DISSERTATION

[(GAMMA): CLOUD-BASED ANALOG CIRCUIT DESIGN SYSTEM

Submitted by
Yishai Arie Statter

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Summer 2016

Doctoral Committee:
Advisor: Tom W. Chen
Ross McConnell

George Collins
Sudeep Pasricha

Copyright by Yishai Arie Statter 2016

All Rights Reserved

ABSTRACT

I (GAMMA): CLOUD-BASED ANALOG CIRCUIT DESIGN SYSTEM

With ever increasing demand for lower power consumption, lower cost, and higher
performance, designing analog circuits to meet design specifications has become an increasing
challenging task, on one hand; analog circuit designers must have intimate knowledge about the
underlinng silicon process technology’s capability to achieve the desired specifications. On the
other hand, they must understand the impact of tweaking circuits to satisfy a given specification
on all circuit performance parameters. Analog designers have traditionally learned to tackle
design problems with numerous circuit simulations using accurate circuit simulators such as
SPICE, and have increasingly relied on trial-and-error approaches to reach a converging point.
However, the increased complexity with each generation of silicon technology and high
dimensionality of searching for solutions, even for some simple analog circuits, have made trial-
and-error approaches extremely inefficient, causing long design cycles and often missed market
opportunities. Novel rapid and accurate circuit evaluation methods that are tightly integrated

with circuit search and optimization methods are needed to aid design productivity.

Furthermore, the current design environment with fully distributed licensing and
supporting structures is cumbersome at best to allow efficient atedgie support for design
engineers. With increasing support and licensing costs, fewer and fewer design centers can
afford it. Cloud-based software as a service (SaaS) model provides new opportunities for CAD
applications. It enables immediate software delivery and update to customers at very low cost.

SaasS tools benefit from fast feedback and sharing channels between users and developers and

run on hardware resources tailored and provided for them by software vendors. However, web-

based tools must perform in a very short turn-around schedule and be always responsive.

A new class of analog design tools is presented in this dissertation. The tools provide
effective design aid to analog circuit designers with a dash-board control of many important
circuit parameters. Fast and accurate circuit evaluations are achieved using a novel lookup-table
transistor models with novel built-in features tightly integrated with the search engine to achieve
desired speed and accuracy. This enables circuit evaluation time several orders faster than SPICE
simulations. The proposed architecture for analog design attempts to break the traditional analog
design flow using SPICE based trial-and-error methods by providing designers with useful
information about the effects of prior design decisions they have made and potential next steps
they can take to meet specifications. Benefiting from the advantages offered by web-hosted
architectures, the proposed architecture incorporates SaaS as its operating model. The application
of the proposed architecture is illustrated by an analog circuit sizer and optimizé&rsikiee
and optimizer show how web-based design-decision supporting tool can help analog circuit

designers to reduce design time and achieve high quality circuit.

ACKNOWLEDGEMENTS

The road ta Ph.D. started with a family walk on Saturday afternoon. My simple remark
that: “If I wentback to school, I’d like to get a Ph.D.” was taken by my wife too seriously. Erin,
thanks for setting me on this path and for not letting me quit on so many breaking points along
the way. The sacrifices you and the kids made for this program are appreciated and will never be

forgotten. This achievement is yours as much as it is mine.

Thanks to my advisor, Dr. Tom Chen for accepting me to his team and entrusting me

with this interesting research topic. It’s been awhile since I had a chance to be so freely creative.

The following needs to be done in my native language:

AN PR TR 23 DaR ,77ToD TINEANT RY X7 MUPIT! OTINW TwRa RARWSR T IN (7R
LY I ST2T MR 2ITIAT DW NITNT 2N PaAwa 02 ansnn PNIsuY SN anmeww TN 38Rt TR

29717 2P 912 77D MMINY 4T3 7727 NIBA0T DY TN TITYR

Acknowledgement and Disclaimer: The research reported in this dissertation was
partially supported by a National Science Foundation Grant No. 0841259. Any opinions,
findings, conclusions or recommendati@®gressed in this dissertation are the author’s and do

not necessarily reflect the views of the National Science Foundation.

TABLE OF CONTENTS

Y S I o TR e,
ACKNOWLEDGEMENTS ...t e e e et e e e e e e eaaa e e eaeees Vi........
LIST OF TABLES ... ettt e e e e et et e e e e e e e ta e e e e e e eeba e e e e eeennanns Xiv
LIST OF FIGURES ...t e e e e e e et e e e e e e nnn e e eeeens P AR
LIST OF ACRONYMS L.ttt e ettt e e e e e e et b e e e e e e aaa e e e e e ee st e e e eeeaennns XXI
1. INEFOTUCTION ...ttt e e et e e e e e e e e e e e e e e e e e e aaans 1
1.1. Electronic-Design AUtOMALIONccooiiiiiiiiiice e e e e e 1
1.2. ANAIOg DESIgN AULOMALIONuviiiiiiiiiiiiiieee s e 3
1.3. The Proposed Analog Design SYSIEMvviiieiiiiiiii e 6
2. EXIStING RESEAICN ... 8
2.1. OVBIVIBW ...ttt ettt e e e e e e e e e e e e e e s e et e e et e e e e e e e e e eeaeens 8
2.2. SYMDBOKIC ANAIYSISo e e e e e e e e ———— 8
2.3. Alternative TranSiStor MOUEIINGuuuuiiiiiiiiiiiiiiie e 9
2.4, Multi Objective OPLIMIZALIONuuuiiiiiiiiiiiiiiie e e e 11
2.5. Design-Supporting ANAIYSISuuuiiieieiiiee e e 11
2.6. WED-DASEA TOOIS ... 12

2.7.

2.8.

2.9.

4.1.

4.2.

4.3.

4.4,

4.5.

4.6.

4.7.

4.8.

5.1.

5.1.1.

5.1.2.

HierarChical DeSIQNoooviiieiiiieies et e e e e e e e e e e e e eeeeeeeeensannnnns 13

ComMErCIal ATLEMPLS ...t r e e e e e e e aeeeas 14
SUMIMIATY ..ttt ettt oo e ettt e e e e ettt e e e e e eeata e e eeeeebaa e e eeeeetnnnaeeaeennnen 15
Motivation for Proposed ArChiteCtUIEuuueiiiiiii e 16
SYSIEM AFCNITECIUIE ...ttt 21
TRET SYSTEIM ...ttt e e e e e e e e e e e e e 21
(O] 1 0TI 0 o] = S 24
(@ 0] 1 0TI o o Y= R 27
Architecture Layer MOEl...........ooooriicc e e e e 29
SOftWaAre COMPONENTScciiiiiiiiiiei ittt e e e e e e e e e e s e e e e e e e eaeeeeas 31
Language and ComPIlatioNoooiiiiiiiiiiiiiiiiiie e 32
CoNntext-Tree Data BASEoi i e e e eeees 35
Foundry Model TranSIation ...t 38
Implementation and ApPlICAtIONS BFf............uuuuiiiiiiiiiiiiiie e 41
Transistor-level Modeling fOFcooouiiiiiici e 41
L0 ()Y 2= 1o o [PPSR 41
IMPIEMENTALION. 42

Vi

5.1.2.1.

5.1.2.2.

5.1.2.3.

5.1.2.4.

5.1.2.5.

5.1.3.

5.1.4.

5.1.5.

5.1.6.

5.1.7.

5.1.8.

5.1.9.

5.2.

5.2.1.

5.2.2.

5.2.3.

5.2.4.

LOOK-UP TaABIESot e e e e e e e e e e e e e eeaeanenne 43

GeOMELrY PArameters oot 44
VOItage ParamMeterS......cco ottt e e e e e e e e e e e e e eeaaeaee 45
ParalleliZationcooooiii e 45
Reading and Post-Processing Simulation ReSUltscccccviiiiiiiiiiiiiieeeenn. 46
Linear Interpolation Table............ueeiiiiii e a7
INterpolation PrOoCEAUIESoooviiiiiiiiiie et e e e e e e e e e e e eeeeananeee 50
Composite INTErPOIALIONooo i 53
Hierarchical INterpolation Treecccccuiiiiiiiiiei e 54
ReSOIUtION BUAGELING ..vvviiiiiii i e e e e 58
LUT Interpolation Implementationeeeeeeeeiiiiiiiiiiee e 60
AD CoMPACE MOAELueiiiie e 61
CiIrCUIt COMIPIIET ... et e e e e e e e e e e s 63
Linear Model Of TranSIStOruuuuuiriiiiiiee e e e e e e e e e e e e eeeeenennnns 64
N[0T Fo U A = 1Y £ £ PRSPPI 66
W (o 1] o] = = g To |1 U= PSPPSR 70
Generated EQUALIONSuuuiiiiiiiiiiiiiiee e et e e e e e e e e e e e e e e e e e s e e s aanes 74

vii

5.2.4.1.

5.24.2.

5.24.3.

5.2.4.4.

5.2.45.

5.2.4.6.

5.2.5.

5.2.6.

5.2.6.1.

5.2.6.2.

5.2.6.3.

5.2.6.4.

5.3.

5.3.1.

5.3.2.

5.4.

5.4.1.

Equilibrium Operating Point Voltages (OP)ccoooeeeiviiieeeeienne e 74

Low Frequency Performance: Gain and Rejection Ratioscccccevvvvvnnees 75
Output RESISTANCE: ROULceiiiiiiiiieieiiei e 76

AC Performance: Bandwidth, Settling Time, and Phase Margin.................... 77
Noise Parameters and Corner FrEQUENCYcccuuuurriiiiiiiiiiiieeeeeee e e e e e e 78
Additional Performance Parametersoooooiiiiiiiiiiiiiiiiiii e 79
Internal Circuit Dependencies and Design-Feedbackcccccceieiiiiieneennnnn, 79
COAE GENEIALON ...ttt et e e e e e e e e e e e r e e e e e e e eaeeeas 80
FC TEMPIALES ...ttt e bbb 81
ICE Shared ODbJecCt StrUCIUIEuuueiiiiii e 82

C COMPIIALION. ... 83
Manual Code EditScooiiuiiiiiiieiiiieeie e 83
T ONIINE ENQINES ...ttt r et e e e e e e e e e e e e e e e e aaaanns 84
I CIrCUIt EVAIUALOT ... 84
RaNdOmM CirCUIt ENGINE ...ttt e e e e 88
CirCUItS Par€to FrONT.........ooiiiiiiiiiiiiii et 88

Circuit Inventory Container and Manager - PAT ... 90

viii

5.4.2.

5.4.3.

5.4.4.

5.4.5.

5.4.6.

5.5.

5.5.1.

5.5.2.

5.5.3.

6.1.

6.2.

6.2.1.

6.2.2.

6.2.3.

6.3.

6.3.1.

P AT BN e e 91

Offline PAT POPUIALINGoooiii e 92
EXtracting Pareto FrONTS ... 94
(@ 1111 o PP 97
PAT Size Requirements and LIMitationScooovviiiiiiiiiiiiiiiiiiiieeeeeeeeee e 99
WeED APPIICALIONS. ... e e e eas 99
Data ViISUANZALION ...ttt e s 99
SINGIE TraNSISTON SIZET ...t e e e e e e 107
[= BT or=T o PSR RRPPPPPPRPPPPPPTR 111
Experimental RESUILSooooiiiiiicice e 113
1] 1 g ToTe (o] (oo |V PP PPPPPPRPPI 113
TransiStor-LeVel RESUILSoovviiiiiiii e 114
Spectre to SPICE CompariSON StAJEuuuuiiiiiiiiieeeeeeeeeeeeeeese e e e 114
Budgeted RESOIULION ...t 119
Transistor Level LUT to SPICE Matching Regression............ccceeveeevvviiiiieeenens 123
Circuit LEVEI RESUILS.......coiiiiiiieieeeeee e 125
TESLEA CIICUITS. ...ttt ettt et e e e e e e e e e e e e e e e e aenees 125

6.4.

6.4.1.

6.4.1.1.

6.4.1.2.

6.4.2.

6.4.2.1.

6.4.2.2.

6.4.2.3.

6.5.

6.5.1.

6.5.2.

6.5.2.1.

6.5.2.2.

RUN TIME ANGIYSIS ..eevviiiiiiiiiiee et e e e e e e e e e e e et e e e e e e e e e aaeeaees 126

TraNSISIOr LEVEL. ... 126
\Y=]1 g oTe (o] (o | A PP PPPPPPPPPP 126
RESUILS ... e e 127

CIFCUIL LEVEL... e e e e e e e e 129
OFfliNE ACHVITIES ... e e 129
Circuit Evaluation TiMEcooiiiiiiieeeiiie et 130
PAT INSEITION TIME ...ttt e e e e e e e e e 131

I Website Usage EXampPle ... 133

Select Topology and Enter Specificationceuvvevieiiiiiiiiieee e 133

Pick an INitial CIFCUILoviiiiiieii i 135
Search for Gain-Valid CirCUIL...........ccuuiiiiieiiiiii e 135
Reduce NOISE 0 MEEE SPECuuuiiiiiiiiiiiiiiiiee e 136

(@0] o[[1 5] 0] o - PP PPPUPPPPPPPPPN 139
REIEIENCES ...t e e e e e e e e e e 142
LY o] o =T o [T PP PP TP T T TTPPPPP 147
T/SPICE MatChiNg RESUILSooviiiiiiiiiiiiiie ittt 148

TFANSISTION LBVo 149

CIFCUIT LVt e e 191
Operating POINL.........cooiiiii e e e e e e e e e e e e 191
COMMON SOUICE ...ttt e e e et e e e e e e e e e e e e eeeennnnes 191
Differential Pail............oeeviioie e 192
Differential Pair with QUtput Stage.........euvvieiiiiiiiiiiiii 192
Operational AMPITIEr ... 193
LOW FreqUEeNCY GaiNuuuuueiiiiiiei i e e e eeeeee et e e e e e e e e e e e e ee e 194
COMMON SOUICE ...ttt e et e e e et e e e e e e e e e e e e eeennnnnes 194
DIffEr@ntial Palir.........ueeieiiiiiiiiiiie e 194
Differential Pair with OQutput Stage........cccoeeviieeeiiiiiiece e 195
Operational AMPITIEr ... 195
Common Mode ReJection RaAtiOuuvuiiiiiiiiiiieeeceeeeeeeeee e 196
COMMON SOUICE ..ottt a e e e e e e e e neeeeennanns 196
DIffEr@ntial Palir........uveeeeiiiiiiiiiiiee e 196
Operational AMPIIFIEEuve e 196

Xi

B. 1.

B. 2.

B. 3.

Power Supply ReJECHION RALIO.........uuuiiiiiiiiiiiiiiieieee e 197

COMMON SOUICE ...ttt e e e s e e e e eenaane 197
Operational AMPHTIETooeveiecee e e e 197
BandWidth.. ..o 197
COMMON SOUICE ...ttt e e s e e e eeanane 197
DIffEr@ntial Paiir.........ueeeieieiiiiiiiee e 198
Operational AMPITIEr ... 198
PRASE MarQiN ... e e e e e e e e e e e e e e aaaaaaaa 199
COMIMON SOUICE ...ttt e ettt et e e e e e e e e e e e eeeeennnnns 199
DIffEr@ntial Palireveeiiiiiiiiiiieeee e 199
Differential Pair with OQutput Stage........cccoeeiiieeiiiiiiie e 200
Operational AMPITIEr ... 200
SOUICE GO ...ttt ettt e e e e e e e e e e e e e e e e e e a s 201
Language, Format and Compilation.............cooooiiiiiiiiiiiiiiiiee e 201
Data BASE..... .o 203
Lookup and INterpolationuoeiiiiiiiiii e 227

Xii

B. 3. 1. INterpolation Of LUT ...ooooiiiiie e 229
B. 3. 2. Differential INterpolationuuuuiiiiiii e 235
B. 3. 3. (O [1S] =] gl [1 (=T 0o =1 1o o IS 238
B. 3. 4. LINEAI REQGIESSION ...ttt r e e e e e e e e e e e e e e e e e 243
B. 3. 5. Composite INterPOIALIONiiiieii e 248
B. 4 TranSIStOr-LEVEI SIZEIcco e e e e e e e e e e eees 254
B.5 Transistor-Level Characterization..............oouvvvuiuiiiiiinieeeeeeeeeeeeeeeeee s 279
B. 5. 1. LOW-lEVEI DAL ACCESScoeiiiiieiciitiibit ettt e e e e e e e e e e e 279
B. 5. 2. Process Parellelizationuuuiiiiiiiiie e 307
B. 5. 3. 4D Characterization SCIPLuueeeieeeiiiiiieiee e 310
B. 5. 4. 5D Characterization SCriPtcoeeiiiiiieeeee e 332
B. 6 T CIrCUIt COMPIIET .. e e e e e e e e e e e 352
C. 05z T [1Y (o o [= TP TPPPTPPPPP 403
C.1. Use the Tool @S @ DeSIgN Aid.ccooiiiiiiii et 403

Xiii

LIST OF TABLES

Table 1: Six Executable Binaries Compiled by the Compilation Script............cccceeeeiiiiiiiiiiiinnnn. 32
Table 2: HIT Cell Types and their CoSt iN [B]coooiiiiiiiiiiiii e 58
Table 3: Transistor-Level Modeled Parameters..............uuuuiiiiiiiiiiiiiiiieeeeeeeee e 63
Table 4: Circuit Grading and Eliminating W.r.t. @ SPEC.........coovvviiiiiiiiiiiii e 95
Table 5: Useful IDS (SS, 125 °C) re€SOIULIONSccoeeiiiiiiiiieiiiiiiiiee e 121
Table 6: Usefulds (SS, 125 °C) resolutions VS. aCCESS TIMEuuuuuuiiiieiieeeeeeeeeeeeeeeviiiiinns 122
Table 7: Structure of Device+Corner+Parameter Detailed Report..............ovvvvvciiiiiiiiiieeeeeeeeeee, 125
Table 8: Test Machine's Hardware SpecifiCations...........ccccuuuuiiiiiiiiiiiiiiiiieeee e 127
Table 9: Comparison of Query Times per Model TYPE......cooeeeeiiiiieiieecce e 129
Table 10: Run time dfCE and NGSPICE .0P [MSEC]cuvviiiiiiiieeeieieieeeeeeieeeeeeeee e 131
Table 11: Breakdown of Noise Contribution per TranSiStorcccoeeeeeiieeeeiiiiieeeeeeee e 136
Table 12:T and Virtuoso Final Performance MEetriCS ... 138
Table 13: Search Path SUMMAIYcoouiiii e eaaaas 138

Xiv

LIST OF FIGURES

Figure 1: Moore's law demonstrated by x86 processors fgRily.............ooovvvevviiiiiiiiiiiieeeennnn, 1
Figure 2: Traditional Analog IC DeSIgN PrOCESSccoiiiiiiiiiiiiiiiie ettt 2
Figure 3: High-level Dataflow Diagram of teSystem.............oooviiiiiiiiiiiiiii s 21
Figure 4: Offline DatafloW OFoooiiiiiiiiii e 24
FIQUIE 5:F ONlINE TOOISEL ... it s e e e e e e e e e e e e e e e e e e et e e eeeas 27
Figure 6: Layer Model Of thE SYSTEM ... 29
Figure 7: Block Diagram of Executable Software CoOmponents.........ccccevvveeeeeeiiieiieeeiiiicceeeeenn 31
Figure 8: Implementation, Interpreted and Processed Language per Subsystemcccc..ueeee. 34
Figure 9: Example Segment Of & CTree SITUCTUIEoooiiiiiiiiiii et 36
Figure 10:Five dimentional . hypercube: a cellgg b and p LUT. ..ccccoeiiiiiiiiiiiie 43
Figure 11: hsParallel Characterization CirCUIL.............uuuuriiiiriee e e e e e e e e e eeeeeeeees 45
Figure 12: Percentage of cells that fit linear representation for IDS (LCP)cccccceviiiiiiiinnnnes 49
Figure 13: 2D full interpolation using in-place compression l00p.cccoevvvveiiiiiiieeeeiicee e, 52
Figure 14: Z0OmM iN ON SEPATAtION ATC@cuuiiiiiiiieie ettt ettt e e e e e e e e e e e e e aeeeeeaes 53
Figure 15: Linear and Composite Interpolation VS SPICEcccccuuiiiiiiiiiiiiiiieeeeeeeeeee s 53
Figure 16: 4D Square Channel Characterization and Binning Mismatch...............cccccceeeiieveennnnnn. 62

XV

file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987207
file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987208
file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987209

Figure 17: Circuit Compilation FIOW STAgEScoiiiiiiii e 64

Figure 18: Linear Model of N-type MOSFET ..ot 65
Figure 19: beqis the intercept of theyd(Ves Vos) plane with theds axis............cocceeeeiiene 66
Figure 20: Example Topology for Nodal ANalySiS..........coeveeeiiiiiiiiiiiiiieee e 68
Figure 21: MNA matrix generated for the compiled topology in Figure 20cccvvvvineeneen. 69
Figure 22: Rout EQUIVAIENT CIMCUIT........eeiiiiiiiiiiiieee et 76
Figure 23:I Circuit Evaluator Data FIOWiiiiiiiiic s 87
Figure 24: PAT ENLY SITUCTUIE ..ottt e e e e e e e e e 91
Figure 25: PAT Seed and Breed PhaSEsSoovviiiiiiiiiiiii et e e 92
Figure 26: PAT populating decreasing retention ratecooocuiiiiiiiiiiiiiieeeeeeee e 93
Figure 27: Corner rules added to AlIQOrthim L1cooiiiiiiiiiiiiiiii e 107
Figure 28: "Sizer" SCrEEN SNOLcccoi it e e e e e e e e e e e e e e eeeerraanaas 109
Figure 29: Search Path Plot on top of Spec-Distance Function Surface (zoom-in below)......... 110
Figure 30: System Architecture from a Designer's PEerspectiVe.ccccccuvvviiiiiiiiieieiiiieeeeeeeen 112
Figure 31: First of Two-Staged Comparison Procedure Data FIOWcccccoeveiiiiiiiiiiccvcennnnnn. 113

Figure 32: Scatter Plot of Spectre vs SPICE Ids Values (TSMC 40nm NMOS in SS 125C).... 114

Figure 33: Relative Error Histogram FOr FIQUIE 32uuuiiiiiiiiiiiiiiiiieee e 115

XVi

file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987214
file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987215
file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987218
file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987219
file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987220

Figure 34: Spectre vs SPICE Ids match, without W/L>10 Channelsccccceevvveeeiiiiiiineennnnns 116
Figure 35: Relative Error Histogram fOr FIQUIE 34uuuueiiiiiiiieeeeeeeeeeeeeeee e 117
Figure 36: 180nm NMOS and PMOS Ids comparison between Sepctre and SPICE 118
Figure 37: Relative Error Histogram for FIQUIE 36uuueiiiiiiiiie e 119
Figure 38: IDS resolution combinations memory and resulting maximal error 120
Figure 39: IDS resolution combinations access time and resulting maximal error. 122
Figure 40: Error Summary Report for TSMC 40nm and Resolution 5:5:3:8ccccccceeeeeeeennnn. 124
Figure 41: FOUr TeSted TOPOIOGIESuuuiiiiiiiiiiiiiii it e e e e e e e e e 125
Figure 42: Interpolation Time [nsec] vS DIMeNSIoNalityeeeveiiiiiiiiiiiiiiiieee 128
Figure 43: PAT INSErtion TIME PEI SIZEccooveiiiiiiiiiieieee et e ettt s e e e e e e e e e e e e e e eaeaeeaaaaan 132
Figure 44: Ratio between PAT Insertion TiMme and SIZeccevvviiiiiiiiiiiiiieeeeeee 132
Figure 45: PAT circuits that meet gain and BWcoooiiiiiiiiiiiiii e 134
Figure 46: DC Gain vs input transistor length and widthcccciiiicci e, 135
Figure 47: Circuit 696 trades BW fOr [€SS NOISEccoiviiiiiiii i 137
Figure A-1: 40nm NCH SS$4§ LUT Queries to SPICE Matching StatisticSccoeeveeevennnn. 149
Figure A-2: 40nm NCH TTds LUT Queries to SPICE Matching StatistiCS.............cccoeeevvennnn. 150

Xvii

file:///C:/Users/Erin/Documents/Dissertation5.5.docx%23_Toc452987235

Figure A-3:

Figure A-4:

Figure A-5:

Figure A-6:

Figure A-7:

Figure A-8:

Figure A-9:

Figure A-10

Figure A-11:

Figure A-12:

Figure A-13:

Figure A-14:

Figure A-15:

Figure A-16:

Figure A-17:

Figure A-18:

Figure A-19:

40nm NCH FRk LUT Queries to SPICE Matching Statisticsccccvvvvvvveennes 151
40nm NCH SS,gLUT Queries to SPICE Matching StatistiCs..............uuvvvviinnnn.. 152
40nm NCH TT gLUT Queries to SPICE Matching StatistiCScccccccveeeeeeennn. 153
40nm NCH TT gLUT Queries to SPICE Matching StatisticS.............ccccevvvveeennnes 154
40nm NCH SS,d-UT Queries to SPICE Matching Statisticsccccvvvvnnnee. 155
40nm NCH TT go LUT Queries to SPICE Matching StatistiCsceevvvvvneen.n. 156
40nm NCH FF@_UT Queries to SPICE Matching StatistiCscccccceeeeeeennn. 157
: 40nm NCH SSd&s LUT Queries to SPICE Matching Statistics............ccccvvvvnenn. 158
40nm NCH TT & LUT Queries to SPICE Matching Statisticsccoee. 159
40nm NCH FF & LUT Queries to SPICE Matching Statistics............ccccvvvveee. 160
40nm NCH SSdp LUT Queries to SPICE Matching Statisticscceeee 161
40nm NCH FF & LUT Queries to SPICE Matching Statisticscccevvvnenn. 162
40nm NCH TT & LUT Queries to SPICE Matching StatisticS......................... 163
40nm NCH SSNLUT Queries to SPICE Matching Statisticsccc.vvvveeeee. 164
40nm NCH TT NLUT Queries to SPICE Matching StatisticS............cccceeeeeeeen. 165
40nm NCH FF NLUT Queries to SPICE Matching StatistiCScccceeeeeeeens 166
40nm NCH SSINLUT Queries to SPICE Matching Statisticscccvvvvveeee. 167

XVili

Figure A-20:

Figure A-21:

Figure A-22:

Figure A-23:

Figure A-24:

Figure A-25:

Figure A-26:

Figure A-27:

Figure A-28:

Figure A-29:

Figure A-30:

Figure A-31:

Figure A-32:

Figure A-33:

Figure A-34:

Figure A-35:

Figure A-36:

40nm NCH TT NLUT Queries to SPICE Matching StatistiCs.............ccccceeeennn. 168
40nm NCH FF NLUT Queries to SPICE Matching Statisticscccvveveeeee. 169
40nm PCH S$4 LUT Queries to SPICE Matching Statistics...............ccoeeennnee 170
40nm PCH TTpk LUT Queries to SPICE Matching Statisticsccceeeeeennnn. 171
40nm PCH Fkpd LUT Queries to SPICE Matching Statistics..............cccoeeeennee 172
40nm PCH SS,d-UT Queries to SPICE Matching StatistiCscoeeeveenes 173
40nm PCH TTgLUT Queries to SPICE Matching StatistiCS.............ccceeeeeeeee. 174
40nm PCH FR,g_UT Queries to SPICE Matching StatistiCscceeeveenne 175
40nm PCH SS ¢UT Queries to SPICE Matching StatiStiCsccvvvvvveeeeeeennn. 176
40nm PCH TT,d-UT Queries to SPICE Matching StatisticS..............ccceevvveennns 177
40nm PCH FR,dUT Queries to SPICE Matching StatiStiCScccccvvveeeeennnn. 178
40nm PCH SS&LUT Queries to SPICE Matching StatistiCscccccceennn.. 179
40nm PCH TT & LUT Queries to SPICE Matching Statistics.............cc....uueee. 180
40nm PCH FFd&g LUT Queries to SPICE Matching StatistiCscccvvveeeee.. 181
40nm PCH SS&& LUT Queries to SPICE Matching Statistics............ccccceeee.... 182
40nm PCH TT & LUT Queries to SPICE Matching Statisticsc........ 183
40nm PCH FFd&p LUT Queries to SPICE Matching StatistiCScccvvveeeeen. 184

XiX

Figure A-37: 40nm PCH SS{NLUT Queries to SPICE Matching Statistics.............cccccvvvueees 185

Figure A-38: 40nm PCH TT NLUT Queries to SPICE Matching StatistiCScccceeeeeenn. 186
Figure A-39: 40nm PCH FFNLUT Queries to SPICE Matching StatistiCS..............cccvvveeeeen. 187
Figure A-40: 40nm PCH SSHNLUT Queries to SPICE Matching Statisticsccccvvvvvvnnnee. 188
Figure A-41: 40nm PCH SSANLUT Queries to SPICE Matching StatistiCSsvvvvvveeeeeene.. 189
Figure A-42: 40nm PCH FFMNLUT Queries to SPICE Matching Statisticscevvvvvvvnnnees 190
Figure C-1: Screen Capture of thgowered WeDSIte...........cccciiiiiiiiiiiiiiieeeeeeeee e 403
Figure C-2: Zoomin on leftmost part of the circuits’ table..........uueeiieeiiiieeeiiiiiieeee e 404
Figure C-3: Output DC level shown on Mouse-HoVer EVENt............cccovvvieiiiiiiiiiiieeniieeeeee s 405
Figure C-4: Heat-map of Thermal NOiSe VS tranSiStor SIZ€ccccceeiviimireeeeiiiiiiee e 406

XX

LIST OF ACRONYMS

RAM Spice— CSU version of NGSPICE-derived SPICE simulator with extensions implementing

this research

cTree— Context Tree- a hierarchical database designed to provide access, save and load objects

relevant to this research

I - Gamma- a circuit evaluating and sizing system

LUT - lookup table- an object made up of array and header that serves as a transistor-level

model for an electrical property

LIT — linear interpolation table an extension to LUT, designed to simplify interpolation at the

expense of allocated memory.

HIT — hierarchical interpolation tablea tree-structure to replace the LUT, with heterogeneous

cells

PAT — Pareto associative tablea vector of circuit records and a set of insertion and query

methods, designed to keep the inventory and retrieve it according to Pareto dominance rules

rCC - Gamma Circuit Compiler circuit netlist to C code generator

rCE - Gamma Circuit Evaluater a per-topology compiled code that calculates a set of

performance properties out of sizing parameters

XXi

1. Introduction

1.1. Electronic-Design Automation

An early observation made by Gordon E. Moore, a co-founder of Intel, is that the number
of transistors on integrated circuits will grow exponentially in fif(Eigure 1). One immediate

outcome of this proven growth is that manual design has become extremely difficult and rare.

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3
Six-Core Core i7,

2,600,000,000 Sixcare oon 7400, "\, 4 10-Gore Xon Wosimer-EX
Dual-Core ltanium 20~ ® £-§core POWERT
- AMD K10 Quad e
1,000,000,000 POWERS® BCore Roon Nohmiam A
Itanium 2 with OMB cache® . "Six-Core Opteron 2400
Core 7 (Quad)
Qore 2 Duo
100,000,000+
Pentium 4 @ Atom
SAMD KT
curve shows transistor AMD Ke-ll
= i AMD
= 10,000,000 count doubling every ¢ ePentium Il
=] ’ ! two years Srentium i
Q @ AMD K5
o im
.
[e]
=
R 1,000,000
(2]
C
©
o
=
100,000+
10,000
8008®
2,300 40040

T T T T]
1971 1980 1990 2000 2011

Date of introduction

Figure 1: Moore's law demonstrated by x86 processors f2jily

The electronic circuits segment of computer-aided design (CAD) was transferred from

an accelerating improvement to necessity. Out of the two main signal domains, analog and

digital, digital designs enjoyed better success in autonjdtiorhe reasons for that include the

fact that digital systems lend themselves better to hierarchical modularization and divide-and-
conquer strategies. Since typical systems-on-chip (SoC) are mostly digital and pure analog chips
tend to be much smaller than digital chips, acceleration efforts prefer digital designs for better
return on investment (ROI). After decades of digital design automation, there are designs that
start in highly abstract design languages and go through the flow of synthesis, placement, routing
and layout in a relatively short computation time and minimal human intervention. The doubling
of the number of transistors every 18 months, as is now the commonly accepted version of
Moore’s law, happens mainly for digital designs. Manufacturing technology presents more

challenges than circuit complexity thoyigh The transistors themselves and interconnects are
becoming more and more complex. This makes the design of the same circuit in different
technologies an ongoing and increasing effort. For digital designs, challenges of transistor-level
and componeniievel complexity met with “more of the same” approach to its toolset. For analog

designs, the design process is stuck in trial-and-error.

Select Topology|
Size Components

T >

Layout P&R
Extract Parasitics

no

(Pesign)

Figure 2: Traditional Analog IC Design Process

1.2, Analog Design Automation

Analog circuit design automation has been lagging significantly behind its digital
counterpart. The main reason fbis is the complexity of evaluating circuits against users’
specifications and a large number of competing design goals in the optimization process. Since
the 1980’s, many software tools attempted to improve design productivity and even provide fully
automated synthesis of analog circjsiif6][7][8]. Most did not mature beyond academic
prototypes. The few that made it into market and attracted cus{@ingicsnot scale up to
complex topologies and failed to migrate along each generation of silicon tectjaOloyet,
demand for lower power consumption, lower cost, and higher performance for analog circuits is
increasingl1]. Designing analog circuits to meet design specifications has become an
increasingly challenging tagk7]. The need for practical solutions to improve design
productivity is ever present in the semiconductor industry, wheretamearket project

constraints push the analog design efforts closer to a bottleneck position.
The majority of the existing tools have the following characteristics in common:

1. They start with a topology plus performance constraints and attempt to generate
production-ready circuit autonomously without any designer feedback in the process.

2. They use internal or en-wrapped simulations to evaluate solutions during the optimization
process.

3. They run all tools on-premises, as opposed to remotely hosted, requiring customers to

provide the hardware and sometime complementary software.

To circuit designers, the existing tools and approaches can be viewed as black-box

approaches.

This type of black-boxed evaluation based optimization has several disadvantages:

1. For approaches using the SPICE engine for their performance evaluations, it typically
takes long time to run to completion, breaking the natural flow of users’ decision making
process.

2. For approaches using high-level algebraic formula for their performance evaluations, the
results are typically far from desired optima due to their inabilities of capturing circuit’s
high order effects with even complex algebraic formula.

3. Users often have to constrain the design problem well and be vigilant about the tasks they
hand-over to the machine, because of the high risk of starting a long run that ends with
results that are outside the constraint region. Without knowing how tools operate, this is
extremely difficult to do.

4. The internal optimization process in the flow does not allow designer feedback. Although
fully automated optimization flows are useful in solving high volume of designs with
predictble outcomes (e.g. ASIC place & route), for more unpredictable analog designs

designers often have better insights on design tradeoffs.

Existing attempts make a common mistake of putting the machine at the center of the
flow by prioritizing functional features and failing to give users the control to run optimization
steps and stages interactively and intuiti{&}y. Incorporating designers’ intent into the flow is
crucial in analog circuit design process as the number of competing design goals are often too

numerous for any algorithm to handle successfully. In most existing tools, users are kept out of

the loop once the optimization process has started and then are given the choice of accepting the

final result or re-spin it, if those are not satisfactory.

Furthermore, web-based tools do not have the luxury of running processes of A-
optimization flow in hours. Commonly accepted expectations from internet responsji¢8hess
dictate much shorter response time, continuous controllability, and intuitive and dynamic
visualization of design processes in progress. These challenging expectations can also be
opportunities for a new class of analog design tools that put designers back at the helm of the
design flow. Web applications for sizing transistors and designing analog circuits must focus on
the least computationally-ambitious tasks and allow users to navigate between them and connect
the flow. One aspect of design automation that can be a good fit for the web is mapping and
visualizing solution spaces of topologies and specs to provide users with performance trade-off

they need to make engineering decisions.

Stand-alone or tool-integrated SPICE simulations decouple the task of evaluating circuits
from the optimization engine. The biggest benefit of using generic SPICE engines is that
technology-specific parameters and mofdelscan be integrated and modified with foundry
characterized behavior with little tool vendor involvement. However, the silicon-accurate results
provided by SPICE come at a cost. Evaluations of reasonably sized analog circuits include
overheads, such as topology analysis, repeated calculations of transistor physical characteristics,
and simulations of elaborate test harnesses, necessary to adapt circuit property measurements to
one of the generalized simulation types: DC, AC and Trans. The amount of overhead can make

the repeated evaluations required during analog circuit design and tradeoffs extremely inefficient.

This impact can be even worse for analog circuit design tools in the SaaS environment where a

large number of circuits need to be evaluated during a typical HTTP transaction interval.

On-premises software is a common feature to most contemporary industrial EDA
software. High demand in computational resources makes tool vendor focus on software alone,
leaving the customer to provide their own hardware. The complexity and diversity of
applications gave birth to the classic EDA support structure. Tools are coded by EDA vendors
with a vast range of algorithms and configurations. The task of choosing between all the
configurations is the responsibility of customers, who are left to determine best usage of input
scripts, configuration files, and GUI’s. Vendors have to employ an army of field applications
engineers (FAE) to help customers determine the best configuration and keep the vendor itself up
to date with the market needs. An FAE, like the software itself, is most often embedded on-
premises with the user teams. This semi-automation structure is expensive and cumbersome.
Effective SaaS systems attempt to implement crowd-sourced features, peer networking, and
remote help forums to eliminate the need for human-based support structure. Direct
communication channel can improve tool performance with automatically collected usage
statistics. Certain results can be shared and reused between customers in a behind the scenes
automated learning and archiving system. New features, conceived automatically from public-

demand chats and surveys, are available instantly, without any user effort or need of IT support.

1.3, The Proposed I' Analog Design System

This dissertation presents an alternative to the optimization-centered approach. The
commercial failure of tools that offer a complete automation of the manual design process is

contrasted by the relative success of tools that offer only SPICE-based evaluation and let the

designer drive the process. The proposed system is constructed to give designers the data they
would normally gather from repeated trial-and-error SPICE runs and aid them in navigating the

solution space towards an optimum.

The run-time penalty associated with SPICE analyses is normally accepted as a price paid
for accuracy. However, it can be avoided by using alternative transistor-level modeling
strategy21] and circuit representation, both selected to accelerate circuit evaluation, with
reasonable accuracy. Improving the responsiveness of circuit evaluating systems is a leading
goal in providing a designer-centered tool. Instead of adapting an existing tool class to the
Softwareasa-Service (SaaS) tref#9][30][31], the proposed system is designed from the
beginning to benefit from the advantages presented by the web medium. Such advantages
include sharing hardware resources between users, sharing calculation results anonymously, and

streamlining deployment and support.

Due to the use of novel transistor modeling techniques, tightly integrated components for
faster evaluation and better tradeoff options, and intuitive SaaS user interface, the proposed
analog design system is capable of producing sweep analyses in one and two dimensions in
under 2 seconds and give the user graphic representation of the solution space and tradeoffs
accociated with topologies and performance requirements. A reasonable accuracy of less than
10% circuit-performance deviation from SPICE is achievable with memory requirements in the

magnitude of 100MB, for a current analog circuit manufacturing technology of 40nm.

2. Existing Research

2.1. Overview

With the tremendous progress made in SPICE simulation techfii§i[é§], academic
research in the field of analog design automation has focused mainly on automating the manual
design flowl7]. This was done by employing several optimization and synthesis strategies on
one hand, while leaving circuit evaluation to SPICE on the other. Although most automation
work attempted to replace the designer’s solution search[8], several algorithmic strategies that
were explored in the past are adapted to be used in this work of creating designer aiding tool,
rather than designer replacement tool. Design supporting tools has very little past publications to
form comprehensive comparison. However, the architecture proposed here is inspired by
incorporating desirable features among the existing systems reported so far, whereas overcoming

some of their shortcomings.

2.2. Symbolic Analysis

SPICE simulation is performed by repeated numeric solving of the Modified Nodal
Analysis matrix18] (herein MNA seé.3.1 for details). Symbolic analysis is an alternative to
that approach, where the matrix entries are kept in their original algebraic terms representation
and the solution to the matrix is performed once, to generate expressions for nodes of the circuits
as functions of inputs, component sizes etc. Analytic models were demonstrated for circuit
optimization by Gielen et al in their ISAAC/OPTIMAN systgfh ISAAC was described as

“symbolic simulator”, in charge of calculating circuits’ performance properties based on

algebraic representation of the optimized topology. OPTIMAN was an optimization engine based
on simulated annealing (SA). The objective it received was a weighted cost function that
represented the user’s priority. That system used simplified equation-based transistor models and

ran on a mainframe computer. MNA representation of cifd#i{swas used extensively when
transistor equation models could be simplified reliably to be able to find a deterministic solution
to circuit constraints. Lately, topology analysis is limited to the initial steps of SPICE simulations
and circuit-level equations play only internal role in it. Algebraic representation of circuit can be
reused for an offine compilation of design tool’s topology templates. Doing this offline enables
optimized compilation of topology equations and thus shortens response time compared to
SPICE significantly. Offline MNA and compilation stages come at the expense of flexibility,
because the system requires a compiled module per analyzed topology. However, this
inflexibility is expected and tolerated in a system that offers a library of topologies that can be
sized in a short schedule. On a circuit-level, there is no difference in accuracy between SPICE
and a symbolic evaluation engine. However, when it comes to transistor level modeling, equation
models trade accuracy for spge?]. This shortcoming can be avoided by using alternative

models that are faster than SPICE, but do not sacrifice too much accuracy.

2.3. Alternative Transistor Modeling

Equation-based transistor models incorporating underlying physics are used at the core of
SPICE simulatior{d4]. Developed independently of foundries, they are fitted formulas of
physical phenomena that have significant influence on transistor behavior. The number of
significant phenomena grows with every technological generation and thus the number of

equations and fitted coefficients that are supplied by foundries based on lab measurements. Two

advantages of equation models, accuracy and smooth waveforms make them well suited for
simulation. However, the overhead associated with the long stack of equations, many not even
needed for the bottom-line analysis, makes these models too time-consuming for evaluating large
sets of circuits. Trying to accelerate the execution of these models by simplifying the equations
made some commercial sucd@sHowever, speed advantages of simplified equation-based
models were eventually negated by the inaccuracy stemmed from difficulties of capturing
physical phenomena. As transistor scaling continues, those higher order physical phenomena
became more important and made the models less adt0iafhis weakness can be addressed

by a modeling approach that’s independent of the physics it is attempting to mimic: lookup

tables (LUT). Yoon and Allen first suggested replacing equation models with lookug2@hles

with the goal of speeding up simulations. The result of their work was a mere 10% saving in run
time, primarily because their method required run-time calculation of quadratic interpolation

coefficients. This particularly expensive interpolation was chosen to ensure

1. Smoothness of curves to allow numeric derivatiomef |

2. Betterdit to the small tables used back with memory resources typical to the early 1990°s

However, when no simulation is required, smoothness is redundant and computational
cost can be saved by using first-order ad hoc data location and interpolation techniques. Further,
using contemporary hardware resources, larger tables can provide better resolution at low cost
and the derivatives op4 can be precalculated and stored in separate [Ablekatest
experiments with a LUbased model showed that a 2MB table can generate a transistor’s
physical property (e.g.. with <1% error compared to BSIM, in under ¥2 microsecond. The

same hardware setup measured 28usec per BSIM query.

10

2.4, Multt Objective Optimization

Breadth-first analysis on a given circuit is not a new or uncommon concept. Sweep-
aralysis and scripted simulatid@2] are already standard in every existing analog design
environmen23] (ADE) offered by commercial vendors. However, an automated sweep is often
a simple loop, lacking search objectives and often limited in dimensionality. Scripted search can
potentially perform any test algorittjg4], although the overheads associated with running an
interpreted algorithm that launches costly SPICE runs make it much less desirable for

implementing a web experience.

Still, there are strategies and algorithms explored in previous research that can be useful
for mapping circuit-size spaces and can be re-implemented on much faster software environment.
Ant colony optimization (ACR5], for instance, is a popular approach for populating a multi-
objective Pareto front. Other parallel algorithms, such as particle-swarm[28Fand genetic
algorithm (GAJ27] have been researched thoroughly. However, efficient implementation with
regard to users’ expectations was largely overlooked. Some of these approaches could power
offline preparation steps of web-tool database and some simpler ones (e.g. simulated annealing)

could serve in online optimization.

2.5. Design-Supporting Analysis

Binkley et al. presend a “MOS design tool”, that’s a graphic calculator of key transistor
performance propertig28]. Its novelty is not in promising an end to end automated design
solution, but in providing immediate data to support design choices and calculations. The tool’s

engine was based on a simulation-level model, which is an accurate but slow batch of equations.

11

It did not offer automated search for optimal solution, but rather functioned as transistor-level
behavior calculator to assist a design process. A similar tool, Sizer, was built at Colorado State
University{21] in a web format to demonstrate the usage of a table based models. The tool was
using gradient-based optimization algorithm to search for transistor length and width that meet a
spec in a given operating point. This search required repetitive evaluation of the transistor’s

models, which in turn required faster evaluating model. Sizer’s transistor-level models were,

therefore, based on lookup tables, rather than physical equations.

2.6. Web-based Tools

Most analog design tod29][30][31] found on the web are simply a web-adapted version
of the onpremises software that’s been part of the industry for more than three decades. One can
find “integrated design environment” for digital[31] and analof®9][30] design disciplines,
which are only different from their on-premises predecessors in one aspect: they include internet-
collateral features that are easy to add and expected in every other creative website. Such
features include user forums and blog outlets. The business model of online EDA tools is more
web-oriented: subscription fees and/Brigarty advertising revenue. Updates and feedback are
also in the spirit of web-apps, such as the ones made famous by the Google Company. However
they make no computational utilization of web-specific capabilities, mainly because they only
attempt to mimic the expected functionality of on-premises software that was designed without
those capabilities available to begin with. There are no centrally-shared calculations, for instance,
because the depth-first analyses they are designed to do do not lend themselves to archiving and

reusing results anonymously.

12

2.7. Hierarchical Design

A class of analog design generators assumes the existence, ability, efficiency, and
accuracy of simulation engines, either commercial or freeware, and focuses instead on
facilitating the design flow in a higher level. Such design tools offer flow management, user
intent record, replay and reuse framework and generator-generators through high level
abstraction of cuits. Often referred to as “Top-Down tools”[32] In this category there are tools
like the historic interactive design tool for analog CMOS circuits (IDBCYOASYS33] and

most recently the Berkeley Analog Generator (B[83).

BAG is a Python-scripted framework dasid for “closing the gap between designer and
CAD communities” [34]. Both IDAC and BAG are knowledge-based, in the sense that they rely
on packaged cell-level libraries, and predefined design procedures. BAG includes an automation
framework for helping designers create those procedures and enrich their library with PyCells, a
Python layout-generator standard. PyCells is similar to Cadence §&4LIt does not include
its own circuit-evaluation software and therefore its ability to search for optimal sizing is bound

by the commercial simulator it calls.

For sign-off quality of post layout circuits, on-premises, large, SPICE-accurate tools are
still needed. However, for a preliminary analysis of topologies’ fitness to perform a specified
analog performance, a fast web-based application that requires neither setup nor dedicated
hardware is more fitting. Such application can rapidly produce trade-off graphs and heat-map
visualization of sizing to performance dependence with few clicks of buttons and can potentially

be accessed from any web client.

13

2.8. Commercial Attempts

Borrowing the concept of EDA from digital-domain toolset, both academic research and
industry have prioritized creating synthesizers of sorts. Cadence provides an optimizer plug-in to
their Virtuoso design environment, NeoCirc{B8&], which serves as a top-level optimization
loop on top of their simulators, Spe¢8¢€] and UltraSini38]. Its algorithmic infrastructure is
based on GA and drives autonomously to a single solution that satisfies the spec. This
architecture of using a simulator as a black-boxed evaluation engine in an optimization loop was
offered since the DELIGHL] project. Success is to be determined by this tool’s adoption
outside research institu{@9]. Synopsys offers its own automation solution, Laker, which
promises a “complete solution for analog, mixed-signal, and custom digital design and
layout”[40]. Laker is geared mostly to layout and design-environment, rather than optimization
of circuit sizing. The aforementioned Barcelona Design made an attempt to break away from
SPICE-based evaluation, but failed to convert its tool to the next technology and beyond its
narrow topology set. Its equations-based evaluation was not accurate enough for the next
generation of technology and not fast enough for bigger ciftQjtsHowever, EDA industry did
succeed in providing design environments, such as Cadence’s ADE[41] and websites that mimic
it. Those tools, while not automating design, show that a preferred design flow is to keep the
engineer at the center. A lesson learned from the failure of commercial synthesizers and
acceptance of environments is that customers want tools that provide them with accurate, useful
and timely data needed to navigate toward a solution. This type of automation fits the web as

software platform, because of its native features of interactivity and prompt data visualization.

14

2.9. Summary

The research presented in this dissertation is fundamentally different from the work
reviewedin this chapter, in the sense that it is designed to enhance designers’ solution search by
giving them rapid feedback and data visualization of circuit performance trends and tradeoffs. It
is also different in being developed primarily for a web environment, where rapid responses and

controllability are not optional.

However, past automation strategies that were explored for full automation, and on-
premises tools can be revisited and adapted for implementing the system described here.
Symbolic analysis, LUT-based transistor modeling, and knowledge-based cell libraries can be
used to implement a fast, responsive, and accurate circuit evaluation and optimization tool that is

offered as an internet service.

Overcoming the constraints and using advantages of the internet and the cloud
infrastructure can only be done efficiently when the system is designed from scratch to perform
in these environments. The needs and technical analyses that were done for this research derived
the required performance and features to meet the specific challenges posed by user expectations
from an online tool. This is a major conceptual break from the trend of adapting on-premises
software to be served from the cloud and designing new software as a service along the familiar

lines of application categories.

15

3. Motivation for Proposed Architecture

One of the important aspects of designing an analog circuit is finding the right transistor
sizes in a circuit topology that yield a required performance. A major challenge in that search is
lack of information about the tradeoff trend among all competing requirements during the search
process, given a circuit topology and manufacturing technology. A designer often choses to run
many single or sweep simulations to understand how circuit performance parameters are trending
relative to circuit physical parameters, and ultimately makes design decisions based on his/her
own experience without necessarily gaining a more complete landscape for design tradeoff. This
long process can be helpedpgviding a graphic mapping of a topology’s performance Pareto
front. A tool that can create graphical information for a designer about what a topology can and
cannot do, what needs to be given-up by certain amount in the spec in order to find a solution
and the expected costs of meeting the spec in terms of area and power. The tool needs to be
accurate enough to provide a designer with circuits requiring few tweaks to achieve the design

sign-off status.

Furthermore, requirements from web-based tool aserdby users’ expectation of short
response tim@a3]. Previous toptown technical analyses of system’s requirements always fell
short of reaching the bottom layer of non-SPICE based circuit evaluation with sufficient
accuracy. Thus, keeping SPICE as the circuit evaluation tool of choice. Replacing SPICE with
simplified transistor and circuit level equations gave systems the required speed boost, but with

significant accuracy loss that could not scale to bigger circuits or advance technologies. One of

16

the goals of this research is replacing SPICE with an evaluation engine that is accurate enough to

generate useful results and fast enough to serve as the backbone of a web service.

The following factors that slow down SPICE can be addressed to speed up evaluation:

1. SPICE’s transistor-level models are physics-oriented fitted equations that go through
many stages that are unnecessary for bottom-line operating point and performance
parameters evaluation.

2. Topology analysis is done from scratch, with every invocation of SPICE. Stages like
parsing and constructing pointer-linked structures take up time from the overall
transaction schedule.

3. Analysis procedures, such as OP, DC and AC, are programmed in abstract fashion,
employing run-time MNA and other algorithms that are circuit-independent. Since
the SPICE analyses code is circuit-independent, it has to employ linked structures to
construct and solve matrices according to the analyzed topology and given sizes,
instead of directly calculating circuit-specific equations.

4. There are no built-in commands for calculating performance properties of interest.
For example, calculating gain and bandwidth requires post-processing of generalized
DC and AC analyses respectively.

5. SPICE’s hardware requirements did not grow much since the time it was initially
introduced to the PC niche. Its generational speedup is therefore mostly attributed to
speed up in CPU performance. Very little has been done to leverage on growing

RAM volumes or changing hardware distribution trends.

17

SPICE is analysis-oriented, as opposed to goal-oriented, which means it cannot be
directed to find a solution according to the user’s needs. Performing optimization with SPICE is
therefore a task for an en-wrapping optimization software that is in charge of navigating the

search, while SPICE itself remains a black-boxed evaluation program.

The research described here breaks away from the existing approaches of analog circuit
design. The new system was constructed with circuit sizing in mind, with the goal to create an
engine that is tailored to provide specified performance goals and decision-supporting graphics

as fast as possible.
The main construction guidelines were:

1. Prefer data look-up over calculationstarting from a lookup table transistor modeling
and continuing with archived Pareto containers, specifically designed for quick queries of
pre-evaluated circuits.

2. Precompile topology-specific calculationsia generated C or tailored VM code, every
analysis that can be done offline saves run time from online queries. The most time-
consuming code optimization can be done offline to produce make circuit-evaluating
routines as fast as possible.

3. Include performance property specific code in the generateth§lead of relying on the
SPICE-standardized repertoire of OP, DC, AC and TRAN analyses, and calculate
performance properties that can be matched to spec, directly from the transistor’s

parameters and operating point.

18

4. Support automated tuning of circuit parameters according to constraints and make
evaluation procedures that were traditionally kept for SPICE wrappers and scripts, more
efficient.

5. Pre-calculate topology-specific solutioasise circuit generators and retention guidelines
to produce a general set of popular circuits offline that can be filtered as first response to
spec and be used as baseline for optimization.

6. Keep optimization runs interactive and on-going until session expiration. Instead of
building a complete automated flow, dynamically build up solution set in the database
and let users participate in decision making based orsbéat-results. This way, even
an atypical minutes-long online task remains interactive and avoids the risk of losing
desigers’ intent in the process.

7. Make use of asynchronous web interface schemes (e.g. Ajax), leaving the user with a
sense of using a search-engine, rather than a classic synthesizer. Similar to other web-
based search applications used in popular sites, the quality of results should be developed
dynamically over time with an animated picture of evolving solution. This way, users
receive initial crude (yet useful) results and get closer to optimum results as the design
progresses.

8. Curate optimized solutions for future queries in a background prea@eesvd-sourcing
optimization results means that every spec is calculated only once for the entire user

community.

Careful division of tasks between online and offline processes is the key for ensuring web
usability. Contemporary hardware resources enable more of this separation than was available in

the time when circuit simulators took the lead in evaluating circuits. This means that for cloud-

19

based analog EDA there are more opportunities to pre-calculate solutions and data leading to
solutions and thus accelerate both automated and manual design tasks. This work presents a
system that is architecturally designed to benefit from these opportunities. It enables a web
application that provides users with a visual aid for searching an optimal solution according to
dictated spec, topology and manufacturing technology. This web application is geared to present
capabilities and tradeoff trends in navigational maps that are responsive and to allow progress

and back-track convergence toward a solution.

20

4. System Architecture

4.1. 'The I' System

Foundary Circuit ggg@ggt
Models Topologies
Transistor Circuit
Level Sim. Compiler
Transistor Circuit
Model Tables Code
Circuit Yy
Evaluation & (T Circuit PAT Circuit
Storage Inventory
Evaluator
K /
Specs & Web
< Usage Data Front End
Background Web
Processes FE

Figure 3: High-level Dataflow Diagram of tiieSystem

21

The r[43] systen (Figure 3 consists of four main subsystems:

1 Offline toolset for transistor-level modeling, topology compilation and performance
mapping. This subsystem consists of a transistor-level model extractor and a circuit-
level compiler.

2 Online toolset for circuit evaluation. The circuit evaluator uses the transistor model
tables and the compiled circuit code, created by the offline toolset, to generate an
initial set of circuits that are stored in the PAT, a circuit inventory. The same
evaluator is used in online circuit-evaluation tasks.

3 Online toolset for web front-end and session management. This is a set of web-
browser run methods that translate the user’s requirements and session controls to
server commands and website graphics.

4 Background daemon for optimizing and managing the circuit inventory. This is a
process that receives usage data from the web front-end and runs automatic searches
that enrich the circuit inventory with circuits that may be of interest to the users’

community.

! The ternm‘Gamav” (Aramaic for “its Gamma”) appears in an ancient Jewish law compilation, known as

the “Babylonian Talmud”, as an attribute of a lost and found object [42]. The term is understood to mean the length
and the width of an item, as hinted by the shape of the Greek letters borrowed to name this research, because
of the main usage of the system: determining lengths and widdW®SFET channels in a circuit.

22

The system operates in two modes: online and offline. The offline mode generates as
much data as possible to alleviate the execution time bottleneck of online circuit evaluations.

Online mode is used only for web transactions.

The two modes of operation share two of the main engines of

1 T Circuit Evaluator- calculating a circuit’s performance out of sizing parameters,
using precompiled code and lookup table based transistor-level models. This building
block (see sectioh.4.1 for details) is this research efficient alternative to the SPICE
simulator.

2 Circuit Inventory Manager (PAH manages and stores pre-calculated sizing and
performance figures of a set of circuits that are storadiedicated database that’s
designed for a set of candidate circuits relevant to given specifications (see

sectionb.5 for detail}.

23

4.2, Offline Toolset

(

1
| Topology
| Netlist

Foundry
odels

=

Template -

tech.db module.so schema.svg —

‘ (¢

P

(¢D]

2

Breed L

=

o

| | =
. PAT |
{ J

Figure 4: Offline Dataflow of

Figure 4 shows three parallel processes that generate a database for online operations.

1. Characterizing a set of component-level models out of foundry models (see Section
for details) this process starts with files released from a foundry to users of
commercial tools, so the latter can configure their toolset to evaluate circuits that are

to be manufactured by the former.

24

a. The first stage of this tool translates the rich language of the commercial tool
to flat listing of models, parameters, and values. This translation gets rid of
function calls and other abstractions found in the foundry files and generates
equivalent models that can be read by a generic SPICE.

b. RAMSpice takes the simplified models and runs characterization loops that
measure key transistor-level parameters (ggpnd g,) in a range of channel
sizes and operating points.

c. The results of the RAMSpice runs are stored in binary arrays, the lookup-
tables (LUT).

