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ABSTRACT OF THESIS 

VERIFICATION OF A MATHEMATICAL MODEL FOR WOOD JOIST FLOOR SYSTEMS 

The primary objective of this study is to develop verification for 

the validity of a mathematical model for the behavior of wood joist 

floor systems under working loads. This complex, multi-layered 

structural system consists of joists acting in incomplete composite 

and two-way behavior with one or more layers of sheathing. This 

physical system is simulated by a crossing-heron model consisting of a 

perpendicular set of T-beams and sheathing strips in developing the 

mathematical model. 

To allow the use of ordinary beam theory in evaluating the 

behavior of the T-beam elements, the effective flange width of the 

incomplete composite sheathing elements was required. An essential 

part of this ·study was the derivation and quantification of the effec- . 

tive flange width for a wide variety of parameters. 

Two solution techniques are presented for the mathematical model, 

a finite difference method and a more versatile finite element pro-

cedure. Methods are developed to evaluate the effect of gaps in the 

sheathing layers and the results of the effective flange width study 

are utilized in the theoretical solutions. 

A total of twenty-two full-scale floor tests are conducted as 

part of an experimental program to provide the necessary data for 

verification of the mathematical model. Generally excellent agreement 

was obtained between the computed and the measured results. An 

average algebraic error of +3.24 percent was obtained for the 

computed results as compared to the measured deflect i on for the 



twenty-two specimens studied. As indicated, the predicted values 

from application of the mathematical model are generally conservative. 

The verified mathematical model was used to evaluate extreme 

cases to assess individual effects of composite and two-way action of 

wood joist floors. In addition, parameter studies were conducted to 

isolate the effects of major variables. The verified model provides 

the basis for future development of improved design criteria for 

wood joist structural systems. 

Jeong-Shwu Liu 
Civil Engineering Department 
Colorado State University 
Fort Collins, Colorado 80521 
August, 1974 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

The rapidly growing demand for quality housing in the United 

States and throughout the world presents a great challenge. Wood 

has long been used as the traditional material for residential floor 

construction in U.S. and approximately three-fourths of all residen-

tial housing is currently constructed with wood. 

In spite of wide use, large quantity and great economic importance 

of wood construction, the current methods used for the analysis and 

design of light frame wood structures lag behind the modern design 

methods available for other building materials such as steel and re-

inforced concrete. The current practice in the structural design of 

the wood floor construction is based on generally conservative, 

oversimplified assumptions and has changed lit tle during the past 

century. Because of the previous lack of knowledge of the incomplete 

composite action between layers of floor due to interlayer slip and 

the load sharing ability of joists through the two-way action of the 

flooring members, it is normally assumed that joists carry all the 

load. Furthermore, due to the wide variation in material properties 

of each component of the floor, design has generally been based 

on allowable stress obtained by a five percent exclusion method (3). 

Therefore, the stiffness and the load-carrying capacity of wood joist 

as the result of the five percent limit result in overdesign of floor 

systems. Such overdesign means that construction material s have not 

been fully utilized to achieve the most economical result. Improved 
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design procedure for wood house construction can bring about a 

significant reduction of timber consumption or increased utilization 

of lower quality material. 

The limitations of the conventional design procedures used in 

wood house construction have long been recognized (4, 5, 7, 16). Ef-

forts have been made by several researchers to develop more precise 

methods analyzing the behavior and design of wood joist floor systems 

with the hope that the timber resource can be more wisely and ef-

ficiently used. 

A research project on the behavior of wood joist floor systems 

has been developed by a group of researchers at Colorado State 

University. The long-term goal of this project is to develop a 

rational, unified design procedure of wood joist floor systems. 

The final output of this and future projects can help minimize the 

building cost of housing while simultaneously meeting the necessary 

requirements of consumer protection. 

1.1.1 Purpose of Floor Project 

The purpose of the wood floor research project is to derive a 

mathematical model of wood joist floor systems which can accurately 

analyze the load-resisting behavior of wood floor construction 

incorporating the following aspects: 

1. Composite behavior due to interlayer slip 

The wood joist floor is a layered system composed of a 

flooring plate reinforced by a set of parallel and usually 

constantly spaced wood joists. The flooring plate is usually 

plywood or particle board joined to the wood joists by con-

nectors, such as nails and/or glue. Since the connection 
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between the sheathing plate and the joists is not perfectly rigid, 

relative movement occurs between layers, which is termed interlay-

er slip. Because of the interlayer slip of the floor system, the 

composite action between the joists and the sheathing falls some-

where between a complete composite action with perfectly rigid 

connection and no composite action at all where layers are loose-

ly overlapped only, and is therefore termed incomplete composite 

action. The mathematical floor model must be able to account for 

the effect of the incomplete composite action between layers due 

to interlayer slip. 

2. Two-way action 

The conventional procedures used for the design of wood joist 

floor structures generally ignore the existence of the flooring 

materials. Also neglected is the two-way action of the sheathing 

across the joists except for allowing a stress increase for repet-

itive loading. In reality, extern1l load applied at one joist can 

affect the deflections of the neighboring joists and the sheathing 

layer can spread out the applied load to the other joists. A 

stiffer joist in the floor can help the neighboring less-stiff 

joists by sharing the external load. The load sharing action of 

the joists through the continuous beam effect of the sheathing layer 

is termed two-way action. A properly developed mathematical floor 

model must be able to take into consideration this two-way action. 

3. Variable properties of material 

The wood joist floor is an assembly of many components with 

different material properties which make the floor a highly non -

uniform, nonhomogeneous structure. A realistic and useful 
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mathematical floor model must be able to handle this nonuniformity 

and nonhomogeneity. 

4. Gaps in sheathing 

Due to the limited size of plywood and other sheathing 

materials, the sheathing layer is built piece by piece. The 

existence of gaps between pieces of sheathing layer is, there-

fore, unavoidable. Gaps represent discontinuities in sheathing 

layer(s) and thus reflect additional difficulty for the analysis 

of the floor behavior. A complete mathematical floor model must 

be able to cope with the discontinuities in sheathing caused by 

gaps. 

1.1.2 Phases of Floor Project 

To achieve the above stated objectives, several phases of the 

wood floor research project have been or are being studied by the 

research team at Colorado State University. A brief description of 

each of the phases of study of the wood floor research project are 

as follows: 

1. Development of the theory for layered beam systems with 

interlayer slip. 

Layered beam theory including interlayer slip is the founda-

tion of the mathematical floor model. Based on this beam theory, 

the theory of floor is developed. Goodman (9, 10, 11) developed 

the beam theory for three-layered wood beam systems with equal 

layer width and with interlayer slip. An intensive study on 

two- and three-layered wood beam systems with interlayer slip was 

done by Ko (17). Both closed form solutions and finite dif-

ference solutions were presented for concentrated and uniform 
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loads. The general governing equation for any number of 

layered system subjected to uniform load was also proposed. A 

more sophisticated solution which can efficiently handle the 

nonuniform material properties and the gaps in the sheathing of 

a layered beam system was worked out later by Thompson (3G) 

using energy methods and the finite element technique. 

2. Development of the testing techniques to determine 

material and fastener properties. 

To verify the predicted behavior of wood joist floor 

systems, the material properties of each of the floor components 

and the connector properties must be obtained before the floor is 

constructed. To measure these material properties, full-sized 

nondestructive testing techniques were developed for each floor 

component. 

The MOE (modulus of elasticity) values of joists were 

determined by continuous load-deflection tests with a 3-foot 

span loaded at midspan as a plank. The specimen was fed 

through a continuous deflection machine developed by the Wood 

Science Laboratory. The MOE values at each one foot interval, 

along the length were determined and an average MOE value was 

used for the specimen. Joists were also tested for edgewise 

MOE, in place, prior to being used as T-beam or floor elements 

More detailed description of the testing procedure is discussed 

in Sec. 3.3.1. A total of 412 joists of various sizes, species 

and grades were tested. 

The testing techniques used to determine the in-plane 

static MOE and dynamic MOE values of the full size wood 
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composite panels has been deveolped by McLain (20). The in-

plane elastic parameters of five types of sheathing materials 

were tested in the Wood Science Laboratory of Colorado State 

University. A total of 219 pieces of 4 feet by 8 feet panels of 

3/4 inch and 1/2 inch Douglas-fir plywood, Engelmann spruce ply-

wood and 1/2 inch Douglas-fir particle board were selected for 

the testing. 

To assess the degree of incomplete composite action in a 

wood joist floor, the stiffness of the interlayer connection 

between the joists and the sheathing must be evaluated. Double-

shear tests of nailed and glued connections were conducted to 

assess the interlayer slip properties. The result of these 

tests provided the values for the interlayer connection stiffness 

(slip modulus). The double shear tests of connections composed of 

the materials used in the floor construction were conducted 

by Patterson (26). The effects of MOE, specific gravity of the 

lumber, direction of loading with respect to the lumber, species 

of plywood, and number of nails on the load-slip relationship of 

the joints were reported. 

3. Conducting load tests of T-beam and floor specimens. 

To confirm the layered beam theory developed by Goodman 

(9, 10, 11) and to check the solutions presented by Ko (17) and 

Thompson (36), a series of T-beams have been constructed on 

which load tests were performed by Penner (27) and Kuo (19). 

The experimental load-deflection curves were recorded and com-

pared with those predicted by the theoretical solutions. Good 

agreement between the experimental results and the theoretical 
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va1ues of the layered beam systems were reported. The details of 

th• tcstlng equipment, construct i on procedure and testing process 

of the T-beams have been comprehensively presented by Penner (27) 

and Kuo (19). 

With the assurance of the reliability of the layered beam 

theory including interlayer slip, testing was developed for wood 

joist floors to check the accuracy of the mathematical floor 

model. Four wood floors were built and tested under concentrated 

load by Penner (27). Seven additional basic wood floors were 

constructed and load tests performed as part of the work of this 

dissertation. Several of these floors were tested first as two-

layer floors and then by adding an additional layer of 

sheathing to provide three-layer floors. The details of the 

construction and testing of the wood floor specimens will be 

presented in Chapter 3 and the verification of the validity of 

the mathematical floor model will be reported in Chapter 4 in 

this study. 

1.2 Literature Review 

Layered beam systems constructed with nails or nails and glue 

have been studied both theoretically and experimentally by several 

investigators. For recent developments on layered beam systems, 

refer to the studies reported by Goodman (9, 10, 11), Henghold (14, 15), 

Penner (27), Ko (17) and Kuo (19). 

The study reported herein concerns itself primarily with floor 

system behavior. A general review of the state-of-the-art of research 

on the wood joist floor systems was presented by Onysko (25). The 

major developments that related to the study of the behavior of the 
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wood joist floor systems are examined in the following two 

categories, experimental investigations and theoretical considera-

tions. 

1.2.1 Experimental Investigations 

Traditional design practice of wood joist floors is based on the 

assumption that a set of independently acting joists can be assumed to 

predict floor behavior. Therefore, the design of floor can be accom-

plished by analyzing and designing the joists comprising the floor. 

Floors with excessive load capacity often result by neglecting the 

load sharing ability of the floor through the two-way and composite 

action of the floor sheathing. This has been investigated and recog-

nized by several researchers in the literature (4, 5, 7, 16, 25). 

Colville et al. (7) and Angleton et al. (5) studied the effect of 

two-way action on load sharing and on the stiffness of floors in the 

working load range. Increases in stiffness of floors up to 25 percent 

greater than the individual joist stiffness were reported. 

A series of load tests were conducted by Kloot and Schuster (16) 

on the load distribution of a set of joists connected by a single 

strip of flooring material. It is reported that the theoretical 

results obtained by assuming the condition of beam on elastic found a-

tion could well describe the sheathing and joists interaction under con-

ditions of concentrated load. It was also shown, that for joists 

crossed at their mid-span by a single piece of flooring, the actual load 

distribution of a concentrated load could be calculated from simple beam 

theory according to the measured deflections at the crossing points. 

Load tests were conducted on forty-four nailed wood joist floors by 

Polensek et al. (32) to investigate the floor response to static load. 

It was reported that about two-thirds of a concentrated load applied at 
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a joist mid-s11an was distrihuted to the six adjacent joists, throe on 

each side. For uniform load testi, generally uniform deflection through-

out the floor was noted due to the two-way action of the 1/2 inch 

plywood floor covering. The tested floors were reported to be 

stronger and stiffer than predicted by conventional beam analysis 

based on the mechanical properties of joists alone. 

Altherton and Corder (4) compared the first-break load of floors 

subjected to uniform load with the first-break load of the side-

matched joists in eleven test floors. The first-break load for floors 

was found higher by up to 3.6 time of those f ound in matched joists. 

