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ABSTRACT 
 
 
 

THE EVALUATION OF THE POTENTIAL FOR CHLORINE DIOXIDE TO PRIME PLANT 

DEFENSES FOR A SYSTEMIC ACQUIRED RESISTANCE IN LIGHT RED KIDNEY BEAN 

PLANTS INOCULATED WITH COMMON BEAN BACTERIAL WILT 

 
 

 The induction of plant defenses is a great preventative tool for greenhouse and nursery 

managers to protect their plants. By priming plants with abiotic or biotic measures, managers can 

induce systemic acquired resistance (SAR) in plants to upregulate the ability to resist a pathogen. 

The accumulation of salicylic acid (SA) has been well researched and supported to be necessary 

for inducing SAR against pathogens. In previous research it has been shown that the functional 

analog of SA, acibenzolar S-methyl, has induced SAR and reduced disease severity.  

Acibenzolar S-methyl induces SAR when applied to plant foliage, but it does not have any 

antimicrobial activity to kill any pathogens on the foliage at the time of treatment. In previous 

research ozone has been successful at inducing SAR to reduce disease severity. Applying ozone 

as a treatment for greenhouse and nursery managers is not practical or safe since it is hazardous 

to the respiratory system. Chlorine dioxide is a powerful oxidant disinfectant that can be applied 

as a foliar spray to kill harmful pathogens, but it has not been reported whether it could induce 

plant defenses. 

  This research study investigated whether a commercial formulation of chlorine dioxide 

[Electro-biocide® (E-B)] could be used as a foliar application to plants to induce SAR. E-B is a 

proprietary blend of ClO2, pH buffer, and a sarcosinate surfactant. There were a total of four 

spray treatments that were evaluated on plants inoculated with a bacterial wilt and on a set of 
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non-inoculated plants. The light red kidney bean plants were treated with E-B at 200 mg l-1 ClO2, 

E-B 400 mg l-1 ClO2, acibenzolar S-methyl (ActigardTM) and a water control to evaluate disease 

resistance when inoculated with Curtobacterium flaccumfaciens pv. flaccumfaciens. Treated 

plants were evaluated for both inoculated plants and non-inoculated plants. SA concentrations 

were measured five days after treatment and one day after inoculation. Leaf samples were 

collected to measure SA every three hours over the course of the day starting at 0700 hours and 

ending 2200 hours.  A second SA measurement was taken at the end of the study 61 days after 

planting (44 days after treatment) to observe if there were any changes in SA level. Chlorophyll 

fluorescence measurements were taken to observe stress in response to the spray treatments and 

disease infection. Carbon dioxide (CO2) gas exchange measurements were taken to observe the 

vigor or decline within the spray treatments and infection status. At the end of the study plants 

were harvested for foliage, pod, stem dry weight, and leaf area. 

  The first photosynthesis measurements on non-inoculated plants E-B 200 mg ClO2 l-1 and 

400 mg l-1 ClO2 treatments declined, but recovered to control levels one week later. Inoculated 

plants treated with E-B and ActigardTM showed either the same or increased photosynthesis rates 

when compared to water. Chlorophyll fluorescence measurements indicated there was no stress 

due to the spray treatments. Five days after spray treatments the SA measurements showed that 

both concentrations of E-B resulted in an increase in SA accumulation. E-B 400 mg l-1 ClO2 

caused the greatest SA response. E-B 400 mg l-1 ClO2 treated plant’s had a 15 fold increase in 

SA concentrations at its highest peak when compared to water. E-B 200 mg l-1 ClO2 had the 

second highest SA concentrations. It had a 5.9 fold increase at its highest peak when compared to 

water control plants. ActigardTM treated plants did not result in different SA concentrations from 

the water control plants. The SA concentrations levels at 44 days after treatment for all plants 
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that were not inoculated returned to normal levels. SA levels for inoculated plants and all spray 

treatments continued to rise for the duration of the study.  There were no differences in biomass 

measurements between spray treatments. All non-inoculated plants had a greater biomass 

measurements when compared to all the inoculated plants. 

 These results conclude that E-B 200 mg l-1 ClO2 and E-B 400 mg l-1 ClO2 were able to 

prime plant defenses for SAR response. The rise in SA concentrations confirm that E-B was able 

to interact within the leaf as an elicitor for SAR. Unfortunately the biomass measurements for 

inoculated E-B treated plants did not show any difference from inoculated control plants. This 

indicates that the E-B treatment was not able to reduce the disease severity with CFF. Actigard 

(acibenzolar-S methyl) has been successful with inducing SAR and reducing disease severity in 

other studies. In this study Actigard was also unsuccessful in reducing disease severity. This 

indicates that CFF may have had too great of pressure for the inoculated plants to overcome. E-B 

should be investigated further with other pathogens.  



v 

 

ACKNOWLEDGEMENTS 
 
 
 

I would like to extend my gratitude to my advisor Dr. Steven Newman and my co-advisor 

Dr. Craig Ramsey for giving me guidance, and amazing opportunities to learn throughout this 

journey. Also, thank you for all the hard work, resources and time you contributed in order to 

complete this research study and thesis. I would also like to thank Dr. Marinus Pilon and Dr. 

Yaling Qian for joining my graduate committee, offering their expert knowledge, and time to 

complete this research and thesis. Thank you to United States Department of Agriculture for 

funding ‘Assessment of disinfectants for control of Phytophthora ramorum’, which made this 

research project possible. Thank you to Paul Freebury, Ned Jones, Debra Newman and Russell 

Newman for all the long hard hours you worked in order to complete this study and make it the 

best as possible. I would also like thank Dr. Howard Schwartz and Kristen Otto in the 

Bioagricultural Sciences and Pest Management Department at Colorado State University for 

your generous knowledge, training, lab use, and donation of Curtobacterium flaccumfaciens pv. 

flaccumfaciens inoculum. Thank you to Dr. Greg Dooley and his staff at Colorado State 

University Analytical Toxicology Laboratory for all your help, training, and guidance. Thank 

you to Tammy Brenner at the ARS greenhouse for all your help in managing the greenhouse 

conditions needed for this study. Thank you Strategic-Resource Optimization for the generous 

donation of Electro-Biocide® for evaluation in this research project. Thank you to Catherine 

Stewart and Robin Montenieri at the United States Department of Agriculture- Agriculture 

Research Service for your help and the use of your lyophilizer which saved us a great deal of 

time. I would also like to thank my boyfriend Collin Fisher and all of my family for all your 

love, always being there for me, and the endless amount of support for all my adventures. 



vi 

 

TABLE OF CONTENTS 
 
 
 

ABSTRACT .................................................................................................................................... ii 
ACKNOWLEDGEMENTS .............................................................................................................v 
LIST OF TABLES ....................................................................................................................... viii 
LIST OF FIGURES .........................................................................................................................x 
LIST OF ACRONYMS   ............................................................................................................... xi 
1. CHAPTER 1 LITERATURE REVIEW ......................................................................................1 
1.1 Introduction ................................................................................................................................1 
            1.1.1 Preliminary Research for E-B and Light Red Kidney Beans .....................................3 
1.2 Common Bacterial Wilt and Beans............................................................................................5 
1.3 Measuring Photosynthesis and Disease .....................................................................................6 
1.4 Measuring Chlorophyll Fluorescence and Disease ....................................................................8 
1.5 Systemic Acquired Resistance .................................................................................................10 
1.6 Reactive Oxygen Species and Plant Defenses .........................................................................14 
1.7 Electro-Biocide®/ Chlorine dioxide ........................................................................................15 
2. CHAPTER 2- MATERIALS AND METHODS .......................................................................18 
2.1 Study Design ............................................................................................................................18 
2.2 Plant Material ...........................................................................................................................18 
2.3 Common Bean Bacterial Wilt Inoculation Methods ................................................................19 
2.4 Biocide Spray Treatments ........................................................................................................20 
2.5 Salicylic Acid Methods ............................................................................................................21 
            2.5.1 Salicylic Acid Sample Collection .............................................................................21 
            2.5.2 Salicylic Acid Sample Extraction .............................................................................22 
            2.5.3 Salicylic Acid LC-MS/MS Analysis .........................................................................23 
2.6 Gas Exchange Measurement ....................................................................................................24 
            2.6.1 LI-6400 XT Settings for Photosynthesis ..................................................................25 
2.7 Chlorophyll Fluorescence Measurements ................................................................................25 
2.8 Biomass Measurements ...........................................................................................................26 
2.9 Polymerase Chain Reaction (PCR) DNA Methods .................................................................26 
2.10 Statistical Analyses ................................................................................................................27 
3. CHAPTER 3 RESULTS AND DISCUSSION ..........................................................................30 
3.1 Salicylic Acid First Harvest .....................................................................................................30 

3.1.1 Free Salicylic Acid ....................................................................................................30 
3.1.2 Conjugate Salicylic Acid ..........................................................................................33 

3.2 Salicylic Acid Second Harvest.................................................................................................36 
3.3 Salicylic Acid Conclusions ......................................................................................................39 
3.4 Photosynthesis Measurements .................................................................................................41 

3.4.1 Photosynthesis Non-inoculated Plants ......................................................................43 
3.4.2 Photosynthesis Inoculated Plants ..............................................................................46 

3.5 Instantaneous Water Use Efficiency ........................................................................................47 
3.5.1 Non-inoculated Plants Water Use Efficiency ...........................................................50 
3.5.2 Inoculated Plants Water Use Efficiency ...................................................................52 

3.6 Stomatal Conductance .............................................................................................................55 



vii 

 

3.6.1 Non-inoculated Stomatal Conductance Measurements ............................................58 
3.6.2 Inoculated Stomatal Conductance Measurements ....................................................59 

3.7 Transpiration Measurements ....................................................................................................61 
3.7.1 Non-inoculated Plant’s Transpiration Rates .............................................................63 
3.7.2 Inoculated Plant’s Transpiration Rates .....................................................................65 

3.8 Chlorophyll Fluorescence Measurements ................................................................................67 
            3.8.1 Non-inoculated Chlorophyll Fluorescence Measurements .......................................69 
            3.8.2 Inoculated Chlorophyll Fluorescence Measurements ...............................................71 
3.9 Gas Exchange and Chlorophyll Fluorescence Conclusions.....................................................73 
3.10 Biomass ..................................................................................................................................76 
3.11 Biomass Conclusions .............................................................................................................82 
3.12 PCR and CFF DNA ...............................................................................................................83 
3.13 Recommendations for Future Studies ....................................................................................84 
4. CHAPTER 4 SUMMARY .........................................................................................................86 
REFERENCES CITED ..................................................................................................................90 
APPENDIX I: SALICYLIC ACID FIT MODEL ANALYSES....................................................95 
APPENDIX II: GAS EXCHANGE FIT MODEL ANALYSES ...................................................98 
APPENDIX III: BIOMASS FIT MODEL ANALYSES .............................................................105 
  



viii 

 

LIST OF TABLES  
 
 
 

Table 1: List of Biocide Treatments  .............................................................................................18 
Table 2: First Harvest for Free Salicylic Acid ...............................................................................32 
Table 3: First Harvest for Conjugate Salicylic Acid ......................................................................35 
Table 4: Second Harvest for Free Salicylic Acid...........................................................................37 
Table 5: Second Harvest for Conjugate Salicylic Acid .................................................................39 
Table 6: Photosynthesis: Biocide Type and CFF Inoculation Interaction .....................................43 
Table 7: Photosynthesis: Days after Treatment and Biocide Type Interaction .............................43 
Table 8: Non-inoculated Plant Photosynthesis ..............................................................................45 
Table 9: Inoculated Plant Photosynthesis ......................................................................................47 
Table 10: Water Use Efficiency: Days after Treatment and CFF Status interaction .....................49 
Table 11: Water Use Efficiency: Biocide Type and CFF Interaction ............................................50 
Table 12: Water Use Efficiency: Days after Treatment and Biocide Interaction ..........................50 
Table 13: Non-inoculated Water Use Efficiency ...........................................................................52 
Table 14: Inoculated Water Use Efficiency ...................................................................................54 
Table 15: Stomatal Conductance: Biocide and CFF Status Interaction .........................................57 
Table 16: Stomatal Conductance: Days after Treatment and Biocide Interaction.........................57 
Table 17: Non-inoculated Stomatal Conductance for Days after Treatment .................................59 
Table 18: Non-inoculated Stomatal Conductance for Biocide Treatment .....................................59 
Table 19: Inoculated Stomatal Conductance .................................................................................61 
Table 20: Transpiration: Days after Treatment and CFF Status Interaction ..................................62 
Table 21: Transpiration: Biocide and CFF Status Interaction .......................................................63 
Table 22: Transpiration: Days after Treatment and Biocide Interaction .......................................63 
Table 23: Non-inoculated Transpiration Rates ..............................................................................65 
Table 24: Inoculated Transpiration Rates ......................................................................................67 
Table 25: Chlorophyll Fluorescence: Days after Treatment and CFF Status Interaction ..............68 
Table 26: Chlorophyll Fluorescence: Days after Treatment and Biocide Interaction ...................69 
Table 27: Non-inoculated Chlorophyll Fluorescence  ...................................................................71 
Table 28: Inoculated Chlorophyll Fluorescence ............................................................................73 
Table 29: Total Dry Biomass Weight ............................................................................................77 
Table 30: Dry Foliage Weight .......................................................................................................78 
Table 31: Dry Pod Weight .............................................................................................................79 
Table 32: Dry Stem Weight ...........................................................................................................80 
Table 33: Total Leaf Area ..............................................................................................................81 
Table 34: First Free SA Harvest Summary of Fit ..........................................................................95 
Table 35: First Free SA Harvest Fixed Effect Test ........................................................................95 
Table 36: First Conjugate SA Harvest Summary of Fit .................................................................95 
Table 37: First Conjugate SA Harvest Fixed Effect Tests .............................................................96 
Table 38: Last Harvest Free SA Summary of Fit ..........................................................................96 
Table 39: Last Harvest Free SA Effect Tests .................................................................................96 
Table 40: Last Harvest Conjugate SA Summary of Fit .................................................................96 
Table 41: Last Harvest Conjugate SA Effect Tests .......................................................................97 
Table 42: Photosynthesis Summary of Fit .....................................................................................98 



ix 

 

Table 43: Photosynthesis Fixed Effect Tests .................................................................................98 
Table 44: Non-inoculated Photosynthesis Summary of Fit ...........................................................98 
Table 45: Non-inoculated Photosynthesis Fixed Effect Tests .......................................................98 
Table 46: Inoculated Photosynthesis Summary of Fit ...................................................................99 
Table 47: Inoculated Photosynthesis Fixed Effect Tests ...............................................................99 
Table 48: Water Use Efficiency Summary of Fit ..........................................................................99 
Table 49: Water Use Efficiency Fixed Effect Tests ......................................................................99 
Table 50: Non-inoculated WUE Summary of Fit ........................................................................100 
Table 51: Non-inoculated WUE Fixed Effect Tests ....................................................................100 
Table 52: Inoculated WUE Summary of Fit ................................................................................100 
Table 53: Inoculated WUE Fixed Effect Test ..............................................................................100 
Table 54: Stomatal Conductance Summary of Fit .......................................................................100 
Table 55: Stomatal Conductance Fixed Effect Tests ...................................................................101 
Table 56: Non-inoculated Stomatal Conductance Summary of Fit .............................................101 
Table 57: Non-inoculated Stomatal Conductance Fixed Effect Tests .........................................101 
Table 58: Inoculated Stomatal Conductance Summary of Fit .....................................................101 
Table 59: Inoculated Stomatal Conductance Fixed Effect Tests .................................................101 
Table 60: Transpiration Summary of Fit .....................................................................................102 
Table 61: Transpiration Fixed Effect Tests .................................................................................102 
Table 62: Non-inoculated Transpiration Summary of Fit ...........................................................102 
Table 63: Non-inoculated Transpiration Fixed Effect Tests........................................................102 
Table 64: Inoculated Transpiration Summary of Fit....................................................................103 
Table 65: Inoculated Transpiration Fixed Effect Tests ................................................................103 
Table 66: Chlorophyll Fluorescence Summary of Fit ..................................................................103 
Table 67: Chlorophyll Fluorescence Fixed Effect Tests ..............................................................103 
Table 68: Non-inoculated Chlorophyll Fluorescence Summary of Fit ........................................104 
Table 69: Non-inoculated Chlorophyll Fluorescence Fixed Effect Tests ....................................104 
Table 70: Inoculated Chlorophyll Fluorescence Summary of Fit ................................................104 
Table 71: Inoculated Chlorophyll Fluorescence Fixed Effect Tests ............................................104 
Table 72: Total above Ground Biomass Summary of Fit ............................................................105 
Table 73: Total above Ground Biomass Fixed Effect Tests ........................................................105 
Table 74: Dry Foliage Weight Summary of Fit ...........................................................................105 
Table 75: Dry Foliage Weight Fixed Effect Tests .......................................................................105 
Table 76: Leaf Water Content Summary of Fit ...........................................................................106 
Table 77: Leaf Water Content Fixed Effect Tests .......................................................................106 
Table 78: Dry Pod Weight Summary of Fit .................................................................................106 
Table 79: Dry Pod Weight Fixed Effect Tests .............................................................................106 
Table 80: Dry Stem Weight Summary of Fit ...............................................................................107 
Table 81: Dry Stem Weight Fixed Effect Tests ...........................................................................107 
Table 82: Total Leaf Area Summary of Fit .................................................................................107 
Table 83: Total Leaf Area Fixed Effect Tests .............................................................................107 
 
 
 

 
 



x 

 

LIST OF FIGURES 
 
 
 
Figure 1: Study Calendar for June .................................................................................................28 
Figure 2: Study Calendar for July ..................................................................................................29 
Figure 3: Mean Free Salicylic Acid versus Leaf Collection Time ................................................31 
Figure 4: Mean Conjugate Salicylic Acid versus Leaf Collection Time .......................................34 
Figure 5: Mean Free Salicylic Acid for Second Harvest ...............................................................37 
Figure 6: Mean Conjugate Salicylic Acid for Second Harvest ......................................................38 
Figure 7: Mean Photosynthesis versus Days after Treatment ........................................................42 
Figure 8: Non-inoculated Mean Photosynthesis versus Days after Treatment ..............................45 
Figure 9: Inoculated Mean Photosynthesis versus Days after Treatment ......................................46 
Figure 10: Mean Water Use Efficiency versus Days after Treatment ...........................................49 
Figure 11: Non-inoculated Mean Water Use Efficiency versus Days after Treatment .................51 
Figure 12: Inoculated Mean Water Use Efficiency versus Days after Treatment .........................53 
Figure 13: Mean Stomatal Conductance versus Days after Treatment ..........................................56 
Figure 14: Non-inoculated Mean Stomatal Conductance versus Days after Treatment ................58 
Figure 15: Inoculated Mean Stomatal Conductance versus Days after Treatment ........................60 
Figure 16: Mean Transpiration versus Days after Treatment ........................................................62 
Figure 17: Non-inoculated Mean Transpiration versus Days after Treatment ..............................64 
Figure 18: Inoculated Mean Transpiration versus Days after Treatment ......................................66 
Figure 19: Mean Chlorophyll Fluorescence versus Days after Treatment ....................................68 
Figure 20: Mean Inoculated Chlorophyll Fluorescence ................................................................70 
Figure 21: Mean Inoculated Chlorophyll Fluorescence.................................................................72 
Figure 22: Mean Total Oven Dry Biomass Weight .......................................................................77 
Figure 23: Mean Total Dry Foliage Weight ..................................................................................78 
Figure 24: Mean Oven Dry Pod Weight ........................................................................................79 
Figure 25:  Mean Oven Dry Stem Weight .....................................................................................80 
Figure 26: Mean Total Leaf Area ..................................................................................................81 
Figure 27: Mean CFF Relative Ranking versus Biocide Treatment ..............................................84 
 

 

 

 

 

 

 

 

 

 



xi 

 

LIST OF ACRONYMS 
 
 
 
ASM- acibenzolar-S-methyl 
CFF- Curtobacterium flaccumfaciens pv flaccumfaciens 
ClO2-Chlorine dioxide 
CO2- Carbon dioxide 
Conjugate SA- Conjugate salicylic acid 
DAT- Days after treatment 
E-B- Electro-Biocide® 
EPA- Environmental Protection Agency 
Fm- Maximum fluorescence 
Fo- Minimum fluorescence 
Fol- Fusarium oxysporum f. sp. lycopersici 
Free SA – Free salicylic acid 
Fv/Fm- Variable fluorescence; quantum yield for photochemistry 
GST1- Glutathione S-transferase 
HR- Hypersensitive response 
IPM- Integrated pest management 
IRGA- Infrared gas analyzer 
LC-MS/MS – Liquid chromatography tandem mass spectrometry 
Ml – Milliliter 
Mg- Milligram 
NBY- Nutrient broth yeast extract medium 
Ng – Nanogram 
PAL- Phenylalanine ammonia lyase 
PAR- Photosynthetically active radiation 
PCR- Polymerase chain reaction 
PSII – Photosystem II 
PR-1 – Pathogenesis related protein 
PSM- Pseudomonas syringae pv maculicola 

RH- Relative humidity 
RNA- Ribonucleic acid 
ROS- Reactive oxygen species 
SA- Salicylic acid 
SAR- Systemic acquired resistance 
TMV- Tobacco mosaic virus 
USDA-CRL- United States Department of Agriculture Crops Research Laboratory 
Vaa- Verticillium albo-atrum 

WUE – Water use efficiency 
 
 

 
 

 



1 

 

CHAPTER 1 LITERATURE REVIEW 

 

 

 

1.1 Introduction 

Plants are living organisms that are susceptible to a number of pests including insects, 

bacterial pathogens, viruses, and fungal pathogens. If plants succumb to a pest without 

intervention the results can be unsaleable plants and/or dead plants. Greenhouse and nursery 

managers use Integrated Pest Management (IPM) practices to produce the best plants, and to 

keep pests down to a minimum. IPM uses a combination of approaches to the make the best 

growing environment for the plant and the least hospitable environment for a pest (EPA, 2014; 

Managment, 2013). IPM practices identify the pests when a disease does arise and also monitors 

the population. IPM practices also determine what the threshold is and when to apply the 

appropriate pesticide (EPA, 2014; Managment, 2013). Using resistant plants is an important tool 

to have success against diseases (Abrol, 2013). Utilizing different tools and methods in IPM 

becomes more important as diseases become resistant to pesticides. In horticulture not all 

desirable plants are genetically resistant to diseases. Plants that are susceptible to diseases may 

excel in other areas that make them popular in the horticulture industry. 

