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ABSTRACT

Structural analysis and mathematical description of hydrologic time series are based on a set of well
defined hypotheses, with the assumption that a development cannot be better than hypotheses underlying it.
Techniques are presented on how to infer the existence of periodic deterministic component parameters in time
series. The unavailability of exact inference techniques is replaced by approximations, whenever the complexity
of hydrologic time series does not justify the use of existing statistical inference techniques. Once periodicities
are inferred, Fourier analysis is used to mathematically describe periodicities in parameters by a minimum
number of low frequency harmonics and their estimated coefficients.

Inferred dependence models for the stationary stochastic components of a given order of stationarity,
after all periodicities in parameters are removed, are basically of the autoregressive linear type. The assumption
is that the autoregressive coefficients may be both periodic and nonperiodic. Several misinterpretations of
autoregressive linear models are discussed. These misinterpretations are due to doubts often advanced by some
superficial arguments on the applicability of these models in hydrology.

The frequency distribution curve of the independent stochastic stationary component, derived from the
inferred dependence model, is approximated by best fit as one among various probability distribution functions
studied. They are more or less simple. The small interval time series (say 1-day, 2-day, 3-day, and 7-day discrete
time series) require less simple probability distribution functions to fit these frequency curves, while for the large
interval time series (say 15-day, monthly, or bimonthly time series) simple probability functions produce good
fits.

Biases in time series which should not be reproduced or perpetuated by structural analysis, mathematical
description and generation of new samples, are outlined and discussed.
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Chapter 1

INTRODUCTION

To place this study in context with the writer’s
continuous efforts regarding the structural analysis of
hydrologic time series, the problems related to this
analysis and the methods of attacking them are first
defined and outlined. Basic concepts are sketched to
provide the reader insight into the philosophy of the
approach used in this study.

1.1  Previous Work

It has been shown in previous Hydrology Papers
[1, 2, 3, 4]#* and in an article [5] that hydrologic
time series of precipitation and runoff have definite
structural patterns. To define the various components
of a hydrologic time series, the general results of
these patterns are briefly summarized.

Sequences of annual precipitation, annual
effective precipitation (precipitation minus evapora-
tion) and natural annual runoff from river basins are
approximately stationary time series, or with series
properties independent of the absolute time. Series of
annual precipitation are nearly independent time
series, and the series of annual effective precipitation
and annual runoff are either independent or
dependent stochastic variables. In this latter case the
variables are usually of a simple linear dependence,
approximately of the first- and the second-order
autoregressive (or Markov) linear models [1,2].

Series of monthly precipitation, monthly
effective precipitation, monthly runoff, as well as
monthly series of many other hydrologic variables,
have periodic components of 12 months in both
monthly means and monthly standard deviations.
When these periodic components are removed from a
monthly series, the remaining part or component may
be considered approximately an independent
stationary stochastic process for monthly precipita-
tion, and approximately a linearly dependent
stationary stochastic process for monthly runoff [3].
Similar patterns appear in series of daily river flows
[4, 5]. The autocovariances (or autocorrelation coef-
ficients) as well as the higher-order parameters may
also be periodic for some time series of hydrologic
random variables. Runoff series (say daily flow series)

**Reference numbers in the text refer to the
references at the end of the paper.

are among the most complex geophysical time
processes, however.

1.2 Objective of this Study

The objective of this study is to present a
detailed analysis of the structure of hydrologic time
series beyond the previous work. With this in mind
inquires into the structure of hydrologic time series
are made in several ways: (1) separation of a discrete
time series (of time intervals less than a year) into
periodic and stochastic components; (2) investigation
of whether various parameters of time series are
periodic or nonperiodic; (3) determination of
significant harmonics (amplitudes are significantly
greater than for nonperiodic series) in the periodic
parameters; (4) analysis of whether stochastic com-
ponents are dependent or independent; (5) fitting of
adequate mathematical dependence models and the
computation of independent stochastic variables from
dependent stochastic components; (6) fitting
probability distribution functions to independent
stochastic components and selecting the function of
best fit; (7) derivation of the structure as a final
mathematical model of a time series; (8) description
of various biases in time series that influence both the
structural analysis and the final mathematical models;
(9) selection of statistical inference techniques for an
objective but practical structural analysis of time
series; (10) eventual physical explanation of various
structural properties of hydrologic time series; (11)
separation of mathematical models into deterministic
and stochastic parts, with the parameters of
deterministic components subject to sampling errors;
(12) computation of explained variances of time
series by various components, and similar inquiries.

1.3  Significance of the Analysis

Two basic results are significant from this
study: (1) an improved understanding and mathe-
matical description of hydrologic stochastic processes
by a better analysis of time series structure, and (2)
developments of an improved methodology for the
generation of samples of hydrologic time series by the
experimental statistical (the Monte Carlo) method.



To explore these results, an understanding of
the composition of the structure of a hydrologic time
series is needed. This composition should result from
the analysis of the structure of any hydrologic time
series. First, there may be either a trend or a long-
term persistent movement appearing as a smooth
broad motion extending over years, and/or as
slippages (positive and negative jumps) and other
transient deterministic components created either by
nonhomogeneity and inconsistency in data or by
sampling variations. Second, a periodic movement
with a basic cycle of the year is nearly always present
in time series of daily and monthly values. Third,
when the deterministic parts in the form of trends,
slippages, and periodic components in statistical
parameters are removed from a time series by using
the algebraic composition of its structure, only the
stochastic component remains, usually as a stationary
process. Thus, to reach the ultimate in analysis of
time series structure, its decomposition into com-
ponents is necessary. Because a time series may be
represented by an algebraic equation between various
components does not mean that these components
may be used as separate series for the solution of
various water resource problems, though in some
cases this approach may be feasible.

Considering various components as being
produced by unrelated causative factors may lead to
wrong conclusions. It is necessary to remember that
the worthwhile objective of a detailed analysis of a
hydrologic stochastic process is an explanation of the
time series properties by physical causative factors.
To study the potential physical causative factors of a
component separately, it must be isolated. In
periodic-stochastic processes this is done by sepa-
rating the deterministic processes from the stochastic
process. In other words, deterministic components
should be identified, proven, and separated from the
remaining part of the series, thereby isolating the
stochastic component.

This analysis of the structure of a hydrologic
series and the physical explanation for its
components may be compared, only along general
lines, to the analysis of a communication time series.
The signal components of a communication time
series are equivalent to deterministic (periodic, tran-
sient) components of hydrologic time series. Its noise
(or stochasticity) is comparable to the stochastic
component of hydrologic series. The difference is
that physical description and explanation of signal
and noise components, and their connection, is often

much simpler in communications engineering than in
hydrology; the components of hydrologic series are
still far from being well understood particularly the
interaction between periodic and stochastic com-
ponents. Although periodicities are explained by
astronomic cycles, and consequently by the
periodicity in the energy supply from the sun over
various areas of the earth’s surface, and further inter-
actions and responses of various earth’s environments,
the complexity of periodic components needs a much
better physical analysis than is presently available.
Similarly, though the stochastic component may be
explained by various random processes in the air, over
oceans and at the continental surfaces, that is over
various geophysical environments, many more efforts
are needed to improve its physical understanding,
explanation and description. Analysis of the structure
of hydrologic time series is considered here as a
necessary initial step for a comprehensive physical
explanation of composition of time and space
hydrologic stochastic processes.

1.4 Physical Background of Hydrologic
Stochastic Processes

Basic characteristics of hydrologic time series,
such as eventual long-term trends and other per-
sistencies, the periodicities of the year and of the day,
and the randomness and time dependence of
stochastic variations, may be physically or
statistically explained in the following ways.

(a) Longrange trends and other eventual long-
range persistencies. Inconsistency (systematic errors)
and nonhomogeneity (changes in nature by man-
made or by natural processes) are mainly responsible
for the long- range trends or sudden changes. They
mus. be identified and removed if they are not
expected either. to continue or to continue in a dif-
ferent manner. However, causative factors produced
by the historical study of operating gaging stations
and environmental changes in river basins should
support the statistical detection of trends and positive
and negative jumps.

Trends and cyclicity are often the results of
sampling fluctuations for short time series. When
periodicity is only a result of sampling variation, it
is called in this paper pseudo or sampling cyclicity.
The main problem is to determine for these trends
and pseudo-cycles not to be statistically significant.
For example, a series of N years is divided into four



subseries each of the size N/4. The four means of
these subseries are ranked as il =X+ € ‘iz =X+
52,i3 =X+e¢, and }'(4 =i+e4, with £ <ez<
0< €, <€, and X is the mean of N values.
These four independent values can be permutated in
24 sequences. The probability to obtain the upward
trend of these means, X, > X, X, *X,, is 1/24,
and the downward trend, ‘ia X F '}El. is
also 1/24. To have a pseudo-cycle, like %, X, -
X, ¥ X,y OF 'iz *il ~ X, = X,, or similar com-
binations of small-large-small-large, there are four
combinations with the total probability of 1/6.
Therefore, to show a weak long-range trend or
pseudo-cyclicity only by the sampling variation the
probability is 5/12, if four subseries are used as an
example.

These sampling fluctuations in small samples
should not be overlooked in any study of the struc-
ture of hydrologic time series. Regional studies
should decide whether there is any significant trend
or significant pseudo-cyclicity to be assigned to a
particular series in the area. However, the set of series
in a region for this investigation should not come
from stations too near each other, because of the high
correlation among hydrologic series of neighboring
stations.

In conclusion, the apparent long-range trends
and pseudo-cyclicity should not be considered as a
permanent property of any series of annual values of
a hydrologic variable (after the known non-
homogeneity and inconsistency are removed), if it is
not confirmed by regional studies. If a regional study
shows that the phenomenon follows a stationary
process of annual values, the sampling fluctuation
with trends and pseudo-cyclicity at some stations
inside this region should not be considered as
significant, and should not be perpetuated in
structural analysis and mathematical description of
time series, nor should it be perpetuated in generating
new samples by the Monte Carlo method.

(b) Sources of within-the-year periodicity,
irandomness and time dependence. Astronomic cycles
cause periodicity (“signals’”) in various hydrologic
time series. Turbulence, large-scale vorticities, heat
transfer, and similar sources of randomness of fluid
mechanics, air opacity for radiation waves,
thermodynamic and other processes, are responsible
for randomness or “noise” in these series. Storage of
various quantitites in hydrologic environments and
the resulting smoothing effects are factors that

attenuate the periodic process and create or increase
the time dependence in stochastic variation. Inputs to
hydrologic environments are mainly a composition of
periodic and random parts which often mutually
interact. These environments respond in three ways:
(1) by smoothing or magnifying the inputs; (2) by
adding, amplifying, or dampening the periodicity if
the environments have some periodic aspects in their
responses, and (3) by adding or modifying ran-
domness due to various factors in the environment
which change and/or react with chance elements in
them. In summary, the analysis of hydrologic time
series should show components and their properties
as described.

The basic approach in this investigation is the
assumption that periodic components are deter-
ministic properties of various time series parameters.
Further, a stationary stochastic process is superposed
on them in a given manner and is described by
algebraic equations of time series composition. There-
fore, hydrologic time series are nonstationary
processes. By the described fundamental assumptions
a nonstationary process can be decomposed into
deterministic components and a stationary stochastic
process. This approach requires analysis of periodicity
in as many parameters as necessary to obtain a given
order of stationarity of the stochastic component.

Experience indicates periodicity components
are mainly deterministic processes. It is difficult to
find physical factors in various hydrologic environ-
ments that would change the basic astronomic
periodicities. These environments can modify the
amplitudes and cause the phases of various sub-
harmonics of the basic periodicity to change. If this
can not be accepted in reality, the structural analysis
of hydrologic time series can not use all the
advantages of mathematical techniques developed for
stationary processes, so new techniques must be
developed for hydrologic processes based exclusively
on the nonstationarity of these processes. Many
present-day approaches in hydrology for the analysis
of time series and the generation of new samples are
based on a nonstationary approach to the treatment
of stochastic aspects of these series.

1.5 Definition of the Independent Stochastic
Component of Discrete Hydrologic Time Series

If m, and s_are designated as monthly or
daily means, and monthly or daily standard
deviations, respectively, (or for any other time



interval in which a year is divided), with 7 de-
signating the discrete positions inside the year, then
the standardization of a variable x, gives

e (1.1)

in which x, are discrete values of a series and € is
the new reduced variable which may or may not be
the first approximation of the stationary stochastic
component, independent or dependent. Further
analysis may show periodicities in other properties,
such as in the autocorrelation coefficients of
the €, series, in the higher-order moments and part-
icularly in the skewness and the excess coefficients of
the € distribution at each position 7 (say, in each
of the 12 months, or in each of the 365 days). These
periodicities can be also removed by appropriate
mathematical models to single out the stationary
stochastic component of a series.

Stationary stochastic components often come
out to be approximately linearly dependent, with
mathematical autoregressive dependence models such

as
g=pg tVL0 & (1.2)

or

# a1 aj -ay - 2w 0,0, & (1.3)

or by the higher-order linear autoregressive models.
Equations 1.2 and 1.3 represent the two simplest
autoregressive linear models, of the first-order and the
second-order, respectively. The estimate of p, in
Equation 1.2 is usually by r,, the first serial cor-
relation coefficient of the sample, and the estimate
of a and «, in Equation 1.3 is usually
by a, and a, of the sample, which depend
on r, and I, (the first and the second serial cor-
relation coefficients of the sample),
though £ /0t I, and r, are not the unbiased
estimates of p,, or P, and Py Then by using
Equations 1.2 and 1.3 the independent stationary
stochastic component can be determined either by
€ -T €
'Ei =i 171

T (1.4)

or by
LG o G

i 3 il , ' 1.5
‘/1"‘1'32'231“15 (1.5)

for Equations 1.2 and 1.3 respectively, and similarly
for the higher-order linear models. If parameters that
are functions of the higher-order moments are shown
to be periodic, these periodicities can be similarly
mathematically described and removed.

The independent stochastic component, de-
signated in this text as the & random variable and
assumed to be identically distributed at
all 7 positions of the period w, should be as nearly
stationary and independent time process as the
analysis of available data and statistical inference
permit or justify. This definition of an independent
stochastic component is used throughout the
following text.

1.6 Time Series Measures

Experience shows that many hydrologic time
processes follow the astronomic periodicities of the
day and the year. When these variables are integrated
over 24 hours as the average or total daily values, the
cycle of the day is no longer present in the discrete
series of daily values. Similarly, an integration of the
continuous process over 365 days, or a summation of
discrete values of a series from 1 to w, where w is
the number of values in any year of this discrete pro-
cess resulting in average or total annual values, the
cycle of the year is no longer present in the discrete
series of annual values,

For a continuous time series, x,, a time
interval, At, is selected to sum or average the pro-
cess inside the consecutive and non-overlapping
sequence of these intervals. This procedure creates a
new discrete series with At defined here as the time
series measure. Usually, in hydrology, At are
multiples of either hour, day or month, with the
intervals themselves of the hour, the day, the month,
and the year included. For a majority of hydrologic
time series, hours and fractions or multiples of hours
are used to derive a new series when the short time
series measures are relevant. When the opposite is the
case, the day or month or their multiples are used.
Many hydrologic services publish data as hourly,
daily, monthly and annual series. Further analysis is
mainly concerned with time series measures of the
day and multiples of the day, and the month, though



derivations are valid for any At. For this study only
those values of At are relevant that avoid the daily
periodicity, (At = 1 day), but keep the annual
periodicity, or 1 day < At < one year, with At a
fraction of the year, so that this annual periodicity
remains in the new discrete time series. Daily and
monthly series are often taken here as the two
examples of the At selection. The values of At of
1-day, 2-day, 3-day, 7-day, 13-day, 14-day, 15-day,
1-month, 2-month, 3-month, 6-month, and similar
interval lengths, by which a year can be divided into
approximately w equal intervals, fit the patterns to
be investigated in this paper. If hourly values are
studied, or values of intervals that are fractions of an
hour or multiples of an hour but fractions of the day,
then the two periodicities of the day and the year
would show in the discrete series for many hydrologic
variables. The methodology to be outlined in the sub-
sequent text can be applied to any time measure of
similar properties.

If the annual cycle is denoted by T (the year),
then w = T/At is the number of discrete intervals,
or there are w discrete values x; of the random
variable within any year. The sequence of these values
are denoted by 7, with 7 =1, 2, ..., w. For
monthly values w = 12, for weekly val
ues w = 52, and for the daily values w = 365.

1.7 Condensation of Hydrologic Information

Information from hydrologic observed data can -

be presented as tables, graphs, and mathematical
models. Usually the best presentation is as condensed
mathematical models. The information in a sample of
100 years of observations of monthly precipitation or
monthly runoff, or daily discharge and intermittent
precipitation events, or of any other hydrologic
variable, may be condensed into a few mathematical
models containing the necessary estimation of
parameters. Basically, the following mathematical
models are appropriate.

(a) Algebraic structural models. These describe
the connection between the periodic-deterministic
and the stochastic components. The simplest example
is given by Equation 1.1. Sometimes complex rather
than simple models are likely to fit these connections
in various practical cases.

(b) Models for periodicities. These describe
various periodic-deterministic components. Primarily,

they are sets of trigonometric functions in the
Fourier analysis of periodic components. The com-
plete description and removal of periodic com-
ponents should reduce the series to stationary sto-
chastic components, provided they do not contain
trends and jumps.

(c) Models of dependence of stationary sto-
chastic components. These models are a further
description of the time series structure. The
independent stationary stochastic variable should be
well defined and identified by these dependence
models. These dependence mathematical models are
deterministic functions relating the random variables.

(d) Models of univariate probability distribu-
tion functions. These are descriptive mathematical
models of the distribution of independent stationary
stochastic components, or of independent random
components identically distributed over
all 7 positions inside the period w.

As an example, in the simplest form, the
assumption is made that Equation 1.1 describes the
first relation between the deterministic compo-
nents, m_ and s, and the stochastic compo-
nent, €. A further improvement may be made by
using the periodic functions u_ and o_ as fitted
to m_and s_ values, of the periodic movements in
the mean and standard deviation; if they are propor-
tional, then 4. = aff,uf is a constant to be
estimated by the constant coefficient of variation,
LU - m_ follows a simple periodic movement and
can be described by m harmonics in the Fourier
series analysis, then 2m+l is the number of
parameters to be estimated, two for each harmonic,
and the general mean, p_ estimated by the sample
mean, m_. If this is the case, Equation 1.1 becomes

Y; = - )k =x/u n, - 1n,. (1.6)

It has now one additional parameter, n_, to be
estimated by C, for the periodicity in s . Assume
further that €, is a stationary variable and follows
the second-order linear autoregressive model of
Equation 1.3, as the third equation. It adds another
two parameters, a; and a,, to be estimated by the
sample statistics, a, and a,. If & of Equation 1.5
is identically distributed over all 7 (12 months, or
365 days) and if it follows the log-normal probability
distribution with three parameters u , 0, and
v (to be estimated by the mean of logarithms m_,



the standard deviation of logarithms g_, and the low-
er boundary g, respectively), then it gives the fourth
equation with three additional parameters to
estimate.

In conclusion, the above example gives four
mathematical equations, with » = 2m + 7 para-
meters. For m =1 (only a 12-month periodic
function for m_), »=9; for m=2, v =11, and
for m= 6 (the maximum number of harmonics of
monthly time series for the 12-month periodicity),
v =19. It is clear that there are seven basic para-
meters M., M., &0, M 0, and vy and as many
pairs of Fourier coefficients as there are harmonics
in the second equation, all to be estimated from the
sample data. The proper analysis of the structure of
hydrologic time series should lessen the total number
of parameters to be estimated from data.

If four mathematical equations are given
and v parameters estimated from data, with all
necessary statistical inferences performed in
developing these four equations, it can be rightfully
claimed that all available information in a large
amount of observational data has been extracted in
the form of descriptive mathematical models. If
additional data become available statistical inference
should be performed again for these models, and their
parameters re-estimated from an increased sample. In
the future, instead of publishing books of tables and/
or long series of graphs, four or more equations in
general forms and a list of parameters may contain
the extracted information.

One objection to the hypothesis of extracting
information by mathematical models and their
parameters, is that the condensed information does
not refer to various random functions (new derived
variables) of the basic process, like extremes, runs,
ranges, and similar variables. The basic postulate of
probability theory is that properties of any function
of a random variable may be determined from the
stochastic process of that variable, if this process is
known and properly mathematically described. Thus,
this objection can be overcome either analytically by
developing characteristics of functions of the basic
random process, which approach is difficult with
complex hydrologic series, or through the experi-
mental statistical or data generation method by
generating new samples of the basic process, with the
derivation from the generated new samples of a
sample of any new random variable which is a
function of the basic process. Tests may be designed

to demonstrate that the properties of various
variables derived directly from the historic sample are
statistically indistinguishable from the properties of
variables derived either analytically or by the
experimental statistical method.

The current cases of hydrologic series may be
more complex than the above example, particularly
since 4 and ¢_ may not be proportional; there
may be a cycle in @, and a, of Equation 1.3. The
stochastic components of Equations 1.4 and 1.5 may
not be identically distributed over 7, or the
periodicity may exist in the skewness coef-
ficient, §_, or in the excess coefficient and in other
higher-moments parameters, However, it is still
feasible to determine the independent stochastic com-
ponent identically distributed over all 7 positions by
deriving additional mathematical models for other
periodic components.

An advantage to identifying a stationary
independent stochastic component is that the sample
size for the estimation of its parameters may be long.
If a series has the periodicity w, with
w = T/At, which is the number of discrete values in
a year, and if n is the number of years,
then N = nw is the sample size for the estimation
of parameters of an independent stationary stochastic
component. If a hydrologic series is 50 years long,
then the independent stationary stochastic com-
ponent of daily flows, £, has N =50 x
365 = 18,250 values. The estimates of parameters of
distribution of the £ variable become sufficiently
reliable, even taking into account the loss of degrees
of freedom in estimating the parameters of periodic
functions and of the dependence model. For monthly
flows in this case N = 50 x 12 = 600 values.
Since £, represents one of the main stochastic vari-
ations of a series, estimates of its properties have
sufficient accuracy. However, the estimates of various
parameters of periodic components and of
dependence models, whose parameters are also
subject to sampling variations, may be more in error
than the estimates of parameters of the £, variable.
If it is true that estimates of parameters in basic
deterministic periodic components involve only the
second statistical moments (or no higher-order
moment is periodic), while £ requires the estimates
of the third or even the fourth moment, the above
approach of providing a large effective sample for
g, seems attractive, especially when the number of
previously estimated parameters (as degrees of
freedom lost) is small.



The significance of this investigation is the
derivation of additional information about the
structure of hydrologic time series in order to obtain
a more realistic and accurate mathematical
description of hydrologic stochastic processes.

1.8 Generation of New Samples

The results of this study should enhance the
application of the experimental statistical method
(the Monte Carlo or data generation method) to
hydrology. Since the important stochastic part in
hydrologic time series is the independent stationary
stochastic component, the above discussed fourth
equation in the form of a probability density
function of this component is the basic random part
of a series. The sampling fluctuation of parameters of
deterministic components, and of the dependence
model of the stochastic part, are further sources of
randomness. If a hydrologic stochastic process can be
decomposed in such a way that the stochastic com-
ponent £, results in an independent stationary or
identically " distributed variable over all val-
ues 7 inside the year, it could substantially con-
tribute to a better application of the data generation
method to hydrology. If this component is
lognormally distributed it is sufficient to generate as
large a number of independent standard normal ran-
dom numbers as is required by the problem to be
solved, and then simply transform them to
independent lognormal random numbers. By
performing a sequence of transformations of
deterministic mathematical models, the new samples
of the x variable of Equation 1.1 may be produced.

In generating new samples of the variable of
monthly flows, daily flows, monthly precipitation, or
similar variables by application of the experimental
method, various water resources problems may be
solved. The first prerequisite for reproducing
properties of time series in new samples is the proper
generation of samples of independent stochastic com-
ponents, Generating new samples of time series can
be regarded as a reversible process of decomposition
of a time series into their various components.
Analysis in this study may contribute to a more
realistic and more accurate method for generating
hydrologic series for purposes of solving those
problems that cannot be solved with sufficient
accuracy either by classical empirical methods,
extensively used in hydrology and water resources, or
by analytical methods.