2. Preparing binary module (either shared-object of UNIX or DLL for MS Windows)
specific to a circuit topology.

a. Starting from a SPICE-like netlist, it uses a nodal analysis algorithm (MNA)
to generate all the equations needed to establish operating point and
performance properties.

b. The tool generates a C code, containing all the functions needed to evaluate
circuits, populate the PAT, and compose heat-maps from sweep analyses.

c. The generated C code is sent to the Gnu Circuit Compiler (gcc) for final
compilation.

3. Processing graphic and other information related to a topology. This tool prepares
vector-graphics and other web-related data (see SécBdhfor details) for visual
representation of sized circuits. The input to this tool is an array of tiles that describe

the schema of the analyzed circuit. The tool uses a library of predefined tiles for

25

components, interconnections, and terminals to translate that array to web-presentable
scalable vector graphics format (SVG).

. The final offline tool prepares an initial inventory of circuits (see se&ibri for

details) that can be queried later according to a users-provided spec. There are several
stages to this process, starting with complete random generation of circuits and

ending with performing random size variations on saved circuits. The tool uses the
binary executable generated by the circuit compiler and the transistor-level LUT to
evaluate circuits on random selection (seed) and alterations of stored ones (breed).
The tool uses the domination principles of Pareto and other criteria to ensure that this
inventory contains viable, useful and diverse set of circuit. Unlike previous three
processes, this one cannot start before there are component-level models and

topology-level code in place and therefore cannot be parallelized with the rest.

26

4.3, Online Toolset

Circuit
Tech. | [Topology| | Spec XYZ || e
Client — Browser
Pareto Heat Map Circuits Schematid
Front Table Browser
~ \\ /4
Server Pareto Associative Table

T I
Daemons
Merge &
Cull

Figure 5T Online Toolset

After logging in to the website, the designer can select a Technology and Topology for
the solution search (Figure 5). A Spec form is filled out and the system produces plots
interactively. The starting point for the search can be obtained by generating a Pareto front plot.
The designer selects two properties from the specifications and the system presents their tradeoff
in the form of a curve with markers that represent circuits stored in the Pareto Associative Table
(PAT). The designer can add a circuit to the Circuit Table by clicking on one of the Circuit
Instances. Each circuit in the Circuit Table can be used as a pivot for the next step in the search.

The designer can now modify the pivot circuit by performing 2D parameter sweeps that present

27

on screen as Heat Maps, controlling the analyzed parameters by choosing the XYZ axes and

clicking on modified circuits that step closer to optimum.

Each selected pivot circuit modifies a Schematic Browser with detailed information:
length/widths of each transistor channel, node DC voltages, and bias values. Hidden from the
designer, Merge, Cull and Optimizer daemons perform general data management tasks that keep

the circuit repository in effective size, diverse, and relevant to designers’ common queries.

The three software subsystems that participate in online activities are the client web
browser, the Apaché+web server and background daemon processes. The client runs client-end
JavaScript code that is dispatched from the Apache server. The web page is used to select
technology and topology, type in a spec and then navigate in the solution space, stepping
between intermediary circuits until a satisfactory one can be downloaded. Each step sends a
request via the Apache servertto produce a tradeoff graph or sweep two parameters to
generate a heat map of an interesting performance propersgs two resources in generating
online data: Circuit Inventory (PAT) and Circuit Evaluato€E). The PAT is a vector of pre-
evaluated circuits that is filtered according to a spec and can produce graphic representation of a
tradeoff, given that spec. The evaluator uses precompiled code and a set of transistor-level

models to calculate performance levels in X/Y raster.

28

4.4. Architecture Layer Model

At its core,l is structured to replace the traditional SPICE as circuit evaluation engine,

with similar layer stack that’s described in Figure 6.

Croudsourcing

User-level Software (Application Specific) Daemon

Web
Service

Circuit-level Engines (Topology Specific) || OP Engine | HM Engine| PAT E”gi”engcnu;;heFE?tg'Ogy

SPICE | {Foundry
9 LUT9, LUTKS PAW* Frgine | |Dea

I System Layers Outside I

Tables and Repostories (Tech. Specfic) 1 I, LUT

Figure 6: Layer Model of the System

The bottom layer contains transistor-level models in the form of lookup tables (LUT),
which recreate the functionality of simulation models, such as BSIM, in a much shorter
computation time. These models contain minimal to no algebraic content, but instead capture
every electrical parameter of the transistor in multidimensional array that spans available
geometrical and operating point conditions a transistor may be in in a circuit. A LUT model
contains its prameter’s array, interpolation-assisting data and a set of interpolation functions for
continuous-space lookup operations. In addition to the LUT, the bottom layer contains a set of
sized circuits, stored with their component sizes, operating point, and performance properties to
form samples of a topology-technology pair Pareto front (PAT). The data needed for the bottom

layer is stored in a binary database that can be saved and loaded from files.

29

The middle layer contains a set of engines for evaluating circuits and performing various
circuit search and data management operations. The engines are typically programmed in a meta-
C language, which is used by a circuit compiler to generate C code that gets compiled
specifically per circuit topology. The main engine in this layer is the operating-point (QRg.eng
It receives a set of component sizes and reference levels and solves the DC voltage for every
node of the circuit. This engine contains all the equations needed to calculate performance
properties of the circuit and code for inserting sized circuits back to the PAT. Another engine
performs higher level sweep analyses of the solution space in order to assemble a heat-map
(HM). A set of smaller functions is compiled to an engine that populates the PAT in an initial

sample that can be used as starting point for user queries.

The top layer is front-end software that usesftiemgines to perform sweep evaluations,
solution searches, graphic generation and data management to serve a user side application. This
layer is coded in interpreted languages, such as Tcl and JavaScript. This layer is responsible for
all web-related UX aspects on one hand and invoking the various engines on the other. Another
top-layer subsystem performs data merging and filtering in the background. By merging data that
comes from multiple users into a single repository, this process effectively crowdsources PAT

samples and accelerates searches for popular specifications.

30

4.5. Software Components

RAMSpice |-
NGSPICE CTree
[Core
Vector LUT LIT rCE
<1 PAT Func
SPICE params
Extensions

Figure 7: Block Diagram of Executable Software Components

Figure 7 shows the components of the RAMSpicelaexiecutable software. Thick
rectangles show components that are available as stand-alone, binary executables: RAMSpice
andr. RAMSpice is the research version of NGSPICE. It includes all additional components and
modifications needed for executing scripts and applications described here. When run by itself,
I has no access to SPICE functionality inherited from NGSPICE and cannot use the Tcl
commands that are specifically associated with the simulatmmtains all the circuit-evaluation

features that are proposed as alternative to SPICE in web-based applications.

NGSPICE is provided to the public with a configurable make-file. The repository
contains several modules that were added over the years by different contributors to the main
SPICE simulator. Some of the modules downloaded with the repository were redundant to this

research. They include:

1. X Windows support no step, configuration or flavor of the system was intended to

send graphics to a local screen or across a Virtual Network Computing (VNC) session.

31

The system is HTTP oriented and its clients are web browsers. Therefore, X-related
code and compilation was dropped from the local repository.

2. Tcl support-the built-in Tcl support is partial, particular to general simulation uses
and relies on data management and visualization package that receives too little
community attention and support. An alternative, local Tcl support code had to be

added and therefore most of the original one was discarded.

After organizing the local repository, a new compilation script was written that mimics

the make file, but adds Tcl preprocessing stage and updates all compilation targets)(Table 1

Table 1: Six Executable Binaries Compiled by the Compilation Script

Full RAMSpice r
Silent ramspice-silent gamma-silent
Regular ramspice Gamma
Debug ramspice-debug gamma-debug

4.6. Language and Compilation

This research contains the NGSPICE open-source code repository, which started the first
task of implementing a fast transistor-level model characterizer. Therefore, the C language made
the most sense as primary implementation language. In the EDA world, C is often integrated
with the Tool command Language (Tcl, or TCL) to provide it with an interactive front-end and
scripting shell. Tcl is a Polish-Notation (PN) language, with roots in both the LISP and C-shell
language families. Its primitive and relaxed grammar (or lack of, according to its inventor John

Ousterhouf44]) makes it useful for some applications that were not intended by its creator:

32

It supports bottom-up programming tasks: implement primitive blocks in C, integrate
next layer in Tcl, identify the critically-slow Tcl blocks, re-implement them in C and repeat the
process. Building blocks, such as the LUT (see seétibi2.1 for details), were initially written
as a Tcl command extensions. Once verified to be functioning correctly, they were added with

upper layers in C.

It is very easy to implement Domain-Specific Language (DSL) compilers with a Tcl
interpretef45]. The interpreter is mainly a parser that reacts to the first token in a line as a
command. Giving the interpreter some vocabulary procedures can transform it to a language
processor and even full compiler to a language that simplifies domain-specific programming task.
For example, drawing the schematic view of circuits was done via a concise DSL that was
compiled to vector graphics (see sectiob.1 for details). Even standardized languages used in
this research were given local support with some useful extensions. For example, the SPICE
netlist (.sp) was extended for topology constructs supported exclusively.dpsp se€ Circuit

Compiler block in Figure 8).

Tcl can be used as an alternative to the C compiler preprocessor (tclC see RAMSpice
block in Figure 8). The standard preprocessor lacks programming features, such as loops, that
prevent it from becoming a full code generator. Significant acceleration was achieved by
converting run-time loops and branching to compilation-time. This would have been very hard

and error-prone without a scripted meta-programming layer.

Another approach uses Tcl as the main language and embeds C command declarations as

output of the script (*C sele Circuit Compiler and™ Circuit Evaluator in Figure 8). Generated C,

33

of both language extensions, saves on coding and debugging time by providing the programmer

with a grammar that is more flexible and more expressive than ANSI C.

RAMSpice
C tclC

Legend: Tcl cTree .sp
Subsystem

Implementation Languages
Processed/Interpreted Languages

ctree.db

[Circuit Compiler

Tcl tclC

*C .gsp

topo.so

pat.db

[Circuit Evaluator
C *C

Tcl cTree XML

graphics.svg
circuits.xm|

Web Page
JavaScript
HTML XML SVG

Figure 8: Implementation, Interpreted and Processed Language per Subsystem

34

4.7, Context-Tree Data Base

cTree (context tree) is the backbone database used in the implementation of RAMSpice
andr. Both RAMSpice and require a large collection of collateral data. Transikteet LUT’s,
PAT’s, parameters, and configurations need to be stored in a combined data model that can be
saved in a single repository and loaded with every launch of a new process. The data is
heterogeneous, composed of very different types and structures. It is also hierarchical in nature.
The LUT set, for example, can be sorted by component type, speed and temperature corner, and
modeled parameter. PAT’s can be sorted according to topology and corner. The chosen data
model is therefore a hierarchical tree, with support for several types at each storage node (Figure
9). Each hierarchy node and leaf in the tree is a “context”. The children nodes of a context are
“sub contexts”, while parent node is a “super context”. The uniform context hierarchy has the

following advantages:

1. It allows programming functions that can be applied to any location in the tree,
independently of the data’s target purpose, a technique known as software module
decoupling46].

2. It allows the system to store multiple work spaces and be scaled up to multi-user
support, without any significant change to the code itself. Each work space and user
can be further scaled up to support multiple projects, tasks etc. by changing the
hierarchy depth of the tree.

3. Tree structures are prevalent in design systems. Structured formal languages,

schematic description formats, and XML can be mapped to tree structures. A general-

35

purpose tree support built into Tcl simplifies programming algorithms for tree-

structured data and promotes a uniform coding style.

4. Joint and uniform central database simplifies saving and loading large and diverse

data sets (“data marshalling”) by using recursive functions.

1.
/ node
——lookup_tables leaf [type]
—NCheee
—pch
7SS.D.
—TT
—bs [LUT]
. On [LUT]
——topologies

—— diffpair_nmoss..
op_amp

——circuits [PAT]
——property ce.

——nodes ¢¢*

size

——Lpl [scalar]
Wp1 [scalar]

——parameters

——max_KCL_error [scalar]
supply1l [scalar]

Figure 9: Example Segment of a cTree Structure

36

cTree contains the following components:

1. Tclinterface language - The context tse@cture is homomorphic to a file system’s
directory structure, which makes the directory path notation useful as context notation
in Tcl. Example: @ /parameters/Length = 1e-6. Script and user-side commands
include automatic looping on sub-hierarchies, queries on context existence, and file
load/save.

2. C API - A set of commands provides access to contexts and values from compiled C
functions. Tha circuit compiler (CC) uses that API to automatically generate code
that links local variables to memory locations in cTree.

3. Access commands to leaf data structure®JT (see5.1.2.1) and PAT (seeb) are
two of the data structures that can be added as leaf contexts. The cTree interface
language includes specific commands for creating and accessing the specific
structures that are used byto evaluate and manage sets of circuits

4. Data marshalling Any sub-tree can be saved to disk and loaded back under any
context. cTree contains a hierarchy of functions that serialize the different types of

contexts and pack them back in memory when loaded from disk.

37

4.8. Foundry Model Translation

Commercial tools that were developed from SPICE3 support superset formats for device
modeling. These formats contain constructs that are not supported by the main distribution of
NGSPICE, yet are essential for the understanding of the models’ parameters. For example,
the .model SPICE card can contain in its payload references to arithmetic functions and
conditional multiplexers that make the models file much shorter than if every model and

parameter were explicitly listed.

The other complication that the commercial-tool specific format presents is the usage of
model bins. Bins model specific behaviors of a device per ranges of geometrical parameters.
Two identically instantiated devices may get different model parameters, because one is longer
and/or wider than the other. This scheme comes to compensate for the challenges of
independently developed physical models (such as BSIM) in being fitted to advance
manufacturing technologies. The fitted equations included with these models are better at
predicting behavior of limited geometrical ranges than the entire available sizes of the device.
Unfortunately, the original distribution of SPICE does not support this partitioning and thus bins

have to be expressed as separate models.

To match SPICE simulation to amamercial tool’s one, the following steps must be

taken:

1. Internal references to external files and conditional sections must be followed by the

interpreting script (flattening).

38

2. All function calls and variable references in the commercial model file must be
evaluated and converted to explicit parameters and assigned values.

3. The hierarchy of device models and its geometrical bins must become separate
models.

4. A collateral script must be generated, to enable netlist generators an automatic

selection of the per-bin model upon instantiating a device.

The method for implementing this translator uses the Tcl interpreter as a domain-specific
language (DSL) compiler. In such compiler, input files are first converted with a series of regular
expressions into a Tcl script. The script is then executed with a library of the domain specific
commands (“proc’s”) and a new file is generated. The Tcl DSL method has the advantage of
creating compilers that are simple to code and debug. The function calls included in the original
format are implemented by similar Tcl procedures and thus leave no room for introducing bugs.
However, the Tcl interpreter is slow compared to dedicated binary executable and thus the ease
of coding this compiler is offset by minutes-long execution. Tcl DSL is a better choice than
compiled C converter, because the translation is done only once, when a new foundry
manufacturing technology file is released to the commercial EDA industry and the run is done

offline, without any efficiency implications on SPICETlar

The output of this initial step is the following files:

1. Models file in the original flat SPICE .model format. The output file is a listing of models,

parameters and values. There are no variables or other abstractions in that file. A single

39

component in the original technology files can become several components in the output
file, due to binning.

. Tcl array initializing script for downstream scripted netlist generators. Several offline and
online procedures need this information to map a tram3iststance to its bin-specific

model. This is done by following the Imin/Imax and wmin/wmax data stored in the
provided array. Other information contained in this file is parameters of design rules that

can be used for estimating a transistor’s area.

40

5. Implementation and Applications of I'

5.1. Transistor-level Modeling for I

5.1.1. Motivation

["‘s transistor-level modeling approach focuses on replacing equation-based transistor
models with faster query tables. Equations are the most commonly used models. They represent
a set of physical phenomena that have significant influence on transistor behavior of current
generation. The equations are hard-coded, but key parameters are left to tech-files that are
produced by foundries to be used in SPICE-class simulators. There are two improvements the

proposed approach achieves:

1. Decouple the model from physics.

2. Trade hardware resources for faster parameter calculation.

For example: short channel effects ontiat are covered by BSIM equations are only a
step in the calculation ofd. Similarly, intermediary physical values, such as depletion layer
width and effective channel length are not useful for the purpose of obtaining I-V operating
points.T is only interested in the current through the channel, dynamic conductance and
capacitance values for small-signal analysis and some secondary figures, such as noise and
manufacturing statistics. All the physics-related steps can therefore be consolidated to a single

model that converts geometry, voltages and process/temperature corner to the needed values.

41

To implement the reduced set of relationships, equations do not need to be fitted. This
approach made sense back in the 1980’s, when a typical machine’s memory size was less than
1MB. Today, there is a lot of room to partition the model to small areas in the transistor
geometry and operating space. Indeed, accuracy deficiencies in standardized models are already
overcome by the industry by partitioning geometry to look-up tables, in the method mentioned

above and commonlyrown as “binning”.

5.1.2. Implementation

RAMSpice is a collection of a SPICE simulator (NGSPICE), database structures and
other extended simulation and circuit analysis features needed to generate transistor and circuit
level layers for. RAMSpice started from the NGSPICE open source SPICE simulatos that i
distributed under the BSD license and considered to be the current version of the original
Berkeley SPICE dynasty. The simulator was added with C-implemented Tcl interface to a
hierarchical database called a “Context Tree” (cTree). This locally-developed database is the
infrastructure on which binary data structures are implemented. It allows storage and retrieval of
data in a hierarchy notation that resembles file systems’ directory structure. cTree performs all
the data marshalling operations needed for saving and loading all supported data types to and
from disk. NGSPICE’s code itself was modified and added with extensions that accelerate
copying data from its simulation result vectors to cTree and extend simulation capabilities to
support features needed by this research. The main role of the extended simulator and added
database is providing accelerated characterization tools to create a fast transistor-level model that
is an alternative to the BSIM model SPICE uses for simulation. Once that goal was accomplished,

I was built to capitalize on the acceleration of both the new transistor models and the benefits of

42

symbolic analysis of circuit topologies.operations interface cTree and use a special structure to
store circuit evaluation results in it. Higher-level functionality, such as offline preparation
procedures and web front-end scripts are implemented in Tcl, using the low-level commands

built into RAMSpice in general aridin particular.

5.1.2.1. Look-up Tables

The look-up-table (LUT) used in our approach was designed to meet the following goals:

1. Limitless dimensions, but typically 4-5 per table
2. Data-accelerated interpolation
3. Maximal size of GB's per device

4. Binary storage format

The LUT's are populated by sampling transistor geometries, process-temperature corner

and operating points in a matrix of predefined values.

o
o
[—

e —o / N
. \
3 o NN W N\
e .\),. . & SN K o B g
\ Vi O Y x A b
w A 9 N Sl 4
\ X ool sy e e
= 9 \

Figure 10: Five dimentional hypercube: a cellgg b, and p LUT.

43

After populating the basic array, the LUT can be expanded further to allow quicker
gueries in exchange for more memory. The LUT is a multidimensional array, dividing the
parameter space into cells (Figure 10). Some cells' values may be close enough to a special case
that allows faster interpolation than Lagrange over a hypercube. The faster interpolations require
additional parameters, which require an additional Linear-Interpolation-Table (LIT) that can

reduce the evaluation time complexity froMtd N (number of dimensions) per cell.

The LUT raw entries define the corners of interpolation cells. Therefore, to support M
intervals of parameter i, M1 values need to be measured. The overall number of raw entries in

the LUT is then:

N
ILUT| = H(Mi +1)
i=1

In order to achieve adequate resolution, millions of parameter-combinations need to be
scanned, which may take months to complete in a typical script-enwrapped SPICE tool. To
overcome that, the NGSPICE source code was used to create an adapted version, RAMSpice,
with fast access and manipulation of internally stored result vectors. RAMSpice is the single-
executable platform that was developed to implement this model. It contains extensions to the
Tcl interface already provided with NGSPICE. To accelerate the characterization process, two

groups of inputs were implemented separately:

5.1.2.2. Geometry Parameters

The trivial sweep analysis loops scan each transistor sizing combination and produce

characterization slice for each. However, nested loops that modify single-transistor proved to be

44

very slow. Instead of looping through the W and L measurements of the transistors, in a Tcl
script, a test circuit was constructed to contain all the required transistors in parallel (Figure 11).
This shifted the weight of sweeping through geometry from the Tcl interpreter to the SPICE

circuit analysis engine.

5.1.2.3. Voltage Parameters

The harness voltages were scanned by using the .dc command to scan all the required
value combinations. A much needed modification to NGSPICE was to enable more than 2 nested
sweeps. Otherwise, sweepingd/Vps and \ss together would require using a Tcl loop, which

proved time-costly.

Figure 11: hsParallel Characterization Circuit

5.1.2.4. Parallelization

Parallel execution of characterization loops saves time when there are enough computing
resources to support all threads. The 8-thread machine dedicated to the characterization effort
supported parallel execution of several corners simultaneously. The C comumandvas
registered as a Tcl command and an infrastructure for split and merge was added as Tcl code.

The main process generated the different characterization tasks and then forks to run each corner.

45

It then allocates the array for the LUT and waits in a polling loop until all forked processes are
done. When the simulation results are ready, they are read from the /tmp directory and merged

into the LUT’s.

5.1.2.5. Reading and Post-Processing Simulation Results

On top of accelerating the input sweep, C code was added to allow fast extraction, on-
the-fly processing of simulation vectors and forked-process parallelizatioB.8&el). The
modifications reduced the characterization time from 5 hours for a single process-corner and low
resolution (8 values per input) to under 30 minutes for 5 corners, high resolution (33-65 values

per input) and 3 different modeled parameters.

All operating point parameterssd gn and g, are characterized using the same test circuit
and DC sweep analysis. The difference between them is in the post-analysis of the simulation

vectors.
Since:
Ips = Ips(Vgs, Vps, Vs, L, W)

Im = 1/8 [Ips(Vgs + &, Vps, Vs, L, W) — Ips(Vgs, Vs, Vs, L, W)]

&
 Ips(Vgs, Vs + & Vs, L W) — Ins(Vgs, Vs, Vs, L, W)

To

46

The three parameters are therefore extracted from 3 DC sweggswith appropriate
shifts, and saving the internal SPICE vectors as binary data via added Tcl commands that

perform the subtraction and division operations on the fly (see A.4.1).

5.1.3. Linear Interpolation Table

The optional linear-interpolation support was added as a post-characterization stage. This
stage pre-allocates an array, similar in structure to the raw-samples one, but N+1 times larger,
because it allocates N+1 entries per raw-data cell: one per slope approximation and one for the

intercept value. The total volume of a LUT with linear interpolation tdbl&) comes to:

N N

ILUT| = H(Mi D+ 41 HMl-

=1

Note that the added term for the linear-interpolation part is only a produgsof M
without counting closing samples. To populate the linear-interpolation table, RAMSpice scans
the raw-sample cells and performs simple regression loop (Alg. A). Each dimension is assigned
an estimated slope “bucket”, which is initialized to 0. There are two nested loops: external one
scans the cell corners and internal one scans the dimensions. For each corner and esion,dime
the sample value is either added to the dimension bucket or subtracted from it, depending on
whether it is up or down that dimension, respectively. After the loop is complete, the buckets are
normalized according to the number of corners and the physical size of the cell along the

dimension they represent.

a7

Algorithm 1: Fitting a hyperube’s values to a hyper-plane slopes vector

Begin
For each corner Cj in cell H
Begin
For each bucket B;
Begin
If (C5 is on the top-face along dim 1)
B;=Bi+Value(C5)
else
Bi=Bi-Value(Cj)
End
End
For each bucket Bj: Slopei=Bi/(2N-1)/(LengthOfDim;)
End

Finally, the intercept is calculated so that interpolating the center point of the cell yields

the average of all corner values.

Each entry of the linear interpolation table is tested after calculation. The point of the test
is to disqualify entries that fail to reproduce the original entries under predefined accuracy
margins. An arbitrary 1% error margin was allowed, which can be changed to trade off accuracy
for speed. Wider margin would disqualify fewer cells, which in turn would increase the
percentage of fast-calculated queries. That percentage figure served also as a general health
indication for the LUT. If the LUT to LIT conversion achieved fewer than 50% linear cells
proportion, it was an indication that the resolution is insufficient to recreate the original model. A

very high proportion (>95%) was an indication of over-sampling memory wasting. Failing cells

48

were marked by setting their intercept field of their entries to NaN (not-a-number). In case where
the LIT option was skipped, be it for saving on memory or temporarily accelerating software
debug, the interpolation still worked, albeit slower because fast-interpolation coefficients were

not available.

(]

20
80
40
20

0
12K MK 118 39 14.8M

[LUT] [entries]

Linear Cells Proportion

Figure 12 Percentage of cells that fit linear representation for IDS (LCP)

The Linear-Cells Proportion metric CP) depends on the resolution (Figure 12) but also
on the modeled behavior. Some parameter can gain LCP by using a simple variable change. For
example, all the first-order textbook equations fgrihclude a factor of W/L, which may give
the impression that these two input parameters can be removed from the model and then multiply
its calculatedds value . In fact, W and L affect so many other aspects of a transistor behavior
that it is impossible to separate W/L and keep good accuracy. However, the quasi-linear scaling
of Ips by the WI/L ratio suggests that if 1/(W/L) factor is applied to the LUT entries, the cells are
left to deal with higher-order phenomena, which were negligible enough to be left out of
textbooks and therefore require less resolution. Changing a LUT fotm lbs_sizelps/(W/L)
gave us an instant gain of ~20% in LCP, without changing resolution or compromising on

accuracy. The same method was used to alleviate interpolation effortfrantdg (a reverse

49

Ro, which gets better LCP). Implementing that change of variables had to be done in C and
executed before the LIT entries are calculated. This seems like re-introducing equations to the
pure-LUT model, but the speed-up gain can justify this with the following example: Suppose we
have a pure LUT of 5 dimensions and LCP of 40%. Linear interpolations cost 5 multiplications,
while full interpolations cost 31 {21). The average cost of interpolation can be calculated using

the following equations.

Cost,, =(1-LCP)x(2"' - 1)+ LCPxN
With the chosen parameters discussed above, the average cost is 18. If we count the W/L

factor as 2 multiplications (W and L are not constant) and the additional LCP to be 20%, the new

average cost would be14.8 which results in a 17.8% saving on interpolation time.

Additional, compromise interpolation modes were considered, which are faster than the
full mode, yet are less probable to fail than the strict linear criterion of fitting @bhers close
to a hyperplane in the"** space. One option is to “promote” one parameter to full interpolation
and keep slopes for all the rest. But the memory requirement for that is too high. Instead of N+1
coefficients for linear interpolation, we now have to allocate N-1 slopes plus intercept for each

half of the cell, which is 2(N-1+1) or 2N. Promoting two parameters requires 4(N-2+1) and so on.

5.1.4. Interpolation Procedures

Every model query results in cell interpolation. First, the interpolation procedure
determines which cell contains the data for the interpolation. This is done separately on each
input parameter (=dimension). There can be two types of parameters: uniformly partitioned and

non-uniformly partitioned. If a parameter is characterized with uniform partition, the search is a

50

simple normalizing of the input according to the base-level value and step (O(1)). Otherwise, a
binary search retrieves the right interval in O(logjMteps. Thus the maximal time-complexity

for cell location is O} log(M;)).

The next step is to determine if there is a LIT entry corresponding to the cell. A cell that
failed linearization is flagged with a “not a number” (NaN) intercept. If LIT cell exists, the
intercept is copied to the accumulator. The rest of the slope coefficients are simply multiplied-
accumulated with the input parameters. The faster linear interpolation is therefore an inner-

product between two N-long vectors plus an added intercept, which is O(N).

In case no LIT exists or that a particular cell failed linearization, the full interpolation
must be performed. Lagrange-equivalent procedure was chosen that assigighte to each
corner of the cell according to the input parameters relative location within the cell. The weights
are simple multiplications of the relative distance of each parameter within the range defined in
the cell along a dimension. That relative distapefrl] is given as a byproduct of the cell
location stage. A naive approach to calculatirig fiom r;’s would be to populate a 2" long
buffer with all the products of and (1-) combinations and then calculate an inner-product
between those weights and the corner values. This givVésiNRiplications. The strategy was to
populate the buffer with thé'Zorner values. Then, repetitively compress the buffer to half its
size (Algorithm 2 using a weighting formula on each pair of cornefg=C-
1)Ci+riCi+1=C+ri*(Cj+1-C;). Notice that (5 is free to serve as storage for the next compression
and therefore it can be performed in-place. After N compressions, the buffer shrinks to a single

entry, which is the interpolated value. The total number of multiplicatiod$ 1s 2

51

Bl B()\\‘
rO
B2 \ Bl
rl
B3

Figure 13: 2D full interpolation using in-place compress
Algorithm 2: Lagrange-equivalent compression loop

Begin

For each corner C;

Begin
Bufferi=Value(C;)

End

Let buffer_limit=2N

For each relative location r;

Begin
For (j=0 ; j<buffer_limit ; j+=2)
Begin

Bufferj,,=Bufferj+r;*(Buffer;+1-Buffer;)

End
buffer_limit=buffer_limit/2

End

Return Buffere

End

52

5.1.5. Composite Interpolation

For evaluating a circuit’s operating point, Ips lookup needs to be more accurate than the
rest of the parameters, because slight errofissiodn translate to significant shifts ipd/and
thus nodes’ DC potentials. To achieve higher accuracy, a departure from the general-purpose
lookup code was needed as an alternative to increasing the tables’ resolution. This came in the
form of composite lookup algorithm. This method looks g@gd g of a transistor first and

then uses their values as additional slope informatiops@lbng Vssand \bs respectively.

The result is both faster look up, since entry location is done once for all three tables, and
more accurate one, since it add$'&c2der approximation to the original linear one. The
interpolation onds is replaced by an interpolation on its intercept with tae=Vps=0 axis.

Instead of loading the interpolation buffer wigy Values from the table entry, it is loaded with

Ipeq,=lps,i-Ves,*Om,i-Vbs,i*Jo,-

After interpolating beqvalues, the interpolated,@nd g from the previous lookups are

used together with the inpui¥and \bs to go back and calculatgs] in a more accurate value:

Ips=lpeqtVes*OmtVps*do

Figure 14 shows a segment from thgNbs curve as it is plotted from a SPICE

simulation (black) and a Lagrange-interpolated lookup of thredel (red). The minuscule

SPICE (bleck) vs. inear (ed) and Composie (green) Iterpoatons SPICE (black)vs. Linear (red) and Composite (green) Iterpolations
820

V Gsmy Somv_Gsmv_Bomy smv TV
Vds vds

Figure 14: Interpolation vs SPICE Figure 15: Zoom in on Separation Ar

53

difference in hs between SPICE and the lookup line is of the 200nA magnitude. However,
looking at the lateral error, it shows ~700uV maximal separation between thedgwe 15

zooms-in on the 50mV region and shows how closer the composite interpolation lookup (green)
gets to the SPICE curve (black), in comparison with the linear one (rgggriér drops from

700uV to under 50uV.

Other algorithms that were considered involved looking beyond the immediate hypercube
to neighboring samples and performing higher order interpolations. Yoon anf28]lehose
guadratic interpolation for their application to gain better accuracy and smoothness for lower
resolution. This and other higher order algorithms get these two advantages in exchange for run
time, which is one of the important resources. Calculating quadratic interpolation, for instance,
requires putting together the Q matrix in run time, or otherwise storing a huge data base of all the
possible Q matrices in advance. The choice of staying in first order and finding ways to
accelerate those algorithms in exchange for memory and some accuracy was therefore motivated

by the need to keep model response time as short as possible.

5.1.6. Hierarchical Interpolation Tree

The hierarchical approach was an intuitive solution to creating a compact look-up
database that is also fast to interpolate. This class of solutions partitions the function domain into
sections, which get separate analyses and recursive partitioning depending on the local level of
complexity. The expectation from a physical function is to require more resolution in some
sections than others to achieve the same level of interpolation accuracy. A database that saves

space on the less-detailed domain areas and allows shorter interpolation time where certain

54

inputs can be neglected seems like the right approach in an application that demands growing

amount of memory.

The effort of populating such a hierarchy can be high in this application, because the
source (SPICE) performs significantly faster in uniform sweeps than in select parameters that
need to be determined on the fly. However, once an exhaustive uniform sampling of the domain
was performed, a Hierarchical Interpolation Tree (HIT) can be easily constructed in post-
processing. A HIT is a binary tree, splitting with each node a selected dimension and domain
value. A coordinate can locate a cell by descending down the nodes, each comparing a single

dimension to a value and sending the search left or right.

The following types of HIT leaves were considered:

1. Full-cell leaves- storing all 2N corners of each hypercube in every leaf

2. Partial-cell leaves initially storing only lower-left corner per leaf.

The benefits of using full-cell leaves are:

1. Locating the leaves (=cells) is fast and corresponds to the depth of the tree, which
reflects the complexity of the function per domain section.

2. Every leaf contains all the information needed for interpolation. There is no
equivalent stage of fetching hypercube corners from an array because the
interpolation buffer is stored as it is needed for the interpolation itself.

3. There can be more types of leaves, compressing information and accelerating

interpolation according to opportunities presented by the local samples. Since none of

55

the samples in a leaf are shared with other leaves, any compression can be decided on

and performed locally without destroying data in other cells.
The cell types that were coded are:
LUC — a copy of a LUT hypercube (2*N scalars).
LIC — a copy of LIT cells (N+1 scalars)

cLUC - 8b mapping of the LUC (Scalar for base-level, Scalar for scale, Byte x 2N

corners).

cLIC1-cLIC3- a short LIC cells, featuring only one, two or three dominant dimensions

in a linear interpolation (1 scalar for the intercept and 1 scalar per dimension).

The biggest drawback of using full cells is the data-bloat that starts with 2*N. There are

several factors that mitigate this bloat:

1. As in the original intent of using hierarchy, some of the cells from the initial
construction can be merged with others and thus eliminated. Once the tree is
constructed, a recursive procedure finds adjacent cells that can reproduce their shared
corners after merger and replaces their binary node with a single cell.

2. Linear regression and further compression of LIC and LUC cells reduces amount of

data even more.

A test Ids LUT was selected to evaluate the memory/time performance of the full HIT
option. The initial result was not satisfactory in terms of access time. Following a linked tree,

pointer to pointer is time consuming, most likely because of cache misses. However, after coding

56

the entire tree in a bytecode script, the access time dropped to ~350nsec, which is a 4x factor
compared to the original LUT. Memory-wise, the cost was high. Even after eliminating 60% of
the cells, linearizing 7.4% and compressing 24%, the overall bloat was almost 7x. The partial
HIT option, of keeping only the corner closest to the origin (lower-left in 2D terms) per cell,

eliminated the bloat almost completely. However, it had some serious disadvantages:

1. Now that the cells are no longer self-contained, the interpolation procedure needs to
fetch every corner separately and the corners are not arranged predictably as in the
LUT. This 2N fetches increased the overall time 5x, instead of reducing it. Even
after careful coding of the fetching code and caching points along the tree-descending
procedure, the access time was not significantly different than the original LUT one.
There was no acceleration.

2. The opportunities for compression and linearization are not available now that every
stored sample can be part of up toc2lls and therefore cannot be replaced with an
8b representation or by a vector of slopes.

3. Reducing the memory bloat to close to 1x was only going to serve the next phase, of
eliminating cells by merger. This step proved too complicated. Merging pairs of cells
in the full HIT was simple, because the eliminated points were also stored separately
in every cell that still needed them. In contrast, after eliminating cells in the partial
HIT, corners that were needed for other cells disappeared. This presented another
complication of having to keep more than one value per leaf and adjusting the fetch
procedure to deal with that change. The saving on memory therefore was not going to

be as high as in the full HIT and the access time would inevitably increase again.

57

Table 2: HIT Cell Types and their Cost in [B]

64b Array 24b HIT
Dim LIT LUT LIC LUC cLUC | cLICO | cLIC1
2 24 32 12 16 12 4 8
3 32 64 16 28 16 4 8
4 40 128 16 52 24 4 8
5 48 256° 20 100 40 4 8

After converting the models to 4D by eliminating channel-width as a dimension
presented the benefit of converting all of the remaining dimensions to be uniformly sampled, the
acceleration benefits of the HIT became obsolete. The 4D LUT option accelerated the cell-
locating phase and reduced memory volumes. The return on investment of HIT did not justify
complicating the code further. However, the code for converting LUT to HIT and using it in

interpolation is still present in the system and can be used if determined beneficial per-case.

5.1.7. Resolution Budgeting

This model size is bound by the memory resources of the host machine. After
implementing its mechanism, the remaining challenge is balancing the resolution allocated to

each parameter within the overall process capacity and accuracy requirements. The first

2 LUT cell volume is counted in bytes, which is alwa§&'2|scalar|. In case of 5D double scalars, each cell takes up
2%%8=256B. However, unlike HIT cells, a LUT cell shares its entries with its neighhis makes the actual
contribution of each cell to the total LUT volume as small as 8B, for inner cells

58

indication of adequate resolution was the LCP. The bottom-line indicators are the standard-
deviation of the relative error and the max-error of 99% of the samples. The latter indicator gives
a better measure of the overall accuracy, because the error distribution is neither normal nor

symmetrical.

The first tool used to manage resolution allocation was a table of bits-per-parameter.
Uniformly-partitioned parameters are sampled in equidistahl Malues, to form Mintervals.
To simplify initial budgeting, Mlegal values were limited td'2 where bis the number of
resolution-bits given to the i'th input parameter. Neglecting the closing sample for each input, the
total volume of the LUT is either2 without LIT or (N+2) 2 with LIT. The sum of pis
therefore a representative of the memory allocated for that view and can be used as a guide for
distributing resolution between inputs. Even whepwds released from having to be powers of
2, the ease of using resolution-bits instead pélikéctly made us go back and translate

resolution to effective resolution bitsslbg,(M;) that could be taken off or added to a budget.

The resolution budgeting procedure was based on a bottom-up search. Low resolution
characterization is fast (seconds to minutes), so it started with allocating 2 or 3 resolution bits
uniformly to all input parameters and got a baseline read of the quality indicator. Then the
procedure gradually added bits to the overall budget, testing their effect when allocated to each
input parameter. Some parameters had higher effect on accuracy or linearity when the resolution
was low or when their role was saturated, other parameters got the next resolution bits. Note that
each added bit doubles the size of the LUT, so the procedure was time-bound by N times the
final characterization. Budgeting the resolution of a view was typically finished in less than a day

of manual, repetitive characterization runs.

59

After budgeting uniform resolution, the sampling values of non-uniform inputs (typically
W and L) were fine-tuned. To better position samples, relative error per interval were measured
and thus got an indication for where an interval should be split up and where a sample is

redundant.

5.1.8. LUT Interpolation Implementation

Eight (8) was chosen as a maximal supported dimensionality, but any number could be
configured into the compilation script. To improve coding efficiency, a code-generator was
added to the compilation script. This code-generator extended the C preprocessor with Tcl-based
commands, such as #Foreach and #For loops. That improvement enabled convertion of some of
the run-time loops to compilation-time, unrolled ones without sacrificing code readability. The
immediate benefit was in automatically generating 8 interpolation functions specifically for 8
table dimensions, each completely unrolled for both linear and full interpolation modes. In early
tests of the average interpolation time (~70% linear and 30% full interpolations in a LUT+LIT
6D setup), it was discovered that unrolling saved about 10% of the CPU time, from 2.76usec to
under 2.5usec. Unrolling is expected to have more significant effect on LUT's than LIT’s,

because of the nested loops needed by the full interpolation precedur

Characterization scripts begin with converting foundry-provided technology files from
commercial tools’ format to NGSPICE .model format. The script flattens all the equations,
functions and bins of the foundry format to simple model/parameter listing, one device per bin.
These simplified transistors are then included in a test circuit netlist. RAMSpice uses the test
circuits in a nested .dc sweeps. The code saves the vector results in a binary format, which is

later copied to the LUT array. Some characteristics require post-processing. For ingfance, g

60

requires runninggs loop once, changingd4 by a small amount, re-runningsland calculating
the derivative, based on th&s vectors and AVgs. Vector to vector subtraction and factoring
operations are also built into the RAMSpice C code to allow faster on-the-fly calculations of

such views.

5.1.9. 4D Compact Model

Initial models of 6D were accurate and flexible, because they tracked 3 transistor voltages,
2 channel dimensions and the temperature. The typical size of such comprehensive model (in the
GB’s) required that the models be memory-resident, as in a waiting server process, or lose all
run-time benefits by requiring lengthy upload time at the beginning of every circuit evaluation.
To enable fast-uploading models, a series of changes were made to scale down model

dimensionality:

1. Temperature became part of corner definiti@g. SS1250C and TT250C tables
this degeneration is acceptable as long as temperature-sensitivity analysis is not
performed.

2. The width dimension was avoided by characterizing only square channels.

Square channels are a specific case where the width is equal to the length of the channel.
The width to length ratio (W/L) can be referred to as number of squares in the channel. Square-

channel characterization assumes the following:

1. Channel current k) , conductance (g g,) and parasitic capacitances scale linearly
with the number of squares.

2. Linearity is kept accurately for a useful range of squares per channel.

61

The observed useful range of squares per channel is 10. A total W/L>10 is still possible
by using the fingers structure, which is equivalent to connecting a number of transistors in
parallel. Square-channel tables are more than a magnitude smaller than 5D ones, but they do
come with an accuracy shortfall: since SPICE models come in the shape of binned BSIM
parameters, the square-channel loop does not exercise all bins in the W and L matrix, only the
ones containing W=L dimensions. This means that for some channels, SPICE will be using a
model from a bin that was not part of the characterization loop and an error is thus introduced
when Gamma and SPICE are matched. This problem is demonstrated in Figure 16. Each
rectangle represents a geometry bin in the channel modeling space. Since only square channels
are characterized for 4D, only the bins that are on the diagonal get characterized directly.
However, more than one square per channel may be used by a circuit. The problem is highlighted
by the checkered bin, which draws its SPICE characterization from a bin that is not exercised in
4D. Instead, the bold line segment provides the LUT with (probably inaccurate) parameters. This
problem becomes more acute when more squares per channel are permitted in generating a
SPICE netlist. Naturally, when only square channels are permitted in SPICE netlists, leaving

fingers to carry all W/L, this problem goes away.

Channel Width

Channel Length

Figure 16: 4D Square Channel Characterization and Binning Mismatch

62

The final transistor-level models are produced from BSIM with the RAMSpice simulator

that populates all the lookup tables in their final resolution (Table 3).

Table 3: Transistor-Level Modeled Parameters

Characterized Parameter | Table Approximate
Resolution Access Time

Om 2.5MSamples 450nsec

lo 2.5MSamples 450nsec

Ips 2.5MSamples 1.1usec (inc. gm, ro)

V1 10KSamples 300nsec

Va 10KSamples 300nsec

Nt 6.5KSamples 1.4usec

Ns 6.5KSamples 1.4usec

Ces 6.5KSamples 1.4usec

Cop 6.5KSamples 1.4psec

Ipsmis Vos 257Samples 120nsec

5.2. Circuit Compiler

I Circuit Compiler (CC) is the offline tool for generating onlimeengines. It is scripted
in Tcl. Topology analysis produces the KCL equations of circuit nodes and derived expression
for the output as a small-signal function of all circuit inpussgnal inputs, power supplies and
noise sources. However, this is the only resemblance between the proposed system and SPICE.
The derived code in this system is precompiled either via an adapted virtual machine compiler
for hardware-independence or as generated C code for hardware-efficiency (Figure 17). This too

gives the evaluator advantage over SPICE, as the topology is loaded into the system in the form

63

of pre-processed batch of instructions (be it VM or machine code) that is optimized by a
compiler to perform all the needed calculations, from operating point to global performance
figures. SPICE is loaded with topologies as netlists, which are analyzed and inefficiently

compiled in run time.

Source Topology Circuit Netlist Topology.sp
\
Nodal Analysis MNA Matrix
|
Algebra Engine OP and Performance Equations
¥ i
Compilation I Circuit Compiler I Virtual Machine
Y Y
Executable Templates topology.so topology.vm

Figure 17: Circuit Compilation Flow Stages

5.3. Linear Model of Transistor

I’s circuit analysis is based on the small-signal linear model. Each MOSFET is replaced
with a small network of linear components that are sized to emulate the transistor behavior

around an operating point.

64

Cod
Go l Il oD
_I,e;.gg #gmﬁ.gs ¢Ideq Ro
oS

Figure 18: Linear Model of N-type MOSFET

Figure 18 shows the main components in a linear sub-circuit that replaces an N-type
MOSFET, without body effect components. All of the components are sized based on the
transistorlevel set of models, expressed in LUT’s. The model is used for establishing
equilibrium operating point in the circuit-level analysis as well as calculating performance
properties through subsequent equations. Some components require additional calculations after

lookup:
9o = 1/R0

Ipeq = Ips — 9mVes — 9o Vs

Ipeq iS the size of the independent current source in the linear model. It models the
intercept of the tangent plane of thg(Vss Vps) surface at the ¥5Vps=0 point, while g and

0o represent the slopes (Figure 19).

65

\bs

Figure 19: peqis the intercept of thexd(Ves,Vos) plane with theds axis

The small-signal planar representationfis therefore:

Ips (small signal) (VGSr VDS) = IDeq + gmVes + 9oVbs

Capacitive components are read directly from their LUT’s. They have no role in
calculating the operating point, so they are not included in the initial DC analysis. In AC analysis,

their susceptance is included in the Laplace form: sC.

Noise sources (not shown) are considered as parallel current sourggsTbdir added
contribution is analyzed as statistically-independent between frequencies and therefore all
calculation, from LUT query to total-noise, is done in the squared units per frequefieiz][A

and [V?/Hz].

5.3.1. Nodal Analysis

Modified Nodal Analysis (MNA) is a matrix-based circuit solution algorithm. Its starting

point is the Kirchhoff Current Law (KCL) equation: GV=I , where G is a matrix of admittance

66

https://en.wikipedia.org/wiki/Susceptance

values, V is the vector of voltages at the various nodes and | is a vector of independent current
sources. The matrix used by MNA is an extension of the KCL matrix, including independent
voltage sources. The method simplifies one challenge of the original KCL method: nodes that
connect to others via voltage sources. The original method required detection of such nodes and
special work-around of pre-merging and post-splitting the nodes. MNA matrix can therefore be

larger than KCL’s, but its generation and solution are more straight-forward.

The method of generating an MNA matrix for a given circuit is essentially identical to

that of SPICE. The main differences are:

1. ’s MNA matrix is generated off-line, as part of the circuit compilation phase, while
SPICE generates the matrix during simulation.

2. The solution of the matrix if generates an algebraic representation of the
dependence of each node on input signals, components’ admittance and modeled
current sources (symbolic analysis), while SPICE solves the matrix numerically
(matrix loading).

3. By the timer solves the circuit’s nodes, there is no trace of the original matrix and in
some cases the generated solution equations go through further analysis, so they do
not resemble the MNA representation. SPICE relies on the matrix in every step of the

simulation and has no equation to process.

I Circuit Compiler {CC) contains a netlist to MNA matrix converter. The input is a
SPICE-like netlist, given with variable size parameters and sizing constraints (see topology

example in Figure 20

67

Three MNA matrices are produced automatically and printed for inspection in HTML

Figure 21:

1. DC operating point and small signal matrix
2. Rourt test matrix

3. AC transfer function matrix

AN AN
hl’jj'—{ 2

=]

T |

=]

nin 1 1]1'1173

tail

Figure 20: Example Topology for Nodal Analysis
The process of generating an MNA matrix relies on one atomic operation of connecting

single admittance component between two nodes. Single admittance component can be either
conductance (g components)susceptancésC components) for AC matrices. When an
admittance is added between nodasd], it is added with addition operator to the;nd M;

entries and with subtraction operator tg Eihd M,. The | vector is listing the independent

current sources in the circuit, where for each entry (node) the in-flowing current soerces ar

added with positive sign and out-flowing ones in negative.

68

https://en.wikipedia.org/wiki/Susceptance

69

e 2 e 2] (2 e inn 7
e 2 © 2] (2 © inp 7
e nin_1:gm p_l:igo e -nin_l:go | @ -p_l:go ef outm -nin_1:Id
tp_l:gm -nin_1:gm -p_l:gm -p_1:Id
+nin_1:go
nin_2:gm 0 p_2:gm Gds_outp_ | -nin_2:g0 | @ -p_2:g0 outp -nin_2:Id
@+p_2:g0 -nin_2:gm -p_2:gm -p_2:1d
+nin_2:go
-nin_2:gm | -nin_l:gm | -nin_1l:go | -nin_2:go | nin_1l:go n_tail:gm | @ tail -tail:Id
+nin_l:gm +nin_2:1d
+nin_2:go +nin_1:Id
+nin_2:gm
+n_tail:g
0
0 0 e 0 @ n_ref:go e vbias | -n_ref:Id
+n_ref:gm +iref
e] -p_l:go -p_2:go 8] p_1l:go vdd p_2:1d
-p_l:gm +p_l:gm +p_1:Id
-p_2:gm +p_2:go -iref
+p_2:gm
1 9 % 9) (%) % inn
0 9 0 9) 0 1 vdd
e 1 ©] 2] 0 © inp

Figure 21 MNA matrix generated for the compiled topology in Figure 20

5.3.2. Algebra Engine

I circuit-compiler solves matrices symbolically, i.e. they each produce an algebraic
equation for the output and other nodes’ voltage. The solution is achieved via Cramer’s rule,
which states that the solution to Ax=y can be achieved by calculating the determinant of A (JA])
and a series of determinants of modified A’s, where column i is replaced with the vector y (A).
Cramer’s rule states that solution of x;=|Aj|/|A|. This means that each node voltage function of
circuit admittances, modeled current sources and input signals, can be obtained by first
calculating a global entity DET{g,d,s)=|MNA|, its inverse value TED{g,9,)=1/DET and

then obtain the formulasiigms,0o’s, leq’s: Vin's, lins) = TED*[MNA|.

The majority of algebra operations are done in Polish Notation (PN). This allows efficient

“divide and conquérmethods to be applied to large equations:

1. Partial derivatives some performance properties’ equations are generated by deriving
the output’s symbolic solution with respect to inputs. Since the MNA matrix itself
contains only constants and admittance variables, the main determinant and its inverse
TED are independent of input signals, bias, and current sources. This means that deriving
the fraction 0(|Aoutput/|A[)/0X can be done on the output’s determinant only:
O(|Aoutpul/|A])/0X=0(|Aoutpul: TED)/OX=TED"(0|Aoutpu{/0X). The expression obtained from
|Aoutpu{ CONtains only additions, subtractions and multiplications, which have simple

derivation rules (Algorithm 3).

70

Algorithm 3: Recursive Derivation of PN Expression

Derive(pn_expression,WRT) Begin
If(pn_expression==WRT) return 1
If (is_leaf(pn_expression)) return ©
// This is a node. Get the operator, two arguments
[operator A B]=pn_expression
// and call the recursion
dA=Derive(A,WRT)
dB=Derive(B,WRT)
If (operator=="*”) return [+ [* A dB] [* dA B]]
If (operator=="+’) return [+ dA dB]
If (operator=="-“) return [- dA dB]
End

. Laplace to complex Fourier conversioe\C expressions obtained from the MNA(S)
matrix are expressed on the Laplace domain s. To search for key points on the circuit
spectrums has to be converted to i® and the expressions need to be split to real and
imaginary parts. This is done by recursively applying the simple addition and

multiplication rules of complex equations (Algorithm 4

Algorithm 4: Recursive Conversion of PN Laplace Expression to Complex Fourier

S_to_iw(pn_expression) Begin
If (pn_expression=="s”) return (0,w)
If (is_leaf(pn_expression)) return (pn_expression,@)
// This is a node. Get the operator, two arguments

[operator A B]=pn_expression

71

// and call the recursion
(Ar,Ai)=S_to_iw(A)
(Br,Bi)=S_to_iw(B)
If (operator==*)
return ([- [* Ar Br] [* AL Bi]] , [+ [* Ar Bi] [Ai Br]])
If (operator==+) return ([+ Ar Br] , [+ Ai Bi])
If (operator==-) return ([- Ar Br] , [- Ai Bi])
End

. Expression simplification Algebraic operations often leave a lot of redundant terms that
can be pruned to prevent generating dead code. Simplification of PN equations is done
with recursively applying trivial arithmetic rules (Algorithnp 8Vhen an operation is
commutative (+ or * operation) and the algorithm decides not to prune it, it is returned in
lexicographial order, to increase the chance of equivalent expressions canceling each
other in subtraction (e.g. (a+b*c+d)-(a+c*b+d) can be detected to be 0, although

(at+b*c+d)-(d+a+b*c) is beyond the reach of single-node lexicographical sorting).

Algorithm 5: Recursive Simplification of PN Equation

Simplify(pn_expression) Begin
If (is_leaf(pn_expression)) return pn_expression
// This is a node. Get the operator, two arguments
[operator A B]=pn_expression
// and call the recursion
As=Simplify(A)
Bs= Simplify(B)

// List of trivial cases:

72

If
If
If
If
If
If
If
//
//
If

//

(operator=="%"” && (As==0 || Bs==0)) return @
(operator=="*” && As==1) return Bs

(operator=="*” && Bs==1) return As

(operator=="+"” && As==0) return Bs

(operator=="+" && Bs==0) return As

(operator=="-“ && Bs==0) return As

(operator=="-“ && Bs==As) return ©

return commutative expression in lexicographical

order to increase chance of catching the last case (X-X=0)
(operator!="-“ && As>Bs) (As,Bs)=(Bs,As)

No trivial case caught, return the term as-is

return [operator As Bs]

End

Back-conversion of PN expressions to infix notatiorhis algorithm (Algorithm 6)

looks into the leading operators of the sub-terms, because infix notation relies on

parentheses to regulate operator order. While encapsulating all sub-terms would be

arithmetically correct, the generated code could be long to compile and hard to

understand by human readers.

Algorithm 6: Recursively Converting PN to Infix Equations

PN_to_infix(pn_expression) Begin

If (is_leaf(pn_expression)) return pn_expression

[operator A B]=pn_expression

// and call the recursion

Aif= PN_to_infix(A)

Bif= PN_to_infix(B)

73

// catch cases that require parentheses
If (operator=="*" && operator(Aif)=="+” && operator(Bif)=="+)

return “(Aif)*(Bif)”

// no need for parentheses, return the simple infix notation
return Aif+operator+Bif

End

5.3.3. Generated Equations

5.3.3.1. Equilibrium Operating Point Voltages (OP)

The first stage in evaluating a circuit is a successive approximation of voltage nodes to
the equilibrium point. In equilibrium, each node is KCL compliaZit=0. Alternaively, the sum
of in-flowing currents equals to the out-flowing ones. When nodes are not in equilibrium, the
residual current indiges if the node’s voltage is below or above the equilibrium point and a step
toward equilibrium can be calculated. The stegbtained by Millman’s theorem[48], which is

equivalent to finding V(1) slope in the Newton-Raphson method used by SPICE:

X
AV = —
X8

is the sum of all admittance (=conductance in DC) that are connected to the node. This
sum is already available in the diagonal entry of the MNA matrix at the row+column that
correspond to the node. Since transistors are nonlinear in their behavior, those equations are put
inside a loop for convergence, with a stepping factor that lets the loop converge without

overshooting the 0-VDD rails.

74

5.3.3.2. Low Frequency Performance: Gain and Rejection Ratios

Based on partial derivatives of the output w.r.t. the inputs, common-mode and supply, the
algebra engine can generate equations for the gain, common-mode rejection ratio and power-
source rejection ration, respectively. In a single-source amplifigg=@V ou/0Vin, Which
translates to Ac=TED*0|MNAv..i/0Vin (Since TED is independent of current and voltage
sources, it can be regarded as constant w.r.t. this derivation). In a dual-source ampliteg V
Vin. are first substituted withyand -\, respectively. The above derivative applies with a factor
of %2, because \Yis effectively doubled when applied to both inputs simultaneously
Apc=0.5*0Vou{OVin= 0.5*TED*0|MNAvyou/0Vin With Vin+=Vin & Vin.=-Vin. The commomode
rejection is calculated by substituting both.\and . with Vi,. The gain derivative is not
halved, because;Vis the full input signal. The ratio is therefore:

CMRR=Apc/(TED*0MNAvyoui|/0Vin) With Vin:= Vin-=Vin.

The power supply rejection is calculated the same way for any circuit. It is the partial
derivative of the output node w.r.tpy node: PSRR= 4¢/(TED*0|MNAvoul/0Vpp). Gains and
rejection ratios are normally expressed in dB, which means they are to be converted to

logarithmic scale Were being registered in the circuit’s performance vector.
Algorithm 7: Low-Frequency Performance in Pseudo-Code Equations

Begin
Apc=20*10g16(0.5*TED*DER(DET (Vout) , Vin))
CMRR=Apc-20*10g10(TED*DER(DET (Vout) , Vin))
PSRR=Apc-20*10g10(TED*DER (DET (Vout) , Voo))

End

75

5.3.3.3. Output Resistance: Rout

Rout IS extracted from aequation generated from a special MNA matrix that contains no
voltage or current sources. Thg,Rnethod connects a dummy 1A current source to the output
node, omits all other current sources and zeros all voltage sources. The matrix, with its already
calculated admittances behaves like a linear resistor network with its output node’s voltage
solution in volts matching numerically to the output resistance in Q’s. Note that there is no re-
calculation of operating point for this stage, so there are no illinearity effects stemming from the
unrealistic current source. The transistors are already replaced with equivalent linear and ideal
resistors, so there no “danger” of a transistor railing or being in an uncharacterized operating

point.

Rout

T VT2 | [V](®1=1a

Figure 22 Rout Equivalent Circuit

Figure 22 shows the equivalent circuit. Once all transistors are replaced with linear

resistors and their modeled current sources removed, the circuit behaves like a resistor network.

76

With voltage sources zeroed, the voltage at the output node is numerically the same as the

equivalent output resistance.

5.3.3.4. AC: Bandwidth, Settling Time, and Phase Margin

Bandwidth, settling time and phase-margin are extracted from analysis of the transfer
function, which is generated from the AC matrix. The Laplace representation of the output node
goes through a special function s_to_iw (see Appendix A for implementation), which converts
the Laplace function to real and imaginary parts of a Fourier function, depending on o instead of
s. When o is 0 (DC point), the real part is equal to the operating point voltage and the imaginary
part is zero. As grows, the real part decreases and the imaginary one increases. As ® grows
further, the magnitude and phase of the output (now complex) changes and goes through points

of interests:

1. 3dB drop frequency, or ¥z of the square-magnitude of-@Qefinition for bandwidth.