The substantial increase of the first-break load was considered as 

a result of the load sharing effect and some composite action between 

the flooring and joists. 

The degree of composite action between layers has been recognized 

to have a striking effect on the behavior of wood joist floor systems. 

Characteristics of the joints which connect the layers determines the 

degree of composite action between the layers . Tests on the load-

slip properties of nailed-joints between the lumber joist and the 

plywood sheathing members were conducted by Patterson (26). Several 

factors which might influence the load-slip relationship of the 

nailed joints were investigated. It was reported that the material 

properties of both the joist and the sheathing member could affect the 

joint behavior. The lateral load capacity was found, as expected, to 

be larger when the lateral load was applied parallel to the grain of 

the joist as opposed to the perpendicular to the grain test. The 

maximum load per nail decreased with increasing number of nails in a 

fixed length of joint. 
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The use of the elastomeric adhesives in recent years for the 

construction of wood joist floors has greatly increased. Field-glued 

plywood T-beams and floors were tested by Rose (35). Test results 

showed an increase of stiffness of the glued specimens up to 66 percent 

as compared to the stiffness of the joists alone; while only up to 

five percent increase was found for the nailed specimens. 

The NAHB Research Foundation (22) completed tests on thirteen 

glued floors and two conventional nailed floors. The stiffness of the 

glued floors was reported varying approximately from 75 percent to 

90 percent of the stiffness of the corresponding floor with presumed 

rigid interlayer connections. The calculated bending stresses from the 

measured strains for the glued composite floors varied from 0.64 to 0.84 

of the bending stresses of the joists alone under the same bending 

loads. It was also reported that the glued floors tend to act more 

as a single unit under vibration as opposed to the nailed floors which 

provide some internal damping. 

The static and dynamic properties of glued wood joist floors were 

also investigated by Polensek (30). He conducted tests on one nailed 

and three glued wood floors. Strength, stiffness, natural frequency 

and damping capacity were determined f or each floor. It was reported 

th at the glued floor was stiffer than the nailed one only when sub-

jected to uniform di stributed load and the two were equally stiff when 

loaded with concentrated load. It was also concluded that the glued 

floors appeared to be more acceptable as to human response to vibration 

than the nailed floor. However, it was noted that gluing had only 

minor effect on damping capacity of the wood joist floors. 
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Four floors and two T-beams, all nailed were tested to failure 

under concentrated loads by Penner (27). The load corresponding to the 

allowable deflection was reported up to 300 percent higher than the 

allowable load computed with the conventional design procedure. Load 

corresponding to the first joist failure was found to be four to 21 

times the allowable joist load computed on the basis of allowable 

stresses and using current design assumptions. 

The research reported previously has been primarily experimental 

and has not been generally aimed at verification of a formulated 

mathematical model. Since, in many cases, material properties were 

not measured prior to floor testing, the various tests do not relate 

well to each other. 

1.2.2 Theoretical Considerations 

The theories for predicting the behavior of wood joist floors 

are essentially based on the theory of layered beam systems. Goodman 

(9) showed that the governing equations of the composite action of the 

layered beam systems with interlayer slip, established by Granholm (13), 

Pleshkov (29) and Newmark et al. (23), were in fact equivalent for one 

to another. The theory was extended by Goodman to three equal layered 

wood beam systems and good agreement was obtained between the theoreti-

cal ·and the experimental results. 

Additional theoretical studies on layered wood beam systems 

were carried out by Ko (17) and llcnghold (14, 15) based on Goodman's 

previous work (9). The general case of am-layered mean was first 

investigated and governing equations for the layer axial forces and 

the deflection of the system were derived. Two and three layered .. 
systems of unequal layers were then investigated intensively. 
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Governing equations were established and both closed form and finite 

difference solutions were presented. The predicted results were 

closely confirmed by experimental results. The theoretical formula-

tion wi ll be examined in more detail i n the next chapter. 

Amana and Booth (1) studied the effect of the shear lag phenomenon 

on the effective flange width of the single-rib T-beams and of double-

skinned stress-skin panels with interlayer slip. A plane stress 

elasticity problem was assumed for the orthotropic skin plate member. 

A fourth order partial differential governing equation of the flange 

stresses in terms of Airy Function, ~. was derived from the field 

equations of elas t icity. A series sol ut i on of Levy type, wh i ch 

satisfied part of the stress boundary cond i tions, was employed to 

so l ve the fourth order partial differential equation. The compatibil-

ity condition that the interlayer slip per unit length was equal to 

the net strain of t he contacting surfaces of layers was utilized to 

relate the connectors' properties to the internal resisting axial 

force and moment of the layers. From the assumption that each layer 

deflects the same amount, the internal resisting axial force and 

moment of each layer were expressed in terms of the external tot a l 

moment, which was a lso transformed into series form. Us i ng t he 

proper s tress and strain boundary conditions, the deflection of 

the system and th e effective flange width were obtained. It was 

concluded that the effective flange width varied along the span and 

its magnitude depended on the type of loading with the smallest 

effective width at the point of maximum bending moment. 

Frequency analysis of wood joist floors was investigated by 

Polensek (31). In his study, the following assumptions were made: 
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1. The system remains in the elastic range, 

2. Damping is not included in the calculation, 

3. The contribution of blocking and headers to the dis-

tribution of forces in the direction across the joists 

is ignored, 

4. Rigidity and mass distribution are constant along each 

joist, 

S. Rigidity and mass distribution per unit area of floor 

are constant. 

Bleich's method was used in the development of the frequency analysis. 

The complex wood floor system was first transformed into a set of 

statically determinate beam system by releasing the continuity mo-

ments in the sheathing where it crossed the joists and adding the 

sheathing mass proportionally to the joist masses. The frequency and 

modal shapes were determined for the statically determinate beam 

system. The influence of the redundant continuity moments were evalu-

ated and added to the above analysis to form a governing frequency 

equation of the wood joist floor system. Good correspondence was re-

ported between the calculated frequencies and those acquired from the 

tests with the largest discrepancy less than two percent occurred at the 

first mode. Measured stiffness at nodes were used in the frequency 

analysis. 

A finite element method was later employed by Polensek (33) 

for the static and dynamic analysis of wood joist floor systems. 

The model representing the joist floor consisted of an assembly of 

rectangular two-dimensional plate elements and single dimensional 

beam elements connected at nodal points. Elemental stiffness 



[M] = system mass matrix, s 

15 

{X} = eigenvector corresponding to {w} and s 
2 

w • 

The equation of motion was expressed in terms of acceleration, 

{ws}, velocity, {ws}, and displacement, {ws}, as 

[M ] { w } + [ C ] { w } + [ K ] { w } = { P } s s s s s s s 

where, 

[C] = system damping matrix. s 

(1. 3) 

It was concluded that the theoretical results agreed closely to 

the experimental data. 

Thompson (36) also investigated the static behavior of the wood 

joist floor systems using energy methods by a finite element technique. 

The floor system was simulated by two sets of beams crossing each 

other at right angles. An energy method was used to evaluate the 

deflection at each nodal point along every beam. The compatibility 

condition applied to each nodal point at which two beams inter-

sect required each beam to deflect the same amount at the point. The 

details of this theoretical development are discussed in the· next chapter. 



2.1 Introduction 

CHAPTER 2 

THEORETICAL DEVELOPMENT 

The wood joist floor is a layered repetitive-member system in 

which the joists and sheathing act together through partially composite 

and two-way action to share the applied load. The sheathing members 

are usually one or two layers of sheathing panels, usually plywood or 

particle board, with T & G (tonge-and-groove), butted, or open joints, 

fastened to the joists by nailing or nailing and gluing to form a 

complicated composite floor structure. 

For the convenience of analysis, the wood joist floor system may 

be idealized as two sets of crossing beams. One set consists of 

the T-beams; the other set is the sheathing acting as a beam. The 

crossing points of the two sets of beams are the nodal points. The 

analysis of the floor structure is therefore simulated from the analysis 

of the crossing beam system. 

The layered beam theory, is then applied to each beam. The 

incomplete composite action due to interlayer slip of the floor is 

considered through the process of solving each set of beams. The 

two-way action of the floor is included by consideration of the 

sheathing beams. Compatibility, requiring that at each nodal point the 

two crossing beams deflect the same amount at that point, is employed 

together with the statics of the floor structure to solve for the 

resisting forces at each nodal point. Once the resisting forces at each 

nodal point are known, the floor deflections at each nodal point in turn 

can be calculated. 

16 



17 

In addition to the consideration of the incomplete composite action 

and two-way action, a special problem arises if plywood is used for 

sheathing. The plywood is a compound member constructed by press-gluing 

several layers of veneer with different material properties together. 

Due to the difference in stress distributions over the cross section 

of the plywood in bending or axial load, the effective MOE for bending 

is different from the effective MOE for axial load based on the gross 

geometrical dimensions of the cross section. Therefore, if the effec-

tive MOE for bending is also to be used for the effective MOE for axial 

load, a transformation constant, K*, must be applied. 

The thickness of the sheathing member is generally small compared 

to the depth of the joists. When the floor is subjected to external 

load, because of the shear lag effect, the compressive stresses in the 

sheathing layer parallel to the longitudinal direction of the joists 

may not be uniformly distributed as predicted by the beam theory. 

Therefore, when the idealized physical floor model with two sets of 

crossing beams is used for the analysis of the floor structure, the 

effective flange width of the T-beams must be predetermined and used 

for the T-beams so that beam theory can be properly applied. 

2.2 Layered Beam Theory and Effective Flange Considerations 

The layered beam theory including interlayer slip used by Ko (17) 

is briefly reviewed in this section. The derivation of the governing 

equations of a two-layered system is examined. The derivations of the 

MOE transformation constant for plywood, K*, and the effective flange 

width of the T-beams, we' is also developed in this section along with 

a discussion of the effect of gaps in the sheathing. 
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2.2.1 Basic Derivation of Layered Beam Theory 

A general two-layered beam system subjected to uniformly dis-

tributed load, q, as shown in Fig. 2.1, serves as an example for the 

review of the derivation of the governing equations. The assumptions 

employed by Goodman (9, 10, 11) and Ko (17) are as follows: 

1. The shear connection between layers is continuous along 

the length; i.e., discrete deformable connections are assumed 

to be replaced by a continuous shear connection. 

2. The amount of slip at a connector is directly proportional to 

the load. 

3. The distribution of strain through the depth of a given 

individual layer is linear. 

4. At every section of a beam, each layer deflects the same 

amount and no buckling of the layers occurs. 

5. Friction between the layers is negligible. 

Applying the equilibrium conditions of statics to the force 

components acting on a beam element as shown in Fig. 2.l(d), yields 

from H = 0, Fl = -F = F 
X 2 (2 .1) 

The total moment at a certain cross section is: 

where 

2 
M = l M. + C •F T 1 1 12 (2. 2) 

F1 , F2 = the axial forces in the first and second layer, 

respectively, lb., 

M. 
1 

h ' . f . th 1 lb . = t e res1st1ng moment o 1 ayer, -1n., 

= the total external moment, lb-in., 
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Figure 2.1 Two-Layer Beam System 
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x = the beam length, in .. , 

y = the deflection of beam, in. 

If it is assumed that each layer has the same curvature and deflects 

the same amount, then 

(2.3) 

Substituting Eq. (2.3) into Eq. (2.2) yields 

where 

-~ + C1/ 
2 
l E. I. 1 1 1 

E. = the MOE of i th layer, lb/in2., 
1 

(2. 4) 

I. = the moment of inertia of the i th layer about its own 
1 

neutral axis, in4 . 

To relate the axial force, F, to the beam deflection, y, the 

compatibility condition that the slip of the connectors per unit 

length of beam is equal to the net strain of the contacting surface 

of layers must be utilized and the following relation is found: 

(2.5) 

where 

A* = the transformed cross-sectional area for axial load of the 1 

first layer based on E2, in. 2 

I* the moment of inertia of A* about its neutral axis, in 4 = . ' 1 1 

s = the connector spacing along the beam length, in., 
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k = the connector slip modulus per connector, lb/in., 

n = the number of connectors per row in the transverse direction 

of the beam length. 

Substituting Eq. (2.4) into Eq. (2.5) gives 

(2. 6) 

where 

c1 
kn 1 1 (T .C.) = (- + -) sE2 Ai A2 

c2 
kn c12 

= sE2 I* + I2 1 
2 

Is Cl2 
T. C .· = --- = 1 + ------=-----1i + I2 (I* + I )(_!_ + _!_) 

1 2 Ai A2 

Since the external load condition is known, M.rCx) can be expressed in 

terms of x, and hence the layer axial force F along the beam can be 

obtained by solving Eq. (2.6). 

