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ABSTRACT 

Structural analysis and mathematical description of hydrologic time series arc based on a set of well 
defined hypotheses, with the assumption that a development cannot be better than hypotheses underlying it. 
Techniques are presented o n how to infer the existence of periodic deterministic component parameters in time 
series. The unavailability of exact inference techniques is replaced by approximations, whenever the complexity 
of hydrologic time series does not justify the use of existing statistical infere nce techniques. Once periodicities 
are inferred, Fourier analysis is used to mathematically describe periodicities in parameters by a minimum 
number of low frequency harmonics and their estimated coefficients. 

Inferred dependence models for the stationary stochastic components of a given order of stationarity, 
after all periodicities in parameters are removed , arc basically of the autoregressive linear type. The assumption 
is that the autoregressive coefficients may be both periodic and nonperiodic. Several misinterpretations of 
autoregressive Unear models are discussed. These misinterpretations are due to doubts o ften advanced by some 
superficial arguments on the applicability of these models in hydrology. 

The frequency distribution curve of the independent stochastic stationary component, derived from the 
inferred dependence model, is approximated by best fit as one among various probability d istribution funct ions 
studied. They are more or less simple. The small interval time series (say 1-day, 2-<lay, 3-day, and 7-day discrete 
time series) require less simple pro bability distribution functions to fit these frequency curves, while for the large 
interval time series (say 15-day, monthly, or bimonthly time series) simple probability functions produce good 
fits. 

Biases in time series which should not be reproduced or perpetuated by structural analysis, mathematical 
description and generation of new samples, are outlined and discussed. 
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Chapter 1 

INTRODUCTION 

To place this study in context with the writer's 
continuous efforts regarding the structural analysis of 
hydrologic time series, the problems related to this 
analysis and the methods of attacking them are firl>t 
defined and outlined. Basic concepts are sketched to 
provide the reader insight into the philosophy of the 
approach used in this study. 

1.1 Previous Work 

It has been shown in previous Hydrology Papers 
[1 , 2, 3, 4] **and in an article [5] that hydrologic 
time series of precipitation and runoff have definite 
structural patterns. To define the various components 
of a hydrologic time series, the general results of 
these patterns are briefly summarized. 

Sequences of annual precipitation, annual 
effective precipitation (precipitation minus evapora­
tion) and natural annual runoff from river basins are 
approximately stationary time series, or with series 
properties independent of the absolute time. Series of 
annual precipitation are nearly independent time 
series, and the series of annual effective precipitation 
and annual runoff are either independent or 
dependent stochastic variables. In this latter case the 
variables are usually of a simple linear dependence, 
approximately of the first- and the second-order 
autoregressive (or Markov) linear models [ 1 ,2]. 

Series of monthly precipitation, monthly 
effective precipitation, monthly runoff, as well as 
monthly series of many other hydrologic variables, 
have periodic components of 12 months in both 
monthly means and monthly standard deviations. 
When these periodic components are removed from a 
monthly series, the remaining part or component may 
be considered approximately an independent 
stationary stochastic process for monthly precipita­
tion, and approximately a linearly dependent 
stationary stochastic process for monthly runoff [3]. 
Similar patterns appear in series of daily river flows 
(4, 5]. The autocovariances (or a.utocorrelation coef­
ficients) as well as the higher-order parameters may 
also be periodic for some time series of hydrologic 
random variables. Runoff series (say daily flow series) 

**Reference numbers in the text refer to the 
references at the end of the paper. 
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are among the most complex geophysical time 
processes, however. 

1.2 Objective of this Study 

The objective of this study is to present a 
detailed analysis of the structure of hydrologic time 
series beyond the previous work. With this in mind 
inquires into the structure of hydrologic time series 
are made in several ways: (I) separation of a discrete 
time series (of time intervals less than a year) into 
periodic and stochastic components; (2) investigation 
of whether various parameters of time series are 
p eriodic or nonperiodic; (3) determination of 
significant harmonics (amplitudes are significantly 
greater than for nonperiodic series) in the periodic 
parameters; (4) analysis of whether stochastic com­
ponents are dependent or independent; (5) fitting of 
adequate mathematical dependence models and the 
computation of independent stochastic variables from 
dependent stochastic components; (6) fitting 
probability distribution functions to independent 
stochastic components and selecting the function of 
best fit; (7) derivation of the structure as a final 
mathematical model of a time series; (8) description 
of various biases in time series that influence both the 
structural analysis and the final mathematical models; 
(9) selection of statistical inference techniques for an 
objective but practical structural analysis of time 
series; (10) eventual physical explanation of various 
structural properties of hydrologic time series; (ll) 
separation of mathematical models into deterministic 
and stochastic parts, with the parameters of 
deterministic components subject to sampling errors; 
(12) computation of explained variances of time 
series by various components, and similar inquiries. 

1.3 Significance of the Analysis 

Two basic results are significant from this 
study: (I) an improved understanding and mathe­
matical description of hydrologic stochastic processes 
by a better analysis of time series structure, and (2) 
developments of an improved methodology for the 
generation of samples of hydrologic time series by the 
experimental statistical (the Monte Carlo) method. 



To explore these results, an understanding of 
the composition of the structure of a hydrologic time 
series is needed. This composition should result from 
the analysis of the structure of any hydrologic time 
series. First, there may be either a t rend or a long· 
term persistent movement appearing as a smooth 
broad motion extending over years, and/or as 
slippages (positive and negative jumps) and other 
transient deterministic components created either by 
nonhomogeneity and inconsistency in data or by 
sampling variations. Second, a periodic movement 
with a basic cycle of the year is nearly always present 
in time series of daily and monthly values. Third, 
when the deterministic parts in the form of trends, 
slippages, and periodic components in statistical 
parameters are removed from a time series by using 
the algebraic composition of its structure, only the 
stochastic component remains, usually as a stationary 
process. Thus, to reach the ultimate in analysis of 
time series structure, its decomposition into com· 
ponents is necessary. Because a time series may be 
represented by an algebraic equation between various 
components does not mean that these components 
may be used as separat e series for the solution of 
various water resource problems, though in some 
cases this approach may be feasible. 

Conside~ing various components as being 
produced by unrelated causative factors may lead to 
wrong conclusions. It is necessary to remember that 
the worthwhile objective of a detailed analysis of a 
hydrologic stochastic process is an explanation of the 
time series properties by physical causative factors. 
To study the potential physical causative factors of a 
component separately, it must be isolated. In 
periodic-stochastic processes this is done by sepa· 
rating the deterministic processes from the stochastic 
process. In other words, deterministic components 
should be identified, proven, and separated from the 
remaining part of the series, thereby isolating the 
stochastic component. 

This analysis of the structure of a hydrologic 
series and the physical exp lanation for its 
components may be compared, only along general 
lines, to the analysis of a communication time series. 
The signal components of a communication time 
series are equivalent to deterministic (periodic, tran­
sient) components of hydrologic time series. Its noise 
(o r stochasticity) is comparable to the stochastic 
component of hydrologic series. The difference is 
that physical description and explanation of signal 
and noise components, and their connection, is often 
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much simpler in communi~ations engineering than in 
hydrology; the components of hydrologic series are 
still far from being well understood particularly the 
interaction between periodic and stochastic com· 
ponents. Although periodicities are explained by 
astronomic cycles, and consequently by the 
periodicity in the energy supply from the sun over 
various areas of the earth's surface, and further inter· 
actions and responses of various earth 's environments, 
the complexity of periodic components needs a much 
better physical analysis than is presently available. 
Similarly, though the stochastic component may be 
explained by various random processes in the air, over 
oceans and at the continental surfaces, that is over 
various geophysical environments, many more efforts 
are needed to improve its physical understanding, 
explanation and description. Analysis of the structure 
of hydrologic time series is considered here as a 
necessa.ry initial step for a comprehensive physical 
ex planation of composition of time and space 
hydrologic stochastic processes. 

1.4 Physical Background of Hydrologic 
St<.>chastic Processes 

Basic characteristics of hydrologic time series, 
such as eventual long-term trends and other per· 
sistencies, the periodicities of the year and of the day, 
and the randomness and time dependence of 
stochastic var iations, may b e physically or 
statistically explained in the following ways. 

(a) Long-range trends and other eventual long· 
range persistencies. Inconsistency (systematic errors) 
and nonhomogeneity (changes in nature by man· 
made or by natural processes) are mainly responsible 
for the long· range trends or sudden changes. They 
mus. be identified and removed if they are not 
expected either. to continue or to continue in a dif· 
ferent manner.· However, causative factors produced 
by the historical study of operating gaging stations 
and environmental changes in river basins should 
support the statistical detection of trends and positive 
and negative jumps. 

Trends and cyclicity are often the results of 
sampling fluctuations for short time series. When 
periodicity is only a result of sampling variation, it 
is called in this paper pseudo o r sampling cyclicity. 
The main problem is to determine fo r t hese trends 
and pseudo-cycles not to be statistically significant. 
For example, a series of N years is divided into four 



subseries each of the size N/4. The four means of 
these subseries are ranked as X I = X + e 1' x2 = X + 
e2,x3=x+e3 and x4=x+e4, with eJ<e2< 
0 < e3 < e4 , and x is the mean of N values. 
These four independent values can be permutated in 
24 sequences. The probability to obtain the upward 
trend of these means, x

1 
~ x2·~x3 ~x4 , is 1/24, 

and the downward trend, x4 ~ x3 ~ x2 ~ xl ' is 
also 1/24. To have a pseudo-cycle, like XI ~ x3 -+ 

x2 -+ X4, or x2 -+ xl ~ x4 ~ x3 ' or similar com­
binations of small-large-small-large, there are four 
combinations with the total probability of 1/6. 
Therefore, to show a weak long-range trend or 
pseudo-cyclicity only by the sampling variation the 
probability is 5/12, if four subseries are used as an 
example. 

These sampling fluctuations in small samples 
should not be overlooked in any study of the struc­
ture of hydrologic time series. Regional studies 
should decide whether there is any significant trend 
or significant pseudo-cyclicity to be assigned to a 
particular series in the area. However, the set of series 
in a region for this investigation should not come 
from stations too near each other, because of the high 
correlation among hydrologic series of neighboring 
stations. 

In conclusion, the apparent long-range trends 
and pseudo-cyclicity should not be considered as a 
permanent property of any series of annual values of 
a hydrologic variable (after the known non­
homogeneity and inconsistency are removed), if it is 
not confrrmed by regional studies. If a regional study 
shows that the phenomenon follows a stationary 
process of annual values, the sampling fluctuation 
with trends and pseudo-cyclicity at some stations 
inside this region should not be considered as 
significant, and should not be perpetuated in 
structural analysis and mathematical description of 
time series, nor should it be perpetuated in generating 
new samples by the Monte Carlo method. 

(b) Sources of within-the-year periodicity, 
irandomness and time dependence. Astronomic cycles 
cause periodicity ("signals" ) in various hydrologic 
time series. Turbulence, large-scale vorticities, heat 
transfer, and similar sources of randomness of fluid 
mechanics, air opacity for radiation waves, 
thermodynamic and other processes, are responsible 
for randomness or "noise" in these series. Storage of 
various quantitites in hydrologic environments and 
the resulting smoothing effects are factors that 
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attenuate the periodic process and create or increase 
the time dependence in stochastic variation. Inputs to 
hydrologic environments are mainly a composition of 
periodic and random parts which often mutually 
interact. These environments respond in three ways: 
(1) by smoothing or magnifying the inputs; (2) by 
adding, amplifying, or dampening the periodicity if 
the environments have some periodic aspects in their 
responses, and (3) by adding or modifying ran­
domness due to various factors in the environment 
which change and/or react with chance elements in 
them. In summary, the analysis of hydrologic time 
series should show components and their properties 
as described. 

The basic approach in this investigation is the 
assumption that periodic components are deter­
ministic properties of various time series parameters. 
Further, a stationary stochastic process is superposed 
on them in a given manner and is described by 
algebraic equations of time series composition. There­
fore, hydrologic time series are nonstationary 
processes. By the described fundamental assumptions 
a nonstationary process can be decomposed into 
deterministic components and a stationary stochastic 
process. This approach requires analysis of periodicity 
in as many parameters as necessary to obtain a given 
order of stationarity of the stochastic component. 

Experience indicates periodicit y components 
are mainly deterministic processes. It is difficult to 
fmd physical factors in various hydrologic environ­
ments that would change the basic astronomic 
periodicities. These environments can modify the 
amplitudes and cause the phases of various sub­
harmonics of the basic periodicity to change. If this 
can not be accepted in reality, the structural analysis 
of hydrologic time series can not use all the 
advantages of mathematical techniques developed for 
stationary processes, so new techniques must be 
developed for hydrologic processes based exclusively 
on the nonstationarity of these processes. Many 
present-day approaches in hydrology for the analysis 
of time series and the generation of new samples are 
based on a nonstationary approach to the treatment 
of stochastic aspects of these series. 

1.5 Definition of the Independent Stochastic 
Component of Discrete Hydrologic Time Series 

If mr and sr are designated as monthly or 
daily means, and monthly or daily standard 
deviations, respectively, (or for any other tim·e 



interval in which a year is divided), with r de­
signating the discrete positions inside the year, then 
the standardization of a variable xi gives 

x. - m 
c ::. I T 
~i s 

T 

(1.1) 

in which xi are discrete values of a series and e. is 
the new reduced variable which may or may not be 
the first approximation of the stationary stochastic 
component, independent or dependent. Further 
analysis may show periodicities in other properties, 
such as in the autocorrelation coefficients of 
the ei series, in the higher-order moments and part­
icularly in the skewness and the excess coefficients of 
the ei distribution at each position T (say, in each 
of the 12 months, or in each of the 365 days). These 
periodicities can be also removed by appro priate 
mathematical models to single out the stationary 
stochastic component of a series. 

Stationary stochastic components often come 
out to be approximately linearly dependent, with 
mathematical autoregressive dependence models such 
as 

(1.2) 

or 

(1.3) 

or by the higher-order linear autoregressive models. 
Equations 1.2 and 1.3 represent the two simplest 
autoregressive linear models, of the first-order and the 
second-order, respectively. The estimate of p in 
Equation 1.2 is usually by r 

1 
, the fust serial 

1
cor­

relation coefficient of the sample, and the estimate 
of a 

1 
and a

2 
in Equation 1.3 is usually 

by a 
1 

and a
2 

of the sample, which depend 
on r 

1 
and r

2 
(the first and the second serial cor­

relation coefficients of the sam ple), 
though r 

1
, or r 

1 
and r 

2 
are not the unbiased 

estimates of p., or p
1 

and p . Then by using 
Equations 1.2 and 1.3 the ind~pendent stationary 
stochastic component can be determined either by 

~ = €i - r 1 €H 

i Jl7 
I 

(1.4) 
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or by 

(1.5) 

for Equations 1.~ and 1.3 respectively, and similarly 
for the higher-order linear models. If parameters that 
are functions of the higher-order moments are shown 
to be periodic, these periodicities can be similarly 
mathematically described and removed. 

The independent stochastic component, de­
signated in this text as the ~- random variable and 
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assumed to be identically distributed at 
all T positions of the period w, should be as nearly 
stationary and independent time process as the 
analysis of available data and statistical inference 
permit or justify. Tilis definition of an independent 
stochastic component is used throughout the 
following text. 

1.6 Time Ser:ies Measures 

Experience shows that many hydrologic time 
processes follow the astronomic periodicities of the 
day and the year. When these variables are integrated 
over 24 hours as the average or total daily values, the 
cycle of the day is no longer present in the discrete 
series of daily values. Similarly, an integration of the 
continuous process over 365 days, or a summation of 
discrete values of a series from 1 to w, where w is 
the number of values in any year of this discrete pro­
cess resulting in average or total annual values, the 
cycle of the year is no longer present in the discrete 
series of annual values. 

For a continuous time series, x1 , a time 
interval, At, is selected to sum or average the pro­
cess inside the consecutive and non-overlapping 
sequence of these intervals. This procedure creates a 
new discrete series with At defined here as the time 
series m easu re. Usually, in hydrology, At are 
multiples of either hour, day or month, with the 
intervals themselves of the hour, the day, the month, 
and the year included. For a majority of hydrologic 
time series, hours and fractions or multiples of hours 
are used to derive a new series when the short time 
series measures are relevant. When the opposite is the 
case, the day or month or their multiples are used. 
Many hydrologic services publish data as hourly, 
daily, monthly and annual series. Further analysis is 
mainly concerned with time series measures of the 
day and multiples of the day, and the month, though 



derivations are valid for any .t.t. For this study only 
those values of .t.t are relevant that avoid the daily 
periodicity, (.t.t ~ I day), but keep the annual 
periodicity, or 1 day < .!lt < one year, with .t.t a 
fraction of the year, so that this annual periodicity 
remains in the new discrete time series. Daily and 
monthly series are often taken here as the two 
examples of the .t.t selection. The values of .t.t of 
1-day, 2-day, 3-day, 7-day, 13-day, 14-day, IS-day, 
1-month, 2-month, 3-month, 6-month, and similar 
interval lengths, by which a year can be divided into 
approximately w equal intervals, fit the patterns to 
be investigated in this paper. If hourly values are 
studied, or values of intervals that are fractions of an 
hour or multiples of an hour but fractions of the day, 
then the two periodicities of the day and the year 
would show in the discrete series for many hydrologic 
variables. The methodology to be outlined in the sub­
sequent text can be applied to any time measure of 
similar properties. 

If the annual cycle is denoted by T (the year), 
then w = T/.!lt is the number of discrete intervals, 
or there are w discrete values x. of the random 
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variable within any year. The sequence of these values 
are denoted by 7, with 7 = 1, 2, . .. , w. For 
monthly values w = 12, for weekly val­
ues w = 52, and for the daily values w = 365. 

1.7 Condensation of Hydrologic Information 

Information from hydrologic observed data can 
be presented as tables, graphs, and mathematical 
models. Usually the best presentation is as condensed 
mathematical models. The information in a sample of 
100 years of observations of monthly precipitation or 
monthly runoff, or daily discharge and intermittent 
precipitation events, or of any other hydrologic 
variable, may be condensed into a few mathematical 
models containing the necessary estimation of 
parameters. Basically, the following mathematical 
models are appropriate. 

(a) Algebraic structural models. These describe 
the connection between the periodic-deterministic 
and the stochastic components. The simplest example 
is given by Equation 1.1. Sometimes complex rather 
than simple models are likely to fit these connections 
in various practical cases. 

(b) Models for periodicities. These describe 
various periodic-deterministic components. Primarily. 
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they are sets of trigonometric functions in the 
Fourier analysis of periodic components. The com­
plete description and removal of periodic com­
ponents should reduce the series to stationary sto­
chastic components, provided they do not contain 
trends and jumps. 

(c) Models of dependence of stationary sto­
chastic components. These models are a further 

description of the time series structure. The 
independent stationary stochastic variable should be 
well defined and identified by these dependence 
models. These dependence mathematical models are 
deterministic functions relating the random variables. 

(d) Models of univariate probability distribu­
tion functions. These are descriptive mathematical 
models of the distribution of independent stationary 
stochastic components, or of independent random 
components identically distributed over 
all 7 positions inside the period w. 

As an example, in the simplest form, the 
assumption is made that Equation 1.1 describes the 
first relation between the deterministic compo­
nents m and s , and the stochastic compo-

' T T 
nent, e .. A further improvement may be made by 
using tbe periodic functions JJ.

7 
and a 

7 
as fitted 

to m and s values, of the periodic movements in 
7 T 

the mean and standard deviation; if they are propor-
tional then ., = a /JJ. is a constant to be 

' ' 17 7 7 
estimated by the constant coefficient of variation, 
C . If m follows a simple periodic movement and 

V T 
can be described by m harmonics in the Fourier 
series analysis, then 2m+ 1 is the number of 
parameters to be estimated, two for each harmonic, 
and the general mean, J.l.x estimated by the sample 
mean m . If this is the case, Equation 1.1 becomes 

' X 

It has now one additional parameter, 11 x, to be 
estimated by Cv' for the periodicity in s

7
• Assume 

further that .e. is a stationary variable and follows 
1 

the second-order linear autoregressive model of 
Equation 1.3, as the third equation. It adds another 
two parameters, a 1 and a 2 , to be estimated by the 
sample statistics, a 

1 
and a2 . If ~i of Equation 1.5 

is identically distributed over all 7 (12 months, or 
365 days) and if it follows the log-normal probability 

distribution with three parameters f.J.n, an, and 
"' (to be estimated by the mean of logarithms mn, 



the standard deviation of logarithms ~ , and the low­
er boundary g, respectively), then it gives the fourth 
equation with three additional parameters to 
estimate. 

In conclusion, the above example gives four 
mathematical equatio.ns, with v = 2m + 7 para­
meters. For m = 1 (only a 12-month periodic 
function for mr), v = 9; for m = 2, v = 11, and 
for m = 6 (the maximum number of harmonics of 
monthly time series for the 12-month periodicity), 
v = 19. It is clear that there are seven basic para­
meters !J.x' T)x, a 1 ,a2 ,!J.

0
,a

0
, and 'Y andasmany 

pairs of Fourier coefficients as there are harmonics 
in the second equation, all to be estimated from the 
sample data. The proper analysis of the structure of 
hydrologic time series should lessen the total number 
of parameters to be estimated from data. 

If fou r mathematical equat ions are given 
and v parameters estimated from data, with all 
necessary statistical inferences performed in 
developing these four equations, it can be rightfully 
claimed that all available information in a large 
amount of observational data has been extracted in 
the form of descriptive mathematical models. If 
additional data become available statistical inference 
should be performed again for these models, and their 
parameters re-estimated from an increased sample. In 
the future, instead of publishing books of tables and/ 
or long series of graphs, four or more equations in 
general forms and a list of parameters may contain 
the extracted information. 

One objection to the hypothesis of extracting 
information by mathematical models and their 
parameters, is that the condensed information does 
not refer to various random functions (new derived 
variables) of the basic process, like extremes, runs, 
ranges, and similar variables. The basic postulate of 
probabilit y theory is that properties of any function 
of a random variable may be determined from the 
stochastic process of that variable, if this process is 
known and properly mathematically described. Thus, 
this objection can be overcome either analytically by 
developing characteristics of functions of the basic 
random process, which approach is difficult with 
complex hydrologic series, or through the experi­
mental statistical or data generation method by 
generating new samples of the basic process, with the 
derivation from the generated new samples of a 
sample of any new random variable which is a 
function of the basic process. Tests may be designed 
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to demonstrate that the properties of various 
variables derived directly from the historic sample are 
statistically indistinguishable from the properties of 
varia bles derived either analytically or by the 
t::xperimental statistical method. 

The current cases of hydrologic series may be 
more complex than the above example, particularly 
since !J.T and aT may not be proportional; there 
may be a cycle in a 1 and a 2 of Equation 1.3. The 
stochastic components of Equations 1.4 and 1.5 may 
no t b e identically distributed over ;, or the 
periodicity may exist in the skewness coef. 
ficient, {jT, or in the excess coefficient and in other 
higher-moments parameters. However , it is still 
feasible to determine the independent stochastic com­
ponent identically distributed over all ; positions by 
deriving additional mathematical models for other 
periodic components. 

An advantage to identifying a stationary 
independent stochastic component is that the sample 
size for the estimation of its parameters may be long. 
If a series h as the period icity w, w ith 
w = T I .1t, which is the number of discrete values in 
a year, and if n is the number of years, 
then N = nw is the sample size for the estimation 
of parameters of an independent stationary stochastic 
component. If a hydrologic series is SO years long, 
then the independent stationary stochastic com­
p onent of daily flows, ~ i ' has N = SO x 
36S = 18,2SO values. The estimates of parameters of 
distribution of the ~i variable become sufficiently 
reliable, even taking into account the loss of degrees 
of freedom in estimating the parameters of periodic 
functions and of the dependence model. For monthly 
flows in this case N = 50 x 12 = 600 values. 
Since ~i represents one of the main stochastic vari­
ations of a series, estimates of its properties have 
sufficient accuracy. However, the estimates of various 
parameters of periodic components and of 
de pendence models, whose parameters are also 
subject to sampling variations, may be more in error 
than the estimates of parameters of the ~i variable. 

If it is true that estimates of parameters in basic 
deterministic periodic components involve only the 
second statistical moments (or no higher-order 
moment is periodic), while ~i requires the estimates 
of the third or even the fourth moment , the above 
approach of providing a large effective sample for 
~i seems attractive, especially when the number of 
previously estimated parameters (as degrees of 
freedom lost) is small. 



The significance of this investigation is the 
derivation of additional information about the 
structure of hydrologic time series in order to obtain 
a more realistic and accurate mathematical 
description of hydrologic stochastic processes. 

1.8 Generation of New Samples 

The results of this study should enhance the 
application of the experimental statistical method 
(the Monte Carlo or data generation method) to 
hydrology. Since the important stochastic part in 
4ydrologic time series is the independent stationary 
stochastic component, the above discussed fourth 
equation in the form of a probability density 
function of this component is the basic random part 
of a series. The sampling fluctuation of parameters of 
deterministic components, and of the dependence 
model of the stochastic part, are further sources of 
randomness. If a hydrologic stochastic process can be 
decomposed in such a way that the stochastic com­
ponent ~1 results in an independent stationary or 
identically · distributed variable over all val­
ues T inside the year, it could substantially con­
tribute to a better application of the data generation 
method to hydrology. If this. component is 
Iognormally distributed it is sufficient to generate as 
large a number of independent standard normal ran· 
dom numbers as is required by the problem to be 
solved, and then simply transform them to 
independent lognormal random numbers. By 
performing a sequence of transformations of 
deterministic mathematical models, the new samples 
of the x variable of Equation 1.1 may be produced. 

In generating new samples of the variable of 
monthly flows, daily flows, monthly precipitation, or 
similar variables by application of the experimental 
method various water resources problems may be 
solved~ The first prerequisite for reproducing 
properties of time series in new samples is the proper 
generation of samples of independent stochastic com­
ponents, Generating new samples of time series can 
be regarded as a reversible process of decomposition 
of a time series into their various components. 
Analysis in this study may contribute to a more 
realistic and more accurate method for generating 
hydrologic series for purposes of solving those 
problems that cannot be solved with sufficient 
accuracy either by classical empirical methods, 
extensively used in hydrology and water resources, or 
by analytical methods. 
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1.9 Two Techniques in the Primary Analysis of 
Time Series 

Primary analysis of a hydrologic time series is 
defined here as steps that lead to the identification of 
its structure. The existence of deterministic and 
stochastic components should be ascertained and the 
hypotheses about their connecting mathematical 
model should result from this primary analysis. This 
existence may be ascertained by several methods but 
primarily by two techniques, the autocorrelation 
analysis, represented by a correlogram, and the 
spectral analysis, represented by the variance density 
spectrum. 

The correlograrn is a function between the 
serial correlation coefficients pk, as ordinates, 
against the lag k as abscissae, with pk given by 

_ COY (xi,Xj+k) 
pk - )~ , 

(var xi var xi+k -
(1.7) 

as the ratio of the population covariance to the 
population variance. The correlograrn shows the 
general character of a time series. When the values 
p are estimated by the sample values r k, the 
st~tistical inference is then performed to ascertain 
whether these serial correlation coefficients are signi· 
ficantly different from the correlogram of a 
mathematical model. An advantage of this procedure 
is that a direct relation can be established between 
the shape of the autocorrelation function and the 
type of the time series. The expected correlograms 
are known for basic time series. Visual inspection of 
the correlogram shows, in general, what type of series 
may be dealt with, and a hypothesis about its struc­
ture may be advanced. It can be determined by 
statistical tests whether a given hypothesis about the 
structure of a series should be accepted or rejected. If 
rejected, new hypotheses may be advanced and 
tested. 