2. 0dB frequency-unit-gain frequency, where phase margin is calculated.

Algorithm 8: AC Performance in Pseudo-Code Equations

Begin
A(w)=sToiw(DER(DET(Vout(s)),Vin))/sToiw(DET(s))
BW=w when A(w)=0.5*A(09)
PM=180°-tan ' (imag(A(wedB))/real (A(wedB))) with A(wedB)=1
Cin=CGD, in*(gm,in/}go+1)+CGS

End

77

5.3.3.5. Noise Parameters and Corner Frequency

Thermal noise Nis looked up as the noise floor and flicker noigésNooked up in the

1Hz frequency. The transistor-level spot noise in any arbitrary frequency is:
N;(f) = N¢;/f+ Ng;

Since noise in the transistor-level is modeled as added current source between a
transistor’s D and S terminals, the transmission factor of each transistor’s noise to the combined
circuit noise is calculated by deriving the output’s DC equation with the transistor’s Ipeq and
dividing that number with Ac (to infer input-equivalent):

1 Voyr
ADC aIDeq,i

Fnoise; =

Each transistor’s looked-up flicker and thermal noise are multiplied by this factor
(squared) and the combined contributions are summed up to a single input-inferred noise

spectrum:
N N
Nt(1az) = Z Fnoise;* - Nf; and N, = Z Fnoise;* - Ne;

i=1 i=1

The evaluator is capable of producing the breakdown of noise contribution per transistor,

although those are not logged in the performance vector, but can be re-evaluated on request.

Total noise is calculated from integrating th€f)&N+/f function and N noise-floor in

frequency, up to 2BW. Corner frequency is found from the relatitfigeN; to be f= N¢/N;

78

5.3.3.6. Additional Performance Parameters

In addition to MNA-derived equations, other estimations are added to the parameters set:

1. Vos= estimated with parametrized equations based on foundry statistics
2. Power- estimated as XIpsVps across all transistors.
3. Area- estimated based on gates’ lengths and widths and additional parameters taken

from the foundry design rules.

5.3.4. Internal Circuit Dependencies and Design-Feedback

The circuit evaluator is designed to process all sizing dimensions into performance
metrics. However, for larger circuits, some of the input sizes cannot be left up to a random search,
because they are meant to serve a specific performance target that is normally controlled

manually.

For example: an op-amp has a bias voltage that is meant to keep the DC level of the
output at ¥2\¥p. Left to random search and filtering, this biasing voltage complicates the design
optimization and adds a redundant dimension to an otherwise simple evaluation. To overcome
this challenge, the evaluator code has the option to add a feedback stepping to the loop that
converge Vbut to ¥2\pp, during the @ convergence steps. When the circuit’s KCL equations
are close to be met (e.g. the maximal excessive current flowing into a node is under 0.1uA) this
tuning code kicks in and steps the bias voltage up or down to get the output closer to the
requirement. The OP loop is designed not to stop until both KCL and auto-tune conditions are

met, unless the number of iterations so far suggests none-convergence. The designer need not

79

worry about this bias voltage being correctly set, the output being any other DC voltage (non-
converging circuits will notegister in PAT) and the circuit’s design dimensionality stays in

check.

5.3.5. Code Generator

The algebraic representation of the topology can be converted to programs using one of

the two compilers:

1. TVM —“Gamma Virtual Machine” an interpreter tailored for the I system, with
flexibility and hardware independence for cross platform execution.
2. 'CC-“Gamma Circuit Compiler”, uses generic GCC to produce .so (alternatively, .dll

on Windows) file.

The virtual machine is a fast bytecode interpreter that mixes stack-machine and custom
data structures, such as polynomials and rational functions. It has instructions for adcessing
specific data structures, such as LUT queries and PAT insertions. The main motivation behind
that option is uncertainty about the target machine that runs the evaluator itself. It is possible that
topology preparation may be done by%prty organization, such as IP company, who would
like to keep the internals of the circuit to itself, but still want the template produced to be
available to run on a publicwebsite. Using the virtual machine option, the evaluator is still
running in reasonable speed and independently from the equipment that crdad is. the

faster choice and the one recommended for united site operation and topology preparation model.

In thel'VM flow, the equations go through standardized representation, where redundant

operations are eliminated and some common subexpression elimination takes place.

80

The final stage of compilation creates a shared-object module from C code (or the
equivaleni”VM assembly). The API it providgsis common to all topologies. However, initial
values and sizing/performance vectors are topology-dependent. The compiler prepares all the
collateral database binaries that go with the compiled shared object. These two binaries, together
with the topology netlist and schematic representation, form a topology/technology template that
can be used for the next stemitial mapping of thePareto front of the topology’s performance

envelope.

5.3.5.1. *c Templates

The *c command is an alternative to the Tcl-preprocessor extension. It is intended for
parts of code where Tcl dominates over plain C and therefore plain C with Tcl preprocessing
directives could become unreadable. Each of the functions in thé Giashared object is
defined by a *c template. Since the templates are essentially Tcl scripBBs&g they can call
abstract algebraic operators, such as determinant and partial derivatives and thus use MNA and
algebra engine resources. *c statements insert C line of code into the sharéslsolnrce.
Unlike ordinary C, the lines of code can include references to cTree context, by using at (@) and
a context. The intuitive context separator used everywhere else in this system is forward-slash (/).
However, this separator is problematic in equations processed by the algebra engine, because it
can be confused with the division operator. Therefore, @ applications only, a colon

separator (:) is used instead of forward-slash.

*c is a Tcl procedure that accepts a single line of code. In accordance with Tcl grammar,

using quoted lines allows integration of Tcl variables and embedded code in the *c calls.

81

Example:

foreach node $::independent_nodes {

*c “@$node:V=[DETy $MNA $node]/[DET $MNA];”

This for-each loop generates equations=fieh node’s voltage level. References to Tcl
variables by dollar signs ($) and embedded determinants in square brackets are substituted by the
Tcl interpreter before the call to *c. The cTree reference by at (@) is substituted later by the C

code generato

5.3.5.2. 'CE Shared Object Structure

The generated shared object is a library of compiled Tcl commands. It comes with all the
circuit-specific functions that are available both for C and Tcl calls. The shared object includes a
batch of global variables that are used within its functibnses cTree as its main database. For
cache considerations, all the cTree references in the *c templates are converted to a shadowing
batch of variables. This means that before the first call to @&yfunction from a Tcl script, all
the cTree references need to be imported to the buffer. Similarly, before any readii@fof a

accessed variable in a Tcl script, all buffer variables need to be exported back to cTree.
The shared object contains the following functions:

1. ::C::import — used to primé&CE with cTree values
2. ::C::export — used before results can be read from cTree

3. ::C::op—evaluate circuit’s operating point and performance and send to PAT

82

4. ::C::random — generate a set of random circuits and send thenttoop

5. ::C::breed — generate a set of random variations on existing PAT circuits and send
them to::C::op

6. Gamma_Init (Not exposed as Tcl commandgalled automatically upormad, it links
all pointers from th& CE buffer variables to their corresponding cTree contexts and

registers the above functions in the Tcl interpreter.

5.3.5.3. C Compilation

The final stage of the circuit compiler is calling the C compiler in an external process
(exec). The target binary is a shared-object (similar to DLL in PC Window systems). It is a
compact binary file that is to be loaded during run-time b@fore any evaluation begins.

Loading of the shared object is done via the Tcl interpreter’s load command.

5.3.5.4. Manual Code Edits

The evaluator is compiled automatically per topology. However, the compilation flow
leaves room for user manual intervention to enable some obvious code improvements that are

difficult to automate, such as:

1. Identifying static nodes that can be eliminated from the OP-lasypply and bias
voltage nodes can be easily identified in the code. The stepping equation always
equals 0 and the calculation can be omitted.

2. Separating nodes from independent sub-circuits to preliminary OP-ldbps

automatically-generated OP loop bundles all nodes and converges them together in a

83

single stepping batch. However, the OP loop’s dimensionality can be reduced by
partitioning the nodes to separate loops corresponding to independent sub circuits,
such as bias diodes and input levels.

3. Merging symmetric nodes into a single OP stepping calculatgupport for
symmetry in a circuit exists in the form of shared sizing parameters. However, there
is no automatic algorithm in place to detect sets of nodes that follow the same DC
voltage. Manual inspection of the code can reveal such calculation redundancies and
eliminate stepping equations and even transistor look-ups. For example: a differential
pair’s OP can be solved by converging on only one of the branches and doubling the
current passed to the tail transistor. This simple improvement saves on node and two

transistor lookups from the OP loop.

While manual optimization of the compiled topology code can accelerate the OP loop,
they are not necessary to achieve full functionalityy.oFhe automatically-generated cadeen

times faster than SPICE simulation, before any manual interventiof.fhee

5.4. T Online Engines

5.4.1. [Circuit Evaluator

Circuit evaluaion is the operation of calculating a vector of a circuit’s performance
properties from a vector of transistor sizes and other design parameters. This IS veiptaees
the traditional role reserved to SPICE in simulating circuits’ performance aspects. Unlike SPICE,
the evaluating code is not generalized, but rather generated per topology in an offline

compilation (se®.2). Topology analysis is done similarly to SPICE, using the Modified Nodal

84

Analysis (MNA). However][’s offline analysis is done symbolically, producing algebraic
representation of the nodes’ equations, rather than numerical values. The offline process ends
with a C code that is specific to a given topology. The code contains the explicit formulas for

calculating:

1. The distance and step to an operating point equilibrium

2. Constraint-derived dependencies between circuit parameters

3. Performance properties needed for comparing a circuit of that topology against the
specifications or generating a pixel in a map. Those functions are derived from the MNA-
generated equations using abstract templates in a meta-C language.

4. Classification of circuits according to viability and usefulness.

5. Other circuitspecific functions that generate circuits for mapping the technology’s

performance limits in a Pareto front.

The C code is sent to the GNU C Compiler (gcc) to compile into a shared object, a binary
module that can be loaded into a runningrocess. The circuit-level module is used in both
offline and online processes. In the offline process it is used to generate an initial set of circuits
that can be used later for generating a first responger’s queries. The same module is loaded
whenr is called by an online transaction to generate a graph of heat map representing a sweep

analysis around a pivot circuit.

The evaluator is not fully pre-coded. Instead, the system contains a compiler that
generates code per topology. This givets unique efficiency in producing a rapid performance

evaluation per each point in the sizing space. Just like SPICE, the evaluator has to access

85

transistor-level physical models. These are kept as look-up tables for even more rapid execution

time.

I avoids algebraic analysis of topologies in real time by employing the circuit compiler.
Therefore, every operation is accounted for and directed at the bottom-line goal of producing a

vector of performance figures, which can be inserted to an archive of sized.

Figure 23 shows the dataflow iR’s main engine FCE. The evaluator includes the

following stages:

1. Operating-point loop- assigns voltages to all independent nodes, calculates
transistors’ behavior (Ips and admittances) and goes back to calculate voltages out of
those, until convergence. The loop’s starting point may be an MNA-derived rough
estimate of nodes’ voltages or previous OP calculated for a similarly sized circuit.

2. User-defined dependences of design sizes are automatically tuned during this loop.
Performance property calculationsrom simple equations for DC properties to
Newton-Raphson loop for pole/zero analysis, these equations populate the output
vector. Some additional table lookups are needed here for specific transistor physical
values, e.g. thermal noise.

3. PAT access trying to add the circuit to the general inventory, in accordance with

Pareto domination rules. The evaluator routine has several exit points.

86

fo
=
o
Q
wn
2
o
Y
E" U

@ dominated f:TL
Uy

Figure 23T Circuit Evaluator Data Flow

Since it is the system’s gateway into the PAT, it includes conditions essential for
protecting the database from accepting garbage circuits. Such circuits can be of any of the

following categories:

1. Geometrically or electrically violating circuitsbased on manufacturing technology
rules and constraints provided with the topology. Such circuit should not be presented
to the evaluator to begin with, but may be a result of random search and should be

rejected before OP evaluation begins.

2. Nonconverging OR if after so many iterations the OP phase did not reach satisfying
KCL thresholds, it gives up and the routine abandons the rest of the calculations. This
status is likely to be a symptom of a bad condition that can be discovered downstream.

3. Containing non-saturated or cut-off transisteraost filtered by condition 2, these
are not expected to yield good performance and therefore discarded.

4. Extremely poor performancee.g. negative dB (<1) gain at DC is not useful for
amplifiers in any case and such circuit should not continue to be evaluated on other

performance aspects.

Only if a circuit survives all early exit points it is introduced to the PAT, which in turn
determines its position regarding the topology’s Pareto front. The routine informs calling

algorithm about the classification of the circuit it provided.

5.4.2. Random Circuit Engine

This is the simplest engine generated by the circuit compiler. Its role is to create the seed
to the offline PAT populating process. The engine is compiled with the parameter ranges given

in the topology netlist and uses the C built-in uniform distribution randomizer.

5.5. Circuits Pareto Front

I does not begin each specification query from scratch. To save time, a spec query can
leverage on existing set of pre-evaluated circuits. Although this set of circuits cannot contain an
instance for every possible spec, it spans the range of performance properties and provides a

selection of approximations to optimum for each query. The set of circuits needs to be managed

88

to focus on instances that are useful, that are not redundant by using only partial capability of the

technology and diverse enough to offer real alternatives to a solution.

The first requirement, usefulness, is simply enforced by determining the lower bounds of
performance values. An amplifier with very low gain, for instance, should not take up storage

space, because it will never apply to any user requirements.

Redundancy is avoided by complying with Pareto’s rules of dominance. Pareto sets, as
defined by the economical work of Vilfredo Pargt8]; do not contain two items where one is
better than the other in every aspect. In the case of circuits and performance, if a circuit A is
introduced to the set and there is already a circuit B, which is better than A in every performance
level and implementation cost, circuit A is considered dominated by B and thus rejected from the
set. In case circuit A is better than B in every aspect, A dominates B and thus retained while B is
deleted. If there are no circuits that dominate or being dominated by A, the set accepts A. The
stream of introduced circuits develops the set by converging it to the limits of performance
enabled by the given technology. If a circuit is far from that limit, a dominating circuit will
eventually arrive and throw it out. The final set forms a front, where no significant improvement

in one performance property can be achieved without sacrificing another.

Diversity is achieved by scanning the set and removing too-similar circuits. Certain level
of similarity is permitted for some populating algorithms that use member circuits as basis for

generating others. After the set reaches milestone sizes, it is culled to ensure diversity.

89

5.5.1. Circuit Inventory Container and Manager - PAT

Pareto fronts of various topologies are kept in the Pareto Associative PAdIR (t is a
vector structure, designed to keep the front up to date with every additional circuit. Every
inserted circuit is checked against the previously accepted ones in the PAT main vector, to see if
it is either dominated by any one of them or dominates some of them. Insertion can therefore

result in one of the following

1. The circuit is dominated and therefore rejected
2. The circuit dominates other circuits, so it is accepted and the other circuits are deleted

3. No dominance found and the circuit is accepted
Other methods coded for that structure include:

1. Circuits from spee- preliminary selection of relevant subset of circuits and then
extracting specific Pareto front for a given spec are the steps in associative retrieval of
circuits from performance spec.

2. Automated culling of entries to make sure they are unique and diverse.
These methods were coded in C to ensure fast update and queries of the database.

The PAT plays a role in both offline and online operations. In the offline phase, it is pre-
populated with a set of sized circuits that can be used as a starting point for charting tradeoff

curves and jump-start optimization algorithms.

90

55.2. PAT Entry

Admin 64b ID |Flags

Sizes LlIWl LZIWj

Operating Point VlIVZ V3IV4]

Performance Adc BWIRO]

Figure 24: PAT Entry Structure

Each entry in the PAT (Figure 24), is made of 4 parts:

1. The administrative part contains a unique 64b identification number and scratch flags
for marking dominated circuits.

2. The 2nd vector contains design choices in the circuit. Those are mostly geometric
parameters, but can also be used for reference current, bias voltage and loads.

3. Operating point voltages are kept in the 3rd vector. Although they can be re-evaluated
from the Design vector, they are kept to save on execution time in later operations.

4. The 4th vector contains all the performance properties associated with the circuit.
This is the part that participates in Pareto front domination evaluation. To keep the
code simple, properties that are considered negative (less is better) are stored with a

negative sign. e.g. Gain = 40dB, BW = 100MHz, Area =-10(um)2

91

The PAT, as well as the LUT, is partlGk hierarchical database. This database is stored
as raw binary sequence on file, which together with the shared-object output of the circuit

compiler forms the topology template.

5.5.3. Offline PAT Populating

Once the topology code is creatédjses it to populate a PAT with a general Pareto front,
which is made of a sample of the topology’s sizing space. The goal of this stage is to find circuits
that perform at the limits of the given topology, which makes them markers of the Pareto front of

size vs. performance. This flow is has two stages (Figute 25

At first stage- seeding, the PAT populating loop draws random sizers, based on specified
min, max and distribution and creates random circuits. The circuits are then tested for viability.
A viable circuit is one that has saturated transistors and minimal performance values. An
amplifier that has negative dB DC gain, for instance, is rejected at this point. Viable circuits are
then inserted into the PAT. As mentioned above, some circuits are rejected, some retained and

some retained while knocking out others.

1. Seed Circult Sat 2. Filter-out Bad OP 3. Improve Properties 4. Test Usefulness

[Pareto Associative Table
N

Random

-
S

ik
HOF—)

Figure 25 PAT Seed and Breed Phases

92

The retention rate of the PAT is monitored to make sure it drops in time (Figure 26),
which is an indication that the front is saturated and thus the probability of randomly producing a

circuit that is not dominated becomes smaller and smaller.

The second stageBreeding, the PAT is populated with circuits that are random
augmentations of circuits that are already retained in the front. The retention rate at this point
climbs up, because there are more chances of finding a non-dominated and non-dominant circuit
in the neighborhood of a member of the front than elsewhere in the size space. This stage also
runs faster, because there are more chances of finding a viable circuit right next to a viable one.
Further, circuits that are bred from existing ones are evaluated much faster, because their

operating points are close to the parent circuits and thus take less iteration to converge.

120

Retention [%]
D [0.0] 5
S S8 8

i
(o)

seed breed saturation

N
o

o

0 20000 40000 60000 80000 100000

Inserted circuits

Figure 26: PAT populating decreasing retention

93

5.5.4. Extracting Pareto Fronts

Naturally, it is impossible to store all the sizing combinations and the performance
attributes they produce. An opposite approach makes more sense: store only a subset of useful
combinations of performance attributes and the circuit sizes that implement them. Usefulness of
a circuit is established if there is no other circuit that can perform better in every defined aspect.
This is the definition of non-dominated circuit and the set of those circuits forms a Pareto front.
The common objectives of circuit optimization: area and power are also included in the
definition of performance aspects. The PAT does not pre-assign circuit performance properties to
potential “constraints” or “objectives”, thus allowing users to switch between dual problems, e.g.

“what minimal area should be expected from Apc>=20dB?” Or “What is the maximal A that
can be expected for area<=10(6Mi) The PAT does discriminate between “more is better” (e.g.

BW) and “less is better” (e.g. Thermal Noise) properties.

The first step toward a solution is extracting archived solutions that are relevant to the
spec. This is done by collapsing the generally calculated Pareto in the degenerated space defined
by the spec. A spec may assign one of the following types of values to each one of the circuit’s

properties:

1. Unspecified- ignore this property for dominance consideration.
2. Best- consider this property value for dominance.
3. Inequality— use property value as-is, unless it is greater than the threshold in the spec,

in which case take the threshold in its stead.

94

4. Equality— actual value for dominance consideration is the distance between property
value and one in the speconly used in operating-point and constant sizer

requirements.

When a spec is applied to a Pareto front, previously co-existing circuits can now be
dominating/dominated, because ones advantage oveththremy be assigned “unspecified.
Another possibility of elimination is that they both exceed an inequality, which means they are

equal under the spec, leaving them with only disadvantages.

Table 4: Circuit Grading and Eliminating w.r.t. a Spec

Apc CMRR BW Area
Spec: >30dB) >2MHz best
Circl 35dB 45dB 4MHz 20unt Dom by 2
Circ2 32dB 40dB 3MHz 15unt Met Spec
Circ3 25dB 50dB 2MHz 5unt Trade-off
Circa 20dB 60dB 1.5MHz 15unf Dom by 3

Applying a spec to the PAT (Table 4), two circuits are eliminated:

1. Circuit 1 is better than 2 in general, although it pays for its improved gain, common-
mode rejection and bandwidth in area. When the spec sets the requirement to 30dB and
2MHz, both circuits’ surplus gain and BW are ignored and circuit 2’s lesser area makes it
dominant over 1.

2. Circuit 4 has better common-mode rejection compared to circuit 3, which is the

justification for its inclusion in the PAT in general. However, this performance aspect is

95

outside of the spec. In other words: specifically irrelevant. All that is left are

disadvantages compared to circuit 3, which cause circuit 4’s elimination.

The specific-front is therefore a subset of the general front. It may contain circuits that do
not meet the spec’s inequality levels, but are useful for showing the user how loosening the
requirements on one property can yield better results on another. In the example above, DC gain
can be traded for area. It is useful, because a small sizing change to it may bring it up to the
specified gain at a still smaller area of circuit 2. In optimization theory terms: it may not be a

feasible solution, yet closer to the optimum than the found feasible one.

In case there is more than one “Best” value, which translates to multi-objective
optimization, there may be more than one circuit that meets the thresholds. The algorithm for re-
calculating a sub-front is O(PNP being the number of properties and N number of circuits,
which can be slow for PAT’s of N in the magnitude of 10° and P in the magnitude of 100
overcome that, a loose fitness function is first applied to filter out all but M#tQits. This
non-pure step actually assigns weights to the properties and thus contradicts the multi-objective
concept behind Pareto. However, the circuits left by this filtration still form well populated fronts

and the filter’s target size can be modified if it is too aggressive for some specs.

After extracting a specific front, the PAT further filters the set according to the required
graphic presentation. This is done by applying an additional artificial spec, which is made of
“Best” entries for the axes properties and “unspecified for everything else. The resulting set is a
front tracing the tradeoff between the axes properties, with regards to the required performance

figures.

96

5.5.5. Culling

Another PAT operation, designed to keep the circuit set diversified, removes circuits with

duplicate performance according to a similarity factor S:
Algorithm 9: Culling Similar Circuits from the PAT

Pi,j - property i of circuit j
S - similarity factor (smaller -> more aggressive culling)
Begin

// Init thresholds

Foreach i

Begin

I
8

Pi,min

]
1
8

Pi,max
Foreach j
Begin
If (Pi,j<Pi,min) Pi,min=Pi,j
If (Pi,j>Pi,max) Pi,max=Pi,j
End
Pi,th=(Pi,max- Pi,min)/S
End
// Detect and eliminate similarities
For (i=0;i<|circuits]|;i++)
Begin
Similar=1;

For (k=i+1;k<|circuits]|;k++)

97

Begin
Foreach j: If (abs(Pi,j-Pk,j)>Pj,th) Similar=0;
End
If (Similar) eliminate(i);
End
End

The expensive algorithm described in Algorithm 9 (time complexity: G\Pkan be
accelerated by sorting the circuits according to their properties in separate lists and focusing on
suspect duplication. However, the motivation to do that is not high, because this algorithm runs
in the more relaxed offline phase and if repeated in its aggressive setting (low S) often enough,

has very few circuits to run on.

For the purpose of lab tests, there is no real need to limit the number of long-term
archived circuits. However, it is necessary for community-wide deployment to make sure the
PAT’s do not grow unchecked. Space limitation is not only a matter of disk space, but primarily
derived from required response time. PAT inflation can occur when a large number of users’
queries fill up the PAT with circuits too quickly. The tool needs to avoid becoming “electro-

mechanical” by having to swap large PAT listings between DRAM and hard drive.

Cache management LRU policy is useful for discarding no longer needed circuits in
order to keep PAT in a reasonable size. Each circuit gets a time-stamp field, which gets refreshed
when it becomes part of some user’s specific front. Merging and culling operations essentially
turn two circuits into one. When one of two circuits get eliminated, the latest time-stamp is
assigned to the remaining one. After merging and culling, the daemon applies binary-search for

an expiration date that only keeps the number of circuits it can fit in the allocated space.

98

5.5.6. PAT Size Requirements and Limitations

The pre-populated PAT is necessary to give an initial indication of topology performance
limitations. Without a pre-populated PAT, online generation of Pareto fronts would take hours,
which is far from a commonly-expected query time on a website. The lower-limit of a PAT size
was observed to be in the 18Ked circuits, provided they are diverse enough to capture the
performance surface evenly. The upper limit is determined by the number of circuits inserted to
the PAT in a single transaction and storage limitations. At measured average insertion time of
300nsec per already-stored circuit (see. Experimental Results D.2.ii), a transaction of 103 of
circuits to take place in ~10 seconds is in the magnitude of 1M circuits, which occupy 10 of disk

space, a reasonable size per topology.

5.6. Web Applications

5.6.1. Data Visualization

Graphic visualization of data is the bottom line outcome of thgstem. The main
format chosen for final data output is the Scalable Vector Graphics (SVG). SVG has the

following advantages:

1. Itis an ASCII format, easy to be generated with simple Tcl procedures.

2. ltis an instance of XML, which is both welbiented and compatible with Tcl’s
Polish-Notation (PN).

3. Generated images are scalable without loss of quality.

4. Itis a well-established format, having ample community support in freely available

editing and converting software.

99

Visualization inl" can be any of the following 4 categories:

1. Scatter plot- showing a field of markers along X/Y axes. The field is marked with a
mesh and labels on the axes for orientation. The markers can be connected to show
curves.

2. Histogram- column diagram used mainly for plotting the distribution function of
errors.

3. Heat map- false€olored “heat” representation of a 2D functions

4. 3D wire mesh- isometric surface representation of a 2D function.

All applications of data visualization use the same code, consisting of few multi-purpose
procedures. This makes the look and feel of charts uniform across online and offline flows and
enables centralized upgrades and maintenance. Regardless of type of plot, each has to go through

the following stages:

1. Calculate the range of the X/Y domains and the ratio between physical levels and
pixels.
2. Determine appropriate pitch per axis for the background grid

3. Generate SVG code for the frame, grid, labels, titles and markers.

X/Y ranges are easily determined from the extreme values of the given data. There is an
option to add a belt to the range by extending the range by 5-10% on each side. Determining the
grid’s positions and pitch was initially done in a naive procedure that divided each axis range to
10 equidistant stops and labeled them accordingly. This approach is simple to implement and
requires minimal calculations. However, the grid lines fall in fractional positions that may

contribute to user disorientation instead of suppressing it. For example, it X is ranging between

100

1.35 and 8.55, the labels generated in the simple method are 1.35, 2.15, 2.95... Automatic graph
generators of the kind found in spreadsheet programs do a better job of finding a pitch and
starting point that are more natural for humans to absorb in a glance. For the above example, a
simple 1, 2, 3... grid serves a better orientation guide, even though it has fewer grid lines along

the X axis. The data visualization procedures were updated with automatic grid finder that looks

for appropriate units is in currendgnominations steps: 1’s, 2’s, 5’s, 10’s etc.

Histogram plot uses rectangles for columns instead of markers. Since histograms convey
the statistical distribution of the data, optional statistical notation can be added. Average,
standard-deviation multiplications and top percentiles can be marked either by drawing vertical

lines or by changing the columns’ fill colors.

3D surface plotting of a 2D function is done with isometric projection. This plotting
mode is limited to presenting the path of slope optimization algorithms, because it is hard to

discern X/Y positions from location on screen or function values from the surface height.

For most purposes, the heat-map is the preferred method for showing functions of z=f(x,y)
form. The heat map itself is generated in a bit-map (BMP) format that is referenced from the
SVG code. Bit maps are binary arrays of pixels’ color values. The bitmap is generated from a list

of (X,y,z) points using Algorithm 10.

Algorithm 10: Interpolate a heat map out of a data set in bitmap format

Begin
For all given pi=(xi, yi, zi)eP

'Find Xmaxs Xminy ymax: ymin) Znaxy Zmin

101

Allocate float F[Xresolution,Yresolution]
Define: Xj=floor((Xi-Xmin)/ (Xmax=Xmin)*Xresolution)
Define: Yi=floor((Yi-Ymin)/(Ynax-Ymin)*Yresolution)
// Scan all pixels in the array
For (i=0;1<Xresolution®Yresolution; i++)
Begin
// Scan all given data points
Sigma=0
Weights=0
For (3=0;3<|P[;Jj++)
Begin
Sigma=Sigma+zj/((xi—xj)2+(yi-Yj)2)
Weights=Weights+1/((xi-xj);+(yi-Yj)2)
End
F[1%Xresolutions 1 \Xresolution]=Sigma/Weights
End
Allocate float TH[|colors|+1]
TH[@]=2Znin
TH[| colors|]=Znax
// Find optimal thresholds with binary search
For (i=1;i<|colors|;i++)
Begin
Target_num_of pixels=i*Xresolution™*Yresolution/ | cOlOPrs |
THnin=Znin
THnax=Zmax

TH= (THmin+THmax) /2

102

For (j=0;j<N;j++)
Begin
Num_of _pixels=0;
For (k=0;k<Xresolution*Yresolution; K++)
Begin
If (F[k%Xresolutions K\Xresolution]<TH) Num_of pixels++
End
If (Num_of_pixels<Target_num_of pixels)
THpin=TH
Else
THpax=TH
TH=(THpin+THpax) /2
End
TH;=TH
End
// create the bitmap array
Allocate BM[Xresolution,Yresolution]
For (x=0;X<Xresolution;X++)
Begin
For (y=0;y<Yresolution;Y++)
Begin
Cnax=| colors|
Cnin=0
C=(Chax+Cnin)/2
For (i=@;i<log,(|colors|);i++)

Begin

103

If (F[x,y]<TH.)
Cnin=C
Else
Crax=C
C=(Crax+Cnin) /2
End
// Color the pixel according to the threshold
BM[x,y]=Palette[C(C]
End
End

End

After interpolating all the pixels in the array, Algorithm 10 performs two binary searches:
1. per color, calculate its z levels, in a way that each color gets an equal number of pixels 2. per

pixel, find the appropriate z level segment and assign it a color.

A faster, cleaner, and memory-efficient algorithm avoids pixel-level interpolation and
produces scalable vector representation of the heat map. Algorithm 11 assumes that the set of
given pixels P is aligned to a matrix with relatively small number of rows and columns.

Typically, a sweep of parameters has 30-50 value in each dimension, which means that the input
set has few thousands of samples. Therefore, the threshold allocation loop can be done on the
input set of pixels, without spending time on interpolating each pixel in the final image. After
allocating z thresholds, the algorithm assigns color per input pixel and groups together adjacent

pixels that share the same color to polygon sets. In the final step, the algorithm walks around

104

each polygon set, using a short list of rules, and estimates the location of all the points that define

the boundary of the polygon.

Algorithm 11: Scalable Vector Graphics heat map generator

// Allocate and calculate TH[] as in Algorithm 10, using P only
// Color each p; as in Algorithm 10
// Group together p;’s that have the same color
Define stepX[]={-1,0,1,0} // these numbers mean
Define stepY[]={0,1,0,-1} // west,north,east,south
For each polygon set PS;
Begin
Find (x,y)=(Xe,Ye) on the boundary of PS;
Boundary;={}
Cthis=color(Xe, Yo)
Dir=0 // start with west
While “forever” do
Begin
Cother=COlor[x+stepX[Dir],y+stepY[Dir]]
If (Cthis!=Cother)
Begin
Xboundary=X+StepX[Dir]*(z-TH[Cthis/other])/ (Z-Zother)
Yboundary=Y+stepY[Dir]* (z-TH[Cthis/other])/ (Z-Zother)
Dir=(Dir+1)%4 // rotate clockwise
Append (Xpoundary > Yboundary) tO Boundary;
End

Else

105

Begin
x=x+stepX[Dir] // walk
y=y+stepY[Dir]
Dir=(Dir-1)%4 // rotate back
End
If (X,y==Xp,Yo) break
End

End

Algorithm 11 assigns each shape a closed contour. However, it neglects special cases
where the contours leave areas in the image uncovered. Using the walk-around loop as described
above can create white triangular artifacts in the image. This can be overcome by using a set of
rules described in Figure 27. The simple rotation corner in Algorithm 11 is performed only when
there are two colors between the corner and its neighbors. In case there are three or four colors in
the corner, an additional point is added to the boundary. Figure 27 shows three types of corners
in the walk around a green polygon. The black dots show linear estimation of where two color
regions should border. The white dots represent a special corner point that is added to avoid a

white triangle artifact in the final image.

106

2-color corner

3-color corner

4-color corner

Figure 27: Corner rules added to Algorithm 11

The list of points Boundarys printed out for each polygon in SVG format. Even though
it is ASCII based, files of this representation of a heat-map are ~100 smaller than the binary bit-

maps.

5.6.2. Single Transistor Sizer

The first optimization tool chosen to illustrate the performance of the proposed LUT
approach is a transistor size calculator that can convert operating conditions and constraints into
length and width metrics. It is a tool close in function to the one proposed by Bi#{ley
However, the approach proposed by Binkley is structurally intended for sizing single transistors.

The “MOS Design Tool” was created to give designers information about a single transistor’s

107

performance parameters, given design choices using the EKV model. The tool provides a
straightforward “pass” or “fail” for a given spec for a transistor with the execution of a batch of

equations from the EKV model. There is no attempt to underdesigner’s intent. Therefore,

no search is performed to meet the spec, and/or minimize transistor size/power while meeting the
spec. The usage model of this tool proposed by Binkley justifies its reliance on using the full-

blown SPICE model for evaluation.

However, for the purpose of automatically executing a thorough search in the solution
space, this model cannot be scaled up. The “Transistor Sizer” proposed in this paper evaluates
1000’s of transistor configurations, varying in geometric and other design parameters (such as
bias current and over-drive voltage), to meet a given spec while optimizing area and/or power.
This is only the first step toward multi-transistor circuit optimization, in which the speed and

accuracy advantages of LUT models over equation-based ones is bound to play a cardinal role.

The tool starts with a fill-in form (Figure 28) that lets the user chose top-level
characteristics, such as technology and channel type, and then tygeandb. The user sets
constraints on other aspects of the transistor selection space, such as noise floor or offset. After
the user hits the “submit” button, the tool scans transistor sizes and biasing parameters in the
space permitted by the spec. It uses a gradient algorithm to find a feasible and size-optimal
solution that meets all the specs, if such solution is possible. Since this tool is a research engine
for verifying the correctness and usefulness of the LUT models, the tool also generates SPICE
circuits and harness for comparing its findings with NGSPICE. It launches a simulation and fills

up the 3 leftmost columns with results and error metrics.

108

Transistor Sizer TSMC018

Parameter |t Input Calculation |Source | Simulation [Error| Error[®l]|
|device nch |
ocess A .'
Fmp I 409 (step 1)
|Operating Limits
VosimV] [oa v |
lTpsimA] [— |0233uA [swepd) P1739A [5oaleSnA [2.733%
Primary Performance Targets
™ I]L 1409120 (step 6) [141.206u0 [294.04900 [F0.208% |
Iro I B3.68BKR [(step 9) [B4.616KR [-928.2980 1.097%
[Gain “' [21.432dB [istep 10) :
r()pliunal Parameters
VasimV] 055 i
Veg|mV] ID W
|\Secondary Performance Targets
Hz ">Noise_Flool [i334p AN Tz [(step 11)[1.547pAN Hz |-203.053FA Hz |-13.120%
ling*f — [5.030mA listep 123]4.169nA 1860.628pA 20.641% |
lic 3.741KHz |(step 13}
Va -7.130v |(step 14)
Vy . p94.007mV |(step 15)
|C£|I|:ulated Parameters
L [ree7 m
W .
Area |: 41, 4mum? |(step 16)
lolps I 1.900% listep 17)
oV I 3.596% step 18)] |
|Lin 1 ge-
Submit|

1 Caleulating temp based on process
temp=process 2temp(process)=-40°C

2 Calculating Tds_unit based on {Vgs Vis Vs L W}
Ids_unit=lds(Vgs Vds Vbs L W)=17.478uA

Figure 28: "Sizer" Screen Shot

109

The sizer produces a report with all the steps it needs to search and calculate the
unconstrained parameters. The slope algorithm used to find optimum starts with a minimal
length and width transistor. For each step, it scans an array of lengths and widths around the
current transistor size and selects the one that gets the minimal distance from the spec. The
selected length and width serve as the search direction followed by the optimization algorithm.
The algorithm steps in the found direction and doubles the step size until there is no longer
improvement in the distance to the spec. When the selected direction is exhausted, a new search
is initiated and a new direction selected. The solution stops when the spec is met. The path is

presented on an isometric projection of the spec-distance function (Figure 29

Cost Function L/'W Plot

Zoom-In on Solution Area:

1 Calculating temp based on process
temp=process2temp(procass)=27°C

Figure 29: Search Path Plot on top of Spec-Distance Function Surface (zoom-in below)

110

The solution is posted in the form and a sign-off simulation is launched to verify the

results’ accuracy.

The sizer is implemented as a scripted prototype. Its structure and design lessons served
as a starting point in constructing the next level in circuit evaluation software for automated

synthesis.

5.6.3. FETScape

The front-end of is a website, implemented in Ajax architecture to accelerate
transactions and match responsiveness with on-premises tools. The site is organized in tabs.
After the main Analysis tab, one can find trivial web services, such as forum and chat, report

authoring utility and help.
A three-tier service model creates responsive interactivity (Figure 30)

1. User-Browser exchanger stores all the navigational data it can in the browser’s
JavaScript workspace. This makes selecting circuits from the presented map,
populating the table and updating hover-events on the schematic pane to appear
instantly, well under the 0.1sec time limit.

2. Browser-Server queriesGenerating maps as a reaction to spec changes and axes
selection is performed as response to Ajax requests. The map generating script loads
the PAT, applies the spec and generates the SVG and sometime bitmap graphics for
the displayed map. All this is done in ~1sec time budget. Every Ajax request is

repeated several times in 5sec intervals to update the graphics with PAT changes.

111

3. Background Optimization outside users’ direct control, an iterative daemon is
looking for active sessions IHs work area. If it finds one, it looks for GUI-selected
circuits in the session records as hints to the user’s interests. It then uses optimization
algorithm (random hill-climbing, line searches etc.) to improve on user-selected
circuits. It inserts the improved ones back into a new copy of session-dedicated PAT.
This new version of the central PAT is from now on the one used by cycle 2, which
means that the user can expect to see new circuits appear on the map every 5-10sec,

as long as the session is active.

The goal of creating curves and heat-maps in seconds was reached for the system. Further
accelerating the website can be done by converting some of the asynchronous CGlI transactions
to a resident process server that is preloaded with all the necessary binaries: PAT, topology
shared-object and transistor-level tables. This future acceleration will free some time from the

server and distribute the bulk of the work to remote and more powerful machines.

Tier #1: Tier #2: Tier #3:
User/Browser Client/Server PAT Background
Management

Desquer #
- Cl ~
Dsﬂuner)

Des\gwer #

Figure 30: System Architecture from a Designer's Perspective.

112

6. Experimental Results

6.1. Methodology

Quiality analysis of the constructed systems, Sizefraislcomposed of the following:

1. Accuracy of results, compared to commercially available tools (Sfkctre

2. Calculation time, compared to SPICE simulations.

Exhaustive comparison of transistors and circuits is not possible, due to the continuous
and multidimensional nature of the sampling space. Even comparison of too large (>100’s)
sample size is difficult, because automated simulation loops in Spectre SKILL interpreter can
take hours to finish and more often crash the tool completely before results can be post-
processed to statistics. The workaround to this problem is a two-staged comparison, which serves
to validate both NGSPICE and the systems derived from it. The first stage compares RAMSpice
itself to Spectre (Figure 31). The two simulation tools are expected to be very close dtheach
because they are inheriting the same simulation code and architecture and implement the same
transistor models. Differences, if any occur, can only be attributed to different numerical
methods (round-off), errors in converting the models parameter files, and differences between
test circuits. Since significant differences are not expected, a smaller sample size is required for

this stage, compared to the next one.

Figure 31: First of Two-Staged Comparison Procedure Data Flow

113

The next stage of comparing Sizer dntb SPICE is done within the single executable

RAMSpice. This monolithic binary contains both SPICE simulator and the original systems

presented here. Since this stage is expected to come up with some mismatch between the two

tools compared, a relatively larger sample size is required to collect enough data. RAMSpice

runs a Tcl script that can collect 1000’s of data points in under an hour and construct all

visualized collateral in a document that providéseatificate of calibration”.

6.2.

6.2.1.

Transistor-Level Results

Spectre to SPICE Comparison Stage

The main parameter to compare between Spectre and SPICE in transistor level is the

channel currentsk as a function of voltages, length, width and corner (Figuye 32

Sp1 1SV

RAMSpice Vs. Spectre Ids

720.363mA

! 1 I) ! | ! 1 |

1 1 1 1 1 1 I 1 1

1 1 1] 1 1 I 1 1 _{E
bR L T S e e R PGP e et e ey PresIegeee] peep e speegs [BERE gl | %

| | | i l 1 I | I.;'

1 1 1 i 1 1 I 1

1 ' ! \ \ i : ; I
Fofry it N L (VORI -PUCREP | S SP I| || WOYOPER. D! |SPCITRUTE | DR (LI - el P |

|] | 1 | 1 I -‘.n'r" |

1 i 1 | 1 1 I 1,9 |

| 1 |] I 1 I "' |
AITIMA. el e ot i o o o e il e e sl dmmmadsmaad

! 1 |] | | ! I !

1] 1 1 1 1 I 1 I

1 1 I 1 1 1 I
i 1 B g s SRR W bR LS ERM LA SRR e o S I e, B B |

| 1 |] I 1 [

1 1 1 I 1 1

1 1 1 ' I 1 1
G T e NI e o ey i) | B do ==k Lo s Y

[| | i i | |

1 1 1 i I 1 1

I] |] |] [
2410500k o . o _ 8 .o b Al e b o b B

1] 1 [1 1 I 1 1

1 1 1 I 1 |

I 1 | 1 I I I
AT e mn ot nmimad m od wigl - A e bl ol -k

I 1 | 1 | I |

I I 1 I 1 1 1 I

| I 1 | 1 ! 1 I
TIBTINA ol o o e e d e AL drmmmadac s dda s d e dacccadaccacdacaadiaaad

I I 1 I I ! I |

1 1 1 1 1 I 1 1

L | l | | 1 i | 1
I"!‘JSHSDA__.___.#____J____.J__-_J_-__J__._...J___-.J-_-_J-___.J _____

| | i l 1 i | |

1 1 1 i 1 1 I 1 1

!] |] ! [| 1 |
25.1090A L 4 L 4 L L | L L

1 1 I 1 I 1 I I 1

26.930nA 126.718nA 596.253nA 2.805uA 13.201uA 62.116uA 292.279uA 1.375mA 6.47ImA 30.449mA 143.273mA

Spectre Ids

Figure 32: Scatter Plot of Spectre vs SPICE Ids Values (TSMC 40nm NMOS in SS 125C)

114

The plot seems to follow the Y=X line for currents up to 1mA, where some mismatch
begins do develop. This phenomenon was initially attributed to code differences between the two
tools, which may result in accumulated round-off errors. However, when the relative-error

histogram was plotted, a different picture begun to appear (Figure 33

Relative Error Histogram

B0
| |
| |
i i
79.2 B S R e TR R s e R A R T e T e T TR R
l |
1 i
] i
70.4 Bl o o o . - 2] | S I U PP
| i
| I
] i
BLBU0 ol i o i e e b o e) m k m M v i
0 " I]
: ' '
= I i
- 52.800 B e e o N o e kR P v e P T b e e T
| |
I I
I i
44.0 B A R R T S i P e EiEssin i s s s o i
I |
1 i
| |
35.2 Bl . o o . o 2 . - 2 [. P
| |
| |
| I
26,400 R i S ot) i M i) s
| i
| i
l |
17.6 B o T e o e N i i o o e L i s ma
|
I
|
| S e e e e e s e R L N R i S R e D B TR
i
1
|
]

78.710% -70.835% -62.060% -55.085% -47.2100% -39.335% -31.460% -23.585% -15.710% -7.835% 0.039%
Relative Error

Figure 33: Relative Error Histogram For Figure 32

Figure 33 shows that the majority of samples do fall on the X=Y line (see thick column
on the right). However, the errors can go up to 75% and more when they are not prt of this line.

Some transistor geometries are understood completely differently by the two tools.

115

Inspecting the error occurrence in different geometries revealed that some model bins are
more immune to these errors than others. Specifically, wider transistors display more
discrepancy between SPICE and Spectre than narrower ones. After eliminating W/L>10

transistors from the comprison, the tools show perfect match (Figure 34

RAMSpice Vs. Spectre Ids

B.644mA
i i i i i] i] i
I 1 1 1 1 1 1 1 1 -
| | | | | ' ! ' et
voanneh: alics o ssnn i sk S andlis s s s sain n s s e soa s s
| 1 |] |] ! 1 |
] 1]] 1]] 1 ',I
i 1 i 1 i i 1 i 1
AR 2Ol e e ol i i el e,y il e ol s e .
i 1 d 1
1]] i
l 1] 1
B INA ol s e e e s e i e e s S s | M
| '] 1
1 1] i
1 ' ' l
AAGINA ol sl s el el e el il e sreralesan e s d
! 1 1 |
1 1 1 1
i ' ' l
AN ol Y L b s) AT PR DR e S P R [t T SR
i ' ' l
A | 1 1 |
g l] | | 1
:‘é B e B S S S S N S
1] d ' 1
[1 1 1 1 i
=, l I ' ' l
(=] 12400 oo o m ol O | LR UTIREIY.) PRCPICIPC SRONRESTTES] LTI | Rl
o
fini¥ I 1] I 1 1 1 I
o 1]] 1] 1] 1
w I 1 1 | 1 | 1 |
363.749nA B _ _ _ 3 _ _ _ _ -2 i s s i il s gl il ke clhe s s e
| 1 |] | [} !) |
1 P 1 i 1 1 1 1 1
| 1 | 1 | 1 |) |
YOG AT ol m oo e e b s e e s e e e e e ke]
P |]]] 1 1 I 1 |
-] 1]] 1]] 1]
1 1 1 1 1 1 1] 1
31.288nA . . I 4 i X . .
] 1 1 1 1 1 1 1
31.286nA 106.236nA 360.706nA 1.224uA 4.158uA 14.118uA 47.938uA 162.765uA 552.642uA 1.B76mA 6.370mA

Spectre Ids

Figure 34: Spectre vs SPICE Ids match, without W/L>10 Channels

The fuzzy top of Figure 32 is now gone and the histogram reveals that the errors are

negligible (Figure 3b

116

Count

Relative Error Histogram

880

79.2

704

©1.600

5z.8

44 0

35.2

26.4

176

-4.21%

“2.510% -2.085%% -1.6607% -1.235% -~0.810%

-3.360% -2.935%%
Relative Error

Figure 35: Relative Error Histogram for Figure 34

117

-G .385%

Since Spectre is a complete black-boxed tool, due to its commercially-protected source
code, there are not many opportunities for understanding in depth the contribution of transistor
widths to SPICE/Spectre mismatch. However, wide channel transistors of more than 10 squares
are never used in an actual design and they pose greater problems in comparing 4D models in the
second stage. Thus, the finding that RAMSpice and Spectre match as long as W/L does not
exceed 10 was considered satisfactory for this research. Transistors of wider channels can still be
implemented as parallel connection between two or more narrower channels, known as “fingers”.

That option is available by botbols in a parameter known as “m”, the multiplier.

All operating-point parameters are derived frgggm For example, gis extracted from
running bs characterization loop with 34 stepped up € above the original values and then using
the original ps to calculate the derivative afdw.r.t. Vss Therefore, matching§between the
SPICE and Spectre is enough to prove that the two models are understood the same by the two.

Repeating the same analysis for TSMC 180nm yields the same quality of results (Figure 36

RAMSpice Vs. Spectre Tds

5.661mA

|
1 '
' ' i '
2045mA o S _a]
' ' ' '] ' | ' -5
i '
1 ' I ' I T 1
Bl.‘hSdu:_-_._J-_-.J-_._J_._.J____J_._-J._.-J____.J._.-J _____
] i] i | i
i 1
| ' ' i '
FFBAGIA ol ool i b b s i el i i el s sl S s b e o
1 1 1 1 Il] !] '
' el '
i 1 o i l
LGSRl el oo sodurssdosords ol sarsdosseglil codonard oo ndsn o
|] i |] o1 i '
1 ,’n I [l
' ' I ' i o ' I ' !
RERCITT N e N PR U P A DR [P S PR
1 [} | 1 at i | [l |
- i L4 1 1
e i I 1
U N e B S U S B SUPUUS S SRR
=2 [| i P i] i 1 i
v ' b i 1
=, ' ' R ' ! '
=] L R i e L e RIS pUpISpR PRSI (RS
yhy 1 1 o | 1 I 1 I
1 i 1 i
& i A i | I ‘
ZAOTR ol s AbsEis e st s o o sise e ueilue s deasdis o snas e
al I ' ! '
' i '
- ' i ' 1 ' i
OL03830A o - o o o L e e e e e e e e e e e d e o
o | 1 I 1 i 1 i 1 i
344.9030A
| 1 1 I
344.9030A 912.753nA 2.4150A 6.3920A 16.916uA 44.768uA 118.476uA 313.534uA B29.738uA 2.195mA 5.811mA
Spectre lds

Figure 36: 180nm NMOS and PMOS Ids comparison between Sepctre and SPICE

118

Relative Error Histogram

Count

10.8

0.9% 0.459% .0.019% 0.420% 0.860% 1.3% 1.740% 2.18% 262% 3.06% 3.5%

Relative Error

Figure 37: Relative Error Histogram for Figure 36

Figure 37 lumps together all the 180nm relative errors in a histogram. There is no control

of channel type or length, except for limiting W/L<10. The two tools match for 180nm as well as

40nm.

6.2.2. Budgeted Resolution

To optimize the resolution per view and corner it is not enough to find a resolution that
satisfies our required accuracy and access time. Given the first-order interpolation methods
discussed i®.1.35.1.5, the source of mismatches betwe®iLUT models and the ones used by
SPICE is the curvature of the modelled functions. The mismatches are therefore minimized when
the sample resolution grows and that translates directly to higher memory demand. Furthe more,
the same overall number of samples can be used in different combinations of per-parameter

resolution. Some parameters return more accuracy per invested resolution, so it is important to

119

chart the best use of memory when a sample size is invested to gain accuracy and speed. The
trade-off can be analyzed using Pareto optimization. Nested loops scanned logarithmic scale of
resolutions in V2 steps, for each view and corner. The resulting combinations were plotted in the
error/memory field (Error: Reference source not found), where the X-axis shows the budgeted
memory and the Y-axis shows the maximal error. Any point that was dominated by another i.e.
required more memory yet resulted in greater error than the dominating one, was removed from
the set. After removing the dominated points, some other points were ruled out by proving low
return on investment compared to others using convex hull algorithm. The final set represents the
Pareto front, which is used to show the limits of memory/accuracy trade-off and the optimal
distribution of resolution between the parameters, per trade-off point. The Pareto front is a set of
useful resolution combinations. The same analysis is repeated for the memory/access-time trade-
off. Since the internal partitioning of the behavior space is hidden from the querying code, each
device, view and corner LUT is free to be constructed in a different resolution. Choosing the
minimal memory size per LUT that satisfies both accuracy and access-time requirement is

therefore dependent on this preliminary analysis.

o — Bk o nd J o R [—— J o m o P pucan: an { Sl D)oy e e
1 1 |)] L 1)
] 1]]]]
)]]]] |}
il sl e o oo oo Tl e b e ey el oy, e e
|] |]] '] 1)
| ° 1 L ' ® | ' 1 |
| o | | ' | |
=) - o S (S ol B e nm ‘ - |7 s el J 4 7=
t) ' ' . ' L}]
LL] 1 J . |’. |] ‘)]
ﬁ 1 : . e l‘ .l ® .n 1 '
- PRl BEPESEITION (ORI [LR, SRR i o nian io il e 3k ws—ed wpa: b e wh ke ik deten ol ae b eer s i) vt @ =l
i | !) | I ' ! |}
|] .b I.] ' |)
! ® ' | 90 o 1 ' | |
55 I DS L Jim e -.dq__'_,:‘_-.‘.;__‘<_;_.- W p——
1 ' ' ' e o @ ' °
A R A 1 A
)]]]]])
" N " " L " "
| 1 1 1 1 1 1 1 I
1OMB 16MB 27MB 15MB T4MB 123MB 205MB 336MB SSEMB 920MB 1GB
Budgeted Memory

Figure 38: IDS resolution combinations memory and resulting maximal error

120

http://www.sciencedirect.com/science/article/pii/S0167926015001182#f0020

The elimination process fdgs yielded a Pareto front comprised of the following useful

resolution combinations (Tablg:5

Table 5: Useful IDS (SS, 125 °C) resolutions

Vas Vbs Ves Memory[MB] Max Error[%]
0 0 0 13 28.600

0 7 0 R4 11.737

12 7 0 32 6.520

12 33 0 61 5.686

23 33 0 117 4.427

P3 65 0 P31 4.276

P3 65 7 437 4.075

23 65 33 848 1.069

Since other parameters are derivativesgfthe choice for the latter’s sample resolution takes
the highest priority. The advantage of keeping all parameters at the same budgeted resolution is

that hypercube location code can be shared between them and composite interpolation is enabled.

The same analysis was done for access time vs accuracy trade-off (Error: Reference

source not found) and the selected resolutions (Table 6

121

http://www.sciencedirect.com/science/article/pii/S0167926015001182#t0010
http://www.sciencedirect.com/science/article/pii/S0167926015001182#f0025
http://www.sciencedirect.com/science/article/pii/S0167926015001182#f0025
http://www.sciencedirect.com/science/article/pii/S0167926015001182#t0015

Figure 39: IDS resolution combinations access time and resulting maximal error.

Max. Error

-l J - J i L
' [[| '
' 1 1 ' '
' ' | !
e o) o i el e i) b) v b e) e s e)
1] ! 1
1 ' o | '
| .' ' '
ecocdecansdeseeBldecea Seeed @ -cdecccdanaa deccadece=d
' ' [° '
' | o . ‘e 1
° ‘e P 0% | '
- T oF 01l o TR 18 . J -
' 1 1 [|)
' [| | '
I ' - % l:‘. | '
- i - e’ 0“.‘...00,‘._..._.___... g - - 8t vl D aeia
' { ' ' e 1
E
] ' .“ .x. P @ '
' ' ']] 1
" " . "
I 1 1 1

Access Time

Table 6: Usefulds (SS, 125 °C) resolutions vs. access time

Vs Vps Vgs Time[ug Top error [%)]
33 17 9 1.042 8.989
33 65 9 1.125 4.989
23 33 9 1.187 4.427
23 65 9 1.211 4.276
23 65 17 1.335 4.075
23 65 33 1.452 4.069

The voltage resolution chosen for the follow-up analysis is therefore 5 bit for VGS and
VDS and 3 bit for VBS. As the curves show, return on investment drops significantly for higher
voltage resolutions. To maximize accuracy in the budgeted memory size (10MB per parameter

LUT), the length resolution was chosen to be 8 bit. 5:5:3:8 translates to 8MB of single precision

array.

122

6.2.3. Transistor Level LUT to SPICE Matching Regression

The results given here are PDF files generated automatically byréggession flow.
The regression suite is a collection of all the tools used to generate the LUT models: SPICE
technology library generator and characterization loops. It contains an additional random
sampling and statistical analysis of LUT vs. SPICE tool. The statistical results are plotted and
summarized in a hierarchy of HTML pages that are published online. For a given manufacturing
technology and resolution, the system populates all the models required for solving circuits
containing N and P channel MOSFET’s (nch and pch). Following LUT generation, a random
sample of voltages and geometries is generated in a RAMSpice Burigtults are recorded
together with results taken directly from a SPICE simulation. The models that are compared to

SPICE represent a selection of parameters from 3 performance domains:

1 DC-lps, Gn %
2 AC-Cgs Cop

3 Noise- thermal spot and flicker at 1Hz.

The sample size selected for graphing the results is 500. However, different sample sizes
can be selected for getting more confident statistical results. The regression suite generates a
hierarchy of HTML files that are published online and then converted automatically to PDF. The
accuracy portal is a simple table showing analyzed technologies and resolutions. Clicking on one
of the technology+resolution links leads to a summary page, showing a matrix of devices,
corners, parameters error values in different percentiles and relative [%] or absolute values
(Figure 40). The passing thresholds can be configured by using a configuration file, but by

default a 10% diversion betweé&rs interpolation and SPICE results is permitted to 99% of the

123

samples. The pass/fail status of each parameter is presented in green/red font coloring,
respectively. Figure 40 shows a summary done for the TSMC 40nm technology, sampled at 5b
resolution at s, 5b at \bs, 3b at \ks and 8b at channel length (abbreviated to 5:5:3:8). This is a
4D LUT, which means higher order width effects are neglected. The two fajlcaymmers can
be waived because of the relatively low maximal absolute error in ordet &, t0mpared to

typical go values in the order of 10-50.