 All plants have plant defense responses that helps to fight broad spectrum of diseases, 

herbivores, and abiotic stresses. Horticulturists can utilize this natural plant defense system in 

IPM practices. Plants can be primed for systemic acquired resistance by abiotic or biotic 

measures. This will ensure a faster and stronger plant defense response and the ability to be 

resistant to a disease. This gives the horticulturist a tool to act before a disease infects their crops 

and can reduce the use of pesticides (Abrol, 2013). There are spray treatments available for 

priming plant defenses such as acibenzolar S-methyl, which is a functional analog to salicylic 
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acid (Vallad and Goodman, 2004). In previous research salicylic acid accumulation has shown to 

be successful for inducing systemic acquired resistance in plants (Gaffney, 1993). Products such 

as acibenzolar S-methyl are successful at reducing disease severity, but they do not have 

antimicrobial activity (Neerja et al., 2013). Plants treated with the reactive oxygen species ozone 

have resulted in a systemic acquired response (Sharma et al., 1996). Chlorine dioxide is a 

powerful oxidant that disinfects surfaces on the plant, but it has not been reported if it can induce 

plant defenses. 

This study investigated whether chlorine dioxide would be successful at inducing 

systemic acquired resistance in plants in order to be another tool for IPM. Light red kidney bean 

plants will be treated with a chlorine dioxide disinfectant or acibenzolar S-methyl while being 

inoculated with a vascular wilt. Inoculated plants will be stem stab inoculated with common 

bacterial wilt caused by the bacteria Curtobacterium flaccumfaciens pv flaccumfaciens.  

There are a four hypotheses that this study tested. The first hypothesis was that there will 

be a SA response when plants are treated with E-B 5 days after treatment. The SA response will 

be much higher for E-B plants than the non-inoculated control. The second hypothesis was that 

the photosynthetic measurements for both non-inoculated E-B treatments will be just as efficient 

as the non-inoculated control. Both inoculated E-B treatments will be more efficient at 

photosynthesizing than the inoculated water control plants. The third hypothesis was that the 

chlorophyll fluorescence will not show any stress due to the E-B treatments. This will be 

investigated with the non-inoculated plants. The inoculated plants will show less stress when 

compared to inoculated control due to an induced SAR. Also, over all biocide treatments the 

stress levels in inoculated plants will be higher than the non-inoculated. The fourth hypothesis 

was that the biomass measurements will show that non-inoculated E-B will be just as good as the 
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non-inoculated water control. The inoculated E-B treated plants will have a higher biomass than 

the inoculated water control due to a reduction of disease severity. The following list are the 

objectives in order to test these hypotheses:  

 Determine if chlorine dioxide stimulates a salicylic acid response that is crucial for 

systemic acquired resistance 

 Determine the effects of chlorine dioxide treatments and disease on gas exchange 

measurements 

 Measure the plant stress response to treatments and disease through chlorophyll 

fluorescence  

 Measure the biomass of plants to determine differences between spray treatments and 

disease infection 

1.1.1 Preliminary Research for E-B and Light Red Kidney Beans 

 Preliminary research to this study was done in the summer of 2012 (data not shown). The 

study was done by Dr. Craig Ramsey, Dr. Steven Newman, and then graduate research assistant 

Heather Beckmann. Light red kidney bean plants were used to investigate whether E-B induced a 

SAR response. Spray treatments of E-B at 200 mg ClO2 l-1 were done with two different 

surfactants. The two different surfactants that were evaluated for this study were etaholyxloate 

alcohol (EA) and the other was a sarcosinate surfactant (SS). There were also a control spray 

treatment with tap water. All spray treatments were done with plants that were inoculated with 

CFF and plants that were not inoculated. The spray treatments were done 4 days before 

inoculation when the light red kidney beans were 9 days old. Inoculation was done by puncturing 

both primary leaves on each plant with a floral frog that was dipped in CFF inoculum. The two 

inch floral frog was metal with 30 pins that were an inch in length. The orange race of CFF was 
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used (B-572) and the inoculum was diluted to 108 colony forming units. The day of inoculation 

greenhouse shade cloth was drawn, exhaust fans turned off, and misters were turned on for 

humidity. 

 SA concentrations and total biomass measurements were collected at the end of the study 

when plants were 48-49 days old (39-40 days after treatment). Both Free and Conjugate forms of 

SA showed that at the end of the study the non-inoculated SA concentrations were lower than the 

inoculated plants. One peculiar result was that non-inoculated water control plants and 

inoculated water control plants had the greatest Free and Conjugate SA response. This may 

indicate that the non-inoculated control plants were infected with a pathogen. The non-inoculated 

and inoculated Free and Conjugate SA response were also not different from each other. The rise 

in inoculated water control plant’s SA concentrations indicate that the CFF inoculation resulted 

in a SA response to combat the disease without treatment. The non-inoculated plants for both E-

B treatments had lower SA concentration than the inoculated counter parts. Generally Free and 

Conjugate SA concentrations were similar for E-B SS and E-B EA for both inoculated plants and 

non-inoculated plants.  

 The total dry biomass in the preliminary study showed that both E-B EA and E-B SS that 

were not inoculated with CFF had a higher biomass than the water control non-inoculated. Since 

the non-inoculated water control plant’s SA concentration indicate there may have been infection 

with a pathogen. This may also be the reason for the non-inoculated biomass weight being lower 

than both E-B treatments. The non-inoculated and inoculated water control plant’s biomass 

weights were the same which also supports this. Both non-inoculated E-B treatments were not 

different from each other in biomass. For inoculated plants E-B SS had the highest biomass 
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weight. The water control plants had the second greatest biomass weight and E-B EA had the 

lowest biomass weight. 

 The conclusions from this study were that CFF infection elicits a SA response at the end 

of the study to combat the disease. Most inoculated treatments had a greater SA concentration 

than their non-inoculated counterparts. E-B SS had the highest biomass at the end of the study 

showing that it reduced the disease severity when compared to water control and E-B EA treated 

plants.  

1.2 Common Bacterial Wilt and Beans 

Curtobacterium flaccumfaciens pv. flaccumfaciens (CFF) is a bacterium that causes the 

disease common bean bacterial wilt in Phaseolus species (Agarkova et al., 2012). This disease 

was a problem for dry bean production in Colorado, Nebraska and Wyoming during the 1960’s 

to the early 1970’s (Agarkova et al., 2012; Harveson and Schwartz, 2006). The main dispersal of 

CFF is through infected seed, but soil and infected debris can be a reservoir of inoculum 

(Agarkova et al., 2012; Sammer and Reiher, 2012). Infection of CFF can result in the 

germinating seedlings being killed quickly or reduced seed weight (Conner et al., 2008).  

Seedlings that survive may be stunted and then can eventually die (Conner et al., 2008). There is 

no known cure for this disease. The best line of defense is to plant resistant cultivars and 

purchase clean seed since there is no pesticides that control CFF in common beans. (Conner et 

al., 2008; Yadeta and Thomma, 2013).  

Common symptoms of CFF infection on Phaseolus are wilting of the leaves and necrotic 

lesions with a yellow halo on the leaves (Agarkova et al., 2012; Yadeta and Thomma, 2013). 

Vascular wilts are unique in that they thrive and multiply in the xylem where it is nutrient 

deficient (Yadeta and Thomma, 2013). The bacterium clogs up the vascular system causing a 
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drought-like stress that prevents the water from getting to essential parts of the plants such as the 

leaves (Conner et al., 2008; Yadeta and Thomma, 2013). After early 1970’s CFF was not a 

problem for bean production in the United States until 2003. CFF remerged on dry bean 

production fields in Nebraska (Agarkova et al., 2012; Harveson and Schwartz, 2006). This is  

disease has been detrimental to dry bean producers due to CFF being on quarantine list for many 

countries, which prevents infected seed to be sold and imported into those countries (Agarkova 

et al., 2012; Conner et al., 2008). In addition to the risk of contaminated seed the disease can 

result in great crop losses (Agarkova et al., 2012).  

1.3 Measuring Photosynthesis and Disease 

Photosynthesis can be measured at the leaf level to indicate how vigorous a plant is 

growing. Many abiotic and biotic factors such as temperature, water status, and diseases can 

affect the plant photosynthesis efficiency. When stress is present it limits plant photosynthesis 

from reaching optimum rates. Photosynthesis is the path where plants convert water, CO2, and 

light into sugar for metabolism. For instance, all plant species have an optimum temperature for 

photosynthetic carbon assimilation. This optimum is a hyperbolic response where anything 

below or above the optimum temperature, photosynthesis is reduced. Pimental et al. (2012) 

evaluated photosynthesis rates for two different Phaseolus cultivars at different temperatures. 

One of which was sensitive to high temperatures and the other was more tolerant to higher 

temperatures. Despite the different tolerances both cultivars showed an optimum photosynthesis 

rate at 27 ˚C (Pimentel et al., 2013).  

When plants are exposed to high light levels there is extra energy not being used for 

photochemistry and can result in photoinhibition. Plants have mechanisms to deal with the 

excess energy absorbed when there is excess light. In high light conditions the electron transport 
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chain can be overloaded and result in the photosystem II (PSII) absorbing excess energy, which 

can lead to photoinhibition (Biswal, 2005). Photoinhibition creates oxidative stress due to 

production of reactive oxygen species (ROS) (Biswal, 2005).  

Photosynthesis can decline when a plant is infected with a disease. This is dependent on 

how the pathogen interacts and limits the function of the plant. Resources may need to be 

reallocated and there may be harmful by-products from the stressor. Plants under go severe stress 

after an infection from a pathogen. The first sign of a pathogen is the rise in reactive oxygen 

species (ROS) concentrations in the plant (D'Maris Amick Dempsey  2010; Inze and Van 

Montagu, 2003). The result of severe oxidative stress after infection can have consequences to 

the electron transport chain on the thylakoid membrane, which prevents it from working 

properly. A study was done to evaluate plant responses to three different diseases and examine 

their physiological performance such as photosynthesis, transpiration, and stomatal conductance 

(Bassanezi et al., 2002). The diseases evaluated were monocycle of rust, angular leaf spot and 

anthracnose, which infect Phaseolus vulgaris. The results showed that as the severity of the 

disease increased the net photosynthesis decreased for all three diseases. Also, stomatal 

conductance and transpiration were generally lower.  

  In another study tomato plant photosynthetic responses were evaluated after inoculating  

two vascular wilt diseases and then compared to non-inoculated plants (Lorenzini et al., 1997). 

The two vascular wilt diseases used in the study were Fusarium oxysporum f. sp. lycopersici 

(Fol) and Verticillium albo-atrum (Vaa). Gas exchange measurements were done on plants 7, 14, 

and 21 days after inoculation (DAI). The results showed that Fol infected plants decrease in 

photosynthesis at 7, 14 and, 21 DAI when compared to the control. Both stomatal conductance 

and transpirations were lower than the control. The instantaneous water use efficiency (WUE) 
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was measured with the portable gas exchange system. The water use efficiency is the ratio of 

carbon assimilation (A) and transpiration (E) (Amax/E). The WUE measurements showed that the 

inoculated plants had a lower WUE at 7 DAI when compared to the control, but at 14 and 21 

DAI the WUE for the inoculated plants surpassed that of the control.  

Plants infected with Vaa at 7 DAI revealed that there was a decline in photosynthesis 

compared to control. Photosynthesis recovered at 14 DAI and then declined again at 21 DAI. 

Vaa infected plants transpiration and stomatal conductance at 7 DAI was greater than the control 

and then declined as the control increased. WUE for Vaa plants at 7 DAI had a response similar 

to the Fol plants. At 14 DAI the plants WUE surpassed the control plants, but at 21 DAI the 

WUE returned to the control levels. The results for Vaa and Fol infection indicated that the 

probable cause of the decline in photosynthesis rate to be very similar to drought stress in 

response to the pathogen clogging the vascular system (Lorenzini et al., 1997). Reduced stomatal 

conductance indicated that less water was available. Lorenzini et al. (1997) stated that by 

measuring asymptomatic leaves, they were able to detect the disease a week before seeing actual 

symptoms on the leaves.  

1.4 Measuring Chlorophyll Fluorescence and Disease 

When chlorophyll a is excited by a light photon three outcomes can happen. The photon 

can be used for photochemistry, dissipated as heat or it can be re-emitted as fluorescence (Jones, 

2013; Maxwell and Johnson, 2000). Research has shown that chlorophyll fluorescence can be 

measured to investigate stress in plants. Chlorophyll fluorescence measurements start with a 

plant leaf that has been dark adapted to ensure no photochemistry is taking place and then 

flashed with a short high intensity light (Maxwell and Johnson, 2000). The Fo is the minimum 

fluorescence and is measured in the dark when all the PS II reaction centers are fully open. Fm is 
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the maximum fluorescence during a saturating light pulse and is measured when the reaction 

centers are closed (Jones, 2013; Maxwell and Johnson, 2000).  The result of the measurement is 

the fluorescence being emitted by functioning reaction centers. If a plant has photoinhibition, the 

Fo measurement will increase indicating less PSII reaction centers available for photochemistry 

(Jones, 2013). The following equation can then be calculated to determine the maximum 

quantum yield for photochemistry : 
ி�−ி�ி�  =

ி�ி� (Jones, 2013; Maxwell and Johnson, 2000). A 

Fv/Fm value that is around 0.83 is considered to be a healthy plant, but can vary from species to 

species (Jones, 2013). The lower the values for Fv/Fm indicate stress. 

The effects of ozone were examined on chlorophyll fluorescence in a study with one year 

old Tilia americana saplings (Pellegrini, 2014). Saplings were treated with ozone for 8 hours 

each day for 45 days. Ozone was applied at 120 ppb. Fv/Fm measurements were taken at 8, 15, 

28, 38, and 45 days while being treated. At first the ozone treated plants had similar Fv/Fm 

values when compared to control, which had a mean of 0.81 Fv/Fm. The ozone treated plants 

showed a decrease from the control at 28 days with a mean of 0.70. Researchers reported the 

cause of the decline in Fv/Fm was due to a raise in Fo, which indicates a rise in photoinhibition.  

The previously mentioned study reported by Lorenzini et al. (1997) also investigated 

Fv/Fm in response to vascular wilts in tomatoes. Chlorophyll fluorescence measurements were 

taken 7, 14, and 21 days after inoculation. Tomato plants that were inoculated with Fusarium 

oxysporum f. sp. lycopersici did not show different Fv/Fm when compared to control indicating 

there was no decreased activity within PSII due to the disease. There was a 5% decrease in 

Fv/Fm at 14 DAI and was reported that it was due to a 22% decline in Fm (Lorenzini et al., 

1997). Tomato plants inoculated with Verticillium albo-atrum did show a lower Fv/Fm when 

compared to control at all three measurement dates. 
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1.5 Systemic Acquired Resistance 

Since plants are rooted in a soil and unable to move they can be susceptible to a number 

of diseases and pests. Plants induce a number of pathogenesis related genes that produce a broad 

spectrum defense against the pest when attacked (Conrath, 2006; Vallad and Goodman, 2004; 

Walters et al., 2005). This broad spectrum of protection is effective against a diverse group 

including viruses, fungi, and herbivores. This induced resistance happens after an elicitor 

interacts with the plant and triggers a defense response systemically throughout the plant 

(Conrath, 2006). The induced resistance upregulates defense genes for protection after defense 

signals are received. One such response is known as system acquired resistance (SAR). SAR is 

not a cure for most diseases, but instead is an effective way that a plant copes with the disease. 

The SAR response usually can result in a 20-85% decrease in disease severity (Walters et al., 

2005).  

 An important phytohormone for inducing SAR is salicylic acid (SA) (D'Maris Amick 

Dempsey  2010). Chorismate can be used to synthesize SA by two different pathways. One 

pathway is the phenylalanine ammonia lyase (PAL) pathway and the other is through 

isochorismate pathway (Chen et al., 2009; D'Maris Amick Dempsey et al., 2011; Klessig and 

Malamy, 1994). In the PAL pathway SA can either be produced into SA through o-coumarate or 

benzoate. SA accumulation is necessary for SAR responses in order to upregulate pathogenesis-

related genes for plant defense (Kumar, 2014; Zhang et al., 2004). Inside a plant there are Free 

SA or Conjugated SA forms of SA (Panina et al., 2005). Free SA is the active form of SA that is 

responsible for activating SAR. Conjugate SA is comprised mostly of O-β-D-glucoside within a 

plant and does very little to directly induce SAR in while it is in conjugate form (Panina et al., 

2005). Though Conjugate SA does not directly activate a SAR, it is an important reserve to be 
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converted as needed to Free SA for a quick accumulation response to an infection (Panina et al., 

2005). 