If the correlogram gives the general type of 
dependence, the variance density spectrum may be 
used to better discern some aspects of the structure 
of a time series, particularly the identification of 
periodic components or some dependence models. 
The spectral function is defined in relation to the 
autocorrelation coefficients pk as 

m 
-y(f) = ~ D(k) pk cos 21rfk (1.8) 

k=l 

in which -y(f) is the variance density, f is the 
ordinary frequency, m is the number of autocor· 
relation coefficients used in this transformation, 



and D(k) is the smoothing function for the cor­
relogram. If the series is N long, often m = N/10 
to N/5, though this is an arbitrary cutoff point. 
Instead of using Equation 1.8 the fast Fourier trans· 
forms (or the basic and original concepts of Fourier 
transforms of a series) are used at present to estimate 
the spectral densities with much less computer time. 

Spectral densities are Fourier t ransforms of the 
autocorrelation function. Referring to the cor· 
relogram, Equation 1.8 shows that both techniques­
autocorrelation and spectral analysis--are basically 
identical, and that limitations in the correlogram 
accuracy affect the accuracy of variance spectrum 
densities. They are different pictures of the same 
properties of basic data, with the correlogram 
showing better some aspects of time dependence 
while the variance spectrum, smoothed by a filtering 
process, discerns other aspects better--particularly the 
periodic components and some dependence models of 
a time series. 

Since considerable experience shows that the 
periodicity of the year exists in nearly all continuous 
hydrologic time processes, it is usually unnecessary to 
identify it every time a new series of the same type of 
variables is investigated. Thus, the Fourier analysis in 
the form of discrete or line-spectrum, known as the 
periodogram, should be used for estimating 
amplitudes of harmonics instead of the continuous 
variance spectrom. The Fourier discrete-spectrum 
harmonic analysis of the periodicity of the year is the 
technique used in this study for mathematically 
describing periodic components in hydrologic time 
series of known basic periods. 

1.10 Stationarity of Stochastic Components 

A stochastic process is strictly stationary if the 
distribution of the set x 

1
, x2 , ... ,xn is the same as 

the set x 1+k' x2 +k, ... ,xn+k forevery nand k.ln 
practice, such stationarity is difficult to prove for a 
hydrologic time series. The problem is not to obtain 
this stationarity by removing trends, jumps and 
periodic components, but to approch it closely 
through valid statistical tests. These statistical tests 
either relate to the first two statistical moments in 
order to detect periodicities, and by removing them 
to obtain an approximation to the second-order 
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stationarity of the remaining part, or relate also to 
higher-order moments to approximate the higher· 
order stationarity. 

The process is second-order stationary if its 
expected value and covariance are independent of the 
position in a time series, or 

E[x;] =constant (1.9) 

for the first-order stationarity, or the stationarity in 
the mean, and 

(LIO) 

for a given k, for the second-order stationarity, or 
the stationarity in the covariance. The investigation 
of this paper tends in all its aspects to reduce, by 
structural analysis, the stochastic component to a 
final result of a second-order or higher-order 
stationary and independent random variable, 
identically distributed over the time series positions. 

1.11 Organization of Material in this Paper 

Theoretical aspects of structural analysis con­
cerning periodicity in the time series parameters, 
dependence models, distribution functions and 
parameters of stochastic components, and the effects 
of various types of bias in the original series on its 
structure, are presented in subsequent chapters, after 
the hypotheses underlying this investigation are 
presented in Chapter 2. Examples are given in support 
of derivations and discussions. Conclusions are pre· 
sen ted in the last chapter. 

The three topics are crucial in the structural 
analysis of hydrologic time series: the inference about 
the significance of harmonics in the periodic 
parameters, the inference about the best dependence 
models for the stochastic components of a given 
order of stationarity, and the inference for the 
probability distribution of the best fit to the 
frequency distribution of the independent stationary 
stochastic component. These three topics are 
discussed in details. Besides, a special attention is 
given to the problem of biases of the sampling type in 
order not to be perpetuated by the structural analysis 
and mathematical descr.iption of a time series. 



Chapter 2 

HYPOTHESES UNDERLYING THE STRUCTURAL ANALYSIS 

No structural analysis, nor the mathematical 
models that have been advanced and tested, can be 
better than the hypotheses underlying them. There­
fore, this chapter presents hypotheses used in this 
study. 

2.1 Selection of Working Hypotheses 

A distinction should be made between the 
following four concepts: basic data, information 
contained in the data, hypotheses that underly the 
extraction of information from data, and methods 
used to extract this information. The development of 
mathematical models for the description of 
hydrologic time series and the estimation of model 
parameters represent an advanced form of extraction, 
condensation and d escription of information 
contained in the data. To accomplish this, methods 
are necessary. However, no method can be developed 
without postulated hypotheses. These hypotheses are 
most often developed from experience with a large 
number of hydrologic time series, from the physical 
properties of the underlying processes, and from the 
general understanding of phenomena. Methods can be 
no better than the hypotheses upon which they are 
based. The description and justification of these 
hypotheses is a first step for better understanding the 
investigative line followed in this study. The fol­
lowing hypotheses are first briefly outlined and then 
discussed in detail. 

{I) A hydrologic continuous time series is com­
posed of deterministic components, in the form of 
periodic parameters, and of a stochastic component. 
The basic hypothesis is that a series can be separated 
into these components without an adverse effect on 
the final understanding and description of the time 
series structure and extraction of information. The 
periodic part of the series is encompassed by a general 
term of cyclicity or periodicity (the signal in com­
munication engineering language), while the random 
part is called the stochasticity or the rendomness (the 
noise in communication engineering language). 

(2) From the total variation of a variable nearly 
aU of random variation (the stochasticity in the 
series) is allocated to the stochastic component, while 
only the unavoidable sampling errors--within the 
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limits of the best estimation techniques used-is left 
inside the estimated parameters of periodic 
parameters (the cyclicity in the series). 

'(3) By removing the inferred periodic com­
ponents in various parameters from the series, or by 
removing the cyclicity, the hypothesis is that the 
stochastic component of the series is approximately a 
stationary random variable of a given order of 
stationarity, provided improvements in the order of 
stationarity and data processing costs justify attaining 
that given order of stationarity. In other words, the 
stochasticity of a series is reduced to a stationary 
stochastic process of a given, required or justified 
order of stationarity. 

(4) A hydrologic series may contain biases pro­
duced by man-made processes or other sudden or 
slow casual changes in nature. These changes are 
defined as nonhomogeneity. Also, inconsistency 
(systematic errors) is often present in data. The 
hypothesis is t hat nonhomogeneity and/or incon­
sistency in series are detected, described, and 
removed prior to the structural analysis of time series 
as conceived in this study. Misunderstandings are 
often produced when some models are tested on non­
homogeneous and inconsistent series. 

(5) A hydrologic time series may have various 
sampling biases in the form of a long-range trend 
(pseudo-trend), a long-range periodicity (pseudo­
cyclicity), unrepresentatively short or long drought or 
wet periods for the sample size available, 
exceptionally high or low flood events, which are not 
representative of the sample size, and similar sampling 
biases. Regional investigations and some experimental 
statistical analyses can show that these particular 
occurrences in time series have small probabilities to 
be or not to be exceeded in the future for the same 
sample sizes. The hypothesis is that the structural 
analysis of these samples of time series, their 
mathematical description, and the generation of new 
samples by the experimental statistical method do 
not perpetuate these sampling biases. 

(6) The inferred . structural mathematical 
models, the estimated coefficients of periodic com­
ponents, and the estimates of population parameters 



of the stochastic component of a time series are 
subject to sampling errors. The regional information 
from a set of time series can improve the information 
about these models, coefficients, and/or parameters. 
The hypothesis is that the structural analysis of a set 
of series in a region can improve significant ly the 
models and estimated coefficients and/or parameters, 
if the proper regional information replaces the 
information at a point of its observed individual time 
series. 

(7) If a structural analysis and simulation 
method are developed for small time series units (say 
one-day values or even smaller) the methodology 
should be applicable to any other, and particularly to 
larger units of time series, which still preserves the 
basic properties of cyclicity and stochasticity of that 
series. This hypothesis infers that the selection of the 
time unit (1-day, 2-day, 3-day, 7-day, 13-day, 14-day, 
15-day, 1-month, etc. ) does not affect the 
applicability of the developed methods. 

(8) The structural analysis is pursued to such an 
extent that all pertinent information about a 
h ydrologic periodic-stochastic process may be 
extracted in the form of a set of mathematical models 
and estimated statistics (coefficients, parameters, 
descriptors) t h a t describe these models. The 
generation of new samples of time series from these 
mathematical models should reproduce all basic 
inferred population properties, and do it so well that 
the original sample cannot yield any more substantial 
information about the process than the models and, 
consequently, the generated new samples. In other 
words, the reliability of generated samples repro­
ducing well the properties of the process depends on 

the correct methodology and the extent to which the 
structural analysis, the corresponding mathematical 
description, and the estimation of parameters from 
the data of original time series are applied to attain a 
given order of stationarity of the stochastic com­
ponent. 

(9) Mathematical models are necessary in the 
analysis and description of time series. For these 
models the coefficients and/or parameters must be 
estimated from the data. The hypothesis of this 
structural analysis is that minimum of coefficients 
and/or parameters should be estimated, because the 
more statistics estimated the lesser their overall 
reliability, and the smaller is the remaining degrees of 
freedom for other estimates. An optimization is 
made, by statistical inference, between the number 
and the reliability of estimates of these parameters. 
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(10) The dependent stationary stochastic com­
ponent is fitted by a mathematical model of 
dependence and from it a stationary independent 
stochastic component may be determined. The 
hypothesis is that this independent series contains the 
major random variation in a series, as the independent 
stochasticity or noise. Because of a very large 
independent sample thus produced, with relatively 
small Joss of degrees of freedom due to already 
estimated other parameters, the parameters of distri· 
bution of this independent random variable can be 
estimated accurately. The hypothesis is that the 
mathematical models of dependence have a sound 
physical background and/or justification, and are 
usually applicable to a large number of series of the 
same variable, under the conditions of acceptable 
methods of testing this type of statistical hypotheses. 

2.2 Periodic-Stochastic Structure of Hydrologic 
Time Series 

Assume a hydrologic continuous periodic­
stochastic time process, {~1 }, to be composed of 
periodic functions in some of its parameters and .a 
stochas ti c component. A realization of 
this ~t process is given in the form of a finite dis· 
crete series, x , with given values at inter-

p,T 
vals t.t apart. The symbol r ::: 1, 2, .. . ,w are dis-
crete values in the basic cycle, w. This period w is 
either a day or a year (or both) in the majority of 
hydrologic time series . The sym­
bol p, with p ::: 1, 2, ... , n, represents the suc­
cessive values of the period w, with n their total 
number. For w being a year, n is the number of 
years in the sample time seris. The total sample size is 
then N ::: nw. Estimating the parameters that are 
significant in the periodic functions inside 
the x series is the first problem to study. 

p,T 

The population mean at a position r is desig­
nated by J.J/~t) and the corresponding population 
standard deviation by a/~ 

1
) for the ~ 1 process. As 

the consequence of the above basic assump­
tion, J..LT(!) and a/~1) are two periodic functions 
of r . Similarly, the population autocorrelation coef­
ficients Pk,/~t) may be periodic as functions of r . 
By removing these periodic functions from 

the ~~ series, the remaining part of the series should 
be the second-order stationary stochastic component. 
However, t h e third-order parameters at posi­
tions r may also be pe riodic. By removing 
periodicities in these parameters, the remaining part 
of the r. process should be the third-order 



stationary stochastic component. This approach may 
b e continued to the fourth- and higher-order 
parameters, and the stationarity of the fourth- or 
higher-orders of the stochastic component may be 
obtained by removing periodicities in all these 
parameters. This leads to the basic application of the 
first hypothesis, namely that any hydrologic 
periodic-stochastic ~ 

1 
process can be decomposed 

in to the periodic parameters of a given order, and of 
all other smaller-order parameters than this order, and 
a stationary stochastic component of this given order 
of stat ionarity. A realization of the ~ 

1 
process as a 

finite xP -r series is used for the estimation of 
periodic !unctions in the parameters of a given order 
and of the properties of stochastic component of the 
same order of stationarity. 

The basic principle in applying this hypothesis 
is that the order of the moments used in defining 
parameters that may be periodic functions of 1, and 
the corresponding order of stationarity of the 
stochastic component, should be selected by some 
.;riteria that determine how well the mathematical 
description of a time stochastic process ought to 
approximate the real structure of this process. 

The estimation of a given p-r(~1 ) at the 
position 1 of the period w from an x series, p ,T 
with p = I , 2, ... , n, is 

m =l. ~ x 
T n p=l p,T (2.1) 

The sampling difference between an esti­
mate mr from a given sample of size nw and the 
corresponding population value ll/~1) is then 

(2.2) 

Because n is usually small for most hydrologic time 
series, if n represents the number of years, the 
sampling errors e (m ) of Equation 2.2 are often 

T 'T 

large. Besides, if w is large, say 365 for daily time 
series, all 365 values of m cannot be estimated 

'T 

accurately. The question may be posed whether the 
appropriate- fit of a periodic func­
tion p to w values of m , with p as the joint 

T 'T T 
estimates of pT(~1) or as the estimate of the 
periodic function pr(~1), and with the new sampling 
errors 

(2.3) 

reduces the overall variance of sampling errors in the 
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means? If this is the case the variance of errors of Eq. 
2.3 should be 

with a much smaller than unity. If mT is used as 
the estimate of pT(~1), this is equivalent to stating 
that a larger part of sampling variation of the 
stochastic component in the x series is retained p,T 
in the estimate ValUeS mT Of the St prOCeSS than in 
the case where the estimates pT of the periodic 
function are used. 

As a consequence of the first hypothesis, based 
on experience and physical analyses of the responses 
of various hydrologic environments, the periodicity in 
the mean should be a smooth function. It is sufficient 
to estimate m of a series for the samples of dif-

r 
ferent sizes, and to find that the smoothness of 
the mT series increases with an increase of the 
sample size n. 

Figure 2.1 demonstrates the basic current 
experience of hydrology, namely that the variation 
of mT along :r becomes smoother with an increase 
of the number of years n. The means mT of daily 
flow series of the Tioga River are given as the 
example, in four graphs and for: (I) the 10-year 
p eriod (192 1- 1930); (2) the 20-year period 
(1921-1940); (3) the 30-year period (1921-1950), 
and (4) the 40-year period (1921-1960). This 
smoothness should correspond to the smooth 
astronomic periodic functions of heat supply over 
regions of the earth, which are only modified by the 
responses and interactions of hydrologic 
environments for the resulting processes of various 
hydrologic variables. This is the major reason why a 
smooth pr periodic function should be estimated 
instead of using the sequence of w values of mr. 
The second r eason for using pT instead 
of mr comes from the second hypothesis, namely 
the requirement of attaching as much as possible of 
the sampling fluctuations in the x series to its 
stationary stochastic component rat'ti;r than to the 
coefficients of periodic functions of various 
parameters. The third reason for using pr instead 
of m is the consequence of the ninth hypothesis, 

T 

namely developing mathematical models of periodic-
stochastic processes with a minimum of estimated 
coefficients and/or parameters. For these three 
reasons, based on three hypotheses, it is considered 
that the proper statistical fit of the !l periodic func-

T 

t ion t o w values of mT is superior to 
using w estimates of mT. 



6500 . .-----....----.--,--;---r-----,--...,----T-- 6000 . .----,-----,---r----.-----,r---....----T--, 

6000. 5500. 

5500. 5000. 

5000. 
4500. 

450~. 
4000. 

400~. 
3500. 

350~. 

3000. 
3000. 

<!SOO. 
<!SOO. 

2000·. 
2000 . 

1500. 1500. 

1000. 1000. 

501). 

T 
500. 

T 

so. 100. 150. 200. 250. 300. 350. 400. 50. 100. 150. 200. 250. 300. :550. 400. 

6500 . .-----....---,---y-- --.---.-----.-----.-----. 7000 • .---.,-----,--"T"""--r--.-----.----.--, 

6000. 

550~. 

5000. 

4500 . 

4000. 

3500. 

3000. 

2500. 

zooo. 

1SOO. 

1000•. 

soo. 
T 

SO. 100. ISO. 200. 250. 300. :550. 400. 

6500 . 

6000. 

5500. 

' 5000. 

4500 . 

4000. 

3500. 

3000. 

2500. 

2000. 

1500. 

1000. 

500. 
T 

50. 100. 150. 200. <!SO. 300. 350. 400. 

Fig. 2.1 The increase of smoothness of the sequence of mean daily flows of the Tioga River near Erwins, 
New York, with an increase of the sample size: (1) 10-year period (1921-1930); {2) 20-year 
period (1921- 1940); (3) 30-year period (1921 -1950); and ( 4) 40-year period (1921-1960). 

The estimate of the population standard devia­
tions, a/~t), at any given position r of the 
period w from the x series is by p,T 

[ 
n ] ~ s = l. L (x - m )2 

T TI p=J p,T T 
(2.5) 

if n ;;;;. 30, or by an unbiased estimate s2 = n s2
/ 

T T 

(n-1) if n < 30. 

Another approach for estimating s
7 

is the use 
of JlT instead of mT in Equation 2.5 by 

12 

~ 

s * = [l. ~ (x - Jl )2
] 

T n p=J p,T T 
(2.6) 

if the Jl
7 

periodic function has been already 

estimated. However, this approach will produce larger 

values of sT than Equation 2.5 gives because sT is a 

minimum when the first moment mT of the sample 

is used. The estimates by Equation 2.5 are used in 
this study for the fitting of the periodic function aT. 



Just as for m , a smooth function o may 
T T 

be fitted to the estimated w values of s , so that 
T 

the variance of difference e (o ) = 0 - 0 cr) be-
T T T T I· 

comes much smaller, on the average, than the 
variance of difference e (s ) = s - o (r ). The 

T T 7 T I 
differences e (s ) - e (o ) = s - o are then re-

T T T T T T 

tained in the stochastic component of the x 
p,T 

series instead of being left in the periodic function 

\· of the standard deviation, just as the sampling 
differences e (m ) - e (p ) = m - 11 are retained 

T T T T T T 

in the stochastic component. 

This procedure is followed for any other 
pe riodic parameter , generally designated 
by v r<r 

1
), of a given periodic-stochastic pro­

cess {r, } , and its available sample series, x , by 
p,T 

fitting the periodic functions vr to the estimated val-
ues v r at discrete positions r of the period w. 

2.3 Two Fundamental and Opposite approaches in 
the Analysis of Periodic Components of 
Hydrologic Time Series 

The general equation of the periodic deter­
ministic function of any parameter vr in using the 
Fourier series approach, is 

v = 11 + £1 c. cos (21r.iz_ + e.) , (2.7) 
T JJ j=l J W J 

in which v is the symbol for any periodic 
T 

parameter related to the r, process and estimated 
from the x series, Jl. is the mean 

p , T V 
of v r or v r over the w positions of r, j is the 
sequential number of any harmonic out of 
the w/2 possible harmonics, m is the number of 
significant harmonics (or of the harmonics that have 
the amplitudes statistically significantly greater than 
for the nonperiodic series), C. is the amplitude and 
ej the phase of the j-th hanrionic. 

The first basic hypothesis of this structural 
analysis is that several parameters, vr, of 

the r, process are deterministic-periodic functions 
of the type of Eq. 2.7, with J1v' Ci's, Oi's, and m 
being constant coefficients for any periodic para­
meter of the ~~ process, with these coefficients 
estimated by sample statistics of the x series for 

p,T 
a given w. Once 11 , C. 's, 8. 's, and m are esti-

v J J 
mated for a periodic parameter, vaDues of v r at any 
position r are uniquely defined. This property for 

all periodic parameters is understood in this study to 
represent the deterministic-periodic component of 
the process. 
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An opposite hypothesis of composition of a 
series is with 

m 
v =J1 + :E 

T IJ i=J ' (2.8) 

in which Jl.v is the mean of the parameter v r , 
while C' and () ' are random amplitudes and p,r p,r 
random phases, respectively, and i = I , 2, . .. , m is 
the number of harmonics. In other words, any 
parameter vr has only the mean 11v as a constant, 
and as many pairs of random variables, 
c~ T and ei ' as there are harmonics. For only 
one harmonf{ w, there is a particular amplitude 
value, C1 

' and a particular phase value, () 
1 

' for 
p~ p~ 

each time position, say each day of the sequence of 
years if the yearly cyclicity is present, or each hour of 
the sequence of days, if the daily cyclicity is studied. 
The random variables Ci and ei should be 

p ,T p,T 
serially correlated and mutually dependent. The 
simplest case of application of Equation 2.8 is when 
only the means m along the r positions are 

T 

assumed to follow "random periodicity." 

Equation 2 . 7 requires the estimation 
of 2m+ I coefficients for each periodic parameter, 
while Equation 2.8 requires the estimation 
of I + k + k., + A + Ae + A e coefficients o r c 11 c c, 
parameters, with k and k

9 
the number of 

parameters for the probability distributions of C 1 

I p,r 
and e , respectively, A and A9 the cor-

P ,T c 
responding number of statistics for the auto-
correlation models of C

1 
and () 1 

, respectively, 
and A " the number of statistics fo; measuring the 

c,v I I 
mutual dependence between c and e ' and/or 

I I p,r p ,T 
between C and e and other parameters. The 

p,r p,r 
total of nw values ot the x series may not be 

p,r 
sufficient to reliably estimate all the above 
parameters. The minimum expected number of 
parameters is when kc = k9 = 2 (say normal dis-
tributions for C1 and 81 

), A = A,. = 1 (say p ,r p ,r c v 

the first-order autoregressive linear model), 
and A 9 = I (the linear correlation coefficient 
betwee~: C~ T and e~,T), Or a minimum Of eight 
parameters. For m = 3, this is about equivalent to 
2m + 1 = 7 coefficients in harmonics of v of 

T 

Equation 2.7. 

These two opposite approaches should be 
compared from several standpoints, namely from the 
physical justification, the estimation theory, the 
future use of these models, the generation of new 
samples by the experimental statistical method, and 
similar. The difference is in the basic concepts of how 



to divide the to tal information of a series. The 
frrst approach divides the series contained in the 
deterministic-periodic functions of parameters and all 
t h e rest o f the information contined in the 
stochasticity of the process. The second approach 
contains nearly all the information in various 
stochastic parts, such as the random variables of 
periodic parameters and the random variable of 
stochasticity. 

Environments within the earth in which the 
main hydrologic processes occur can be considered as 
closed systems. The outputs of one environment 
represents input into another. The only exception is 
t h e o pe n system of solar energy supply and 
irradiation from the earth into space. The solar 
energy input is a deterministic-periodic process for 
any unit area at the limits of atmosphere. However, 
the energy output of irradiation at the same unit area 
at the limits of atmosphere is a periodic-stochastic 
process. The various responses of the earth's environ­
ments produce the earth's energy output into space 
which has a high stochastic component and a 
modified periodic process. Turbulence, cloudiness, 
transpa rency, and o the r phenomena of the 
atmosphere add considerable randomness to the 
deterministic-periodic solar energy infl~x, so that the 
solar energy suppHes to most of the a.tmosphere, to 
oceans, seas, and to continental areas are periodic­
stochastic processes. The effects of winds, ocean 
currents, randomness in the mass and energy transfers 
between oceans and the atmosphere, between the 
a tmosphere and co ntinental ar eas, and other 
phenomena of continental areas further produce 
randomness and modify periodic components. Any 
e nvironment (the atmosphere, oceans and seas, 
continental surfaces, underground spaces, etc.) of 
importance to hydrologic processes has responses that 
add or smooth randomness of input processes, by 
modifying the periodic process, by attenuating or 
amplifying the amplitudes of harmonics, and by 
shifting the phases of these harmonics. 

The hypothesis that all of the earth's 
hydrologic processes are composed of deterministic­
periodic and stochastic components seems supported 
by the basic periodic influx of solar energy. The 
attractive explanation of environmental responses to 
various inputs of hydrologic relevance is that tht v 
modify the properties of solar periodicity, but n~t 
the pe rio d itself, while adding substantial 
randomness. These assumptions about the environ­
mental responses give support to the first hypothesis, 
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namely that the hydrologic time series are composed 
of a deterministic-periodic process and a stochastic 
process. 

The second approach of considering amplitudes 
and phases as random variables in the periodic 
function of any parameter would require complex 
responses of earth environments to the deterministic­
periodic inputs of solar energy to various areas of the 
earth 's surface. It is easier to conceive of the 
responses of hydrologic environments to given inputs 
as being composed of deterministic (linear and non­
linear) parts and superimposed random parts, than to 
conceive of all responses as being stochastic. Fo r 
example, the transparency (opacity) of the 
atmosphere fo r solar energy, because of cloudiness 
and other factors, should be periodic-stochastic in 
character, one season having larger cloudiness on the 
average than the other, with the average transparency 
over the seasons representing the component of 
deter ministic-periodic process, and the chance 
variations about the averages representing the 
component of stochastic process. 

The greater the average of a random input into 
a hydrologic environment is, the larger the expected 
variations in its responses. Since most inputs are 
positively valued variables (only positive values or 
zeros occur), the boundary of zero (or any other 
boundary) greatly limits the possible variations on the 
lower side of small average inputs, while for large 
average inputs the range of variations on botJ1 sides is 
substantial, infinite on the higher side and relatively 
large on the lower side. This range of values requires 
differences in the standard deviations along the 
positions of the year, with greater values for large 
average inputs and smaller values for low average 
inputs. Howe ver , this does not imply a 
proportionality between the standard deviations and 
the means, though that case may be true for several 
hydrologic periodic-stochastic processes. In summary, 
the physical considerations, and particularly the clear 
deterministic-periodic character of the solar energy 
input, give more support--at least at the present level 
of experience-for the first approach than for the 
second approach with regard to treating the cyclicity 
of hydrologic periodic-stochastic processes. 

The future use of mathematical models of 
strucutral analysis of time series, say as the form of 
condensation of information, is much more attractive 
with all models either deterministic (cyclicity in 



parameters), or functions of random variables (auto­
regressive models), or only as t he independent 
stationary stochastic component, t han the models 
with many random variables. In the generation of 
large samples by the experimental method the first 
approach requires the fitting, the testing of the 
goodness of fit of the probability distribution 
functions for only one variable, and the generating of 
only one random variable, while the second approach 
requires the same work for several random variables 
with some being mutually dependent . 

In summary, there is justification for using the 
first approach to consider each periodic-stochastic 
hydrologic process as composed of deterministic­
periodic functions in various basic parameters of the 
process, and an independent or dependent stationary 
stochastic component of a given order of stationarity. 
The only uncertainties in the deterministic-periodic 
components result from sampling errors in the 
Fourier coefficients or their equivalent coefficients of 
the amplitude and the phase, and the sampling errors 
in the estimated parameters of autoregressive models 
of dependent stochastic components. 

2.4 Reduction of Stochasticity of Hydrologic Series 
to an Independent Stationary Component 

The procedure for separating deterministic­
periodic components in the various parameters and 
the stochastic component can be pursued to different 
levels of stationarity. If only the cyclicity in the mean 
over the positions 7 = 1 , 2, . . . ,w is inferred and 
removed, the remaining process 

* X =X -J.J. 
p ,T p ,T T 

(2.9) 

could be considered the first-order stationary process, 
with the cyclicity only in the mean to be removed. If 
the cyclicity in the standard deviation is inferred and 
removed only, the remaining process, 

could be 
with o 

T 

both p.r 

* X X :-lJ...L 
p ,T OT (2.10) 

considered as stationary in the variance, 
the cyclicity in the standard deviation. If 

and or are removed the remaining process, 

X -IJ. 
€ = 0 T T 

p,T OT 
(2.11) 

is both stationary in the mean and the variance, but 
still is not the second-order stationary process. 
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The general dependence of the e process is 
p,T 

e =f(e 
1
,e 

2
, .. . ;n

1 
, n

2 
, ... ) 

p,; p,T- p,"T· ,T ,T 

+ 0 ~ p,T (2.12) 

in which eP is a function of some or all previous 
,T 

e values; a 1 , a2 , • . . are the vario·us 
p,T ,T ,'T 

periodic and/or nonperiodic parameters in this 
dependence model, o is the standard deviation as a 
function of a. · coefficients in order that ~ is a 

J,T p,T 
second-order standardized stationary (and 
independent) stochastic component. 

