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ABSTRACT

An areal rainfall estimator based on differential propagation phase is proposed and evaluated using the Bureau
of Meteorology Research Centre (BMRC) C-POL radar and a dense gauge network located near Darwin, Northern
Territory, Australia. Twelve storm events during the summer rainy season (December 1998–March 1999) are
analyzed and radar–gauge comparisons are evaluated in terms of normalized error and normalized bias. The
areal rainfall algorithm proposed herein results in normalized error of 14% and normalized bias of 5.6% for
storm total accumulation over an area of around 100 km2. Both radar measurement error and gauge sampling
error are minimized substantially in the areal accumulation comparisons. The high accuracy of the radar-based
method appears to validate the physical assumptions about the rain model used in the algorithm, primarily a
gamma form of the drop size distribution model, an axis ratio model that accounts for transverse oscillations
for D # 4 mm and equilibrium shapes for D . 4 mm, and a Gaussian canting angle distribution model with
zero mean and standard deviation 108. These assumptions appear to be valid for tropical rainfall.

1. Introduction

The differential propagation phase (Fdp) between hor-
izontal and vertical polarization due to rain at micro-
wave frequencies is now well known to be an important
radar measurement, in particular for estimating rain
amounts (Seliga and Bringi 1978; Sachidananda and
Zrnić 1987). In particular, Fdp-based methods offer
many practical advantages over power-based methods,
for example, immune to radar system gain variations,
attenuation effects, beam blockage (Zrnić and Ryzhkov
1996). The Fdp field can be naturally expressed in polar
coordinates (r, u), where r is the radar range and u is
the azimuth angle, when the radar scans the rain area
at low elevation angle in the usual plan position indi-
cator (PPI) mode. It was recognized by Raghavan and
Chandrasekar (1994) in the context of area–time integral
methods, that the azimuthal sweep of Fdp across the rain
area can be viewed as an areal integration of the in-
stantaneous rain-rate field. Thus, to calculate the mean
areal rain rate ( ), it is not necessary to know the spe-R
cific differential phase [Kdp 5 (1/2)dFdp/dr], which is a
‘‘noisy’’ measure and involves substantial smoothing of
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the Fdp field (e.g., Hubbert and Bringi 1995). In par-
ticular, large gradients of reflectivity can cause the es-
timated Kdp to be biased (Gorgucci et al. 1999). The
areal rainfall method using Fdp for estimating doesR
not involve the prior estimation of Kdp. Therefore, this
method preserves all the practical advantages of the Fdp

measurement and avoids the major disadvantage of
computing Kdp, the only trade-off being that an areal
estimate of is available.R

Another advantage of the areal Fdp method is related
to validation using a dense network of gauges. It is well
known that the usual method of comparing radar rain
rates over single gauges is fraught with large uncer-
tainty, and that a significant portion of the variance may
be due to gauge sampling error, that is, point gauge
estimates cannot accurately represent rainfall over typ-
ical radar pixel sizes (e.g., 2 km 3 2 km), see, for
example, Anagnostou et al. (1999). However, the gauge
sampling error can be substantially reduced if a dense
network of gauges is used, and, hence, the mean areal
rainfall from the network can be used to validate areal
Fdp algorithms more robustly as compared to individual
radar–gauge comparisons. It follows that the physical
basis of areal Fdp algorithms can be evaluated by in-
tercomparison with a dense gauge network. In particular,
since a parametric form is often used to convert from
areal Fdp to , the parameterization errors (arising fromR
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drop size distribution fluctuations and choice of drop
shape models) are likely to dominate the variance be-
tween the radar and gauge comparisons.

In this paper, an areal Fdp estimator is proposed that
is philosophically somewhat different from Ryzhkov et
al. (2000). In order to estimate the mean areal rain rate
from the azimuthal sweep of Fdp, a linear R–Kdp relation
is assumed to be valid locally (R 5 cKdp). However,
from physical considerations, the relation between R and
Kdp at long wavelengths is somewhat nonlinear (Sach-
idananda and Zrnić 1987). This nonlinearity is account-
ed for by adopting a piecewise linear fit to specify the
R–Kdp relation. On the other hand, the areal Fdp esti-
mator of Ryzhkov et al. (2000) preserves the nonlinear
form for R–Kdp, but assumes that Kdp is constant along
radials intercepting the area of interest. Model simula-
tions are used to compare these two estimators using
various range profiles of Kdp.

