers per seed lot, typically 1200 per lot, particularly if there has been 

a recent outbreak in the region. The larger sample size used is, again, a balance of sensitivity, risk, 

and cost.  

In our initial experimental design, we had planned to determine the greatest number of 

cores that could be tested in a single bulk sample. However, obtaining tubers from seed or 

commercial farms for testing Cms assays is risky for the farmer because if the pathogen is found, 

it can lead to additional testing and large financial losses for seed potato farmers. Therefore, we 

decided to use tubers from a local grocery store so if Cms was found, it could not easily be traced 
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back to a specific farm. These tubers may have become infested with Cms during packaging and 

shipping. Unfortunately, a low level of Cms was detected in all of these grocery store samples, 

making them unsuitable for further assay development. We were able to obtain a limited number 

of tubers from the Colorado State University Potato Research Station, and these tubers tested 

negative for Cms in all of our assays.  As such we were only able to test bulk samples containing 

800 tuber cores.  

We found that our ddPCR assay could unambiguously detect 1 infected tuber core mixed 

in a bulk sample with 800 uninfected tuber cores. It is likely that a bulk sample larger than 800 

tuber cores could be effectively run for the detection of low levels of Cms using the ddPCR assay 

described in this paper. Larger bulk samples were not tested due to the difficulty in obtaining 

enough field-grown tubers from a location where the risk of finding the pathogen was acceptable 

to the farmer. Regardless, the ability to test 800-tuber bulk samples for Cms detection is an 

improvement over current protocol.    

 We collected asymptomatic tubers from a Cms outbreak to attempt to obtain field samples 

that had varying levels of the pathogen. Of these 20 samples, six had ambiguous or conflicting 

results with ELISA and RT-PCR, which are assays currently in use for Cms detection. Our ddPCR 

assay only amplified DNA from one of these six ambiguous samples, suggesting that the other five 

ambiguous samples were truly negative for Cms (table 3).  

Notably, the CelA primer set, which had a high amount of rain in the ddPCR assay and 

contained repetitive tRNA sequence motifs also amplified a low level of DNA from five of the six 

ambiguous samples. This suggests that the problems observed in the ddPCR assay with the CelA 

primer set also plague the RT-PCR assay. As described by Przewodowski and Prezewodowska 

(Przewodowski and Przewodowska 2017) non-specific reactions (false positives) frequently occur 
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with current ELISA methods. Limited ELISA specificity is a reasonable explanation for the three 

ambiguous samples that were positive by ELISA, but negative with the RT-PCR and ddPCR 

assays. We expected ELISA to be less sensitive than the PCR assays but observed that ELISA 

gave positive results in all but one sample that tested positive for Cms with RT-PCR and ddPCR. 

However, because ELISA also gave false positive results with three tubers from this sample set, 

we do not know if the ELISA results from samples with low pathogen levels are true positives. 

These experiments with field samples spanning a range of Cms concentrations demonstrates the 

challenges of Cms diagnosis, the limitations of the current ELISA and RT-PCR assays, and the 

utility of the ddPCR assay as a detection tool.   

 During our experiments, we initially used grocery store samples to develop the detection 

assays but found a low level of Cms in all of the samples tested. The Cms found in these samples 

may have infested the potato tubers on the farm where they were grown or during shipping, 

washing, or packaging. There have been multiple outbreaks in the past decade in the western half 

of North America, so the presence of Cms in commercial potatoes is not surprising. We were 

unable to confirm the presence of Cms in these samples with a separate assay because the 

concentrations of Cms detected were below the limit of detection for RT-PCR. Confirmation by 

isolation of the bacteria also was not possible. There is no selective medium available for Cms and 

on general or semi-selective medium, Cms is overgrown by other, more quickly growing 

environmental bacteria. Despite the inability to confirm the results of ddPCR assays with very low 

levels of pathogen, this method may be useful in determining where Cms may be present on farms 

that are already known to be part of a Cms outbreak.  

Overall, our results demonstrate that ddPCR offers a reliable, robust alternative to RT-PCR 

and ELISA for Cms testing in seed potatoes and, because of the increased sensitivity, ddPCR might 



118 

also be useful for monitoring Cms in farm ecosystems. The cost associated with ddPCR is 

comparable with RT-PCR. However, as ddPCR has a greater sensitivity and an improved method 

for threshold determination, less time may be needed to evaluate samples that would have had 

ambiguous test results with ELISA or RT-PCR. The greater sensitivity of ddPCR allows for 

bulking a greater number of tubers into a single sample, which further offsets the cost of ddPCR. 

Our results support the use of ddPCR technology with the Cms72 primer and probe set as a primary 

screening tool when indexing certified seed lots for the presence of Cms. 
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Figure 3.1. The primer/probe sets for Cms72 and CelA are sensitive and specific. Primer/probe 
sets for detection of A, CelA and B, Cms72 from Cms were used to detect serial dilutions of 
purified Cms DNA, and to check for cross reaction with C. michiganensis subsp. michiganensis 

(Cmm) and, C. Clavibacter michiganensis subsp. nebraskensis (Cmn) using CelA C, and Cms72 
D. Thresholds were defined using definetherain. 
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Figure 3.2. Cms is detectable in individual and bulk samples of potatoes. Primer/probe sets for A, 
CelA and B, Cms72 were run on individual infected potatoes which were each sampled at the stem 
end and bud end on the tuber. Bulk samples of 400 or 800 tubers were tested with C, CelA and D, 
Cms 72. 
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Table 3.1. Bacterial isolates used in this study   

Species Geographic origin Sourcea Number of 

isolates 

Clavibacter 

michiganensis subsp. sepedonicus 

South Dakota, 

Wisconsin 

 

Gudmestad, Clarke 6 

Clavibacter 

michiganensis subsp. michiganensis 

 

New York Smart 3 

Clavibacter 

michiganensis subsp. nebraskensis 

Colorado Ned 3 

 

a Isolates were provided by following sources.  Gudmestad: SD-1, INM, AS-1, OFF; Clarke: 
C.sep.1 (tiny, non-mucoidal), C.sep.1 (medium-small); Smart: 0417(Cmm), 0420B(Cmm), 
0445A; Ned: 428(E6-E7), B22(110), B23(J1).   
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Table 3.2. Primers and probes used in this study 

Primer/probe Sequence (5’-3’) Citation 

CelA-F TCTCTCAGTCATTGTAAGATGAT Gudmestad et al. 2009 

CelA-R TTCGACCGCTCTCAAA  

CelA probe [DHEX] TTCGGGCTTCAGGAGTGCGTGT 

[DBH2] 

 

 

Cms85 F AAGATCAGAAGCGACCCGC (Mills et al. 1997) 

Cms85 R GCTGGATTTGGCTGTGCGA  

Cms50 F GAGCGCGATAGAAGAGGAACTC  

Cms50 R TTTTCTTGTCGTTGCTCAGGA  

Cms72 F GTTCGAGTTGATAGCAATCC  

Cms72 R GGTGATCGTGAATCCGAGACAC 

 

 

Cms72 probe [HEX] 

ATCGCAGACGCAGGTTTCAATCCG[ZEN] 

This Study 
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Table 3.3. Comparison Cms detection methods with asymptomatic tubers 

 ddPCR RT-PCR   

Sample CelA Cms72 CelA Ct
a Cms72 Ct ELISA Conclusion 

1 + + 20.13 21.93 + + 

2 + + 20.60 22.83 + + 

3 + + 20.74 22.43 + + 

4 + + 22.39 25.04 + + 

5 + + 23.14 25.30 + + 

6 + + 24.04 25.49 + + 

7 + + 27.02 29.16 + + 

8 + + 28.90 30.46 + + 

9 + + 32.01 33.16 + + 

10 + + 32.18 33.68 + + 

11 + + 33.00 34.00 + + 

12 + + 34.92 36.08 - ambiguous 

13 - - 35.41 n/a - ambiguous 

14 - - 37.66 n/a + ambiguous 

15 - - 39.05 n/a - ambiguous 

16 - - 39.10 n/a + ambiguous 

17 - - n/a n/a + ambiguous 

18 - - n/a n/a - - 

19 - - n/a n/a - - 

20 - - n/a n/a - - 

 
aCt <35 is considered as positive for Cms using CelA and Cms72 primers (Gusmestad et al. 2009). 
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Table 3.4. Grocery store samples  

