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ABSTRACT 

A CLIMATOLOGY OF INVERSIONS 

Stratifications and analysis of acoustic radar* records are per-

formed for the Ft. Collins area of Colorado. Two months of daily 

continuous data are utilized from the winter of 1975. Procedures 

carried out on this data are designed to set up techniques of study that 

will be of value to climatologists and air pollution specialists, as 

well as describing a short climatology of Ft. Collins' inversions. 

Frequencies of occurrence of inversions in time and space are found and 

stratified in several ways. These include stratification by time of 

day, thickness, persistence and type of inversion (elevated or surface 

based). Associations with routine meteorological measurements such as 

wind speed, wind direction, cloud cover, etc., are also performed. 

These were done in order to establish relationships and possible control 

mechanisms and to show the advantages of using acoustic radar in associ-

ation with other measurements to monitor lower boundary layer phenomena. 

Finally, CO concentrations, available on a fairly routine basis, 

were associated with inversion occurrences. This was carried out to 

show the value of acoustic radar in possible future research and opera-

tional pollution studies. 

* See Appendix A 
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1. INTRODUCTION 

Slade (1968) describes the atmosphere as a turbulent fluid with a 

wide variety of perturbations on all space and time scales. Such char­

acteristics as latitude, location within land mass, altitude, slope of 

the ground, type of soil, nature of ground cover, and proximity to areas 

of different geographical properties determine the evolution of meteoro­

logical changes at a given site in response to large-scale perturbations 

to which that location is exposed. The response and interrelated nature 

of changes in several meteorological aspects permit certain of these 

perturbations that repeat themselves sufficiently often to be studied 

and categorized. 

For the air pollution meteorologist the most important consequence 

of large-scale fluctuations in the atmosphere occur in the lowest I or 2 

kilometers, that is, in the planetary boundary layer. Hoxit (1973) 

defines the planetary boundary layer (PBL) as that portion of the atmo­

sphere in which the wind deviates from gradient or geostrophic flow as a 

result of the retarding influence of surface friction. The PBL plays a 

vital role in exchanging momentum, water vapor, and sensible heat 

between the earth's surface and the free atmosphere above. 

Friction-induced vertical motions provide the triggering mechanism 

for both large scale and mesoscale vertical exchange processes, while 

local scale events can act as important controls on the dispersion and 

mixing of atmospheric pollutants in the planetary boundary layer. 

One such atmospheric planetary boundary layer phenomenon is the 

temperature inversion. This can be defined as an atmospheric state in 

which temperature increases with height. Such a vertical variation 
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2 

tends to inhibit turbulence and thus to reduce the extent of atmospheric 

mixing. Temperature inversions are most frequently associated with high 

pressure regions which are a direct cause of subsiding air and other 

stability enhancing features. 

Because of their direct influence on suppressing the mixing of air-

borne pollutants, meteorologists have studied inversion characteristics 

at several locations. Baynton et al. (1965) associated two soundings of 

the atmosphere per day at Point Arguello to local wind and temperature 

regimes. Holzworth (1971) utilized primary station soundings for the 

contiguous United States and arrived at rough estimates of mixing 

heights,* and wind speeds, again based on 2 soundings per day. Details 

of inversion height variations, persistence, coupling with local winds, 

etc., are lacking and these are details that the air pollution meteor-

ologist needs. In order to increase the resolution of inversion studies 

many more profiles of the atmosphere are needed per day. 

The objective of this study will be to obtain a description of the 

variations in height and thickness of local inversion events. Once 

these patterns of occurrence are established, association of low level 

inversions with wind direction, wind speed, cloud cover and CO concen-

trations will be performed to specify coupling mechanisms with other 

meteorological parameters, and point out possible local inversion clima-

tological controls. 

The method employed is the collection of data by a monostatic 

Acoustic Echo Sounder (see Appendix A), with subsequent analysis of 

* Maximum heights to which environmental air from the earth's surface is 
mixed into the air above. 
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chart recordings. Half-hour average heights of low-level inversions are 

used giving 48 possible readings per day per event. Wind and tempera­

ture analog records from the Ft. Collins weather station are analyzed 

and processed by computer. Contingency tables, frequency distributions, 

and correlation statistics are carried out by computer. Interpretations 

and conclusions concerning the climatology of inversions and local 

climatic controls are based on results of these data stratifications. 
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2. BASIC CONCEPTS AND PROBLEMS 

Hosler (1961) shows the percentage frequency (percent of total 

hours) of inversion conditions in the contiguous United States, with the 

Larimer County region of Colorado near the 48% isopleth in winter. With 

the presence in Larimer County of other factors (light winds, snow 

cover, clear nights) which can enhance stability, inversion estimates of 

Hosler based on extrapolated radiosonde flights are at best rough. 

Because these estimates are inadequate for air pollution modelling and 

forecasting, increased resolution of daily profiles would be required. 

On-site continuous monitoring of the lower boundary layer would be 

the most desirable way of examining inversion and non-inversion events. 

With radiosonde soundings not available and too costly for the scope of 

the proposed study, an Acoustic Echo Qetection ~nd ~anging system (acdar) 

was utilized to give continuous real time estimates of inversion and 

convective plume characteristics up to a height of 500 meters. A mono­

static acdar unit typically emits a short audible pulse of sound colli­

mated by an antenna and transmitted into the atmosphere. Temperature 

variations then scatter the acoustic waves which the system recollects 

and records as the intensity and time delay of the returned signal. 

Because acoustic echoes actually result from index of acoustic refrac­

tion changes in the atmosphere (which can be related to temperature 

changes), acdar "sees" volumes of air where temperature variations are 

the greatest. Strong temperature gradients induced by turbulence can be 

found in thermal plumes; similar gradients occur in temperature inver­

sions. Both can be monitored by acdar. A typical acdar record is shown 

in Figure 2.1, where the abscissa is marked in hours and the ordinate, 
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On-site continuous monitoring of the lower boundary layer would be

the most desirable way of examining inversion and non-inversion events.

With radiosonde soundings not available and too costly for the scope of

the proposed study, an Acoustic Echo Qetection ~nd ~anging system (acdar)

was utilized to give continuous real time estimates of inversion and

convective plume characteristics up to a height of 500 meters. A mono­

static acdar unit typically emits a short audible pulse of sound colli­

mated by an antenna and transmitted into the atmosphere. Temperature

variations then scatter the acoustic waves which the system recollects

and records as the intensity and time delay of the returned signal.

Because acoustic echoes actually result from index of acoustic refrac­

tion changes in the atmosphere (which can be related to temperature

changes), acdar "sees" volumes of air where temperature variations are

the greatest. Strong temperature gradients induced by turbulence can be

found in thermal plumes; similar gradients occur in temperature inver­

sions. Both can be monitored by acdar. A typical acdar record is shown

in Figure 2.1, where the abscissa is marked in hours and the ordinate,
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Figure 2.1. Acdar record (time in hours, height in meters): At 0700 three layers are distinguishable, 
a surface radiation inversion and two slightly separated elevated inversions near 125 m and 
150 m, respectively. The stable layer at the surface joins the two layers aloft at around 
0800 as ground thermals begin to appear and drive the inversion aloft. The convection also 
advects the warm turbulent air from the surface into the cooler stable air aloft. The 
consistent waviness pattern from 0800 to 1030 indicates good mixing beneath the inversion 
layer which is caused by the presence of vertical thermal structures pushing up the inversion 
intermittently. Finally, about 1130 the surface convective activity has succeeded in pene­
trating and mixing the inversion aloft with environmental air enough that the inversion lid 
is broken, and free mixing to higher levels can occur. The dark vertical lines at 0715 and 
1045 are caused by noise from low flying aircraft over Fort Collins, and the short dark 
vertical lines which appear from time to time are from barking dogs, birds or occasional 
nearby automobiles. 
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trating and mixing the inversion aloft with environmental air enough that the inversion lid
is broken, and free mixing to higher levels can occur. The dark vertical lines at 0715 and
1045 are caused by noise from low flying aircraft over Fort Collins, and the short dark
vertical lines which appear from time to time are from barking dogs, birds or occasional
nearby automobiles.
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height, in meters. Cronenwett (1972), Hall (1972), Little (1969), and 

McAllister (1968) give good reviews of acdar and its flexibility in 

monitoring lower atmospheric phenomena. (For more details see Appendix 

A. ) 

Acdar, then, is able to yield a great deal of information about the 

temporal variation of inversions. To make use of this information 

beyond the accumulation of inversion statistics, associations with winds 

on a local scale will be developed in this dissertation. Synoptic and 

regional influences can have a definite effect on inversion climatology 

(especially along the Front Range of the Rockies). 

Paddock (1959) describes several common weather types along the 

Front Range, with emphasis on wind regimes, moisture, time of year, and 

pressure system positions. Slade (1968) and Schroeder and Buck (1970) 

suggest how general features of terrain can effect inversion charac­

teristics in mountainous and hilly surroundings. Banta et al., (1975), 

Buettner (1967), Paddock (1959), and Riehl and Herkhof (1970a,b) put 

forth detailed descriptions of the influences of terrain and synoptic 

events on local wind patterns, temperatures, etc. 

According to Defant (1951) a typical nocturnal wind in a mountain­

ous region occurs when the slopes of the valley sides become cooler than 

the free air at the same level over the valley (see Figure 2.2a). The 

slopes cool by radiation (IR loss) and the air adjacent to the slopes 

cools by conduction and convection from the surface. The cooler air 

sinks katabatically down the slopes of the valley because of its nega­

tive buoyancy (denser air with respect to the free air at its own level) 

(Fig. 2.2b) and a downslope wind is established (Fig. 2.2c). If in 
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a) Air at slopes (AI) cool by IR 
loss through convection and 
conduction at the surface, 
while free air at the same 
level does not cool (8). 

b) Cooler air (AI) sinks down 
the slopes because of nega­
tive buoyancy with respect 
to the free air (8). 

8 

c) Downslope wind is established. 

~~----~----iZ#' ~~V 

Figure 2.2. Nocturnal formation of a valley slope drainage wind (after 
Defant, 1951). 

addition the valley is sloped, the sinking air will continue in the same 

fashion toward the lower end of the valley. 

