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Abstract.  This article presents a criterion for limiting source dimensions of the instantaneous 
point source model. The source dimensions are required for applying superposition of the 
point sources in space to represent the non-point sources. The criterion generates less than one 
percent error when compared to the existing finite source model. A comparison between the 
existing point and the finite source models is conducted. It is found that the finite source 
model does not give acceptable output at all times, if series distribution is used to compute the 
error function. The front and tail of the concentration breakthrough curve from the finite 
source model shows uncharacteristic output depending on the source dimension and the 
distance of the observation point. On the contrary, the point source model generates smooth 
breakthrough curves at all time. 

1. Introduction 
 
Analytical models for solute transport are very common in 

groundwater modeling. Analytical models are very simple to use and less 
likely to produce erroneous results when compared to the numerical models. 
Moreover, the analytical models are very useful for validation or calibration 
of numerical models (Leij et al. 1991; Park and Zhan 2001; Sim and 
Chrysikopolous 1998). A number of analytical models for point and non-
point sources are available at present. The analytical model for instantaneous 
point source in one-dimension is first presented by Crank (1956). Baetsle 
(1969) extended the model to three-dimensional dispersion. Later, Hunt 
(1978) and Sun (1996) derived the same analytical model (Baetsle 1969) 
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using different mathematical analyses. van Genuchten and Alves (1982) 
presented a number of analytical solutions of the one-dimensional 
convective-dispersive solute transport equation.  

Several researchers have published three-dimensional analytical 
models for finite or patch sources (Leij et al. 1991; Park and Zhan 2001; Sim 
and Chrysikopolous 1998; Cleary and Ungs 1978; Yeh 1981; Domenico 
1987; Domenico and Robbins 1985; Martin-Hayden and Robbins 1997; 
Neville 1994; and Wexler 1992). Leij et al. (1991) has presented analytical 
solutions, commercially available as 3DADE (Leij and Bradford 1994), for 
different shapes of source in a semi-infinite domain in the direction of 
groundwater flow and infinite domain in the other two directions. This 
implies that the sources in the horizontal plane should be placed in the middle 
of the aquifer so that the lateral and the vertical spreading cannot reach the 
boundaries. Neville (1994), Cleary and Ungs (1988), Domenico (1987), 
Domenico and Robbins (1985), Martin-Hayden and Robbins (1997), and 
Wexler (1992) models are limited to constant or temporarily continuous 
patch sources. Park and Zhan (2001), and Sim and Chrysikopolous (1998), 
and Yeh (1981) considered a time dependent finite concentration source in 
aquifers with finite and infinite thickness. Although a number of analytical 
models are available, evaluation of solute transport from transient finite 
sources is generally conducted from the numerical models, which are widely 
available at present (Leij et al. 1991). Numerical models are preferred partly 
because the analytical models contain complex mathematical functions and 
often require numerical integration of the temporal term to represent 
continuous sources. The other advantages of the numerical models are 
obviously the flexibility in handling complex geology and hydraulic 
boundaries. However, numerical modeling warrants technical skills in setting 
up the boundaries of the model as well as in calibration of the model, and 
inefficient use of the numerical models can produce largely erroneous results. 
Therefore, it is always useful to use analytical models for homogeneous 
geology and simple hydraulic boundaries. In addition, analytical models are 
useful as a preliminary site assessment tool. 

One possible way to make the analytical models for finite sources 
more useful is by applying superposition of a point source model, which 
contains simple mathematical functions. When the advection-dispersion 
solute transport equation is linear (typically assumed for many applications), 
superposition of the point sources in space can be applied to represent finite 
sources (Sun 1996). With the advent of computer technology, a simple code 
for superposition in time and in space can be easily developed. The analytical 
model for instantaneous point source can be superposed in time and in space 
to get downgradient concentration from a finite source with transient releases. 
However, to apply superposition in space, the number of point sources to be 
superposed to represent the finite source, and the dimensions of each point 
source should be defined. The dimensions of each point source are critical as 
larger dimensions can result in erroneous estimation from the analytical point 
source model. One can possibly divide the finite source into a large number 
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of point sources with very small dimensions to minimize the computational 
error. However, there will always be questions that what the limiting source 
dimension of the each point source is, and how the superposition can be 
optimized for minimum number of point sources. To this end, the primary 
objective of this study is to develop a criterion for the source dimensions of 
the point source model so that it gives equivalent output to the existing finite 
source models. In the context, a comparison between the point and the finite 
source models is also presented in this study. 

