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Chapter I
INTRODUCTION

The theoretical prediction of the shape.of the longi-
tudinal free water-surface for open-channel flow has long
been the goal of many investigators. Mathematically, the
various shapes have been precisely defined for given sets
of invariant boundary conditions. ‘The validity of these
theoretical predictions of the physical system depends
upon the completeness of the theoretical description, and
a knowledge of the physical constants affecting the flow.

If the variation of each physical factor or para-
meter could be expressed in simple mathematical form, the
effect of the corresponding profile ;ould likewise be
determined. However, a given physical system does not,
in general, lend itself to simple mathematical analyses.

The effort described therein proposes to provide
some insight into the variability of experimentally
observed parameters and their effect on predicted versus
observed water surface profiles. |

1. Definitions

The problem area to be discussed pertains to
that portion of open-channel flow phenomena defined as:

(a) free-surface in which the unbounded water
surface is at a constant atmospheric pressure;

(b) unsteaay, in which the discharge rate at

a given location varies with time; by slope (mild or steep)



and the region (1, 2, or 3). Other slopes (adverse,
horizontal, critical) exist in theory as well as to a

limited extent in practice.

2. Delineation of Problem

The basic problem of this research effort is that
of determining how well the mathematical model agrees with
the physical model of free-surface, unsteady, gradually-
varied flow. Exact agreement could not be anticipated due
to the variabilities in geometry and fluid dynamic para-
meters from the constant values assumed in the mathematical
model.

3. Limits of Study

The study is restricted to the mild and steep
slope flow regime in the first and second region in which
the discharges vary gradually with respect to time. This

assumption infers that the vertical accelerations are

‘negligible as compared to those in the direction of flow.

Thus, the vertical pressure distributions may be assumed
as varying linearly.

The hydraulic factors influencing the results
were limited to the physical system available for the
experimental observations. The hydraulic roughness was
limited to the hydraulically smooth surface region. The
velocities and corresponding velocity distributions were
limited to the available slopes and the boundary roughness.

If in a channel of given cross-sectional shape

of infinite length, the discharge were held constant, the

SR R I g P L 6T
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depth of flow would eventually, in time and space, assume
a limiting value. This depth is the direct result of the
boundary arag or channel roughness and is referred to as

normal depth. It will be noted from the definition that

normal depth, in the physical sense, never exists except

in the transition from one depth to another.

The mechanical energy contained within a moving
mass may be expressed as the sum of the potential and kinetic
energies. This energy relative to éhe channel bottom for
a given diséharge assumes different values depending on the
"depth and consequent velocity. For a derivable condition
.of minimum energy, the flow will take place at a determinable
depth. This depth is defined as critical depth.

[l

i The relative magnitudes of normal depth and
critical depth for a given channel and discharge determine
one characteristic of the flow. If the normal depth is
greater than the critical, the velocity is in subcritical
regime and the slope is referred to as a "mild" slope. If '
the normal depth is less than the critical, the velocity
is greater in the subcritical regime and the slope is
referred to as being "steep"

Since the normal and critical depths and the
channel bottom define three regions in which the free-
surface may exist, it is convenient to label these regions
as 1, 2, and 3. One being furthest from the bottom, 2

being between normal and critical depth, and 3 being

‘nearest the bottom.




The matheratical development of the theoretical
expression explaining the physical phenomena of unsteady
free-surface flow has been accomplished by numerous
investigators. The earliest (1871) presentation of the
basic equations is attributed to Jean-Claude Barre de
Saint-Venant. These equations express the conservation
of matter and momentum. Their derivation may proceed along
several parallel lines of reasoning each of course with
the same end result. For the reader acquainted with these
developments, the following section may be omitted. It
is included herein for completeness and for those readers

desiring another author's viewpoint.




Chapter II

THEORETICAL CONSIDERATIONS

1. Continuity Relationship

The conservation of matter requires that the
mass which moves into a control volume must move out and/or
be accounted for by a change in storage or density. In
the following it will be assumed that the mass is incom-
pressible and that the difference between the inflow and
outflow changes the amount in storage.'

Figure 1 presents the definition of terms in
which the area and velocity are functions of both position

(x) and time (t).

v - Y a3 & _va -y 3 dx _
Inflow 1 = (V ax) (A 7 2) pdt = VA V= =5
9V dx 3V 3A dx, »
A7 taxw P
Inflow 2 = g p dxdt
c 3V dx ?A dx . ?A dx
3V dx , 8V 3A ,dx,,
tAnx Tt P
7 3A
Change in mass storage = = dt pdx
since,

Inflow 1 + Inflow 2 - Outflow - Change in storage = 0

oA Vv A
V-a—-]—{- +AB—£ +Edt"q

i
o

(1)
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which can be simplified to

3 (AV) + A

3% -'57:- —q=0 _ (2)

.Equation (2) thus represents the complete differential
equation of continuity for unsteady flow of an incompressible
fluid in an open channel.

The first term represents, the distaﬁce rate of
change of discharge along the direction of motion. The
second term represents the change of cross—sectioﬁal area
with time. The third term is the constant lateral inflow
rate. For the purposes of this investigation, the distri-
buted lateral inflow q was zero. Performing the .
indicated operations the following forﬁ of the continuity
equation is that which will be used in subsequent calcula-

tion
Eal osv i o+ ooy (3)

2. Momentum Relationship for Unsteady Flow

The mathematical representation of the dynamics
of unsteady flow, in a prismatic open-channel may be devel-
oped by application of Newton's second law of motion which

in one form states:
_da '
Fi= 3t (mv) (4)

The sum of all forces acting on an element of

flow is equal to the time rate of change of the momentum
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(mass times velocity) in the same direction. For the

application of interest this may be expressed as:

[[[Tean = ¢$ ¥ ( .ak) + 3¢ [f[V (eav)? (5)
C.S. C.V. :

The left side of equation (5) represents.the
sum of all forces acting on an incremental element volume
of flow integrated over the volume. Referring to figure

2, with the positive direction in the direction of flow:

i } pda = i (dF, + dF;, + AW sine - dF;, - dF,)
A A . A 2!
= [ (@F; - dF,)) + [ aW sin' 0 + [ (dF;; - dF,)

(6)

f(dFl - sz) represents the net pressure force on the
A

total element of flow of area A and length dx, and

may be expresses as:

= = 3y s
[(dF, - dF,) = K uw < A dx (7)
A "
in which K represents the ratio of the combined pressure
effects of curvilinear flow and vertical acceleration to

the hydrostatic pressure, w 1is the specific weight of

the fluid.

IShames, I. H., Mechanics of fluids, McGraw Hill Co.
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The [[[ dW sin 6 is the component of the
weight of the total elemental volume (Adx) in the direction

of flow, such that:
A
[f] aWw sin & = & sin & dx A (8)

The resistance to motion of the incremental
element is represented by del - dez. Since the shear
resistance acting on one incremental element is equal and

opposite to that on the adjacent element, the summation

of all resistance forces will result in the shear resistance

at the fixed boundaries. The total shear resistance to
motion may then be expressed in items of the conditiors of

flow as:

A (del - 'dez) = de = sf dx A (9)

in which S is the slope of the friction gradient.

:

Equation (6) may now be restated as:

Kuw ay dx A + w sin 8 dx A - w S_.dx A =

ax b

w dx A (%% + sin 8 - S (10)

)

The first term of the right side of equation (5)
expresses the force to accelerate the elemental mass of

the base flow. This term may be expanded as follows:

PV R .



: 3l

¢$ ¥ (pV.ak) = 32 (bv?A) dax + V(e -g-% B dx) (11)
ctsl
Since:
, g oy _ 22
3t 9t
¢F V (pV.aR) = 3—3 (pV2A) dx + V(p 22)dx (12)
c.s. x at

After performing the indicated differentiation

and collecting terms,

> g _ aV . 3;A_ i&
cc% V (pV.dR) = V p dx (2A stV izt 50 (13)

Rewriting the equation of continuity equation (3)

23 LA S
Thus,
¢V (pV.ak) = p AV I ax
C.S.
=8 a2 ) g (14)

The second term of the right of equation (5)
expresses the rate of change of momentum within the control
volume. Since the velocity representation of the control
volume is assumed independent of position, the integration

and differentiation with time may be interchanged such that,
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-a-% IIIV+(pdv)=p-alr-Adx (15)

c.v. a
For the general case of unsteadiness due in part
to lateral inflow, an additional term representinc the
momentum change of the lateral inflow must be provifad.
If the lateral inflow is uniformly distributed witl: respect

to x, this term will be:

AM_ = p q ¥ dx (16)

q
- in which q is the lateral inflow rate per unit l:z.-th and
¥ is the mean relative velocity of the final mas: “low to

the initial lateral velocity in the x direction.
Rewriting equation (5) in its expanded fr - from

equations (10), (14), (15), and (1l6),

y - - o
w dx A(K e + sin 8 Sf)

3 3 (v2) v
5 A 5T dx + p st A dx + pc dx
(17)
Introducing the velocity distribution fao -=s
@ and B to relate the mean of the energy and mor . =tum

terms to the mean velocity, and dividing by w dx =.

equation (17) becomes

3y ; 2 - B
K e + sin 6 Sf g

wlw
| 4

2

[Te]

a V2 q¥
+ — T + gA (18)

il T

£ Mt

W O PO TR
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Equation (18) is the general equation for unsteady free-

surface flow in a prismatic channel. Each term may be

physically identified as a ratio of a force gradient per

unit cross-sectional area to the unit weight of liquid

flowing.' The terms have the following significance:

Q2
:p

q |w
[+E]
rr

]
|
s

Bl

force gradient due to change of depth
in direction of flow

force gradient due to slope of channel
bottom

force gradient due to resistance to
flow due to boundary roughness

force gradient due to temporal (local)
inertia of the flow

force'gradieﬂt due to the convective

inertia of the flow

force gradient due to the inertia of

the lateral inflow.

3. Discussion of Variables

The two equations of unsteady flow relate two

independent variables (position and time) to two dependent

variables (depth and velocity). The parameters describe

the geometry and the hydraulic characteristics of the

system.
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These parameters are listed below:
X. peometric
A. Diameter (for circular pipe)
B. Depth
l. Area
2. Wetter perimeter
3. Hydraulic radius
4. Mean depth
5. Top surface width
C. Channel slope
IT. BHydraulic
A. Hydraulic resistance (friction factor)
B. Velocity distribution factors
/ C. Pressure coefficient

4. Cross-section Geometry

The geometry of a prismatic channel is the primary
factor for modification of a flood wave. The non-linearity
of these quantities is the primary cause for a lack of
general closed solutions to the partial differential
equations. Hence the need for analog or digital solutions
of these equations.

5. Slope of Channel Bottom.

The channel-bottom slope as expressed in the
sine of 6 differs from slope'as expressed as the tangent
of 6 by less than 0.1 percent for all angles up to a

slope of 4 percent. The use of tangent of 6 or slope

~alone is thus justified.

el 5 oy

And e
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6. Hydraulic Resistance

+ The resistance to flow is of secondary importance

“to that of geometry in the influence on the passage of a

flood wave. The evaluation of this term depends on
empirical relations and thus cannot be precisely predicted
for a given condition of flow.

Theoretical analyses of the equations of unsteady
flow have depended on the use of the Chezy coefficient of
roughness. ' This is probably due to‘convenient form in the
integration process. For the study presented here, it was
decided that the Darcy-Weisbach friction factor would be
more appropriate since it would accommodate for variations
of depth and velocity.

/ Little is known regarding the coefficient of
friction for unsteady flow. Expérimental observations do
not permit direct evaluations of resistance for unsteady
flow. Thus for this study,‘the same friction coefficient
was used as would be used for the same conditions of

steady uniform flow.

7. Velocity Distribution Factors

The velocity distribution factors beta and alpha
are becth greater than one. As discussed later, these valﬁes
are approximately 1.01 and 1.03, respectively. These
values have been shown to vary with depth of flow in a

circular cross section.
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8. Pressure Coefficient.

L

+ Equation (18) was developed by means of NewtOn's-
second law of motion applied only in the direction of the
mean velocity.

The effect of vertical acceleratibh, and acceleration
due to curﬁilinear motion in both the vertical and horizontal
directions are considered to be of second order magnitude
as compared to the accelerations in' the direction of flow.
These residual effects are encompassed in the pressure
distribution coefficient (K). The pressure coefficient

will take on values compared to unity depending on the

time rate of change of the area at the specified cross

section and the curvature of the stream lines as represented
f :
by the second derivative of the depth with position. The

following table indicates the magnitude of K relative to 1.

A ' 3A A

3% <9 5t =0 w7 :
2 :
2y <o K <1 K <1 K or 1

i

32 J
—%-o K <1 K =1 K > %
9x ,
2
22X 50 Korl A S K>1
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For sufficiently small rates of change of area
with time, and small curvature of streamlines, the pressure
coefficient term may be taken as unity.

9. Conclusion

As a consequence of the preceding diécussion of
the relative effects of the various terms in the basic
equations, the two equations are presented in their simplified
form. These forms are the working equations for subsequent
solution and comparison with observed data.

The continuity of matter is expressed as:

A 3V 3y .

1l 3y _
VB ox Tax T¥se 0 .
The continuity of momentum is.simplified to
V 3V 13V, 3Y _ o _
g3 t3rEtIx =55 (20}

These partial-differential equations are first
order, non-linear, non-homogeneous, and hyperbolic in
form. Because of this form, their solution will depend
ﬁpon an independent initial condition and two independent
boundary conditions. With these conditions the dependent
variables will be defined at each position and instant
of time.

The method of solution is developed in the

next section.
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Chapter III
GEOMETRIC RELATIONSHIPS

The errors due to geometric irregularities incurred
in the prediction of the characteristics of flow in an
open channel are a function of the depth of flow. The
analysis of observed data is influenced also by the
error in the observed depth. The evaluation of these
errors and their relative significance is developed in
the following discussion.

1. Characteristics of Circular Cross-Section

Referring to figure 3, the geometric properties
of circﬁlar cross-section which influence the flow of a
free-surface liquid are defined as follows:

l.- Diameter, D

2 - Depth, d

3 - Central Angle, 8

4 - Wetted perimenter, P

5 - Surface width, B
6 - Area, A
7

- Hydraulic depth, 4, =

Tl e g

8 - Hydraulic raduus, R

9 - Section factor (from the Darcy-Weisbach

» A3
equation) Z = AR = 5

Each of these parameters ﬁay be expressed as the

ratio of its value at a specific depth to that at the upper

RN U S

wems ] b 4 e = B
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CIRCULAR CROSS-SECTION PARAMETERS
DEFINITION SKETCH
FIG. 3
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limit of depth equal to the diameter. Figure 4 displays
these variations as a function of the depth-diameter ratio.
It is interesting to note that the hydraulic radius and
the section factor maximize at values greater than one.
This fact infers that the theoretical maximum discharge
would occur at less than full depth for the same energy
slope. The usual theory based on atmospheric pressure

of the free surface does not necessarily apply at this
depth in practice, hence, prediction of flow at depth
ratios near one must be based on additional considerations.

Errors in Parameters as a Function of Errors in

DeEth

The error in each of the dependent parameters
can be expressed in terms of the relative error in the
depth as follows:

1. Wetted perimeter defined as

P = % 0 (21)
beqomes
dap _ 48 ' (22)
3 8
in which
6 =2cost (1-Z% (23)
and
9%.: 1 (%) (24)

-1

(g—l)l/chs (1- 2%)

ol e F

e s

N T .s:_.'*‘i.!.'-.i.- -
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Surface width defined as

B =D sin %
becomes
as _ 1 aa
B d
D 1/2 2]
(a~1) tan 5
Area defined as
2 p
A = %— (6 - sin 8)

dA _ 1 - cos 8 dse
= = ()

A sin 8
1l - S

Hydraulic depth defined as

A
=5
becomnes
dd, da dB
d, & = B

Hydraulic radius defined as

R =

o)

becomes

dR _ dA _ @@

R A P
Section factor defined as
Z = AZ2R

becomes

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

L S S TR S .

g -q_.‘, St s e
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These realtive errors, represented in equations
(22), (24), (26), (28), (30), (32) and (34) being functions
of depth are plotted as ratios of the relative depth error
in figure 5. It may be seen that the relative error in all
parameters except wetted perimeter and hydraulic depth
become less for increasing depth for a given relative
depth error. The significance of these curves will be
demonstrated in the calculation of ioughness values and
Reynold's numbers. |

Errors in Parameters as a Function of Ellipticity

Since no physical "circular" pipe possesses the
mathematically defined circular shape, it is of interest
to determine the effect of a departure. from the ideal shape.
As a systematic approximation, an elliptical
shape was assumed. The parameters describing the departure
from the flow area in a circular cross section are then
the eccentricity and the direction of the principal axes.
The eccentricity is defined as
&)

e = 1= (= | (35)

in which "a" and "b" are the major and minor semi-diameter,
respectively. The direction of the principal axes defined
here as the angle (@) that the minor axis makes with the

vertical as shown in figure 6.

In order to compare the circular segment with

an elliptical segment, the percentag=2 aifference between
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the two areas was computed for a range of depths up to
the center of the ellipse. The eccentricity was varied in
increments of 0.05 up to 0.30 and for values of alpha

ranging from 0 to in increments of w/10. For all

2
2
eccentricities, the area of the complete ellipse was

made equal to that for the complete circle.

The result of these calculations are shown in
figure 7 as percent difference in area between the circular
and elliptical segments as a functioﬁ of eccentricity for
various values of alpha with depth relative to the center
of the ellipse as a parameter.

These calculations indicate

(1) that the relative error in area increases
with increased eccentricity;

(2) that the relative error in area decreases
ﬁith increasing depth;

(3) that the relative error in area maximizes
at the vertical and horizontal positions of the principal
axes and is a minimum at an angular position of 45° with
the horizontal.