When this cold sinking air drains into a basin or valley that does 

not have good outflow or does not "leak" rapidly, there is a buildup of 

cooler air in the basin. Coupled with radiational cooling at the sur-

face, the layer of dense cool air can build up and create a temperature 

inversion. Typical temperature profiles and resultant stable layers for 

this condition are shown in Figure 2.3. 
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addition the valley is sloped, the sinking air will continue in the same

fashion toward the lower end of the valley.

When this cold sinking air drains into a basin or valley that does

not have good outflow or does not "leak" rapidly, there is a buildup of

cooler air in the basin. Coupled with radiational cooling at the sur-

face, the layer of dense cool air can build up and create a temperature

inversion. Typical temperature profiles and resultant stable layers for

this condition are shown in Figure 2.3.
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Figure 2.3. Generalized surface and elevated temperature profiles and 
stable layers. Dotted line is adiabatic. 

This mountain-valley wind flow and the resultant nocturnal inver-

sions are influenced by synoptic conditions. Under anticyclonic condi-

tions (strong subsidence and light winds) local meteorological regimes 

are best developed, while cyclonic systems mayor may not change local 

regimes depending upon the associated synoptic features. 

Local Terrain and Climate 

Fort Collins is located in the northern part of central Colorado 

near the Colorado-Wyoming border (See Figure 2.4). It is situated at 
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This mountain-valley wind flow and the resultant nocturnal inver-

sions are influenced by synoptic conditions. Under anticyclonic condi-

tions (strong subsidence and light winds) local meteorological regimes

are best developed, while cyclonic systems mayor may not change local

regimes depending upon the associated synoptic features.

Local Terrain and Climate

Fort Collins is located in the northern part of central Colorado

near the Colorado-Wyoming border (See Figure 2.4). It is situated at
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approximately 5000 ft. above sea level with the front range of the Rocky 

Mountains to the west and gently sloping farmlands to the east (see 

Figures 2.Sa and b). Rainfall is sparse with the majority coming in the 

form of summertime convective storms. The high plains meteorological 

picture simplifies in winter, which is dominated by an anticyclonic 

pattern over the western states with associated light winds, subsidence 

and clear skies. Under these conditions the atmosphere tends to be 

stably stratified (vertical turbulence suppressed), with temperature 

inversions near the ground at night. Marked warming near the surface on 

clear days (the mean daily temperature range even in mid-winter is near 

30°F over the Colorado plains) causes increased convective activity and, 

therefore, increased winds and turbulence as the stable stratification 

is weakened. 

Seasonal wind patterns shown in Figure 2.6 indicate that preferred 

directions are the north-north-west (335°) and south-south-east (155°). 

Figure 2.4. Approximate location of Larimer County in northern Colorado. 
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Figure 2.5. (a) cross section of Larimer County taken at the dotted 
line in b. showing the front range of the Rockies to the west and 
gradual rise of high plains to the east. (b) map showing main 
terrain features and contours around Ft. Collins, and location of 
acdar site (CSU Station in map) (after Riehl and Herkhof, 1970b). 
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Figure 2.6. Annual wind rose, Ft. Collins, Colorado, 1954-1963 (42,510 
observations). Wind speed classes as indicated in the diagram 
(Samson, 1965). 
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This agrees with the pendulum-type of reversal from day to night in wind 

direction as proposed for Larimer County by Riehl and Herkhof (1970) 

(see Figure 2.7a and b) and discussed as the drainage winds system by 

Buettner (1967). Other dominating wind systems are from chinook winds 

characteristically flowing in the lee of the Rockies from the west and 

northwest, and from synoptic frontal passages. 

Data Collection and Reduction 

The instrument employed to obtain all acdar measurements was the 

Aerovironment Model 300 Acoustic Echo Sounder (see Appendix A, Section 

3). The period from 1-9-75 to 2-28-75 was used as the primary acdar 

data source for analysis. This period was relatively noise free because 

of the location, whereas several other locations were very noisy and 

acdar records were uninterpretable (acoustic screen used around antenna 

did a better job of damping out side lobes and ambient noise than did 

bales of hay). 

The data consists of charts of returned echoes from temperature 

variations aloft with the height and time of relative intensities of the 

echo region being displayed. The time axis is continuous with one 

sounding up to 500 meters approximately every 7 seconds. Intensity of 

echo regions could not be used because of calibration and mechanical 

difficulties inherent to the instruments. For this reason height and 

time are the only two elements utilized. 

Figure 2.8 shows an acdar record. This data was reduced by aver­

aging heights over half-hour periods. These average heights were 

recorded on the computer and plotted as a function of time. Figure 2.9 

shows the results of such a data reduction. The region between the 

dotted lines in Figure 2.9 corresponds to the whole of Figure 2.8. 
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Figure 2.7. Resultant streamlines and wind speeds for: a) nighttime (8 p.m. - 8 a.m.); and 
b) daytime (10 a.m. - 6 p.m.). (After Riehl and Herkhof, 1970b). 

...... 
oj::. 

a. b.

Figure 2.7. Resultant streamlines and wind speeds for: a) nighttime (8 p.m. - 8 a.m.); and
b) daytime (10 a.m. - 6 p.m.). (After Riehl and Herkhof, 1970b).
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All other data used in this study including wind speeds, wind 

directions, cloud cover, and CO concentrations were collected from 

routine measurements at Ft. Collins stations. 
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Figure 2.8. Typical record from acdar system, Ft. Collins, Colorado. 
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Figure 2.9. Computer derived output of analyzed acdar records. 
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3. MAIN FEATURES OF INVERSION CLIMATOLOGY AT FT. COLLINS 

Average frequencies of inversions at Ft. Collins, are presented in 

Figures 3.1 through 3.4 for January and February 1975. Daily trends of 

all inversion occurrences indicate higher frequencies of events in the 

nighttime hours than in the daytime (Figure 3.1). This agrees well with 

physical considerations. Nocturnal inversions in wintertime occur as 

ground cooling and general subsidence are more frequent. Daytime con­

vection, however, associated with clear skies tends to reduce the 

frequency of occurrence of daytime inversions. Figure 3.1 exhibits 

similar daily trends for both months, but February shows a higher fre­

quency of occurrence of nighttime inversions than January, while January 

has slightly higher frequencies of daytime inversions. 

Analysis was performed to further differentiate between elevated 

and surface based inversions. Results are presented in Figure 3.2 and 

3.3. In the surface based inversion distributions we can see the 

effects of nocturnal cooling in that the surface inversion frequencies 

are high. Also evident is the near absence of surface inversions from 

1000 to 1600 hours showing the influence of convective cells which break 

or push up surface based inversions. Likewise, February had a higher 

frequency of nocturnal inversion events. 

With the high frequency of surface inversions at night and low 

frequency in day we can expect a peak of elevated inversions sometime 

near midday. As can be seen in Figure 3.3, the highest frequencies of 

elevated inversions occur slightly before midday, at 1100 hours. This 

can be explained by close examination of acdar soundings and noting that 

as early morning thermals begin to push surface or low lying inversions 
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upward, they also tend to destroy the inversion by causing turbulence 

and mixing to occur (see Figure 2.1). The absence of a peak at 1200 

hours can be attributed to the earlier disintegration of existing 

inversions. January and February seem to agree very well in elevated 

inversion occurrences, except at 1900 and 2000 hours where January is 

20-23% lower in occurrence than February. 

Many times multiple inversion layers were present. This can be 

caused by stably stratified layers, or the formation of a surface based 

inversion below an elevated inversion. Figure 3.4 shows the frequency 

of occurrence of these types of multilayer inversions. For both January 

and February a maximum occurred near 0400 hours and a minimum in the 

early afternoon. 

For each month of data, average base heights and average inversion 

thicknesses were calculated. These were founded on all inversion events 

each half-hour, that is, surface inversions and elevated inversions. 

Averages for each half-hour are shown in Figures 3.5 and 3.6. The base 

height averages (Figure 3.5a and b) reflect the influences of thermals 

during the daytime as they were generally 100-150 m higher from 1100 to 

1600 hours than all other hours of the day. This held true both for 

January and February. As can be seen by the scatter of points, many 

base heights were at or near the surface (H < 30 meters), showing the 

heavy occurrence of surface inversions. 

In Figures 3.6a and 3.6b a slight peak can be seen around early 

afternoon in inversion thicknesses. Because there were almost no 

surface inversions occurring at this time (see Figure 3.2) one possible 

conclusion is that afternoon elevated inversions were thicker than 

nocturnal surface inversions. Generally the difference, however, was 
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only on the order of 50-75 meters and this was within the ±cr values 

calculated (see ±cr lines on each figure). 

Of major interest in the establishment of an inversion climatology 

is the growth or decay of surface inversions whether caused by surface 

radiation or cold air drainage. Regression lines and ±cr lines were 

solved for the early evening and early morning time periods. Figures 

3.7 and 3.8 give the results of average thicknesses and regression lines 

of thickness changes. 

Early evening plots (Figure 3.7a and b) for January and February 

show similar results, where surface inversion thickness increases with 

time. These increases can be attributed to radiational cooling or the 

descending and reconnect ion of elevated daytime inversions with the 

surface as seen at times in the acdar records. Slopes, y-intercepts and 

cr values are indicated in each figure. 

For the 0000 to 0800 MST plots (Figures 3.8a and b) negative slopes 

are noted showing a decrease in surface inversion thickness toward sun­

rise. In many acdar records with inversions present in this time period, 

surface inversions often split into a surface and an elevated inversion 

thereby accounting for the apparent decrease in surface inversion thick­

nesses. The a's calculated here and in subsequent regression analyses 

are called the "sample standard deviation from regression". These a's 

are found by dividing the sum of the squares of deviations from regres­

sion by m-2 (degrees of freedom) and then taking the square root. 
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Figure 3.7. Surface inversion thickness changes including average 
heights (crooked line), regression lines (of all data), ±o lines 
for: a) January, 1975 and b) February, 1975, from 1600 to 2400 MST, 
Ft. Collins. (S,m/.5 hr; 0., meters; 0, meters). 
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Figure 3.7. Surface inversion thickness changes including average
heights (crooked line), regression lines (of all data), ±o lines
for: a) January, 1975 and b) February, 1975, from 1600 to 2400 MST,
Ft. Collins. (S,m/.5 hr; 0., meters; 0, meters).
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Figure 3.8. Surface inversion thickness changes including average 
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2S

MORNING INVERSION THICKNESS CHANGE - JAN. 75

500

en
a::
I.LJ

400~
I.LJ
::E-(J)
(J) 300
I.LJ
Z
~
U

a. :I: 200
~

Z
0
u; 100a::
I.LJ
>
~

0
0

• INDIVIDUAL POINTS

___ EVERY HALF- HOUR

/3 =-4.0

a =128.3
(J = 62.5

.....--....;;:=."...... REGRESSION
: LINE

MORNING (HOURS, M.S.T.)