If the skewness coefficient and any other third­
order parameter, such as the product of any three 
values of the second-order stationary process, show 
cyclicities, the periodicity can be tested and removed 
to obtain the third-order stationary stochastic com­
ponent. Similarly, the fourth-moment properties may 
be tested for cyclicity along the r = 1 ,2, ... , 
w values, and when proven significant they can b·e 
removed to obtain the fourth-order stationary 
stochastic component. 

The basic hypothesis is that successive 
investigations can raise the order of stationarity of an 
independent stochastic component by proper 
statist ical analysis, inference, and mathematical 
description of the periodic parameters and the 
dependent stochastic component. This hypothesis, 
then, is a problem of optimization, optimization 
between the accuracy of structural analysis and the 
required economy in data processing. The greater the 
requirement for a reliable description and a full 
reproducibility of properties of a hydrologic process 
in the generation of new samples, the more justified 
become efforts for attaining the third- and/or 
higher-order stationarity of the independent 
stochastic component. 

It is expected that parameters that are the 
functions of third-or higher-order moments will have, 
in general, a sufficient "signal-to-noise" ratio, in ord!er 
to detect the periodic components. In other words, 
the ratio of explained variance of fluctuations of a 
parameter alnng the 7 positions by the 
deterministic-periodic component and the variance 
explained by the sampling noise should not be small. 
This ratio usually decreases with an increase of the 
highest moment necessary to define a parameter. This 
is the same as saying the power of detecting the 
periodicity in parameters by statistical inference 
decreases with an increase of the order of moments 
which define these parameters. 



2.5 Effects of Nonhomogeneity and Inconsistency 

Because water resources are subject to man­
made changes both in the natural processes and in 
environmental responses, nonhomogeneity in data is 
extremely common in hydrologic time series. 
Hydrologic data also have often systematic errors, 
there by adding this inconsistency to the non­
homogeneity which is either man-made or produced 
by some significant natural disruptive factors. 

The detection, description, and removal of non­
homogeneity and inconsistency should have both 
statistical significance and physical or historical 
support and justification. Nonhomogeneity and 
inconsistency may be in any or in all of the basic 
parameters of a hydrologic time series. Some 
investigations show [ 6,7} that all parameters are 
usually affected whenever a trend and/or a positive or 
negative jump are produced in a hydrologic series by 
nonhomogeneity and inconsistency. The discussion of 
methods of detecting, describing, and removing non­
homogeneity and inconsistency, before a series is 
analyzed for its structural composition, is outside the 
scope of this paper. 

2.6 Sampling Biases in Historical Time Series 

As discussed in the introduction, the "trends" 
and "periodicities" in the parameters of time series 
may be produced only by sampling variations because 
of small historical samples. The smaller a sample the 
greater is the probability for it to exhibit some biased 
property, such as an upward or downward trend, 
sampling or pseudo-cyclicity, unrepresentative high or 
low extreme values for the size of the sample, and 
similar. Each sampling statistic has a distribution, and 
the sample estimates may be at the tails instead of 
being around the mean or median of this distribution. 

Studies of annual precipitation, annual effective 
precipitation, and annual runoff series show them to 
be stationary time processes [ 1 ,2) . Therefore, trends 
and pseudo-cyclicity in small samples of annual time 
series can be mainly the result of sampling variations, 
provided nonhomogeneity and inconsistency in the 
series are removed. 

The hypothesis is advanced here that a good 
structural analysis of time series should be such as to 
not perpetuate sampling trends and pseudo­
cyclicities, either by inferred mathematical models or 
by estimated parameters, and, consequently, 
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perpetuated in the new generated samples by Monte 
Carlo method. This hypothesis can be fulfilled by 
avoiding those procedures of analyses of time series 
that perpetuate both pseudo- trends and pseudo­
cyclicities. The sampling properties of short time 
series may explain some past unproductive research 
efforts in searching for significant hidden periodicities 
and trend-type persistencies in basically the 
stationary stochastic processes by using improper 
analyses of short and/or nonhomogeneous time series. 

Biases in extremes also may affect the time 
series analysis. If a prolonged drought or a wet period 
or both occur in a small sample, they will affect all 
parameters describing the time series properties. 
Similarly, if the largest drought or the largest wet 
period in a sample are relatively short, or their total 
deviations from the mean are small, these unrepre­
sentative extremes also affect all parameters which 
describe time series properties. The concepts of 
representative extremes for given sample sizes, and 
for such properties as peak discharge, lowest djs­
charge, drought, wet period, etc., must be introduced. 
Therefore, the hypothesis is advanced here that only 
those methods of structural analysis should be used 
that detect the unrepresentative extremes in the 
sample available, and eventually enable a correction 
for some parameters, particularly by using the 
available regional information on a hydrologic 
random variable. 

2.7 Regional Information on Models, 
Coefficients, and Parameters 

If hydrologic variables are observed as time 
series at a number of points in a region the regional 
information iin the form of mathematical models, 
jointly estimated coefficients of periodic parameteis, 
and jointly estimated parameters of stochastic 
components, is usually much more reliable than for 
estimates made separately for any individual time 
series. The hypothesis underlying investigations in 
this paper is that mathematical models, coefficients 
and parameters estimated for an individual series may 
be improved by regional analysis of all available time 
series. The methods of jointly estimating parameters 
and coefficients on a regional basis, to improve the 
corresponding values for the series at a given station, 
are not discussed in this paper. 

The basic hypothesis in this regional joint 
estimation of coefficients and parameters of 
mathematical models, and in testing the goodness of 



fit of these models to data, is that the parameters or 
coefficients of these models change smoothly over 
the region from one point to the next. For a given 
hydrologic random variable with observed time series 
at a number of points in the (x,y) - plane, the basic 
parameters of these series change with x,y -
coordinates by a relatively smooth trend surface; for 
short time series available the parameter values must 
exhibit the sampling variations about these trend 
surfaces. By inferring for each basic parameter what is 
the most reliable regional equation for this surface, 
and by estimating its coefficients, the joint estimates 
of basic parameters are obtained; these estimates 
should have, on the average, much smaller sampling 
errors than the individual estimates obtained 
independently. 

By removing periodicities from all periodic 
parameters of a set of regional time series of a 
hydrologic random variable, and by using the 
parameters or coefficients from the regional surface 
models, the stochastic components of observed series 
at this set of points may be reduced to stationary 
time series, and by removing the regional trend 
surfaces in basic parameters, the ensemble of series of 
this set may be considered to be drawn from a 
stationary and ergodic stochastic process. 
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2.8 Concluding Remarks on Hypotheses 

Although hypotheses (7) through (10) of 
section 2.1 are self-explanatory, some additional 
remarks are warranted. The present approach in 
generating the new samples of monthly time series by 
nonparametric methods (say, by using 12 monthly 
means, 12 monthly standard deviations, and 12 times 
the monthly autoregressive coefficients) is not 
feasible for generating new samples of daily time 
series, with the number 12 replaced by 365, or hourly 
time series with 12 replaced by 8 ,780. Therefore, a 
parametric method is needed that does not depend on 
the time unit used. The parametric method of 
analysis permits an optimization between the number 
of statistics to be used and the accuracy in their 
estimation. 

The dependence models for the stochastic 
components should be either based on a physical 
background or justified by experience on a large 
number of analyzed dependent stochastic com­
ponents of a given hydrologic variable and its 
periodic-stochastic components of a given hydrologic 
variable and its periodic-stochastic process, or both. 
The time dependence models are conveniently 
divided in to linear and nonlinear. There is an infinite 
possible number of linear and nonlinear dependence 
models. Without a physical background or the 
experience of successful fitting particular models to a 
large number of stochastic components, or both, the 
unnecessary proliferation of models is unavoidable. 



Chapter 3 

PERIODICITY IN PARAMETERS OF HYDROLOGIC TIME SERIES 

3.1 Periodicity 

It is assumed that any eventual inconsistency 
and nonhomogeneity in time series, particularly 
man-made nonhomogeQeity, are identified by the 
proper techniques, supported by physical or historical 
investigations, and removed from a hydrologic series 
prior to its structural analysis. The process of 
separating the deterministic-periodic components 
from the independent or dependent stationary 
stochastic component may then be undertaken. 

The analysis in this chapter is mainly concerned 
with periodic parameters of hydrologic time series. 
Continuous variables and discrete time series are only 
considered. Statistical inference in detecting 
significant harmonics in these periodic components is 
a major part of this chapter. 

Periodicity of a hydrologic time series may be 
present in one, two, or several of its parameters, such 
as the mean, the standard deviation, the auto­
covariances or the coefficients of the autocorrelation 
function, the higher-order moments or the parameters 
which are functions of these moments, and similar. 
An independent or dependent stationary stochastic 
component is assumed always present in any 
hydrologic time series, while the periodic parameters 
may or may not be present. The stationarity of the 
stochastic component is assumed either of the second 
order, which is weak stationarity, or of the higher 
order which is strong stationarity. This means that 
the expected values of the corresponding moments or 
parameters are independent of the absolute 
position i for discrete time series, but depend only 
on the position differences k when these differences 
are relevant for definitions of moments or 
parameters. 

3.2 Determination of Periodic Parameters 

Experience shows that each month, day, or 
hour, or any multiple of these units of the year has a 
different expected value and different standard 
deviation in a hydrologic time series. 

A value of variable x in the year p and at the 
position 7 inside the year is xP ,r, with p = 1 ,2, ... , 
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n, and 7 = 1 ,2, ... ,w. This x value is for p ,r 
month 7, day 7, or hour 7, ofyear p following 
the beginning of records, with n the number of year 
of record, and w the total number of discrete values 
in a year. The individual monthly, daily, or hourly 
mean values m , or m of any multiple of these 

1' 1' 

time intervals, for a given 7 are estimated by 
Equation 2.1, while the individual monthly, daily, or 
hourly standard deviations sr are estimated by 
Equation 2.5. 

Similarly, w intervals of the year are used to 
estimate the other parameters as they vary through­
out the year. The series of w values of any 
parameter may be periodic, stochastic, a constant, 
and a combination of periodic and stochastic parts, 
with sampling random variations superposed. Because 
of these sampling variations, particularly in small 
samples, the random fluctuations in a parameter are 
always superposed to a periodic movement or to a 
constant. The estimation of Fourier coefficients or 
of amplitudes and phases of the population periodic 
parameters is always affected by sampling 
fluctuations. In other words, because a periodic 
parameter is ·superposed by a stochastic fluctuation 
for a finite sample, the sampling variation associated 
with the stochastic part of a series does not permit 
the computation of population coefficients of 
equations of deterministic-periodic parameters. These 
coefficients are then statistics subject to sampling 
distributions. 

3.3 Nonparametric Method of Separating Periodic 
and Stochastic Components 

The simple t ransformation 

x - m 
€ = p,r r 

p,r Sr 
(3.1) 

in which mr and sr are the sample means and 
samp l e stan dard devia tions a t the 
positions 7 , computed by Equations 2.1 and 2.5 
respectively , is the nonparametric method of 
standardization of the x variable. This is also a p ,; 
way to remove the periodic components 
in mr and sr. It requires the use of 2w 
statistics, w of m and w of s . For monthly 

1' 1' 

values 2w = 24, for daily values 2w = 730, and 
for hourly values 2w = 17,520. These two latter 



cases require the estimation of 7 30 or 17,5 20 
statistics of m and s , respectively. ., ., 
If v parameters of the x process contain p., 
periodicity to be identified, described and separated 
from the stochastic component of a series, then this 
nonparametric method requires the use 
of vw statistics for all periodic parameters of 
the xp series. For example, with periodicity in five ,., 
parameters of daily series the number of statistics to 
be estimated is vw = 1825. This is an unnecessary 
large number. The non parametric method removes 
from a series the periodicity in parameters but also 
removes all sampling variations associated with the 
coefficients of the periodic functions of parameters. 

Looking on this nonparametric method from 
the standpoint of sampling theory, these vw values 
cannot be accurately determined. They must have 
large sampling errors. Besides, they decrease 
significantly the number of degrees of freedom. If the 
objectives of time series analysis are either the 
condensation of information or the generation of new 
samples, there is no point in perpetuating these 
detailed sampling variations in parameters. One of the 
objectives of statistical analysis and development of 
mathematical stochastic models is to economize on 
the number of parameters used to describe any 
random variable or its stochastic process. As long as 
the control variable w and the number of periodic 
parameters v are small, say w = 12 for monthly 
values and v = 2 for the mean and the standard 
deviation, the nonparametric description and removal 
of periodicity in time series does not present serious 
difficulties because of the limited number of statistics 
involved. 

This nonparametric method may be very useful 
in any preliminary analysis or in detecting the 
character of the stationary stochastic component. For 
various tests of hypotheses the effective sample size 
of a dependent stationary stochastic component may 
be needed. The approximate computation of this size 
can be obtained by using this non parametric method, 
before testing for significance of harmonics. 

3.4 Parametric Method of Separation of Periodic 
and Stochastic Components 

To economize on the number of statistics 
needed for the mathematical description of a series, 

the periodic series m., and s., may be 
approximated for large w by a relatively small 
number of harmonics of w. For example, if the 
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periodic components of daily means and daily 
standard deviations are well approximated each by six 
harmonics, and all other fluctuations in m and 

T 

s., are assumed or inferred to be sampling varia-
tions, then the Fourier series approximation of a 
periodic parameter requires only the mean plus 12 
values of Ai and Bi Fourier coefficients for each 
parameter, with a total of 26 statistics. This is a 
significant savings in the number of statistics used, 26 
instead of 730 for the case of daily flows. The savings 
is even greater for hourly means and standard 
deviations. 

The classical approach in estimating the 
significant harmonics in composed series is of the 
type 

x =p.+ae 
p ,T T X p,T 

(3.2) 

in which P.., is. the periodicity in the mean and ax 

is the standard deviation assumed to be a constant. 
The periodic component is then given in the form 

m 
p. = p. + ~ (A cos A. r +B. sin A. r) , (3.3) 

T X j=l J J J J 

for m ·harmonics with amplitudes significantly 
different from those of stochastic series, and p.x is 
the general mean of x . 

p,'T 

The coefficients, Aj and Bi , j = 1, 2, ... ,m, 
in Equation 3.3 are estimated from Nw values 
of x by p,-r 

2 
Aj=nz; 

and 

n w 211jr 
~ ~ (xp,., ·P.x)cos - w 

p=1 -r=l 

2 n w 211jr 
Bi = nw ;1 ~1 (xp,T- P.x) sin -w 

' (3.4) 

• (3.5) 

in which >... = 211j/w with min;>... = 2rr/w; m is 
J J 

the number of significant harmonics in the range of 
variation of j with j = 1, 2, . . . , w /2, and r is the 
time series sequence inside each period, r = 1,2, ... ,w, 
with N = nw being the size of sample series. For the 
last harmonic, j = w/2 or j = (w-1)/2 for w an 
odd number, the _Fou~er coeff~c~ents are Aw 12 = 
A/2 and Bw12 - Bi - 0, for J m Eqs. 3.4 and 3.5 
being w/2. 

Because ax of Eq. 3.2 is rarely a constant in 
hydrology if p. is periodic, two cases arise: 

T 

(I) P./X) and a.,(x), as the population periodic 
components, estimated by P.., and a.,, are pro­
portional, and (2) P..,(x) and a.,(x) are not 



proportional. In the first case, a ~ T/ f.J. , with T/ 
T 0 T 0 

the proportionality constant, so that 

x = f.J. +a E = f.J. (1 + ,., E ) p,T T T p,T T ' 10 p,T 

* = f.J. € (3.6) 
T p,T 

This is the case of a multiplication- of a periodic 
parameter and a stochastic component, with € * = p,T 
1 + T/ e , which is a linear transformation of 

0 p,T 
e . Equations 3.3 through 3.5 are not applicable p,T 
in this case. However, by using 

* In xP = In ,1.1 + In E , (3.7) 
,T T p,T 

for x > 0, f.J. > 0, and e* > 0, the case of p,r T Q,T 
Equation 3.6 is reduced to the case of applying 
Equations 3.3 through 3.5 to logarithms of Equation 
3.7. The case of applying Equations 3.6 and 3.7 
explains why studying logarithms of a 
hydrologic x variable may give, in some cases, 

p,T 
more meaningful results than studying 
the x values. p,T 

If a
7 

is not proportional to ,LIT , the simple 
composition model of the periodic and stochastic 
components is_ 

x =f.J. +a € 
p,T T T p,7 (3.8) 

in which case Equations 3.3 through 3.7 are not 
directly applicable, because f.J. and a may have 

T T 
different significant harmonics, nonproportional 
amplitudes of the same harmonics, and/or different 
phases in the case of the same significant harmonics. 

To avoid these difficulties in the application of 
the classical approach of Equation 3.2, or its 
application in using logarithms in the form of 
Equation 3.7, when the model of Equation 3.8 is 
required, various parameters that may be periodic 
along the sequence points r = 1, 2, .. . ,w should be 
first computed and the significant harmonics fitted to 
them. 

Tha t the basic periodicity w = 2Tr/X is 
always known in advance in hydrologic time series, 
say a year or a day, facilitates the fit of significant 
harmonics of f.J. and a to the x series. These 

T T p,T 
harmonics may be fitted directly to mT and 
sT computed by Eqs. 2.1 and 2.5 respectively. This 
second approach of direct fits of periodic func­
tions f.J.r and aT to m7 and sr is discussed in 
detail in the ensuing text. The basic procedure is in 
computing the w values of a periodic parameter, in 
estimating the amplitudes and phases of various 
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harmonics, and in selecting by an appropriate 
procedure those harmonics that have amplitudes 
considered significantly greater than those of a ran­
dom process by any criterion. 

Instead of fitting a periodic function a 
7 

to the 
periodic standard deviation sT, the periodic function 
may be fit t ed to the estimated p eriodic 

varfance, s2 or s2
, as a 2

, and then aT of Eq. 
T T T 

3.8 is determined from this periodic function as 
J(i'!. This approach has an advantage that the 

T 

mean a2 of a2 or s2 is easier related to the 
X T T 

general variance of x , while a as the mean of 
p,T X 

a or s is not simply related to the general 
T T 

standard deviation, s , of x . 
X p,T 

The periodic componen t in an y 
parameter v may be approximated by m harmonics 
of its basic period w in the form 

m 
v = v + :E (A. cos X.r +B. sin X.r) , (3.9) 

T X j=J J J J J 

in which )\. = 27Tj/w is the angular (circular) 
frequency, ~ is the basic period in v, m is the 
number of harmonics inferred as significant in t he 
Fourier series mathematical description of the 
periodic parameter v, and vx is the mean of 
v fitted to the w values of the estimated v · 

T T 

values from the sample series, or it also is the mean 
Of V

7
• 

The standardization by Equation 3.1 but using 
th e mathematical models of ,1.1 and o , with a 

T T 
limited number of harmonics of Equation 3.9 as the 
fitted periodic components to m

7 
and s

7
, is 

defin ed here as the parametric method of 
standardization: 

X - f.J. y = 0 T T 
p,r aT 

(3.10) 

Because of difficulties in estimating the coef­
ficients A. and B. of Equation 3.9 directly .. frem 
the x J series,J they can be estimated from 

p,r 
the w values v 

7 
by 

2 w 2"TrjT 
Ai = w :E v cos -- (3.11) 

r=l T W 

and 
2 w 2trjT 

Bi =w :E v sin ---w- (3.1 2) 
r= 1 T 

For the last harmonic, j = w/2 for w an even 
number and j = (w-1)/2 for w an odd number, 



A 12 = A. /2, and B 2 =B.:: 0. 'Fhis is important 
w J wf: J 

in cases when all possible harmonics are computed 
(say all six harmonics of the monthly series). 

The maximum number of harmonics in this 
discrete series of w values of v .for monthly series 

T 

is m = 6, and for daily series is m = 182. How-
ever , the daily series rarely show significant 
harmonics beyond the first 6 to 12 harmonics. The 
Fourier series are rapidly convergent, with the 
amplitudes of high overtones, particularly over the 
fourth harmonic for monthly series and over the sixth 
harmonic for daily series, being small enough to be 
neglected. For daily data, this circumstance is 
significant by looking at the explained variances 
of m and s by harmonics over the fourth or the 

T T 
sixth. It is also implemented in monthly series by 
looking at the mean and the variance of residuals 
after the significant harmonics are removed. To 
illustrate this point, several cases of harmonic analysis 
were performed for monthly series by removing 
between two and six harmonics. The results of the 
differences in explained variances were often small. 
The fitted periodic functions to m and s , as 

T T 

given by Equation 3.9, are designated by Jlr 
and a , because random sampling fluctuations 

T 

in m and s are supposed to be greatly reduced, 
T T 

and left remaining inside the stochastic component. 

For the parametric me thod, Equation 3.10 is 
only approximately a standardized variable, 
because E(y ) and var y are somewhat dif-p,r p ,r 
ferent from the expected value of zero and the 
variance of unit y, respectively. To obtain a 
standardized variable in case the parametric method is 
used, a further transformation produces 

Yp,r - Jly 
€ = p,T 

(3.13) 
y 

in wh ich lly is the mean of y r (estimated 
by y ) and a is its standard deviat'ion (estimated p ,T y 
by sy ). The autocorrelation coefficients, the 
skewness and excess coefficients of distributions for 
each month or day are not affected by the trans­
formation of Equation 3.13. 

The refinement from using the variable y of 
p ,T 

Equation 3.10 and standardizing it to obtain EP by 
,T 

Equation 3.13 requires the estimates of the two new 
parameters, J1 and ay. In the case of six harmonics 
used for each J1 and a , the total number of 

T T 
param e t ers to be estimated and used in the 
standardization procedure of Equations 3.9 through 
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3 .1 3 is now 28 instead of 26. Similarly as 
for J1 and a the significant harmonics of the 

T T 
periodicity in o ther parameters may be determined, 
and equations of the type of Equation 3.9 may be 
derived. 

If one would like to preserve in E the 
general mean J1 and the general standarl'devia-

x 
tion sx of the x series, one can do so by p ,T 

(3.14) 

in which sx is different from ax with ax the mean 
of w values of s . 

T 

3.5 General Information on Testing the 

Significance of Harmonics of Periodic 
Parameters 

Assume t hat w values have been obtained for 
a parameter as a new discrete series. To fit any 
harmonic o f the angular frequency \ = 
2rrj/w, Eqs. 3.11 and 3.12 can be used to get 
the estimates of coefficients A. and B .. It is not 

J J 
necessary to compute all harmonics for large values 
of w. Experience shows that J should be not greater 
than about m ~ 6 - 12 for w = 365 of a series 
of daily values. 

The square of amplitude C. of any harmonic is 
J 

given by 2 - 2 2 (3 . 1 ~) 
Ci - Ai + Bi ;) 

and the mean square of deviations from the 
mean Jlx , as t h e var iance of that harmonic 
designated by hi, is 

C~ A~+B~ 
var hi= T "" J 

2 
1 (3.16) 

Three approaches for determining the 
significant harmonics in the periodicity of parameters 
are discussed in this paper: (1) the classical Fisher's 
approach of a process composed of the sum of a 
harmonic and a normal independent process; (2) 
approximate approaches by using either the 
frrst m harmonics until P percent of the variation 
of w values of vr about the mean v x of the 
parameter v r is explained by these first m 
harmonics, and (3) use of a special property of 
cumulative pcriodograms. The search for new 
theoretical and/or experimentally determined dis­
tributions of amplitudes of harmonics of a complex 
periodic-stochastic process is necessary in the future. 



3.6 Fisher's Approach to Testing the 
Significance of Harmonics 

The parameter that can be used in testing the 
significance of various harmonics of Eqs. 3.2 and 
3.7 is the variance of individual harmonics, ~/2, 
provided the Fourier coefficients A. and BJ J are 
estimated by Eqs. 3.4 and 3.5. If a t~st shows that a 
given c:/2 value is not greater than a critical 
~/2 value of an independent stochastic process, this 
j-th harmonic is considered insignificant. Sampling 
d istribution of the testing parameter, C~/2, is 

J 
needed. Once a given Cf/2 is found significant, the 
phase of the harmonic is estimated from the com­
puted AJ and Bi values. 

In the case where the variance cl of the x 
X p,T 

series must be estimated from the sample data, which 
is the usual case, F isher's test of significance should 
be applied [8] when Equations 3.2 and 3.7 are 
applicable. Fisher's test uses the statistic in the form 
of the ratio 

(3.17} 

for testing the significance of the harmonic with the 
largest value C

2 
of a sequence of c~ values, 

max J 2 
with m the total number of harmonics an s the 

X 

estimate of the variance o2 of the x series. 
X p,T 

For m = N/ 2 in case N is an even number 
or m = (N-1}/2 in case N is an odd number 
with N = nw the total sample size, the 
probability P that the g value of Equation 3.17 
would exceed a critical value gc is given by 

p = m{l ·gc)m-1. m~m-1} (l- 2gc)m -l + ... 

m' 
+ (- Il· l k! (m~k)! {I. kgc)m-1 , (3.18) 

in which k is the greatest integer less than 1/gc. In 
most cases, the first term on the right side of 
Equation 3.18 gives a sufficient approximation 
for gc. Fisher's test has dominated t he detection of 
significant harmonics in the cases where Equations 
3.2 and 3.7 are applicable, and the series is composed 
of a sum of the periodic and stochastic components. 
The problem in practice is reversed, with P given 
and gc computed either exactly by Equation 3.18 
or approximately by the flrst term on the right side 
of the equation. Figure 3.1 and Table 3.1 give values 
of gc of Equation 3.18 as functions of m for two 
va lues o f P , P = 0.05 and P = 0.01. If g of 
Equation 3.17 is greater than g of Equation 3.18 c 
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for given P, m, and k, the h 1 harmonic 
with em ox is significant; otherwise it is not. 

An example of applying Equation 3.7 is when 
monthly precipi tation series, for which the 
mean mT , and the standard deviation s1', may be 
considered proportional, with all x values greater 

cf ,1' 
than zero (for x = 0, is shoul be replaced, say p,1' 
by xP 1' = 0.001, so that the logarithm of x is a , p~ 

finite negative value). For simple river regimes (say 
when only rain produces runoff), the monthly runoff 
series often have m and s approximately 1' T 

proportional, with Equation 3.7 applicable. 

1.0 

0.8 

0.6 

0 .4 

P=O.OI 

o.:L:::2:o~4~o:s:o:~a~o~,o~o~'~2~o~,4~o~,s~o~,~a~om~2~oo 
Fig. 3.1 The relations of Fisher's g-critical to the 

number of possible harmonics for two given 
probability .levels, P = 0.01 and P = 0.05. 

If two or more harmonics are significant, two 
practical approaches may be used. When C2 = C2

1 max 
is found to be significant with g

1 
> gc for a selected 

probability level P (say P = 0.05 or P = 0.01 ), this 
harmonic is computed and subtracted from the 
series. Then the next highest value, C~, is tested 
but this time against 2 s~ . c~ , so that the new 
value g

2 
is 

(3.19) g2 = 
2 s2 

- C2 
X I 

Similarly for any i-th harmonic from all harmonics 
sorted in the descending order of c?, the g. value is 

J l 

c ? 
l 

(3.20} 

in which ci values in the sum are all greater than c~. 
This approach has biases. First, when a significant 
harmonic is subtracted from x of Equation 3.2 

p,1' 
or from In x of Equation 3.7, the part of 

!1T 
variance at its frequency corresponding to the ran-
dom variable E is also deducted so that the p ,1' 
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F l$1!1:1~ 1 S ~-CRITICAL VWII:S, FOR ~ Til!' TOTAL Wo1RT:R OF IIARlo'.O~ICS _., ________ 
,, . r • p • r • r • I' . 