Sample CelA Positive Dropletsa Cms72 Positive Droplets 

Grocery Store 1 (3 reactions) 18 4 

Grocery Store 2 (14 reactions) 5 26 

Colorado 1 0 3 

Colorado 2 0 9 

Colorado 3 0 6 

Idaho 1 0 2 

Idaho 2 0 5 

Idaho 3 0 1 

 

a Positive droplet represent the total number of positives obtained for each sample.  
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CHAPTER IV: FROM METABOLOMICS TO FUNCTIONAL PHENOTYPES: 

REVEALING METABOLIC FEATURES OF DIPLOID POTATO SPECIES (SOLANUM 

CHACOENSE) IN RESPONSE TO BLACKLEG DISEASE 

 
 
Synopsis 

Some lines of the wild diploid potato Solanum chacoense are resistant or tolerant to 

blackleg and soft rot caused by Dickeya. To identify candidate metabolites that might contribute 

to resistance, we first screened 154 accessions of S. chacoense with a virulence assay to identify 

resistant and susceptible S. chacoense lines. We then used bio-chemical assays and non-targeted 

liquid chromatography mass spectrometry (LC-MS) to further characterize two resistant and two 

susceptible lines. Stem extracts from these selected accessions were tested for their effects on 

exoenzyme activity, cell morphology, AHL production, and bacterial motility of Dickeya 

dianthicola (ME23). D. dianthicola grown in stem extract from resistant lines had reduced protease 

(Prt), cellulase (Cel), pectate lyase (Pel) activity and reduced AHL synthesis compared to cells 

grown in the stem extracts from susceptible lines. However, stem extracts caused no difference in 

bacterial motility. A metabolic profile was created for resistant and susceptible lines, with and 

without D. dianthicola infection, using reverse phase LCMS. Analysis of metabolomic data 

showed clear distinction in the metabolites and their abundance between different S. chacoense 

lines. We found slight to very little shift in metabolic abundance in S. chacoense lines when 

infected with D. dianthicola at different timepoints. Detailed analysis and annotation identified 

phenolic acids, alkaloids, terpenes and fatty acids as potential contributors to resistance, potentially 

through interference with bacterial quorum sensing.  
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1. Introduction 

Potatoes are grown worldwide and are the fourth most important staple food source after 

wheat, rice, and corn (De Boer and Isael 2004). In the past few years, US potato production has 

increased in value and, in 2019, reached approximately $4 billion. However, this important crop 

is facing constant threats from numerous bacterial, viral, and fungal pathogens, many of which 

cause significant annual losses worldwide (Essarts et al. 2016; Zeng et al. 2019; Nolte et al. 2004; 

Frost et al. 2013). 

 Blackleg disease of potato is one of the most important potato diseases worldwide. This 

disease is caused by soft rot Pectobacteriaceae (SRP), including Dickeya and Pectobacterium 

(Charkowski 2018; Pérombelon 2002). Recently, Dickeya dianthicola caused a multi-year 

outbreak in potato, raising interest in this pathogen (Karim et al. 2019; Nasaruddin et al. 2019; 

Hao et al. 2016, Ma et al. 2018; Jiang et al. 2016; Johnson 2016). D. dianthicola infects potato 

plants through natural openings or wounds and disease progression is affected by moisture, 

temperature, and potato variety. The pathogen spreads through infected seed potatoes, irrigation 

water, insects, equipment and tools (Reverchon and Nasser 2013). Once inside the plant, it secretes 

plant cell wall degrading enzymes (PCWDE), which macerate the plant cell wall and allow the 

bacteria to acquire nutrients from the host (Czajkowski et al. 2011, Charkowski et al. 2012, Panda 

et al. 2016; Pérombelon 2002). The bacterial maceration of plant cell walls is the cause of the wilt 

and decay symptoms characteristic of blackleg disease. Blackleg bacteria can also cause soft rot 

on potato tuber during any stage of production cycle (Charkowski 2018).  

Dickeya and Pectobacterium species regulate numerous virulence genes with an N-acyl 

homoserine lactone (AHL) mediated quorum sensing (QS) system (Barnard et al. 2007; Liu et al. 

2008). Virulence genes are also regulated by plant phenolics, plant cell wall fragments, oxygen 
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level, and temperature (Charkowski et al. 2012). Because of the key role that QS plays in virulence 

gene regulation in these pathogens, disruption of this system is a major target for development of 

resistant plants. Transgenic plants capable of degrading the AHL QS signal are resistant to 

Pectobacterium, but they are not accepted for use by consumers (Ragunath et al. 2012; Wang et 

al. 2010).  

 Plant resistance is the most desirable form of disease resistance, but it is an elusive target 

for blackleg in commercial potato. Potato plants produce protective molecules in both tubers and 

stems, including steroidal alkaloids, phenolic acids, steroidal glycosides, amino glycosides, 

polyamine alkaloids and amino sugars (Friedman, 2006; Chaparro et al., 2018, Joshi et al. 2020). 

These molecules may toxify or inhibit pathogen signaling pathways required for blackleg virulence 

(Joshi et al. 2015; Joshi et al. 2016; Li et al. 2014; Li et al. 2009; Naybi Muñoz-Cazares et al., 

2017). However, very little is known about the genetics of blackleg resistant mechanism for any 

plant species (Chung et al. 2017; Joshi et al. 2020). As a result, breeding for resistance to blackleg 

in potato is difficult because the major genes involved have not been identified and resistance is 

most likely multigenic and quantitative (Zimnoch-Guzowska et al. 2000; Yogendra et al. 2014). 

Recently, a set of simple biochemical assays was shown to be associated with resistance to blackleg 

in potato, and metabolomic analysis suggests the identities of molecules involved in this resistance 

(Joshi et al. 2020). Identifying and validating the role of these molecules in resistance would 

facilitate rapid screening of potato varieties and provide a foundation for future breeding efforts. 

 Plants do not need to be resistant to pathogens, meaning that they limit pathogen growth, 

to be useful in agriculture. They may also be tolerant, meaning that pathogens grow and cause 

symptoms, but that sufficient yield is still obtained (Clarke 1986; Strauss and Agrawal 1999) 

(Little et al. 2010; Råberg 2014). The distinction between tolerant and resistant plants is clear for 
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many biotrophic and hemibiotrophic pathogens, but it is blurred for the soft rot pathogens, which 

can decay most plants under extreme anaerobiosis. For the purpose of this work, we use the term 

resistance for plants that remain asymptomatic, or nearly so, after inoculation with Dickeya or 

Pectobacterium in typical ambient temperature, humidity, and oxygen-level conditions that 

promote health potato growth.   

 Interestingly, accessions of some wild diploid potato species, such as Solanum chacoense 

are resistant to blackleg disease. S. chacoense has many advantages for adaption into potato 

breeding. For example, lines from these species tend to be vigorous, resistant to many common 

potato diseases, and they can be crossed with cultivated S. tuberosum (Jansky et al. 2014). Multiple 

draft or complete genomes are available for S. chacoense lines, including the complete genome of 

the self-compatible M6, which is a useful model S. chacoense and which is resistant to blackleg 

and soft rot compared to cultivated potato (Leisner et al. 2018; Felcher et al. 2012; Xu et al. 2011). 

 In this study, we compared metabolic profile of resistant and susceptible lines of S. 

chacoense before and after inoculation with D. dianthicola. The objectives were (i) to provide a 

comprehensive overview of the stem metabolome of resistant and susceptible lines and (ii) to 

characterize biochemical differences in response to plant extracts to develop tools to screen for 

resistance, and (iii) to determine if a video-based assay could be used to identify resistant 

accessions. We used a video assay to screen 154 accessions of S. chacoense and identified two 

highly resistant and two highly susceptible lines. We found that plant extracts from the resistant 

lines inhibited virulence-related phenotypes, including quorum sensing (QS) and plant cell wall 

degarding enzymes (PCWDE). We also used metabolic profile to identify pre-formed and induced 

metabolites associated with resistance. These lines and the associated biochemical assays will 
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provide a foundation for future breeding efforts aimed at development of resistant potato cultivars 

and at understanding how quorum sensing inhibition affects the plant microbiome.  