Validation of the areal Fdp algorithm developed in
this paper is based on comparison with a dense gauge
network located near Darwin, Northern Territory, Aus-
tralia. The Bureau of Meteorology Research Center
(BMRC) C-POL radar (frequency near 5.5 GHz) located
near Darwin provided the Fdp data (Keenan et al. 1998).
Twelve storm events are analyzed from the summer
rainy season (December 1998–March 1999), which in-
cluded a variety of rainfall types.

This paper is organized as follows. Background ma-
terial is provided in section 2 on the two areal rainfall
estimators, and model simulations are used to under-
stand the differences between these two estimators. Ra-

dar data processing details are dealt with in section 3,
together with a brief discussion of the radar–gauge com-
parison methodology. In section 4 the result of the ra-
dar–gauge comparisons is discussed, while section 5
provides a short summary and discussion of results.

2. Background

The areal rainfall AR can be defined as

AR 5 R(x, y) dx dy, (1)EE
where R(x, y) is the instantaneous rain-rate field. The mean
areal rain rate is defined as AR divided by the corre-R
sponding area. The use of polar coordinates is suitable for
low-elevation angle radar data acquired in the conventional
PPI scan mode. If r is the range and u is the azimuth
angle, the areal rainfall in polar coordinates is

r u2 2

AR 5 R(r, u)r dr du. (2)E E
r u1 1

If a linear relationship between R and Kdp is assumed
of the form R 5 cKdp, and using Kdp 5 ½(d/dr)(Fdp),
(2) can be expressed as

u r2 2c d
AR 5 du F (r, u)r dr (3)E E dp2 dr

u r1 1

u r2 2c
5 du r dF (r, u). (4)E E dp2

u r1 1

Integrating by parts results in

u r2 2c
AR 5 [r F (r , u) 2 r F (r , u)] 2 F (r, u) dr du. (5)E 2 dp 2 1 dp 1 E dp5 62

u r1 1

In the above formula, for a given beam with constant
u, AR depends on its boundary values at r1 and r2 as
well as on the area under the Fdp versus range profile.
As the azimuthal angle changes from u1 to u2, an areal
sweep of Fdp over the rain region occurs naturally per-
forming a spatial integration of the rainfall. Thus, it is
not necessary to estimate Kdp(r), which is a noisy field
because it is obtained as one-half of the range derivative
of Fdp(r). On the other hand, the Fdp(r) is easily
smoothed in range (Hubbert and Bringi 1995) and an
accurate estimate of AR is readily available. However,
some error is introduced since the R–Kdp relation is
somewhat nonlinear, that is, at long wavelengths, R 5

where b ø 0.85 (Sachidananda and Zrnić 1987;baKdp

Chandrasekar et al. 1990). To reduce this error, a piece-
wise linear fit is proposed as illustrated in Fig. 1. The
data points are based on 2-min averaged drop size dis-
tributions (dsd) from a disdrometer (Joss and Waldvogel

1967) located in Darwin, Northern Territory, Australia
(details are provided in the appendix). These data are
representative of an entire rainy season in Darwin. The
Kdp calculations are performed at a frequency of 5.5
GHz (C band) and assuming that raindrop axis ratios
(for 1 # D # 4 mm) obey the relation given in Andsager
et al. (1999), and for D , 1 or D . 4 mm the relation
given in Beard and Chuang (1987). In addition, a Gauss-
ian canting angle distribution is assumed with zero mean
and standard deviation of 108. This model is believed
to be applicable for tropical rainfall [see chapter 7 of
Bringi and Chandrasekar (2001)]. The multiplicative co-
efficient c in (5) is selected from the piecewise fit based
on the average Kdp value in the range interval r1 to r2

for any given beam. The areal rainfall estimate based
on (5) and the piecewise linear fit in Fig. 1 will be termed
the Colorado State University (CSU) estimate. When
AR in (5) is divided by the corresponding area, it will
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FIG. 1. Scattering simulations at C band based on measured drop
size distributions from Darwin (each data point refers to a 2-min
averaged dsd; see the appendix for details). Also, the piecewise linear
fit is illustrated. A nonlinear fit to the data points results in R 5
32.4(Kdp)0.83.