~ 0 .05 0 .0 1 o.os 0.01 0 . OS 0 . 01 

.68l17 . 78874 20 . 27040 .32971 35 . l ?:;IJ . 21338 

. 61615 .7217!) ~I .26060 . 31783 S6 . 171~4 . 20860 

.56115 . 6644:0 , .251SS . 30683 S7 . 16754 . 20405 

8 .5156~ .61517 23 .2431 5 .29661 38 . 16400 .U~70 

9 .47749 .57:71 24 . 23SS4 -2370~ 39 . 1606~ .1~554 

10 , 4449$ .53584 25 .2280:. .:78t5l 4n . 15735 . ! ~!So 

11 .4!6SS .50357 26 .:!212:3 . 169RG 41 .1$429 .1 8776 

I~ . 39240 .47510 27 . ~1483 . 26:!.1)::; ,, 
'15132 .1 8411 

13 . 37085 .44982 28 .20883 . 25470 43 .14847 . 18060 

14 .3517:! . 42722 29 .20.)17 . 24 778 •• . 14513 . 11724 

IS . 334f> l ,40689 30 . 19784 .24 12• 45 .14310 . 174()1 

16 '31!'~:! . 388S l 31 .19280 . 23506 46 . 14057 . 17089 

17 .305:!9 .37180 32 .18803 .Z292l 47 . 13814 . 16789 

18 • 29Z6% . 35655 33 . 18351 - 2236C) 48 . 13579 .16501 

19 . 23104 . 342S7 3< .17921 .21839 49 '13353 . 16~~2 

20 . :7040 .32971 3Z . 17SU .:nas so .Ul 35 .15954 

TABLE 3.2 

FISHER'S g-CRITICAL FOR CURRE~~ HYDROLOGIC 
TIME INTERVAL DISCRETE SERI ES 

gc 
Time 

Interval · w m p = 0.05 r = 0.01 

1-day 365 182 0.04429 0.05275 

2-day 182 91 0.08002 0.09632 

7-day 52 26 0 .22131 0.26986 
14-day 26 13 0.37085 0.44982 

1-month 12 6 0 .61615 0.72179 

2-month 6 3 0. 87090 0.94226 

3-month 4 2 0.97500 0.99500 

denominators of Equations 3.19 and 3.20 are some­
what smaller than they should be, or the expected 
value of gi is somewhat gre~ter than its true mean. 
This bias may produce some significant marginal 
harmonics. Second, all hannortics that by the 
sampling variation are shown to have squares of 
amplitudes at the tails of their distributions are 
automatically accepted as significant, though they 
belong to a stationary stochastic process. On the 
other side, the significant harmonics beyond h

1 
re­

sult in a greater sample value s! of Equation 3.17 in 
comparison with a variable without periodicity, or in 
a smaller g. 

The second approach is to investigate the pro­
bability that two or more harmonics simultaneously 
have significant amplitudes. Such an approach is 
discussed by Fisher (9] for i hannonics being 
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significant at the same time, with the case of two 
harmonics (g

1 
and g2 ) shown as an example. In this 

approach, the i-th harmonic has the critical value g 
given by 

k .. 
p = .z. (-I)l-l 

j = l 

m! (1-jgc)m -1 

(m-j) !(j- i) !(i--1)T I (3.21) 

For i = I, Equation 3.21 is identical to Equation 
3.18, where k is the largest integer less than 1/g . 

c 
For i = 2, Equation 3.21 becomes 

m(m-1) [ (l -2gc)m -I (l-3gc)m -I 
P = 1! - (m -2) --,--:--

(m-2)! (1-kgc)m -1 ] 

+ · · · ± (k-2)! (m-k)! k ' (3-22) 

and similar equations for i = 3, 4, ... ,. In this case, 
the gc value for i = 1, 2, ... , may be obtained as 
soon as P is ~elected, with k the largest integer less 
than 1/gc. 

This method of testing significance of several 
hannonics simultaneously has difficulties. The critical 
values of Equation 3.21 for i = 1 and i = 2, and 
for P :;:: 0.05 and m = 20, are g 1 = 0.27046 and 

c, 
g 

2 
= 0.17599, respectively. Assume that C2 = c1 . _ 2 . _ max 

C
1 

g1ves g
1 

- 0.253 and C
2 

gtves g
2 

- 0.183. In 

this case, g1 < &c,t, 
2 

while g
12
> 8c,2 and g2 > 

gc ,2 . Should both C1 and C2 be considered as 
significant? Fisher realized this difficulty and briefly 
discusses it at the end of reference [9]. An approach 
to solving this difficulty is to select all cj values 
that produce for a given i, with j ~ i, the gi values 
that are greater than the g . values of Eq. 3.21 . 

l C, l 
However, some other C; values with j > i may also 
produce g. > g .. 

I C,l 

The first approach of using Equations 3.17 and 
3.20 is an approximate procedure, but regardless of 
the built-in biases it is simple to apply, and may 
satisfy certain needs in the analysis of hydrolo-gic 
time series with known periodicities. The case of 
Equation 3.2 is not current in hydrologic practice, 
though it is often assumed and treated as such. For 
instance, the spectral analysis of periodic-stochastic 
processes in hydrology is often performed under the 
hypothesis that Equation 3.2 is applicable. However, 
Equation 3.7 is a much more current case in 
hydrol ogy, because the assum ption 
of m and s being proportional may be close to 

T 7' 



physical reality. This circumstance is then a justifica­
tion for the analysis of In x instead of p,r 
x with all three series, xp , mr, and 

p.T' .r 
e being the positively valued quantities. In 

p ,T I . 
case any one of their values is zero, t 1e zero IS 

replaced by a very small positive value, such as 
0.001 or 0.0001 or some other similar small value. 
Because the transformation In xp,r and In ep,r 
make their distributions less skewed, or they are close 

to symmetrical distributions, Fisher's approach is 
then applicable provided that In e* is an inde­
pendent variable. This is often satisffe·J for monthly 
precipitation series, but rarely fulfilled for the 
monthly runoff series for which In e;,r is a time 
dependent random variable. By applying a proper 
dependence model to In e* , the effective sample p,r 
length Ne can be determined, and m ofEqs. 3.18, 
3.21, and 3.22 becomes now m = Ne/2, or m = 
(Ne·i)/2 depending on whether Ne is an even or 
odd number. Because Ne rarely comes out to be an 
integer when computed from the dependence model 
of In e * it should be approximated by the 

p,T ' 
nearest integer. 

3.7 Determining Significant Harmonics by 
Fisher's Test in Cases of Normal Dependent 

Stochastic Components 

Fisher's test, as described, is based on the 
distribution of the parameter g for the normal 
independent process. The hypothesis is that J.lr, the 
means along 'T positions, are a constant, or J.lr = 
J.l When a significant harmonic is found, then the 
opposite hypothesis, J.lr F J.lx, is accepted. Two 
approaches can be used in the case of normal 
dependent processes: (1) determining the effective 
sample size Ne of the dependent stochastic . com­
ponent, and the use of the same procedure as 10 the 
case of normal independent process, and (2) pro­
ducing from the dependence model a new 
variable z which is an independent stochastic 

, p ,'T' . 
component, approximately normal, and testmg the 

significant harmonics in zp,r· 

If e in Equation 3.2 or In ep* r in 
y~ . 

Equation 3.t are close to a normal dependent pro-
cess, they may be assumed to follow approximately 
the first-order linear autoregressive model. The above 
procedure of choosing an effective series length is 
then applicable. Assume in thls case that ep ,r = P· 

e + ~ ~ , in which p is the first 
p r -1 p,r 

autocorrelation coefficient of e values, so that p,r 

Equation 3.2 becomes 

X p , T = 11 T + (]X (p € p , T - I 

+ ~ ~p,T) (3.23) 

and Equation 3.7 rewritten in the form 
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In x = In 11 + (p * In e* 1 p ,r r p,r-

(3.24) 

in which p* is the first autocorrelation coefficient 
of In e* . The coefficients p or p* are estimated 

p ,T I . ffi . by the sample first serial corre atton coe tctent, 
or r * as biased or unbiased estimates. 

I 

Assuming as an approximation 
that 11 = 11 in Equation 3.23 
and In 11 ~ In 11 i~ Equation 3.24, the effective 

T X , 

sample size for the study of the mean, tn case the 
first-order autoregressive model is applicable, is 

approximately, 

N = !:!i!.:e)_ 
. e I +p 

(3.25) 

with N rounded off to the nearest integer. 
Th en m e= N /2 or m= (N -1)/2, depending on e e 
whether the rounded N is an even or an odd 

e 
number, is used in Equations 3.18, 3.21, or 3.22, 
whichever is appropriate, to compute gc for a 
given P. The g values of Equations 3.17, 3.19, and 
3.20 are computed either for xp,r of Equation 3.2 
or for 1n x of Equation 3.7, as the case may be. 

p,T h . 
If v represents the standard deviation, t e vanance, 
or ;utocorrelation coefficients, the effective sample 
size in case of the variance may be used as an 
approximation for all these parameters as 

N = N(l-pz) (3.26) 
e I +pl 

Because Ne < N, then m = Ne/2 in Equation 
3.18 means an increase of g - critical in comparison 
with m = N/2. ~ecause s: >> var vr' g1 of 
Equation 3.17 is much smaller in the case of 
using s2 than in the case of using var vr in 

X 
E q u a t i o n s 3 . 1 7 o r 3 . 20 . H ow e v e r 
because N /2 >> w/2, the critical g values of 

e 
Equations 3.18 or 3.21 are much smaller also 
if N /2 is used instead of w/2. 

e 

It is recommended for the periodic, hydrologic 
time series to use s! and m = Ne/2 if ep,r is 
dependent , and w is small (say w < 52), and to 
use var v and m = w /2 in case e r is 

T ~· independent, and w is large (say w ~ 52). As 



the ep,r components of precipitation series are 
close to being independent the use 
of var vr and m = w/2 may be applied for this 
case. 

The other approach of using z permits 
Equation 3.23 to be rewritten as 

p,r 

zp,r = Xp,T - pax € p ,r-J 

=11 +a~~ 
T X p ,1" 

(3.27) 

with z p ,r the new variable reducing the problem to 
the case of Equation 3.2. Similarly, Equation 3 .24 
gives 

z = In x - p * In e * p,r p ,r p,r 

=ln11+~~ 
T p,T (3.28) 

with z as the new variable reducing the problem p ,r 
to the case of Equation 3 .7. The variance of z is 

p,T 
then 

var z = (l- p 2
) var x + p 2 var 11.,. (3.29) 

for Equation 3. 27, and a similar equation is obtained 
in the case of Equation 3.28 with x replaced 
by In x, 11r by In 11.,. and p by p*. Starting from 
the hypothesis that 11 = 11x, then var 11r can be 
assumed to be s~/n, w ith n the numb e r 
of w periods. In this case, 

52 

var z =(I - r2
) s2 + ~ (3.30) p ,T I X n ' 

in which r 
1 

is the estimate of p or p * , and s~ is 
the estimate of var x or var (ln x) respectively for 
Equation 3.27 and Equat ion 3.28. The 
term s;/n can be neglected if r~ is not close to one. 

The procedure is as follows. The new variable z p ,-r 
is computed by Eq. 3 .27 or Eq. 3.28, with p or p* 
estimated by r1 , a by s , and e is obtained 

X X p ,T 
by the standardization e = (x - m )/s . Then p ,r p ,r r x 
C~ values are computed tor the z variable, and, 

1 p,r 
consequently, the g values of Eqs. 3.18, 3 .2 1, and 
3.22 are obtained, the corresponding gc values are 
then computed as it is done for the normal inde­
pendent process. 

In summary, the Fisher's test is carried out by 
first selecting P value in Equation 3.18, 
with gc computed for given P and m . If g com· 
puted by Equation 3.17 is smaller than this gc, the 
harmonic with C is considered as insignificant. max 
The original Fisher's table gives gc values up 
to m = 50. It is extended in Table 3.1 
to m = 182, because of the use of w = 365 for 
daily values. Table 3.2 gives the most important 
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values of w in the analysis of periodic components 
of hydrologic time series and their m and g values c 
for both P(g) = 0.05 and P(g) = 0.01 probability 
levels, computed by using only the first term on the 
right side of Equation 3 .18. If g of the harmonic 
with the largest value C2 is shown to be max 
insignificant, or g of Equation 3.17 has been shown 
to be smaller than gc of Equation 3.18 for given P 

and m, then the values 11 (of x , or In x , or 
T p,T p,T 

z ) are inferred to be nonperiodic. If C2 is p ,r max 
shown to be significant, the test is repeated for the 
harmonic with the second largest C~. and so on. 

I 
For each successive harmonic or the ranked values 
Ci~ the values g are computed by Equation 3.20. 

3.8 An Approximate Empirical Approach for 
Testing the Significance of Harmonics 

Because of difficulties in applying Fisher's test 
for inferring the significant harmonics in various 
periodic parameters under the conditions of complex 
compositions of hydrologic time series, an approxi­
mate testing method is developed in this study as an 
empirical procedure. This procedure is as follows. 

Any parameter of a hydrologic series is assu­
med to be periodic until proven that it has no 
significant harmonic, with the periodicity defined 
by the w discrete values of r, with 1 = I ,2, ... ,w. 
A periodic parameter is designated by vr and 
described mathematically by Eq. 3.9, with m 
being the number of inferred significant harmonics. 
The w values of v , as the estimates of v , have 

T T 

the variance s2 (v.,.). A total of w/2 or (w-1)/2 
harmonics, for w an even or an odd number 
respectively, can be estimated by Eqs. 3.11 and 
3.12 from the v estimates. 

T 

Because a limited number of harmonics of the 
lowest frequencies is sufficient to explain the major 
part of va r iance s2 (v.,.) of a periodic 
parameter v.,. , i:t is not necessary to always estimate 
all w/2 or (w-1)/2 harmonics. The maximum num­
ber of potential significant harmonics in a series of 
monthly values is six. It is assumed in this empirical 
procedure that only the first six harmonics of a 

periodic parameter for time series of any inter­
val .Lit < 30 days should be tested for significance. 
In other words, if all six harmonics of monthly time 
series may be found significant, only 6 harmonics also 
may be found to be significant for 15-day, 7-day, 
3-day, or 1-day time interval series. However, it 



should be expected that the population periodic func­
tions may need a larger number of harmonics for 
describing these periodicities as the time inter­
val ~t decreases. Regardless of this general expected 
pattern, the present experience in studying the 
periodicities in parameters of daily flow or daily 
precipitation series shows that several harmonics 
beyond the sixth harmonic add relatively small 
additional explanation of the variance of esti­
mated vr values. Besides, when the eventual 
significant harmonics beyond the sixth harmonic are 
not included in the mathematical model of a periodic 
parameter of Equation 3.9, they are retained in the 
stochastic component in case the periodicity 
in vr up to six significant harmonics is removed 
from the original time series. This is equivalent to 
stating that a small part of the periodic function in 
the vr values is not removed from the stochastic 
component. 

For the Fourier coefficients of the frrst six 
harmonics, estimated by Equations 3.11 and 3.12 
from w values of vr , the variances of harmonics are 
computed by Equation 3.16 as var hi' j = I ,2, ... ,6. 
The mean square deviations of the values of dis­
crete harmonic functions from the general 
mean v of a parameter v , with h. the symbol of 

X T J 
a harmonic, are called here the variances of har-
monics. The ratio 

(3.31) 

represents the part of the variation of v., which is 
explained by the j-th harmonic. The sum 
of ~p., j = 1 2, ... ,6, gives p, the part of variation 

J 
of vr which is explained by the first six harmonics. 

This empirical procedure is based on the 
selection of two critical p-valucs, Pm in, and 

P = I - p . . If p ~ p . , no significant max m1n mm 
harmonic exists in the sequence of vr values, or 
v = v is a non periodic parameter. If p . < p ~ 

; x m tn 
p m 

3 
x, all six harmonics are inferred to be signifi· 

cant. However, if p > p m 
3 
x, only some of the six 

harmonics are considered significant. The values of 
var hJ are then sorted by magnitude from the 
highest to the lowest. Only those harmonics with 
the highest var hJ are selected, which when summed 
up first exceed p . As an example, if the three max 
harmonics with highest var h. have L~PJ < Pmax' 

but the four harmonics with highest var h. have 
L~p. > p , these four harmonics are tnferred 

J max 
to be significant. 
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The general expected pattern is that p . is m1n 
dependent on the length w of the basic period (or 
on the time interval, ~t), the sample size or the num­
ber of periods in the series available (say, n years), 
and the order c of the highest moment used in the 
definition of a parameter v. This pattern serves as the 
basis for deriving an empirical expression 
fo r P min' and Pm ax = I - Pmin ' The 
greater w the larger should be Pmin in order to 
include all six harmonics in the periodic component, 
because the larger w the more pronounced should 
be the periodicity in a parameter. The larger the 
sample size or the number n of years of data the 
smoother should be vr values along r and the 
smaller will be Pm In as the critical value for the 
rejection of significance of harmonics. SimHarly, the 
higher the order of the highest moment used in the 
defmition of a parameter v, the larger is the 
sampling variation of the computed v about the 

T 

periodic function v . and the smaller should be 
T 

Pm;n· The empirical expressions of Pmin and 
Pmax are then 

and consequently 

lw 
=a v-;;;; Pmin en 

- r a rw Pmax- - v -tJi 

(3.32) 

(3.33) 

The suggested empirical constant to use 
is a = 0.033. The practical ranges of using Equations 
3.32 and 3.33 are 12 ~ w ,;;; 365, or, M = I day 
to ~t = 30 days, and I 0 .s:;; n ~ !60. This con· 
stant may be taken somewhat smaller than 0.033 if 
the periodicity of six harmonics should be retained; 
because the smaller Pmin is, and the larger Pmax is 
the chances are greater for all six hannonics to be 
significant. If the constant is taken greater than 
0.033, the rejection region p ..;; Pm in will be in­
creased, and! the region for less than six harmonics 
being significant, p > Pmax ' will also be increased. 

As ::10 example, p . = 0.10 for a= 0.033. 
m•n 

n = 40, w = 365 and c = J; Pm in = 0.07 for the 
same values of a, n, and w, <Jnd c = 2. For 
n = 160, w = 12, c = 1, and <1 = 0.033 , then 
p . = 0.009 (I percent). For a time series of mm 
160 years the periodicity in monthly means would 
be rejected only if all six monthly ll)eans <Jre nearly 
equal. For n = 10, w = 365, c = 2, and a= 0.033, 
then p . = 0.145 (14.5 percent). The chances are m•n 
much greater that the periodicity in a parameter 
based on the second order moment will be rejected, 
because the first six harmonics out of 182 possible 
harmonics would explain Jess than 14.5 percent of 



the total variation of vT. Though this empirical 
approach is based on several arbitrary decisions, it 
may be useful until good theoretical approaches, or 
experimental statistical (Monte Carlo) methods of 

testing significance of harmonics in the periodic 
parameters of complex hydrologic series are deve­
loped. 

3.9 Use of the Cumulative Periodogram and the 
Breaking Point in a Graphical Estimation 
Procedure 

Because periodicities in hydrologic time series 
are known, with no need to estimate frequencies that 
may or may not be significant, the line-spectrum 
(periodogram) is an appropriate technique in that 
case. The ratio of the cumulative variance of the 
first m harmonics in relation to the variance of 
estimates vT of a parameter vT , gives the line­
spectrum cumulative information 

m 
L var h. 

- j=l J 
Pm - var v 

T 

(3.34) 

The symbol j may refer to a sequence of harmonics 
from the smallest to the highest frequencies, 
say j = 1,2, .. . ,w/2, or (w-1) /2, so that a 
harmonic with a large amplitude may be added 
to p after a harmonic with a smaller amplitude. 
However, the harmonics may be sorted according to 
the magnitude of their amplitudes, from the largest to 
the smallest. In that case the symbol j, j = 1, 2, .. 
. ,w, or to (w-l)/2, refers to this ordered sequence 
of amplitudes. In the latter case, the cumulative sum 
has a convex upward shape. However, in the examples 
of the use of graphical estimates of significant har­
monics the first rather than the second approach is 
used. 

The graphical method is based on the concept 
that th e variation of p as a function 

m 
of m, Pm ::: f(m), is composed of the two distinct 
parts: (1) the periodic part of a fast rising of Pm 

with m, and (2) the sampling part of a slow rising 
of p with m. Two approaches are feasible. First, m 
the two parts are approximated by smooth curves 
that intersect at a point. The critical frequency of 
that point then gives the number of significant 
harmonics, which are all harmonics with lower 
frequency than this critical frequency. The second 
approach is to assume the approximate mathematical 
models of the two parts, estimate the parameters of 
these models, and find the intersection of the two 
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curves. The frequency nearest to the intersection 
point is then the critical frequency. 

In this second approach the independent 
stochastic components would produce a straight line 
part of sampling variation, while the autoregressive 
models would produce the equations of the cor­
responding cumulative curve of sampling errors. The 
change of squares of amplitude from the first to the 
sixth harmonic, for example, by fitting a one­
p arameter gamma function, w ould give an 
approximate law of the change of sequence of squares 
of amplitudes. The integral of this equation would 
produce the mathematical description of the rising 
limb due to the periodicity in a parameter v. 

Figures 3.2 and 3.3 present the above concepts 
of fitted curves graphically, or the fitted functions in 
determining the intersection point A for the critical 
frequency (fJ for a periodic-stochastic process in the 
case of an independent and a dependent stochastic 
component , respectively . The vertical posi­
tion (pm ) of the point A is determined by the 
sample size, while its horizontal position (fc) should 
be little affected by the sample size and the sampling 
variations. Difficulties arise when the point A of 
Figure 3.3 for a dependent stochastic component is in 
such a position that both fitted curves, (3) and ( 4), 
come out to be nearly one continuous curve, 
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0.60 

0 .40 

Fig. 

I 

~f 
I C 
I 
I m 

w/2 
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3.2 Separation of the cumulative relative perio­
dogram into the periodic part, both the 
observed (l) and the fitted (3), and the 
sampling variation part, also both the ob­
served (2) and the fitted ( 4), in case of an 
independent stochastic component in a 
periodic-stochastic process. 



implying that the separation of two basic parts of the 
cumulative relative periodogram becomes uncertain. 
Examples show that this case is less common in 
practice. 

1.00 

0 .80 
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or (w-1)/2 

Fig. 3.3 Separation of the cumulative relative perio­
dogram into the periodic part, observed 
(I) and fitted (3), and the sampling varia­
tion part, observed (2) and fitted ( 4), in 
case of dependent autoregressive linear sto­
chastic component of a periodic-stochastic 
part. 
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3.4 Explained variance p by m harmonics 
in five parameters of daily precipitation 
series, Fort Collins, Colorado. 

Figures 3.4 through 3.8 as examples give the 
relation of p to m for five parameters: the m 
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mean mr' the standard deviation \• and the first, 
second, and third serial correlation coefficients, 
r 

1 
, r

2 
, and r

3 
, for five discrete series: (I) the 

.T ,T ,'T 

daily precipitation at Fort Collins, Colorado, from 
1898 to 1966, or for 69 years, Figure 3.4; (2) the 
3-day precipitation at Austin, Texas, from 1898 to 
1967, or for 70 years, Figure 3.5; (3) the 7-day 
precipitation at Ames, Iowa, from 1949 to 1966, or 
for 18 years, Figure 3.6; (4) the daily discharge of th.e 
Tioga River near Erwins, New York, from 1921 to 
1960, or for 40 years, Figure 3. 7; and (5) the 3-day 
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0.50 

m 
O.OO_It-...I---L--.I.--'---L--.I.-...I---L-.1.--'----l-..!-..J 

0 I 0 20 30 40 50 60 

Fig. 3.5 Explained variance p by m harmonics in 
five parameters of 3-day precipitation series, 
Austin, Texas. 
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Fig. 3.6 Explained variance p by m harmonics in 
five parameters of 7-day precipitation serie·s, 
Ames, Iowa. 



discharge of the McKenzie River at McKenzie Bridge, 
Oregon, from I924 to 1960, or for 37 years, Figure 
3.8. The parameter m has the range m = 1 - 182 
for daily series, m = I - 60 for three-day series, 
and m = I - 26 for seven-day series. Because other 
precipitation and river gauging stations for one-day, 
three-day, and seven-day discrete ser~es show results 
which are similar to those of Figs. 3.4 through 3.8, 
the following conclusions drawn from these figures 
are generally valid. 
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Fig. 3.7 Explained variance p by m harmonics in 
five parameters of daily flow series of the 
Tioga River. 
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Fig. 3.8 Explained variance p by m harmonics in 
five parameters of 3-day flow series of the 
McKenzie River. 
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(I) The mean mr and standard devia­
tion sr for the precipitation series are periodic, with 
the Pm = f(m) curve composed of two basic parts: 
a steep rise from m = 1 to an m value of up 
to m = 6 as the periodic part, and a slow rise 
beyond that m following approximately a straight 
line as the sampling variation part with an 
independent stochastic component. The rapid rise can 
be attributed to periodicities in m or s , and the 

1' 1' 

slowly rising straight line may be considered only the 

sampling variation. The curve Pm = f(m) for 
mr is always above the corresponding curve for 
\; this difference is attributed to a larger sampling 
variation of the second moment, s2, than of the 

1' 

first moment, mr . 

(2) The three serial correlation coeffi­
cients, r

1 
, r

2 
, and r

3 
, after the periodicities 

,1" ,.,. ;r 
in the mean J,J.

1 
and in the standard devia-

tion a r are removed, show approximately the 
straight line Pm = f(m) relations that are expected 
for nonperiodic and sequentially independent 
estimates v of a parameter v. 

T 

(3) The estimated means m and the estimated 
T 

standard deviations s of one-day and three-day 
T 

series (and also of seven-day series) of the examples 
of runoff series show a sharp rise of the curve 
Pm = f(m) up to m = 3-6, and then a slow rise 
to the maximum value of m, with this upper part of 
the curve mostly convex upward. The first part of 
the p m = f ( m) curve indicates the significant 
periodicity, whereas the second part indicates 
sampling effects for a dependent stochastic com­
ponent of approximately the autoregressive type. 

( 4) Rivers with runoff predominately produced 
by rainfall demonstrate no periodicity in the serial 
correlation coefficients, as shown by Figure 3.7.. 
However, the Pm = f(m) curves do not follow 
closely the straight line from m = I on, showing 

that the sampling variation of serial correlation 
coefficients about their mean values p 

1
, p

2
, and 

p
3 

are affected by the sequential dependence in 
r

1 
, r

2 
, and r

3 
as the result of sequential 

,T ;r ,r 
dependence of the underlying stochastic component 
after the periodicities J.J.r and a 

1 
are removed. 

(5) Rivers greatly affected by snow 
accumulation and melt, or river regimes with com­
bined runoff from rainfall and snowmelt, usually 
show periodicity in serial correlation coefficients, as 
shown by Figure 3.8. All three parameters, r

1
.r' 



r2 , and r3 , exhibit the same sudden rise for 
,T ,T 

small m as d o m and s . However , 
T T 

their Pm critical intersection values are lower. 

(6) As expected, the sample size affects the 
smoothness and reliability of the Pm = f(m) curves, 
as shown in a comparison between Figure 3.6 with 18 
years of data and Figures 3.4 and 3.5 with about 70 
years of data, though Figure 3.6 refers to seven-day 
series, whereas Figure 3.4 and 3.5 refer to one-day 
and three-day series. 