Accuracy Results for Tech: tsmc040 Resolution: 5:5:3:8

nch pch
t ff s t ff ss
delta rel delta re delta re delta rel delta re delta rel
[50/63.535nA 0.123%][58.529nA 0.207%][68.927nA 0.269%6.342nA 0.178% [9.671nA 0.246% [6.671nA 0.076%
75(84.3450A 0.382%[103.17nA 0.441%[82.327nA 0.559%[15962nA [0.284% [27.098nA [0.356% [9.561nA 0.174%
Ids 0[186.364nA [0.661%223.379nA [0.819%[184.672nA [1.093%/40.127nA [0.542% [98.378nA 1.019% [15.288mA 0.278%
95(290.664nA [0.79% [290.469nA 1520%)[380.672nA [1472%50.362nA [0.974% [134.188nA [2.164% [23.468nA 0.338%
99(420.764nA 1.137%)467.87nA 4.430%]576.172nA 1.817%/66.7620A [2.758% [255.511nA [3.906% [61.068nA 0.683%
50[20.538aF [0.845%]21.3aF 0.893%[8.017aF 0.793%[9.465aF 1.258% [21.101aF 1.205% [15.258aF [1.249%
75/20.8142F [1.095%0[21.554aF [1.115%(8.2162F [1.032%[9.709aF L640% [21.331F [1.470% [15.462aF 1611%
Cod 90(20.988aF 11.793%|21.725aF [2.399%)8.363aF [1.855%9.86aF 3.404% [21.496aF [3.317% [15.631aF 3.497%
[95[29.431aF 3.859%]26.122aF 4.702%/27.291aF 4.258%/9.91aF 4.123% [21.557aF 4.226% [57.438aF [4.321%
99(594.031aF 5.317%]|549.782aF 5.525%]|181.991aF 5.264%388.075F [4.616% (674.717aF [4.797% [376.198aF 4.539%
50[23.573aF 0.221%][15.702aF 0.241%)29.153aF 0.184%[11.117aF 0.279% [16.335aF 0.254% [18.453aF 0.241%
75(26.563aF [0.254%[18.99aF 10.266%[31.206aF 0.215%[13.021aF 0.311% [18.286aF 0.282% [20.4722F 0.28%
Cgs 90(36.696aF 0.811%[24.477aF 0.949%[41.206aF [0.655%/13.948aF 0.777% [19.701aF 0.757% [21.114aF [0.686%
95/116.696aF 1.040%]74.477aF [1.341%]131.206aF 0.925%]/69.2322F 0966% [84.023aF [1.103% [116.769aF 0.875%)
99(366.696aF 1.327%)284.477aF 1.568%]|501.206aF 1.115%[309.232aF [1.059% [384.0238F [1.205% [311.769aF 0.947%)
5074841200 0.77% |1.079u0 0.801%(517.401n5 |0.748%/67.795n0 |0.341% (111399000 |0.391% |55.86n0) 0.308%)
75|1.04600 1.363%]|1.683u0 [1495%|663808n0 1147914860400 [0.766% [252.20nG [0.938% [100.86r09 0.586%
gm 901425005 1.677%|2.055U03 [2143%[961.101n0 [1.488%0/404.795n0 [1.422% [568.5n03 |1.530% [243.66n03 1.193%
95/1.70500) 1.976%|2.326U0 12.710%|1.161u0 1.732%(594.795n0 |1.758% (806.199n0) |1.836% |436.639n00 | 1.602%
99/2.067u0) 2.344%3.042u00 3.550%) 1.785u0) 2.373%(850.895n0 [2.331% [1.07810 2.542% (7614600 2.588%
50[43.856n03 0.807%)62.035n0) 0.882%34.352n00 0.845% 1074500 [0.936% (11.772n0 |0.872% |10.924n05 0.892%
[75[86.483005 1.396%|129.475n0 | 1.542%65.782n0) 1416%24.53n0 |L577% [27.527n0 | 1.502% [21.509n03 1.592%

% 9021226300 [2599%[252005n [2581%[146562n0 [2549%48.53500 |2961% (6040700 [2540% [3893n0 [2580%
[o5[201.846n0 [3790%0383464n0 [359%[24534n0 [3850%[70.54500 [4.570% [107.14700 [4579% (539700 [4.056%
[99[591.736n [6575%[536.735n0 [6.698%[544.0070 [7.602%[235.255n0 [12382%[316.067n0 |12.131%[166.049n0 [5.536%

[50/407.51mV 7Hz [3.878%)673.395mV 3Hz|3.657%/214.663m\ 7Hz [3.209%(1.702VFHz [2930% [3516V3Hz [2.434% |941.923mV 3Hz[2.343%

[75[1208v3Hz [5.728%1438V3Hz [5.804%/634.50mVIHz [4.932%|LO0NFHz [4.543% [3730VFHz |4.400% [L0SNVaHz |3.561%
Flicker_Noise at_1Hz[902107V3Hz [7227%2598V3Hz [Z14%[1173V3Hz [6.382%3.187V3Hz [5.709% [7.925V3Hz |6.661% [L7BVIHz |4.667%
95[2685V3Hz [8319%[3510V3Hz [7.747%|L670V3Hz [7.666%7.10V3Hz [6.526% [13.728VFHz [7.52% [3343V3Hz [5.379%
0[3940VHz [9685%[488VHzZ [9940%277NHz [9.162%]16951VIHz [8364% 30497V FHz [8662% [7.917VFHz [6.516%
50[25.084mVHz [1.123%[23.115mV3Hz [1.067%[21.32nV3Hz |L171%/446mV3Hz |1.277% [5.3820V3Hz [1.268% [4.132mV7Hz [0.897%
75(35.644mV 3Hz |2.082%[37.734m\V FHz [1.907%(28.226mV 3Hz [2.014%/6.672mV 3Hz [1.891% [8.016mVIHZ [2.150% [6413mV3HzZ [1379%
Thermal_Noise_Floor [90[51.275mV7Hz [3.108%/49.665mV7Hz [3.034%[46.236mVHz |2.690%(9.603mV7Hz [2.601% |13.665mV 7Hz[2.901% [12.185mV7Hz [1.895%
95(86.185mV 7Hz [3.693%|70.174m\FHz [3.789%|90.346mV 3Hz [4.033%/16.554m\ FHz(3.004% [16.942mV 3Hz|3.343% [20.915mVFHz [2.763%
99[179.145rm\ 7Hz6.201% 168.594m\ FHz| 5.444%) 174.556m\ 7Hz|7.343%] 25,620 3Hz [3.682% [27.311m\ 3Hz[3.807% [35.435mVFHz [4.276%

Figure 40: Error Summary Report for TSMC 40nm and Resolution 5:5:3:8

124

Each device, corner and parameter rubric links to a detailed report. The report has four

guadrants presenting different analyses of the results (Table 7

Table 7: Structure of Device+Corner+Parameter Detailed Report

X/Y Scatter Plot (expected Y=X straight line) | Listing of Statistical Metrics

Histogram of Errors in Original Units Histogram of Relative Errors [%]

6.3. Circuit Level Results

6.3.1. Tested Circuits

1 4 L
@
gL
3
£
|_

Figure 41: Four Tested Topologies

125

Figure 41 shows the four topologies tested for accuracy:

1 Common-source with ideal current source.
2 Differential pair
3 Differential pair with output stage

4 Folded Cascode operational amplifier

6.4. Run Time Analysis
6.4.1. Transistor Level

6.4.1.1. Methodology

Improving model access time was the main motivation for transistor-level phase of the
research. The existing BSIM provided batch of equations is considered the standard for accuracy
and the upper bar for run-time. Measuring run-time of a single C function was done using a
statistical method used in lab time-interval instruments of averaging large number N of low-
resolution T pulse counts. In a relatively steady time interval, we can expect up to two values
for each count: x and x+1, counted P and Q times respectively: N=P+Q. The sample size and
standard deviation determine the uncertainty of the final {d8llt The worst case is when P=Q
or Q/N=1/2: In the Tcl-provided library, the time interval command Tcl_GetTime provides
counts in resolution of 1usec. A sample size of 10000 gives worst case

6=1000nsec/2*100=5nsec and 3c6=15nsec.

Hardware specifications for the test machine used to compare SPICEw@mtimes are

given in Table 8.

126

Table 8: Test Machine's Hardware Specifications

Resource Value

CPU AMD Phenom(tm) Il X4 955
#Cores 4

Freq. 2.5GHz

RAM 12GB

ON CentOS 6

6.4.1.2. Results

The BSIM batch of equations was instrumented first to get a base level for comparison.
The BSIM3v32 and BSIM4v5 took an average of 28usec and 50usec to complete a query

respectively (Table 9).

The first interpolation method that was tested was a full Lagrange interpolation of 6D
entries. The initial coding of the interpolation used pure C, leaving all conditions and loops to
run time. This method yielded results in 8usec per query. This was not a sufficient improvement,
considering that a BSIM query yields all the operational parameters of a transistor, while a LUT
guery returns only one. To achieve an operating point, at least three paramgtgrsand g
have to be looked up in each iteration, which makes the initial query time improvement

negligible.

The next improvement was to change entry locgthase of the query from linear to

binary search. This change reduced the 6D average query time to 6.1usec.

The biggest improvement was achieved by converting all the conditions and loops to

compilation time. The Tcl preprocessor generated a C code that had a trace execution of all the

127

Lagrange interpolation in a hypercube, without any branching and in-place. This reduced the

query time to 1.8usec. A LIT version of the same 6D table was queried in 1.0usec.

Each query is composed of two stages: entry locating and interpolation. The entry

locating stage had 3 types:

1 Linear search used only for initial prototype
2 Binary search- used for most tables (~600nsec)

3 Direct conversion of coordinatesused for uniformly sampled tables (~150nsec)

The interpolation stage iittime is more influenced by the array’s dimensionality (Figure
42), since its Lagrange algorithm is of &Zime complexity. A linear LIT interpolation is of

O(N) time complexity.
1200
1200

1000

800
i LT

600 - LT

<00

200

—_—
"~
-~
-
-
o

Figure 42: Interpolation Time [nsec] vs Dimensionality

128

The final LUT version used in thecircuit-level evaluations are 4D, neglecting wide
channel effects, linking temperature with corners, using uniformly sampled array, and
interpolating in the full Lagrange method. This reduced the query time to 450nsec per parameter
when queried separately. In a composite interpolaidng) 3 parameters were query with an
additional bs accuracy improving stage were compleited. 1 usec, which translates to 370nsec

per parameter.

Table 9: Comparison of Query Times per Model Type

Model Type Description Query Time
BSIM4v5 Model used in 40nm SPICE runs 50usec
BSIM3v32 Model used in 180nm SPICE runs 28usec

6D Full Initial prototype of LUT 8usec

6D Full, binary | Improved entry locating 6.1usec

6D Full, trace Removed branching by using Tcl preprocessq 1.8usec

6D Linear, trace | Used Tcl preprocessor and LIT 1.0usec

4D Full, uniform | Uniformly sampled 4D array 450nsec
4D composite | 3 OP parameters queried together 1.1usec

6.4.2. Circuit Level
6.4.2.1. Offline Activities
The first offline task regarding a topology is compilation. This requires nodal-analysis,
algebraic manipulation and generation of performance-property equations. Typical compilation

time ranges from a few tens of seconds to a few hundreds of seconds depending on circuit

complexity.

129

The next offline task is to populate an initial PAT with 2tDcuits that span the
performance front of the topology. Typically, populating PAT takes between a minute to tens of

minutes depending on the population size.

Once aPAT is initially populated in the server’s data area, the topology can be mapped
and further resolution can be added to performance corners of interest. Overall offline activities
per topology, including preparation of netlist and schematic representation, can be finished in

about an hour and result in about 100MB of data per topology+technology pair.

6.4.2.2. Circuit Evaluation Time

One of the key innovations of the proposed design system is rapid evaluation of circuit
performance without sacrifice in accuracy. Tablallustrates the run time difference betwden
and SPICE on determining the operating point for the folded Cascode amplifier circuit collected
over 1000 circuit ealuations. The “Min” and “Max” numbers show the shortest and longest
evaluation times respectively. “Med” is the median evaluation time. It is clear that " is
significantly faster than SPICE while maintaining the SPICE level accuracy as it is demonstrated

by the results ifcrror! Reference sour ce not found..

SPICE does not have built-in commands for evaluating all listed performance metrics for
a given circuit, but rather has a number of simulation commands that can lead to scripted or
manual post-processing. Therefore, the .op command was chosen for comparison, as it has the
closest parallel ifir, the Circuit Evaluatoi: CE includes operating-point loop, but also
cdculations for all the performance parameters. It completes all the steps needed to evaluate a

circuit in 1/10 of the typical time SPICE takes to just analyze the operating point.

130

Table 10: Run time dfCE and NGSPICE .op [msec]

Tool Min Max Med Average o
SPICE 23.8 387.8 52.8 108 104
r 4.5 14 4.9 5.7 1.8

Both execution times for SPICE afdvere measured on the server-side machine,
without any network effects. In the online SaaS environment, the actual response time may be
affected by network traffic. However, the significant performance advantagevilyallow I’s

server to handle many client requests to improve the overall response time for remote users.

6.4.2.3. PAT Insertion Time

The time complexity for inserting a point into the PAT is O(N), with N being the
number of circuits already in the PAT. This is because every inserted point can potentially be
compared with all stored ones before it is retained. However, every insertion has a probability to
be discarded as dominated before it visits all the stored points. Therefore a cone-shaped scatter-
plot of insertion time vs. size is expected. FigBeshows the insertion time as a function of
PAT population size. The bimodal distribution of the PAT insertion time can be attributed to two
classes of operations: one without requiring prolonged evaluations for eligibility, and the other
involving a series of computations for eligibility, including operations to delete other dominated

entries in the PAT.

131

200

180

160

140,

120.

100.

80

60

40

20

0 50 100 150 200 250 300 350 40
| PAT|

Figure 43: PAT Insertion Time per Size

PAT Insertion Time per Size Histogram

100

90

80

70

60

50

+~3co0n

30

20

10

0 100 200 300 400 500 600
Insertion Time per PAT Size [nsec]

Figure 44: Ratio between PAT Insertion Time and Size

Figure 44 shows the histogram of PAT insertion time, after it is normalized per number

of points retained in the PAT prior to the insertion. This gives the distribution of the slope per

132

point in Figure 44. The average insertion time is therefore ~300nsec (marked by wide vertical

line in Figure 44) per pre-stored circuit.

6.5. [Website Usage Example

To demonstrate the tool’s usage, a flow that may be used by designers to optimize the
circuit size(Figure 41.4) for a given specification is shown here. The primary specifications for

the circuit are:

1 Technology: 40nm

2 DC Gain >60dB

3 Bandwidth > 5MHz
4 Total Noise <100pV?

5 Main optimization objective: Area
Secondary Specifications:

6. CMRR>30dB
7. PSRR>50dB
8. PM>6d

9. Corner Frequency<30KHz

6.5.1. Select Topology and Enter Specification

After login, the specified technology and topology are selected from the drop
menus. A default Ac/BW front appears and the thresholds are typed in. To allow trade-off, a

slightly relaxed specification values are specified: 57dB and 4.5MHz for gain and BW

133

respectivley, while the noise parameters are waived for the moment, so we can start the search
from a close enough circuit that can be improved to meet the whole specification. The updated
perato front froml", shows existing circuits already in the PAT that meet the relaxed

specification (Figure 45).

® BW [Hz] vs Adc [dB]

B/BM) — | — | — —|— —]— —|-
‘ | | | | |
30Mg_]
‘ | | | | |

\
25M | — —|— —|— —|— — |
3
4
20M :Q_|_ _|_ _|_ _|_ _|_
5
¢ | | | | |
15 _ [S S S SO
M- -8 | | | |
e | | | |
oM _ _le 1 I _1_ _1_
| 8 | | |
"y .3 10
4 — —_ P —_ _'_ —_ —_ —_— —_ J—
| | ill | |
| | ?‘ 651680 21 2B 24 35
56 58 60 62 64 66
Adc [dB]

Figure 45: PAT circuits that meet gain and BW

Circuits 9 and 10 of that front are selected. Each of them violates the original
specification. Circuit 10 meets gain requirement, but fails on BW and vice-versa for Circuit 9.

Both circuits violate the noise requirement.

However, circuit 9 has significant BW slack (6.7MHz), which can be traded more easily

for gain and noise and therefore it is chosen to be the pivot circuit for the next search step.

134

6.5.2. Pick an Initial Circuit

Circuit 9 has the following performance metrics:
DC Gain=59.8dB
BW=6.7MHz

Total Noise=186pV?

6.5.3. Search for Gain-Valid Circuit

Increasing the gain of Circuit 9 can be done by upsizing the input transistors. The search
for better gain is done by plotting a tradeoff map of the gain with respect to changes in Ln and

Whn of the input transistors (Figure)46

Adc [dB] vs L [um] vs W [um] of nin_1 and nin_2

-
()]

—
N

i B0.899d8
setet==ntihi s18dB
i B2.711d8

=
o

....................................

e}

[WNJ Z ulu T Ulu Jo ypua]
—
N

5 10 15 20 25 30 35 40 45 50
Width of nin 1 nin 2 [um]

Figure 46: DC Gain vs input transistor length and width

135

To increase the gain and reduce noise, while keeping the BW, the next circuit is selected
from the white dot§ in the center of the deepest red area and as wide channel as possible (see

marker 930 in Figure 46The BW only drops to 6.3MHz and the total noise drops to 177uV2.

0.5.4. Reduce Noise to Meet Spec

The next step is to reduce the noise to the specified level of 100pV?2. Another tradeoff
map centered on Circuit 930 is generated using the current-mictanpel transistors’ sizes to
trade BW with noise (Figure 47). The initial circuit showed a relative noise contribution of
~40% from the two p-channel transistors (Taklg which makes them good candidates for

noise reduction.

Table 11: Breakdown of Noise Contribution per Transistor

Transistors % Noise Contribution (each)
p.1,p.2 19.7%

nin_1, nin_2 15.1%

n_tail, n_ref 2.2%

n_out 1.1%

p_out 24.9%

The original heat maps’ green markers were accented in white for print quality.

136

TotalNoise [V2] vs Length and Width of p_1, p_2 [um]

—
(e)]

=
BN

................

[y
N

sy
o

[wn] z7d ‘17d jo y1bus
(00)

(o))

20 40 60 80 100 120
Width of p_1, p_2 [um]

Figure 47: Circuit 696 trades BW for less noise

Circuit from the “cooler” parts of the heat map, represented by Circuit 696 in Figure 47,
lose all the BW slack and meets the noise requirements at 86V . However, they have
significant penalty on total area. The noise slack of 14uVZ means that the circuit is over designed
and a better solution can be more area-optimal. Circuit 119 (in blue, Figure 47) is a better
solution, since it is in the color region corresponding to the required noise and closer to the origin,
which means it has smaller area. Circuit 119 is the final circuit candidate, with 94.9 qu total
noise. The final circuit (Circuit 119) was simulated on Cad&Miguosd® and the following

results were collected and compared witk (Table 13.

137

Table 12T and Virtuoso Final Performance Metrics

Property r Virtuoso Rel. Err.
DC Gain 60.2dB 60.8dB 1%

BW 5.1MHz 5.5MHz 7.8%
Total Noise 94.9V? 104pV? 9.4%
Corner Freq. 25KHz 27KHz 8%

PM 83° 81° 3%
CMRR 39.8dB 40dB 2.3%
PSRR 59.1dB 59.8dB 8%

Est. Area 8100(um)”

Through a set of steps (Table 13), the results here shoWw ginavides designers with a
powerful, and yet simple, process to converge to an optimal design solution for a given

specification. Further fine tuning may be necessary after verifyifjnal results with SPICE.

Table 13: Search Path Summary

Circuit # Gain BW Noise
9 59.8dB 6.7MHz 186pV?
930 60.4dB 6.3Mhz 177uV?
696 60.2dB 5MHz 86puV?
119 60.2dB 5.1MHz 94.9uV?

138

7. Conclusions

An analog design system, is presented in this dissertation. Using the novel modeling
techniquesl combines the speed of symbolic evaluation of circuits in consideration and the
accuracy of SPICE-class circuit level simulations. Instead of using &éivarid-error approach in
many of the existing analog circuit design flowgrovides designers with extensive features for
rapid and reliable design tradeoffs among numerous design candidates through Pareto front
analysis and design tradeoff maps during the design cycle. These capabilities will ultimately help

a design to converge faster and improve the quality of the final design.

The novel features incorporatedrirenable the design system to achieve desired
performance and accuracy. The LUT approach to modeling transistor-level behavior accelerates
parameter lookup in DC analysis by a factor of 30-50, compared to BSIM calculation during
SPICE simulations. Interpolated LUT DC parameters are typically within 1% and AC+noise
parameters are typically within 10% of their BSIM calculation, with a reasonable memory
investment of ~100MB. On circuit level, the system produces a full circuit evaluation in lypical
1/10 of the time it takes a traditional SPICE simulator to finish just the operating point part of the
evaluation. Follow-up evaluations of small size changes in 1D and 2D sweep analyses are even
shorter, with a typical run time of 1/50 of the SPICE .op analysis. Errors of circuit-level analysis

are under 5% for low-frequency performance metrics and 10% for AC and noise.

s novel features in speed and accuracy also make it ideal for providing the SaaS
features through its web functions. Breadth-first analysis strategy through archived, as well as

online, Pareto candidates of viable circuits is well suited for SaaS applications, because the entire

139

design process can be broken into a series of short queries and much of the computation effort
can be archived in a shared database that serves all present and future users and sessions. The
SaasS frontend is capable of providing queries with an average latency of 10sec for Apache-based
CGil calls and only 1-2sec, when the system serves HTTP calls. The difference between the two
modes stems from the fact that the latter retains binary data (.os, LUT, and PAT) in RAM while
the former has to perform initialization tasks on each queinabling of SaaS features fois

a significant step towargsoviding faster and updated design tool delivery at very low cost.

With increasing recognition of the power of cloud computihgertainly moves the delivery,

maintenance, quality, and usability of future analog design tools in the right direction.

I currently makes no attempt to reduce the amount of slacks among any performance
parameters in the solutions, because the process of reducing slacks of any performance
parameters often results in worsening of other performance parameters in often tightly
constrained ekigns. Without knowing designer’s intent, it is difficult for I' to reach correct
decisions during the search process. Ratheollects and stores all relevant data and presents
them to designers to facilitate useful designer manual interventions to incrementally capture
design intent during the design process. This is illustrated by the design example inégction
Allowing designer manual interventions during the design process is one of the key features that
distinguishl” from the previous attempts in developing analog circuit design tools. It provides a

better path for faster design convergence.

While some of the performance parameters implementédsicircuit evaluator are
natural for static, small-signal analysis (e.g. CMRR, BW and other parameters can be estimated

from that analysis, such as settling time from pole/zero analysis), other parameters cannot be

140

inferred directly from component dimensions and operating point. Such parameters, such as total
harmonic distortion, can only be derived from classic simulation techniques. While the existing

I" features are capable of meeting the majority of design needs for analog circuits, further
development of may include alleviate these limitations, for example, by using piece-wise linear
LUTs with predictive distortion models for output distortion calculation. Furthermore,

additional analyses and visualization features may include:

1. Combined objective through cost functiemulti-objective analysis keeps the data
open for follow up application-specific choice. The final choice can be illustrated by
using cost-function weights. Visualization of circuit choice per weight assignment
can be implemented on the browser side using JavaScript.

2. Load support re-evaluate circuits in real time with a given capacitive load for more
realistic performance values.

3. Integration of support circuitsallow better integration of sizing algorithms to
include support circuits, such as bias circuits, to achieve better global results.

4. Multi-topology search- instead of limiting the search to the selected topology

template[” perform search across different topology templates to find better solutions.

141

8. References

[1] Mack, Chris. "The Multiple Lives of Moore's Law." Spectrum, IEEE 52.4 (2015): 31-31.

[2] WikiCommons, user wgsimon

[3] Graeb, Helmut. "ITRS 2011 analog EDA challenges and approaches." Proceedings of the
Conference on Design, Automation and Test in Europe. EDA Consortium, 2012.

[4] Annema, Anne-Johan, et al. "Analog circuits in ultra-deep-submicron CMOS." Solid-State
Circuits, IEEE Journal of 40.1 (2005): 132-143.

[5] William Nye, David C. Riley, Alberto Sangiovanni-Vincentelli, Andre L. Tits.,
“DELIGHT.SPICE: An Optimization-Based System for the Design of Integrated Circuits”,

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on (Volume:7 , Issue: 4), Pages: 501 519, April 4, 1988

[6] Degrauwe, Marc GR, et al. "IDAC: An interactive design tool for analog CMOS
circuits." Solid-State Circuits, IEEE Journal of 22.6 (1987): 1106-1116.

[7] Georges G.E. Gielen, Herman C.C. Walscharts, Willy M. Sansen , “Analog Circuit Design

Optimization Based on Symbolic Simulation and Simulated Annealing” Solid-State Circuits

Pages: 252 255, June 1990

[8] Rutenbar, Rob. "Analog design automation: Where are we? Where are we going?." Custom
Integrated Circuits Conference, 1993., Proceedings of the IEEE 1993. IEEE, 1993.

[9] Barcelona Design Unveils Revolutionary Analog Circuit Solution,
prnewswire.com/prn/11690X15251303, April 8, 2002

[10] Costello's analog automation pioneer, Barcelona, to fold, EETIMES doc_id: 1217996,

3/4/2005.

142

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=180
http://ieeeexplore.com/xpl/mostRecentIssue.jsp?punumber=5468015

[11] Allan, Alan, et al. "2001 technology roadmap for semiconductors." Computer 35.1 (2002):
42-53.
[12] Carl Martin Allwood, Tomas Kalen, “Usability in CAD — a Psychological Perspective”,

International Journal of Human Factors in Manufactukintume 4, Issue Jages 145

165, 1994

[13] Jakob Nielsen, “Usability Engineering”, Morgan Kaufmann, San Francisco, Chapter 5.5,
1993

[14] Chenming Hu, “BSIM Model for Circuit Design Using Advanced Technologies”, VLSI

Circuits, 2001. Digest of Technical Papers. 2001 Symposiyrpages 5-10

[15] L. Nagel, “SPICE2: A computer program to simulate semiconductor circuits,”
Electronics esearch Lab., Univ. Calif., Berkeley, Memo UCB/ERL M520, May 1975.

[16] Ngspice Users Manual Version 26 (Describes ngspice-26 release version) Paolo Nenzi,
Holger Vogt January 11, 2014

[17] Gielen, Georges GE, and Rob Rutenbar. "Computer-aided design of analog and mixed-
signal integrated circuits." Proceedings of the IEEE 88.12 (2000): 1825-1854.

[18] Ho, Chung-Wen, Albert E. Ruehli, and Pierce A. Brennan. "The modified nodal approach
to network analysis.” Circuits and Systems, IEEE Transactions on22.6 (1975): 504-509.

[19] Borchers, Carsten, Lars Hedrich, and Erich Barke. "Equation-based behavioral model
generation for nonlinear analog circuits." Proceedings of the 33rd annual Design Automation
Conference. ACM, 1996

[20] Kwang S. Yoon, Phillip E. Allen “An adjustable accuracy model for VLSI analog circuits

using lookup tables” Analog Integrated Circuits and Signal Processumume 1, Issue 1,

Pages: 45-631991

143

http://onlinelibrary.wiley.com/doi/10.1002/hfm.v4:2/issuetoc
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7437
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7437
http://link.springer.com/journal/10470
http://link.springer.com/journal/10470/1/1/page/1
http://link.springer.com/journal/10470/1/1/page/1

[21] Yishai Statter, Tom Chen, “A Novel High-Throughput Method for Table Look-Up Based
Analog Design Automation”, Integration, the VLSI Journal (2016), pp. 168-181
[22] A.B. Tadej Tuma, "Circuit Simulation with SPICE OPUS," in NUTMEG scripting
language, Springer, 2009, pp. 177-255.
[23] Guide, Litho Physical Analyzer User. "Cadence." San Jose, CA, USA (2004).
[24] Kim, Jang Dae, et al. "Algorithmic reactive testbench for analog designs.” U.S. Patent No.
7,853,908. 14 Dec. 2010.
[25] Benhala Bachir , Ahaitouf AliMechaqrane Abdellah, “Multiobjective Optimization of
an Operational Amplifier by the Ant Colony Optimisation Algorithm” Scientific &
Academic Publishing, Electrical and Electronic Engineering 2012, Vol 2, Pages 230-235
[26] R.A.Vural,, T. Yildirim, “Analog circuit sizing via swarm intelligence”, AEU -
International Journal of Electronics and Communications, Pages 732-740, September 2012
[27] John R. Koza, Riccardo Poli “Ch. 5, GENETIC PROGRAMMING”, “Search
Methodologies Introductory Tutorials in @mization and Decision Support Techniques”,
Pages 127-164 Springer 2005.
[28] David M Binkley “Tradeoffs and Optimization in Analog CMOS Design”, University of

North Carolina , Pages 25-26, 2008

[29] CircuitLab, online circuit editing and simulatingttps://www.circuitlab.com/docs/the-
basics/

[30] PartSim, an online simulator http://www.partsim.com/

[31] Logic Lab, online tool for simple logic simulations.

http://www.neuroproductions.be/logic-lab/

144

https://www.circuitlab.com/docs/the-basics/
https://www.circuitlab.com/docs/the-basics/
http://www.neuroproductions.be/logic-lab/

[32] S. Donnay et al., “Using top—down CAD tools for mixed analog/digital ASICs: A
practical design case,” Kluwer Int. J. Analog Integrated Circuits Signal Processing
(Special Issue on Modeling and Simulation of Mixed Analdigital Systems), vol. 10, pp.
101117,

[33] JunelJuly 1996.R. Harjani, R. Rutenbar, and L. R. Carley, “OASYS: A framework for
analog circuit synthesis,” IEEE Trans. Computer-Aided Design,vol. 8, pp. 1241265, Dec.
1989

[34] J. Crossley, A. Puggelli, - Le et al., “BAG: A designer-oriented integrated framework
for the development of AMS circuit generators,” IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 741, 2013.

[35] Scheible, Juergen, and Jens Lienig. "Automation of Analog IC Lagtallenges and
Solutions.” Proceedings of the 2015 Symposium on International Symposium on Physical
Design. ACM, 2015.

[36] Cadence, "Virtuoso NeoCircuits Datasheet,” 2 2007. [Online]. Available: http: // www.
cadence. Com /products /custom_ic.

[37] Spectre, Cadence Virtuoso. "Cadence home page."

[38] Simulator, Cadence Virtuoso UltraSim Full Chip. "Datasheet.” 1-4.

[39] Business Wire, "Business Wire," 5 February 2004. [Online]..

[40] Laker3 Custom Design ToolsSynopsys Solvenet”

[41] Wan, Bin, and XinGang Wang. "Overview of commercially-available analog/RF
simulation engines and design environment.” Solid-State and Integrated Circuit Technology

(ICSICT), 2014 12th IEEE International Conference on. IEEE, 2014.

145

[42] Babylbonian Talmud, Damages, Baba Metzi’a, 28a, 7120 23, 1913, 5 07 RYI¥» X221,
R 7MY,

[43] Statter, Yishai, and Tom Chen. "I' (Gamma): A SaaS-enabled fast and accurate analog
design System." Integration, the VLSI Journal 55 (2016): 67-84.

[44] Pareto, VilfredoThe mind and society. Pumon Kiaccuk, 1935.

[45] Ousterhout, John K. Tcl: An embeddable command language. University of California,
Berkeley, Computer Science Division, 1989.

[46] J. K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE
Computer , March 1998.

[47] Parker, John. "A comparison of design methodologiGM S GSOFT Software
Engineering Notes 3.4 (1978): 12-19.

[48] Millman, Jacob. "A useful network theorenifoceedings of the IRE 28.9 (1940): 413-
417.

[49] Sorden, James L. "A New Generation in Frequency and Time Measurements." Hewlett

Packard J 25 (1975) page 15.

146

9. Appendices

147

A. I'/SPICE Matching Results

This appendix contains experimental data comparing results from LUT and SPICE.
purpose of the comparison is to determine the accuracy of the LUT results. The compariso
Is organized into two sections: comparison of single transistor instances and comparison o
template instances. Each figure listed in this appendix is intended to capture how well the 1
match. The degree of matching is shown in a table in each figure, where the average error
standard deviationare given for two types of errors: relative, on the left column and nomina
the right. Since the distribution of errors is not normal, the table lists maximal errors for key

precentiles of the sample population: 50%, 75%, 90%, 95% and 99%.

148

A. 1.

Transistor Level

1ds valucs for nch at 8%

B+ *
>
rd
S0y Statistics
o Average (0.196% 55.52TnA
" o o 0.618% 150.533nA
= Percentile % Error A Error
B 200l S0% 0.260% 68.927TnA
T5% 0.559% 82.327nA
90%, 1.093% 184.672nA
201 95% 1.472% 380.672nA
0%, 1.817% 576.172nA
1 O
Il;Iu 2'5|| 3l;Iu 46.. 5';|I.I 5:5..
SPICE [A]
Ids crver histogram for nch at 88 Ids error histogrm for neh at 88
1204
2504
L0
2004
BN
ED -
BIH
L 00
4
S04
el
- u
-40n -200n o 20n 4000 000 S00n L5 -1 o 0ns
Alds [A]

Ids Ratic [%4]

Figure A-X 40nm NCH SSds LUT Queries to SPICE Matching Statistics

149

[%] By

Hmey

B

Ids values foor nch at TT

o Statistics
o Average 0.02% 43.135nA
LH
o 0.304% 125.08nA
00 Percentile % ErrorA Error
50%, 0.123% 63.535nA
0 75% 0.382% 84.345nA
- 90% 0.661% 186364nA
5%, 0.79% 299.664nA
20 09 %y LL137% 420.764nA
1 Dy
0 T T T T T T T T
L] 100 200 30u 40u Sl Gl Tl Bl
SPICE [A]
Ids crror histogram for nch at TT Ids crror histogram for nch ot TT
2004
1404
L BiH
| 20 | 6
[40 -
L 0 ;f:
2 12
B L0 -
604 BOp--
G-
404
4iH
204 I
[T -
-300n -200n -100n O 100n 200n 300n 400n 5000 6000 -1.5 -1 -0.5 1] o= 1 1.5 2
Alds [A] Ids Ratic [¥]

Figure A-2 40nm NCH TT bs LUT Queries to SPICE Matching Statistics

150

Ids walues for nch at FF

[%] Burmery
g

4

i

2

| O

[

+ v T T v T T T T T T
o 10u 20w 30w 40u 500 60w TOo 500 900 100w 110w
SPICE [A]

Ids o histogram for nch at FF

Statistics
Average -0.193% 15.029nA
T 0.85% 133.686nA
Percentile % ErrorA Error
0%, 0.207% 58.520nA
75% 0.441% 103.17nA

90% 0.819% 22337%A
05% 1.520% 290.469nA
90% 4.430% 46787nA

Ids error histogram for nch at FF

411 Csy]

-4 00 -300n-200n-100n 0 100n 2000 3000 4000 500n 6000
Alds [A]

juneey

L0

1404

1204

L0

B4

64

44

i

Ids Ratic [Ya]

Figure A-3 40nm NCH FF s LUT Queries to SPICE Matching Statistics

151

[i3] EuromEry

unscy

gm valucs for nch at 88

. L]
o
4 3 'f
* Statistics
200 Average -0.604% 450 101003
o 0.954% £42.243n0
00 Percen rilel“ » Error A Error
0% 0.748% 517401005
B 5% 1.147% 66389500
90% 1.458% 061.101n00
ool 05% 1.732% 1.161uD
99% 2.373% 1.785u00
4y -
'-l‘
+|;|II L‘\ll;lLI Hl;lu 1 l::Dn I:IIZIu I-'IIIZIu
SPICE [T
am crror histogram For nch ot 88 gm crror histogram for nch at 88
454
LG4
44
140
35
1204 !: 1o
L4 ; 15
B 104
60+ 154
40 14
20 =]
o

250 -2u -l5u -l -E00n O 5000 o 1.5 2u
Agm [T

-3 -2 -1 a l
gm Ratio [H]

()

Figure A-4 40nm NCH SS g LUT Queries to SPICE Matching Statistics

152

gm walucs for nch at TT

2000
180 Statistics
Average -0.758% -660.587nl3
Cila0u
g o 1.065% 005.159n0
%Hnu- Percentile, Error A Error
B 0% 0.77% T748.412n0
120
T3% 1.363% 1.046ul
100w B0%, 1.677% 1425000
cou) 03% 1.976% 1.705uld
09%% 2.344% 2.06Tuld
Gl
4+
+IIZI|| ﬁ.'lll.l ."CIIZIu l IZI‘IZIu I:IEIu l -I:Du IﬁIIZIu l .";Zlu ZIZIIEIu
SPICE [T
gm crror histogram for nch at TT gm crror histogram for nch at TT
B 454
TiH 4
35
iHi
o P 3
40
2
3+ L2
204 |4
1 H
T T [T T
-3%u -3u -2.50 -2o -L.5u -lo -500n 0 5000 lu 1L3u Zu -4 2
Agm [T gm Ratio [%]

Figure A-5 40nm NCH TT g, LUT Queries to SPICE Matching Statistics

153

(i3] ey

gm valucs for nch at FF

7
#0011 Statistics
Average H0.792% -874.43Tnl5
2ol] 1.304% 13520l
Percentile”s Error A Error

50% 0.801% 10790
1500 | T5% 1.495% 1.683uld
90% 2.143% 205500
05% 2.710% 2.326uld
00%, 3.550% 3.042000

10004

S

v v v T T
50u L0 L Z0u 2000 250u
SPICE [U]

gm crror histogram for nch at FF gm crmror histogram for nch at FF

B0 T 554

S

4=

4+

Jrnecy

juneey

35

3

[

gm Ratic [%]

Figure A-6 40nm NCH TT @ LUT Queries to SPICE Matching Statistics

154

(i3] ey

A1 Laiy]

go values for nch at 85

L]
L
Ll
Statisties
5 Average 0.213% 23.902n0
o 2.288% 132.963n0
20 .
| " Percentile *. ErrorA Error
- S0 0.845% 34.352n0
| 5o : - ; : _ _
- T5% [.416% 65.782n00
i 00 2.549% 146.562n0
L - i 1
- 05% 38500 24534200
L
) - 00%, T.602% 544.027n0
S -
-
D‘ T / T T T
o 5u L u L 5u 20u 15u 30u
SPICE [T
o crrar hi:sL-'-yl'.Jrn for nch at 88 o erar hixl-.-;_:lurn for nch at 8%
2504
LEH
L&,
2004
1404
[
2 12
L 504 2
Loy
B4
LoD
64
50 404 |
24
o Ol t B
4000 -200n [t} 200n 400n 600n 3000 lu 1.2u -25 -20 -15 -10 -5 [t} 5] 12
Age [T] o Ratio [%]

Figure A-7 40nm NCH SS gLUT Queries to SPICE Matching Statistics

155

(3] EomeEry

Hmecy

o values for nch at

-
254 -
L]
. Statistics
200 . Average 0.197% [8.063n0
- i} [.7T46% 145.002n0)
- = Percentile s ErrorA Error
ol S0% 0.807% 43.856nU
- 5% [.396% B6.483n0
10ud iy 00%% 2.599% 212.263n0
- 05%, 3.790% 201.846n0
Su - 99%, 6.575% 591.736n0
-l
0 5-" II.'II|| l .;~|.| EIIZIu]%u
SPICE [T
go error histogram for nch at TT go amor histogram for nch at TT
- L0
o4
| G0+
BiH
1404
T
|20 £
T 6y
Lo
S
B
44
G0+ Iin
4 14
20+ 14
- - IS
-600n -400n -200n o 200n 400n 6GO0n Ed0n Lu - -G -4 -2 o 2 4 [}
Age [T mm Ratio 4]

Figure A-8 40nm NCH TT go LUT Queries to SPICE Matching Statistics

156

(i3] euromery

umesy

go values for nch at FF

LRI
.
LIy - - e
- Statistics
» s Average 0.329% 2543500
‘_- (4] [.820% 161.152n0
200 - Percentile %s ErrorA Error
- " -
- 5006 0.882% 62.035n0
L 50 _- T5% [.542% 12947500
- 0% 2.581% 252.005n0)
-
Lo - 05% 3.594% 383 .464n00
L]
> Q0% 6.605% 536.735n0)
S /-
0 ' . 1 T 1 T
[t} 5u 10u L5u 20 25 30u
SPICE [T
goverror histogram for nch at FF o error histogram for nch at FF
L 004
9+
HiH
TH
e
; LI
AiH
40
3
204
104
L i T t
-600n -400n -200n o 200n 400n ©00n 00N -5 o 5 Lo 15
Ao |U| o Ratic |'|-||

Figure A-Q 40nm NCH FF gLUT Queries to SPICE Matching Statistics

157

Cgs values for nch at 88

4p) ’ LA
‘i
3459 ’ b Statistics
o i F g Average -0.178% 28.793aF
g o o 0.357% |111.071aF
% 25p il Percentile%s ErrorA Error
2 _,'* S0% 0.184%, |1'-}. 153aF
"." 5% 0.215% [31.206aF
L3P P Q0% 0.655% 41.206aF
" 3 95% 0.925% |131.206aF
Q0% 1.115% |5'EI 1.206aF|
00§
0
I;I 5IIIIIII' Ilp I.!.’\-p 11p 2.1‘:'IF|]:p 3.-1-';"':"p -'I-rp
SPICE [F]
Lyx crrar hixlugmm for nch at 85 Lgx [Segtiy hi-sLuH:rurn for nch at 88
| B
4004
| &
A5
144
3004
o o 120y
E 2504 ;
| 00
2004 g
15 &0
oo T
i 3
-E;:":EI =200k a 200a 40a 600 ‘!’.El;u_ III' l .lJI' l .I-'I-I' -1 -0.5 i) IZIjS-

ACgx |F]

Figure A-10 40nm NCH SS s LUT Queries to SPICE Matching Statistics

158

Cgs Ratio [%4]

Cos values fornech at TT

4.5p1-- L 1 ! 'n'.
'I
4P -
+ 490 '.-'F | Statistics
i 7/ Average -0.218% [23.303aF
E ap] . ¢ o 0.420% |R9.62aF
%: - L * Percentile % ErrorA Error
’ ¢ 507, 0.221% [23.573aF
2r] ’” T5% 0.254% |26.563aF
L5p ¥ Q0% 0.811% |36.696aF
7 |95% 1.040% |116.696aF
7] 99%, 1.327% |366.696aF
008
[
EI Sl:IrlZII' Ilp I.1‘:'IF| le 2.1‘3;1 3rp 3.4:?9p -'l-rp -'I-.:f\-p
SPICE [F]
Cgsemor histogram for nch at TT Cus enor histogram for nch al TT
4004 =
1504
20
- 004 -
= 250, " Lsof
2004
L0
| 504
L 0o+
S
504
[

=200 a 00 4i0a 60a B0 1T 1.2F
Algs |F]

Figure A-11 40nm NCH TT Gs LUT Queries to SPICE Matching Statistics

159

0.5 0 0.5
Cgs Ratio [%]

Cgs values for nch at FF

4.5p4 o
M
3 455 | Statistics
- ra Average -0.238% (15.522aF
E i o 0.505% |65.294aF
% 2.5p] ',-' Percentile %, ErrorA Error
. 50% 0.241% |15.702aF
| Iy T5% 0.266% |18.99aF
|5pe e Q0% 0.949% 24.477aF
’ 05%, 1.341% (74.477aF
'l / 199%, 1.568% [284.477aF
006 f'
o £
I;I SI::I:II' Ilp I.ij le 2.;;1 3rp 3.'1-:5":"p -lrp 4.r‘5p
SPICE [F)
Cgs ermor histogram. for nch at FF Cgs error histogram For nch at FF
A0
400
1504 2504
00
9 1 200
g 250l
2004 13t
L 50 Lo
Lo+
504
i
i

-200a-100a O

Figure A-12 40nm NCH FF Gs LUT Queries to SPICE Matching Statistics

L00a 2003 300z 4000 5000 600a TO0n B0l 900

Algs |F

160

-1.5 -1 -0.5 o 0.5
Cags Ratio [%]

[4] By

Cod values for nch at 88

) -
151
* Statistics
asl Average -1.159% |-8.408aF
B . o 1.533% |44.483aF
- b Percentile %o ErrorA Error
. S50% 0.793% R.017aF
156 # [75% 1.032% [8.216aF
’” Q0% 1.855% [B.363aF
Lo} ’0' D5% 4.258% |1?.2 OlaF
L0% 3.264% |18].99]HF
e !
0
El f:l' |::||' |r5|' :::Ir :::'Ir 3|I.'||' lg\ll'
SPICE [F]
Cgd error histogram For nch at 88 Cod emor histogram for nch at 88
1114
0 Lo
94
2504
B4
2004 £ 7o
- 6H
1501 and
4]
Ruley
34
50 20
L H
0 T T - - - - :
-0 -E00a 400a -A00n -200a -|00n [t} L 00 5 4 -3 -2 -1 [t} l 2 3 4
ACgd [F] Cd Ratio [%]

Figure A-13 40nm NCH SS ¢p LUT Queries to SPICE Matching Statistics

161

Cod values for nch at FF

Lo ™
Qi
Bofy-—- ' . Statisties
o 7o Average -1.263% |-21.517aF
E o 1.671% |138.482aF
B GoH .
= Percentile%s Error/A Error
S0 0% 0.803% [21.3aF
406 i Ta% 1.115% 21.554aF
- . Q0% 2.300% [21.725aF
o Q5% 4.702% [26.122aF
W QO%, 5.525% |549.782aF
‘ |
L0f /
0 :
0 10f 20f 30f 40f sof sof 7of =Of 90f loof
SPICE [F]
Cgd error histogram For neh at FF Cod error histegram for neh at FE
1 204
=] =
227 -1.5F -1F -500a IZI SIZ;II T - 5 -3 -2 IZI I
ACgd [F] Cd Ratic %]

Figure A-14 40nm NCH FF Gp LUT Queries to SPICE Matching Statistics

162

[4] EummEry

Hmeey

G0

s0f -

4014

300

200

10

Cgd values for neh at TT

¥ T T T T T T
Lo 2of aof 4o sof ol Tor EOf

SPICE [F]

Cod enor histogram for nch at TT

Statistics
Average -1.222% |-21.06%aF
a 1.467% |109.264aF

Percentile % ErrorA Error
507 0.545% [20.538aF
T5% 1.095% [20.814aF
o0 1.793% |20.988aF
05% 31.850% 20.431aF
007 5317% |594.031aF|

Cgd crror higogram fornch at TT

L1

LoD

Bl

B

Ti

a4

L

40

L

AT -EOOa 6001 4002 -200a 0 200a
ACpd [F]

Figure A-15 40nm NCH TT Gp LUT Queries to SPICE Matching Statistics

163

juneey

QK-

B4

64

54

404

3

-7 -5 -5 -4 3 -2 -1 [t} 1

Cud Ratio [%)]

T
-

3

Thermal _Meisc_Floor valucs For nch at 88

o Statisties
; o Average -0.003% -11.233e-2TVYHz
¥] 2.027% 40.099e-27ViHz
2 Percentile”s Error A Error
= 50% 1.171% 21.32e-27V¥/Hz
- 73% 2.014% 28.226e-27V/Hz
00% 2.600% 46.236e-27V/Hz
4 05% 4.033% 90.346e-27VHz
09% 7.343% 174.556e-2TV¥Hz
Si0m
L
FIZI::Irn i l :5 é 2.5
SPICE [xlc-24V/He]
Thermal_Moisc_Floor ernor histogram for neh at 85 Thermal_Moisc_Floor crror histogmm for neh at 88
2204
2004
LE0d
L G0
£ 0
= 44 £
1204
Lo
B
6
40+
204
-200m -130m -1l00m -50m 0 E0m 1 X0m -10 -B -6 -4 -2 0 2 -i-
AThermal_Moisc_Floor [xle-24%4Hz| Thermal_Moisc_Floor Ratio [%4]

Figure A-16 40nm NCH SS NLUT Queries to SPICE Matching Statistics

164

Thermal_Moisc_Floorvalues for nch at TT

f}-‘.’
15 !
-
o
&
=
7
i
L
=
5o
.f
14
S0 m
T L T T T
S00m I L5 2 25 3

Hney

SPICE [x1c-24VHz|

Thermal_Weisc_Floor crror histogram For nch at TT

Statistics
-0.606% -20.644e-2TVHz

44.31e-27V3Hz

25.084e-27V3Hz
35.644e-27V3Hz
51.275e-27TV3Hz
B6.185e-27V3Hz

Average

T 1.977%
Percentile™s ErrorA Error
0%, 1.123%

75% 2.082%

00% B.108%

05%, 3.693%

0o, 6.201%

179.145e-27TV*Hz

Thormal_Neoisc_Floor cmor histogram fornch al TT

-20m -130m -l00m -30m o S0m 100m
AThermal_Woise_Floor [= Le-24%Ha |

juno-y

Thermal_Moisc_Floor Ratio [%]

Figure A-17 40nm NCH TT N LUT Queries to SPICE Matching Statistics

165

Thermal_Noisc_Floor valucs for nch at FF

3 L 4
.‘-'
0 4 Statistics
= Average -0.784% -23.495e-27V¥Hz
E o 1877% 41.916e-27V3Hz
2o Percentile s ErrorA Error
5 S0% 1.067% 23.115e-27V*/Hz
s 73% 1.907% 37.734e-27V3Hz
D0%% 3.034% 49.665e-27V3Hz
.’ 05% 3.789% T70.174e-27V3Hz
d D9%% 5.444% 168.594e-27V3Hz
S00m- P
SD::Im 1| l :5 5 ::.‘* ; 3:5
SPICE [x1e-24vHz|
Thermal_Moisc_Floor eror histogram for nch at FF Thermal_Maoise_Floor crror histogam for neh at FF
i i il
54
o . 44
I
14
1
[

-250m -200m -150m -100m -50m a 50m 100m
AThermal_Meise_Floor [le-24%4Ha |

-B -6

-4

Thermal_Moisc_Floer Ratio [Ya]

-2 [t} 2

Figure A-18 40nm NCH FF N LUT Queries to SPICE Matching Statistics

166

[FIL-AR-2] %] EOrmeEry

Jrnegy

Flicker Moise_at_1Hz valucs for nch at 88

L2 .
-
F
Lo r
-
W«
HiH _.'.."
o
»
a0 L
-
-

s : ;-

Statistics
Average [3.1% 214.70zV*Hz
o A4.116% 7364292V Hz

Percentile” ErrorA Error

50% 3.209% 214.663zV3/Hz
75% [4.932% 634.50zVYHz
00% |6.382% 1.173aV¥/Hz

95% 7.666% 1.679V*/Hz

99% 0.162% 2.777aV¥/Hz

] 20 40 i El Lon 120
SPICE [xle-18V4Hz]

Flicker_Muoisc_al_lHz crror hisiogram for nch at 88

Flicker_MWuise_at_1Hz error histogram for nch at 88

necy

-2 -1 0 l 2 3 4
AFlicker Moisc_at_ 1Hz [xle-1EVSHz]

Flicker_Meisc_at_ 1Flz Ratio [%4)]

Figure A-19 40nm NCH SS NLUT Queries to SPICE Matching Statistics

167

[EE-ART-21 %] BOrmmEry

umey

Flicker_Moise_al_|Hz valucs for nch at TT

L0 i
%
1404
2 Statistics
L2 5 ’ Average 2.587% 44.41zVHz
oo .:..-' (o] 4.641% 1.223aViHz
'y Percentile % Error A Error
B ’ 50%% 3878 407.512V3Hz
T5% 53.728% 1.208aV3Hz
“ 0% 7.227% 2.107aV¥Hz
40 Q5% 8.319% 2.685aViHz
Q9% 9.685% 3.949aViHz
204
[
I;I ZI;ZI -I-IIZI f:l:I :i::I IL:IIZI IEIZI I-I'IIZI Il.:"ZI
BPICE [xle-18W4Hz|
Flicker_Meoisc_at_1Hz crror histogram for nch at TT Flicker_Moisc_at_l Hz crror histogram for nch at TT
2204 35
2004
34
LB
La0d -
- 25
L4004 5
1204 eXi
Lo
154
B
G4 L4
404

AFlicker Moisc_at 1He [xlc-1EV4'He|

Figure A-20 40nm NCH TT N LUT Queries to SPICE Matching Statistics

168

-0 -5 0 5
Flicker_Muisc_at_|Hz Ratio [%]

Lo

[EL-A R0 %] BULIEN

ey

Flicker_Moise_at_1Hz walucs for nch at FF

2504
-
20 ™
&
"
| 504 "é
| 004
i
[®
T T T L T L
1] a0 Laa 150 edui] 250
SPICE [xlc-18V4/Hz]

Flicker_Muoise_al_LHz crmar histogram for nch at FF

Average
]

Statistics
1.977% -104.225:V¥Hz
4.542% 1.542aViHz

Percentile s Error A Error

30%
5%
90%
95%
09%

Flicker Moise_at_1Hz error histogram for nch ot FF

3.657% 673.395zV3Hz
3.804% 1.438aV3Hz
7.154% 2.59%aV3Hz
T.747% 3.519aV3Hz
9.940% 4.887aV3Hz

-6 -3 -2 L] z 4
AFlicker Moisc_at 1He [xle-1 BV He|

Figure A-21 40nm NCH FF M LUT Queries to SPICE Matching Statistics

169

oy

35

L[

-5 a 5 Lo
Flicker Moisc_at_1Hz Ratio [%)

[%] ey

Uy

Ids walucs for pohoat 88

| B
|
L Statistics
Average F0.018% 1.431nA
12 (] 0.229% 16.576nA
Lou] Percentile/”s Error A Error
500 0.076% 6.67InA
B T3% 0.174% 9.561nA
00 0.278% 15.288nA
ol 05%% 0.3338% 23.468nA
o 99% 0.683% 61.068nA
::II -I-Iu l.‘\lu .‘;n l IIZI|| 1 I:u l 'Ii'l.l Il.:\u I:.;
SRICE [A]
Ids crrow histogram for peh at 88 Ids crror histogram for peh at 58
2504 | Bk
| &k
2004 140
£ 120
| 5 =
L 0K
Bk
L
Al
ol 40
2y
o —

-5in x] Ein | O0n | 500 200n
Alds [A]

-0.5 1] 0.5 1 L5

[Ry

Ids Ratico [%a]

Figure A-22 40nm PCH SSpk LUT Queries to SPICE Matching Statistics

170

[%] ey

ey

Ids valucs for pech ot TT

2204 -
4
204 /
| B = o
Statistics
L] Average -0.236% -10.262nA
o 0.5316% 33.513nA
L 4o —
/ Percentile *s ErrorA Error
21 o 50% 0.178% 6.342nA
Lo - 75% 0.284% 15.962nA
" 00% 0.542% 40.127nA
5% 0.974% 50.362nA
& _
i 99%, 2.758% 66.762nA
41+
i
:II.I +I|| l.‘\lu ."Clu IIIZI|| 1 éu l -II-|| Il.l‘m I.':Cu Zl;lu :5"
SPICE [A]
Ids ermor histogram for peh at TT Ids error histogram forpech at TT
2204
2004
20
| B
| &0
.
L4014 g 150
1 20+
100 L 00
RO
A
i
404
204
A5 - - - - [- =
-100n 1} 100n 200n 3000 400 S0n -3 -2 l o] 1 2
Alds [A] Ids Ratic [%4]

Figure A-23 40nm PCH TT ps LUT Queries to SPICE Matching Statistics

171

Ids walues for pch at FF

0 : !) ‘l
25 Statistics
. Average -0.319% -13.971InA
= 2001 | o 0.884% 66.612nA
= ’ Percentile®s ErrorA Error
. /‘ S0%, 0.246% 0.671nA
- /s 13% 0.356% 27.098nA
r 90%, 1.019% 98.378nA
1o 05% 2.164% [134.188nA
002, 3.006% 255.511InA
.‘~I|.| 1 l;Iu 1 ;u Zl;Iu E.I‘~|| SIZIILl
SPICE [A]
Ids emror histogram for peh at FF Ids crror histogram for peh at FE
2004 >0
o £
= L 504 E L 504
L0+ L0
5+ S
o mm— y y o
-200n -100n 1] 100n 2000 300n 400n 500n &00n -5 -4 -3 -2 -l 1] l 2 3

Alds [A] Ids Ratic [%a]

Figure A-24 40nm PCH FFds LUT Queries to SPICE Matching Statistics

172

[ErwnmeEry

ey

gm valucs for peh at 88

4 -
15 .oee

iy
25+

2

N 4

100 151 20u 251 300 15n 40u
SPICE [T]

A crrer hi-sl-.-y.r.'lrn far ru.'|'| al 88

Statistics
Average 1.159% 280.030pn0J
o 0.731% 1 78.874n00

Percentile s ErrorA Error
S0%, 0.308% 55.86n0
T5% 0.586% 100.86n0
0%, [.193% 243 .66n0
5% 1.602% 436.639n0
0%, 2.585% 761.46n0

=l == o hi::l-'-yl:lm for p;h al B8

[
LA
(=]

(=]
o
?