From Eq. (2.4) and Eq. (2.6), the deflection equation may be 

rewritten as 
2 

d 2 d y _x_ = __ s + 
dx2 dx2 

1 c12 
S E2Cii + I2) 

(2. 7) 

Integrate Eq. (2.7) twice to obtain the deflection as 

1 c12 
y = y + - =--=-:-----=~ F s cl E2(Ij + I2) (2.8) 

where ys is the deflection of the assumed rigidly connected beam. 

2.2.2 Derivation of Transformation Constant for MOE of Plywood 

It was pointed out previously that the MOE of bending is different 

from the MOE of axial deformation for plywood. A transformation 
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constant, K*, is therefore required in order that the effective MOE 

of bending can be properly transformed into the effective MOE of 

axial deformation of plywood for the gross cross section in the direc-

tion either parallel or perpendicular to the face grain. Usually, 

cross-laminated veneer is used in plywood for each neighboring ply. 

Consider a strip of three-ply plywood of unit width, as shown in 

Fig. 2.2(a), with E 
0 

and E. being the MOE values in the in 

longitudinal direction of the outer plies and inner ply, respectively. 

The original cross-section and the transformed cross section based on 

E
0 

are shown in Fig. 2.2(b) and Fig. 2.2(c). The strain and stress 

distributions of the plywood strip due to bending and axial compres-

sion are shown in Fig. 2.3 and Fig. 2.4, respectively. For the oase of 

bending loading only, the effective MOE based on the original cross 

sectional dimensions is 

Eeb E [ 
2tl 

= 
0 2l:l t- tz 

4tlt2 
+ 2 (2t1 + t 2) 

2 E. in - t -) 
2 Eo ] 

+ t2) 3 

(2.9) 

For the case of axial compression only, the effective MOE based on the 

original cross section is 
t 2 E . 

E = E [ 1 - --- (1 - Em)] ea o 2t1 + t 2 0 
(2.10) 

From Eqs. (2.9) and (2.10), it is seen that the MOE of bending and 

the MOE for axial deformation are not the same for plywood. 

To derive the transformation constant, K*, for transforming 

effective MOE of bending to the effective MOE of axial deformation, 

the following notations will be used: 

E = MOE of the outer most plies of plywood in longitudinal 
0 

direction, lb/in. 2, 
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Figure 2.4 Strain and Stress Distributions Over the Transfonned Cross 
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At = transformed cross section area of plywood board based on 
. 2 E

0
, 1n. , 

~ = gross cross section area of the plywood board, in. 2, 
g 

Eeb = effective MOE of bending based on Ag, lb/in. 2 , 

E effective MOE of axial deformation based A ' lb/in. = on ea g 

It = moment of inertia based At, in. 4 on , 

I of inertia based on A in. 4 
= moment g' . g 

2 

Since K* is defined as the constant to be multiplied by Eeb 

to yield Eea' we have 

(2.11) 

, 

To obtain the same bending or axial deformation effect based on either 

or A, the following relationships must be true: g 

E ea 

= E I 
0 t 

(2.12a) 

(2.12b) 

Substitute Eq. (2.11) into Eq. (2.12a) and divide by Eq. (2.12b) to 

solve for K* as 

(2 .13) 

Therefore, K* depends not only on the geometry of the cross section 

but also on the material property of each ply. The values of K* of 

the various types of plywood used in the experimental phase of this 

study are tabulated in Appendix A. 
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2.2.3 Development of the Theory of Effective Flange Width 

Due to the small thickness of the sheathing and the relatively 

large spacings between joists, shear lag effects may take place. The 

nonnal stresses in the sheathing acting in the longitudinal direction 

of joists do not distribute uniformly and thus can not be correctly 

predicted by elementary beam theory. For the convenience of analysis, 

a reduced flange width is introduced for the T-beams such that when 

elementary beam theory is applied to the transformed T-beam sections, 

the effective flange may be considered to have a uniform normal stress 

in the sheathing layer. This uniform stress is, thus, equal to the 

maximum normal stress of the nonuniformly distributed normal stresses 

across the sheathing layer cross section and will result in the same 

total normal force effect. The reduced flange width concept (effective 

flange width) was first introduced by Pietzker (28) in 1914 in his 

study of the buckling resistance of stiffened plates. The theory of 

evaluating effective flange width was first developed by von Karman (39). 

Investigations of effective flange width were also done by Girkmann (8) 

and Reissner (34). A more extensive numerical evaluation of effective 

flange width were made by Metzer (21) and Chwalla (6). 

While considerable work on this problem has been done, particularly 

by Amana and Booth (1, 2), no quantification of the effects of the key 

parameters on effective flange width has been made for wood joist 

systems . Thus, a thorough evaluation of the effective flange width 

problem was necessary to allow proper use of the basic crossing-beam 

physical model for wood joist floors. 

A. Mathematical Formulation of the Flange Stress Covering Equation 

Since the thickness of the sheathing for wood layered beam systems 

is usually small compared to the flange width and the joist depth, the 



26 

stress distribution in the flange can be considered as a plane stress 

problem and the effect due to bending action can be neglected without 

introducing substantial degree of error. It is also assumed that the 

stresses are in the elastic range in this study. 

For the sign convention shown in Fig. 2.5 and applying the strain-

displacement equations of elasticity for the flange, results in 

au (2 .14a) e: = 
X ax 

aw (2.14b) e: = z az 

au aw (2 .14c) Yxz = -+ ax az 

Applying the equilibrium equation of elasticity to the flange and 

neglecting body forces leads to 

acr dT 
X xz 0 --+ ---ax az (2.15a) 

acr a-r z xz 0 -- + ax" -az (2.15b) 

From Eqs. (2. lSa) and (2.15b) we obtain 

a2cr a2cr a2-r __ x_ + z - 2 xz 
ax2 

-2-- axaz az 
(2 .15c) 

Applying the stress-strain equation of elasticity to the flange and 

utilizing the constitutive law for an orthogonal plate yields 

1 (cr -v crz) e: = 
X E X XZ 

(2 .16a) 
X 

cr \) z xz e: = -- cr y E E X z X 
(2.16b) 

Yxz = T /G xz xz (2.16c) 
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Substituting Eqs. (2.15c) and (2.16) into Bq. (2 .14) gives 

E a2cr 
X Z E:T-
z oX 

E a2
T 

2(~ ) xz 
G - vxz axaz = O 

xz 

Introduce the Airy stress function, ~. defined such that 

(2.17) 

er = a2~ 
X ---z (2. l.8a) 

az 

er = a2~ 
z -2 (2 .18b) 

ax 

T = fl xz axaz (2.18c) 

Substituting Eq. (2.18) into Eq. (2.17) yields the following governing 

equation for flange plane stresses: 

where, 

a = 

a4~ + o a4~ = 
2 2 µ 4 O 

ax az ax 

E 
X ---2G xz 

8 = E /E 
X Z 

B. Solution to the Flange Stress Governing Equation 

(2.19) 

To solve Eq. (2.19), a series solution of the Levy type is 

assumed for the Airy stress function, i.e., 
00 

~ = l 
n=l 

Z sin w x n n (2. 20) 

where z is a function of z only and n 
Eq. (2. 20) satisfies the stress boundary condition 

er = 0 at X = 0 and X = L 
X 

However, the boundary condition requiring that the shear stresses 

ends are zero is not satisfied. By Eq. (2 .18c) , _that is, 

at 
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00 az 
= l wn a; cos wnx / 0 at x = O 
n=l 

and X = L, 

it is noted, however, that according to St. Venant's principle, the 

shear stress acting at ends has only local effect, at least for the 

usual dimensions involved in wood joist systems. 

where 

Substituting Eq. (2.20) into Eq. (2.19) leads to 

(D4 

d 
D = dx 

Solving Eq . (2.21) gives a general solution as follows: 

where 

00 

~ = l (An cash ;\wn z + Bn cash .\ 2wnz 
n=l 

A = /4 - /a.2 
2 

Eq . (2. 22) has four unknown coefficients A , B , C n n n 
have to be solved from boundary conditions. 

and 

(2.21) 

(2.22) 

D which n 

C. Mathematical Formulation of Governing Equation of Axial Force in 

the Flange 

Throughout the derivat i on, the following notations are used: 

s = connector spacing, inch, 

~s = Slip of connector, inch, 

Q = shear force transmitted by each connecto½ lb/connector, 
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n = number of rows of connectors, 

k = slip modulus of connector, lb./in./connector. 

Referring to previous work by Goodman (9, 10, 11) and Ko (17), the 

shear flow per unit length transmitted by the connectors is 

- nQ 
ql2 - s 

The slip modulus of connector is, by definition, 

k=g_=ql2.s 
t:..s n · t:..s 

(2. 23) 

(2.24) 

Referring to Fig. 2.6, the shear flow, q12 , can be expressed, by 

statics, as 

dF 
ql2 = dx 

Substitute Eq. (2.25) into Eq. (2.24) obtaining 

s dF 
t:..s = nk dx 

(2. 25) 

(2. 26) 

By the principle of compatibility, the connector's slip per unit 

length of beam has to be equal to the net interlayer strain. The 

relation can be expressed as 

where, 

CE) = the strain of the i th layer at the interlayer 
i z=O 

surface and evaluated at z = 0, in.fin. 

Differentiation of Eq. (2. 26) leads to, 

dt:..s 
dx 

(2.27) 

(2. 28) 
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Using Eqs. (2.27) and (2.28), yields 

s d2F 
---2 = (£2)z=O - (El)z=O nk dx (2. 29) 

Referring to Fig. 2.6, the strains in Eq. (2.29) can be evaluated as 

F M2h2 
= A2E2 - 2E2 I 2 

(2.30a) 

(2. 30b) 

where 

(£) I - strain in the first layer at the interlayer surface - 1 F z=O -
evaluated at z = 0, 

A2 = cross-section area of the second layer, in., 

r2 = moment of inertia of the second layer, in. 4 , 

E2 = MOE of the second layer along the length, psi, 

r1 = moment of inertia of the first layer, in. 4, 

E1x = MOE of the first layer in x-direction, psi. 

Substitute Eqs. (2.30a) and (2.30b) into Eq. (2.29) to obtain 

(2.31) 

Assume that each layer deflects the same amount and has the same curva-

ture, from the study of layered beam system by Goodman (9, 10, 11) and 

Ko (15), the following equation is obtained: 

(2.32) 
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where 

EI 

Substituting Eq. (2.32) into Eq. (2.31), we can obtain the governing 

equation of layer axial force, F, as 

2 
s a2F 1 Cl2 

nk -2 = (t:l)Flz=O + F(-A E + -EI ) 
ax 2 2 

(2. 33) 

with 
(2.34) 

F = 2h fwl/ 2 a dz 1 0 X 
(2.35) 

The total force, F, across the flange width must be related to the 

external load, and is developed subsequently. 

D. Solution of the T-beam System with Interlayer Slip 

The boundary conditions of the flange plate which have to be 

satisfied for the T-beam system with loads applied on x-axis are: 

1. a = 
a24> 

= 0 at z = w /2 z -2 1 ax 

2. Txz = 
a 2 4> 
axaz = 0 at z = w/2 

3. w = 0 at z = 0 

where w is displacement in z-direction. 