The relationship of these Qeometric properties
of an eliipse to the physical situation will be discussed
in the foilowing éection.

Characteristics of the Physical Pipe

I. Measurements and calculations
The steel pipe used as an open channel for

the data analyzed herein was nominallv 3 feet in diameter

e el e B,
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1/2 inch thick rolled plate with a longitudinal welded
joint. The 20 foot sections were butt-welded together and
supported on steel rails at approximately 20 foot spacing,
not necessarily at the pipe joints. As a result of the
manufacturing process, handling, field welding, and the
method of support it is not to be expected that the pipe
would be perfectly circular or possess a straight line
invert profile. The total length of the pipe was
approximately 822 ft. |

Measurements were made of the inside diameter of
the pipe at 60° intervals to the nearest-O.DOI inch. These
measurements were made at cross sections spaced at 40-feet
before the inside of the pipe was painted, after painﬁiﬁg
similar measurements were made at 20-ft intervals. An
ellipse was fitted to the three measured diameters at
éach section and its orientation determined.

Results and Discussions

The result of the above calculations are presented
in Table 1, Pipe Geometry. The differences between the

means of each of the parameters for the two surveys are

not significant on the 5 percent level. This would indicate_

(1) that the painting of the pipe had no effect on the
internal éeometry} and (2) thét doubling the number of
stations did not improve, significantly, ones kndwledge
of the geometry.

Accepting an average area of 968.41 sqg. in.

(6.725 sq. ft.) the mean diameter for the pipe is then

~ar
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TABLE 1. PHYSICAL PIPE GEOMETRY
Units of inches svandard
Stations Maximum Mean Minimum Deviation
Major 40 17.869 17.617 17.538 0.175
Axis 84 17.913* 17.604 17.554 0.047
Minor 40 17.626 17.516 17.435 0.0375
Axis 84 17.680 17.510 17.430 0.031
Eccentri- . 40 0.176 0.1021 0.046 0.0310
City 84 0.175 0.0993 0.051 0.0244
Alpha 40 165.58 84.84 13.71 46.5
84 160.37 82.94 7.78 49.43
Area 40 989.5 969.47 965.3 3.84
84 994,9% 968.4 964 .,1%** 3.94
Wetted 40 111.51 110.373 110.13 0.2769
Perimeter 84 111.82%* 110.314 110.07** 0.21l67
Hydraulic 40 8.87 8.7785 8.76 0.0183
Radius 84 8.89 8.7742 8.75%* 0.0181

* Occurred at same section
** Qccurred at same section
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2.9262 feet. This figure has been used for the pipe
diameter for all subsequent calculations.

The eccentricity and the angle alpha for the
observed geometry of the pipe serve as a means to estimate
the possible error in subsequent hydraulic calculations.
Referring to figure 7, the percent difference between
the circular and elliptical segments for the maximum
and mean eccentricity at a depth ratio of 0.2 was deter-
mined and in turn plotted in figure 8 as a function of the
angle alpha.

As may be seen from this plot, £he error in
area becomes a maximum at an angular position of zero and
90 @egrees. For the mean eccentricitv for the pipe of
thi; depth ratio the maximum error is 1.1 percent. For
the:mean alpha angle of about 85'degrees, thé maximum
error for the mean eccentricity is approximately 1 percent.

For depth ratios éreater than 0.2 the relative
error becomes less. For larger eccentricities, the relative
error becomes larger at an increasing rate. For smaller
alpha angles, the relative error decreases through zero
at approximately 45 degrees to an absolute value equal
to the maximum at zero degrees.

Conclusions

In view of the interrelated effects of depth,
eccentricity, and alpha, it appears that an error in
the computation of the flow area by assuming a circular

“cross section instead of an approximated ellipse, may range

S ik R ) L
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from zero to 3 percent with 1 percent as being represen-
tative.

2. Errors Due to Vertical Displacements of a

Circular Cross-Section

General - The deviations of a given solid
boundary from a mathematical straight alignment may be
identified in three broad regions,

(1) The surface irregularities which contribute

directly to viscous shear and consequent hydraulic rough-
ness

(2) Misalignments of the mean boundary which

occur gradually over an appreciable distance. These may be
considered as unintentional, but unavoidable in a given
phfsical situation.

!

(3) Intentional changes in boundary direction

éither horizontally or vertically to alter ﬁhe direction
of flow.

Surface irregularities and intentional boundary - - £
realignments may in general be readily accounted for as to
their effect on surféce profiles. Hoeever, the unavoidable
gradual boundary misalignments are generally ignored or
assumed to introduce negligible effect on the surface
profile. Based on the energy conversions relating to
such changes in cross—sectionﬁl area, the foregoing
assumptions are probably justified. The energy transfers

are small, by definitions, and may well be masked by the

+ g ot g
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its time variability. Thus, the depths computed from any
commonly used formula represent only the time-distance
mean values.

In order to estimate the effect of vertical
misalignments of the channel section on the Qater surface
elevations, the following analysis was made.

Theory - It is to be expected that gradual vertical
misalignments of an open channel boundary will be reflected
in a change of surface profile. This effect may be iealized
and subsequently quantitized by considering a sinusoidal
channel bottom profile.l (See fig. 9).

At any section the total energy is

2

= v_

E=2z+y + 29
upon differentiation,
8 _ dz , dy , v dv
ax - ax " ax * g ax ' °F
(36)

sl B & dy , v dv

S¢ = Sptax tg &

In which, S is the rate of energy loss which may be

£
represented by

g a B, ¥ LE. DE )
£ Bg R Sg AZR
o 8 Ry
= (A—') (R_) SO . K37}

1 Proc. of lst Australasia Conference on Hydraulics and

Fluid Mechanics, J. M. Henderson
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Since
z =2 =-xXx8S + z_ sin 2ry
- o a L
_dz _ _ 2m 21X
S W Sy t T~ %5 ©0s - (38)
and
v g_*_f:_ﬂ dy__p2 &
g X gA3 x o X
- Aa -
- 2 (© T, dy
Fo (A ) (To) T _ (39)

In which, E. is the Froude Number corresponding to a
uniform slope So'
After substitution of equations (37), (38), and

(39) into equation (36) and solving,

. A 3R
o s, [i- G20y -
- 2 (9 (=
1 Fg (A ) (T )
o
212
T 2 cos ZEX : (40)

Equation (40) then is the differential equation
of the depth resulting from a sinusoidally varying bottom
of amplitude z, in length L. A solution to this equation
may be found if the geometry ratios can be expressed in
terms af the depth ratios (y/yo). It is not possible to
express the geometry of a circular section as a simple

continuous function of the depth-normal depth ratio. It
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is possible however, to achieve a solptioﬁ if the depth

ratio is expressed as:

s ; 27 _
%; =1+ ¢ sin (_EX a) ] (41)

in which € is the ratio amplitude to Yo and o is the

phase angle for the depth wave. Then,

ay _ 2o
b4 L

€ cos (Z%Z - a) (42)

From equations (40) and (42), expanding the cosine of the

~sum, and equating the coefficients of the unknown phase

angie a; the value of o may be determined as
-3 S L "1
[e)

f (43)
; 2 y,Q1 = Foz) J

The amplitude of the depth wave Y, ¢can now be evaluated

from,

(44)

Equations (43) and (44) relate those quantities
required to estimate the effect of periodic channel
irregularities to corresponding changes in depth of flow.

Calculations and Results - Equations (43) and

(44) were solved for various combinations of:
(a) channel slope
(b) wave length of channel irregularity

(c) amplitude of channel irregularity
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(d) normal depth
The Darcy;Weisbach friction factor was taken as a constant
0.012. A

Table 2 presents the results of these calculations.
The results indicate, as would be expected; that for a
Froude number greater than one, the depth wave is practically
in phase with the bottom wave. The slight difference is
due to the resistance. For a Froude number less than one
the depth wﬁve is out of phase with the bottom wave by
essentially = . Again the slight difference is due to
.the resistance.

. It is to be noted that the amplitude of the depth
wave is unchanged for various lengths of the bottom wave
(other parameters unchanged). The amplitude of the depth
wa&e compared to the bottom wave ranges from approximately
one for low Froude numbers to approximately 3 for Froude
numbers close to one.

Significance to Physical Observations - The

channel invert was aligned as carefully as possible to a
constant uniform slope. This was accomplished by first
adjusting the pipe to a predetermined position on the
supporting rails. All leveling was done with a self-
leveling level with an optical-miérometer with a least
count of 0.001 inches. The invert elevations were
observed at 45 positions approximately 20 feet apart. A
least-square determination of the slope and the deviations

‘at each position was then made. If the deviations displayed
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THEORETICAL EFFECT OF BOTTOM IRREGULARITY
ON WATER SURFACE PROFILE

Slope Froude No. z, ~ ft. L - £t. @@ = Rad, €Yy : 5 o

.0100 2.582 .01 20 6.266 .002

40 6.249 .002

60 6.232 .002

80 6.216 .002

.02 20 6.266 .004

40 6.249 .004

60 6.232 .004

80 6.216 .004

.03 20 6.266 .005

40 6.249 .005

60 6.232 .005

80 6.216 .005

.04 20 6.266 .007

40 6.249 .007

60 6.232 .007

80 6.216 .007

.001 .816 .01 20 3.170 .030

40 3.198 .030

60 3.227 .030

80 3.255 .030

.02 20 3170 .060

40 3.198 .060

60 3.277 .060

80 34299 .060

.03 20 3.170 .090

40 3.198 .090

60 3.227 .090

80 3285 .090

.04 20 3.170 .120

40 3.198 .120

60 3.227 «120

80 3255 .120

.0001 .258 .01 20 3.142 .011

40 3.143 +011

60 3.144 .011

80 3.145 .011

.02 20 3.142 «02L

40 3.143 .021

60 3.144 .021

80 3.145 021



39

Table 2. Con't. Theoretical effect of bottom irregularity
on water surface profile

Slope Froude No. z. = Ft. L - ft. o - Rad. €Y, ~ £,

a

.03 20 3.142 .032
40 3.143 .032
60 3.144 .032
80 3.145 .032

.04 20 3.142 .043
40 3.143 .043
60 3.144 .043

80 3.145 .043
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a consistent or excessive trend in a given length, that
portion of the pipe was readjusted, and the elevations
redetermined.

Due to unavoidable irregularities in successive
sections of the pipe and the method of joining sections,
it was impossible to completely eliminate all deviations
from mean slope. Table 3 presents the results of mean
slope determinations and the corresponding maximum and
root-mean-square deviations from the least square fit.

From these results if may be concluded that the
_invert profile could be characterized by an undulating
bottom with approximately 0.01 feet amplitude and a 20
feeF to 40 feet wave length.

f Equations (43) and (44) were solved as the case
forian infinitely wide channel with a sinusoidal bottom.
This case may be considered as a limiting case for a cir-
cular cross section flowing partially full if one considers
the radius to remain constant and the centerline of the
section to vary sinusoidally about the mean slope. Thus,
the entire section may be considered as changing position
vértically rather than only the invert or radius to vary
sinusoidally.

Conclusions - On consideration of the results of

Table 2 in predicting the effect on the observed water
surface profile, it may be concluded that for the slopes
used the observed depths may deviate from the ideal by

“0.01 to 0.03 feet on the average. Based on the maximum

EET
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deviations the water depth may differ from the ideal by

0.03 to 0.09 feet.

TABLE 3. PHYSICAL PIPE SLOPE DEVIATIONS

Root-Mean-Square

Slope Max. Deviation - ft. Deviation - ft.
.0000052 +.0188 .0116
.0000157 +.0182 s .0135
.0000303 +.0214 ; .0099
.0001325 . +.0195 .0099
.0005197 +.0347 .0117
.0010101 +.0279 .0119
.0074578 -.0240 .0133

.0200690 +.0375 . .0141
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Chapter IV
' METHODS OF SOLUTION

The solution to a previously stated equation for un-
steady open-cﬁannel flow may be categorized ih numerous
ways. One way would be to consider integration of these
equations in closed form as contrasted with the finite
difference solution.

The solutions of these equations by means of direct
integration is obviously most impracticable if not impossible.
- This is due in part to the non-linear characteristics of
the equation and the fact that they are most commonly
applied to channels of arbitrary sbape. There have been
solutions for these equations for the infinitely wide
channel and for boundary resistance expressed as relatively
simple functions of the depth and velocity.

It is conceivable that a continuous solution of these
equations could be made by means of an electronic analog
computer. Although this was not done in this study, it
presents an interesting possibility. The difficulties of
such a solution would involve the generation of geometric
parameters and again boundary resistance as continuous
analog functions. This perhaps could be overcome by the
use of_a hybrid computer.

The final possible method of solution depends uﬁon
consideration of finite differences of distance and time.

These assume that the variations in the dependent variables

Pl it

i
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which occur during the short intervals of time is comparable
to the variations taking place in the continuous function.
The methods available for this type of solution include
the semigraphical solution as was done by Akgrs and numerical
methods as have been investigated by numerous.researchers.
Numerical solutions may be accomplished in various manners,
however the use of the electronic digital computer is
obviously the most convenient and accurate.

Numerical procedures utilizing a digital computer are
likewise numerous depending upon the type of problem and
‘the individual who develops the procedure. Several methods
were attempted during the course of this study. These
methods depend upon various mesh patterns in the time-’
space domain. The methods which were used and subsequently
discarded were those defined by Richtmyer(l). These methods
are termed diffusing, leap-frog and Lax-Wendroff. These
methods perform satisfactorily within certain ranges of
flow characteristics. They inherently produced instabilities
when the flow changed from sub- to super-critical flow or
vice versa. This is due to the changing pattern of zone
of dependence and region of influence as described by
Yevijevich.

Following the successful solutions utilizing the
method of characteristics, it was decided to utilize this
computational procedure throughout the study. The deécription

of this procedure as used in this study follows.

(1) A survey of Difference Methods for Non-Steady Fluid

Dynamics, R. D. Richtmyer, NCAR Technical notes 63-2
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Method of Characteristics

Introduction

The equations of unsteady free-surface flow
equations (19) and (20) form a system of quasi-linear
partial differential equations of the first order and of
a hyperbolic type. The discussion of why the system of
the equations of unsteady free-surface flow is called a
system of quasi-linear partial differential equations of
the first order and of a hyperbolic type, is found on
pages 53 and 57.

Various possible methods to integrate these two
partial differential equations were discussed by Yevjevich
(1961; 1964). One of these methods is called the method
of characteristics. This method was first proposed by
Massau (1889) for integrating the two partial differential
equations of unsteady flow in channels by graphical
procedure. This method has been also widely used for the
solution of a variety of problems in physics and mechanics,
and they can be found in Courant and Friedrichs (1948),
Crandall (1956), and Dwczarek (1964).

The solution of the method of characteristics
by hand calculation or graphical with hand or desk
calculator is extremely laborious and time consuming.

As a result, in the period before the advent of electronic
computers, a variety of schemes of the solution by tﬁis
method were proposed. The details of various schemes can

be found in Yevjevich (1964). In general, solutions of

- Rl v
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the method of characteristics may be performed by two ways:
graphical method and digital computer. A digital computer
gives several advantages. It does not only do the tedious
computation which is done by the graphical method, but it
also gives the solution for the complete system of equations
without simplification and approximation. This permits a
significant increase in accuracy.

The purpose of this study was to use a digital

computer to solve the equations of unsteady free-surface

flow by the method of characteristics. In this section,
the method of characteristics is described for a system

of two quasi-linear partial differential equations of

the hyperbolic type with two dependent .and two indepehdent
variables.

General form of the equations of unsteady free-

surface flow

The general form of the equations of unsteady
free-surface flow is written in a system of quasi-linear
partial differential equations of hyperbolic type with
two dspendent variables V and y , and two independent

variables x and t.

W W, W ,p 2 ,p
By ax ¥ By sp ¥ C ¥ Dy g ¥ By =0 (45)
A 3V + B v + C 9y + D 2y + E. =0 (46)

28]
@
]
V]
@
t
3% ]
w
w
28]
@
t
[ %]
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where V is the velocity, y 1is the depth, x is the
distance ralong the channel, t 1is the time, and Ay oy

2 2
of variables V, y, x and t.

B, jeusep B are coefficients which are the functions

Equations (45) and (46) are comparable to

equations (19) and (20), respectively, with the following

conditions
_ _A | _ = Wi - -
Al = 9B 7 B1 = 0; C1 = 1; Dl = g El = 0
--ﬂ- = E- — - — - — -
By =57 By=gi Cy=1;D,=0; Ey =55, .

The general form of the equations of unsteady free-surface
flow was used exclusively in this section as well as in
the next. This is because, first, the general form is

compact and easy to treat in mathematical derivation.

"For instance, in the derivation of the characteristic

equations, the general form is easier to deal with than
the actual unsteady flow equations. Second, if the

general form was considered and treated once, then any

change in the boundary conditions of the flow, such as.

lateral in flows, does not require a new mathematical
consideration, but only to equate properly the coefficients
between the two systems.

Mathematical properties of the equations

Consider a certain region in the (x, t) place,

say on the curves or f_ in figure 10. If the

£y
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=
A
&_
i
Vix,t) y(x,t)
0 B~ X
Fig. 10 - A(x,t) plane in which the solutions along &

-+

and £&_ are initially known



V and vy

have finite values and a unique
(45) and (46) exists on the curves E+ or t_ .
if the values of V and vy

known along curve &, ;

X
distance

v v
ax !

then the

E+ can be determined.

are continuous; then

X

7t '
velocity V

+]'

ay , and %% at any point of curve ¢

and the time

3y 3y
and 5t

ax '

and

£+ is known,
V. _ 3V ax L AV
as! ax oS! ot
D _ 3D ax . 2D
asS' X as' . ot

where s

is the differential element along curve

then the derivatives

48

3v. 3V, 3y 3y
ax ' at ox ' and at

solution of the equations

Therefore,

and their derivatives are

v av
ox ' at !