FIG. 2. The idealized Kdp profiles used in the model simulations:
(a) profiles marked 1–3, (b) Gaussian profiles marked 4–6.

FIG. 3. The percentage error in areal rainfall (AR) using the CSU
estimator [see (5)] and the RZF estimator [see (9)] vs the Kdp profile
number (see Fig. 2).

be termed the csu algorithm or simply the CSU algo-R
rithm.

The formula for AR proposed and evaluated by Ryzh-
kov et al. (2000), henceforth referred to as RZF, is based
on a nonlinear relation R 5 (here, a 5 32.4, b 5baKdp

0.83 from scattering simulations described above). It is
assumed that Kdp(r, u) is constant for a given u. It fol-
lows that (2) can be simplified as

u r2 2

bAR 5 du aK (r, u)r dr (6)rzf E E dp

u r1 1

u2a
2 2 b5 (r 2 r ) K (u) du (7)2 1 E dp2

u1

a
5 (r 1 r )(r 2 r )2 1 2 12

bu2 F (r , u) 2 F (r , u)dp 2 dp 1
3 du (8)E [ ]2(r 2 r )2 1u1

a r 1 r2 1 12b5 [2(r 2 r )]2 11 22 2
u2

b3 [F (r , u) 2 F (r , u)] du. (9)E dp 2 dp 1

u1

When the above AR is divided by the corresponding
area it will be termed the rzf algorithm or simply theR
RZF algorithm. In this formula, only the boundary val-
ues of Fdp occur for each beam; thus it is simpler to
implement as compared with (5). However, the range-
weighting, which is exact in (5), is constant in (9); that
is, the range-weighting is constant at (r2 1 r1)/2. If (r2

2 r1) is small, then (9) becomes more exact, but the
accuracy of the approximation depends not only on (r2

2 r1) but also on how different the actual Kdp(r) profile
is from being a constant. For both areal Fdp estimators,
the measurement error is virtually negligible because of
the areal integration and prior smoothing of the Fdp

range profiles [see the appendix of Ryzhkov et al.
(2000)].

To investigate the differences between (5) and (9),
several model Kdp(r) profiles are chosen as illustrated
in Figs. 2a,b and simulations are used (assuming u 5
constant) to compare ARcsu and ARrzf against the ‘‘ex-
act’’ value using (2) with R 5 32.4 . Figure 3 shows0.83Kdp

the percentage error in ARcsu and ARrzf versus the Kdp

profile number (each number from 1 to 6 corresponds
to a particular profile in Fig. 2). It is clear that ARcsu,
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FIG. 4. Model Gaussian-shaped profile of Kdp used in simulations
shown in Fig. 5.

FIG. 5. The percentage error in areal rainfall using the CSU esti-
mator (ARcsu) and the RZF estimator (ARrzf) vs (r2 2 r1). Note that
r1 5 40 km (see Fig. 4), whereas r2 in this figure is variable.

FIG. 6. Illustrates the dense gauge network near Darwin, and the
boundaries of the polar area used for estimating the area rainfall.

even with the piecewise linear fit, has small error
(#10%) while ARrzf can have large error (e.g., profile
5), especially when the Kdp profile is asymmetrically
located relative to the center (r1 1 r2)/2, with its peak
value closer to r1. Moreover, from the results of Fig. 3,
the error in ARcsu appears to fluctuate from 210% to
110% depending on the shape of the Kdp profile whereas
the error in ARrzf appears to be one-sided. In practice,
this implies that the error in ARcsu should tend to balance
out as the actual Kdp profiles will tend to vary more or
less randomly in shape.