1.9 Two Techniques in the Primary Analysis of
Time Series

Primary analysis of a hydrologic time series is
defined here as steps that lead to the identification of
its structure. The existence of deterministic and
stochastic components should be ascertained and the
hypotheses about their connecting mathematical
model should result from this primary analysis. This
existence may be ascertained by several methods but
primarily by two techniques, the autocorrelation
analysis, represented by a correlogram, and the
spectral analysis, represented by the variance density
spectrum.

The correlogram is a function between the
serial correlation coefficients p,, as ordinates,
against the lag k as abscissae, with p, given by

__cov (x.,x.fI ) a7

P (var x, var xi+k)% '

as the ratio of the population covariance to the
population variance. The correlogram shows the
general character of a time series. When the values
p, are estimated by the sample values r, the
statistical inference is then performed to ascertain
whether these serial correlation coefficients are signi-
ficantly different from the correlogram of a
mathematical model. An advantage of this procedure
is that a direct relation can be established between
the shape of the autocorrelation function and the
type of the time series. The expected correlograms
are known for basic time series. Visual inspection of
the correlogram shows, in general, what type of series
may be dealt with, and a hypothesis about its struc-
ture may be advanced. It can be determined by
statistical tests whether a given hypothesis about the
structure of a series should be accepted or rejected. If
rejected, new hypotheses may be advanced and
tested.

If the correlogram gives the general type of
dependence, the variance density spectrum may be
used to better discern some aspects of the structure
of a time series, particularly the identification of
periodic components or some dependence models.
The spectral function is defined in relation to the
autocorrelation coefficients Py as

m
) =k§1 D(k) Py €Os 2ufk (1.8)

in which y(f) is the variance density, f is the
ordinary frequency, m is the number of autocor-
relation coefficients used in this transformation,



and D(k) is the smoothing function for the cor-
relogram. If the series is N long, often m = N/10
to N/5, though this is an arbitrary cutoff point.
Instead of using Equation 1.8 the fast Fourier trans-
forms (or the basic and original concepts of Fourier
transforms of a series) are used at present to estimate
the spectral densities with much less computer time.

Spectral densities are Fourier transforms of the
autocorrelation function. Referring to the cor-
relogram, Equation 1.8 shows that both techniques-
autocorrelation and spectral analysis—are basically
identical, and that limitations in the correlogram
accuracy affect the accuracy of variance spectrum
densities. They are different pictures of the same
properties of basic data, with the correlogram
showing better some aspects of time dependence
while the variance spectrum, smoothed by a filtering
process, discerns other aspects better--particularly the
periodic components and some dependence models of
a time series.

Since considerable experience shows that the
periodicity of the year exists in nearly all continuous
hydrologic time processes, it is usually unnecessary to
identify it every time a new series of the same type of
variables is investigated. Thus, the Fourier analysis in
the form of discrete or line-spectrum, known as the
periodogram, should be used for estimating
amplitudes of harmonics instead of the continuous
variance spectram. The Fourier discrete-spectrum
harmonic analysis of the periodicity of the year is the
technique used in this study for mathematically
describing periodic components in hydrologic time
series of known basic periods.

1.10 Stationarity of Stochastic Components

A stochastic process is strictly stationary if the
distribution of the set Xps Xy e Xy is the same as
the set X, ., X, oeX o0 forevery n and k. In
practice, such stationarity is difficult to prove for a
hydrologic time series. The problem is not to obtain
this stationarity by removing trends, jumps and
periodic components, but to approch it closely
through valid statistical tests. These statistical tests
either relate to the first two statistical moments in
order to detect periodicities, and by removing them
to obtain an approximation to the second-order

stationarity of the remaining part, or relate also to
higher-order moments to approximate the higher-
order stationarity.

The process is second-order stationary if its
expected value and covariance are independent of the
position in a time series, or

E[x,] = constant (1.9)

for the first-order stationarity, or the stationarity in
the mean, and

E[(x; - Ex)(x, - (Bx;p, )1 =0 (1.10)
for a given k, for the second-order stationarity, or
the stationarity in the covariance. The investigation
of this paper tends in all its aspects to reduce, by
structural analysis, the stochastic component to a
final result of a second-order or higher-order

stationary and independent random variable,
identically distributed over the time series positions.

1.11 Organization of Material in this Paper

Theoretical aspects of structural analysis con-
cerning periodicity in the time series parameters,
dependence models, distribution functions and
parameters of stochastic components, and the effects
of various types of bias in the original series on its
structure, are presented in subsequent chapters, after
the hypotheses underlying this investigation are
presented in Chapter 2. Examples are given in support
of derivations and discussions. Conclusions are pre-
sented in the last chapter.

The three topics are crucial in the structural
analysis of hydrologic time series: the inference about
the significance of harmonics in the periodic
parameters, the inference about the best dependence
models for the stochastic components of a given
order of stationarity, and the inference for the
probability distribution of the best fit to the
frequency distribution of the independent stationary
stochastic component. These three topics are
discussed in details. Besides, a special attention is
given to the problem of biases of the sampling type in
order not to be perpetuated by the structural analysis
and mathematical description of a time series.



Chapter 2

HYPOTHESES UNDERLYING THE STRUCTURAL ANALYSIS

No structural analysis, nor the mathematical
models that have been advanced and tested, can be
better than the hypotheses underlying them. There-
fore, this chapter presents hypotheses used in this
study.

2.1 Selection of Working Hypotheses

A distinction should be made between the
following four concepts: basic data, information
contained in the data, hypotheses that underly the
extraction of information from data, and methods
used to extract this information. The development of
mathematical models for the description of
hydrologic time series and the estimation of model
parameters represent an advanced form of extraction,
condensation and description of information
contained in the data. To accomplish this, methods
are necessary. However, no method can be developed
without postulated hypotheses. These hypotheses are
most often developed from experience with a large
number of hydrologic time series, from the physical
properties of the underlying processes, and from the
general understanding of phenomena. Methods can be
no better than the hypotheses upon which they are
based. The description and justification of these
hypotheses is a first step for better understanding the
investigative line followed in this study. The fol-
lowing hypotheses are first briefly outlined and then
discussed in detail.

(1) A hydrologic continuous time series is com-
posed of deterministic components, in the form of
periodic parameters, and of a stochastic component.
The basic hypothesis is that a series can be separated
into these components without an adverse effect on
the final understanding and description of the time
series structure and extraction of information. The
periodic part of the series is encompassed by a general
term of cyclicity or periodicity (the signal in com-
munication engineering language), while the random
part is called the stochasticity or the rendomness (the
noise in communication engineering language).

(2) From the total variation of a variable nearly
all of random variation (the stochasticity in the
series) is allocated to the stochastic component, while
only the unavoidable sampling errors--within the

limits of the best estimation techniques used-is left
inside the estimated parameters of periodic
parameters (the cyclicity in the series).

(3) By removing the inferred periodic com-
ponents in various parameters from the series, or by
removing the cyclicity, the hypothesis is that the
stochastic component of the series is approximately a
stationary random variable of a given order of
stationarity, provided improvements in the order of
stationarity and data processing costs justify attaining
that given order of stationarity. In other words, the
stochasticity of a series is reduced to a stationary
stochastic process of a given, required or justified
order of stationarity.

(4) A hydrologic series may contain biases pro-
duced by man-made processes or other sudden or
slow casual changes in nature. These changes are
defined as nonhomogeneity. Also, inconsistency
(systematic errors) is often present in data. The
hypothesis is that nonhomogeneity and/or incon-
sistency in series are detected, described, and
removed prior to the structural analysis of time series
as conceived in this study. Misunderstandings are
often produced when some models are tested on non-
homogeneous and inconsistent series.

(5) A hydrologic time series may have various
sampling biases in the form of a long-range trend
(pseudo-trend), a longrange periodicity (pseudo-
cyclicity), unrepresentatively short or long drought or
wet periods for the sample size available,
exceptionally high or low flood events, which are not
representative of the sample size, and similar sampling
biases. Regional investigations and some experimental
statistical analyses can show that these particular
occurrences in time series have small probabilities to
be or not to be exceeded in the future for the same
sample sizes. The hypothesis is that the structural
analysis of these samples of time series, their
mathematical description, and the generation of new
samples by the experimental statistical method do
not perpetuate these sampling biases.

(6) The inferred structural mathematical
models, the estimated coefficients of periodic com-
ponents, and the estimates of population parameters



of the stochastic component of a time series are
subject to sampling errors. The regional information
from a set of time series can improve the information
about these models, coefficients, and/or parameters.
The hypothesis is that the structural analysis of a set
of series in a region can improve significantly the
models and estimated coefficients and/or parameters,
if the proper regional information replaces the
information at a point of its observed individual time
series.

(7) If a structural analysis and simulation
method are developed for small time series units (say
one-day values or even smaller) the methodology
should be applicable to any other, and particularly to
larger units of time series, which still preserves the
basic properties of cyclicity and stochasticity of that
series. This hypothesis infers that the selection of the
time unit (1-day, 2-day, 3-day, 7-day, 13-day, 14-day,
15-day, l-month, etc.) does not affect the
applicability of the developed methods.

(8) The structural analysis is pursued to such an
extent that all pertinent information about a
hydrologic periodic-stochastic process may be
extracted in the form of a set of mathematical models
and estimated statistics (coefficients, parameters,
descriptors) that describe these models. The
generation of new samples of time series from these
mathematical models should reproduce all basic
inferred population properties, and do it so well that
the original sample cannot yield any more substantial
information about the process than the models and,
consequently, the generated new samples. In other
words, the reliability of generated samples repro-
ducing well the properties of the process depends on
the correct methodology and the extent to which the
structural analysis, the corresponding mathematical
description, and the estimation of parameters from
the data of original time series are applied to attain a
given order of stationarity of the stochastic com-
ponent.

(9) Mathematical models are necessary in the
analysis and description of time series. For these
models the coefficients and/or parameters must be
estimated from the data. The hypothesis of this
structural analysis is that minimum of coefficients
and/or parameters should be estimated, because the
more statistics estimated the lesser their overall
reliability, and the smaller is the remaining degrees of
freedom for other estimates. An optimization is
made, by statistical inference, between the number
and the reliability of estimates of these parameters.
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(10) The dependent stationary stochastic com-
ponent is fitted by a mathematical model of
dependence and from it a stationary independent
stochastic component may be determined. The
hypothesis is that this independent series contains the
major random variation in a series, as the independent
stochasticity or noise. Because of a very large
independent sample thus produced, with relatively
small loss of degrees of freedom due to already
estimated other parameters, the parameters of distri-
bution of this independent random variable can be
estimated accurately. The hypothesis is that the
mathematical models of dependence have a sound
physical background andfor justification, and are
usually applicable to a large number of series of the
same variable, under the conditions of acceptable
methods of testing this type of statistical hypotheses.

2.2 Periodic-Stochastic Structure of Hydrologic
Time Series

Assume a hydrologic continuous periodic-
stochastic time process, {_f,‘I }, to be composed of
periodic functions in some of its parameters and a
stochastic component. A realization of
this {, process is given in the form of a finite dis-
crete series, x__, with given values at inter-
vals At apart. The symbol 7 = 1, 2,. .. are dis-
crete values in the basic cycle, w. This period w is
either a day or a year (or both) in the majority of
hydrologic time series. The sym-
bol p, with p = 1, 2, ..., n, represents the suc-
cessive values of the period w, with n their total
number, For w being a year, n is the number of
years in the sample time seris. The total sample size is
then N = nw. Estimating the parameters that are
significant in the periodic functions inside
the X, , seriesis the first problem to study.

The population mean at a position 7 is desig-
nated by p (f,) and the corresponding population
standard deviation by o_({,) for the §, process. As
the consequence of the above basic assump-
tion, p _(¢,) and o_(§,) are two periodic functions
of r . Similarly, the population autocorrelation coef-
ficients pk’r(ft) may be periodic as functions of 7.
By removing these periodic functions from
the §, series, the remaining part of the series should
be the second-order stationary stochastic component.
However, the third-order parameters at posi-
tions 7 may also be periodic. By removing
periodicities in these parameters, the remaining part
of the §, process should be the third-order



stationary stochastic component. This approach may
be continued to the fourth- and higher-order
parameters, and the stationarity of the fourth- or
higher-orders of the stochastic component may be
obtained by removing periodicities in all these
parameters. This leads to the basic application of the
first hypothesis, namely that any hydrologic
periodic-stochastic {, process can be decomposed
into the periodic parameters of a given order, and of
all other smaller-order parameters than this order, and
a stationary stochastic component of this given order
of stationarity. A realization of the ¢ , process as a
finite x _ series is used for the estimation of
periodic functions in the parameters of a given order
and of the properties of stochastic component of the
same order of stationarity.

The basic principle in applying this hypothesis
is that the order of the moments used in defining
parameters that may be periodic functions of 7, and
the corresponding order of stationarity of the
stochastic component, should be selected by some
criteria that determine how well the mathematical
description of a time stochastic process ought to
approximate the real structure of this process.

The estimation of a given p ({) at the
position 7 of the period w from an X series,
with p =1, 2,...,n, is

n
m=LEx

= (2.1)

P.7T
The sampling difference between an esti-
mate m_ from a given sample of size nw and the
corresponding population value p () is then

e,(m)=m, -u () 2.2)

Because n is usually small for most hydrologic time
series, if n represents the number of years, the
sampling errors e (m_) of Equation 2.2 are often
large. Besides, if w is large, say 365 for daily time
series, all 365 values of m_ cannot be estimated
accurately. The question may be posed whether the
appropriate fit of a periodic fune
tion B, to w values of m_, with u, as the joint
estimates of u (§,) or as the estimate of the
periodic function u_({,), and with the new sampling
errors

e (u)=u -u€) . (2.3)

reduces the overall variance of sampling errors in the
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means? If this is the case the variance of errors of Eq.
2.3 should be

var [e ()] =avare (m) , (2.4)
with @ much smaller than unity. If m_ is used as
the estimate of u _(§,), this is equivalent to stating
that a larger part of sampling variation of the
stochastic component in the x series is retained
in the estimate values m_ of the §‘t process than in
the case where the estimates u_ of the periodic
function are used.

As a consequence of the first hypothesis, based
on experience and physical analyses of the responses
of various hydrologic environments, the periodicity in
the mean should be a smooth function. It is sufficient
to estimate m_ of a series for the samples of dif-
ferent sizes, and to find that the smoothness of
the m_ series increases with an increase of the
sample size n.

Figure 2.1 demonstrates the basic current
experience of hydrology, namely that the variation
of m_ along 7 becomes smoother with an increase
of the number of years n. The means m_ of daily
flow series of the Tioga River are given as the
example, in four graphs and for: (1) the 10-year
period (1921-1930); (2) the 20-year period
(1921-1940); (3) the 30-year period (1921-1950),
and (4) the 40-year period (1921-1960). This
smoothness should correspond to the smooth
astronomic periodic functions of heat supply over
regions of the earth, which are only modified by the
responses and interactions of hydrologic
environments for the resulting processes of various
hydrologic variables. This is the major reason why a
smooth p_ periodic function should be estimated
instead of using the sequence of w values of m._.
The second reason for using M, instead
of m_ comes from the second hypothesis, namely
the requirement of attaching as much as possible of
the sampling fluctuations in the x_  series to its
stationary stochastic component ratlifer than to the
coefficients of periodic functions of various
parameters. The third reason for using u_ instead
of m_ is the consequence of the ninth hypothesis,
namely developing mathematical models of periodic-
stochastic processes with a minimum of estimated
coefficients and/or parameters. For these three
reasons, based on three hypotheses, it is considered
that the proper statistical fit of the u_ periodic func-
tion to w values of m_  is superior to
using w estimates of m_.
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Fig. 2.1 The increase of smoothness of the sequence of mean daily flows of the Tioga River near Erwins,
New York, with an increase of the sample size: (1) 10-year period (1921-1930); (2) 20-year
period (1921- 1940); (3) 30-year period (1921-1950); and (4) 40-year period (1921-1960).

The estimate of the population standard devia-
tions, o (f,), at any given position 7 of the
period w from the X, , seriesis by

& 3%
w L 2

5= [n pE.l (xp.r-mr) ] 2 (25)
if n > 30, or by an unbiased estimate §?=n s?/
(n-1) if n< 30.

Another approach for estimating s_ is the use
of p_ instead of m_ in Equation 2.5 by
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if the p_ periodic function has been already
estimated. However, this approach will produce larger
values of s_ than Equation 2.5 gives because s_isa
minimum when the first moment m_ of the sample
is used. The estimates by Equation 2.5 are used in
this study for the fitting of the periodic function o_.



Just as for m_, a smooth function 0, may
be fitted to the eshmaled w values of s, so that
the variance of difference ef(crr) =g o L(§,) be-
comes much smaller, on the a\r'erage than the
variance of difference ef(sf) =5, - 0,8,) The
differences e (s ) - e (0,) =s - o_ are then re-
tained in the stochastic component of the x
series instead of being left in the periodic function
s. of the standard deviation, just as the sampling
differences e (m ) - e (1) =m_-pu_ are retained
in the stochastic component.

This procedure is followed for any other
periodic parameter, generally designated
by v_({,), of a given periodic-stochastic pro-
cess {i‘ }, and its available sample series, x . by
fitting the periodic functions »_ to the estimated val-
ues v_ atdiscrete positions 7 of the period w.

2.3 Two Fundamental and Opposite approaches in
the Analysis of Periodic Components of
Hydrologic Time Series

The general equation of the periodic deter-
ministic function of any parameter v_ in using the
Fourier series approach, is

m o X
u‘r=p'p x ]—_Z-I Cj e (-%L e 6J) Y (27)

in which »_ is the symbol for any periodic
parameter related to the { process and estimated
from the X, . Series, u is the mean
of »_ or v_ over the w positions of 7, j is the
sequential number of any harmonic out of
the w/2 possible harmonics, m is the number of
significant harmonics (or of the harmonics that have
the amplitudes statistically significantly greater than
for the nonperiodic series), C. is the amplitude and
0, the phase of the j-th harmonic.

The first basic hypothesis of this structural
analysis is that several parameters, v, of
the §  process are deterministic-periodic functions
of the typeoff_.q 2.7, with p , C s, 6' s, and m
being constant coefficients for any perrodrc para-
meter of the Q’r process, with these coefficients
estimated by sample statistics of the X, series for
a given w. Once s Cj’s, {J‘j’s, and m are esti-
mated for a periodic parameter, values of v_ at any
position 7 are uniquely defined. This property for
all periodic parameters is understood in this study to
represent the deterministic-periodic component of
the process.
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An opposite hypothesis of composition of a

series is with
cos (mw +8;.1_) » (2.8)

in which K, is the mean of the parameter oy
while Cl " and 0! . are random amplitudes and
random phases respectwe]y, and i =1, 2,...,m is
the number of harmonics. In other words, any
parameter »_ has only the mean u, as a constant,
and as many pairs of random variables,
C‘p . and @' ,» as there are harmonics. For only
one harmonic, w, there is a particular amplrtude
value, C1 ,» and a particular phase value, 0! 3 for
each ume posrtron say each day of the sequence of
years if the yearly cyclicity is present, or each hour of
the sequence of days, if the_daily cyclicity is studied.
The random variables Cp , and '  should be
serially correlated and mutually dcpendent The
simplest case of application of Equation 2.8 is when
only the means m,_ along the 7 positions are
assumed to follow “random periodicity.”

- i
Yr ”+,§1 Cpr

Equation 2.7 requires the estimation
of 2m+ 1 coefficients for each periodic parameter,
while Equation 2.8 requires the estimation
of 1 +K_ +ke X Hhp+ X X coefficients or
parameters, WJth k and L the number of
parameters for the probab:lrty drstrfbutrons of C!
and 6‘ ,» Tespectively, 'A and A, the cor-
respondmg number of statrstlcs for the auto-
correlation models of C'  and 6! , respectively,
and A, the number l:)l'p StatlSthS For measurmg the
mutual ‘dependence between c! . and ﬁp‘ , and/or
between C| _ and 6 _ and other parameters. The
total of nw' values of the x__ series may not be
sufficient to reliably estimate all the above
parameters. The minimum expected number of
parameters is when kc = ke =2 (say normal dis-
tributions for C! and Gl ) X, = =] (say
the first-order’ autoregresswe lmedr model),
and A_, =1 (the linear correlation coefficient
between C1 P and f:?p ), or a minimum of eight
parameters. For m 3 this is about equivalent to
2m + 1 = coefficients in harmonics of »_ of
Equation 2.?.

These two opposite approaches should be
compared from several standpoints, namely from the
physical justification, the estimation theory, the
future use of these models, the generation of new
samples by the experimental statistical method, and
similar, The difference is in the basic concepts of how



to divide the total information of a series. The
first approach divides the series contained in the
deterministic-periodic functions of parameters and all
the rest of the information contined in the
stochasticity of the process. The second approach
contains nearly all the information in various
stochastic parts, such as the random variables of
periodic parameters and the random variable of
stochasticity.

Environments within the earth in which the
main hydrologic processes occur can be considered as
closed systems. The outputs of one environment
represents input into another. The only exception is
the open system of solar energy supply and
irradiation from the earth into space. The solar
energy input is a deterministic-periodic process for
any unit area at the limits of atmosphere. However,
the energy output of irradiation at the same unit area
at the limits of atmosphere is a periodic-stochastic
process. The various responses of the earth’s environ-
ments produce the earth’s energy output into space
which has a high stochastic component and a
modified periodic process. Turbulence, cloudiness,
transparency, and other phenomena of the
atmosphere add considerable randomness to the
deterministic-periodic solar energy influx, so that the
solar energy supplies to most of the atmosphere, to
oceans, seas, and to continental areas are periodic-
stochastic processes. The effects of winds, ocean
currents, randomness in the mass and energy transfers
between oceans and the atmosphere, between the
atmosphere and continental areas, and other
phenomena of continental areas further produce
randomness and modify periodic components. Any
environment (the atmosphere, oceans and seas,
continental surfaces, underground spaces, etc.) of
importance to hydrologic processes has responses that
add or smooth randomness of input processes, by
modifying the periodic process, by attenuating or
amplifying the amplitudes of harmonics, and by
shifting the phases of these harmonics.

The hypothesis that all of the earth’s
hydrologic processes are composed of deterministic-
periodic and stochastic components seems supported
by the basic periodic influx of solar energy. The
attractive explanation of environmental responses to
various inputs of hydrologic relevance is that thev
modify the properties of solar periodicity, but not
the period itself, while adding substantial
randomness. These assumptions about the environ-
mental responses give support to the first hypothesis,
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namely that the hydrologic time series are composed
of a deterministic-periodic process and a stochastic
process.

The second approach of considering amplitudes
and phases as random variables in the periodic
function of any parameter would require complex
responses of earth environments to the deterministic-
periodic inputs of solar energy to various areas of the
earth’s surface. It is easier to conceive of the
responses of hydrologic environments to given inputs
as being composed of deterministic (linear and non-
linear) parts and superimposed random parts, than to
conceive of all responses as being stochastic. For
example, the transparency (opacity) of the
atmosphere for solar energy, because of cloudiness
and other factors, should be periodic-stochastic in
character, one season having larger cloudiness on the
average than the other, with the average transparency
over the seasons representing the component of
deterministic-periodic process, and the chance
variations about the averages representing the
component of stochastic process.

The greater the average of a random input into
a hydrologic environment is, the larger the expected
variations in its responses. Since most inputs are
positively valued variables (only positive values or
zeros occur), the boundary of zero (or any other
boundary) greatly limits the possible variations on the
lower side of small average inputs, while for large
average inputs the range of variations on both sides is
substantial, infinite on the higher side and relatively
large on the lower side. This range of values requires
differences in the standard deviations along the
positions of the year, with greater values for large
average inputs and smaller values for low average
inputs. However, this does not imply a
proportionality between the standard deviations and
the means, though that case may be true for several
hydrologic periodic-stochastic processes. In summary,
the physical considerations, and particularly the clear
deterministic-periodic character of the solar energy
input, give more support--at least at the present level
of experience~for the first approach than for the
second approach with regard to treating the cyclicity
of hydrologic periodic-stochastic processes.

The future use of mathematical models of
strucutral analysis of time series, say as the form of
condensation of information, is much more attractive
with all models either deterministic (cyclicity in



parameters), or functions of random variables (auto-
regressive. models), or only as the independent
stationary stochastic component, than the models
with many random variables. In the generation of
large samples by the experimental method the first
approach requires the fitting, the testing of the
goodness of fit of the probability distribution
functions for only one variable, and the generating of
only one random variable, while the second approach
requires the same work for several random variables
with some being mutually dependent.