A study evaluated the necessity of SA in SAR by transforming tobacco plants with the 

gene nah-G. When the nah-G gene is expressed the plant produces salicylate hydroxylase, which 

prevents SA from accumulating in high concentrations by converting SA into catechol (Gaffney, 

1993). They transformed many different lines with nah-G in the plants. Tobacco plants were 

inoculated with tobacco mosaic virus (TMV) on the lower three leaves. After 7 days they 

harvested the leaf tissue for analysis of the nah-G gene, SA concentrations, and salicylate 

hydroxylase. The wild type that was inoculated with TMV showed a 185 fold increase of SA 

compared to non-inoculated wild type. The transformed tobacco lines resulted in varying 

expression of nah-G gene by having low, moderate and high concentrations in the mRNA of 

nah-G. One transformed line did not have any nah-G or salicylate hydroxylase found and had the 

same concentration of SA compared to wild type inoculated. The intermediate producing nah-G 

plants showed a moderate accumulation of SA. The nah-G transgenic plants that had high 

expression of nah-G gene showed only a two fold increase of SA. These results showed that the 

nah-G gene in the transformed plants blocks the accumulation of SA. The plants were inoculated 

a second time in the upper leaves to investigate the effects of the inhibited SA accumulations on 

SAR. The inoculated transformed plants resulted in more severe lesions on leaves than the wild 

type that was inoculated. There was an inverse relationship with the size of lesions and 

accumulation of SA. The more SA accumulated the smaller the lesions and the less SA 

accumulated the bigger the lesions. Gaffney et al. (1993) concluded that SA was required in 

order to have successful SAR.  
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Horticulturists can take advantage of being able to induce SAR with abiotic and biotic 

measures to protect their crops, which is called “priming” a plant’s natural immune system 

(Goellner and Conrath, 2008). By treating plants with elicitors that induce SAR results in plants 

that are primed for a faster and stronger reaction when compared to plants that are not treated 

when a threat does come along (Walters et al., 2008) . Previous studies have shown the 

effectiveness of applying chemicals that are functional analogs to SA (Vallad and Goodman, 

2004). A commercially available product in United States, called ActigardTM (Syngenta®, Basel, 

Switzerland), has the active ingredient acibenzolar-S-methyl (ASM) which is a functional analog 

to SA (Conrath, 2006; Vallad and Goodman, 2004). ASM has been proven in many studies to 

induce SAR and resulted in a decrease in disease severity (Vallad and Goodman, 2004; Walters 

et al., 2005).  

A study was done with tomato plants to investigate if ASM would reduce the severity of 

bacterial canker disease caused by Clavibacter michiganensis subsp. michiganensis in tomato 

plants (Soylu et al., 2003). The tomato plants were inoculated 24, 48, 72, and 96 hours after 

ASM treatments. All ASM treated plants had a decrease in disease severity when comparing to 

the control. Though all ASM treatments resulted in decreased disease severity, the best decrease 

was observed when the ASM treatment was done 72 hours prior to inoculation. 

Priming plants for SAR is a beneficial tool to use in an IPM plan. Determining the time 

interval for treatments is important in order to get SAR protection for crops. In previous studies 

monocots primed with ASM have a long time effect of SAR, but for dicots there was a need to 

do multiple applications of the ASM to reduce disease severity (Vallad and Goodman, 2004).  

Previous studies show the plant resource costs of priming plants may have a reduction in 

productivity in plant such as growth and/or crop yield (Vallad and Goodman, 2004; Walters, 
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2009). Heil et al. (2000) did a study to investigate the costs of priming plants with ASM when 

plants are not inoculated with a pathogen. They chose a fast growing wheat variety to compare 

ASM treated plants against control non-treated plant. There were three growth conditions under 

varying nitrogen concentrations. The results showed plants treated with ASM had a lower 

biomass and seed compared to control (Heil et al., 2000). The study may indicate why plants 

induce resistance only when being attacked due to the energy and resources costs that need to be 

reallocated from other daily metabolic needs.  

In another study, rice plants were treated with ASM determine the SAR responses against 

Rhizoctonia solani (Neerja et al., 2013). The results showed a lower disease severity with 

inoculated ASM treated plants compared to the inoculated control. An interesting result of the 

study showed that there was a greater yield for non-inoculated ASM treated plants when 

compared to control non-inoculated plants. The costs of priming are not clear cut, but should be 

considered when investigating priming plants for protection. 

ASM has been documented in many studies that it is successful at inducing SAR, which 

reduces disease severity. However, there have been reports for some plants and diseases where 

no reduction in disease resulted after treatment  (Walters et al., 2005). Walters et al. (2005) 

stated, “ASM did not induce resistance to Barley yellow dwarf virus (in winter barley field trial), 

and under controlled conditions, ASM did not induce resistance to Phytophthora brassicae in 

Arabidopsis or P. infestans in potato”. The reasoning proposed is that this may be due to 

genotype and environmental factors. The fitness of the genotype of the both the plant and the 

pathogen may affect successful SAR development as they both combat for survival. 
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1.6 Reactive Oxygen Species and Plant Defenses 

Reactive oxygen species (ROS) are a part of everyday life inside a plant. There is a ROS 

balance between being functional and creating stress within the plant. ROS can become 

dangerous due to their affinity to take electrons. This is especially dangerous to cellular 

structures within a living organism where ROS can do damage (Foyer and Mullineaux, 1994). 

The majority of reactive oxygen species are made within the chloroplasts of a plant (Inze and 

Van Montagu, 2003). In chloroplasts the PSII is able to produce oxygen by splitting water. This 

creates an oxygen rich environment where O2 can interact with photosynthetic processes and 

ROS can be created (Foyer and Mullineaux, 1994; Inze and Van Montagu, 2003). ROS can be 

produced by the electron transport chain. When this occurs it is called the Mehler reaction (Foyer 

and Mullineaux, 1994; Inze and Van Montagu, 2003). For instance, at PSI reduced ferredoxin 

can react with oxygen to create a superoxide when NADP+ is not available (Foyer and 

Mullineaux, 1994). The superoxide reacts with superoxide dismutase to become hydrogen 

peroxide. The hydrogen peroxide can be reduced to water by ascorbate peroxidase (Foyer and 

Mullineaux, 1994; Inze and Van Montagu, 2003). This process helps the electron transport chain 

from being over reduced (Inze and Van Montagu, 2003). 

  A surge of ROS is one of the first reactions to when a pathogen attacks a plant (D'Maris 

Amick Dempsey  2010; Inze and Van Montagu, 2003). The rise in ROS can be used to directly 

kill the pathogen and/or become signaling molecule to activate plant defenses against the 

pathogen (Bartoli et al., 2013; D'Maris Amick Dempsey  2010). Salicylic acid can also be 

synthesized as a result from the ROS rise (D'Maris Amick Dempsey  2010). Another important 

role for ROS in SAR is the ability to produce a hypersensitive response (HR). HR involves an 

oxidative burst within a cell being attacked and then a second larger oxidative burst, which 
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results in cell death (Inze and Van Montagu, 2003). This cell death is believed to isolate the 

pathogen from spreading to the rest of the plant (Zhang et al., 2004). In susceptible plants there is 

either no oxidative burst or only the first small burst is present (Inze and Van Montagu, 2003).  

Previous research indicated that the ROS ozone (O3) can induce systemic acquired 

resistance in Arabidopsis thaliana (Sharma et al., 1996). Plants that were 3-4 weeks old were 

exposed to ozone fumigation inside chambers at 300 ppb for 6 hours. Another set was measured 

under ambient air. The active form of SA (Free SA) and Total SA (Conjugate SA + Free SA) 

were measured. Leaf tissue samples were collected for Free and Total SA concentrations during 

ozone treatment at 0, 3, 6, 12, and 24 hours. The results indicated that Free SA concentrations 

rose rapidly to their peak concentration at 3 hours, which was 3.5 to 4.5 fold higher than controls 

in ambient air. The Free SA then declined until back to control levels by 24 hours. Total SA 

concentrations continued to rise and had its peak at 24 hours where it was 3.8 to 4.7 fold higher 

than controls in ambient air. The study continued to determine if SA accumulation that was 

induced by ozone was able to induce resistance to the pathogen Pseudomonas syringae pv 

maculicola (PSM). Plants treated with ozone had a decrease in disease symptoms as well as 

reduced growth of PSM inside the plant when compared to ambient inoculated plants. 

Transcripts for genes that are known to be associated with resistance to a pathogen were also 

measured. The following ribonucleic acid (RNA) transcripts were measured: PAL glutathione S-

transferase 1 (GST1) and pathogenesis related protein 1 (PR1) mRNA expression. Ozone treated 

plants had greater PAL, GST1 and PR1 compared to untreated controls. 

1.7 Electro-Biocide®/ Chlorine dioxide 

 Ozone has been shown to induce SAR, but it is not an ideal candidate to use in the 

horticultural industry for everyday use. It is dangerous since it can be harmful to the respiratory 
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system of mammals and can also damage plants (Sharma et al., 1996). In order to apply the 

product it would have to be fumigated in the greenhouse. It is therefore not a practical nor safe 

application for nursery and greenhouse managers to use every day. ASM has been effective at 

inducing SAR in plants, but it has no antimicrobial properties (Neerja et al., 2013). Chlorine 

dioxide (ClO2) is a powerful oxidant for disinfecting plant surfaces from harmful pathogens. 

ClO2 can be dissolved in water while keeping its gaseous state (Kelley, 2004). ClO2 makes an 

easy foliar treatment for plants since it is soluble into water without losing its oxidative 

properties. 

Electro-biocide® (E-B) (SRO Inc., Bailey, CO) is a proprietary blend of chlorine dioxide, 

surfactant, and a pH buffer (SRO, 2010). The product is commonly used in the medical field to 

disinfect surfaces in a hospital setting. It is a powerful oxidant that is effective in killing many 

viruses, bacteria, and fungi (SRO, 2010). E-B could be very powerful as a pest management tool 

if used before the plants are attacked by a pathogen. The foliar application would serve two 

preventative purposes. First, the oxidative power of ClO2 would sanitize the surfaces of the 

foliage before any pest gets the chance to infect the plant. The sarcosinate surfactant in E-B helps 

the foliar spray adhere to the leaves uniformly, and semi-plasticizes the epicuticle wax layer, 

which allows the product be taken up through the epidermis cuticle. The second preventative 

action would be the E-B activity within the plant may cause a surge of ROS, which would then 

induce plant defenses. The possibility of E-B interaction inside the plant could activate a SAR 

responses for increasing plant defenses against a wide range of pathogens.  

E-B includes a pH buffer that makes the solution non-corrosive and safe. This is 

important for greenhouse use to prevent corrosion to equipment and greenhouse benches when 

plants are being treated with E-B. The Environmental Protection Agency (EPA) also gives it a 
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safety rating of IV (SRO, 2010). This is the safest rating that you can get from EPA meaning it is 

virtually non-toxic and safe to use. However, for full greenhouse and nursery registration, SRO 

will need additional EPA labelling for E-B to be used in ways other than a disinfectant. 

  



18 

 

CHAPTER 2 MATERIALS AND METHODS 

 

 

 

2.1 Study Design 

The greenhouse study was conducted at the United States Department of Agriculture’s 

Crop Research Laboratory (USDA CRL) greenhouses in Fort Collins, Colorado (40°33'55.3"N 

105°05'08.2"W). The study was conducted from May 22nd, 2014 until July 23rd, 2014. Once 

plants had germinated they were completely randomized into eight separate treatments with 

twelve replications in each treatment. Treatments were designated into two separate sets in order 

to measure them at equal distances from treatments (Table 1). This is due to there being 96 plants 

total and the physiological measurements completed with the portable photosynthesis system 

(Li-6400 XT, LICOR Lincoln, Nebraska) would have to be done on separate days. 

Table 1: List of Biocide Treatments 

The list of biocide spray treatments in the study. Plants were separated into two sets in order to 
measure physiological measurement as close as possible. Set A included both E-B treatments 
both inoculated and non-inoculated plants. Set B included Actigard and water treatments 
including inoculated and non-inoculated plants.  

Biocide Type Concentration Inoculation Status Set A or B 

Electro-biocide® 200 ppm Yes Set A 
Electro-biocide® 200 ppm No Set A 
Electro-biocide® 400 ppm Yes Set A 
Electro-biocide® 400 ppm No Set A 
ActigardTM 60 ppm Yes Set B 
ActigardTM 60 ppm No Set B 
Water  0 ppm Yes Set B 
Water 0 ppm No Set B 

 

2.2 Plant Material 

Light red kidney beans (Phaseolus vulgaris L.) (Johnny Select Seeds Winslow, Maine) 

were planted on May 22nd, 2014. They were grown in 6.8 L pot (Western Pulp, Corvallis, 
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Oregon). The pots were filled with Farfard’s 4-MP potting medium (Sun Gro Horticulture 

Agawam, Massachusetts). The light red kidney beans were bush type plants, which mature in six 

to eight weeks. Four beans per pot were planted and then watered in to settle in the medium and 

ensure contact to the beans.  Once the seeds germinated they were culled to the two most 

vigorous seedlings. Two seedlings per pot were left in order to complete two separate 

measurements. One seedling was used for the first salicylic acid concentration measurements and 

would be harvested 23 days after planting.  The other seedling remained in the pot to grow for 

photosynthesis, fluorescence, final SA measurement and biomass measurements until the final 

harvest at 61-63 days after planting. Plants were fertilized with 20N-2.2P-8.3K (Jack Peters 

Professional Lite 20-10-20 Allentown, Pennsylvania) soluble fertilizer through fertigation 

methods at 100 mg N·L-1 as irrigation was needed. Plants were irrigated with clear water every 

5th irrigation. After inoculation, plants were fertilized once per week. Greenhouse parameters 

were set for 27 ˚C day time temperatures and 17 ˚C night time temperatures. 

2.3 Common Bean Bacterial Wilt Inoculation Methods 

The yellow race (B-528) of Curtobacterium flaccumfaciens pv. flaccumfaciens (CFF) 

was used to inoculate the light red kidney bean plants. On June 4, 2014 inoculation bacterium 

was cultured on nutrient broth yeast extract medium (NBY) and incubated at 22 ˚C. Plates were 

re-cultured on new NBY plates on June 9th and 10th in order to have pure cultures for June 11th 

and 12th.  The NBY agar was prepared with the following ingredients:  

 DifcoTM Nutrient Broth 8 g (Becton Dickinson and Company, Franklin Lakes, NJ) 

 BatcoTM Yeast Extract 2 g (Becton Dickinson and Company, Franklin Lakes, NJ) 

 K2HPO4 2 g 
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 KH2PO4 .5 g 

 Glucose 2.5 g 

 Fisher BioReagentsTM Powdered Agar 15 g (Grade: Molecular Genetics, Thermo Fisher 

Scientific, Waltham, MA) 

 All ingredients were mixed in a 1000 ml of distilled water and then autoclaved for 15 

minutes. Next 6.16 g of MgSO4 was dissolved into 25 ml of distilled water. Then 1 ml of the 

solution was added to the autoclaved agar mixture once cool enough to handle with a sterile 

syringe and Millex®-GS 0.22 µm filter unit (Millipore Corporation Bedford, MA). Agar solution 

was then poured into petri dishes and allowed to continue to cool overnight under flow hood.  

 Greenhouse parameters were set for 32.2 ˚C and close to 100% relative humidity (RH) 

for inoculation one day prior to inoculation. Shade cloths were drawn and greenhouse exhaust 

fans were turned off. After inoculation plants were given 48 hours in the humid and hot 

conditions to give the best environmental conditions for a successful inoculation of CFF.  

 Plants were inoculated with the stem stab method at 20 days old and 4 days after spray 

treatment (DAT). Sterile 20 gauge BD PrescisionGlideTM (Becton Dickinson and Company, 

Franklin Lakes, NJ) needles were dipped in CFF pure cultures and then inserted at the cotyledon 

scar at a downward angle. A new sterile needle for inoculation was used for each treatment. 

Plants that were not inoculated were mock inoculated with sterile needles without CFF inoculum 

to ensure all plants were given the same mechanical and environmental treatment.  

2.4 Biocide Spray Treatments 

In total there were four different spray treatments. E-B was prepared by Strategic 

Resource Optimization, INC (Bailey, CO). Spray treatments were E-B 200 mg ClO2 l-1, E-B 400 
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mg ClO2 l-1, Actigard at 62 mg ASM l-1, and tap water (Table 1). Set A was sprayed on June 7th, 

which was 16 days after planting. Set B was sprayed on June 8th, which was 17 days after 

planting (Figure 1). Spray treatment Set A and Set B where completed on two different days in 

order to have same physiological measurements days after treatment. Plants were sprayed by a 

low volume electrostatic sprayer (ESS Electrostatic Spraying, Watkiesville, GA). The batteries 

were removed since the electrostatic charge was not needed in this study. The purpose of using 

the ESS was because of its ability to introduce air into the water creating gentle uniform spray 

onto the foliage.  Each plant was timed in order to get the same amount of treatment onto the 

foliage. Each plant was sprayed for 18 seconds of spray time. Nine seconds was given to the top 

of the foliage and then the underside of the foliage received nine seconds as measured with a 

stopwatch in order to ensure each plant received the same volume of spray. 

2.5 Salicylic Acid Methods 

2.5.1 Salicylic Acid Sample Collection 

 The first harvest for salicylic acid (SA) determination was collected 20 hours after 

inoculation of CFF and 5 DAT. Harvest time started at 0700 hours and ended at 1000 hours.  

One leaf from each plant was collected every three hours. Selection of leaves was the largest 

leaves for SA measurement while avoiding cotyledon leaves (unless no other leaves available). 

That resulted in a total of 6 harvests per plant. Plants were in humid and hot conditions 

throughout harvest in order to give the best inoculation environmental conditions for CFF. Final 

harvest for SA was collected 61 day after planting (44 days after treatment) to investigate if there 

were any differences in SA concentrations within spray treatments at the end of the growing 

season. The final harvest collection was completed in regular greenhouse conditions with 

temperatures 27 ˚C day time temperatures and 17 ˚C night time temperatures. At each collection 
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time one leaf was plucked from the plant, inserted into a sterile 50 ml centrifuge tube and quickly 

submerged into liquid nitrogen. Leaf samples were then placed into a -80 ˚C freezer until ready 

to process. Plant samples were then taken out of the -80 ˚C freezer, lyophilized for 24 hours, and 

then ground to a fine powder with mortar and pestle. 

2.5.2 Salicylic Acid Sample Extraction 

  Leaf samples were analyzed at Colorado State University Analytical Toxicology 

Laboratory in the college of Veterinary Medicine and Biomedical Sciences. The director of the 

laboratory, Dr. Greg Dooley, developed a custom method for Free SA and Total SA 

measurement by means of liquid chromatography tandem mass spectrometry (LC- MS/MS).

 Each leaf sample was measured for Free SA and Total SA following acid hydrolysis 

using liquid chromatography tandem mass spectrometry (LC-MS/MS).  Conjugated SA was 

calculated by subtracting Free SA from Total SA concentrations.  

 Leaf samples were prepped for LC-MS/MS by measuring 15 mg (± 0.5 mg) into a 13 ml 

test tube. Free SA was extracted by adding 1 ml of 10% acetic acid and 20 µl of an internal 

standard of 15 µg/ml D4-salicylic acid. Samples were then vortexed for about 30 seconds until 

well mixed and then placed in a sonicating bath for 10 minutes. Samples were then vortexed for 

a second time for 30 seconds and placed into the sonicating bath for an addition 10 minutes. Next 

samples were placed into a centrifuge for 10 minutes at 3400 revolutions per minute. Making 

sure not to disturb the pellet, a 0.5 ml aliquot was then transferred to 1.5 ml vials for LC-MS/MS 

analysis of Free SA.  

 Total SA was extracted by acid hydrolysis. From the same sample used for Free SA, 500 

µl of supernatant was transferred to a clean 13 ml glass tube and diluted with 400 µl of 10% 
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acetonitrile/0.1% acetic acid. Then 50 µl of 10 % hydrochloric acid solution was added and 

vortexed. The pH was then verified to be between 2-3 pH. Samples were then placed into an 80 

˚C sand bath for 30 minutes. Samples were then allowed to cool for about 10 minutes and then 

50 µl of 15% ammonium hydroxide was added. After being vortexed samples were verified for a 

pH of 4 to 5. Samples were then centrifuged for 3 minutes at 14000 revolutions per minute and 

0.5 ml of aliquot was transferred to 1.5 ml vial for LC-MS/MS analysis of total SA. 

2.5.3 Salicylic Acid LC-MS/MS Analysis 

 The instrument used in the analysis was an Agilent 1290 UPLC coupled to an Agilent 

6460 triple quadruple mass spectrometer, which was equipped with an electrospray ionization 

(ESI) source using Agilent Jet Stream Technology (Agilent, Santa Clara, CA). SA was separated 

on a Zorbax Eclipse Plus C18 column (2.1mm x 100mm, 3.5 μm particle size) at 40 °C (Dooley, 

2015). A sample volume of 10 μL was injected and a binary mixture of 0.1% acetic acid in water 

(A) and 0.1% acetic acid in acetonitrile (B) at a flow rate of 0.4 mL/min. The gradient used was 

20% B increasing to 100% B at 4 min, and held for 1 min. The ionization source conditions used 

were as follows: negative polarity, nebulizer gas flow of 5 L/min at 30 °C and 45 psi; sheath gas 

flow of 11 L/min at 250 °C; nozzle voltage of 500V, and the capillary voltage at 3500 V.  