MORNING INVERSION THICKNESS CHANGE - FEB. 75
500

U5a::
I.LJ
~ 400
I.LJ
::E-

f3 =-1.5

a = 113.1

(J =66.6

b.

o
o 2 3 4 5 6 7 8

MORNING (HOURS, M.S.T.)
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Another characteristic feature of inversion behavior is the early 

morning (0800-1300) and late afternoon (1400-2000) rise and fall of 

elevated inversions. Figures 3.9a and band 3.l0a and b show the 

results for January and February at Fort Collins of an analysis of 

elevated inversion base heights in daytime. 

Apparent for each month in Figures 3.9a and b is the rise of the 

elevated inversions in the morning. For January the rise is approxi­

mately 19 meters per hour starting at an average of 90 meters. 

In the afternoon fewer elevated inversions occurred but neverthe­

less sufficient data was accumulated to note that here the elevated 

inversions begin to decrease in height (Figure 3.l0a and b). This is 

probably due to increased cloudiness in afternoons and decreased thermal 

activity at the surface. The regression lines for afternoon elevated 

inversions displayed negative slopes of approximately -6.5 meters per 

hour for January and -10.8 meters per hour for February. 

In previous sections no joint consideration was given to thickness 

and height above surface. In order to find events which occur most 

frequently in terms of base height and thickness, the acdar analysis 

included counting events within categories. Categories were every 50 

meters up to 500 meters, except for 0-50 base height category which was 

subdivided into 0-30 and 30.1-50 meters. 

The 0-30 meters category for base heights was counted as surface 

inversions because of detection limits on the acdar system. Figures 

3.11 and 3.12 show the frequency of occurrence of each base height 

category described above for January and February 1975. The surface 
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Figure 3.9. Averages changes, regression lines (for all data), ±o 
and data points for morning elevated inversion base heights for: 
a) January, 1975 and b) February, 1975. (S, meters/.5 hr; a, 
meters; 0, meters). 
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Figure 3.10. Average changes, regression lines Cfor all data), ±cr ~nd 
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inversion frequencies were 58% for January and 67% for February. Both 

histograms tail off similarly with very few inversions occurring at the 

higher base heights. 
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Figure 3.11. Frequency of occur­
rence of each base height 
category, January. 
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Figure 3.12. Frequency of 
occurrence of each base 
height category, February. 

Table 3.1 shows the actual values tabulated for each month in each 

cell. Again evident is the great number of inversions based below about 

200 meters and less than 250 meters in thickness. Hourly tables for 

January (not presented) indicate that most of the surface inversions 

occur in the early morning and late evening with few elevated inversions 

in these hours. Elevated, mid-thickness category inversions are the 

usual type seen in daytime hours. In February, however, the pattern of 

inversion occurrence is slightly different. Early morning surface events 

are generally capped by 50-150 m elevated inversions, which cause thicker 

elevated inversions in the daytime hours. 

Histograms of all inversions in each base height category are shown 

in Figures 3.13 through 3.23. For each frequency plotted, the total 

29

inversion frequencies were 58% for January and 67% for February. Both

histograms tail off similarly with very few inversions occurring at the

higher base heights.

TOT~LS OF E~CH B~SE HEIGHT C~TEGORY
~LL THICKNESSES - J~NU~RY 1975

1.0

GRAND TOTAL; 712

o

~ .4

§e: .2

Figure 3.11. Frequency of occur­
rence of each base height
category, January.
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Figure 3.12. Frequency of
occurrence of each base
height category, February.

Table 3.1 shows the actual values tabulated for each month in each

cell. Again evident is the great number of inversions based below about

200 meters and less than 250 meters in thickness. Hourly tables for

January (not presented) indicate that most of the surface inversions

occur in the early morning and late evening with few elevated inversions

in these hours. Elevated, mid-thickness category inversions are the

usual type seen in daytime hours. In February, however, the pattern of

inversion occurrence is slightly different. Early morning surface events

are generally capped by 50-150 m elevated inversions, which cause thicker

elevated inversions in the daytime hours.

Histograms of all inversions in each base height category are shown

in Figures 3.13 through 3.23. For each frequency plotted, the total



30 

number of cases in that base height category is used as the normalizing 

factor. These totals and also the contribution of the category to the 

total number of inversions for the month are presented in each figure. 

For both months of data, even with a differing number of events for 

each histogram, the general patterns match very well for every base 

height. Peaks of thickness occurrence for each plot lie between 50-200 

meters showing the predominance of this thickness of inversion over 

thicker ones at almost every base height. 
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TABLE 3.1 

Thickness of Inversions Versus Height of Base of Inversions in Categories 
With Number of Occurrences in Each Cell 

Thickness Categories (meters) 
January 0-50 50-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500 ----

0- 30 107 152 69 39 23 10 7 1 0 0 
31- 50 2 3 7 1 1 1 1 0 0 0 
51-100 4 26 18 9 7 6 1 0 0 0 

101-150 10 25 22 21 7 2 0 1 0 0 
151-200 1 10 16 3 2 3 4 0 0 0 

,.-... 201-250 0 4 10 6 2 4 0 0 0 0 CIl 
~ 251-300 1 6 4 4 5 0 0 0 0 0 (I) 
+.l 301-350 0 5 3 10 0 0 0 0 0 0 (I) V-1 

-5 351-400 0 1 11 0 0 0 0 0 0 0 ~ 

CIl 401-450 0 10 0 0 0 0 0 0 0 0 
(I) 451-500 4 0 0 0 0 0 0 0 0 0 'M 
~ 
0 
~ February 
+.l 
C1l 

U 0- 30 199 341 103 63 23 23 2 2 1 0 
+.l 31- 50 3 11 10 6 4 3 0 0 0 0 ..c 
~ 51-100 8 44 31 21 9 4 1 0 0 0 'M 
(I) 101-150 20 41 20 12 5 0 2 0 0 0 ::c 
(!) 151-200 5 20 19 5 3 a a 0 0 0 
CIl 201-250 8 19 12 1 0 0 0 0 0 0 C1l 
~ 251-300 2 4 3 1 1 0 0 0 0 0 

301-350 2 6 4 4 0 0 0 0 0 0 
351-400 0 1 4 0 0 0 0 0 0 0 
401-450 0 6 0 0 0 0 0 0 0 0 
451-500 0 0 0 0 0 0 0 0 0 0 

TABLE 3.1

Thickness of Inversions Versus Height of Base of Inversions in Categories
With Number of Occurrences in Each Cell

Thickness Categories (meters)
January 0-50 50-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500----

a- 30 107 152 69 39 23 10 7 1 a a
31- 50 2 3 7 1 1 1 1 a a 0
51-100 4 26 18 9 7 6 1 a a a

101-150 10 25 22 21 7 2 a 1 a a
151-200 1 10 16 3 2 3 4 a a 0

,.-... 201-250 a 4 10 6 2 4 a 0 a aell
~ 251-300 1 6 4 4 5 a a 0 a 0(I)

+.1 301-350 a 5 3 10 a a a 0 a a(I) V-1

-5 351-400 a 1 11 a a a a a a a ~

ell 401-450 a 10 a a 0 a a 0 a a
(I) 451-500 4 a a a a a a a a a'M
~
0
bO February(I)

+.1
til

U 0- 30 199 341 103 63 23 23 2 2 1 a
+.1 31- 50 3 11 10 6 4 3 a 0 a a..c
bO 51-100 8 44 31 21 9 4 1 0 a 0'M
(I) 101-150 20 41 20 12 5 0 2 0 a a::c
(!) 151-200 5 20 19 5 3 a a 0 0 0
ell 201-250 8 19 12 1 a a a a a atil
~ 251-300 2 4 3 1 1 a a 0 a a

301-350 2 6 4 4 a a a a a 0
351-400 a 1 4 a a a a 0 a a
401-450 0 6 0 0 a 0 a 0 0 a
451-500 a 0 a 0 0 0 a a a 0
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Figure 3.13: Frequencies of 
occurrence of thicknesses 
in the 0-30 meter base 
height category. 
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Figure 3.14: Frequencies of 
occurrence of thicknesses 
in the 31-50 meter base 
height category. 

Figures 3.13 through 3.23: These are graphical representations of each 

row of Table 3.1. "TOTAL" is the number of occurrences of thick-

nesses in the base height category defined at the top of each 

figure. "% of Grand Total" is the percent of all inversions each 

month that occurred in each base height category. 
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Figures 3.13 through 3.23: These are graphical representations of each

row of Table 3.1. "TOTAL" is the number of occurrences of thick-

nesses in the base height category defined at the top of each

figure. "% of Grand Total" is the percent of all inversions each

month that occurred in each base height category.
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Figure 3.15. Frequencies of occur­
rence of thicknesses in the 
51-100 meter base height 
category. 
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Figure 3.16. Frequencies of 
occurrence of thickness in 
the 101-150 meter base 
height category. 
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Figure 3.15. Frequencies of occur­
rence of thicknesses in the
51-100 meter base height
category.

Figure 3.16. Frequencies of
occurrence of thickness in
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height category.
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Figure 3.17. Frequencies of occur­
rence of thicknesses in the 
151-200 meter base height 
category. 
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Figure 3.18. Frequencies of 
occurrence of thickness in 
the 201-250 meter base 
height category. 
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Figure 3.19. Frequencies of occur­
rence of thicknesses in the 
251-300 meter base height 
category. 
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Figure 3.20. Frequencies of 
occurrence of thickness in 
the 301-350 meter base 
height category. 
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Figures 3.21, 3.22, 3.33. Frequencies of occurrence of thicknesses in 
the base height category specified above each histogram. 
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Figures 3.21, 3.22, 3.33. Frequencies of occurrence of thicknesses in
the base height category specified above each histogram.
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January and February acdar soundings were also analyzed for persis­

tencies of all, surface only, and elevated only inversion frequencies. 