In summary, there is justification for using the
first approach to consider each periodic-stochastic
hydrologic process as composed of deterministic-
periodic functions in various basic parameters of the
process, and an independent or dependent stationary
stochastic component of a given order of stationarity.
The only uncertainties in the deterministic-periodic
components result from sampling errors in the
Fourier coefficients or their equivalent coefficients of
the amplitude and the phase, and the sampling errors
in the estimated parameters of autoregressive models
of dependent stochastic components.

24 Reduction of Stochasticity of Hydrologic Series
to an Independent Stationary Component

The procedure for separating deterministic—
periodic components in the various parameters and
the stochastic component can be pursued to different
levels of stationarity. If only the cyclicity in the mean
over the positions 7= 1,2,. .. ,w is inferred and
removed, the remaining process

*

Xpr = Xpr " He

(2.9)

could be considered the first-order stationary process,
with the cyclicity only in the mean to be removed. If
the cyclicity in the standard deviation is inferred and
removed only, the remaining process,

¥ Eor
xp.r =0 ' (2-10)

T

could be considered as stationary in the variance,
with ¢ the cyclicity in the standard deviation. If
both u, and o are removed the remaining process,

(2.11)

is both stationary in the mean and the variance, but
still is not the second-order stationary process.
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The general dependence of the €, , Process is

E . f(E]:r r=1? p TR ;al ,r’az,r’ )
*TE e o (2.12)
in which B is a function of some or all previous

e values, @y oy By s . are the various
periodic and/or nonperiodic parameters in this
dependence model, o is the standard deviation as a
function of a. Lo coefficients in order that E ., isa
second-order standardized stanonary (and
independent) stochastic component.

if the skewness coefficient and any other third-
order parameter, such as the product of any three
values of the second-order stationary process, show
cyclicities, the periodicity can be tested and removed
to obtain the third-order stationary stochastic com-
ponent. Similarly, the fourth-moment properties may
be tested for cyclicity along the 7 = 1,2,..,
w values, and when proven significant they can be
removed to obtain the fourth-order stationary
stochastic component.

The basic hypothesis is that successive
investigations can raise the order of stationarity of an
independent stochastic component by proper
statistical analysis, inference, and mathematical
description of the periodic parameters and the
dependent stochastic component. This hypothesis,
then, is a problem of optimization, optimization
between the accuracy of structural analysis and the
required economy in data processing. The greater the
requirement for a reliable description and a full
reproducibility of properties of a hydrologic process
in the generation of new samples, the more justified
become efforts for attaining the third- and/or
higher-order stationarity of the independent
stochastic component.

It is expected that parameters that are the
functions of third-or higher-order moments will have,
in general, a sufficient “signal-to-noise” ratio, in order
to detect the periodic components. In other words,
the ratio of explained variance of fluctuations of a
parameter along the 7 positions by the
deterministic-periodic component and the variance
explained by the sampling noise should not be small.
This ratio usually decreases with an increase of the
highest moment necessary to define a parameter. This
is the same as saying the power of detecting the
periodicity in parameters by statistical inference
decreases with an increase of the order of moments
which define these parameters.



2.5 Effects of Nonhomogeneity and Inconsistency

Because water resources are subject to man-
made changes both in the natural processes and in
environmental responses, nonhomogeneity in data is
extremely common in hydrologic time series.
Hydrologic data also have often systematic errors,
thereby adding this inconsistency to the non-
homogeneity which is either man-made or produced
by some significant natural disruptive factors.

The detection, description, and removal of non-
homogeneity and inconsistency should have both
statistical significance and physical or historical
support and justification. Nonhomogeneity and
inconsistency may be in any or in all of the basic
parameters of a hydrologic time series. Some
investigations show [6,7] that all parameters are
usually affected whenever a trend and/or a positive or
negative jump are produced in a hydrologic series by
nonhomogeneity and inconsistency. The discussion of
methods of detecting, describing, and removing non-
homogeneity and inconsistency, before a series is
analyzed for its structural composition, is outside the
scope of this paper.

2.6 Sampling Biases in Historical Time Series

As discussed in the introduction, the “trends™
and “periodicities” in the parameters of time series
may be produced only by sampling variations because
of small historical samples. The smaller a sample the
greater is the probability for it to exhibit some biased
property, such as an upward or downward trend,
sampling or pseudo-cyclicity, unrepresentative high or
low extreme values for the size of the sample, and
similar. Each sampling statistic has a distribution, and
the sample estimates may be at the tails instead of
being around the mean or median of this distribution.

Studies of annual precipitation, annual effective
precipitation, and annual runoff series show them to
be stationary time processes [1,2]. Therefore, trends
and pseudo-cyclicity in small samples of annual time
series can be mainly the result of sampling variations,
provided nonhomogeneity and inconsistency in the
series are removed.

The hypothesis is advanced here that a good
structural analysis of time series should be such as to
not perpetuate sampling trends and pseudo-
cyclicities, either by inferred mathematical models or
by estimated parameters, and, consequently,
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perpetuated in the new generated samples by Monte
Carlo method. This hypothesis can be fulfilled by
avoiding those procedures of analyses of time series
that perpetuate both pseudo-trends and pseudo-
cyclicities. The sampling properties of short time
series may explain some past unproductive research
efforts in searching for significant hidden periodicities
and trend-type persistencies in basically the
stationary stochastic processes by using improper
analyses of short and/or nonhomogeneous time series.

Biases in extremes also may affect the time
series analysis. If a prolonged drought or a wet period
or both occur in a small sample, they will affect all
parameters describing the time series properties.
Similarly, if the largest drought or the largest wet
period in a sample are relatively short, or their total
deviations from the mean are small, these unrepre-
sentative extremes also affect all parameters which
describe time series properties. The concepts of
representative extremes for given sample sizes, and
for such properties as peak discharge, lowest dis-
charge, drought, wet period, etc., must be introduced.
Therefore, the hypothesis is advanced here that only
those methods of structural analysis should be used
that detect the unrepresentative extremes in the
sample available, and eventually enable a correction
for some parameters, particularly by using the
available regional information on a hydrologic
random variable.

2.7 Regional Information on Models,
Coefficients, and Parameters

If hydrologic variables are observed as time
series at a number of points in a region the regional
information in the form of mathematical models,
jointly estimated coefficients of periodic parameters,
and jointly estimated parameters of stochastic
components, is usually much more reliable than for
estimates made separately for any individual time
series. The hypothesis underlying investigations in
this paper is that mathematical models, coefficients
and parameters estimated for an individual series may
be improved by regional analysis of all available time
series. The methods of jointly estimating parameters
and coefficients on a regional basis, to improve the
corresponding values for the series at a given station,
are not discussed in this paper.

The basic hypothesis in this regional joint
estimation of coefficients and parameters of
mathematical models, and in testing the goodness of



fit of these models to data, is that the parameters or
coefficients of these models change smoothly over
the region from one point to the next. For a given
hydrologic random variable with observed time series
at a number of points in the (x,y) - plane, the basic
parameters of these series change with X,y -
coordinates by a relatively smooth trend surface; for
short time series available the parameter values must
exhibit the sampling variations about these trend
surfaces. By inferring for each basic parameter what is
the most reliable regional equation for this surface,
and by estimating its coefficients, the joint estimates
of basic parameters are obtained; these estimates
should have, on the average, much smaller sampling
errors than the individual estimates obtained
independently.

By removing periodicities from all periodic
parameters of a set of regional time series of a
hydrologic random variable, and by using the
parameters or coefficients from the regional surface
models, the stochastic components of observed series
at this set of points may be reduced to stationary
time series, and by removing the regional trend
surfaces in basic parameters, the ensemble of series of
this set may be considered to be drawn from a
stationary and ergodic stochastic process.
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2.8 Concluding Remarks on Hypotheses

Although hypotheses (7) through (10) of
section 2.1 are self-explanatory, some additional
remarks are warranted. The present approach in
generating the new samples of monthly time series by
nonparametric methods (say, by using 12 monthly
means, 12 monthly standard deviations, and 12 times
the monthly autoregressive coefficients) is not
feasible for generating new samples of daily time
series, with the number 12 replaced by 365, or hourly
time series with 12 replaced by 8,780. Therefore, a
parametric method is needed that does not depend on
the time unit used. The parametric method of
analysis permits an optimization between the number
of statistics to be used and the accuracy in their
estimation.

The dependence models for the stochastic
components should be either based on a physical
background or justified by experience on a large
number of analyzed dependent stochastic com-
ponents of a given hydrologic variable and its
periodic-stochastic components of a given hydrologic
variable and its periodic-stochastic process, or both.
The time dependence models are conveniently
divided into linear and nonlinear. There is an infinite
possible number of linear and nonlinear dependence
models. Without a physical background or the
experience of successful fitting particular models to a
large number of stochastic components, or both, the
unnecessary proliferation of models is unavoidable.



Chapter 3

PERIODICITY IN PARAMETERS OF HYDROLOGIC TIME SERIES

3.1 Periodicity

It is assumed that any eventual inconsistency
and nonhomogeneity in time series, particularly
man-made nonhomogeneity, are identified by the
proper techniques, supported by physical or historical
investigations, and removed from a hydrologic series
prior to its structural analysis. The process of
separating the deterministic-periodic components
from the independent or dependent stationary
stochastic component may then be undertaken.

The analysis in this chapter is mainly concerned
with periodic parameters of hydrologic time series.
Continuous variables and discrete time series are only
considered. Statistical inference in detecting
significant harmonics in these periodic components is
a major part of this chapter.

Periodicity of a hydrologic time series may be
present in one, two, or several of its parameters, such
as the mean, the standard deviation, the auto-
covariances or the coefficients of the autocorrelation
function, the higher-order moments or the parameters
which are functions of these moments, and similar.
An independent or dependent stationary stochastic
component is assumed always present in any
hydrologic time series, while the periodic parameters
may or may not be present. The stationarity of the
stochastic component is assumed either of the second
order, which is weak stationarity, or of the higher
order which is strong stationarity. This means that
the expected values of the corresponding moments or
parameters are independent of the absolute
position i for discrete time series, but depend only
on the position differences k when these differences
are relevant for definitions of moments or
parameters.

3.2 Determination of Periodic Parameters

Experience shows that each month, day, or
hour, or any multiple of these units of the year hasa
different expected value and different standard
deviation in a hydrologic time series.

A value of variable x in the year p and at the
position 7 inside the year is X 7o with p=1.2,...,
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n, and 7= 12,..w. This x value is for
month 7, day 7, or hour 7, of year p following
the beginning of records, with n the number of year
of record, and « the total number of discrete values
in a year. The individual monthly, daily, or hourly
mean values m_, or m_ of any multiple of these
time intervals, for a given r are estimated by
Equation 2.1, while the individual monthly, daily, or
hourly standard deviations s_ are estimated by
Equation 2.5.

Similarly, w intervals of the year are used to
estimate the other parameters as they vary through-
out the year. The series of w values of any
parameter may be periodic, stochastic, a constant,
and a combination of periodic and stochastic parts,
with sampling random variations superposed. Because
of these sampling variations, particularly in small
samples, the random fluctuations in a parameter are
always superposed to a periodic movement or to a
constant. The estimation of Fourier coefficients or
of amplitudes and phases of the population periodic
parameters is always affected by sampling
fluctuations. In other words, because a periodic
parameter is superposed by a stochastic fluctuation
for a finite sample, the sampling variation associated
with the stochastic part of a series does not permit
the computation of population coefficients of
equations of deterministic-periodic parameters. These
coefficients are then statistics subject to sampling
distributions.

3.3 Nonparametric Method of Separating Periodic
and Stochastic Components

The simple transformation

X _-m
e =-RI T (3.1)
pP.7T Sr
in which m_ and s_are the sample means and
sample standard deviations at the

positions 7, computed by Equations 2.1 and 2.5
respectively, is the nonparametric method of
standardization of the - variable. This is also a
way to remove the periodic components
in m_ and s. It requires the use of 2w
statistics, w of m_ and w of .. For monthly
values 2w = 24, for daily values 2w = 730, and
for hourly values 2w = 17,520. These two latter



cases require the estimation of 730 or 17,520
statistics of m_ and S. respectively.
If v parameters of the x process contain
periodicity to be identified, described and separated
from the stochastic component of a series, then this
nonparametric method requires the use
of vw statistics for all periodic parameters of
the x__ series. For example, with periodicity in five
parameters of daily series the number of statistics to
be estimated is vew = 1825. This is an unnecessary
large number. The nonparametric method removes
from a series the periodicity in parameters but also
removes all sampling variations associated with the
coefficients of the periodic functions of parameters.

Looking on this nonparametric method from
the standpoint of sampling theory, these vw values
cannot be accurately determined. They must have
large sampling errors. Besides, they decrease
significantly the number of degrees of freedom. If the
objectives of time series analysis are either the
condensation of information or the generation of new
samples, there is no point in perpetuating these
detailed sampling variations in parameters. One of the
objectives of statistical analysis and development of
mathematical stochastic models is to economize on
the number of parameters used to describe any
random variable or its stochastic process. As long as
the control variable w and the number of periodic
parameters v are small, say «w = 12 for monthly
values and v = 2 for the mean and the standard
deviation, the nonparametric description and removal
of periodicity in time series does not present serious
difficulties because of the limited number of statistics
involved.

This nonparametric method may be very useful
in any preliminary analysis or in detecting the
character of the stationary stochastic component. For
various tests of hypotheses the effective sample size
of a dependent stationary stochastic component may
be needed. The approximate computation of this size
can be obtained by using this nonparametric method,
before testing for significance of harmonics.

3.4 Parametric Method of Separation of Periodic
and Stochastic Components

To economize on the number of statistics
needed for the mathematical description of a series,
the periodic series m and s, may be
approximated for large w by a relatively small
number of harmonics of w. For example, if the
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periodic components of daily means and daily
standard deviations are well approximated each by six
harmonics, and all other fluctuations in m_ and
s, are assumed or inferred to be sampling varia-
tions, then the Fourier series approximation of a
periodic parameter requires only the mean plus 12
values of A. and Bj Fourier coefficients for each
parameter, with a total of 26 statistics. This is a
significant savings in the number of statistics used, 26
instead of 730 for the case of daily flows. The savings
is even greater for hourly means and standard
deviations.

The classical approach in estimating the
significant harmonics in composed series is of the

type
b T=pT+UxE (32)

P, p,7 £

in which p_ is the periodicity in the mean and o
is the standard deviation assumed to be a constant.
The periodic component is then given in the form

m
Bo=p +j§1 (Ajcos?\jr+Bjsin?\jr) . (3.3)

for m harmonics with amplitudes significantly
different from those of stochastic series, and Ky is
the general mean of Rt

The coefficients, Aj and Bj .= 1,2, ..m,
in Equation 3.3 are estimated from New values

of X r by
2 n w 2mjT
Aj:n_r.ﬁ p2=‘l -r-z—-:l (xpﬂ_ -,ux)cosT » (34)
and
2 n w . 2mr
Bj;fl?) P§l ‘.I"EI (xp,r”'ux) S=e ? ()

in which A, = 27j/w with min A, = 2m/w; m is
the number of significant harmonics in the range of
variation of j with j = 1,2,..., w/2, and 7 is the
time series sequence inside each period, 7=1,2,....w,
with N =nw being the size of sample series. For the
last harmonic, j = w/2 or j=(w-1)/2 for w an
odd number, the Fourier coefficients are Aw 3™
A/2 and B, =B, =0, for j inEgs. 3.4and 3.5
being w/2.

Because o, of Eq. 3.2 is rarely a constant in
hydrology if u_ s periodic, two cases arise:
(1) p(x) and o (x), as the population periodic
components, estimated by K, and o, are pro-
portional, and (2) p (x) and o (x) are not



proportional. In the first case, 0 =N, K., with n,
the proportionality constant, so that
=pf+orep.r=pr(1 +n € )

X
pIT o p,f

*
= M_€

T P,T

(3:6)

This is the case of a multiplication- of a periodic
parameter and a stochastic component, with e: %
1+, €. which is a linear transformation of
€ e Equatmns 3.3 through 3.5 are not applicable
in this case. However, by using

In x =ln,ur+lne:T ;

- (3.7)

for x>0, u, >0, and €* > 0, the case of
Equatlon 36 is reduced to tlile case of applying
Equations 3.3 through 3.5 to logarithms of Equation
3.7. The case of applying Equations 3.6 and 3.7
explains why studying logarithms of a

hydrologic x , variable may give, in some cases,

more meaningful results than studying
the x - values.
If o_is not proportional to M, the simple

composition model of the periodic and stochastic
components is

i + g, Ep,r ) (3.8)

X, ,
in which case Equations 3.3 through 3.7 are not
directly applicable, because u, and o may have
different significant ha.rrnomcs, nonproportlonal
amplitudes of the same harmonics, and/or different
phases in the case of the same significant harmonics.

To avoid these difficulties in the application of
the classical approach of Equation 3.2, or its
application in using logarithms in the form of
Equation 3.7, when the model of Equation 3.8 is
required, various parameters that may be periodic
along the sequence points 7 =1, 2,...w should be
first computed and the significant harmonics fitted to
them.

That the basic periodicity w = 2n/A s
always known in advance in hydrologic time series,
say a year or a day, facilitates the fit of significant
harmonies of u, and o, to the x series. These
harmonics may be fitted directly to m_ and
s, computed by Eqs. 2.1 and 2.5 respectively. This
second approach of direct fits of periodic func-
tions p_ and o_ to m_ and s_ is discussed in
detail in the ensuing text. The basic procedure is in
computing the w values of a periodic parameter, in
estimating the amplitudes and phases of various
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harmonics, and in selecting by an appropriate
procedure those harmonics that have amplitudes
considered significantly greater than those of a ran-
dom process by any criterion.

Instead of fitting a periodic function o_ to the
periodic standard deviation s_, the periodic function
may be fitted to the estimated periodic
variance, s’ or §2, as ¢, and then o_ of Eq.
3.8 is determined from this periodic function as
\/E:—. This approach has an advantage that the
mean o} of o2 or s is easier related to the
general van.ance of X, Whlle o, as the mean of
o, or s is not Slmply related to the general

standard deviation, s_, of X

The periodic component in any
parameter v may be approximated by m harmonics
of its basic period w in the form

- m

vo=p ¥ jEI (Ajcos AT+ B;sin A7), (3.9)
in which A = 2mj/w is the angular (circular)
frequency, @ is the basic period in », m is the
number of harmonics inferred as significant in the
Fourier series mathematical description of the
periodic parameter », and v, is the mean of
v_ fitted to the w values of the estimated v -
values from the sample series, or it also is the mean
of v_.

The standardization by Equation 3.1 but using
the mathematical models of u A and 0. with a
limited number of harmonics of Equation 3.9 as the
fitted periodic components to m_and s, is
defined here as the parametric method of
standardization:

(3.10)

Because of difficulties in estimating the coef-
ficients Aj and B of Equation 3.9 directly-from

the x serles they can be estimated from
the w values v by
2 w 2wt
Aj == 1-21 v, cos— (3.11)
and
2 w 217_]1'
Bi e TEI v, sin (3.12)

For the last harmonic, j = w/2 for w an even
number and j = (w-1)/2 for w an odd number,



sz = Ajf’z, and Bw iy B. = 0. This is important
: i
in cases when all possfb]e harmonics are computed

(say all six harmonics of the monthly series).

The maximum number of harmonics in this
discrete series of w values of 8 for monthly series
is m = 6, and for daily series is m = 182. How-
ever, the daily series rarely show significant
harmonics beyond the first 6 to 12 harmonics. The
Fourier series are rapidly convergent, with the
amplitudes of high overtones, particularly over the
fourth harmonic for monthly series and over the sixth
harmonic for daily series, being small enough to be
neglected. For daily data, this circumstance is
significant by looking at the explained variances
of m_ and s, by harmonics over the fourth or the
sixth. It is also implemented in monthly series by
looking at the mean and the variance of residuals
after the significant harmonics are removed. To
illustrate this point, several cases of harmonic analysis
were performed for monthly series by removing
between two and six harmonics. The results of the
differences in explained variances were often small.
The fitted periodic functions to m_ and s, as

given by Equation 3.9, are designated by
and o0, because random sampling fluctuations
in m_ and s_ are supposed to be greatly reduced,
and left remaining inside the stochastic component.

For the parametric method, Equation 3.10 is
only approximately a standardized variable,
because E(y ,T) and var y L, are somewhat dif-
ferent from the expected value of zero and the
variance of unity, respectively. To obtain a
standardized variable in case the parametric method is
used, a further transformation produces

Yp,r Hy

€ = N H
P.T y

in which u_ is the mean of y__ (estimated
i y o il e

by ¥ A 1_) and o_ is its standard deviation (estimated

by s, ). The autocorrelation coefficients, the

skewness and excess coefficients of distributions for

each month or day are not affected by the trans-

formation of Equation 3.13.

(3.13)

The refinement from using the variable Yair of
Equation 3.10 and standardizing it to obtain € - by
Equation 3.13 requires the estimates of the two new
parameters, u_ and 0y- In the case of six harmonics
used for eaclti ’s and 0. the total number of
parameters to be estimated and used in the
standardization procedure of Equations 3.9 through
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3.13 is now 28 instead of 26. Similarly as
for u_and o the significant harmonics of the
periodicity in other parameters may be determined,
and equations of the type of Equation 3.9 may be
derived.

If one would like to preserve in € , the
general mean p  and the general stzmdardp 'devia-
tion S, of the X series, one can do so by

o _xp,'r—'u"r+0ry

- ors,
p.T T Sy

€ s+ 4, , (314)
in which S, is different from o, with o the mean

of w values of S,

3.5 General Information on Testing the

Significance of Harmonics of Periodic
Parameters

Assume that ¢ values have been obtained for
a parameter as a new discrete series. To fit any
harmonic of the angular frequency lj =
2mj/w, Eqgs. 3.11 and 3.12 can be used to get
the estimates of coefficients A. and B.. It is not
necessary to compute all harmonics for large values
of w. Experience shows that j should be not greater
than about m =~ 6 - 12 for w = 365 of a series
of daily values.

The square of amplitude C, of any harmonic is
iven b
s CI=Al+B? (3.13)

and the mean square of deviations from the
mean u ,as the variance of that harmonic

designated by h,, is
2 2+ B2
. L. S

i 2

Three approaches for determining the
significant harmonics in the periodicity of parameters
are discussed in this paper: (1) the classical Fisher’s
approach of a process composed of the sum of a
harmonic and a normal independent process; (2)
approximate approaches by using either the
first m harmonics until P percent of the variation
of w wvalues of v_ about the mean v_ of the
parameter v_ s explained by these first m
harmonics, and (3) use of a special property of
cumulative periodograms.  The search for new
theoretical and/or experimentally determined dis-
tributions of amplitudes of harmonics of a complex
periodic-stochastic process is necessary in the future.



3.6 Fisher's Approach to Testing the
Significance of Harmonics

The parameter that can be used in testing the
significance of various harmonics of Egs. 3.2 and
3.7 is the variance of individual harmonics, Cfﬂ,
provided the Fourier coefficients A, and B, are
estimated by Eqs. 3.4 and 3.5, If a test shows that a
given C%/2 value is not greater than a critical
Ci /2 value of an independent stochastic process, this
j-th harmonic is considered insignificant. Sampling
distribution of the testing parameter, C}2, is
needed. Once a given C7/2 is found significant, the
phase of the harmonic is estimated from the com-
puted A; and B, values.