 

2. Analytical Models for Instantaneous Point Sources 
 

  The advection-dispersion equation (ADE) for solute transport through 
saturated soil is given by Equation 1. Equation 1 is derived from conservation 
of mass in an infinitesimal elementary volume of the porous media. The 
equation is based on the assumptions that the porous media is homogeneous 
and isotropic, the flow is one-dimensional, and dispersion is three-
dimensional. Also, the solute is miscible, non-degradable, non-reactive, and 
non-adsorptive to the media.  
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where, C is the solute concentration, vx is the average fluid velocities in the x 
direction, t is any given time, and Dx, Dy, Dz are the hydrodynamic 
dispersions in the x, y and z directions, respectively.  
 
  Solution (Equation 2) of the ADE (Equation 1) for instantaneous 
injection of solute mass at the origin as point source was first derived by 
Baetsle (1969). Baetsle (1969) extended Crank�s (1956) solution for one-
dimensional dispersion to represent three-dimensional dispersion (Equation 
4.2). Hunt (1978) and Sun (1996) solved the ADE analytically and gave the 
same solution (Equation 2). Crank (1956), Hunt (1978), and Sun (1996) used 
semi-infinite boundary towards the direction of flow and infinite boundary in 
the lateral and in the vertical directions. 
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where, M is the mass of solute injected instantaneously at the origin at t = 0, 
and n is the porosity of the medium. 
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Crank (1956) used the generalized probability function to define 
concentration in one dimensional, non-advective flow domain (i.e., vx = Dy = 
Dz = 0 in Equation 1) as 

 

t)x/4Dxexp(

t

At)C(x, 2

2
1 −=        (3) 

 
where, A is an arbitrary constant. 
 
 By assuming the total amount of mass (M) diffusing in a cylinder of 
infinite length with unit cross-section, M is given by 
 

∫= ∞
∞− CdxM/n         (4) 

 
Solving Equations 3 and 4, one can get the solution for C as 
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Baetsle (1969) extended Equation 5 to derive Equation 2 by 

considering a three-dimensional dispersive field in a moving coordinate 
system, moving at velocity vx towards the direction of flow. Hunt (1978) used 
the solution of analogous equations in heat conduction, derived by Turner 
(1972), to derive Equation 2. Sun (1996) used a completely analytical 
concept to solve the ADE (Equation 1). Sun (1996) assumed an infinitesimal 
spherical point mass (Equation 6) to solve the ADE in spherical coordinate 
system (Equation 7). Sun (1996) then converted the solution (Equation 7) to 
Cartesian coordinate system with the X-axis moving at velocity vx to derive 
Equation 2.  
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  Solution of the ADE (Equation 1) for instantaneous cubic (finite) 
source of solute mass, with dimension equal to �LS� at time zero, was first 
derived by Hunt (1978) (Equation 8). Hunt (1978) integrated the point source 
model (Equation 2) over the area of the finite source dimensions and applied 
Fourier transformation to derive Equation 8. Equation 8 gives concentration 
at any downgradient point (x,y,z) from the center of the source (0, 0, 0) at any 
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given time �t�. Later, Domenico and Robbins (1985) presented Hunt�s (1978) 
equation for a parallelepiped shape source. The equation presented by 
Domenico and Robbins (1985) for instantaneous parallelepiped shape source 
incorrectly represented the parentheses before the source dimensions. The 
corrected form of the solution for a parallelepiped shape source is presented 
in Equation 10.  
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where, �erf� represents the error function. The series distribution of the error 
function is given by, 
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where, XS, YS, and ZS represent source dimensions along x, y, and z axis, 
respectively. Please note that the solute concentration at the source is equal to 
M/(nXSYSZS). 
 

3. Comparison of the Instantaneous Point and Finite Source 
Models 

 
In order to compare the instantaneous point source and the finite 

source models, both models are run for the same datasets. A software 
program is developed to run the models and generate breakthrough curves at 
any given observation point. Four longitudinal source dimensions (1.5, 15, 
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30, and 210 m) are used to compare the models for different source sizes. The 
lateral and the vertical source dimensions are considered to be 1.5 and 0.3 m, 
respectively. It should be noted that for all source dimensions, the total mass 
input (M) is kept constant at 100 kg and the source concentrations (C0) is 
changed proportionally. Other input data used in the simulation are 
groundwater velocity (vx) equal to 0.36 m day-1, and longitudinal, lateral, and 
vertical dispersivities equal to 4.5, 0.45, and 0.045 m, respectively. Molecular 
diffusion is assumed to be negligible, as the common value from literature 
[1.0E-09 m2 day-1 (Cussler 1997; Fetter 1999)] is about 200 times smaller 
than the vertical dispersion (αzvx) for the selected inputs.  