Substituting the general solution of Eq. (2.22) into the first 

boundary condition gives 
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A \wnwl B A2WnWl C \wnwl 
0n cosh n cosh n . h + 2 D 2 + 0 sin 2 n n n 

sinh 
>.2wnwl 

(2. 36) = - 2 

Substituting the general solution of Eq. (2.22) into the second 

boundary condition yields 

B ;\. 2w w1 C ;\.lwnwl 
n ;\. · h n + _.E.. A cosh + D 2srn 2 D 1 --2-
n n 

>.2wnwl 
>. 2 cosh 2 (2.37) 

From the third boundary condition, by applying the strain-displacement 

equation, results 

= au
1 az z=O 

or 

cl£ cly 
C x xz I = O az - ax z=O 

Substituting Eqs. (2.16) and (2.18) into Eq. (2.38) leads to 
E 
(~-
G xz 

3 
) a ct> I · o vxz 2 z~o = 

ax az 

Substitute Eq. (2.22) into Eq. (2.39) to obtain 

where 

A 2-n 
C 1 ) = -1 2 

;\. 2 -n 

(2.38) 

(2. 39) 

(2.40) 
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where 

00 

F = 2hl L 
n=l 

36 

00 

1 l Dr sinw x 
Elx n=l n n n 

D s sinw x n n n 

r = wn2[(;>,./ + \) )f + (;>,. 2 + vxz)gn] n xz n 2 

w Pl sinh p + ;>.. 2g sinh q 
;>,.2 

p s = C cosh n n n n n n p n 

+ ;>.. 2 cosh ~ 

Substitute Eqs. (2. 43) and (2. 44) into Eq. (2. 33) to obtain 

Cl2MT 
2 

00 r 1 c12 
l n 2 

EI- D {-+ 2hl sn [ (Al2 + --n-) + w ]} 
n=l n Elx n 

(2. 43) 

(2. 44) 

sinw x n 

(2. 45) 

Writing the total moment MT due to external load in Fourier series 

form yields 
00 

F sinw x n n 

Substituting Eq. (2.46) into Eq. (2.45) and solve for 

F results in n 

D = n 

where 

H = n 

H F n n 

r n EI[-+ 
Elx 

c12 

c12 
2 

1 w 2)] 2hlsn(A2E2 + --+ EI n 

D n 

(2. 46) 

in terms of 

(2.47) 

(2. 48) 

With the constant D being defined as above, it is possible to n 

evaluate the effective flange width by definition as 
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00 

l HF s sinw X 
F n=l n n n n 

w = 
hla) z=O 

= 2 • (2. 49) e 00 

I 2 2 2 H F w (f "I + gn>..2) 
n=l n n n n 

A computer program was developed from the above results for the 

evaluation of the effective flange width. A listing of the program is 

presented in Appendix E. 

2.2.4 Effect of Gaps in the Analysis of Floors and the Solution by 

Finite Element Method 

As mentioned previously, the floor sheathing of a wood joist 

flcor system is generally composed of several pieces of plywood or 

particle board, which are built on one by one, interlocked by T & G 

joints, butted, or open joints. Gaps between pieces of sheathing 

board are therefore inevitable. Only on some occasions are the gaps 

filled with glue. It has been a common construction practice to 

leave the gaps open and unglued. 

The discontinuity in the sheathing layers caused by the gaps 

or .the gaps filled with glue results in a very abrupt reduction in the 

stiffness of the sheathing layer which can not be easily treated by 

the closed-form solution of the finite difference techniques. For-

tunately, this difficulty can be overcome by using finite element 

solution technique. The floor structure . is treated as an assemblage 

of a finite number of structural elements interconnected at discrete 

nodal points. The variable material properties of the floor compo-

nents can be included by assigning different material properties to 

the structural elements. Tightly butted gaps or gaps filled with 

glut! can be coped with very easily by asserting pseudo nodal points, 

as aany as the number of gaps, with zero element length and very low 
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stiffness of materials. Open gaps in sheathing can be handled by 

approximating the axial deformations with a discontinuous linear 

function and the deflections with a continuous third order function. 

2.3 Theoretical Development of Floor Analysis Method 

The wood floor system is a highly indeterminate and nonhomogeneous 

structure. To analyze the floor structure efficiently and yet not 

introduce significant error, simplifications are made as follows: 

1. The floor system can be simualted physically by two sets 

of simply supported beams crossing each other at right 

angles. One set is the T-beams consisting of the wood joist 

connected to a flange of sheathing with an effective flange 

width; the other set is the sheathing beams consisting of 

the sheathing layer(s) only, Mith an assumed width equal to 

any convenient distance for the analysis. 

2. Effects of torsional stiffness in the floor system can be 

neglected. 

With the above simplifications, the floor can be divided into a 

set of T-beams, one for each joist and a set of sheathing beams with 

the number of beams dependent on the beam width chosen. The width of 

the sheathing beams is usually chosen such that there are no longitudi-

nal gaps along the beam length. 

The solution of the layered beam theory can then be applied to 

each beam to compute the deflection at each nodal point along the 

beam in terms of the vertical interaction forces between layers at the 

nodal points . The geometrical compatibility at each nodal point for 

the two sets of crossing beams is utilized to solve the vertical 

interaction forces between layers at each nodal point. From the verti-

cal interaction forces, the deflection at each nodal point can in turn 
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be computed. Both finite difference and finite element methods can 

be employed for developing solutions and each will be discussed in 

detail . 

2 .3.l General Oevelopment of the Govern i ng Equations of the Layered 

Beam Systems with Interlayer Slip 

Since the analysis of floor behavior is based on layered beam 

theory, further review of this theory is necessary. The derivation 

of the governing equations of a two-layer beam system subjected to 

uniformly distributed loading has been presented in Section 2.2.1 . 

The governing equations of layered beam systems for different loading 

conditions and any number of layers will be reviewed briefly in this 

section. For the complete details of the derivations, reference is 

made to Goodman (9, 10, 11), Henghold (14, 15) and Ko (17) . 

By following the same procedure employed in Sec. 2.2.1, the final 

governing equation for the layer axial force, F, for a two layered 

beam system subjected to a concentrated load P, can be written as 

2 
~ - CF= 
dx2 1 

(2. SO) 

Eq. (2.50) assumes the same form as Eq. (2.6) except the total moment 

MT is, in this case, the result of a concentrated load. The governing 

equations f or deflection are similar to Eq. 2.8 but must be rewritten 

as two equations to describe the deflections on each side of the 

concentrated load since different expressions for MT are necessary 

on each side of the concentrated load. Thus, 

(2. Sla) 

(2.Slb) 
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For an m-layer beam system subjected to a uniformly distr ibutcu 

load, q, (Fig . 2.7 shows a five-layer example), the solution procedure 

is essentially the same as in previous examples. The final governing 

equations can be written as 

and 

where 

m dF. 
l 1 

dx -
i=l 

m d4y /. EI. 
i=l 1 dx4 

0 

m 
- l 

i=l 

d2F. 1 r--= 
i dx2 

F. 1 1+ 
EA~ l 1+ 

1 
C. · 1 = -2 (hi. + h1·+1) 1,1+ 

q 

The notations used are: 

h. 
1 

h . k f h ·th 1 = t 1c ness o t e 1 ayer, 

F. 
1 --- + EA~ 
1 

in., 

d2y 
C .. -2 1,1+1 dx 

(2. 52) 

(2.53) 

(2.54) 

r. = the distance from the centroid of the transformed cross-
1 

section to the centroid of the i th layer, in., 

F. = the axial force in the i th layer, lb., 
1 

* h f d f h ·th lb · 2 A. = t e trans orme area o t e 1 layer, , in. 
1 

There are m + 1 unknowns (m F values and one value of y for 

any beam distance x) in an m-laycr beam system. Them+ 1 equations 

which are necessary to solve for the unknowns are provided with two 

equations from Eqs. (2.52), (2.53) and the remainder of the required 

m - 1 equations obtained from Eq. (2.54). 

2.3.2 Finite Difference Approach 

The floor system can be represented physically by two sets of 

crossing beams under the previously stated simplifications. The 
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Figure -· 7 Fi ve-Layer Ex:1mplc of m-Layer System (continued) 
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analysis of the floor structure is, therefore, reduced to the solving 

of an indeterminate structural system of crossing beams. 

The flexibility methoJ was employed by Vanderbilt and Goodman 

et al. (12, 38) .in a finite difference approach to the analysis of a 

floor system. The basic mathematical model was developed in a series 

of steps using matrix theory. For a more detailed discussion of 

matrix analysis of structural mechanics, reference is made to a 

publication by Vanderbilt (38). 

A general physical model for a floor system is presented in 

Fig. 2.8. First, consider the set of T-beams acting alone. The 

load-deflection relationship of the T-beams is given by 

OT= FT* AT (2.55) 

where 

OT= the matrix of deflections of T-beams at the nodal points, 

FT= the flexibility matrix of T-beams at the nodal points, 

AT= the matrix of loads carried by joists. 

Similarly, for the set of sheathing beams acting alone, the load-

deflection relationship is 

OS= FS * AS 

Static equilibrium requires that 

AT+ AS= A 

(2. 56) 

(2.57) 

where A is the matrix of external loads applied at nodal points. 

To satisfy the geometrical compatibility condition, the two beams 

crossing at each node point must deflect the same amount. Therefore, 

it is required that 

OS = OT = 0 (2. 58) 

/ 
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where D is the matrix of the nodal point deflections of the entire 

floor. 

Substituting Eqs. (2.55), (2.56) and (2.57) into Eq. (2.58) and 

simplifying gives 

(FT+ FS) *AT= FS * A (2.59) 

from which 

AT= (FT+ FS)-l * FS * A (2. 60) 

Finally, the floor deflections at the nodal points, D, can be computed 

from Eq. (2.55) after AT has been determined from Eq. (2.60). 

Closed form solutions are generally handicapped by the assumption 

that uniform cross-sectional, material and mechanical properties must 

be retained along the length of the beam. Consequently, to evaluate 

FT and FS including the varying section properties, connector 

modulus and spacings and to perform the computations of Eqs. (2.59), 

(2.60) and (2.55) efficiently, numerical solution with the application 

of high speed digital computer must be employed. 

The two-layer floor system shown in Fig. 2.9 will be selected as 

an example to be solved by the finite difference technique. Since the 

uniformly loaded case can be approximated by a series of equally 

spaced concentrated loads, only the concentrated loading case need be 

considered. 

The solution procedure starts by solving Eq. (2.50) for F at 

the nodal points along the T-beams. Eq. (2.50) is rewritten below: 
.., 

J-F , - - CF= - CM (2.50) 
dx2 1 2 

with the boundary conditions that the axial forces and the moments are 

zero at the ends since the T-beams are simply supported. From 
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Figure 2.9 Finite Difference Model and Boundary Conditions 
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Eq. (2.50) it is noted that the second derivative of axial force at the 

ends of T-beams are also zero. If each T-beam is divided into n 

elements connected by n + l discrete nodal points, as indicated in 

Fig. 2.9b, application of end conditions requires 

d 2F 
F = o 0 
o dx2 - at X 

(2. 61) 

at X 

Based on a three-term finite difference expansion for the second 

derivative of F, the first boundary condition of Eq. (2.61) implies 

..!_ (F -2F +F) = 0 h2 -1 o 1 

and since F 
0 

is zero, it yields 

F_l - - Fl 

the second boundary condition implies 

since 

a2F 
n - l (F 2F + F 

1
) = 0 

dx 2 - h 2 n-1 - n n + 

F is zero, it gives n 

F = - F n+ 1 n-1 

(2. 62) 

(2. 63) 

The boundary conditions for the axial force F are depicted in 

Fig. 2.9c. 

For convenience, a dimensionless variable, z, is introduced as 

follows: 

X 
z = L 0 < z < 1 (2. 64) 
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and consequently the differential operators are 

d I d d2 I d2 
dx - L dz' dx2 - ~ dz2 

(2. 65) 

and boundary conditions in terms of z become 

F = 0 at z = 0, (or x = 01} 0 

F = 0 at z = I, (or x = L) n 
(2. 66) 

Using a five point finite difference expansion for the following 

operator is obtained (for detailed development reference is made to 

the work by Ko (17)). 

a2F I a2F I 
dx2 = ~ dx2 = 12h2 [ ] F 

(2.67) 
wher0 the error of the finite difference operator is of order h 4. 

Substituting Eq. (2.65) into Eq. (2.50) for the i th nodal point 

yields 

where 

= Pbz. 
1 

for 0 ~ z ~ a/L 

for a/L ~ z < I 

Subs tituting Eq. (2.67) into Eq. (2.68) yields 

(2. 68) 

-F. 2 + 16F . l + (-30 - 12C1h2L2)F
1
. + 16F. - F. 2 1- 1- 1-1 1-

(2.69) 

or it may be written in operator form as 



so 

FT= FT. 
J (2. 74) 

FT m 
mnxmn 

where 

m = the number of T-beams 

n = the number of sheathing beams. 

The flexibility matrix of the sheathing beams can be obtained from 

the load-deflection relationship of a simple beam since the sheathing 

beams are single-layere<l (for a two-layer floor) and simply supported. 