In the case where the variance 0> of the Byon
series must be estimated from the sample data, which
is the usual case, Fisher’s test of significance should
be applied [8] when Equations 3.2 and 3.7 are
applicable. Fisher’s test uses the statistic in the form
of the ratio

s Chex  Cann -
2s; ¥ ¢? '
=1

for testing the significance of the harmonic with the
largest value C;ax of a sequence of C? values,
with m the total number of harmonics and s: the
estimate of the variance o] of the x o Series.
For m = N/2 in case N is an even number
or m = (N-1)/2 in case N is an odd number
with N = nw the total sample size, the
probability P that the g value of Equation 3.17
would exceed a critical value g_ is given by

P=m(1-g )" -2 (g _ggymet s

+ (=1)k! En%r(l-kgc)"’" . (3.18)

in which k is the greatest integer less than 1/g_. In
most cases, the first term on the right side of
Equation 3.18 gives a sufficient approximation
for g . Fisher’s test has dominated the detection of
significant harmonics in the cases where Equations
3.2 and 3.7 are applicable, and the series is composed
of a sum of the periodic and stochastic components.
The problem in practice is reversed, with P given
and g, computed either exactly by Equation 3.18
or approximately by the first term on the right side
of the equation. Figure 3.1 and Table 3.1 give values
of g_ of Equation 3.18 as functions of m for two
values of P, P =0.05 and P = 0.01. If g of
Equation 3.17 is greater than g_ of Equation 3.18
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for given P, m, and k,
with C_

the h ) harmonic

5 I8 significant; otherwise it is not.

An example of applying Equation 3.7 is when
monthly precipitation series, for which the
mean m_, and the standard deviation s,, may be
considered proportional, with all x__ values greater
than zero (for x 'S 0, is ShOUldD ‘be replaced, say
by x, = 0.001!'so that the logarithm of x__ isa
finite negative value). For simple river regimes (say
when only rain produces runoff), the monthly runoff
series often have m_ and s_ approximately
proportional, with Equation 3.7 applicable.

i 1 1 A
20 40 60 B0 100 120 130 160 180 200
Fig. 3.1 The relations of Fisher’s g-critical to the

number of possible harmonics for two given
probability.levels, P = 0.01 and P =0.05,

If two or more harmonics are significant, two
practical approaches may be used. When C2 = =C]
is found to be significant with g, >g_ for a selected
probability level P (say P=0.050r P=0.01), this
harmonic is computed and subtracted from the
series. Then the next highest value, C;, is tested
but this time against 2 s} - C], so that the new
value g, is
¢

823 .02 - (3.19)
x 1

Similarly for any i-th harmonic from all harmonics

sorted in the descending order of Cj’, the g, value is

g~ s e

2s, - (3.20)
in which C? values in the sum are all greater than Clz.
This approach has biases. First, when a significant
harmonic is subtracted from x " of Equation 3.2
or from Inx_ _ of Equation 3.7, the part of
variance at its fr’equency corresponding to the ran-
dom variable € is also deducted so that the



TABLE 3.1

FISHER'S g=CRITICAL VALUES, FOR m ‘l'llr TUT\L NUMBELR OF HARMONICS

I re P s P=

n 0.05 0.0l m 0.05 0.0l m 0.05 0.6l
S .68377 78874 20 27080 33971 35 17313 21338
& .6l6lS 72178 21 26060 31743 36 17124 20860
7 .56115 66440 22 25155 30683 37 16754 20408
§ .51569 61517 2% 24315 .29861 38 16400 19970
4 47749 57271 24 .23534  .28700 33 16062 19554
10 44455 535H4 25 22805 L27E10 40 15738 19156
11 41688 50337 26 .22123 L2698 4] 15429 18776
12 39240 47510 27 ,21483 .26205 42 15132 18411
13 (37085 44082 2B (20883 .25470 45 14847 18060
14 (35172 La2722 29 L20317  .24779 44 (14573 11T
15 33461 40685 300 L197B4 24124 45 14310 17401
16 51922 (38851 31 10260 23506 46 14057 17089
17 30529 (37180 32 (18803 .272001 47 13814 .1678S
18 29262 (35655 35 18351 22366 48 13578 1650]
19 28104 34257 3¢ 17921 (21839 49 13383 .16222
20 27040  .32971 35 17513 21388 50 13135 15054
TABLE 3.2
FISHER'S g-CRITICAL FOR CURRENT HYDROLOGIC
TIME INTERVAL DISCRETE SERIES
Ec

Time

Interval w m P = 0.05 P=0.01
1-day 365 182 0.04429 0.05275
2-day 182 91 0.08002 0.09632
7-day 52 26 0.22131 0.26986
14-day 26 13 0.37085 0.44982
1-month 12 6 0.61615 0.72179
2-month 6 3 0.87090 0.94226
3-month 4 2 0.97500 0.99500

denominators of Equations 3.19 and 3.20 are some-
what smaller than they should be, or the expected
value of g, is somewhat greater than its true mean.
This bias may produce some significant marginal
harmonics. Second, all harmonics that by the
sampling variation are shown to have squares of
amplitudes at the tails of their distributions are
automatically accepted as significant, though they
belong to a stationary stochastic process. On the
other side, the significant harmonics beyond h re-
sult in a greater sample value si of Equation 3.17 in
comparison with a variable without periodicity, or in
a smaller g.

The second approach is to investigate the pro-
bability that two or more harmonics simultaneously
have significant amplitudes. Such an approach is
discussed by Fisher [9] for i harmonics being
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significant at the same time, with the case of two
harmonics (g, and 32) shown as an example. In this
approach, the i-th harmonic has the critical value g
given by

k o3 m! (14§g )™ !
= =l Lot i)
A A BT

For i = 1, Equation 3.21 is identical to Equation
3.18, where k is the largest integer less than 1/g_.

(3.21)

For i = 2, Equation 3.21 becomes
m(m-1) [ (1-2g )™ ! (1-3g)™"
=T 2 - (m2) —g—
) (1kg )™
x (k_gf)'} (%-k)! . » (3.22)

and similar equations for i = 3,4, .. ., In this case,
the B, value for i = 1,2, ..., may be obtained as
soon as P is selected, with k the largest integer less
than 1/g .

This method of testing significance of several
harmonics simultaneously has difficulties. The critical
values of Equation 3.21 for i=1 and i=2, and
for P=0.05 and m= 20, are g, =0.27046 and

= 0.17599, respectively. Assuime that Gl ™
C glves g, =0.253 and C gives g, = 0. 183 In
thls case, g <@g whzle g~ 8., and g, >
g ,- Should both’ 'c* and C§ be considered as
sngmficant" Fisher real:zed this difficulty and briefly
discusses it at the end of reference [9]. An approach
to solving this difficulty is to select all C. wvalues
that produce for a given i, with j <i, the g, values
that are greater than the g . values of Eq. 3.21.
However, some other Cj2 values with j>1i may also
produce gi>gc‘i.

The first approach of using Equations 3.17 and
3.20 is an approximate procedure, but regardless of
the built-in biases it is simple to apply, and may
satisfy certain needs in the analysis of hydrologic
time series with known periodicities. The case of
Equation 3.2 is not current in hydrologic practice,
though it is often assumed and treated as such. For
instance, the spectral analysis of periodic-stochastic
processes in hydrology is often performed under the
hypothesis that Equation 3.2 is applicable. However,
Equation 3.7 is a much more current case in
hydrology, because the assumption
of m_ and s_ being proportional may be close to



physical reality. This circumstance is then a justifica-
tion for the analysis of In Xy p instead of
X s with all three series, X o m, and
i being the positively valued quant;t:es In
case any one of their values is zero, the zero is
replaced by a very small positive value, such as
0.001 or 0.0001 or some other similar small value.
Because the transformation In X and In € _
make their distributions less skewed, or they are close
to symmetrical distributions, Fisher’s approach is
then applicable provided that In €7 isan inde-
pendent variable. This is often satisfied for monthly
precipitation series, but rarely fulfilled for the
monthly runoff series for which In e¥ isa time
dependent random variable. By applying a proper
dependence model to In €3 , the effective sample
length N, can be determined,and m of Eqs. 3.18,
3.21, and 3.22 becomes now m =N_/2, or m =
(N,-1)/2 depending on whether N, is an even or
odd number. Because N, rarely comes out to be an
integer when computed from the dependence model
of In eF, it should be approximated by the
nearest integer.

3.7 Determining Significant Harmonics by
Fisher’s Test in Cases of Normal Dependent
Stochastic Components

Fisher’s test, as described, is based on the
distribution of the parameter g for the normal
independent process. The hypothesis is that p_, the
means along 7 positions, are a constant, or Bo=
p,  When a significant harmonic is found, then the
opposite hypothesis, u_# u , is accepted. Two
approaches can be used in the case of normal
dependent processes: (1) determining the effective
sample size N_ of the dependent stochastic com-
ponent, and the use of the same procedure as in the
case of normal independent process, and (2) pro-
ducing from the dependence model a new
variable, 2y 1 which is an independent stochastic
component, approxlmately normal, and testing the

significant harmonics in 2y,

If € in Equation 3.2 or In e*r in
Equation :f ¥ are close to a normal dependent pro-
cess, they may be assumed to follow approximately
the first-order linear autoregressive model. The above
procedure of choosing an effective series length is
then applicable. Assume in this case that €, = = p.

o1 = p? £y p0 iN which p is the first

+
i 1
values, so that

autocorrelation coefficient of L
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Equation 3.2 becomes

g R e (P .y

+V1-p"E )

and Equation 3.7 rewritten in the form

(3.23)

lnxp‘1_=1nu1_+(p* Ineg . ;

bl =0* 8.0

in which p* is the first autocorrelation coefficient
of In €7 . The coefficients p or p* are estimated
by the sample first serial correlation coefficient,

(3.24)

« I, Or r;‘ as biased or unbiased estimates.

Assuming as an approximation
that ur = ,ux in Equation 3.23
and In p_ =1In p_in Equation 3.24, the effective

sample size for the study of the mean, in case the
first-order autoregressive model is applicable, is
approximately,

N = N(-p) (3.25)
@ 1+p
with N_ rounded off to the nearest integer.
Then m = N_/2 or m= (N_-1)/2, depending on

whether the rounded N, s an even or an odd
number, is used in Equanons 3.18, 3.21, or 3.22,
whichever is appropriate, to compute g_ for a
given P. The g values of Equations 3.17, 3.19, and
3.20 are computed either for x of Equation 3.2
or for In x - of Equation 3.7, as the case may be.
If v, represents the standard deviation, the variance,
or autocorrelation coefficients, the effective sample
size in case of the variance may be used as an
approximation for all these parameters as

_ N({-p?)
e l+pz

Because N, < N, then m = N,/2 in Equation
3.18 means :m increase of g - cntlcal in comparison
with m = N/2. Because 2 >> var V. 8 of
Equation 3.17 is ‘much smaller in the case of
using s.2 than in the case of using var v_in
Equatwns 3.17 or 3.20. However,
because N ,4’2 >> w/[2, the critical g values of

Equations 318 or 3.21 are much smaller also
if NQIZ is used instead of w/2.

(3.26)

It is recommended for the periodic, hydrologic
time series to use s: and m = N /2 if € _ is
dependent, and w is small (say w < 52), and to
use var v, and m = w(2 in case €_ _ is
independent, and w is large (say w = 525.' As



the €, components of precipitation series are

c]ose to being independent the use
of var v_ and m = w/2 may be applied for this
case.
The other approach of using 2, , permits
Equation 3.23 to be rewritten as i
Zpr” Xpr "POx €5 1
=p, to, V1-p*E (3.27)

with z__ the new variable reducing the problem to
the case of Equation 3.2. Similarly, Equation 3.24
gives

= - * *
o lnxp’r p* In e

=lp +V1-p*? ¢ . (3.28)

with z__ as the new variable reducing the problem
to the case of Equation 3.7. The variance of B is
then ’

varz=(l-p*

Jvarx + p? varp_ (3.29)

for Equation 3.27, and a similar equation is obtained
in the case of Equation 3.28 with x replaced
by Inx, 4, by In p_and p by p*. Starting from
the hypothesis that u_ = u , then var p_ can be
assumed to be sxfn, with n the number

of w periods. In this case,
2

. .
ol CRRE =l
in which I, is the estimate of p or p*,and s: is
the estimate of var x or var (Inx) respectively for

Equation 3.27 and Equation 3.28. The
term szfn can be neglected if rz is not close to one.

varz - (3.30)

The procedure is as follows. The new variable z

is computed by Eq. 3.27 or Eq. 3.28, with p or p
estimated by r,, 0, by s, and € i is obtained
by the standardization ¢ _=(x__-m )fs Then
Cf values are computed For the zp vanab]e and,
consequently, the g values of Eqs. 3.18, 3.21, and
3.22 are obtained, the corresponding g_ values are

then computed as it is done for the normal inde-
pendent process.

In summary, the Fisher’s test is carried out by
first selecting P value in Equation 3.18,
with g computed for given P and m. If g com-
puted by Equation 3.17 is smaller than this g, the
harmonic with C__  is considered as insignificant.
The original Fisher’s table gives g values up
to m = 50. It is extended in Table 3.1
to m = 182, because of the use of w = 365 for
daily values. Table 3.2 gives the most important

values of w in the analysis of periodic components
of hydrologic time series and their m and g_ values
for both P(g) = 0.05 and P(g) = 0.01 probability
levels, computed by using only the first term on the
right side of Equation 3.18. If g of the harmonic
with the largest value C:n is shown to be
insignificant, or g of Equation 3.17 has been shown
to be smaller than g_ of Equation 3.18 for given P

and m, then the values K, (of x o OF Inx ., Of
1 “ 2 L] "
,) are inferred to be nonpenod:c If C . 18

own to be significant, the test is repeated for the
harmonic with the second largest C? and so on.
For each successive harmonic or the ranked values
C’."’, the values g are computed by Equation 3.20.

3.8 An Approximate Empirical Approach for
Testing the Significance of Harmonics

Because of difficulties in applying Fisher’s test
for inferring the significant harmonics in various
periodic parameters under the conditions of complex
compositions of hydrologic time series, an approxi-
mate testing method is developed in this study as an
empirical procedure. This procedure is as follows.

Any parameter of a hydrologic series is assu-
med to be periodic until proven that it has no
significant harmonic, with the periodicity defined
by the w discrete values of 7, with 7=1,2,....w
A periodic parameter is designated by v and
described mathematically by Eq. 3.9, with m
being the number of inferred significant harmonics.
The w valuesof v, as the estimates of v_, have
the variance s*(v_). A total of w/2 or (w-1)/2
harmonics, for «w an even or an odd number
respectively, can be estimated by Eqs. 3.11 and
3.12 from the v_ estimates.

Because a limited number of harmonics of the
lowest frequencies is sufficient to explain the major
part of variance sz(vr) of a periodic
parameter v_, it is not necessary to always estimate
all w/2or (w-1)/2 harmonics. The maximum num-
ber of potential significant harmonics in a series of
monthly values is six. It is assumed in this empirical
procedure that only the first six harmonics of a
periodic parameter for time series of any inter-
val At < 30 days should be tested for significance.
In other words, if all six harmonics of monthly time
series may be found significant, only 6 harmonics also
may be found to be significant for 15-day, 7-day,
3-day, or 1-day time interval series. However, it



should be expected that the population periodic func-
tions may need a larger number of harmonics for
describing these periodicities as the time inter-
val At decreases. Regardless of this general expected
pattern, the present experience in studying the
periodicities in parameters of daily flow or daily
precipitation series shows that several harmonics
beyond the sixth harmonic add relatively small
additional explanation of the variance of esti-
mated v_ values. Besides, when the eventual
significant harmonics beyond the sixth harmonic are
not included in the mathematical model of a periodic
parameter of Equation 3.9, they are retained in the
stochastic component in case the periodicity
in », up to six significant harmonics is removed
from the original time series. This is equivalent to
stating that a small part of the periodic function in
the v_ values is not removed from the stochastic

.
component.

For the Fourier coefficients of the first six
harmonics, estimated by Equations 3.11 and 3.12
from w values of Vo the variances of harmonics are
computed by Equation 3.16 as var hj,j = 1,2,...,6.
The mean square deviations of the values of dis-
crete harmonic functions from the general
mean v_ of a parameter v_, with h, the symbol of
a harmonic, are called here the variances of har-
monics. The ratio

P—...1 (3.31)

p_i s! (Vf)

represents the part of the variation of v_ which is
explained by the j-th harmonic. The sum
of Ap;, j =12,.. .6, gives p, the part of variation
of v_ 'which is explained by the first six harmonics.

This empirical procedure is based on the
selection of two critical p-values, p_ ., and
Prax = ! * Pmin+ P < Py, NO significant
harmonic exists in the sequence of v_ values, or
v_=v_ isa nonperiodic parameter. If p . <p<
Praye Al six harmonics are inferred to be signifi-
cant. However, if p>p_ ., only some of the six
harmonics are considered significant. The values of
var h, are then sorted by magnitude from the
highest to the lowest. Only those harmonics with
the highest var h, are selected, which when summed
up first exceed p_ . Asan example, if the three
harmonics with highest var h, have E&pj < Prayx?
but the four harmonics witlll highest var h. have
ZAp, > Ppaxe these four harmonics are inferred
to be significant.
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The general expected pattern is that p .  is
dependent on the length w of the basic period (or
on the time interval, At), the sample size or the num-
ber of periods in the series available (say, n years),
and the order ¢ of the highest moment used in the
definition of a parameter ». This pattern serves as the
basis for deriving an empirical expression
for pojn» 2and p_.. =1 -p ... The
greater w the larger should be p . in order to
include all six harmonics in the periodic component,
because the larger w the more pronounced should
be the periodicity in a parameter. The larger the
sample size or the number n of years of data the
smoother should be v_ values along 7 and the
smaller will be p . as the critical value for the
rejection of significance of harmonics. Similarly, the
higher the order of the highest moment used in the
definition of a parameter », the larger is the
sampling variation of the computed v_ about the
periodic function v, and the smaller should be

Pmin- Ihe empirical expressions of p_. — and
Pmax 4re then
W
Prin = 2 \/a- , (3.32)
and consequently
W
P Wl iGN (3.33)
The suggested empirical constant to use

is a = 0.033. The practical ranges of using Equations
3.32and 3.33 are 12 < w < 365,o0r, At = | day
to At = 30 days, and 10 < n < 160. This con-
stant may be taken somewhat smaller than 0.033 if
the periodicity of six harmonics should be retained;
because the smaller p . is,and the larger p_ - is
the chances are greater for all six harmonics to be
significant. If the constant is taken greater than
0.033, the rejection region p < p_.  will be in-
creased, and the region for less than six harmonics
being significant, p > p_ ., will also be increased.

As an example, p_. =0.10 for a=0.033,

n=40, w=365 and c¢=1: p_, =0.07 for the
same values of a, n, and w, and ¢ = 2. For
n=160, w=12, ¢=1, and a =0.033, then
Pmin = 0009 (1 percent). For a time series of

160 years the periodicity in monthly means would
be rejected only if all six monthly means are nearly
equal. For n=10, w=365, ¢=2, and a=0.033,
then p_ . = 0.145 (145 percent). The chances are
much greater that the periodicity in a parameter
based on the second order moment will be rejected,
because the first six harmonics out of 182 possible
harmonics would explain less than 14.5 percent of



the total variation of v_. Though this empirical
approach is based on several arbitrary decisions, it
may be useful until good theoretical approaches, or
experimental statistical (Monte Carlo) methods of
testing significance of harmonics in the periodic
parameters of complex hydrologic series are deve-
loped.

39 Use of the Cumulative Periodogram and the

Breaking Point in a Graphical Estimation
Procedure

Because periodicities in hydrologic time series
are known, with no need to estimate frequencies that
may or may not be significant, the line-spectrum
(periodogram) is an appropriate technique in that
case. The ratio of the cumulative variance of the
first m harmonics in relation to the variance of
estimates % of a parameter v , gives the line-
spectrum cumulative information

m
2 varh,
!=1 ]

var v
T

i = (3.34)

The symbol j may refer to a sequence of harmonics
from the smallest to the highest (requencies,
say j = 1,2, ww(2, or (w-1) /2, so that a
harmonic with a large amplitude may be added
to p after a harmonic with a smaller amplitude.
However, the harmonics may be sorted according to
the magnitude of their amplitudes, from the largest to
the smallest. In that case the symbol j, j = 1,2, ..
ww, or to (w-1)/2, refers to this ordered sequence
of amplitudes. In the latter case, the cumulative sum
has a convex upward shape. However, in the examples
of the use of graphical estimates of significant har-
monics the first rather than the second approach is
used.

The graphical method is based on the concept
that the variation of p_ = as a function
of m, p = f(m), is composed of the two distinct
parts: (1) the periodic part of a fast rising of P,
with m, and (2) the sampling part of a slow rising
of p,, Wwith m. Two approaches are feasible. First,
the two parts are approximated by smooth curves
that intersect at a point. The critical frequency of
that point then gives the number of significant
harmonics, which are all harmonics with lower
frequency than this critical frequency. The second
approach is to assume the approximate mathematical
models of the two parts, estimate the parameters of
these models, and find the intersection of the two
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curves. The frequency nearest to the intersection
point is then the critical frequency.

In this second approach the independent
stochastic components would produce a straight line
part of sampling variation, while the autoregressive
models would produce the equations of the cor-
responding cumulative curve of sampling errors. The
change of squares of amplitude from the first to the
sixth harmonic, for example, by fitting a one-
parameter gamma function, would give an
approximate law of the change of sequence of squares
of amplitudes. The integral of this equation would
produce the mathematical description of the rising
limb due to the periodicity in a parameter v.

Figures 3.2 and 3.3 present the above concepts
of fitted curves graphically, or the fitted functions in
determining the intersection point A for the critical
frequency (f ) for a periodic-stochastic process in the
case of an independent and a dependent stochastic
component, respectively. The vertical posi-
tion (p ) of the point A is determined by the
sample size, while its horizontal position (f.) should
be little affected by the sample size and the sampling
variations. Difficulties arise when the point A of
Figure 3.3 for a dependent stochastic component is in
such a position that both fitted curves, (3) and (4),
come out to be nearly one continuous curve,
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Fig. 3.2 Separation of the cumulative relative perio-
dogram into the periodic part, both the
observed (1) and the fitted (3), and the
sampling variation part, also both the ob-
served (2) and the fitted (4), in case of an
independent  stochastic component in a
periodic-stochastic process.



implying that the separation of two basic parts of the
cumulative relative periodogram becomes uncertain.
Examples show that this case is less common in
practice.
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Fig. 3.3 Separation of the cumulative relative perio-
dogram into the periodic part, observed
(1) and fitted (3), and the sampling varia-
tion part, observed (2) and fitted (4), in
case of dependent autoregressive linear sto-
chastic component of a periodic-stochastic
part.
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Fig. 3.4 Explained variance p by m harmonics
in five parameters of daily precipitation
series, Fort Collins, Colorado.

Figures 3.4 through 3.8 as examples give the
relation of p_ to m for five parameters: the

mean m_, the standard deviation s, and the first,
second, and third serial correlation coefficients,
Lo Ty and r > for five discrete series: (1) the
daily precipitation at Fort Collins, Colorado, from
1898 to 1966, or for 69 years, Figure 3.4; (2) the
3-day precipitation at Austin, Texas, from 1898 to
1967, or for 70 years, Figure 3.5; (3) the 7-day
precipitation at Ames, lowa, from 1949 to 1966, or
for 18 years, Figure 3.6; (4) the daily discharge of the
Tioga River near Erwins, New York, from 1921 to
1960, or for 40 years, Figure 3.7; and (5) the 3-day
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Fig. 3.5 Explained variance p by m harmonicsin
five parameters of 3-day precipitation series,
Austin, Texas.
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Fig. 3.6 Explained variance p by m harmonics in
five parameters of 7-day precipitation series,
Ames, lowa.



discharge of the McKenzie River at McKenzie Bridge,
Oregon, from 1924 to 1960, or for 37 years, Figure
3.8. The parameter m has the range m =1 - 182
for daily series, =1-60 for three-day series,
and m=1-26 for seven-day series. Because other
precipitation and river gauging stations for one-day,
three-day, and seven-day discrete series show results
which are similar to those of Figs. 3.4 through 3.8,
the following conclusions drawn from these figures
are generally valid.
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Fig. 3.7 Explained variance p by m harmonics in

five parameters of daily flow series of the
Tioga River.
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Fig. 3.8 Explained variance p by m harmonics in

five parameters of 3-day flow series of the
McKenzie River.
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(1) The mean m_ and standard devia-
tion s for the precipitation series are periodic, with

the p = f(m) curve composed of two basic parts:
a steep rise from m = 1 to an m value of up
to m = 6 as the periodic part, and a slow rise

beyond that m following approximately a straight
line as the sampling variation part with an
independent stochastic component. The rapid rise can
be attributed to periodicities in m_ or s, and the
slowly rising straight line may be considered only the
sampling variation. The curve = f(m) for
m_ is always above the corresponding curve for
s,; this difference is attributed to a larger sampling
variation of the second moment, s:, than of the

first moment, m,_.