Salicylic acid was identified by comparison of retention times with analytical standards, 

individual multiple reaction monitoring (MRM) mass transitions, and with MS/MS ion ratios. In 

this method, SA had a retention time of 2.95 minutes, the MRM transitions were 137 > 93.1 and 

65.1 m/z, and an ion ratio of 9.4. Peaks matching retention within 5% with ion ratios with 20% 

of the standard ratio were considered acceptable for SA. D4-salicylic acid was confirmed by 

retention time (2.95 mins) and the MRM transition 141.1 > 69.1 m/z. The data collection and 

processing were performed by using Agilent MassHunter Quantitative software (v B.04.01). 
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2.6 Gas Exchange Measurements 

 Photosynthesis was conducted as a repeated measures for this study. There were two 

measurements conducted at 32 DAT and 39 DAT with a portable gas exchange system (LI-6400 

XT, LI-COR, Lincoln, NE) (Figure 1 & 2). To ensure that plants were at the best potential to 

photosynthesize, the plants were well watered the morning of measurements. This ensured there 

was no potential for being water stressed and gas exchange could be measured easily. Plants 

were placed under LED lights for at least 15 minutes to acclimate to at least 1000 µmol photon 

m-2 s-1 PAR, which was set for the LI-6400 XT. Gas exchange was measured under the LED 

lights as well. This ensured that no matter what the light levels were outside the greenhouse, the 

plants were actively photosynthesizing at their best potential under uniform light conditions.  

 Three leaves for each plant were measured. The youngest, fully expanded, healthy leaves 

were selected to measure on each date of measurement. These leaves were prime leaves for 

measurement since they were actively photosynthesizing at their fullest potential. The plants that 

were infected with CFF began to lose leaves due to the wilt and leaves became sparse. The same 

selection still applied, but the availability for the prime leaves may not be available due to the 

disease.  

 Instantaneous water use efficiency (WUE) was measured with the Li-6400 XT along with 

other photosynthetic measurements. WUE for this study was measured at the leaf level and is 

calculated with the ratio of carbon assimilation (A) and transpiration (E). The WUE is calculated 

along with the photosynthesis measurements with the equation �ଵ଴4 × ா. The WUE calculation was 

inserted to the list of computations as directed in the LI-COR 6400 XT manual (LI-COR 

Biosciences, 2011).  
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2.6.1 LI-6400 XT Settings for Photosynthesis  

 Photosynthetic active radiation (PAR) within the leaf cuvette was set at 1000 µmol 

photon m-2 s-1. Flow rate of air for the cuvette was set at 200 µmol m-2 s-1. Relative humidity was 

maintained between 50-70% RH. Block temperature was set at 20 ˚C. CO2 mixer was set for 400 

µmol mol-1 CO2 concentration. After initial matching of infrared gas analyzers (IRGAs) during 

set up, IRGAs were matched again before each new plant (after every 3 leave measurements). 

2.7 Chlorophyll Fluorescence Measurements 

 Chlorophyll fluorescence was conducted as a repeated measures design at 2, 7 and 25 

DAT (Figure 1). Plants were dark adapted for at least 15 hours in the basement of the USDA 

Crop Research Laboratory greenhouses. In addition to turning the lights off they were put in an 

enclosed tent to ensure complete darkness. On the day of the measurement, the plants were only 

taken out of the tent at the time of measurement. Lights were kept off during all of the 

measurements. An ultra violet light was used for visual aid since it does not impact chlorophyll 

fluorescence measurements. The same portable gas exchange system used for photosynthesis 

was also used to take the chlorophyll fluorescence measurements (Li-6400 XT, LI-COR, 

Lincoln, NE). Three leaves were measured on each plant. At the time of chlorophyll fluorescence 

measurement the plants were still fairly young with few trifoliates. Two leaflets on one trifoliate 

was measured and a one leaflet on a different trifoliate. At each measurement date the youngest 

fully expanded leaves were selected as the plants continued to grow. 

 Soil moisture and soil temperature were also collect at chlorophyll measurements with 

Echo20-TM5 sensor (Decagon Devices, Inc., Pullman, WA). This instrument measures 

volumetric water content (m3/m3) within the soil and was 5 cm in length. 
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2.8 Biomass Measurements 

 Biomass was harvested at the end of the study 61-63 days after planting. Harvest time 

was over three days due to the amount of plant material. Biomass measurements included leaf 

area, leaf fresh/dry weight, stem fresh/dry weight and pod fresh/dry weight.  

 Leaf area was measured with a Li-3100C (LI-COR, Lincoln, NE) area meter with green 

and partially green leaves only. Leaves that were dead were not measured for leaf area. Above 

ground biomass was harvested and weighed for fresh weight. Only leaves that were attached to 

the plant were used for measurements. Any leaves that dropped throughout the study due to wilt 

were excluded from the study. This was due to the proximity of the plants making it 

undistinguishable from which plant it came from. After measuring fresh weight leaves, stems 

and pods were bagged separately and labelled according to their treatment and repetition. Bags 

were then put into dryer until there were no longer differences in weight. 

2.9 Polymerase Chain Reaction (PCR) DNA Methods 

 WhatmanTM FTATM Classic cards (GE Healthcare Life Sciences Pittsburg, PA) were used 

to confirm the inoculation status of the light red kidney beans. All organisms have a unique 

genetic code that can be distinguished from other organisms. In a polymerase chain reaction 

(PCR) double stranded DNA is denatured by heat to become two single stranded DNA segments 

(Klug and Cummings, 1999). RNA primers that are complementary and unique to the DNA of 

interest can then be added and bind only to the specific DNA strands of CFF. This method 

detects the DNA of CFF to confirm or deny inoculation of the light red kidney beans for each 

plant in the study.  Harvest for DNA was done at the end of the study when plants were being 

harvested at 62-63 days after planting. Fresh stems were used to extract sap that would confirm 



27 

 

or deny the presence of CFF.  PCR cards had an indicator paper that would turn from pink to 

white when there was enough DNA to process. Stems were crushed with mortar and pestle to 

extract sap. Then the pestle was gently pressed against the indicator paper that was enclosed by a 

circle for each sample. Each circle was labelled to correspond with its treatment and replication. 

Between each sample mortar and pestle was sanitized with alcohol and was dried. DNA 

extraction began with non-inoculated plants followed by the inoculated plant treatments. 

WhatmanTM FTATM Classic cards were then dried and shipped to Dr. Leland Cseke’s lab in the 

Department of Biological Sciences at The University of Alabama in Huntsville for PCR analysis. 

Dr. Cseke lab used WhatmanTM FTATM Classic Card protocol (2010) to process the cards.  

2.10 Statistical Analyses 

 JMP 11 (SAS Cary, NC) software was used to analyze the differences in data in this 

study. The alpha was set at .05. All fixed effects for all analyses were limited to two way 

interactions. Analysis of Variance was used for measurements that were not repeated (Biomass 

and Last SA Harvest). Gas exchange, chlorophyll fluorescence, and first SA harvest were 

repeated measurements. Reduced maximum likelihood (REML) was used for repeated 

measurements. A random effect is used to verify there was not a problem with repeated 

measurements over time. The random effect used was time nesting within plant repetition. To 

determine differences F tests were analyzed within each interaction. These F tests were called 

‘Test Slices’ where differences were analyzed within an interaction. To further determine 

differences in data there were additional F tests were performed to contrast within an interaction. 

 Photosynthetic measurements and chlorophyll fluorescence had CFF Status, Time and 

Biocide terms interacting. The models were limited to two way interactions due to the 

complexity of interpreting 3 way interactions. There were times where a three way interaction 
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with CFF status, Time, and Biocide was necessary to determine differences within the three 

factors, but couldn’t be done due to the two way interaction limitation. The solution for this was 

doing three different analysis for each measurement of interest (photosynthetic or chlorophyll 

fluorescence). The first analysis had inoculated and non-inoculated plants analyzed together in 

order to determine what was happening with CFF status. The second were inoculated plants 

analyzed by themselves and the third was non-inoculated plants analyzed by themselves. 

 

Figure 1: Study Calendar for June 

 

SUNDAY

  CALENDAR YEAR / MONTH FIRST DAY OF WEEK

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

01 02 03 04 05 06 07

Spray Set A

(48 plants)

08 09 10 11 12 13 14

Spray Set B

(48 plants)
Fv/FM Set A Fv/Fm Set B

Inoculate Set A 

(24 plants)

Inoculate Set B

(24 plants)

Harvest SA Set A

Harvest SA Set B

15 16 17 18 19 20 21

Fv/Fm Set A

(48 plants)

Fv/Fm Set B

(48 plants)

22 23 24 25 26 27 28

29 30 01 02 03 04 05

2014 JUNE



29 

 

 

Figure 2: Study Calendar for July 

 

 

 

 

 

 

 

 

 

 

  

SUNDAY

  CALENDAR YEAR / MONTH FIRST DAY OF WEEK

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

29 30 01 02 03 04 05

Fv/Fm Set A

(48 plants)

Fv/Fm Set B

(48 plants)

06 07 08 09 10 11 12

Gas Exchange Set A

(24 plants) 

Gas Exchange Set A

(24 plants)

Gas Exchange Set B

(24 plants)

Gas Exchange Set B

(24 plants)

13 14 15 16 17 18 19

Gas Exchange Set A

(24 plants) 

Gas Exchange Set A

(24 plants) 

Gas Exchange Set B

(24 plants)

Gas Exchange Set B

(24 plants)

20 21 22 23 24 25 26

Harvest: Leaf Area,

Fresh Weight, Last 

SA Harvest 

Harvest: Leaf Area,

Fresh Weight, DNA 

Harvest: Leaf Area,

Fresh Weight, DNA

27 28 29 30 31 01 02

2014 JULY
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CHAPTER 3 RESULTS AND DISCUSSION 

 
 
 
3.1 Salicylic Acid First Harvest  

3.1.1 Free Salicylic Acid 

The first harvest of Free and Conjugate SA was collected 5 DAT (1 day after 

inoculation). The collection process was conducted over the course of 15 hours. Statistical 

analysis showed CFF status had no effect on Free SA for the first harvest (Appendix I). This 

indicates that 22-37 hours after inoculation was too early to see the interaction of the pathogen. 

There were interactions between leaf tissue collection time and biocide type (Appendix I). The 

water control plants did not show any difference in Free SA concentrations at any collection 

interval (Figure 3 and Table 2). Actigard also did not show a difference in concentration of Free 

SA from 0700 to 2200 hours. Actigard and water were not different from each other at all time 

collections. 
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Figure 3: Mean Free Salicylic Acid versus Leaf Collection Time 

Mean Free SA (ng/mg) at leaf collection in military time from 0700 to 2200 hours which totals 
six collection times. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, 
E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard error is 
represented by black error bars (n=24). 
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Table 2: First Harvest for Free Salicylic Acid 

Student T Test with an alpha of .05. The T test was done from the interaction of leaf collection 
time and biocide type. The level is ordered by leaf collection time (military time) and then 
followed by biocide treatment (n=24). On the right side of the table is the least squares means of 
Free Salicylic (ng/mg). All levels that are not attached by the same letter are significantly 
different. 

Level                     Least Squares Mean 

700,Actigard 62 mg/l               H I J 0.3491667 

700,E-B 200 mg/l       D E           1.5970833 

700,E-B 400 mg/l A                   4.0582655 

700,Water                 I J 0.2695833 

1000,Actigard 62 mg/l             G H I J 0.4887500 
1000,E-B 200 mg/l           F G       0.9525000 
1000,E-B 400 mg/l   B C D             2.0658333 
1000,Water                   J 0.2575000 
1300,Actigard 62 mg/l                   J 0.2091667 
1300,E-B 200 mg/l           F G H I   0.7491667 
1300,E-B 400 mg/l     C D             1.8817345 
1300,Water                   J 0.1687003 
1600,Actigard 62 mg/l                   J 0.1916667 
1600,E-B 200 mg/l           F         1.0308333 
1600,E-B 400 mg/l   B                 2.5516667 
1600,Water                   J 0.1556568 
1900,Actigard 62 mg/l                   J 0.2325000 
1900,E-B 200 mg/l         E F         1.1683333 
1900,E-B 400 mg/l   B C               2.1512500 
1900,Water                   J 0.2037500 
2200,Actigard 62 mg/l                   J 0.2350000 
2200,E-B 200 mg/l           F G H     0.8025000 
2200,E-B 400 mg/l         E F         1.2029167 
2200,Water                   J 0.1491667 

 

Leaf tissue treated with E-B 400 mg ClO2 l-1 had a greater concentration of Free SA 

compared to all other spray treatments (Figure 3 and Table 2). Plants treated with both 

concentrations of E-B spray treatments had an increase of Free SA. E-B 400 mg ClO2 l-1 had the 

greatest level of Free SA at 0700 hours. It was a 15 fold greater than the water control at 0700 

hours. The leaf tissue collected at 1000 through 1900 hours had similar levels of Free SA, but 

lower than what was measured at 0700 (Table 2). The lowest Free SA concentration for the E-B 
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400 mg ClO2 l-1 treated plants was at 2200 hours, but was still an 8 fold greater when compared 

to the water control at 2200 hours. E-B 400 mg ClO2 l-1 was consistently higher than Actigard 

and water treated plants from 0700 to 2200 hours. At 2200 hours E-B 400 mg ClO2 l-1 was not 

different from E-B 200 mg ClO2 l-1 treated plants, but was much greater in concentration for 

other time collections. Leaf tissue treated with E-B 200 mg ClO2 l-1 had the second greatest 

concentration of Free SA. Leaf tissue treated with E-B 200 mg ClO2 l-1 and collected at 0700 

hours was 2.5 fold lower in concentration of Free SA than tissue treated with E-B 400 mg ClO2 l-

1, but it was 5.9 fold greater than the water control. When compared to E-B 400 mg ClO2 l-1, 

generally E-B 200 mg ClO2 l-1 had Free SA concentrations that were 2.2- 2.5 fold decrease from 

0700 to 1600 hours. This may indicate that the doubling in concentration from 200 mg ClO2 l-1 to 

400 mg ClO2 l-1 is highly correlated to the increase of Free SA response. E-B 200 mg ClO2 l-1 

was higher than water treated plants for all collections times. 

3.1.2 Conjugate Salicylic Acid 

The first harvest for Conjugate SA showed interactions between leaf tissue collection 

time and CFF wilt status; and leaf tissue collection time and biocide type (Appendix I). The 

interaction with leaf tissue collection time and biocide showed that at each collection time there 

were differences between the biocides (Figure 4 and Table 3). CFF wilt status was not significant 

as a major effect. When all the biocides are combined the inoculated plants were lower in 

Conjugate SA concentrations than non-inoculated plants at 0700 hours and 1600 hours. 

However, there was no interaction with CFF wilt status and biocide type. For each individual 

biocide there were no differences between inoculated and non-inoculated plants in their 

Conjugate SA concentrations. Since there were no differences for each biocides whether they 

were inoculated or not indicates that it was too early to detect the CFF influence. 
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Actigard and water were not different from each other for all leaf tissue collection times 

whether they were inoculated or not (Figure 4 and Table 3). The lack of Free and Conjugate SA 

concentrations for Actigard is likely due to ASM being a functional analog of SA. It doesn’t 

necessarily induce a SA response without the recognition of a pathogen. E-B on the other hand 

does induce an SA response due to the ROS interaction within the plant (Sharma et al., 1996).  

Since the first harvest for SA was too early for interaction with the CFF there was not a response 

with water control or Actigard treated plants. If the interaction of CFF would have been present 

there may have been some differences with the water control. 

 

Figure 4: Mean Conjugate Salicylic Acid versus Leaf Collection Time  

Mean Conjugate SA (ng/mg) at leaf collection in military time from 0700 to 2200 hours which is 
a total of six collection times. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented 
by the red, E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. 
Standard error is represented by black error bars (n=24). 
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Table 3: First Harvest for Conjugated Salicylic Acid 

Student T Test with an alpha of .05. The T test was done from the interaction of leaf collection 
time and biocide type. The level is ordered by leaf collection time (military time) and then 
followed by Biocide treatment (n=24). On the right side of the table is the least squares means of 
Conjugate SA (ng/mg). All levels that are not attached by the same letter are significantly 
different. 

Level                 Least Squares Mean 

700,Actigard 62 mg/l               H 0.912917 

700,E-B 200 mg/l           F G   2.520417 

700,E-B 400 mg/l   B             8.963988 

700,Water             G H 1.046667 

1000,Actigard 62 mg/l             G H 1.816250 
1000,E-B 200 mg/l         E       4.172083 
1000,E-B 400 mg/l     C           7.296250 
1000,Water               H 0.775417 
1300,Actigard 62 mg/l               H 0.668333 
1300,E-B 200 mg/l     C           6.391250 
1300,E-B 400 mg/l A               13.574436 
1300,Water               H 0.406282 
1600,Actigard 62 mg/l               H 0.617500 
1600,E-B 200 mg/l       D E       4.459167 
1600,E-B 400 mg/l   B             10.153333 
1600,Water               H 0.321555 
1900,Actigard 62 mg/l               H 0.735000 
1900,E-B 200 mg/l         E F     3.602917 
1900,E-B 400 mg/l     C D         5.861250 
1900,Water               H 0.865417 
2200,Actigard 62 mg/l               H 1.008750 
2200,E-B 200 mg/l         E F     3.626250 
2200,E-B 400 mg/l     C           6.113333 
2200,Water               H 0.459167 
 

Both E-B treatments had the greatest concentration of Conjugate SA (Figure 4 and Table 

3). Conjugate SA showed E-B 400 mg ClO2 l-1 having the highest Conjugate SA and E-B 200 mg 

ClO2 l-1 having the second highest. E-B 400 mg ClO2 l-1 had its highest peak of Conjugate SA at 

1300 hours. The difference in water and E-B 400 mg ClO2 l-1 at this peak was a 33.1 fold 

increase for E-B 400 mg ClO2 l-1. E-B 200 mg ClO2 l-1 had the second highest concentration and 
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had its peak at 1300 hours. This was a 15.6 fold increase for E-B 200 mg ClO2 l-1 at 1300 when 

compared to water control.  

The Conjugate SA was much higher in E-B treatments compared to water. This shows 

that the plants were still actively producing SA 5 DAT and the Free SA was not converted from a 

previous Conjugate SA reservoir. Previous studies have shown that SA accumulation is 

necessary to acquire SAR and produce parthenogenesis-related proteins (D'Maris Amick 

Dempsey  2010, Kumar, 2014, Zhang et al., 2004, Gaffney 1993). The SA accumulation indicate 

that the plants were successfully primed for SAR prior to inoculation for E-B 200 mg ClO2 l-1 

and E-B 400 mg ClO2 l-1. Plants treated with the oxidant ozone showed the same increase in SA 

accumulation and showed important defense genes were being produced  (Sharma et al., 1996). 

3.2 Salicylic Acid Second Harvest  

 The second harvest for SA analysis was taken at the end of the study at 61 days after 

planting (44 DAT). There was one collection per plant. Non-inoculated E-B 400 mg ClO2 l-1 and 

E-B 200 mg ClO2 l-1 had a SA response at the first harvest, but the last harvest shows that SA 

levels went back down to the same concentration as the control. The only difference in Free SA 

concentrations were between inoculated and non-inoculated plants (Figure 5 and Table 4). All 

non-inoculated Actigard, E-B 200 mg ClO2 l-1, E-B 400 mg ClO2 l-1 and water treatments had no 

difference in Free and Conjugate SA for the last harvest (Figure 5 & 6). This agrees with other 

studies indicating dicot plants may need to have multiple spray treatments to have protection. 

Future studies can research when the Free SA concentrations for E-B treatment go down to after 

application of ClO2 and when to reapply. 
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Figure 5: Mean Free Salicylic Acid for Second Harvest 

 Mean Free SA (ng/mg) for one collection time at the end of the study (61 days after planting). 
The graph is separated by CFF status with non-inoculated on the left and inoculated plants on the 
right. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, E-B 400 mg 
ClO2 l-1 represented by the green and water represented by purple. Standard error is represented 
by black error bars (n=12). 
 