Figures 3.24 through 3.26 show the results of such an analysis. For 

"all inversions", both surface and elevated were tabulated if they 

followed each other in succession. The inversion period was deemed to 

have terminated when no inversion was present. Figure 3.24a,b agrees to 

some extent in inversion persistencies for January and February. Shown 

below is a tabulation of longer episodes not plotted: 

TABLE 3.2 

Endin~ Date EEisode Duration (Hours) 

Jan. 14, 1975 82 

Jan. 23, 1975 57 

Feb. 7, 1975 88 

Feb. 10, 1975 70 

Feb. 17, 1975 78 

Four of these episodes were three days or longer. Ft. Collins, under 

the influence of these stagnating conditions, was therefore prone to 

possible air pollution threats. 

To determine further which kind of inversion event was longer 

lived, Figures 3.25 and 3.26 show January and February surface and 

elevated inversion frequencies. Elevated inversions for both months 

tended to be short in duration while surface inversions were more evenly 

distributed from short to approximately 16 hour durations. Both of 

these frequency distributions stemmed from active daytime thermals and 

long winter nights with radiational cooling and subsidence. This 

accounts for short-lived elevated inversions that either persisted 

during the daytime and sunk to connect later with the surface, or were 
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Figure 3.24. Frequencies of occurrence of all inversions of specified 
numbers of hours (persistence). 
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Figure 3.25. Frequencies of occurrence of elevated inversions of 
specified numbers of hours (persistence). 
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Figure 3.24. Frequencies of occurrence of all inversions of specified
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Figure 3.25. Frequencies of occurrence of elevated inversions of
specified numbers of hours (persistence).
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Figure 3.26. Frequencies of occurrences of surface inversions of 
specified numbers of hours (persistence). 

mixed and dispersed with environmental air by thermals in the daytime. 

Surface inversions frequently were dispersed in the early evening by 

wind shear or persisted several hours after late night formation. Many 

surface inversions were pushed from the surface in the early morning by 

convective activity and were no longer surface based. 
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Figure 3.26. Frequencies of occurrences of surface inversions of
specified numbers of hours (persistence).

mixed and dispersed with environmental air by thermals in the daytime.

Surface inversions frequently were dispersed in the early evening by

wind shear or persisted several hours after late night formation. Many

surface inversions were pushed from the surface in the early morning by

convective activity and were no longer surface based.



4. ASSOCIATIONS WITH METEOROLOGICAL PARAMETERS 

The major portion of the remainder of this thesis will be devoted 

to associating inversions to meteorological parameters. The following 

table describes relationships that are to be investigated (the presence 

or absence of an inversion is determined by the presence or absence of a 

base height). 

TABLE 4.1 

Inversion Parameters Displayed As Functions of 

Meteorological Parameters for Subsequent Analysis 

Inversions 

Base Heights 

f(wind direction) 

f(wind speed) 

f(cloud cover, 
wind speed) 

f(wind speed, 
wind direction) 

f([CO], wind speed) 

Thicknesses 

f(wind direction) 

f(wind direction) 

f(cloud cover, 
wind speed) 

f(wind speed, 
wind direction) 

f([CO], wind speed) 

Type of Analysis 

2-way ANOVA 

averages, plots 

2-way AN OVA 

3-way ANOVA 

plots 

3-way ANOVA 

plots 

3-way ANOVA 

plots 

Confidence levels in all cases will be at the 5% level. 

Analysis ~f variance (ANOVA) was used in all cases. 
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f(cloud cover,
wind speed)

f(wind speed,
wind direction)

f([CO], wind speed)

Type of Analysis

2-way ANOVA

averages, plots

2-way ANOVA

3-way ANOVA

plots

3-way ANOVA

plots

3-way ANOVA

plots

Confidence levels in all cases will be at the 5% level.

Analysis ~f variance (ANOVA) was used in all cases.
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Association of Inversion Occurrence with Wind Direction 

In order to study the association of inversion occurrences with 

wind direction, it is first necessary to count the number of cases of 

wind in categories. This was done by looking at the wind field for each 

month. Figure 4.1 gives the results for January and February 1975 in 7 

classes. 

January 1975 
360 0 

Calm = 43 

February 1975 
360 0 

1800 

Calm = 74 

Figure 4.1. Cases of wind per wind direction category (each case is a 
1 hour mean wind). 

Referring to Figure 2.6 it can be seen by comparison that January 

and February, 1975 agreed well with the annual wind rose in terms of 

dominant wind regimes from the northwest and southeast indicating the 

up-valley down-valley diurnal flow discussed by Buettner (1967) and 

Riehl and Herkhof (1970). These two months were relatively calm, 

however, in comparison to annual means. This could be attributed to the 

less frequent occurrence of chinook type winds this year. 

Calms will be defined in this paper as periods of highly variable 

wind directions usually associated with low wind speeds. 
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ANOVA of Wind Direction and Inversions 

X~l and X~C (see Appendix B) were tabulated for surface inversions 

and elevated inversions using categories of wind as on the previous 

page. Table 4.2 gives the results of those tests. (Examples of the 

contingency tables can be found in Appendix B.) 

TABLE 4.2 

2 2 Summary of XR1 and XRC for January and February, 1975 

2 = 12.59 d.f. = 6 Xc 

Type of Inversion Date 2 2 Reject? XR1 XRC 

Surface Jan 15.24 Yes 

Jan 30.42 Yes 

Surface Feb 34.02 Yes 

Feb 88.28 Yes 

Elevated Jan 7.04 No 

Jan 10.54 No 

Elevated Feb 13.28 Yes 

Feb 18.87 Yes 

For both months the null hypothesis (see Appendix B) for surface 

inversions was rejected in both tests. From the alternate hypothesis 

one can infer then that surface inversions were related to wind direc-

tion. The probability (Pi) that a surface based inversion will occur 

with a given wind direction can be found for each month. These are 

presented on the next page. 
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TABLE 4.3 

Inversion Probabilities With a Given Wind Category 

(Surface Inversion) 

Degrees 

0-60 60.1-120 120.1-180 180.1-240 240.1-300 300.1-360 CALMS 

Jan .649 .509 .330 .613 .308 .549 .700 

Feb .519 .272 .518 .507 .692 .742 .878 

For each month several direction categories stood out as having 

higher inversion probabilities. Looking at Figure 4.1, it is recogniz-

able that the higher probabilities were related to the more frequent 

wind regimes with the highest in February (excluding the calm category) 

at the northwest direction. One could infer then that this supports the 

physical mechanism of cool katabatic drainage winds and/or cool north 

winds flowing into the Poudre Valley enhancing the growth of stable 

layers. The high probability of inversion occurrence noted in each 

month with variable winds can be related to the low wind speeds usually 

associated with variable wind directions. 

Referring to Table 4.2 it can be seen that the null hypothesis for 

January was not rejected while for February it was for the elevated 

cases. In order to check the theory that the occurrence or non-occur-

2 rence of an elevated inversion was independent of month, another X test 

was performed comparing the two months. 
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TABLE 4.4 

January-February Contingency Table for Elevated Inversions 

Inversion No Inversion Totals 

Jan 151 304 455 

Feb 199 473 672 

Totals 350 777 1127 

X2 was 1.62 for this test. For 1 degree of freedom at the 5% level 

the null hypothesis (Ho: The occurrence or non-occurrence is indepen-

2 
dent of the month) was accepted (Xcritical equals 3.84). No difference 

by month then can be shown. 

2 A further X test was carried out in order to check the winds 

independently of month. The resultant X2 was 3.68 while X2 for critical 

this test at the 5% level was 12.59. It was, therefore, accepted that 

there was no dependency of wind regimes on month. Without further 

evidence it can only be inferred that elevated inversions in January 

were less wind dependent in occurrence than those in February. 

ANOVA of Wind Directions and Inversion Thickness 

Since surface inversion association with wind direction for both 

January and February was somewhat positive as inferred from the tests of 

the previous section, a further test was carried out to see if these 

inversions had thicknesses associated to wind direction. The sample was 

divided into two categories, "inversion thicknesses less than 150 meters" 

and "those equal to or greater than 150 meters and less than 500 meters". 

Wind directions were divided into categories as before. Several of the 
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cells in the table were 3 or less and so categories of wind direction 

were combined (see Table 4.5). 

The null hypothesis was that thicknesses of inversions occurring 

from some wind direction were not related to that wind direction. At the 

2 2 
5% level of significance Xcritical was 9.49. For January X was 5.31 

2 and the null hypothesis was accepted, but for February X was 9.62 and 

the null hypothesis was rejected. The apparent difference says that in 

February inversion thicknesses can be related to the wind field while in 

January the chance of getting a thin or thick inversion was equally 

probable in each wind direction category. However, the difference might 

also be related to the occurrence of calm winds this particular year for 

January and February. 

Early Evening Association of Wind Direction and Inversions 

From previous examples it is evident that the two main wind regimes 

are the southeast in the daytime and northwest at night. In order to 

show that the northwest drainage wind actually does accentuate inversion 

formation it is necessary to examine associated winds and inversions. 

Thicknesses of inversions will be primarily looked at as they are the 

main inversion characteristic that will change. 

All cases of winds from 300°-360° and 120°-180° were plotted versus 

average thickness changes in Figs. 4.2a and band 4.3a and b. All 

figures were constructed from 1600 to 2400 hours M.S.T. This was done 

because near 1600 hours daily winds are southeast and by 2400 hours 

winds have shifted to the northwest. Winds from 1600 to 2400 were 

plotted for all wind and inversion cases from the southeast and north-

west. In this manner it can be seen that if the wind persisted from a 

2
5% level of significance Xcritical was 9.49.
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TABLE 4.5 

Thickness vs. Wind Direction for Surface Inversions 

[Observations (Expected Values in Parenthesis)] 

Wind Directions (Degrees) d.f. = 4 
Inversion 

Thicknesses (m) 0-120 120.1-180 180.1-300 300.1-360 Calms Totals 

January, 1975 

<150 43 23 27 64 24 181 
(40.60) (27.07) (26.22) (62.59) (24.53) 

~150, <500 5 9 4 10 5 33 
(7.40) (4.93) (4.78) (11. 41) (4.47) 

oj::. 