% being at the
t, are known and the derivatives
at the point P can be computed

the depth y . along the curve

Since the solution along curve

their derivatives are also known.

ot
Bt 47

ar

L4 (48)

Qr

£y -

Therefore, in the additions to equations (45) and (46),

there are two more equations which can be written from

equations (47) and

where;

(48)
_ 3V v
dv = = dx + 3T dt (49)
= Y L4
dy " e dx + 3t dt (50)

v e
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av = — ds'

dy = &, ags'

3s"
X
dx = £, ds'
_ 3t '
dt = &=, ds

The four equations (45), (46), (49) and (50)
v v 3y 3y
5% ! 3t ! 3x 3P4 3% ¢

[
into a single matrix equation

with four unknowns can be written

Vv
Al Bl Cl_ Dl T -El
oV
By By € Dy 3t “Eo ,
2 ~ §51)
dx dt 0 0 oy | av
ax
3y
0 0 dx dt 5t dy
Solving equation (51), the derivative v can be determined.

ax
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dav dt O 0

dy 0 dx dt

A
v _| i e’ i (52)
_ax - : A
B
B %1 6 Dy
A. B. C. D

dx dt O 0

0 0 dx dt

Similarly, for the other derivatives

A
%% 2 EE (53)
3 A9 |
‘ §§ - 2 (54)
e
%% - Ki | (55)

where ﬂz i A3 and ﬁ4 are appropriate determinants.

From inspection of the equations (52), (53),

(54) and (55), a uhique solution along the curve £,

exists only if the direction of curve £+ is such that

the determinant A # 0. When the direction of curve

o ali

T
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4

unique solution along the curve ¢ . It is initially

is such that the determinant A = 0 , then there is no

assumed that in the region of (x, t) plane the first
3V v 3D 3y

ax'’ ot ' X ot '
finite values. Equations (52), (53), (54) and (55) were

derivatives of V and vy , have

rewritten in the form for the purpose of mathematical

inspection of the equations.

oV

A= 4
AV _
Bsx™ &
(56)
By= .
A 3% By
Iy _ ‘
A= ¥4

From inspection of the equation (56), if the determinant

A vanishes along curve 3 then the determinants &1,

5 v a3 and A4 must also vanish. Therefore, on curve

£+ there exist

A

vo_ 0
ax 0
3v. _ 0
at 0
(57)
3y - O
ax 0
3y _ 0
ot 0
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In the case determinant A in the equations (52),

(53), (54), and (55) vanishes,

Al Bl C D

A - = 0 (58)
dx dt 0 0

Expanding equation (58),

- A 2 _ _ -
(Alc2 Azcl)dt {(Alo2 Ale) - (BlC2 _ Bzcl)} dxdt

/

| = 2 =
; + (BD, - B,D;) dx? =0 (59)

2

The following notation is introduced in order

to simplify the algebra and the computer program coding.
[xyl = %375 = %73

Equation (59) then becomes

2
[AC] (%% - [AD] + [BC] g; + [BD] = 0 (60)

If the direction of curve £, at P din the

(x, t) plane of figure 10 is such that it has a slope

satisfying equation (60); then the derivatives of B and

A% .?_v._ 3.?. .3_)[ are not

- along the curve s ¢ T% ¢ T’ 3% ' 3t

SRR i ke A

e i
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uniquely determined by the values of V and y along

the curve. Such direction of curve E+ is called a

characteristic direction, and the curve is called

E+
a characteristic curve or, simply, characteristics.

Equation (60) is in a quadratic form of the

slope g% . Therefore, there are two solutions of %ﬁ .
@t _ I[ap] + [BC] + “ ([AD] + [BC])2 - 4[AC] [BD]
ax 2 [AC)
(61)
&5 _ Iapl + 1sc) - V(ap) + (BC1)2 - 4[ac] [BD]
- 2 [AC]
(62)

The notations for the two chéracteristics are
introduced such that

(St

o)s and E_ = (%%)_ (63)

g, =

In this case, if equation (60) has two real solutions,
then the system of equation (51) is called a system of
equations of the hyperbolic type, for two complex solutions
it is called the elliptic type and f&r one real solution it
is called the parabolic type.

‘As previously mentioned, if the determinant A
vanishes, then the determinants al i Az g A and _a4

3

must alsoc vanish. Therefore, for example 34 =0
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Al Bl C1 —El
Ay By G “H
=0 (64)
dx dt 0 av |
0 0 dx dy
Expanding the equation (g4)
at dy av at _ _
[AC] dx [BC] > 7 + [AB] Ax + |AE] o [BE] =0
(65)
where L%%) obtained from equation (61) is substituted
+ . '

into equation (65), it becomes an ordinary differential

equation for V and y along the characteristic £,
acl ¢, - (Bc] ) X4 [ap) &+ { (aE] g, = [1an‘L =0
= dx dx +
(66)

Similarly, another ordinary differential equation for V

and y along the characteristic §&_ can be obtained by

substituting (%%) of equation (62).into equation (65).
¥ _ gz g:! _ -
[AC] £_ -[BC] 3= [AB] =+ [AE] &_ -[BE] 0
(67)

Now there are two ordinary differential equations

(66) and (67) with two unknowns V and y. The solution

can be obtained by solving these two equations simultaneously.

e

PR ST
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No new relationships are obtained by using the

1 AZ and a3

words, the two ordinary differential equations (66) and

determinants 4 being zero. In other
(67) can be obtained by the relationship of any one of
As 32 . A3 and ﬁq being zero.

In summary, a procedure of solving a quasi-linear
partial differential equations with two dependent and two
independent variables is: First, tﬁe Charécteristic
direction ét a point in the (x, t) plane, at which the
dependent variables V and y are knowg, is computed.

For example, in figure 10 the velocity V and the depth

y are known at the point P of the coordinates (x, t).

The characteristic direction at the point P can be :
determined from the characteristic equations (61) and (62),
since they are the functions of the coefficients of the
partial differential equations and the dependent variables .
V and y at that point. Second, the two ordinary differ-
ential equations (66) and (67) are simultaneously solved
along the two characteristic curves. In this way, the
values of the dependent variables V and y along the

two characteristic curves are obtained. This procedure

is called the method of characteristics.

Characteristics of the Equations of Unsteady Free-

Surface Flow

In comparison of equations (19) and (20) of

unsteady free-surface flow with the general form, equations
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-(45)_and (46), a system of four equations of ﬁour unknowns

3V 3V, ay

v v y i fan |
5 ¢ B ¢ g ¢ and 5 wWas written from equation (51).

. g% & & 337 0
VB v 3% :
Vv 1 av
(—3: . (—3— 1 0 ?t‘ SO-Sf
= (68)
dx at 0 0 2y av
ax
9y |
0 . 0 dx dt 3t | dD
— — e _t ‘_. —

The two characteristic directions at a point in the (x, t)
plane with the values of the two dependent variables V
and y are known, were written from equations (61) and

(62) respectively.

dt _
(a = (69)

The two ordinary differential equations for V and vy
along the characteristics £+ and ¢_ were written

from equations (66) and (6?)miespectively.

A _V 1\dy, A ,dv A o _ -
- s+*rg (axt Gag ax T8 oS¢ f4 =0 (D)
A _V 1\ dy , A ,4dv A » -
(VB g) o ¥ g ax T (VBg) ax * B (So Sf) S 8 i)
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The system of the equations of unsteady free-
surface flow, which is in a form of a single matrix,
equation (68), is called quasi-linear because the equations
are linear with respect to the derivative of,the highest
order, in this case it is the first order. And it is
called the hyperbolic type because ther are two real
solutions of characteristics which obtained from equations
(69) and (70). This is proved by the inspection of the
terﬁ under the square-root in equatioﬁs (69) and (70) which
is always positive. Thus, there are two real solutions of

characteristics in equation (68).
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Chapter V
COMPUTER SOLUTION

This section deals with: (1) Procedure oﬁ solving the
two characteristic equations and the two ordinary differential
equations by numerical methods. This includes the general
concept of arranging the two characteristic directions for
computation and the methods of integrating the two differ-
ential equations along the characteristic directions by
finite differences, and (2) Details of computer solution of

the selected method from several possible methods.

Methods of Characteristics for Obtaining a Numerical
Solution |

Generally speaking, there are two approaches of
solving the set of equations (69), (70), (71), and (72)

By the method of characteristics on a computer.

The first is called the method of grids of
characteristics. This includes establishing the initial
characteristic curves which are known from the initial
condition. The receding characteristic curves emanate from
it. In figure 11 the initial characteristic curve Eo is
known from the inflow hydrograph and is drawn from x = 0
and t = 0. By introducing the values of the dependent
variables V and y along the initial characteristic
curve, Eo , at the appropriate points in the computation
scheme, the values of V and vy at.successive points being

functions of the independent variables x, and t are
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obtained. For example, the valués of the depths and veloc-

ities at points Ql - Q2 and Q3 in figure 11, are obtained
from the values of the depths, velocities and the coordinates
(x, t) of the points Qo , P

, P and P respectively.

1 27 3

In the same manner, all wvalues of the dependent
variables V and y as functions of the independent
variables x and t can be computed.

The second method is called the method of specified
intervals of the independent variables. With this approach
the dependent variables V and y are known functions of
the independent variables x and t, either being as
given initial conditions or as the results of previous
stages of computations. For example, it is assumed that
V and y are known along the distance x at the time t.
Figure 12 represents rectangular grids in (x, t) plane with
intervals 4Ax and At in x and t coordinates respec-
tively. 1In this case, V and y at points Mo i Ao B Bo ;
J— NO are known, then the values of V and y at the
time t + At and particularly at points Ml, Al . B1 i %%
Nl can be computed from the set of equations (69), (70),
(71), (72) and the boundary conditions. In this manner,

V and y at the time t + 2At at various points along
the distance x can be computed. This process can be
continued as far as desired.

In this study, method of grids of characteristic

is referred to as the first method and method of specified

FRWE 0 8 W S
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intervals of the independent variables is referred to as
the second method. The second method was selected and

used in this study because the values of x and t at
M1 ’ Al
known, and only the values of V and y at Ml F Al ’

i B1 jiiaie NL of the second method are exactly

Bl""’ NL have to be determined. For the first

method it would be impracticable to arrange the
computation in such a way that the 'points of intersection
of characteristic lines occur at the values of x and

t on rectangular grids. Furthermore,.for the study of
unsteady free-surface flow, the second méthod has the
advantage that it gives results directly in the form
which is most likely needed and useable, such as, the
hydrograph at each position along thé channel and also
the water surface profile at any given time. From the
point of view of computer programming, the arrangement of
‘the steps of computation for the second method appears to
offer advantages over the first method. Since the values
of the dependent variables at the time t in the second
method are known at the predetermined points and the only
information needed to be stored in the computer is the
values of dependent variables at the time t+at. There-
fore, this method needs only computer storage of two

time lines as indicated in figure 12. Values of the
dependent variables V and y of row J are known

and stored while the values of V .and y of row L are

computed for the first time interval. After completion
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of the first time interval, the values of V and y of
row L are stored for the next computation at the second
time interval, and the values of V and y of row J
are printed out and replaced by row L.

Numerical solution

This section includes the details of solving
the equations of unsteady free-surface flow by the method
of characteristics with specified time interval, At, and
specified distance interval. In this method, V and vy
at a point P on the (x, t) plane of figdre'13 can be
computed from the initial conditions or previous values
of 'V and y at points A, B and C with the following

assumptions:
/
|
characteristics between P and R and between P and

(a) At is sufficiently small that the parts of the

S are considered straight lines.

(b) The slope of PR ‘at P is the positive
characteristic direction of point C , (£+}C ; and the
slope of PS at P is the negative characteristic
direction of point C , (§_), .

Since X and tP are known, the depth at

P

point P , yp and the velocity at point P , VP are

to be computed. The computation proceeds as follows:

(1) The x-coordinates of R and S are determined
from the relationships of (E+)C ’ (E_)C and the
geometry.
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tp =ty (g, 1. &xp = xp) (73)
ty - tg = (Bl (xp - xg) . (74)
where (£,), and (§ ), are to be computed from equations

(69) and (70), respectively

(2) The values of VR' VS’ yR.and Yg are determined
from the method of interpolation from the application of
Taylor's expansion,

2
£(x+h) = £(x) + BE' (x) + g: £(X) + ... +
n-1
L 2 (%) + o™ (75)
in which in finite difference form:
; _ f(x + h) - f(x)
£'(x) = + 0(h?)

AX

£9 (x) = f(x + 2h) - 2f(x + h) + f(x)
Azx

+ 0(h3) (76)
For the second order interpolation, the third and
higher derivatives of equation (75) are neglected. By setting

x = 0 at point ¢, equation (75) becomes

vV, -V V_-2V_+V
_ B 'A _ B QK o h2
VR__ Vo + S57x (xc xR) + pep e (xo=xp) (77)
2A°x _
V-V, V-2V +V , )
- VS = Vo + B A (x.-x.) + B C A (x.-x.)2 (78)

24X cC"s 242x c's



_ YooY, - Yg=2YotYp
Yo = Yo + —— (X.-X_) + ——— =
R~ Yc AR ¢ ¥R r—
Yg~¥a Yp=2Yctyy
Yg = Yo + 5% (Xo7%g) +

(3) VP and Yp
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- 2A%x%

(xc-xR)2

(x -x

(79)

(80)

are obtained by solving simultane-

ously, the finite difference forms of equations (71) and

(72).
F. (yo=Vy) + G, (V.-V.) + S, (x.,-%X.) =
C+ P 4R C+ P R C+ P "R
FC_(yP—yS) * GC_(VP“VS) + SC_(XP~XS) =
in which

FC+ = [ac], (§+)C
Gc+ = [aB],
Sc, = [AElg (E¢
Fo = [ACl, (e))
G = [AB]
Sc. = [AElL (5

Solving equations (81) and (82) simultaneously,

|

[BC]

- [BE],

[Bc]c

- [BE]C

(81)

(82)
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T G '
S Ca
T Gc_
Yp = = . ) (83)
+ +
FC_ GC_
and
F T
M c,
FC_ TC_
v = (84)
P
F G
c. c,
/ F G
; C_ C.
where
TC+ = FC+YR + GC+ VR—SC+ (xP-xR) .
TC = FC Yg + GC VS-SC_ (xP—xS)

By this means velocities and depths at the time t+At for
all points along the channel are obtained, except at the
two boundary points, one being-upstream and the other being

downstream. These two points My and Ny in figure 12

can be computed from the given boundary conditions. The

method of computation is described following the next section.
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Initial conditions

+ The necessary initial condition for the unsteady
free-surface flow is that all velocities and depths of water
along the channel must be known at a given time. 1In this
study it was assumed that at the initial time, the discharge
was constant throughout the reach. Thus the problem can be
treated as a steady nonuniform flow. Velocities and depths
along the channel are then determined by the computation of
a conventional backwater or drawdown surface profile,
depending on the downstream control. This procedure uses
the standard step method described by Chow.

Boundary conditions

The two governing equations for unsteady flow
require two independent conditions relating velocity and
depth at some location along the channel. One of these
conditions is necessarily the discharge-time relationship
existing at the inlet end to the section of channel under
study. This relationship can be either expressed in a
mathematical form or as discrete points of discharge at
selected intervals of time.

The other condition which must be imposed on the
problem is that of a discharge-versus-depth relationship
at the downstream end as characterized by a control structure
or critical depth at a free outfall. This is the condition
which must exist for sub-critical flow of the base discharge.

If the base discharge is flowing in the super-

critical range or is on a super-critical slope then the

SIRER= T HIEE: ST
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boundary condition must be expressed at the inlet end.
This function takes the form of a discharge versus depth
relationship. This condition is somewhat difficult to
visualize from a physical standpoint, however, it is a
necessary condition in as much as the characteristic
directions both have a positive slope and thus there can
be no influence of downstream conditions on conditions
upstream.

The following discussion présents a detailed
analysis of these boundary conditions. It was of interest
to investigate arbitrary inflow hydrographs for purposes
of testing and verifying the computer program. This also
provided for investigating the significance of variatfoﬂs
in the hydraulic parameters.

(1) Upstream boundary conditions - The boundary
6ondition at the upstream inlet is given by an inflow
hydrograph, Q(t). There is no limitation of the shape
of the inflow hydrograph. A hypothetical hydrograph which
has the function of Pearson Type III distribution with
four parameters, was selected. The inflow Q at the time

t which is designated by Q(t) may thus be described by:

sf{t=t. ) (-t ) t/(tg-tp)

ety =g +oe P T P (85)

in which Qb is the constant base inflow, (refer to fig.
(14)), Qo is the peak inflow, tP is time from beginning

of storm runoff to the peak discharge, tg is time from
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beginning of storm runoff to the center of mass of storm
runoff. One hydrograph with arbitrary values of Qb ’
Qo p tP and tg was used in this portion of the study.
- The shape and values of the parameters are shown in figure
14. '

The depth and the velocity a£ the upstream boundary
point P of figure 15 which is at x = 0 and at the time
t+At, can be computed from initial conditions at C and

B , and the boundary conditions which are given by the

inflow hydrograph,
AV = Q(t) ' (86)

where A 1is the cross-section area and V is the velocity

at 'Pp.

By having the same assumptions and procedure of
computing velocities_and depths at the other points along
the channel which have been described under computational
procedures, the initial conditions give the negative
characteristic direction at point C. The relationship
between the depth, Ypr and velocity, VP , at point P,
can be determined from equation (72). Substituting the
boundary condition of equation (86) into equation (83),
it gives

G S

C_ {Q%El - Vs} +
Yp = ¥g ~ Fo

e (xP—xs)

(87)

where A 1is the cross-section area at P which is a

function of Yp-
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Solving for yP from equation (87) and substituting
Yp into equation (84), then VP can be determined. Since
equation (84) is not linear in Ypr @ Newton-Rhapson iter-
ation was used for its solution.