(7) Precipitation discrete series with time inter­
vals as fractions of the year show clearly that their 
nonstationarity basically results from the periodicity 
in the mean and the standard deviation, while the 
nonstationarity of the corresponding discrete series of 
runoff often results from the periodicity in the serial 
correlation coefficients, and likely in periodicities of 
third and fourth order parameters. 

(8) The Pm = f(m) graphs enable an in­
vestigator to advance hypotheses about the significant 
harmonics present by finding the breaking points 
between the fast and slow rising parts of the curve. 

This graphical method, or the use of fitted 
functions of cumulative relative periodogram for its 
periodic and sampling variation parts to find the 
critical dividing frequency fc is a promising 
approach for inferring the significance of harmonics 
in periodic hydrologic parameters. The detailed treat­
ment of this method is not the subject of this paper. 

3 .10 Exp lained Variance of a Periodic­
Stochastic Process by its Components 

The simplest periodic-stochastic structure of a 
hydrologic time series is a summation of the periodic 
mean and a stochastic component given by 

x =p. + e 
p ,T T p ,T (3.35) 

in which p.T is the periodic mean at any position 
;, ; = 1,2, ... ,w, and e is a stationary stochastic p ,T 
component. It is assumed here that E(e ) = 0 and 

2 p,T 
var e = a . For the periodic mean p. Eq. 3.9 is 

p;r e. T 

appUcable with 11 replaced by p. , :tnd 11 by p. . 
T T X X 

This case is applicable when Eqs. 3.6 and 3.7 are 
applicable, so that it is warranted to start the analysis 
of explained variance by this simple case. 
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As a consequence of Equation 3.9 and 3.35, the 
property of x is p,T 

E(x P + i,T) = E(xP ,T) (3.36) 

with i an integer, for any p and ;. The variance 
of e is p,T 

E(x - p._)2 = E(e2 
) = a2 (3.37) 

P,T ~ p,r E 

fo r any r. The variance of x about the generar 
p ,T 

mean p. in case p. and e are independent is 
X T p,T 

var x = var p. + var e p,T T p,T 

= l ~ (A7 + B~ ) + a 2 
• 

2 j: l I I e 
(3.38) 

The covariance of e at any position ; is 
p,T 

COY (ep ,T' €p,T+k) = pk(e) a~ , (3.39) 

which is independent of r and is zero for a 
given k 'F 0 and for e an independent random 

p ,T 
variable ; pk(e) is a consta nt for a 
given k f 0, independent of r in case e is a p ,T 
dependent stationary random variable. The 
covariance of x has a superposition of a periodic 

p,T 
function to the correlogram of Equation 3.39. 

The portion of variance of the variable 
explained by its periodic mean JJT is 

var p.
7 =------var x m 
p,T 1+2a2/1: C~ 

e i= I 1 

X p,T 

(3.40) 

with C~ given by Equation 3.25. The complement to 
unity of the value of Equation 3.40 represents the 
portion of variance of x explained by p , T 
the e variable. p,T 

The application of Equations 3.35 and 3.40 to 
the sum of Equation 3.7 carries to bias because of the 
logarithmic transformation in passing from Equation 
3.6 to Equation 3.7. However, the concept of 
variances of a dependent variable, explained by the 
other variable, is based on a linear relation between 
all these variables. When the relation is a power func­
tion or a product of a set of variables, the log:trithmic 
transformation reduces the relation to a linear 
function. 

It may be postulated that the periodicity is 
only in the standard deviation a'~' (and consequently 
in the variance a 2 or in the co variances C ) but 

T T 

not in the mean, in autocorrelation coefficients or in 



any other parameter. This case is presented here for 
the sake of completeness. The connection between 
the periodic and stochastic components is given by 

x =a e p,T T p,T (3.41) 

in which e and a are independent, e has 
p~ T p~ 

the same stationarity properties as in Equation 3.35, 
and aT is the periodic component in the standard 
deviation. In this case vT of Equation 3.9 is replaced 
by aT, and vx by ax. 

As a consequence of Equations 3.9 and 3.41 

E(x ) = E(x ) = a E(e ) p ,T T T p ,T (3.42) 

which is zero if E(ep T) = 0 for any r. The general 
variance of x , with a and e independent, is 

p,T T p,T 

var x = var a e = var a var e p,T T p,T T p,T 

= a2 var a e T 
(3.43) 

with var aT = ~x:/2, i = I , 2, .. . ,m, and m the 
number of significant harmonics in aT. For a 
given r, var x = a2 var e , or a periodic 

p ,T T p,T 

function of r. The covariance fu.nction at a given 
r is 

(3.44) 

also a periodic function of r. The autocorrelation 
coefficients for a given r are 

a a +k cov (ep r' ep T+k) 
p (X) :::; T T , , 

k a a a 2 
r T+k e 

or they are independent of r. 

Because the logarithmic transformation gives 

In x = In a + In e (3.46) 
p,T T p,; 

provided e > 0, 
p,T 

the portion of variance of 
the periodic component is x explained by p,T 

approximately 
var (In a ) 

T e = ---,..,----~ 
o var (In x ) p,T 

(3.47) 

The most current hydrologic case is the occur­
rence of periodicity in both the mean and the 
standard deviation. There are several reasons for this 
joint occurrence, which are not discussed in this 
paper. 

The structure of a time series of the type 
x = p. + a e (3 48) p ,T T T p ,T • 
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in which Jl and a are independent of e , 
T T p,T 

with p. and a given by Equation 3.9 with the 
T T 

corresponding changes for each case, represents the 
general case of periodic mean and standard deviation. 

The variance of x is p,T 
var x = var J.J. + var a e p,T T T p,T 

+ 2 Cov (J.J. , a e ) 
T T p,T (3.49) 

For a and e independent, and e an in-r p,T p,T 
dependent stationary random variable, then 

var x = var p. + a 2 var a 
p ,T T e T (3.50) 

so that the portion of variance of x explained p,T 
by J.J.T is 

var J.J.
7 

e,.:::; var x 
p,T 

=- ---::-:------ -
1 +.a2 ~2 C~/ ~I c~ 

e i= I 1 j:::: 1 1 (3.51) 

with m1 the significant harmonics in p.
7 

and m
2 

in aT. 

To find the portion of variance explained 
by a 

7
, I - e JJ should be divided in proportion 

to var (In a ) and var (In e ), though this 
T p T 

logarithmic transformation is biased and is only an 
approximation, so that 

(1 - eJJ) var (In a
7

) e = ___ ....:._ ______ _ 

a var (In aT)+ var (In ep .r) 
' (3.52) 

and 
e = I - e - e 

E 1J a (3.53) 

with e , e and e being the portions of variance of 
JJ a " x explained by J.J. , a and e , respectively. p,T T T p,T 

The next combination of a stochastic sta­
tionary component and the periodic parameters is 
the case of periodicity in autocorrelation coef­
ficients pk(e). Assume that the pk(e) correlogram 
is given for any linear type dependence of a discrete 
time series su<:h as the first, second or higher order 
autoregressive linear models. For the m-th order 
linear model the series is 

m 
e = E a. . e . +a~ (3.54) p,T j=J J,T-J p,T·J p,T 

in which, a 1 , •• • ,a are par~eters (in general 
17' ffi,T 

either penodic functions or constants) to be 
estimated from the e series, and ~P is the p,T ,; 
independent second-order stationary random variable. 
The periodicity may be in any or all of m coef­
ficients, a

1 
, .• • ,a . For the simple case of the 

,1' m,T 



first-order autoregressive linear model, with 

€p,T:::pi,T€P,T·I +a~p,T (3.55) 

in which a 1 = p 
1 

, the parameter p is 
,T · 1 ,T 

assumed to be periodic, and a== (1-p 2 ?'. In that 
case, vr ofEq.3.~isreplacedby pl.~;rand vx by 
P e' where P" ts the mean first autocorrelation 
coefficients of w values of p 1 r. and m is the 
number of harmonics in the description of p 

hi h . I r ' 
w c IS not necessarily the same as for the ~ 
and ar series. The structure of the time series i~ 
expressed by 

x =p+a(p e +a") 
p,T T T l,T P,T· I '> p,T (3.56) 

in which J.lr' ar and p
1 

are periodic and inde-
d 

,T 

pen ent of ~ , with E(~ ) == 0 
p , T p, T ' 

var ~ r = I, and cov (~ , ~ ) == 0 for any 
p . P,T P,T+k 

k 'f U. The periodicity in p implies the 
I ,T 

periodicity in a, in order that ~ has no second-
d t . d' Th p,T or er parame er peno 1c. e composition of a series 

given by Equation 3.56 has the periodic mean, 
standard deviation and autocorrelation coefficients 
with Pk r == P~ r == f{k,7), because the peri: 
odic ?t ,; makes all Pk ,T periodic. The case of 
Equation 3.56 is a combination of an independent 
second,order standardized stationary stochastic 
variable and the periodic second-order parameters. 
The case of p1 a constant, and pk coefficients a 

,T , T 

sequence of constants, but J.1 and a periodic is 
T T 

called here the quasi second-order periodicity. 

Similarly as for Equation 3.56, the second­
order, third-order or higher-order autoregressive Unear 
models may have periodic autoregressive coefficients. 

The portions of variance of x explained P.r 
by JJ.r ' ar, aJ. r's, and a~ may be determined 

' p,'T 
as above by using the logarithmic transformation 
whenever a product of two terms is involved. 

3. II Testing The Significance o f Harmonics in 
P k . r Coefficients by the Split-Sample 
Technique 

The w autocorrelation coefficients pk , of 
€p,r' are most currently estimated by the sa~ple 

serial correlation coefficients 

n 
t (£ - t' ) (e - '{ ) p=l p,r p,r p,r•k p,r+k 

r =Fn~~------~--------------~ 
It ,r r £ (E - '( )1 ~ (e - f )1 

~= 1 P • T P , r p= I p , r T k p , r + k 

(3.57) 
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for 7 = 1, 2, .. . ,w, and k = 1, 2, 3, . . . , though 
these estimates may be biased. To test 
whether p 1 r, or its estimate r with k = 1 in 
E 

, 
3 

> l ,T 
quahon .57, is periodic or not the following pro-

cedure may be used. The series of w values r is 
split into two sub-samples: ( 1) all r ~alues 
with 7 odd numbers and (2) all r wlt'h 7 even 
numbers. l,r 

The reason for this split-sample ap;>roach is 
the dependence between the successive values 
of P l ,r introduced by the manner of computing 
them. As an example, when r 

1 
r is computed, say 

for 7 = 25th and 7 + 1 = 26th April for daily 
values, the two computed r values are dependent 

f' ' I ,T 
even lOr tndependent time series. For p of April 

> 1 T 
25, values of e for the 25th and 26th April are p ,r 
used. For p 1 r of April 26, values of e for the 
26th and 27th April are used. Because ~·r values 
of April 26 figure in both p 

1 
r values, th:/must be 

dependent. By putting every second value of p in 
the first subsarnple, and the remaining values L;r the 
second subsample, this split-sample approach avoids 
the problem of spurious correlation between the sue· 
cessive p

1 
values. However, due to the time 

,T 

dependence in e , there must also be the cor-p,r 
responding dependence in p , which is a separate 
d 

I,T 
ependence from the spurious correlation introduced. 

Similarly as for daily values, the r for the month 
f 

I~ 
o April and r l,r+ 1 for the month of May for 
monthly values are dependent because of spurious 
correlation, apart from the eventual dependence 
in Pk r resulting from the dependence in e . 

' p~ 

For each of the two subsamples of w/2 values 
if w is even, or of w/2 + I and w/2 if w is 

odd, the test of significance of harmonics is carried 
out as it was done for other parameters, and as shown 
in the previous text. If both subsamples show the 
same harmonics to be significant, those harmonics are 
considered to be significant. 

A similar test is carrie d out wheth­
er P 2 r, for k = 2 in Equation 3.5 7, is periodic or 
not. the sample of w values of r

2 
is split into 

two independent subsamples. The fi;st subsample 

contains all values 
includes the r

2 ,T 

next two deleted 

r 2 r starting with r
2 

and 
( 

,I 
va ues two at a time with the 

so that the first subsample is 
r r r r · 2 , 1 • 2,2• 2 ,s' 2 •6 • r2 •9 • r2 ,10 , .... orapproxi· 
mately w/2 + I or w/2 values, whatever comes 
out of this selection. The second subsample starts 



with r2 3 and includes the r2 ,r values two at a 
time with the next two deleted, so that the second 
subsample is r2 , 3, r2 4 , r2 ,7 , r2 ,8 , r2 ,i"' r2 ,11 , ... , 
or approximately w /2 + 1 or w/2 values. The 
tests of significance are made as described in the 
previous text, but on each of the two subsamples. 
If both subsamples show the same significant har­
monics, they are accepted as such. 

Similarly, the test whether r 3 , for k = 3 
,T 

in Eq. 3.57, is periodic or not can be performed. The 
w values of r3 are split into two subsamples. The 

,T 

first subsampfe starts with r 3,
1 

, and takes three 
consecutive values of rk at a time with the next 

,T 

three deleted, or it is r3,1 , r3 ,2 , r 3,3, r 3 ,7 , r3.8 , 

r3.9 , r3 ,13,... . The second subsample starts with 
r 

3 4 
and uses the remaining part o f the series, as 

r3:4' r3,S' r3,6' r3 J O' r3,11 ' r3 ,12' r3,16''" · The 
test is made on each of the two subsamples, whether 
or not both have the same significant harmonics. 

The above procedure of testing the significance 
of harmonics in p

1 
, p

2 
and p

3 
by the split-

,'T ,T ,T 
sample technique can be generalized to any 
parameter pk 

7
. For a given k there are two split 

samples, the first subsample consisting of k values 
in sequence, while the next k values are a part of the 
second subsample, alternating until all w values are 
used. 

In the case of tests of harmonics in p 1 , 
,T 

p
2 

, ... ,pk with the two subsamples, the criterion ;r ,T 

used is that both subsamples should have the same 
harmonic significant to be accepted as such. This is a 
somewhat stronger criterion for accepting a har­
monic as significant than if it is shown as such only 
in one subsample. Regardless of this, the approach 
of both subsamples showing a harmonic to be signi­
ficant should be used as a stronger test. 

3.12 Periodicity In Parameters Which are 

Functions of Higher Order Moments 

The independent components ~ may not be p,r 
the third~r higher-order stationary, though they are 
the second~rder stationary. If ~ is normally dis-

p,T 
tributed the second-order stationarity implies also the 
higher-order stationarity. The ~ distribution 

p,T 
must be either skewed and/or non-normal sym-
metrical to have periodicities in the third, fourth or 
other higher order moments, or in the parameters 
derived from these moments. Assuming that ~ is 

p,T 
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an independent but non-normal random variable, the 
skewness and excess coefficients may be periodic. 

To have the skewness coefficient of ~ vary p ,7' 
with T independently of E(~ ) and var ~ , the 
probability distribution functi6~s with thre~'para­
meters must be used for ~ . Assume that ~ is 

p,T p T 
an independent random variable, with cov (~ , 

p 7' 
~P ,7'+k) = 0 for all k :f= 0. If it is the second-order 
stationary variable, the mean and variance of ~ p ,r 
are comtants independent of r. 

The two-parameter lognormal distribution wit!h 
the mean p.

0 
and the variance a~ of logarithms 

of ~ has the skewness coefficient 

(3.58) 

with p.t the mean, and at the standard deviation of 
~ , with ~" also a constant. Only the three-

p ,7' s: 
parameter lognormal distribution enables the mean 
and the standard deviation to be constants and 
independent of 7 but the skewness coefficient 
~t to be either a constant or to vary with r as 
required by th e definition of the third~rder non­
stationarity in the skewness coefficient. The lower 
boundary r of the three-parameter lognormal dis· 
tribution must change with 7 in order that 
~t changes with r }Vhile p.~ and at are kept 
constants for any 7 . If p.t in Equation 3.58 is 
replaced by (IJ.~ - r ), and the periodic parameters 
are ~t and r designated by {3

7 
and r

7
, then 

Equation 3.58 gives 

{3
7 

(P. ~ - 'Y 
7

)
3 

- 3a E (p.t - 'Y 7 )
2 =a~ (3.59) 

If ~7 is periodic, while the mean p.t and the 
standard deviation at are constants independent o f 
T, then r 7' is also periodic. The three-paramet,er 
lognormal distribution of ~ is then P,T 

e ( ln(E--r )-1' 1 2 /2u 2 
.,. n n , 

(3.60) 
in which 

(3.6 1) 

and 

a 2 = In [1 + a~ J 
n . (p. t - 'YT ) 2 

(3.62) 



Therefore, Equation 3.59 gives 'Y7 for any ~7 , and 
Equations 3.61 and 3.62 enable the computations 
of 1J. and a of Equation 3.59 for a given value n n 
of 'Y 

7
• In other words, if the three-parameter 

lognormal distribution is used for the distribution 
of ~ , it is an independent and second-order p ,T 
stationary random variable, while the third-order non-
stationarity in the skewness coefficient /1

7 
may be 

accomplished only for the lower boundary 'Y
7 

being 
a periodic parameter. No te that in this case, !J.

0 
the 

mean of logarithms of ~ , and a2 the variance of p ,-r n 
logarithms of ~ , are also periodic, while /J.~ the 

2 p,T ' 
mean and at the variance of ~ are constants 
independent of r. If 'Y

7 
is signWl~antly different 

from a constant 'Y, then ~ has the three-p ,-r 
parameter lognormal distribution of Equation 3.60, 
with periodic parameters /J.n' an, and 'Y

7
. 

I f t h e gamma distr ibut ion is used 
fo r ~ , with E( ~ ) = 1-1~ and var ~ • = 

2 p,T p ,T ' p,, 
qt as constants independent of r, then 

(3.63) 
and 

(3.64) 

in which a > 0 is the shape parameter, fj > 0 is 
the scale parameter, and 'Y is the lower boundary. 
From Equations 3.63 and 3.64 then 

a = (/J. ~ a-t 'Y -r) 2 (3.65 ) 

and the skewness coefficient is 

so that 

2 2aE 

gT = ..;a = /J. ( - 'Y T 

2at 
'YT = /J.t- g 

T 

(3.66) 

(3.67) 

in which g
7 

is the periodic skewness. coefficient. In 
order to have a gamma distribution of ~ , with p,T 
J.Lt and a~ constants independent of r, the three-
parameter gamma distribution must be used so that 
the skewness coefficient g

7 
may be periodic. This 

is equivalent of having the lower boundary 'Y
1 

of 
this distribution periodic. The three-parameter 
gamma distribution of ~ is p,T 

a-1 (~·'Yr\ 
I (~. 'Y ) . T J rcn = 7fl1Ci) + e ' (3 .68) 

in which a is given by Equation 3.65, ~ by 
Equations 3.64 and 3.65, and 'Y7 by Equation 3.67 
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as a function of g . For g a function of r, 'Y. is 
T T , 

also a function of r. 

As ~ in the above two cases of three-
parameter Pdistributions is not assumed to be a 
positively-valued random variable, then the lower 
boundaries are either positive or negative constants or 
they are periodic. If fj or consequently 'Y for the 

T T 

lognormal distribution, or g
7 

or consequently 'Y 
7 

for the gamma distribution, are periodic, then Eq. 
3.9 is valid with 11

7 
replaced by "(

1
, and "x by 'Yt 

the means of lower boundaries respectively for the 
lognormal and gamma three-parameter distributions. 
Once ~ and the corresponding 'Y , or g and the 

T T T 

corresponding 'Y , are inferred to be periodic. and 
T 

the Fourier coefficients of Eq. 3.9 for 'Y 
7 

estimated 
the distribution of ~ may be simply reduced to p,r 
the stationarity in the skewness coefficient by the 
transformation 0 = ~ • 'Y . The algebraic p ,T p T T 

equation which connects the periodic parameters 
and stochastic component , in the case of the first 
order autoregressive linear model for E with p,r 
p 1 ,r = p

1
, becomes 

X = 1J. + a [P E p,T T T T p,T · l 

+ ~ (8 ·'Y )] 
T p ,T 1 

(3.69) 

with 0 a random variable, with. either the two-
p,-r 

parameter lognormal or the two-parameter gamma 
distribution, which is second-order stationary but also 
stationary in the skewness coefficient. 

A further analysis of the third-order station­

arity is using the cross-product C(~p,r' ~J.>.r+t, 
~ ) or the similar third-order moments, m the 
'iip,r+2 ' 
form of 

cr,r+J,r+2 

n w 
~ ~ (~p.r."fp,r) 

p= 1 r= I 
=-nw 

(3.70) 

and testing whether the w values of this cross­
product are periodic or not. In Equation 3.70 the lags 
are k

1 
= 1 and k

2 
= 2 in the simple form of the 

t h ird-Order CrOSS·pfOd UCt cT,T + k),r + k2 

(~ , ~ k , ~ k ). If the cross-product of p,r p,r+ 
1 

p.r ~ 
2 

Equation 3.70 shows no significant harmonic, it is 
expected that the covarianccs of other values of 
k

1 
:md k

2 
will not be periodic either. 



C h apter 4 

TESTING PARAMETERS FOR NOT BEING SIGNIFICANTLY DIFFERENT FROM CONSTANTS 

The analysis given in the previous chapter was 
based on the hypothesis that each parameter over the 
r positions of the basic period w of a series is 

periodic until proven that it is not. Therefore, 
periodicity is assumed to be nearly always present in 
the basic parameters. This hypothesis results mainly 
from the complexity of runoff time series. It may be 
rightfully claimed that the river flow time series 
belong to the most complex time series of geophysics, 
and that fact is the reason for various techniques 
available at present for the analysis of streamflow 
time series. The more complex a geophysical process, 
the more varied are the approaches used and the 
techniques available for its analysis. 

The economy in the number of parameters and 
coefficie nts necessary to be estimated in the 
m athematical description of a hydrologic time 
process requires another approach, namely, the 

· hypothesis that the variation of some parameters 
along the T positions is not significantly different 
from a constant. This assumes a priori the hypothesis 
of bo th the nonperiodicity and the constancy of a 
parameter. The tests of this type of hypotheses are 
different than in the previous chapter. They are 
outlined for some parameters in this chapter. 

The pro portionality of s and m , o r the con-
., T 

stant value of the coefficient of variation , is one of 
these tests. The constant values of rk , the auto· 

,T 

corre Ia tion coefficients of the e series, is 
another. The identically distributed {'., variables at 

p ,T 
all T positions, with the skewness and excess coef-
ficients being constants independent of 1, is still 
another type of test, and so on. 

4 .1 Properties of the Coefficient of Variation 

Along the Positions of the Basic Period 

Th e general coefficient of variation of 
the x variable is defined as the ratio of its general 
standa';d de viation o(x ) and its general p ,T 
me an J..L ( x ) , est i m a ted b y s(x

1
, .,) 

p ' T i 
and :R:(x ) of the available x series. This va ue 

p~ p~ 

of the coefficient of variation is only approximately 
the ratio a /JJ. with o and J..L given as the 

X X X X 

averages of s and m , the periodic standard 
T T 

deviation and mean, respectively. Because of these 
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periodicities in s and m the coefficient of 
T T 

variation at each position T is estimated by 

(4.1) 

with Vr a function of 1 and 1 = l , 2, . .. ,w. This 
new series may not be periodic in many hyrologic 
time series. 

The first approach in testing this hypoth esis 
may be to use the methods described in Chapter 3, or 
by estimating Ci coefficients of a number of 
harmonics, say for the six harmonics of mont hly 
values and for up to about first 12 harmonics of daily 
values. If the tests show that V r is not a periodic 
parameter, an economy in estimated parameters is 
accomplished. This means that the significant 
harmonics in o., and J..Lr have the same frequencies 
and phases. and proportio nal amplitudes. If V., dloes 
not show any significant harmonic it does not imply 
that the V., series is independent. 

Instead of using the test with the hypothesis of 
periodicity, two other tests may be used to ascertain 
whether w values of V are or are not independent 

T 

in sequence, and are or are not significantly 
different-on a prescribed probability level-from a 
constant V, as the average of w values of V.,. The 
o th er a l ternat iv e is t o use V of the 

entire xp. r series given by 

s(x ) v = p.T 
x(x ) p ,r 

(4.2) 

Usually V and V are not equal though they 
are close values. The value of Equation 4.2 is hjghly 
affected by various biases, sampling or otherwise. 

To perform the test whether w values 
of V r are or are not significantly different from a 
constant, V, the di stribut ion of w val ues 
of V.,, each computed for n years of observations, 
is assumed to be approximately normal with the 
mean V and the standard deviation of V given 

T 

as sv' estimated by ~. and s; as an approxi­
mation given by [ 10, p. 358] 

s2 = J..L2(J..L4·J..L;) - 4J..LJ..L2J.I.J + 4J..L~ (4.3) 

v 4J..L4J..L2n 



in which p is the mean, and p
2

, p 3 and p
4 

are 
the central moments of the variable for the sample 
s i z e o f n y e a r s . T o e s t i­
rnate p

2
, p

3 
and p4 , the xp,T series is first trans­

formed to a new variable by 

: [X p , T - (JJ T ·J.l X)] S X 
z p,T aT 

(4.4) 

thus removing the harmo nics i n mT and 
sT, where /JT is the fitted equation for the periodic 
mean mT, p.x is the mean of mT and x ,T' aT is 
the fitted equation for the periodic stanSard devia­
tion s , and s is the standard deviation of x . T X p,T 
The difference (p. - p. ) and the ratio s /a are 

T X X T 

used here to obtain the z series without the 
periodicities in the mean and'the standard deviation, 
with the mean of p and the standard deviation of 

X 

about sx. The mean p.z and the standard devia-
tion sz may not be exactly equal to px and sx, be­
cause aT is the fitted function to the periodic 
standard d eviation by a selected number of 
harmonics, which function does not pass exactly 
through a ll values of sT. However, differences 
between p

2 
and p.x, and s

1 
and sx are expected 

to be small for the majority of time series analyzed. 
For the hypothesis of sT and mT proportional, this 
should be reflected in the estimated significant 
harmoriics in both JJT and aT. 

Estimates of p(z ) and of the cent ral 
f' •T 

moments p
2
(z ), p3~z ), and p4 (z ) are p,T I_) ,T p,T 

obtained from the entire senes, N = nw values, of 
the z variable. This should give some reliability p,T 
to the above estimates of second, third and fourth 
central moments, provided there are no significant 
sampling biases. The underlying hypothesis is that the 

zP T series has the same population value of V T 
independent of r. Then estimates of moments in 
Equation 4.3 are 

, n w . 
J.l (z ) = _,_ :E :E (z - J.l r 

i p ,T nw p=t r=l p,T z 
, (4.5) 

with i = 2, 3, and 4. The estimate of sv from 
Equation 4.3 by using pi's of Equation 4.5, together 
with V = s I m , gives the two parameters of the 

1 1. z 
normal distribution of VT, N[V z' sv]. 

The x2 test may be performed by comparing 
this theoretical normal distribution with w values 

of V computed for the z series for r = 
T 

1 
p,T 

1,2, ... ,w over n year. If x statistic comes out to 
be smaller than a prescribed value x: for a selected 
probability level, the V values are considered as 

T 
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not being significantly different from a constant. 
The reason that V of z should be tested for 

T p T 

not being significantly ditterent from the mean 

Vz, and not VT of xp ,T from Vx, is the fact that 
x is periodic, while z has at least the major 
p ~ p~ 

periodicities in mT and sT removed. The random 
variations t.. - m ) and (a - s ) are preserved in 

\)""T T T T 

z and carried over to the new values m (z ) 
p~ T p~ 

and s (z ). Because z may be dependent in 
T p~ p~ 

sequence, the V T values are then also dependent in 
sequence. The effect of this dependence .nay be 
taken into account by computing the effective size 
we and using it in tests instead of w, provided the 
model of dependence in V T is simple. 