TOTALS 48 32 31 74 29 214 (]\ 

February, 1975 

<150 37 38 71 143 47 336 
(39.73) (40.60) (67.37) (136.47) (54.83) 

~150, <500 9 9 7 15 13 53 
(6.27) (6.40) (l0.63) (21. 53) (8.17) 

TOTALS 46 47 78 158 60 389 
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ALL INVERSIONS 

EARLY EVENING INVERSION THICKNESSES 
ASSOCIATED WITH TWO WIND DIRECTIONS 
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Figure 4.2a. All inversions counted by associated wind direction and 
averaged,-r:anuary, 1975. . 
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Figure 4.2b. All inversions counted by associated wind direction and 
averaged,-rebruary, 1975. 
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SURFACE INVERSIONS 

EARLY EVENING INVERSION THICKNESSES 
ASSOCIATED WITH TWO WIND DIRECTIONS 
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Figure 4.3a. Surface inversions counted by associated wind direction 
and averaged, January, 1975. 
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certain direction from 1600 to 2400 the inversion thickness change could 

be observed. 

In Figure 4.2a and b all inversions (surface and elevated) that 

occurred between 1600 and 2400 were counted that were associated with 

southeast or northwest winds. In February a definite difference in 

inversion thicknesses between the two wind directions is evident. The 

northwest or drainage wind inversions are thicker and much more frequent 

than the southeast inversions, which no longer occur after 1900 hours. 

The northwest inversions for January are similar to February, except 

that the southeast inversions also occur and only die out after 2300. 

In order to see more of the influence of wind direction on surface 

based inversions, elevated inversions were subtracted from the sample. 

Now in Figures 4.3a and b, January and February agree to a greater 

extent, with southwest surface inversions not present after 1900 hours 

and northwest inversions dominating until 2300. 

The early evening dependence of inversion formation at the surface 

on wind direction (for the two major regimes) has therefore been shown 

along with the time dependent change of thickness and occurrence. 

Association of Inversions With Wind Speed 

The association of light winds with inversions is well documented. 

A familiar comparison, reproduced by Sutton (1953) as his Figure 25, of 

wind-speed profiles for inversion, neutral, and superadiabatic condi­

tions shows that the lightest winds occur with inversions. In an inves­

tigation at the Hanford works area by Jenne and Hilot (1950) of the 

association of inversions and wind speed, it was found that between calm 
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and 5 mls there was a definite trend of decreasing stability with 

increasing wind speed. 

Using available surface wind speeds and acdar records, evidence was 

sought that inversions at Fort Collins were more frequent with light 

winds than strong winds. Two by two contingency tables were prepared 

for each month. Wind speed categories were "calm to less than 5 m/s" 

and "greater than or equal to 5 m/s"; inversion categories were 

"inversion" and "no inversion" with contingency tables for all inver-

sions, surface inversions and elevated inversions being prepared. 

2 The X for a two by two table was used testing the null hypothesis 

that inversion occurrence is independent of wind speed. Table 4.6 

is an example of one such contingency table and related parameters. 

From the previous discussions it can be noted that most surface 

inversions occur in the nighttime hours and elevated inversions in the 

daytime. In differentiating surface and elevated inversions it was 

shown in Table 4.7 that surface inversions were related to wind speeds 

(the null hypothesis was rejected). Elevated inversions on the other 

hand are not related to surface wind speeds in January as they are in 

February. This could be attributed to the fact that elevated inversions 

were much higher in height than the winds measured near the surface and 

could be in a slightly different wind field. 

From the entries in the surface inversion contingency tables, the 

frequency of inversions with less than 5 mls and greater than 5 mls 

were 54% and 27% for January and, 64% and 42% for February respec-

tively. 

The influence of surface inversions can be seen on the all-inver­

sion x2 ,s that were calculated. January and February for this case were 
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TABLE 4.6 

January 1975, Wind Speed vs Inversion Occurrence 

Surface Based Only 
Calm to <5 mls >5 mls Totals 

Inversion 210 17 227 

No Inversion 183 45 228 

Totals 393 62 455 

2 14.50 X a' .05 

2 3.84 Xcritical d.f. 1 

Reject NULL HYPOTHESIS 

X2 was calculated in like manner for all the remaining tables. The 

2 results of the X test for each month are presented in Table 4.7. 

TABLE 4.7 

Summary of X2 for January and February 1975 

d.f. 1 a = .05 

Month 2 2 Reject X Xc 

All Inversions Jan 15.14 3.84 Yes 

Feb 30.08 3.84 Yes 

Surface Inversions Jan 14.50 3.84 Yes 

Feb 16.11 3.84 Yes 

Elevated Inversions Jan 1. 76 3.84 No 

Feb 33.36 3.84 Yes 
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dependent on wind speeds, so that under certain wind conditions an 

inversion can be expected to occur. The frequencies of occurrence 

with speeds less than S mls and greater than 5 mls were 65% and 39% 

for January and, 71% and 42% for February, respectively. 

Association of Inversions with Two Meteorological Variables 

In the previous two chapters it was shown separately that inver­

sions in Fort Collins are related to certain wind direction and wind 

speed patterns. In order to describe more fully the possible dual 

relationship of inversions to two meteorological variables simultan­

eously, the 3-way analysis of variance is utilized. 

Cloud Cover, Wind Speeds and Inversions 

January and February cloud cover data (from the Fort Collins 

weather station), wind speeds (10 meters above surface) and acdar re­

cordings of inversions, were related by a x2 test. A graphical presen­

tation is given in Figure 4.4. 

In order to first see if any valid relationship existed, a x2 

test was applied to each set of data. Values of "less than 3 m/s" 

and "greater than 3 m/s" were used for wind speed classes, and cloud 

2 cover classes were "0-2 tenths", "3-6 tenths", "7-10 tenths". X 

was then calculated with the following results: 
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Figure 4.4. Cloud cover, wind speeds and frequency of inversion occur­
rence. Between each cloud cover category are 10 frequency cate­
gories so that the peak at 1.5 mls for 0 cloud cover on the dotted 
line represents 16 cases of inversion less than 150 meters thick. 

Note: In Figures 4.4 through 4.10: 
--- indicates inversions < 150 meters thick, and 
-- indicates inversions> 150 meters thick. 
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TABLE 4.8 

2 X Results for 3-Way ANOVA of Wind Speeds, Cloud Cover 

All 

All 

Surface 

Surface 

Elevated 

Elevated 

d.f. 6 

and Inversion Occurrence 

Date 2 
Xc 

Jan 8.329 

Feb 11. 813 

Jan 8.601 

Feb 14.197 

Jan 4.262 

Feb 8.634 

2 12.59 Xc 

Reject? 

No 

No 

No 

Yes 

No 

No 

Only the February surface inversion cases rejected the null hypo-

thesis. This says that wind speeds, cloud cover and inversion occur-

rence were mutually independent, that is, when light winds and clear 

skies occur, an inversion mayor may not occur simultaneously. Having 

used observations available only on a two hour basis, the number of 

values used in this analysis was only half of that used in subsequent 

analysis (next two sections). Further analysis of cloud cover should be 

carried out when further data are available. 

Figure 4.4 gives the results of February surface inversions asso-

ciated with cloud cover and wind speeds. It can be seen that both thin 

(dotted line, < 150 meters thick) and thick (solid line, > 150 and 

< 500 meters thick) inversions were more frequent with clearer skies and 

lighter wind speeds. 
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Wind Direction, Wind Speed and Inversion Occurrence 

It was shown previously that inversion occurrence and wind direc-

tions are dependent, with a high probability that inversion occurrence 

is dependent on wind direction rather than vice versa. In this 

section the added factor of wind speed was tested along with wind 

direction and inversion occurrence. Again the X2 test was used with 

wind speed classes as before and wind direction classes, "0°_120°", 

"120.1°-180°", "180.1°-300°", "300.1-360°", and "calm". These wind 

direction classes were used to allow for the maximum number of values in 

each cell of the contingency table. The test for independency yielded 

the following results: 

TABLE 4.9 

X2 Results for 3-Way ANOVA for Wind Speeds, Wind Directions 

and Inversion Occurrence 

d.f. 12 
2 21. 026 Xc 

Inversions Date 2 Reject? X 

All Jan 72.754 Yes 

All Feb 219.738 Yes 

Surface Jan 79.250 Yes 

Surface Feb 218.767 Yes 

Elevated Jan 46.116 Yes 

Elevated Feb 188.152 Yes 

In all cases the null hypothesis was rejected and the alternate 

hypothesis accepted, that is, wind speed, wind direction and inversion 

occurrence are mutually dependent. 
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The inversions of greatest interest in regard to climatological 

control were the surface inversions, since it was proposed in earlier 

chapters that northwest drainage winds could enhance inversion forma-

tion. Plots of surface inversions "all day" do not yield much in the 

way of supporting this idea, though they do show the predominance of 

inversions with northwest, east, and southeast winds with wind speeds 

below 7.5 mls (Figs. 4.5a,b). Categories of plotted wind directions 

used in these and subsequent figures were: 

o - 60° 1 
60.1-120 2 

120.1-180 3 
180.1-240 4 
240.1-300 5 
300.1-360 6 

Calm 7 

Plots, however, of night surfac·e inversions (Figs. 4.6a,b) show in 

general more cases of surface inversions with northwest winds and light 

wind speeds than southeast wind cases, especially in February (4.6b). 

Thin inversions (dotted lines) occurred more than thick inversions 

(solid lines), for both months, but a peak in January with thick inver-

sions can be seen for the 300°-360° category at 3.5 m/s. 

Calm winds (category 7) in all cases exhibited a peak of inversion 

occurrences with wind speeds below 2.5 m/s. This confirms the hypo-

thesis that light winds associated with no particular wind direction are 

indicative of stable or near stable air conditions. 
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Figure 4.5a,b. Windspeeds, wind directions and frequency of occurrence 
of thin « 150 m) and thick (> 150 m) inversions associated with 
them. Surface inversions only for: a. January, 1975, and 
b. February, 1975. 
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Figure 4.5a,b. Windspeeds, wind directions and frequency of occurrence
of thin « 150 m) and thick (> 150 m) inversions associated with
them. Surface inversions only for: a. January, 1975, and
b. February, 1975.
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Figure 4.6a,b. Windspeeds, wind directions and frequency of occurrence 
of thin « 150 m) and thick (> 150 m) inversions associated with 
them from 1700 to 0800 MST. Surface inversions only for: 
a. January, 1975, and b. February, 1975. 
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CO Concentrations, Wind Speed and Inversion Occurrences 

As a final 3-way ANOVA test, CO concentrations taken on an hourly 

basis (on the roof of the courthouse in Ft. Collins) were compared to 

inversions and wind speeds.* CO classes were "1 to < 5 ppm" and "5 to 

.::. 18 ppm" with wind speed classes as before. X2 results for all ele-

vated and surface inversions were: 

TABLE 4.10** 

2 X Results for 3-Way ANOVA of CO Concentrations, Wind Speeds 

and Inversion Occurrences 

d. f. 3 2 7.81 Xc 

Inversions Date 2 Reject X 

All Jan 9.254 Yes 

Surface Jan 8.249 Yes 

Elevated Jan 17.695 Yes 

** CO data only available for January in Ft. Collins 

For January in all cases the null hypothesis of independency was 

rejected and the alternate hypothesis accepted. With these results we 

can say that there is some mutual relationship of CO concentrations, wind 

speeds and inversion presence. 