For a sheathing beam loaded by a unit concentrated load as indicated 

in Fig. 2.10, the deflection at the i th modal point is 

y. = ib/n 
1 6EI 

b y. = 
1 6EI 

[L 2 
s 

l i [·-(-b n L s 

for 

i for 0 < - L < a '-n s (2.75a) 

i a<-L <L - n s s (2.75b) 

The flexibility matrix of the qth sheathing beam, FSq , can be obtained 

by placing the unit load on each nodal point except the end points of 
th the q sheathing beam and computing the deflections at each nodal 

point. Repeating the same procedure stated above for each sheathing 

beam and combining the individual flexibility matrix allows the format i on 

of the complete flexibility matrix for all the sheathing beams as 

shown in Eq. (2 . 76). 
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(b) Deflection curve 

Figure 2.10 Finite Difference Model of Sheathing Beam 
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52 

FS. 
1 

FS n 
mnxmn 

(2. 76) 

The elements in the FS matrix have to be rearranged in the same 

order as the floor nodal points numbered as shown in Fig. 2 .8 before 

Eqs. (2.75a) and (2.75b) can be substituted into Eq. (2.60) to solve 

for AT. If the applied load is uniform load, it must be converted 

into equivalent concentrated loads at the nodal points to form the 

A matrix in Eq. (2.60). After the joist loads, AT, have been solved 

from Eq. (2.60), the floor deflections at the nodal points, D, can 

be obtained by substituting AT into Eq. (2.55). 

The solution procedure presented above was programmed for the 

application of the high speed digital computer. 

2.3.3 Finite Element Approach 

The use of a closed-form solution for floor systems is limited by 

the assumption that uniform cross-sectional, material and mechanical 

properties exist for each T-beam or sheathing beam. The finite dif-

ference solution is not easily developed to handle the discontinuity 

problem presented by the gaps in the sheathing layer(s). The three-

or-more-layer beam system also presents some difficulty due to the 

complicated compatibility conditions. A more versatile solution which 

can overcome the limitations encountered in the closed-form and the 

finite difference solutions was developed by Thompson (36), using the 

finite element methods. 
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Again, the physical model of a layered floor was simplified 

as two sets of crossing beams, i.e., T-beams and sheathing beams, 

as indicated previously in Fig. 2.8. Each set of beams is treated 

as a layered beam. The deflection and axial deformation of the 

layered beams can be approximated by the finite element form of the 

Rayleigh-Ritz procedure. The tightly butted or glued gaps in the 

sheathing layer(s) can be approximated by inserting a pseudo element 

with zero length and a small stiffness. The open gaps in sheathing 

are accounted for by using discontinuous functions to approximate 

axial displacements but continuous function for deflections. 

The energy method was used to formulate the finite element 

solution procedure. The potential energy of a layered beam was con-

sidered as composed of four distinct parts due to: 

1. pure bend ing of each layer, 

2. axial elongation of each layer, 

3. the interlayer slip of connectors between each layer, 

4. the external loads on the beam. 

To form the finite element model, the beam is divided into a 

series of one dimensional elements as shown in Fig. 2.11. The energy 

of the beam system is the sum of the energy of all the elements. With 

the assumption that each layer of the beam deflects the same cmount, 

the energy due to pure bending can be written as 

(2.77) 

and the energy due to the external loads is 
L 

Jq = - f q y dx (2.78) 

0 
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(b) Finite element model 

Figure 2.11 Finite Element Model of Layered Beam 
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where 

i = energy due to pure bending, lb-in., 

Ei = modulus of elasticity of i th layer, psi, 

I = moment of· t· f ·th 1 · 4 i 1ner 1a o 1 ayer, in. , 

y = deflection of beam, in. 

x = coordinate along length of beam, in., 

nL = number of layers, 

Jq = energy due to external loads, lb-in., 

q = loading on beam, lb/in., 

L = length of beam, in. 

The total energy due to the axial deformation of each layer is 

n L 
L 1 f dui 2 Ju = L -2 E. A. (-d ) dx 

. l 1 1 X 1= 0 
(2. 79) 

where 

Ju= energy due to axial deformation, lb-in., 

A. sectional of .th spacing layer, in. 2 = cross area 1 ' 1 
axial deformation of the .th layer at middepth, in. u. = 1 1 

The energy due to the interlayer slip deformation of the connectors 

is 

(2. 80) 

where 

Jc= energy due to interlayer slip of the connectors, lb-in., 

f h b . th d ( . ) th k. = slip modulus o t e connectors etween 1 an 1+1 
1 

layers, lb/in., 

b f f h b b t 1. th and n. = num er o rows o connectors across t e earn e ween 
1 

(i+l) th layers, 
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si = spacing of connectors along the beam between 1th and (i+l) th 

layers, 

h . 1 1 . b . th d ( . ) th f 6s. = t e i nter ayers 1p etween 1 an 1+1 layer inter ace. 
1 

The interlayer slip, 6s., can be expressed in tenns of the beam 
1 

d f . d h . d. f h . th d ( . ) th e lect1on an t e axial 1splacements o t e 1 an 1 + 1 layers. 

The relation is depicted in Fig. 2.12 and with the assumption that the 

slope of the beam is small compared to unity can be stated as 

hi+l ~) h. d 
6s. = (u. 1 - (u . + ~ -1) 

1 1+ 2 dx 1 2 dx 

(u . 1 u .) 1 + h.) dy (2.81) = - - 2 (hi+l 1+ 1 1 dx 

where h . and h. 1 are the depths of the i th and i+1 th layers, 
l 1+ 

respectively. 

Substituting Eq. (2.81) into Eq. (2.80) gives the energy due to 

interlayer slip of the coJU1ectors as 

L 

I 
0 

k. n. 1 d 2 
( 

1 1
) [ ( - u . ) - (h + h. ) -1] dx -s-.- ui+l 1 2 i+l 1 dx 

1 (2.82) 

The total energy of the beam can then be obtained by summing 

Eqs. (2.77), (2. 78), (2.79) and (2.81) resulting in 

J 
nL L 2 1 dui 2 

= I J { .!. E.I. (~)2 + 2 E.A. Cd) } . l 2 1 1 d 2 1 1 X 1= O X 

n -1 L L 
1 k.n. I 1 I 1 1 [ - u.) + 2(-s-.-) (ui+l - 2(hi+l 1 i=l 0 

L 

_ f q y dx 
0 

1 

dx 

+ h.) ~]2 1 dx dx 

(2. 83) 
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Figure 2.12 Interlayer Slip Related to Deformation 
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According to the princi pal of virtual work, the potential energy 

of the beam system must have a stationary value at a deflection which 

is an equilibrium position, that is 

6 J = 0 

where 

6J 
nL L 2 
I I E_1 = { E. I. C 2) 

i=l 1 1 d 
0 X 

IL k.n . 
1 1 

- C-s-.-) [ Cui+ 1 
0 1 

L 

- J q 6 y dx 
0 

6 
2 L du. du. 

Cd y) dx + I 1 6 1 dx} E.A . Cd) C dx) 
dx2 1 1 X 

0 

C2.84) 

The deflection and axial displacements of the layered beam which 

satisfy Eq. C2.84) can be approximated by the finite element form of the 

Rayleigh-Ritz procedure. 

The deflection, y, and the axial displacement, ui, in the above 

equations are assumed to be one dimensional and are function of the ,. 
distance along the beam only. Since the potential energy is of first 

order in u., the axial displacements of the nodal points can be approxi-
1 

mated by a piecewise linear function of the nodal point coordinate, x. 

On the other hand, the potential energy is of second order in y, thus 

a cubic function of x is necessary to approximate the deflections of 

the nodal points to attain the continuity of the deflection, y, and the 

slope, 1~ of the layered beam. The potential energy for the complete 
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layered beam can therefore be expressed in terms of the nodal point 

values of deflection, slope and the axial displacements of each layer. 

The total unknowns for each nodal point, consequently, are 2 + nL . 

Let the approximations for y and 

as 

y = [Ny) {Y}. 
1 

u. 
1 in the j th element be given 

(2.85) 

and 

u. = [N ] { U. }. 
1 U 1 J (2.86) 

where 

[N] = shape functions for a fourth order approximation for y 
deflections, 

{Y}. = nodal point values for deflection and slope for j th J 
element , 

[N] = shape functions for a linear approximation for axial u 
displacement, 

{U.}. 
1 J = nodal point values for the axial displacements of i th 

1 . . th l ayer in J e ement. 

The derivatives of the functions 

~ = [N I ){Y}. dx y J 

iy 
= [N "] {Y} . 

dx 2 y ] 

du. 
1 

- = [N I ]{ u. } . dx u 1 J 

y and u. 
1 are then given by 

(2. 87) 

(2. 88) 

(2.89) 

where the primes indicate the term by term differentiation of the 

matrices. 

The variations of the functions dy d2y 
Y' dx' --2, u. 

dx 1 

du. 
1 and dx are 
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0 y = [N ]{oY}: 
y J (2. 90) 

o(dy) = (N ']{oY} . (2. 91) dx y J 
2 

0 (~) = (N "] {oY}. (2.92) dx y J 

o u. = [N ]{oU.}. (2. 93) 1 U 1 J 
du . 

o(-1) = [N I]{ oU.}. (2.94) dx U 1 J 

The variation of potential energy for any element can now be 

EL~ approximated in terms of the nodal point values for y, dx' dx2 and ui 

in matrix form. For example,. the variation of pure bending energy for 

the j th 

where 

element is 

nL t. 
d2 2 f J l E. I. (~) 0 (~) dx 

i=l 1 i dx ax2 0 

nL t. 
= l J J E. I. [[N "]{oY}.]T [[N "]{Y}.] dx 

·1 1 1 y J y J 
i- 0 

EI= 

[N "] TEI [N "l dx {Y}. 
y y J 

E. I. 
1 1 

(2.95) 

Appl ying the same procedure on the remaining terms of Eq. (2.90) and 

summing each of the terms into one matrix expression, the variation of 

h . 1 f h . th 1 b . t e potent1a energy o t e J e ement can e written as 

oJ . 
J 

T = { o s} . [k] . { s} . 
J J J 

T {os}. {f} . 
J J (2.96) 
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where 

{s}. = matrix combining all the generalized displacement for Y, J 

[k] . = 
J 

{f}. = 
J 

dy f .th element, dx' u. 0 J 
1 

Stiffness matrix for .th element, J 

matrix combining all generalized 

ing to {s}. of the j th element, 
J 

{cs}. = the variation of {s} . . 
J J 

external forces correspond-

Applying Eq. (2.96) on each element and summing the variations of 

potential energy of all the elements by proper matrix addition, the 

total variation of potential energy of the beam system can be obtained. 

Setting the total variation of potential energy to be zero leads to the 

general equilibrium equation 

[K] {S} = {F} (2.97) 

where [K], {S} and {F} are the beam system equivalents of [k] ., 
J 

{s}. and {f} . . The nodal point values of dy and u. can then 
J J Y, dx 1 

be obtained by solving Eq. (2.97). 

The finite element formulation developed above can be modified 

easily to account for gaps in the sheathing. Wherever a gap occurs in 

a given layer, the axial displacement ui' in that layer is no longer 

continuous. Furthermore, the axial force in that layer is zero on both 

sides of the gap. These conditions can be satisfied by using linear 

discontinuous functions to approximate axial displacements in sheathing 

but a third order continuous function for deflections. For flexible 

gaps (tightly butted or glued gaps) it can be handled by inserting an 

imaginary element with zero length at the point where the gap is 

located. The MOE of the imaginary element is assigned to be some 

reasonable small number for a flexible gap to account f or a partial 
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transmission of axial force through the gap. The placing of an 

imaginary element actually puts two nodal points with the same 

coordinate at the gap. The generalized displacements and forces 

associated with the higher numbered nodal points at each gap are 

treated as dummy quantities with the exception of the axial dis-

placement and force in the gapped layer. For this layer, there are 

two independent axial displacements which create the desired discon-

tinuity in the function. The corresponding generalized force terms 

on the right-hand side of Eq . (2.97) are always as zero. 

To analyze the floor behavior under loads, the above finite element 

formulation can be applied for each set of cross beams of the physical 

floor model. First, the external loads are assumed to act totally on 

T-beams. The deflections of the T-beams under the external loads are 

computed. The T-beams deflections are then imposed on the set of 

sheathing beams on the corresponding nodal points. Forces required to 

hold down the sheathing beams to the deflected positions are in turn 

to be evaluated. Then, the loads acted on the set of T-beams are re-

duced to be the difference of the total external loads and the reactions 

of the forces on the set of sheathing beams. Deflections of the T-beams 

under the new loads are computed and imposed on the set of sheathing 

beams to calculate the forces required to hold down the set of sheathing 

beams to the new deflected positions. 

The above procedure can be repeated by an interactive algorithm. 