L50H

(il

50

-600n -400n -200n 1] 00n 400n 6&00n E00n lu
Agm [T]

juncey

111H

Loy

i

EiH

G4

SIH

404

3y

am Rafic [%]

Figure A-25 40nm PCH SS,gLUT Queries to SPICE Matching Statistics

173

gm valucs for pchat TT

iRt r'
i .?-
- Statistics
5 = Average 1.291% 404 805000
'“ o a 0.796% 231.032n0
% Percentile %s ErrorA Error
= 35 S0%% 0.341% 67.795n0
- T5% 0.766% 148.604n0
0% [.422% 404.795n0
250 5% [.758% 594.795n0
ol I/' 99%% 2.331% R50.805n00
| Sipg -
ISu 200 25 30u 35u d0u 450 Su S8

SPICE [T

gm crmor histogram for peh at TT gm crror histogram for pchat TT

L4 |

L2044

g}
=
?

juncey

T

604

TR

-400n -200n o 200n 400n 600n BEOn lu l.2u

Agm [T] gm Ratio [%]

Figure A-26 40nm PCH TT g LUT Queries to SPICE Matching Statistics

174

(i3] ey

ey

agm valucs for peh at FF

T

G5 H . f
G0 '_‘J
L
-

Iy

55

S0

451

4

151

iy

25

2
"

T

T T T T T
2 10 4 50u G
SPICE [T

gm crror histogram for pch at FF

T
Tlu

Statistics
Average 1.392% 3543n0
o 0.917% 325423n0)

Percentile%s ErrorA Error
5004 0.391% 111.399n0
T5% 0.938% 252.200n0
007 [.330%% 568.5n00
059 [.B36% R06.190n0]
Q0% 2.542% 1.0783uld

gm crren histogram for peh at FF

-500n o E00n lu L.5u
Agm [T

jumeey

am Ratio %]

Figure A-27 40nm PCH FF g LUT Queries to SPICE Matching Statistics

175

(i3] ey

ey

go values for pech at 85

B : ' LR
1+ -
Statisties
] - Average -0.195% -4.450n0
(] L.756% 37.323n00
| T Percentile %o ErrorA Error
ol i - i i 5054 0.802% 10.924n0
T5% [.592% 21.509n0
1 - 0% 2.580% 38.939n0
2 05% 4.056% 53.979n0
0oy 3.536% 16604000
K55
i+
IIII I1|| :""]-Iu -I-1|| F-:.l l.‘\lu ._'Iu Sru
SPICE [T]
o cmor histogram for peh at 58 go ermor hisiogram for peh at 35
| B
| &I
1404
e
| 204 =

-400n -300n -200n -L00n 1] 100n e -6 -4+

ra

1] 2 4 -]]
Ago [T] o Ratio %]

Figure A-28 40nm PCH SS @ .UT Queries to SPICE Matching Statistics

176

[l ey

ey

o values Tor peh at

e i i i i -
B L
Statistics
L * Average -0.042% -3.084n0
s .- o 2443% 54.605n0
. - Percentile ™. ErrorA Error
507 0.936% 10.745n0
tu e T5% [.577% 24.534n0
- - 00% 2.961% 48.535n0
i 05% 4.570% 70.545n0
Q0% [2.382% 235.255n00
L
™
EI |1|| :Iu J-Iu -I-Iu il;.l l.‘:u Fru ."Clu ‘.:'II.I
SPICE [T]
go error histogmm for peh at TT go aror histogmam for peh ot TT
004
14+
TE(H L2H
o
2004 g
Bl -
1 504
LI
L0+
404
50
2104

-7 00 -E00n- 50004 00n-3000 200n- 1000 0 1000 2000 3000 4000
Age [U]

o Ratic |"|||

Figure A-29 40nm PCH TT gLUT Queries to SPICE Matching Statistics

177

[3] euromEry

ey

go values for pch at FF

[RREL -
Lt =
G PR S Statistics
- I T — Average -0.012% 2,650
Lo o 2.566% 63.163n0
Percentile%s ErrorA Error
i - =
S0 0.872% 11.772n0
Eu - _
T3% [.5302% 27.527nld
0y 2.540% 60.407nl0
05% 4.579% 107.14Tnl0
00%y [2.131% 316.06TnJ
EI Ir|| Zlu]-Iu -|-1|| f:u !.‘\Iu ._'Iu .":u ‘.;u IIIZI|| l il.l
SPICE [T]
go crmar histogram for poh al FF go ermor hisiogram for peh at FF
1004
1 6
250 140
120
2004+ ~
£ oo
L 504 i
G
Lo -
4
S04
2
- T - T Oy "
-400n -300n -2000 -100n 1] |00n 200n 300n 400n 500n -20 -1 -10
Ago [T] o Ratio %]

Figure A-30 40nm PCH FF gLUT Queries to SPICE Matching Statistics

178

Cgs values For peh ot 88

1.499p r 7
.
P " Statistics
- s Average -0.231% 18.23aF
2 2] . o 0.372% 66.699aF
% - . Percentile s ErrorA Error
) K S0% 0.241% 18.453aF
|.5pe . T3% 0.28% 20.472aF
_-l’ o0 0.686% 21.114aF
L riz 053%, 0.875% 116.769aF
7 00%, 0.947% 311.769aF
=000 o
7’
o £
EI 5!::|:||' Ilp 1 .:_‘np 1rp 3.1‘5;1]-Ip 3.—1-';"‘5'p
SPICE [F]
Lyx crar hixlugrurn far p-_'|'| at 85 C 25 error hi-slug:rurn far p|:|1 at 88
4004
20
1504
- 004 -
2 2 L5
25 -
2004
L0
L 504
L0+ s
50
LS T T t
-200a -100a 1] 100a 20 300a 400a 500a L5 -1 -0.5 1] 0.5
Al [F] Cgs Ratio [%a]

Figure A-31 40nm PCH SS g LUT Queries to SPICE Matching Statistics

179

Cgs values for pch at TT

14900

1
'q

=
i
e

[4] ey

T T
L.5p Ip
SPICE [F]

T
1499

Cgs emror histogram Ffor pechat TT

| Statistics

Average -0.274% |10.767aF
o 0.418% |49.440aF
|Percen tile % ErrorA Error

507 0.279% |11.117aF
75% 0.311% |13.021aF
00, 0.777% [13.948aF
05%, 0.966% 69.232aF
99%, 1.059%, [300.232aF

Cos crmor histogram for pech at TT

450

400+

3504

Hneey

2004

L50H

Lo

SiH

LEH

L 604

144

1204

ey

Lo

HiH

6H

0.5 0 0.5
Cgs Ratio [%]

-100a 1]

1 a 200

Algs |F]

30 400 i) -L.E -1

Figure A-32 40nm PCH TT Gs LUT Queries to SPICE Matching Statistics

180

Cgs values for pch at FF

1.499p

I
]

[] ErmeEry

[=]
LA
'q

¥}
il
-

T T T
L.5p Ip 25p
SPICE [F]

0 sonf Ip

Cgs crror histogram for pch at FF

1
Ip

.
3.429p

| Statistics

Average -0.25% |15.976aF
o 0.432% 68.294aF
|Percenti|e %o ErrorA Error

507 0.254% |16.335aF
75% 0.282% |18.286aF
00, 0.757% [19.701aF
95% 1.103% [84.023aF
99%, 1.205% [384.023aF

Cgs error histogram for pch at FF

4504

4004

2004

L 504

Lo04

504

-200a

-100a 1]

LDt 2000 300 400a 500a &S00

ACgs [F]

Figure A-33 40nm PCH FF s LUT Queries to SPICE Matching Statistics

181

oy

2004

LE0H

Lo

24

T
0.5

-0.5 o
Cgs Ratio [%]

[4] ey

Uy

Cod values for poh at 88

S0 -
4514 -
405 Statistics
el Average -1.786% -15.701aF
_ o o 1.821% (77.182aF
" « Percentile % Error/A Error
asf - 507 1.249%, [15.258aF
- ; 75% 1.611% [15.462aF
_ _" 00 34970 |15.631aF
= . 05% 4321% [57.438aF
Lo i / Q0% 4.530%, |3?6.1‘-JEELF_
i *
V4
0 sf iof ST 20f 250 3o 350 40f 457 sof
SPICE [F]
Cgd error histogram For peh ot 88 Cod cror histegram for peh at 88

2504+ TH

il
2004+

i

?

Lo El

4

I
oo

2
LIV

14
i o
=B -B008 -TO0 -600: 500 4003 - 3005 -200- 1001 0 100 2005 -7 1 2 3

Cod Ratio [%]

ACgd [F]

Figure A-34 40nm PCH SS &, LUT Queries to SPICE Matching Statistics

182

[] By

Juneey

Cod values forpch at TT

=0
4504 o
404 :
Statistics
350 Average -1.751% |-9.924aF
- . o 1.811% |65.793aF
_ Percentile %o ErrorA Error
= 50% 1.258% [0.465aF
206] 75% 1.640% 19.709aF
- . 90% 3.404% 9.86aF
" 05%, 4.123% 9.91aF

LoF - 097, 4.616% [388.075aF
Sfg-oot ‘f .
\/

T T T T T T T T T
a S0 1ol 1E 0 zof 257 30 350 40f 450 50l

SPICE [F]
Cgd error histiogram for pch at TT Cad error higogram for pch at TT
L0
S
[
5 4
3
204
104
t T T o t + T T
Q002 -B00a-T00 -600-500a 4002 -300a-200a-1000 0 100a 200 -7 -5 4 -3 -2 - s} 1 2 3
ACgd [F] Cad Ratio [

Figure A-35 40nm PCH TT Gp LUT Queries to SPICE Matching Statistics

183

[4] ey

R10iTs]

1 00E

Cod values for poh at FF

1105

ElE

T0IH

G0

501

4014 *

LT B =

200

Lofg - L]

APICE [F)

Cgd error histogram for peh at FF

T T T T . T T T T T
Cozof 3o0f 4of sof eof 7of mof 9of 1l [lo

Statistics

Average -1.373% |-21.582aF
(] 1.760% |141.557aF
Percentile %s ErrorA Error

0% 1.205% [21.100aF
T5% 1.470% [21.331aF
00 1317% 21.496aF
055 4.226% |21.557aF
09% 4.797% |674.717aF|

Cgd ermmor histogram for peh at FE

Junoey

-LEFLES99EL AR 1590 - 1T -800a-6000-400a-200a 0 200 400a
ACgd [F]

Figure A-36 40nm PCH FF gp LUT Queries to SPICE Matching Statistics

184

9

-4

3)

- 2 -1
Cd Ratio [%]

1] 1

-

i

4

Thermal_Moise Floor values for peh at 83

LN
T00m [
i"F
o - -;.' Statisties
;:f"iﬂm- Average -2.354% -11.43e-27V3H=z
) o 1.351% 9.176e-27V*/Hz
"Etmm- Percentile/%s ErrorA Error
5 50%, 0.E897% 4.132e-27VHHz
400 15N 1.379% 6.413e-27V3/Hz
90%, |.895% 12.185e-2TV*Hz
. 05%, 2.763% 20.915e-27V3H=z
00, 4.276% 35.435e-27V3H=z
200m+ F.
o+
ZIZI‘EIrn]-IIIIIIrn +III1:Irn .‘~III:ZIn'| I.‘IZI:ZIrn ?D:Ilrn :iIZIrIZIrn
APICE [xle-24V 4 He|
Thermal_Moisc_Floor error histogram for peh at 85 Thermal_Maoise_Floor crror hislogmm for peh at 88
L2204
L 004
o o
= sl l
G4
404
204

7 & -5 4 A 2 0 1
AThermal_Moise_Floor [x1e-24%<Hz | Thermal_Moisc_Floor Ratio [%4]

-60m -50m -40m -30m -20m -10m a L0m 20c -B

Figure A-37 40nm PCH SS NLUT Queries to SPICE Matching Statistics

185

Thermal_Moisc_Floor valucs for pch at TT

Ei0m

T0m-

B
7

o [EART-o 1] Bz
5

=
g

100m-

Z20m-

s,

T 13 T L3 T T
200m 300m 400m S00m 600m T00m
SPICE [xle-24V4Hz]

Thermal_Meisc_Floor coror histogram For peh at TT

T
E00m

Statistics
Average -3.001% -13.007e-27V¥Hz
o 1.603% 7.374e-27VHHz

Percentile %e Error A Error

0% 1.277% 4.46e-27VHz
T5% 1.891% 6.672e-27ViHz
00% 2.601% 9.603e-27V3Hz
05% 3.004% 16.554e-2TVAHHz
00% 3682% 25.62e-27V3Hz

Thermal _MNeise_Floor emror histogram for pch at TT

L 004

904

R

TiH

Jnecy

G4

504

401

304

juneey

404

35

304

-45m -40m -35m -30m -25m -20m -15m -10m -*m 0 5m [0Om

AThermal_Meisc_Floor [x le-24%4He |

-3 -7 - -5 - -3 -2 -1 o 1
Thermal_Meisc_Floor Ratio %]

=]

Figure A-38 40nm PCH TT N LUT Queries to SPICE Matching Statistics

186

Thermal_Moisc_Fleor values for peh at FF

Ei0mA . ! 'é"‘?
Crmom Statistics
; ﬂ# Average -3.324% -15.418e-27V¥Hz
Ty & o 1.744% 8.302e-27V/Hz
'E 1-‘ Percentile %s Error A Error
5o0m 0% 1.268% 5.382e-27V¥Hz
- T5% 2.150% B.016e-27VYH=z
400m 00%; 2001% 13.665e-27ViHz
95% 3343% 16.942e-2TVHHz
200m- 005 3807% 27.311e-27V3Hz
20

T T T T T v v
200m 30m 400m S00m G00m T00m B00m
SPICE [xle-24V4 Hz|

Thermal _Moisc_Floor ermar histogram for pch at FE Thermal_Moisc_Floor crror hisiogmm for peh at FF

Jrnecy

juneey

-30m ~40m -30m -2m -10m 1] LOm -8 -8 -T -6 -5 -+ -2 -2 1 1] 1

AThcrmal_Woise_Floor [= le-24%<Haz| Thermal_Moeise_Floor Ratio [Ya]

Figure A-39 40nm PCH FF NLUT Queries to SPICE Matching Statistics

187

Flicker_Moise_at_1He valucs for pch ot 58

Hmeey

250
-
L]
[]
200 - .
o Statistics
2 L]
= . } Average -6.203% -1.061aV3H=z
E 5ol . (] 2.054% 1.826aViHz
L+ - - i
»'5 Percentile®s ErrorA Error
= '3 50%, 2.343% 941.923zV3/Hz
k -
Lo .**‘ T3% 3.561% 1.059aV*Hz
90% 4.667% 1.785aV*Hz
s 05% 5.370% 3.343aViHz
] 90, 6.516% 7.917aV¥Hz
[®
I;I SrEI II.'IIIZI l .:~IZI ZIIII 3%[
SPICE [xlc- 18V i)
Flicker_Moisc_al_| Hz crmar hisiogram for peh at 85 Flicker_Moisc_at_|Hz error histogram For peh at 88
354
1 B
| G
1404
.
1204 2
1 004
R
50
4
20
-14 -1z -1a -5 -6 -4 -3 1] 2 4 -16 -4 -1Z -10 -8 -6 -4 -2 i} !
AFlicker Moisc_at_1Hz [xle-1 BV Hz| Flicker_Moisc_at_|Hz Ratio [%a]

Figure A-40 40nm PCH SS NLUT Queries to SPICE Matching Statistics

188

Flicker_Moise_al_|Hz valucs for pchat TT

3504 -
004 o
o . Statistics
; -~ _ . _ Average -7.489% -1.911aV¥Hz
= . * (i] 3.693% 3.446aV3Hz
!5 2004 o Percentile %o Error A Error
5 > 0% 2.930% 1.702aV3Hz
REL: o '1': : : T5% 4.543% 1.907aV3Hz
- Q0% 5.700% 3.187aV3/Hz
S ,;lr ' ' ' 05% 6.526% 7.105aV3Hz
D0% B364% 16.951aV3Hz
504
4 !
I;I “0 l IEII:I 1 %I:I ZI;II:I 2.:~I:I J-IIII 3;0

SPICE [xle- 18z

Flicker_Moisc_at_1Hz crror histogram for pch at TT Flicker_Moisc_al_| Hz ermor histiogram for peh at TT

34

RN Iniy

junoey

-Z5 =20 -5 -Lo -5 o 5 1C =20 =15 -0 -5 1] 5
AFlicker Moisc_at_1Hz [xle- LBV Hz| Flicker_Moisc_at | Hz Ratio [%]

Figure A-41 40nm PCH SS NLUT Queries to SPICE Matching Statistics

189

[ELl-AR [-2] %] B0z

meey

Flicker_Moise_at_1He valucs for pch at FF

7o .
.
B0 .’ Statistics
: Average -3.818% -3.731aV*Hz
S0 u— o 3.780% 6.559aV3/Hz
. Percentile %s Error A Error
4004 - .
a 0%, 2434% 3.516aViHz
. s
ool . 75% 4.400% 3.73aV¥Hz
‘.F.- D0%, 6.661% 7.925aViHz
2001 “'." 05%% 7.522% 13.728aViHz
Do, B.662% 30.497aViHz
Lo+
0
EI 1 Ell:l :ll:l:l 3|:II|:| -'lEIl:l .‘*Ell:I l.‘lll:l:l ?Clll:l ﬁEIl
SPICE [xle- 18V]
Flicker_Moisc_al_| Hz crmor hisiogram for peh at FE Flicker Moisc_at_|Hz error histogram for peh at FF
2004} s
L B0} 45
L6041 40
L4 ac]
-r-: o
L2041} 2 3
L0 | 25
B | 24
604/ 154
404! (N
204 H
T ¥ [T
-40 -30 -0 -10] Lo A -20 -LE -10 -5

AFlicker Moisc_at_1Hz [xle-1EV4 Hz|

Flicker_Moisc_at_ | Hz Ratio [%]

Figure A-42 40nm PCH FF NLUT Queries to SPICE Matching Statistics

190

A. 2. Circuit Level
The four topologies were tested in TSMC 40nm, in SS corner &C1E&ch figure

shows

A.2.1. Operating Point
A2 1.1 Common Source

Gamma vs SPICE OP error histogram for cs topology

Gamma vs SPICE OP values for cs topology
0.9) 12
0.8
10
0.7
G 0.6 c8
a o
u
m 0.5 ne
m t
2 , |]|
0.3
0.2 4 2 I
A
0.1 1~
0
-2 -1 0 1 2 3
0.10.2 0.35%14C(E).[5V?.6 0.70.80.9 OP Difference between Gamma and SPICE [mV]

191

A.2.1.2.

0.7

0.7

0.65

Differential Pair

Gamma vs SPICE OP values for diffpair topology

0.6

0.35

0.3

0.2

0.250.3 0.350.4 0.450.5 0.550.6 0.650.7 0.75
SPICE [V]

Gamma vs SPICE OP error histogram for diffpair topology
70

60

50 [

Ca0

30

20

10

i Ty

-25-2 -15-1 -050 0.5 1 1.5 2
OP Difference between Gamma and SPICE [mV]

2.5

a2.1.3. Ditferential Pair with Output Stage
Gamma vs SPICE OP values for diffpair_output topology
11 Gamma vs SPICE OP error histogram for diffpair_output topology
N 100,
1 L7
90
0.9
0.8 80
0.7 70
0.6 Ceo
G o
u
;’;0-5 50 |
t
r:0.4 40
0.3
30
0.2 L
20
0.1 e
10
0
0 T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 —Fglql-ih%l-lz] 10
SPICE [V] OP Difference between Gamma and SPICE [mV]

192

A2 1.4, Operational Amplifier

Gamma vs SPICE op values for operational amplifier Gamma vs SPICE op error histogram for operational amplifier

300.
0.551 : 250.

200.
G
a C
m 9150
m u
a n

t

100,
0.55

50

L —
0.551 0.2 0.4 0.6

0.55 .
SPICE [V] op difference between Gamma and SPICE [mV]

Note: The output DC point of the operational amplifier does not span a large range «
values between 0 andby, like other circuits do under different geometries. It remains close t
550mV, regardless of its assigned transistor sizes. This is due to its netlist constraint and C

feedback that tunes the output stage’s bias voltages to control the output to be always at mid-rail

DC level.

193

A.2.2. Low Frequency Gain
r.2.2.1. Common Source

Gamma vs SPICE Adc values for cs topology Gamma vs SPICE Adc error histogram for cs topology
35 . 9
30 8
7
25
6
G20
a cs
m u
mis n4 - _
a t
3 - -
10
) 2 |
5 A
1
0 S 0
-1 -0.5 0 1 0.5 1 1.5
0 1gPICE1[EéIB] 25 30 35 Adc Difference between Gamma and SPICE [dB]
Gamma vs SPICE Adc values for diffpair topology
34
/ Gamma vs SPICE Adc error histogram for diffpair topology
32 P, 140,
30 5»’;’
B 120
28 &
100 .
26 T
Gog Cgo
a o
mzz "
a t 60
20
18 40
16 20
14
0 il L d
14 16 18 20 22 24 26 28 30 32 34 T0.4 0.2 0 0.2 0.4 0.6 0.8 1

SPICE [dB] Adc Difference between Gamma and SPICE [dB]

194

A 2.2.3. Ditterential Pair with Output Stage

Gamma vs SPICE Adc values for diffpair_output topology Gamma vs SPICE Adc error histogram for diffpair_output topology

60 . 180.
160,
50
140,
40 K C120
G ’ o
a 1100
m30
m t
a 80
20 60
10 40
e 20
0 R
0 a .
0 1 20 30 40 50 60 -2 -1.5 -1 -0.5 0 05 1 1.5 2 2.5
SPICE [dB] Adc Difference between Gamma and SPICE [dB]
Gamma vs SPICE adc values for operational amplifier
Gamma vs SPICE adc error histogram for operational amplifier
32 200,
180.
30 160.
140.
G28 120.
El
- 2100
a26 u
n 80
t
60
24
40
22 20
0
22 26 28 30 32 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
SPICE [dB] adc difference between Gamma and SPICE [dB]

195

A.2.3. Common Mode Rejection Ratio
A 2.3, 1. Common Source

CommonSource amplifiers have no “common-mode”, because they have only one input.

A 2.3.2. Differential Pair

Gamma vs SPICE CMRR values for diffpair topology

55 Gamma vs SPICE CMRR error histogram for diffpair topology
200,
50 1. 180 |
160
45
G . 140,
a G
M40 A cl20
m L hgt o
a 1100
35 n
t8o
30 60
40
25 20
0 Be % mam o nl
25 30 35 40 45 50 55 -2 -1.5 -1 -0.5 0 0.5 1 1.5 =%
SPICE [dB] CMRR Difference between Gamma and SPICE [dB]

An output stage has no effect on performance, CMRR-wise.

a.2.3.3. Operational Amplifier

Gamma vs SPICE CMRR values for diffpair_output topology

60 1K Gamma vs SPICE CMRR error histogram for diffpair_output topology
55 i 900,
800.
G50 =
a . 700,
m L
I'T‘|45 - el v
a], Sl 600.
40 S)
= & 500
.. o
35 v 1400,
L n
. t300
30 CLE
o 200
2 J
5 100.
0 L
25 30 35 40 45 50 55 60 S5 4 3 -2 -1 0 1 2 3 4
SPICE [dB] CMRR Difference between Gamma and SPICE [dB]

196

A. 2. 4.
A.2.4. 1.

A.2.4.2.

Power Supply Rejection Ratio

Common Source
Common-Source amplifiers in this test are powered with an ideal current source.

Operational Amplifier

Power_Supply_Rejection_Ratio values for Operational_Amplifier at SS

38

16

a Power_Supply_Rejection_Ratio error histogram for Operational_Amplifier at SS

14

12

[ap] ewwes

36

uno)

10

20 36 38 40
SPICE [dB]

A 2.5, Bandwidth

A.2.5. 1.

Bandwidth Values for Common Source Topology

900

o]
o
o

i
H

N
o
o

D
o
o

vl
o
o

[ZHW] ewwes

N
o
o

w
o
o

42 -3 -2 -1 0 1 2
APower_Supply_Rejection_Ratio [dB]

Common Source

Bandwidth Error Histogram for Common Source Topology

200

100

T
o

S

0 100 200 300 400 500 600 700 800 900
SPICE [MHz]

0 5
bw Ratio [%]

197

A 2.5.2. Differential Pair

Gamma vs SPICE BW values for diffpair topology Gamma vs SPICE BW error histogram for diffpair topology
22 30
20
18 : 25
16
20
14
ai12
m 15
M9 C
a ¢}
8 u
nlo
6 t
4 5
2
o L lll
2 4 6 8 10 12 14 16 18 20 22 -25 -20 -15 -10 -5 0 5 10 15

SPICE [MHZz] BW relative error between Gamma and SPICE [%]

A 2.5.3. Operational Amplifier

Gamma vs SPICE Bandwidth values for operational amplifier Gamma vs SPICE bw error histogram for operational amplifier
450 £ 450,

74

'1'
400 N 400

350

2
C

/ 0300
300 u

3300
3
N
w
o

t
¥
/ 200
200

/’ 150
150.

{ 100,
100. 50
50 - 0
100 150 200 250 300 350 400 450 18%-7%-6%-5%-4%-3%-2%-1%0 1%
SPICE [MHz] BW relative error between Gamma and SPICE

198

A.2.6. Phase Margin

A 2.6. 1. Common Source

Phase Detection at Adc=0dB Phase Detection Error Histogram

85

80

75

70

70 80 90 100 110 120
SPICE [°]

A 2.6.2. Differential Pair

Phase Detection At Adc=0dB Phase Detection at Adc=0dB
20
- 18
164
Q
g 70 o 14
3 g
2 3 12
o
65 10
60 6
4
55 2
0-
62 64 66 68 70 72 74 76 - 10
SPICE [°] APM [°]

199

Lo BWWED

A 2.6.3. Ditterential Pair with Output Stage

PM values PM error histogram

110

100

90

unod

80

70.

60

50

50 60 70 80 90 100 110
SPICE [°] APM [°]

10

A 2.6. 4. Operational Amplifier

Gamma vs SPICE pm error histogram for operational amplifier
Gamma vs SPICE Phase@A=0dB values for operational amplifier 220,

25

20

S 40

e 20

-10 -5 0 5 10 15 20 25 -50%-40%-30%-20%-10% 0 10% 20% 30% 40% 50%
SPICE [°] Phase relative error between Gamma and SPICE

200

B. Source Code

B.1. Language, Format and Compilation
NGSPICE is the contemporary heir of SPICE2, a C-language rewrite of the original

Fortran SPICE. Therefore, the RAMSpice tool is predominantly implemented in C, with its
interactive interpreter Tcl. The bulk of the code is still the inherited open-source NGSPICE.
However, mining for information inside the original simulator’s code reveals the different
accumulated layers that were added over the 3+ decades that passed since SPICE2 becal
domain. One aspect of the system that seems to have been reinvented with each contribut
messaging (prinduts). Almost every module uses the familiar “info”, “warning” and “error”
classification, but the mechanism and look-and-feel are unique to each. The first refactorin
was replacing the messaging commands to a preprocessor-like statements of the followinc

format:
#Info: “a printf pattern using field such as %s, %d etc.” string_in integer in

Trivially, #Warning:, #Error: and #Fatal: are supported the same way. There are dek

mode messages (verbose) that are intuitively named #Dinfo:, #Dwarning:, #Derror:

Messages printed out of Tcl scripts have similar notation, except that they do not ne
patterns and do netart with the preprocessor leading character ‘#’. All messages, Tcl and C,
trigger the same Tcl code, thus ensure that chronological order of issued messages is kep
files, unlike the multitude of print mechanisms that raced each other to reach the screen be
The Tclconsolidated messaging system makes printing a bit “expensive” computation-time-wise.

However, the compilation script makes up for this by compiling three different flavors for ee

201

executable:

1. Regular- with all #Info: #Warning: and #Error: messages
2. Debug- with regular plus all #Dinfo:, #Dwarning: and #Derror: messages

3. Silent— quickest execution, with no printed messages

The compilation script is therefore responsible for implementing the new Tcl-
preprocessor directives. This infrastructure converts the new preprocessor directives to C 1

a “make”-like mechanism, and then sends the flat C code to the gcc compiler.

Support for original preprocessor directives (herein the “Tcl-preprocessor’) opened the

door for additional improvements:

1. In-code support for Tcl variable notation: $DHMhe current function’s dimentionality
2. Embedded Tcl code to manipulate Tcl variables and loops: #tcl set DIM 5
3. For, for-each and while loops to automate code generation and achieve higher absti

and reusability, without C++ and its templates: #For: {seti 0} {$i<$DIM} {incri} {...}

The Tcl-preprocessor enabled writing more time-efficient and abstract code for the ¢

coding effort. Examples include:

1. Compilation-time loops and unrolled interpolation sequences that compile to traces,
than branching loops.

2. Multiple nesting of old NGSPICE analyses that were previously limited to 2 levels

3. Shorthand coding of repetitive interfaces and operations that follow the same lists o

variables

202

The compilation script is therefore an essential part of the source code. It does not t

original Make file distributed with NGSPICE, but modeled after it.

Some of the code downloaded with NGSPICE was discarded for redundancy. For
example, since RAMSpice andare meant to be used in a web-service setup, maintaining th
libraries and all the data visualization code that came with it did not make sense. The BLT
database that was required by the TclSpice module of NGSPICE is limited to dealing with

simulation vectors, became obsolete with cTree and therefore was bypassed in the origina

B.2. Data Base

The cTree database was built into the Tcl interpreter’s command table. The top-level
command is listed below as tcl_ctree and registered in the interpreter as ‘@’, for easy
identification in the Tcl code. Each cTree command in Tcl expects the ‘@’ bullet, followed by a

context string, a sub-command and optional arguments.

Example: @ /parameters/height = 3sdigns 3.4 to context ‘parameters’, sub-context

‘height’. The context is parameters/height, the sub-command is ‘=" and the argument is 3.4.
Example: @ /parameters foreach_child ¢ {

puts “$c=[(@ parameters/$c]”

prints all sub-contexts (= children) of parameters and their values.

Context notation borrows from UNIX file-system notation. The root of the tree is

forwardslash ‘/’. A context path is accessed via forward-slash delimited list. Similar to worki

203

directory in UNIX (pwd), there is a working-context, which can be set by the cd sub-comme

and referenced by relative context.

Example: @ /parameters cd changes the working context to parameters

Example: @ height = 3.4 sets /parameters/height to 3.4

Example: @ ../changed_parameter = 1 sets a context next to parameters to 1

Although intuitive and familiar, the forward-slash separator is problematic when use:
within I'CC templates, because it gets confused by expression analysis with division opera
Therefore, both forwardtash and colon ‘:” are supported as separators. The former is used in

most Tcl scripts, while the latter is mandated @C templates.

The structure of contexts (tree nodes) is:

struct context {
context **children; // array of sub-contexts
context *parent; // pointer to the super-context
ordinal num_of_children;
ordinal max_num_of_children; // Current allocation size of the children array
ordinal sibling_order; // © - first-born, 1 - second child, etc.
CTYPE value_type; // Enumeration of context type
so_union value; // value, if fits in 64b field
char *name;
}s

The ‘@’ bullet triggers the following top-level command:

static int

204

tcl_ctree (ClientData clientData,Tcl_Interp *interp,int argc,char *argv[])
{
if (argc<2) {
#Error: "(ctree) got no context"
return TCL_ERROR;
}
Tcl_ResetResult(interp);
context *c=Context;
float *array_entry;
if ((argv[1][0]1=="/")[l(argv[1][0]==":")) {
c=ctree;
}

// "exists" and "create" require an exception to the rule other commands require,
that the context given as 1st arg must be valid.

if (argc==3) {

((strcmp(argvff],"exists”)::)| | (stremp(argv[2],"?")==0)]| (strcmp(argv[2],"exists?")==0)) {
tcl_append_int(interp,resolve_context(argv[1],&c,&array_entry));
return TCL_OK;
}
if

((strcmp(argv[2],"!")==0)||(strcmp(argv[2],"create”)==0) || (strcmp(argv[2], "exists!")==0)) {
create_context(argv[1]);

return TCL_OK;

}

if (!(resolve_context(argv[1],&c,&array_entry))) {
create_context(argv[1]);
resolve_context(argv[1],&c,&array_entry);

}

if (argc==2) {

// simple value return

205

if (c->value_type==ctype_POLY) {
tcl_append_float(interp,calc_POLY(c->value.v));

return TCL_OK;

if (c->value_type==ctype_void) {

return TCL_OK;

if (c->value_type==ctype_string) {
Tcl_AppendElement(interp, (char *)c->value.v);

return TCL_OK;

if (c->value_type==ctype_real) {
tcl_append_float(interp,c->value.s);

return TCL_OK;

if (c->value_type==ctype_integer) {
tcl_append_int(interp,c->value.o);

return TCL_OK;

if (c->value_type==ctype_ LUT) {
if (array_entry==NULL) {
#Error: "(ctree) invalid array access %s" argv[1l]
return TCL_ERROR;
}
tcl_append_float(interp,*array_entry);
return TCL_OK;
}
if (c->value_type==ctype_PAT) {
PAT *p=(PAT *)c->value.v;

tcl_append_int(interp,p->content->num_of);

206

return TCL_OK;
}
#Error: "(ctree) ccontext has unrecognized value_type. (%d)" c->value_type
return TCL_ERROR;
}
// identify context’s type
if (strcmp(argv[2],"type")==0) {
tcl_append_int(interp,c->value_type);
return TCL_OK;

}

/****

POLY support
ok ok)
// return a polynomial expression string
if (strcmp(argv[2],"expression")==0) {
if (c->value_type!=ctype POLY) {

#Error: "(ctree) The expression command is to be used with a polynomial

only."
return TCL_ERROR;
}
if (argc!=3) {
#Error: "(ctree) The expression command takes no arguments”
return TCL_ERROR;
}
if (c->value_typel=ctype POLY) {
#Error: "(ctree) The expression command is to be used with a polynomial
only."

return TCL_ERROR;

}
POLY *p=(POLY *)c->value.v;

Tcl AppendElement(interp,p->expression);

207

return TCL_OK;
}
// set a denominator for a rational function
if (strcmp(argv[2], "denom")==0) {
if (c->value_type!=ctype_POLY) {
#Error: "(ctree) The denom command is to be used with a polynomial only."
return TCL_ERROR;
}
if (argc<4) {
#Error: "(ctree) The denom command requires a polynomial"
return TCL_ERROR;
}
POLY *nom=get_POLY(argv[1]);
nom->denom=get_POLY(argv[3]);
return TCL_OK;
}
// calculate a polynomial in a derivative mode
if (strcmp(argv[2], "derive")==0) {
if (c->value_type!=ctype POLY) {
#Error: "(ctree) The derive command is to be used with a polynomial only."
return TCL_ERROR;
}
if (argc<4) {
#Error: "(ctree) The derive command requires a by-variable"
return TCL_ERROR;
}
context *by=Context;
float *array_entry;
if ((argv[z][0]=="/")|I(argv[3][0]==":")) {

by=ctree;

208

}

float *array_context;
if (!resolve_context(argv[3],&by,&array_context)) {

#Warning: "(ctree) The derive command was given a non-existent context %s"
argv[3]

tcl_append_float(interp,©);
return TCL_OK;
}
void *by_var=&(by->value.s);
tcl_append_float(interp,derive_POLY(c->value.v,by_var));
return TCL_OK;
}
// Apply Newton-Raphson to a polynomial
if (strcmp(argv[2], "root")==0) {
if (c->value_type!=ctype POLY) {
#Error: "(ctree) The root command is to be used with a polynomial only."
return TCL_ERROR;
}
if (argc<4) {
#Error: "(ctree) The root command requires a by-variable"
return TCL_ERROR;
}
float init=0;
if (argc==5) init=strtod(argv[4],NULL);
context *by=Context;
float *array_entry;
if ((argv[2][0]=="/")|l(argv[3]1[0]==":")) {
by=ctree;
}
float *array_context;

if (!resolve_context(argv[3],&by,&array_context)) {

209

#Warning: "(ctree) The root command was given a non-existent context %s"

argv[3]
tcl_append_float(interp,0);
return TCL_OK;
}
void *by_var=&(by->value.s);
tcl_append_float(interp,root_POLY(c->value.v,by_var,init));
return TCL_OK;
}
// Implicit derivative (derive one var w.r.t another, within the polynomial)
if (strcmp(argv[2],"imp_derive")==0) {
if (c->value_type!=ctype POLY) {
#Error: "(ctree) The root command is to be used with a polynomial only."
return TCL_ERROR;
}
if (argc<s) {
#Error: "(ctree) The implicit derivative command requires two by-variables™
return TCL_ERROR;
}
float init=0;
if (argc==6) init=strtod(argv[5],NULL);
float *array_context;
context *by=Context;
if ((argv[3][0]=="/")|l(argv[3]1[0]==":")) {
by=ctree;
}
if (!resolve_context(argv[3],&by,&array_context)) {
#Warning: "(ctree) The root command was given a non-existent context %s"
argv[3]

tcl_append_float(interp,0);

return TCL_OK;

210

}

void *by_var=&(by->value.s);

context *root=Context;

if ((argv[4][0]=="/")|I(argv[4][0]==":")) {
root=ctree;

}

if (!resolve_context(argv[4],&root,&array_context)) {

#Warning: "(ctree) The root command was given a non-existent context %s"

argv([4]
tcl_append_float(interp,0);
return TCL_OK;
}
void *root_var=&(root-»>value.s);
tcl_append_float(interp,imp_derive_ POLY(c->value.v,by var,root_var,init));
return TCL_OK;
}
/****
PAT support
****/

if (strcmp(argv[2],"PAT")==0) {
if (c->value_typel=ctype PAT) {

#Error: "(ctree) The PAT command is to be used with a pareto-associative
table only. Use double parentheses to declare one: @ PAT((sizel,size2|propl,prop2)) !"

return TCL_ERROR;
}
if (argc<4) {

#Error: "(ctree) The PAT command requires a sub-command: size, index,
delete, foreach"

return TCL_ERROR;

}
PAT *p=(PAT *)c->value.v;

if (strcmp(argv[3],"size")==0) {

211

tcl_append_int(interp,p->content->num_of);
return TCL_OK;

}

// List the performance properties

if (strcmp(argv[3],"properties”)==0) {
ordinal i;

for (i=0;i<p->properties->num_of;i++) Tcl_AppendElement(interp,p-
sproperties->content[i]);

return TCL_OK;

}

// List the sizing parameters

if (strcmp(argv[3],"sizes")==0) {
ordinal i;

for (i=0;i<p->sizes->num_of;i++) Tcl_AppendElement(interp,p->sizes-
scontent[i]);

return TCL_OK;
}
// List margins for similarity algorithm
if (strcmp(argv[3],"margins")==0) {
ordinal ij;

for (i=0;i<p->margins->num_of;i++) tcl_append_float(interp,p->margins-
>content[i]);

return TCL_OK;
}
// access entry at index
if (strcmp(argv[3],"index")==0) {
if (argcl=5) {
#Error: "(ctree) The PAT index sub-command requires an index"
return TCL_ERROR;
}
ordinal i,7j;

j=atoi(argv[4]);

212

for (i=0;i<p->sizes->num_of;i++)
tcl_append_float(interp,p->content->content[j]->sizes->content[i]);
for (i=0;i<p->properties->num_of;i++) {
float value=\
p->factors->content[i]*p->content->content[j]->properties->content[i];
tcl_append_float(interp,value);
}
return TCL_OK;
}
// the culling operation
if (strcmp(argv[3],"unique™)==0) {
if (argcl=5) {
#Error: "(ctree) The PAT unique sub-command requires a factor"
return TCL_ERROR;
}
pat_unique(p,atof(argv[4]));
return TCL_OK;
}
// Read the identification tag at certain index
if (strcmp(argv[3],"id")==0) {
if (argcl=5) {
#Error: "(ctree) The PAT id sub-command requires an index"
return TCL_ERROR;
}
tcl_append_int(interp,p->content->content[atoi(argv[4])]->id);
return TCL_OK;
}
// Find the index where certain id is stored
if (strcmp(argv[3],"id2index")==0) {

if (argc!=5) {

213

#Error: "(ctree) The PAT id sub-command requires an index"
return TCL_ERROR;
}
int id=atoi(argv[4]);
int i;
for (i=0;i<p->content->num_of;i++)
if (p->content->content[i]->id==id) break;
if (i==p->content->num_of) tcl_append_int(interp,-1);
else tcl_append_int(interp,i);
return TCL_OK;
}
// Generate graph entries from PAT
if (strcmp(argv[3],"graph”)==0) {
if (argc!=7) {

#Error: "(ctree) The PAT graph sub-command requires an output file, x
and y axes"

return TCL_ERROR;
}
int i,x=-1,y=-1;
for (i=0;i<p->properties->num_of;i++)
if (strcmp(p->properties->content[i],argv[5])==0) x=i;
for (i=0;i<p->properties->num_of;i++)
if (strcmp(p->properties->content[i],argv[6])==0) y=i;
if (x==-1) {
#Error: "No such property %s in PAT %s" argv[5] c->name;

return TCL_ERROR;

}

if (y==-1) {
#Error: "No such property %s in PAT %s" argv[6] c->name;
return TCL_ERROR;

}

214

FILE *O=fopen(argv[4],"w");
fprintf(0,"%s,%s\n",argv[5],argv[6]);
pat_graph(0,p,X,y);
fclose(0);
return TCL_OK;
}
// Delete entry according to index.
if (strcmp(argv[3],"delete")==0) {
if (argcl=5) {
#Error: "(ctree) The PAT delete sub-command requires an index"
return TCL_ERROR;
}
ordinal j;
j=atoi(argv[4]);
delete_entry_vector_pointer_ PAT_entry(p->content,j);
return TCL_OK;
}
// Stars empty the PAT from all entries,
// except for the ones holding a global record on at least one property.
if (strcmp(argv[3],"stars")==0) {
if (argcl=4) {
#Error: "(ctree) The PAT stars sub-command requires no more arguments"
return TCL_ERROR;
}
pat_stars(p);
return TCL_OK;
}
// Unrecognized sub-command error

#Error: "(ctree) Unrecognized PAT sub-command %s. It requires a sub-command:
size, index, delete, foreach" argv[3]

return TCL_ERROR;

215

}

// Apply a spec and calculate specific-front.
if (strcmp(argv[2],">>>")==0) {
if (c->value_typel=ctype_PAT) {

#Error: "(ctree) The >>> operator is to be used with a pareto-associative
table only. Use double parentheses to declare one: @ PAT((sizel,size2]|propl,prop2)) !"

return TCL_ERROR;

}

if (argcl=4) {
#Error: "(ctree) The >>> operator requires a list of properties."
return TCL_ERROR;

}

ordinal i;

PAT *p=(PAT *)c->value.v;

// instead of applying spec, clear all the flags from all >>> operations

if (strcmp(argv[3],"reset")==0) {
for (i=0;i<p->content->num_of;i++) p->content->content[i]->flags=0;
return TCL_OK;

}

// instead of applying spec, clear all the flags from previous >>>

if (strcmp(argv[3],"undo")==0) {
for (i=0;i<p->content->num_of;i++) p->content->content[i]->flags>>=1;
return TCL_OK;

}

int ARGC;

char **ARGV;

Tcl_SplitList(interp,argv[3],&ARGC,&ARGV);

vector_float *properties=new_vector_ float();

for (i=0;i<ARGC;i++) add_entry_vector_float(properties,atof(ARGV[i]));

free(ARGV);

for (i=0;i<p->content->num_of;i++) p->content->content[i]->flags<<=1;

216

pat_front(p,properties);
for (i=0;i<p->content->num_of;i++)
if (!(p->content->content[i]->flags)) tcl_append_int(interp,i);

return TCL_OK;
}
// insert a new entry to the PAT. Retention depends on Pareto dominance rules.
if (strcmp(argv[2], "<<<")==0) {

if (c->value_type!=ctype_ PAT) {

#Error: "(ctree) The <<< operator is to be used with a pareto-associative
table only. Use double parentheses to declare one: @ PAT((sizel,size2|propi,prop2)) !"

return TCL_ERROR;
}
if (argcl=5) {

#Error: "(ctree) The <<< operator requires a list of sizes and a list of
properties.”

return TCL_ERROR;
}
int ARGC;
char **ARGV;
Tcl_SplitList(interp,argv[3],&ARGC,&ARGV);
vector_float *sizes=new_vector_float();
int i;
for (i=0;i<ARGC;i++) add_entry_vector_float(sizes,atof(ARGV[i]));
free(ARGV);
Tcl_SplitList(interp,argv[4],&ARGC,&ARGV);
vector_float *properties=new_vector_float();
for (i=0;i<ARGC;i++) add_entry_vector_float(properties,atof(ARGV[i]));
free(ARGV);
tcl_append_int(interp,add_pat_entry((PAT *)c->value.v,sizes,properties));

return TCL_OK;

217

// Assignment operator
if (strcmp(argv[2],"=")==0) {
#Dinfo: "%s gets assignemnt" argv[1]
if (argc==4) {

if (c->value_type==ctype_POLY) {
POLY *p=new_POLY();
p->expression=strdup(argv[3]);
link_POLY(p);
c->value.v=p;
return TCL_OK;

}

if (c->value_type==ctype_LUT) {
if (array_entry==NULL) {

#Error: "(ctree) invalid array access %s" argv[1]
return TCL_ERROR;

}
*array_entry=atof(argv[3]);
return TCL_OK;

}

if (strcmp(c->name, "POLY")==0) {
POLY *p=new_POLY();
p->expression=strdup(argv[3]);
link_POLY(p);
c->value.v=p;
c->value_type=ctype_POLY;
return TCL_OK;

}

c->value.s=atof(argv[3]);

#Dinfo: "ASSIGNMENT %x=%s %g" &(c->value.s) argv[3] c->value.s

c->value_type=ctype_real;

218

return TCL_OK;
}
if (argc<s) {
#Error: "(ctree) usage: @ <context> = [<type>] <value>"
return TCL_ERROR;
}
// Setting type explicitly
if (strcmp(argv[3],"real”)==0) {
c->value.s=atof(argv[4]);
c->value_type=ctype_real;
return TCL_OK;
}
if (strcmp(argv[3],"integer")==0) {
c->value.o=atol(argv[4]);
c->value_type=ctype_integer;
return TCL_OK;
}
if (strcmp(argv[3],"string")==0) {
c->value.v=strdup(argv[4]);
c->value_type=ctype_string;
return TCL_OK;
}
return(copy_ctree_structure(interp,argv[1],argv[3],argv));
}
// Array support commands
if (strcmp(argv[2],"is_array")==0) {
if (argc!=3) {
#Error: "(ctree) usage: @ <context> is_array"

return TCL_ERROR;

219

if (c->value_type==ctype_LUT) {
tcl_append_int(interp,1);
} else {
tcl_append_int(interp,9);
}
return TCL_OK;
}
if (strcmp(argv[2],"delete")==0) {
if (argc!=3) {
#Error: "(ctree) usage: @ <context> delete"
return TCL_ERROR;
}
context *d=c->parent;
int i=0,j=0;
for (i=0;i<d->num_of _children;i++) {
if (d->children[i]==c) j++;
if (j>=d->num_of_children) break;
d->children[i]=d->children[]j];
J++s
}
d->num_of_children--;
delete_context(c);
Context=Ctree;
return TCL_OK;
}
// Context navigation
if (strcmp(argv[2],"cd")==0) {
if (argc!=3) {
#Error: "(ctree) usage: @ <context> cd"

return TCL_ERROR;

220

}

}

Context=c;

return TCL_OK;

if (strcmp(argv[2],"1list")==0) {

>name);

}

if (argc!l=3) {
#Error: "(ctree) usage: @ <context> list"
return TCL_ERROR;

}

int i;

for (i=0;i<c->num_of_children;i++) Tcl_AppendElement(interp,c->children[i]-

return TCL_OK;

if (strcmp(argv[2],"foreach_child")==0) {

}

if (argc!=5) {
#Error: "(ctree) usage: @ <context> foreach_child <iterator> <code>"
return TCL_ERROR;

}

int i;

char buf[* 1;

for (i=0j;i<c->num_of_children;i++) {
sprintf(buf, "set %s %s",argv[3],c->children[i]->name);
Tcl_Eval(interp,buf);
Tcl_Eval(interp,argv[4]);

}

return TCL_OK;

if (strcmp(argv[2],"path")==0) {

if (argc!=3) {

#Error: "(ctree) usage: @ . path"

221

return TCL_ERROR;
}
context_print_path(interp,c);
return TCL_OK;
}
// Disk interface
if (strcmp(argv[2],"save")==0) {
if (argcl=4) {
#Error: "(ctree) usage: @ <array context> save <filename>"
return TCL_ERROR;
}
FILE *O=fopen(argv[3],"w");
context_save(c,0);
fclose(0);
return TCL_OK;
}
if (strcmp(argv[2], "load")==0) {
if (argc!=4) {
#Error: "(ctree) usage: @ <array context> load <filename>"
return TCL_ERROR;
}
open_to_read(argv[3]);
context_load(c,0);
done_reading();
return TCL_OK;
}
// calc=lookup
if (strcmp(argv[2],"calc")==0) {
if (c->value_typel!=ctype_LUT) {

#Error: "(ctree) @ calc requires an array context"

222

return TCL_ERROR;
}
LUT *a=(LUT *)c->value.v;
if (argc-3!=a->dim) {

#Error: "(ctree) Array %s has %d dimentions. cannot interpolate with %d
coordinates." a->name a->dim argc-3

return TCL_ERROR;
}
int i;
for (i=0j;i<a->dim;i++) global_coord[i]=atof(argv[i+3]);
tcl_append_float(interp,a->interpolate(a,global_coord));
return TCL_OK;
}
#Error: "(ctree) unsupported command %s" argv[2]

return TCL_ERROR;

The top-level tcl_ctree uses a low-level context creation/navigation command:

resolve_context

int resolve_context(char *i_key,context **i_ context,float **array_entry) {
context *temp_context=Context;
if ((i_key[0]=="/")]||(i_key[8]==":")) temp_context=Ctree;
char context_name_buffer[1;
int j=0,1=0;
#Dinfo: "Started Resolving Context %s from %x" i_key temp_context
while (i_key[i]) {
while (((i_key[i]=="/")||(i_key[i]==":"))8&&(i_key[i])) i++;
if (i_key[i]==0) break;

while ((i_key[i]!="/")&&(i_key[i]!=":")&&(i_key[i]))

223

context_name_buffer[j++]=i_key[i++];
context_name_buffer[j]=0;
#Dinfo: "Resolving SubContext %s from %x" context_name_buffer temp_context
3=0;
// Support for relative context
if (strcmp(context_name_buffer,"..")==0) {
if (temp_context->parent==NULL) {

#Derror: "(resolve_context) No such context: %s, failed at %s" i_key
context_name_buffer

return 0;
}
temp_context=temp_context->parent;
continue;
}
if (strcmp(context_name_buffer,".")==0) continue;
int k=0;
// Array notation supported here
while ((context_name_buffer[k])&&(context_name_buffer[k]!="(")) k++;
if (context_name_buffer[k]=="(") {
context_name_buffer[k]=0;
int 1;
context *next_context=NULL;
for (1=0;1<temp_context->num_of children;l++) {
if (strcmp(context_name_buffer,temp_context->children[1l]->name)==0) {
next_context=temp_context->children[1];

break;

}

if (!next_context) {

#Derror: "(resolve_context) No such context: %s, failed at %s" i_key
context_name_buffer

224

return 0;
}
temp_context=next_context;
if (temp_context->value_typel=ctype_LUT) {
#Error: "(resolve_context) No such array: %s" temp_context->name
return 0;
}
LUT *a=(LUT *)temp_context->value.v;
if (a==NULL) {
#Error: "(resolve_context) No such array: %s" temp_context->name
return 0;
}
char *argv[1;
int argc=1;
argv[0]=&(context_name_buffer[k+1]);
for (l=k+1;context_name_buffer[1]!=")";1++)
if (context_name_buffer[l]==",")
argv[argc++]=&(context_name_buffer[1l+1]);
for (l=k+1;context_name_buffer[1]!=")";1++)
if (context_name_buffer[l]==",') context_name_buffer[1l]=0;
context_name_buffer[1]=0;
if (argcl=a->dim) {

#Error: "(resolve_context) Array: %s has %d dimension, but accessed
with %d indices" temp_context->name a->dim argc

return ©0;

}

ordinal offset=1;

ordinal index=0;

for (1=0;1<a->dim;1++) {
index+=atoi(argv[1l])*offset;

offset*=a->size[1l];

225

}

*array_entry=&(a->content[index]);
continue;
}
context *next_context=NULL;
for (k=0;k<temp_context->num_of_children;k++) {
if (strcmp(context_name_buffer,temp_context->children[k]->name)==0) {
next_context=temp_context->children[k];

break;

}
if (!next_context) {

#Derror: "(resolve_context) No such context: %s, failed at %s!" i_key
context_name_buffer

return 0;
}

temp_context=next_context;

}

#Dinfo: "Resolved context %s -> %x (%x,%g)" i_key temp_context &(temp_context-
>value.s) temp_context->value.s

*i1 context=temp_context;

return 1;

226

B.3. Lookup and Interpolation

The LUT is an array with some header information:

typedef struct{
char*name // Identifying string, no longer necessary
ordinal dim // the number of dimensions or the length of size[]
ordinal sizgh::MAXDIM]; // an array of integers, the range of indices per dimensic
float *legend$::MAXDIM]; // an array of arrays of the real values of the coordinate
float physical_factdi$::MAXDIM]; // factors to convert values to indices

float hypercube_volume// In case the LUT is uniformly sampled, the single volume

saves a lot of calculation time.

ordinal sizd$::MAXDIM]; // pre-calculation of the value in index-offset per

dimension
float *content // The array payload. This is where everything is stored
ordinal neighbofs<<$::MAXDIM]; // Array of index-offset per hypercube corner
linear_interpolation_tableLIT; // Optional LIT
hit_node* hit; // Optional HIT

unsignecchar*hit_bytecode // HIT interpreter language buffer

227

ordinal hit_bytecode_size

float (*interpolatg(void *afloat *coord; // interpolation functions
float (*gamma_interpolajévoid * a);

float (*gamma_gradiepfvoid *a);

} LUT;

The optional LIT has the following structure:

struct linear_interpolation_table{
ordinal dim; // the number of dimensions or the length of size[]
ordinal *size; // an array of integers, the number of bits per dimension.
ordinal *index_weight; // an array of integers, the index-weight of each dimension.
ordinal volume;
float *baseline;
float *inv_step;

float *content; // The array payload

The optional HIT is a connected tree. Each node has the following structure:

typedef union {
float s;
ordinal o;
void *p;

} hit_node;

228

B.3.1. Interpolation of LUT

The simple lookup and interpolation function supports the following options:
1 Uniform vs. non or partially-uniform sampling
LUT alone vs. LUT+LIT

When the hypercube_volume field is 0, the interpolation function treats the array as
uniform and uses the legend arrays in a binary-search to find the looked-up entry. If
hypercube_volume is not 0, entry location is simpler and done by linear scaling of the coor

directly into integer indices.

Notice that the function definition is nested in a Tcl-preprocessor loop. The listing be
results in 100’s of ANSI C lines of code, because each dimension from 1 to MAXDIM (currently:
8) gets its own function. The motivation for this coding style is the compilation-time interpol
loop that performs all arithmetic operations in the buffer, without branching or conditioning

real time.

#For: {set DIM 1} {$DIM<$::MAXDIM} {incr DIM} {
float lut_interpolation_$DIM(void *i_a,float *coord) {
#tcl set num_of_corners [expr 1<<$DIM]
LUT *a=(LUT *)i_a;
Tcl Time start_time,end_time;
Tcl GetTime(&start_time);
linear_interpolation_table *L=a->LIT;
ordinal i,j,end;

// Find the hyper-cube

229

float retval=0;
ordinal index=0;
ordinal 1lit_index=0;
ordinal sizer=1;
ordinal 1it_sizer=1;
int I;
float hcv=a->hypercube_volume;
if (hcv==0) {
hcv=1;
// Non-uniform sampling, do a binary search
#For: {set i @} {$i<$DIM} {incr i} {
end=a->size[$i]-1;
// Separate ascending from descending legends
if (a->legend[$i][end]>a->legend[$i][2]) {
// Ascending legend
if (coord[$i]<=a->legend[$i][@]) {
key[$i]=0;
#Dwarning: "Undershoot %g<%g" coord[$i] a->legend[$i][0]
} else if (coord[$i]>=a->legend[$i][end]) {
key[$i]=end-1;
#Dwarning: "Overshoot %g>%g" coord[$i] a->legend[$i][end]
} else {
ordinal pre=0;
ordinal post=end;
while (post-pre>1) {
ordinal mid=(post+pre)/2;
if (coord[$i]>=a->legend[$i][mid]) {
pre=mid;
} else {

post=mid;

230

}
key[$i]=pre;
}
} else {
// Descending legend
if (coord[$i]>=a->legend[$i][@]) {
key[$i]=0;
#Dwarning: "Undershoot %g>%g" coord[$i] a->legend[$i][0]
} else if (coord[$i]<=a->legend[$i][end]) {
key[$i]=end-1;
#Dwarning: "Overshoot %g<%g" coord[$i] a->legend[$i][end]
} else {
ordinal pre=0;
ordinal post=end;
while (post-pre>1) {
ordinal mid=(post+pre)/2;
if (coord[$i]<=a->legend[$i][mid]) {
pre=mid;
} else {

post=mid;

}

key[$i]=pre;

}
hcv*=(a->legend[$i][key[$i]+1]-a->1legend[$i][key[$i]]);
index+=key[$i]*sizer;

1it_index+=key[$i]*1it_sizer;

sizer*=a->size[$i];

231

lit_sizer*=(a->size[$i]-1);
}
} else {

// Uniform sampling

float i_f;

#For: {set i @} {$i<$DIM} {incr i} {
i_f=(coord[$i]-a->legend[$i][©])*a->physical_factor[$i];
int key${i}=(int)i_*;
if (key${i}<0) key${i}=0;
if (key${i}>=a->size[$i]-1) key${i}=a->size[$i]-2;
index+=key${i}*a->sizer[$i];
1lit_index+=key${i}*1it_sizer;
sizer*=a->size[$i];

lit_sizer*=(a->size[$i]-1);

}
if (L) {
// LIT exists! Try the faster, simpler linear interpolation
float *slopes=&(L->content[lit_index*($DIM+1)]);
float intercept=slopes[$DIM];
if (intercept!=0) {
#Dinfo: "Linear entry exists"
retval=intercept;
#For: {set i @} {$i<$DIM} {incr i} {
retval+=slopes[$i]*coord[$i];
}

goto interpolation_time_$DIM;

}

#Dinfo: "Full "

232

// Full interpolation, refer back to the original array

float *hypercube=&(a->content[index]);

#For: {set corner 0} {$corner<$num_of _corners} {incr corner} {
double interpolation_buffer$corner=hypercube[a->neighbors[$corner]];
#Dinfo: "Corner $corner=%g" interpolation_buffer$corner

}

// Lagrange interpolation in Tcl-preprocessor code

float wl,w2;

#tcl set weighing_dim o

#For: {set breadth $num_of_corners} {$breadth>1} {set breadth [expr
$breadth/2]} {

#Dinfo: "Dim $weighing_dim: key=%d %x" key${weighing_dim} coord
wl=coord[$weighing dim]-a->legend[$weighing dim][key${weighing dim}];
w2=a->legend[$weighing dim][key${weighing dim}+1]-coord[$weighing dim];
#tcl set j o
#Dinfo: "Dim $weighing_dim: key=%d %g (%g,%g) (%g,%g)" key${weighing_dim}
coord[$weighing_dim] a->legend[$weighing_dim][key${weighing_dim}] a-
>legend[$weighing dim][key${weighing dim}+1] wl w2
#For: {set i @} {$i<$breadth} {incr i 2} {

#tcl set k [expr $i+1]

interpolation_buffer$j=interpolation_buffer$k*wl+interpolation_buffer$i*w2;
#Dinfo: "interpolation_buffer$j=%g" interpolation_buffer$j
#tcl incr j
}
#tcl incr weighing_dim
}
// The result is bloated with all the dimensions’ sizes
// normalized here with the hypercube volume
retval=interpolation_buffere/hcv;
// The exit label is used to measure the average interpolation time

interpolation_time_$DIM:

233

1}

Tcl _GetTime(&end_time);

get _Tcl_timer+=end_time.sec*leb+end_time.usec-\
start_time.sec* -start_time.usec;

get _Tcl_counter++;

return(retval);

234

B.3.2. Ditferential Interpolation

For algorithms that need the slope, rather than the value, of a looked-up entry, the
following function makes a slight modification to the interpolation sequence, in order to ach
both value and derivative per dimension (gradient) in the looked-up coordinates. Notice the

Tcl-preprocessor manipulates the function’s argument list as well as its dimensionality.