Plots of contingency tables for surface inversions occurring with 

light winds, showed peaks of CO between 1.5-2 mls in the daytime and 

nighttime (Figs. 4.7 and 4.8) for concentrations below 5 ppm. Higher 

concentrations occurred more frequently in the daytime (Fig. 4.8) 

* Only Monday through Friday CO values were used because of the conti­
nuity from day to day of CO peaks. Data from 1-19-75 to 1-26-75 was 
missing. 
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Figure 4.7. Association of [CO], wind speeds and surface inversion 
occurrences (thin < 150 m; thick ~ 150 m) from 1700 to 1800 MST, 
for January 1975. 
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Figure 4.8. Association of [CO], wind speeds and surface inversions 
(th:.n < 150 mj thick ~ 150 m) from 0800 to 1700 MST, for January, 
1975. 

62

CO CONCETRATION CATEGORIES VS. WIND SPEEDS VS. IN\/ERSION OCCURRENCES

SURFACE INVERSIONS ONLY (1700-0800MST) JANUARY 1975

3-

N
I

1210

(/)
LaJ

~
ffi
~
u 2
z
o
fi
0::
~
Z
LaJ
Uz
8
8

I -+-...:;......-....,...-~~ ..,:~-?::-.-.....:- ....;.----..;',:,---.--~--r--..--..

o 2 4 6 8

WiNO SPEEDS (mlsec)

Figure 4.7. Association of [CO], wind speeds and surface inversion
occurrences (thin < 150 m; thick ~ 150 m) from 1700 to 1800 MST,
for January 1975.

co CONCENTRAT:ON CATEGORiES VS. WIND SPEEDS VS. INVERSIO~ OCCLJF:RENCES

~LJRFACE INVERSIONS ONLY (OSOO - rrOOMST) JANlJ/I.RY 1975

i210

o
u

(J';
LIJ
iro
'.?
LaJ

~
U

z 2
o
~
0::
~
Z
lJJ
U
Zo
u

Figure 4.8. Association of [CO], wind speeds and surface inversions
(th~n < 150 m; thick ~ 150 m) from 0800 to 1700 MST, for January,
1975.



63 

probably as a result of the greater input of CO at this time (automobile 

combustion). 

With elevated inversions, however, the opposite occurred. At low 

and high concentrations more elevated inversions occurred at night than 

in the daytime (Fig. 4.9 and 4.10). These results were somewhat per­

plexing in that CO concentrations were generally higher in the daytime. 

We can only suggest that possibly CO levels were great enough that 

evening elevated inversions trapped CO left from daytime combustion 

sources. 
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Figure 4.9. Association of [CO], wind speeds and elevated inversions 
(thin < 150 m; thick ~ 150 m) from 0800 to 1700 MST, for January, 
1975. 
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Figure 4.10. Association of [CO], wind speeds and elevated inversions 
(thin < 150 m; thick> 150 m) from 1700 to 0800 MST, for January, 
1975. 
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5. CASE STUDY 

To this point most inversion and meteorological features at Ft. 

Collins were generalized to show trends. In order to gain some insight 

into the combined effects on the air pollution problem, a case study is 

presented. The episode chosen for study was from 1600 M.S.T. on January 

31 to 0800 M.S.T. February 1, 1975. CO concentrations for Ft. Collins 

were utilized as before. The daily cycle (Monday through Friday) of CO 

in Ft. Collins is for a peak near 0800 hours with the morning rush hour 

at 6-7 ppm, and another peak near 1700 hours when traffic again is heavy 

from 10-12 ppm (personal communication with Dr. Myron Corrin, Department 

of Atmospheric Science, Colorado State University). 

On the evening of January 31 concentrations were as high as 8 ppm 

at 1900 hours. Looking at the surface maps for January 31 and February 

1 we can see that the central Rocky Mountain region was dominated by a 

high pressure system (Figures 5.1, 5.2). With no strong cyclonic 

activity in the vicinity of Ft. Collins, light drainage winds and rela­

tively clear skies were present on this night. The formation of a 

surface nocturnal inversion was probable under these conditions with the 

resultant trapping of CO at low levels. 

In Figure 5.3 CO concentrations (the circles connected by a solid 

line), inversions (shaded areas), and wind speeds and directions (wind 

barbs at the bottom) were plotted as a function of time. From 1600 to 

1730 an elevated inversion was present between 325 and 400 meters. CO 

concentrations increased with the evening traffic but did not decrease 

until 2200 hours. This could be attributed to the fact that traffic was 

present throughout the early evening because this was a Friday night. In 
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concentrations increased with the evening traffic but did not decrease

until 2200 hours. This could be attributed to the fact that traffic was

present throughout the early evening because this was a Friday night. In
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INVERSION HGT [CO] t WIND DIRECTIONS AND SPEEDS . 

FT. COLLINS, JAN. 31 TO FEB. I, 1975 
500 

7 
400 E 

6 Co 
(j) Co 

cr 
Z w 

300 5 .- 0 
W ~ ~ 

\' =1 KNOT - 4 a:: .- .-
:c 200 \' = 5 KNOTS Z 
(!) w 
Lii 3 0 

Z :c 0 
2 u 

100 ~ 
I~ 

o 

16 18 20 22 0 2 4 6 8 

TIME (HOURS, M. S. T.) 

Figure 5.3. CO concentrations, inversion (shaded area), and wind 
field (barbs at bottom) for January 31, 1975 from 1600 to 
February 1, 1975 at 0800. 

fact, an indication that there was heavy Friday night traffic was that 

near 2300, as the surface inversion intensified, the CO concentrations 

increased. From 0000 to 0400 the wind speeds increased slightly 

causing some turbulence in the layer even to the extent of dividing the 

stable layer into two. 
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fact, an indication that there was heavy Friday night traffic was that

near 2300, as the surface inversion intensified, the CO concentrations

increased. From 0000 to 0400 the wind speeds increased slightly

causing some turbulence in the layer even to the extent of dividing the

stable layer into two.
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The stable layer of air at the surface and the elevated inversion 

both persisted during the whole time period. Because February 1 was a 

Saturday morning, we would expect the peak of morning CO concentrations 

to be shifted two or three hours toward the middle of the day, but peaks 

equal to the weekly values were reached by 0800! One explanation 

offered is the overnight persistence of the nocturnal inversion which 

had effectively trapped much of the CO from the previous day and night, 

along with the presence of light winds. Both of these factors could 

deter the diffusion of CO out of Ft. Collins and possibly contributed to 

this slightly anomalous peak on February 1, 1975. 
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6. DISCUSSIONS AND CONCLUSIONS 

In drawing together the information presented in the foregoing 

sections, we must first look at the main objective of this study. 

Basically this was to utilize a relatively new remote sensing device, 

the acoustic radar, in a "prototype" climatological study. The greatest 

value of the system was its ability to continuously monitor the struc­

ture of the lowest atmospheric layers. 

Effectively this objective was reached to some degree. Inversion 

data for January and February was broken down into time and space 

occurrences and catalogued into various classes. In summary, Ft. Collins 

had a high incidence of inversions in the wintertime months of January 

and February. Many of these inversions were nocturnal surface inver­

sions which formed after sundown and were associated with clear skies 

and light breezes. It was also found that nocturnal inversions were 

enhanced as cold air drainage added to the stable layer formation. 

In addition to nocturnal inversions, elevated inversions occurred. 

However, they were not present in the daytime as frequently as expected. 

Generally when strong subsidence was present during the day, elevated 

inversions persisted through the morning hours. But with subsidence, 

clear skies and much solar radiation dominated. Generally, afternoon 

inversions were broken by the strong convective cells at the surface or 

pushed to heights above the range of the acdar system (500 meters). 

CO concentrations were then positively associated with the high 

occurrence of inversions and inversion-favoring meteorological condi­

tions. Positive associations of inversions and wind direction, and 
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inversions and wind speeds were also found. Cloud cover was not 

mutually associated with wind speeds and inversions. 

Acdar was a valid and valuable tool in continuously monitoring the 

lower boundary layer. These soundings used in conjunction with other 

meteorological parameters gave good insight into time and space changes 

of the lower atmosphere. Further work over longer time periods will 

yield much more information than this short study, especially in terms 

of seasonal changes and yearly variations. One other valuable parameter 

that could have been utilized was the intensity of returned echoes to 

the acdar. On a well-calibrated system these can give an extra dimen­

sion to the analysis in determining temperature structures in the PBL. 

Also invaluable would be the direct digitizing of acdar information on 

site for analysis later and the immediate interpretation of acdar-sensed 

inversions for short term forecasting requirements. 
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APPENDIX A: ACDAR 

A.l Introduction 

Quantitative estimates of atmospheric structures have been derived 

from refractively propagated sound signals for more than 50 years. For 

example, artificial and natural explosions have been used to estimate 

upper air temperatures and wind profiles (see Cox et al., 1949; Whipple, 

1923; and Cox, 1957). Acoustic probing of the atmosphere, however, has 

only come to be recognized as an effective remote sensing technique in 

the last decade. Gilman, Coxhead and Willis (1946) used acoustic back­

scatter to study the structure of low-level temperature inversions as 

they affected propagation in microwave communication links. A loud­

speaker source and microphone in a 60 em parabolic dish were used as the 

source and receiver, and the backscattered echoes displayed on an oscil­

loscope. Patterns of nocturnal inversion formation and breakup, and 

convective plumes were observed, but the technique lay dormant. 

Little development occurred until an acoustic sounding experiment 

was set up at the Weapons Research Establishment in South Australia in 

1967 by McAllister (1968). It was established that it was possible to 

detect the backscattered energy from temperature fluctuations within 

turbulent regions in the lower atmosphere (up to 1.8 km). This back­

scattered energy could then be transformed into a three-dimensional 

chart record of height, time and intensity. Later McAllister et al. 