Figure 1 and 2 show the breakthrough curves generated from both the 
point source (PS) and the finite source (FS) models. The breakthrough curves 
are generated for two downgradient observation points at 120 m (Figure 1) 
and 300 m (Figure 2) away from the center of the source along the centerline 
of the plume. It is evident from both figures that the point source model 
generates smooth breakthrough curve, while the breakthrough curves from 
the finite source model are not smooth at all time. Uncharacteristic output is 
found at the front and the tail of the breakthrough curves from the finite 
source model, while almost identical outputs are found from both models at 
the middle section of the breakthrough curves. The uncharacteristic output for 
the FS model results due to the use of a truncated series distribution for the 
error function (Equation 9). Figure 3 illustrates the characteristics of the error 
function computed from the series distribution with odd (5 terms) and even (6 
terms) number of terms. It is found that a truncated series distribution is not 
good when the independent variable (x) is greater than 1.2 i.e., when the error 
function is greater than 0.91. The truncated series distribution shows sharp 
drop from the actual value of the error function (�erf-MS Excel�) when even 
number of terms are used, while sharp rise is observed when odd number of 
terms are used (see Figure 3). The FS model is very sensitive to the 
computational method of the error function, as it uses subtraction of the error 
functions for each dimension (see Equation 10). When the source dimensions 
are small, the calculation of the error function needs to be highly accurate to 
get acceptable output from the FS model, as the source dimensions cause the 
difference in the error functions for each dimension (see Equation 10).  This 
is also evident from Figures 1 and 2, where the largest source dimension (XS 
= 210 m) does not show any uncharacteristic output, while the others do.  

Figures 1 and 2 are generated for error functions computed from odd 
number of terms (5 terms) in the series distribution. For even number of 
terms (6 terms), the first dataset of Figure 1 is reproduced in Figure 4. It is 
found that for even number of terms the front and tail of the breakthrough 
curve show unrealistic concentrations that extend in the negative direction, 
while the middle section matches well with the point source model (see 
Figure 4). If the negative concentrations resulting from the error function 
with even number of terms are masked to zero concentration by the computer 
code, the break through curve is more acceptable than that for odd number of 
terms in the series distribution (see Figure 5). Therefore, it is suggested to use 
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even number of terms in the series distribution of error function and mask the 
output negative concentrations to zero. On the other hand, an optimized code 
for the error function similar to MS-Excel would obviously be ideal for the 
finite source model. However, such optimized code for the error function 
may not be readily available. 

It can be concluded from the observations that the instantaneous finite 
source model does not give acceptable output at all times (uncharacteristic 
output at the front and the tail of the breakthrough curves), if a truncated 
series distribution is used to compute the error function. The finite source 
model gives reasonable output at the front and the tail of the break through 
curve, if an even number of terms is used in the series distribution of the error 
function and the negative concentrations, if any, are masked to a zero value. 
In comparison to the finite source model, the point source model, which is 
more popular than the finite source model, generates smooth or stable 
breakthrough curve at all given times. Moreover, it requires much simpler 
mathematical function than the finite source model, and could be easily 
converted into a computer code. However, to achieve acceptable output from 
the point source model, the source dimensions need to be selected carefully 
so that the middle section of the breakthrough curve matches to that of the 
finite source model. The criterion for the point and the finite source models to 
generate equivalent concentration are derived in the following section. 
 