(2) The three serial correlation coeffi-
cients, r, g B and rh after the periodicities
in the mean KB, and in the standard devia-
tion o_ are removed show approximately the
straight line p = f(m) relations that are expected
for nonperiodic and sequentially independent
estimates v_ of a parameter ».

(3) The estimated means m_ and the estimated
standard deviations s_ of one-day and three-day
series (and also of seven- -day series) of the examples
of runoff series show a sharp rise of the curve
P, = f(m) up to m = 3-6, and then a slow rise
to the maximum value of m, with this upper part of
the curve mostly convex upward. The first part of
the p_ = f(m) curve indicates the significant
periodicity, whereas the second part indicates
sampling effects for a dependent stochastic com-
ponent of approximately the autoregressive type.

(4) Rivers with runoff predominately produced
by rainfall demonstrate no periodicity in the serial
correlation coefficients, as shown by Figure 3.7.
However, the p_ = f(m) curves do not follow
closely the straight line from m = 1 on, showing
that the sampling variation of serial correlation
coefficients about their mean values Pys Pys and
py are affected by the sequential dependence in
S and ry, @s the result of sequential
dependence of the underlymg stochastic component
after the periodicities [ and o_ are removed.

(5) Rivers greatly affected by snow
accumulation and melt, or river regimes with com-
bined runoff from rainfall and snowmelt, usually
show periodicity in serial correlation coefficients, as

shown by Figure 3.8. All three parameters, r &



L. 00 and £3.40 exhibit the same sudden rise for
small m as do m_ and s_. However,

: G i ¥
their p_ ~critical intersection values are lower.

(6) As expected, the sample size affects the
smoothness and reliability of the p_ = f(m) curves,
as shown in a comparison between Figure 3.6 with 18
years of data and Figures 3.4 and 3.5 with about 70
years of data, though Figure 3.6 refers to seven-day
series, whereas Figure 3.4 and 3.5 refer to one-day
and three-day series.

(7) Precipitation discrete series with time inter-
vals as fractions of the year show clearly that their
nonstationarity basically results from the periodicity
in the mean and the standard deviation, while the
nonstationarity of the corresponding discrete series of
runoff often results from the periodicity in the serial
correlation coefficients, and likely in periodicities of
third and fourth order parameters.

(8) The p_ = f(m) graphs enable an in-
vestigator to advance hypotheses about the significant
harmonics present by finding the breaking points
between the fast and slow rising parts of the curve.

This graphical method, or the use of fitted
functions of cumulative relative periodogram for its
periodic and sampling variation parts to find the
critical dividing frequency f_ is a promising
approach for inferring the significance of harmonics
in periodic hydrologic parameters. The detailed treat-
ment of this method is not the subject of this paper.

3.10 Explained Variance of a Periodic-
Stochastic Process by its Components

The simplest periodic-stochastic structure of a
hydrologic time series is a summation of the periodic
mean and a stochastic component given by

. T (3.35)

] p.r !
in which g is the periodic mean at any position
7, 7=12,.,0, and € is a stationary stochastic
component. It is assumed here that E(e  )=0 and

var € _ = 0”. For the periodic mean u_ Eq.3.9is

+T
applicable with »_ replaced by p_, and v by u_.
This case is applicable when Eqs. 3.6 and 3.7 are
applicable, so that it is warranted to start the analysis

of explained variance by this simple case.
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As a consequence of Equation 3.9 and 3.35, the
property of X IS

E(qu,f) = E("p,,)
with i an integer, for any p and 7. The variance

of € r 1

(3.36)

E(x -u)= E(e; J=02 (337)

P, T
for any 7. The variance of x_ _ about the general
mean u  incase p_ and €, are independent is

= +
var xplr var ;'Jr var Ep‘?

1 m
-3 £ @aremnea

1=

(3.38)

The covariance of € p,r Atany position 7 is

cov (e, .+ €, ooi) =Py () ol , (339

which is independent of 7 and is zero for a
given k # 0 and for €, , an independent random
variable; p,(€) is a constant for a
given k # 0, independent of 7 in case € _ isa
dependent stationary random variable. The
covariance of x_ _ has a superposition of a periodic
function to the correlogram of Equation 3.39.

The portion of variance of the variable x

pP.T
explained by its periodic mean u_ is

var p_ 1
= . (3.40)
var X m
T 1420}/ 2 C
1=

with C? given by Equation 3.25. The complement to
unity of the value of Equation 3.40 represents the
portion of wvariance of K. explained by
the €,r variable.

The application of Equations 3.35 and 3.40 to
the sum of Equation 3.7 carries to bias because of the
logarithmic transformation in passing from Equation
3.6 to Equation 3.7. However, the concept of
variances of a dependent variable, explained by the
other variable, is based on a linear relation between
all these variables. When the relation is a power func-
tion or a product of a set of variables, the logarithmic
transformation reduces the relation to a linear
function.

[t may be postulated that the periodicity is
only in the standard deviation o_ (and consequently
in the variance U: or in the covariances C_) but
not in the mean, in autocorrelation coefficients or in



any other parameter. This case is presented here for
the sake of completeness. The connection between
the periodic and stochastic components is given by

S A " (3.41)

P.T PoT
in which e . and ¢_ are independent, € has
the same stationarity propertles as in Equation 3.35,
and o_ is the periodic component in the standard
deviation. In this case »_ of Equation 3.9 is replaced
by o, and » by 0.

As a consequence of Equations 3.9 and 3.41

x, )= E(x)=0_E(e ) , (342)

which is zero if E(e, ;) = 0 for any 7. The general

variance of x_ _, w:th o and e independent, is
p.T T p,7
varx,  =varo.e, . =varo vare,
=g®varo_ , (3.43)
€ T
with var ¢ = 2CJ/2, i =1,2,...m, and m the

number of significant harmonics in o . For a

. _ 2 1
given 7, var X, = 0 var € _, Or a periodic
function of 7. The covariance function at a given
T is

cov(xp'r,xplﬂk)z + % 4g SOV {e ‘Ep.rrk)

= 0% .k ‘ok(f) Gs ?

(3.44)

also a periodic function of 7. The autocorrelation
coefficients for a given 7 are

0.0, cov(e o ep,ﬁk)

pk(x) = =,Ok(€)

(3.45)

0.0, .0

p
2
€
or they are independent of .

Because the logarithmic transformation gives

In s Ing_+In Eim 2 (3.46)
provided e _ > 0, the portion of variance of
X explained by the periodic component is

p.T
approximately

var (ln o)

e = — .
o var (In xplr)

(3.47)

The most current hydrologic case is the occur-
rence of periodicity in both the mean and the
standard deviation. There are several reasons for this
joint occurrence, which are not discussed in this

paper.

The structure of a time series of the type

X - M b Orep.r 5

porg (3.48)
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in which u_and o_are independent of ¢

with p_ and o glven by Equation 3.9 with the
correspondmg changes for each case, represents the
general case of periodic mean and standard deviation.

The variance of xIFI . is

i1

var x = var u_ + var 058

p!r
+2Cov(u,, o0, ep,f) (3.49)
For o  and e _ independent, and € _ an in-
dependent stationary random variable, then
var x, o =varu_+ cr' var o »  (3.50)
s0 that the portion of variance of - explained
by
var g 1
e = = )
poovar x
p,T 2 2 1 2
L g El Cf’“l ¢ @s
with m, the significant harmonics in p, and m,
in g,

To find the portion of variance explained
by o, 1 - e  should be divided in proportion
to var (]n 0.) and var (In €, ,), though this
logarithmic transformation is biaséd and is only an
approximation, so that

(1-e,)var(Ino)

e = 3 (3;52)
o var (In 01_) + var (In ep.r)
and
e = ]—ep—eo = (3.53)
with e , e  ande_ being the portions of variance of
X, , explained by p, o and € pr respectively.

The next combination of a stochastic sta-
tionary component and the periodic parameters is
the case of periodicity in autocorrelation coef-
ficients p, (€). Assume that the p, (¢) correlogram
is given for any linear type dependence of a discrete
time series such as the first, second or higher order
autoregressive linear models. For the m-th order
linear model the series is

€p.r ]EI 4
in which, a, @ - are parameters (in general
either periodic functions or constants) to be
estimated from the € - series, and £ - is the
independent second-order stationary random variable.
The periodicity may be in any or all of m coef-
ﬁcients,,al‘r, & . For the simple case of the

tok (3.54)

-j ep.r-s‘ pir 2

m,T



first-order autoregressive linear model, with

Gp.r p,r-1 +a$p,r ’
in which =P the parameter Ps is
assumed to be periodic, and o = (l—p )Sﬁl In that
case, v_ of Eq. 3.9 is replaced by [ , and v, by
Ps where p, is the mean ﬁrst autocorrelauon
ooefﬁc:lents of w values of Pygs and m is the
number of harmonics in the clescnpt:on of Py g
which is not necessarily the same as for the u,

By (3.55)

and o_ series. The structure of the time series :s
expressed by

Bt (0 e, ok ) (3.56)
in which k., o, and pl are periodic and inde-
pendent of E ; "With E(E = U,
var - I and cov (E p.r+k) 0 f'or any
k # 8 The penod:clty in Py, implies the

periodicity in o, in order that £ , has no second-
order parameter periodic. The composmon of a series
given by Equation 3.56 has the periodic mean,
standard deviation and autocorrelation coefficients,
with p, % = p{‘ = f(k,r), because the peri-
adic p, iy makes il Py , periodic. The case of
Equauon 356 is a combmatlon of an independent
second-order standardized stationary stochastic
variable and the periodic second-order parameters.
The case of P, , 4 constant,and [ coefficients a
sequence of constants but u, and o_ periodic is
called here the quasi second-order penodlcuy

Similarly as for Equation 3.56, the second-
order, third-order or higher-order autoregressive linear
models may have periodic autoregressive coefficients.

The portions of variance of Xp . explained
by u., o ) ’s, and o § may be determined
as above by using the logarithmic transformation
whenever a product of two terms is involved.

3.11 Testing The Significance of Harmonics in
Py . Coefficients by the Split-Sample
Technique

The w autocorrelation coefficients p - of

€p,» are most currently estimated by the sample
serial correlation coefficients

(e - ?p‘”k)

p.r . . (EP T4k

-7, ) z( -7 )’]‘"S
Pr p,rrk p.THk

(3.57)
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forr=12,. wadk=123,... though
these estimates may be biased. To test
whether Py ,» OI its estimate . with k = 1 in
Equation 3 5 ? is periodic or not the following pro-
cedure may be used. The series of w values r, _ is
split into two sub-samples: (1) all X values
with 7 odd numbers and (2) all fr wuh T even
numbers.

The reason for this split-sample approach is
the dependence between the successive values
of p, . introduced by the manner of computing
them "As an example, when r, _ is computed, say
for = 25th and 7 + 1 = 26th April for daily
values, the two computed r . Values are dependent
even for independent time ser;es For p, . of April
25, values of e for the 25th and 26th April are
used. For p, of April 26, values of €__ for the
26th and 7?&1 April are used. Because e values
of April 26 figure in both p, , values, they must be
dependent. By putting every second value of p]
the first subsample, and the remaining values in the
second subsample, this split-sample approach avoids
the problem of spurious correlation between the suc-
cessive Py values. However, due to the time
dependence’ in e 5 there must also be the cor-
responding dependence in P, ,» Which is a separate
dependence from the spunous correlatron introduced.
Similarly as for daily values, the r. for the month
of April and r __  for the month of May for
monthly values are dependent because of spurious
correlation, apart from the eventual dependence
in py . resulting from the dependence in €pr

For each of the two subsamples of w/2 values
if w is even, or of w/2 + 1 and w/2 if w is
odd, the test of significance of harmonics is carried
out as it was done for other parameters, and as shown
in the previous text. If both subsamples show the
same harmonics to be significant, those harmonics are
considered to be significant.

A similar test is carried out wheth-
er p, for k = 2 in Equation 3.57, is periodic or
not. The sample of w values of r, _ is split into
two independent subsamples. The first subsample
contains all values r, . starting with Ky and
includes the r,  values two at a time with the
next two deleted so that the first subsample is
200 220 Ty 50 Ty g0 T3 gs Ty geees OF APPIOXi-
mately w/2 + 1 or w)/2 values, whalever comes
out of this selection. The second subsample starts



with Iy 3 and includes the I, values two at a
time with the next two deleted, so that the second
subsample is T3t a0 Tagr Ty g0 Thaq T qprm
or approximately w/Z +1 or /2 values. The
tests of significance are made as described in the
previous text, but on each of the two subsamples.
If both subsamples show the same significant har-

monics, they are accepted as such.

Similarly, the test whether r e JOE KED
in Eq. 3.57, is periodic or not can be performed. The
w values of r, _ are split into two subsamples. The
first subsample starts with 310 and takes three
consecutive values of 1 L, ata time with the next
three deleted, or it is T3 1073217330 T375 T3¢
The second subsample starts with

3.9’ Ls 3w
Ty and uses the remaining part of the series, as
T3,4> T3,50 13,60 T3 100 3,110 T3,027 T3,67 - D€

test is made on each of the two subsamples, whether
or not both have the same significant harmonics.

The above procedure of testing the significance
of harmonics in Py Py and Py, by the split-
sample techmque can he generahzed to any
parameter p, . For a given k there are two split
samples, the Hrst subsample consisting of k values
in sequence, while the next k values are a part of the
second subsample, alternating until all w values are
used.

In the case of tests of harmonics in -
Py Py . with the two subsamples, the criterion
used is that both subsamples should have the same
harmonic significant to be accepted as such. This is a
somewhat stronger criterion for accepting a har-
monic as significant than if it is shown as such only
in one subsample. Regardless of this, the approach
of both subsamples showing a harmonic to be signi-
ficant should be used as a stronger test.

3.12 Periodicity In Parameters Which are
Functions of Higher Order Moments

The independent components £ _ may not be
the third-or higher-order stationary, tiough they are
the second-order stationary. If E is normally dis-
tributed the second-order stallonanty implies also the
higher-order stationarity. The £ distribution
must be either skewed and/or non -normal sym-
metrical to have periodicities in the third, fourth or
other higher order moments, or in the parameters
derived from these moments. Assuming that & - is
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an independent but non-normal random variable, the
skewness and excess coefficients may be periodic.

To have the skewness coefficient of £ - vary
with 7 independently of E(E ) and var . the
probability distribution functions with three’ para-
meters must be used for £ . Assume that §
an independent random vanable with cov (ép
Ep 'r+k) =0 forall k#0. If it is the second- order
stationary variable, the mean and variance of ’;’
are constants independent of 7.

The two-parameter lognormal distribution with
the mean u, and the variance oi of logarithms
of £ has the skewness coefficient

ﬁ = Ui ? + _312_
£ “E ”E 3
with u, the mean, and o, the standard deviation of
E - with 135 also a constant. Only the three-
parameter lognormal distribution enables the mean
and the standard deviation to be constants and
independent of 7 but the skewness coefficient
f. to be either a constant or to vary with 7 as
required by the definition of the third-order non-
stationarity in the skewness coefficient. The lower
boundary v of the three-parameter lognormal dis-
tribution must change with 7 in order that

'BE changes with 7 while y, and o, are kept
constants for any 7. If My in Equation 3.58 is
replaced by (li - 7), and the periodic parameters

(3.58)

are ., and ']r designated by B and 7_,then

Equation 3.58 gives
B, My -7,) -30, (4, -v,) =0y . (359)
If B, is periodic, while the mean u and the

standard deviation o, are constants independent of
7, then 7_ is also periodic. The three-parameter

lognormal distribution of £y then
& 1 In(§-v,)-u_1% /20
fR) . ¢! e n
(-7v,)e, V27
(3.60)
in which
4
_p e
Ky =2 (b - o ag (3.61)
and
0_2
Gi = In [] +€72:|
(g =7,) (3.62)



Therefore, Equation 3.59 gives y_ forany §_, and
Equations 3.61 and 3.62 enable the computations
of u , and o of Equation 3.59 for a given value
of y,. In other words, if the three-parameter
lognormal distribution is used for the distribution
of E , it is an independent and second-order
sta uonary random variable, while the third-order non-
stationarity in the skewness coefficient B, may be
accomplished only for the lower boundary 7y, being
a periodic parameter. Note that in t}ns case, i the
mean of logarithms of £, and o the variance of
logarithms of £ _, are also penodlc while My the
mean and o :ﬁe variance of £ _ are constams
independent of 7. If y_ s s1gmficantly different
from a constant v, then ¢ has the three-
parameter lognormal distribution of Equation 3.60,
with periodic parameters Has 0o and 7v,.

If the gamma distribution is used

forE ,w1thE($ )=u£andvar£ =
o,‘, as constants mdependent of 7, then

Mg = af +vy (3.63)
and

ol =af? (3.64)

£
in which a > 0 is the shape parameter, § > 0 is
the scale parameter, and vy is the lower boundary.
From Equations 3.63 and 3.64 then

b
et 4
o™ (%) ’ (3.65)
3
and the skewness coefficient is
.
g, B TREE (3.66)
so that ? 0
71. = pz g_r L] (3.67)

in which g_ is the periodic skewness coefficient. In
order to have a gamma distribution of E .+ With
Hy and UE constants independent of 7, the three-
parameter gamma distribution must be used so that
the skewness coefficient g_ may be periodic. This
is equivalent of having the lower boundary 7y, of
this distribution periodic. = The three-parameter
gamma distribution of Ep.r is

gy \*1 -(H'—)
f(z)=grlm(—-g—’—) NPT e

in which « is given by Equation 3.65, § by
Equations 3.64 and 3.65, and 7y, by Equation 3.67

as a function of g, For g_ a function of 7, y,_ i
also a function of 7.

As £ in the above two cases of three-
parameter ~distributions is not assumed to be a
positively-valued random variable, then the lower
boundaries are either positive or negative constants or
they are periodic. If B_ or consequently T, for the

lognormal distribution, or g or consequently y_
for the gamma distribution, are periodic, then Eq.
3.9 is valid with v_ replaced by y_, and v by %
the means of lower boundaries respectively for the
lognormal and gamma three-parameter distributions.
Once f_ and the corresponding v, or g_ and the
corresponding 7y_, are inferred to be periodic. and
the Fourier coefficients of Eq. 3.9 for y_ estimated
the distribution of £ may be simply reduced to
the stationarity m the skewness coefficient by the
transformation p = E - ¥,. The algebraic
equation which connects the penodic parameters
and stochastic component, in the case of the first
order autoregressive linear model for € with
Py =Pe becomes

xp.r . 'uf " Uf [prep.r-l

¥y ]-p: (ep,f '71-)]

with @ _ a random variable, with either the two-
parameter lognormal or the two-parameter gamma
distribution, which is second-order stationary but also
stationary in the skewness coefficient.

(3.69)

A further analysis of the third-order station-
arity is using the cross-product C(E - 9 pg

£, r42)» or the similar third-order momenls in the
form of
1 n w =
Cr.r+1,r+z_n_w'_ E: (£ 'Ep.r)

p=17=1 P7

Bovns =8 ont Wy 0B gaad » 1(3.70)

and testing whether the w values of this cross-
product are periodic or not. In Equation 3.70 the lags
are k, =1 and k, = 2 in the simple form of the
third-order cross-product C_ _+k 74k,
(Ep‘r, Ep'”’kl’ Ep'”kz)- If the cross-product of
Equation 3.70 shows no significant harmonic, it is
expected that the covariances of other values of

k, and k, will not be periodic cither.



Chapter 4

TESTING PARAMETERS FOR NOT BEING SIGNIFICANTLY DIFFERENT FROM CONSTANTS

The analysis given in the previous chapter was
based on the hypothesis that each parameter over the
7 positions of the basic period w of a series is
periodic until proven that it is not. Therefore,
periodicity is assumed to be nearly always present in
the basic parameters. This hypothesis results mainly
from the complexity of runoff time series. It may be
rightfully claimed that the river flow time series
belong to the most complex time series of geophysics,
and that fact is the reason for various techniques
available at present for the analysis of streamflow
time series. The more complex a geophysical process,
the more varied are the approaches used and the
techniques available for its analysis.

The economy in the number of parameters and
coefficients necessary to be estimated in the
mathematical description of a hydrologic time
process requires another approach, namely, the
“hypothesis that the variation of some parameters
along the 7 positions is not significantly different
from a constant. This assumes a priori the hypothesis
of both the nonperiodicity and the constancy of a
parameter. The tests of this type of hypotheses are
different than in the previous chapter. They are
outlined for some parameters in this chapter.

The proportionality of s_ and m_, or the con-
stant value of the coefficient of variation, is one of
these tests. The constant values of B the auto-
correlation coefficients of the e series, 1is
another. The identically distributed £ ' , Variables at
all 7 positions, with the skewness and excess coef-
ficients being constants independent of 7, is still
another type of test, and so on.

4.1 Properties of the Coefficient of Variation
Along the Positions of the Basic Period

The general coefficient of variation of
the x__ variable is defined as the ratio of its general
standpa'rd deviation O(XD',) and its general
mean ,u(xp'r], estimated by s(xi,,]
and R(x ) of the available x _ series. This value
of the coefficient of variation is only approximately
the ratio Ux"!‘ux with o and p  given as the
averages of s, and m_, the periodic standard
deviation and mean, respectively. Because of these

periodicities in s_and m_  the coefficient of
variation at each position 7 isestimated by

Ve (@.1)

with \('r a function of 7 and 7 = 1,2,. . .. This
new series may not be periodic in many hyrologic
time series.

The first approach in testing this hypothesis
may be to use the methods described in Chapter 3, or
by estimating C. coefficients of a number of
harmonics, say for the six harmonics of monthly
values and for up to about first 12 harmonics of daily
values. If the tests show that V_ is not a periodic
parameter, an economy in estimated parameters is
accomplished. This means that the significant
harmonics in ¢, and u_ have the same frequencies
and phases, and proportional amplitudes. If V_ does
not show any significant harmonic it does not imply
that the V_ series is independent.

Instead of using the test with the hypothesis of
periodicity, two other tests may be used to ascertain
whether w values of V_ are or are not independent
in sequence, and are or are not significantly
different-on a prescribed probability level-from a
constant V, as the average of w values of V.. The
other alternative is to use V of the

entire B o series given by
s(x, )
V= rxp R (4.2)

Usually V and V are not equal though they
are close values. The value of Equation 4.2 is highly
affected by various biases, sampling or otherwise.

To perform the test whether w values
of V_ are or are not significantly different from a
constant, V , the distribution of w values
of V_, each computed for n years of observations,
is assumed to be approximately normal with the
mean V and the standard deviation of V,_ given

as s, estimated by -\/s!:, and s} as an approxi-
mation given by [10, p. 358]

_H(ugu) - dupy e+ 4p)

s (4.3)

<

4
4u K, n



in which p is the mean, and Hys Ky and M, are
the central moments of the variable for the sample
size of n years. To esti-
mate [, 4y and p,, the series is first trans-
formed to a new variable by

L O
Zor 0

(4)

T -

thus removing the harmonics in m_ and

5, where K, is the fitted equation for the periodic
mea.nm ux is the mean of m_ and x o, is
the ﬁtted equation for the periodic stanﬁard devia-
tion s, and s is the standard deviation of x -
The difference (u_ - p ) and the ratio s /o_ are
used here to obtain the z series without the
periodicities in the mean and ‘the standard deviation,
with the mean of s and the standard deviation of
about s, The mean p, and the standard devia-
tion s, may not be exactly equalto p_ and s, be-
cause 0 is the fitted function to the periodic
standard deviation by a selected number of
harmonics, which function does not pass exactly
through all values of 8. However, differences
between u, and p_, and s, and s _ are expected
to be small for the majority of time series analyzed.
For the hypothesisof s and m_ proportional, this
should be reflected in the estimated significant
harmonics in both p_ and o,.

Estimates of u(z ) and of the central
moments uz(z " 3 “3(;'9 ), and ,uq(zp ;) are
obtained from the ennre series, N = nw values, of
the z _ variable. This should give some reliability
to the above estimates of second, third and fourth
central moments, provided there are no significant
sampling biases. The underlying hypothesis is that the
z . series has the same population value of V_
independent of 7. Then estimates of moments in
Equation 4.3 are

,—___L n W
8z, )= 6 pzl 721( TH, ) ,45)
with i = 2,3, and 4. The estimate of S from

Equation 4.3 by using K’s of Equation 4.5, together
with V_ = s,/ m_, gives the two parameters of the
normal distributionof V_, N[V _,s ].