2. Materials and Methods 

2.1. Plant propagation and maintenance 

A total of 154 accessions of S. chacoense was obtained from (https://www.ars-

grin.gov/Pages/Collections) and were screened against blackleg disease caused by D. dianthicola 

(ME23). Seeds of each accession were soaked in gibberellic acid (50 μg) overnight in 1 mL of 

sterile distilled water in centrifuge tubes. The seeds were then planted 0.5 cm below the surface of 

the potting mix (ProMix Bx General Purpose; Premier Tech Horticulture; Pennsylvania) in a 6.35 

cm square form 103 pot (6.35 cm 6.35 cm 8.89 cm; L W H) and supplemented with the small 

amount of slow-release fertilizer “Osmocote Plus 15-9-12” (Scotts-MiracleGro; Ohio). The pots 

were placed into trays and covered with a closed container for one week. The trays were placed on 

a bench in a greenhouse room in Plant Growth Facilities (PGF) at Colorado State University. The 

pots were irrigated by hand once in three days for 1 month. The temperature in the greenhouse was 

set to 18-24 °C with a 16-hour daylight setting. A mixture of pesticides, including Botaniguard 

ES, Entrust SC, Molt-x, Distance, Judo, Avid, Compass, and 109 Azatin, were sprayed regularly 

for aphid control. Cuttings were made from one-month old plants to multiply the population.  

2.2. Time-lapse video assay  

To visualize disease development on wild potato lines, all 154 lines of S. chacoense were 

assessed using a time-lapse video assay. For each line, three plants were selected (three weeks old) 

grown in greenhouse as previously described. Prior to stem inoculation, D. dianthicola (ME23) 

cells were grown from a freshly frozen 20% glycerol stock on Nutrient Agar (NA) and incubated 

for 24 hours (hrs). A sterile toothpick was used to make a vertical slit about 2 cm above the soil 
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line. One loop of bacterial cells from NA plate was placed into the slit of the stem. Each wound 

was injected with 50 μL of 108 CFU/ml of D. dianthicola or 50 μL of sterile water (s H2O) as a 

negative control. The wounds were wrapped with Parafilm®, and the treated plants were placed in 

front of two cameras in an imaging room. An image was taken every 10 minutes for two weeks. 

All captured images were combined into a video file. The time from inoculation to first leaf wilt, 

50% leaves wilting, 100% of leaves wilting were recorded and converted into hrs taken for each 

event to happen (Tylor et al. 2020). Two highly resistant and two highly susceptible accessions 

were selected for further analysis.  

2.3. Stem inoculation for lesion length measurements  

Overnight liquid cultures were started from a single colony of D. dianthicola and were 

grown in NB at 30°C for 12 hrs on an orbital shaker at 220 rpm. Bacteria were centrifuged and 

pellets were washed three times with sterile distilled water and adjusted to a final concentration of 

1×108/mL in sterile water for stem inoculations. One-month old plants previously selected (two 

highly resistant and two highly susceptible) lines that were grown in the greenhouse were used for 

stem inoculations. A sterile toothpick was used to make a vertical slit on the lower stem of a plant 

about 2 cm from the soil. 50 μL of the bacterial suspension was injected into the stems using sterile 

pipette. Sterile water was injected in negative control samples. The wound was then wrapped with 

Parafilm ® and all treated plants were grown for three weeks in the greenhouse. Inoculated plants 

were screened based on the lesion length.  

2.4. Sample preparation for metabolic profiling 

One-month old plants of previously selected plants were used for stem inoculation. 

Samples were collected at two time points (0hrs and 24hrs) with three biological replications and 

three plants were pooled as one replication per treatment. 50 uL of the bacterial solution was 
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injected as previously described and the same amount of sterile water was injected in control 

samples. Subsequently, after each time point (0 hrs and 24 hrs), stems sections 1 cm above and 1 

cm below the inoculated region were collected and flash-frozen in liquid nitrogen to quench the 

metabolites. The samples were stored at -80°C until they were lyophilized with a freeze drier for 

48 hrs (HarvestRight, UT, USA). The freeze-dried stems were then used for metabolite extraction. 

For metabolite extraction, 1 mL of 6:3:1 methyl-tert-butyl ether/methanol/water (vol/vol/vol) was 

added to ~30 mg of tissue, agitated for 2 hrs at 4°C using a vortex machine, then sonicated for 30 

min at cold water followed by vertexing on a shaker at 4°C for 1 hr. The mixture was the centrifuge 

for at 3,500 rpm for 15 mins at 4°C and the supernatant was transferred to a new vial and dry under 

a stream of nitrogen gas (Organomation Assocaition Inc., U.S.A.).  

2.5. Liquid chromatography-mass spectrometry (LC-MS) 

The LC-MS data was acquired in the phenylhexyl positive mode. A volume of 1.4 mL of 

organic extract from each stem sample was collected, dried down, and resuspended in 600 uL of 

1:1 toluene/methanol. One microliter of the 10x diluted organic extract was injected onto a Waters 

Acquity UPLC system in randomized order with a pooled quality control (QC) injection after every 

six samples. Separation was achieved using a Waters Acquity UPLC CSH Phenyl Hexyl column 

(1.7 µM, 1.0 x 100 mm), using a gradient from solvent A (Water, 2mM ammonium formate) to 

solvent B (Acetonitrile, 0.1% formic acid). Injections were made in 99% A, held at 99% A for 1 

min, ramped to 98% B over 12 minutes, held at 98% B for 3 minutes, and then returned to starting 

conditions over 0.05 minutes and allowed to re-equilibrate for 3.95 minutes, with a 200 µL/min 

constant flow rate. The column and samples were held at 65°C and 6°C, respectively. The column 

eluent was infused into a Waters Xevo G2-XS Q-TOF-MS with an electrospray source in positive 

mode, scanning 50-1200 m/z at 0.1 seconds per scan, alternating between MS (6 V collision 
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energy) and MSE mode (15-30 V ramp). Calibration was performed using sodium formate with 1 

ppm mass accuracy. The capillary voltage was held at 700 V, source temperature at 140°C, and 

nitrogen desolvation temperature at 600°C with a desolvation gas flow rate of 1000 L/hr. 

2.6. Data processing and metabolite annotation 

For data processing, .RAW files were converted to .cdf format and processed according to 

Yao et al. 2019 in R statistical software (RCoreTeam, 2015). Peak detection, grouping, alignment, 

and filling was performed using XCMS in R (Smith et al. 2006), deconvoluted and normalized to 

total ion current using the RAMClust package in R (Broeckling et al. 2014). Interpretation of 

spectra occurred using the R package Interpret MS spectrum and MS-Finder v3.0 (Tsugawa et al. 

2016; Lai et al. 2018), which determined molecular weights of fragments, chemical formulas and 

structures that were eventually matched to the external MS databases like, METLIN, MetFrag and 

NIST library search. 

2.7. Biochemical assays 

One-month old plants were inoculated with 1×108 cells of bacteria as described above. 

After 24 hrs, the stems were collected for all four accessions and ground with a sterile mortar and 

pestle. The stem extract was then centrifuged at 16,000 g for 1 min followed by filter sterilization. 

The filtered sterilized stem sap was centrifuged at 16,000 g for 5 min. The supernatant was used 

to test for inhibition of exoenzymes caused by D. dianthicola, including inhibition of pectate lyase 

(Pel), cellulase (Cel) and protease (Prt) activity. The exoenzyme activity was performed in the 

petri dish assays as described previously by Chatterjee et al., 1995.  