4. Limiting Source Dimensions for Analytical Point Source 
Model 

 
For the analytical point source and the finite source models to present 

equivalent concentration at the center of the plume i.e., at (vxt, 0,0), 
Equations 2 and 10 should be equal. Equation 11 represents the condition 
when the point source and the finite source models are equivalent at the 
center of the plume. Considering the solution technique used by Baetsle 
(1969), who extended Crank�s (1956) solution for one-dimensional model 
(Equation 5) into three-dimensions, Equation 11 can be rewritten in three 
equations (Equations 12, 13, and 14) representing probability density 
functions contributed from each dimension. 
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 Replacing the error function by its series distribution (Equation 9), 
Equation 11 can be rewritten as, 
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It is evident from Equation 15 that the left side of the equation is 

exactly equal to the first term of the right side. Therefore, it can be concluded 
that the analytical point source model is equivalent to the analytical finite 
source model when the error function in the finite source model is equal to 
the linear term of its series distribution i.e., when, 
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and similarly when  
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 Graphical representation of the error function (Figure 6) shows that 
the error function is linearly proportional to the independent variable when 
the latter is very small. It is evident that the point source model follows the 
straight line in Figure 6, while the finite source model follows the non-linear 
line (i.e., the error function). Therefore, the point source and the finite source 
model should generate equivalent result as long as the error function in the 
finite source model varies linearly. From trial and error, it is found that 
Equation 16 to 18 satisfy with less than 1 percent error when, 
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Equation 19 can be used to find the dimension of a source (XS, YS, 
and ZS) for the analytical point source model. Since the comparison is at the 
center of the plume, the variable �t� can be replaced by �x/vx� in Equation 19.  
Since the error function is about 1 percent less than the independent variable 
when the latter is equal to 0.17, each source dimension obtained from 
Equation 19 produces 1 percent error for the point source model. Therefore, 
the total error resulted from the point source model with source dimensions 
obtained from Equation 19 is about 3 percent [= (1.013 �1)×100]. In order to 
reduce the total error to 1 percent, the error produced by each source 
dimension should be 0.33 percent [= (1.011/3 �1)×100]; For the error function 
to produce 0.33 percent smaller value than the independent variable, the latter 
has to be 0.10. Therefore, for about 1 percent total error from the point source 
model, the source dimensions are given by Equation 20. 
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oror    (20) 

 
 
Equation 20 is verified by comparing the point and the finite source 

model outputs for the source dimensions from that equation. For an 
observation point 120 m away from the center of the source, the limiting 
source dimensions from Equation 20 are 9.44, 2.98, and 0.944 m along x, y, 
and z directions, respectively. Keeping all other inputs equal to those stated 
earlier, the simulation shows that the finite source model gives a maximum 
concentration of 19.36 mg/L while, the same for the point source model is 
19.56 mg/L, resulting about 1 percent error in calculating the maximum 
concentration. 
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5. Conclusion 
 
The primary objective of this study is to develop a criterion for the 

source dimensions of the point source model so that it gives equivalent output 
to the existing finite source models. Finite source dimensions are required for 
applying superposition (in space) of the point source model to represent non-
point sources. In the process of developing the criterion for source 
dimensions, a comparison between the point and the finite source models is 
conducted. It is found that the instantaneous finite source model does not give 
acceptable output at all times if series distribution is used to compute the 
error function. The front and tail of the concentration breakthrough curves 
from the finite source model show uncharacteristic output, depending on the 
representation of the error function and the source dimension and the distance 
of the observation point. The finite source model gives reasonably acceptable 
output at the front and the tail of the break through curve, if an even number 
of terms are used in the series distribution of the error function and the 
negative concentrations, if any, are masked to a zero value.  In comparison to 
the finite source model, the point source model, which is more popular than 
the finite source model (with series distribution of the error function), 
generates smooth or stable breakthrough curve at all given times. 
Superposition of the point source model with acceptable source dimensions is 
computationally simpler than superposing the finite source model, since the 
point source model does not rely on an error function that, lacking optimized 
libraries, must be represented with a truncated Taylor series; thus, for 
convenient analyses, point source models can be easily converted into a 
computer code. A criterion for the source dimensions of the point source 
model is developed (Equation 19) by comparing the finite source model by 
Domenico and Robbins (1985) with the point source model by Baetsle 
(1969). The criterion (Equation 19) generates less than one percent error 
when compared to the existing finite source model. 
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Figure 1. Breakthrough curves for point (PS) and finite (FS) source 
models at x = 120 m
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Figure 2. Breakthrough curves for point (PS) and finite (FS) 
source models at x = 300 m
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Figure 4. Breakthough curves for point and finite source (Xs = 1.5 m) 
models at x = 120 m
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Figure 3. Chracteristics of the error function computed from the series 
ditribution
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Figure 6. Graphical representation of the error function
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Figure 5. Breakthough curves at x = 120 m for finite source (Xs = 1.5 
m) with even and odd number of terms in the series distribution of the 

error function 
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