The x* test may be performed by comparing
this theoretical normal distribution with w values
of V_ computed for the z series for 7 =
1,2 ,w over n year. If x* statistic comes out to
be smaller than a prescribed value xcz for a selected
probability level, the V_ values are considered as
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not being significantly different from a constant.
The reason that V_ of z _ should be tested for
not being s:gmflcantly dlff'erent from the mean
V,, and not V_ of x ' from Vx, is the fact that
R is periodic, while z » has at least the major
periodicities in m_ and s, removed. The random
variations (u_-m_) and (o_-s) are preserved in
zZ and carried over to the new values m_(z v )
and s (:zp ). Because z__ may be dependent in
sequence, the V, values are then also dependent in
sequence. The effect of this dependence .nay be
taken into account by computing the effective size
w, and using it in tests instead of w, provided the
model of dependence in V_ is simple.

For the z, distribution close to normal,
Equation 4.3 may be approximated by

2 n
- 92— (142 Tz) ; (4.6)
with u = p , and both p, and p, estimated

from nw values of Z, .

This result of V_ being not significantly dif-
ferent from a constant implies that m_ and s_ are
proportional, with the correlation coeffi-
cient p(m_,s ) estimated from the w concurrent
values of m_and s_by r(m_, s ), measuring this
proportionality. It is then expected that

s‘r - Vz mf ’ (4-7)
or with E(s /m ) =V, . However, the relation
between s and m_ may be more complex, and if
linear, then it is

s, =A+V. m_+¢_ (4.8)
with ¢_ the residuals. Equations 4.7 and 4.8 mean
that the corresponding Fourier coefficients A, and
B of M, and o, of the x 5 variable are either
apprommately proportlonal or are simply related.
If A is close to zero and ¢r has a small variance, or
both are not significantly different from zero, then all
coefficients A, and B, are proportional. The study
of relations between s_ and m_ in hydrologic series
represents a topic of high interest in the future
efforts for a better structural analysis of hydrologic
time series.

It can often occur in hydrology that the
sequence of w values of V_ is not statistically
distinguishable from a constant value V . However,



the variance of V_ along the r positions may
change significantly from season to season. In this
case a test, say by the split-sample technique, may be
performed to determine whether the variance
of V_ is independent of the r position. The
practical approach would be to divide the w values
of V. into 2-4 sections, say be seasons, and test their
means or variances for equality. The division by
seasons should follow approximately the physical
seasonal variations, say the changes in the type and
origin of precipitation, snow accumulation and
melting, or rain-producing runoff, with transitions
between these typical season, or by similar criteria.

4.2 Properties of Autocorrelation Coefficients
of the €pr Series

The tests of the hypothesis that the B
autocorrelation coefficients along the 7 positions
are not significantly different from constants, require
the distributions of sample serial correlation coef-
ficients, both for the dependent and independent

s series. These distributions are available for

independent series, as well as for series with simple
dependence models [2,4]. The split-sample tech-
niques, as described in the previous chapter, should
be used to avoid the spurious correlation. In the
case of dependent e series, two approaches are
feasible: first, by whltemng € and investigating
1, , of the inferred mdependent component E
with the use of sampling distributions of £ for
independent series; and second, by using the avail-
able sampling distributions of 1, of dependent
€,  Processes in cases these distributions are
available. The use of the effective period length
w, instead of w in a case of dependent series
may be also a simplified approach convenient for
the use.

4.3 Properties of Skewness Coefficient of
Independent Stochastic and Second-order
Stationary Components

The skewness coefficient computed along
the 7 positions, 7 = 1,2, .. .,w, as a dimension-
less parameter, is defined by

5 = My M
= =15 "

T L PR
in which _u, and _u, are the second and the third
central moment at each position 7 of the in-
dependent second-order stationary series gp ,- For

4.9)
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small n (the number of years) the unbiased estimates
of B_ are [10,357]

n® u
” 3
= - (4.10)
SRRV I
in which _fI, is the unbiased estimate of the second

central moment and My s the biased third moment.
Along the positions 7 there is a series of w values
of B , and B is the mean of ﬁ

By using Equation 3.9 with »_ and v, re-
placed by ﬁ and B, and Equation 3. 11 and 3.12
with (v, - v ) replaced by (8. - f,), the estimates
of m pairs “of Fourier coefficients (A B) are
obtained, and the tests for significant harmomcs in
the hypothesized periodicity may then be performed
as described in Chapter 2. For the hypothesis that
the ,GT is not periodic, for no significant periodicity
found in 13 or for the inferred periodic component
removed with the remaining w values being 6_ =

L. # gf, where BT is the fitted periodic function
then BT or the 0_ residuals may be tested for not
being significantly different from a constant. A new
variable u » may be obtained similarly as it was
done with s of Equation 4.4, so that the dif-
ferences between the series {i and the fitted
periodic function f_ carrled along into the
u, variable.

For the hypothesis of ﬁ not being different

from a constant and if the vanable E is approxi-
mately normal, then
- 6n(n-1) 6
Vrh = e @) e @1
If & is sufficiently skewed and also a

dependent varlab]e the approximation of var ﬁ by
Equation 4.11 may contain a substantial error. The
average skewness coefficient 5 of & , may be very
large for daily river flows, sometimes of the order of
3.00 - 4.00, and .6 may fluctuate in large limits
about ﬁ A good approxlmatlon of var f§ is given
by [10]:

4u;n var § = 4;.:;1.16 - 12u,p,p, - 24u3p, +

Mgk, + SIS+ 36KG . (412)
Equation 4.12 requires the estimation of five
central moments, Ky, with i = 2,3,4,5,and 6.
They are estimated from the sample of size
N =nw of ED,T. In a case of monthly flows N =
12n, and for daily flow N = 365n, where n is
the number of years. For daily series



of n = 50, N = 18, 250, so that even Mg
and p ¢ may be considered reasonably accurate, pro-
vided no biases, sampling or otherwise, are present in
extreme values because these biases influence dis-
proportionately the values of high central sample
moments.

To test whether the Br series is significantly
different from B., or whether the remain-
ing E series, after the periodic §_is removed, is
s:gmﬁcantly different from zero, ﬁf or §_ are
assumed to be normally distributed,
N[, (varf)”#], or N[O(vard)*]. The x* test
may be used in this case with w values of

1_0r8

If ﬁr or 8 , are autocorrelated along w val-
ues, with p their first autocorrelation coefficient,
then for the test the effective length (in case the
first-order autoregressive linear model for this
dependence is a good approximation) is

- -p)w
e 1+p ’ (413)

and for the variance this effective length is
_(pw

e = l+p=

so that in the x® tests w,

w

w (4.14)

replaces w.

For the two-parameter lognormal distribution
fitted to £, the following analysis may help to
make inference about the properties of f_ or- 9
For a two-parameter lognormal distribution fitted
to E o Ap, o) where 1 and o, are the
mean and the standard devxatlon of loganthms
of ¢ the coefficient of variation n is given for

this Elstnbutlon by 2. ef’:, -1

The skewness coefficient § is then a function
only of 7, B=n%+3n (4.15)

The main bias in f may come from the unrepre-
sentative extremes which highly affect the estimates
of o_.

n

Moments of the two-parameter lognormal pro-
bability function about the origin are

+Lj’o’

-t 3 &

m; (4.16)

Equation 4.12 requires estimates of Mys Hy,
Hys Mg, and H- The second central moment is
i = 2, w:th K the mean of Epr‘ By denoting
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1+n* as v, then w, = u?(v-1). Terms My,
-”5/“25 » and u jul are obtained by using
moments about the ongm of Eq. 4.16.
Hy
— = vé - av? +6v-3) |, (4.17
2 (v-l)z (v® ) (4.17)
i= : (v'0-5v5+ 10v3 - 10v + 4)
W3 Gy
(4.18)
and
i-‘l=-—l--g—(\l"ls -6\"0
py (1)
+ 15v® - 20v? + 15v - S . (4.19)

The condition is [B] <+/n ,

Daily flows have 8, which are not much
greater than 4.00 (in a case of 15 daily flow series
only one station had f§ 4.082). The case
ofﬁ = 4.00 and n = 40 is shown here as an
example for the application of Equations 4.12 and

.17 through 4.19. In this
case =1, n’ =1, and v=2, sothat u,/
M3 =41, pg/u,®/? =768, and u i =27, 449,
This gives var § = 493, or the standard devia-
tion s, = 22.1. It is evident from this computation
that either the approximation of Equation 4.12 is
very poor in the case § = 4.00, or the two-
parameter lognormal function is not applicable for
high skewness values, or the variation of § is really
large in this case of high skewness of lognormal dis-
tributions. If Equation 4.11 is used for var § instead
of Equation 4.12, it gives for n = 40 the val-
ue var § = 0.140, or 0.374. This is a very
small value valid only ¢ = (0 and the normal
variable fp‘,

forﬁ

44 Relationships Between the Skewness
Coefficient and the Coefficient of Variation

A simple linear correlation analysis may be
applied between [_ (the skewness coefficient)
and n_ (the coefficient of variation) if both come
out to be close to constants by various tests. In this
case, the ratio

o (4.20)
may be not statistically distinguishable from a con-
stant even if n, and B_ are different from con-
stants. Then r(ﬁr,nr), the correlation coefficient
between f_and n, and the simple regression
equation B =a, +a, n_+e may be used, and
the correspondmg tests performed that a; may be



close to zero, and that e, has a very small variance,
so that Equation 4.20 may be applicable,
with @, being the mean of o . This approach may
also make economy in the number of parameters
necessary to estimate in the structural analysis of
time series.

4.5 Properties of the Excess Coefficient of
Independent Stochastic Component

The excess coefficient along the 7 posi-

tions, 7 = 1,2, ., as a dimensionless
parameter, is defined by
'u4
o u -3 (4.21)

in which _u, and M, are the second and fourth
central moments of i;' , to be estimated by the cor-
responding sample central moments.

The unbiased estimate of y_ for n years is
[10,p.357]

A 03(nt1) p, - 307 (n-1) p)

T (- D(2)(n-3), 4,
where M, is estimated by the biased sample fourth
central moment, and r“z by the unbiased sample
central second moment.

» (4.22)

For § _ normally distributed, the variance

of 4 is[10.p.357]
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5 24n(n-1)*
Vary = m-3)(n-2)(n+3)(n+3)

(4.23)

However, as £ _ is often highly skewed (and may be
also autocorrel‘;ted). then [10, p. 387]

U3 VAT Y = HiMg - ARy H K - BUGH S H

+Apg - pyug + 16u i, + 163 . (4.24)
Central moments K, 1= 2,3,4,5,6,and 8 must be
estimated from the sample. If daily flows are
used, N = = 365n, so that there still may be
feasible to estimate even the eighth moment from the
data, provided the original data is not very biased at
its extremes. Then ?T may be tested by
the x? statistic, with v, normally distri-
buted, N['y (var 4)*], whether they are or are not
s;gmﬁcantly different from the mean excess coef-
ficient, Y

The analysis of whether the skewness and
kurtosis or excess coefficients are or are not different
from a constant, if the periodicity w is present in
the mean and standard deviation, may be based ona
regional approach for some variables. By properly
using all & series of a region, a large amount of
data may perrmt the reliable estimates of most of
moments in equations for the variances of estimates
of these coefficients.



Chapter 5

DEPENDENCE MODELS OF STOCHASTIC COMPONENTS

Many hydrologic variables have stochastic
components which are dependent.time series. The
analysis of this dependence, with the proper inference
about dependence models is the subject of this
chapter. Though the autoregressive coefficients may
be periodic, or even the higher-order parameters may
be periodic, this chapter is related to the dependence
models of stochastic part after the periodicities in the
mean and standard deviation are removed.

5.1 Investigation of Dependence Models

Previous studies [3,4,5] have shown that the
variable €, obtained by removing the periodicity
in the mean and standard deviation, is only approxi-
mately a second-order stationary dependent or
independent time series. The dependence can be
often approximated by the first-, second-, third-, or
higher-order autoregressive linear models. Higher-
order models beyond the third show a significant
advantage in comparison with the first three models
only when the series are sufficiently long. Physical
explanations exist for the use of autoregressive
models in hydrology [2], though other ideas exist on
this topic among hydrologists. Short hydrologic series
rarely justify an investigation of higher-order auto-
regressive linear models though they may be indicated
by physical processes. Linear models seem suf-
ficiently accurate for practical purposes, though the
real physical stochastic models may be nonlinear.

The general m-th order autoregressive linear
model is

Ep.r = jfl a; . Ep,r-i + o sp,r 5 (5.1)
with Q; the autoregressive coefficients, either
per:odlc as  a, or nonperiodic as con-
stants @, and ¢ is a standard deviation, periodic or
nonperiodic, which enables & to be a second-
order stationary and slandard (0,1) random
independent variable if €o.r is a standard random
but dependent variable.

The value of o is

m 2
o= [l- T al
j=l LT
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If - is a standard variable (0,1), then o is
penodu: as soon as any value @ ., 0= | 5o S0 11
is periodic.

Parameters of the linear dependence models are
either periodic or nonperiodic. These two alternatives
are discussed as two separate cases.

5.2 Case of Nonperiodic Autocorrelation
Coefficients

If tests show that r, _ is not significantly dif-
ferent from a constant independent of 7 for a
given k, equivalent to tests rejecting the hypothesis
of periodicity in the autocorrelation coefficients, two
alternatives in estimating the autocorrelation coef-
ficients in the selected models and in computing
the E series may come into consideration: (a) the
use of 91' p,, and p; (or p in general) as the
means of w values of r, ., 1, and 1, (or
of 1, in general); and (b) the use of the val-
ues pl v Py e and p, oy (or Py e in general) of the
overall correlogram of e 45 estimated
by 1, o T30 and r, " (or Ty ,e 1D general) from
the data of ‘the available sample of the € i variable.
This latter case neglects the positions 1 12000
inside the year, and e - is treated as a stationary
series, €, i= 1,2,...,N, with N =nw.

Computations show that the means
of w values of Ty .r designated here
a8 Py Pgs Pgs o« « 5 Py, AIE often significantly
greater or smaller than the corresponding values
e Tae T3 er .,rkeoftheovera]l €, , COI-
relogram This difference may be due to one or both
of the following two factors, namely
that r underestimates p, more or less
than p, does, or that the nonstationarity and
sampling biases in e, _ make p,, as the mean of
« values of r - greater or smaller than Ty
Whether one or the other alternative is used for lf'le
dependence model and for the computation
of . from e__ depends on the character of
the e , series. fpl, Pyr Paw - Py sequence of
the mean autocorrelation coefficients is used, then
the p, values of the computed autocorrelation coef-
ficient of the independent £ _ variable should
oscillate around the expected values E(pk’r) 0
for k > 0. In that case, the values Tt of the



general correlogram of £ or the values v, of the
variance density spectrum of t‘w com-
puted Sp,f may show some deviations
from E(r,) = 0 for k > 0, or from E(v;) =
2, for 0 < f < 0.50, for the correlogram and the
spectrum of an independent and standardized time
series, respectively.

It can be shown that a stationary
series € would produce a stationary ’.;' if the
proper ﬂependence model for €__ is used and
that E(p, ) = E(r, ) = the population value of
that correlatlon coeff cient, with pk the mean
of w values of r, - of the & series. Therefore,
biases in estimates and biases in the series (sampling
or otherwise) are factors which make differences
between p, and 1, ., besides the effects of the
basic remaining nonstatlonanty in the de-
rived é} series. Besides, the skewness of £ as
well as nonstatlonanty of the higher-order momems
or parameters may account for part of the differences
between Py and S

5.3 Selection of Mathematical Dependence Model
of Stochastic Components for Constant
Autocorrelation Coefficients

The technique of statistical tests for fitting the
autoregressive linear models is given for large samples
by Quenouille [11]. This technique is a laborious
method of computing two sets of constants and a test
parameter, which require more computer time than
the simplified method proposed in this text. As the
structural analysis and the sample size limit the order
of linear models, or presume that data available do
not justify the use of the higher-order models, a
simplified, practical method is considered here as a
feasible approach.

Another approach is by whitening the series or
by assuming a model of the autoregressive linear type,
by estimating its parameters and by computing the
presumed independent Ep component. Then
Ep,r is tested for independence. If this hypothesis is
accepted, the hypothesis of the model fitting well the
time dependence is also accepted. This approach does
not compare the various models and it requires large
computations. The following simplified method re-
moves these two shortcomings of the “‘whitening
series” approach.

The measure of the goodness of fit of the
autoregressive linear models by this simplified
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method is the determination coefficient,
R, i=1223,. It tells what portion of the
total variation of e i explained by each term of
the autoregressive equations, the remaining portion of
the variance of € i being explained by the
term of . Because K >>R>E >R,
criterion can be developed when a modcl of a gwen

order should be selected in comparison with the
other models. For the purpose of this study and if
only the first three models are studied, with R2
RZ and R3, the third model is accepted if R2
Rg > 0.01, or 1 percent of additional value in the
portion of the explained variation, when the third
model is tested against the second model. The
second model is accepted if R}, -R? >0.01, for the
second model tested against the first model. Which-
ever small value AR? is used, for i= 1,2, and 3,
say 0.01 or 0.02 or a similar small difference, it does
not make a significant impact on the final results.
This approach simplifies the selection of the model
without too much loss of information. In this text
AR? = 0.01 is selected. Similar criterion can be
used when models of a greater order than the third
are used.

Whether Py» @S the meanof r,__, or I oo S
the I -th value of the entire € serles is used, the
determination coefficients of the first three order

autoregressive linear models are computed by

D, =R?=p? , (5.3)
2 2 2
Py + po =20 P
]:)2 = R; = 1 7 (54)
I -p
1
and
D, =R}
Pi4p}+0i+ 200, 420103420, 030, - 2010,740, 0,0, P} - £] - P1P}
1-2p% -pl +2p%p,
(5.5)

in which p ,p, and p, are either the means rk "
of w values of r, k. for k=1,2,and 3,and 7=
1,2,...., or are estimated by the first three values

T e fz,e and T3¢ of the general correlogram.

If R - R < 0.01 and R} - R} <
0.02, the first-order model is selected.
If RZ - R > 001 but R} - R} < 0.01, the
second-order model is selected. If R}, - R} > 0.01
and R"; . R; > 0.01, the third-order model is
selected.



For the linecar autoregressive models
with m > 3 in Equation 5.1, the a, constant coef-
Haents may be estimated by using the multiple linear
u-grcssmn estimation techniques with the remaining

“error'” term of Because var ¢ _ = 1, the
difference of 1-0% gives tﬁe explained
variances, D,, = 4, 5 , by the auto-
regressive terms. Then a cntenon of D, D _2 e
with e = 0.01 or a similar small number may be
used to determine the m-th order model of the best
fit, if the F - test is unfeasible for finding the order
of the autoregressive linear model.

5.4 Estimates of Nonperiodic Autoregressive Coef-
ficients and Computation of Independent
Stochastic Series, Ep.r
If the first-order model is selected, the estimate

of the autoregressive coefficient is either I, =

P, —? a, or rp =r _=a,, whichever of the

two approaches is selected.” The new series of ncw-

values of the standardized & , series is computed

from Equation 5.1 for m=1 y

-3
p,r 1 p.r-l
£ = ; (5.6)
p,T —al
V1 aj
with a =p ora, =g .

If the second-order model is selected, the two
autoregressive coefficients, a, and @, of Equation
5.1, are estimated by

by =ty

-1}

§ L

—

and a, = (5.7)

-
]

with r, and r, replaced either by p, and p,, o
by 1, ,and r, . In that case, the new series

2
of nusvalies of‘ez is computed from Equation
5.0form=2 by

€ _-a € -a, €
_Pp,T 1 "p,r-1 2 "p,r-2
Epis™ s (5.8)
2 2
\/1 -(aj+a3+2a,a, 1))
with a, and a, obtained by Equation 5.7, and I

being replaced either by pl or by r
general correlogram of €

of the
€

If the third-order model is selected, the three
autoregressive coefficients, a;, a,, and a; of
Equation 5.1, are estimated by

_ (l-r:)(rl-rs)-(l—rz)(rlrz-ra)
i (1-1,)(1-21} +71,) ’
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(1, )r, #1131 1,)

a =
: (Lor,)(1-2r7 +1,)

and
(rl-r_,‘)(rf-rl)——(l-rz){rlr2 -1,)
a -
: (1-r,)(1-2% #1,)

. (5.9)

with r , r,, and r, replaced either by Py »

p,, and p3, orby r 1o Tyier and I3 e whichever

approach is used. T’he néw series of ncw values

of .E is computed from Egquation 5.1
for m =3 by
__epr'aleprl.azeprz'asept-l
.

V-

(a+a+n+23ar+2nar+23ar)

(5.10)
with a , a,, and a,, computed by Equation 5.9,
and r, and r, being replaced either
by p, and p,, or by By and fy.e
In the case of fitting an autoregressive model
with m > 3 and by using the multiple linear re-
gression analysis in estimating o coefficients, the
residual

Eae
j=i

€ -

P.T P,

give the values a{;’p from which for var
= 1 the parameter o is estimated. Equation 5.1 per-
mits the computation of the Ep , series.

Once the E series is obtained, it is advisable
to compute e:ther nts general correlogram, rk(z N

for k = 1,2,..nw/10, and its variance denmty
spectrum, v (E ) for 0<f<0.50. The w
values of r, (.§ ) for k=1,2,...,m should also be

computed, w:th (hElr means P, Pyl

For
of r

latter case of w values
r_, the tests should be per-

1.7 '2.:-"" m,7

formed whether or not they significantly depart from
the corresponding w values of an independent time
series. Similarly, the tests should be performed
for rk(z ,) and vf(s ;) whether or not they
significantly depart from the correlogram or the
spectrum of an independent time series, respectively.
Because of various biases in the original series, it is
not expected that both approaches, by
using p,, Paseevs Py as the means
of, 2y Ty g Ty pnoe ,rm - in the first case, or by
using, r 1e0 Ta g , in the second case, would always
comply with the results of k. being an
independent time series.

this



5.5 Case of Periodic Autocorrelation Coefficients

The first autocorrelation coefficient
of € i usually has the greatest influence in auto-
regresswe linear dependence models of hydrology. It
mostely affects the variance of e_ _ which is
explained by all terms of the dependencé model, and
the determination coefficient R’i of the first-order
model or of the first term of other models of
Equation 5.1 is usually large. The criterion, whither
or not the dependence parameters are periodic,
should be basically decided whether the esti-
mated w values of r,  are periodic or not. This
represents a simple criterion whether the periodicity
is or is not present in the autoregressive coefficients
of the € series.

It may come out that r, _ is periodic while
neither T, ;0 T3 8I€ perlocllc The decision on
periodicity in the autocorrelation coefficients should
be made by finding the significant harmonics
in 1, o and notin 1, I3, ., if they are periodic.
If any of r, 7 Ty ]S nonperlodlc constants p,,
Pyeny @S the means of r, RS S , respectively may
be used in these models, though their population
values may be periodic. If r| - is nonperiodic, the
mean p, of B, is used together with con-
stants p,, Py, regardless of whether Ty o T3 o
are periodic or not. This approach is a simplification
of statistical tests in selecting the first-, second-,
third-or higher-order linear autoregressive model to fit
the time dependence patterns in B

It is difficult to visualize some physical
hydrologic conditions which would
make T ..., periodic but - equal to a
constant pl Usually, if Ty is periodic all other
serial correlation coefflments should be periodic, and
if 1, is not periodic the other coefficients also
Shoul'd not be. When the opposite results are pro-
duced by the testing method for 1, 5 and other coef-
ficients, the likelihood is high that this is a product
either of the sampling errors or because of the
approximate estimation and testing methods applied.

3

The question arises how to make practical tests
to determine which model should be selected for a
particular € _ variable. It is sufficiently accurate to
compute the means p,, p,, Pgses of w values
of r, , I, ., and select the model by the

T’ 2 T 3,71
simple procecfure given in the previous text
(computing the determination coefficient of each

regression model, D, = R% i = 1,2,3,., and
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selecting i by the criterion established, ARJ).
Periodic functions of Equation 3.9 are applied
tor .1, .if they are found also to be
penod:c or the constants, p,, Py, are used

if r, .. ry ..,are not found periodic.