 To examine AHL activity, the reporter bacteria, CV026 (mini‐Tn5 mutant in luxI homolog) 

was used to detect the presence of AHL molecules with the protocol described by Vijayaraghavan 

and Vincent, 2013. The reporter strain CV026 was grown in fresh NB medium supplemented with 
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kanamycin (50 μg/mL). Plant extracts were prepared as described previously. Bacteria were grown 

in the stem extract and the supernatants were filter sterilized and poured into central hole of LB 

plates (5 mm diameter). The CV026 strain was spread on the plate using microbial loop on four 

sides of the hole on LB plates. The plates were then incubated overnight at 30°C and the intensity 

of the purple pigment produced by the reporter strain was then assessed in cm2. 

2.8. Microscopy assays 

Stem extracts of one month old resistant and susceptible lines were collected as mentioned 

above. Approximately 1×108 bacterial cells were added to the extract and grown at 30°C for 18 

hrs on an orbital shaker at 220 rpm. The bacterial cultures were centrifuged for 5 mins at 16,000 

rcf and pellets were washed three times with sterile distilled water. Bacterial cells were observed 

under compound microscope Nikon eclipse E400 using 1000X magnification.  

2.9. Statistical analysis 

The data for exoenzymes and time-lapse assays were analyzed using GraphPad software, 

version 8.0 (SAS Institute Inc., NC, USA) using Student’s t tests to compare between treatments, 

with a p threshold of 0.05. Univariate and multivariate analyses were used to analyze the data. 

Spearman’s correlations and hierarchical clustering was conducted to understand correlation 

patterns in treatments (resistant, susceptible and time course). Metabolite abundance and 

differences were evaluated using analysis of variance (ANOVA). Benjamini-Hochberg correction 

was used to adjust p-values for false discovery rate (FDR). Principle component analysis (PCA) 

and optical principle discriminate analysis (OPL-DA) of metabolites were performed on mean-

centered and unit-variance scaled data using SIMCA v 14.1 (Umetrics, Umea, Sweden). Z- scores 

for metabolites were calculated using the relative abundance of metabolites compared to the mean 

and standard deviation of metabolites. Z scores were then used to generate a heatmap using 
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GraphPad Prism 8. Fold change (FC) for metabolites were calculated using the mean relative 

abundance values of resistant accessions compared to the mean susceptible abundance for the same 

metabolite.  

3. Results 

3.1. Virulence assay to rate Dickeya infection to S. chacoense lines  

Among 154 lines of S. chacoense that were screened, 29 were scored as resistant, 105 

intermediate and 20 were susceptible based on the development of disease symptoms including 

dark brown to black lesion, leaf wilting and plant death. Among the selected resistant and 

susceptible lines, disease symptoms were closely monitored, number of days taken to develop 

symptoms were recorded, and two highly resistant (R-1, accession no. PI 472819 and R-2, PI 

230580) and two highly susceptible (S-1, PI 458319 and S-2, PI 320285) lines were selected for 

further analysis. 

3.2. Lesion length and time-lapse video revealed that wilting symptoms develop faster in 

susceptible lines than in resistant lines  

 Dark brown or black lesions formed on plants from each accession when inoculated with 

D. dianthicola (ME23) after 48 hrs (Figure 4.1A). Lesions did not occur in controls inoculated 

with sterile distilled water. Among the four diploid potato lines screened, S-1 and S-2 had the 

longest lesions (MeanS-1 5.994 cm, MeanS-2 6.269 cm) and the lesions were significantly larger 

than those that formed on stems of R-1 and R-2 (P< 0.05). Lesion length results were correlated 

with the time-lapse video data.  The two resistant lines took longer to develop wilting symptoms 

(MeanR-1, first leaf wilt = 98 hrs; MeanR-1, 50% leaf wilt = 300 hrs; MeanR-2, first leaf wilt = 

80 hrs; MeanR-2, 50% leaf wilt = 320 hrs) (Figure 4.1B). R-1 and R-2 were significantly different 

from S-1 and S-2 in the video assay (p< 0.05). There were no significant differences observed 
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between R-1 and R-2, however R-1 developed smaller lesion compared to R-2. Infected plants of 

R-1 and R-2 survived up to 53 and 45 days respectively.    

3.3. Metabolite extracts from resistant wild diploid potato lines reduced D. dianthicola 

exoenzyme activity and AHL synthesis 

 Stem extracts from the resistant and susceptible wild diploid potato lines were tested to 

measure enzyme activity. R1 and R2 stem extracts completely inhibited bacterial protease (Prt) 

and pectate lyase (Pel), and reduced cellulase (Cel), shown in Figure 4.2. We tested the effect of 

stem extracts on D. dianthicola production of AHL with the reporter strain Chromobacterium 

violaceum CV026. The R-1 stem extract completely inhibited D. dianthicola AHL production. 

Stem extract from potato line R-2 reduced AHL production compared to extracts from lines S-1 

and S-2 (Figure 4.3). S-1 and S2 reduced AHL production compared to the negative control, 

demonstrating that they had some ability to reduce AHL production (not shown).  

 Stem extracts from resistant lines of S. chacoense altered D. dianthicola cell morphology 

and motility. D. dianthicola cells grown in stem extract from S. chacoense lines were 

heterogenous, with numerous elongated and filamentous cells compared to cells grown in NB. 

Some cells were rod-shaped, with length from 1 to 10 µm, and some cells were filamentous, with 

a length greater than 10 µm (Figure 4.4). The size of cells was significantly increased when grown 

in stem extracts of resistant and susceptible accessions compared to cells grown in NB. There was 

no significant difference observed in swimming and swarming motility of bacteria grown in 

resistant and susceptible stem extracts. 
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3.4. Metabolomic analysis of S. chacoense stem extracts using liquid chromatography mass 

spectrometry 

A comparative metabolomics experiment was performed to identify metabolic profile 

associated with antibacterial activity in resistant lines (R-1 and R-2) compared to susceptible lines 

(S-1 and S-2). The metabolomic analysis detected a total 1,917 metabolites among four lines of S. 

chacoense (Figure 4.5A). Principle coordinate analysis (PCoA) was performed to distinguish 

differences between and among resistant and susceptible lines (Fig. 5A). We observed a clear 

separation between R-1 compared to S-1, S-2 and R-2 (p< 0.0005). Interestingly, R-1 and R-2 

clustered separately suggesting that they might be resistant for different reasons, i.e.  different 

metabolites are responsible for triggering resistance in both lines. The metabolomic profile were 

further evaluated using the regression model, orthogonal partial least square discriminate analysis 

(OPLS-DA). The OPLS-DA scores and loading plots demonstrated metabolic variation between 

the resistant and susceptible lines over the period of time. The R-1 model resulted in two OPLS-

DA components that classified level of resistance, and component 2 separated the R-1 from two 

susceptible accessions (Fig 4.5B; R2Y component 22%). The R-2 model was also separated along 

components 2 (Figure 4.5C; R2Y component 2 23%). A total of 63 metabolites found were highly 

associated with resistance using these models, 32 were found in R1 model and 31 in R2 model.   

 Of 63 metabolites, we were able to annotate 17 metabolites with level 4 confidence and 21 

with level 2 confidence. Among 17 metabolites, 15 were reported previously to exhibit 

antibacterial activity against pathogens in plants. Interestingly, nine annotated metabolites were 

previously tested to show strong antibacterial activities by interfering with QS related genes, seven 

were from R-1, including capsaicin, salicylic acid, salicylamide, tomatidine, indole 3-carbinol, 

menthol, naphthoquinone shikonin, 2-heptyl-3-hydroxy-4-quinolon and two from R-2, 
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10′(Z),13′(E)-heptadecadienylhydroquinone and maleic acid.  Detailed information of metabolites 

that were highly associated with resistance is provided in Table 4.1.   