For the z distribution close to normal, pr 
Equation 4.3 may be approximated by 

n2 /J2 
ns2 =y(l+2JI'), (4.6} 

with p. = JJ.z, and both p
2 

and Pz estimated 
from nw values of z p,T 

This result of V being not significantly dif-
T 

ferent from a constant implies that mT and sr are 
proportional , with the corre lation coeffi­
cient p(m ,s ) estimated from the w concurrent 

T T 
values of m and s by r(m , s ), measuring this 

T T T T 
proportionality. It is then expected that 

s = V m 
T l T (4.7} 

or with E(sT/mT) = v't. However, the relation 
between s and m may be more complex, and if 

T T 
linear, then it is 

s = A+V m +<P 
T 7. T T (4.8) 

with <P the residuals. Equations 4.7 and 4.8 mean 
T 

that the corresponding Fourier coefficients Ai and 
B. of p and a of the x variable arc either 

J T T p,T 
approximately proportional, or are simply related. 
If A is close to zero and <PT has a small variance, or 
both are not significantly different from zero, then all 

coefficients A. and B. arc proportional. The study 
J J 

of relations between s and m in hydrologic series 
T T 

represents a topic of high interest in the future 
efforts for a better structural analysis of hydrologic 
time series. 

It can often occur in hydrology that the 
sequence of w values of VT is not statistically 
distinguishable from a constant value V . However, 



the variance of V., along the T positions may 
change significantly from season to season. In this 
case a test, say by the split-sample technique, may be 
performed to determine whether the variance 
of V., is independent of the 1" . position. The 
practical approach would be to divide the w values 
of V., into 2-4 sections, say be seasons, and test their 
means or variances for equality. The division by 
seasons should follow approximately the physical 
seasonal variations, say the changes in the type and 
origin of precipitation, snow accumulation and 
melting, or rain-producing runoff, with transitions 
between these typical season, or by similar criteria. 

4.2 Properties of Autocorrelation Coefficients 
of the e Series p,T 

The tests of the hypothesis that the r k ·" 
autocorrelation coefficients along the T positions 
are not significantly different from constants, require 
the distributions of sample serial correlation coef­
ficients, both for the dependent and independent 
e series. These distributions are available for p ,r 

independent series, as well as for series with simple 
dependence models [2,4]. The split-sample tech­
niques, as described in the previous chapter, should 
be used to avoid the spurious correlation. In the 
case of dependent e series, two approaches are 
feasible: first, by whlte'"ning e and investigating p,r 
rk,-r of the inferred independent component ~11 ,,., 
with the use of sampling distributions of rk for 
independent series; and second, by using the avail­
able sampling distributions of r k of dependent 
e processes in cases these distributions are p,T 
available. The use of the effective period length 
we instead of w in a case of dependent series 
may be also a simplified approach convenient for 
the use. 

4.3 Properties of Skewness Coefficient of 
Independent Stochastic and Second-order 
Stationary Components 

The skewness coefficient computed along 
the T positions, T = 1, 2, . . . ,w, as a dimension­
less parameter, is defined by 

(3,. = ( p. )3 12 
T 2 

(4.9) 

in which ,.P.2 and ,.P.3 are the second and the third 
central moment at each position T of the in­
dependent second-order stationary series ~ . For 

p,T 
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small n (the number of years) the unbiased estimates 
of (3,. are [10,357] 

nz P. 
~ T 3 (4.]0) 
(j,. = (n -1 )(n-2),.~ 

2 

3 72 

in which ,.f12 is the unbiased estimate of the second 
central moment and ,.P.3 is the biased third moment. 
Along the positions r there is a series of w values 
of ~,.. and ~~ is the mean of P,.. 

By using Equation 3.9 with v and v re-
~ A T X 

placed by 13 and 13~, and Equation 3.11 and 3.12 
T < it " 

with (v,. · vx) replacedby(f.l., · Pt )' theestimates 
of m pairs of Fourier coefficients (A.,B.) are 

J J 
obtained, and the tests for significant harmonics in 
the hypothesized periodicity may then be performed 
as described in Chapter 2. For the hypothesis that 
the P is not periodic, for no significant periodicity ,. ... 
found in {3,., or for the inferred periodic component 
removed with the remaining w values being 8 = 
" T 
(3 - 13 , where (3 is the fitted periodic function 

; ,..T ; 

then p or the () residuals may be tested for not 
T T 

being significantly different from a constant. A new 
variable u may be obtained similarly as it was p,T 
done with z of Equation 4.4, so that the dif-p,; A 

ferences between the series (3 and the fitted ,. 
periodic function 13,. carried along into the 
u variable. p,T 

" For the hypothesis of 13., not being different 
from a constant and if the variable ~ is approxi-p,r 
mately normal, then 

var p = 6n(n-l) 
(n-2)(n+ I )(n+3) ( 4.11) 

If ~ is sufficiently skewed and also a p,r A 

dependent variable, the approximation of var (3 by 
Equation 4.11 may contain a substantial error. The 
average skewness coefficient P~ of ~ may be very 

< p ,T 
large for daily river flows, sometimes of the order of 
3 .00 - 4.00, and § may fluctuate in large limits 

" T h 
about (3t. A good approximation of var f.l is given 
by [10]: 

4p.; n var 13 = 4p.;p. 6 - 12p. 2 p. 3 p. 5 - 24p.~JJ.4 + 

(4.I2) 

Equation 4.12 requires the estimation of five 
central moments, p.i' with i = 2, 3, 4, 5, and 6. 
They arc estimated from the sample of size 
N = nw of ~ . In a case of monthly flows N = p,r 
l2n, and for daily flow N = 365n, where n is 
the number of years. For daily ser i es 



of n = 50, N = 18, 250, so that even p.
5 

and p.6 may be considered reasonably accurate, pro­
vided no biases, sampling or otherwise, are present in 
extreme values because these biases influence dis­
proportionately the values of high central sample 
moments. 

To test whether the Pr series is significantly 
different from (3 , or whether the remain-

" T 
ing 8 series, after the periodic (3 is removed, is 

T T ,.. A. 

significantly different from zero, (3 o r 8 are 
T T 

assumed to be normally distributed, 

N[(J~,(varP)Y. ] , or N(O,(var9)Y.]. The x2 test 
may be used in this case with w values of 
tfr or 9r. 

If P or 0 are autocorrelated along w val-r r 
ues, with p their first autocorrelation coefficient, 
then for the test the effective length (in case the 
first-order autoregressive linear model for this 
dependence is a good approximation) is 

w =(I -p)w (4.13) 
e 1 +p 

and for the variance this effective length is 

w =(l-p2)w 
e 1 +p 2 (4.14) 

so that in the X2 tests we replaces w. 

For the two-parameter lognormal distribution 
fitted to ~ , the following analysis mav help to 

p~ ~ ... 
make inference about the properties of (3 or ·8 . 

T T 
For a two-parameter lognormal distribution fitted 

to ~p,r' A(p.n' an), where J.l.n and an are the 
mean and the standard deviation of logarithms 
of ~ r' the coefficient of variation 71 is given for 
this distribution by 2 o ~ 

11 = e - 1 . 

The skewness coefficient (3 is then a function 
only of 1'/, 

(4.15) 

The main bias in (3 may come from the unrepre­
sentative extremes which highly affect the estimates 
of a . n 

Moments of the two-parameter lognormal pro­
bability function about the origin are 

iJ.I + _21 j 2 o 2n 

m. = e n 
J 

(4.16) 

Equation 4.12 requires estimates of 112, 11
3

, 

J.1.4 , JJ. 5 , and p.
6

• The second central moment is 
J.1.

2 
= JJ.2 1'/2 , with J.1. the mean of ~ . By denoting p,r 
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1 + 112 as v, then J.1. = p.2 (v-1). Terms J.1. fp. , 
I s /2 ~ 4 2 

J.15 J.1.2 , and J.16 /p. 2 are obtained by using 
moments about the origin of Eq. 4.16. 

114 1 = (v6 
- 4v3 + 6v- 3) (4.17) 

J.l~ (v-1)2 

J.l.s 1 
-- = --(v1 0

- 5v6 + I0v3
- !Ov + 4) 

11 s12 (v-1)s 
2 (4.18) 

and 

+ 15v6 -20v3 + lSv-5) 

The condition is 1(31 =;;;; ~ 

( 4.19) 

Daily flows have (Jt which are not much 
greater than 4.00 (in a case of 15 daily flow series 
only one station had (Jt = 4.082). The case 
of (3~ = 4.00 and n = 40 is shown here as an 
example for the application of Equations 4 .12 and 
4.17 through 4.19 . In this 
case 11 = 1, r/ = 1, and v = 2, so that 11

4
/ 

J.l; = 41, p.5 /JJ.2 
5 12 = 768, and p.6fp.~ = 27,449. 

This gives var (3 = 493, or the standard devia­
tion sfJ = 22.1. It is evident from this computation 
that either the approximation of Equation 4.12 is 
very poor in the case (3 = 4.00, or the two­
parameter lognormal function is not applicable for 
high skewness values, or the variation of (3 is really 
large in this case of high skewness of lognonnal dis­
tributions. If Equation 4.11 is used for var ff instead 
of Equation 4.12, it gives for n = 40 the val­
ue var (3 = 0. J 40, or s = 0.374. This is a very 
small value valid only fPor ~E = 0 and the normal 
variable ~ . p ,T 

4 .4 R e la tio nships Between the Skewness 

Coefficient and the Coefficient of Variation 

A simple linear correlation analysis may be 
ap plied between (Jr (the skewness coefficient) 
and 11r (the coefficient of variation) if both come 
out to be close to constants by various tests. In this 
case, the rat io (3 

T 
a = - (4.20) 

T 1'/T 

may be not statistically distinguishable from a con­
stant even if 11 and (3 are different from con-r r 
stants. Then r(ftr,T'/r), the correlation coefficient 
between (Jr and 1'/r' and the simple regression 
equation (3 = a

1 
+ a

2 
11 + e. may be used, and 

T T I 

the corresponding tests perfonned that a 1 may be 



close to zero , and that e; has a very small variance, 
so that Equation 4 .20 may b e applicable, 
with a2 being the mean of ar. This approach may 
also make economy in the number of parameters 
necessary to estimate in the structural analysis of 
time series. 

4.5 Properties of the Excess Coefficient of 
Independent Stochastic Component 

The excess coefficient along the ; posi-
t ions, ; = I, 2, . . .,w, as a dimensionless 
parameter, is defined by 

;J.l4 
"f = -;;-r - 3 (4.21) 

r rl12 

in which r112 and r114 are the second and fourth 
central moments of ~ , t o be estimated by the cor-p ,r 
responding sample central moments. 

The unbiased estimate of "f 
1 

for n 
[lO,p. 357} 

n2 (n+l).,JJ. 4 - 3n 2 (n-l)rp~ 
"f r = (n-J )(n-2)(n -3).,11 ~ 

years is 

• (4.22) 

where p.4 is estimated by the biased sample fourth 
T A 

central moment, and .,11
2 

by the unbiased sample 
central second moment. 

For ~P ,r normally distributed, the variance 
of .Y is[JO, p. 357] 
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,.. _ 24n(n· lr 
var "f - (n-3)( n-2)(n+ )(n+5) (4.23) 

However, as ~ is often highly skewed (and may be 
also autocorrefaled), then [ I 0, p. 387} 

n11~ var r = 11~11 8 • 4112 11411 6 • 8JJ. ~JJ. 3 11 5 
+ 411 ! -11~1J.! + J 6JJ.211~114 + 16JliJ1~ . (4.24) 

Central moments J.lp i = 2, 3, 4, S, 6, and 8 must be 
estimated from the sample. If daily flows are 
used, N = nw = 365n, so that there still may be 
feasible to estimate even the eighth moment from the 
data, provided the original data is not very biased at 
its extremes. Then .Y may be tested by 

2 T " the x statistic, w ith "f normally distri-
" 'h T buted, N[yt,(var 'Y) ·], whether they are or are not 

significantly different from the mean excess coef­
ficient, 'Y t. 

The analysis of whether the skewness and 
kurtosis or excess coefficients are or are not different 
from a constant, if the periodicity w is present in 
the mean and standard deviation, may be based on a 
regional approach for some variables. By properly 
using all ~ series of a region, a large amount of 

p ,T 
data may permit the reliable estimates of most of 
moments in equations for the variances of estimates 
of these coefficients. 



Chapter 5 

DEPENDENCE MODELS OF STOCHASTIC COMPONENTS 

Many hydrologic variables have stochastic 
components which are dependent . time series. The 
analysis of this dependence, with the proper inference 
about dependence models is the subject of this 
chapter. Though the autoregressive coefficients may 
be periodic, or even the higher-order parameters may 
be periodic, this chapter is related to the dependence 
models of stochastic part after the periodicities in the 
mean and standard deviation are removed. 

5.1 Investigation of Dependence Models 

Previous studies [3,4 ,5 ) have shown that the 
variable e r' obtained by removing the periodicity 
in the me:n and standard deviation, is only approxi­
mately a second-order stationary dependent or 
independent time series. The dependence can be 
often approximated by the first-, second-, third-, or 
higher-order autoregressive linear models. Higher­
order models beyond the third show a significant 
advantage in comparison with the fnst three models 
only when · the series are sufficiently long. Physical 
explanations exist for the use of autoregressive 
models in hydrology [2] , though other ideas exist on 
this topic among hydrologists. Short hydrologic series 
rarely justify an investigation of higher-order auto­
regressive linear models though they may be indicated 
by physical processes. Linear models seem suf­
ficiently accurate for practical purposes, though the 
real physical stochastic models may be nonlinear. 

The general m-th order autoregressive linear 
model is 

m 
e = E a: . e . + a ~ (S I) 

p,T j=J J,T p,T•J p,T • 

with a. the autoregressive coefficients, either 
J,T . d' periodic as a. or nonper10 tc as con-

l•T d . d' stants a., and o JS a standard eviation, peno tC or 
J 

nonperiodic, which enables ~ to be a second· p,T 
order stationary and s tandard (0, 1) random 
independent variable if e is a standard random 

p ,T 
but dependent variable. 

The value of a is 

a= [1 -~ a~ 
j= I j , T 

- Y, 

- 2 E a. a k P I k] i>k I , T ,T • (5.2) 
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If e is a st andard variable (0,1 ), then o is 
p,T 

Periodic as soon as any value a. , i = 1 ,2, ... ,m, 
),T , 

is periodic. 

Parameters of the linear dependence models are 
either periodic or nonperiodic. These two alternatives 
are discussed as two separate cases. 

5.2 Case of Nonperiodic Autocorrelation 
Coefficients 

If tests show that rk is not significantly dif-,r 
ferent from a constant independent of T for a 
given k , equivalent to tests rejecting the hypothesis 
of periodicity in the autocorrelation coefficients, two 
alternatives in estimating the autocorrelation coef­
ficients in the selected models and in computing 
the ~ series may come into consideration: (a) the 
use oT'p

1
, p

2
, and p

3 
(or pk in general) as the 

means of w values of ri,T' r2 ,T and r3 ,T (or 
of r k r in general); and (b) the use of the val-
ues p' , p , and p

3 
(or pk in general) of the 

1 ,e 2 ,e ,e ,I! . d 
overall corre logr am of e , est1mate p,r 
by r , r , and r (or rk m general) from l ,e 2 ,e 3 ,e- ,e . 
the data of the available sample of the e vanable. p,T 

This latter case neglects the positions r = I ,2, ... ,w 
inside the ye3I, and e is treated as a stationary p,T 
series, e., i = 1 ,2, ... ,N, with N = nw. 

I 

Computa tions show that the means 
of w values of rk T' designated h ere 
as p 1, p

2
, p

3 
.•.. . , pk,' are often significantly 

greater or smaller than the corresponding values 
r , r , r

3 
, .• , rk of the overall eP r cor-

J ,f 2 ,e ,e ,f , 

relogram. This difference may be due to one or bo th 
of the follo wi:ng two factors, namel y 
that r underestimates p, more or Jess 

1 ,1! . d 
than p

1 
does, or that the nonstationanty an 

sampling biases in e make pk, as the mean of p,T 
w values of r k r, greater or smaller than r k e. 
Whether one or the other alternative is used for the 
dependence m odel and for the computation 
of ~ from e depends on the character of 

p,T f?tT f 
the e r series. 1 p 

1
, p

2
, p3" .. ,pk sequence o 

the Jean autocorrelation coefficients is used, then 
the pk values of the computed autocorrelation coef­
ficient of the independent ~ variable should p T 

oscillate around the expected viilues E(pk ,T) = 0 
for k > 0. In that case, the values rk.~ of the 



general correlogram of ~ or the values vf of the p,r 
variance density spectrum of the com-
puted ~ may show some deviations p,r 
from E(r k) = 0 for k > 0, or from E(vf) = 
2, for 0 .s;;;; f .s;;;; 0.50 , for the correlogram and the 
spectrum of an independent and standardized time 
series, respectively. 

It can be shown tha t a stationary 
series e would produce a stationary ~ if the pr p~ 

proper dependence model for e is used, and 
p,T 

that E{pk) = E(rk.~) = the population value of 
that correlation coefficient, with pk the mean 
of w values of rk of the ~ series. Therefore, 
biases in estimates ·~nd biases fnr the series (sampling 
or otherwise) are factors which make differences 
between pk and rk.~ ' besides the effects of the 
basic remaining nonstationarity in the de-
rived ~ series. Besides, the skewness of ~ as 

p~ p~ 

well as nonstationarity of the higher-order moments 
or parameters may account for part of the differences 

between pk and rk ,e" 

5.3 Selection of Mathematical Dependence Model 
of Stochastic Components for Constant 
Autocorrelation Coefficients 

The technique of statistical tests for fitting the 
autoregressive linear models is given for large samples 
by Quenouille [ 11] . This technique is a l<iborious 
method of computing two sets of constants and a test 
parameter, which require more computer time than 
the simplified method proposed in this text. As the 
structural analysis and the sample size limit the order 
of linear models, or presume that data available do 
not justify the use of the higher-order models, a 
simplified, practical method is considered here as a 
feasible approach. 

Another approach is by whitening the series or 
by assuming a model of the autoregressive linear type, 
by estimating its parameters and by computing the 
presumed independent ~ r component. Then 
~ is tested for independen"c'e. If this hypothesis is 
agc;pted, the hypothesis of the model fitting well the 
time dependence is also accepted. This approach does 
not compare the various models and it requires large 
computations. The following simplified method re­
moves these two shortcomings of the "whitening 
series" approach. 

The measure of the goodness of fit of the 
autoregressive linear models by this simplified 
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m e thod is the determination coefficient, 
R7, i = 1 ,2,3,... It tells what portion of the 

I 

total variation of e is explained by each term of p ,r 
the autoregressive equations, the remaining portion of 
the variance of e being explained by the 

p ,r 
term o~ . Because R2 >. .. > R2

3 > ~2 > ~1 , a p ,r m 
criterion can be developed when a model of a given 
order should be selected in comparison with the 
other models. For the purpose of this study and if 
only the first three models are studied, with R2

1 
, 

R; and R~ , the third model is accepted if R~ · 
R~ > 0.01, or 1 percent of additional value in the 
portion of the explained variation, when the third 
model is tested against the second model. The 
second model is accepted if R~ · R~ ~ 0.01 , for the 
second model tested against the flrst model. Which· 
ever small value L\R7 is used, for i = 1 ,2, and 3, 

I 

say 0.01 or 0.02 or a similar small difference, it does 
not make a significant impact on the final results. 
This approach simplifies the selection of the model 
without too much loss of information. In this text 
L\R7 = 0.01 is selected. Similar criterion can be 

I 

used when models of a greater order than the third 
are used. 

Whether pk' as the mean of rk,r' or rk,e' as 
the rk·th value of the entire e series, is used, the p

1
r 

determination coefficients of tne first three order 
autoregressive linear models are computed by 

D = R 2 = p 2 (5.3) 
I I I 

and 

n, - R~ 

p;+pi +Pi+2p:p,+2p;p; +2P 1 P;P, ·2p;p1 ·4P 1 P1 P3 ·P: -p~ -p;p; 

I • 2p; • P; + 1p; P1 

(5.5) 

in which p 1 , p 2 and p3 are either the means rk.r 
of w values of rk , for k = 1 ,2, and 3, and r = 

,T 

1 ,2, ... ,w, or are estimated by the first three values 
r 

1 
.~, r 

2 
,e and r 

3 
.~ of the general correlogram. 

If R2
2 

- R2
1 

.s;;;; 0.01 and R2
3 

• R~ .s;;;; 

0.02 , th e f irst-ord er model is selected. 

If R~ . R2
1 

> 0.01 but R~ · R~ .s;;;; O.Dl , the 

second-order model is selected. If R~ · R~ > 0.01 

and R~ . R~ > 0.01 , the third-order model is 

selected. 



h•r t h e linear autoregressive models 
wtth 111 .l in Equation 5. 1, the a:. constant coef-

J 
11-.1<~11 t s nl:ty he estimated by using the multiple linear 
ll'grcssion estimation techniques with the remaining 
'\•rror" term a~ . Because var e = 1 the 
difference of'Tl- a 2 gives d~·; expl~ined 
variances, Di, i = 4, 5, ... , m, by the auto­
regressive terms. Then a criterion of D. - D. 2 e 

I 1-l 

with e = 0.01 or a similar small number, may be 
used to determine the m-th order model of the best 
fit, if the F • test is unfeasible for finding the order 
of the autoregressive linear model. 

5.4 Estimates of Nonperiodic Autoregressive Coef­
ficients and Computation of Independent 
Stochastic Series, ~ p,T 

If the first-order model is selected, the estimate 
of the autoregressive coefficient is either r = 

• I 
P 1 = r I,T = a1 , or r t = r 1 ,E = a1 , whichever of the 
two approaches is selected. The new series of ow­
values of the standardized ~ series is computed 
from Equation 5.1 for m = 1 t~ 

e -a e 
~ = p,T I p,T· l 

p ,T ~ 
I 

(5.6) 

If the second-order model is selected, the two 
autoregressive coefficients, o:1 and o:2 of Equation 
5 .1 , are estimated by 

2 
r2 • r t 

and a
2 

= ~_,;.... 
I · r 2 

I 

(5.7) 

with r 1 and r2 replaced either by p 
1 

and p
2

, _or 
by r1,t and r2 t" In that case, the new senes 
of nw-values of ~ is computed from Equation p,T 
5.1 for m = 2 by 

~ = ep,T -a, eP ,T·I -a2 e P ,T-2 
p ,T (5.8) 

J1 · (a~+a~+2a 1 a 2 r 1) 

with a1 and a2 obtained by Equation 5.7, and r 
1 

being replaced either by p 
1 

or by r l ,t of the 
general correlogram of e . 

p,T 

If the third-order model is selected, the three 
autoregressive coefficients, o:1 , a 2 , and a3 of 
Equation 5.1, are estimated by 

(1-r ~ )( r 
1 

-r 
3

) - {1 -r 
2 
)( r 

1 
r 

2 
-r 

3
) 

(1·r2 )(1-2r~ + r2 ) 

42 

and 

a = (r 1 ·r 3 )(r~ -r2 )- (J-r2 )(r 1 r2
- r

3
) 

3 (l-r2 )(1-2r~ + r2 ) 
' (5.9) 

with r 1 , r 2 , and r 3 replaced either by p
1 

, 

P2 , and,p3 , or by r1 , r 1 , and r
3 

, whichever 
IE ,E ,€ 

approach is used. Tne new series of nw values 
of ~ p.r is computed from Equation 5.1 
for m = 3 by 

(5. 10) 

with a1 , a2 , and a3 , computed by Equation 5.9, 
and r 1 and r 2 being replaced either 
by p 1 andp2 , or by r1,t and r2 ,t. 

In the case of fitting an autoregressive model 
with m > 3 and by using the multiple linear re· 
gression analysis in estimating a:. coefficients, the 
residual J 

m 
e -p,T l: a. e J j=1 J p ,T-

give the values a~ , from which for var ~ 
p~ p~ = 1 the parameter a is estimated. Equation 5.1 per· 

mits the computation of the ~ series. 
p,T 

Once the ~ series is obtained, it is advisable p,T 
to compute either its general correlogram, rk(~ ), 
~ p~ 
.or k = I ,2, ... ,nw/ IO, and its variance density 
spectrum, vf(~ ), for 0 :s;;; f <; 0.50. The w p,T 
values of rk (~ ) for k = l ,2, ... ,m should also be 

,T p,T' 
computed, with their means p

1
, p

2 
, .•. ,pm. 

For this latter c a se of w values 

of r1 ,r' r2 ,,., ... rm,T' the tests should be per­

formed whether or not they significantly depart from 
the corresponding w values of an independent time 
series. Similarly, the tests should be performed 
fo r rk(~P ) and vr(~ ) whether or not they 

il
T p,T 

significan y depart from the correlogram or the 
spectrum of an independent time series, respectively. 
Because of various biases in the original series, it is 
not ex pected t h at both approaches, by 
using p 1 , p 2 , ... ,pm' as th e means 
of, r 1 T, r2 , ••• ,r , in the first case, or by 

, ,T m,T 
using, r 1 .~· r2 .~ , ... , in the second case, would always 
comply with the res1.1lts of ~ being an 
. d d . p,T 
m epen ent tune series. 



5 .5 Case of Periodic Autocorrelation Coefficients 

Th e first autocorrelation coefficient 
of e usually has the greatest influence in auto-p ,.,. 
regressive linear dependence models of hydrology. It 
most ely affects the variance of e which is 

p ,'T 
explained by all terms of the dependence model, and 
the determination coefficient R~ of the first-order 
model or of the first term of other models of 
Equation 5.1 is usually large. The criterion, whither 
or not the dependence parameters are periodic, 
should be basically decided whether the esti­
mated w values of r 

1 
.,. are periodic or not. This 

represents a simple criterion whether the periodicity 
is or is not present in the autoregressive coefficients 
of the e series. p,'T 

It may come out that r
1 

is periodic while ,.,. 
neither r

2 
, r

3 
, .. . , are periodic. The decision on 

. ,T ,'T 
periodicity in the autocorrelation coefficients should 
be made by finding the significant harmonics 
in r

1 
, and not in r

2 
, r

3 
... , if they are periodic. ,r ,T ;r 

If any of r
2 

, r
3 

, is nonperiodic, constants p 2 , 
;r ,T 

p
3 

... , as the means of r
2 

, r
3 

, .•. , respectively may 
,T ,'T 

be used in these models, though their population 
values may be periodic. If r1 is nonperiodic, the ,'T 
m ean p 

1 
of r 

1 
, .,. is used together with con-

_stants p
2

, p3 , ... ,regardless of whether r2 ,.,., r 3 ,.,., ... , 

are periodic or not. This approach is a simplification 
of statistical tests in selecting the first-, second-, 
third-or higher-order linear autoregressive model to fit 
the time dependence patterns in e . p ,'T 

It is difficult to visualize some physical 
hydrologic condi ti ons which w oul d 
make r

2 
, r

3 
, . . . , periodic but r

1 
equal to a 

~ ~ ~ 

constant p 
1

. Usually, if r 
1 

,.,. is periodic all other 
serial correlation coefficients should be periodic, and 
if r 

1 
.,. is not periodic the other coefficients also 

shoufd not be. When the opposite results are pro­
duced by the testing method for r 1 .,. and other coef­
ficients, the likelihood is high that this is a product 
either of the sampling errors or because of the 
approximate estimation and testing methods applied. 

The question arises how to make practical tests 
to determine which model should be selected for a 
particular € variable. It is sufficiently accurate to 

P ,'T 
compute the means p 1' p 

2
, p 

3 
, ... , of w values 

of r
1 

, r
2 

, r
3 

, ••• , and select the model by the 
1
.,. ,'T ._~'T 

simp e p roceuure given in the previous text 
(computing the determination coefficient of each 

regression model, Di = R~, i = 1 ,2,3, ... , and 
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selecting by the criterion established, b.R~. 
I 

Periodic functions of Equation 3.9 are applied 
to r

1 
, r

2 
, r

3 
... ,if they are found also to be ;r ,r ~T 

p eriodic, or the constants, p
2

, p 3 , ... , are used 
if r

2 
, r

3 
•.• ,are not found periodic. 