5.6 Estimates of Periodic Autoregressive Coef-
ficients and Computation of Independent
Stochastic Series gw

The estimates of periodic autocorrelation coef-
ficients are made by using Equation 3.9, and
replacing v_ by I, With k=123, . Then
the penochc autoregresswe coefficients oc, L, oare
estimated by the sample values, 3 s in the following

way.
For m = 1 in Equation 5.1, the first-order
model, _
p,'r_al.r Ep,r-l % UEP.T !
if multiplied by Resey gives for var e = 1 and
cov Epf ot = O,

&y peg Ty 2 (5.11)
with p_ _  the autocorrelation coefficient
between_ By wui and €, and e,  estimated
by 8, , =11

For m = 2 in Equation 5.1, the second-order
model, _ p
p,'r_ﬂl,'r Ep.'.r-l alf p,7-2 OE

if multiplied first by € i and secondly by ep om

produces the following 'relations of o, and a,
to the p, i autocorrelation ccefﬁc:ents
Py Pryr2Prra (5.12)
(4] = ] e
b L-py 22
and
_ Pag2 "Piga Pira (5.13)
2,7 2
I- Pira

with Byorieq the symbol for Py between €

"be-

and € , P the symbol for p

p.7-1 1,7-2 1
tween eg and Y and Py the symbol
for p, between € _, and €,

Similarly, for m = 3 in Equation 5.1, the

the relations be-
rj aT€ obtained in multiplying

third-order linear model,
tween, «, and p,

€ =@ _€ +a., € +a... €

+
p.T 1,7t p,7-1 2,7 "p,T-2 3 OE

p-T'3 p.7



by € AL — and e r.30 one after another,
and oblammg the following functions:

Aal,r =‘°l.r-2(l'pl.r-3)
Pyr2P2qa2
“Par3Par3 Py PrraPagra, (5.14)

* Py 3Py P33 3"

- 2
Aoy =p, ., 005 ,.5)

+ P12 Pargr3 Pars = Pigsa Prga

Py r3 Py T P33P 3 Prraiy (5.15)

and

= Lais
Aay  =py 5007 )

Py r3Pi 22 P a1 " Pras 222

Py r3Prgra *PLr2Prr2Para, (5.16)
in which
AS1+20, 2P 73P1 23
* pf,r-s -‘oi,r-Z “Prra (5.17)
with & estimated by a and p, i by r,

For nonper:udlc autocorrelatmn co;fficnents. Eqs
5.11 through 5.16 reduce to Eqs. 5.7 and 5.9.

To compute £ from Equation 5.1 and the
periodic values of r.! " of Equations 5.11 through
5.16, o of Equation 5.1 must be obtained as a

function of &, = and p, . coefficients. The values
of o are: ’
form =1
5
o=(1-oc|'r) i (5.18)
for m = 2
=(1 2 B 9) )‘/’
@ “ ) al,r_az.r‘”al,faz,fpl,ra s (5.19)
and for m = 3
- 2 2 2
G-(l'al,r ‘O‘z.r —a.’.,r = 2‘I"'l .ral,rpl.r-l
3
=20y 0y 1Py ry 2 1% 1Py p3) (5.20)

In the case w is large, say w = 365 for daily
seriesy, the differences between Prs v Pyrar
Py,r-32 9T Py and P23 and p, Ky TOm
Py or Payps andp are small, so that for
large w and small k and j values (say k =1, 2,
and 3 and j = 1, 2, and 3), Equations 5.7 and 5.9
may replace sufficiently accurately Equations 5.12
through 5.6. Similarly, Equations 5.18, 5.19, and

5.20 may be replaced by the denominators of
Equations 5.6, 5.8, and 5.10, respectively, and using
only the values of Pysr Pago and p,  as fitted
periodic functions. '

5.7 Some Current Misinterpretations of Auto-
regressive Models in Hydrology

Several muisinterpretations are related to auto-
regressive models in their applications to hydrology.
First, when the € > values are expressed by a linear
relation to the m previous values, it is often stated
that the “‘memory of the process is only
for m terms”, This is not correct, because this
relation to m previous values is the method by
which a process with an infinite memory is expressed
by a finite number of terms. The fact that the
dependence of the m-th order in autoregressive
chains or models may be expressed either by
a m-th order matrix of transitional probabilities or
by a mathematical dependence model of the variable,
being a function of the m previous terms, re-
spectively, does not mean that the memory is only
for m terms.

The next misinterpretation, and sometimes a
surprise to those who oversimplify the concept of
autoregressive models, is the fact that the auto-
regressive processes are equivalent to the moving
average schemes with an infinite number of terms
of ¢ and its 8.  coefficients, with the definite
relations of this infinite number of f. coefficients
to the finite number of @«  coefficients of
an m-th order autoregressive scheme, The recurrence
equations, replacing the ¢ . term by its expres-
sion, j = 1, 2,..., leads to a new dependence

=B, 5B £ t.. B E ..., (52D

which is a moving average type model with an infinite
number of terms, and, therefore, memory.

A third current misinterpretation is that auto-
regressive processes must necessarily be linear models.
It is quite likely that the hydrologic physical reality
imposes nonlinear models. Therefore, the general
autoregressive discrete models may
be ¢ = f(e, €, n) * £ with m being a suf-
ﬁcnent length of pre\rious values that no information
is necessary for the values previous to ¢,  in order
to use the autoregressive models, and £ is an
independent random variable with a given variance.
Though it may be difficult mathematically to design
the nonlinear models which preserve the stationarity



of the process, it does not mean that there are not in
nature some nonlinear models which preserve the
general character of stationarity of € _  series.
Before one rejects the autoregressive models, they
should try the nonlinear functions if the physical
conditions are such that they require the nonlinear
models, and the sample sizes are such to justify or
enable the estimates of parameters in these models.

A fourth misinterpretation may be found in the
method by which the autoregressive coefficients are
estimated. The use of m values of r, k=1,
2,...,m, to estimate the m values of @, coefficients
may produce sufficiently accurate estimates,
through T underestimates Py This bias inesti-
mating «, coefficients may be significant for small
samples and/or large Py~ In this case, the corrections
for the bias in this estimation may be justified and
should be applied.

A fifth misinterpretation may be the current
attitude that it is sufficient and efficient to estimate
the m autoregressive coefficients by the
first m autocorrelation coefficients.
Though r, may be sufficient estimate for p in the
first-order model, the fit of the correlogram
e ™ p* to a large number of 9 values, k = 1;
2,..., n, may show significant dif-
ferences p" - s though the population model is of
the first-order linear model. A correction of
1, which is a kind of correction for the bias, may be
made by fitting the p* function to the r, function
by some weighting procedure for r,’s, because their
accuracy decreases with an increase of k.

A sixth misinterpretation is the application of
autoregressive models to hydrologic time series which
are evidently either subject to systematic errors or
have the man-made nonhomogeneity in a significant
manner. It can be shown that the linear autoregressive
models are not applicable to series with added trends
or jumps, if they are applicable to stationary
hydrologic stochastic processes.

5.8 Bias in Estimated Serial Correlation Coef-
ficients

The bias in the estimates of serial correlation
coefficients occupied the interests of statisticians
during the decade of 1950's. Kendal and Steward
[12, p. 431-435] summarized the results of various
investigations. The biases in underestimating the serial
correlation coefficients of stationary processes are of
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interest in this study, particularly for independent
and autoregressive processes, these latter processes
represented by the first-order linear model. The
underestimate of E(r, ) for p, = 0,k > 0 for
the independent processes is of the order
of 1/(Nk), with N the sample size. For the first-
order autoregressive linear model, Kendal [12, p.

435] gives 1+3p

Et))=p-NT
with the bias of (1 + 3p)/(N-1), and

E(r,) = p* F}k [_11_:;)9_ (1-p%)+2kp*], (5.23)

for k > 1. For p = 0.50 in this model
with N = 25, the mean value of I would be about
0.40 instead 0.50. This is a serious bias not often
recognized by those who reject the application of
autoregressive models without first trying to apply
them properly.

(5.22)

Quenouille [12, p. 435] proposed the estimate
of p by
R=2r 15- [ty * 12yl

in which r is the first serial correlation coefficient of
the entire series (N), and r . is the value of the
first half (N/2) of the series and (r,) of the second
half (N/2). Because r with N has a smaller negative
bias than Iy and r,,. with N/2, Equation 5.24
adds a correction for the bias, so that R is now in
error of about N'. Equation 5.24 may be used as an
approximation for any r, in autoregressive linear
models.

(5.24)

Several other methods are available for the cor-
rections of bias in estimated serial correlation
coefficients, with some of them decreasing the bias to
the order of N3,

5.9 Estimate of p of the First-Order Linear Model
as an Indirect Correction for the Bias

The population correlogram of the first-order

linear model,
g=p€. tVIp'E

: (5.25)
is

p=p* (5.26)
with p = p,. Usually in practice, the parameter p
in Equations 5.25 and 5.26 is estimated by the
sample first serial correlation coefficient, r . Using
this estimate often leads to the conclusion that the
model of Equation 5.23 is not applicable to a series,



though the correlogram of an observed series, 1, =
f(k). may be well fitted by a power function of
Equation 5.26, provided a different estimate of p is
used, considering the difference as a bias in the esti-
mation.

Lets assume that § is the bias in r, so
that E(r, +8) =p

K =
E(r, +8)" =p, (5.27)

By considering & as a small quantity in com-
parison with r,, and by neglecting all terms in
Equation 5.27 of & with j > 1, then Equation
5.27 as an approximation, becomes

k-1 2

E[r;” (r,+kd)] ~p, (5.28)
With an increase of k the term r*! decreases
rapidly if r, is not very close to unity,

while k& increase linearly. Therefore, the pk of the
model of Equation 5.28 has to depart more and more
from r, as k increases, if the bias & in r  is not
negligible. The relative bias

5
=100

increases rapidly with k, while the sampling errors
in r, may be much smaller.

(5.29)

k

When the Wiener-Khintchine equation is used
for the estimates of spectral densities, all coefficients,
the major part, or the first part of the correlogram is
used, and not only one value, if the autoregressive
models are applicable or investigated.

If k is not too large, the direct estimate
of p, by r, may be less in error than an estimate
by r, with the error k&. This may be true regardless
that the sample size in estimating p, by
r, is Nk instead of N or N-1, when an open-
series approach is used in computing r. There is a
point k = q at which the error k & is of the same
order of magnitude as the sampling error due to the
decreasing sample size, Nk. If either these
first q values of r,, or all r values, k = 1,
2,..,N-1 are used in estimating p, this estimate
may be less biased than the estimate obtained by
using only r,.

Let assume that a correlogram, r, = f(k), is
estimated either up to q = Nfa, a = 5, 6,...,10, or

up to q = N-1. The square of dif
ferences p, - r, gives
q
=3 k_r 2
k=l(p ) (5.30)
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Because of different accuracy of Fes the square of
differences are weighted by N-k,the sample size of
each r, so that the larger weight is given to the
first r, values, and Equation 5.30 becomes

=q Ly ok 2
s=2 (V")

The smallest value of S, by equating dS/dp with
zero, produces another estimate of p.
This dS/dp = 0 gives

(5.31)

q 3
i k(N-k)p?*"! =z k(N-K)r, o' . (5.32)

The solution of this equation gives the estimate p.
The left term may be expressed as a function
of p, q, and N, while the right term uses
the r, values. However, in Equation 5.32 eliminating
the sum on the left side is not simple.

The problem is in the selection of q as it is
with the selection of a truncation point of the cor-
relogram in estimating spectral densities. Two
methods are feasible. Either an objective selection
of q, or the value @ in q = Nfa is selected such
as @ = 6 or similar, as it is often done in the
approximate estimates of variance densities by using
the correlogram and the Wiener-Khintchine equation.

The solution of Equation 5.32 is most feasible
by an iterative, computer oriented procedure.
First p is assumed (say as r,) and both terms are
computed. If the left side terms results are greater
than the right side term, p is reduced; otherwise it is
increased. A tolerance level between the two sums of
Equation 5.32 in the successive approXimations
of p should be established in this iterative pro-
cedure.

Figure 5.1 presents the example of annual run-

off series of the St. Lawrence River at Ogdensburg, N.
Y., with a long time series (N = 97). The use
of r, = 0.705 in the first-order linear autoregressive
model produces the fitted correlogram below the
observed one. For p =1, +b, with b the
bias, b = (1 + 3p)/(N - 1), which when solved
for p gives . rl(N-1)+!
Chl

so that for r, =0.705 and N =97 this gives p=
0.748. By using Eq. 5.32, the estimate of p gives
0.780. The computed correlogram, 1, and the
correlograms of Eq. 5.26, with three estimates of p,
0.705, 0.747, and 0.780, are given in Fig. 5.1.
Though r, = 0.780 fits well Eq. 5.16 to the ob-
served correlogram, it may be questioned for its lack

(5.33)



of theoretical background, and some preference may
be then given to r, = 0.747, as corrected for the
bias of Eqs. 5.22 and 5.33.

5.10 Estimates of a, and a, of the second-order
Linear Model with a Decrease of Bias

The general equation relating the esti-
mates a, and a, of a; and a, with the cor-
relogram estimates, r,, is

I, =8 1

k 1 ta,r

2k-2

(5.34)

The classical estimates of «; and «, are calculated
by using k = -2 and k = - 1, producing the two
equations

k-1

,=a,r1 *a,

]

and (5.35)

el Vi N R

from which a, and a, are expressed in function
of r; and r,. Only these two values determine the
fit, and all information contained
in 1y, T ., 1, is neglected though there is a bias
in r, and r, asthe estimatesof p, and p,.

By using Equation 5.34 for the popula-
tion, k = 1,..,n, then

py=a ta,p,

=q p, ta
g 2 (5.36)

Py =0y Pa P P

q q-2
and by using the weights N-k for the dif-
ferences Py - T, then their sum of squares is

S= kslg] (Nk)(p, -1, ) (5.37)

The two partial derivatives 9S/da; and 8S/da;
equated to zero should produce the new esti-
mates o, and a,, which are

23 (NK)Yp,- }?-fi= 0 (5.38)
k=1 Kk o
and : %,
22 (KRR =0 . (6539)

By determining 9p,/da, and dp,/ d&, from
Equations 5.36, Equations 5.38 and 3.39 may be re-
written as

q
kzl (N-K)B -1y ) By, =0 (5.40)
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and

TSR]

- ) i .
1( KNy - 1) Py, =0 (5.41)

Then

q q

kz-:_-l (N'k) ﬁk 'ﬁk-l =k§l (N'k) rk ﬁk—l 3 (5'42)
and

q q
Z NOB A, =2 ()G A, - (543)

As p,, P, and p, , are functions of &,
and @,, Equations 5.42 and 5.43 are two equations
with two parameters, & and &,, which must be
estimated.

Equations 5.42 and 5.43 can be solved by an
iterative procedure by first as
suming @, and &, and repeating the computations
with an incremental change of &, and &, until the
equations are satisfied with a prescribed tolerence
level, The initial pair of values can be estimated by
Equations 5.35 by using only r, and r,. Several
approaches may be used to find these estimates
assumed here to be less biased than when

only r, and r, are used in estimating &, and ;.

5.11 Estimates of Autoregressive Coefficients of the
m-th Order Model With a Decrease of Bias

Starting from the basic equation of relationship
between o, and @ parameters of the m-th order
linear model, then

P (5.44)

>

= o
Py &
Then q equations of the type of Equations 5.36 may
be obtained with q >> m.

The fitting of p, function of Equation 5.44,
with k = 1, 2,..,q, to the first q values
of R,~-correlogram by the least-square method gives
first a sum of deviations weighted by N-k as

q
S=2Z
k=1
with q selected in a proper manner to cover the
major part of the R, correlogram before it
practically converges to zero.

(Nk)p, - R,)? (5.45)

The general method of finding the least value
of S of Equation 5.45 and the corresponding set
of 8:]. coefficients is in obtaining the m partial



derivatives, BS;‘B&P j=1,2,..,m, equate them to
zero and solve for &j's. This gives a set of m equa-
tions

q q

kal (Nk) B, Pri= E (N-k) R, P (5.46)

with j = 1, 2,..;,m. Coupled with Equation 5.44

for Py k = 1, 2,..,q, there are m equations
in & for m values of o:, with k- replaced
by j-k whenever k- is negative.

The solution of m equations of Equation 5.46
are often difficult and combersome even for m as
low as 2. There exist various methods in the literature
for solving them.

The use of Equation 5.46 coupled with Equa-
tion 5.44 is unnecessary, because the methods exist in
finding a minimum of Equation 5.45 and esti-
mating &'s directly. In order to minimize S of
Equation 5.45 in an efficient way, a good
optimization routing in selecting &.’s is required. A
routine due to Rosenbrock may be used, as described
in details in reference [13].
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Fig. 5.1 Fitting the first-order linear autoregressive
model to the correlogram of the annual
runoff series of the St. Lawrence River at
Ogdensburg, New York: (1) The estimated
correlogram from data, r, = f(k); (2) By
using Eq. 5.26 and the estimate r, =0.705;
(3) By using Eq. 5.26 and the value r =
0.747, corrected for the bias of Eq. 5.22;
and (4) By using Eq. 5.26 and the estimate
¥ = 0.780 in applying Eq. 5.32.



Chapter 6

PROBABILITY DISTRIBUTIONS OF INDEPENDENT STOCHASTIC COMPONENTS

6.1 Fitting Probability Functions to Empirical
Frequency Distributions of Independent
Stochastic Components

Once £ _ is accepted as a stationary
independent varlable of either of the second-order or
third-order stationarity, the nw values serve to
determine a probability function of the best fit to the
empirical frequency distribution. If the nw values
are to be stored in any usual way for future use, such
as tables, graphs, magnetic tapes, punched cards, or
similar, the basic objective of reducing the informa-
tion in the x_ _ process to the mathematical models
and the estimation of their parameters would be
defeated. Also, the eventual generation of large
samples of x o~ using the experimental statistical
(Monte Carlo) method starting from the generation of
new samples, can still be easily performed by trans-
forming the uniformly distributed random numbers
by using the sample frequency distribution curve
directly to the random numbers of the £ _ variable
with the same probabilities. This second route in the
use of the Monte Carlo method means that all
sampling zig-zag deviations of the empirical distri-
bution around a smooth curve and all eventual biases
in would be perpetuated in the generated
samplies Besides, the larger and the smaller values
of E than those observed will not be generated if
some ad]ustmcnts on the extremes are not made.
Therefore, the fitting of a probability function to the
frequency distribution curve of & o 1 the approach
followed in this study to structurally analyze and
mathematically describe a hydrologic time series.

The transformation of x
standardized variable ¢

, to produce the
and the treatment

of € to produce the independent stochastic
vana%le £ make the positively-valued vari-
able x__asa £ _ variable with both negative and

positive falues. However, the minimal values
of E , may not have a lower bound. If the lower
lmul of x_ _ is zero, then the expected range of
negative valies of £ _ can be computed from various
transformations. This leads to two alternatives in
selecting the lower bound of the E , probability
distribution function: (a) to compute or estimate
what is the approximate lower bound of E and
use it as a fixed boundary of a selected probablhty
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function; and (b) to estimate the lower boundary
of & hi with the estimate of its other parameters.

To find the properties of the negative values
of £ a lower boundary should be assigned
p‘ -
to X, In this latter case three solutions are

feasible: (a) min (x ;) = 05 (b) min (x ) =%
positive value; and (c) X__ has a truncated d1s-
tribution, so that x 2 6 but min (x _ ) of un-
truncated dlstnbutlon may have the lower 'boundary
x <0

]

For min (x ) = 0, Equation 3.10 for min

os) = 0 gives the minimum value, min O

;‘a, so that the two periodic com-
ponents p_and o must be divided to find the
largest value of u /o orof 1/ :

min (y, ) =-max (g /0,)=-1/minn, (6.1)
Similarly, Equation 3.13 shows that
» p'r * 'uya-r
min €, = - max [‘—o;-c,y—] (6.2)

Finally, the m-th order linear autoregressive model
gives the properties of the lowest value of £ pr 38

min .Ew
u_tpo m
L v e L
= e [o €pr ™ 0,00 "¢ ng % Epn].
(6-3)
in which ay gy - the autoregressive

coefficients of the lmear models, either periodic or
not, and ¢ is a function of autoregression coef-
ficients. By using m = 3 as the eventual maximum
value of j in Equation 6.3 in practical cases, the
smallest value of Ep‘f may be approximately
determined.  Assuming several values of x
zero in a sequence, and assuming that By, = 0.
o, = 1.00,and p_fo_= 1/n  with 7 aconstant
the Eq. 6.3 becomes approximately

i (K 1 3
min Ew = min l:a— o _7?_00 a+ jEI ajJ)].
(6.4)

In conclusion, the periodic components transform
the lower boundary of x to a lower boundary

of € However, the autoregressive linear models

T



which is bounded on the
which theoretically

transform the variable ¢
left side to a new variable 2
may be unbounded.

Though £ theoretically can have large
negative values, the practical considerations still limit
them. It is unlikely that the minimum value ¢ _ of
Equation 6.2 would be preceded by a very large
value & it under the condition of @, . being also
very large or close to unity. For daily ﬂows & =

P, . is very large, often of the order 0.80 - 0’98
but the river basin response rarely permits €_ _ to go
from a very large value suddenly to zero. If thxs is the
case, however, Py, s then small, so that the pro-
duct p, 1_ o for a large € s , also becomes
small and contr:butes little to the negatwe values of
Equations 6.3 and 6.4. This fact permits still an
application of bounded distribution functions
to E . An approximation in estimating the practical
Iow:ar boundary of & may be used, so that dis-
tribution functions with lower boundaries can be also
tested for the goodness of fit to the empirical
frequency distributions of & s

Five probability density functions may be used
for fitting the empirical frequency density curves
of ’;‘ : (1) the general transformation of the normal
function by using the polynomial of a given order, as
the transform; (2) the two-parameter normal distri-
bution; (3) the three-parameter lognormal distribu-
tion with the lower boundary different from zero; (4)
the three-parameter gamma distribution (with the
lower boundary different from zero); and (5) the
double-branch gamma distribution with a total of six
parameters.

The extreme values of £ ., may have high
sampling errors, or they may not be representative of
the sample size, being either too large or too small for
that sample size. They greatly affect the estimates of
various parameters. To avoid this bias, the values at
both extremes of the empirical & - distributions
may be deleted from the estimation of parameters.
For example, 0.50 percent of the largest and 0.50
percent of the smallest values of the total sample may
be discounted in the estimation. The new
sample N is then shorter, 0.99N or 0.99nw. How-
ever, the entire series N = nw should be used in
testing the goodness of fit of various distribution
functions by x? tests or any other test.
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6.2 General Fit of a Normal Distribution Trans-
formed by an m-th Order Polynomial

The most general fit of a probability dcnsity
function to a frequency distribution curve of &
obtained by using the normal probability denmty
function transformed by an m-th order polynomial.
The normal function has two parameters to be
estimated, 4 and ¢, and the m-th order
polynomial has m+1 parameters, B, , with k =0,
l,..,m, so that the total number is m + 3. The
larger m, is the better fit, but the more degrees
of freedom are lost. Then the total number of degrees
of freedom is

DF=nw-m=-=3-v (6.5)
with » the number of all parameters previously
estirsated. Because nw may be very large, say for
daily or monthly values, and », the number of
parameters or coefficients which are estimated from
data in order to obtain E ,» may also be small, the
m-th order polynomial may be selected with m as
large as feasible without a significant loss of degrees
of freedom.

The polynomial is given by
E=B ﬁk 2 5 (6.6)
where £, replacesE (no important periodicity is

left in the series), z, % the random variable normally
distributed, N(u, o)‘ and B, B, B are the
polynomial parameters to be estimated.