 Two metabolites were associated with resistance in both R-1 and R-2 OPLS-DA models, 

belonging to benzenoids and alkaloids families, and their metabolic abundance was decreased in 

susceptible accessions (Figure 4.5D). In many cases, the mechanisms these families deploy to 

inhibit pathogen are well explored. For instance, they inhibit QS related genes such as rhII and 

pqsA, expI and expR (Borges et al. 2014; O’May and Tufenkji 2011, Joshi et al. 2020). These 

findings suggested that resistant lines inhibit QS dependent mechanisms in blackleg pathogens  

3.5. Induction of S. chacoense metabolites after inoculation with D. dianthicola.  

To increase our understanding of innate or pathogen triggered immunity (PTI) in resistant 

wild diploid potatoes lines, we compared metabolic profile of resistant (R1 and R2) and susceptible 

(S1 and S2) lines at 0 and 24 hrs post inoculation. Surprisingly, we observed a very little shift in 

metabolic abundance between the treatments (Figure 4.6A, Table 4.2). To further evaluate the 

difference, fold change and pairwise comparisons were conducted to quantify the magnitude of 

differences between resistant and susceptible lines (Figure 46B, 4.6C, Table 4.2). We found 43 

metabolites that were constant in inoculated resistant lines compared to the susceptible lines 

(Figure 4.6C, Table 4.2).  

 Of 43 metabolites, the majority are associated with nitrophenols, tannins, flavonoids and 

sesquiterpenes in resistant lines before infection, however phenylpropanoids, diterpenoids and 

furanoid lignan were found in infected resistant lines. These metabolites are reported to interfere 

with bacterial virulence systems and to attenuate disease (Kowalczyk et al. 2015; Redondo et al. 

2014; Tomiyama et al. 2016; Górniak et al. 2019; Rukayadi and Hwang 2006; Konno et al. 1990). 
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4. Discussion 

We screened 154 accessions of the diploid potato S. chacoense to identify lines that were 

either highly resistant, moderately resistant or highly susceptible to blackleg caused by D. 

dianthicola (Supplementary Table 4.3). We chose two resistant and two susceptible lines for 

further bio-chemical assays and found that the resistant lines inhibited quorum sensing and 

production of enzymes regulated by quorum sensing, with R-1 inhibiting activity to a greater extent 

than R-2. We also found that the metabolic profiles of the resistant lines differed from the 

susceptible lines and from each other. We identified metabolites in resistant lines that were 

previously reported to inhibit quorum sensing activity of plant pathogens.  

 Of the four lines examined in the present study, we found significant differences in disease 

development and lesion length in resistant lines compared to susceptible lines.  Interestingly, in 

both cases, R-1 was more resistant than R-2. The lesion length produced by D. dianthicola in R-1 

was smaller and infected plants survived and flowered up to 52 days after infection compared to 

R-2 average to 45 days. R-1 appeared to suppress quorum sensing and associated phenotypes to a 

greater extent than R-2, but the differences were not significantly different. As with Joshi et al. 

(2020), our data supports the hypothesis that these S. chacoense plants resist blackleg through 

suppression of quorum-sensing through plant metabolites that either interfere with AHL 

production or sensing. For example, the plant defense hormone salicylic acid and its derivative, 

salicylamide both were found at higher levels in R-1 and these molecules are known to interfere 

with production of AHL through inhibition of the acyl homoserine lactone synthase ExpI (Joshi et 

al. 2020).  

These results are similar to those reported by Joshi et al. (2020) for S. chacoense M6, 

demonstrating that multiple blackleg-resistant S. chacoense lines have similar effects on inhibition 



145 

of quorum sensing and the virulence enzymes regulated by quorum sensing. Our study differs in 

that we used D. dianthicola instead of Pectobacterium brasiliense, and because we identified 

susceptible S. chacoense lines. The susceptible lines described here and in Joshi et al. (2020) 

demonstrate that susceptibility is correlated with lack of QS inhibition in both S. chacoense and S. 

tuberosum. These susceptible S. chacoense lines will be useful for mapping of genes responsible 

for metabolites that inhibit quorum sensing. In addition, we also used a different metabolite 

extraction method and found unique compounds in resistant lines known to interfere with quorum 

sensing including benzenoids (salicylic acid, salicylamide, capsaicin) and alkaloids (Indole 3 

carbinol, tomatidine) not reported by Joshi et al. (2020). Both extraction methods result in unique 

identification of compounds that are reported to exhibit anti-bacterial properties.  

 Plant defense responses against pathogen could be either pre-formed (phytoanticipins) or 

induced (phytoalexins) (VenEtten et al. 1994; Müller & Börger 1940; Pedras and Yaya 2015).  In 

both cases, these are plant-derived small molecules with diverse functions in plant defense 

responses (Davey and O’toole 2000; Hall-Stoodley et al. 2004). We found very little to no shift in 

metabolic abundance of specific metabolites when we compared infected with non-infected at time 

point 0 versus 24 hrs post infection (Figure 4.6A), suggesting that if metabolites contribute to 

resistance to blackleg, that it occurs through pre-formed metabolites. These finding support 

previous work where researchers found that potato has constitutive defense against pathogens (Ali 

et al. 2012).  

SRP use several virulence factors to cause disease such as quorum sensing, bacterial 

biofilm formation, motility, toxins, pigments, enzymes, and surfactants. Conversely, plants 

produce thousands of metabolites to overcome diseases caused by pathogens (Wang et al. 2019). 

Our metabolic analysis revealed that resistance in wild diploid potatoes is tightly linked with QS 
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inhibiting molecules. Consistent with Joshi et al. 2020, we found molecules that were previously 

reported to exhibit stronger antibacterial activity by inhibiting quorum sensing related genes. For 

instance, capsaicin, salicylic acid, tomatidine, indole 3-carbinol, menthol, naphthoquinone 

shikonin, 2-heptyl-3-hydroxy-4-quinolon, 10′(Z),13′(E)-heptadecadienylhydroquinone have been 

previously listed to inhibit QS activity in Gram-negative bacteria (Qiu et al. 2012; Ding et al. 2011; 

Monte et al. 2014; Liu et al. 2012; Qiu et al. 2011; Qiu et al. 2010; Husain et al. 2015; Gutiérrez-

Barranquero et al. 2015; McKnight et al. 2000; Diggle et al. 2007). These metabolites with 

antimicrobial or anti-virulence properties may contribute to blackleg resistance by inhibiting QS 

and hence PCWDEs productions or activity. It is possible that the disruption of bacterial QS led to 

attenuations of resistance against blackleg disease in resistant lines (Kaufmann et al. 2008; Smith 

and Iglewski 2003; Jhoshi et al 2016). We also found plant defense hormone salicylic acid and its 

derivative salicylamide in R-1. Hight levels of constitutive salicylic acid in potato plants have been 

previous reported, it directly binds to Pectobacterium- acyl-homoserine lactone synthesis and 

reduce QS (Joshi et al. 2020) 

Cultivated potato, S. tuberosum, is an outcrossing tetraploid with limited information 

available for genetic or genomic studies compared to other major crops. A major limitation in 

understanding and using genetic resistance to blackleg is that it is multigenetic, quantitative, and 

difficult to screen for if only virulence assays are used (Charkowski et al. 2018; Corwin et al. 

2017). The observation that QS inhibition is correlated with resistance will increase efficiency in 

screening for blackleg resistance in potato breeding programs. The QS inhibition screen combined 

with diploid mapping populations may allow plant scientists to identify the specific genes required 

for QS inhibiting metabolites.  



147 

 Although the blackleg pathogens Dickeya and Pectobacterium produce numerous plant cell 

wall degrading enzymes, they do not appear to cause epidemics outside of agricultural ecosystems, 

suggesting that most plants resist these pathogens. Our finding aids in exploring genotypes with 

constitutive active defense that can be tracked with simple AHL detection assays. This germplasm 

and the AHL assays may be useful tool for breeders and farmers to screen for resistant against 

blackleg disease. Further investigation of monitoring the segregation of these resistant genetic 

attributes in progeny will provide insights to genes important for production of AHL inhibitors 

and may guide and promote development of elite cultivars with durable resistance against plant 

pathogens. 
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Figure 4.1. Virulence assay to rate D. dianthicola infection to S. chacoense lines. A, Box plot of 
lesion length (cm) measured on four lines of S. chacoense after infection with D. dianthicola 
ME23. Lesions were not observed from wounded plant control. Different letters represent 
statistically significant. B, the average time taken ± standard deviations (hrs) for developing 
blackleg symptoms after resistant and susceptible lines were injected 108 cells of D. dianthicola. 