#For: {set DIM 1} {$DIM<$::MAXDIM} {incr DIM} {
float gamma_gcc_interpolateg_$DIM(
void *i_a
#For: {set j @} {$j<$DIM} {incr j} {
,float c$j
}
#For: {set j @} {$j<$DIM} {incr j} {

,float *p$j

) A

#Dinfo: "Gamma machine's gradient function for ${DIM}D LUT is %x" i_a
#For: {set i @} {$i<$DIM} {incr i} {
#Dinfo: "Input $i is %g" c$i
}
#For: {set i @} {$i<$DIM} {incr i} {
#Dinfo: "Derivative $i goes back to (%x)" p$i
}
#tcl set num_of_corners [expr 1<<$DIM]
LUT *a=(LUT *)i_a;
Tcl Time start_time,end_time;
Tcl_GetTime(&start_time);
ordinal i,j,end;

// Find the hyper-cube

235

float retval=0;

ordinal index=0;

float i_f;

#For: {set i @} {$i<$DIM} {incr i} {
i_f=(c$i-a->legend[$i][@])*a->physical_factor[$i];

#Dinfo: "coord$i=%g base=%g factor=%g Key=%g" c$i a->legend[$i][0@] a-
>physical_factor[$i] i_f

int key${i}=(int)i_f;
if (key${i}<0) key${i}=0;
if (key${i}>=a->size[$i]-1) key${i}=a->size[$i]-2;
index+=key${i}*a->sizer[$i];
#Dinfo: "key$i=%d/%d %d index=%1d" key${i} a->size[$i] a->sizer[$i] index
}
// Full interpolation, refer back to the original array
float *hypercube=&(a->content[index]);
#For: {set corner 0} {$corner<$num_of corners} {incr corner} {
double interpolation_buffer$corner=hypercube[a->neighbors[$corner]];
#Dinfo: "Corner $corner=%g" interpolation_buffer$corner
}
float wl,w2;
#tcl set weighing_dim ©

#For: {set breadth $num_of _corners} {$breadth>1} {set breadth [expr
$breadth/2]} {

#Dinfo: "Dim $weighing dim: key=%d" key${weighing dim}

wl=c$weighing_dim-a->legend[$weighing_dim][key${weighing_dim}];

w2=a->legend[$weighing_dim][key${weighing dim}+1]-c$weighing dim;

#tcl set j o

#Dinfo: "Dim $weighing_dim: key=%d %g (%g,%g) (%g,%g)" key${weighing_dim}
c$weighing_dim a->legend[$weighing_dim][key${weighing_dim}] a-
>legend[$weighing_dim][key${weighing dim}+1] wl w2

#For: {set i @} {$i<$breadth} {incr i 2} {

#tcl set k [expr $i+1]

236

interpolation_buffer$j=interpolation_buffer$k*wl+interpolation_buffer$i*w2;

float gradient_buffer${weighing_dim}_$j=interpolation_buffer$i-
interpolation_buffer$k;

#For: {set 1 0} {$1l<$weighing dim} {incr 1} {

gradient_buffer${l} $j=gradient_buffer${l}_ $k*wl+gradient_buffer${l} $i*w2;
#Dinfo: "grad_buffer${l}_$j=%g" gradient_buffer${l}_$j
}
#Dinfo: "Interpolation Buffer $j=%g" interpolation_buffer$j
#tcl incr j

}

#tcl incr weighing dim
}
#Dinfo: "Interpolation is DONE"
#For: {set i @} {$i<$DIM} {incr i} {
#Dinfo: "Sending derivative back to p$i (%x)" p$i
if (p$i) *p$i=gradient_buffer${i}_©/a->hypercube_volume;
#Dinfo: "Derivative %d: %g" $i *p$i
}
#Dinfo: "Result: %g" interpolation_buffere/a->hypercube_volume
interpolation_time_$DIM:
Tcl_GetTime(&end_time);

get_Tcl_timer+=end_time.sec*le6+end_time.usec-start_time.sec* -
start_time.usec;

get_Tcl_counter++;
#Dinfo: "DONE: Gamma machine's gradient function for ${DIM}D"

return(interpolation_buffere/a->hypercube_volume);

237

B.3.3. Cluster Interpolation

Some algorithms require repetitive lookups on the same transistor and parameter with a
very small coordinate change. For instance, random search of steepest slope samples around a
center point until it finds the best direction to continue the search to optimum. This means that
the same interpolation buffer gets loaded again and again, because the small change in
coordinates hardly ever leaves the original hypercube and even if it did, a small extrapolation
does not justify reloading of a new buffer. Cluster interpolation simply allocates a shadow
interpolation buffer that accepts a copy of the initial one. On each of the following calls to that
function, the entry-locating routine and buffer loading are replaced by copying of the shadow

buffer to the interpolation buffer.

The cluster is defined by the following structure:

typedef struct {
float lower_margin[$::MAXDIM]; // left boundary of hypercube
float upper_margin[$::MAXDIM]; // right boundary of hypercube
float hyper_volume; // the total volume of the hypercube
float *interpolation_buffer; // The interpolation beffer (corner values)

} cluster;

And the function that uses it:

#For: {set DIM 1} {$DIM<$::MAXDIM} {incr DIM} {
float lut_cluster_interpolation_$DIM(LUT *a,float *coord,cluster **i cluster) {
#tcl set num_of_corners [expr 1<<$DIM]
float retval=0;
if (*i_cluster) {

// This is not the first interpolation, use the cluster buffer

238

#For: {set corner 0} {$corner<$num_of_corners} {incr corner} {

double interpolation_buffer$corner=(*i_cluster)-
>interpolation_buffer[$corner];

}
#tcl set weighing_dim o

#For: {set breadth $num_of_corners} {$breadth>1} {set breadth [expr
$breadth/2]} {

#tcl set j o
#For: {set i @} {$i<$breadth} {incr i 2} {

#tcl set k [expr $i+1]
interpolation_buffer$j=interpolation_buffer$k*(coord[$weighing dim]-(*i_cluster)-
>lower_margin[$weighing_dim])+interpolation_buffer$i*((*i_cluster)-
>upper_margin[$weighing dim]-coord[$weighing dim]);

#tcl incr j

}

#tcl incr weighing dim
}
retval=interpolation_buffered/(*i_cluster)->hyper_volume;
return(retval);
}
Tcl_Time start_time,end_time;
Tcl _GetTime(&start_time);
linear_interpolation_table *L=a->LIT;
ordinal i,j,end;
// Find the hyper-cube
ordinal index=0;
ordinal lit_index=0;
ordinal sizer=1;
ordinal 1lit_sizer=1;
ordinal key[$DIM];
*i cluster=(cluster *)malloc(sizeof(cluster));

(*1_cluster)->interpolation_buffer=\

239

(float *)malloc(sizeof(float)*$num_of_corners);
int I;
#For: {set i @} {$i<$DIM} {incr i} {
end=a->size[$i]-1;
if (a->legend[$i][end]>a->legend[$i][2]) {
if (coord[$i]<=a->legend[$i][2]) {
key[$1]=0;
#Dwarning: "Undershoot %g<%g" coord[$i] a->legend[$i][@]
} else if (coord[$i]>=a->legend[$i][end]) {
key[$i]=end-1;
#Dwarning: "Overshoot %g>%g" coord[$i] a->legend[$i][end]
} else {
ordinal pre=0;
ordinal post=end;
while (post-pre»l) {
ordinal mid=(post+pre)/2;

if (coord[$i]>=a->legend[$i][mid]) {

pre=mid;
} else {
post=mid;
}
}
key[$i]=pre;
}
} else {

if (coord[$i]>=a->legend[$i][0]) {

key[$1]=0;

// #Warning: "Undershoot %g>%g" coord[$i] a->legend[$i][e]
} else if (coord[$i]<=a->legend[$il[end]) {

key[$i]=end-1;

// #Warning: "Overshoot %g<%g" coord[$i] a->legend[$i][end]

240

} else {

ordinal pre=0;

ordinal post=end;

while (post-pre>1) {
ordinal mid=(post+pre)/2;
if (coord[$i]<=a->legend[$i][mid]) {

pre=mid;

} else {

post=mid;

}

key[$i]=pre;

}
index+=key[$i]*sizer;
1it_index+=key[$i]*1it_sizer;
sizer*=a->size[$i];
lit_sizer*=(a->size[$i]-1);
(*i_cluster)->lower_margin[$i]=a->legend[$i][key[$i]];
(*i_cluster)->upper_margin[$i]=a->legend[$i][key[$i]+1];
}
#Dinfo: "Full "
// Full interpolation, refer back to the original array
#For: {set corner 0} {$corner<$num_of_corners} {incr corner} {
double interpolation_buffer$corner=a->content[index+a->neighbors[$corner]];
(*i_cluster)->interpolation_buffer[$corner]=interpolation_buffer$corner;
}
#tcl set weighing_dim @
float weight;

float hyper_volume=1;

241

#For: {set breadth $num_of_corners} {$breadth>1} {set breadth [expr $breadth/2]}

#tcl set j o
weight=(coord[$weighing_dim]-a->legend[$weighing_dim][key[$weighing dim]]);

hyper_volume*=(a->legend[$weighing_dim][key[$weighing_dim]+1]-a-
>legend[$weighing dim][key[$weighing_dim]]);

#For: {set i @} {$i<$breadth} {incr i 2} {
#tcl set k [expr $i+1]

interpolation_buffer$j=(interpolation_buffers$k-
interpolation_buffer$i)*weight+interpolation_buffer$i;

#tcl incr j

}

#tcl incr weighing_dim
}
(*i_cluster)->hyper_volume=hyper_volume;
retval=interpolation_buffer@/hyper_volume;
interpolation_time_$DIM:
Tcl _GetTime(&end_time);

get_Tcl_timer+=end_time.sec*le6+end_time.usec-start_time.sec* -
start_time.usec;

get_Tcl_counter++;

return(retval);

242

B.3.4. Linear Regression

To populate a LIT from a LUT, a special function performs linear regression on each
LUT cell and registers the slopes+intercept in a LIT cell. A regression in this case is very simple,
because a hypercube has only two coordinate values per dimension. Therefore, the regression is
simply adding up the corners’ values to 2xXDIM buckets, subtracting low coordinates from high
coordinates and normalizing the slopes. The DIM+1 constants (slopes+intercept) are then used to
recreate the original corner values. If one of the interpolated values is off by more than 1% from
the original one, the cell is marked as invalid, so the interpolation function knows to use the full

LUT interpolation instead. The percentage of LIT cells that are valid (LCP) is returned.

Allocating a new LIT is done by the following top-level function:

void new_linear_interpolation_table(LUT *a) {

linear_interpolation_table *L;
L=(linear_interpolation_table *)malloc(sizeof(linear_interpolation_table));
a->LIT=L;
L->dim=a->dim;
L->size=(ordinal *)malloc(sizeof(ordinal)*L->dim);
L->index_weight=(ordinal *)malloc(sizeof(ordinal)*L->dim);
L->baseline=(float *)malloc(sizeof(scalar)*L->dim);
L->inv_step=(float *)malloc(sizeof(scalar)*L->dim);
ordinal ij;
L->volume=1;
for (i=0j;i<a->dim;i++) {

L->size[i]=-1;

ordinal tmp=a->size[i];

while (tmp) {

243

L->size[i]++;
tmp/=2;
}
L->index_weight[i]=L->volume;
L->volume*=(a->size[i]-1);
L->baseline[i]=a->legend[i][?];
L->inv_step[i]=1/(a->legend[i][1]-a->1legend[i][©]);
}
ordinal num_of_corners=1<<a->dim;
ordinal offset;
for (offset=0;o0ffset<num_of _corners;offset++) {
ordinal sizer=1;
ordinal index=0;
// scratch "tmp' to roll the offset bits without destroying offset itself:
ordinal tmp_offset=offset;
for (i=0j;i<a->dim;i++) {
index+=sizer*(tmp_offset&1);
sizer*=a->size[i];
// next bit
tmp_offset>>=1;

}

a->neighbors[offset]=index;
}
L->content=(float *)malloc(sizeof(scalar)*(1l+a->dim)*L->volume);
ordinal pass=0;
float error_rms=0;
float progress_index=1;
#Dinfo: "LIT allocated (%1d entries). Calculating slopes" L->volume
for (i=0;i<L->volume;i++) {

if ((*i/L->volume)>progress_index) {

244

#Dinfo: "Linear Cells' Precentage=%d%% %d%% left potential=%d%%"
100*pass/i 100-100*i/L->volume 100*pass/L->volume+100-100*i/L->volume

progress_index+=1;
float error=generate_lit(a,L,i);
if(error<) pass++;
error_rms+=error*error;
error_rms/=L->volume;
error_rms=sqrt(error_rms);

#Dinfo: "%1d fit linear out of %1d entries (LCP: %d%% RMS error=%e)" pass L-
>volume 100*pass/L->volume error_rms

}
The regression per cell is done in this low-level function:
float generate_lit(LUT *a,linear_interpolation_table *L,ordinal i_index) {
int i;
// Find the hyper-cube
ordinal key[$::MAXDIM];
float retval=0;
ordinal index=i_index*(a->dim+1);
float *slopes=&(L->content[index]);
ordinal tmp_index=i_index;
for (i=a->dim-1;i>=0;i--) {
key[i]=tmp_index/L->index_weight[i];
#Dinfo: "key(%d)=%d" i key[i]
tmp_index%=L->index_weight[i];
}
// First, check lower-left-closest corner for possible pre-calculated slopes
ordinal sizer=1;
ordinal array_index=0;
for (i=0j;i<a->dim;i++) {

array_index+=sizer*(key[i]);

245

sizer*=a->size[i];
}
float constant=0;
float midpoint[$::MAXDIM];
ordinal 1=1;
for (i=0j;i<a->dim;i++) {
slopes[i]=0;
1*=2;
midpoint[i]=(a->legend[i][key[i]]+a->1legend[i][key[i]+1])/2;
}
1/=2;
ordinal corner=0;
ordinal num_of_corners;
num_of_corners=1<<a->dim;
for (corner=9;corner<num_of_corners;corner++) {
ordinal corner_index=array_index+a->neighbors[corner];
float corner_value=a->content[corner_index];
// constant is pre-loaded with the average between all points
constant+=corner_value;
ordinal tmp_corner=corner;
for (i=0j;i<a->dim;i++) {
if (tmp_corner&l) {
slopes[i]+=corner_value;
} else {
slopes[i]-=corner_value;
}
// next bit

tmp_corner>>=1;

}

// Normalizing constant to the average

246

constant/=1;

constant/=2;

for (i=0j;i<a->dim;i++) {

}

// Normalizing each slope

slopes[i]/=1;
slopes[i]=slopes[i]/(a->legend[i][key[i]+1]-a->legend[i][key[i]]);
#Dinfo: "slope(%d)=%g" i slopes[i]

// subtracting the regression from the average

constant-=slopes[i]*midpoint[i];

slopes[a->dim]=constant;

#Dinfo: "intercept=%g" constant

LI 777777777777777777717777 Testing:

float max_error=0;

for (corner=9;corner<num_of_corners;corner++) {

}

ordinal index=0;

// scratch 'tmp' to roll the corner bits without destroying corner itself:

ordinal tmp_corner=corner;

float interpolated_value=slopes[a->dim];

tmp_corner=corner;

for (i=0j;i<a->dim;i++) {
interpolated_value+=slopes[i]*a->legend[i][key[i]+(tmp_corner&l)];
tmp_corner>>=1;

}

float original_value=a->content[array_index+a->neighbors[corner]];

float error=100*fabs((original_value-interpolated_value)/original_value);

if (fabs((original_value-interpolated_value))<) error=0.1;

if (error>max_error) max_error=error;

#Dinfo: "max_error=%g" max_error

if (max_error<) return max_error;

247

// Staying with full interpolation
so_union sob;

sob.o=$: :MAXDIM;
sob.o&=NAN_UNMASK;
sob.o|=NAN_VALUE;
slopes[a->dim]=sob.s;
slopes[a->dim]=0;

return H

B.3.5. Composite Interpolation

An exception to the above interpolation functions, which are generalized and contain no
reference to the modeled electrical parameter, the following interpolation function is designed
especially for a transistor’s gm, Go, and bs. The three are looked-up in a single function that
shares entry-locating between the three and ysasd)g as additional slope information to

achieve more accuratgs!

#For: {set DIM 4} {$DIM<5} {incr DIM} {

void composite_gamma_gcc_interpolate_$DIM(void *i_a_ids,void *i_a_gm,void
*i a_ro,float *gm, float *go, float *Ids

#For: {set j @} {$j<$DIM} {incr j} {

,float c$j

, float c4

) A

#Dinfo: "Gamma machine's interpolation function for ${DIM}D %x %x %x" i_a_ids
i_a_gm i_a_ro

#tcl set num_of_corners [expr 1<<$DIM]
LUT *a=(LUT *)i_a_gm;

#Dinfo: "DIM=%d" a->dim

248

Tcl _Time start_time,end_time;
Tcl_GetTime(&start_time);
ordinal i,j,end;
float L=c3;
float W=c4;
float Gamma=W/L;
#Dinfo: "cO=%g cl=¥%g c2=%g c3=%g W=%g L=%g Gamma=%g" c® cl c2 c3 W L Gamma
// Find the hyper-cube
float retval=0;
ordinal index=0;
float i_f;
#For: {set i @} {$i<$DIM} {incr i} {
int key${i};
i_f=(c$i-a->legend[$i][@])*a->physical_factor[$i];
if (a->physical_factor[$i]>0) {
key${i}=(int)i_f;
} else {
key${i}=-((int)(-i_f));
}

#Dinfo: "coord$i=%g base=%g factor=%g Key=%g" c$i a->legend[$i][0] a-
>physical factor[$i] i_f

if (key${i}<0) key${i}=0;
if (key${i}»>=a->size[$i]-1) key${i}=a->size[$i]-2;
index+=key${i}*a->sizer[$i];
#Dinfo: "key$i=%d/%d %d index=%1d" key${i} a->size[$i] a->sizer[$i] index
}
// Full interpolation, refer back to the original array
float *gm_hypercube=&(a->content[index]);
#For: {set corner 0} {$corner<$num_of_corners} {incr corner} {
float interpolation_buffer$corner=gm_hypercube[a->neighbors[$corner]];

#Dinfo: "Gm Corner $corner=%g" interpolation_buffer$corner

249

}

float wl,w2;
#tcl set weighing_dim o

#For: {set breadth $num_of_corners} {$breadth>1} {set breadth [expr $breadth/2]}

#Dinfo: "Dim $weighing_dim: key=%d" key${weighing_dim}

wl=c$weighing dim-a->legend[$weighing_dim][key${weighing_dim}];

w2=a->legend[$weighing_dim][key${weighing dim}+1]-c$weighing_dim;

#tcl set j o

#Dinfo: "Dim $weighing_dim: key=%d %g (%g,%g) (%g,%g)" key${weighing dim}
c$weighing dim a->legend[$weighing dim][key${weighing dim}] a-
>legend[$weighing_dim][key${weighing_dim}+1] wl w2

#For: {set i @} {$i<$breadth} {incr i 2} {

#tcl set k [expr $i+1]

interpolation_buffer$j=interpolation_buffer$k*wl+interpolation_buffer$i*w2;
#Dinfo: "interpolation_buffer$j=%g" interpolation_buffer$j
#tcl incr j

}

#tcl incr weighing_dim

}

#Dinfo: "gm=%g/%g=%g (*%g/%g=%g)" interpolation_bufferd a->hypercube_volume
interpolation_buffere/a->hypercube_volume W L interpolation_buffer@/a->hypercube_volume*Gamma

*gm=interpolation_buffere/a->hypercube_volume;

a=i_a_ro;

#Dinfo: "DIM=%d" a->dim

float *ro_hypercube=&(a->content[index]);

#For: {set corner 0} {$corner<$num_of_corners} {incr corner} {
interpolation_buffer$corner=ro_hypercube[a->neighbors[$corner]];
#Dinfo: "Ro Corner $corner=%g" interpolation_buffer$corner

}

#tcl set weighing_dim @

#For: {set breadth $num_of_corners} {$breadth>1} {set breadth [expr $breadth/2]}

250

#Dinfo: "Dim $weighing_dim: key=%d" key${weighing_dim}
wl=c$weighing dim-a->legend[$weighing_dim][key${weighing_dim}];
w2=a->legend[$weighing_dim][key${weighing_dim}+1]-c$weighing_dim;
#tcl set j o

#Dinfo: "Dim $weighing_dim: key=%d %g (%g,%g) (%g,%g)" key${weighing dim}
c$weighing_dim a->legend[$weighing_dim][key${weighing_dim}] a-
>legend[$weighing dim][key${weighing_ dim}+1] wl w2

#For: {set i @} {$i<$breadth} {incr i 2} {

#tcl set k [expr $i+1]

interpolation_buffer$j=interpolation_buffer$k*wl+interpolation_buffer$i*w2;
#Dinfo: "interpolation_buffer$j=%g" interpolation_buffer$j
#tcl incr j
}
#tcl incr weighing_dim

}

#Dinfo: "go=%g/%g=%g (*%g/%g=%g)" interpolation_buffer® interpolation_buffero
a->hypercube_volume 1/(interpolation_buffere/a->hypercube_volume) W L
1/(interpolation_buffere/a->hypercube_volume)*Gamma

*go=1/(interpolation_buffere/a->hypercube_volume);

// This is where the composite interpolation takes place

// 1. The Ids values from the LUT get Vgs*gm and Vds*go subtracted before
insertion to interpolation buffer

a=i_a_ids;

#Dinfo: "DIM=%d" a->dim

float *hypercube=&(a->content[index]);

float cornervgs,cornerVds,corner_ids;

#For: {set corner 0} {$corner<$num_of_corners} {incr corner} {
#tcl set VgsIndex [expr $corner%2]
#tcl set VdsIndex [expr $corner%4/2]
cornervVgs=a->legend[9][key@+$VgsIndex];
cornerVds=a->legend[1][keyl+$VdsIndex];
corner_ids=hypercube[a->neighbors[$corner]];

#Dinfo: "Ids($corner)=%g" corner_ids

251

interpolation_buffer$corner=hypercube[a->neighbors[$corner]]-
cornerVgs*gm_hypercube[a->neighbors[$corner]]-cornerVds/ro_hypercube[a->neighbors[$corner]];

#Dinfo: "Ideq Corner Vgs=%g (real %g) Vds=%g (real %g) $corner=%g"
cornerVgs c@ cornerVds cl interpolation_buffer$corner

}
#tcl set weighing_dim @

#For: {set breadth $num_of_corners} {$breadth>1} {set breadth [expr $breadth/2]}

#Dinfo: "Dim $weighing_dim: key=%d" key${weighing_ dim}

wl=c$weighing dim-a->legend[$weighing_dim][key${weighing_dim}];

w2=a->legend[$weighing_dim][key${weighing dim}+1]-c$weighing_dim;

#tcl set j o

#Dinfo: "Dim $weighing_dim: key=%d %g (%g,%g) (%g,%g)" key${weighing_dim}
c$weighing_dim a->legend[$weighing_dim][key${weighing_dim}] a-
>legend[$weighing_dim][key${weighing_dim}+1] wl w2

#For: {set i @} {$i<$breadth} {incr i 2} {

#tcl set k [expr $i+1]

interpolation_buffer$j=interpolation_buffer$k*wl+interpolation_buffer$i*w2;
#Dinfo: "interpolation_buffer$j=%g" interpolation_buffers$j
#tcl incr j
}
#tcl incr weighing_dim

}

// 2. The final value is added with the Vgs*gm and Vds*go values calculated
from previous interpolations

*Ids=(interpolation_buffere/a->hypercube_volume+(*gm)*cO+(*go)*cl);

#Dinfo: "Ids=%g/%g=%g (%g)" interpolation_buffere® a->hypercube_volume
interpolation_bufferod/a->hypercube_volume+(*gm)*cO+(*go)*cl (interpolation_buffero/a-
>hypercube_volume+(*gm)*cO+(*go)*cl)*Gamma

Tds=Gamma;

gm=Gamma;

go=Gamma;

Tcl GetTime(&end_time);

get_Tcl timer+=end_time.sec*le6+end_time.usec\

252

-start_time.sec* -start_time.usec;

get_Tcl_counter++;

253

B.4. Transistor-Level Sizer

Beforel’, an optimization application of the LUT models was created for a single
transistor sizing, the “Sizer”. The code is reliant on the Tcl-preprocessor to track a list of
properties, size parameters and operating point. The sizer uses a feasibility evaluating function, a

search function and a Tcl-implemented web server for generating the website.

“feasibility” is the distance to spec.

float feasibility(

#Foreach: input $::sizer_inputs {
float $input,

}

#Foreach: parameter $::sizer_parameters {
float *$parameter,
LUT *${parameter} LUT,

}

float *Gain, float *Area, float *fc, float tolerance
) A
float point_Area=W*L* H
#tcl set 1 0
#Foreach: input $::sizer_inputs {
global_coord[$i]=${input};
#Dinfo: "$i) $input=%g" $input
#tcl incr 1
}
#Foreach: parameter $::sizer_parameters {

float point_${parameter}=${parameter}_ LUT-
>interpolate(${parameter}_ LUT,global_coord);

}

254

#Foreach: parameter {Ids gm go} {
point_${parameter}*=n/L;
}
point_Nth*=sqrt(point_gm);
point_Nflicker*=point_gm/sqrt(W*L);
point_sigmavt*=(100/point_Vt);
float point_Gain=20*1log_ten(point_gm/point_go);
float point_fc=(point_Nflicker*point_Nflicker)/(point_Nth*point_Nth);
float distance=0;
// Ids gets a special "tightening"
if (!isnan(*Ids)) {
float point_distance=(point_Ids/(*Ids))- H

#Dinfo: "Distance from Ids is %g/%g=%g tolerance=%g" point_Ids (*Ids)
point_distance tolerance

point_distance*=point_distance;
if (point_distance<=tolerance*tolerance) point_distance=0;
distance+=point_distance;
}
#Foreach: parameter [concat $::sizer_parameters_no_ids Gain Area fc] {
if (!isnan(*$parameter)) {
float point_distance=(point_$parameter/(*$parameter))- H

#Dinfo: "Distance from $parameter is %g/%g=%g tolerance=%g"
point_$parameter (*$parameter) point_distance tolerance

point_distance*=point_distance;
if (point_distance<=tolerance*tolerance) point_distance=0;

distance+=point_distance;

}

return distance;

255

The search function t&izer”. It finds the steepest slope for minimizing the feasibility
metric and follows it until the feasibility begins to rise, doubling its stride every step. When the

descent stops, sizer searches for a new direction. The search stops when the distance is zero.

float sizer(
#Foreach: input $::sizer_inputs {
float *$input, float min_$input, float max_$input,
}
#Foreach: parameter $::sizer_parameters {
float *$parameter,
LUT *${parameter} LUT,

}

float *Gain, float *Area, float *fc, float tolerance
) A
#Foreach: input $::sizer_inputs {
float point_${input}=min_$input;
if (!isnan(*$input)) point_${input}=*$input;
#tcl set step $::sizer_steps($input)
float step_$input=$step;
float chosen_$input=point_${input};
}
float point_distance=feasibility(
#Foreach: input $::sizer_inputs {
point_${input},
}
#Foreach: parameter $::sizer_parameters {
$parameter,${parameter}_LUT,
}
Gain,Area,fc,tolerance

)s

256

float minimal_distance=point_distance;
#Foreach: input $::sizer_inputs {
int index_$input;
int start_$input=-1;
int stop_$input=2;
if (!isnan(*$input)) {
start_$input=0;

stop_$input=1;

}

int continue_searching=1;
ordinal watchdog=0;
FILE *TRAIL=fopen("/tmp/trail.tcl","w+");
float trail_L=point_L;
float trail W=point_W;
fprintf(TRAIL, "set data \{\n %g %g\n",point_L,point_W);
#Foreach: search_dims [list $::sizer_voltage_inputs $::sizer_inputs] {
continue_searching=1;
while ((point_distance>0)&&(continue_searching)&&(watchdog++<
if (((trail_L!=point_L)||(trail_W!=point W))) {
fprintf(TRAIL," %g %g\n",point_L,point_W);
trail_L=point_L;
trail_W=point_W;
}
continue_searching=0;
minimal_distance=point_distance;
#Foreach: input $::sizer_inputs {
float chosen_step_$input=0;
}
#Foreach: input $search_dims {

for (index_$input=start_$input;\

257

) A

index_$input<stop_$input;\

index_$input++)

#Foreach: input $::sizer_inputs {
float try_$input=point_$input;
if ((try_$input+step_$input*index_$input>max_$input) ||\

(try_$input+step_$input*index_$input<min_$input)) \
continue;

try_$input+=step_$input*index_$input;

}

#Foreach: input $::sizer_inputs {
#Dinfo: "Trying $input step=%g" step_$input

}

float try_distance=feasibility(

#Foreach: inputl $::sizer_inputs {
try_${inputl},

}

#Foreach: parameterl $::sizer_parameters {
$parameterl, ${parameterl} LUT,

}

Gain,Area,fc,tolerance

)

if (try_distance<minimal_distance) {
#Foreach: input $::sizer_inputs {

chosen_step_$input=step_$input*index_$input;

}
continue_searching=1;
minimal_distance=try_distance;

}

}

if (continue_searching) {

258

#Foreach: input $::sizer_inputs {
#Dinfo: "Chosen $input step=%g" chosen_step_$input
}
while (1) {
#Foreach: input $::sizer_inputs {
float try_$input=point_$input;
if ((try_$input+chosen_step_$input>max_$input) ||\
(try_$input+chosen_step_$input<min_$input)) \
break;
}
#Foreach: input $::sizer_inputs {
try_$input+=chosen_step_$input;
}
float try_distance=feasibility(
#Foreach: inputl $::sizer_inputs {
try_${inputl},
}
#Foreach: parameterl $::sizer_parameters {
$parameterl,${parameterl} LUT,
}
Gain,Area,fc,tolerance
)s
if (try_distance>point_distance) break;
#Foreach: input $::sizer_inputs {
point_$input=try $input;
}
#Foreach: input $::sizer_inputs {
chosen_step_$input*=2;
}
point_distance=try_distance;

#Dinfo: "Distance=%g" point_distance

259

}
fprintf(TRAIL," %g %g\n",point_L,point_W);
fprintf(TRAIL,"\}",point_L,point_W,point_distance);
fclose(TRAIL);
#Foreach: input $::sizer_inputs {
*$input=point_${input};
}
#tcl set 1 0
#Foreach: input $::sizer_inputs {
global coord[$i]=point_${input};
#tcl incr 1
}
#Foreach: parameter $::sizer_parameters {
#tcl set dim $::sizer_parameter_dim($parameter)
#tcl set start_dim [expr 4-$dim]

*${parameter}=${parameter} LUT-
>interpolate(${parameter}_LUT,&(global_coord[$start_dim]));

}

// Parameters scaled by W/L get corrected here

#Foreach: parameter {Ids gm go} {
${parameter}=point_W/point_L;

}

// Special parameters calculations

Nth=sqrt(*gm);

*Area=point_W*point_ L* H

Nflicker=*gm/sqrt(point_W*point_L);

sigmaVt=(100/(*Vt));

*Gain=20*1log_ten(*gm/(*go));

260

*fc=((*Nflicker)*(*Nflicker))/((*Nth)*(*Nth));

return(point_distance);

The web-server uses Tcl socket to implement the website. It is a stand-alone server,

independent of Apache or other web infrastructure.

#\
exec $RAMSPICE/ramspice $0 $argv

get_opts

foreach arg [lrange $argv 2 end] {
if {[regexp {"\-(\S+)$} $arg -> found_key]} {
set key $found_key
set $key {}
continue

}

set $key $arg

default opt(tech) tsmco4e

default ::randomized {}

set tech $opt(tech)

source $::env(RAMSPICE)/Etc/Tech_DB/$::opt(tech)/binning_$::opt(tech).tcl
set ::mho ℧

set ::ohm Ω

default opt(port)

set ::port $opt(port)

while {[catch {set socket [socket -server server $::port]}]1} {

incr ::port

261

}

proc server {chan addr port} {
fconfigure $chan -buffering line ;# NOT -blocking (see below!)
while {[gets $chan line]»>=0} {
puts $line
if {[catch $line res]} {
Error: $res
Error: $::errorlnfo
continue
}
puts $chan $res
flush $chan
break

}

close $chan
}
proc respond {code body {head ""}} {

return "HTTP/1.0 $code ???\nContent-Type: text/html; charset=IS0-8859-1\nConnection:
close\n$head\n$body"

¥
set ::solution {}
proc Log: {args} {
set text $args
if {[llength $text]==1} {
set text [lindex $text 9]
}
regsub -all {\$:*} $text {} text
regsub -all {\[\s*LUT\s+(\S+)\s+([*\]11+)\]1} $text {\1(\2)} text
append ::solution "$text
\n"

}

set ::open_fields {}

262

proc GET {args} {
foreach var $::reset_list {
set ::$var {}
}
array unset ::original_value
set error {}
set ::tolerance_analysis
if {[regexp {\?(\S+)\s} $args -> assignment_list]} {
set ::open_fields {}
set ::randomized {}
foreach assignment [split $assignment_list &] {
set field [lindex [split $assignment =] 9]
set value [lindex [split $assignment =] 1]
de_http field
de_http value
set ::original_value($field) $value
if {$value!={}} {
if {[regexp {"\s*([xyz])\s*(\S*)} $value -> axis goall} {
set ::tolerance_analysis
set ::tolerance($axis) $field
set value $goal
}
if {$value=="#"} {
Info: Random value for $field: $::const($field,min) $::const($field,max)

set value "rand()*($::const($field,max)-
::const($field,min))+$::const($field, min)"

lappend ::randomized $field

}
if {![catch {set expr_value [uplevel \#0 "expr $value"]1}1} {
set value $expr_value

if {$::const($field,factor)!="-"} {

263

append value "*($::const($field,factor))"”

}

if {$::const($field,min)!={}} {
set min $::const($field,min)
if {![catch {set expr_min [uplevel \#0 "expr $min"]1} msgl} {

set min $expr_min
} else {
Error: $msg

}
if {$value<$min} {

append error "$field was assigned a value outside
predefined limits: $value<$min
"

continue

}

if {$::const($field,max)!={}} {
set max $::const($field,max)
if {![catch {set expr_max [uplevel \#0 "expr $max"]} msgl} {

set max $expr_max
} else {
Error: $msg

}
if {$value>$max} {

append error "$field was assigned a value outside
predefined limits: $value>$max
"

continue

}

Info: Setting $field to $value
} else {

lappend ::open_fields $field

264

}

set ::$field $value
}
set ::solution {}
set ::step_index
set ::taboo_list {}
pre_calculate
if {[catch calculate msg]} {
append error [concat $msg
 $::errorInfo]
}
post_calculate
}
if {$error!={}} {
Error: $error
}
set I [open /tmp/tmp.html r]
append post_solution [read $I]
close $I
append post_solution $::solution

return [respond "<html><body>[subst $::HTML]$error$post_solution</body></html>"]

}
proc post_calculate {} {}
proc de_http {varname} {
upvar $varname var
while {[regexp {~(.*)%([9-9A-Fa-f][0-9A-Fa-f])(.*)$} $var -> pre code post]} {
set var $pre
append var [format "%c" $code]

append var $post

265

set unknown {
if {[string match *: [lindex $args 0]1]} {
Info: ignoring unknown command $args

return

}

append unknown [info body unknown]
proc unknown args $unknown
set ::fields {}
set ::form_fields {}
set ::target_fields {}
set ::source_fileds {}
set ::Lmin
proc form_sep {title} {
lappend ::form_fields [list @sep $title]
}
proc form_field {field display factor type default min max unit} {
lappend ::fields $field
lappend ::form_fields $field
set ::$field $default
if {$type=="text"} {
set ::const($field,type) "type=\"$type\""
} else {
set ::const($field,type) "list=\"$type\""
}
if {$min!={} && $max!={}} {
set min [uplevel \#9 "expr $min"]
set max [uplevel \#90 "expr $max"]
set ::const($field,min) $min
set ::const($field,max) $max

} else {

266

set ::const($field,min) $min
set ::const($field,max) $max
}
if {$::const($field,min)>$::const($field,max)} {
set tmp $::const($field,min)
set ::const($field,min) $::const($field,max)
set ::const($field,max) $tmp
}
set ::const($field,unit) $unit
if {$display=="-"} {
set display $field
}
set ::const($field,display) $display
set ::const($field,factor) $factor
}
proc min {a b} {
if {$a<s$b} {
return $a

}

return $b

proc gen_form {} {

set retval "<table border=\"1\"><tr><td align=\"center\">Parameter</td><td
align=\"center\">Input</td><td align=\"center\">Calculation</td><td
align=\"center\">Source</td><td align=\"center\">Simulation</td><td
align=\"center\">|Error|</td><td align=\"center\">Error\[%\]</td></tr>"

foreach field $::form_fields {

if {[lindex $field 0]=="@sep"} {
append retval "<tr><td colspan=\"7\"><h3>[lindex $field 1]</h3></td></tr>"

continue

267

set value [set ::$field]
if {$value!={}} {
if {[catch {set value [uplevel \#0 "expr $value"]1}]1} {

set value [set ::$field]

}

set width [expr -[string length $field]]
set sim_value ""
set abs_err ""
set rel_err ""
if {[info exists ::simulated($field)]} {
set sim_value [eng $::simulated($field) $::const($field,unit)]
Info: $field value=$value sim=$::simulated($field)

if {[catch {set abs_err [eng [expr $value-$::simulated($field)]
$::const($field,unit)]}1} {

set abs_err

}

if {[catch {set rel_err [eng [expr ($value/$::simulated($field)-
)*100] %131} A

set rel_err

}
set hint [eng $::const($field,min) $::const($field,unit)]
append hint " - "
append hint [eng $::const($field,max) $::const($field,unit)]
set field_token "<div title=\"$hint\">$::const($field,display)</div>"
if {![info exists ::step_lookup($field)]} {
set step_reference (defaulted)
} else {
set step_reference "(step $::step_lookup($field))"

}

set display_value {}

268

if {[info exists ::original_value($field)]} {
set display_value $::original_value($field)
}
set input_color black
if {$::Distance>=%$::Tolerance} {
set input_color red

}
append retval "<tr><td>$field_token</td><td><input $::const($field,type)
name=\"$field\" value=\"$display value\" width=\"$width\" style=\"color:
$input_color;\"></td><td>[eng $value
$::const($field,unit)]</td><td>$step_reference</td><td>$sim_value</td><td>$abs_err</td><td>$re
1_err</td></tr>"
}
append retval "</table>"
return $retval
}
proc LUT {name corner args} {
if {![@ /look_up_tables/$::device/$name/$corner exists]} {
Warning: look up in $name: $args => does not exist
return -
}
set retval [uplevel \#0 "@ /look_up_tables/$::device/$name/$corner calc $args"]
Info: @ /look_ up_tables/$::device/$name/$corner calc $args => $retval
if {[string match *n* $retvall]} return -
if {[string match *N* $retvall} return -
Info: look up in $name ($::device): $args => $retval
return $retval
}
H#HHEEHE - Solver
set ::1link_index
set ::reset_list {}
proc link_bwd {var dep code} {

set ::calc($::1ink_index,var) $var

269

set ::calc($::1ink_index,code) [regsub -all {\$:*} $code {$::}]
set ::calc($::1ink_index,dir) bwd
set ::calc($::1ink_index,dep) $dep
default ::calc_list($var)
lappend ::calc_list($var) $::link_index
incr ::link_index
}
proc link {var code args} {
default ::$var
if {[lsearch $::fields $var]==-1} {

lappend ::reset_list $var

}

if {[lsearch $::target_fields $var]==-1} {
lappend ::target_fields $var

}

set ::calc($::1ink_index,var) $var
set ::calc($::1ink_index,code) [regsub -all {\$:*} $code {$::}]
set ::calc($::1ink_index,dir) fwd
regsub -all {\$([A-Za-z_0-9]+)} $code { $\1°} var_list
set varlist $var
foreach section [split $var_list "] {

if {[regexp {\$([A-Za-z_0-9]+)} $section -> varname]} {

if {[lsearch $varlist $varname]==-1} {

lappend varlist $varname

}

set ::calc($::1ink_index,dep) [lrange $varlist 1 end]
default ::calc_list($var)

lappend ::calc_list($var) $::1ink_index

incr ::link_index

270

for {set i 1} {$i<[llength $varlist]} {incr i} {
set pre [expr $i-1]

set post [expr $i+1]

link_bwd [lindex $varlist $i] [concat [lrange $varlist

$post end]] $code
}
foreach {flag value} $args {
switch $flag {
"-unit" {
set ::const($var,unit) $value
}
"-min" {
set ::const($var,min) $value
}
"-max" {

set ::const($var,max) $value

}

proc untaboo {var} {
if {[set i [lsearch $::taboo_list $var]]!=-1} {

set ::taboo_list [lreplace $::taboo_list $i $i]

}
}
proc . {} {

return [string repeat . [info level]]
}

proc calc_var {i} {
if {$::device=="pch"} {

foreach var {::Vgs ::Vds ::Vbs} {

271

$pre] [lrange $varlist

set $var [expr -[set $var]]

}

set val [subst $::calc($i,code)]
if {[catch "expr $val" msgl} {
Log: $msg
if {$::device=="pch"} {
foreach var {::Vgs ::Vds ::Vbs} {

set $var [expr -[set $var]]

}

return $val
}
set retval [eval "expr $val”]
set name $::calc($i,var)
if {![info exists ::track($name)]} {
set ::track($name) $retval
} else {
set change [expr abs($retval/$::track($name)-1)*
if {$change>$::max_change} {

set ::max_change $change

}
if {$::device=="pch"} {
foreach var {::vVgs ::Vds ::Vbs} {

set $var [expr -[set $var]]

}

return $retval

#/**

272

]

* Recursively tries to calculate each variable it's given
* By default, all form-fields are calculated
* @param $varlist - a list of variables to calculate
*/
proc calculate {{varlist {}}} {
By default, calculate every field

set ::max_change

set vars_to_be_calculated $varlist

if {$varlist=={}} {

set vars_to_be calculated $::fields

}

A signal to the upper level in the recursion that this variable list cannot be
completed

and another expression may be needed to calculate the variable
set backtrack_from_this_calculation
Scan all variables
foreach var $vars_to_be_calculated {
No need to re-calculate a variable that has assigned value
if {[set ::$var]!={}} continue
Taboo-list is used to prevent infinite loops on dependence cycles
lappend ::taboo_list $var
for {set i 0} {$i<$::1ink_index} {incr i} {
if {$::calc($i,var)!="¢$var"} continue
if {$::calc($i,dir)!="fwd"} continue
If I'm here, I found a direct expression
First make sure there are no dependece cycles in this expression
set backtrack
foreach dep_var $::calc($i,dep) {
if {[1lsearch $::taboo_list $dep_var]!=-1 && [set ::$dep_var]=={}} {
set backtrack

break

273

}

if {$backtrack} continue

Now decend into each variable and calculate it recursively
if {[calculate $::calc($i,dep)]} continue

If I'm here, the variables this one depends on are calculated and the chosen
expression is ready to be calculated

Log the calculation step for the HTML page
incr ::step_index

Log: $::step_index Calculating $var based on $::calc($i,dep)
Calculate the variable !
set ::$var [calc_var $i]

#remove it from the taboo list. Cycles containing this variables are broken
anyway because it is assigned a value

untaboo $var

Log the result

set unit {}

if {[info exists ::const($var,unit)]} {
set unit $::const($var,unit)

}

Log: $var=$::calc($i,code)=[eng [set ::$var] $unit]
set ::step_lookup($var) $::step_index
break

}
Go to the next var if done
if {[set ::$var]!={}} continue
set backtrack_from_this_calculation
set ::$var {}
untaboo $var
}
if {$varlist!={}} {

return $backtrack_from_this_calculation

274

}

Now for the more expensive and expansive solver: the randomized sample, deflating
solution-space search

set independent_vars {}
foreach var $::source_fields {
set val [set ::$var]
if {[set ::$var]=={}} {
lappend independent_vars $var

set centre($var) [expr "($::const($var,min)+$::const($var,max))/2"]

}

if {$independent_vars=={}} return
set dependent_vars {}
foreach var $::target_fields {
if {[set ::$var]!={}} {
set target_value($var) [set ::$var]
lappend dependent_vars $var
}
set ::$var {}

}

Do this N times: from a sample of M coordinate combinations pick the one with the
minimal squared-error and centre the next solution space arround it.

Each space is the size of the original divided by the iteration number: 1 1/2 1/3

1/N

To make sure the error is only descending, only reset the error variable at the top
level and then update the centroid only if smaller error figure found.

set error {}
for {set iteration 1} {$iteration<=2} {incr iteration} {
set ::max_change

Find span for each variable. Make sure to clip the solution space according
to original min/max figures

foreach var $independent_vars {

set span [expr "($::const($var,max)-$::const($var,min))/$iteration”]

275

set min($var) [expr $centre($var)-$span/2]
set max($var) [expr $centre($var)+$span/2]
Clip min and max to top-level feasible boundaries
if {$min($var)<$::const($var,min)} {
set min($var) $::const($var,min)
}
if {$max($var)>$::const($var,max)} {

set max($var) $::const($var,max)

}

Withing the shrinking solution space, draw M samples and calculate square-
error for each

for {set sample_index 9} {$sample_index<64} {incr sample_index} {
Get a random value per independent variable
foreach var $independent_vars {
set ::$var [expr $min($var)+rand()*($max($var)-$min($var))]
}
Run calculation "forward" as above
calculate $dependent_vars
Calculate square-error
set local_error
foreach var $dependent_vars {

set local_error [expr $local_error+pow([set ::$var]-
$target_value($var),2)]

set local_error [expr ($local_error)*$::L*$::W]
}
A new minimizer? If so, keep it as the next centre for the next iteration
if {$error=={} || $local_error<$error} {

set error $local_error

foreach var $independent_vars {

set centre($var) [set ::$var]

276

}
Reset the fields so the next call to calculate doesn't skip them
foreach var $::target_fields {

set ::$var {}

}
}
Info: error=$error
if {$::max_change<0.01 &% $i>3} break

}

Searched variables still show in the report, although I need to find a creative way
to make it convincing.

set ::solution {}
set ::step_index
foreach var $independent_vars {
set ::$var $centre($var)
incr ::step_index
Log:
Log: $::step_index $var was automatically searched to fit given $dependent_vars
set unit {}
if {[info exists ::const($var,unit)]} {
set unit $::const($var,unit)
}
Log: $var=[eng [set ::$var] $unit]
set ::step_lookup($var) $::step_index
}

The rest of the report is populated with this final calculation, which shouldn't end
with a search (all independents were searched)

calculate $::target_fields
}
Import circuit-specific fields and rules
source $::env(RAMSPICE)/Etc/utils/sizer_functionality.tcl

foreach field $::fields {

277

if {[lsearch $::target_fields $field]==

lappend ::source_fields $field

}

HHHH
Info: [.] Ready! Log into: $::env(HOSTNAME):$::port

vwait forever

278

-3 A

B.5. Transistor-L.evel Characterization
B.5.1. Low-level Data Access

“Characterization” here means the operation of reconstructing a model out of simulation
results. Two type of transistors are modeled: p-channel and n-channel MOSFET, in various
manufacturing technologies and physical properties. The characterization loops use the built-

in .dc SPICE command, with a modification that allows it to run more than 2 nesting levels:

int
DCTsetParm(CKTcircuit *ckt, JOB *anal, int which, IFvalue *value)
{

TRCV *job = (TRCV *) anal;

NG_IGNORE(ckt);

switch(which) {

// Notice usage of Tcl-preprocessor loop and variables on original NGSPICE code to
enhance its functionality to ANALYSIS_NESTING_DEPTH-deep nesting levels

#For: {set i @} {$i<$::ANALYSIS_NESTING DEPTH} {incr i} {
#tcl set j [expr $i+1]
case DCT_START$j:
job->TRCVvStart[$i] = value->rValue;
job->TRCVnestLevel = MAX($i, job->TRCVnestLevel);
job->TRCVset[$i] = TRUE;

break;

case DCT_STOP$j:

job->TRCVvStop[$i]

value->rValue;
job->TRCVnestLevel = MAX($i, job->TRCVnestLevel);
job->TRCVset[$i] = TRUE;

break;

279

case DCT_STEP$j:
job->TRCVvStep[$i] = value->rValue;
job->TRCVnestLevel = MAX($i, job->TRCVnestLevel);
job->TRCVset[$i] = TRUE;

break;

case DCT_NAME$]:
job->TRCVvName[$i] = value->uValue;
job->TRCVnestLevel = MAX($i, job->TRCVnestLevel);
job->TRCVset[$i] = TRUE;

break;

case DCT_TYPE$]:

job->TRCVvType[$i] value->iValue;
job->TRCVnestLevel = MAX($i, job->TRCVnestLevel);
job->TRCVset[$i] = TRUE;

break;

default:
return(E_BADPARM) ;

}

return(0K);

static IFparm DCTparms[] = {
#For: {set i 1} {$i<=%::ANALYSIS NESTING_DEPTH} {incr i} {
{ "start$i",DCT_START$i, IF_SET|IF_REAL, "starting voltage/current"},

{ "stop$i",DCT_STOP$i, IF_SET|IF_REAL, "ending voltage/current" },

280

{ "step$i",DCT_STEP$i, IF_SET|IF_REAL, "voltage/current step" },
{ "name$i",DCT_NAME$i, IF_SET|IF_INSTANCE, "name of source to step" },

{ "type$i",DCT_TYPE$i, IF_SET|IF_INTEGER, "type of source to step" },

}

A DC sweep for characterization is done on 3 dimensiogs: Wbs and \ss. The
geometrical dimensions L and W are not part of the sweep, but implemented as a big circuit that
contains all combinations of L and W. The results are stored internally in NGSPICE vectors and
need to be extracted and organized for re-packaging in the LUT. The following Tcl commands

provide interface to that data and all the operations needed to process them:

1. get vectors - Get all vector names
2. get _spice_data - Get data from vector:
a. Entry by index
b. all - entries as a Tcl list
c. length- size of vector in entries
d. end-the last entry
e. trigger index t> t< tx- where signal crosses threshold up, down or either
f. statistics- average, stdev
g. Special case: RAMSpice-specific global variables that expose last simulation
results
3. set_spice_var set a value to a RAMSpice global variable
4. save_characterization_slicea set of commands that extract a set of vectors (slice) and
copy them as binary data to file:

a. Save slice as is

281

b. Mark slice as baseline

c. Save difference with last baseline slice

d. Save delta vectors generated from entries in this slice

e. Generate delta vectos and save differences to last baseline slice (b and ¢
combined).

5. load_characterization_sliceloads a saved slice into a LUT.