To further illustrate the error caused by constant
range-weighting in ARrzf, Fig. 4 shows an idealized
Gaussian profile of Kdp centered near 50 km; note that
r1 5 40 km is fixed whereas r2 is allowed to vary from
60 to 100 km. Figure 5 shows the percentage error in
ARcsu and ARrzf versus (r2 2 r1). These idealized sim-
ulations show that the error in ARcsu is bounded to
#10% whereas the error in ARrzf increases with (r2 2
r1) and does not appear to be bounded. Note that these
model simulations are based on a constant r1. The error
in ARrzf, in general, will depend on both (r2 2 r1) as
well as the mean range, (r2 1 r1)/2.

3. Data sources and processing

This study uses data from the C-POL radar (available
online at www.bom.gov.au/bmrc/meso/darwin/darwinos.
htm) located near Darwin, Australia, and operated by the
Bureau of Meteorology Research Center (Keenan et al.
1998). The gauge network consists of 20 gauges within a
100 km2 area located about 40 km southeast of the radar
as illustrated in Fig. 6. The polar area used in the estimate
of areal rainfall is also shown in this figure. The gauges
are 203-mm-diameter tipping-bucket type and the time of
accumulation of 0.2 mm of rainfall is recorded. The gauges
are routinely calibrated and strict data quality control pro-

cedures were used to reject faulty gauge data (May et al.
1999). For each gauge, 1-min rain rates (Rg) were available
as a time series. Raindrop size distribution data were also
available from a disdrometer (Joss and Waldvogel 1967)
located in this network; over 2000 2-min averaged N(D)
were available for analysis representing a variety of rain
types occurring in this region (i.e., thunderstorms and con-
tinental and oceanic squall lines).

The C-POL radar data stream consists of Zh, Zdr, and
Fdp at range increments of 300 m. The Fdp data are
filtered in range using an adaptive filtering algorithm
that eliminates local scattering-induced differential
phase excursions, while retaining the monotonic in-
creasing differential propagation phase component
(Hubbert and Bringi 1995). The reflectivity is corrected
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FIG. 7. Time series of mean areal rain rate ( csu) from the CSUR
estimator and from the gauge network ( g) vs time for the stormR
event of 18 Feb 1999. The radar sampling interval is 10 min. Standard
error bars on csu reflect both the parameterization error as well asR
the measurement error.

for attenuation effects using a self-consistent, constraint-
based method (Bringi et al. 2001).

A threshold in DFdp 5 Fdp(r2) 2 Fdp(r1) . 28 is
applied for each beam for application of the formulas
in (5) and (9). Because the Fdp is filtered in range, the
fluctuations in measured Fdp are reduced considerably
to ,18. Below this threshold value of DFdp, a Zh–R
relation is used to determine the rain rate; the coefficient
and exponent of the power law are determined from
disdrometer data resulting in Zh 5 305R1.36. The piece-
wise linear fit shown in Fig. 1 is used to determine the
value of c to be used in (5) based on the average Kdp

value for the beam. The coefficient a and exponent b
used in (9) are based on a nonlinear fit to disdrometer-
based scattering simulations at C band, which results in
R 5 32.4(Kdp)0.83.

Radar data from the lowest available elevation (0.58)
tilt, or sweep, were used, and within the polar area in
Fig. 6 a total of 12–15 beams per sweep were generally
available for the azimuthal integration. The low-ele-
vation angle sweep data were available every 10 min;
that is, the radar sampling interval was 10 min. The
areal rainfall in (5) and (9) obtained for each sweep was
divided by the polar area in Fig. 6 resulting in a time
series of mean areal rain rate ( csu or rzf) spaced everyR R
10 min.

As mentioned earlier, a time series of 1-min averaged
rain rate was available from each gauge in the network.
Let to be the radar sampling time defined here as the
center time for each radar sweep. The mean areal rain
rate from the gauge network at to, Rg(to), is estimated
as follows. A time window corresponding to to 6 1 min
is defined and all gauge rain rates in this window are
averaged to obtain the first estimate of g(to). Next, aR
time delay is introduced by sliding the time window
forward in 1-min increments, and an optimal delay time
is found by minimizing the absolute deviation between
the radar-estimated csu and g. In practice, the averageR R
optimal delay was around 1 min. The optimal delays
based on csu were similar to those based on rzf, whichR R
is not surprising since the algorithms are similar. Here,
the optimal delays based on csu are used. It is standardR
procedure to introduce time delays before comparing
radar- and gauge-based estimates, since the radar res-
olution volume is always at some finite height above
the surface. It constitutes one component of the variance
between radar and gauge estimates, which, in practice,
can be minimized.