(2) Downstream boundary conditions - The boundary
conditions at downstream outlet may generally be given by
a stage-discharge relationship. In this study, it was
assumed a free outfall at the end of conduit. Therefore,

there exists a critical flow at the dbwnstream end. With

the relationship

=1 (88)

<

where A 1is the cross-section area and B is the top width
at the downstream boundary.

Figure 16 shows the downstream boundary where
critical depth occurs. For the free fall, it was assumed
that the critical depth occurs at the distance 4.5 times
critical depth from the end. This was also applied to the
unsteady case, with the critical depth being computed from
the base discharge, Qb' 'Therefore,lthe distance, X; o

to the downstream boundary from the inlet is determined by

X = Xp - 4.5 dc (89)

where Xp is the total length of the channel and dc is

the critical depth for the discharge Q-
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The depth and the velocity at the downstream boundary
point P . and at the time t+At, can be computed from the
initial conditions at A anc C, and the boundary condi-
tions which are given by equation (88).

By the same assumptions and procedure of computing
velocities and depths at the other points along the channel,
the initial conditions give the relationship between the
depth, Ypr and the velocity, VP + by equation (71).
Substituting the boundary conditions of equation (88)
into equation (83), results in

Gc+(/i-rg- - ) + Sc, (xpmxy)

Yp T ¥Yp T
P R F
c
+

(90)

where A 1is the cross-section area and B 1is the top
width at P which both are the function of Yp-

Solving Yp from equation (90) and substituting
-YP into equation (84), VP can be determined. Since,
equation (84) is not linear in Yp + @ Newton-Rhapson

iteration was used for a solution.

Summary of the computation procedure

In solving the equations of unsteady free-surface
flow (equations (19) and (20)) by the method of specified
intervals the steps of computing velocity V and depth
D at various times and positions along the channel are:

(1) values of V and y at various positions
along the channel for the steady-state condition of con-
stant base flow, Qb , are determined from a computation of

the backwater curve.
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(2) The upstream boundary conditions are evaluated.

(3) Values of V and y at the time t+At
along the channel are computed from the known values of V
and y at the time t.

(4) The downstream boundary conditions are evalu-
ated.

(5) Steps (2), (3), and (4) are repeated as long
as desired.

The details of the computation and the computer

program are described in the Appendix.

ooty i, s
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Chapter VI
EFFECT OF VARIATIONS IN COMPUTATIONAL PARAMETERS

General

The discrepancy between a computed value and its
observed value from a physical experiment is attributable
to numerous sources of errors. These errors in general are
the result of systematic and random errors in the obser-
vational system, and conceivable systematic errors in
computational procedures. The random efrors are a result
of unavoidable accidental variations in physical systems.
In general, one would not expect there to be random errors
in the computational procedure. The discussion that follows
will be concerned primarily with errors relating to the
computational procedure.

Computational discrepancies emanating from this
particular study are the result of;

1. The approximation of infinitesimal variations
being represented by finite variations. This is a result
of assuming in general, linear relationships veréus the
Itrue curvlinear relationships. These are systemmatic.
However, the propogation of this error is not readily
determined since it may be positive or pegative during
differept computations.

2. Computational errors resulting from truncation
of numerical values. This is necessarily due to the

limited precision of any discrete-element calculator.
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3. Round off in the printed output. The printed out-
put of any computed value from a digital computer differs
from the internally generated number by the round-off of a
number during conversion from the internally stored value
to its printed output. The computer used for these calcula-
tions rounds off in a manner conventionally used by manual
calculators.

It has been assumed that truncation and round-off
errors due to the computational procedure is generally
negligible as compared to those errors accompanying the

finite difference approximation or the effect of physical

parameters on a solution of the problem.

It is the purpose of the following discussion to
preéent a notion as to the significance of the controllable
variables in the solution of the unsteady flow equations.
These are considered. under the computational parameters of
incremental length and incremental time interval during
which the integration process proceeds.

The effect of variations in the hydraulic parameters
of roughness and the velocity distribution épefficients is
also discussed.

Effect of computation parameter Ax

The method of characteristics with specified
intervals gives the complete numerical solution of the un-
steady free-surface flow. The accuracy of the results

depends on the size of the rectangular grids Ax and

.t of figure 12. 1In this section only the effect of Ax

b e
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is discussed, ‘at “Gill be discussed in the next section.
If N is the number of intervals along the

channel or space axis, and X is the length of the

L

channel then

X = (91)

le
=

Since XL was assumed to be fixed, N was
arbitrarily selected as any even number, thus Ax was
determined. The smaller Ax, presumably the more éccurate
are the results. It is also clear that the smaller Ax,
the required computing time is greater. In compromising
these two conditions to satisfy thg purpose of this study,
several values of N for a fixed XL ‘were studied.

Figure 17 shows the effect of the size of Ax
on the depth-hydrographs at three positions along the
channel. The upper figure is the depth-hydrograph at a
position 50.0 feet downstream from the inlet for Ax
of 40.91, 20.45, 10.23 and 5.12 feet corresponding to N
values of 20, 40, 80, 160 respectively. The middle and
lower figures are the depth-hydrographs at 410.0 feet
from the inlet, and 771.7 feet from the inlet, respectively.'
From comparison of the depth-hydrographs of figure 17, with
the given inflow discharge hydrograph of figure 14, it
was found that:

(1) The critical portion of the channel for

computing of the depth-hydrographs is near the outlet where
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there is the greatest curvature of the water éurface
profile. The maximum differences between the computed
depths with Ax being 40.91 and 5.12 feet, are approxi-
mately 0.3, 0.6, 1.0 per cent of the channel diameter at
50.0, 410.0 and 771.7 feet from the inlet, respectively.

(2) -There is no significant increase in accuracy
of the order of 0.005 feet or 0.15 per cent of the channel
diameter when Ax is less than 10.23 feet. Therefore,
Ax equal to 10.23 feet, or N equal to 80, was selected
in the computation for the other portions of this study.

As previously mentioned, the smaller the Ax,
the more computing time is required. For this particular
computer.program, the relationship between the times
required for the CDC 6600 computer agd various Ax or
N 1is shown in figure 18. This relationship is approxi-
mately a power function. This results from the fact that
‘the number of computational locations in the x-t plane
is proportional to the square of the x-positions, for a
constant final time value.

The peak depth, D and the time to peak depth

PK

T are two important parameters of describing a depth-

PK’
hydrograph. These two parameters are defined and shown
graphically in figure 19. The required accuracy of
computed hydrograph at various positions along the channel
can be measured by the percentage of the diameter of the
channel for Dpg 7 and the inflow discharge-hydrograph

parameter tp , for TPK'
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From this criteria of defining an accuracy of a
computed hydrograph, it was found that the percentage
differences of Dpx to the diameter of the channel range
from 0.0 to 2.1 along the channel for Ax from 40.91 to
5.12 feet. At the upstream there is no significant differ-
ence of DPK to the diameter for different wvalues of Ax.
At the approximate middle of the channel there is 0.2%
difference. At the downstream end, the difference was
2.1%. It was also found that there is no significant

change of the percentages of D to the diameter by

PK
reducing the sizes of Ax below 10.23 feet.

In using the other parameter, TPK , for defining
the accuracy of computed hydrographs of using different
values of. Ax , it was found that there is no significant

dif#erence of the percentages of - TPK to tP on the

order of 1.2 at the upstream, 2.0 at the middle, and

8.5 at the downstream. It was also found that there is no
significant charge of the percentages of TPK to tp d
(on the order 1.9) by reducing the size of 4Ax Dbelow

10.23 feet.

Tables 4 and 5 show respectively the difference
in percentages of DPK to the diameter of the channel with
different values of Ax . These values at even distances
(o, 50, 100, ... feet) were coﬁputed by linear interpolation
from the wvalues in the grid system of figure 12 therefore

some error may have been introduced. However, the change

_in shape of depth-hydrograph due to varying Ax is



*y

TABLE 4, DIFFERENCE IN DPK COMPUTED FROM VARIOUS SIZES OF Ax
(in percent of channel diameter)

Ax DISTANCE (Feet)
(ft) 0 50 100 150 200 250 300 350 400 450 500 | 550 600 650 700 750 800
40.91 0 -0.02 -0.16 -0.04 -0.06 -0.08 -0.11 -0.16 -0.24 -0.31 -0.41 -0.50 -0.59 -0.70 -0.94 -1.43 -2.07
20.45 0 -0.01 -0.02 -0.02 -0.03 -0.04 -0.04 ;0.06 -0.10 -0.13 -0.18 -0.22 -0.27 -0.39 -0.42 -0.66 -0.99
10.23 0 O -0.,01 O -0.01 -0.01 -0.01 ~-0.02 -0.03 -0.04 -0.06 -0.08 -0.09 -0.11 -0.14 -0.23 -0.39

TABLE 5. DIFFERENCE IN TPK COMPUTED FROM VARIOUS SIZES OF Ax

(in percent of tp)

AX DISTANCE (Feet)
(ft) 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
40.91 1.23 -0.09 0.18 0.14 -1.21 -0.36 -1.62 -2.04 -2.02 -1.81 -1.09 1.21 -0.96 -1.43 -8.47 -7.32 -3.48
20.45-0.40 -0.09 O 0.14 0.05 -0.06 0 -0.40 -0.40 -1.81 -2.73-0.42 -0,.40 0 -3.58 =4.07 -2,04
10.23 0.41 0 0 0.14 0. -0.22 —0.46 0 -1.90-0.24 -0.42 0 -1.49 -1.62 -0.41

05 0 0
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considered to be small. Larger Ax produced lower and

later peak depth.

Determination of computation parameter At

The grid sizes of Ax and At in the computation
scheme, figure , is limited by the characteristic lines
€, » &_, as shown in figure 13. The characteristic lines

are expressed by equations (69) and (70).

dt _ 1
(&) = ——— =&,
vV + /gA/B
dt - 1 -
(@ = ——— =&
o VvV - VYgA/B

From figure 13, in order to have R on AC and
S onCB for V < /gA/B and S on AC for V > VgA/B ,
for a given value of At; the slope g+ and §&_ must be
minimum. This implies that V and A/B of equations
(69) and (70) must be maximum. Therefore, the following
two conditions must be considered.

- (1) Maximum velocity (V).
(2) Maximum A/B for freejsurface flow corres-

ponding to the depth vy being less than or equal to 0.82

time of the channel diameter.

v on gt e

LA T S R SR W T
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Chapter VII

EFFECTS OF HYDRAULIC PARAMETERS ON
THE COMPUTED HYDROGRAPH

Roughness coefficient

The evaluation of the friction slope Sf in
equafion (20) depends on an assumption of the energy loss
rate. For the case of steady-uniforp flow, this term has
been well es;ablished. For unsteady flow, the general
assumption has been that the energy loss rate is the same
as that for steady uniform flow. Although many semi
empirical relations are available, the Darcy-Weisbach was

chosen for this study as being the most appropriate. This

relationship may be stated as:

_ 2
Bs = 7= 5 (92)

<

|

]

For the experimental channel it was found that
the Prandtl-von Karman equation for hydraulically smooth

boundary was applicable for a steady flow with fully developed

.boundary layer flowing partly full. This equation is

= 2 log (R VE) + 0.4 (93)

Fl |

where f 1is the Darcy-Weisbach coefficient, Re is the

Reynolds number and is defined as

R = — ' (94)
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in which V is the mean velocity, R 1is the hydraulic
radius of partly-full flow, and v 1is the kinematic viscosity
of the fluid.

The purpose of this section is to present the
effect of the friction coefficient £ on the shape of com-
puted hydrographs along the channel. Two conditions of the
Darcy-Weisbach coefficient f being used in the computation
were studied.

(1) Single value of f was used for all conditions.

(2) Values of £ as the funcﬁion of Reynolds
number from Prandtl von Karman equation for hydraulically
smooth boundary were used.

It was found that the Reynolds numbers of the
free-surface flow for this particular.channel with slopes
ranging from 0.00003 to 0.00100, range from 30,000 to
360,000. According to Prandtl-von Karman equation for
hydraulically smooth boundary, the Darcy-Weisbach coefficient
f ranges from 0.010 to 0.016.

Single value of f for all conditions

By investigating the shape of Prandtl—v&n Karman
equation for the range of the Reynolds number for this
particular channel, it was found that the probable values
of f lie between 0.010 to 0.014. Therefore three values
of £ , 0.010, 0.012 and 0.014 were studied. Figure 20
shows the computed depth-hydrographs at three positions along
the channel with different values of f . The upper portion

of figure 20 is at 50.0 feet from the upstream inlet for the

ol hids

——
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0.014, (4) £ = f(Re)
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values of f being 0.010, 0.012 and 0.014, the middle and
lower portions are at 410.0 and 771.7 feet respectively. By
comparison of these three computed depth-hydrographs with

f being 0.010, 0.012 and 0.014, it was found that:

(1) There are significant differences of the
depth—hyd;ographs at 50.0 feet from the inlet on the order
of 5 percent of the channel diameter between roughness
values of 0.010 and 0.014. These differences decrease
toward downstream due to the downstream boundary conditions
being at critical flow depth, and the initial conditions
being an M2 curve. This can be seen from the comparison
of the differences of depths, which were computed from £
of 0.010 énd 0.014, at t = 0 and at any time t. The
differences are not the same at variods times but they are
proportional. Therefore it is clear that the only factor
which caused these proportional differences at various times
is the unsteadiness.

(2) Larger values of £ produce higher values

.of peak depths D _along the channel. The differences

PK

of the percentages of DPK to the channel diameter are

4.0 at the upstream, 3.0 at the middle and 0.1 at the
downstream of the channel. Table 6 shows the rations of
DPK to the channel diameter in percent at various distances
along the channel with £ being 0.010, 0.012 and 0.014.

(3) Smaller value of f produce earlier peak
depths. The differences of the time at peak depth Tog
between the use of the low and high values of £ are



TABLE 6. DPK/CHANNEL DIAMETER, IN PERCENT ALONG THE CHANNEL

WITH VARIOUS VALUES.OF f£

DISTANCE (Feet)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

0.010 49.95 49.62 49.28 48.94 48.59 48.23 47.86 47.48 47.07 46.64 46.16 45.63 45.03 44.36 43.56 42.39 39.76

0.012 52,11 51.72 51.32 50.91 50.50 50.08 49.64 49.19 48.70 48.18 47.61 46.99 46.29 45.50 44,51 42,99 39.81

0.014 54.01 43.56 53.11 42.65 52.18 51.70 51.20 50.68 50,12 49.52 48.88 48.17 47.38 46,47 45,29 43.48 39.86

f(Re) 52.00 51.66 51.30 50.94 50.56 50.17 49,76 49,32 48.86 48.35 47.79 47.16 46.47 45.67 44,70 43,27 40.21

16
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approximately 3 percent of the inflow hydrograph parameter
t at the upstream, 6 percent at the middle, and 7 percent
at the downstream.

(4) There is no regular change in peak depths

D and the time at peak depth T

PK along the downstream

PK
portion of the channel within 100 feet from the outlet.

This is due to the downstream boundary conditions being a
free fall at the outlet and it was assumed that the critical

depths for the unsteady flow always occur at the distance

4.5 dc from the end of the channel, in which dc is the

critical depth for the steady stage corresponding to the

disdharge Qb . Table 7 shows the ratios of TPK to
tP in percent at various distances along the channel with
f being 0.010, 0.012 and 0.014.

f as the function of Reynolds number

This section considered the Darcy-Weisbach
coefficient £ as the function of Reynolds number Re .
Its relationship was given by Prandtl-von Karman equation
for hydraulically smooth channel, equation (93). Figure
Tables 8 and 9 show respectively the comparison of the
dépth-hydrographs, the ratios of DPK to the channel
diameter, and the ratios 'I'PK to tP with £ being
0.010, 0.012, 0.014, and the function of the Reynolds
number. By comparison of these figures and tables it was
found that:

(1) There is no significant difference between

"the depth-hydrographs computed by using £ equals to 0.012



TABLE 7. TPK/tp IN PERCENT ALONG THE CHANNEL
WITH VARIOUS VALUES OF
] DISTANCE (Feet)
0 50 100 150 200 250 300 350

0.010 124.03 130.47 136.90 142.78 149.29 155.89 162.63 169.05
0.012 126.21 132.55 139.Si 145.26 152.38 159.07 166.14 173.19
0.014 128.20 135.06 141.31 148.00 154.87 162.16 169.38 176.23
f (R) 123.03 128.65 134.89 141.24 147.57 153.91 160.24 166.59

DISTANCE (Feet)
f

400 450 500 550 600 650 700 750 800

175.48 182.74 189.18 196.44 203.70 211.78 222.39 216.93 208.00
180.16 186.51 194.37 202.23 210.09 217.95 221.07 218.11 211.86
'183.10 190.74 198.39 206.82 214.45  220.89 222.45 219.40 215.58
172.92 180.07 186.42 193.74 201.50 é09.50 215,47 213:21 206.59

€6



TABLE 8, DIFFERENCE IN D_., COMPUTED FROM f AS THE FUNCTION OF REYNOLDS

PK

NUMBER AND VARIOUS VALUES OF £ (in percent of channel diameter)

DISTANCE (Feet)

500

0 50 100 150 200 250 300 350 400 450 550 600 650 700 750 - 800
0.010 -2.05 -2.04 -2.02 -2.00 -1.97 -1.94 -1.90 -1.84 -1.79 -1.71 -1.63 -1.53 -1.44 -1.31 -1.14 -0.88 -0.45
0.012 0.11 0.06 0.02 -0.03 -0.06 -0.09 -0.12 -0.13 -0.16 -0.17 -0.18 -0.17 -0.18 -0.17 -0.19 -0.28 -0.40
0.014 2,01 1.90 1.81 1.71 1.62 1,53 1.44 1,36 1,26 1,17 1,09 1,01 0.91 0.80 0.59 0.21 -0.35
TABLE 9, DIFFERENCE IN TPK COMPUTED FROM £ AS THE.FUNCTION OF
REYNOLDS NUMBER AND VARIOUS VALUES OF f (in percent of tp)
DISTANCE (Feet)
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0.010 1.00 1.82 2,01 1.54 i.72 1.91 2.39 2.46 2.56 2.67 2,76 2,70 2,18 2.28 6.92 3.72 1.41
0.012 4.68 3.90 4.62 4.02 4.81. 5.16 5.90 6.60 7.24 6.44 7.95 8.49 8.57 8.45 5.60 4.90 5.27
0.014 5.17 6.41 6.42 6.76 7.30 8.25 9.14 .9'64 10.18 10.67 11,97 13.08 12.93 11.39 6.98 6.19 8.99

76
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and f as the function of Re in the order of 0.3 percent
of the channel diameter.