(1969) reported observations of several atmospheric structures, and 

Little (1969) showed the potential usefulness of acoustic sounding 

because of its high sensitivity, mobility, and low cost of equipment. 
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Before considering in detail the sounder used in this experiment, 

a brief summary of the related acoustical physics will be presented, 

followed by a description of the system and observable echo structures 

with examples. 

A.2 Theoretical Background 

Acoustic energy propagates through the atmosphere as a longitudinal 

wave of pressure variations (Hall, 1972). This energy is scattered and 

attenuated by several things including particulate matter, turbulent 

fluctuations of temperature and wind velocity, and sharp temperature 

gradients (density changes). Acoustic scattering in dry air has been 

described by Kallistratova (1961). 

As the acoustic energy travels through the atmospheric medium, 

changes in the temperature and movement of the air cause changes in the 

velocity of the waves of energy. The velocity V of sound deduced by a 

stationary observer will be the sum of the velocity of sound C relative 

to the air, plus the velocity of the air W relative to the observer 

(Little, 1969). Thus 

V C+W 
The velocity of sound in dry air is given by 

C 20.05 if mls 

where T is the absolute temperature of the air. 

The sensitivity of sound velocity to changes in wind, temperature 

and humidity is such that the humidity fluctuations can almost always be 

ignored. For remote probing then the problem of separating wind and 

temperature fluctuations can be accomplished since the wind is a vector 

quantity and temperature is scalar. 
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As in conventional radar when the acoustic energy wave encounters 

an echo-rich region scattering in various directions of the sound 

energy occurs; the amounts and directions of scatter vary with the 

intensity of microscale temperature and velocity gradients, and with the 

scattering angle relative to the incident beam (denoted as e). The 

intensity of this returned signal can be expressed as an equivalent area 

of "back-scattering cross section" which is defined by Battan (1973) as 

"the area intercepting that amount of power, which if scattered isotrop-

ically, would return to the receiver an amount of power (equal) to that 

actually received". This backscattered cross section cree) can be 

related to the meteorological variables in the expression for the acous-

tic index of refraction and, if one assumes a Kolmogoroff spectrum of 

turbulence,the resulting relationship is (Hall, 1972; Little, 1972): 

crCe) 
-1/3 2 Cv 2 e CT. e -11/3 ~ 2 2~ 

O.OSSA cos e ~2 cos 2 + .13 T2 CS1n 2) 

where C~ is the velocity structure parameter and C~ is the thermal 

structure parameter defined by: 

luCx) - uCx+r)] 2 

L cr
l
/ 3 J' 

rT(X) - T(x+r)J 2 

L crl /
3 J 

Wind speed is u at position x in the positive x direction, and r is 

measured along the x axis. 

The above equation shows that: 

1) the scattered acoustic power resulting from assuming a Kolmo-

gorov spectrum of turbulence varies relatively weakly with 

wavelength [crCe) a A- l / 3]; 
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2) this scattered acoustic power is the sum of two terms, one due 

to the wind fluctuations (normalized by the mean velocity of 

sound in the medium) and one due to the temperature fluctua-

tions (normalized by the mean temperature of the medium); 

3) both wind- and temperature-scattering terms are multiplied by 

cos28, which means that no power will be scattered at an angle 

of 90°; 

4) The wind term includes a cos2(~) multiplying term, which means 

that the wind fluctuations produce no scatter in the backward 

direction (8 = 180°); and 

5) both the wind and temperature components of the scatter are 

multiplied by a (sin })-11/3 factor, i.e., most of the scatter 

is in the forward direction (Little, 1969). 

Figure A.l points out the angle dependence of the acoustic backscattering 

cross section from a Kolmogorov spectrum of temperature and velocity 

fluctuations as mentioned in points 3) and 4). 

In a monostatic (transmitter and receiver collocated) configuration 

the wind terms in 0(8) disappear and the equation takes the form: 

which shows that the only fluctuations producing detectable backscattered 

signals are temperature gradients and fluctuations. The functional equa-

tion then for relating transmitted and received power for the monostatic 

system is: 

p PtO(8) Ct -A T2 G 
2 2 

r 
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where P is the received power, P
t 

is the transmitted power, A is the 

collecting area of the receiving antenna, t is the time duration of the 

acoustic pulse, T is the transmittance of the atmosphere for acoustic 

energy from the antenna to the scattering volume, and G is a gain factor 

which accounts for the antenna beam pattern characteristics. For a 

perfect piston source this gain factor G is ~ .24. 

The fundamental theoretical limit of the acoustic noise power is 

that generated by the random thermal motion of atmospheric particles 

(Hall, 1972). For a standard atmosphere and a 100 Hz receiver band­

width, this is 4 x 10- 19 watts (Little, 1969). The acoustic power 

return, Pr , for a transmitted pulse of 20 watts, may range from this 

theoretical noise limit, at range of 100 m to 1 km for non-turbulent 

atmospheric regions, to values near 50 or 70 db above the noise limit 

for an atmosphere with a strong thermal structure at a range of 50 m. 

So the acdar system must respond over a wide dynamic range as well as 

responding to the -i distance dependence of the echo regions. 
r 

The fundamental electronic components will be discussed in the next 

section in regard to the Aerovironment 300 system. The antenna design, 

however, should be discussed here. The acoustic antenna is an important 

component in the system in that it serves to collimate the transmitted 

signal and refocus the received echoes. A very good antenna system is 

one in which the transducer is actually mounted at the focus of a 

parabolic dish (Hall, 1972). One problem with this setup, however, is 

the presence of side lobes of acoustic power and the effect that environ-

mental noise has directly on the receiver. In order to improve antenna 

performance, an absorbing cuff can be arranged around the antenna. This 
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Figure A.2.l. Angle dependence of the acoustic backscattering cross 
section from a Komogorov spectrum of temperature and velocity 
fluctuations. (After Little, 1969). 

gives additional side lobe attenuation and cuts down environmental noise 

(enough in fact to allow use in a crowded city area). 
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A.3 Acdar System

The Acoustic Radar (aerovironment Model 300) used in this

experimont is a monostatic unit (same antenna transmitting as re-

ceiving). The system provides continuous information on a cross

section of the lower atmosphere by emitting a short pulse of sound

upward, "listening" to the returned echoes from temperature varia-

tions aloft, and displaying the height and relative intensities

of the echo region on a chart (see Figure A.3.l).

The instrument consists of 2 functional systems: (1) An elec-

tronic module (see Figure A.3.l) which generates a short 1600 Hz

electronic pulse, and then amplifies the returned signal and records

it on an integral time-height record by a cycling stylus; and (2)

'~~~1~
/~~

Figure A.3.l. The Aerovironment Model 300 module showing the sensi­
tivity and power on controls. The chart paper is shown in its
normal position.



Figure A.3.2. A side view of the antenna transducer, and horn configuration.
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Figure A.3.3. Acoustic transducer.

an antenna (Figure A.3.2). The antenna contains an acoustic trans­

ducer (see Figure A.3.3) which generates the sound pulse and receives

the echoes. Coupled closely to the transducer is a fiberglass cone

(see Figure A.3.4) which helps direct the sound pulse to the 125 cm

parabolic reflector. This reflector (see figures A.3.5 and A.3.6)

directs the sound pulses vertically into the atmosphere and helps

refocus the incoming received echoes back from the scattering

region.

Because of the nature of sowld waves (audible) and of antenna

design, another needed part of the acou~tic system for proper usage

is an acoustic enclosure. This enclosure helps cut down side lobe

directed sound pulses (not the main beam), shields the antenna
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Figure A.3.4. Fiberglass cone coupled to transducer.

from ambient noise (industry, autos, etc.), and aids in keeping

out local fauna (including the two-legged variety). The acoustic

enclosure (sec Figure 1\.3.6) is made up of five 122 x 2H em

p:.lJlels, each of \vhich 'is a 13 Jilin fir plywood (for structural ri­

gidity and sound attenuation), with IS cm-thick convoluted ure­

thane foam (to damp out internal reflections) glued to it (sec

Figure A.3.7). The five panels loc~ into a pentagonal enclosure

around the antenna (see Figure A.3.8) which provides for the

shieldings listed above. 1\ 60 m coaxial cubIc (sec Figure A.3.8)



Figure A.3.5. Top view of the acoustic radar antenna which shows the direction that acoustic waves are
reflected into the atmosphere.

00
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links the transducer to the electronic module, which must be kept

out of severe weather conditions to protect the electronics (es-

pecially in extreme cold and wet periods).

The various changeable parameters 01 the Aerovironment ~10del

300 include: (1) a choice of either the sao m or 1 km height scale;

(2) variations of the transmitted pulses; (3) vari.ati.ons in the

band\vidth of received echoes; (4) an adjustable amplifier ralllp

start; and (5) a sensit i v ity potent iOl11eter to change the ampl:i-

fication factor of the received echoes. lbe transmitted pulse

lengths arc SO ms, 100 ms, and 200 ms corresponding to 35w, 70w,

Figure A.3.6.
removed.

Side view of the acoustic enclosure with one panel
Also shown is the urethane foam on the plywood.
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and l40\v of power (sec Figure A.3.9). The short pulse lengths

give the best resolution, but ~lt the expense of the sign~11 to

noise ratio, \vhile the longer pulses give greater energy input,

'reducing the signal to noise ratio, but consequently reducing the

spatial resolution. Noi.se rejection is aided by the usc of the

filtering bandwidths. The Ni\ImOW, WIDE, and ~lE[)IlJ~l positi.ons

on the toggle (sec Figure A.3.9) corresJlond to nominal system

band\vidths of 20, 80, nncl 40 liz centered at 1600 liz and measured

to the -3clB points. The NARROW band gives the best noise rejection,

whereas the WIDE band processes a maximum of echo strength but

Figure A.3.7. Convoluted urethane foam used for damping.
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Figure A.3.8. Locked together acoustic enclosure in operational posi­
tion. Coaxial cable which runs from the transducer to the elec­
tronic module.
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is only usable in a noise free environment. The other control

above the pulse lengths is the RAMP START. This varies the start-

ing position when the amplifier actually begins to process echoes

from the atmosphere (see Figure A.3.9). Finally the sensitivity

control adjusts the darkness on the chart of the received echo

and varies from 1 to 10 (see Figure A.3.l).