,T ,T 

5.6 Estimates of Periodic Autoregressive Coef­
fic ients a.nd Computation of Independent 
Stochastic Series ~ p,'T 

The estimates of periodic autocorrelation coef­
ficients are made by using Equation 3.9, and 
replacing v r by r k ,r, with k = 1 ,2,3 , ... . Then 
the periodic autoregressive coefficients a:. are 

I,'T 
estimated by the sample values, a. , in the following 

I,'T 
way. 

For m = 1 in Equation 5.1, the first-order 
model, 

e =a e + a~ 
p,'T I ,.,. p,'T- 1 p,'T 

if multiplied by E gives for var E = 1 and 
p,'T· I 

COV ~ e I = 0, p,'T p,'T· 

Pt ,.,..J. =a l ,r (5.11) 

with p 
1 

the autocorrelation coefficient 
p , 'T· 

between ep,r- t and ep,T' and a 1,.,. estimated 

by al,.,. = r 1 ,'T·l · 

For m = 2 in Equation 5.1, the second-order 
model, 

E =a e +a e +a~ 
p,T I,.,. p,'T·I 2,1" p,'T·2 p,'T 

if multiplied first by e 
1 

and secondly by E 2 p ,T· p,'T· 
produces the following relations of a 1 and a 2 ~T ;r 
to the pk . autocorrelation coefficients 

,'T·J 

and 

a = 2,1" 

P2 .1" · 2 - pI ,T· I Pl,'T· 2 

I· P~,.,..2 

(5.12) 

(5 .13) 

with p1 T· l the symbol for p1 between eP.,. 

and ep,~-l, p 1 ,.,.. 2 the symbol for p 1 be­
tween e ,.,.. 1 and ep,.,.. 2 , and p2 ,.,..2 the symbol 
for p

2 
between e , and e 2 . 

p,'T p ,T· 

Similarly, for m = 3 in Equation 5.1, the 
third-order linear model , the relations be­
tween, ai,.,. and Pk ,.,.-i are obtained in multiplying 

e =a e +a e +a e +a~ 
p,'T I ,T p ,'T·I 2,1" p,T·2 3,1" p,'T-3 p,'T 



by € 
1

, € 2, and € 3, one after another, p,T- p,T- p,T-
and obtaining the following functions: 

AO!I,r =pl,r-2(!-Pi.r -3 ) 

+ PI ,T·3 PI,T·2 P3,T · 3 -Pl ,T · 2 P2,T·2 

-P2,T·3 P3,T·3 +pl,T·3 P2,T · 2 P2,T· 3, (5.14) 

A a2,T = P2,r-2 (1-P~,r-3) 
+ Pl,T·2 P2,T ·3 P3,T·3 - P!,T·2 PI ,T·I 

-PI T·3 P3,T·3 +pi,T-3 P2,T· 3 Pl,T · I, (5.15) 

and 

- P2,r·3 PI ,T·l +PI ,T·2 P2 ,-r·2 P2,T·3, (5.16) 

in which 

A= 1 + 2Pt,T-2 P2 ;r·3 PI ,r·3 

(5.17) 

with aj,r estimated by aj,T' and Pk.T-j by rk .r·f 
For nonperiodic autocorrelation coefficients, Eqs. 
5.11 through 5.16 reduce to Eqs. 5.7 and 5.9. 

To compute ~ from Equation 5.1 and the . p,r 
periodic values of a. of Equations 5.11 through 

J,T 
5.16, a of Equation 5.1 must be obtained as a 
function of a. and pk . coefficients. The values 

J,T ;T-J 
of a are: 

form= 

(5.18) 

for m = 2 
If> 

a= (1 · a 2 
- a 2 

- 2a a p ) 
l ,T 2 ,T l ,T 2 ,T I ,T·2 • (5.19) 

and for m = 3 

a= ( l-a2 - a2 - a2 - 2a a P 
l ,r 2,r 3,r l,r 2,T I,T·2 

- 2a a p -2a a p ) l,r 3,r 2,r·3 2,T 3,r I ,r-3 
Y: 

(5.20) 

In the case w is large, say w = 365 for daily 
series, the differences between p1 ,r·l , pJ ,r-2, 
p 1 ,T- 3 , or Pl,r-l and Pl,r-J' and PJ,r-J from 
P 

1 
• p2 , and p

3 
are small, so that for 

,T •1' ,1' 
large w and small k and j values (say k = I, 2, 
and 3 and j = 1, 2, and 3), Equations 5.7 and 5.9 
may replace sufficiently accurately Equations 5.12 
through 5 .16. Similarly, Equations 5 .18, 5 .19, and 
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5.20 may be replaced by the denominators of 
Equations 5.6, 5.8, and 5.10, respectively, and using 
only the values of p

1 
, p

2 
, and p

3 
as fitted 

;r ;r ,T 
periodic functions. 

5.7 Some Current Misinterpretations of Auto­
regressive Models in Hydrology 

Several misinterpretations are related to auto­
regressive models in their applications to hydrology. 
First, when the € values are expressed by a linear p,r 
relation to the m previous values, it is often stated 
that the "memory of the process is only 
for m terms". This is not correct, because this 
relation to m previous values is the method by 
which a process with an inrmite memory is expressed 
by a finite number of terms. The fact that the 
dependence of the m-th order in autoregressive 
chains or models may be expressed either by 
a m-th order matrix of transitional probabilities or 
by a mathematical dependence model of the variable, 
being a function of the m previous terms, re­
spectively, does not mean that the memory is only 
for m terms. 

The next misinterpretation, and sometimes a 
surprise to those who oversimplify the concept of 
autoregressive models, is the fact that t!le auto­
regressive processes are equivalent to the moving 
average schemes with an infinite number of terms 
of ~· and its {3. coefficients, with the definite 
relations of thisJ infinite number of 13. coefficients 

J 
to the finite number of a. coefficients of 

J 
an m-th order autoregressive scheme. The recurrence 
equations, replacing the €. . term by its expres­

I· J 
sion, j = l , 2, ... , leads to a new dependence 

€. = t3 ~- + ~1 ~· + . .. + {3. ~- . + ... 
I 0 I 1-J J I·) 

(5.21) 

which is a moving average type model with an infinite 
number of terms, and, therefore, memory. 

A third current misinterpretation is that auto­
regressive processes must necessarily be linear models. 
It is quite likely that the hydrologic physical reality 
imposes nonlirtear models. Therefore, the general 
autoreg r essive d i sc r ete mo d els may 
be €. = t(€

1 1 
, ... ,€. ) + ~- with m being a suf-

1 • 1-m a 
ficient length of previous values that no information 
is necessary for the values previous to €. in order 1-m 
to use the autoregressive models, and ~~ is an 
independent random variable with a given variance. 
Though it may be difficult mathematically to design 
the nonlinear models which preserve the stationarity 



of the process, it does not mean that there are not in 
nature some nonlinear models which preserve the 
general character of stationarity of E series. p,T 
Before one rejects the autoregressive models, they 
should try the nonlinear functions if the physical 
conditions are such that they require the nonlinear 
models, and the sample sizes are such to justify or 
enable the estimates of parameters in these models. 

A fourth misinterpretation may be found in the 
method by which the autoregressive coefficients are 
estimated. The use of m values of rk , k = 1, 
2, ... ,m, to estimate the m values of ai coefficients 
may produce sufficiently accurate estimates, 
through r k underestimates pk . This bias in esti­
mating o:

1 
coefficients may be significant for small 

samples and/or large pk. In this case, the corrections 
for the bias in this estimation may be justified and 
should be applied. 

A fifth misinterpretation may be the current 
attitude that it is sufficient and efficient to estimate 
the m autoregressive coefficients by the 
first m autoco rr elation coefficients. 
Though r 

1 
may be sufficient estimate for p in the 

first -order model, the fit of the correlogram 
pk = pk to a large number of rk values, k = 1; 
2 , ... , n , m a y s h o w s i g n i f i c a n t d i f. 
ferences pk · rk, though the population model is of 
the first-order linear model. A correction of 
r 

1 
, which is a kind of correction for the bias, may be 

made by fitting the pk function to the rk function 
by some weighting procedure for rk's, because their 
accuracy decreases with an increase of k. 

A sixth misinterpretation is the application of 
autoregressive models to hydrologic time series which 
are evidently either subject to systematic errors or 
h ave the man-made nonhomogeneity in a significant 
manner. It can be shown that the linear autoregressive 
models are not applicable to series with added trends 
or jumps, if they are applicable to stationary 
hydrologic stochastic processes. 

5.8 Bias in Estimated Serial Correlation Coef­
ficients 

The bias in the estimates of serial correlation 
coefficients occupied the interests of statisticians 
during the decade of 1950 's. Kendal and Steward 
[12, p. 431-435] summarized the results of various 
investigations. The biases in underestimating the serial 
correlation coefficients of stationary processes are of 
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interest in this study, particularly for independent 
and autoregressive processes. these latter processes 
represented by the fust-order linear model. The 
underestimate of E(rk) for pk = 0, k > 0 for 
the independent processes is of the order 
of 1/ (N-k), with N the sample size. For the first­
order autoregressive linear model, Kendal [ 12, p. 
435] gives l+3p 

E(r 
1

) = p - lir-1 (5.22) 

with the bias of (1 + 3p)/(N-l), and 

E(rk)=pk -~ r::; (l-pk)+2kpk], (5.23) 

for k > 1. For p = 0.50 in this model 
with N = 25, the mean value of r 1 would be about 
0.40 instead 0.50. This is a serious bias not often 
recognized by those who reject the application of 
autoregressive models without fust trying to apply 
them properly. 

Quenouille (12, p. 435] proposed the estimate 
of p by 

(5.24) 

in which r is the fust serial correlation coefficient of 
the entire series (N). and r(l ) is the value of the 
fust half (N/2) of the series and (r2 ) of the second 
half {N/2). Because r with N has a smaller negative 
bias than r(l) and r(2 ) with N/2, Equation 5.24 
adds a correction for the bias, so that R is now in 
error of about N' 1 . Equation 5.24 may be used as an 
approximation for any r k in autoregressive linear 
models. 

Several other methods are available for the cor­
rections of bias in estimated serial correlation 
coefficients, with some of them decreasing the bias to 
the order of N' 3 . 

5.9 Estimate of p of the First-Order Linear Model 
as an Indirect Correction for the Bias 

The population correlogram of the fust-order 
linear model, 

e
1 
= p E1_1 + .Jl;i ~~ (5.25) 

is 
(5.26) 

with p = p 
1 

. Usually in practice, the parameter p 
in Equations 5 .25 and 5.26 is estimated by the 
sample first serial correlation coefficient, r 1 . Using 
this estimate often leads to the conclusion that the 
model of Equation 5.23 is not applicable to a series, 



1 hough 1 he correlogram of an observed series, r k = 
1 ( k ). may be well fitted by a power function of 
EquJtion 5 .26, provided a different estimate of p is 
used, considering the difference as a bias in the esti· 
mat ion. 

Lets assume that o is the bias in r1 so 
that E(r

1 
+ 8) = P 

(5.27) 

By considering o as a small quantity in com­
parison with r 

1
, a.nd by neglecting all terms. in 

Equation 5.27 of 81 with j > 1, then Equation 
5.27 as an approximation, becomes 

E[ri·1 (r
1 
+ ko))::.:: pk (5.28) 

With an increase of k the term rk· l decreases 
rapidly if r 

1 
is not very close to unity, 

while ko increase linearly. Therefore, the pk of the 
model of Equation 5 .28 has to depart more and more 
from r k as k increases, if the bias o in r 1 is not 
negligible. The relative bias 

~ = f(k) (5.29) 
rl 

increases rapidly with k, while the sampling errors 
in r k may be much smaller. 

When the Wiener·Khintchine equation is used 
for the estimates of spectral densities, all coefficients, 
the major part, or the fust part of the correlogram is 
used, and not only one value, if the autoregressive 
models are applicable or investigated. 

If k is not too large, the direct estimate 
of pk by r k may be less in error than an estimate 
by r with the error ko . This may be true regardless 
that

1 
the .sample size in estimating Pk by 

r is N-k instead of N or N~l . when an open· 
s~ries approach is used in computing r k. There is a 
point k = q at which the error k o is of the same 
order of magnitude as the sampling error due to the 
decreasing sample size , N-k. If either these 
fi rst q values of rk, or all rk values, k = 1, 
2, ... , N-1 are used in estimating p , this estimate 
may be less biased than the estimate obtained by 
using only r 

1 
• 

Let assume that a correlogram, r k = f(k), is 
estimated either up to q = N/a, a = 5, 6, ... ,10, or 
u p t o q = N . 1 . T h e s q u a r e o f d i f. 
ferences pk - rk gives 

q 
S = I: (pk - r )2 

k=l k (5.30) 

Because of different accuracy of r k, the square of 
differences are weighted by N-k, the sample size of 
each rk, so that the larger weight is given to the 
fust r k values, and Equation 5 .30 becomes 

s·~ t (N·k)(pk- rk)2 . (5.31) 
k=l 

The smallest value of S, by equating dS/dp with 
zero, produces anoth er estimate of p. 

This dS/dp = 0 gives 
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q q 
I: k(N·k)p2 k· l = k k(N-k)rkpk· l . (5.32) 

k=l k=l 
The solution of this equation gives the estimate p. 
The left term may be expressed as a function 
of p , q, and N, while the right term uses 
the rk values. However, in Equation 5.32 eliminating 
the sum on the left side is not simple. 

The problem is in the selection of q as it is 
with the selection of a truncation point of the cor­
relogram in estimating spectral densities. Two 
methods are feasible. Either an objective selection 
of q, or the value a in q = Nja is selected such 
as a = 6 or similar, as it is often done in the 
approximate estimates of variance densities by using 
the correlogram and the Wiener·Khlntchine equation. 

The solution of Equation 5.32 is most feasible 
by an iterative, computer oriented procedure. 
First p is assumed (say as r 1) and both terms are 
computed. If the left side terms results are greater 
than the right side term, p is reduced; otherwise it is 
increased. A tolerance level between the two sums of 
Equation 5.32 in the successive approximations 
of p should be established in this iterative pro· 
cedure. 

Figure 5 .I presents the example of annual run­
off series of the St. Lawrence River at Ogdensburg, N. 
Y., with a long time series (N = 97). The use 
of r 

1 
= 0.705 in the fust·order linear autoregressive 

model produces the fitted correlogram below the 
observed one. For p = r1 + b, with b the 
bias, b = (I + 3p)/(N • 1), which when solved 
for p gives r

1 
(N·l) + 1 

p = N · 4 
(5.33) 

so that for r = 0.705 and N = 97 this gives P = 
1 f . 0.748. By using Eq. 5.32, the estimate o p gtves 

0. 780. The computed correlogram, r k, and the 
correlograms of Eq. 5.26, with three estimates of p, 
0.705, 0.747, and 0.780, are given in Fig. 5.1. 
Though r = 0.780 fits well Eq. 5.16 to the ob­
served cor/etogram, it may be questioned for its lack 



of theoretical background, and some preference may 
be then given to r 

1 
= 0. 747, as corrected for the 

bias ofEqs. 5.22and 5.33. 

5.10 Estimates of a
1 

and a 2 ·of the second-order 

Linear Model with a Decrease of Bias 

The genera l equation relating the esti-
mates a 1 and a2 of a 1 and a2 with the cor-
relogram estimates, r k, is 

(5.34) 

The classical estimates of a 1 and a2 are calculated 
by using k = -2 and k = - 1, producing the two 
equations 

r2 =a1 r1 +a2 } 
' 

r
1

=a
1

+a
2

r
1

, 

(5.35) and 

from which a 1 and a2 are expressed in function 
of r 1 and r2 • Only these two values determine the 
fit , and all information contained 
in r 

3
, r 

4 
, ... , r 

1 1 
is neglected though there is a bias 

in r 
1 

and r2 as the estimates of p 1 and p2. 

By using Equation 5.34 for the popula­
tion, k = 1 , ... ,n, then 

P1 = al + a 2 P1 

(5.36) 

Pq = CX1 Pq -l + cx2 Pq-2 • 

and by using the weights N-k for the dif­
ferences p k - r k, .then their sum of squares is 

q 2 
S = L (N-k)(p -r ) 

k=J k k 
(5.37) 

The two partial derivatives oS/oa1 and oS/ocx2 

equated to zero should produce the new esti­
mates cx1 and a2 , which are 

q apk 
2 1: (N-k)(p -r ) -..- = 0 (5.38) 

k=l k k acxl 

q apk 
2 z (N-k)(pk -rk) -a A = o 

k= l a 2 

and 

(5.39) 

By determining opk/oa1 and opk/ oa2 from 
Equations 5.36, Equations 5.38 and 3.39 may be re-
written as 

(5.40) 
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and 

Then 

and 

q 
1: 

k=l 

q 
:E (N-k)(P - r ) p = 0 

k=l k k k-2 (5.41) 

(5.42) 

q q 
k~l (N-k) P~r. Pk-2 = k~l (N-k) rk Pk-2 . (5.43) 

As pk , P~r, . 1 and pk _2 are functions of &1 

and &2 , Equations 5 .42 and 5.43 are two equations 
with two parameters, &1 and &2 , which must be 
estimated. 

Equations 5.42 and 5.43 can be solved by an 
iterative procedure by first as­
suming &1 and &2 , and repeating the computations 
with an incremental change of &1 and &2 until the 
equations are satisfied with a prescribed tolerence 
level. The initial pair of values can be estimated by 
Equations 5.35 by using only r 

1 
and r2. Several 

approaches may be used to find these estimates 
assumed here to be l ess biased than when 
only r 

1 
and r2 are used in estimating a1 and cx2 . 

5.11 Estimates of Autoregressive Coefficients of the 
m-th Order Model With a Decrease of Bias 

Starting from the basic equation of relationship 
between pk and cxj parameters of the m-th order 
linear model, then 

m 
Pk = :E a. P~r. . (5.44) 

j=l J -J 

Then q equations of the type of Equations 5.36 may 
be obtained with q >> m. 

The fitting of P~r, function of Equation 5.44, 
with k = 1 , 2 , .. . ,q, to the first q values 

of ~- correlogram by the least-square method gives 
first a sum of deviations weighted by N-k as 

q 
S = 1: (N-k)(pk - Rk)2 

k= t 
(5.45) 

wit)l q selected in a proper manner to cover the 
major part of the ~ correlogram before it 
practically converges to zero. 

The general method of finding the least value 
of S of Equation 5.45 and the corresponding set 
of a. coefficients is in obtaining the m partial 

J 



derivatives, as;a&j, j = 1 ,2, ... ,m, equate them to 
zero and solve for a.'s. This gives a set of m equa-
tions J 

q q 
:E (N-k) pk pk . = :E (N-k) R pk . (5.46) 
~1 i ~1 -~ i 

with j = 1, 2, ... ,m. Coupled with Equation 5.44 
for pk , k = 1, 2, ... ,q, there are m equations 
in &. for m values of&., with k-j replaced 
by j-k whenever k-j is negativ~ . 

The solution of m equations of Equation 5.46 
are often difficult and combersome even for m as 
low as 2. There exist various methods in the literature 
for solving them. 

The use of Equation 5.46 coupled with Equa­
tion 5.44 is unnecessary, because the methods exist in 
fmding a minimum of Equation 5.45 and esti­
mating &i 's directly. In order to minimize S of 
Equation 5.45 in an efficient way, a good 
optimization routing in selecting ci/s is required. A 
routine due to Rosenbrock may be used, as described 
in details in reference [ 13] . 
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5.1 Fitting the first-order linear autoregressive 
model to the correlogram of the annual 
runoff series of the St. Lawrence River at 
Ogdensburg, New York : (1) The estimated 
correlogram from data, rk = f(k); (2) By 
using Eq. 5.26 and the estimate r 1 = 0.705; 
(3) By using Eq. 5.26 and the value r1 = 
0.747, corrected for the bias of Eq. 5.22; 
and (4) By using Eq. 5.26 and the estimate 
r 1 = 0.780 in applying Eq. 5.32. 



Chapter 6 

PROBABILITY DISTRIBUTIONS OF INDEPENDENT STOCHASTIC COMPONENTS 

6. I Fitting Probability Functions to Empirical 
Frequency Distributions of Independent 
Stochastic Components 

Once ~ .,. is accep ted as a stationary p, 
independent variable of either of the second-order or 
third-order stationarity, the nw values serve to 
d etermine a probability function of the best fit to the 
empirical frequency distribution. If the nw values 
are to be stored in any usual way for future use, such 
as tables, graphs, magnetic tapes, punched cards, or 
similar, the basic objective of reducing the informa­
tion in the x process to the mathematical models p,7' 
and the estimation of their parameters would be 
defeated. Also, the eventual generation of large 
samples of x , using the experimental statistical p ,T 
(Monte Carlo) method starting from the generation of 
new samples, can still be easily perfonned by trans­
forming the uniformly distributed random numbers 
by using the sample frequency distribution curve 
directly to the random numbers of the ~ variable p;r 
with the same probabilities. This second route in the 
use of the Monte Carlo method means that all 
sampling zig-zag deviations of the empirical distri­
bution around a smooth curve and all eventual biases 
in ~ would be perpetuated in the generated 

11 ·7' 
samples. Besides, the larger and the smaller values 
of ~ than those observed will not be generated if p,T 
some adjustments on the extremes arc not made. 
Therefore, the fitting of a probability function to the 
frequency distribution curve of ~ iis the approach p,T 
followed in this study to structurally analyze and 
mathematically describe a hydrologic time series. 

The transformation of x to produce the p,T 
standard ized variable € and the treatment p ,T 
of € to produce the independ ent stochastic 
variab)~ ~ make the positively-valued vari-
able x af a7 

~ variable with both negative and 
p ,T p,T 

p ositive fal ues. However, the minimal values 
of ~ may not have a lower bound. If the lower 

p ,r 
limit of x is zero, then the expected range of 

p,T 
negative values of ~ can be computed from various 
transformations. Thf.; leads to two alternatives in 
selecting the lower bound of the ~ probability 
distribution function: (a) to compu't;r or estimate 

what is the approximate lower bound of ~ and 
p ,T 

use it as a fiXed boundary of a selected probability 
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function; and (b) to estimate the lower boundary 
of ~ with the estimate of its other parameters. p ,T 

To find the properties of the negative values 
of ~ a lower boundary should be assigned ~p ,T, ..., 
to x In this latter case three solutions are p,T 

feasible: (a) min (xp,.,.) = 0 ; (b) min (x P,.,.) = X
0

, a 
positive value; and (c) x has a truncated dis-
tribution, so that x ;> 0,'.,. but min (x P .,.) of un-

P~ ~ 
truncated distribution may have the lower ooundary 

xo <; 0. 

For min (x ) = 0, Equation 3.10 for min 
p T 

(x ) = 0 gives the minimum value, min (yp .,.) = 
p,T , 

- Jl. fa , so that the two periodic com-
.,. T 

ponents Jl. and a must be divided to fmd the 
7' T 

largest value of JJ..,.!a.,. or of 1/rr.,.: 

min (y ) = -max (J.t /a ) =- 1/ min rr (6.1) p ,T T T 7 

Similarly, Equation 3.13 shows that 

[
Jl.T + JJ.YaT] 

min € = -max 
p,r a.,. o>' 

(6.2) 

Finally, the m-th order linear autoregressive model 
gives the properHes of the lowest value of ~ as p,7' 

- - !: a. e . 1 m ] 
0 j=} J,T p,T·J > 

(6.3) 

in which a
1 

, a
2 

, • . . ,a the autoregressive 
, T ,T rn JT 

coefficients of t he linear models, either periodic or 
not, and a is a function of autoregression coef­
ficients. By using m = 3 as the eventual maximum 
value of j in Equation 6.3 in practical cases, the 
smallest value of ~ may be approximately p ,T 
determined. Assuming several values of xp ... r 
zero in a sequence, and assuming that JJ.Y :::::: O.uu, 
o :::::: 1.00, and Jl. fo :::::: 1/rr with rr a constant 

)' T T 0 0 

the Eq. 6.3 becomes approximately 

min ~ = min [-a1 
€ - .,.,

1a (1 + J a. )l 
p ,.,. p,.,. ·•o J==l ,,.,. 'j 

(6.4) 

In conclusion, the periodic components transform 
the lower boundary of x to a lower boundary 

p,7' 
of € . However, the autoregressive linear models 

p,T 



I 
transform the variable e which is bounded on the 

p ,T 
left side to a new variable ~ which theoretically p ,T 
may be unbounded. 

Though ~ theoretically can have large p , r 
negative values, tne practical considerations still limit 
them. It is unlikely that the minimum value e of p ,T 
Equation 6.2 would be preceded by a very large 
value e 

1 
under the condition of a 1 ~ bei.'lg also 

P3· •' 
very large or close to unity. For daily flows a

1 
= ,r 

p
1 

is very large, often of the order 0.80 · 0.98, 
,1" 

but the river basin response rarely permits e to go 
!l,T 

from a very large value suddenly to zero. If this is the 
case, however, p

1 
is then small, so that the pro-

, T 

duct p
1 

e 
1

, for a large e 
1

, also becomes 
,T p ,;. p ,'T ... 

small and contributes little to the negative values of 
Equations 6.3 and 6.4. This fact permits still an 
application of bounded distribution functions 
to ~ . An approximation in estimating the practical p,r 
lower boundary of ~ may be used, so that dis· 
tribution functions wfti;- lower boundaries can be also 
tested for the goodness of fit to the empirical 
frequency distributions of ~ . p,r 

Five probability density functions may be used 
for fitting the empirical frequency density curves 
of ~ : (1) the general transformation of the normal p,r 
function by using the polynomial of a given order, as 
the transform; (2) the two-parameter normal distri· 
bution; (3) the three-parameter lognormal distribu­
tion with the lower boundary different from zero; (4) 
the three-parameter gamma distribution (with the 
lower boundary different from zero) ; and (5) the 
double-branch gamma distribution with a total of six 
parameters. 

The extreme values of ~ may have high 
!l ,T 

sampling errors, or they may not be representative o f 
the sample size, being either too large or too small for 
that sample size. They greatly affect the estimates of 
various parameters. To avoid this bias, the values at 
both extremes of the empirical ~ distributions p ,r 
may be deleted from the estimation of parameters. 
For example, 0.50 percent of the largest and 0.50 
percent of the smallest values of the total sample may 
be discounted in the estimation. The new 

sample N is then shorter, 0.99N or 0.99nw. How­
ever, the entire series N = nw should be used in 
testing the goodness of fit of various distribution 
functions by x2 tests or any other test. 
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6.2 General Fit of a Normal Distribution Trans­
formed by an m-th Order Polynomial 

The most general fit o f a probability density 
functio n to a frequency distribution curve of ~ is p ,T 
obtained by using the normal probability density 
function transformed by an m-th order polynomial. 
The normal function haS' two parameters to be 
estimated , J..L and (J, and the m-th order 
polynomial has m+ 1 parameters, ~k, with k = 0, 
l , ... ,m, so that the total number is m + 3 . The 
larger m, is the better fit , but the more degrees 
o f freedom are lost. Then the total number of degrees 
of freedom is 

DF = nw- m- 3 - v (6.5) 

with v the number of all parameters previously 
estiJ.;ated. Because nw may be very large, say for 
daily or monthly values, and v, the number of 
parameters or coefficients which are estimated from 
data in order to obtain ~ , may also be small, the p ,T 
m-th order polynomial may be selected with m as 
large as feasible without a significant loss of degrees 
of freedom. 