(2) The differences in peak depth D computed

PK
by using f equals to 0.012 and £ as the function of Re
are less than 0.4 percent of the channel diameter at all
distances along the channel and they are shown in Table 8.

(3) The differences in the time at peak depth

TpK computed by using £ equal to '0.012 and £ as the

function of R, range from 3.9 to 8.5 percent of .tP along

the channel. These differences at various distances along

the channel are shown in Table 9.

(4) A single value of £ being 0.012 gives the

smallest differences in depth-hydrographs comparing with

£ ﬁeing as the function of Re'

f .y
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Chapter VIII
EXPERIMENTAL EVALUATION OF THE HYDRAULIC PARAMETERS

A. General

The St. Venant equations of unsteady flow relate the
dependent variables of depth and velocity to the dependent
variables of space and time through the geometric and
hydraulic parameters of the system. The geometric character-
istics of the system were presented in Chapter III. The
discussion to follow presents an evaluation of the hydraulic
parameters of the experimental system.

The governing equations (19) and (20) are repeated for

ease of reference:

... A 3V 3y .13y _
Continuity: 7B 3x% + e + 73 = 0
. vV v , 1 3V 3y _ _
Momentum: N + g 3t + 5 = S0 Sf

This mathematical form of the phenomena includes only
one term (Sf) which involves the hydraulic characteristics
of the system.

The assumptions leading to this form includes the
simplification of uniform velocity distributions. If the
non-uniformity of velocity distribution is considered, the

momentum equation would be written as

v 3y -
e 3 = S S (95)



97

in which &« and B8 are velocity distribution factors defined

as
fvsz
B = — (96)
VA
and
fv3dA
a = (97)
V3A

These coefficients are commonly referred to as the Boussinesq
and Coriolis coefficients respectively.

Considerable experimental effort was devoted in this
study to define as accurately as possible the hydraulic

parameters of Sf , B8 and a .

B. Hydraulic Resistance

l. Introduction

The resistance to motion of open channel flow is
expressible in numerous forms. Foremost among those commonly
in use are the Chezy, Manning, Colebrook-White, Hazen-Williams,
and Darcy-Weisbach equations.

The committee for Hydromechanics of the Hydraulics
Division of the American Society of Civil Engineers (6)
recommended the use of the Darcy-Weisbach expression for
future normalization of resistance data. Thus, this study
has evaluated and expressed boundary resistance in terms of

the Darcy-Weisbach equation

8]

(98)

wn
I
Olth
n1<
([o]
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in which Sf is the slope of the energy gradient, f is
the Darcy—Weiébach friction factor, V 1is the mean velocity,
and D is the diameter of the equivalent pipe. For channel
cross-sections other than circular the diameter (D) 1is
customarily replaced by four times the hydraulic radius (4R).
The validity of this replacement may be questioned for open-
channel flow. However, for lack of a better length parameter
describing the velocity gradients and hence the shear stresses,
the hydraulic radius in commonly used. Equation (98) is thus
rewritten as

2
¥ (99)

%
Il
K| Hh

Q

in which R is the hydraulic radius defined as the cross-
section area divided by the wetted periméter (A/P) .

The Darcy-Weisbach friction factor £, has been
demonstrated to be a function of the Reynolds number,

relative roughness, and channel shape:

£ = (R, k/d, shape) . (100)

The form of this equation depends in turn on the range
of the Reynolds number, the relative roughness and of course,
the shape of the channel cross-section. For hydraulically
smooth boundaries and for Reynolds number greater than

25,000 the Prandtl-Von Karman equation,

1
Lo wa log,. M. JE D (100)
/E 10 e
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relates the friction factor to Reynolds number. The constants
"a" and “b"' may be determined experimentaliy. Their

values will depend on the form of the Reynolds number length.
parameter. For open channel applications, it is convenient

to express the Reynolds number as

R = — (101)

in which R is the hydraulic radius of the given cross-
section. Equation (100) then becomes:

. T log;, (R, /) + 0.4 (102)

%3

In the case of a circular cross-section flowing full,
the appropriate length dimension in the Reynolds number
is the diameter. In this case equation (100) takes the

familiar form

E— = 2 lo

g (R' VY£)-0.8 (103)
'/:-E' 10 e

Within practical limits of Reynolds numbers for specific
applications it is convenient to use a simplified form of the
f‘,Re relationship. The evaluation of f given Ry from
equation (100) introduces unnecessarily excessive com-
putations. Thus, it was desireable to develop a simplified

relationship of the form:

f =cR (104)
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in which "c¢" and "d" are experimentally determined
constant.

The purpose of this study was a) to confirm the
hydraulically smooth nature of the experimental pipe,
b) develop a simplified expression for the friction factor
and c¢) determine the effect of an assumed constant friction

factor as compared to a Reynolds number related values.

2. Experimental Facilities and Observations

The experimental facility on which the studies
were conducted consisted of a nominal 3-foot diameter, 822
ft.-long circular conduit. The pipe material was 1/2"
thick rolled-steel plate with a longitudinal weld, which
was located at the crown. The approximate 20' lengths of
the pipe were welded except at three positions where
- bolted connections were made. Extreme care was taken to
insure that all inside welds and joints were carefully
ground and the depressions filled with a plastic material
and subsequently smoothed to insure a uniformly smooth
surface. The inside surface was sand blasted and painted
with two coats of a rust preventative paint. The entire
822 ft. of pipe was supported on inclined rails at
approximately 20 foot intervals which permit the pipe to be
moved along an inclined plane to any slope between 0 and
approximately 4 per cent. A transition from the supply
line to the movable 3'-diameter pipe permitted changes from
one slope to another. The discharge was controlled by a

26" diameter motor-operated ball-valve. The flow was
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indicated by means of orifice plates with opening-diameter
to pipe-diameter ratios of either 0.35, 0.50, or 0.70. The
outlet end of the pipe either discharged freely or was con-
trolled by means of a gate with needles whose number and
position determined the depth of flow at the downstream end.

Water surface elevations were determined by means of
hook gage readings taken in gage wells located at 16 positions
along the pipe. These wells were connected to the invert of
the pipe through a flexible hose. The piezometer openings
were 1/16" diameter. At each position there were a sufficient
number of openings to insure a reasonable response time for
each well.

The invert slope of the pipe was carefully determined
by means of a precise self-leveling level with an optical
micrometer which permitted measurements to the invert to
approximately the nearest 1/1000 of an inch. Readings were
taken approximately every 20 feet and a least-square deter-
mination of the mean slcpe was computed. If the maximum
deviations at any point exceeded approximately 3/100 of
a foot, from the mean line, adjustments to the pipe invert
were made.

The discharge corresponding to the desired depth of flow
was estimated from previous observations and established at
the orifice. The downstream control gate was adjusted to
produce that type of a backwater or drawdown curve as desired.
Due to the length of time required for steady state conditions

to develop, it was not practical to adjust the downstream



102

control until a constant depth developed throughout the
length of the pipe. Thus, several conditions of non-
uniform flow were established both above and below the
normal depth. Hook gage readings at the various piezometér
locations were made at approximately 15 minute intervals until
such time as the readings reproduced themselves.

The hook gage readings, gage zeros, and invert elevations
were then transferred to punch cards along with the steady
discharge rate and pipe slope. All data was then analyzed

by means of a digital computer and is described hereafter.

3. Experimental Analysis

Calculation of f. The total energy per unit

weight flowing for a channel partially full is defined as:
Total energy = Invert elevation + Depth of flow +
- Velocity head. The difference in successive values of total
energy divided by the distance between conduit stations
represents the energy loss rate. This loss rate with the
average hydraulic radius and average of the velocity heads
at the ends of the reach were then substituted into the
resistance equation to evaluate the friction factor ¢£.
Stated mathematically

8g Rav. E2

CV2/2g)av.

The Darcy-Weisbach friction factor f was computed
initially by considering the slope of the energy gradient

between the successive piezometer locations shown in
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Table 11. The computations were performed by means of the
digital computer thus eliminating any personal bias in
establishing slope of the gradient. A plot of these £
values versus Reynolds number, however, indicated a wide
scatter of values as shown in Figure 21. This was largely
due to experimental errors in observation of depth and the
influence of the unavoidable bottom irregularity on the
surface water profile, which produced excessive variation

in the energy slopes. It was apparent that a mean slope
throughout a longer reach was necessary to define the
friction factor. Therefore, the values of energy at specific
peizometer locations were plotted and the best estimate to the
slope was graphically determined. A least square fit of
these data would not produce the desired results, in as

much as in those regions of high curvature of the water
surface, the slope of the energy gradient did not remain
constant. This is due to the fact that the friction factor
varies with Reynolds number and thus with depfh. The slope
of the energy gradient was taken as that slope most
representative of the particular flow conditions. In order
to determine the average value of the hydraulic radius and
the average velocity head, the following procedure was

used. The depth of flow at the limits of the reach were
computed, based on the energy indicated by the uniform
gradient. These two depths were then averaged from which
the average area, average hydraulic radius, average velocity

and the average velocity head were computed.
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TABLE 11

PIEZOMETER LOCATIONS

Distance From Upstream End

20.00
100.00
197.00
308.40
406.10
509.60
613.20
707.20
772.20
802.20
807.25
812.25
816.25
819.10
820.70

821.70

Incremental Distance

80. 00
97.00
111.40
97.70
103.50
105. 60
1 94.00
65.00
30.00
5.05
5.00
4.00
3.00
1.60

1.00
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The results of these computations is presented in Figure
22, It is apparent that the experimental points computed
from average energy slopes demonstrate a improved correlation
with Reynolds number. The points tend to cluster around the
Prandtl-von Karman smooth boundary equation.

The plotted points represent the results of experimental
ranges of depth from 0.55 to 2.6 feet or depth-to-diameter
ratios of 0.19 to 0.89. The discharges varied from 2.25 to
72.0 cfs. The corresponding Reynolds number range is from
approximately 3 x 104 to 1 x 106.

For the data as shown in Figure 22, the values of the

constants "a and "b" in the equation (100) were determined
to be 0.1434 and 2.075 respectively. These are to be com-
pared with the Prandtl-von Karman equation constants of

0.4 and 2.0 for free-surface smooth boundary flow. The

mean deviation of the rcughness values for this data was
0.00167 with a standard deviation of 0.0024.

For economization of computing time, constants in the
equation (104) were evaluated and used in subsequent com-
puter programs. These constants "c" and "d" were 0.10939
and -0.17944 respectively.

It should be noted that.the refinement of expressing
the friction factor as a function of Reynolds number does not

significantly affect the results. A representative constant

value may be used with no appreciable differences in results.
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3. Effect of Depth on £

The Darcy-Weisbach friction factor has been demon-
strated to be a function of Reynolds number as well as
geometry. Although, it is not possible to separate the
effects of velocity and geometry there have been attempts
in the past1 to demonstrate the effect of depth alone on
friction factors.

A similar attempt was made in this study to compare
results with previously published results.

The procedure is as follows. The Darcy-Weisbach equation
relates friction factor, depth, velocity and slope in the

general form
F,(f, y, V, 8) =0

The Prandtl-von Karman equation relates the variables
of friction factor, depth, velocity, and properties of the

fluid. This may be generalized as

F2(f, vy, V, v) =0 .

By eliminating the velocity V between these two

expressions,

F3(ff y, Sf \J) = 0 r

l"Design of Sewers to Facilitate Flow," by Thomas R. Camp,
Sewage Works Journal, Vol. 18, No. 1., January, 1946.
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thus for a given slope (S), kinematic viscosity (v) , and

depth of flow (y), the friction factor (f) may be
computed.

A plot of the results of this computation for two
extremes of slope and two representative equations relating
to Reynolds number is shown in Figure 23.

It is significant to note that the theoretical as well
as experimentally observed values lie appreciably below the
curve proposed by Camp.

Based on Figure 23, it may be seen that the friction
factor expressed by the Darcy-Weisbach (f) for various
depths does not differ from that for full pipe by more than
+ 10% percent. Thus, it may be seen that the variation of
f with depth is less than the error of estimation of £
for flow within approximately the upper 2/3 of the pipe.
Within the lower 1/3 an increased friction factor would be
appropriate.

4, Effect of Measurement Errors on Calculation of
the Friction Factor

In order to estimate the effect of observational
errors on the computed value of roughness factor, certain
assumptions are required. For the ensuing analysis the
following assumptions will be made:

Diameter (D) = 3 feet
Depth (y) = 1.5 feet * 0.005 ft.

Slope (S) 0.001 + .00001

Il

Discharge (Q) = 30 cfs * 0.3
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for the equation of the friction factor,

the error equation for independent errors will be:

2 2 \2
of of

+ | —— 0,,2 + | == o0
9s s B(RAZ) RA 1o

Q
H no
|
Q

in which o(sigma) is the random error in the corresponding
quantity. The section factor term is evaluated by means of

Figure 5. Substitution of the indicated values:

cg = (2.681x0.00001)2 + (0.000286x0.01)2 + (.0001787x0.3)°2
g =t 6 x 1072

For the nominal friction factor of 0.012 for this conduit,
this estimated absolute error 6 X 10_5 represents a 0.5
percent error.

From the above it will be noted that the largest con-
tribution to error in the friction factor is due to error
in discharge. Whereas an error in section factor (RAz)
resulting from an error in the depth determination has the
least effect. The error in friction factor of * 6 x 10—5
is substantially less than the standard error determined
from the data plotted in Figure 22. The error of * 6 X 10-5

in the friction factor may then represent a lower limit for

practical evaluations.
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Conclusions

From theoretical and analytical consideration of

the experimental data it can be concluded that:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The conduit boundary used in this study is hydrauli-
cally smooth.

Estimations of friction factors from short reaches
may result in significant error.

The friction factor may be represented by the
equation:

-0.17944
e

f = 0.1093%9 R

in a Reynolds number range of 3 x 104 to 106.

A Darcy-Weisbach friction factor of 0.012 is
representation of this boundary.

Roughness values for any depth in a circular
cross-section can be estimated based on the full
pipe roughness.

The assumption of constant roughness values may

be in error by a maximum of * 10 percent for depths
in excess of one-third in diameter.

The roughness for full-pipe flow is not representa-
tive of roughness for depths less than one-third
full.

The relative error in determining the Darcy-
Weisbach friction factor may be in error by as
much as 0.5 for variations in depth of .33% at

one-half full-pipe flow.
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Cs Velocity Distribution Coefficients

l. Introduction

Equations (96) and (97) define the velocity
distribution coefficients based dh momentum ard energy
consideration respectively. This may be demonstrated as
follows:

Momentum due to a motion of an incompressible fluid may

be expressed as
M= [ pv |v|] da .
A

One-dimensicnal considerations permit

An approximation to this evaluation of one-dimensional
momentum flux is to represent it in terms of the mean

velocity V as,

M = (constant) V2A 4

The constant is then defined as

= S (105)

The kinetic energy per unit weight may be correspondingly
developed into the form:

fv3dA

o =
V3A

(106)
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Thus the general form of a velocity distribution factor may

be represented by

[viaa
= (107)

¢
via

where n takes on integer values. For n equal to one,
¢ is of course, one, by the definition of mean velocity.
Values of n and 2 and 3 , ¢ 1is the momentum (8) and
energy (o) velocity coefficients.

The above form permits the evaluation of the effect
of velocity distributions and the interrelation of a
and 8.

Consider the time average velocity at a point as

represented by
v = (1+k) V (108)

where V 1is the mean time-average-velocity in the cross-
section and k 1is plus or minus depending on position.

Since V 1is defined as

1 _ _V \
v=x [vd-s= [ Q4x)van = = [ ar + ¢ | kéA ,

| b

kdA must be zero.

Then expressing beta and alpha in terms of k

{ v2 (1+k) 2da 1 5
B = 5 =1 ¥ g [ kx“aa
VA

and -
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jv3(1+k)3dA

_ 3 3 2 1 3
a = 3 =1l+x [kaa+3 [k%+ 3z [ kaa
vV A
Since fde is zero;
3 2 1 3
a=1+3x [k + 3z [k'aa (11 )

Thus from equations (109) and 110) the following conclusions
may be noted:
a. The larger the deviation of the point velocities
from the mean, the larger will be the values of
the coefficients.
b. For the cases where the maximum velocity is less
than twice the mean velocity the absolute value

of k will be less than one and thus

0<|{ x%aa| </ x%aa

c. As the value of k approaches zero, the k3 will
become less significant compared with the k2 term

and hence as an approximation

Q

81 = 3 (111)

The values of alpha and beta determined experimentally

in this study tend to demonstrate this relationship.
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2. Evaluation of the Velocity Distribution Coefficients

Equétion (107) suggests several methods of evaluating
¢. One method would be a direct integration of a given
velocity distribution function, the other two are the
graphical method and the numerical method of integration
by using point velocities as observed in a specific flow
through a replacement of integrals by summations.

a. Direct Integration Method - The direct integration
of eqguation (107) depends upon a knowledge of the explicit
function of velocity as related to position. Such equations
for fully developed turbulent flow are available for only
certain limiting cases of boundary configuration.