(* P < 0.05).  
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Figure 4.2. Effects of resistant and susceptible lines stem extract on exoenzyme activity of D. 

dianthicola ME23. Enzyme activity assays after growing bacterial cells approximately 108 cells in 
stem extract for 12 hrs at 28°C under continuous shaking. Different letters indicate difference 
between resistant and susceptible lines (ANOVA, P<0.05). 
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Figure 4.3. Effects of resistant and susceptible lines extract on N-acyl homoserine lactone (AHL) 
of D. dianthicola ME23. A, Purple pigment exhibited by CV026 as a response of AHL present in 
D. dianthicola grown supernatant. Pictures were taken after incubating the plates at 30°C for 24 
hrs. B, bar plot showing the distance travelled by AHL (cm2). Different letters indicate the 
differences between resistant and susceptible stem extract (ANOVA, P<0.05). The data shown are 
from one of three repetitions and are representative of all repetitions of this experiment. 
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Figure 4.4. Effect of resistant and susceptible stem extracts on morphology of D. dianthicola 
ME23. 
  



152 

 
 
Figure 4.5. Metabolic response over time to D. dianthicola ME23 infection in resistant and 
susceptible potato lines. A, Principal component analysis of based on LC-MS molecular features 
for a total n = 1,917 metabolites-based data points. Orthogonal projection to latent structures 
discriminant analysis was performed within the B, R-1 compared to S-1 and S-2 and C, R-2 
compared to S-1 and S-2 based on resistance and susceptibility. Symbols (star, triangle) represents 
represent correlation‐scaled mean scores. D, Stem metabolites associated resistance and 
susceptibility were z transformed (scaled). 
  



153 

 
 

Figure 4.6. Metabolic response over time to D. dianthicola infection and control in stems of potato 
lines. A, Heat map of 661 metabolites. Bars represent log2 FC with P<0.05 was used for each 
comparison at 0 and 24hrs post inoculation and infected vs control. B, Volcano plot for differential 
abundance (log2, x-axis) and significance (-log10 P value, y-axis of 1,917 metabolites (gray dots).  
C, Venn diagram representing metabolites which are consistent in each comparison base on 
heatmap. 
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Table 4.1. Potato stem metabolites associated with inhibiting virulence of D. dianthicola ME23 
 

 Super-classaa Sub-classab Metabolitesac Identifi

erb 

R1 vs 

S1ca 

R1 vs 

S2cb 

R2 vs 

S1cc 

R2 vs 

S2cd 

Reported 

antimicrobial activity 

1 Benzenoids Benzenesulfonamides 
 

Phenol, 4-
phenylamino 

C0015 0.71 0.61 0.28 0.18  
 

2  Methoxyphenols 
 

Capsicin C0020 
 

0.66 0.63 0.59 0.56 Qiu et al. 2012* 

3  Naphthalene sulfonic 
acids and derivatives 

 

 C0022 1.3 0.96 1.24 0.89  

4  
 

hydroxy-4-unsubstituted 
benzenoids/ 

Phenylmethylamines 
 

Salicylamide C0465 
 

2.77 2.18 2.9 2.31 Lin et al. 2012 * 
 

5  Benzoic acids and 
derivatives 

 

salicylic acid C1242 
 

1.37 1.29 -2.13 -2.21 Monte et al. 2014; 
Bandara et al. 2006; 
Chang et al. 2014; 
Joshi et al. 2020 * 

 
6  Benzoic acids and 

derivatives 
 

Methyl 3,5-
bis(octadecyloxy)be

nzoate 
 

C0290 
 

-0.27 -0.17 0.92 1.02  

7  Anthraquinones 
 

1,2-
Benzenedicarboxylic 

acid 

C0951 
 

-0.94 -2.62 2.55 0.88  

8  Benzenediols Isoquinoline, 
10′(Z),13′(E)-

Heptadecadienylhydr
oquinone 

 

C0533 
 

0.22 -1.12 1.51 0.17 Liu et al. 2012 * 
 

9 Alkaloid 
 

Alkaloids and 
derivatives 

 

Rescinnamine 
 

C0716 
 

3.07 1.45 -1.25 -2.87  
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10  Alkaloids and 
derivatives 

 

Tomatidine C0134 
 

-0.23 -0.49 0.73 0.47 Rutherford and Bassler 
2012; Mitchell et al. 
2012; Ji et al. 1995 * 

 
11  Alkaloids and 

derivatives 
 

α-solamirine 
 

C0140 
 

0.12 0.15 0.6 0.62 et al. 2014 * 
 

12  Alkaloids and 
derivatives 

 

Indole 3 carbinol 
 

C0360 
 

-0.33 -0.25 1.55 1.63 Monte et al. 2014; Lee 
et al. 2012* 

 
13 Lipids and 

lipid like 
molecules 

Glycerophosphates 
 

 C0012 0.62 
 

0.72 1.01 0.7  

14  Glycerophosphocholine
s 
 

 C0247 0.82 0.82 0.8 0.8 Hussein et al. 2019* 
 

15  Glycerophosphocholine
s 
 

  
C0608 

0.85 0.78 0.37 0.3  

16  Glycerophosphocholine
s 
 

 C0733 2.49 2.21 0 -0.28  

17  Glycerophosphocholine
s 
 

 C1655 6.28 6.4 0.55 0.67  

18  Glycerophosphocholine
s 
 

 C0566 -0.11 -0.21 1.05 0.95  

19   
Polyprenols 

 

 C0282 1.23 1.79 1.43 1.99 Tao et al. 2016** 
 

20  Polyprenols 
 

 C0806 2.01 1.87 0.18 0.04  
Tao et al. 2016** 

 
21  Glycerophosphoserines 

 
 C0469 1.23 1.87 -0.17 0.48  
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22  Glycerophosphoserines 
 

 C0580 1.23 1.86 -0.49 0.15  

23  Glycerophosphoserines 
 

 C1281 1.4 2.03 -0.01 0.62  

24  Glycerophosphoethanol
amines 

 

 C0775 1.44 1.34 1.64 1.55  

25  Glycerophosphoethanol
amines 

 

 C0697 -1.99 -1.2 -0.02 0.77  

26  Triterpenoids/Terpene 
glycosides 

 

 C1214 2.86 -0.24 4.37 1.27 Mahizan et al. 2019* 
 

27  Triterpenoids 
 

 C0839 0.12 -1.42 1.69 0.16 Cunha et al. 2010 
Barbieri et al. 2017** 

 
28  Triterpenoids 

 
 C1222 -0.51 -2.47 3.75 1.79  

29  Triterpenoids 
 

 C1223 1.94 0.81 3.84 2.7  

30  Terpene glycosides 
 

 C0297 1.49 -1.17 3.22 0.56 Mahizan et al. 2019** 
 

31  Glycosphingolipids 
 

 C1746 1.03 0.97 0.79 0.73 Aerts et al. 2019** 
 

32  Glycosphingolipids/Hop
anoids 

 

 C0094 -0.41 -0.51 1.26 1.16  

33  Steroidal glycosides 
 

cholesteryl 6-O-
oleoyl-beta-D-

galactoside 

C0512 0.09 -0.92 1.45 0.44  
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34  
 

Glycerophosphoethanol
amines 

 

 C0679 -0.31 -0.67 1.14 0.78  

35 Phenylpropan
oids and 

polyketides 
 

 
Coumarins and 

derivatives 
 

Coumarin, 2-heptyl-
3-hydroxy-4-

quinolone 

C1211 5.82 1.82 4.37 0.37 Gutiérrez-Barranquero 
et al. 2015; McKnight 
et al. 2000; Diggle et 

al. 2007* 
 

36  Zearalenones 
 

(S,E)-Zearalenone 
 

C0961 
 

0.55 0.04 4.36 3.85 Truchado et al. 2012** 

37  Macrolides and 
analogues 

21-
Hydroxyoligomycin 

A_1 

C045 0.02 0.28 -0.13 0.14 Shryock et al. 1998** 

38 Organohetero
cyclic 

compounds 
 

aloquinolines 
 

 C0052 0.78 0.1 1.05 0.37  

39  Benzothiadiazines/ 
Hydropyridines 

 

 C0952 
 

-2.08 -2.92 1.01 0.17  

40 Organic acids 
and 

derivatives 
 

Dicarboxylic acids and 
derivatives 

 