The algorithm is stopped by an accuracy control when the result of two 

successive cycles shows negligible changes. A direct solution form of 

the finite element method was also developed using Gaussian elimi-

nation method of solving simultaneous equations to avoid the iteration 

requirement. 
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2.4 Implication and Limiting Cases for Floor Model 

The mathematical floor model can be used for the theoretical study 

of several extreme cases of the floor system. A better understanding 

of the interaction of floor components is developed through the 

examination of limiting cases for the floor system. The merit of the 

new analysis procedure developed in this study over the traditional 

methods will also be more evident through the studying of the limiting 

cases and variation in parameters. 

To i llustrate the effect of the limiting cases, the deflections 

of the example floor shown in Fig. 2.13 were computed using the mathe-

matical floor model for the case of uniform load. The floor contains 

eleven 2x8 nominal size joists and 3/4 inch thick Douglas-fir plywood 

sheathing. No gaps are assumed. The floor dimensions are 12 ft span 

and 16 ft width. The face grain of the sheathing is assumed to be per-

pendicular to the joist span and the nail spacing of 8d nails is eight 

i nches with one nail per row. Simple supports are assumed at all edges 

of the floor. The results of calculating several limiting cases along 

with assumed material properites, are shown in Fig. 2.14 and are dis-

cussed as follows: 

1. No sheathing, joists only 

The traditional design practice for wood joist floor systems 

is based on the generally conservative assumption that the ef-

fectiveness of sheathing is negligible and the external loads are 

resisted by the joists alone. This was done by assigning essen-

tially a zero value for the MOE of the sheathing in both the 

parallel and the perpendicular to face grain directions such that 

the sheathing material had no stiffness requiring the joists to 
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act independently in resisting loads. The MOE data for the joists 

a're listed under the joist numbers at the top of Fig. 2.14. Large 

deflections of the joist were obtained as expected when the joist 

acted individually . The midspan deflections of the joists, con-

nected by straight lines, are presented in Fig . 2.14. 

2. Two-way actions, no composite behavior 

The effect of the loose overlap of the sheathing on the 

joists is studied next. This is done through the mathematical 

floor model by assuming a near zero value of the slip modulus of 

the connectors between the sheathing and the joists. The com-

posite action of the T-beams were thus eliminated by using a slip 

modulus equal to zero whereas the two-way action of the sheathing 

was considered by input of usual MOE data for the plywood as given 

in Fig. 2.14. The effect of the two-way, no T-beam action is seen 

from the midspan joist deflection curve as shown in Fig. 2.14. 

The stiffer joists help the neighboring less-stiff joists in 

resisting loads through the two-way action of the sheathing mater-

ial and smooth out the deflection curve as opposed to the result 

obtained for a set of independently acting joists. 

3 . Composite behavior, no two-way action 

The third case to be examined is the effect of considering 

the floor as a set of unconnected T-beams. This was achieved by 

using a near zero value for the MOE of the sheathing material in 

the direction perpendicular to the joist span and a normal MOE 

in the direction parallel to the joist span. The rigidity of 

the sheathing material was thus eliminated in the direction per-

pendicular to the joist span and retained in the direction parallel 

to the joist and the floor was forced to act as a set of T-beams 
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by the mathematical floor model. The incomplete composite action 

of the T-beams were included by setting the slip modulus of the 

connectors to equal 30,000 lb/in. The midspan deflections of the 

joists are plotted in Fig. 2.14. It is seen that the midspan 

deflections of the joists reduce considerably due to the in-

complete composite action between the sheathing and the joists. 

4. Composite and two-way action 

Finally, the full effect of the incomplete composite behavior 

and two-way action is considered for a complete floor model. The 

floor data given in Fig. 2.14 were used for the computation of the 

deflections. The midspan deflections of the joists are again plot-

ted as shown in Fig. 2.14. The two-way action of the sheathing 

material again shows the effect that the stiffer joists help the 

neighboring less stiff joists in resisting the loads and smooth 

out the deflection curve of a set of unconnected T-beams. The 

differences in deflections range up to greater than 100 percent 

when deflections of joist acting alone are compared with those 

predicted by the complete mathematical model. This indicates that 

the traditional design practice generally overestimates the 

predicted deflections since it neglects the contributions of the 

composite and two-way action. It also demonstrates that a full 

recognition of both composite and two-way action should be in-

cluded for the complete representation of the behavior of floor 

systems. Experimental studies Jiscussed in Chapter 3 will 

demonstrate the required verifications of the mathematical model 

to assure that the utilization of the analytic method can be 

expected to produce accurate results. 



3.1 Introduction 

CHAPTER 3 

EXPERIMENTAL STUDY 

It has been poi nt ed out previ ously that a vital phase of the floor 

research project developed at Colorado State University was to conduct 

load tests on a series of carefully constnicted T-beam and floor speci'-

mens to verify the validity of the mathematical models for layered 

beams and for wood joist floor systems. The verification of the mathe-

matical layered beam model has been discussed extensively by Kuo (19). 

The results of the verification study of the mathematical floor 

model are presented in Chapter 4 of this dissertation . The various 

aspects of the experimental program and the observed test results 

arc di scussed in th i s chapter to provide a better understanding of the 

experimental aspects of the research effort. 

A total of eleven floors were constructed using components with 

premeasured material properties. Each floor was designed to vary the 

type of construction. Among the eleven floors built, six were three-

layer f loors. The three-layer floors were constructed and tested 

i n two stages: first, a layer of plywood sheathing panels was attached 

to the joi sts with sele ted connectors to form a two-layer floor 

specimen on which load tests in the elastic range were performed; 

s econd, an additional layer of particle board sheathing panels were 

connected to the two-l ayer floor to form a three-layer floor speci-

men on which load tests, again, were performed. Therefore, for each 

three-layer floor there were two floor specimens tested: one was 

two-layer and the other was three-layer . However, of the eleven 

68 
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floors constructed the first floor (a two-layer floor) was only a 

trial floor, built and tested to obtain knowledge of testing techniques 

and therefore the results of the load tests on it are not included in 

this report. Consequently, there were a total of sixteen floor speci-

mens available for use in the verfication study. A summary of the 

general data of all the floor specimens constructed and tested is 

presented in Table 3.1. The detaile<l data for each floor specimen is 

listed in Appendix B. 

An alphanumeric identifying notation was assigned to each floor 

specimen to irtdicate type of joist material and the value of several 

major parameters. This notation was created to allow easy recognition 

of the specimen characteristics, and can be illustrated by the fol-

lowing example: 

F9-8E24-2 
F•Floor SRecimen I I I I I I Nu~ber of ~heathing layer 

Sequence number Joist spacing, inches 

Nominal joist depth, E=Engelmann spruce joist 
inches 

The material used for the construction of floor is described in 

Sec. 3.2 and Sec. 3.3. The manner in which the floor specimen was 

constructed is discussed in Sec. 3.4. The testing equipment used in 

the load tests and the testing procedure are examined in Sec. 3.5 and 

Sec. 3.6, respectively. In Sec. 3.7, the experimental behavior of the 

floor specimens due to effects of connectors type, gaps in sheathing 

layer(s) and number of sheathing layers is examined. 

Tl1e experimental behavior described in this chapter is observed 

for s11ccific specimens and is cited as examples of typical behavior. 

Because each floor was designed to differ from the other floors tested 



Table 3.1 General Data of Floor Specimens 

Floor Joist Number of Joist Sheathing Connectors 
Specimen Material Unsupportec Spacing Material 

Joists (in.) 
F2-8016-l 2x8 OF 11 16 3/4 OF Plywd 8-d @-8" .~ .., (cement coated) 
F3-8016-l 2x8 OF 11 16 3/ 4 0-F Plywd 8-d @8" 
F4-8El6-l 2x8 ES 11 16 3/4 ES Plywd 8-d @8" 
FS-8016-1 2x8 OF 11 16 if 3/4 OF Plywd 8-d @4" 
F6-8El6-l 2x8 ES 11 16 1/2 ES Plywd 8-d @8" 
F7-12024-l 2xl2 OF 7 24 1/2 OF Plywd 8-d @4" 

F8-019.2-1 2x8 OF 9 19.2 1/2 OF Plywd 8-d @8" 

F9-8E24-l 2x8 ES 7 24 1/2 ES Plywd 8-d @8" 

Fl0-8E24-l 2x8 ES 7 24 1/2 OF Plywd 8-d @4" 

Fll-8016-1 2x8 OF 11 16 1/2 OF Plywd Glued 

1/2 OF PB 6-d @8" 
F6-8E16-2 2x8 ES 11 16 1/2 OF Plywd 8-d @8" 

1/2 OF PB 6-d @4" 
F7-12024-2 2x12 OF 7 24 1/2 OF Plywd 8-d @4" 

1/2 DF PB 6-d @8" 
F8-8019.2-2 2x8 DF 9 19.2 1/2 OF Plywd 8-d @8" 

Sheathing 
Joists 

T & G 

T & G 
T & G 
Glued T & G 
T&G w/ 1/16" gap 
Butted w/ 1/16" 
gap 
Butted w/ 1/16" 
gap 
Butted w/ 1/16" 
gap 
Butted w/ 1/16" 
gap 
Glued butted 
ioints 
Butted w/o gap 
T&G w/ 1/16" gap 
Butted w/o gap 
Butted w/ 1/16" 
gap 
Butted w/o gap 
Butted w/ 1/16" 
gap 

-...J 
0 



Table 3.1 General Data of Floor Specimen (continued) 

Floor Joist Number of Joist Sheathing Connectors 
Specimen Material Unsupported Spacing Material 

Joists (in.) 
~ I . ....... 

' ..J 1/2 OF PB 6-d @8" 
F9-8E24-2 2x8 ES 7 24 

1/2 ES Plywd 8-d @8" 

1/2 OF PB 8-d @4" 
Fl0-8E24-2 2x8 ES 7 24 

1/2 OF Plywd 6-d @4" 

1/2 OF PB 6-d @8" 
Fll-8016-2 2x8 OF 11 16 

1/2 OF plywd Glued 

Note: For all floor specimen, floor span= 144 in., floor length= 192 in. 
The nails used are common nails unless otherwise stated. 

OF 
ES 
Plywd 
PB 

= Douglas-fir, 
= Engelmann spruce, 
= Plywood, 
=Particleboard 

"v 
Sheathing 
Joi t s 

Butted w/o gap 

Butted w/ 1/16" gap 

Butted w/o gap 

Butted w/ 1/16" gap 

Butted w/ 1/16" gap 

Glued butted joints 
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in several respects and the effects of various parameters are often 

strongly interrelated, only trends rather than precise quantitative 

infornation on how the several variables affect floor response can be 

presented by the analys i s of experi mental behavior. Parameter studies 

using the ver i fied mathemat i ca l model can better isolate the effect of 

speci fie varia les. Ef f ects of the sheathing thickness, the joist 

depth, the MOE of plywood, the MOE of joists, the slip modulus of 

connectors and the type of loading on the theoretical behavior of a 

floor system are developed through the use of the mathematical model 

and presented in Chapter 5. 

3.2 Material Used for Floor Specimens 

Of the sixteen floor specimens to be studies, 2x8 inch nominal 

s ize joists were used for all but three floor specimens where 2xl2 inch 

nominal joists were used. Douglas-fir joists were used in nine floors 

and Engelmann spruce j oists were used in seven floors. The floor 

specimens tested had three different joist spacings: 1 , 19.2 and 

24 inches. 

Four floors had only one sheathing layer while six floors were 

characterized by having two layers of sheathing material. For the 

three-layer floor specimens, the bottom sheathing layer was ply-

wood and the top sheathing layer was particle board in each case. 

Each piece of joist and sheet of plywood or particle board was 

numbered according to an alphanumeric identifying notation with 

exampl es s hown below: 
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Joist identification 

species( D=Douglas-fir 
E=Engelmann spruce 

Lumber supplier: 

) Dr-S-Oi-lc.__ Seria~a~:~;; within the 
L_ Nominal depth of joist, 

inches W=Weyerhaeuser 

Lumber grade: 
S=Selected structural 

(N=No. 3) 

Plywood and particle board identification 
DP- .'34-10 

species ( D=Oouglas-fir) 11 L Serial number 
E=Engelmann spruce I category 

product ( P=Plywood) Nominal depth 
type B=Particle board inches 

within ths 

of joist, 

Six and eight-penny common nails at varying spacings, from 4 inches 

to 8 inches, were used generally as connectors, except in specimen 

F2-8Dl6- l where cement coated nails were used. An elastomeric glue 

(Franklin Construction Adhesive) was used as the connection between 

t~e joists and the plywood sheathing layer of specimen Fll-8Dl6-l. 