The gauge density of the Darwin network (see Fig.
6) is high, about 5 km2 per gauge. According to Sil-
verman et al. (1981), the sampling error for storm total
rainfall is ‘‘primarily a function of the number of gauges
per raincell and secondarily, but importantly, a function
of the spatial precipitation gradient.’’ For the Darwin
network, the sampling error is estimated to be around
5%–7%, assuming the raincell area is around 100 km2

and typical spatial gradient values adapted from Sil-

verman et al. [1981; see their Eq. (2) with G 5 1.4 and
gauges per raincell, GPR of 20].

The radar–gauge data used in this study were obtained
during the summer rainy season in Darwin (December
1998–March 1999). Twelve convective rain events were
available for analysis. A variety of rain types are rep-
resented in this dataset, for example, continental and
oceanic squall lines, but no attempt was made here to
distinguish between rain types. As mentioned earlier,
the threshold value for DFdp of 28 was selected for ap-
plication of (5) and (9); otherwise, the rain rate was
based on Zh 5 305R1.36 obtained from disdrometer-mea-
sured drop size spectra. This DFdp threshold corresponds
to a rain-rate threshold of about 5 mm h21. On average,
the number of beams in the polar area where the DFdp

threshold was exceeded was around 70% of the total
number of beams for the entire event.

4. Radar–gauge comparisons

A typical time series of csu for one event (18 Feb-R
ruary 1999) is shown in Fig. 7 where the samples are
spaced 10 min apart. Standard error bars for the radar-
based estimate of areal rain rate are also shown. The
fluctuation of the error in the R(Kdp) estimator about the
true rain rate R is due to both the parameterization error
(ep) as well as the radar measurement error (em). The
parametric error is due to the form of the R–Kdp relation,
for example, R 5 , and is based on simulationsbcKdp

using the gamma drop size distribution model whose
parameters (Nw, Dm, m) are widely varied (see appen-
dix). Most of the error is due to ep (Scarchilli et al.
1993; Bringi and Chandrasekar 2001). The standard er-
ror due to parameterization s(ep) decreases with in-
creasing R and is around 35% for R around 20 mm h21.
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FIG. 8. Scatterplot of csu vs g from all 12 events. TheR R
normalized error is 37%, and the normalized bias is 5%.

FIG. 9. The storm total rain accumulation from radar vs gauge
network accumulation for 12 storm events. The normalized error is
14.1% and the normalized bias is 5.6% for the CSU estimator.

The measurement error component is estimated from
the appendix of RZF (it is negligible compared with the
parameterization error). The standard error bars in Fig.
7 also account for the fact that the radar estimates the
mean areal rain rate, that is, the variance of the param-
eterization error has been reduced by M where M is the
number of uncorrelated samples. Here, M is estimated
as (10/3)2 ø 11 [10 km 3 10 km is the area, while 3.0
km is a typical decorrelation distance for convective
rain cells in this region (Maki et al. 1999)].

Figure 8 shows csu versus g for all of the 12 events.R R
The normalized error (NE) is defined here as

N1
|R 2 R |O csu g1 2N i51

NE 5 (10a)
N1

RO g1 2N i51

and the normalized bias as

N1
R 2 RO csu g1 2N i51

NB 5 . (10b)
N1

RO g1 2N i51

For the data shown in Fig. 8, the NE is 37% while the
NB is 5%. Under ideal circumstances, the parameteri-
zation error from simulations is expected to be around
10% (assuming 11 physically uncorrelated samples in
the area estimate, i.e., 0.35/ ø 0.10). Hence, theÏ11
residual error component is around 27%. Note that these
error estimates correspond to areal rain rates over 10
km 3 10 km area at 2-min resolution. Possible sources
of error that can account for the 27% are (i) gauge
measurement error, (ii) sampling error of the gauge net-
work, and (iii) mismatched radar–gauge sample vol-

umes. Some of these errors will reduce when rain ac-
cumulations over the duration of the precipitation event
are compared. For example, the sampling error of the
gauge network for storm total rainfall is expected to be
around 5%–7% (Silverman et al. 1981).