Table 4: Second Harvest for Free Salicylic Acid 

Student T Test with an alpha of .05. The T test is done for CFF status. The level is ordered by 
inoculation status (yes or no) (n=12). CFF status was the only difference for Free SA on the 
second harvest. On the right side of the table is the least squares means of Free SA (ng/mg) for 
second harvest. All levels that are not attached by the same letter are significantly different. 

Level     Least Sq Mean 

Yes A   6.5606250 
No   B 0.4085417 
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Figure 6: Mean Conjugate Salicylic Acid for Second Harvest 

Mean Conjugate SA (ng/mg) for one collection time at the end of the study (61 days after 
planting). The graph is separated by CFF status with non-inoculated on the left and inoculated 
plants on the right. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, 
E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard error is 
represented by black error bars (n=12). 
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Table 5: Second Harvest for Conjugate Salicylic Acid 

Student T Test with an alpha of .05. The T test was done from the interaction of CFF status and 
biocide type. The level is ordered by inoculation status (yes or no) and then followed by Biocide 
treatment (n=12). On the right side of the table is the least squares means for Conjugate SA 
(ng/mg) for second harvest. All levels that are not attached by the same letter are significantly 
different. 

Level             Least Squares Mean 

Yes, E-B 200 mg/l A         38.748333 
Yes, Water A         37.505000 
Yes, E-B 400 mg/l   B       27.486667 
Yes, Actigard 62 mg/l     C     11.862500 
No, Water       D   2.919167 
No, E-B 200 mg/l       D   1.396667 
No, E-B 400 mg/l       D   1.365000 
No, Actigard 62 mg/l       D   1.060833 
  

  The SA response for inoculated plants continued to climb in all biocide treatments when 

compared to the first harvest. Inoculated Actigard and control treated plants at the first harvest 

did not show any responses for the first harvest due to being too early for wilt interaction (Figure 

3 & 4). At the last harvest both Actigard and Control inoculated plants rose in SA levels for both 

Free and Conjugate SA (Table 4 and 5). 

  Inoculated E-B 200 mg ClO2 l-1 and water control plants had the highest mean 

concentrations for Conjugate SA and were not different from each other (Figure 6 and Table 5). 

The second highest in Conjugate SA was with E-B 400 mg ClO2 l-1 treated plants. Inoculated 

Actigard had the lowest of all spray treatments. The high concentrations indicate the plants were 

still fighting hard to combat CFF. 

3.3 Salicylic Acid Conclusions 

 The first harvest for SA measurements showed that both E-B treatments had an increase 

in both Free and Conjugate SA. This agrees with the hypothesis made that E-B would activate a 
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SA response. These results show that when E-B is sprayed onto foliage it is able to be taken in 

and interact within leaves to elicit a SA response. SA is crucial for inducing a SAR response to 

protect plants from harmful pathogens. The first harvest was too early to see the CFF influence 

one day after inoculation for Free and Conjugate SA. This concludes that the Free and Conjugate 

responses were due to the E-B treatment given to the plants. The spray treatment was 5 days 

before leaf tissue was harvested for SA measurements. The results showed plants treated with E-

B were still actively producing SA. The water control plants confirmed this result since the Free 

and Conjugate SA concentrations were nominal and never changed in concentration. These 

results show that E-B elicits a SA response for protection for at least 5 days after spraying and it 

could help fight possible infections in the horticulture industry. Also, E-B has a two part defense 

system to protect plants. First is the oxidizing power of chlorine dioxide to kill pathogens on the 

surface of the plants foliage, but also elicit a SA response that will heighten the plant defenses 

from future infections.  

 The last harvest that was done at the end of the study 44 DAT (62 days after planting) 

showed that all non-inoculated plants had nominal SA concentrations for both Free and 

Conjugate SA. The preliminary study prior to this one had a non-inoculated control with 

increased SA concentrations at the end of the study. This result confirms that the non-inoculated 

control in the preliminary study should have not been as high as it was and was more than likely 

due to a pathogen infection which would account for its low biomass weight. Since the non-

inoculated treatments for this study all were down to normal levels of SA concentration this 

indicates that E-B would need multiple sprays in order to have protection over long periods of 

time. At 5 days after treatment E-B plants were still producing SA for protection. Future studies 

will need to find out at what time does the SA response stop and what time interval would be 
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best for spray treatments for constant protection. The inoculated plants all showed an increase in 

both Free and Conjugate SA. Preliminary research showed inoculated control plants had a rise in 

SA and this study also confirms that plants have a rise in SA to combat CFF infection.   

3.4 Photosynthesis Measurements  

 There were repeated measurements for photosynthetic measurements (photosynthesis 

rates, instantaneous water use efficiency, transpiration, and stomatal conductance). These 

measurements were taken 32 and 39 DAT. The inoculated and non-inoculated plants were 

analyzed together to get an understanding of what happened with photosynthesis rates between 

the two. The fit model was limited to two way interactions due to the complexity of analyzing 

three way interactions. This means analyzing biocide treatment, time, and CFF status could not 

be analyzed at once. The data was first analyzed with both inoculated and non-inoculated plants 

to get an understanding of what was happening between the two. The inoculated and non-

inoculated were then analyzed again separately to obtain the differences within biocides and days 

after treatment for all photosynthetic measurements and chlorophyll fluorescence. 

 When inoculated and non-inoculated plants were analyzed together there were 

interactions with biocide type and CFF inoculation status, and with DAT and biocide type. The 

results showed that generally the non-inoculated plants had higher photosynthesis rates (mol CO2 

m-2 s-1) than the non-inoculated when combined both measurement dates (Figure 7 and Table 6). 

The only exception was E-B 400 mg l-1 ClO2, which did not have a difference in photosynthesis 

rates between inoculated and non-inoculated plants. The water control and Actigard treatments 

showed a general decline in photosynthesis over time (inoculated and non-inoculated combined) 

(Table 7). E-B 200 mg l-1 ClO2 and E-B 400 mg l-1 ClO2 stayed the same from 32 to 39 DAT 

(Table 7). 
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Figure 7: Mean Photosynthesis versus Days after Treatment 

Mean photosynthesis assimilation (µmol CO2 m-1 s-1) on the y axis versus days after treatment 
along the x axis. The graph is separated by biocide treatment Actigard, E-B 200 mg ClO2 l-1, E-B 
400 mg ClO2 l-1 and water. Inoculated plants are represented in orange and non-inoculated plants 
are represented in blue. Standard error is represented by black error bars (n=12). 
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Table 6: Photosynthesis: Biocide Type and CFF Inoculation Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of CFF status and 
biocide type. The level is ordered by biocide treatment and then followed by CFF status (yes for 
inoculated or no non-inoculated) (n=12). On the right side of the table is the least squares means 
for photosynthesis rates (µmol CO2 m-1 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level         Least Squares Mean 

Actigard 62 mg/l, no A       14.707063 
Water, no A B     14.173953 
Electro-Biocide 400 mg/l, no A B C   13.830455 
Electro-Biocide 200 mg/l, no   B C   13.083282 
Electro-Biocide 400 mg/l, yes     C   12.684161 
Electro-Biocide 200 mg/l, yes       D 11.215135 
Water, yes       D 10.694133 
Actigard 62 mg/l, yes       D 10.453664 
 

Table 7: Photosynthesis: Days after Treatment and Biocide Type Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by biocide 
type (n=12). On the right side of the table is the least squares means for photosynthesis rates 
(µmol CO2 m-1 s-1). All levels that are not attached by the same letter are significantly different. 

Level           Least Squares Mean 

32,Actigard 62 mg/l A         14.854716 
32,Electro-Biocide 200 mg/l     C     12.427030 
32,Electro-Biocide 400 mg/l A B       13.808314 
32,Water A         14.085261 
39,Actigard 62 mg/l         E 10.306010 
39,Electro-Biocide 200 mg/l     C D   11.871387 
39,Electro-Biocide 400 mg/l   B C     12.706303 
39,Water       D E 10.782825 
 

3.4.1 Photosynthesis Non-inoculated Plants  

 At 32 DAT photosynthesis rates for plants that were not inoculated with CFF showed E-

B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 had a decline below control and Actigard (Figure 8 

and Table 8). E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 were not different from each other. 

When compared to water control E-B 200 and E-B 400 mg ClO2 l-1 had about 14% decrease. 
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Plants treated with Actigard and water were not different from each other at 32 DAT. At 39 DAT 

Actigard, E-B 200 mg ClO2 l-1, and water treatments for non-inoculated plants had 

photosynthetic rates that were not different (Table 8). Non-inoculated E-B 400 mg ClO2 l-1 had 

the greater photosynthesis rate at 39 DAT than non-inoculated water control and E-B 200 mg 

ClO2 l-1 treatments. This indicates that the decline that E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 

l-1 had at 32 DAT had fully recovered by 39 DAT. The photosynthesis rates for Actigard and 

water declined from 32 DAT to 39 DAT (Figure 8). The decline to non-inoculated water control 

was probably due to the short life span of this bush type kidney beans, which spanned 

approximately two months. Previous research has shown that photosynthesis declines as plants 

mature and enter senescence. E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 did not decline from 

32 to 39 DAT.  
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Figure 8:  Non-inoculated Mean Photosynthesis versus Days after Treatment  

Mean photosynthesis assimilation (µmol CO2 m-1 s-1) for non-inoculated plants on the y axis 
versus days after treatment along the x axis. Actigard is represented by blue, E-B 200 mg ClO2 l-1 

represented by the red, E-B 400 mg ClO2 l-1 represented by the green and water represented by 
purple. Standard error is represented by black error bars (n=12). 
 

Table 8. Non-inoculated Plant Photosynthesis   

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by Biocide 
treatment (n=12). On the right side of the table is the least squares means for non-inoculated 
photosynthesis rates (µmol CO2 m-1 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level       Least Squares  Mean 

32,Actigard 62 mg/l A     16.835511 
32,Electro-Biocide 200 mg/l   B C 13.719935 
32,Electro-Biocide 400 mg/l   B C 13.629386 
32,Water A     15.887143 
39,Actigard 62 mg/l   B C 12.578614 
39,Electro-Biocide 200 mg/l     C 12.446629 
39,Electro-Biocide 400 mg/l   B   14.031524 
39,Water     C 12.460762 
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3.4.2 Photosynthesis Inoculated Plants  

 E-B 200 mg ClO2 l-1 inoculated plants at 32 DAT resulted in photosynthesis rates that 

were lower than E-B 400 mg ClO2 l-1 (Figure 9 and Table 9). E-B 200 mg l-1 ClO2 was not 

different from Actigard and water control plants. Actigard, E-B 400 mg ClO2 l-1 and water did 

not show any differences from each other in photosynthetic rates. When comparing E-B 200 mg 

ClO2 l-1 mean photosynthesis to E-B 400 mg ClO2 l-1 there was a 21% decrease. 

 

Figure 9:  Inoculated Mean Photosynthesis versus Days after Treatment  

Mean photosynthesis assimilation (µmol CO2 m-1 s-1) for inoculated plants on the y axis versus 
days after treatment along the x axis. Actigard is represented by blue, E-B 200 mg ClO2 l-1 

represented by the red, E-B 400 mg ClO2 l-1 represented by the green and water represented by 
purple. Standard error is represented by black error bars (n=12). 
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Table 9. Inoculated Plant Photosynthesis  

Student T Test with an alpha of .05. The T test was done from the interaction days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by Biocide 
treatment (n=12). On the right side of the table is the least squares means for photosynthesis rates 
(µmol CO2 m-1 s-1) for inoculated plants. All levels that are not attached by the same letter are 
significantly different. 

Level         Least Squares Mean 

32,Actigard 62 mg/l A B     12.873921 
32,Electro-Biocide 200 mg/l   B C   11.013357 
32,Electro-Biocide 400 mg/l A       13.987241 
32,Water A B     12.283378 
39,Actigard 62 mg/l       D 8.033407 
39,Electro-Biocide 200 mg/l   B     11.296144 
39,Electro-Biocide 400 mg/l   B     11.381082 
39,Water     C D 9.104889 
 

 At 39 DAT Actigard and water treatments were not different than each other (Table 9). 

E-B 400 mg ClO2 l-1 and E-B 200 mg ClO2 l-1 plants had the greatest photosynthesis rate of all 

treatments. E-B 400 mg ClO2 l-1 and E-B 200 mg ClO2 l-1 were not different from each other, and 

resulted in a 24-25% increase when compared to the water control plants. E-B 400 mg ClO2 l-1 

and E-B 200 mg ClO2 l-1 having greater photosynthesis rates than inoculated water treatment may 

indicate that the plants were dealing better with CFF infection due to priming, which resulted in 

being able to photosynthesize more efficiently. Overall all inoculated biocide treatment’s 

photosynthesis showed a decrease from 32 to 39 DAT. The exception was E-B 200 mg ClO2 l-1 

photosynthesis rate’s stayed the same from 32 DAT to 39 DAT. 

3.5 Instantaneous Water Use Efficiency 

 There were interactions with DAT and CFF status, biocide and CFF status, and DAT and 

biocide when inoculated and non-inoculated plants were analyzed together for water use 

efficiency (WUE). At 32 and 39 DAT the inoculated and non-inoculated plants were different 
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from each other (Figure 10 and Table 10).  Non-inoculated (all biocides combined) plants had a 

difference from 32 DAT measurement to 39 DAT. The inoculated plant’s WUE measurements 

were not different from 32 to 39 DAT (Table 10). For each biocide there were differences 

between the inoculated and non-inoculated plants (Table 11). When plants were inoculated they 

had a higher WUE than their non-inoculated counter parts (Table 11). There were differences 

among biocides for each measurement date (Table 12). The details of each biocide at different 

measurement dates will be discussed more thoroughly in the next two sections where inoculated 

and non-inoculated plants are examined separately.  
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Figure 10: Mean Water Use Efficiency versus Days after Treatment  

Mean instantaneous water use efficiency (WUE) (µmol CO2 mol-1 H2O) on the y axis versus 
days after treatment along the x axis. The graph is separated by biocide type: Actigard, E-B 200 
mg ClO2 l-1, E-B 400 mg ClO2 l-1and water. Inoculated plants with CFF are in orange and non-
inoculated plants are in blue. Standard error is represented by black error bars (n=12). 
 

Table 10: Water Use Efficiency: Days after Treatment and CFF Status Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and CFF status. The level is ordered by DAT and then followed by inoculation 
status (yes or no) (n=12). On the right side of the table is the least squares means for water use 
efficiency (µmol CO2 mol-1 H2O). All levels that are not attached by the same letter are 
significantly different. 

 

 

 

Level       Least Squares Mean 

32,no     C 0.29480779 
32,yes A     0.48126476 
39,no   B   0.34631380 
39,yes A     0.45336392 
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Table 11: Water Use Efficiency: Biocide Type and CFF Status Interaction 

Student T Test with an alpha of .05. The T test was done from biocide type and CFF inoculation 
status (yes or no). The level is ordered by biocide treatment and then followed by inoculation 
status (n=12). On the right of table is the least squares means for water use efficiency (µmol CO2 
mol-1 H2O). All levels that are not attached by the same letter are significantly different. 

Level         Least Squares Mean 

Actigard 62 mg/l, no       D 0.27707934 
Actigard 62 mg/l, yes     C   0.37121578 
Electro-Biocide 200 mg/l, no     C   0.35081161 
Electro-Biocide 200 mg/l, yes A       0.55391700 
Electro-Biocide 400 mg/l, no       D 0.29538715 
Electro-Biocide 400 mg/l, yes   B     0.42005516 
Water, no     C   0.35896507 
Water, yes A       0.52406942 
 

Table 12: Water Use Efficiency: Days after Treatment and Biocide Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by Biocide 
treatment (n=12). On the right of table is the least squares means of water use efficiency (µmol 
CO2 mol-1 H2O). All levels that are not attached by the same letter are significantly different. 

Level       Least Squares Mean 

32,Actigard 62 mg/l     C 0.31799496 
32,Electro-Biocide 200 mg/l   B   0.42648595 
32,Electro-Biocide 400 mg/l     C 0.31879084 
32,Water A     0.48887335 
39,Actigard 62 mg/l     C 0.33030016 
39,Electro-Biocide 200 mg/l A     0.47824267 
39,Electro-Biocide 400 mg/l   B   0.39665147 
39,Water   B   0.39416115 
 

 3.5.1 Non-inoculated Plants Water Use Efficiency 

 At 32 DAT non-inoculated plants showed that the water treatment had the highest WUE 

(µmol CO2 mol-1 H20) and E-B 200 mg ClO2 l-1 had the second highest (Figure 11 and Table 13). 

E-B 200 mg ClO2 l-1 mean WUE was an 11% reduction when compared to control water. E-B 

400 mg ClO2 l-1 and Actigard didn’t have differences in WUE from each other.  
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 At 39 DAT non-inoculated E-B 200 mg ClO2 l-1, E-B 400 mg ClO2 l-1, and water plants 

were not different from each other (Table 13). Actigard WUE was lower than all other treatments 

at 39 DAT.  Actigard, E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 all increased in WUE from 

32 DAT to 39 DAT (Table 13). Water did not change in WUE from 32 DAT to 39 DAT.  

 

Figure 11: Non-inoculated Mean Water Use Efficiency versus Days after Treatment  

Mean instantaneous water use efficiency (µmol CO2 mol-1 H2O) for non-inoculated plants on the 
y axis versus days after treatment along the x axis. Actigard is represented by blue, E-B 200 mg 
ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1 represented by the green and water 
represented by purple. Standard error is represented by black error bars (n=12). 
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Table 13: Non-Inoculated Water Use Efficiency  

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type with only inoculated plants. The level is ordered by DAT and 
then followed by Biocide treatment (n=12). On the right side of the table is the least squares 
means for non-inoculated water use efficiency (µmol CO2 mol-1 H2O). All levels that are not 
attached by the same letter are significantly different. 

Level         Least Squares Mean 

32,Actigard 62 mg/l       D 0.25778835 
32,Electro-Biocide 200 mg/l   B C   0.32011496 
32,Electro-Biocide 400 mg/l       D 0.23836251 
32,Water A       0.36296533 
39,Actigard 62 mg/l     C   0.29637034 
39,Electro-Biocide 200 mg/l A       0.38150826 
39,Electro-Biocide 400 mg/l A B     0.35241179 
39,Water A B     0.35496481 
 

3.5.2 Inoculated Plants Water Use Efficiency 

 At 32 DAT inoculated E-B 200 mg ClO2 l-1 WUE was lower than water but was higher 

than Actigard and E-B 400 mg ClO2 l-1(Figure 12 and Table 14) E-B 200 mg ClO2 l-1 had a 13% 

decrease when compared to inoculated water treatment’s WUE. Actigard and E-B 400 mg ClO2 l-

1 were not different from each other at 32 DAT. Actigard had a 38% decrease and E-B 400 mg 

ClO2 l-1 had a 34% decrease in WUE when compared to inoculated water treatment. 
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Figure 12: Inoculated Mean Water Use Efficiency versus Days after Treatment  

Mean instantaneous water use efficiency (µmol CO2 mol-1 H2O) for inoculated plants on the y 
axis versus days after treatment along the x axis. Actigard is represented by blue, E-B 200 mg 
ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1 represented by the green and water 
represented by purple. Standard error is represented by black error bars (n=12). 
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Table 14: Inoculated Water Use Efficiency 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type for inoculated plants. The level is ordered by DAT and then 
followed by Biocide treatment (n=12). On the right side of the table is the least squares means 
for inoculated water use efficiency (µmol CO2 mol-1 H2O). All levels that are not attached by the 
same letter are significantly different. 