For the case of an infinitely wide open-channel with
two-dimensional flow the following equationl has been
determined experimentally for velocity distributions out-

side the boundary layer:

V) - 2 10g,, L + o0.88 (112)
vWE Yo
in which
v is the point velocity at position vy ,
V  is the mean velocity in the depth Yo and
£ is the Darcy-Weisbach roughness factor in the
Darcy-Weisbach eguation. Substituting the value of v

from equation (112) into equation (107), and integrating

L Rouse, H. Elementary Mechanics of Fluids, John Wiley and

Sons.
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in the limits to Vo ¢ ¢ for values of n equal to 2

and 3 become, respectively,
=8 = 1.0 + 0.755 £ + 0.023 /£ + 8§, (£) (113)

¢3 = o = 1.0 + 2,263 £ + 0.035 /E - 1.284 £ /E + 5§, (f) (114)

2

In which the 6 functions are the result of integrating
from the limit of the boundary layer rather than from the
solid boundary. In each case, however, these functions
are negligible in their effect on the respective distri-
bution factors. The plots of these equations are shown in
Figure 21 as well as the observed values. Within this range
of friction factors, the o and B8 coefficients are
approximately linear for values of f greater than 0.004.
It is interesting to note that the ratio of (a«-1)/
tB-l) lies approximately between 2.5 and 2.6 as shown in
Figure 24. The fact that the factor 3 of eguation (111)
does not agree with the range 2.4 - 2.5 as developed for
the logarithmic velocity distribution in infinitely
wide channel indicates that for that case at least, the
integral of the K3 term must be significant as well as
negative. This point will be discussed later.
For the case of a full circular-pipe flow, the following
equation2 has been determined experimentally as the velocity

distribution function:

Elementary Fluid Mechanics-Rouse-Wiley Publishing Co.
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v=-V
Y~ =2 log,, (L) + 1.32 (115)
VVE 10 ro

in which the variables are defined, and o is the radius
of the conduit. Substituting the value of v from equation
(115) into equation (107) and solving for ¢ within the
limits of boundary thickness (8) and r, one obtaines,

respectively.

B=¢,=1+0.034 VE + 0.941 £ (116)
@ = ¢5 =1+ 0.051 VE + 2.828 £ - 2.685 £ Vf (117)

The values of alpha and beta from egquations (116) and
(117) are also plotted in Figure 24. These curves approach
straight lines for large f-values. Similarly as in the
case of an infinitely wide open-channel, the alpha and
beta coefficients only depend on the friction factor. 1In
this case the ratio (a-1)/(8-1) 1lies also approximately
between 2.3 and 2.4 (see Fig. 25).

As the velocity distributions are not symmetrical
around the mean velocity; the integral fk3dA may be
negative if the absolute values of the negative k are
much greater than the positive k wvalues. This is the
case for the velocity distributions of both the infinitely
wide open-channel and the full pipe flow as given by
equations (112) and (115) while using the lower limit
zerxro. Therefore, the fact that (e¢-1)/(g-1l) is smaller

than three should be expected.
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The comparison of curves of equations (116) and (117)
with the corrésponding curves for beta and alpha of equations
(113) and (114) in Figure 24, indicates that for channels in
which the side walls affect subsfantially the velocity
distributions (or when the height of sides is of the same
order of magnitude as the width of the bottom of channel),
the k values on the average are greater than the k wvalues
for infinitely wide open-channels. Hence, the alpha and
beta coefficients are greater for full circular channel
flow.

As the velocity distributions of partly-full flows
through the circular conduits can be considered as the
cases which are between the velocity distributions of an
infinitely wide open channel and a full flow circular
conduit, the above equations (113), (114), (116), and (117)
give an indication or a range of the expected velocity
coefficients for the partly full pipes as they. change with
the friction factor £.

b. Graphical Integration Method - The classical
method for computing the velocity distribution coefficients
from observed data is to plot the position of observed
velocities along with the velocity at that point. The
lines of equal velocity (isovels) are then drawn by inter-
polation between the known velocities. The area between
successive incremental velocities is then determined, for
example, by planimeter. The summation of the individual

areas times the mean velocity in the area taken to the
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appropriate power (2 or 3), provides the numerical inte-
gration of the numerator of beta and alpha.

¢. Numerical Integration Method- A numerical
integration method was develOpeé around the point velocity
measurement equipment.

Time average point velocities were measured by
Ott laboratory current meters. Five meters were mounted
on a rod which was supported at the center of the rod.

The rod support was at the pipe centerline and could rotate
to place the meters in any angular position. The meters
were spaced along the rod to sample equal circumferential
areas. The meters were placed at the minimum recommended
spacing distance from the pipe wall. The meter support rod
was positioned at angular intervals of 10 degrees. Thus

the point velocities were observed at five radial positions
and as many 10 degree intervals as required to sample the
circular segment.

The numerical date processing was based on the
observations that the velocity distributions along radial
directions were smooth (in general) and could be approximated
by third degree polynomials. Velocity distributions along
circumferential arcs of constant radius were also smocth and
could be approximated by third degree polynomials.

The computer procedure was:

1. Fit a third degree polynomial to the observed
velocities at a fixed radius of the form:

_ 2 3
vr = a. - br o + cre + dra
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2. For a given angular position, fit a third degree
polynomial to the computed velocities along the radial

direction of the form:

_ 2 3
vB = ae - ber + cer + der

3. For the velocity expfession at a given angular
position, the integrals of vadA, vesz and vaadA
could easily be developed in which dA was the area
represented by a l0-degree sector to the free water surface.

4. The results of step 3 divided by the appropriate
relation of mean velocity and total area resulted in the
alpha and beta factors.

The root-mean-square difference between the observed
velocities and the computed velocities based on the polynomial
fitting procedure was computed for each cross section.

These values are reported for the early runs.

The calibration equations for each current meter
and propeller were written into the program so that the
velocity was computed from the given data before the fitting

was begun.

3. Results
Several comparisons of test conditions and obser-
vational procedures were made to identify these effects
on the computed velocity distributions.
These considerations were reproducibility; and
effect of depth, location along the conduit, number of

point velocities, and length of time for observing the mean
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velocity. The results of these evaluations are presented
in Table 12. 'The table presents in the following order, the
run identification (RUN NO.), discharge in cfs as measured
by the inflow orifice (DISCH% the depth of flow in ft. at

the measurement cross-section (DEPTH), the cross-sectional
area in ft2 (AREZ) , the mean-velocity in ft per sec, based
on the measured discharge (VEL), the number of point velocity
observations (N), the average number of point observations
per square foot. (N/A), the ratio of the mean velocity based
on the measured discharge to the mean velocity obtained by
integrating the observed velocities (GAM@A), the momentum
velocity factor (BETA), the energy velocity factor (ALPHA),
the root-mean-square difference between the observed
velocities and the velocities in ft per sec. computed from
the polynomial fits (STDDEV), and the time interval in
sec. for observing the mean velocity.
These results are not intended to be conclusive.
They do provide however, a measure of respective effect and
possible reliability of the overall results.
The following general observations should be pointed
out.
a. The root-mean-square (STDDEV) as a percent of the
mean velocity is of the order of 1 percent.
b. The computed mean velocity compared with the
measured mean is larger in general by less than
3 percent.
¢. The relationship between the alpha and beta

coefficients conforms to eq. (11l1).



1
RUN NO

fl 2
DISCH

EFFECTS

3
DEPTH

- REPRODUCIBILITY
XTMHZA 264340 24210
X7TMH2B 264340 24139

X10M2A 164130 1,612
X10M28 16130 14597
EFFECT OF DEPTH

X1Z2m2A
Xo6mriZA
X10M2A
X9rH2C
XEMH2X
XTMHZ2A

EFFECT OF POSITION IN

X8MH1A
X8MH2X
XBMH3A

XGiH1C
X9imn2C
X9Mii3C

X10M1A
X10M2A
X1CM3A

8¢260
13.450
164130
204520
244240
26340

234930
246240
244240

206520
204520
204520

16130
16.130
16130

1.064
le&42
14612
1.888
24079
26210

2110
24079
24063

1,909
1.888
1.88C

1,617
le612
1.611
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Table 12

ON VELOCITY DISTRIBUTION COEFFICIENTS

4
AREA
ﬁ -

56449
5268

3797
34754

24209
34301
3797
44588
5110
5449

5
VEL

LeB834
5000

44248
40297

34739
44075
4e248
4ety72
boTlts
44834

6
N

146
144

91
91

33
70
91
122
140
146

7
N/ZA

26479
27634

23496
2424

14694
21«21
23496
26459
2740
26479

DIRECTION OF FLOW

50192
50110
5067

Leb64T
44588
L4566

36812
34797
3795

L e609
LaTlh
44783

beti16
4e472
4eti94

46231
4248
44251

148
140
144

123
122
121

94
91
91

EFFECT OF NUMBER OF POINT VELOCITIES
XBMHZ2X 244240 2,079
Xor2dY 244240 2,094

EFFECT GF LENGTH OF TIME OF

X6 .ri2A
X6inri2A
X6rr2A
X6:.72A
X6MHZA
X6MHZA

X8MeE2ZX
X8MH2Z2X
XeMHZ2X
X8MEH2X
XEMEI2X
XoMn2ZX

Xomr2Y
X&iiH2Y
X8mr2yY
X8MH2Y
X8MH2Y
X8MHZ2Y

13,450
13.450
134450
13450
13.45C
13.450

246240
244240
244240
246240
244240
244240

244240
244240
24240
246240
244240
244240

let42
lett&s2
le&42
lett42
lett42
la442

2079
24079
2.079
24079
2079
24079

2.094
24094
24094
2.094
20094
2.094

50110
5150

34301
3301
34301
34301
3301
34301

5110
5110
5110
5110
5110
56110

5150
54150
5150
54150
5150
5150

4744
44707

140
73

28451
2740
28642

26047
26¢59
26650

24466
23496
23498

27440
14418

OBSERVATIONS

44075
4e¢075
4075
LeQ0T75
44075
44075

beTll
A
4o Tl
4oTl4
beTb4
boTlts

44707
44707
4707
LeT0OT7
46707
44707

70
70
70
70
70
70

140
140
140
140
140
139

73
14
13
73
3
3

21421
2121
21e21
21421
21421
21¢21

27¢40
2?.@0
27440
2740
27-40
2720

14,18
14637
1418
14418
14418
14,18

o
GAMMA

1006
1.008

1,025
14028

0920
1037
1,025
le025
1.002
14006

1.011
l.002
1,007

1014
l.025
1e024

1,006
1.025
1.017

0999
1,012

16037
1.034
1.032
1.031
1031
1.032

1.002
0,999
04999
0999
0998
04998

le012
1.013
1.011
1.010
1.010
l.010C

9
BETA

1.006
1.005

1.011
l.011

l.066
1.005
1.011
14006
1009
1.00¢

1.009
1.009
1.007

1.0C6
1.006
1.008

1.010
l.011
14011

1010
1.008

1.005
1005
14005
1005
1.00%
14006

1009
1,010
1.009
1.009
1.009
1009

1.0005
1.008
1.008
1.0C8
1.008
1.008

10
ALPHA
1018
1017

1030
14029

1123
1.019
1.030
l1.019
1.027
l.018

1.025
1027
1.021

1.019
14019
1.024

1.C28
1.030
1.020

1028
1le022

140169
1020
1019
1.020
1019
1020

1.027
1.028
1.027
1027
1.027
le027

1022
l.022
1.022
10024
1.024
1.024

13 12
STDLEV TIME
0«CH1
0.uB1
0041
0+035
0037
0e037
Ce041
0.047
0s042
0051
0.058
0-042
Q046
0094
QeO47
Q0.046
Ce0&4
06041
04045
0.029
0e04%
0037 30
0028 60
0.021 90
0.018 120
0.018 150
0.101 180
0+042 30
0.029 &0
0.029 .90
0030 120
0«030 150
0030 180
0«049 320
0e03% 60
0032 90
0029 120
0«0320 150
0.026 180



126

d. The variation of the velocity distributions
coefficients within any one of five effect
categories is insufficient to detect the effect
for the sample size. This is to say that the
experimental and computational errors overshadow
the effect of varying the experimental conditions.

Based on the above preliminary results, an extended

series of observations were made to relate the distribution
coefficients to depth and mean velocity. The observations

were made at mid-position along the 822 ft. conduit. Each

point velocity was averaged over a 60-second period.

The results of these observations are presented in

Table 13. The discussicn of the results in the following

section.

4, Discussion of Results

It is to be expected that the velocity distribution
coefficients would differ with changes in those parameters
which determine the velocity profiles. Those parameters
which have primary effect on the velocity profile are the
geometric form of the cross section, the properties of
the fluid, the condition of the boundary surface (resistance)
and the mean velocity; All of these variables are encom-
passed in Reynolds number (VR/v) and the Darcy-Weisbach
roughness factor (f).

The Darcy-Weisbach roughness factor is related to the
Reynolds number; hence one would expect to be able to

predict alpha and beta having the relationship of the beta



Table 13, Velocity distribution factors
; y Mean VR T
Designa- Hydraulic ; Re = Friction
tion ope Pepth* Radiug @ =5  veocly 5 o B Factor f
ft cfs fps x 10
S1-4 0, 000032 2,926 0.732 5.610 0.834 0,4 1,038 1,012 0,0162
S1-7 1,547 0.757 11,980 3,328 1.653 1,017 1,004 0,0124
51-8 1,778 0.818 16, 040 3.748 2,017 1,019 t, 006 0.0120
51-9 1,984 0. 857 19,620 4,042 2,278 1,021 1,007 0.0118
52-2 0,000132 1.749 0,811 10,080 2,404 1,283 1.026 1,009 0,0129
52-3 2,064 0,869 15, 340 3,026 1,736 1,020 1,007 0,0123
S2-4 2,371 0,890 18, 940 3,245 1.900 1,017 1, 006 0,012t
S2-5 2. 630 0.873 19,570 3.073 1.765 1,018 1. 006 0.0122
S2-6 1,152 0.620 4,710 1. 915 0.781 1,040 1,013 0.0141
52-9 0,903 0,512 3. 260 1,848 0.622 1,060 1,024 0.0147
S52-10 1,785 0.819 16, 640 3.873 2,087 1,024 1,008 0.0119
Sz2-10 1,936 0.849 16. 640 3.524 1,968 1,021 1,007 0.0120
S53-1 0.000520 2,644 0.870 18, 350 2.870 1.643 1,021 1.007 0.0124
S3-2 2.309 0,889 12,270 2,156 1,261 1,027 1,009 0,0130
53-3 2,079 0,870 14,100 2,756 1,577 1,027 1,009 0,0125
53-4 1,740 0. 804 10, 410 2,498 1.330 1,032 1,011 0.0128
S53-5 1,497 0,742 7.960 2,299 1,122 1,055 1,022 0.0132
53-6 1.154 0,620 6,210 2,519 1,028 1,084 1,029 0,0134
S3-7 0.871 0. 497 2,040 1, 215 0, 397 1,056 1,022 0.0163
S53-10 1771 0.816 15,970 3.752 2.014 1,033 1,011 0.0120
DZ2A 0.001022 0.810 0. 468 4,000 2,637 0.812 1,073 1,024 0.0140
D2B 0.817 0,471 4,000 2,605 " 0,807 1,037 1,016 0,0140
D3C 1. 964 0.854 8.220 1713 0.962 1,027 1,009 0.0135
D7A 1.989 0. 858 23,380 4,803 2,711 1.024 1,008 0.0114
D7C 2,357 0. 890 23, 380 4,028 2,358 1,021 1,007 0.0116
DEB 2,166 0.880 25,620 4,800 2,779 1,024 1,008 0.0113

En

Pipe diameter = 2,926 ft,

LZT



Table 13. Cont. Velocity distribution factors

2 : Mean VR i, 4l
Des‘f1gna~ Slope Depth* r?yff&}ul;{r Q Velocity Re . a B ?;](C':;OT.
tion it acdius ofs 15 < 109 !

X6MHZA 0,.001001 1,442 0.725 13,450 4,075 1,944 1,010 1,005 0.0120
X7NMH2A 2.210 0.884 26, 340 4,835 2,812 1,018 1,006 0.0113
X7MH2B 2,130 0.87 26. 340 5. 000 2888 1,017 1,005 0.0:12
X8MH1A 2,110 0,874 23,9030 4,600 2, 650 1,025 1.0009 0.0114
X8NMH2X 2,079 0.871 24,240 4 744 2,718 1,027 1,009 0,.0114
X8NMH24 2,084 0.873 24, 240 4,707 2,703 1,022 1,008 0,0114
X3MH3A 2,063 0,869 24,240 4. 783 2.734 1,021 1. 007 0.0114
XOMH1C 1,909 0. 844 20,520 4. 416 2,457 1,018 1,006 0.0115
XAMH2C 1.888 0.841 20,520 4,472 2,474 1,019 1,006 0.0115
XGMH3C 1,880 0,839 20,520 4,404 2,481 1.024 1,008 0,.0115
X10MIA 1,617 0,777 1,130 4,231 2,163 1,028 1,010 . 0,0117
X10M2A 1,612 0.776 16,130 4,248 2,169 1,030 1,011 0,0117
X10M3A 1.611 0,775 16,130 4, 251 2,167 1,030 1,011 0,0117
X10M2B 1,597 0,772 16,130 4,297 2,182 1,030 1,011 0,0117
X12MLA 1, 040 0.843 8. 260 3.618 2,006 1035 1.007

D3A 0,001022 1.057 - 0.580 8.220 3.764 1.432 1,031 1,010 0.0127
D3B 1,078 0, 589 8,220 3.655 1,416 t.016 0,983 0,0127
D4C 1,603 0,843 12,920 2,790 1. 666 1,019 1. 006 0.0124
D5A 1.605 0.774 16,000 4,236 2,157 1.032 1.012 0.0118
D5B 1.(01 0.772 16, 000 4,249 2,159 1.037 1.014 0.0118
D5C - 2,187 0.882 16,000 2,968 1,718 1.022 1,008 0.0122
DA 1,855 0,834 20,510 4,562 2,503 1,025 1,009 0.0115
D6EB 1,868 0,837 20,510 4, 526 2,492 1,026 1,009 0.0115
D6 C 2,198 0.883 20,510 3.785 2,149 1,023 1,008 0.0117

8ZT
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and alpha coefficients to the friction factor (f). Since
the range of the Darcy-Weisbach factor is small for this
series of data, and because the Reynolds number fluctuates
within a small range, the spread of results is apparently
due to other causes.