Fitting the polynomial of Equation 6.6 is the
same as fitting the following probability func-
tion, f(£), to the frequency distribution of £,

-1
Zk'l i‘

in which f(z) is the normal probability function
of z, (u,, 0,), B, are the polynomial coefficients
of Eq. 6.6, with k =0, 1, 2,..,m, and m is the
selected order of the polynomial.

f(8) = () 3 |2, kb, ©.7)

One of the practical methods of estimat-
ing B, coefficients of Equation 6.6 is as follows. A
parameter u is selected, which is the number of class
intervals of equal probability 1/u of the empirical
frequency distribution of & S In practice, the
following values may be used: u = 200 for daily
series, u = 160 for 3-day series, u = 100 for 7-day
series, u =80 for 13-day series, u =60 for monthly
series, and u = 24 for 3-month series. In order to
apply this procedure, the Ep.'r series is ranked in



ascending order and denoted as the £, series, i=1,

2,..,N, with N = nw being the sample size. The
class limits £, with j =1,2,..., u-1, of the selected
u class intervals of equal absolute frequency N/ju=
nwfu of the £  variable are determined from the
ascended sequence £, The E-th class limit is com-
puted as the midpomt of i-th and (i+1)-th values
of the ranked £ series, with i=Nj/u and i+1=
Nj/u + 1, if i is an integer. If Nj/u is not an
integer, i is designated as the integer segment of
Njfu, and d as the decimal segment of Nj/u; the
j-th class limit is then computed by

E-E*+Ei*' $ L ~E)d 51,2000 0l
S B (6.8)

The computed (u-1)-values of E are then used to
relate them to the normal varmbie and particularly
by using their cumulative frequency distribution,
with f(¢ < Ej) = jfu. The (u-1) class limits, t of
the standard normal distribution function are com-
puted, with u the same selected number of class
intervals as for the ¢ _ variable, or each with the
same probability 1/u. To compute t values, with j

=1, 2,...,u-1, the following approx1mat10n is used
¢ tc ste s
(] 1 2
t,=s- ; (6.9)
j 1+d s+d,s* +d,s°
in which
112 )
s=+vIno—=5 , 6.10
VI Gy (
and ¢, =2.515517, ¢, =0.802853, ¢, =0.010328,

d, =1.432788,d, = 0.189269, and d, = 0.001308.

The tj-values of Equation 6.9 may be trans-
formed to z-values, as the (u-1)-class limits with
equal class probabilities 1/u of the nonstandard
normal function, if the mean and standard deviation
of & _  are different from zero and unity,
respectively, by

=E  +s,t (6.11)

The second, third, fourth, or higher order
polynomial is used to find the best fit of
the (u-1)-values of the £ and the tJ or z; class
limits, representing the same probability P w1th P
= jfu, by estimating the first three, four, five, or

more parameters, ,Bo,ﬁl,ﬁz, 63, B gvisia respectively
for the selected polynomial, by Eq. 6.6 in the form

m
g=b, +32 b .z
i e Tk=p kT (6.12)
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in which b are coefficients,with m =2, 3, 4,..., the
order of the best fit polynomial and § the pre-
diction values of g for given t; or z,.

The (u-1)-values of £* are then computed for
the second, third, fourth, or higher order polynomials
by Equation 6.12 by using the (u-1)-values of t. of
Equation 6.9 or z. of Equation 6.11. For these
polynomials the variance of estimates is computed by

i L L ]' 2

Gar 2 G5 (6.13)
These variances are designated by Vg, Va’ V4,...,
respectively for m =2,3,4,..., in Equation 6.12.

The practical method of selecting the order of
the fitted polynomial is as follows. For
only V v 3 and V4 computed, then if conditions

¥, =V,
5
—T—QOOI and v, <0.02

are satisfied, the second order polynomial is selected.
If the conditions of Equation 6.14 are not satisfied,
but the condition

(6.14)

3'V4

<0.01 (6.15)
3

is satisfied, the third order polynomial is selected;
otherwise, the fourth order polynomial is selected.
If Vg, Vi, V., ..., are computed, then the dif-
ferences &/ - V ){'V may be the criteria whether
any higher order pclynormal may be a feasible fit. If
all these values, with p =5, 6, 7,..., are smaller than
0.01, then the lower order polynomial may be
selected. However, the chi-square test should be used
as the final criterion whether Equation 6.7, with the
selected polynomial of the m-th order, is a good fit
or not. A summary of this chi-square test is given here
for the sake of completeness.

The critical chi-square value, xi should be
computed for a number, », of class intervals of equal
probability, with » a parameter selected so that it
satisfies u = q. », with u the selected number of
class intervals, and q and v integers. The suggested
values of q and » are: q =4 for all series while »
= 50 for daily series, » =40 for 3-day series, v =25
for 7-day series, » = 20 for 13-day series, v =20 for
13-day series, » = 15 for monthly series, and v =
6 for 3-month series.

If v > 30, x* is approximately normally
distributed with the degrees of freedom,

D, =v-(m+3) , (6.16)



in which m is the order of the selected polynomial
of Equation 6.12. The critical value x: is computed
by the approximation

3
/2
X2 =D, [ -5%? +t, Vo f] L (6.17)

in which tp = 0.84162 as the value for the one-tail
probability rejection level, for P = 0.20, of the
standard normal variable.

= x is determined by the

oo HD—r -l

f (; e™2 ax ,

X (6.18)
in which P(x? > x) = 0.20, or it is the same
probability rejection level as selected for Equation
6.17,and D; is given by Equation 6.16.

If v < 30, the X2
inverse of the integral

1

Every g-th value is selected from the £Xarray
of (u-1) values of Equation 6.12, denoted here as
the E*—values with s = 1, 2,..0-1. Allg
ues, N = nw, are sorted in the » class mlervals
limited by class limits E* with s =1, 2,...p-1; the
first interval is £ < & and the last interval
is E P-g Then, the absolute frequencies f,
w1th k- 1,2, ,v are obtained.

The x?-statistic is then obtained by

v N.2
X =y E (f - ) (6.19)
If x* of Equation 6.19 is smaller than x} of
Equations 6.17 or 6.18, whichever is relevant for a
selected », the fit obtained by the selected
polynomial of Equation 6.12, or the fit obtained
for f(¥) by Equation 6.7 is accepted.

If x* of Equation 6.19 is larger than X2 of
Equations 6.17 or 6.18, as applicable for the
selected », the fit of the selected order m of the
polynomial is rejected. If this occurs, the order of the
polynomial is increased, the number u of class inter-
vals may also be increased, say by 50 percent, and the
parameter q may be changed while » is increased,
say q to be 3.5, while » may be 75 for daily series,
60 for 3-day series, 30 for 7-day series, 30 for 13-day
series, 30 for monthly series, 9 for 3-month series.
Then the test is repeated. The obtained values u,
m, b‘,J bl, ,bm, represent the final estimates for
the model of Eq. 6.7, with either the t. normal-
variable (0,1), or the z, normal variable (’fss)
used in Eq. 6.7.
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6.3 Fitting The Two-Parameter Normal Probability
Function to Ep , Variable

The estimates of the mean of the E variable
is computed by
I n
Bf = —— p§1 Tg:] ks (6.20)
and the standard deviation by
1 n w =, 1%
= |7 E £ . 621)

For testing the goodness of fit of the normal
distribution to the Ep'f variable,
with N = nw, the v class intervals with equal
probabilities 1/v are selected. The w»-1 class
limits, t. of the standard normal variable are deter-
mined by the inverse of the integral

. f.
(P bomt32

= e dt
Vo 2n -fm

L@l a8 tys tyument, o

(6.22)

with j=

When the ¢ _ series is not standardized, the
v-1 values of t are easily transformed to »-1
values of EJ by
(6.23)

= +—
s, fy*d

Sorting the total £ _ seriesinto » class inter-
vals produces the f, frequencies, so that Equation
8.19 enables the computation of the x* statistic. By
comparing this x> with x?, obtained either by
Equation 6.17 or Equation 6.18, which depends on
the selected v value, the test of fitting the two-
parameter normal function is performed.
When x* < X2, the normal function is satisfactory
and there is no practical need for testing the fit of
other probability functlons to the Ep frequency
d‘.lStl']bllthl‘l which "have more parameters, though
their x2-values may be smaller.

6.4 Fitting The Three-Parameter Lognormal Pro-
bability Function to & s Variable

Assuming the lower boundary is E , and E
is replaced by the symbol &, thcn the Iower
boundary is estimated by

§ 1 1 N § g R
(i:l %i_-é:)iﬂ &

3
5
&
&
a2
i
i



2 1 N
2 nGE)| -y 2 G-k
N ln(Ei_EQ)
+ B —

=1 i~ %o

1 N
N i=1
=0 , (6.24)

with N =nw.

The lower boundary £ must be estimated
from Equation 6.24 by an iterative procedure and by
prescribing how much the left side of Equation 6.24
may deviate from zero of the right side. When £, is
obtained, the other two parameters, the mean of
logarithms of the deviations (Ei-’go) are computed
by

N
R 2 NG-E) . (629)

and the standard deviation of logarithms of (¢£ )
by

1 N 2 ¥
7, = IN i§1 (in(¢, -&)-u,1%} . (6.26)

Then the probability density function of distribution
of gp , s

=____1___ i > 2 2 2
W v expgws el "ZG"E
(6.27)

In order to test how good the fit is by Eq.
6.27 to the Ep.r empirical distribution, the chi-
square test is also used. Starting with Eq. 6.22,
the v-1 class limits of t, are determined. Then
the class limits of Eq. 6.27 are obtained by the trans-

formation
+ U

ot
it (6.28)

The x’-test can be performed either on £ or

on ¢ Eo.

P,

6.5 Fitting The Three-Parameter Gamma

Probability Function To £ i Variable

For the estimation of the three parameters,
a (shape), B (scale), and £ (lower boundary) of the
three-parameter gamma function, the maximum like-
lihood estimation method should be used. "The
boundary is estimated by an iterative procedure from

1+(1+F A%

> p N1
N & TR

1+(1+5 A -4A
(6.29)
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in which ’
A=tnE-£)- & I In-£,)

and £ = the mean of N values of .

(6.30)

Once £ is estimated, the parameter a is
estimated by

R wg A
>
= = 6.31
a=—u . (63D
with A given by Equation 6.30 and Aa approxi-
mated by
A =0.04475(0.26)* (6.32)
The parameter f is estimated by
1 1
b=g Z G-k)=y G-4) . (633)

With all three parameters estimated, the probability
density function of Ep , I8

e % -£)IB
%)= Hl"%oﬁ (‘T) e('E ) . (6.34)

To determine how good the fit of the &
empirical distribution is by Equation 6.34, the chi-
square test is performed. Consider v class intervals
each with the equal probability 1/v. The v class
limits are determined from the one-parameter gamma
distribution by the inverse of the integral

- 1 ° -1 ‘xj
P(X>x)) = @) }{ X e ) dx (6.35)
]

for x; =0, for j=0,1,..,0-1. The computed values

S SRR are then transformed to Ej- class

limits by

v-1?

E = +Bx (6.36)

]

%o

if Ep , are tested;or £ - = 8x are the limits if
G, - £, )-variable is tested for the goodness of fit;
B is the parameter of Eq. 6.34.

Instead of Equations 6.35 and 6.36, the inverse
of the integral may be written as

1 “(§-€,) /6

F*I(e)

&, (6.37)

1
v

1

fj &£ e

in which £ , & and § are estimated by Equations
6.29 through 6.33 and the variable (£ p’T-Eo) is
tested for the goodness of fit.



6.6 Fitting The Double-Branch Gamma Probability
Function to the £ - Variable

Some & _ variables of daily flow series may
show that the’ three previous probability functions
(normal, lognormal and gamma) do not fit well their
empirical frequency density curves. These curves are
highly peaked at a given value E,» and rapidly de-
crease in both branches the positive and the negative
values of (Ep’r -£,)

Three alternatives have been studied for these
cases of high peakedness:

(1) the use of Laguerre polynomials applied to
the gamma distribution;

(2) the use of other distributions, particularly
various Pearson curves, except the Type III (three-
parameter gamma); and

(3) the use of the two two-parameter gamma
distributions with either &« < 1 or @ = 1, for the
two branches of the highly peaked empiri-
cal Ep.r distribution.

This latter case has been shown to be practical,
provided that the six parameters to be estimated,
if @ < 1, may be replaced by only four parameters,
if @ = 1 isselected for both branches.

First, the position of the peak, ’;‘0, and the
probabilities P = l’(.\}w <E) and P(gw
> to) = ] - P should be determined in order to
obtain the point where the two branches intersect for
@ = 1,or have the vertical asymptote, for 0
< a < 1. Then the total areas, P and 1-P, of the
left and the right branch are obtained, respectively.
The parameters a; and @, for the left branch, and

a, and B, for the right branch, are estimated by
the following cquations.

f(z, E)—— €51 o 638)
B, I"(oc )
for £ < £, for the left branch, and
(e, )‘—(EE e,
f'(%) (6.39)
for £ > ED. for the right branch. For a; =a, =1,

Equations 6.38 and 6.39 are simpler to use.

For the k-series, the six parameters of this
double-branch gamma functions to be estimated
are § _, P, a;,, By, a2 and 32,
if 0 < a< 1, butonly £, P, Bi,and B, if a;
=0 =1.

The mode £, or the value of £ with the
largest frequency density, can be estimated by
selecting the class interval Af, say 0.001 or
smaller, and by finding the lower boundary £, of
the interval Af with the largest frequency of the
g, series. The estimate of £  is then approximately

£ =B+ L2 (6.40)

The parameter P, or the probability of all val-

ues .EP‘T < £, isdetermined by
N
T | 41
p=—L1 (6.41)

with N, the number of all values Ep‘f < &.

of the left branch are
values of the ¢

Parameters ®, and ’31

estimated by using only Nl -

series; and «, and Bz are estimated by using the
N - Nl = N2 values of Ep'r, with '.;‘p‘f > &,
Then a, and B, are estimated by
1+ /1 +i A
a =——ﬂ-~i-—- -0.04475(0.26) ' (6.42)
1
with | Nl
Al=ln I}jﬂ-ﬂ: i*z'l El]
N
1 1
N~ "2 In &, =5) » (6.43)
1 i=1
and
1 1 5
b=5 [so 2 zl] (6.44)

Parameters al and ﬁ of the right branch
are estimated by using only N values of the £
series and equations similar to Eqs. 6.42 through

6.44, with
"
A,=ln|— Z (&-
’ [N2 & 5")]

N

1 2
N, 1_1 In(§-£)) (6.45)
For testing the goodness of fit of the double-
branch gamma function to the frequency distribution
of the Ep variable, with N = nw, the number of
class intervals selected is v, with equal pro-
babilities 1/v. The class limits of £, values are deter-
mined by the inverse of the integrals, for the left
branch in the form



—g—-: ———-—a[: -Ji] (EO _gjal_] e_(EO_E)'wl dE ’
i Dy (6.46)

and for the right branch in the form
- T T £ 4
B, *T(ey) = (6.47)
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In this case, the class interval of the two closest class
limits to £, say §; and i should have the pro-
bability 1/v, if the left branch is integrated
from Ej to ¢, and the right branch is integrated
from £‘+1 to £ , and the two areas summed.
The x*-test is performed as for the other prob-
ability functions.



Chapter 7

BIAS RETAINED BY INAPPROPRIATE STRUCTURAL ANALYSIS OF TIME SERIES

Results obtained in structural anslysis and
mathematical description of hydrologic time series,
and in the preservation of basic properties of a
stochastic process in generating new samples, with
these properties inferred from an available sample,
may be assessed by answering the question of
whether or not any bias in the existing sample is
carried inte the new generated samples. The bias
in this chapter is defined either as a sample charac-
teristic which has a very small probability to be
repeated in the new observed samples (or to be
the population property), or as some other property
of the observed sample which makes the analysis and
description distorted.

7.1 Leap Year Effect

In using small time intervals (day, 3-day, 7-
day), the leap year effect represents a shift in the
period of the year. However, one-day shift every
four years does not significantly affect the results
either of the periodicity in several parameters, or of
the time dependence for its stationary stochastic
component. The simplest approach seems to be the
deletion of one day in leap years, making it 365
instead of 366 days. This means the period of
every year is shifted 1/4 of day for the first three
years in comparison to the previous year, and the
fourth year, shifted back for a full day, has the
period 3/4 of a day in advance of the previous year.

7.2 Sampling Trends and Cycles

The most current bias in structural analysis
and mathematical description of hydrologic time
series is the preservation in generated samples of the
sampling trends and sampling cyclicities of an avail-
able sample. By removing the within-the-year period-
icity in the mean and standard deviation, the upward
or downward chance trends and the pseudo-cyclical
chance fluctuations over periods greater than the
year are not removed from the € , series. These
chance patterns are reflected in the general correlo-
gram r, or the general spectrum v, of an € .
series. Because a combination of an autoregressive
linear model and a trend, or a combination of an
autoregressive linear model and a pseudo-cyclicity
result in a complex correlogram or spectrum, the
fitting of a simple mathematical autocorrelation
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function does not usually produce an independent
and second-order stationary & series. If a non-
stationary approach of structural analysis is used, by
which r, , i investigated for e s A each position
value 7, say for the first-order autoregressive model,
the reproduction of 4.0 by these w values of
i v with autoregressive linear equations, may not
be significantly affected by the sampling trend or
pseudo-cyclicity, so that the values may be
realistic estimates of population values p, 'r.

To remove this type of bias, the use of IS
values, k=1,2,...,m and 7=1,2,... ,w, as
column values for the year as the period, instead of
T of the general - correlogram, decreases or
eliminates the effects of chance trends or chance
pseudo-cyclicities, though it may not remove their
effects completely. The correlogram of the means
By values, k = 1,2,..., represents then the basic
dependence structure, though the trends and pseudo-
cyclicities may still affect some of these mean values.
This is a basic reason which has influenced the posi-
tion in this study, namely to use r,  and its means
rather than the general correlogram r,  of the €
series.

7.3 Biases at Extremes

The case is frequent when an extreme high or
extreme low value represent a bias because their
probabilities to be exceeded or not exceeded in a
sample of limited size are not sufficiently high, or
these extremes may not be representative of the
sample of a given size. For example, a flood peak
which has occurred in a sample of 30 years might
have a return period of only 10-15 years, or the
opposite, of a recurrence interval of 80-100 years
or even more, If the maximum observed annual peak
of annual flood series has a return period somewhere
between 20 and 40 years for a sample series of 30
years, this maximum value would be considered
representative of the sample. Similarly, the analysis
of runs of a series, with observed dry or wet spells
for a given crossing level which defines the runs
(measured either by duration, by total deficit or
by maximum or minimum intensity), may not be
representative of a sample size. The average return
period of such extreme runs may be either much



greater or much smaller than the sample size in
which they are observed,

To avoid these unrepresentative extremes be-
coming perpetuated either in the mathematical des-
cription of a time series, or in the new generated
samples, an appropriate structural analysis should be
selected.  The basic approach in the structural
analysis, as described in this paper, is the fitting of
probability distribution functions to empirical fre-
quency distribution curves of the independent sto-
chastic component, so that the tails of these func-
tions are approximated by a decreasing function,
basically of the exponential or simple exponential
type. By replacing the sample frequency distribu-
tion curve by an inferred probability density func-
tion, the problem of extreme unrepresentative values
may partly be alleviated. By using the maximum
likelihood method of estimation instead of the
method of moments in fitting the probability distri-
bution functions, the effects of unrepresentative
extremes are further reduced.

It is presently current among some investi-
gators, who apply stochastic processes in hydrology
and/or develop the methods of generating new
samples of hydrologic processes, to measure these
methods by how well they reproduce the extreme
values of observed samples. Some of the dependence
models used currently in hydrology, like the auto-
regressive or Markov linear models, have been criti-
cized in that the reproduction of extremes in new
generated samples is not good. It is claimed that
proposed new models and methods would better
reproduce the extremes; reproducing extremes as
closely as possible may represent the perpetuating of
unrepresentative extremes, or retaining various sam-
pling biases. The issue is reduced to the question of
what should be best reproduced in the generation of
new samples from the basic properties of historic
samples. The reproduction of every sampling varia-
tion of historic series in the new generated samples
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defeats the basic objective of the application of
Monte Carlo method, namely to investigate how
water resources systems would perform under new
realizations of a process, realizations which have a
sufficiently high probability to occur in the future.

These criticisms of autoregressive linear models
for representing stochastic dependence in hydrologic
time processes lead to the impression that these argu-
ments have been derived mainly to justify proposed
new dependence models rather than being based on
an objective analysis of natural physical processes
and the applicability of autoregressive linear models
to them.

A stochastic mathematical model, to be appli-
cable in hydrology, should satisfy the three basic
tests:

a. That it has a sound theoretical background
based on general properties of hydrologic natural
processes;

b. That the type of responses of hydrologic
environments to various inputs, which responses are
the main factors of time dependence, predetermine
the type of models; and

c¢. That the investigation of a large number of
observed homogeneous series of a random hydrologic
variable over a sufficiently large region supports, by
the use of best statistical inference techniques, the
good fit of a given model for the dependence charac-
teristics of these series. The support should occur at
least the percent equivalent to the selected prob-
ability level of the statistical inference technique.

By neglecting any of the three tests, it is
necessary for some models advanced in the literature
to be justified by superficial or dubious arguments,
when they are compared with models of dependence
of already proven applications.



Chapter 8

CONCLUSIONS

The topics analyzed in this paper are basically
approaches with a fundamental hypothesis: that any
continuous hydrologic time process, or its discrete
series approximations, can be separated into deter-
ministic component parameters, and a stationary
stochastic component. The two rationales of this
approach are:

(a) Physical hydrologic processes in nature
support this hypothesis, both from the point of view
of solar energy input, and hydrologic environment,
particularly river basin responses. They justify
periodicities in parameters and mathematical depen-
dence models in stochastic components.

(b) Mathematical descriptions of deterministic
components and of stationary stochastic components
are most feasible when treating complex processes
with the presently available methods for stationary
and ergodic processes.

Three parts of the analysis presented are
crucial. The methods, approximate or exact, are
outlined in treating these three basic parts.

1. The available statistical inference techniques
are used to infer the presence of periodicities in basic
parameters, while the mathematical description of
these periodicities is made by using Fourier series
analysis, with a limited number of low frequency
harmonics and their estimated coefficients.

2. When periodicities in periodic parameters
are removed from the original series, and the result-
ing stationary stochastic component of a given order
of stationarity is analyzed for dependence, then
autoregressive linear models are used. They are used
under the assumption that they have been inferred as
being the closest approximation of reality either by
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investigating the physical processes in hydrologic
environments, or by statistical analysis of hundreds
of available time series of a hydrologic random
variable.

3. When a stochastic stationary independent
component is computed from the dependence model
of the stochastic component, the probability distri-
bution functions which best fit the frequency distri-
bution curves are analyzed, sorting them from the
simplest to the more complex probability distribu-
tion functions. The larger an interval of a discrete
time series, the simpler is this function.

Historic samples of hydrologic time processes
are subject to various biases. The basic approach in
this study was to shape the techniques of structural
analysis, mathematical description and data genera-
tion such that these biases are not perpetuated. It is
expected that the real difference between the use of
already proven practical mathematical dependence
models, and abstract untested models is that the pre-
servation of various biases in the latter approach is
not given a proper critical assessment.

Methods available at present for the structural
analysis and mathematical description of hydrologic
time series may be divided into two broad groups:
the analysis of series as nonstationary processes, and
the analysis of series as composed of a stationary pro-
cess and inferred deterministic components. The
first dilemma in selecting an approach is always of
this type. The position taken in this paper is that
any technique of structural analysis, mathematical
description and data generation in hydrology cannot
be better than the basic hypothesis which underlies
these three practical aspects of hydrologic time
series.
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ABSTRACT: Structural analysis and mathematical description
of hydrologic time series are based on a set of well defined
hypotheses, with the assumption that development cannot be
better than hypotheses underlying it. Techniques are presented
on how to infer the existence of periodic deterministic com-
ponent parameters in time series. The unavailability of exact
inference techniques is replaced by approximations, whenever
the complexity of hydrologic time series does not justify the use
of existing statistical inference techniques. Once periodicities are
inferred, Fourier analysis is used to mathematically describe
periodicities in parameters by a minimum number of low fre-
quency harmonics and their estimated coefficients.
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Inferred dependence models for the stationary stochastic com-
ponents of a given order of stationarity, after all periodicities in
parameters are removed, are basically of the autoregressive
linear type. The assumption is that the autoregressive coef-
ficients may be both periodic and nonperiodic. Several misinter-
pretations of autoregressive linear models are discussed.

The frequency distribution curve of the independent
stochastic stationary component, derived from the inferred
dependence model is approximated by best fit as one among
various probability distribution functions studied.

Biases in time series which should not be reproduced or
perpetuated by structural analysis, mathematical description and
generation of new samples, are outlined and discussed.
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