Level         Least Squares Mean 

32,Actigard 62 mg/l     C D 0.37820158 
32,Electro-Biocide 200 mg/l   B     0.54094416 
32,Electro-Biocide 400 mg/l     C D 0.39921917 
32,Water A       0.61478137 
39,Actigard 62 mg/l       D 0.36422997 
39,Electro-Biocide 200 mg/l A B     0.57497707 
39,Electro-Biocide 400 mg/l     C   0.44089115 
39,Water     C   0.43335748 
 

 At 39 DAT E-B 200 mg ClO2 l-1 had the highest WUE (Table 14). The second highest 

WUE was water and E-B 400 mg ClO2 l-1 which were equivalent. E-B 200 mg ClO2 l-1 had a 33% 

increase in WUE when compared to inoculated water. The lowest WUE for inoculated plants 

was observed for plants treated with Actigard. Inoculated Actigard plant’s WUE had a 16% 

decrease when compared to inoculated water control. Inoculated Actigard, E-B 200 mg ClO2 l-1, 

and E-B 400 mg ClO2 l-1 WUE remained constant from 32 DAT to 39 DAT. Inoculated water 

had a decrease WUE from the first measurement at 32 DAT to 39 DAT. The increase WUE in 

inoculated plants is a result of a decrease in transpiration rates due to needing to conserve water 

(Jones, 2013). Instantaneous WUE is calculated by the ratio of photosynthesis assimilation to 

transpiration, which would explain why CFF inoculated plants WUE would be higher. CFF is a 

vascular wilt that causes a drought like stress by clogging the vascular system (Agarkova et al., 

2012; Yadeta and Thomma, 2013). The plants try to conserve water due to the deficit and close 

their stomata. The lower stomatal conductance then conserves the needed water by transpiring 

less, but also reduces the photosynthesis rate. These results agree with Lorenzini et al. (1997) 



55 

 

which shows that the tomato vascular wilt resulted in a decrease in photosynthesis and an 

increase in WUE. 

 3.6 Stomatal Conductance 

 When plants were analyzed together there were interactions there were interactions with 

biocide and CFF status and with DAT and Biocide (Appendix II). The non-inoculated plants had 

a greater stomatal conductance rates than non-inoculated plants with all biocide treatments 

(Figure 13 and Table 15). The non-inoculated plants showed that E-B 400 mg ClO2 l-1 and E-B 

200 mg ClO2 l-1 treatments had greater stomatal conductance than Actigard and water control 

treatments (when DAT combined). Inoculated plants showed that E-B 400 mg ClO2 l-1 had the 

greatest stomatal conductance when compared to other inoculated treatments (with DAT 

combined).  
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Figure 13: Mean Stomatal Conductance versus Days after Treatment  

 Mean stomatal conductance (mol H2O m-2 s-1) on the y axis versus days after treatment along the 
x axis. The graph is separated by CFF status with non-inoculated on the left and inoculated 
plants on the right. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, 
E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard error is 
represented by black error bars (n=12). 
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Table 15: Stomatal Conductance: Biocide and CFF Status Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of CFF status and 
biocide type. The level is ordered by biocide treatment and then followed by inoculation status 
(yes or no) (n=12). On the right side of the table is the least squares means of stomatal 
conductance (mol H2O m-2 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level           Least Squares Mean 

Actigard 62 mg/l, no     C     0.27447964 
Actigard 62 mg/l, yes         E 0.12655575 
Electro-Biocide 200 mg/l, no   B       0.33880103 
Electro-Biocide 200 mg/l, yes         E 0.14937921 
Electro-Biocide 400 mg/l, no A         0.38588196 
Electro-Biocide 400 mg/l, yes       D   0.19036732 
Water, no     C     0.27394894 
Water, yes         E 0.13036276 
 

 Actigard, E-B 400 mg ClO2 l-1, and water showed that their 32 DAT measurements for 

stomatal conductance were different from their 39 DAT measurements when inoculated and non-

inoculated plants are combined (Table 16). E-B 200 mg ClO2 l-1 did not show a difference in 

measurements from 32 DAT to 39 DAT (CFF status combined).  DAT and CFF status will be 

discuss more in the inoculated and non-inoculated analysis in the next two sections.  

Table 16: Stomatal Conductance: Days after Treatment and Biocide Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and followed by biocide 
treatment (n=12). On the right side of the table is the least squares means for stomatal 
conductance (mol H2O m-2 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level         Least Squares Mean 

32,Actigard 62 mg/l     C   0.23575611 
32,Electro-Biocide 200 mg/l   B C   0.24550504 
32,Electro-Biocide 400 mg/l A       0.30489991 
32,Water     C   0.22150900 
39,Actigard 62 mg/l       D 0.16527928 
39,Electro-Biocide 200 mg/l   B C   0.24267520 
39,Electro-Biocide 400 mg/l   B     0.27134938 
39,Water       D 0.18280269 
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3.6.1 Non-inoculated Stomatal Conductance Measurements 

 The non-inoculated stomatal conductance analysis resulted in the DAT and biocide 

treatment interaction being not significant (Appendix II). DAT and biocide treatment were 

significant by themselves. The DAT showed that generally the (biocides combined) stomatal 

conductance at 32 DAT was greater than the stomatal conductance at 39 DAT (Figure 14 and 

Table 17). Biocides treatments showed that E-B 400 mg ClO2 l-1 had the greatest stomatal 

conductance (Table 18). E-B 200 ClO2 l-1 had the second greatest conductance. Actigard and 

water treated plants had the lowest stomatal conductance and were not different than each other.  

 

Figure 14: Non-inoculated Mean Stomatal Conductance versus Days after Treatment  

Mean stomatal conductance (mol H2O m-2 s-1) on the y axis for non-inoculated plants with days 
after treatment along the x axis. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented 
by the red, E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. 
Standard error is represented by black error bars (n=12). 
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Table 17: Non-inoculated Stomatal Conductance for Days after Treatment  

Student T Test with an alpha of .05. The T test was done days after treatment (DAT) only 
(n=12). On the right side of the table is the least squares means for non-inoculated stomatal 
conductance (mol H2O m-2 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level     Least Squares Mean 

32 A   0.33899984 
39   B 0.29780004 
 

Table 18: Non-inoculated Stomatal Conductance for Biocide Treatment  

Student T Test with an alpha of .05. The T test was done for biocide type only (yes or no) 
(n=12). On the right side of the table is the least squares means of non-inoculated stomatal 
conductance (mol H2O m-2 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level       Least Squares Mean 

Electro-Biocide 400 mg/l A     0.38588196 
Electro-Biocide 200 mg/l   B   0.33548712 
Water     C 0.27775104 
Actigard 62 mg/l     C 0.27447964 
 

3.6.2 Inoculated Stomatal Conductance Measurements 

 The inoculated analysis showed that DAT and biocide did have an interaction with each 

other (Appendix II). At 32 DAT Actigard and E-B 400 mg ClO2 l-1 were not different from each 

other (Figure 15 and Table 19). Both E-B 400 mg ClO2 l-1 and Actigard were higher than E-B 

200 mg ClO2 l-1 stomatal conductance. E-B 400 mg ClO2 l-1 was higher than the water control 

treatment plants. E-B 200 mg ClO2 l-1 was equal to water control treatments. At 39 DAT the E-B 

400 mg ClO2 l-1 and E-B 200 mg ClO2 l-1 treated plants had the highest stomatal conductance. 

Inoculated E-B 200 mg ClO2 l-1  and E-B 400 mg ClO2 l-1  had a 55% increase when compared to 

inoculated water control treatments. Actigard and water treatments were not different from each 

other. Actigard and water treatments plants showed a decrease in stomatal conductance from 32 
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DAT to 39 DAT. E-B 200 mg ClO2 l-1  showed an increase of stomatal conductance from 32 to 

39 DAT. E-B 400 mg ClO2 l-1 did not change in stomatal conductance from 32 to 39 DAT. 

 

Figure 15: Inoculated Mean Stomatal Conductance versus Days after Treatment  

 Mean stomatal conductance (mol H2O m-2 s-1) on the y axis for inoculated plants with days after 
treatment along the x axis. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by 
the red, E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard 
error is represented by black error bars (n=12). 
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Table 19: Inoculated Stomatal Conductance  

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by biocide 
type (n=12). On the right side of the table is the least squares means of inoculated stomatal 
conductance (mol H2O m-2 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level           Least Squares Mean 

32,Actigard 62 mg/l A B       0.17397599 
32,Electro-Biocide 200 mg/l     C D   0.12507648 
32,Electro-Biocide 400 mg/l A         0.20978013 
32,Water   B C     0.15099356 
39,Actigard 62 mg/l         E 0.07913551 
39,Electro-Biocide 200 mg/l A B       0.17319096 
39,Electro-Biocide 400 mg/l A B       0.17095452 
39,Water       D E 0.10973195 
 

3.7 Transpiration Measurements  

 When inoculated and non-inoculated plants were analyzed together there were 

interactions with DAT and CFF status, biocide type and CFF status, and DAT and biocide type 

(Appendix II). The inoculated and non-inoculated plants (biocides combined) were different 

from each other on 32 DAT and again at 39 DAT (Figure 16 and Table 20). There were also 

decline in transpiration rate for inoculated plants when they went from 32 to 39 DAT. The same 

was true for non-inoculated plants (Table 20).  Each biocide’s inoculated and non-inoculated 

transpiration rates were different from each other (Table 21). The for all biocide treatments the 

non-inoculated was higher in transpiration rates than their inoculated counter parts. The DAT 

and biocide type interaction showed that there were differences within biocides at 32 DAT and 

again at 39 DAT (Table 22). For each individual biocide there were differences from 32 DAT to 

39 DAT. The DAT and biocide treatment will be discussed further in the next two sections for 

inoculated and non-inoculated analyses. 
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Figure 16: Mean Transpiration versus Days after Treatment 

 Mean transpiration rates (mmol H2O m-2 s-1) on the y axis versus days after treatment along the 
x axis. The graph is separated by CFF status with non-inoculated on the left and inoculated 
plants on the right. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, 
E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard error is 
represented by black error bars (n=12). 
 

Table 20: Transpiration: Days after treatment and CFF Status Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and CFF status (yes or no). The level is ordered by DAT and then followed by 
CFF status (yes or no) (n=12). On the side right of the table is the least squares means for 
transpiration rates (mmol H2O m-2 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level         Least Squares Mean 

32,no A       5.4247253 
32,yes     C   2.9220078 
39,no   B     3.8680042 
39,yes       D 2.2836996 
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Table 21: Transpiration: Biocide Type and CFF Status Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of biocide type and 
CFF status. The level is ordered by biocide treatment and then followed by inoculation status 
(yes or no) (n=12). On the right side of the table is the least squares means for transpiration rates 
(mmol H2O m-2 s-1). All levels that are not attached by the same letter are significantly different. 

Level           Least Squares Mean 

Actigard 62 mg/l, no A         5.4308916 
Actigard 62 mg/l, yes       D   2.8867475 
Electro-Biocide 200 mg/l, no     C     4.0012529 
Electro-Biocide 200 mg/l, yes         E 2.2694799 
Electro-Biocide 400 mg/l, no   B       4.9679009 
Electro-Biocide 400 mg/l, yes       D   3.1028549 
Water, no     C     4.1854136 
Water, yes         E 2.1523325 
 

Table 22: Transpiration: Days after Treatment and Biocide Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment and biocide type. The level is ordered by DAT and then followed by biocide treatment 
(n=12). On the right side of the table is the least squares means for transpiration rates (mmol 
H2O m-2 s-1). All levels that are not attached by the same letter are significantly different. 

Level       Least Squares Mean 

32,Actigard 62 mg/l A     5.0482956 
32,Electro-Biocide 200 mg/l   B   3.4750681 
32,Electro-Biocide 400 mg/l A     4.7104659 
32,Water   B   3.4596366 
39,Actigard 62 mg/l   B   3.2693435 
39,Electro-Biocide 200 mg/l     C 2.7956646 
39,Electro-Biocide 400 mg/l   B   3.3602899 
39,Water     C 2.8781096 
 

3.7.1 Non-Inoculated Plant’s Transpiration Rates 

 At 32 DAT non-inoculated Actigard plants had the highest transpiration and E-B 400 mg 

ClO2 l-1 had the second highest (Figure 17 and Table 23). When compared to the non-inoculated 

water mean the transpiration rates for Actigard showed a 39% increase and E-B 400 mg ClO2 l-1 

showed a 22% increase. Water and E-B 200 mg ClO2 l-1 non-inoculated plants at 32 DAT had 
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lower transpirations rates when compared to Actigard and E-B 400 mg ClO2 l-1, but were not 

different from each other. 

 At 39 DAT non-inoculated Actigard and E-B 400 mg ClO2 l-1 transpirations rates were 

not different from each other (Table 23). Actigard was higher in transpiration rates than E-B 200 

mg ClO2 l-1 and water control treatments. Non-inoculated water was not different from E-B 200 

and E-B 400 mg ClO2 l-1 plants at 39 DAT. For all non-inoculated biocide treatments there were 

a decrease in transpiration from 32 DAT to 39 DAT.  

 

Figure 17: Non-inoculated Mean Transpiration versus Days after Treatment 

 Mean transpiration rates (mmol H2O m-2 s-1) for non-inoculated plants on the y axis versus days 
after treatment along the x axis. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented 
by the red, E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. 
Standard error is represented by black error bars (n=12). 
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Table 23: Non-inoculated Transpiration Rates 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by biocide 
treatment (n=12). On the right of table is the least squares means non-inoculated transpiration 
rates (mmol H2O m-2 s-1). All levels that are not attached by the same letter are significantly 
different. 

Level             Least Squares Mean 

32,Actigard 62 mg/l A           6.5734807 
32,Electro-Biocide 200 mg/l     C D     4.5857742 
32,Electro-Biocide 400 mg/l   B         5.7971428 
32,Water     C       4.7425036 
39,Actigard 62 mg/l     C D     4.2883026 
39,Electro-Biocide 200 mg/l           F 3.4167315 
39,Electro-Biocide 400 mg/l       D E   4.1386590 
39,Water         E F 3.6283237 
 

3.7.2 Inoculated Plant’s Transpiration Rates 

 At 32 DAT Actigard and E-B 400 mg ClO2 l-1 had the highest mean transpiration rates 

(Figure 18 and Table 24). This was a 61-66% increase when compared to inoculated water 

treatment. Water and E-B 200 mg ClO2 l-1 inoculated plants at 32 DAT had lower transpirations 

rates when compared to Actigard and E-B 400 mg ClO2 l-1 but were not different from each 

other. 

 At 39 DAT inoculated water, Actigard, E-B 400 mg ClO2 l-1 and E-B 200 mg ClO2 l-1 

treatments transpiration rates were not different from each for 39 DAT. Transpiration rate for 

inoculated E-B 400 mg ClO2 l-1 and Actigard decreased from 32 DAT to 39 DAT. Water and E-

B 200 mg ClO2 l-1 did not show a difference in transpiration mean from 32 DAT to 39 DAT. 
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Figure 18: Inoculated Mean Transpiration versus Days after Treatment 

 Mean transpiration rates (mmol H2O m-2 s-1) for inoculated plants on the y axis versus days after 
treatment along the x axis. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by 
the red, E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard 
error is represented by black error bars (n=12). 
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Table 24: Inoculated Transpiration Rates 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by biocide 
treatment (n=12). On the right side of the table is the least squares means for inoculated 
transpiration rates (mmol H2O m-2 s-1). All levels that are not attached by the same letter are 
significantly different. 

Level     Least Squares Mean 

32,Actigard 62 mg/l A   3.5231106 
32,Electro-Biocide 200 mg/l   B 2.3643620 
32,Electro-Biocide 400 mg/l A   3.6237890 
32,Water   B 2.1767695 
39,Actigard 62 mg/l   B 2.2503843 
39,Electro-Biocide 200 mg/l   B 2.1745978 
39,Electro-Biocide 400 mg/l   B 2.5819208 
39,Water   B 2.1278955 
 

3.8 Chlorophyll Fluorescence Measurements 

 Chlorophyll fluorescence measurements were taken 2 DAT before inoculation, 7 DAT, 

and 25 DAT after CFF inoculation. Data analysis revealed that soil moisture and soil temperature 

affected the chlorophyll fluorescence measurements (Appendix II). The fit model analysis takes 

out the fluctuation of the different soil temperatures and soil moisture measurements in the 

model. It does this by holding the soil moisture and soil temperature constant at their mean 

values. This adjusts any fluctuations that may have affected the other factor’s responses. There 

were interactions with DAT and biocide type and with DAT and CFF status. At 2 and 25 days 

after treatment there were no differences between inoculated and non-inoculated plants (Figure 

19 and Table 25). At 7 DAT inoculated plants had higher Fv/Fm values than the non-inoculated 

treatments. There were differences at each measurement date when comparing all the biocide 

treatments (Table 26). Also, there were some differences with each biocide when comparing 

itself to measurements taken at 2, 7 and 25 DAT. The biocide and DAT details will be discussed 

further in the next two sections for the inoculated and non-inoculated analyses.  
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Figure 19: Mean Chlorophyll Fluorescence versus Days after Treatment 

 Mean Fv/Fm on the y axis versus days after treatment along the x axis. The graph is separated 
by CFF status with non-inoculated on the left and inoculated plants on the right. Actigard is 
represented by blue, E-B 200 mg ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1 
represented by the green and water represented by purple. Standard error is represented by black 
error bars (n=12). 
 

Table 25: Chlorophyll Fluorescence: Days after Treatment and CFF Status Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and CFF status. The level is ordered by DAT and then followed by inoculation 
status (yes or no) (n=12). On the right side of the table is the least squares means for Fv/Fm 
values. All levels that are not attached by the same letter are significantly different. 

Level         Least Squares Mean 

2,No       D 0.80515741 
2,Yes     C D 0.80867020 
25,No A       0.82505182 
25,Yes A       0.82461985 
7,No     C   0.81073665 
7,Yes   B     0.81896696 
 



69 

 

Table 26: Chlorophyll Fluorescence: Days after Treatment and Biocide Interaction 

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment and biocide type. The level is ordered by days after treatment (DAT) and then followed 
biocide type (n=12). On the right side of the table is the least squares means for Fv/Fm values. 
All levels that are not attached by the same letter are significantly different. 

Level             Least Squares Mean 

2,Actigard 62 mg/l           F 0.79133946 
2,Electrobiocide 200 mg/l A B         0.82556293 
2,Electrobiocide 400 mg/l         E   0.80492306 
2,Water         E   0.80582978 
7,Actigard 62 mg/l   B C       0.82067958 
7,Electrobiocide 200 mg/l       D E   0.81218156 
7,Electrobiocide 400 mg/l         E   0.80930012 
7,Water     C D     0.81724595 
25,Actigard 62 mg/l A           0.82951305 
25,Electrobiocide 200 mg/l   B C       0.81971053 
25,Electrobiocide 400 mg/l A           0.83161688 
25,Water   B C D     0.81850289 
 

3.8.1 Non-inoculated Chlorophyll Fluorescence Measurements 

 At 2 DAT treatment E-B 200 mg ClO2 l-1 had the highest Fv/Fm values (Figure 20 and 

Table 27). E-B 400 mg ClO2 l-1 and water control treatments were not different from each other. 

Actigard was lower in Fv/Fm than E-B 200 mg ClO2 l-1 and water control treatments.  At 7 DAT 

Actigard, E-B 200 mg ClO2 l-1, and water control treatments were not different from each other. 

E-B 400 mg ClO2 l-1 was only lower in Fv/Fm values than Actigard. At 25 DAT E-B 200 mg 

ClO2 l-1, E-B 400 mg ClO2 l-1, and water control were not different from each other. Actigard was 

higher than E-B 200 mg ClO2 l-1, and water control plants. Actigard and E-B 400 mg ClO2 l-1 

were not different from each other. The Fv/Fm values are a stress indicator of plants. The lower 

the values from the control the more stressed the plants are. The non-inoculated plants were 

showing only the effects of the spray treatments. Only Actigard was lower than the water control 

at 2 DAT, but recovered by 7 and 25 DAT. Both E-B treatments were always just as good in 



70 

 

Fv/Fm values to water control or higher. This indicates that the spray treatments for both E-B 

treatments did not harm the PSII and did not cause stress to the plants.   

 

Figure 20: Mean Non-inoculated Chlorophyll Fluorescence 

Mean Fv/Fm on the y axis versus days after treatment along the x axis for non-inoculated plants. 
Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1 
represented by the green and water represented by purple. Standard error is represented by black 
error bars (n=12). 
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Table 27: Non-inoculated Chlorophyll Fluorescence  

Student T Test with an alpha of .05. The T test was done from the interaction of biocide type and 
days after treatment (DAT). The level is ordered by DAT and then followed by biocide treatment 
(n=12). On the right side of the table is the least squares means for non-inoculated Fv/Fm values. 
All levels that are not attached by the same letter are significantly different. 