Maleic acid 
 

C0111 
 

-0.13 -0.73 0.72 0.13  

41 Organic 
oxygen 

compounds 
 
 

Carbonyl compounds Salicylamide C1638 
 

1.98 1.81 -0.21 -0.38  

42 Hydrocarbons 
 

Alkanes 
 

Octacosane C0498 
 

-0.16 -0.32 0.85 0.7  

43 Sphingolipids 
 

  C1350 
 

2.45 0.64 1.77 -0.05  

44 Unknowns Unknown [M +H ] 
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45    C0555 
 

1.59 0.9 0.47 -0.22  

46    C0872 
 

3.81 3.83 -0.61 -0.59  

47    C1641 
 

2.24 1.37 1.6 0.72  

48   822.642 
 

C0181 
 

-0.28 -0.3 0.83 0.8  

49   855.58 
 

C1112 
 

2.2 1.17 1.35 0.32  

50   764.52 
 

C1138 0.64 0.84 0.91 1.11  

52   766.536 
 

C0446 
 

1.51 0.61 1.49 0.58  

53    C0590 
 

1.67 2.62 3.44 4.39  

54   825.533 
 

C1138 
 
 

0.64 0.84 0.91 1.11  

55    
825.533 

 

 
C1260 

 

2.51 1.81 1.75 1.06  

57   745.557 
 

C0905 
 

0.38 0.3 0.58 0.5  

58   575.21 
 

C0946 
 

3.41 1.76 1.67 0.02  
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aa, ab, ac Metabolite annotation based on interpretation of mass spectrometry data. Level-3 annotation (denotated by super/sub-class) when spectrum indicate a 
chemical class but could not be confidently assigned a metabolite. M =natural mass and nd = annotation could not be determined. 
b Identification number of the metabolite  
ca, cb, cc,cd  Log2 fold-change(FC) values of  resistant and susceptible lines comparisons  
d Previously reported antimicrobial activity  
*Metabolite reported to exhibit antimicrobial activity  
** Metabolic family reported to exhibit antimicrobial activity  
  

59   732.445 
 

C0981 3.3 3.28 0.76 0.73  

60   411.362 
 

C1831 
 

0.59 -0.58 1.74 0.57  

61    
640.587 

C1846 
 

0.37 0.25 1.81 1.69  

62   607.215 C0425 
 

1.29 1.17 1.07 0.95  

63    
411.764 

 
C1789 

0.8 0.88 0.39 0.48  
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Table 4.2. List of metabolites consistent in resistant line. (A) Before infection, (B) after infection 
 
(A) 

 Super-classaa Sub-classab Metabolitesac Identifi

erb 

R1 vs 

S1ca 

R1 vs 

S2cb 

R2 vs 

S1cc 

R2 vs 

S2cd 

Reported 

antimicrobial 

activityd 

1 Benzenoids Nitrophenols 
 

Phenol, 2,5-dinitro- 
 

C0042 
 

1.87 1.39 1.21 0.73  
Kowalczyk et al. 

2015** 
 

2  Diphenylmethanes 
 

Hexachlorophene or 
 

C0390      

3  Phenol esters 
 

Phenol, 4-
(phenylamino 

C0472 
 

1.98 1.9 0.61 0.52 Walsh et al. 2019** 
 

4 Phenylpropan
oids and 

polyketides 
 

Tannins 
 

Kadsuphilol L C0942 
 

4.91 3.17 2.78 1.03 Redondo et al. 2014; 
Tomiyama et al. 

2016** 
 
 

5  Flavonoids 
 

Ikarisoside D_1 C0949 1.49 1.13 1.19 0.83 Górniak et al. 2019** 
 

6  Flavonoids Ikarisoside D_1 C0999 1.6 1.4 1.5 2.9  

7 Lipids and 
lipid-like 
molecules 

 

Sesquiterpenoids 
 

 
Nivalenol_2 

 

C0096 
 

-1.64 -0.96 -0.92 -0.24 Astani et al. 2010;  
Torres-Romero et al. 
2011; Gomes et al. 

2009; Rukayadi and 
Hwang 2006** 
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8   
Fatty acids and 

conjugates 
 

erythro-Canabisine 
H 

C0192 
 

3.94 2.73 0.61 -0.6  

9  Polyprenols 
 

Solanesol 
 

C0806 2.01 1.87 0.18 0.04  

10  Glycosphingolipids Galabiosylceramide 
(d18:1/9Z-18:1) 

 

C1774 
 

0.98 2.18 -0.51 0.69  

11 Organic acids 
and 

derivatives 
 

Amino acids, peptides, 
and analogues 

 

Lissoclinamide 5_2 
 

C1852 3.57 2.79 0.15 -0.63 Joshi et al. 2020** 

12  Amino acids, peptides, 
and analogues 

 

Lissoclinamide 5_3 
 

C1860 
 

3.7 1.63 1.17 -0.9  

13  Carbohydrates and 
carbohydrate conjugates 

 

Linckoside C;(-)-
Linckoside C_1 

 

C0226 
 

0.44 0.98 -0.38 0.16  

14  Amino acids, peptides, 
and analogues 

 

Lissoclinamide 5_1 
 

C1195 
 

4.01 2.56 0.8 -0.64  

15 Alkaloids and 
derivatives 

 

 Syrosingopine 1 C0098 0.33 0.14 -0.63 -0.83  
Parai et al. 2018* 

 
16   Syrosingopine 2 C0540 2.16 2.22 0.09 0.15  

17   Brucine (A ) C1879 3.13 2.3 -0.76 -1.58  

18 Unknown   C0716 3.07 1.45 -1.25 -2.87  

19    C0373 0.55 1.27 -0.65 0.07  
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(B) 

20    C0753 1.53 1.5 0.21 0.19  

21    C0734 1.17 1.72 -0.35 0.19  

22    C0946 3.41 1.76 1.67 0.02  

23    C0981 3.3 3.28 0.76 0.73  

 Super-class Sub-class Metabolites Identifi

er 

R1 vs 

S1 

R1 vs 

S2 

R2 vs 

S1 

R2 vs 

S2 

Reported 

antimicrobial activity 

1 Benzenoids 
 

Methoxyphenols 
 

[8]-Shogaol 
 

C1305 
 

1.39 1.16 -0.87 -1.1 Walsh et al. 2019; 
Yang et al. 2016 
** 
 

2  Phenylphosphines and 
derivatives 
 

Diphenyl(4-
tolyl)phosphine 

     Molodykh et al. 
1983** 
 

3 Organic acids 
and 
derivatives 
 

Hybrid peptides 
 

4-L-Serine-pepstatin 
A;Hydroxypepstatin 
A_1 
 

C0580 1.23 1.86 -0.49 0.15  

4  Chlorins 
 

 C0870 
 

3.09 2.53 -0.85 -1.4  

5  Alcohols and polyols 
 

 C0595 
 

1.1 1.19 1.33 1.42  

6  Organoheterocyclic 
compounds 
 

 C1260 
 

2.51 1.81 1.75 1.06  
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7 Phenylpropan
oids and 
polyketides 
 