Figure 9 compares the rain accumulation (based on
samples of radar and g spaced 10 min apart) for theR R
12 events; the normalized error is 14.1% and normalized
bias is 5.6% for the CSU estimator. Note that the gauge-
based accumulation is based on g sampled at the radarR
sampling interval of 10 min. Since the expected sam-
pling error of the gauge network itself is around 5%–
7%, the results of Fig. 8 show that the radar estimation
of storm total accumulation over the 10 km 3 10 km
area is very accurate using the csu algorithm. Com-R
parable values for the normalized error and normalized
bias when using the RZF algorithm ( rzf) are 21% andR
11.4%, respectively. Corresponding error and bias val-
ues for the Zh–R algorithm are 51% and 250.8%. Com-
paring the error/bias results for the csu and rzf algo-R R
rithms, it appears that the model approximations used
in deriving the csu algorithm [see (5) and Fig. 1] leadR
to less error than those used in deriving the rzf algo-R
rithm [see (9)], which was also demonstrated through
simulations (see Figs. 3 and 5). However, both algo-
rithms significantly outperform the disdrometer-based
Zh–R algorithm, which is seriously biased (underesti-
mate of 50%).

5. Summary and discussion

A new area rainfall algorithm [see (5)] is proposed
based on differential propagation phase. It is philo-
sophically somewhat different from the areal rainfall
algorithm proposed by Ryzhkov et al. (2000) in that a
linear relation between R and Kdp is assumed to be valid
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locally (R 5 cKdp) to arrive at (5) but the coefficient c
is selected based on a piecewise linear fit to the non-
linear R–Kdp relation. Disdrometer-measured drop size
distributions from an entire rainy season together with
scattering simulations are used to determine the piece-
wise linear fit (see Fig. 1) for the different Kdp ranges.
The c value used in the algorithm is based on the average
Kdp for the particular beam, where this average is simply
computed as [Fdp(r2) 2 Fdp(r1)]/2(r2 2 r1). In contrast
the areal rainfall algorithm of Ryzhkov et al. (2000)
assumes a nonlinear relation R 5 with Kdp constantbaKdp

for a particular beam to arrive at (9). The constant Kdp

assumption leads to uniform range weighting, which can
lead to error if the rain cell is not centered at the mid-
point of (r1, r2) (see Fig. 5). Model simulations with
six different assumed Kdp range profiles show that the
CSU algorithm in (5) appears to result in less error when
compared with the RZF algorithm in (9) when r2 2 r1

was fixed at 20 km (which is generally comparable with
the Darwin gauge network, see Fig. 6).

Disdrometer-based scattering simulations at C band
(frequency of 5.5 GHz) were used to determine the co-
efficient c of the piecewise linear fit, and the coefficient/
exponent of the nonlinear relation R 5 . It is knownbaKdp

that c and a depend on the assumed axis ratio versus
drop diameter relation. Here, the Andsager et al. (1999)
fit (which accounts for transverse drop oscillations) is
used for 1 # D # 4 mm, whereas the equilibrium model
of Beard and Chuang (1987) is used for D , 1 or D .
4 mm. The canting angle model is assumed to be Gauss-
ian with mean zero and standard deviation 108 (refer to
chapter 7 of Bringi and Chandrasekar 2001 for justifi-
cation of these values for tropical rainfall). The nonlin-
ear relation R 5 32.4 was obtained for use in (9),0.83Kdp

which is close to R 5 34.6 used by May et al. (1999)0.83Kdp

based on disdrometer-measured drop size distributions
from the Maritime Continental Thunderstorm Experi-
ment (MCTEX), which was conducted in the Tiwi is-
lands north of Darwin, and an empirical axis ratio versus
D relation (Keenan et al. 2001). Their empirical relation
was based on minimizing the bias error between R(Kdp)
and gauge data from MCTEX. The low value of nor-
malized bias (5%–6%) evident in the radar–gauge com-
parisons in Figs. 8 and 9 suggest that the axis ratio model
adapted herein and used in the algorithm (see piecewise
linear fit in Fig. 1) is valid for convective tropical rain
in the Darwin area, and generally consistent with Keen-
an et al. (2001).