3.3 Material Properties 

The behavior of a wood joist floor is affected by three important 

material properties: the MOE values of joists, the MOE values of each 

sheathing layer and the slip modulus of the connectors of each inter-

layer. The mechanical properties of wood products not only vary from 

species to species, but also vary from piece to piece within the same 

species . Furthermore, since wood and wood-based products are neither 

isotropic nor homogeneous, their mechanical properties vary from sec-

tion to section along any given piece as well as with the direction 

of loading. Therefore, measurement of the properties of each joist 
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and sheathing board rather than properties from samples out of each 

group of material was considered necessary to adequately describe the 

material in each floor specimen. This was accomplished by determining 

the elastic constants of each element of each floor by specimens using 

nondestructive test procedures. 

3.3.1 Joist Properties 

The MOE values of joists and sheathing boards were determined 

by nondestructive tests conducted in the Wood Science Laboratory of 

Colorado State University. Determination of flatwise joist properties 

was performed using a continuous deflection measurement device. The 

j oist deflection at the center of a 3-ft. span along the moving piece 

with constant load applied at the center of the span was measured by 

an LVDT (linear variable differential transformer) and plotted using 

an X-Y recorder. Each specimen was passed through the machine twice, 

once with each flatwise face loaded to eliminate the effects due to 

any warp, twist or thickness variation present in the joist. The re-

corded deflections were then used to compute the MOE values using the 

following equation in which deflections attributed from both the 

bending and shear effects were included: 

where 

p = 
L = 
h = 
b = 
~ = 

E = P(L/h) [(L/h) 2 + 19.2] 
4~b 

load applied at midspan, lb.' 

span, in., 

board thickness, in., 

board width, in., 

average deflection, in. 

(3.1) 
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Equation (3.1) was incorporated into a computer program which 

computed the MOE of specimen from the recorded deflection data. The 

computed MOE value is an average value over each one foot interval. 

For more detailed description of the joist flatwise MOE test, 

reference is made to the work by O'Halloran (24). 

In the floor specimen construction, joists were placed edgewise. 

Because of this configuration, the MOE values of joists obtained in 

the way described previously ~an only approximate the MOE of the joists 

as actually used. Therefore, the edgewise MOE values of joists were 

determined during the construction of the floor specimen. Deflections 

were measured for at least three load increments of 100 pounds at mid-

span for each of three distinct stages of the joist construction: first, 

the laterally unsupported edgewise joist sitting on sill plate; 

second, the joist with guide nails driven in the sill plate and 

laterally supported by a header plank connected by one nail at mid-

depth of each joist; third, two more nails driven to connected each 

joist and the header plank as shown in Fig. 3.1. The load-deflection 

curve was plotted to obtain an average load-deflection relationship. 

A typical plot is shown in Fig. 3.2. The MOE values of joists due to 

static bending were computed from the deflection equation of simply 

supported beam including only flexural deformations. The effect of 

shear deformations were thus included in the calculated MOE values. 

For furthcr detail of the t esting procedure reference is made to 

work by Kuo (19). 

3.3.2 Sheathing Properties 

Sheathing material including 1/2 and 3/4-in. thick Douglas-fir 

plywood, 1/2 and 3/4-in. thick Engelmann ?pruce plywood and 1/2-in. 
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Figure 3.1 Detail of Joist Header Construction 
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(Contained in F7-12D24-l) 

6 3 nails 
0 1 nail 
0 no nail 

0.075 0.100 
Centerline Deflection, in. 

Figure 3.2 Typical Load-Deflection Plot for MOE Test 
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thick Douglas-fir particle board were tested to determine their in-

plane elastic parameters. The testing procedure an9 the theory for 

the computations of elastic parameters have been discussed extensively 

by McLain (20). 

The MOE values in the directions parallel and perpendicular to 

face grnjn of the full-sized panel of plywood and particle board were 

determined. The testing apparatus (see reference (20)) supported the 

plywood at one end and at approximately the center. A line load was 

applied to the free end and deflection of the loaded end was recorded 

by three LVDT transducers across the width. Four test results were 

obtained for each direction of the panel by loading each end and with 

each side of panel upward. These four tested results were averaged 

and used for the evaluation of the static MOE value. In computing the 

MOE ·values, any correction due to Poisson's ratio and shear effect 

was considered negligible. 

3.3.3 Connector Properties 

The load-slip characteristics of the connectors in combination 

with the wood members which they fasten greatly influence the degree of 

interaction between layers in a floor structure. The slope of the 

load-slip curve is defined as the slip modulus. 

The experimental slip modulus study of the connectors and wood 

components used in the floor specimens was reported by Patterson (26). 

Selected 1-ft. long nominal 2x8 inch joist pieces of either 

Douglas-fir or Engelmann spruce were used as the center member, and 

the 3/4 or 1/2 in. thick Douglas-fir or Engelmann spruce plywood cut 

into 8xl2 inch boards used as the side members to form a double-shear 

test configuration as shown in Fig. 3.3(a). A series of tests with 
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Load Load 

2x8 Joist 

Front View Side View 

(a) Plywood and joist 

Load Load 

2x8 Joist 

Glued Plywood 

0 I 0 
Particle board I 

0 I 0 

6 d conunon nails I I 0 L.J 0 

0 0 

-----
Front View Side View 

(b) Plywood and particle board 

Figure 3.3 Nail Slip Modulus Test Specimens 
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different combinations of lumber and plywood species and connectors were 

conducted to detennine the effect of the number of nails in the load-

slip characteristics of the connections. Effects of the plywood face 

grain parallel and perpendicular to the load direction were also in~ 

eluded in the experimental study. Test results expressed in tenns of 

slip modulus based on tangent and secant lines at various load levels 

are listed in Appendix C. A typical load-slip curve resulting from the 

tests is shown in Fig. 3.4. 

The load-slip characteristics between particle board and plywood 

with 6-d common nails driven through the particle board and plywood 

in two rows per face, one on each side of the center member, were also 

determined for the study of the three-layer floor specimens. For this 

series of tests, the center member and the plywood were connected by 

rigid glue. The setup of the test specimens is shown in Fig. 3.4(b) 

and the test results are shown in Appendix C. 

3.4 Construction of Floor Specimens 

The floor specimens were built on a reinforced concrete frame on 

which the load test were perfonned. A total of sixteen floor specimens 

were constructed. The details of the construction procedure can be ob-

tained by reference to the work of Penner (27) and Kuo (19). 

The joists were selected in two ways. One method was to select 

the joists from within a predetennined range of average MOE values 

using data provided by the Wood Science Laboratory. The other method 

was to select the joists randomly from the lumber supply. Plywood and 

particle board sheets were selected from the top of the supply pile, 

in order. 



..0 ..... 

..... 
•.-1 
ell 
i:: 
i,.. 
Cl) 
0.. 

"'O 
ell 
0 
~ 

150 

100 

so 
1 

80 

Tangent Modulus 

Secant Modulus 

Materials: 
8 d common nails, 
Douglas fir, 
joist and plywood 

OL--------~ _____ .,__ _____ ..._ _____ _.__ ____ __. 
0 1.0 2.0 3.0 4.0 5.0 

Deformation, 10-3 in. 

Figure 3.4 Typical Load-Slip Curve 



81 

The selected joists were then marked at their center line and 

placed on the concrete frame resting on the sill plate edgewisely ac-

cording to the normal house construction practice. The crowned edge or 

an edge with larger knots or defects was pl aced as the top edge. 

The selected plywood sheets were sawed to fit the sheathing 

configuration of each floor specimen. The plywood was placed on top 

of joists wi th face grain perpendicular to the joist span. One row 

of nails was used per joist except when a gap fell on the joist and 

parallel to the joist span. In this case, two rows of nails were used 

with one row on each side of the gap. When glue was used as the con-

nector between the plywood and the joists, the glue was applied in 

two 1/4-in. wide beads continuously along the upper joist face 

with a caulking gun. The glue was then spread evenly. After the ply-

wood was placed at the desired position, double-headed common nails 

were driven into the joists at a spacing of about 8 inches to insure a 

tight contact between the plywood and joists. The glued specimens were 

allowed to cure about two weeks. The double-headed nails were pulled 

out immediately before load testing began. 

The sheathing joints were T & G (tongue-and-grove) joints, 

tightly butted j oints, or open joints with a+ 1/16 inch wide gap. 

For some specimens, the joints were glued and tightly butted. 

One layer of part i cle board was placed on top of the plywood 

sheathing in basic floors F6 through Fll to form the three-layer systems. 

The selected particle board was sawed into the desired sizes according 

to the top sheathing layer configuration of each three-layer specimen. 

The particle board sheathing joints were staggered or doubly staggered 

f rom the plywood sheathing joints (refer to Appendix B for details). 



82 

Six penny common nails were driven through the particle board an<l the 

plywood only . Spacings of either four or eight inches were used in 

making this connection. 

3.5 Testing Equipment 

Facilities used for structural testing for this research project 

are located in the Structural Engineering Laboratory at the Engineering 

Research Center. An elevated reinforced concrete frame was constructed 

to support the test specimen. A 55-kip capacity MTS hydraulic actuator 

and its associated control equipment were used to apply load on the 

floor specimens included in this study. In this section a brief sum-

mary of the facility and their capabilities are presented. For more 

detailed descriptions, reference is made to the study by Penner (27). 

The MTS closed-loop structural testing system is essentially a 

self-controlled hy raulic loading system composed of three major 

components: the power supply, the control console and the actuator. 

The actuator is mounted on a movable beam with trolleys at ends and 

supported on a steel frame over the elevated concrete frame such that 

quick access is available to any point in the floor specimen where the 

applicaton of load is desired (see Fig. 3.5). A load cell with capa-

city of either 2.5 or SO kips was mounted on the actuator, depending 

on the load level. The control console can operate the actuator 

in either a load control or stroke control mode. Cyclic loading with 

various functions can also be generated by a function generator in 

the console. The load was transmitted to the floor through a one inch 

diameter ball bearing which was in contact with the ram of the MTS 

hydraulic loading system and a 4x4 inch steel bearing pad on the floor 

specimen. 
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The elevated concrete frame supports the floor specimen over a 

12-ft. span and allows a length of 16 ft. Along the top face of 

each 16-ft. span of the frame, a nomjnal 2x6 inch Engelmann spruce sill 

plate was grouted with 1/4-inch thick mortar at its bottom face and 

fastened to the concrete frame with bolts. The joists of the floor 

specimens rested upon these sill plates. 

Dial gages, a surveying level, and LVDT's (linear variable 

differential transformers) connected to an X-Y plotter were used to 

obtain deflection measurements at various load levels. Dial gages 

with ranges of one and two inches were placed under the joists of 

floor specimens at selected positions to measure the floor deflections 

under working l oad range and readings were taken to the nearest one-

thousandths of an inch. The dial gages were fastened to perforated 

angle irons attache to a supporting bridge across the span of the test 

area. 

During the tests to failure, engineering scales with SO divisions 

per inch were attached to the joists at positions where deflection 

measurements were desired. A Zeiss self-leveling level was used to 

take the readings of deflection after the application of each load 

increment. 

The LVDT ' s were used for some tests to obtain a continuous plot of 

load versus deflection. The LVDT contained within the actuator was 

used to plot the load deflection curve to failure for most tests. 

3.6 Testing Procedures 

The general testing procedures of the two-layered floor specimens 

used in this study is essentially the same as those discussed by Pen-

ner (27). The differences in a few details of the testing procedure 
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arc includc<l in this section. Also c.liscussoc.l is the Jiffcrcncc of the 

testing procedure used for the three-layer floor specimens. 

A concentrated load was applied at the desired location directly 

over one of the joists in the floor specimen tested. Load increments 

of SO, 100, 200 or 250 pounds were used in the range of service load 

depending the size of the joists and the arrangement of the components 

of floor specimens. The service load level was usually taken to be 

either 800 or 1000 pounds maximum. One exception was specimen 

F7-l2D24-l which was tested up to 2000 pounds since the maximum deflec-

tion of floor at that load did not exceed L/360, which is 0.4 inches 

(for the 12-ft pan specimen). 

The service load tests with the same load increments up to the 

same level were repeated three times at the same location for specimen 

FS-8Dl6-l to see if the deflections agreed for different tests and to 

see if the specimen did resume its original position aftnr the applied 

load was released. In these same tests, the load was su! tained for 

approximately ten minutes at the service load level to examine the 

effect of creep. Before testing specimen FS-8D16-1 (a glued specimen) 

to failure, cuts were made through the sheathing. Two cuts and five 

cuts were introduced in the configuration shown in Fig. 3.6 and load 

tests were performed to assess the effect of gaps in sheathing on the 

deflection of the floor specimen. A circular saw adjusted to cut just 

through the plowood layer was used and the gap width produced was near 

1/8 inch. 