The minimal set of operations: get_vectors and get_spice_data, subcommands all and
length, would be enough to perform all characterization operations, since they can be used for
any other operation in the context of a Tcl script. However, leaving all post-processing and re-
packagind of data to Tcl scripts is extremely inefficient and may prolong execution from few
minutes to many hours. The choice to use a disk-file as medium for slices came to simplify
combining data from parallel processes.

static int
get_vectors (ClientData clientData,Tcl_Interp *interp,int argc,char *argv[])
{
if (argc!=1) {
#Error: "get_vectors requires no arguments”
return TCL_ERROR;

}

Tcl ResetResult(interp);

282

if (plot_cur==NULL) {
#Error: "No vectors exist”
return TCL_ERROR;
}
struct plot *any_plot=plot_list;
while (any_plot) {
struct dvec *d=any_plot->pl_dvecs;
while (d) {
Tcl_AppendElement(interp,d->v_name);
d = d->v_next;
}
any_plot=any_plot->pl_next;

}

return TCL_OK;

static int
get_spice_data (ClientData clientData,Tcl_Interp *interp,int argc,char *argv[])
{
if (argc!=3) {
#Error: "get_vector_data requires vector name and index/command”
return TCL_ERROR;
}
Tcl ResetResult(interp);
if (plot_cur==NULL) {
#Error: "No vectors exist”
return TCL_ERROR;
}
char *vector_name=argv[1];
struct dvec *d=plot_cur->pl_dvecs;

struct dvec *V=NULL;

283

while (d) {
if(strcmp(vector_name,d->v_name)==0) {
V=d;

break;

d = d->v_next;
}
// Try to get the vector in other plots
if (V==NULL) {
struct plot *any_plot=plot_list;
while (any_plot) {
d=any_plot->pl_dvecs;
while (d) {
if(strcmp(vector_name,d->v_name)==0) {
V=d;
break;
}
d = d->v_next;
}
if (V) break;

any_plot=any_plot->pl_next;

}

// Last chitce: maybe the user wants a global variable
#Foreach: global_var $::global_c_variables {
if (strcmp(vector_name,"$global_var")==0) {
tcl_append_float(interp,$global_var);

return TCL_OK;

}

if (V==NULL) {

284

#Error: "get_vector_data did not get a valid vector name '%s'" vector_name
return TCL_ERROR;
}
char *command=argv[2];
if (strcmp(command, "length")==0) {
tcl_append_int(interp,V->v_length);
return TCL_OK;
}
if (strcmp(command, "end")==0) {
tcl_append_float(interp,V->v_realdata[V->v_length-1]);
return TCL_OK;
}
if (command[@]==">") {
int i;
int res=-1;
float th=atof(&(command[1]));
for (i=0;i<V->v_length;i++) {
if (V->v_realdata[i]>th) {
res=i;

break;

}
tcl_append_int(interp,res);
return TCL_OK;
}
if (command[0]=="<") {
int i;
int res=-1;
float th=atof(&(command[1]));
for (i=0;i<V->v_length;i++) {

if (V->v_realdata[i]<th) {

285

res=ij;

break;

}
tcl_append_int(interp,res);
return TCL_OK;
}
if (command[@]=="x") {
int i;
int res=-1;
float th=atof(&(command[1]));
for (i=0;i<V->v_length;i++) {

if (((V->v_realdata[i]<th)&&(V->v_realdata[0]>th)) || ((V-
>v_realdata[i]>th)&&(V->v_realdata[@]<th))) {

res=i;

break;

}
tcl_append_int(interp,res);
return TCL_OK;
}
if (command[0]=="t"') {
struct dvec *T=NULL;
d=plot_cur->pl_dvecs;
while (d) {
if(strcmp("time",d->v_name)==0) {
T=d;

break;

d = d->v_next;

286

if (T==NULL) {
#Error: "get_vector_data cannot process operator t, no time vector found."
return TCL_ERROR;

}

if (command[1]==">") {
int i;
int res=-1;
float th=atof(&(command[2]));
for (i=0;i<V->v_length;i++) {

if (V->v_realdata[i]>th) {
res=i;

break;

}
if ((res==-1)||(res>=T->v_length)) {
tcl_append_float(interp,-1);
return TCL_OK;
}
tcl_append_float(interp,T->v_realdata[res]);
return TCL_OK;
}
if (command[1]=="<") {
int i;
int res=-1;
float th=atof(&(command[2]));
for (i=0;i<V->v_length;i++) {
if (V->v_realdata[i]<th) {
res=i;

break;

287

if ((res==-1)||(res>=T->v_length)) {
tcl_append_float(interp,-1);
return TCL_OK;
}
tcl_append_float(interp,T->v_realdata[res]);
return TCL_OK;
}
if (command[1]=="x") {
int i;
int res=-1;
float th=atof(&(command[2]));
for (i=0;i<V->v_length;i++) {

if (((V->v_realdata[i]<th)&&(V->v_realdata[0]>th)) || ((V-
>v_realdata[i]>th)&&(V->v_realdata[@]<th))) {

res=i;

break;

}
if (res==-1) {
tcl_append_float(interp,-1);
return TCL_OK;
}
if (res>=T->v_length) {
tcl_append_float(interp,-2);
return TCL_OK;
}
tcl_append_float(interp,T->v_realdata[res]);

return TCL_OK;

}

if (strcmp(command, “type")==0) {

288

if (V->v_realdata) Tcl_AppendElement(interp,'real™);
else if (V->v_compdata) Tcl_AppendElement(interp,"complex™);
return TCL_OK;

}

if (strcmp(command, "average")==0) {
float average=0;
int i;
for (i=0;i<V->v_length;i++) average+=V->v_realdata[i];
tcl_append_float(interp,average/V->v_length);
return TCL_OK;

}

if (strcmp(command, "stddev")==0) {
float average=0;
int i;
for (i=0;i<V->v_length;i++) average+=V->v_realdata[i];
average/=V->v_length;
float stddev=0;

for (i=0;i<V->v_length;i++) stddev+=(V->v_realdata[i]-average)*(V-
>v_realdata[i]-average);

stddev/=V->v_length;
tcl_append_float(interp,sqrt(stddev));
return TCL_OK;

}

if (strcmp(command,"all")==0) {
int i;
for (i=0;i<V->v_length;i++) tcl_append_float(interp,V->v_realdata[i]);
return TCL_OK;

}

int index =atoi(command);

if (index>=V->v_length) {

#Error: "get_vector_data vector %s has only %d entries" vector_name,V->v_length

289

return TCL_ERROR;

}

if (V->v_realdata) {
tcl_append_float(interp,V->v_realdata[index]);

} else if (V->v_compdata) {
tcl_append_float(interp,V->v_compdata[index].cx_real);

tcl_append_float(interp,V->v_compdata[index].cx_imag);

}

return TCL_OK;
}
static int

set_spice_var (ClientData clientData,Tcl_Interp *interp,int argc,char *argv[])
{
if ((argc!=3)&&(argc!=2)) {
#Error: "usage: %s <var> [<val>]" argv[e]
return TCL_ERROR;
}
if (argc==2) {
#Foreach: global_var $::global_c_variables {
if (strcmp(argv[1],"$global var")==0) {
tcl_append_float(interp,$global_var);

return TCL_OK;

}

#Error: "No such spice variable %s" argv[1]
return TCL_ERROR;

}

#Foreach: global_var $::global_c_variables {
if (strcmp(argv[1],"$global_var")==0) {

$global_var=atof(argv[2]);

290

return TCL_OK;

}

#Error: "No such spice variable %s" argv[1]
return TCL_ERROR;

}

static int

baseline_characterization_slice (ClientData clientData,Tcl_Interp *interp,int argc,char
*argv[]) {

if (argc!=1) {

#Error: "usage: %s " argv[0]

return TCL_ERROR;
}
save_slice_base=plot_cur;
return TCL_OK;
}
static int

save_characterization_slice (ClientData clientData,Tcl_Interp *interp,int argc,char
*argv[]) {

if ((argc!=7)8&&(argc!=6)) {

#Error: "usage: %s <file name> <array sizes> <per vector dim> <slice dim>
<post indices> [<factor>]" argv[O]

return TCL_ERROR;
}
ordinal 1ij;
float factor=1;
int factor_mode=0;
if (argc==7) {
if (argv[6][@]=="/") {
factor=atof(&(argv[6]1[1]1));
factor_mode=1;

} else {

291

factor=atof(argv[6]);

}

FILE *O=fopen(argv[1],"w");

int dim;

char **sizes_string;
Tcl_SplitList(interp,argv[2],&dim,&sizes_string);
ordinal size[MAXDIM];

for (i=0;i<dim;i++) size[i]=atoi(sizes_string[i]);

free(sizes_string);

ordinal offset[MAXDIM];
offset[0]=1;

for (i=1;i<dim;i++) offset[i]=offset[i-1]*size[i-1];

ordinal vector_dim=atoi(argv[3]);

ordinal slice_dim=atoi(argv[4]);

int starting_index=0;

if (slice_dim==1) starting_index=1;

int postfix_dim;

char **postfix_indices_string;
Tcl_SplitList(interp,argv[5],&postfix_dim,&postfix_indices_string);
ordinal postfix_indices[MAXDIM];

for (i=0;i<postfix_dim;i++) postfix_indices[i]=atoi(postfix_indices_string[i]);
free(postfix_indices_string);

ordinal initial_offset=0;

for (i=0;i<postfix_dim;i++)
initial offset+=postfix_indices[i]*offset[i+vector_dim+slice_dim];

struct dvec *d=plot_cur->pl_dvecs;
save_slice base=plot_cur;

#Info: "Saving vectors for slice %s in %s" argv[5],argv[1]

292

while (d) {
if (d->v_name[o]!="V") {
d = d->v_next;
continue;
}
char vector_id[1;

for (i=2;d->v_name[i]!l=")";i++) {

if (d->v_name[i]=="_") {
vector_id[i-2]=" ';
} else {

vector_id[i-2]=d->v_name[i];

}
vector_id[i-2]=0;
int tmp_dim;
char **vector_index_string;
Tcl SplitList(interp,vector_id,&tmp_dim,&vector_index_string);
if (slice_dim!=tmp_dim) {
d = d->v_next;
continue;
}
ordinal final offset=initial_offset;

for (i=0;i<slice_dim;i++) final_offset+=(atoi(vector_index_string[i])-
starting_index)*offset[i+vector_dim];

free(vector_index_string);
write_ordinal(0,final_offset);
write_ordinal(0,d->v_length);
float w;
if (factor_mode) {

for (i=0;i<d->v_length;i++) {

w=factor/d->v_realdata[i];

293

write_float(0,w);
}
} else {
for (i=0;i<d->v_length;i++) {
w=d->v_realdata[i]*factor;
write_float(O,w);

// #Info: "%s) Ids(%d)=%g" d->v_name i w

}
/%
for (i=0;i<d->v_length;i++) {
if (isnan(d->v_realdatal[i])) {
#Error: "%s(%d)=%g" d->v_name i d->v_realdata[i]
} else {

#Info: "%s(%d)=%g" d->v_name i d->v_realdata[i]*factor

}

*/

d = d->v_next;
}
fclose(0);
return TCL_OK;

}

static int

save_characterization_slice_differential (ClientData clientData,Tcl_Interp *interp,int
argc,char *argv[]) {

if ((argc!=7)8&&(argc!=6)) {

#Error: "usage: %s <file name> <array sizes> <per vector dim> <slice dim>
<post indices> [<factor>]" argv[0]

return TCL_ERROR;

}

if (save_slice_base==NULL) {

294

#Error: "(%s) cannot save a differential slice before a baseline slice was
saved" argv[0]

return TCL_ERROR;
}
ordinal ij;
float factor=l;
int factor_mode=0;
if (argc==7) {
if (argv[ol[e]=="/") {
factor=atof(&(argv[6]1[1]));
factor_mode=1;
} else {

factor=atof(argv[6]);

}

FILE *O=fopen(argv[1],"w");

int dim;

char **sizes_string;
Tcl_SplitList(interp,argv[2],&dim,&sizes_string);
ordinal size[MAXDIM];

for (i=0;i<dim;i++) size[i]=atoi(sizes_string[i]);

free(sizes_string);

ordinal offset[MAXDIM];
offset[0]=1;

for (i=1;i<dim;i++) offset[i]=offset[i-1]*size[i-1];

ordinal vector_dim=atoi(argv[3]);
ordinal slice_dim=atoi(argv[4]);
int starting_index=0;

if (slice_dim==1) starting_index=1;

295

int postfix_dim;

char **postfix_indices_string;

Tcl SplitList(interp,argv[5],&postfix_dim,&postfix_indices_string);

ordinal postfix_indices[MAXDIM];

for (i=0;i<postfix_dim;i++) postfix_indices[i]=atoi(postfix_indices_string[i]);
free(postfix_indices_string);

ordinal initial_offset=0;

for (i=0;i<postfix_dim;i++)
initial_offset+=postfix_indices[i]*offset[i+vector_dim+slice_dim];

struct dvec *d=plot_cur->pl_dvecs;
#Info: "Saving vectors for slice %s (differential) in %s" argv[5],argv[1]
while (d) {
if (d->v_name[0]!="V") {
d = d->v_next;
continue;
}
struct dvec *b=save_slice_base->pl_dvecs;
while (b) {
if (strcmp(b->v_name,d->v_name)==0) break;
b=b->v_next;
}
if (b==NULL) {
#Error: "(%s) vector %s has no baseline" argv[@],d->v_name
return TCL_ERROR;
}
if (d->v_length!=b->v_length) {

#Error: "(%s) vector %s is of length %d, while its baseline has length %d"
argv[@],d->v_name,d->v_length,b->v_length

return TCL_ERROR;

}

char vector_id[1;

for (i=2;d->v_name[i]!=")";i++) {

296

if (d->v_name[i]=="_") {
vector_id[i-2]=" ';
} else {

vector_id[i-2]=d->v_name[i];

}
vector_id[i-2]=0;
int tmp_dim;
char **vector_index_string;
Tcl SplitList(interp,vector_id,&tmp_dim,&vector_index_string);
if (slice_dim!=tmp_dim) {
d = d->v_next;
continue;
}
ordinal final offset=initial_offset;

for (i=0;i<slice_dim;i++) final_offset+=(atoi(vector_index_string[i])-
starting_index)*offset[i+vector_dim];

free(vector_index_string);

write_ordinal(0,final_offset);

write_ordinal(0,d->v_length);

/* for (i=0;i<d->v_length;i++) {
printf (" (%g-%g)*%g\n",d->v_realdata[i],b->v_realdata[i],factor);
fflush(stdout);

}*/

if (factor_mode) {

for (i=0;i<d->v_length;i++) write_float(0,factor/(d->v_realdata[i]-b-
>v_realdata[i]));

} else {

for (i=0;i<d-»>v_length;i++) write_float(0, (d->v_realdata[i]-b-
>v_realdata[i])*factor);

}

d = d->v_next;

297

}

fclose(0);
return TCL_OK;
}
static int

save_characterization_slice_delta (ClientData clientData,Tcl_Interp *interp,int
argc,char *argv[]) {

if ((argc!=9)8&&(argc!=3)) {

#Error: "usage: %s <file name> <array sizes> <per vector dim> <slice dim>
<post indices> <vector order list> <first offsets> [<factor>]" argv[0]

return TCL_ERROR;
}
ordinal 1ij;
float factor=1;
int factor_mode=0;
if (argc==9) {
if (argv[g][@]=="/") {
factor=atof(&(argv[3]1[1]1));
factor_mode=1;
} else {

factor=atof(argv[&]);

}

FILE *O=fopen(argv[1],"w");

int dim;

char **sizes_string;
Tcl_SplitList(interp,argv[2],&dim,&sizes_string);
ordinal size[MAXDIM];

for (i=0;i<dim;i++) size[i]=atoi(sizes_string[i]);

free(sizes_string);

ordinal offset[MAXDIM];

298

offset[0]=1;

for (i=1;i<dim;i++) offset[i]=offset[i-1]*size[i-1];

ordinal vector_dim=atoi(argv[3]);

ordinal slice_dim=atoi(argv[4]);

int starting_index=0;

if (slice_dim==1) starting_index=1;

int postfix_dim;

char **postfix_indices_string;

Tcl SplitList(interp,argv[5],&postfix_dim,&postfix_indices_string);
ordinal postfix_indices[MAXDIM];

for (i=0j;i<postfix_dim;i++) postfix_indices[i]=atoi(postfix_indices_string[i]);
free(postfix_indices_string);

ordinal initial_offset=0;

for (i=0j;i<postfix_dim;i++)
initial_ offset+=postfix_indices[i]*offset[i+vector_dim+slice_dim];

int first_offset_argc;
char **first_offset_argv;
Tcl_SplitList(interp,argv[7],&first_offset_argc,&first_offset_argv);
float *previous_offset=(float *)malloc(sizeof(scalar)*first_offset_argc);
for (i=0;i<first_offset_argc;i++) previous_offset[i]=atof(first_offset_argv[i]);
free(first_offset_argv);
int vector_order_argc;
char **vector_order_argv;
Tcl_SplitList(interp,argv[6],&vector_order_argc,&vector_order_argv);
#Info: "Saving vectors for slice %s (delta) in %s" argv[5],argv[1]
ordinal vector_index;
for (vector_index=0;vector_index<vector_order_argc;vector_index++) {
struct dvec *d=plot_cur->pl_dvecs;
while ((d)&&(strcmp(d->v_name,vector_order_argv[vector_index]))) d = d->v_next;

if (1(d)) {

299

#Error: "(%s) listed vector %s was not simulated" argv[O]
vector_order_argv[vector_index]

return TCL_ERROR;
}
char vector_id[1;

for (i=2;d->v_name[i]!=")";i++) {

if (d->v_name[i]=="_") {
vector_id[i-2]=" ';
} else {

vector_id[i-2]=d->v_name[i];

}

vector_id[i-2]=0;

int tmp_dim;

char **vector_index_string;

Tcl SplitList(interp,vector_id,&tmp_dim,&vector_index_string);
if (slice_dim!=tmp_dim) continue;

ordinal final offset=initial_offset;

for (i=0;i<slice_dim;i++) final_offset+=(atoi(vector_index_string[i])-
starting_index)*offset[i+vector_dim];

free(vector_index_string);
write_ordinal(0,final_offset);
write_ordinal(0,d->v_length);
if (factor_mode) {
for (i=0;i<d->v_length;i++) {
write float(O,factor/(d->v_realdata[i]-previous_offset[i]));
previous_offset[i]=d->v_realdata[i];
}
} else {
for (i=0;i<d->v_length;i++) {
write float(O, (d->v_realdata[i]-previous_offset[i])*factor);

previous_offset[i]=d->v_realdata[i];

300

}
free(previous_offset);
fclose(0);
return TCL_OK;

}

static int

save_characterization_slice_delta_differential (ClientData clientData,Tcl_Interp
*interp,int argc,char *argv[]) {

if ((argc!:)&&(ar‘gC!=)) {

#Error: "usage: %s <file name> <array sizes> <per vector dim> <slice dim>
<post indices> <vector order list> <first offsets> <basline first_offsets> [<factor>]" argv[0]

return TCL_ERROR;
}
if (save_slice_base==NULL) {

#Error: "(%s) cannot save a delta+differential slice before a baseline slice
was saved" argv[eo]

return TCL_ERROR;
}
ordinal 1i;
float factor=1;
int factor_mode=0;
if (argc==10) {
if (argv[®][@]=="/") {
factor=atof(&(argv[2]1[1]1));
factor_mode=1;
} else {

factor=atof(argv[°]);

}

FILE *O=fopen(argv[1],"w");

301

int dim;

char **sizes_string;

Tcl SplitList(interp,argv[2],&dim,&sizes_string);

ordinal size[MAXDIM];

for (i=0;i<dim;i++) size[i]=atoi(sizes_string[i]);
free(sizes_string);

ordinal offset[MAXDIM];

offset[0]=1;

for (i=1;i<dim;i++) offset[i]=offset[i-1]*size[i-1];

ordinal vector_dim=atoi(argv[3]);

ordinal slice dim=atoi(argv[4]);

int starting_index=0;

if (slice_dim==1) starting_index=1;

int postfix_dim;

char **postfix_indices_string;
Tcl_SplitList(interp,argv[5],&postfix_dim,&postfix_indices_string);
ordinal postfix_indices[MAXDIM];

for (i=0;i<postfix_dim;i++) postfix_indices[i]=atoi(postfix_indices_string[i]);
free(postfix_indices_string);

ordinal initial offset=0;

for (i=0;i<postfix_dimj;i++)
initial_offset+=postfix_indices[i]*offset[i+vector_dim+slice_dim];

int first_offset_argc;

char **first_offset_argv;
Tcl_SplitList(interp,argv[7],&first_offset_argc,&first_offset_argv);

float *previous_offset=(float *)malloc(sizeof(scalar)*first_offset_argc);

for (i=0;i<first_offset_argc;i++) previous_offset[i]=atof(first_offset_argv[i]);
int baseline_first_offset_argc;

char **baseline_first_offset_argv;

Tcl_SplitList(interp,argv[8],&baseline_first_offset_argc,&baseline_first_offset_argv);

302

float *baseline_previous_offset=(float
*Imalloc(sizeof(scalar)*baseline_first_offset_argc);

for (i=0;i<baseline_first_offset_argc;i++)
baseline_previous_offset[i]=atof(baseline_first_offset_argv[i]);

free(first_offset_argv);
free(baseline_first_offset_argv);
int vector_order_argc;
char **vector_order_argv;
Tcl_SplitList(interp,argv[6],&vector_order_argc,&vector_order_argv);
#Info: "Saving vectors for slice %s (delta and differential) in %s" argv[5],argv[1]
ordinal vector_index;
for (vector_index=0;vector_index<vector_order_argc;vector_index++) {
struct dvec *d=plot_cur->pl_dvecs;
while ((d)&&(strcmp(d->v_name,vector_order_argv[vector_index]))) d = d->v_next;
if (1(d)) {

#Error: "(%s) listed vector %s was not simulated" argv[@]
vector_order_argv[vector_index]

return TCL_ERROR;
}
struct dvec *b=save_slice_base->pl_dvecs;
while ((b)&&(strcmp(b->v_name,vector_order_argv[vector_index]))) b = b->v_next;
if (I(b)) {

#Error: "(%s) listed vector %s was not simulated in the saved baseline"
argv[@] vector_order_argv[vector_index]

return TCL_ERROR;
}
char vector_id[1;

for (i=2;d->v_name[i]!=") ';i++) {

if (d->v_name[i]=="_") {
vector_id[i-2]=" ';
} else {

vector_id[i-2]=d->v_name[i];

303

}

vector_id[i-2]=0;

int tmp_dim;

char **vector_index_string;
Tcl_SplitList(interp,vector_id,&tmp_dim,&vector_index_string);
if (slice_dim!=tmp_dim) continue;

ordinal final_offset=initial_offset;

for (i=0;i<slice_dim;i++) final_offset+=(atoi(vector_index_string[i])-
starting_index)*offset[i+vector_dim];

free(vector_index_string);
write_ordinal(0,final_offset);
write_ordinal(0,d->v_length);
if (factor_mode) {
for (i=0;i<d->v_length;i++) {
#Dinfo: "%s %g/((%g-%g)-(%g-%g))=%g" d->v_name factor d->v_realdata[i]
previous_offset[i] b->v_realdata[i] baseline_previous_offset[i] factor/((d->v_realdata[i]-

previous_offset[i])-(b->v_realdata[i]-baseline_previous_offset[i]))

write_float(0,factor/((d->v_realdata[i]-previous_offset[i])-(b-
>v_realdata[i]-baseline_previous_offset[i])));

previous_offset[i]=d->v_realdata[i];
baseline_previous_offset[i]=b->v_realdata[i];
}
} else {
for (i=0;i<d->v_length;i++) {
#Dinfo: "%s ((%g-%g)-(%g-%g))*%g=%g" d->v_name d->v_realdata[i]
previous_offset[i] b->v_realdata[i] baseline_previous_offset[i] factor factor*((d-

>v_realdata[i]-previous_offset[i])-(b->v_realdata[i]-baseline previous_offset[i]))

write float(0, ((d->v_realdata[i]-previous_offset[i])-(b->v_realdata[i]-
baseline_previous_offset[i]))*factor);

previous_offset[i]=d->v_realdata[i];

baseline_previous_offset[i]=b->v_realdata[i];

304

free(previous_offset);
free(baseline_previous_offset);
fclose(0);
return TCL_OK;

}

static int

load_characterization_slice (ClientData clientData,Tcl_Interp *interp,int argc,char
*argv[]) {

if (argc!=3) {
#Error: "usage: %s <array name> <file name>" argv[0]
return TCL_ERROR;

}

LUT *a=get_ LUT(argv[1]);

if (la) {

#Error: "(%s) array %s must be initialized before slices can be loaded"
argv[@],argv[1]

return TCL_ERROR;
}
open_to_read(argv[2]);
#Info: "Slice loader from file %s" argv[2]
while (more_to_read()) {
ordinal i;
ordinal offset=read_ordinal();
ordinal length=read_ordinal();
for (i=0;i<length; i++) {
get_float(&(a->content[offset+i]));

#Dinfo: "%1d+%ld = %g" offset i a->content[offset+i]

}
done_reading();

return TCL_OK;

305

306

B. 5. 2. Process Parellelization

The characterization script is written in Tcl. Its loops are either regular interpreter
repetitions or parallelized processes that merge data at the end. A forked process has a cloned
version of the memory heap of the original one. Therefore, the main process starts allocating
memory fot LUT’s and populate them with the saved slices only after slices were generated by
forked processes. A forked process is “self aware” that it is forked, in to support special behavior
for side-threads, such as modifying message leading token to indicate the pid of its origin. To

support parallelism, the following commands were added:

1. Tcl command fofork — provides functionality of the C commarek in a Tcl script.
2. fork_task— process the payload code in a forked process

3. wait_for_forked— pause the main process until all forked processes are finished

static int
tcl_fork (ClientData clientData,Tcl_Interp *interp,int argc,char *argv[])
{
if (argc!=1) {
#Error: "fork requires no arguments"”
return TCL_ERROR;
}
Tcl_ResetResult(interp);
int PID=getpid();
int child_pid=fork();
if (getpid()!=PID) this_process_forked=1;
tcl_append_int(interp,child_pid);

return TCL_OK;

307

proc fork_task {group_var task {limit {}}} {
upvar $group_var group
if {$1limit=={}} {
set limit $::fork_limit
}
if {![info exists group]} {

set group {}

}
while {1} {
sleep
set num_of_active [llength [glob -nocomplain /tmp/forked_processes/[pid]-*-
running]]
if {$limit>$num_of_active} break
}

set parent_pid [pid]
set p [fork]
if {$p!=0} {
if {$p!=$parent_pid} {
Info: Spawned $p
lappend group $p

return

}

set ::ParentProcess [open /tmp/${group_var}-${parent_pid}-[pid].tcl w]
exec touch /tmp/forked_processes/${parent_pid}-[pid]-running

if {[catch {uplevel $task} msgl} {

Error: $msg "$::errorInfo”

}

close $::ParentProcess

308

Info: Done
exec touch /tmp/forked_processes/${parent_pid}-[pid]
file delete /tmp/forked_processes/${parent_pid}-[pid]-running

exit

proc wait_for_forked {forked_processes_var} {

upvar $forked_processes_var forked_processes

set wait

while {$wait} {
sleep
set wait
set proc_list {}
set fork_signal_list [glob -nocomplain /tmp/forked_processes/[pid]-*]
foreach fork_signal $fork_signal list {

if {[regexp {\-([0-9]+)$} $fork_signal -> proc_num]} {

lappend proc_list $proc_num

}

foreach process $forked_processes {
if {$process==[pid]} continue
if {[lsearch $proc_list $process]==-1} {
set wait

break

}

Info: All forked processes from [pid] finished for $forked_processes_var
foreach file [glob -nocomplain /tmp/${forked_processes_var}-[pid]-*.tcl] {
source $file

file delete $file

309

B. 5. 3. 4D Characterization Script

The 4D version of the characterization script omits the width characterization, leaving it
to post factoring of results by W/L. This characterization flavor is adequate for channel W/L<10
and higher ratios obtained by using the M parameter (multiplier). The L sweep is also midified to
uniform sampling, which saves on interpolation time by avoiding the L-segment binary search.

textbox {

HHHHHH A R R R

HHHHHH A R R

##
Starting characterization processes
##

310

HEFHHHARFHHAAFHHAEFHHARRFHHAAFBHAAFHHHARFHHEFHBHAAFHHHE
HHHHHH R R
}
source $%::env(RAMSPICE)/Etc/tests/geo_values.tcl
set ::geo_stepping
foreach dim {1 w} {
set values {}
foreach {key value} [array get ::bin n,*,$dim*] {
if {[1lsearch $values $value]l=-1} continue
lappend values $value
}
set values [1lsort -real $values]
set ${dim}_values {}
for {set i 0} {$i<[llength $values]-1} {incr i} {
set this [lindex $values $i]
set next [lindex $values [expr $i+1]]
if {$i<[1llength $values]-2} {
for {set j 0} {$j<$::geo_stepping} {incr j} {
lappend ${dim}_values [expr $this+($next-$this)*$j/$::geo_stepping]
}
} else {
for {set j 0} {$j<=%::geo_stepping} {incr j} {

lappend ${dim}_values [expr $this+($next-$this)*$j/($::geo_stepping+1)]

}

set ::epsilon

foreach type [split $device :] {
set 1 _values {}

set w_values {}

311

set p [string index $type 0]
set 1min [set ::global_${p}1min]
set lmax [set ::global_${p}lmax]
set wmin [set ::global_${p}wmin]
set wmax [set ::global_${p}wmax]
for {set 1 $lmin} {$1l<=$1max} {set 1 [expr $1+($1lmax-$1min)/pow(2,$1_rez)]1} {
lappend 1 _values $1
}
Info: 1_values=$%$1 values
set max_supply $topv
if {[regexp {"p} $typel} {
set max_supply [expr -$topv]
}

set vt_db_file
$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_vt.db

set va_db_file
$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_va.db

set min_vt_file
$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_min_vt.tcl

set ids_file
$::env(RAMSPICE)/Etc/Tech _DB/${tech}/4d/${: :rez}/${tech}_${type}_ids.db

set gm_file $::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${::rez}/${tech}_${type}_gm.db
set ro_file $::env(RAMSPICE)/Etc/Tech _DB/${tech}/4d/${: :rez}/${tech}_${type}_ro.db

set vth_mis_file
$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_vth_mis.db

set ids_mis_file
$::env(RAMSPICE)/Etc/Tech _DB/${tech}/4d/${: :rez}/${tech}_${type}_ids _mis.db

if {[file exists $vt_db_file]&&[file exists $min_vt_file]&&[file exists
$va_db_file]} {

source $min_vt_file
Info: LUT exists for type=$type $vt_db_file $min_vt_file $va_db_file
} else {
textbox "Characterizing Vt and Va for $type"

constrain

312

vgs © $max_supply $vgs_rez
Vds © $max_supply $vds_rez
Vbs [expr -$max_supply/2] 0 $vbs_rez

L [set ::global_${p}lmin] [set ::global_${p}lmax] $::1_rez

set ::fork_limit

set ::mid_vgs [expr ($topv+0.5)/2]

set ::min_Ids

set ::scalar_Ids_multiplier

set ::1limit_Ids_multiplier

set ::minVgs [expr *$max_supply]

set ::minvds [expr *$max_supply]

set ::maxVds $max_supply

set ::maxVgs [expr *$max_supply]

set ::minvt $max_supply

HHHHHHHHH R R

set ::low_vgs [expr $max_supply-$::epsilon]

set ::high_vgs $max_supply

Clean droppings

foreach droppings [glob -nocomplain /tmp/*characterization_task*] {
file delete $droppings

}

foreach droppings [glob -nocomplain /tmp/{ids,gm,ro}.*] {

file delete $droppings

set short_views {Vt Vva}
set views {Ids gm ro}
foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)

fork_task char_vt_task {

313

set ::minVt $max_supply

textbox "Corner [string toupper $::corner], Temperature=$::temp degC"
#ittHHHE Template netlist

netlist ".include $::env(RAMSPICE)/Etc/Tech_DB/${tech}/${tech}.sp"
netlist {

** the N-transistor

* name D G S B model L W
}
set i3
foreach L $1 values {
set rtest
set W $L
if {$W<Swmin} {
set W [expr $L*$wmin/$1lmin]
set rtest [expr *$1min/$wmin]
}
netlist ".temp $::temp"
mosfet {name type D G S B L W Lmin}
mosfet mn_${i3} $type D G ${i3} B $L %W
netlist "r_${i3} ${i3} @ $rtest”
incr i3
}
netlist "
Vds D @ dc $max_supply ac ©
Vgs G © dc $max_supply ac ©
Vbs B © dc © ac 0

.end

update_netlist Vt $::corner $::temp

314

#i###H#### Initialize database
Info: Measuring Vt(W,L) $::low_vgs $::high vgs
::spice::dc vgs [expr $max_supply/2-$epsilon] [expr $max_supply/2] $epsilon
set i2
set i3
foreach L $1 values {
set Ids_low [get_spice_data V(${i2}) @]
set Ids_high [get_spice_data V(${i2}) 1]
if {[catch {set slope [expr (Ids_high-Ids low)/$epsilon]} msg]l} {
Info: Ids_high=%$Ids high Ids_low=%$Ids low epsilon=$epsilon
Error: $msg
exit
}
set Vt [expr $max_supply/2-$Ids_high/$slope]
if {[regexp {"p} $typel} {
set Vt [expr -$Vvt]
}
A @ look_up_tables/$type/Vt/${::corner}($i3) = $vt
if {$i3>3} {
A if "abs($vt)<abs(\$::minvt)" "set ::minvt $vt"
}
incr i2

incr i3

Info: Measuring Va(W,L)
::spice::dc vds [expr $max_supply-$epsilon] $max_supply $epsilon
set i2
set i3
foreach L $1_values {

set Ids_low [get_spice_data V(${i2}) 9]

315

set Ids_high [get_spice_data V(${i2}) 1]

if {[catch {set slope [expr (Ids_high-Ids low)/$epsilon]} msg]l} {
Info: Ids_high=%$Ids high Ids_low=%$Ids low epsilon=$epsilon
Error: $msg

exit

}

set Va [expr $max_supply-$Ids_high/$slope]

A @ look_up_tables/$type/Va/${::corner}($i3) = $va

incr i3

incr i2

}

foreach ::corner $::corner_list {
foreach array $short views {
@ /look_up_tables/$type/$array/${::corner}([1llength $1_values]) !
}
foreach array $short views {
set i3 0
foreach L $1 values {
LUT_set_legend /look_up_tables/$type/$array/${::corner} 0 $i3 $L

incr i3

}

wait_for_forked char_vt_task

Info: Saving Arrays
@ /look_up_tables/$type/Vt save $vt db_file
@ /look_up_tables/$type/Va save $va_db_file
set minvt ©

Info: minvt=$minvt

316

set MVT [open $min_ vt file w]

puts $MVT [list set minVt [set minVt]]

close $MVT

Cleanup

foreach char_file [glob -nocomplain /tmp/char_vt_task*] {

file delete $char _file

}
if {I[file exists $ids file]||![file exists $gm file]||!'[file exists $ro file]} {
if {[regexp {"p} $typel} {

set minvt [expr -$minvt]

}

textbox "Characterizing Ids, gm and ro for $type"

constrain "
vgs $minvt $max_supply $::vgs_rez
Vds © $max_supply $::vds_rez
Vbs [expr -$max_supply/2] 0 $::vbs_rez

L [set ::global_${p}lmin] [set ::global_${p}lmax] $::1_rez
set ::fork_limit
set ::mid_vgs
set ::min_Ids
HHHHHH A R R
Clean droppings
foreach droppings [glob -nocomplain /tmp/*characterization_task*] {
file delete $droppings
}
foreach droppings [glob -nocomplain /tmp/{Ids,gm,ro}.*] {
file delete $droppings

}

set views {Ids gm ro}

317

set ohmic_factor
foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
fork_task char_vig task {

Info: "Corner [string toupper $::corner], Temperature=$::temp degC"
netlist ".include $::env(RAMSPICE)/Etc/Tech_DB/${tech}/${tech}.sp"
netlist {

** the N-transistor
* name D G S B model L W
}
set i3
set i4
foreach L $1_values {
set rtest
set W $L
if {$W<Swmin} {
set W [expr $L*$wmin/$1lmin]
set rtest [expr *$1min/$wmin]
}
netlist ".temp $::temp"
mosfet {name type D G S B L W Lmin}
mosfet mn_${i3} $type D G ${i3} B $L %W
netlist "r_${i3} ${i3} @ $rtest”
incr i3
}
netlist "Vds D @ dc @ ac 0"
netlist "Vgs G @ dc @ ac @"
netlist "Vbs B @ dc @ ac 0"
netlist ".end"

update_netlist VIG $::corner $::temp

318

set index_range {}
foreach var {Vgs Vds Vbs} {
lappend index_range $::constraints($var,index_range)
}
lappend index_range [llength $1 values]
Info: Measuring Ids(vgs,Vds,Vbs) gm(Vgs,Vds,Vbs) and ro(Vvgs,Vds,Vbs)

Info: Vgs ($::constraints(Vgs,minval),$::constraints(vgs,maxval))
step=$::constraints(Vvgs,step)

Info: Vds ($::constraints(Vds,minval),$::constraints(Vds,maxval))
step=$::constraints(Vds,step)

Info: Vbs ($::constraints(Vbs,minval),$::constraints(Vbs,maxval))
step=$::constraints(Vbs,step)

Info: simulation started ([clock format [clock seconds]])

::spice::dc vgs $::constraints(Vvgs,minval) $::constraints(vgs,maxval)
::constraints(vgs,step) vds $::constraints(vds,minval) $::constraints(Vds,maxval)
::constraints(Vvds,step) vbs $::constraints(Vbs,minval) $::constraints(Vbs,maxval)
::constraints(Vbs,step)

A

Info: done Ids running. Saving results. ([clock format [clock seconds]])

save_characterization_slice /tmp/Ids.$::corner $index_range
$ohmic_factor

::spice::dc vgs [expr $::constraints(Vgs,minval)+$::epsilon] [expr
::constraints(Vgs,maxval)+$::epsilon] $::constraints(vgs,step) vds $::constraints(Vds,minval)
::constraints(vds,maxval) $::constraints(Vds,step) vbs $::constraints(Vbs,minval)
::constraints(Vbs,maxval) $::constraints(Vbs,step)

B

Info: done gm running. Saving results. ([clock format [clock seconds]])

save_characterization_slice_differential /tmp/gm.$::corner $index_range
[expr $ohmic_factor/$::epsilon]

::spice::dc vgs $::constraints(Vgs,minval) $::constraints(Vgs,maxval)
::constraints(Vgs,step) vds [expr $::constraints(Vds,minval)+$::epsilon] [expr
::constraints(Vds,maxval)+$::epsilon] $::constraints(Vds,step) vbs $::constraints(Vbs,minval)
::constraints(Vbs,maxval) $::constraints(Vbs,step)

B A

Info: done ro running. Saving results. ([clock format [clock seconds]])

save_characterization_slice_differential /tmp/ro.$::corner $index_range
/[expr $::epsilon/$ohmic factor]

Info: is done saving results. ([clock format [clock seconds]])

Info: Done ([clock format [clock seconds]])

319

foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
#it#HHH# Characterizing loops
set index_range {}
foreach var {vgs Vds Vbs} {
lappend index_range $::constraints($var,index_range)
}
lappend index_range [llength $1 values]
foreach array $views {
@ look_up_tables/$type/$array/${::corner}([join $index range ,]) !
}
foreach array $views {
foreach_in_range Vgs i0 {
LUT_set_legend /look_up_tables/$type/$array/$::corner 0 $i0 $Vgs
}
foreach_in_range Vds il {
LUT_set_legend /look_ up_tables/$type/$array/$::corner 1 $il $Vds
}
foreach_in_range Vbs i2 {
LUT_set_legend /look_up_tables/$type/$array/$::corner 2 $i2 $Vbs
}
set i3 0
foreach L $1_values {
LUT_set_legend /look_up_tables/$type/$array/$::corner 3 $i3 $L

incr i3

}

wait_for_forked char_vig_task
Info: Loading Saved Slices

foreach ::corner $::corner_list {

320

load_characterization_slice /look_up_tables/$type/Ids/$::corner
/tmp/Ids.$::corner

load_characterization_slice /look_up_tables/$type/gm/$::corner
/tmp/gm.$: :corner

load_characterization_slice /look_up_tables/$type/ro/$::corner
/tmp/ro.%::corner

}

Info: Saving Array

@ /look_up_tables/$type/Ids save $ids file

@ /look_up_tables/$type/gm save $gm file

@ /look _up_tables/$type/ro save $ro file

Cleanup

foreach char_file [glob -nocomplain /tmp/char_vig task*] {
file delete $char_ file

}

Info: Ids=[expr [@ /look_up_tables/$type/Ids/ss calc 1.8 1.8 0 180e-9]*220/180]
}
if {![file exists $vth _mis file]||![file exists $ids_mis_file]} {
textbox "Characterizing Ids and Vt mismatch for $type"
set ::fork_limit

@ /struct/dist/type = string

@ /struct/dist/argl = string
@ /struct/dist/arg2 = string
set scaling
for {set i 1} {[info exists bin(n,$i,1min)]1} {incr i} {
@ /simulation_config/mc/nch_mc_%$i = string {
set lef [expr $BSIM_ 1 -]
set wef $BSIM w
set toxn
set geo_fac [expr 1/sqrt($lef*fwef*)]
set vthmis [expr $scaling* *$geo_fac]

set dlmis [expr $scaling* *$geo fac*$lef]

321

set dwmis [expr $scaling* *$geo_fac*$wef]
set toxmis [expr $scaling* *$geo_fac*geo_fac*toxn]

}

@ /simulation_config/mc/nch_mc_%$i/1 = /struct/dist gauss * {{$dlmis}}

@ /simulation_config/mc/nch_mc_%$i/w = /struct/dist gauss * {{$dwmis}}
@ /simulation_config/mc/nch_mc_$i/vthe = /struct/dist gauss * {{$vthmis}}
@ /simulation_config/mc/nch_mc_%$i/tox = /struct/dist gauss * {{$toxmis}}
}
Clean droppings
foreach droppings [glob -nocomplain /tmp/*characterization_task*] {
file delete $droppings
}
foreach droppings [glob -nocomplain /tmp/char_{mis,size,ids,gm,ro}*.*] {
file delete $droppings
}
set views {Ids_mis Vth_mis}
foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
fork_task char_mis_task {
textbox "Corner [string toupper $::corner], Temperature=$::temp degC"
H#it#HHHHE Template netlist
netlist ".include $::env(RAMSPICE)/Etc/Tech_DB/${tech}/${tech}.sp"
netlist {
** the N-transistor
* name D G S B model L W
}
netlist ".temp $::temp"
set vars_of_interest {}
set i3
foreach L $1_values {

set rtest

322

set W $L
if {$W<Swmin} {

set W [expr $L*$wmin/$1lmin]

set rtest [expr *$1min/$wmin]
}

mosfet {name type D G S B L W Lmin}
mosfet mn_${i3} $type D G ${i3} 0 $L %W
netlist "r_${i3} ${i3} 0 $rtest”
lappend vars_of_interest mn_${i3}
lappend vars_of_interest Vth
lappend vars_of_interest mn_${i3}
lappend vars_of_interest Ids
incr i3

}

netlist "

Vds D @ dc $max_supply ac @

Vgs G @ dc [expr $max_supply/2] ac ©

.end

set O [open ~/temp/tempMis$::corner_$%$::temp.sn w]
puts $0 $template netlist
close $0

update_netlist Mis $::corner $::temp

Info: Measuring mis(W,L)
#itH#HH4E Characterizing loops
Info: simulation started ([clock format [clock seconds]])

set result [monte_carlo_${::bsim version} /simulation_config/mc
$vars_of interest ::spice::op]

Info: result=[join $result \n]

Info: done Mismatch running. Saving results. ([clock format [clock
seconds]])

323

$Sigma/$Vvth]

$Sigma/$Ids]

$1 _values])

Info: Done ([clock format [clock seconds]])
set i 0
set i3 0
foreach L $1 values {
set Vth [lindex $result $i]
incr 1
set Sigma [lindex $result $i]

~ @ /look_up_tables/$type/Vth_mis/${::corner}($i3) = [expr

incr i

set Ids [lindex $result $i]
incr i

set Sigma [lindex $result $i]

A @ /look_up_tables/$type/Ids_mis/${::corner}($i3) = [expr

incr i

incr i3

}

foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
H#iHHHHH Initialize database
foreach array $views {

Info: New Array: look_up_tables/$type/$array/${::corner}([1llength

@ look_up_tables/$type/$array/${::corner}([1llength $1 values]) !
}
foreach array $views {

set i3 0

foreach L $1_values {

LUT_set_legend /look_up_tables/$type/$array/$::corner 0 $i3 $L

324

incr i3

}

wait_for_forked char_mis_task

foreach ::corner $::corner_list {

set ::temp $::corner_to_temp($::corner)

foreach array $views {

generate_lut /look_up_tables/$type/$array/$::corner

}

@ /look_up_tables/$type/Vth_mis save $vth mis file

@ /look up_tables/$type/Ids_mis save $ids mis file

Cleanup

foreach char_file [glob -nocomplain /tmp/char_mis_task*] {

file delete $char file

}

set noise_complete

foreach ::corner $::corner_list {

set thermal_noise_file
::env(RAMSPICE)/Etc/Tech_DB/${tech}/

set flicker_noise_file
::env(RAMSPICE)/Etc/Tech_DB/${tech}/

set cgs_file
::env(RAMSPICE)/Etc/Tech_DB/${tech}/

set cds_file
::env(RAMSPICE)/Etc/Tech _DB/${tech}/

/${::rez}/${tech}_${type} ${:

/${::rez}/${tech}_${type} ${:

/%{::rez}/${tech}_${type} ${::

/${::rez}/${tech}_${type} ${::

if {[file exists $thermal_noise_file]} continue

set noise_complete

break

}

if {!$noise_complete} {

325

:corner}_thermal_noise.db

:corner}_flicker_noise.db

corner}_cgs.db

corner} cds.db

textbox "Characterizing Noise for $type Vgs=($minVvt, $max_supply)
Vds=(0,$max_supply)"

textbox "Characterizing Noise for $type "
constrain "

Vgs $minVvt $max_supply 7

Vds [expr $max_supply/20] $max_supply 4
Vbs [expr -$max_supply/3] © 1
constrain "
Vgs $minvt $max_supply 2
Vds [expr $max_supply/20] $max_supply 2
Vbs [expr -$max_supply/3] © 1

"

set ::fork_limit

foreach old_task_file [glob -nocomplain /tmp/*.tcl] {
file delete $old_task file

}

set views {cgs cds flicker_const thermal_noise}

set total_array_volume

proc noise_cont {coord} {

@ look_up_tables/$type/flicker_const/${::corner}($coord) =

return -code continue
}
set index_range {}
foreach var {vgs Vvds Vbs} {
lappend index_range $::constraints($var,index_range)
}
lappend index_range [llength $1 values]
set_spice_var Captured_Quick_Noise
foreach ::corner $::corner_list {

set thermal_noise_file

$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_${::corner}_thermal_noise.db

326

set flicker_noise_file
$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_${::corner}_flicker_noise.db

set cgs_file
$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_${::corner}_cgs.db

set cds_file
$::env(RAMSPICE)/Etc/Tech_DB/${tech}/4d/${: :rez}/${tech}_${type}_${::corner}_cds.db

if {[file exists $thermal noise file]} continue
set ::temp $::corner_to_temp($::corner)
foreach array $views {

@ look_up_tables/$type/$array/${::corner}([join $index range ,]) !
}
foreach array $views {

foreach_in_range Vgs i0 {

LUT_set_legend /look_up_tables/$type/$array/$::corner 0 $i0 $Vgs

Info: 0/$i0 $Vgs=[LUT_get_legend /look_up_tables/$type/$array/$::corner 0
$10]

}
foreach_in_range Vds i1 {
LUT_set_legend /look_up_tables/$type/$array/$::corner 1 $il $Vds

Info: 1/%$il1 $Vds=[LUT_get_legend /look_up_tables/$type/$array/$::corner 1
$i1]

}
foreach_in_range Vbs i2 {
LUT_set_legend /look_up_tables/$type/$array/$::corner 2 $i2 $Vbs

Info: 2/%$i2 $Vbs=[LUT_get_legend /look_up_tables/$type/$array/$::corner 2
$i2]

}
set i3 0
foreach L $1 values {
LUT_set_legend /look_up_tables/$type/$array/$::corner 3 $i3 $L
Info: 3/%$i3 $L=[LUT_get_legend /look_up_tables/$type/$array/$::corner 3 $i3]

incr i3

327

$section

textbox "Corner [string toupper $::corner], Temperature=$::temp degC"
for {set section 1} {[info exists bin(n,$section,1min)]} {incr section} {}
ETA $section
for {set section 1} {[info exists bin(n,$section,1min)]} {incr section} {
Info: Analyzing bin $section [clock format [clock seconds]]
set dummy_flicker
set dummy_thermal
set dummy_count_flicker
set dummy_count_thermal
netlist ".include $::env(RAMSPICE)/Etc/Tech_DB/${tech}/${tech}.sp"
netlist ".temp $temp"
netlist {
** the N-transistor
* name D G S B model L W
rtest
Vgs G 0 dc 0 ac
Vds D © dc 0 ac
Vbs B 0 dc 0 ac
}
mosfet {name type D G S B L W Lmin}

mosfet mn_0© @ $type D G 3 B $bin(n,$section,lmin) $bin(n,$section,wmin)

netlist {
.end
}
update_netlist Noise $::corner $::temp
set i3
foreach L $1 values {
set W [expr $L*$wmin/$1min]
set prefix [string index $type 0]

if {$sectionl=[find_mosfet_bin $prefix $L $W]} {

328

incr i3
continue

::spice::alter mn_0 0 w

W

::spice::alter mn_@0 0 1 = $L
foreach_in_range Vgs i0 {
::spice::alter vgs = $Vvgs
foreach_in_range Vds il {
::spice::alter vds = $vds
foreach_in_range Vbs i2 {
::spice::alter vbs = $Vbs
::spice::noise v(3) vgs lin

@ look_up_tables/$type/cgs/${::corner}($i0,$i1,%$i2,%$13)
[get_spice_data Captured_Cgs end]

@ look_up_tables/$type/cds/${::corner}($i0,$il1,$i2,%$i3)
[get_spice_data Captured_Cgd end]

set thermal_noise [get_spice_data
Captured_Thermal_Noise end]

if {[string match *nan* $thermal noise]} {
set thermal_noise

}

set Ssi [get_spice_data Captured_Ssi end]

set Captured_EffFreq [get_spice_data Captured_EffFreq
end]

if {[string match *nan* $Captured_EffFreql} {
noise_cont $i0,%$i1,%$i2,%$i3

}

set flicker_noise [expr $Ssi*$Captured EffFreq]

if {![regexp {*[0-9\.\-\+e]+$} $flicker_noise]} {
Info: flicker_noise=$flicker noise

set flicker_noise

::spice::op

329

set Idsl [get_spice_data V(3) 9]
::spice::alter vgs = [expr $Vgs+$::epsilon]
::spice::op

set Ids2 [get_spice_data V(3) 9]

set gm [expr ($Ids2-$Idsl)*1el12/%$::epsilon]

if {$gm==0} {
look_up_tables/$type/flicker_const/${::corner}($i0,$i1,$i2,$i3) = [expr
$dummy_flicker/$dummy_count_flicker]
look_up_tables/$type/thermal_noise/${::corner}($i0,$i1,%$i2,$i3) = [expr
$dummy_thermal/$dummy_count_thermal]

} else {

if {[catch {@

look_up_tables/$type/flicker_const/${::corner}($i0,$i1,$i2,$i3) = [expr
sqrt($flicker_noise*$W*$L/($gm*$gm))]1}1} {
look_up_tables/$type/flicker_const/${::corner}($i0,$i1,%$i2,$i3) = [expr

$dummy_flicker/$dummy_ count_flicker]
} else {

set dummy_flicker [expr
$dummy_flicker+sqrt($flicker_noise*$W*$L/($gm*$gm))]

incr dummy_count_flicker

}

if {[catch {@
look_up_tables/$type/thermal_noise/${::corner}($i0,$i1,$i2,$i3) = [expr
sqrt($thermal_noise/$gm)1}1} {

@
look_up_tables/$type/thermal_noise/${: :corner}($i0,$i1,$i2,$i3)
$dummy_thermal/$dummy_count_thermal]

[expr

} else {

set dummy_thermal [expr
$dummy_thermal+sqrt($thermal_noise/$gm)]

incr dummy_count_thermal

}

#report_vars Vgs Vds Vbs W L

330

#Info: thermal_noise=[@
look_up_tables/$type/thermal_noise/${::corner}($i0,$il1,$i2,$i3)]

#Info: flicker_noise=[@
look_up_tables/$type/flicker_const/${::corner}($i0,$i1,$i2,$i3)]

::spice::destroy all

::spice::alter vgs = $vgs

ETA

}

incr i3

}
@ /look_up_tables/$type/cds/$::corner save ${cds file}

@ /look_up_tables/$type/cgs/$::corner save ${cgs file}
@ /look_up_tables/$type/thermal_noise/$::corner save ${thermal noise file}

@ /look_up_tables/$type/flicker_const/$::corner save ${flicker noise file}

exit

331

B. 5. 4.

tracks L and W via multi-transistor circuits.

textbox {

}

HHSHHH AR R R

HHHHHH AR A R

#H#
Starting characterization processes
##t

WU R

HHAH

source $::env(RAMSPICE)/tests/geo_values.tcl

set ::epsilon

foreach type [split $device :] {

set max_supply $topv
if {[regexp {"p} $typel} {
set max_supply [expr -$topv]

}

set vt_db_file $::env(RAMSPICE)/Tech_DB/${tech}/${: :rez}/${tech}_${type}_vt.db

set va_db_file $::env(RAMSPICE)/Tech_DB/${tech}/${: :rez}/${tech}_${type}_va.db

set min_vt_file

$::env(RAMSPICE)/Tech_DB/${tech}/${::rez}/${tech}_${type} _min_vt.tcl

set ids_file $::env(RAMSPICE)/Tech _DB/${tech}/${::rez}/${tech} ${type} ids.db
set gm_file $::env(RAMSPICE)/Tech_DB/${tech}/${::rez}/${tech}_${type}_gm.db

set go_file $::env(RAMSPICE)/Tech_DB/${tech}/${::rez}/${tech}_${type} go.db

set vth_mis_file

$::env(RAMSPICE)/Tech_DB/${tech}/${: :rez}/${tech}_${type}_vth_mis.db

set ids_mis_file

$::env(RAMSPICE)/Tech DB/${tech}/${::rez}/${tech} ${type} ids_mis.db

332

5D Characterization Script

The 5D version of the characterization script DC-sweeps on operating point voltages and

if {[file exists $vt_db_file]&&[file exists $min_vt_file]&&[file exists
$va_db_file]} {

source $min_vt_file

} else {
textbox "Characterizing Vt and Va for $type"
constrain "
vgs © $max_supply $vgs_rez
Vds © $max_supply $vds_rez
Vbs [expr -$max_supply/2] 0 $vbs_rez

set ::fork_limit

set ::mid_vgs [expr ($topv+0.5)/2]

set ::min_Ids

set ::scalar_Ids _multiplier

set ::1imit_Ids_multiplier

set ::minVgs [expr *$max_supply]

set ::minVds [expr *$max_supply]

set ::maxVds $max_supply

set ::maxvgs [expr *$max_supply]

set ::minvt $max_supply

HEH T

set ::low_vgs [expr $max_supply-$::epsilon]

set ::high_vgs $max_supply

Clean droppings

foreach droppings [glob -nocomplain /tmp/*characterization_task*] {
file delete $droppings

}

foreach droppings [glob -nocomplain /tmp/{ids,gm,go}.*] {

file delete $droppings

333

set short_views {Vt Va}
set views {Ids gm go}
foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
fork_task char_vt_task {
set ::minvt $max_supply
textbox "Corner [string toupper $::corner], Temperature=$::temp degC"
#ittHHHE Template netlist
netlist ".include $::env(RAMSPICE)/Tech_DB/${tech}/${tech}.sp"
netlist {
** the N-transistor
* name D G S B model L W
}
set i3
foreach L $1 values {
set i4
foreach W $w values {
netlist ".temp $::temp"
mosfet {name type D G S B L W Lmin}
mosfet mn_${i3} ${i4} $type ${i3}_${i4} 4 $L W

netlist "r_${i3} ${i4} ${i3} _${i4} @ le-12"

incr i4
}
incr i3
}
netlist "

Vds 3 @ dc $max_supply ac ©
Vgs 1 @ dc $max_supply ac ©
Vbs 4 © dc @ ac ©

.end

334

update_netlist

#ittHHHE Initialize database
Info: Measuring Vt(W,L) $::low _vgs $::high vgs

::spice::dc vgs [expr $max_supply/2-$epsilon] [expr $max_supply/2]
$epsilon

set i2
foreach L $1 values {
set i3
foreach W $w_values {
set Ids_low [::spice::get_spice data V(${i2}_${i3}) 9]
set Ids_high [::spice::get_spice_data V(${i2}_${i3}) 1]
set slope [expr (Ids_high-Ids_low)/$epsilon]
set Vt [expr $max supply/2-$Ids high/$slope]
if {[regexp {"p} $typel]} {
set Vt [expr -$Vt]
}
report_vars corner temp Vt L W
~ @ look_up_tables/$type/Vt/${::corner}($i2,$i3) = $vt
if {$W/$L<= }A{

A if "abs($vt)<abs(\$::minvt)" "set ::minvt $vt"

incr i3
}

incr i2

Info: Measuring Va(W,L)
::spice::dc vds [expr $max_supply-$epsilon] $max_supply $epsilon
set i2

foreach L $1_values {

335

set i3 0
foreach W $w_values {
set Ids_low [::spice::get_spice data V(${i2}_${i3}) 9]
set Ids_high [::spice::get_spice_data V(${i2}_${i3}) 1]
set slope [expr (Ids_high-Ids_low)/$epsilon]
set Va [expr $max_supply-$Ids high/$slope]
report_vars corner temp Va L W
A @ look_up_tables/$type/Va/${::corner}($i2,$i3) = $va

incr i3

incr i2

}

foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
set index_range {}
foreach var {1 w} {
lappend index_range [llength [set ${var}_values]]
}
foreach array $short_views {
@ /look_up_tables/$type/$array/${::corner}([join $index_range ,]1) !
}
foreach array $short views {
set i3 0
foreach L $1_values {

::spice::array_set_legend /look_up_tables/$type/$array/$::corner @

incr i3
}

set i4 ©

336

foreach W $w_values {

::spice::array_set_legend /look_up_tables/$type/$array/$::corner
$i4 $W

incr i4

}

wait_for_forked char_vt_task
@ /look_up_tables/$type/Vt save $vt db file

@ /look_up_tables/$type/Va save $va_db file

Info: minVt=$minVvt

set MVT [open $min vt file w]

puts $MVT [list set minVt [set minVt]]

close $MVT

Cleanup

foreach char_file [glob -nocomplain /tmp/char_vt_task*] {

file delete $char file

}
}
if {![file exists $ids file]||![file exists $gm file]||![file exists $go file]} {
textbox "Characterizing Ids, gm and go for $type"
constrain "
Vgs $minvt $max_supply $::vgs_rez
Vds @ $max_supply $::vds_rez
Vbs [expr -$max_supply/3] 0 $::vbs_rez

set ::fork_limit
set ::mid_vgs
set ::min_Ids

HHHH A

337

Clean droppings

foreach droppings [glob -nocomplain /tmp/*characterization_task*] {
file delete $droppings

}

foreach droppings [glob -nocomplain /tmp/{Ids,gm,go}.*] {

file delete $droppings

set views {Ids gm go}
foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)

fork_task char_vig_task {

Info: "Corner [string toupper $::corner], Temperature=$::temp degC"
netlist ".include $::env(RAMSPICE)/Tech_DB/${tech}/${tech}.sp"
netlist {
** the N-transistor
* name D G S B model L W
}
set i3
foreach L $1_values {
set i4
foreach W $w_values {
netlist ".temp $::temp"
mosfet {name type D G S B L W Lmin}
mosfet mn_${i3}_${i4} $type ${i3}_${i4} 4 $L %W
netlist "r_${i3} ${i4} ${i3} _${i4} @ le-12"

incr i4

incr i3

338

netlist "Vds 3 @ dc @ ac 0"
netlist "Vgs 1 @ dc @ ac 0"
netlist "Vbs 4 @ dc @ ac 0"
netlist ".end"
update_netlist
set index_range {}
foreach var {vgs Vds Vbs} {
lappend index_range $::constraints($var,index_range)
}
lappend index_range [llength $1 values]
lappend index_range [llength $w values]
Info: Measuring Ids(Vgs,Vds,Vbs) gm(Vgs,Vds,Vbs) and go(Vgs,Vds,Vbs)

Info: Vgs ($::constraints(vgs,minval),$::constraints(vVgs,maxval))
step=$::constraints(vgs,step)

Info: Vds ($::constraints(Vvds,minval),$::constraints(Vds,maxval))
step=$::constraints(Vds,step)

Info: Vbs ($::constraints(Vbs,minval),$::constraints(Vbs,maxval))
step=$::constraints(Vbs,step)

Info: simulation started ([clock format [clock seconds]])

::spice::dc vgs $::constraints(Vgs,minval) $::constraints(vVgs,maxval)

$::constraints(vgs,step) vds $::constraints(vds,minval) $::constraints(Vds,maxval)
$::constraints(vds,step) vbs $::constraints(Vvbs,minval) $::constraints(Vbs,maxval)
$::constraints(Vbs,step)

Info: done Ids running. Saving results. ([clock format [clock seconds]])

save_characterization_slice /tmp/Ids.$::corner $index_ range

::spice::dc vgs [expr $::constraints(Vgs,minval)+$::epsilon] [expr
$::constraints(vgs,maxval)+$::epsilon] $::constraints(Vgs,step) vds $::constraints(Vds,minval)
$::constraints(Vds,maxval) $::constraints(Vds,step) vbs $::constraints(Vbs,minval)
$::constraints(Vbs,maxval) $::constraints(Vbs,step)

Info: done gm running. Saving results. ([clock format [clock seconds]])

save_characterization_slice_differential /tmp/gm.$::corner $index_range

[expr /$::epsilon]

::spice::dc vgs $::constraints(Vgs,minval) $::constraints(Vgs,maxval)
$::constraints(vgs,step) vds [expr $::constraints(Vds,minval)+$::epsilon] [expr
$::constraints(vds,maxval)+$::epsilon] $::constraints(Vds,step) vbs $::constraints(Vbs,minval)
$::constraints(Vbs,maxval) $::constraints(Vbs,step)

Info: done go running. Saving results. ([clock format [clock seconds]])

339

save_characterization_slice_differential /tmp/go.$::corner $index_range
32 0 [expr 1e12/%::epsilon]

Info: is done saving results. ([clock format [clock seconds]])

Info: Done ([clock format [clock seconds]])

}

foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
#it#HHH# Characterizing loops
set index_range {}
foreach var {Vgs Vds Vbs} {
lappend index_range $::constraints($var,index_range)
}
lappend index_range [llength $1 values]
lappend index_range [llength $w_values]
foreach array $views {
@ look_up_tables/$type/$array/${::corner}([join $index range ,]1) !
}
foreach array $views {
foreach_in_range Vgs i0 {

::spice::array_set_legend /look_up_tables/$type/$array/$::corner @

$i0 $vgs
}
foreach_in_range Vvds i1 {
::spice::array_set_legend /look_up_tables/$type/$array/$::corner 1
$i1 $vds
}
foreach_in_range Vbs i2 {
::spice::array_set_legend /look_up_tables/$type/$array/$::corner 2
$i2 $Vbs
}
set i3 0

foreach L $1_values {

340

::spice::array_set_legend /look_up_tables/$type/$array/$::corner 3

$i3 $L
incr i3
}
set i4 o
foreach W $w _values {
::spice::array_set_legend /look_up_tables/$type/$array/$::corner 4
$i4 $W

incr i4

}

wait_for_forked char_vig_ task

foreach ::corner $::corner_list {

load_characterization_slice /look_up_tables/$type/Ids/$::corner
/tmp/Ids.$::corner

load_characterization_slice /look_up_tables/$type/gm/$::corner
/tmp/gm.$%: :corner

load_characterization_slice /look_up_tables/$type/go/$::corner
/tmp/go.$: :corner

normalize_ids /look_up_tables/$type/Ids/$::corner
normalize_ids /look_up_tables/$type/gm/$::corner

normalize_ids /look_up_tables/$type/go/$: :corner

@ /look_up_tables/$type/Ids save $ids file

@ /look_up_tables/$type/gm save $gm file

@ /look_up_tables/$type/go save $go file

Cleanup

foreach char_file [glob -nocomplain /tmp/char_vig task*] {

file delete $char_file

341

}

if {![file exists $vth_mis_file]||![file exists $ids_mis_file]} {

textbox "Characterizing Ids and Vt mismatch for $type’

set ::fork_limit

@ /struct/dist/type = string

@ /struct/dist/argl = string
@ /struct/dist/arg2 = string

set scaling

for {set i 1} {[info exists bin(n,$i,1min)]1} {incr i} {

@ /simulation_config/mc/nch_mc_$i =
set lef [expr $BSIM_ 1 -]
set wef $BSIM w

set toxn

string {

set geo_fac [expr 1/sqrt($lef*fwef*)]

set vthmis [expr $scaling*
set dlmis [expr $scaling*
set dwmis [expr $scaling*
set toxmis [expr $scaling*
}
@ /simulation_config/mc/nch_mc_$i/1