Other than ambient noise affecting the acdar charts by dark-

ening them, rain, snow and wind also cause darkened records (shown

in figures in Section A.4). Int·erpreting acdar records involves

separating these non-temperature echoes from inversion and

convective plume returns.

Figure A.3.9. The pulse length control is in the lowermost left
hand corner. Above that is the RAMP control switch. To the right
is the toggle which changes the filtering bandwidth for receiving
echoes. Also shown are some of the electronics of the system
which are mainly on boards for easy removal.
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A.4 Monostatic Acdar Observable Echoes

Samples of observed acdar echoes are shown in Figures A.4.2 through

A.4.8. These samples include thermal plumes, a radiation inversion, an

elevated inversion, a subsidence inversion, a frontal inversion and an

episode where a nocturnal inversion is lifted as thermal plumes push it

up and mix it effectively with environmental air until it dissipates.

An acdar system operating in the monostatic mode, as mentioned

before, detects only CT, the thermal structure parameter. In a. neutral

(or dry adiabatic) atmosphere, CT values are very small no matter how

much mechanical turbulence is present. This is because air parcels

displace vertically by velocity perturbations conserve their potential

temperature and maintain the same temperature as their dry adiabatic

environment. Thus, in a neutral, horizontally homogeneous boundary

layer, velocity eddies do not produce thermal eddies. Large acoustic

signal returns do occur in unstable conditions, however, owing to

the organization of convection into structures called "thermal plumes",

which have a very pronounced thermal eddy structure. Large returns

are also found under stable conditions, where the presence of mechan­

ical turbulence does produce large values of CT because of the large

variations of potential temperature with height (Banta, 1974). The

different phenomena mentioned above are summarized along with changes

in related parameters and acdar record changes in the following

figures:
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CT-LARGE
RETURNS - STRONG
li8... -z.o-3°
VELOCITY EDDIES }
MECHANICAL TURBULENCE

STRONG
EFFECT

Figure A.4.la. Superadiabatic atmosphere: Convective plumes from
surface warming present with sharp temperature gradients in a short
distance. Dark echo traces appear looking like spikes with dif­
fused tops (where environmental air mixes in sufficiently).

NEUTRAL
~

t
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, ~
'\~I-

CT-SMALL
RETURNS - WEAK
f!.8"'oo

VELOCITY EDDIES ]
MECHANICAL TURBULENCE

LITTLE
INFLUENCE

Figure A.4.lb. Neutral atmosphere: Atmosphere is in neutral buoyant
state. Little or no returns on acdar chart output.
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CT-LARGE
RETURNS - STRONG
~e-4°-5°
VELOCITY EDDIES }
MECHANICAL TURBULENCE

STRONG
EFFECT

Figure A.4.lc. Stable atmosphere: Backscatter from microscale, tu:bu­
lent temperature fluctuations which are caused by: 1. the rapld
increase of potential temperature with height through the stable
inversion layer; and mechanical eddies (induced by terrain) which
can produce thermal eddies with large temperature variations;
2. the abundance of turbulent kinetic energy in the layer associ­
ated with large wind shears that generally occur across inversions.

Thermal Plumes

A thermal plume is the rise of a heated (solar surface heating),

non-uniform air parcel from the ground up into the planetary boundary

layer (Hall, 1972). The strongest temperature fluctuations and

therefore, the regions of maximum acoustic return, are found in the

areas of maximum shear between rising warm air and sinking cool air

(Beran, et a1., 1971). The temperature fluctuations in the core of the

convective plume are also much greater than the regions between plumes.

In Figure A.4.2 the dark spike-like traces near the bottom are thermal

plume structures. McAllister (1969) has shown that the light areas
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Figure A.4.2. Daytime convective plumes.

between plumes correspond to temperature traces that are relatively

smooth with no rapid fluctuations. Inside the maximum gradient areas,

however, where sounder returns are strong, temperatures were warmer and

fluctuated rapidly.

Inversions

Inversions show up as dark, often layered, traces on the acdar

display. Acoustic energy is scattered from inversion layers not because

of temperature gradients, but because of the presence of microscale,

turbulent temperature fluctuations within the inversion (Hall, 1972).

Some of the reasons these microscale temperature fluctuations occur were

alluded to in Figure A.4.lc. The development and structure of many

kinds of inversions can be monitored and studied on a continuous real-

time basis using the acdar system. The recordings from acdar cons is-

tently correspond well with radiosonde data and so can be used together

to monitor lower atmospheric phenomena.



93

In Figure 2.1 presented in a previous chapter, the dark band aloft

is an elevated daytime inversion. Other examples of inversion layers

are shown in Figures A.4.3 and A.4.4 where examples of a surface noc­

turnal layer and a subsiding elevated layer can be seen. The nocturnal

surface layer in Figure A.4.3 is typical after sunset on a cold, clear

winter evening in Colorado, in that surfaces cool rapidly. The inver­

sion is the dark layer deepening from about 1900 hours to 0300 where

wind shear and turbulence cause a more diffuse layer to occur. In

Figure A.4.4, the strong subsiding air is evident (and has been cor­

related to a high pressure system and little vertical motion over Fort

Collins) and can be seen as a sinking dark band from around 0200 to 0900

where thermal activity begins to cause oscillating motions in the layer.

Strong subsiding air layers like this are those that are most desirable

to monitor in terms of air pollution forecasting.
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Figure A.4.3. Nocturnal radiation inversion.
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Figure A.4.4. Subsidence inversion.
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Figure A.4.5 shows the acoustic echoes which were attributed to the

scattering from small scale temperature fluctuations at the top of a

convective layer where fog formed. The dark vertical spikes near the

bottom of the chart are the result of thermal surface activity, while

the fog layer is the dark band running from 150 meters at 0900 hours to

350 meters at 1500 hours.

Wind

The effects of wind and industrial noise (automobiles, airplanes,

heavy industry, etc.) can be seen on almost every acdar record shown.

Most appear as solid black dark vertical traces that do not last very

long. Figure A.4.6, however, shows the effects of a prolonged windy

period such as a chinook or strong downdraft. It is obvious that under

such conditions soundings are not very fruitful in monitoring the lower

atmosphere in that the returned signals are completely wiped out by the

ambient noise.

Frontal Inversion

As cold air moves under warmer air as with a cold front, the inter­

face between the two layers of air is a region of strong mixing of the

two air masses. This intense temperature and turbulent structure is a

strong scatter of acoustic energy and so can be seen with acdar. Figure

A.4.7 shows such an interface between a warm layer of upper air and a

cool layer of surface air. The layer slowly decreases with height as

the cold front (identified on the 3/3/75 surface analysis 0500 MST)

backs up slowly to the east and finally passes completely by about 1100.

The traces after this time are convective plumes.
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Figure A.4.5. Fog
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Diurnal Cycle (Winter)

As a final example of observable echoes in Fort Collins, a diurnal

cycle is shown in Figure A.4.8. From 0800 to 1500 convective plumes can

be seen with a brief elevated inversion between 1000 and 1100 near 200

meters. Slightly after the thermal plumes die down at 1500 the surface

begins to cool and a layer of stable air builds up. At 1900 hours the

top of the layer "blows off" as a result of wind shear but the stable

layer remains intact at the surface, and the process continues through

the night. The dark traces starting at 0630 are a result of increased

wind speeds and morning traffic.



~5S0

~:
I-

~200
:I: "'O

1000

TIME (HOURS)

Figure A.4.8. Diurnal inversion and convective plume cycle.

......
o
o



APPENDIX B:

2Two X methods were used in Chapter 4. One method is actually "a

test for homogeneity". 2This will be referred to as the XRI test. The

other method is to use two inversion categories, "inversion" and "no

inversion", so that combined they equal the number of wind cases from a

given direction. This will be called the X~C test. Representative

examples of each contingency table with associated equations are given

in the following tables. The null hypothesis (with its alternate

hypothesis) for each test is:

2Ho(XRI ): An inversion has equal probability of being associated

with all wind directions.

2Ha(XRI ): An inversion has unequal probability of being associated

with all wind directions.

2Ho(XRC): Inversion and not inversion occurrence is not related to

wind direction.

2Ha(XRC ): Inversion and not inversion occurrence is related to wind

direction.



TABLE B.1

X~l All Inversions February 1975

Wind Direction (Degrees)

0-60 60.1-120 120.1-180 180.1-240 240.1-300 300.1-360 VARIABLE TOTALS
Wind Cases 54 81 112 73 65 213 74 672=m

Inversions
OBS 29 33 71 45 46 163 67 454
EXP 36.48 54.72 75.67 49.32 43.91 143.90 49.99 453.99

2n (Oi - e i )
X~l = i~l e.

1

d.£. = 6 a = .05

x~ = 12.59 critical region is X~l ~ x~

X~l = 19.24 Reject Null Hypothesis

~ Inversions
~ Cases of Wind

p

e.
1 WiP Pi

O.
1

W.
1

~oi

~w.
1

a l - confidence level
o. - observed inversion cases in cell

1

- expected inversion cases in cell
~

e. 0
1 N

P - probability total sample
w. - observed wind cases in each cell

1

Pi - probability of inversion in each cell

n - total sample size
d.f. - degrees of freedom

0-60

Pi .537

60.1-120

.407

120.1-180

.634

180.1-240

.616

240.1-300

.707

300.1-360

.765

VARIABLE

.905



TABLE B.2

All Inversions February 1975

Wind Direction (Degrees)

Obs (Exp) 0-60 60.1-120 120.1-180 180.1-240 240.1-300 300.1-360 VARIABLE TOTALS

Inversions 29 33 71 45 46 163 67 454
(36.48) (54.72) (75.67) (49.32) (43.91) (143.90) (49.99) (453.99)

No Inversions 25 48 41 28 19 50 7 218
(17.52) (26.28) (36.33) (23.68) (21.09) (69.10) (24.01) (218.01)

TOTALS 54 81 112 73 65 213 74 672
(54.00) (81.00) (112.00) (73.00) (65.00) (213.00) (74.00)

RoC.
E. 0 =~

1.) n

(oij
2

n - E .. )
2

ih
1.)

XRC E ..
1)

d.f. = 6 a = .05

X2 = 12.59 X2 > X2 is the critical region6 RC - 6

2 59.32 Reject Null HypothesisXRC

R.
1

C.
J

n
d.f.
0,0

1.)

a

- row total

- column total

- total sample size
- degrees of freedom
- expected in each cell (in parenthesis)

- confidence level
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