Twelve storms in the Darwin area during the summer
season (December 1998–March 1999) were analyzed
using C-POL radar measurements and data from the
Darwin D-scale gauge network. While the primary al-
gorithm to be evaluated was (5), the RZF algorithm in
(9) as well as a Zh–R algorithm were used for compar-
ison. The coefficient/exponent of the Zh–R relation was
obtained from a nonlinear fit to disdrometer-measured
drop size distributions as Zh 5 305R1.36. The radar-based
rain accumulation values for the 12 storms when com-

pared against the gauge network values resulted in nor-
malized bias of 5.6%, 11.4%, and 250.8% for the CSU
algorithm, the RZF algorithm, and the Zh–R algorithm,
respectively, and corresponding normalized error [see
(10a)] of 14%, 21%, and 51%. Previous areal rain ac-
cumulation results by Ryzhkov et al. (2000) based on
20 Oklahoma storms using an S-band radar and a net-
work of 42 gauges and their algorithm in (9) gave a
normalized bias of 28.2% and fractional standard error
of 18.3%. May et al. (1999) used their R(Kdp) algorithm
(R 5 34.6 ) and C-POL radar data with a network0.83Kdp

of gauges during MCTEX (rainfall types similar to the
Darwin area), and in the four storm events analyzed,
the fractional standard error was 21% and normalized
bias around 14%. This latter study did not use the areal
rainfall algorithm, rather the R(Kdp) algorithm was used
in a conventional manner. In general terms, the current
results for storm total accumulation over an area are
consistent with the two earlier studies of Ryzhkov et al.
(2000) and May et al. (1999), that is, normalized error
(or, fractional standard error) in the range 15%–20%.
In contrast, Zh–R relations based on disdrometer data
from the region used here and in the May et al. (1999)
study gave corresponding normalized error (or, frac-
tional standard error) of around 50%.

Two major conclusions can be drawn from this paper.
First, among the two assumptions needed to derive an
areal rainfall estimator based on Fdp, that is, a piecewise
linear approximation to R–Kdp, which enables a proper
range-weighting versus a constant Kdp approximation
that enables use of a nonlinear R–Kdp relation but with
uniform range-weighting, it appears that the former ap-
proximation leads to smaller error as demonstrated by
the data. Second, the small bias (around 5%–6%) be-
tween the CSU areal rain-rate estimator and the gauge
data appears to validate the assumptions used herein for
the axis ratio model for tropical rain, in general agree-
ment with the empirical model proposed by Keenan et
al. (2001).

Acknowledgments. Three of the authors (VNB, GJH,
and VC) were supported by the NASA TRMM grant
NAG5-7717 and -7876. The authors acknowledge the
BMRC staff in Darwin, in particular Mr. Ken Glasson
and Mr. Christmas, for their dedicated operation of the
radar and the dense gauge network. Mr. Michael Whim-
pey of the BMRC provided valuable data processing
support.

APPENDIX

Simulations Using Disdrometer Data

This appendix describes the scattering simulations
based on measured drop size distributions that are used
to arrive at the piecewise linear R–Kdp fit in Fig. 1 [see,
also, chapter 7 of Bringi and Chandrasekar (2001)].

Drop size distributions (dsd) were measured with a



NOVEMBER 2001 1817B R I N G I E T A L .