@ /simulation_config/mc/nch_mc_%$i/w

*$geo_fac]
*geo_fac*lef]
$geo fac$wef]

*geo_fac*geo_fac*$toxn]

/struct/dist gauss * {{$dlmis}}

= /struct/dist gauss * {{$dwmis}}

@ /simulation_config/mc/nch_mc_%$i/vth® = /struct/dist gauss * {{$vthmis}}

@ /simulation_config/mc/nch_mc_%$i/tox = /struct/dist gauss * {{$toxmis}}

}

Clean droppings

foreach droppings [glob -nocomplain /tmp/*characterization_task*] {

file delete $droppings

}

foreach droppings [glob -nocomplain /tmp/char_{mis,size,ids,gm,ro}*.*] {

file delete $droppings

342

set views {Ids_mis Vth_mis}
foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
fork_task char_mis_task {
textbox "Corner [string toupper $::corner], Temperature=$::temp degC"
#ittHHHE Template netlist
netlist ".include $::env(RAMSPICE)/Tech_DB/${tech}/${tech}.sp"
netlist {
** the N-transistor
* name D G S B model L W
}
netlist ".temp $::temp"
set vars_of_interest {}
set i3
foreach L $1 values {
set i4
foreach W $w values {
mosfet {name type D G S B L W Lmin}
mosfet mn_${i3} ${i4} $type ${i3}_${i4} 0 $L W
netlist "r_${i3}_${i4} ${i3}_${i4} 0 le-12"
lappend vars_of_interest mn_${i3}_${i4}
lappend vars_of_interest Vth
lappend vars_of_interest mn_${i3}_${i4}

lappend vars_of _interest Ids

incr i4
}
incr i3
}
netlist "

Vds 3 @ dc $max_supply ac ©

Vgs 1 @ dc [expr $max_supply/2] ac ©

343

.end

set O [open test.sn w]
puts $0 $template netlist
close $0

update_netlist

Info: Measuring mis(W,L)
#it##HHHE Characterizing loops
Info: simulation started ([clock format [clock seconds]])

set result [monte_carlo_${::bsim_version} 2060 /simulation_config/mc
$vars_of interest ::spice::op]

Info: done Mismatch running. Saving results. ([clock format [clock
seconds]])

Info: Done ([clock format [clock seconds]])
set 1 0
set i3 0
foreach L $1_values {
set i4 o
foreach W $w_values {
set Vth [lindex $result $i]
incr i
set Sigma [lindex $result $i]

~ @ /look_up_tables/$type/Vth_mis/${::corner}($i3,$i4) = [expr
$Sigma/$vth]

incr i

set Ids [lindex $result $i]
incr i

set Sigma [lindex $result $i]

~ @ /look_up_tables/$type/Ids_mis/${::corner}($i3,%$i4) = [expr
$Sigma/$Ids]

incr i

incr i4

344

}

incr i3

}
foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
#i##H###H Initialize database
set index_range {}
foreach var {1 w} {
lappend index_range [llength [set ${var}_values]]
}
foreach array $views {

Info: New Array: look up_tables/$type/$array/${::corner}([join
$index_range ,1])

@ look_up_tables/$type/$array/${::corner}([join $index range ,]) !
}
foreach array $views {

set i3 0

foreach L $1_values {

::spice::array_set_legend /look_up_tables/$type/$array/$::corner @

$i3 $L
incr i3
}
set i4 0
foreach W $w values {
G s ::spice::array_set_legend /look_up_tables/$type/$array/$::corner 1
i4 $W

incr i4

345

wait_for_forked char_mis_task

foreach ::corner $::corner_list {
set ::temp $::corner_to_temp($::corner)
foreach array $views {

generate_lut /look_up_tables/$type/$array/$::corner

}

@ /look_up_tables/$type/Vth_mis save $vth mis file

@ /look_up_tables/$type/Ids_mis save $ids mis_file

Cleanup

foreach char_file [glob -nocomplain /tmp/char_mis_task*] {

file delete $char_ file

}

set noise_complete
foreach ::corner $::corner_list {

set thermal_noise_file
$::env(RAMSPICE)/Tech_DB/${tech}/${::rez}/${tech}_${type}_${::corner}_thermal_noise.db

set flicker_noise_file
$::env(RAMSPICE)/Tech_DB/${tech}/${: :rez}/${tech}_${type}_${::corner}_flicker_noise.db

if {[file exists $thermal noise file]} continue

set noise_complete

break

}

if {!$noise_complete} {

textbox "Characterizing Noise for $type Vgs=($minVt, $max_supply)
Vds=(0,$max_supply)"

textbox "Characterizing Noise for $type "
constrain "
vgs $minvt $max_supply 7
Vds [expr $max_supply/20] $max_supply 4
Vbs [expr -$max_supply/3] © 1

346

set ::fork_limit 1

foreach old_task_file [glob -nocomplain /tmp/*.tcl] {
file delete $old task file

}

set views {flicker_const thermal_noise}

set total_array_volume 1

proc noise_cont {coord} {
@ look_up_tables/$type/flicker_const/${::corner}($coord) = @
return -code continue

}

set index_range {}

foreach var {Vgs Vds Vbs} {
lappend index_range $::constraints($var,index_range)

}

lappend index_range [llength $1_values]

lappend index_range [llength $w values]

set_spice_var Captured_Quick Noise 1

foreach ::corner $::corner_list {

set thermal_noise_file
$::env(RAMSPICE)/Tech_DB/${tech}/${::rez}/${tech}_${type}_${::corner}_thermal_noise.db

set flicker_noise_file
$::env(RAMSPICE)/Tech_DB/${tech}/${: :rez}/${tech}_${type}_${::corner}_flicker_noise.db

if {[file exists $thermal noise file]} continue
set ::temp $::corner_to_temp($::corner)
foreach array $views {
@ look_up_tables/$type/$array/${::corner}([join $index range ,]) !
}
foreach array $views {
foreach_in_range Vgs i0 {

::spice::array_set_legend /look_up_tables/$type/$array/$::corner @
$i0 $vgs

347

}

foreach_in_range Vds i1 {

::spice::array_set_legend /look_up_tables/$type/$array/$::corner

$i1 $vds
}
foreach_in_range Vbs i2 {
::spice::array_set_legend /look_up_tables/$type/$array/$::corner
$i2 $Vbs
}
set i3
foreach L $1_values {
::spice::array_set_legend /look_up_tables/$type/$array/$::corner
$i3 $L
incr i3
}
set i4
foreach W $w values {
G s ::spice::array_set_legend /look_up_tables/$type/$array/$::corner
i4 $W

incr i4

}

textbox "Corner [string toupper $::corner], Temperature=$::temp degC"
for {set section 1} {[info exists bin(n,$section,lmin)]} {incr section} {}
ETA $section
for {set section 1} {[info exists bin(n,$section,1min)]} {incr section} {
Info: Analyzing bin $section [clock format [clock seconds]]
set dummy_flicker
set dummy_thermal
set dummy_count_flicker
set dummy_count_thermal
netlist ".include $::env(RAMSPICE)/Tech DB/${tech}/${tech}.sp"

netlist ".temp $temp"

348

netlist {
** the N-transistor

* name D G S B model L W

rtest
Vgs dc 9 ac
Vds dc 0 ac
Vbs dc 0 ac
}
mosfet {name type D G S B L W Lmin}
mosfet mn_0_0 $type $bin(n,$section,1min) $bin(n,$section,wmin)
$section
netlist {
.end
}

update_netlist
set i3
foreach L $1_values {
set i4
foreach W $w_values {
set prefix [string index $type 0]
if {$sectionl=[find_mosfet_bin $prefix $L $W]} {
incr i4

continue

$W

::spice::alter mn_0 O w

$L

::spice::alter mn_0_0 1
foreach_in_range Vgs i0 {
::spice::alter vgs = $vgs
foreach_in_range Vvds il {
::spice::alter vds = $Vvds

foreach_in_range Vbs i2 {

349

::spice::alter vbs = $Vbs
::spice::noise v(3) vgs lin 2 1 2

set thermal_noise [::spice::get_spice_data
Captured_Thermal_Noise end]

if {[string match *nan* $thermal noise]} {
set thermal_noise 0
}
set Ssi [::spice::get_spice_data Captured_Ssi end]

set Captured_EffFreq [::spice::get_spice_data
Captured_EffFreq end]

if {[string match *nan* $Captured EffFreql]} {
noise_cont $i0,$i1,$i2,%$i3
}
set flicker_noise [expr $Ssi*$Captured EffFreq]
if {![regexp {~[9-9\.\-\+e]+$} $flicker noise]} {
Info: flicker_noise=$flicker_noise
set flicker_noise ©
}
::spice::op
set Idsl [::spice::get_spice_data V(3) 0]
::spice::alter vgs = [expr $Vgs+$::epsilon]
::spice::op
set Ids2 [::spice::get_spice_data V(3) 9]

set gm [expr ($Ids2-$Idsl)*1el2/%$::epsilon]

if {$gm==0} {

@
look_up_tables/$type/flicker_const/${::corner}($i0,$i1,%$i2,$13,%i4) = [expr
$dummy_flicker/$dummy count_flicker]

@
look_up_tables/$type/thermal noise/${::corner}($i0,$i1,$i2,%$i3,$i4) = [expr

$dummy_thermal/$dummy_count_thermal]
} else {
if {[catch {@

look_up_tables/$type/flicker_const/${::corner}($i0,$i1,$i2,$13,%$i4) = [expr
sgrt($flicker noise*$W*$L/($gm*$gm))1}31} {

350

look_up_tables/$type/flicker_const/${::corner}($i0,$i1,$i2,$i3,$i4) = [expr
$dummy_flicker/$dummy_count_flicker]

} else {

set dummy_flicker [expr
$dummy_flicker+sqrt($flicker_noise*$W*$L/($gm*$gm))]

incr dummy_count_flicker

}

if {[catch {@
look_up_tables/$type/thermal_noise/${::corner}($i0,$i1,$i2,$i3,%i4) = [expr
sgrt($thermal noise/$gm)1}1} {

@
look_up_tables/$type/thermal_noise/${::corner}($i0,$i1,$i2,$i3,$i4)
$dummy_thermal/$dummy_count_thermal]

[expr

} else {
set dummy_thermal [expr $dummy thermal+sqrt($thermal noise/$gm)]
incr dummy_count_thermal

}

}

#report_vars Vgs Vds Vbs W L

#Info: thermal_noise=[@
look_up_tables/$type/thermal_noise/${::corner}($i0,$i1,$i2,$i3,$i4)]

#Info: flicker_noise=[@
look_up_tables/$type/flicker_const/${::corner}($i0,$il1,$i2,$i3,$i4)]

::spice::destroy all

::spice::alter vgs = $vgs

ETA

}
incr i4
}

incr i3

351

@ /look_up_tables/$type/thermal_noise/$::corner save ${thermal noise file}

@ /look_up_tables/$type/flicker_const/$::corner save ${flicker noise file}

Exit

B.6. [Circuit Compiler
#\

exec $RAMSPICE/ramspice $0 $argv
source $%::env(RAMSPICE)/Gamma/GammaCC.tcl
get_opts
default ::opt(interpolation) LUT
default ::opt(process) ss
default ::opt(device) nch
default ::opt(tech) tsmco4eo
default ::opt(topv) 1.1
default ::opt(l) 360e-9
default ::opt(w) 360e-9
default ::opt(vgs) 1.0
default ::opt(vbs) 0.0
default ::opt(r) 50
default ::opt(ref) 100e-6
default ::opt(op_limit) 2
default ::opt(step_limit) 1000
default ::opt(step_count) 10

default ::opt(np) 1

352

default ::opt(mode) dc

default ::opt(rez) 5:5:3:6

set ::opt(mode) [string tolower $::opt(mode)]
default EPSO 8.85418e-12
default ::opt(epsrox) 3.9
default ::opt(source) $::env(RAMSPICE)/Etc/Tech_DB/$::opt(tech)/4d/$::0opt(rez)/
source $::env(RAMSPICE)/Sizer/simplify.tcl
source $::env(RAMSPICE)/Sizer/matrices.tcl
source $::env(RAMSPICE)/Sizer/derivatives.tcl
source $::env(RAMSPICE)/Sizer/polynomials.tcl
source $::env(RAMSPICE)/Etc/Tech_DB/$::opt(tech)/binning_$::opt(tech).tcl
proc derive_by polish {by expr} {
if {[1llength $expr]==1} {

set expr [lindex $expr 0]

if {[llength $expr]==1} {
if {$expr==%by} {

return 1

return ©

lassign $expr op X Y
switch $op {

+{

353

return [list $op [derive_by polish $by $X] [derive_by polish $by $Y]]

- A

return [list $op [derive_by_polish $by $X] [derive_by_polish $by $Y]]

*Aq

return [list + [list $op $X [derive_by_polish $by $Y]] [list $op [derive_by_polish
$by $X] $Y1]

proc derive_expression {by expr} {

return [DERIVE $by $expr]

foreach dev {nch pch} dtox {2.7e-10 3.91e-10} toxe {2.47e-9 2.71e-9} {
set toxp [expr $toxe-$dtox]
@ /look_up_tables/$dev/cox = [expr $::opt(epsrox)*$EPSO/$toxp]
@ /look_up_tables/$dev !
foreach param {ids gm ro} {

@ /look_up_tables/$dev load $::opt(source)/$::opt(tech)_${dev}_${param}.db

@ /look_up_tables/$dev/thermal_noise/ !
@ /look_up_tables/$dev/flicker_noise/ !

@ /look_up_tables/$dev/thermal_noise/ load
$::opt(source)/$: :opt(tech)_${dev}_ss_thermal_noise.db

354

@ /look_up_tables/$dev/flicker_noise/ load
$::opt(source)/$: :opt(tech)_${dev}_ss_flicker_noise.db

foreach cap {cgg cgd cgs cgb cdd cdg cdb cds csd csg css csb cbd cbg cbs cbb} {

@ /look_up_tables/$dev/$cap/ load $::opt(source)/$::opt(tech)_${dev} ss_$cap.db

set ::all transistors {}
set ::all _nodes {}

t#tarray set ::vdc {0 0}

proc add_idc {name m p value} {
set ::idc($m,$p) $value

add_node $m $p

set ::dependent_nodes(0) 1
proc add_vdc {name m p value} {
set init_value $value
while {[regexp {~(.*)@([a-zA-Z0-9_:1+)(.*)$} $init_value -> pre c post]} {
set init_value $pre
append init_value [@ $c]

append init_value $post

if {[@ $init_value ?]} {

set init_value [@ $init_value]

355

if {[catch {expr $value}]} {
set ::vdc($m,$p) @$value
} else {

set ::vdc($m,$p) $value

add_node $m $p
if {[info exists ::dependent_nodes($m)]} {
Dinfo: $p depends on $m ($value)
set ::dependent_nodes($p) {}
$p:Next=>$m+$value
$p:V=>$p:Next
@ $p:Next = [expr [@ $m:Next]+$init_value]
@ $p:V = [expr [@ $m:Next]+$init value]
} elseif {[info exists ::dependent_nodes($p)]1} {
Dinfo: $m depends on $p ($value)
set ::dependent_nodes($m) {}
$m:Next=>$p+$value
$m:V=>$m:Next
@ $m:Next = [expr [@ $p:Next]-$init_value]

@ $m:V = [expr [@ $p:Next]-$init_value]

array set ::all resistors {}

set ::all nodes {}

356

proc add_resistor {name m p value} {
add_node $m $p
foreach node [list $m $p] {
if {![info exists ::mna_equations($node)]} {

set ::mna_equations($node)

if {![info exists ::all_resistors($m,$p)1} {
set ::all resistors($m,$p) $value
} else {

set ::all _resistors($m,$p) [expr

$value*$::all resistors($m,$p)/($value+$::all resistors($m,$p))]

array set ::mna_mapping {}
proc mna_map {node} {
if {[info exists ::mna_mapping($node)]} {

return [mna_map $::mna_mapping($node)]

return $node

default ::opt(eps) le-4

set ::epsilon $::opt(eps)

proc Vdiff {vl v2} {

if {$v2==0} {

357

}

return $vi1

}

if {$v2=="0:V"} {

return @$v1

}

if {$v2=="\{0:V\}"} {

return @$v1

}
if {$v1==0} {

return "(-@$v2)"
}

if {$vi=="0:V"} {

return "(-@$v2)"

}

if {$vi=="\{0:V\}"} {

return "(-@$v2)"

}

if {$vi==$v2} {

return ©

}

return "(@$v1-@$v2)"

proc add_mna {i j element} {

if {$i=="0"} return

if {$j=="0"} return

358

}

set i [1lsearch $::independent_nodes $i]

set j [1lsearch $::independent_nodes $3j]

default ::MNA($i,%7)

default ::MNA(dim) ©

if {$::MNA(dim)<=$i} {
set ::MNA(dim) $i
incr ::MNA(dim)

}

if {$::MNA(dim)<=$7} {
set ::MNA(dim) $j
incr ::MNA(dim)

}

append ::MNA($i,%]j) $element

regsub {"\++} $::MNA($i,%$7) {} ::MNA($i,%$7)

regsub {"\+\-} $::MNA($i,%$7)

regsub {"\-\+} $::MNA($1,%7)

proc tmp_sort {t1 t2} {

regsub tmp $t1 {} i1l

regsub tmp $t2 {} i2

if {int($i1)>int($i2)} {

return 1

}

return 0

{-} ::MNA($i,%$7)

{-} ::MNA($i,%7)

359

proc add_node {args} {

foreach m $args {

ladd ::all_nodes $m

if {![@ $m:V ?]} {

@ $m:vV = 0

set ::circuit_components {}

proc add_transistor {name d g s b type args} {
lappend ::all_transistors $name
add_node $d $g $s $b
set ::transistors($name,connectivity) trivial
if {$d==9g} {

set ::transistors($name,connectivity) diode

foreach field {d g s b type} {

set ::transistors($name,$field) [set $field]

foreach param $args {
lassign [split $param =] field value

set ::transistors($name,$field) $value

set class [lindex [split $name _] 0]

foreach field {L W} {

360

if {![info exists ::transistors($name,$field)]} {
set ::transistors($name,$field) size:$field$class
@ size:$field$class = 3.6e-8
} elseif {[regexp {"\((.*)\)$} $::transistors($name,$field) -> guide]} {
set ::transistors($name,$field) size:$field$class
@ size:$field$class = $guide

} else {

default ::opt(iref) 50e-6
source $::env(RAMSPICE)/Etc/Topologies/$::opt(topology).gsp

@ param/unique = ©

foreach {p unit formula step_factor} {
Adc dB 20*loglo(abs(@)) le-16
CMRR dB 20*logle(abs(@)) le-13
PSRR dB 20*1logle(abs(@)) -le-11
Rout Ohm @ -1e-19
BW Hz @ 7e-23
PM deg @ 1
Cin F@ -1e-15
ts sec @ -le-6

Nt VA2/Hz @ -1e-9

361

NF VA2/Hz @ -le-14
TotalNoise V @ -le-14
fc Hz @ -1e-17
Vos V @ -le-6
Area m"2 @ -le-12
Power W @ -1le-7
IRt
@ /property/$p = ©
@ /property/$p/unit = string $unit
@ /property/$p/formula = string $formula
@ /property/$p/step_factor = $step_factor
if {$step_factor<o} {
lappend pareto_properties -$p
} else {

lappend pareto_properties $p

@ /size foreach_child s {

@ /property/$p/$s = ©

.compile_circuit
if {[file exists $::env(RAMSPICE)/Etc/Templates/$::opt(topology)/models_$::opt(tech).db]} {

exit

Prepare some defaults in the skeleton db file

362

set pareto_properties {}

set pareto_sizes {}

@ size foreach_child s {
@ size/$s = le-6

lappend pareto_sizes $s

@ param foreach_child p {
if {[regexp {*i["n]} $p] } {
@ param/$p = 10e-6

} elseif {[string match r* $p]} {

@ param/$p = 1e9
} else {
@ param/$p = [expr $::opt(topv)/2]

foreach node $::all nodes {

@ $node/V = [expr $::opt(topv)/2]

@ vdd:V = $::opt(topv)

@ param/vdd = $::opt(topv)
@pl=20

@p2=20

@ op_iterations = 10

@ /pareto(([join $pareto_sizes ,]|[join $pareto_properties ,])) !

363

@ / save $::env(RAMSPICE)/Etc/Templates/$: :opt(topology)/models_$::opt(tech).db

exit

#\

exec $RAMSPICE/ramspice $0 $argv

HHHHH R

Topology compiler

HHHHHH R R R
proc .param {name = value {min {}} {max {}}} {
if {[catch {set evaluated_value [expr $value]}]} {
@ param/$name = $value
} else {

@ param/$name = $evaluated_value

if {$min!={}} {

@ param/$name/min = $min

if {$max!={}} {

@ param/$name/max = $max

proc .size {name = value {min {}} {max {}} {step {}} {dependence {}}} {

364

if {[catch {set evaluated_value [expr $value]l}]} {

@ size/$name = $value

} else {

@ size/$name = $evaluated_value
foreach field {min max step dependence} {
if {[catch {set evaluated_value [expr [set $field]]1}]1} {
set ::sizing_code($name,$field) [set $field]
} else {
set ::sizing code($name,$field) @size:$name:$field

@ size:$name:$field = $evaluated_value

default ::sizers_list {}

lappend ::sizers_list $name

proc .property {name args} {
default ::DERMODE first
Info: PROPERTY "$name=$args"
set original_der_mode $::DERMODE
set ::DERMODE first
array set opt {}
set current_switch arguments

foreach arg $args {

365

if {[regexp {~"\-(\S+)$} %arg -> switch]} {
set current_switch $switch
default opt($current_switch) {}

continue

lappend opt($current_switch) $arg

default opt(to_display) @

default opt(from_display) @

default opt(unit) {}

default opt(more) better

default opt(denom) {}

@ property/$name/denom = string $opt(denom)

if {![info exists opt(expression)]} {
Error: property requires a -expression switch

exit

set opt(expression) [flat_expression $opt(expression)]
foreach field [array names opt] {

set ::properties($name,$field) $opt($field)

@ property/$name =
property:$name=>$opt(expression)
switch $opt(more) {

better {@ property/$name/op = string +}

366

worse {@ property/$name/op = string -}

default {

Error: A property $name can be either '-more better' or '-more worse'.

exit

set ::DERMODE $original_der_mode

proc .dependence {args} {

regsub -all {\s} %args {} expr

lassign [split $expr =] net dep

set ::DESIGN_DEPENDENCES(%$net) $dep

proc .spec {name op value} {

if {![info exists ::properties($name,expression)]} {

Error: $name is not a defined property you can use in a spec. Start with: .property

$name -expression <expression>

exit

Info: Examining $name $op $value w.r.t. previous specifications

set useful_op

foreach previous_entry [array names ::specification $name,*] {

set previous op [lindex [split $previous entry ,] 1]

switch $op {

367

"=
switch $previous _op {
"=
if {$::specification($previous_entry)!=$value} {

Error: Conflicting specification! $name cannot be both $value and

$::specification($previous_entry)

exit

||<|| {

if {$::specification($previous_entry)<$value} {

Error: Conflicting specification! $name cannot be both

$value and less than $::specification($previous entry)

exit

array unset ::specification $previous_entry

Il>ll {

if {$::specification($previous_entry)>$value} {

Error: Conflicting specification! $name cannot be both $value and greater than

$::specification($previous_entry)

exit

array unset ::specification $previous_entry

368

nem g
switch $previous op {
"=t
if {$::specification($previous_entry)>$value} {

Error: Conflicting specification! $name cannot be less than

$value and equal to $::specification($previous_entry)

exit

set useful_op ©

}
nem g
if {$::specification($previous_entry)<$value} {
set useful_op ©
} else {
array unset ::specification $previous_entry
}
}
e g

if {$::specification($previous_entry)>$value} {

Error: Conflicting specification! $name cannot be less than $value and greater than

$::specification($previous_entry)

exit

369

||>|| {

switch $previous op {

n_mn {

if {$::specification($previous_entry)<$value} {

Error: Conflicting specification! $name cannot be greater

than $value and equal to $::specification($previous_entry)

exit

set useful_op ©

}
e g
if {$::specification($previous_entry)>$value} {
set useful_op ©
} else {
array unset ::specification $previous_entry
}
}
nen g

if {$::specification($previous_entry)<$value} {

Error: Conflicting specification! $name cannot be greater than $value and less than

$::specification($previous_entry)

exit

370

if {$useful_op} {
set ::specification($name,$op) $value
} else {

Warning: $name $op $value is not a useful spec

proc s2iW {expr varReal varImag {top 1}} {

upvar $varReal Real

upvar $varImag Imag

if {$top} {

while {[regexp {[\-\+][\-\+1} $expr]l} {

regsub -all {\-\+} $expr {-} expr
regsub -all {\+\-} $expr {-} expr
regsub -all {\-\-} $expr {+} expr

regsub -all {\++} $expr {+} expr

set expr [polish $expr]
while {[llength $expr]==1} {

set expr [lindex $expr 0]

if {[llength $expr]l==1} {

371

if {$expr=="@s"} {

set Real ©

set Imag W

return

set Real $expr

set Imag ©

return

set op [lindex $expr @]

set L [lindex $expr 1]

set R [lindex $expr 2]

s2iW $L Lr Li ©

s2iW $R Rr Ri @

switch $op {

set Real [simple-

set Imag [simple-

set Real [simple+

set Imag [simple+

set Real [simple-

$Lr $Rr]

$Li $Ri]

$Lr $Rr]

$Li $Ri]

[simple* $Lr $Rr] [simple* $Li $Ri]]

372

set Imag [simple+ [simple* $Lr $Ri] [simple* $Li $Rr]]

}

default {
Error: Operator $op not supported!
exit

}

}

while {[regexp {[\-\+][\-\+]} $Reall} {
regsub -all {\-\+} $Real {-} Real
regsub -all {\+\-} $Real {-} Real
regsub -all {\-\-} $Real {+} Real
regsub -all {\++} $Real {+} Real

}

while {[regexp {[\-\+][\-\+1} $Imag]l} {
regsub -all {\-\+} $Imag {-} Imag
regsub -all {\+\-} $Imag {-} Imag
regsub -all {\-\-} $Imag {+} Imag

regsub -all {\++} $Imag {+} Imag

return
}
proc .prep_mna {mode} {
array unset ::MNA
set idc_orig [array get ::idc]

set vdc_orig [array get ::vdc]

373

set ::independent_nodes {}
foreach node [lsort $::all nodes] {
skip {$node==

lappend ::independent_nodes $node

set dim [llength $::independent_nodes]
array set ::MNA [list dim $dim]
Add resistors
foreach res_nodes [array names ::all_resistors] {
lassign [split $res nodes ,] m p
foreach node [list $m $p] {
if {[info exists ::vdc($node)]} {
set V($node) $::vdc($node)
} else {

set V($node) $node:V

if {[catch {set G [expr 1.0/$::all_resistors($res_nodes)]}1} {
set ::G_equations(${m}_${p}) /@%::all_resistors($res_nodes)
set G Gds_${m}_${p}

set ::sensitivity(Gds_${m}_${p},$::all _resistors($res_nodes))

/($::all_resistors($res_nodes)*$::all_resistors($res_nodes))

374

Info: Adding Resistor! m=$m p=%p

add_mna $m $m $G

add_mna $p $p $G

add_mna $p $m -$G

add_mna $m $p -$G

array unset ::Ids_equations

#Add transistors

foreach name $::all_transistors {

foreach field {type L W d g s b} {

set $field $::transistors($name,$field)

foreach node_name {d g s b} {

set node [set $node name]

if {[info exists ::vdc($node)]} {

set V$node_name $::vdc($node)

} else {

set V$node_name $node:V

@ $node:V = [expr $::opt(topv)]

if {I[@ $node:V ?]} {

@ $node:V = $::opt(topv)

if {![@ $node:Next ?]1} {

@ $node:Next = $::opt(topv)

375

add_mna_entry $s $d "Gds_$name"
set ::transistors($name,Vgs) [Vdiff $vg $Vs]
@ Gds_$name =

add_mna $s $s "+@$name:go"

add_mna $s $d "-@$name:go"

add_mna $d $s "-@$name:go"

add_mna $d $d "+@$name:go"

default ::idc($d,$s)

append ::idc($d,$s) "-@$name:Ideq”
add_mna $s $s "+@$name:gm"

add_mna $s $g "-@$name:gm"

add_mna $d $s "-@$name:gm"

add_mna $d $g "+@$name:gm"

if {$type=="nch"} {

set ::Ids_equations($name)
"gamma_gcc_interpolate_4(@:1look_up_tables:$type:Ids:$::opt(process):LUT,[Vdiff $vg
$Vs], [Vdiff $vd $Vs],[Vdiff $Vb $Vs],@$L)*@IW/@$L-@Pname:gm*[Vdiff $vg $Vs]-@$name:go*[Vdiff
$vd $vs]"

} else {

set ::Ids_equations($name) "-
gamma_gcc_interpolate_4(@:look_up_tables:$type:Ids:$::opt(process):LUT,[Vdiff $vg $Vs], [Vdiff
$vd $Vs], [Vdiff $Vb $Vs],@$L)*@$W/@$L-@$name:gm*[Vdiff $vg $Vs]-@$name:go*[Vdiff $vd $vs]"

376

set ::Nt_equations($name)
"gamma_gcc_interpolateg 4(@:look_up_tables:$type:thermal_noise:ss:LUT, [Vdiff $Vg $Vs],[Vdiff
$vd $Vs],[Vdiff $Vb
$Vs],@$L, @$name:dNt_dvgs, @$name:dNt_dvds, @%name:dNt_dvbs, @$name:dNt_dl)"

set ::Nf_equations($name)
"gamma_gcc_interpolateg 4(@:look_up_tables:$type:flicker_noise:ss:LUT, [Vdiff $Vg $Vs],[Vdiff
$vd $Vs],[Vdiff $Vb
$Vs],@$L, @$name:dNf_dvgs, @$name:dNf_dvds, @%name:dNf_dvbs, @$name:dNf_dl)"

set ::gm_equations($name)
"gamma_gcc_interpolateg 4(@:look_up_tables:$type:gm:$::opt(process):LUT, [Vdiff $vg
$Vs], [Vdiff $vd $Vs],[Vdiff $Vb
$Vs],@$L, @$name:dgm_dvgs, @$name:dgm_dvds, @$name:dgm_dvbs, @$name:dgm_d1)*@$W/@$L"

set ::go_equations($name)
"@$W/@$L/gamma_gcc_interpolateg 4 (" @:look_up_tables:$type:ro:$::opt(process):LUT,[Vdiff $vg
$Vs], [Vdiff $vd $Vs],[Vdiff $Vb
$Vs],@$L, @$name:dro_dvgs, @$name:dro_dvds, @$name:dro_dvbs, @$name:dro_dl)"

@ $name:Ideq =

@ $name:go

@ $name:gm
set ::sensitivity($name:gm,$W) @%name:gm: W

@ $name:gm:$W =

$name: gm: $W=>@$name : gm/@$W

set ::sensitivity($name:gm,$L) @Fname:gm:$L

@ $name:gm:$L =
$name:gm:$L=>(@$W*@$name:dgm_d1-2*@$name:gm)/@$L
@ $name:go:$W =

set ::sensitivity($name:go,$W) @%name:go: W
$name:go: $W=>@$name: go/@$W

set ::sensitivity($name:go,$L) @%name:go:$L

377

@ $name:go:$L = ©

$name:go:$L=>(@%$name:dro_dl*@$L/@IW-@$L/@%name:go)*@$name: go*@$name: go

foreach pin {d g s b} {

set ac($pin) [set $pin]

if {$ac($pin)=="0"} {

set ac($pin) vdd

}
}
if {$mode=="ac" || $mode=="noise"} {
foreach from {g d s b} {
foreach to {d g s b} {
add_mna $ac($from) $ac($to) "+@$name:c$from$to*@s"
@ $name:c$from$to = ©
}
}
}

if {$mode!="zout"} {

foreach idc_pair [array names ::idc] {

lassign [split $idc_pair ,] m p

foreach node [list $m $p] sign {+ -} {

skip {$node==0}

set index [lsearch $::independent_nodes $node]

default ::MNA($index)

set element $::idc($idc_pair)

378

if {![regexp {~[2-9\-\+]} $element]} {

set element "@$element"

regsub -all {\-\-} "$sign$element” {+} entry
regsub -all {\-\+} $entry {-} entry

regsub {"\++} $entry {+} entry

append ::MNA($index) "$entry"

regsub {"\++} $::MNA($index) {3} ::MNA($index)

} else {
set index [lsearch $::independent_nodes $::output_net]
default ::MNA($index)
append ::MNA($index) +1

regsub {"\++} $::MNA($index) {} ::MNA($index)

set i $dim
set all_vdc [array names ::vdc]
foreach vdc_pair $all vdc {
lassign [split $vdc_pair ,]1 m p
default ::MNA($m,$p)
default ::MNA($p,$m)
foreach node [list $m $p] entry {-1 1} {
if {$nodel="0"} {

set j [1lsearch $::independent_nodes $node]

379

set ::MNA($],$1) $entry

set ::MNA($i,$j) $entry

}

if {$mode=="zout"} {
set ::MNA($i) ©

} elseif {![regexp {~[0-9\-\+]} $::vdc($vdc_pair)]} {
set ::MNA($i) @%::vdc($vdc_pair)

} else {

set ::MNA($i) $::vdc($vdc_pair)

incr i
}
for {set i 0} {$i<$dim} {incr i} {
if {![info exists ::MNA($i)]} {
lappend ::MNAy ©
} else {

lappend ::MNAy $::MNA($1)

}

foreach vdc_pair $all_vdc {
if {$mode=="zout"} {
lappend ::MNAy ©
} else {

lappend ::MNAy $::vdc($vdc_pair)

380

set dim [1llength $::MNAy]

set ::MNA(dim) $dim

foreach entry [array names ::MNA] {
set expr $::MNA($entry)
regsub -all {\+\-} $expr {-} expr
regsub -all {\-\+} $expr {-} expr
regsub -all {\-\-} $expr {+} expr
regsub -all {\+} $expr {+} expr

set ::MNA(%$entry) $expr

set old_y $::MNAy

set ::MNAy {}

foreach expr %$old y {
regsub -all {\+\-} $expr {-} expr
regsub -all {\-\+} $expr {-} expr
regsub -all {\-\-} $expr {+} expr
regsub -all {\+} $expr {+} expr

lappend ::MNAy $expr

if {$::C::target=="0P"} {
if {$mode=="dc"} {
set ::HTML [open $%::env(RAMSPICE)/tmp/$::opt(topology) MNA.html w]

puts $::HTML <html>

381

puts $::HTML <head>
puts $::HTML {<style type="text/css">
.matrix {

position: relative;

.matrix:before, .matrix:after {
content:

wn,
)

position: absolute;

top: ©;

border: 1px solid H
width: 6px;

height: %;

.matrix:before {
left: pX;

border-right: ©;

.matrix:after {
right: pX;

border-left: 0;

puts $::HTML </style>
puts $::HTML </head>

puts $::HTML <body>

382

puts $::HTML "<table class=\"matrix\" border=\"1\">"

for {set i 0} {$i<$dim} {incr i} {

puts $::HTML <tr>

puts $::HTML <td>

puts $::HTML

puts $::HTML [lindex $::independent_nodes $i]

puts $::HTML

puts $::HTML </td>

for {set j 0} {$j<$dim} {incr j} {

puts $::HTML <td>

if {[info exists ::MNA($i,$3)1} {

set td $::MNA($i,$7)

regsub -all @ $td {} td

regsub -all {:([a-zA-Z]+)} $td {_{\1}} td

puts $::HTML $td

} else {

puts $::HTML ©

puts $::HTML </td>

puts $::HTML <td>

set td [lindex $::MNAy $i]

regsub -all @ $td {} td

regsub -all param: $td {} td

383

regsub -all size: $td {} td

regsub -all {:([a-zA-Z]+)} $td {_{\1}} td

puts $::HTML $td

puts $::HTML </td>

puts $::HTML </tr>

puts $::HTML </table>

puts $::HTML <h2>

DET ::MNA

set td $::det_calc_result

regsub -all @ $td {} td

regsub -all param: $td {} td

regsub -all size: $td {} td

regsub -all {:([a-zA-Z]+)} $td {_{\1}} td

puts $::HTML "DET=$td
"

if {[set index_out [lsearch $%::independent nodes outp]]!=-1} {

DET ::MNA ::MNAy $index_out

} elseif {[set index_out [lsearch $%::independent nodes out]]!=-1} {

DET ::MNA ::MNAy $index_out

set td $::det_calc_result

regsub -all @ $td {} td

regsub -all param: $td {} td

regsub -all size: $td {} td

regsub -all {:([a-zA-Z]+)} $td {_{\1}} td

384

puts $::HTML "V_{OUT}=$td
"
puts $::HTML </h2>
if {$mode=="ac"} {

puts $::HTML </body></html>

close $::HTML

array unset ::vdc
array set ::vdc $vdc orig
array unset ::idc
array set ::idc $idc_orig
for {set i 0} {$i<$::MNA(dim)} {incr i} {
set all_zeroes 1
for {set j 0} {$j<$::MNA(dim)} {incr j} {
skip {![info exists ::MNA($i,$7)]1}
skip {$::MNA($1,$])==0}
set all_zeroes ©

break

skip {%$all zeroes==0}

Error: Node [lindex $::independent_nodes $i] is dangling. Add path to ground or

a voltage source.

exit

385

#tproc .circuit {name} {

set ::opt(topology) $name
#}
proc .compile_circuit {args} {

if {[file exists $::env(RAMSPICE)/Etc/Templates/$: :opt(topology)/bypass.ignore.c]}

file copy -force

$::env(RAMSPICE)/Etc/Templates/$: :opt(topology)/bypass.ignore.c /tmp/gamma_source.ignore.c
gcc $::opt(topology)

return

get_opts outp {} out {} outn {} in {} inn {} inp {} vdd {} name {}
default ::opt(debug)
set ::debug _mode $::opt(debug)
foreach possible_ports {out outp outn inn inp in vdd} {
skip {$opt($possible_ports)!={}}
if {[@ param:$possible ports 2]} {

set opt($possible_ports) @param:$possible_ports

skip {$opt($possible_ports)!={}}
if {[@ $possible_ports:V ?1} {

set opt($possible_ports) @$possible_ports:V

if {$opt(name)=={}} {

set opt(name) $::opt(topology)

386

if {$opt(outp)=={} && f$opt(outn)=={} && $opt(out)=={}} {

Error: Cannot compile a circuit without a defined output. Add -out <net> to

the .compile_circuit command

exit

if {$opt(inp)=={} && $opt(inn)=={} & $opt(in)=={}} {

Error: Cannot compile a circuit without a defined input. Add -in <net> to

the .compile_circuit command

exit

#iHHHHH# Abstract circuit properties
if {($opt(outp)!={} || $opt(out)!={}) && $opt(outn)=={}} {
if {$opt(outp)!={} && $opt(out)!={} && $opt(out)!=$opt(outp)} {
Error: Conflicting definitions of output net: $opt(out)!=$opt(outp)

exit

if {$opt(outp)!={}} {
set ::output_net $opt(outp)
} else {

set ::output_net $opt(out)

regsub {@} $::output_net {} ::output_net
regsub {:.*} $::output_net {} ::output_net
if {$opt(inp)!={} &% $opt(inn)!={} && $opt(in)!={}} {

Error: Conflicting definitions of input net.

387

exit

if {$opt(inp)!={} && fopt(inn)!={}} {

set expr 9.5*%([DERIVE $opt(inp) $::output_net]-[DERIVE $opt(inn)
$::output_net])

} elseif {$opt(in)!={}} {

set expr [DERIVE $opt(in) $::output_net]

Info: Adc expr=$expr ($::output_net)

.property Adc -expression $expr -to_display 20*logle(@) -from_display
pow(10,@/20) -unit dB

if {$opt(inp)!={} && $opt(inn)!={}} {

.property CMRR -expression
derive($: :output_net,$opt(inp))+derive($: :output_net,$opt(inn)) -to_display 20*logle(@) -
from_display pow(10,@/20) -unit dB

} elseif {$opt(in)!={}} {

.property CMRR -expression © -to_display 20*logle(@) -from_display
pow(10,@/20) -unit dB

if {![@ property/PSRR ?]} {
if {$opt(vdd)=={}} {

Error: Cannot define PSRR code for the circuit, because it has no -vdd

defined.

exit

.property PSRR -expression derive($::output_net,$opt(vdd)) -
to_display 20*1logle(@) -from_display pow(10,@/20) -unit dB

388

foreach p {Adc CMRR PSRR Rout BW ts Nt Nf fc Vos Area Power} {

@ property/$p =

regsub {:V} $::output_net {} output_expr
.prep_mna dc

set dim $::MNA(dim)

@ op_iterations = $::opt(op limit)

foreach metaC_file [glob -nocomplain $::env(RAMSPICE)/Gamma/metaC/*.tcl]

regsub {\.tcl$} [file tail $metaC file] {} target_name

if {[file exists
$::env(RAMSPICE)/Gamma/metaC/$: :opt(topology)/$target_name.tcl]} {

set metaC_file

$::env(RAMSPICE)/Gamma/metaC/$: :opt(topology)/$target_name.tcl

Info: Compiling $target_name from [file dirname $metaC_file]

code_target $target _name

source $metaC_file

gcc $opt(name)

HHHHHH A

389

gcc Interface

HHHHH R

namespace eval C {

variable 0 stdout

array set code {}

variable target OP

variable code_template {
#include <tcl.h>
#include <stdio.h>
#include <stdlib.h>
#include "ctree.h"
#include "look_up_table.h"

// Some global pointers to keep reference of the contexts this object

manipulates
GLOBAL_POINTERS_GO_HERE
GLOBAL_VARIABLES_GO_HERE
// The compiled function
float vos(float isize) {

VOS_FORMULA

static int tcl_gamma_import_cmd(ClientData clientData,Tcl_Interp *interp, int

objc, Tcl _Obj *const objv[]) {
LOCAL_BUFFER_INIT_GOES_HERE

return TCL_OK;

390

static int tcl_gamma_export_cmd(ClientData clientData,Tcl_Interp *interp, int

objc, Tcl _Obj *const objv[]) {
LOCAL_BUFFER_RETURN_GOES_HERE

return TCL_OK;

static int tcl_gamma_op_cmd(ClientData clientData,Tcl_Interp *interp, int objc,

Tcl_Obj *const objv[]) {
// Tcl ResetResult(interp);
OP_CODE_GOES_HERE

return TCL_OK;

// static int tcl_gamma_grad_cmd(ClientData clientData,Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]) {

// Tcl_ResetResult(interp);
// GRAD_CODE_GOES_HERE
// return TCL_OK;

// }

static int tcl_gamma_random_cmd(ClientData clientData,Tcl_Interp *interp, int

objc, Tcl_Obj *const objv[]) {
RANDOM_CODE_GOES_HERE

return TCL_OK;

static int tcl_gamma_breed_cmd(ClientData clientData,Tcl_Interp *interp, int

objc, Tcl_Obj *const objv[]) {
BREED_CODE_GOES_HERE

return TCL_OK;

391

static int tcl_gamma_random_breed_cmd(ClientData clientData,Tcl_Interp *interp,

int objc, Tcl_Obj *const objv[]) {
RANDOM_BREED_CODE_GOES_HERE

return TCL_OK;

static int tcl_gamma_random_breed_single_cmd(ClientData clientData,Tcl_Interp

*interp, int objc, Tcl_Obj *const objv[]) {
RANDOM_BREED_SINGLE_CODE_GOES_HERE

return TCL_OK;

// Initializing cTree references and registering the tcl_gamma_op_cmd command

as ::C::@name
int Gamma_Init(Tcl_Interp *interp) {
if (Tcl_InitStubs(interp, TCL_VERSION, 0) == NULL) {

return TCL_ERROR;

float *array_entry;
context *c;
GLOBAL_POINTER_INIT_GO HERE

Tcl_CreateObjCommand(interp, "::C::random", tcl_gamma_random_cmd, NULL,

NULL);

Tcl_CreateObjCommand(interp, "::C::random_breed",

tcl_gamma_random_breed_cmd, NULL, NULL);

Tcl_CreateObjCommand(interp, "::C::random_breed_single",

tcl_gamma_random_breed_single_cmd, NULL, NULL);

Tcl_CreateObjCommand(interp, "::C::breed", tcl_gamma_breed_cmd, NULL, NULL);

392

// Tcl _CreateObjCommand(interp, "::C::grad", tcl_gamma_grad_cmd, NULL,

NULL);

Tcl_CreateObjCommand(interp, "::C::op", tcl_gamma_op_cmd, NULL, NULL);

Tcl_CreateObjCommand(interp, "::C::import", tcl_gamma_import_cmd, NULL,
NULL);

Tcl _CreateObjCommand(interp, "::C::export", tcl_gamma_export_cmd, NULL,
NULL);

return TCL_OK;

proc ::C::count_braces {line minvar maxvar} {
upvar $minvar min
upvar $maxvar max
set max
set min
set count
for {set i 0} {$i < [string length $linel} {incr i} {
set c [string index $line $i]
if {$c=="\\"} {
incr i

continue

if {$c=="\{"} {

incr count

393

if {$c=="\}"} {

incr count -1

if {$count<$min} {

set min $count

if {$count>$max} {

set max $count

return $count

proc ::C::print_line {line} {
regsub -all {*\s*} ¢line {} line
if {[string length $line]==0} return
if {[regexp {"\S+:\s*$} $1line]} {
puts $::C::0 $line

return

set increment [::C::count_braces $1line min max]
if {$min<o} {
incr ::rank $min

puts -nonewline $::C::0 [string repeat $::rank]

incr ::rank [expr -$min]

394

} else {

puts -nonewline $::C::0 [string repeat " " $::rank]

incr ::rank $increment

puts $::C::0 $line

proc ::C::tcl_preprocessor {c_code} {
set bracket_rank
set ::rank
set lines [split %$c code \n]
for {set i 0} {$i<[1llength $lines]} {incr i ; set line [lindex $lines $i]} {
set line [lindex $lines $i]
if {[regexp {"\s*\/\/} $linel} {
::C::print_line $line

continue

Sometimes you can find Tcl code inside C. Don't pre-substitute variables in

those.
if {[regexp {"\s*Tcl_Eval} $linel} {
::C::print_line $line

continue

Identify a beginning of Tcl preprocessed block

if {[regexp {~\s*\#tcl\s+(.*)$} $line -> tcl _command] || [regexp {*\s*\#([A-
ZI\S+:.*)$} $line -> tcl_command]} {

set bracket_rank [regexp -all {\{} $line]

395

incr bracket_rank -[regexp -all {\}} $line]
set template_body $tcl_command
one-liners can be precessed here
while {($bracket_rank!=0)&&($i<[1llength $1lines])} {
incr 1
set line [lindex $lines $i]
append template_body \n
append template_body $line
incr bracket_rank [regexp -all {\{} $line]

incr bracket_rank -[regexp -all {\}} $line]

uplevel $template_body

continue

Substitute Tcl variables everywhere else.
while {[regexp {\$\{(:*[a-zA-Z0-9_1+)\}} $line -> varname] } {

if {[uplevel "info exists $varname"] && ![uplevel "array exists $varname"]}

regsub -all "\\\$\\\{$varname\\\}" $1line [uplevel "set $varname"] line
} else {

regsub -all "\\\$\\\{$varname\\\}" $1line "\$ $varname" line

while {[regexp {\$(:*[a-zA-Z0-9_]+)} $line -> varname] } {

if {[uplevel "info exists $varname"] && ![uplevel "array exists $varname"]}

396

regsub -all "\\\$$varname" $line [uplevel "set $varname"] line
} else {

regsub -all "\\\$$varname" $line "\$ $varname" line

regsub -all {\$ } $line {\$} line
print simplified and substituted lines here

::C::print_line $line

proc gcc {name {preprocess 1}} {
if {$preprocess} {

regsub -all @name $::C::code_template $name body
set global_pointers {}
set global_variables {}
set global_pointer_init {}
set local_buffer_init_goes_here {}
set local_buffer_return_goes_here {}

set used_var_names {}

397

set used_pointer_names {}
foreach target [array names ::C::code] {
Info: Post processing $target
set code $::C::code($target)
while {[regexp {@+([A-Za-z0-5_:]+)} $code -> context_string]} {
if {[info exists pointer_names($context string)]} {

regsub "&&@+$context_string" $code

“$var_names($context_string) code

regsub "&@+$context_string" $code $pointer names($context string)

code
regsub "@+$context_string" $code $var names($context string) code

continue

Info: converting $context_string
if {[regexp {~[0-9]} $context_string]l} {

regsub -all {[”~a-zA-Z_0-9]} CONST_$context_string _ var_name
} else {

regsub -all {[”~a-zA-Z_0-9]} $context_string _ var_name

regsub -all {[”*a-zA-Z_0-9]} P$context_string _ pointer_name
if {[1lsearch $used_var_names $var_name]!=-1} {

set 1 0

while {[lsearch $used_var_names var_namei]!=-1} {

incr i

set var_name $var name$i

398

lappend used_var_names $var_name

if {[1lsearch $used_pointer_names $pointer_name]!=-1} {
set i
while {[lsearch $used_pointer_names $pointer_name$i]!=-1} {
incr i
}

set pointer_name $pointer_name$i

lappend used_pointer_names $pointer name

append global_pointers "float *$pointer_name;\n"
append global variables "float $var_name;\n"

if {[regexp {(.*):PAT} $context string -> base]} {

append global_pointer_init "$pointer_name=(float

*)get_PAT(\"$base\");\n"
regsub "&@+$context_string" $code $pointer_name code
} elseif {[regexp {(.*):LUT} $context_string -> base]} {

append global_pointer_init "$pointer_name=(float

*)get_LUT(\"$base\");\n"
regsub "&@+$context_string" $code $pointer_name code
} else {

append global_pointer_init

"resolve_context(\"$context_string\", c, array_entry);\n"

append global_pointer_init

"c=create_context(\"$context_string\");\n"

append global_pointer_init "$pointer_name=(float *)(c-

>value.s);\n"

399

append local_buffer_init_goes_here "$var_name=*$pointer_name;\n"
append local_buffer_return_goes_here "*$pointer_name=$var_name;\n"
regsub "&@+$context_string" $code $pointer_name code

regsub "@+$context_string" $code $var name code

set pointer_names($context string) $pointer_name
set var_names($context_string) $var_name

incr i

regsub -all \& $code ° code

regsub ${target} CODE_GOES_HERE $body $code body

Info: converted $context_string

Info: Post

regsub

regsub

regsub

regsub

regsub

regsub

regsub

regsub

regsub

set ::C::0

puts $::C::

Processing is Done

VOS_FORMULA $body $::VOS_FORMULA body

GLOBAL_POINTERS_GO_HERE $body $global pointers body
GLOBAL_VARIABLES_GO_HERE $body $global_variables body
GLOBAL_POINTER_INIT_GO_HERE $body $global pointer init body
LOCAL_BUFFER_INIT_GOES_HERE $body $local_buffer_init_goes_here body
LOCAL_BUFFER_RETURN_GOES_HERE $body $local buffer return_goes here body
-all °_ $body {P_} body

-all ° $body {\&} body

-all {\&look_up} $body {Plook_up} body

[open /tmp/gamma_pre_processed.ignore.c w]

0 $body

400

close $::C::0
set ::C::0 [open /tmp/gamma_source.ignore.c w]
::C::tcl_preprocessor $body

close $::C::0

set find_lib_stub [glob -nocomplain /usr/*/libtclstub*]
if {$find _lib_stub=={}} {
Error: This system has no tclstub library and therefore cannot compile code on the fly.

exit

H##H#HHHHH#E Compilation

default ::binary [ginfo binary]

default ::target [ginfo target]

set build_path /tmp/${::binary}_build/preprocessed-${::target}

Info: Launching GCC

uplevel "exec gcc -03 [glob /tmp/${::binary}_ build/object_files-[ginfo target]/*.o]
-fPIC -shared -DUSE_TCL_STUBS -I$build_path -I$build_path/Gamma/Data -I$build_path/Gamma/LUT
-I$build_path/ngspice/root/maths/poly -I$build_path/ngspice/root/frontend -
I$build_path/ngspice/root/spicelib/devices -I$build_path/ngspice/root/xspice/icm/analog -
I/usr/include /tmp/gamma_source.ignore.c -L[file dirname [lindex $find_lib_stub ©]] -

ltclstub[info tclversion] -o /tmp/libGamma.so |& tee $::env(RAMSPICE)/compilation.log"
if {[file exists /tmp/libGamma.so]} {

Info: Shared Object was created for Gamma on [clock format [file mtime

/tmp/libGamma.so]]

if {![file exists $::env(RAMSPICE)/Etc/Templates]} {

401

file mkdir $::env(RAMSPICE)/Etc/Templates

if {![file exists $::env(RAMSPICE)/Etc/Templates/$name]} {

file mkdir $::env(RAMSPICE)/Etc/Templates/$name

file copy -force /tmp/libGamma.so $::env(RAMSPICE)/Etc/Templates/$name

file copy -force /tmp/gamma_source.ignore.c

$::env(RAMSPICE)/Etc/Templates/$name/

load $::env(RAMSPICE)/Etc/Templates/$name/libGamma.so

proc code_target {name} {

set ::C::target $name

proc *c {args} {
Info: CCC $args
set body $args
if {[llength $body]!=1} {
append ::C::code($::C::target) "$body;\n"
} else {
append ::C::code($::C::target) [lindex $body 0]

append ::C::code($::C::target) "\n"

return

402

C. Usage Model

st

Technology: TSMC 40nm |

ﬁaﬁ Analyze Report {E} Chat @ Configure @ Help @3

10polugy:|NMOS Differential Pair with

Adc CMRR PSRR
Spec:

Output Stage \

SXYZEGRXYZ@DXYZ@DXY 2@ DY 2@ BXYz@ VXY Zz@BXY2@ Bxyz@ Dxyz@ Oxyz@ & x v z @Oxvz@ Dxvz@ @xvz@| x¥ Ky x¥ XY Xy
Vos Rout BW PM Cin ts Nt NF TotalNoise fc Area Power Lp Wp Ln Wn Ls
1.2mV |75.1KQ 6.8MHz [71.6deg 4.2pF 220.8RseE77 opv’/HzO05,00V/HZ 165.10v° 30.4KHZ 6 0k (um) 146.7uW (2. 5um 32.5Um 6.6um 75.1um 9. 2u

X| 8 |59.3dB) 36.7d8 6l.8d8

X.| 17 | 63.7dB| 40.4dB 66.3d8 | 817

V 248.8K0/621.0KkHz/78.5deg 1.3pF | 1.0use 53.2pVY/Hz7S3. 30V Hz 38.3uv? IAKHE1.6K(um)? 44.3uW

BW [Hz] vs Adc [dB]

.2 S N T— —— —

30M]

451 S . - | P

20M %o M N

..

56 58 60 62 64 66
Adc [dB]

[4.9um B4.7um 7.5um 22.2um 5.0u

Figure C-1 Screen Capture of tHepowered Website

C.1. Use the Tool as a Design Aid.

The designer navigates the main page (Figure C-1) in the following order:

1. After login, select a target manufacturing technology and a topology to investigate.

2. A default front appears, with no specific requirements.

403

3. The designer can now enter a spec by clicking on the gear icon (Figure C-2) of each

relevant performance property and filling in a pop-up entry line.

Changing the graph panel’s axes designation is done by toggling the XYZ markers from
gray to black. When the Z axisselected it is shown in form of “heat” false color (Figure C-4.
Otherwise, a Pareto front is sho{igure C-3 A map- either 2D graph showing the
corresponding Pareto front or a 2D heat-map showing performance dependence on selected
parameters. Each marker corresponds to a circuit in the PAT. Intuitively, red ones show circuits
that failed the spec and green ones that met. The markers are sensitive to mouse hover and click
events. The designer can toggle each circuit in and out of the table pane by clicking on the

marker. Chosen circuits are encircled and numbered to match with their line at the table.

Circuits tableg(Figure C-2 — Each line in the table corresponds to a circuit the designer
found interesting and selected from the graph. Circuits can be removed by clicking on the X
button. One of the table circuits can become the pivot, on which heat-maps are centered and the

schematic updates, by clicking on the magnifyingsgllas? on the right.
elec

Pop-up spec window Mark as Relevant to Optimization
as/Map Axi

SXY IS
Adc
~ Spec: =20dB
ES 1 1.090dB -5.926dB g
X 14 T 27 TdE -5.544d8
28 AN 8.882dB _g.882d8
X 18 20.275d8 -53.542dB

Figure C-2 Zoom-n on leftmost part of the circuits’ table

404

Schematic (Figure C-3) - showing the topology and used to display data on the pivot
circuit by hovering the mouse above nets and components. Hover events can display DC values

and component sizes.

319.763mV

-
e—COc
[
T

Q/ .ET : U —o g

Figure C-3 Output DC level shown on Mouse-Hover Event

A search via heat-map produces variations on the pivot circuit. The field of the heat-map
is dotted with red and green cursors (Figure C-4), for spec-failing and meeting circuits,

respectively. A designer may want to switch focus to one of the other circuits by clicking on its

405

marker. This adds a new line to the circuits’ table, without eliminating the previous pivot circuit.

Nt [Hz] vs Ln [m] vs Wn [m]

R P e e Al

- gt

by iy

Figure C-4 Heat-map of Thermal Noise vs transistor size

Out of the circuits that were added to the table, any next circuit can be selected as pivot

and navigation can continue via further heat-mapping performance vs. selected sizes.

Download - After all navigation through the solution space yields a circuit that meets the
spec, a designer clicks on the cloud icon on the ldefecorner of the schematic pane. A “save
as” pop-up appears and the system generates a ready to simulate SPICE netlist that can be further

tweaked by external tools in a sign-off accuracy. The website generates the netlist, complete with

406

the transistor models and stimulus needed to run a simulation via NGSPICE and its commercial
equivalent. The exact geometry bin, channel dimensions and finger multiplier are included with

the netlist file.

407