Figure 26 displays the relationship of alpha and beta
with Reynolds number. These results, generally indicate
an increase of the velocity distribution coefficients
with a decrease of Reynolds number. The apparent scatter
around a functional relationship is due to observational
and computational errors.

For the observed velocity distribution coefficients,
the following parameters remained essentially constant;
the circular form of the section, the fluid properties
(water at approximately 45°F) and roughness factor because
the Reynolds number varied over a narrow range. It would
follow, therefore, that the variation in alpha and beta
could be represented as a function of depth and mean velocity
or slope, as a first approximation. As the effect of depth
and mean velocity are incorporated through their product
into the Reynolds number (assuming an approximate
proportionality of depth and hydraulic radius), the main
relationship should be between the velocity distribution
coefficients and Reynolds number.

The effect of depth on the velocity distribution
factors is presented in Table 14 and Figure 27. The

values in Table 14 are grouped in ascending order of the
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Table 14. Velocity distribution factors as a function of depth

Range Run d/Dia. Depth-d Velocity &

of Depth No. ft fps

0-1.0 D2A 0.276 0.810 2,837 1.073

D2B 0.279 0.817 2.605 1.037

S3-7 0.297 0.871 1,215 1,056

S2-9 0.310 0.903 1.848 1,060

1,0-1.5 D3 0, 360 t, 057 3,754 1.031

X12Mz2A 0. 363 1,064 3.°739 1.123

S52-6 0,303 1. 152 £.:915 1.040

S3-6 0. 394 1.154 2,519 1.084

X12MZ2B 0. 468 1,372 2.668 1,095

X6MHZA 0,492 1,442 4,075 1.019

S3-5 0.510 1, 497 2,299 1.055

i.5-1.8 Si1-7 0.528 1. 547 3.320 1.017

X10M2B 0.545 1,597 4,297 1.030

D5B 0. 546 1,601 4, 249 1.037

D5A 0, 547 1,605 4,236 1.032

X10M3A 0, 549 1.611 4, 251 1.030

X10M2ZA 0.550 1.612 4,248 1.030

X10M1A 0,551 1,617 4,231 1,028

S3-4 0,593 1.740 2,498 1.032

52-2 0.596 1. 748 2,404 1.026

S1-8 0.604 [, 7749 3.748 1.019

- S2-103 0.609 1,785 3.873 1.024

1.8-2.1 D6A . 634 1.855 4,562 1. 025

D6B . 638 1. 868 4,526 1.026

XOMH3C |, 642 1. 880 4,494 1.024

X9MH2C  .645 1.888 4,472 1,019

D4C . 650 1.903 2,790 1.019

X9MHI1C . 652 1. 909 4,416 1,018

1.8-2.1 S2-10 0.660 1,936 3.524 1,021

D3C 0.670 1.964 1.713 1.027

S1-9 0.677 1,984 4.042 1,021

D7A 0.678 1.9289 4,803 1.024

X8MH3A 0.704 2,063 4,783 1.021

S2-3 0,704 2,064 3.026 1,020

53-3 0,709 2.079 2.756 1,027

XEMH2X 0,709 2,079 4,744 1,027

X8MH27 0.714 2,004 4,707 1,022

2.1-2.5 XBMHIA 0.720 2,110 4,600 1,025

X7MH2B 0.729 2.139 5, 000 1,017

D8B C.739 2,166 4,800 1,024

D5C 0.746 2.187 2.968 1.022

DEC 0,750 1,198 3.785 1,023

X7MH2ZA 0,754 2.210 4.835 1,018

S3-2 0,787 2,309 2,156 1,027

D7C 0.804 2,357 4,028 1,021

S2-4 0,800 2,371 3.245 1,017

2.5~ S2-5 0,897 2.630 3.073 1.018

53-1 0,002 2,644 2.870 1,027

S1-4 0, a9y 2,926 2,210 1.036



A VA
I
Lo
T
Q700 : "l.’: i “‘: "
0800 e“%o 2 J\\\n
iﬁoo a:\.: a
Q800 [] “ & . \\‘ - =
\ ¢ Nt :
0400 . . \\\\ =
™. o
) \\ s \\
1 '\\ . i ~.
az
oo
0550 100 1020 1030 1040 1030 toso  to70 1030 1090 1400 TII0 E] [}
ALPHA — — A AND BETA~-— O

VELOCITY DISTRIBUTION COEFFICIENTS VERSUS DEPTH
OF FLOW IN A CIRCULAR CROSS - SECTION
FIG. 27

cek



133

depth-diameter ratio. The corresponding mean velocities
which are also listed do not arrange themselves in any
discernable manner. This is probably due to the fact that
the mean velocity increases with the depth for a given
slope and roughness, and the depth has already accounted
for the effects of the mean velocity. Figure 27 indicates
slightly increasing values ob both beta and alpha for
lowering depths. This would be expected as the deviation
from the mean velocity becomes greater and the friction
factor becomes effectively larger at the smaller depths.

At the half pipe diameter depth the beta factor has a
value of approximately 1.01 and alpha value of approximately
1.03. At greater depths the beta factor reduces to
approximately 1.007 and the alpha factor reduces to
approximately 1.022. For depths less than half full,
both factors appear to increase. Data was not available
for depths less than one-fourth of a diameter; hence, the
limit values cannot be estimated.

An attempt was made to identify any relationship be-
tween the mean velocity and the velocity distribution coeffi-
cients. It may be seen from Table 15 that for modest range
of depth, the variation of mean velocity does not result
in a consistent variation in beta or alpha.

Considering the limited range of Darcy-Weisbach
factor, the mean velocity, the variation in beta and
alpha can be identified primarily with Reynolds number and

secondarily with depth of flow.
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Table 15. Velocity distribution factors as a function of velocity

Run Veloaity Depth
No. fps ft @ B
53-7 1,215 0.871 1.056 1.022
D3-C L..743 1.964 1.027 1. 009
S52-9 1,848 0.903 1,060 1,024
S2-6 1.915 1.152 1,040 1,013
S3-2 2,156 2,309 1,027 1,009
Si-4 2,210 2.926 1.036 1,012
S3-5 2,299 1,497 1,055 1,022
S2-2 2,404 1,749 1,026 1,009
S3-4 2.498 1.740 1.032 1,011
S3-6 2,519 1,154 1,084 1,029
DZ2B 2,605 0.817 1,037 1,016
D2A 2.637 0.810 1.073 1.024
X12M2B 2,668 1.372 1,095 1,040
S3-3 2.756 2,079 1.027 1,009
S3-1 2,870 2,644 1.027 1.009
D5C 2.968 2.187 1.022 1,008
S2-3 3.026 2,064 1,020 1. 007
S2-5 3.073 2.630 1,018 1,006
S2-4 3,245 2,371 1,017 1,006
S1-7 3. 320 1,547 1.017 1,004
S2-10 3.524 1,936 1,021 1,007
X12M2A 3.739 1.064 1,123 1,066
S1-8 3.748 1,779 1.019 1, 006
S3-10 3,752 1,771 1.033 1.011
D6-C 3.785 2,198 1,023 1,008
S52-10 3873 1,785 1.024 1,008
D7-C 4,028 2.357 1.021 1.007
S1-9 4,042 1.984 1,021 1. 007
X6MHZA 4,075 1,442 1.019 1,005
X10M1A 4, 237 1,617 1.028 1,010
D5A 4,236 1.605 1,032 1,012
X10M2A 4,248 1.612 1,030 1,011
D5B 4, 249 1,601 1,037 1,014
X10M3A 4, 251 1,611 1.030 1,011
X10M2B 4,279 1.597 1,030 1,011
X8MHI1A 4,609 2.110 1.025 1,009
X8MH27 4,707 2,094 1.022 1,008
X8MH2X 4,744 2.079 1.027 1,009
X8MH3A 4,783 2,063 1,021 1,007
D8B 4,800 2,166 1,024 1.008
D7A 4,803 1,989 1,024 1,008
XTMH2A 4,835 2,210 1.018 1,006
XTMH2B 5,000 2,139 1,017 1,005
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5. Conclusions

The results of this study are applicable to
hydraulically smooth circular cross-sections flowing

partially full with Reynolds number between 0.4 x lO5

and 3.00 x 105.

In the lower range of Reynolds numbers, the observed
velocity distribution factors are greater and display greater
dispersion. At the larger Reynolds numbers, the values
trend toward invariance with less dispersion.

The relationship between alpha and beta has been
demonstrated both theoretically and experimentally to be
expressible as (o-1)/(8-1) = 2.3 to 3.0. The value of
3.0 is representative of the experimental results.

A representative value of alpha for the experimental

conditions is 1.03. A representative value of beta would

be 1.01 for the observed data.



136

D. Boundary Conditions

1. Introduction

The solution of the unsteady flow equations
require a definition of two boundary conditions. These
boundary conditions are independent of the solution
procedure and must be defined physically and mathematically.

In this study these two boundary conditions are
(a) the inflow hydrograph and (b) a depth-time or depth-
discharge relationship at either the upstream or downstream
end of the reach. The location of this latter condition
depends on whether the base flow is super- or sub-critical
The following discussion will relate to sub-critical flow
in which case the latter boundary condition is downstream.

In the case of sub-critical flow with the resulting
downstream boundary condition, the physical condition may
best be expressed as a depth versus discharge relationship.

For a free outfall the depth was assumed as critical.
Thus the initial water surface was that of a drawdown
profile. The location of critical depth as normally
computed does not occur at the end of the physical
channel but some distance upstream. The section to follow
describes the procedure used to evaluate this distance.

The second experimental condition imposed at the
downstream end was that of a restricted opening. This
insured that the depth of flow was always greater than

normal. This resulted in an initial condition of a
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backwater surface profile. The detailed discussion of

this condition follows that for critical depth.

2. Free-outfall Condition

a. General
The free-outfall at the downstream of a
prismatic channel may be physically considered as that
as condition for which the total energy of flow is a minimum
for the discharge. Mathematically this condition may be
expressed by;
2

Q—g = 1 (118)
g

in which;

Q 1is the volume discharge rate

B is the surface width

A is the cross-sectional area

g 1is the acceleration due to gravity.

This expression is based on two assumptions. The
first is that the pressure‘distribution is hydrostatic.
The second is that the kinetic energy may be expressed
through the mean velocity.

The first assumption is violated in the vicinity of
the free-outfall becaﬁse of the significant curvature of
the streamlines. Furthermore at the end, the pressure at
the bottom must be atmospheric or zero relative. Thus, the .
potential portion of the total energy relative to the
channel bottom is actually less than that assumed in the

development of eqguation (118)
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The second assumpﬁion depends on a uniform velocity
distribution in the cross-section. The greater the
velocity distribution differs from the uniform, for the
same mean velocity, the larger will be the true kinetic
energy as compared with the assumed. Based on the
previous evaluation of the alpha wvelocity distribution
factor, being close to one, it may be assumed that this
assumption is reasonable.

b. Experimental observations and results.

The purpose of these experimental measurements
was to determine the location of critical depth as computed
from equation (118). This position then served as the location
of the downstream boundary. Water-surface profiles were
measured for a range of discharges from 2.10 to 16.62 cfs.
The channel slope ranged from 0.000032 to 0.001022 feet
per foot.

Table 16 presents the fourteen conditions of discharge
and slope, and the corresponding ratio of end depth of the
compute critical depth. Figure (28) presents the water-
surface profiles for the same conditions along with the
locations of the computed critical depth.

c. Conclusions

Within the range of observed end depths, the
mean ratio of end-depth to critical depth was 0.750. The
ratio tended to be smaller than the mean for the lower depthg.

The location of computed critical depth from the channel

end varied from less than 3.5 times critical depth to almost
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Table 16. Free outfall data wvalues

Diameter - 2.926 ft

Run No. Slope Discharge De/Dc
D1A .001022 2.10 0.731
82-9 .000132 3.26 0.746
S1-5 .000032 4.14 0.758
D2A .001022 4.58 0.749
S1-6 .000032 7.96 0.776
S53-9 .000520 7.98 0.764
D3A .001022 8.26 0.751
S1-7 .000032 11.98 0.761
D4A .001022 12.92 - 0.740
$3-10 .000520 1597 0.739
D5A .001022 16.02 0.752
S1-8 .000032 16.04 0.726
$2-10 .000132 16.64 0.753
$1-9 .000032 19.62 0.761

Mean - 0.750
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5.5 times critical depth. A location of 4.5 times critical
depth was considered as typical and used in subsequent
computations. This reduction in length of the integration
length for the numerical solution of unsteady flow is
probably insignificant and could safely be ignored in other

applications.

3. Controlled Outfall Conditions

a. General
The mathematical simulation of the downstream

boundary condition for controlled outflow required the
calibration of an end restriction. Any geometric configuration.
was acceptable providing it satisfied the following criteria.

1. The discharge as a function of depth could be
expressed simply such as Q'= myn in which "m" and "n"
are constants and "y" is the depth of flow upstream of
the restrictions.

2. The restriction was not so great as to cause the
pipe to flow full under the maximum anticipated hydrograph
discharge. |

3. The approach-velocity distribution was symmetrical
and did not differ appreciably from the undisturbed flow.

These criteria were satisfied by a restriction consisting
of five 7-inch vertical wooden slats held in position by
2-~1/2 inch wide vertical aluminum H-sections. The clear
opening was 5 inches between supports. The discharge
could thus be controlled by varying the vertical position

or removal of one or more slats.
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b. Results
| Calibration of various combinations of

openings was made by measuring the water surface elevation
approximately 20 feet upstream of the control, and the
corresponding discharge. For the range of discharges
anticipated in the unsteady flow runs, it was concluded
that the best combinations of openings was with the center
three slats removed.

For this condition the relationship between discharge
and depth was determined to be

0 = 4.84 y1-35

This relationship applied for depths between approximately
one-third and eight-tens of full diameter.

This gate configuration and relationship was used
for all subsequent boundary condition evaluations in which

backwater profiles were the initial condition. No attempt

was made to modify this steady state relationship for unsteady

flows.
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Chapter IX
INITIAL CONDITIONS

A. General

The integration of the governing equations of unsteady
flow (19) and (20) require initial values of velocity
and depth at given locations in time and space. These values
are independent of the ensuing solution and may be arbitrarily
established. Realistically the conditions should be the
result of a physical condition.

For the subject study the ini£ia1 condition was that
of nonuniform steady flow at the hydrograph base discharge.
A mathematical expression for this condition is the ordinary

differential equation,

dy _ o f (119)
dx a 2
aQ
Itz (=)
2gA

in which;
y 1is the depth at position x
x 1is the distant along the channel

S is the bed slope

Sf is the friction slope

¢ 1is the energy velocity distribution factor
Q is the steady discharge

A 1is the cross-sectional area

is the acceleration due to gravity.

Q
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The slope of the energy gradient S was evaluated

f
by the Darcy—Weisbach equation. The friction factor
evaluation was described earlier.

A comparison of computed versus observed water-surface
profiles for non-uniform steady flow was made. These

comparisons were made to test the validity of the theoretical

and numerical determination of initial conditions.

B. Computational Procedure and Results

The determination of depth at specified positions
along the pipe was accomplished by a Newton-Raphson
iteration of equation (119) to a tolerance of 0.001 ft.
of the depth. Given information included: (1) discharge
0/ (2) channel slope - S0 ; (3) friction factor - f;

(4) velocity distribution factor -a (5) position along
the pipe of points of observed depth - x; and (6) observed
or critical depth at the extreme downstream position.

The depth of flow was observed at the foilowing eight
positions with respect to the upstream end of the pipe:
20.00 ft., 197.92 ft., 406.07 ft., 509.64 ft., 613.20 ft.,
707.7% ft., 772.71 ft., and 821.00 ft.

The boundary conditions for the steady non-uniform flow
were established as follows:

(a) for the mild slope profiles at depths greater
than normal depth (M-1 type curves) the observed depth at
the 802.71 ft. station was used;

(b) for the mild slope profiles at depths between

critical and normal depth (M-2 type curves) the computed
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critical depth at a position of 4.5 times critical depth
upstream of the pipe end (821.00 ft.) was used.

The root-mean-square (rms) deviation between the
observed and computed depths was computed for three
different value of alpha (1.00, 1.02 and 1.05), and three
values of £ (.011, .012 and .013). The values of alpha
were selected based on,

(1) the usually assumed value of 1.00 in lieu of
better knowledge as to its true value;

(2) the value of 1.02 as most representative of the
values within the expected depth range; and

(3) the value of 1.05 as being an extreme for the
flow in a uniform channel.

The roughness values were selected based on the most
reasonable constant value throughout the expected ranges
of depth and velocity, and approximately 10 percent more
and less. It is to be expected that these values would
include an engineering estimate of the best value for this
channel. The results of these computations are tabulated
in Tables (17) and (18).