Level             Least Squares Mean 

2,Actigard 62 mg/l           F 0.78881398 
2,Electro-Biocide 200 mg/l A B         0.83188013 
2,Electro-Biocide 400 mg/l     C D E F 0.80308634 
2,Water     C D E   0.80686058 
7,Actigard 62 mg/l     C D     0.81344314 
7,Electro-Biocide 200 mg/l       D E   0.80755662 
7,Electro-Biocide 400 mg/l         E   0.80446612 
7,Water       D E   0.81051573 
25,Actigard 62 mg/l A           0.83096052 
25,Electro-Biocide 200 mg/l   B C D E   0.81164617 
25,Electro-Biocide 400 mg/l A B         0.82708045 
25,Water   B C       0.81839483 
 

3.8.2 Inoculated Chlorophyll Fluorescence Measurements 

 At 2 DAT E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 had the highest Fv/Fm values 

(Figure 21 and Table 28). This was before inoculation with CFF. This indicated there was not 

any damage done to PSII due to both E-B treatments at 2 DAT. Water had the second greatest 

Fv/Fm values and Actigard had the lowest. At 7 days after treatment Actigard was higher than 

both E-B treatments and was not different than water. E-B 200 mg ClO2 l-1 was not different than 

water control treatments and E-B 400 mg ClO2 l-1 was lower than water control treatment. E-B 

200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 were not different from each other. At 25 DAT 

Actigard and E-B 200 mg ClO2 l-1 were not different from each other and higher in Fv/Fm values 

than water control treatment. Actigard had greater Fv/Fm values than E-B 400 mg ClO2 l-1. E-B 

200 mg ClO2 l-1 was not different than E-B 400 mg ClO2 l-1 at 25 DAT. E-B 400 mg ClO2 l-1 and 

water control treatments were not different from each other.  
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 The chlorophyll fluorescence at 7 and 25 DAT was after inoculation with CFF. E-B 400 

mg ClO2 l-1 was lower than water control treatment at 7 DAT indicating stress (Table 28). This 

was only a 1% decrease in Fv/Fm for E-B 400 mg ClO2 l-1 when compared to inoculated water 

control treatment. The decrease in Fv/Fm was small and does not indicate a severe stress. At 25 

DAT E-B 400 mg ClO2 l-1 recovered and was not different than the water control. This indicates 

that the extra stress imposed onto E-B 400 mg ClO2 l-1 treated plants at 7 DAT was temporary. 

 

Figure 21: Mean Inoculated Chlorophyll Fluorescence 

Mean Fv/Fm on the y axis versus days after treatment along the x axis for inoculated plants. 
Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1 
represented by the green and water represented by purple. Standard error is represented by black 
error bars (n=12). 
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Table 28: Inoculated Chlorophyll Fluorescence  

Student T Test with an alpha of .05. The T test was done from the interaction of days after 
treatment (DAT) and biocide type. The level is ordered by DAT and then followed by biocide 
type (n=12). On the right side of the table is the least squares means for inoculated Fv/Fm values. 
All levels that are not attached by the same letter are significantly different.  

Level             Least Squares Mean 

2,Actigard 62 mg/l           F 0.79882508 
2,Electro-Biocide 200 mg/l A B         0.82452403 
2,Electro-Biocide 400 mg/l A B         0.82374042 
2,Water         E   0.80544624 
7,Actigard 62 mg/l A B         0.82695052 
7,Electro-Biocide 200 mg/l     C D     0.81640812 
7,Electro-Biocide 400 mg/l       D     0.81196023 
7,Water   B C       0.82164601 
25,Actigard 62 mg/l A           0.82849401 
25,Electro-Biocide 200 mg/l A B         0.82576723 
25,Electro-Biocide 400 mg/l   B C       0.82072044 
25,Water     C D     0.81551095 
 

3.9 Gas Exchange and Chlorophyll Fluorescence Conclusions 

 Photosynthesis and chlorophyll fluorescence measurements for non-inoculated treatments 

were used to estimate were any priming costs with inducing SAR or oxidative stress when 

applying E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 foliar treatments. At 32 DAT there was a 

decline for both non-inoculated E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 treated plants in 

photosynthesis rates when compared to water control treatment. By 39 DAT the photosynthesis 

rates for E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 recovered. E-B 400 mg ClO2 l-1 had a 

greater photosynthesis rate than control and E-B 200 mg ClO2 l-1 was not different from the 

water control. These results reject the hypothesis that the non-inoculated E-B treatments would 

be just as good as the non-inoculated control in photosynthesis. The lower photosynthesis rate 

was only temporary and may be due to the cost of priming.  
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 The inoculated photosynthesis rates for E-B 400 mg ClO2 l-1 and E-B 200 mg ClO2 l-1 was 

not different from inoculated water control treatment at 32 DAT. Both inoculated E-B 200 mg 

ClO2 l-1 and 400 mg ClO2 l-1 were higher than the inoculated water control at 39 DAT. These 

results accept the hypothesis that the inoculated plants would be just as efficient as or better than 

the inoculated control plants.  

 There was an overall decrease in photosynthesis efficiency for inoculated plants when 

compared to non-inoculated plants. This was due to the decrease in transpiration rates and 

stomatal conductance for inoculated plants. The decrease in transpiration and stomatal 

conductance rates are linked to conserve water due to the disease (Jones, 2013). The WUE 

measurements also confirm this. There was an increase WUE for inoculated plants when 

compared to non-inoculated. Instantaneous WUE is calculated by the ratio of photosynthesis 

assimilation to transpiration, which would explain why CFF inoculated plants WUE would be 

higher. CFF is a vascular wilt that causes a drought like stress by clogging the vascular system 

(Agarkova et al., 2012; Yadeta and Thomma, 2013). The plants were trying conserve water due 

water stress of CFF by closing their stomata. The lower transpiration and stomatal rates conserve 

the needed water by transpiring less, but it also reduces the photosynthesis rate. These results 

accept the hypothesis that the inoculated plants would be generally lower in photosynthetic 

measurements. 

 Chlorophyll fluorescence is an indicator of stress. The measurement is a ratio of variable 

fluorescence divided by maximum fluorescence (Fv/Fm). The lower the Fv/Fm values the more 

stressed the plant is due to damage to the PSII center. The chlorophyll fluorescence for both non-

inoculated E-B treatments showed at 2, 7 and 25 DAT the Fv/Fm values were the same or higher 
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than the non-inoculated water control plants. This indicates that there was no stress due to both 

E-B treatments. This result accepts the hypothesis made for non-inoculated plants chlorophyll 

fluorescence that foliar E-B treatments would not cause stress to the plants. These results also 

indicate that the decline in photosynthesis was not due to photo oxidative stress due to E-B 

treatment. 

 The inoculated E-B 200 mg ClO2 l-1 plants had higher Fv/Fm values than the inoculated 

control at 2 DAT and at 25 DAT. At 7 DAT the inoculated E-B 200 mg ClO2 l-1 plants were not 

different than the inoculated control plants. The inoculated E-B 200 mg ClO2 l-1 agrees with the 

hypothesis that it would have less stress than the inoculated control. Although at 7 DAT E-B 200 

mg ClO2 l-1 was not different from the inoculated control the two other dates E-B 200 mg ClO2 l-1 

showed less stress with the higher Fv/Fm values. This is especially noteworthy at 25 DAT when 

CFF is well established within the plant. The inoculated E-B 400 mg ClO2 l-1 treatment had a 

higher Fv/Fm than water control at 2 DAT. At 7 DAT inoculated E-B 400 mg ClO2 l-1 had a 1% 

decrease when compared to inoculated control, but recovered to the same Fv/Fm values of the 

control at 25 DAT. The hypothesis for E-B 400 mg ClO2 l-1 being less stress than the inoculated 

control is rejected. The 7 and 25 DAT were after inoculation. E-B 400 mg ClO2 l-1 resulted in 

being the same or lower as the inoculated control for those two dates.  

 Non-inoculated plants were not different in Fv/Fm values from inoculated plants at 7 

DAT and 25 DAT. It is not a surprise for 2 DAT since that was before inoculation. It is 

surprising that at 7 DAT that the non-inoculated (all biocides combined) plants had lower Fv/Fm 

values than the inoculated plants. These results reject the hypothesis that all inoculated plants 
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would have lower Fv/Fm values (less stress) than the non-inoculated plants. Overall the Fv/Fm 

values indicate that there was no major decline in Fv/Fm.  

 3.10 Biomass 

 Plants were harvested 61-63 days after planting for biomass measurements. Total oven 

dry biomass, oven dry leaves, oven dry pod, and oven dry stems did not show differences 

between spray treatments (Appendix III). The only difference that was apparent for all weight 

measurements was that inoculated plants were much lower than non-inoculated plants (Figure 

22-26). Inoculated had a 64% decrease in total above ground biomass when compared to non-

inoculated plants (Figure 22 and Table 29). There was a 65% decrease in dry leaf weight in 

inoculated plants when compared to non-inoculated (Figure 23 and Table 30). To investigate if 

there was a difference in leaf water content leaves that were healthy and green were compared to 

oven dry green leaves. The results showed no differences to biocide types but did show that 

inoculated plants had a decrease in water content. Comparing non-inoculated plants to the 

inoculated pod oven dried weight there was a decrease of 67% decrease (Figure 24 and Table 

31). When comparing inoculated dry stem weight to non-inoculated plants there was a 51% 

decrease (Figure 25 and Table 32). 

 Leaf area was measured on leaves that were green and partially green. Total leaf area did 

not show any biocide treatment differences but did show differences between inoculated and 

non-inoculated plants (Figure 26 and Table 33). When comparing to non-inoculated plants total 

leaf area for inoculated plants there was 86% decrease. 
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Figure 22: Mean Total Oven Dry Biomass Weight 

 Mean total oven biomass (g) which included leaves, stems and fruit. Total fresh biomass is on 
the y axis. The graph is separated by CFF status with non-inoculated on the left and inoculated 
plants on the right. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, 
E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard error is 
represented by black error bars (n=12). 
 

Table 29: Total Dry Biomass Weight Table  

Student T Test with an alpha of .05. The T test was for CFF status only (n=12). On the right side 
of the table is the least squares means for total biomass weight (g). All levels that are not 
attached by the same letter are significantly different. 

Level     Least Squares Mean 

No A   38.215131 
Yes   B 13.819765 
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Figure 23: Mean Total Dry Foliage Weight 

 Mean total oven dry weight for foliage (g) on the y axis. The graph is separated by CFF status 
with non-inoculated on the left and inoculated plants on the right. Actigard is represented by 
blue, E-B 200 mg ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1represented by the green 
and water represented by purple. Standard error is represented by black error bars (n=12). 
 

Table 30: Dry Foliage Weight 

Student T Test with an alpha of .05. The T test was for CFF status only (n=12). On the right side 
of the table is the least squares means for total dry foliage weight (g). All levels that are not 
attached by the same letter are significantly different. 

Level     Least Squares Mean 

No A   6.9786122 
Yes   B 2.4333902 
 



79 

 

 

Figure 24: Mean Oven Dry Pod Weight 

Mean oven dry weight of pod on the y axis. The graph is separated by CFF status with non-
inoculated on the left and inoculated plants on the right. Actigard is represented by blue, E-B 200 
mg ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1represented by the green and water 
represented by purple. Standard error is represented by black error bars (n=12). 
 

Table 31: Dry Pod Weight 

Student T Test with an alpha of .05. The T test was for CFF status only (n=12). On the right side 
of the table is the least squares means for dry pod weight (g). All levels that are not attached by 
the same letter are significantly different. 

Level     Least Squares Mean 

no A   24.257731 
yes   B 8.012417 
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Figure 25: Mean Oven Dry Stem Weight 

 Mean oven dry stem weight (g) on the y axis. The graph is separated by CFF status with non-
inoculated on the left and inoculated plants on the right. Actigard is represented by blue, E-B 200 
mg ClO2 l-1 represented by the red, E-B 400 mg ClO2 l-1 represented by the green and water 
represented by purple. Standard error is represented by black error bars (n=12). 
 

Table 32: Dry Stem Weight 

Student T Test with an alpha of .05. The T test was for CFF status only (n=12). On the right of 
table is the least squares means for dry stem weight (g). All levels that are not attached by the 
same letter are significantly different. 

Level     Least Squares Mean 

no A   6.9787885 
yes   B 3.4206212 
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Figure 26: Mean Total Leaf Area 

 Mean total leaf area (cm2) on the y axis for the whole plant using green and partially green 
leaves only. The graph is separated by CFF status with non-inoculated on the left and inoculated 
plants on the right. Actigard is represented by blue, E-B 200 mg ClO2 l-1 represented by the red, 
E-B 400 mg ClO2 l-1 represented by the green and water represented by purple. Standard error is 
represented by black error bars (n=12). 
 

Table 33: Total Leaf Area  

Student T Test with an alpha of .05. The T test was for CFF status only (n=12). On the right of 
table is the least squares means for total leaf area (cm2). All levels that are not attached by the 
same letter are significantly different.  

Level     Least Squares Mean 

No A   2400.2905 
Yes   B 336.3424 
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3.11 Biomass Conclusions 

 The SA measurements for E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 resulted in rise 

in SA concentration which indicate SAR, but the biomass for all plants did not show a 

difference. Dry pod, dry leave, dry stems, dry total biomass weight and leaf area did not show 

any differences between biocide treatments. There was only a difference between inoculated and 

non-inoculated plants. These results reject the hypothesis that the E-B treated inoculated plants 

would have greater biomass weight than the inoculated water control plants.  

 Evaluating reasons why biomass may have not shown differences in different spray 

treatments may be due to the wilt disease having too great of disease pressure. Actigard’s active 

ingredient ASM has been successful in numerous studies to induce SAR, but there have been a 

few accounts were it did not  (Walters et al., 2005). This may be the case with CFF and 

Phaseolus vulgaris. The way the vascular wilts colonize the xylem and prevent water from 

getting to leaves may be the inhibitor for inducing a successful SAR with Actigard and E-B. 

When the water is stopped due to the vascular wilt clogging the xylem there is little to do to 

combat the wilt without the essential water. ASM has been successful at the induction of SAR 

and reducing disease severity in other studies. Since ASM failed to induce SAR in this study 

means that E-B should not be written off as ineffective in inducing SAR. Future research could 

explore the other pathogens and evaluate the efficiency of E-B inducing SAR. Good candidates 

would be plants that are foliar pathogens where plants could activate HR. 

 Other considerations are that the in this study plants were given all three components in 

disease triangle: susceptible host, right environmental conditions and the pathogen. The extreme 

conditions of 90 degree F and almost a 100 percent relative humidity for 48 hours was given 

when inoculating the plants. This ensured that the plants would successfully be inoculated with 
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CFF but it also put the plants at a disadvantage. A manager would implement IPM practices to 

avoid giving the pest ideal situations. Plants were also inoculated with needles dipped in pure 

cultures of CFF inoculum. In real life the concentrations of the disease would be much smaller in 

titer. The preliminary research done in 2012 was done with the leaf inoculation with a floral frog. 

That study resulted in E-B having a higher biomass weight than inoculated control. This was due 

to the method with leaf inoculation and with lower concentration of CFF. The plants in the 

preliminary research were mildly sick and were not subjected to the extreme inoculation done in 

this study. 

 Non-inoculated plants showed that there was no great priming cost by treating the plants 

with E-B and Actigard spray treatments. Across all plants spray treatments for non-inoculated 

plant dry weight and leaf area showed to be just as good as the control plants. There were no 

stunted plants nor great decline in pod production across all non-inoculated treatments. 

3.12 PCR and CFF DNA 

Polymerase chain reaction was able to confirm the prescence of CFF wilt in inoculated 

Actigard, E-B 200 mg ClO2 l-1, E-B 400 mg ClO2 l-1and water (Figure 27). The results also 

confirmed that non-inoculated Actigard, E-B 200 mg ClO2 l-1, E-B 400 mg ClO2 l-1and water 

were not infected with CFF wilt. Unfortunately this procedure was not able to indicate the colony 

forming units within each treatment. Harvesting the DNA of CFF from plant sap was not precise. 

Enough sap was collected onto WhatmanTM FTATM Classic Cards for the indicating paper to turn 

pink to white, which meant there was enough DNA to analyze. It is possible to get colony 

forming units through PCR, but for this study it was used it for for justifying CFF prescence or 

absence. 
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Figure 27: Mean CFF Relative Ranking versus Biocide Treatment 

 Results of PCR CFF wilt with relative ranking of CFF wilt status on the y axis and biocide 
treatments along the x axis (n=12). Biocides from left to right: Actigard non-inoculated, water 
non-inoculated, E-B 200 mg l-1 ClO2 non-inoculated, E-B 400 mg ClO2 l-1 non-inoculated, water 
inoculated, E-B 200 mg ClO2 l-1 inoculated, E-B 400 mg ClO2 l-1 inoculated, and Actigard 
inoculated. The KB in front of each biocide treatment stands for kidney bean. 
 

3.13 Recommendations for Future Studies 

 Both E-B treatments had a rise in SA, which are crucial for SAR for reducing disease 

severity. SA concentrations were measured 5 DAT and had a SA response with both Free and 

Conjugate SA forms. This indicated that the plants were still actively producing SA 5 DAT. The 

second harvest (61 days after planting) at the end of the study showed that non-inoculated E-B 

treatments went back down to normal levels. This indicates that the E-B treatments would need 

multiple spray applications in order to be protected over a long period of time. Future studies can 

investigate when the Free and Conjugate SA concentrations go back down to normal levels and 

when the reapplication of E-B would be appropriate. Multiple sprays would need to be 
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monitored with photosynthesis and chlorophyll fluorescence to determine if there are any 

negative affects to the multiple sprays over a long period of time.  

 Both E-B treatments had a rise in SA concentrations that indicate plants were primed 

with a SAR response. Unfortunately none of the biomass measurements showed any differences 

within the inoculated biocides. Actigard (ASM) has been successful at inducing SAR and 

reducing disease severity, but it also did not show any differences in biomass from inoculated 

control. Future studies can investigate E-B (along with Actigard) with plant diseases that ASM 

has been successful at reducing disease severity. This would justify if E-B can be used for SAR. 

My recommendations for a type of disease would be a foliar disease. CFF is a vascular wilt used 

in this study and was too great for the plants to overcome. A foliar disease would be able to use 

hypersensitive response, which isolates the pathogen from spreading.  
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CHAPTER 4 SUMMARY 

 

 

 

 E-B foliar spray treatments show promise of being another great tool for IPM due to their 

dual functionality. First function prevents disease by disinfecting the surfaces of the foliage and 

second the chlorine dioxide interaction within the plant causes a SA response needed for SAR. 

For the first SA harvest E-B 200 mg ClO2 l-1 and 400 mg ClO2 l-1treatments showed increase in 

SA concentration 5 DAT. Non-inoculated and inoculated plants with CFF did not show a 

difference for Free SA indicating that it was too early to have interactions. E-B 400 mg ClO2 l-1 

had a 15 fold increase at its highest peak and E-B 200 mg ClO2 l-1 had a 5.9 fold increase at its 

highest peak when compared to water. Throughout collection times from 22 to 37 hours after 

inoculation E-B 400 mg ClO2 l-1 treatment consistently had a higher concentration when 

compared to control. E-B 200 mg ClO2 l-1 was higher than the water control treatment for all time 

collections. Conjugate SA for E-B 200 mg ClO2 l-1 and 400 mg ClO2 l-1 were also higher than 

water control treatments. Water had nominal Conjugate SA concentrations that showed that E-B 

200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 were actively producing SA due to priming 5 DAT. 

The overall increase in SA concentration for Free SA and Conjugate SA showed that E-B was 

successful at priming the plant’s defenses for protection against pathogens. It indicates that E-B 

was able to be taken in the plant to interact and elicit an SA response. Actigard did not show a 

difference from water for Free or Conjugate SA when compared to water. This may due to it 

being a functional analog to SA that replaces SA in the pathway to SAR, but does not elicit a SA 

response. 