The polynomial is given by 
m 

~· = ~ + ~ ~ zk 
I 0 k=I k I 

(6.6) 

where ~. replaces ~ (no important periodicity is 
I p,T 

left in the series), zi is the random variable normally 
distributed, N{J..t ,o), and ~0 , ~ 1 , ... ,/3m are the 
polynomial parameters to be estimated. 

Fitting the polynomial of Equation 6.6 is the 
same as fitting the following probability func· 
tion, f(n, to the frequency distribution of ~. 

~ m l - l 
fm = f(z) 11 k~I kbk zk· t I ~ , (6.7) 

in which f(z) is the normal probability function 
of z, {J..tz, o 

2
), ~k are the polynomial coefficients 

of Eq. 6.6, with k = 0, 1, 2, ... ,m, and m is the 
selected order of the polynomial. 

One of the practical methods of estimat­
ing ~k coefficients of Equation 6.6 is as follows. A 
parameter u is selected, which is the number of class 
intervals of equal probability 1/u of the empirical 
frequency distribution of ~P 

7
• In practice, the 

following values may be used: u = 200 for daily 
series, u = 160 for 3-day series, u = 100 for 7-day 
series, u = 80 for 13-day series, u = 60 for monthly 
series, and u = 24 for 3-month series. In order to 
apply this procedure, the ~ series is ranked in p,T 



ascending order and denoted as the ~- series i = 1 
1 ' ' 

2, ... ,N, with N = nw being the sample size. The 
class lim!ts ~i, with j = J ,2, ... , u-1, of the selected 
u class mtervals of equal absolute frequency N/u = 
nw/u of the ~ variable are determined from the p,'T 
ascended sequence ~-. The ~.-th class limit is com-

1 J 
puted as the midpoint of i-th and (i+l)-th values 
of the ranked ~i series, with i = Nj/u and i + 1 = 
Nj/u + 1, if i is an integer. If Nj/u is not an 
integer, i is designated as the integer segment of 
Nj/u, and d as the decimal segment of Nj/u; the 
j-th class limit is then computed by 

~-+~-+ I 
~i= •21 +(~i+l-~i)d ,j=1,2, . . . ,u-l. 

(6.8) 

The computed (u-1)-values of ~- are then used to 
J 

relate them to the normal variable, and particularly 
by using their cumulative frequency distribution, 
with f(~:;;;:; 0 = j/u. The (u-1) classlirnits, t., of 
the standard Jnormal distribution function are bom­
puted, with u the same selected number of class 
intervals as for the ~ variable, or each with the p T 

same probability 1/u. fo compute t. values, with j 
J 

= 1, 2, ... ,u-1, the following approximation is used 

c
0 

+ c1 s + c2 s
2 

t = s - _ __::_.....:_ _ _::_ __ 
i 1 + d s + d s2 + d s3 ' 

1 2 3 

(6.9) 

in which 

s = Jn ( u~)2 U-J 
(6.10) 

and c
0 

=2.515517, c
1 

=0.802853, c
2 

=0.010328, 
d 1 = 1.432788, d

2 
= 0.189269, and d3 = 0.001308. 

The t(values of Equation 6.9 may be trans­
formed to z(values, as the (u-1)-class limits with 
equal class probabilities 1/u of the nonstandard 
normal function, if the mean and standard deviation 
of ~ are different from zero and unity, p,r 
respectively, by 

(6.11) 

The second, third, fourth, or higher order 
polynomial is used to find the best fit of 
the (u-1)-values of the ~- and the t. or z. class 

J J J 
limits, representing the same probability P., with P. 

J J = j/u , by estimating the first three, four, five, or 

more parameters, {3
0

, {3
1

, {3
2

, {3
3

, {3
4

, . . . , respectively 
for the selected polynomial, by Eq. 6.6 in the form 

m 
~:"= b + ~ bk z1~ J 0 k=l (6.12) 
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in which bk are coefficients,with m = 2, 3, 4, ... , the 
order of the best fit polynomial and ~- the pre­
diction values of ~- for given t . or z.. 

1 

J J J 

The (u-1 )-values of ~-*are then computed for 
J 

the second, third, fourth, or higher order polynomials 
by Equation 6.12 by using the (u-1)-values oft. of 
Equation 6.9 or z. of Equation 6.11. For these 

J 
polynomials the variance of estimates is computed by 

1 u-1 
e2 = - ~ (t - t * )2 (6.13) 
~ u-1 j=1 "i "i 

These variances are designated by V 
2

, V 
3

, V 
4 

, •.• , 

respectively for m = 2,3,4, ... , in Equation 6.12. 

The practical method of selecting the order of 
the fitted polynomial is as follows. For 
only V 

2
, V 

3
, and V 

4 
computed, then if conditions 

v2.v3 v2.v4 v :s;;;o.Ql, and v :;;;;o.02 (6.14) 
2 2 

are satisfied, the second order polynomial is selected. 
If the conditions of Equation 6.14 are not satisfied, 
but the condition 

:;;;:; 0.01 (6.15) 

is satisfied, the third order polynomial is selected; 
otherwise, the fourth order polynomial is selected. 
If V 

5
, V 

6
, V 

7 
• .• , are computed, then the dif· 

ferences (V p+ 1 • V P)/V P may be the criteria whether 
any higher order polynomial may be a feasible fit. If 
all these values, with p = 5, 6, 7 , ... , are smaller than 
0.01, then the lower order polynomial may be 
selected. However, the chi-square test should be used 
as the final criterion whether Equation 6.7, with the 
selected polynomial of the m·th order, is a good fit 
or not. A summary of this chi-square test is given here 
for the sake of completeness. 

The critical chi-square value, x: should be 
computed for a number, v, of class intervals of equal 
probability, with v a parameter selected so that it 
satisfies u = q . v, with u the selected number of 
class intervals, and q and v integers. The suggested 
values of q and v are: q = 4 for all series while v 
= 50 for daily series, v = 40 for 3-day series, v = 25 
for 7 -day series, v = 20 for 13-day series, v = 20 for 
13-day series, v = 15 for monthly series, and v = 
6 for 3-month series. 

If v ;;;?; 30, x2 is approximately normally 
distributed with t he degrees of freedom, 

Dr= v- (m+3) , (6.16) 



in wR.ich m is the order of the selected polynomial 
of Equation 6.12. The critical value x~ is computed 
by the approximation 

x:"o, [1-96;- +t, JJ, ]' (6.17) 

in which t = 0.84162 as the value for the one-tail 
probabilit/ reject ion level, for P = 0 .20, of the 
standard normal variable. 

If v < 30 , the x~ = x is determined by the 
inverse of the integral 

( 2 ) - 1 
P Xc > x - =2r=co:-r=;2-=-) 

00 

f (~ 
X 

Dr 
2 -1 

e-x/2 dx , 

(6.18) 

in which P(x: > x) = 0 .20, or it is the same 
probability rejection level as selected for Equation 
6.17, and Df is given by Equation 6.16. 

Every q-th value is selected from the ~~array 
• J 

of (u-1) values of Equation 6.12, denoted here as 
the ~*-values, with s = 1, 2, ... ,v-I. All ~ -val-s p ,T 
ues, N = nw, are sorted in the v class intervals 
limited by class limits ~*, with s = 1, 2, ... ,v-1 ·; the 

s . 
first interval is ~ ...;.:; ~ 1* and the last intervai 

p,T 
is ~ > ~* 1 . Then, the absolute frequencies f k p,T v-
witli k = I , 2, ... ,v, are obtained. 

The x2 -statistic is then obtained by 
v v N 2 

X
2 
=- L (f - - ) 

N k=1 k v • (6.19) 

If x2 of Equation 6.19 is smaUer than x: of 
Equations 6.17 or 6.18, whichever is relevant for a 
sel ected v, the fit obtained by the selected 
polynomial of Equation 6 .12, or the fit obtained 
for fm by Equation 6.7 is accepted . 

If x2 of Equation 6.19 is larger than x~ of 
Equations 6.17 or 6.18, as applicable for the 
selected v, the fit of the selected order m of the 
polynomial is rejected. If this occurs, the order of the 
polynomial is increased, the number u of class inter­
vals may also be increased, say by 50 percent, and the 
parameter q may be changed while v is increased, 
say q to be 3-5, while v may be 75 for daily series, 
60 for 3-day series, 30 for 7 -day series, 30 for 13-day 

series, 30 for monthly series, 9 for 3-month series. 

Then the test is repeated. The obtained values u, 
m, b

0
, b 

1 
, ... ,b m , represent the final estimates for 

the model of Eq. 6.7, with either the t. normal-
t 

variable (0, I), or the zi normal variable (f,s~) 
used in Eq. 6 .7. 
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6 .3 Fitting The Two-Parameter Normal Probability 

Function to ~ Variable p,T 

The estimates of the mean of the ~P 
is computed by ,r 

variable 

E" = _1_ ~ ~ ~ 
" nw p=l r=l <>p,r 

(6.20) 

and the standard deviation by 

[
1 n w -z]v. 

s~ = nw p~l ~1 (~p .r- ~) (6.21) 

For testing the goodness of fit of the normal 
dist r ibut i on to the ~ variab l e, 

p,T 
with N = nw, the · v class intervals with equal 
probo.bilities 1/ v are selected. The v-1 class 
limits, ti of the standard normal variable are deter­
mined by the inverse of the integral 

. I t. 
L= -- / e-1' 12 dt (6.22) 
v· $ . oo 

with j= 1, 2, .•. ,v-l, as t
1

, t
2

, ... ,tv_
1

. 

When the ~ series is not standardized , the 
p,T 

v- 1 values of t. are easily transformed to v-1 
J 

values of ~i by 
(6.23) 

Sorting t he total ~ series into v class inter-p,r 
vals produces the f k frequencies, so that Equation 
8.19 enables the computation of the x2 statistic. By 
compari ng this x2 with x:. obtained either by 
Equation 6.17 or Equation 6.18, which depends on 
the selected v value, the test of fitting the two­
parameter normal function is performed . 
When x2 

...;.:; x2 , the normal function is satisfactory 
c 

and there is no practical need for testing the fit of 
other probability f~nctions to the ~ r frequency . p , 
distribution, which have more parameters, though 
their x2 -values may be smaller. 

6 .4 Fitting The Three-Parameter Lognormal Pro-
bability Function to ~ Variable 

p ,T 

Assuming the lower boundary is ~ , and ~P 
0 , T 

is replaced by the symbol ~i ' then the lower 
boundary is estimated by 



[~ N 
In (~(~o)] 2 

1 i~l In (~i- ~0) ! L - N i=l 

N ln(~i -~o) 
(6.24) + L ~i- ~0 = 0 . 

i=l 

with N = nw. 

The lower boundary ~0 must be estimated 
from Equation 6.24 by an iterative procedure and by 
prescribing how much the left side of Equation 6.24 
may deviate from zero of the right side. When ~ is 

0 

obtained, the other two parameters, the mean of 
logarithms of the deviations (~.-~ ) are computed 

I 0 

by N 
J10 = ~ i~1 Inai- ~0 ) , (6.25) 

and the standard deviation of logarithms of (~(~0) 

by ., = l ~ i~, [In(!;- ~0)- .,] , I" (6.26) 

Then the probability density function of distribution 
of ~ is p,'T 

rm = I .)7; exp l -11n(~- ~0)- J1 j2 /2a2 I a (~ - ~ ) 27T n n 
n 0 

(6.27) 

In order to test how good the fit is by Eq. 
6.27 to the ~ empirical distribution, the chi-p ,T 
square test is also used. Starting with Eq. 6.22, 
the v-1 class limits of t. are determined. Then 

I 

the class limits of Eq. 6.27 are obtained by the trans-
formation 

at.+~t 
~· = ~ + e n J n 

J 0 
(6.28) 

The x2 -test can be performed either on ~ or p ,T 
on ~p.7-~0 • 

6.5 Fitting The Three-Parameter Gamma 
Probability Function To ~ Variable p ,T 

For the estimation of the three parameters, 
o: (shape),~ (scale), and ~0 (lower boundary) of the 
three-parameter gamma function, the maximum like­
lihood estimation method should be used. · The 
boundary is estimated by an iterative procedure from 

I + (I + t Al' _ 1 N 1 
- --=---- -(~ - ~ )N L r-r:=O 
l + (l + t A)'h - 4A 0 i=l I 0 

(6.29) 
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in wltich 
- 1 N 

A = In(~ - ~o) - N L ln(~. - ~ ) (6.30) 
i=l I 0 ' 

and ~ = the mean of N values of ~·· 
I 

Once ~0 is estimated, the parameter a is 
estimated by 

4 
y, 

1 +(I+ j A) (6.31) 
a = 4A - !::.t:x. 

with A given by Equation 6.30 and !::.t:x. approxi­
mated by 

!::.t:x. = 0.04475(0.26)0: (6.32) 

The parameter ~ is estimated by 

1 N 1 -
~ = Q i~l (~i - ~0) = Q (~ - ~0) (6.33) 

With all three parameters estimated, the probability 
density function of ~ is p ,T 

1 (~-~ ) Cl'-1 
f(~)= maJ -T . (6.34) 

To determine how good the fit of the ~ 
. p ,'T 

empirical distribution is by Equation 6.34, the chi-
square test is performed. Consider v class intervals 
each with the equal probability 1/v. The v class 
limits are determined from the one-parameter gamma 
distribution by the inverse of the integral 

1 oo -x 
P(X > x.) = "'''T,0 f x~- J e i dx. 

J 1 \V.J x. J J 
J 

(6.35) 

for xi ~ 0, for j = 0 ,1 , ... ,v-1. The computed values 
x , x

1 
, ... ,x 1 , are then transformed to ~.- class 

0 II· J 
limits by 

~· = ~ t ~X. , 
J 0 J 

(6.36) 

if ~ are tested; or ~· - ~ = 8x are the limits if 
p,T ) 0 . 

(~ - ~ )-variable is tested for the goodness of f1t ; 
p,T 0 

~ is the parameter of Eq. 6.34. 

Instead of Equations 6.35 and 6.36, the inverse 
of the integral may be written as 

' (6.37) 

in which ~ , a and ~ are estimated by Equations 
0 

6.29 through 6.33 and the variable (~ -~0) is 
tested for the goodness of fit. 

p,'T 



6.6 Fitting The Double-Branch Gamma Probability 
Function to the ~ Variable 

p,T 

Some ~ variables of daily flow series may p ,T 
show that the three previous probability functions 
(normal, lognormal and gamma) do .not fit well their 
empirical frequency density curves. These curves are 
highly peaked at a given value ~o, and rapidly de· 
crease in both branches the positive and the negative 
values of (~ • ~ ). p,T 0 

Three alternatives have been studied for these 
cases of high peakedness: 

( 1) the use of Laguerre polynomials applied to 
the gamma distribution; 

(2) the use of other distributions, particularly 
various Pearson curves, except the Type III (three­
parameter gamma); and 

(3) the use of the two two-parameter gamma 
distributions with either a < 1 or a = 1, for the 
two branches of the highly peaked empiri· 
cal ~ distribution. p,T 

This latter case has been shown to be practical, 
provided that the six parameters to be estimated, 
if a < 1 , may be replaced by only four parameters, 
if a = 1 is selected for both branches. 

First, the position of the peak, ~0 , and the 
p robab ili t ies P = P(~ <; ~ ) and P(~ p ,T 0 p,T 
> ~0) = 1 • P should be determined in order to 
obtain the point where t he two bra.nches intersect for 
a = 1 , or have the vertical asymptote, for 0 
< a < 1. Then the total areas, P and 1-P, of the 
left and the right branch are obtained, respectively. 
The parameters a 1 and {31 for the left branch, and 

a 2 and {32 for the right bra.nch, are estimated by 
the following equations, 

f(~ -n= p (~ -~)cr . - 1 e·no ·t>/111, {6.38) 
0 " • 0 

{3
1 

r(a,) 

for ~ < ~0 , for the left branch, and 

f(H ) = 1- P (~-~ )"2-1 e-(Ho)/112' 

o {32 "2 r(a2) o (6.39) 

for ~ > ~0 , for the right branch. For a 1 = a 2 = 1, 
Equations 6.38 and 6.39 are simpler to use. 

For the ~(series, the six parameters of this 
double-branch gamma functions to be estimated 
a r e~, P , a 1 , {3 1 , a 2 and {3 

0 2' 
if 0 < a < 1, but only ~0 , P, {31 , and (32 , if a 1 

= al = 1. 
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The mode ~0 , or the value of ~i with the 
largest frequency density, can be estimated by 
selecting the class interval t.t say 0.001 o r 
smaUer, and by finding the lower boundary ~11 of 
the interval .6.~ with the largest frequency of the 
~o series. The estimate of ~0 is then approximately 

~o = ~11 + t.V2 . (6.40) 

The parameter P, or the probability of all val· 
ues ~ <; ~ , is determined by 

p,T 0 

Nl 
P= nw • 

(6.41) 

with N
1 

the number of all values ~ ~ ~0 . p,T 

Parameters a
1 

and (3
1 

of the left branch are 
estimated by using only N

1 
values of the ~ p,T 

series; and a 2 and (32 are estimated by using the 
N · N 

1 
= N2 values of ~ , with ~ > ~ . p,T p ,T 0 

Then a
1 

and {3
1 

are estimated by 

t+P"A 3 I cr 
a = --~-- - 0.04475(0.26) 1 (6.42) 1 4A

1 

with 

A, = In ~" - k i~>; ] 
1 N, 

-~ . i;l In (~o - ~ 1) ' (6.43) 

and 

~. = •I, [<o -~ i~: O,] . (6.44) 

Parameters a
2 

and 13
2 

of the right branch. 
are estimated by using only N

2 
values of the ~ p ,T 

series and equations similar to Eqs. 6.42 through. 
6.44, with 

[ 
1 N2 ~ A = In - 1; (~. • ~ ) 

2 N i=l I 0 
2 

(6.45) 

For testing the goodness of fit of the double­
branch gamma function to the frequency distribution 
of the ~ variable, with N = nw, the number of 
class i~t~rvals selected is v, with equal pro­
babilities J fv. The class limits of ~i values are deter· 
mined by the inverse of the integrals, for the left 
branch in the form 



/i (~0 -~t~ - l e-{l;o-0/1'11 d~, 
- 00 

(6.46) 
and for the right branch in the form 

~ -(1-P) ~v-j )a2-1 -(~ - ~o)/~2 dl: 
v = a f (~ - ~0 e s · 

~2 2r(a2)"" (6.47) 
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In this case, the class interval of the two closest class 
limits to ~ , say ~· and ~-+ 1 , should have the pro-

o J J 
bability 1/v, if the left branch is integrated 
from ~- to ~ and the right branch is integrated 

J 0 
from 1:. to ~ , and the two areas summed. '>l+ I o 
The x -test is performed as for the other prob-
ability functions. 



Chapter 7 

BIAS RETAINED BY INAPPROPRIATE STRUCTURAL ANALYSIS OF TIME SERIES 

Results obtained in structural anslysis and 
mathematical description of hydrologic time series, 
and in the preservation of basic .properties of a 
stochastic process in generating new samples, with 
these properties inferred from an available sample, 
may be assessed by answering the question of 
whether or not any bias in the existing sample is 
carried into the new generated samples. The bias 
in this chapter is defmed either as a sample charac­
teristic which has a very small probability to be 
repeated in the new observed samples (or to be 
the population property), or as some other property 
of the observed sample which makes the analysis and 
description distorted. 

7 .l Leap Year Effect 

In using small time intervals (day. 3-day. 7-
day), the leap year effect represents a shift in the 
period of the year. However. one-day shift every 
four years does not significantly affect the results 
either of the periodicity in several parameters, or of 
the time dependence for its stationary stochastic 
component. The simplest approach seems to be the 
deletion of one day in leap years, making it 365 
instead of 366 days. This means the period of 
every year is shifted I /4 of day for the first three 
years in comparison to the previous year, and the 
fourth year, shifted back for a full day, has the 
period 3/4 of a day in advance of the previous year. 

7.2 Sampling Trends and Cycles 

The most current bias in structural analysis 
and mathematical description of hydrologic time 
series is the preservation in generated samples of the 
sampling trends and sampling cyclicities of an avail­
able sample. By removing the within-the-year period­
icity in the mean and standard deviation, the upward 
or downward chance trends and the pseudo-cyclical 
chance fluctuations over periods greater than the 
year are not removed from the e series. These 

p,T 
chance patterns are reflected in the general correlo-
gram r k or the general spectrum vf of an E ,r 

series. Because a combination of an autoregressYve 
linear model and a trend, or a combination of an 
autoregressive linear model and a pseudo-cyclicity 
result in a complex correlogram or spectrum, the 
fitting of a simple mathematical autocorrelation 
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function does not usually p~oduce an independent 
and second-order stationary ~ series. If a non­

P T 
stationary approach of structural analysis is used, by 
which r1 _ is investigated for e at each position ,, p ,T 
value r, say for the first-order autoregressive model, 
the reproduction of e by these w values of 

p,T 
r 1 .r' with autoregressive linear equations, may not 
be significantly affected by the sampling trend or 
pseudo-cyclicity, so that the r I.T values may be 
realistic estimates of population values p 

1 
• 

,T 

To remove this type of bias, the usc of rk ,r 

values, k = J, 2, ... ,m and r = l, 2, . .. ,w, as 
column values for the year as the period, instead of 
rk of the general ep,r correlogram, decreases or 
eliminates the effects of chance trends or chance 
pseudo-cyclicities, though it may not remove their 
effects completely. The correlogram of the means 
rk values, k = 1, 2, ... , represents then the basic 

,T 

dependence structure, though the trends and pseudo-
cyclicities may still affect some of these mean values. 
This is a basic reason which has influenced the posi­
tion in this study, namely to use rk and its means 

,T 

rather than the general correlogram rk of the e p,T 
series. 

7.3 Biases at Extremes 

The case is frequent when an extreme high or 
extreme low value represent a bias because their 
probabilities to be exceeded or not exceeded in a 
sample of limited size are not sufficiently high, or 
these extremes may not be representative of the 
sample of a given size. For example, a flood peak 
which has occurred in a sample of 30 years might 
have a return period of only 10-15 years, or the 
opposite, of a recurrence interval of 80-100 years 
or even more. If the maximum observed annual peak 
of annual flood series has a return period somewhere 
between 20 and 40 years for a sample series of 30 
years, this maximum value would be considered 
representative of the sample. Similarly, the analysis 
of runs of a series, with observed dry or wet spells 
for a given crossing level which defines the runs 
(measured either by duration, by total deficit or 
by maximum or minimum intensity), may not be 
representative of a sample size. The average return 
period of such extreme runs may be either much 



greater or much smaller than the sample size in 
which they are observed. 

To avoid these unrepresentative extremes be­
coming perpetuated either in the mathematical des­
cription of a time series, or in the new generated 
samples, an appropriate structural analysis should be 
selected. The basic approach in the structural 
analysis, as described in this paper, is the fitting of 
probability distribution functions to empirical fre­
quency distribution curves of the independent sto­
chastic component, so that the tails of these func­
tions arc approximated by a decreasing function , 
basically of the exponential or simple exponential 
type. By replacing the sample frequency distribu­
tion curve by an inferred probability density func­
tion, the problem of extreme unrepresentative values 
may partly be alleviated. By using the maximum 
likelihood method of estimation instead of the 
method of moments in fitting the probability distri­
bution functions, the effects of unrepresentative 
extremes arc further reduced. 

It is presently current among some investi­
gators, who apply stochastic processes in hydrology 
and/or develop the methods of generating new 
samples of hydrologic processes, to measure these 
methods by how well they reproduc·e the extreme 
values of observed samples. Some of the dependence 
models used currently in hydrology, like the auto­
regressive or Markov linear models, have been criti­
cized in that the reproduction of extremes in new 
generated samples is not good. It is claimed that 
proposed new models and methods would better 
reproduce the extremes; reproducing extremes as 
closely as possible may represent the perpetuating of 
unrepresentative extremes, or retaining various sam­
pling biases. The issue is reduced to the question of 
what should be best reproduced in the generation of 
new samples from the basic properties of historic 
samples. The reproduction of every sampling varia· 
tion of historic series in the new generated samples 
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defeats the basic objective of the application of 
Monte Carlo method, namely to investigate how 
water resources systems would perform under new 
realizations of a process, realizations which have a 
sufficiently high probability to occur in the future. 

These criticisms of autoregressive linear models 
for representing stochastic dependence in hydrologic 
time processes lead to the impression that these argu­
ments have been derived mainly to justify proposed 
new dependence models rather than being based on 
an objective analysis of natural physical processes 
and the applicability of autoregressive linear models 
to them. 

A stochastic mathematical model, to be appli­
cable in hydrology, should satisfy the three basic 
tests: 

a. That it has a sound theoretical background 
based on general properties of hydrologic natural 
processes; 

b. That the type of responses of hydrologic 
environments to various inputs, which responses are 
the main factors of time dependence, predetermine 
the type of models; and 

c. That the investigation of a large number of 
observed homogeneous series of a random hydrologic 
variable over a sufficiently large region supports, by 
the use of best statistical inference techniques, the 
good fit of a given model for the dependence charac­
teristics of these series. The support should occur at 
least the percent equivalent to the selected prob­
ability level of the statistical inference technique. 

By neglecting any of the three tests, it is 
necessary for some models advanced in the literature 
to be justified by superficial or dubious arguments, 
when they are compared with models of dependence 
of already proven applications. 



Chapter 8 

CONCLUSIONS 

The topics analyzed in this paper are basically 
approaches with a fundamental hypothesis: that any 
continuous hydrologic time process, or its discrete 
series approximations, can be separated into deter­
ministic component parameters, and a stationary 
stochastic component. The two rationales of this 
approach are: 

(a) Physical hydrologic processes in nature 
support this hypothesis, both from the point of view 
of solar energy input, and hydrologic environment, 
particularly river basin responses. They justify 
periodicities in parameters and mathematical depen­
dence models in stochastic components. 

{b) Mathematical descriptions of deterministic 
components and of stationary stochastic components 
are most feasible when treating complex processes 
with the presently available methods for stationary 
and ergodic processes. 

Three parts of the analysis presented are 
crucial. The methods, approximate or exact, are 
outlined in treating these three basic parts. 

1. The available statistical inference techniques 
are used to infer the presence of periodicities in basic 
parameters, while the mathematical description of 
these periodicities is made by using Fourier series 
analysis, with a limited number of low frequency 
harmonics and their estimated coefficients. 

2. When periodicities in periodic parameters 
are removed from the original series, and the result­
ing stationary stochastic component of a given order 
of stationarity is analyzed for dependence, then 
autoregressive linear models are used. They are used 
under the assumption that they have been inferred as 
being the closest approximation of reality either by 
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investigating the physical processes in hydrologic 
environments, or by statistic:..! analysis of hundreds 
of available time series of a hydrologic random 
variable. 

3. When a stochastic stationary independent 
component is computed from the dependence model 
of the stochastic component, the probability distri­
bution functions which best fit the frequency distri­
bution curves are analyzed, sorting them from the 
simplest to the more complex probability distribu­
tion functions. The larger an interval of a discrete 
time series, the simpler is this function. 

Historic samples of hydrologic time processes 
are subject to various biases. The basic approach in 
this study was to shape the techniques of structural 
analysis, mathematical description and data genera­
tion such that these biases are not perpetuated. It is 
expected that the real difference between the use of 
already proven practical mathematical dependence 
models, and abstract untested models is that the pre­
servation of various biases in the latter approach is 
not given a proper critical assessment. 

Methods available at present for the structural 
analysis and mathematical description of hydrologic 
time series may be divided into two broad groups: 
the analysis of series as nonstationary processes, and 
the analysis of series as composed of a stationary pro­
cess and inferred deterministic components. The 
first dilemma in selecting an approach is always of 
this type. The position taken in this paper is that 
any technique of structural analysis, mathematical 
description and data generation in hydrology cannot 
be better than the basic hypothesis which underlies 
these three practical aspects of hydrologic time 
series. 
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