Macrolides and 
analogues 
 

21-
Hydroxyoligomycin 
A_1 

C0425 1.29 1.17 1.07 0.95 Kanoh and Rubin 
2010** 
 

8  Hydroxycoumarins Coumarin 1 C1211 5.82 1.82 4.37 0.37 Reen et al. 2018;  
Yang et al. 2016** 
 

9  IsoflavHydroxycoumari
nsonoids 
 

Coumarin 2 C1212 -2.26 -0.14 -0.43 1.69  

10 Lipids and 
lipid-like 
molecules 
 

Diterpenoids 
 

Diacarnoxide C 
 

C1617 1.37 0.08 -0.07 -1.36 Mahizan et al. 2019; 
Sadowska et al. 
2016** 
 

11  Stigmastanes and 
derivatives 
 

28-
Homocastasterone;2
4-S-24-
Ethylbrassinone 
 

C0543 0.44 0.16 -0.74 -1.02  

12  Glycerophosphoserines 
 

 C0938 1.11 1.99 0.46 1.34  

13   
Glycosylglycerols 
 

Oligomycin A 
 

C1132 1.16 1.56 0.43 0.83  

14  Lineolic acids and 
derivatives 
 

Cucurbic acid 
 

C0572 -0.14 0.71 -1.71 -0.87 Jung et al. 2014; 
Magesh et al. 2013 

15 Alkaloids and 
derivatives 
 

Yohimbine alkaloids 
 

Syrosingopine 
 

C0540 2.16 2.22 0.09 0.15  

16  Yohimbine alkaloids 
 

Methoserpidine 
 

C0429 3.07 2.75 -0.28 -0.61  

17 Organic acids 
and 
derivatives 
 

Pentacarboxylic acids 
and derivatives 

 C1220 2.14 1.94 -0.22 -0.42 Konno et al. 1990** 
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aa, ab, ac Metabolite annotation based on interpretation of mass spectrometry data. Level-3 annotation (denotated by super/sub-class) when spectrum indicate a 
chemical class but could not be confidently assigned a metabolite. M =natural mass and nd = annotation could not be determined. 
b Identification number of the metabolite  
ca, cb, cc,cd  Log2 fold-change(FC) values of  resistant and susceptible lines comparisons  
d Previously reported antimicrobial activity  
*Metabolite reported to exhibit antimicrobial activity  
** Metabolic family reported to exhibit antimicrobial activity 
  

18  Carbohydrates and 
carbohydrate conjugates 

 C0716 3.07 1.45 -1.25 -2.87  

19  Carbohydrates and 
carbohydrate conjugates 

 C0716 3.07 1.45 -1.25 -2.87  

20 Unknown    C0582 0.55 1.41 -0.67 0.19  
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CHAPTER V: SUMMARY 

 

 

Rapid increase in population and food demand has placed immense pressure on agriculture 

and natural resources. By 2050, a global population of 9.7 billion people will demand 70% more 

food than is consumed today, but water and soil resources will be more limited than they are today, 

and climate change will put increasing pressure on food production. Therefore, providing 

sufficient food requires sustainable and substantial improvement in global food production, but it 

will only succeed if we use methods that do not further increase environmental degradation and 

further accelerate climate change. 

Potato is one of the leading crops grown in worldwide and is the fourth most important 

staple food source after wheat, rice, and corn. Compared to other major crops, potato is also one 

of the most water-efficient crops and one of the most versatile crops. For example, potato is grown 

in high deserts, lowland tropics, and near the arctic circle. In the United States, potato is the leading 

vegetable crop consumed and commercially grown in 30 states, including Colorado, with a total 

production value of approximately $4 billion annually. However, this important crop that is a 

potential future food source is affected by about 160 different diseases and disorders including 

over 50 fungal, 10 bacterial, and 40 viral diseases. Each year, approximately $40 million in losses 

are caused by the blackleg and soft rot diseases in the US. 

My first research objective was to develop tools to improve current Dickeya dianthicola 

and Clavibacter michiganenesis subsp. sepedonicus (Cms) detection methods, which will 

(describe here). My second objective was to identify molecules associated with resistance of 

blackleg disease, which will improve current management strategies and hence strengthen the 

foundations for future breeding programs to improve crop resistance against blackleg and soft rot 
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diseases of potato. My research has contributed to food security and sustainability by developing 

accessible and robust detection tools and by demonstrating that blackleg resistant plants can be 

quickly identified through simple biochemical assays. I also made progress in identification of 

metabolites that may contribute to blackleg disease resistance. Overall, my research contributed to 

three areas of disease management: detection, screening for resistance, and in breeding program. 

The blackleg pathogens Dickeya and Pectobacterium are highly variabile, which has made 

development of detection assays difficult. Almost all published assays have failed because either 

the assay is not specific enough and detects species in addition to the target pathogen, or it is too 

specific and does not detect all strains within the target species. For example, the PelADE assay 

(reference) detects bacterial species in addition to Dickeya and the DiaA assay, which targets D. 

dianthicola, does not detect all strains present in the United States. 

I tested a user-friendly online computer program, Uniqprimer to determine if it could be 

used to develop useful detection assays for D. dianthicola (REF).  This computer program can use 

bacterial genome sequences to quickly and automatically design polymerase chain reaction (PCR) 

assays for pathogens.  Uniqprimer will have a high impact on agriculture because this program can 

quickly design PCR tests, it is freely available to anyone, and it requires only basic computer 

operating skills. Plant pathologist have already started using Uniqprimer to develop PCR tests for 

other blackleg associated pathogen such as Pectobacterium strains, which is common pathogen 

in North America. For example, the plant diagnostic clinic at CSU is validating a PCR tested 

for Pectobacterium parmentieri, an aggressive soft rot pathogen that is often found alongside 

Dickeya spp. in potatoes.  

In addition, we also developed a droplet digital PCR (ddPCR) assay to detect a quarantine 

pathogen called Clavibacter michiganenesis subsp. sepedonicus. ddPCR is an advanced detection 
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tool but not yet available to every plant diagnostic facility, however, the rapid advances in 

technology nowadays, the tools necessary for accurate detection will be accessible to all diagnostic 

facilities soon. We empirically compared the ddPCR assay to the existing detection methods 

including conventional PCR, real-time PCR, and enzyme-linked immunosorbent assay (ELISA). 

The ddPCR assay has improved detection by 100-fold compared to qPCR and therefore a robust 

detection tool compared to other conventional detection methods. 

These detection assays will help to mitigate yield losses by accurately detecting disease 

causing pathogens and will help researchers in determining how these pathogens enter into seed 

potato systems and spread among the farms. With development of these assays, the U.S growers 

will be able to use tests to more accurately determine the species causing blackleg and soft rot on 

their farms, which is the first step in finally being able to effectively manage this common scourge 

of potato production. Notably, the method used to develop these detection tools are applicable to 

any plant pathogen anywhere in the world. 

Scientists lack information on the relative resistance of potato varieties to Dickeya spp. 

This information is crucial for breeding programs and epidemiological or evolutionary studies, and 

hence disease management. Moreover, both potato breeders and farmers have insufficient 

knowledge of molecular tools to identify potato lines that are likely to be resistant or tolerant to 

blackleg or soft rot diseases of potato. 

In effort to increase the breeding tools available for resistance to blackleg disease, we 

identified two resistant and two susceptible accessions of wild diploid potato species (S. 

chacoense) using physiological, biochemical and metabolic profiles. We found that our 

biochemical assays were highly correlated with metabolic profile of resistant plants. For example, 

we detected metabolites associated with inhibition of quorum sensing (QS) in metabolic profile of 
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resistant stem extracts. We found similar results in our lab experiment, where resistant stem 

extracts caused reduced activity of plant cell wall degrading enzymes and QS activity in the 

blackleg pathogens. Metabolic profile of resistant accessions reveled that antimicrobial and anti-

virulence properties of these metabolites may contribute to blackleg and soft rot resistance by 

inhibition of QS activity and production of plant cell wall degrading enzymes (PCWDEs). 

We anticipate that the plant resistance in potatoes against soft rot Pectobacteriaceae (SRP) 

may triggered by QS inhibiting metabolites, which in addition suppresses PCWDEs and biofilm 

formation and hence attenuate disease. I believe there are still more to explore in the same thread 

of information and should be investigated further. Some of the most important questions are:  

1. Are the QS inhibiting molecules the primary mode of resistant in plants against SRP in 

potato and in other plants?  

2. What genes and pathways are required for production of these metabolites? 

3. How did these genes evolve? 

4. How is production of these metabolites regulated?  

5. Does the plant microbiome affect production of these plant metabolites? 

6. Do the microbiomes of resistant and susceptible plants differ due to production of the SRP-

inhibiting metabolites? 

Interestingly, some studies have reported the soil microbiome as one of the major drivers 

of plant responses against biotic and abiotic stresses. Further investigation on the role of soil 

microbe in resistance plants could be very useful to understand host-microbe interactions. It will 

add crucial information to the disease triangle and help us to make one step forward in the 

development of cultivars with more durable resistance to the diseases caused by pathogens. 
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