 At the last harvest at 44 DAT (61 days after planting) there were differences in Free and 

Conjugate SA in inoculated versus non-inoculated. For non-inoculated plants E-B treatments 
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Free and Conjugate SA concentrations went down to normal levels and was not different from 

the water control.  Proving that plants may need additional applications through the growing 

season in order to have protection. Inoculated plants for Free SA continued to rise for all biocide 

treatments.  Free SA for inoculated E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 at the end of 

the study were not different from each other. Inoculated E-B 200 mg ClO2 l-1 had a greater Free 

SA concentration than Actigard and the water control. For Conjugate SA E-B 200 mg ClO2 l-1 

and water had the highest concentrations. E-B 400 mg ClO2 l-1 had the second highest and 

Actigard had the lowest. Second harvest showed that the plants were still combating the disease 

at with high SA concentrations. 

 Gas exchange measurements were taken 32 and 39 DAT. The results showed a difference 

between inoculated and non-inoculated plants. Stomatal conductance, photosynthesis, 

transpiration rates showed that inoculated plants overall had lower measurements. This is due to 

the CFF being a vascular wilt and clogs water in the vascular tissue. This produces a water stress 

like symptoms within the plant and gas exchange measurement are able to pick up on those 

stresses. The WUE of the inoculated plants was higher than the non-inoculated plants which was 

due to the need for plants to conserve water due to the wilt.  

 The non-inoculated plants were able to be evaluated if the priming had costs to the plant 

or if the E-B treatments had a negative oxidative effects with gas exchange measurements. At 32 

DAT E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 did show a decrease in photosynthesis rates 

when compared to water and Actigard. E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 had a 14% 

decrease in photosynthesis when comparing to non-inoculated control. The chlorophyll 

fluorescence measurements confirmed that there were no damage to the PSII and that the cause 
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of the decrease in photosynthesis was not a result of E-B treatments. By 39 DAT E-B treatments 

recovered to normal photosynthesis rates when compared to water control. 

 Inoculated plants photosynthesis measurement showed that Actigard, E-B 200 mg ClO2 l-

1 and E-B 400 mg ClO2 l-1 did not have a decline in photosynthesis when compared to water. 

They either performed equally as well or better than water control plants. At 39 DAT E-B 200 

mg ClO2 l-1 and E-B 400 mg ClO2 l-1 had the highest photosynthesis rates when compared to 

Actigard and water control plants. E-B 200 mg ClO2 l-1 and E-B 400 mg ClO2 l-1 were not 

different than each other. The increase of photosynthesis rate was 24-25% when compared to 

water control. Actigard was not different from water at 39 DAT. These results showed that E-B 

treatments were able to out compete the water treatment in photosynthesis. This may be due to 

being primed with their treatments which could indicate that they were less stressed and better 

able to cope with the disease. 

At the end of the study plants were harvested at 61-63 days after planting. Dry weights 

were taken for stems, leaves, and pods. Leaf area was taken on healthy green and paritial green 

leaves only. The results showed that the only major difference found was between inoculated and 

non-inoculated plants. Inoculated plants had a much lower weight measurements for leaves, 

pods, stems and leaf area. Inoculated plants had a 64% decrease in above ground total biomass 

when compared to non-inoculated plants. Inoculated plants did not show a difference between 

different spray treatments and non-inoculated plants did not show a difference between different 

spray treatments. Actigard has been successful at inducing SAR for lots of different diseases but 

did not show a decrease in disease in the case of CFF and Phaseolus vulgaris. There have few 

other studys where Actigard (ASM) was reported unsuccessful at inducing SAR. CFF is a 

vigorous pathogen that perliforiates within the xylem.  CFF is a vascular wilt that blocks up the 
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vascular system and when water can’t get to the leaves metabolism can’t work efficiently. Since 

Actigard has been proven to be successful at inducing SAR in other diseases, but did not succeed 

with CFF proves that E-B should not be written off. There was a signficant SA accumulations 

that is necessary for a SAR response. Future research can utilize E-B to investigate SAR in many 

different pathogens. Foliar pathogens would particularly be great candidates so plants can 

express HR.  
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APPENDIX I: SALICYLIC ACID FIT MODEL ANALYSES 
 
 
 
Table 34: First Free SA Harvest Summary of Fit  

RSquare 0.562177 

RSquare Adj 0.542967 
Root Mean Square Error 0.866978 
Mean of Response 0.959196 
Observations (or Sum Wgts) 572 

 

Table 35: First Free SA Harvest Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Leaf tissue collection time  
(military time-hr) 

5 5 547 13.8269 <.0001* 

CFF Wilt Status (Yes or No) 1 1 547 0.0777 0.7805 
Biocide Type 3 3 547 182.1438 <.0001* 
Leaf tissue collection time  
(military time-hr)*Biocide Type 

15 15 547 6.2141 <.0001* 

 

Table 36: First Conjugate SA Harvest Summary of Fit 

   

RSquare 0.657585 
RSquare Adj 0.637256 
Root Mean Square Error 2.643748 
Mean of Response 3.585455 
Observations (or Sum Wgts) 572 
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Table 37: First Conjugate SA Harvest Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Leaf tissue collection time  
(military time-hr) 

5 5 539 11.4670 <.0001* 

CFF Wilt Status (Yes or No) 1 1 539 0.1554 0.6936 
Biocide Type 3 3 539 282.1588 <.0001* 
Leaf tissue collection time  
(military time-hr)*CFF Wilt Status  
(Yes or No) 

5 5 539 3.3774 0.0052* 

Leaf tissue collection time  
(military time-hr)*Biocide Type 

15 15 539 7.9731 <.0001* 

CFF Wilt Status  
(Yes or No)*Biocide Type 

3 3 539 0.2707 0.8466 

 

Table 38: Last Harvest Free SA Summary of Fit 

    

RSquare 0.582219 
RSquare Adj 0.548986 
 
Root Mean Square Error 

2.806094 

Mean of Response 3.484583 
Observations (or Sum Wgts) 96 

 

Table 39: Last Harvest Free SA Effect Tests 

Source Nparm DF Sum of Squares F Ratio Prob > F 

CFF Wilt Status (Yes or No) 1 1 908.35510 115.3589 <.0001* 
Biocide Type 3 3 31.33838 1.3266 0.2709 
CFF Wilt Status  
(Yes or No)*Biocide Type 

3 3 25.96759 1.0993 0.3538 

 

Table 40: Last Harvest Conjugate SA Summary of Fit 

    

RSquare 0.770347 
RSquare Adj 0.752079 
Root Mean Square Error 8.896038 
Mean of Response 15.29302 
Observations (or Sum Wgts) 96 
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Table 41: Last Harvest Conjugate SA Effect Tests 

Source Npa

rm 

DF Sum of Squares F Ratio Prob > F 

CFF Wilt Status (Yes or No) 1 1 17776.022 224.6163 <.0001* 
Biocide Type 3 3 3018.850 12.7153 <.0001* 
CFF Wilt Status  
(Yes or No)*Biocide Type 

3 3 2566.045 10.8081 <.0001* 
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APPENDIX II: GAS EXCHANGE FIT MODEL ANALYSES 

 

 

 

Table 42: Photosynthesis Summary of Fit 

    

RSquare 0.28957 
RSquare Adj 0.275714 
Root Mean Square Error 3.693414 
Mean of Response 12.60523 
Observations (or Sum Wgts) 576 

 

Table 43: Photosynthesis Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70 46.0628 <.0001* 
Biocide Type 3 3 494 2.3332 0.0733 
Cff inoc status (yes or no) 1 1 494 76.2104 <.0001* 
Biocide Type*Cff inoc status (yes or no) 3 3 494 5.3893 0.0012* 
Days after treatment (DAT)*Biocide Type 3 3 494 9.2504 <.0001* 

 

Table 44: Non-inoculated Photosynthesis Summary of Fit 

    

RSquare 0.061175 
RSquare Adj 0.037704 
Root Mean Square Error 3.164624 
Mean of Response 13.94869 
Observations (or Sum Wgts) 288 

 

Table 45: Non-inoculated Photosynthesis Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70 45.6743 <.0001* 
Biocide Type 3 3 210 3.3281 0.0206* 
Days after treatment (DAT)*Biocide Type 3 3 210 7.9979 <.0001* 
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Table 46: Inoculated Photosynthesis Summary of Fit 

   

RSquare 0.156939 
RSquare Adj 0.135863 
Root Mean Square Error 4.329346 
Mean of Response 11.26177 
Observations (or Sum Wgts) 288 

 

Table 47: Inoculated Photosynthesis Fixed Effect Test 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70 25.9689 <.0001* 
Biocide Type 3 3 210 3.8422 0.0105* 
Days after treatment (DAT)*Biocide Type 3 3 210 4.1558 0.0069* 

 

Table 48: Water Use Efficiency Summary of Fit 

    

RSquare 0.536526 
RSquare Adj 0.526648 
Root Mean Square Error 0.108399 
Mean of Response 0.393938 
Observations (or Sum Wgts) 576 
  

 

Table 49: Water Use Efficiency Fixed Effect Tests 

Source Npar

m 

D

F 

DFD

en 

F 

Ratio 

Prob > 

F 

Days after treatment (DAT) 1 1 70 0.8450 0.3611 
Disease resistance induction agent 2 3 3 493 48.446

8 
<.0001

* 
Cff inoc status (yes or no) 1 1 493 263.92

88 
<.0001

* 
Days after treatment (DAT)*Cff inoc status (yes or 
no) 

1 1 493 19.318
2 

<.0001
* 

Disease resistance induction agent 2*Cff inoc status 
(yes or no) 

3 3 493 6.9124 0.0001
* 

Days after treatment (DAT)*Disease resistance 
induction agent 2 

3 3 493 17.673
2 

<.0001
* 
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Table 50: Non-inoculated WUE Summary of Fit 

    

RSquare 0.277879 
RSquare Adj 0.259826 
Root Mean Square Error 0.080278 
Mean of Response 0.320561 
Observations (or Sum Wgts) 288 

 

Table 51: Non-inoculated WUE Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70 29.3471 <.0001* 
Biocide Type 3 3 210 18.3014 <.0001* 
Days after treatment (DAT)*Biocide Type 3 3 210 7.1851 0.0001* 

 

Table 52: Inoculated WUE Summary of Fit 

   

RSquare 0.432771 
RSquare Adj 0.41859 
Root Mean Square Error 0.131604 
Mean of Response 0.467314 
Observations (or Sum Wgts) 288 

 

Table 53: Inoculated WUE Fixed Effect Test 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70 2.0764 0.1541 
Biocide Type 3 3 210 30.7483 <.0001* 
Days after treatment (DAT)*Biocide Type 3 3 210 11.6076 <.0001* 

 

Table 54: Stomatal Conductance Summary of Fit 

    

RSquare 0.510868 
RSquare Adj 0.501277 
Root Mean Square Error 0.092224 
Mean of Response 0.233578 
Observations (or Sum Wgts) 573 
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Table 55: Stomatal Conductance Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70.44 24.9831 <.0001* 
Biocide Type 3 3 492.2 29.1076 <.0001* 
Cff inoc status (yes or no) 1 1 492.3 481.6692 <.0001* 
Biocide Type*Cff inoc status (yes or no) 3 3 492.2 3.1038 0.0263* 
Days after treatment (DAT)*Biocide Type 3 3 492.2 3.2250 0.0224* 

 

Table 56: Non-Inoculated Stomatal Conductance Summary of Fit 

    

RSquare 0.119839 
RSquare Adj 0.097677 
Root Mean Square Error 0.0986 
Mean of Response 0.318293 
Observations (or Sum Wgts) 286 

 

Table 57: Non-inoculated Stomatal Conductance Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70.34 16.1990 0.0001* 
Biocide Type 3 3 209.5 21.8672 <.0001* 
Days after treatment (DAT)*Biocide Type 3 3 209.5 0.2301 0.8754 

 

Table 58: Inoculated Stomatal Conductance Summary of Fit 

    

RSquare 0.06969 
RSquare Adj 0.046349 
Root Mean Square Error 0.088158 
Mean of Response 0.149159 
Observations (or Sum Wgts) 287 

 

Table 59: Inoculated Stomatal Conductance Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 69.96 11.8838 0.0010* 
Biocide Type 3 3 209.6 7.9127 <.0001* 
Days after treatment (DAT)*Biocide Type 3 3 209.6 8.0397 <.0001* 

 



102 

 

Table 60: Transpiration Summary of Fit 

    

RSquare 0.576613 
RSquare Adj 0.567589 
Root Mean Square Error 1.152764 
Mean of Response 3.624609 
Observations (or Sum Wgts) 576 

 

Table 61: Transpiration Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > 

F 

Days after treatment (DAT) 1 1 70 116.2631 <.0001* 
Biocide Type 3 3 493 32.5511 <.0001* 
Cff inoc status (yes or no) 1 1 493 452.5179 <.0001* 
Days after treatment (DAT)*Cff inoc status 
(yes or no) 

1 1 493 22.8506 <.0001* 

Biocide Type*Cff inoc status (yes or no) 3 3 493 3.4294 0.0170* 
Days after treatment (DAT)*Biocide Type 3 3 493 8.7526 <.0001* 

 

Table 62: Non-inoculated Transpiration Summary Fit 

    

RSquare 0.478602 
RSquare Adj 0.465567 
Root Mean Square Error 1.113701 
Mean of Response 4.646365 
Observations (or Sum Wgts) 288 

 

Table 63: Non-inoculated Transpiration Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70 124.0510 <.0001* 
Biocide Type 3 3 210 26.0740 <.0001* 
Days after treatment (DAT)*Biocide Type 3 3 210 4.2915 0.0058* 
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Table 64: Inoculated Transpiration Summary of Fit 

    

RSquare 0.063585 
RSquare Adj 0.040174 
Root Mean Square Error 1.234803 
Mean of Response 2.602854 
Observations (or Sum Wgts) 288 

 

Table 65: Inoculated Transpiration Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days after treatment (DAT) 1 1 70 25.8904 <.0001* 
Biocide Type 3 3 210 10.1479 <.0001* 
Days after treatment (DAT)*Biocide Type 3 3 210 4.3836 0.0051* 

 

Table 66: Chlorophyll Fluorescence Summary of Fit 

    

RSquare 0.333106 
RSquare Adj 0.315535 
Root Mean Square Error 0.013518 
Mean of Response 0.816705 
Observations (or Sum Wgts) 858 

 

Table 67: Chlorophyll Fluorescence Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days After Treatment (DAT) 2 2 284.3 15.2480 <.0001* 
Biocide Type 3 3 761.5 4.9206 0.0022* 
Cff wilt status 1 1 766.7 12.4235 0.0004* 
soil temperature 1 1 832.6 5.5807 0.0184* 
soil moisture 1 1 829.4 0.0010 0.9746 
Days After Treatment (DAT)*Biocide Type 6 6 782.8 13.9882 <.0001* 
Days After Treatment (DAT)*Cff wilt status 2 2 749.3 6.5405 0.0015* 
Days After Treatment (DAT)*soil moisture 2 2 830.1 8.2695 0.0003* 
Biocide Type*soil temperature 3 3 817.3 4.8956 0.0022* 
soil temperature*soil moisture 1 1 816.9 13.4837 0.0003* 
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Table 68: Non-inoculated Chlorophyll Fluorescence Summary of Fit 

    

RSquare 0.332669 
RSquare Adj 0.301439 
Root Mean Square Error 0.01339 
Mean of Response 0.815054 
Observations (or Sum Wgts) 426 

 

Table 69: Non-inoculated Chlorophyll Fluorescence Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days After Treatment (DAT) 2 2 268 10.0944 <.0001* 
Biocide Type 3 3 345.2 3.3253 0.0199* 
soil temperature 1 1 404 0.5714 0.4501 
soil moisture 1 1 396.3 0.5110 0.4751 
Days After Treatment (DAT)*Biocide Type 6 6 360.1 6.3808 <.0001* 
Days After Treatment (DAT)*soil moisture 2 2 395.5 3.3975 0.0344* 
Biocide Type*soil temperature 3 3 398.4 4.1288 0.0067* 
soil temperature*soil moisture 1 1 397.3 4.7616 0.0297* 

 

Table 70: Inoculated Chlorophyll Fluorescence Summary of Fit 

    

RSquare 0.371585 
RSquare Adj 0.355127 
Root Mean Square Error 0.013461 
Mean of Response 0.818333 
Observations (or Sum Wgts) 432 

 

Table 71: Inoculated Chlorophyll Fluorescence Fixed Effect Tests 

Source Nparm DF DFDen F Ratio Prob > F 

Days After Treatment (DAT) 2 2 105 14.3376 <.0001* 
Biocide Type 3 3 315 6.4704 0.0003* 
Days After Treatment (DAT)*Biocide Type 6 6 315 20.9663 <.0001* 
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APPENDIX III: BIOMAS FIT MODEL ANALYSES 

 
 
 
Table 72: Total above Ground Biomass Summary of Fit 

    

RSquare 0.828809 
RSquare Adj 0.815192 
Root Mean Square Error 5.813053 
Mean of Response 26.26677 
Observations (or Sum Wgts) 96 

 

Table 73: Total above Ground Biomass Fixed Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > 

F 

Biocide Type 3 3 152.384 1.5032 0.2193 
Cff wilt inoculation status (yes no) 1 1 14258.286 421.9478 <.0001* 
Biocide Type*Cff wilt inoculation 
status (yes no) 

3 3 39.678 0.3914 0.7595 

 

Table 74: Dry Foliage Weight Summary of Fit 

    

RSquare 0.832239 
RSquare Adj 0.818895 
Root Mean Square Error 1.068944 
Mean of Response 4.753021 
Observations (or Sum Wgts) 96 

 

Table 75: Dry Foliage Weight Fixed Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > 

F 

Biocide Type 3 3 4.07721 1.1894 0.3185 
Cff wilt  inoculation status (yes no) 1 1 494.95174 433.1642 <.0001* 
Biocide Type*Cff wilt inoculation 
status (yes no) 

3 3 1.00198 0.2923 0.8309 
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Table 76: Leaf Water Content Summary of Fit 

    

RSquare 0.847377 
RSquare Adj 0.835236 
Root Mean Square Error 6.248613 
Mean of Response 17.2344 
Observations (or Sum Wgts) 96 

 

Table 77: Leaf Water Content Fixed Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > 

F 

Biocide Type 3 3 12.499 0.1067 0.9560 
Cff wilt inoculation status (yes no) 1 1 19000.115 486.6190 <.0001* 
Biocide Type*Cff wilt inoculation 
status (yes no) 

3 3 23.505 0.2007 0.8957 

 

Table 78: Dry Pod Weight Summary of Fit 

    

RSquare 0.779663 
RSquare Adj 0.762136 
Root Mean Square Error 4.543624 
Mean of Response 16.2951 
Observations (or Sum Wgts) 96 

 

Table 79: Dry Pod Weight Fixed Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > 

F 

Biocide Type 3 3 98.3100 1.5873 0.1981 
Cff wilt inoculation status (yes no) 1 1 6322.7917 306.2697 <.0001* 
Biocide Type*Cff wilt inoculation 
status (yes no) 

3 3 33.6372 0.5431 0.6541 
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Table 80: Dry Stem Weight Summary of Fit 

    

RSquare 0.758919 
RSquare Adj 0.739742 
Root Mean Square Error 1.050361 
Mean of Response 5.240063 
Observations (or Sum Wgts) 96 

 

Table 81: Dry Stem Weight Fixed Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > 

F 

Biocide Type 3 3 1.47267 0.4449 0.7215 
Cff wilt inoculation status (yes no) 1 1 303.32302 274.9339 <.0001* 
Biocide Type*Cff wilt inoculation 
status (yes no) 

3 3 1.26265 0.3815 0.7666 

 

Table 82: Total Leaf Area Summary of Fit 

    

RSquare 0.851635 
RSquare Adj 0.839833 
Root Mean Square Error 450.5962 
Mean of Response 1389.492 
Observations (or Sum Wgts) 96 

 

Table 83: Total Leaf Area Fixed Effect Tests 

Source Nparm DF Sum of 

Squares 

F Ratio Prob > 

F 

Biocide Type 3 3 132860 0.2181 0.8836 
Cff wilt inoculation status (yes no) 1 1 102058734 502.6610 <.0001* 
Biocide Type*Cff wilt inoculation 
status (yes no) 

3 3 200426 0.3290 0.8044 

 