Joss–Waldvogel disdrometer, which was located within
the Darwin gauge network shown in Fig. 6. Over 2000
2-min-averaged size distributions were available rep-
resenting nearly an entire season of rainfall from the
Darwin area. Each 2-min dsd was fitted to a gamma dsd
form as follows [other methods are given in Willis
(1984) and Ulbrich and Atlas (1998)]. The gamma dsd
may be expressed as (Willis 1984; Testud et al. 2000),

mD D
N(D) 5 N f (m) exp 2(4 1 m) , (A.1)w 1 2 [ ]D Dm m

where Nw is a generalized ‘‘intercept’’ parameter de-
fined as

4 34 10 W
21 23N 5 ; mm m , (A.2)w 41 2p Dm

with W the rainwater content (in g m23) and Dm the
mass-weighted mean diameter (in mm). Note that Nw is
the intercept parameter of an equivalent exponential dsd
(m 5 0 case), which has the same W and Dm as the
gamma dsd. The f (m) is defined as

41m6 (4 1 m)
f (m) 5 . (A.3)

4(4) G(4 1 m)

The form of the gamma dsd in (A.1) emphasizes two
features, that is, the normalizing of diameter by Dm and
the scaling of concentration by Nw. The fitting of a
measured dsd [Nmeas(D)] to the gamma form in (A.1)
follows the following simple steps.

1) Calculate W and Dm for the 2-min averaged measured
dsd, and, hence, Nw using (A.2),

2) Scale/normalize the measured dsd by constructing
Nmeas(x) 5 Nmeas(D/Dm)/Nw,

3) Find m by minimizing the following error function:

Error 5 min O
23#m#15 i

3 | log N (x )10 meas i

m2 log [ f (m)x exp{2(4 1 m)x }]|,10 i i

(A.4)

where xi 5 Di/Dm, and Di is the center diameter of
the disdrometer sizing bins.

The above fitting method tends to separate out the
‘‘shape’’ m of the gamma fit from the scaling/normal-
izing parameters Dm and Nw, which is philosophically
related to the method proposed by Sempere-Torres et
al. (1994).

For the Darwin measurements, a table of over 2000
triplets of (Nw, Dm, m) was constructed that represents
fits to each of the 2-min averaged measured dsds. For
each triplet (Nw, Dm, m), the still-air rain rate, and the
specific differential phase (at a frequency of 5.5 GHz)
are computed. The raindrops are assumed to be oblate

with axis ratio as given by Andsager et al. (1999) for
1 # D # 4 mm, and as given by Beard and Chuang
for D , 1 or D . 4 mm. The canting angle distribution
is assumed to be Gaussian with zero mean and standard
deviation 108. It is hypothesized that these assumptions
are representative of tropical rainfall (Bringi and Chan-
drasekar 2001). Size integration is performed up to Dmax

5 2.5 Dm. While it is recognized that the Joss disdro-
meter does not have sufficient sample volume to esti-
mate the concentration of the largest drops (D . 5 mm),
the proposed fitting method tends to compensate for this
in the sense that rain rate and Kdp are much less sensitive
to this problem (Zrnić et al. 2000) as compared to Zh

or Zdr. It is also recognized that at high rain rates (R .
50 mm h21 for the Darwin data) the Joss disdrometer
undercounts tiny drops, which tends to bias the m es-
timate too high. However, the impact on the piecewise
linear fit to R–Kdp shown in Fig. 1 is expected to be
minimal. A nonlinear fit to the R–Kdp data points results
in R 5 32.4 .0.83Kdp

Each data point in Fig. 1 corresponds to a specific
triplet (Nw, Dm, m). Further, the equivalent reflectivity
factor (Zh) is also computed and a Z–R relation is ob-
tained by a nonlinear fit (Zh 5 aRb) to the data resulting
in Zh 5 305R1.36.
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1990: Error structure of multiparameter radar and surface mea-
surements of rainfall. Part III: Specific differential phase. J. At-
mos. Oceanic Technol., 7, 621–629.

Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: Specific dif-
ferential phase shift estimation in the presence of non-uniform
rainfall medium along the path. J. Atmos. Oceanic Technol., 16,
1690–1697.

Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique
for the analysis of copolar differential phase and dual-frequency
radar measurements. J. Atmos. Oceanic Technol., 12, 643–648.

Joss, J., and A. Waldvogel, 1967: A raindrop spectrograph with au-
tomatic analysis. Pure Appl. Geophys., 68, 240–246.

Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, R. J. Keeler,
and J. Lutz, 1998: The BMRC/NCAR C-band polarimetric (C-
POL) radar system. J. Atmos. Oceanic Technol., 15, 871–886.
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