The invert of the physical pipe deviated from a
mathematically uniform slope as indicated in Table (19).
Since the actual depth of flow above this slightly irregular
invert may not be expected to agree with the computed depth,
an adjusted depth was computed at each position. The
adjusted depth was based on the depth which would have

occurred with the same total energy but with the invert



Table 17, RMS deviations for M=1 type backwater curves (normal depth < initial depth)

Alpha = 1.00 Alpha = 1.02 Alpha = 1.05
Run i 1) Hormal Initial ¢ Slope
° e cl's ‘Depth Depth Critical RMS Dev. Critical MG Dev. Critical BMS Dev. ¥
Depth Aetual Adjusted Depth Actunl Adjusted Depth Actual Ad justed
53-3 14,10 1.83h 2.0 1.205 0.075 0.077 1.211 0.074 0.074 1.220 0.075 0.07k 0.011 0.000520
£5-5 .95 1.269 1.554 0.896 0.03h 0.034 0.500 0.034 0.03h 0.907 0.034 C.0%h 0.011
3.0 .21 1,097 1.107 0.788 0.03h 0.034 0.792 0.03k 0.03k 0.798 0.034 0.034 0.011
53-7 2.0 0.594 1,028 0. k6 0.016 0.01h 0.k48 0.019 0.016 0.h52 0.019 0.016 0.011
55-B 1.h2 0.490 0.621 0.371 0.025 0.024 0.373 0.025 0.025 0.376 0.025 0.025 0.011
533 14,10 1.893 2.07h 1.205 0.066 0.065 1.211 0.067 0.065 1.220 0.066 0.065 0.012
53-5 1.95 1.303 1.554 0.896 0.027 0.026 ' 0.900 0.021 0.026 0.907 0.027 0.025 0.012
£3a7 2.0k 0.508 1.028 0.4h6 0.017 0.016 .48 0.017 0.016 0.h52 0.018 0.016 0.012
3-8 1.4 0.501 0.621 0.371 0.022 0.029 0.373 0.023 0.023 0.376 0.022 0.02% 0.012
o3-3 14.20 1.950 2.07h 1.205 0.061 0.058 1.211 0.059 0.058 1.220 0.060 0.058 0.013
53-5 7.96 1.335 1.55% 0.896 0.022 0.021 0.900 0.022 0.021 0.907 0.022 0.020 0.013
£3-7 2,04 0.621 1.028 0.446 0.018 0.015 0.448 0.018 0.015 0.hs52 0.018 0.015 0.015
53-8 1.2 0.512 0.621 0.371 0.020 0.020 0.375 0.020 0.020 0.376 0.020 0.020 0.013
Xan 13.20 1.k1s 1001 1.16h 0.027 0.0%0 1.170 0.029 0.0h0 1,179 0.029 0.0h0 0.011  0.001001
¥5B 15.20 1.415 1.957 1.16h 0.016 0.032 1.170 0.017 0.032 1.179 0.016 0.033 0.011
Xae 13.20 1.115 2.379 1.164 0.021 0.020 1.170 0.021 0.020 1.179 0.021 0.020 0.011
%94 20,30 1.884 2.34h1 1157 0.062 0.060 1,485 0.067 0.062 1.4716 0.067 0.062 0.011
%108 16.00 1.599 1.990 1.287 0.0%2 0.039 1.0093 0.0h1 0.0%9 mmme= mmeee meeen 0.011
¥12A &.20 1.066 1.697 0.909 0.022 0.02h 0.914 0.023% 0,02 mmmee mmmmm e 0.011
z12E 8.20 1.066 1,104 0.909 0.014 0.012 0.91h 0.0L% 0.0%35  =mmm= smmm= memee 0.011
XAB 13,20 1054 1.757 1,16k 0.023 0.020 1.170 0.022 0.020 B 0.022 0.020 0.012
Xoe 15.20 1.hs5h 2.379 1.164 0.021 0.018 1.170 0.021 0.017 0.179 0.020 0.018 0.012
XIA 20.30 1.9h5 2.5h1 1.%57 0.023 0.020 1.165 0.077 0.06% 1.476 0.071 0.073 0.012
et} 15,00 1.646 1.990 1.287 0.050 0.042 1.293 0.048 0.0h2 1.503 0.047 0.04h1 0.012
K124 8.20 1.095 1.697 0.909 0.019 0.017 0.91h 0.019 0.018 0.921 0.019 0.018 0.012
¥128 8.0 1.09% 1.10% 0.909 0.018 0.026 0.914% 0.018 0.026 0.921 0.015 0.026 0.012
xec 8.20 1.093 1.109 0.909 0.015 ©¢.028 0.91% 0.015 0.028 ameee ————m mmeee 0.012
X134 .68 0.798 0.833 0.681 0.018 0.050  m==== mmmmm mmeee mmmeo mm—em mmmee 0.012
¥13B h.68 0.798 1.079 0.681 0.013 Lo T — semem mmees 0.012
%126 8.20 1.093 1,109 emee- 0.91% 0.015 0.028 ameea m——— emeee 0.012
¥12D B.21 1.093 1.055  meee- 0.915 0.0k 0,040 mmmee eemee emeee 0.012
¥EB 13.20 1.h91 1.757 1,168 1.170 0.035 0.026 1.179 0.032 0.026 0.013
Xoe 15.20 1.491 2.379 1.164 1.270 0.026 0.022 0.179 0.026 0.022 0.013
YO 20.30 2.006 2,341 1,457 1.465 0.046 0.045 1.476 0,091 0.080 0.013
paly):] 16.00 1.690 1.990 1.287 1.293 0,060 0.053 1.303 0.059 0.053 0.013
abry B.20 1.119 1.697 0.5909 0.91h 0.023 0.020 0.921 0.022 0.018 0.013
DL 1z.92 1.3E8 2,225 L.15% 1.157 0.027 0.027 1.166 0.028 0.028 0.011
Dée 20.51 1.883 2.25% 1.h65 1473 0.040 0.040 1.h8% 0.04) 0.0k2 0.011
Dic 2.10 0,516 1.7 0.453 D.080  0.08%  =mm== mmmee mmeee 0.h58 0.021 0.023 0.012
nac 4,58 0.7k 2.093 0.67%  0.011  0.010  —m-m= mmme= mmmem mmmee memee eeeee 0.012
Dhe 12,92 1.h25 2.225 1,150 0.016 0.016  mmeeme memmee emeee 1.166 0.017 0.017 0.012
D&e 20.51 1.945 2.253 1.465 1073 0.025 0.02h 1..84 0.025 0.023 0.012
Dic 2.10 0.527 1.417 0.453 0.455 0.020 0.022 P T e 0.015
D2C %.58 0,801 2.293 0.67% 0.677 0.011 0.012 0.682 0.011 0.010 0.013
phe 12.92 1,462 3,205 1.151 1,157 0.012 0.011 1.166 0.011 0.011 0.013
Déc 20.51 2.006 2.253 1.h65 1473 0.027 0.026 1.h84 0.027 0.025 0.013
nie 2.10 0.50h 1T emees 0.455 0.021 0.024 mmmmm mmmem meeee 0.011
p2c .58 0.756 2,295  =se=e cmmes meeee 0.677 0.012 0,011 smmmm mmmen emeee 0.011

9V T




Tuable 18, RMS deviations for M=2 type drawdown curves (normal depth s initial depth)

" Alrha = 1.00 Alpha = 1,02 Alpha = 1.05
Rui ‘o, ofs Critical RMS Dev. Critical HMS Dev. Critical AME Dev. ! ©lope
Depth Actunl Adjusted  Depth Actunl  Adjusted Depth Actunl  Adjusted
P TR L5 | 1.563 1.768 1.218 0.0h0 0.0%6 1.285 0.0h0 0.036 1.23k 0.040 0.036 0.011  0.000520
5= 1h, k) 1.923% 1.768 1.8 0.0h2 0.038 1.225 0.039 0.039 1.234 0.033 0.041 0.012
L3=0 6.21 1.125 1.107 0,768 0.026 0.025 0,792 0.07% 0.024 0.796 0.026 C.025 0.012
53=h 1,51 1.9G2 1.768 1.218 0.045 0.0h2 1.225 0.043 0.042 1.23h 0.045 0.0kl £.013
53-6 6,01 1.152 1.107 0,788 0.021 0.015 0.792 0.021 0.02h 0.798 0.020 0.019 0.013
X6-E 13.20 1.h15 1.3%1 1.164 0.028 0.04% 1.170 0.028 0.0k 1.179 0.027 0.0Lk 0.011 0.001001
XT-A 25.90 2,350, 0,120 1.656 0.056 0.051 1.66h 0.005 0.059 1.677 0.065 0.052 0.011
X7-B 25.90 24501 1.828 1.650 0.055 0.062 1.664 0.056 0.072 1.677 0.067 0.072 0.011
Xi=C 25.90 2.301 1.831 1.656 0.072 0.074 1.664 0.065 0.070 1.677 0.067 0.07h 0.011
¥8-3 23.90 2.12h 1.753 1.580 0.019 0.042 1.589 0.023 0.043 1.601 0.082 0.043 0.011
x6-c 23.70 2.12% 2.023 1.580 0.027 0.036 1.5E9 0.027 0.034 1.601 0.006 0.03h 0.011
9B £0.30 1.884 1.619 1057 0.061 0.066 1.h65 0.061 0.065 1.476 0.060 €.066 0.011
¥9-C 20.30 1.68Y 1.832 1,457 0.061 0.061 1.465 0.065 0.061 1.476 0.065 0.060 0.011
X10-A  16.00 1.599 1.287 0.01% 0.032 1.293 0.015 0.013 0.030 1.303 0.013 0.030 0.011
X10-C  16.0C 1.599 1.L48 1.28¢ 0.02% 0.0h3 L2235 0,025 [ 0.011
Yoty y 13.20 1.45H L.41 1.164 0.018 o.02k 1.170 0.018 0.025 1.179 0.016 0.025 0.012
X6-2 13.20 1.L5h 1.331 1.16U 0.020 0.03k 1.170 0.02 0.011 1.179 0.020 0.034 0.012
78-3 23,70 2,089 1.793 1.560 0.066 0.080 1.589 0.079 0.082 1.601 0.082 0.085 0.013
x8-c 23.70 2.289 2.00% 1.580 0.052 0.0bT 1.589 0.051 0.048 1.601 0.052 0.0hE 0.013
X9-3 20,30 2.006 1.619 1.457 0.098 0.086 1. 465 0.091 0.087 L.A76 0.095 C.090 0.013
X9-C  20.30 2.006 1.852 1.557 0.091 0.080 1.465 0.092 0.081 1.L76 0.091 0.080 0.013%
¥10-A  16.00 1.690 1.579 1.287 0.045 0.043 1.0G3 0.046 0.0h2 1.%03 0.046 0.0L3% 0.013
¥10-C  16.M 1.690 1.448 1.287 0.048 0.053 1.295 0.0h9 0.054 1.303 0.050 0.055 0,013
X12-B 8.20 1.119 1.10h 0.909 0.026 0.026 0.914 0.026 0.026 1.30% 0.050 0.053 0.:013
Din 2.10 0.50k 0.464 D453 0.026 0.037 2.h55 0.026 0.050 seme= mmmee meeee 0.011 0.001022
DaA k56 0.766 0.696  =m=e= ememe eeeeo 0.577 0.050 5 0.682 0.050 0.055 -
Des 4,58 0.756 0. 724 mmmem mmmee e 0.677 0.037 0.682 0.037 0.037 "
DhB 12.92 1.388 1.292 1.151 0.032 0.037 1.157 C.03% 1,166 0.034 0.03h u
D5B 16.02 1.5%0 1.490 1.288 0.032 0.033 1.29h 0.032 1.304 0.032 0.0352 "
pan 20,51 1.883 1.737 1.L465 0.038 0.0%8 1073 0.03%9 1.8 0.038 0.038 "
DTR 23.51 2.092 1.926 1.574 0.02h 0.024 1.582 0.02% 1.594 0.02k 0.024 "
nép 25,60 2.253 2.029 1646 0.029 0.029 1.650 0.028 1.667 0.028 0.028 "
2,10 0.516 0. LGk 0.453 0.023 0:030  emmmmt 0 sfeem 0.458 0.020 0.036 0.012
.58 0.784 0.696 0.67h 0.039 0.0h%  ameee emaem 0.682 0.038 0.0h4 "
k.58 0.784 0.72k 0.074 0.029 0,035 mmmeme emeee A, 682 0.032 0.033 "
12,92 1.has5 1.292 1.151 0.021 0.080  =emm= emmes meeee 1.166 0.021 0.020 i
16,08 1.636 1.490 1.288 .0.018 0.0L 1.29h 0.019 0.017 1.30h 0,019 0.016 .
20,51 1.945 1737 1.465 0.025 0.023 1473 0.02% 0.023 1.484 o0.02h 0.023 "
25.51 2.170 1,926  seme= meme= emmee 1.5682 0.025 0.022 1.594 0.025 0.023% g
25.60 2.352 2029 mmme= mmeee ——— 1.654 0.02h 0.018 1.667 0.021 0.016 "
2.10 0.527 0.464 0.453 0.020 0.034 0.455 0.017 0,032 emem=m eemee ——— 0.013
k.58 0.801 0.696 0.67h 0.028 0.031 0.677 0.028 0.035 0.682 0.027 0.035 v
4,58 0.801 0.2k 0.57h 0.029 0.025 0.677 0.031 0.025 0.682 c.026 0.023 "
12,92 1.462 1.292 1.151 0.025 0.024 1.157 0.027 0.025 1.166 0.02 0.020
16.02 1.680 1.h90 1.288 0.030 0.026 1.294 0.030 0.027 1.30h 0.032 0.028
20,51 2.006 1.757 1.465 0.037 0.035 1473 0.038 0.035 1.58h 0.037 0.035
23.51 2,250 1.926 1.57% 0.049 0,008 emmee mmmee meeee 1.59% 0.052 0.050
5.61 1.563 1.210 0.7u0 0.035 0.03% 0.752 0.03%6 0.033 0.757 0.036 0.03h 0.011 0.000132
U 1.heo 1.012 0.6 0.035 0.03h 0.687 0.03k 0.033 0.692 0.03% 0.033 0.011
3.0k 1,159 0.611 0.582 0.035 0.035 0.585 0.033 0.03h 0.590 0.032 0.033 0.011
1.04 0.600 0.339 0.320 0.0kh 0.0h2 0.322 0.0h3 0.0k1 c.32h 0.043 0.0h0 0.011
5.61 1.608 1.210 0.748 0.029 0.028 0.7752 0.030 0.027 0.757 0.030 0.027 0.012
LT 1.458 1.012 0.6534 0.028 0.026 0.687 0.028 0.026 0.692 0.028 0.02G 0.012
3.4 1.189 0,611 0.582 0.027 0.027 0.585 0.025 0.025 0.590 0.024 0.025 0,010
1.06 0.615 0,339 0.320 0.057 0.035 0.320 0.058 0.035 0.384 0.037 0.035 0.012
5.61 1.651 1.210 0. 748 0.026 0.075 0.752 0.025 0.022 0.757 0.025 0.022 ©.013
L.y 1.475 1.012 0.68h 0.002 0.020 0.6 0.022 ©.020 0.692 0.022 0.020 0.015
5,4 1.218 0.611 0,582 0.020 0.020 0.585 0.018 0.019 0.590 0.017 0.018 0.013%
1.06 0.651 0.339 0.320 0.053 0.03%0 0.322 0.052 0.030 0.324 0.032 0.029 0.015

LvT
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Table 19. Physical pipe invert deviations

Root-Mean-Square

Slope Max. Deviation - ft. Deviation - ft.
.0000052 +.0188 .0116
.0000157 +.0182 .0135
.0000303 +.0214 .0099
.0001325 +.195 .0099
.0005197 +.0347 .0117
.0010101 +.0279 .0119
.0074578 -.0240 .0133

.0200690 +.0375 .0141
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on the mean slope. The rms deviations for the adjusted

depths are also tabulated in Tables (20) and (21).

C. Discussion of Results of Comparison of Backwater

Calculations

The data tabulated in Tables (17) and (18) were
analyzed in terms of the mean values of the rms deviations
for each friction and alpha factor. The consolidated
results are presented in Tables (20) and Table (21).

These results do not indicate any strong tendency for a
smaller rms deviation for the friction and alpha factors
previously estimated for this pipe, i.e., 0.012 and 1.02.
A representative rms deviation for the conditions observed
is approximately 0.025 feet for both the M-1 and M-2 type
surface profiles. There is a larger spread of deviations
for changes in the roughness value than for changes in the

velocity distribution factor o .

D. Conclusions

Based on the preceding results, it was concluded
that a steady non-uniform water surface profile could be
computed as the initial condition for the unsteady solution.
It was also concluded that the friction factor
evaluation was more important than the velocity distribution
coefficient. Subsequent computations utilized the variation

of the friction factor with Reynolds number.
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Table 20. Steady non uniform water surface profiles
Median RMS values - feet
Unadjusted Depth
Velocity
distribution
factor « Friction factor £ Composite
011 Q12 K13
1.00 .026 .020 .023 .022
1.02 .024 .024 .023 .023
1.05 .024 .022 .024 .022
Composite .026 .021 .023
Adjusted Depth
1.00 .033 .023 «022 .024
1.02 .033 .026 .022 .026
1.05 .031 .023 .021 .023
Composite .033 .024 .022
Table 21. Median RMS values for M-2 type curves
Unadjusted Depth
Velocity
distribution
factor « Friction factor f£ Composite
.011 012 0313
1.00 .035 .026 .0305 .030
1.02 .034 .025 .0305 .031
1.05 .036 .026 .036 +032
Composite .034 .027 .032
Adjusted Depth
1.00 .037 .030 .034 .034
1.02 .040 0255 .031 .034
1:08 .041 .0265 .037 .035
Composite .039 .026 .034
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Since the velocity distribution coefficient variation
did not produce significant differences, subsequent

computations utilized an alpha value of one.
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