For each of the three-layer floors, load tests were conducted 

after each layer of sheathing was properly constructed. Only loads in 

the elastic range were applied to the specimens after the bottom ply-

wood sheathing was attached to the joists according to the construction 
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procedure discussed previously. After the top particle board sheathing 

was attached for each three-layer specimen, load tests up to service 

load level were performed in two steps: first, the nails were driven 

through the bottom layer so that they only reached the top face of 

joists; second, the nails were driven to their full lengths into the 

joists (see Fig. 3.7). 

Finally, each specimen was tested to failure with the load applied 

at the center of the floor. The SO-kip capacity load cell was in-

stalled and engineering scales were used to replace the dial gages 

for the measurement of deflections. A concentrated load was applied in 

500 pounds increments and deflections obtain~d with a surveying level 

were recorded. The LVDT from the actuator was connected to the X-Y 

plotter to obtain a continuous load-defle~tion plot. 

Observations and sketches of the broken joists and the punch-

through of the sheathing were noted after the test to failure for 

each specimen. After the test to failure was completed, the specimen 

was dismantled. Some small samples of joists and sheathing panels of 

the tested specimen were cut, with sizes conforming to the ASTM Specifi-

cation D 2016-65 (3) and the moisture content was determined by the 

oven-dry method at the Wood Science Laboratory. 

3.7 Experimental Behavior of Floor Specimens 

The experimental behavior, in the working load range and in the 

overload load range, of the first four floor specimens constructed for 

this research project was discussed by Penner (27). Maxwell's 

reciprocal theorem and load-sharing among the joists of specimen were 

examined and load-deflection curves were plotted for each specimen in 

the elastic loading range. The inelastic behavior of the floor 
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specimens was explored in three stages: during overloads, near and at 

the initial joist failure and at final floor failure. 

For the remainder of the floor specimens, the experimental behavior 

which was similar to that discussed by Penner is not repeated here. In-

stead, in this section, the various factors which affects the behavior 

of the specimens are discussed. The floor behavior is a function of 

sheathing thickness and modulus of elasticity both parallel and 

perpendicular to the face grain, joist size and modulus of elasticity, 

sheathing joint conditions, number of sheathing layers, as well as the 

connector properties. The actual floor deflection under load falls 

somewhere between the following two extremes: (1) the joists and the 

sheathing layer(s) act as a structurally-independent member and (2) the 

joists and sheathing layer(s) act as an integral member where the inter-

layer connection is perfectly rigid. The floor response between these 

two extremes depend~ primarily upon the interlayer connector's properties. 

Joist and sheathing dimensions and properties determine how much the 

two extreme behaviors differ. 

3.7.1 Effect of Connectors 

The general effect of type of connector on the floor behavior was 

observed by comparing the floor load-deflection curves of specimens 

Fll-8Dl6-l, F3-8016-l and FS-8Dl6-l all constructed with 2x8 inch 

Douglas-fir joists spaced at 16 inches. Specimen Fll-8Dl6-l had 

glued connection (see Sec. 3.4 for the amount of adhesive used and 

the gluing process) with 1/2-in. Douglas-fir plywood sheathing and 

glued sheathing joists. Specimens F3-8Dl6-l and FS-8Dl6-l both were 

nailed with 8-d common nails spaced at eight and four inches, respec-

tively and with 3/4-in. Douglas-fir plywood sheathing. The sheathing 
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joists wore tightly butted T & G joints for F3-8Dl6-l and glued T & C 

joints for FS-8016-1. Thus each floor had somewhat different properties 

and the effect of connection indicated is only general. The load-

deflection curves of the floor center deflections are shown in Fig. 3.8. 

Although other variables also can affect the floor behavior, however, a 

general trend seen in Fig. 3.8 shows that the glue-connected specimen has 

less deflection than the specimen connected by 8-d common nails at 

8-inch spacings under the same load. 

The spacing of nails along the joists has a significant effect on 

the overall stiffness of the floor systems. Figure 3.8 also shows that 

closely spaced nail connectors tend to decrease deflection. Test results 

of specimen FS-8016-1, F2-8Dl6-l and F3-816-l shown in Fig. 3.9 show the 

tendency that the more closely the nails were spaced the less the 

deflection and therefore the greater is the stiffness. 

3.7.2 Effect of Gaps in the Sheathing Layer 

Gaps in the sheathing layer(s) are unavoidable in the common 

practice of wood construction. Discontinuities and abrupt reductions 

in sheathing stiffness are thus introduced at gaps. The presence of 

gaps in sheathing layer(s) can therefore lower the overall stiffness of 

floor. 

T & G joints and butted joints either glued or tightly butted 

were generally used in the sheathing construction of the floor 

specimens in this experimental program. Some specimens were con-

structed using joints with open gaps of+ 1/16 inch in the sheathing. 

Progressive cutting of gaps in the sheathing layer of specimen 

FS-8016-1 allows the study of the effect of gaps on the floor behavior 
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by keeping all other variables constant. The sheathing joints of 

specimen FS-8016-1 were glued when it was first constructed. Load 

tests were performed in the service load range. Two cuts, each two feet 

from the center line of the floor at the glued joints, were them made 

with a circular saw at a width of approximately 1/8 inch, perpendicular 

to the joist span. Again, a load test was performed in the service load 

range. Three more cuts were added in the sheathing to make a total of 

5 c~ts, each two feet apart. A load test was again conducted. The con-

figuration of the cuts in the sheathing can be seen in Fig. 3.6. The 

load-deflection curve at each step is shown in Fig. 3.10. It is seen 

that the gaps in the sheathing reduce the stiffness of the floor. Also 

shown is the trend that as more cuts were produced in the sheathing, the 

additional increase of deflection per cut was reduced. The percentage 

deflection increases due to 2 cuts and 5 cuts in sheathing at 1000 pound 

load level are about 40 percent and 50 percent, respectively, with re-

spect to the deflection of no gap in sheathing. 

3.7.3 Effect of Numbers of Sheathing Layers 

The modulus of elasticity and thickness of sheathing layer(s) are 

among the many factors known to affect the behavior of a layered floor. 

The addition of a second sheathing layer (in this case particle board) 

can also reduce the floor deflection appreciably. In floors F6 through 

Fll construction was completed in two stages: first, joists were 

topped with a layer of plywood sheathing to form two-layer floor 

specimens ; second, a layer of particle board sheathing was added on top 

of plywood panel to form three-layer floor specimens. Load tests were 

performed in each stage. Load tests performed on the three-layer speci-

mens were further classified as two types in the service load range: 
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(a) nails were driven through the bottom sheathing layer and barely 

into the top surface of j oists and (b) nails were driven full 

length down into the bottom sheathing layer and joists. 

The load-deflection curves at the center of floor F6 at all 

stages are shown in Fig. 3.11. The increase of the stiffness of 

floor or the decrease of deflection at the same level due to the ad-

dition of a second sheathing layer is approximately 15 percent for nails 

driven to the bottom sheathing only. The figure also shows that the 

stiffness of the floor is increased as expected when the nails attaching 

the particle board are driven on through the plywood layer to the joist 

below producing approximately a 30 percent increase. Further increase 

in stiffness was expected when nails were completely driven in because 

the additional nails crossing the joist-plywood interface increased the 

composite ac tion. 

3.7.4 Nonlinear Behavior and Mode of Failure 

The overload behaviors and the failure modes of the floor specimens 

tested were essentially the same as those described in the study by 

Penner (27). Increments of 500 pounds (sustained for approximately one 

minute to allow the taking of deflection readings) were used when 

floor specimen was tested to failure. 

As the load level increased, the joist directly under the applied 

1 oad generally failed first. The maxi.mum floor deflection at the first 

_i oi ~t foi lure was gre.:iter than L/360 (0. 4 inches for 12-ft. span) for 

the two-layer specimens and generally smaller than L/360 for the three-

layer specimens. After the first joist failure, appreciable amounts of 

additional load could still be applied to the floor specimens before 

th e sheathing was finally punched through by the applied concentrated 
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load. For detailed descript i ons of the nonl i near behavior and failure 

mode of the tested specimens, see Penner's report (27). 

It should be emphasized that this chapter describes the various 

aspects of the experimental program and discusses the observed test 

results qualitatively rather than quantitatively. The main purpose 

of this study is the verification of the mathematical floor model which 

is thoroughly discussed in the following chapter. 



CHAPTER 4 

VERIFICATION OF IBE MATHEMATICAL FLOOR MODEL 

4.1 Introduction 

The primary purpose of this study is to examine the verification 

of the developed mathematical model for wood joist floor systems in 

the range of working load. The detailed development qf the mathemati-

cal model has been presented in Chapter 2. In this chapter, the re-

sults of the verification studies of the mathematical floor are 

discussed. 

The verification process for the mathematical floor model is to 

compare the computed floor deflections using the mathematical model with 

the experimental deflections collected as described in the previous 

chapter for loads applied within the working load level. In all cases 

of the verification study, a concentrated load ranging from 600 to 1000 

pounds acting at the center of floor specimen was used. Measured de-

flections at selected positions along the centerline of the floor speci-

men (midspan) were plotted and compared with the computed results for 

each floor specimen. The percentage error of the computed deflection 

at the center of floor with respect to the experimental result was 

calculated and is presented for each floor specimen. Examples of the 

verification of the mathematical floor model and the detailed data of 

each floor specimen tested are presented in this chapter. 

4.2 Mathematical Floor Model Used in the Verification Study 

Two distinct solution techniques were used to develop the mathe-

matical floor model as presented in Chapter 2. Although the finite 

difference model can handle the varying dimensions and mechanical 

98 
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properties of each of the floor components, it is limited in that it 

can not properly treat t~e discontinuity problem created by gaps in the 

sheathing layer(s). The finite element model can, however, incorporate 

the varying dimensions and mechanical properties of the floor components 

as well as the gaps between the sheathing panels, thus enabling the 

analysis of the floor behavior with a closer simulation to the physical 

condition of the floor system. 

Computed deflections for specimen F2-8Dl6-l, having the configura-

tion and properties shown in Fig. 4.1, using both finite difference and 

finite element models, along with the measured deflection at selected 

positions across the midspan profile are plotted in Fig. 4.2. The per-

centage errors of the computed deflection at the center of floor with 

respect to the experimental value were +6.51 percent and -6.90 percent 

for the finite element model and finite difference model, respectively. 

Although the absolute percentage errors for both mathematical representa-

tions of the physical models are very close, the finite difference model 

does not include the effect of gaps in sheathing and thus predicts 

slightly less than the actual deflections. Since the mathematical 

representation using the finite element solution technique can better 

approximate the actual physical condition of the floor system, it was 

chosen as the solution technique for use in the verification study. 

4.3 Input Data of Floor Specimens 

The theoretical analysis of the behavior of each floor specimen 

requires certain data input to the mathematical model. These data 

include floor span, floor length, numbers of T-beams and sheathing 
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strips, dimensions and MOE (modulus of elasticity) values of each T~beam 

and sheathing strip along its length, the slip modulus for each inter-

layer, and the appropriate data for the gaps in sheathing. 

The floor span was 144 inches and the length 192 inches for all 

the floor specimens. The numbers of joists and sheathing strips 

chosen for the analysis varied from .specimen to specimen and were 

dependent on the floor arrangement and the locations of the sheathing 

gaps of each specimen. The selection of the values of slip modulus 

used in this study is discussed in Sec. 4.4. The MOE values of joists 

used in the verification study were the average edgewise MOE's obtained 

from tests when the joist was connected to the header with three 16-d 

conunon nails as described in Sec. 3.3.1. The MOE values of plywood 

and particle board sheathing panels used were the values obtained from 

the testing of each panel by the Wood Science Laboratory with the 

testing technique described in Sec. 3.3.2. The MOE values used for 

gaps in sheathing were 1000 psi for tightly butted and glued gaps and 

1 psi for open gaps. The tabularized detailed data showing the ar-

rangement of floor components, dimensions, MOE values of joists and 

sheathing panels, type of connectors and connector spacing for specimens 

F2-8D16-1 (a two-layer floor) and F6-8El6-2 (a three-layer floor) are 

presented in Fig. 4.1 and Fig. 4.3 as examples. The detailed data 

for the remainder of the floor specimens are listed in Appendix B. 

4.4 Selection of the Values of Slip Modulus 

The value of the slip modulus determines the degree of the com-

posite action between layers. Therefore, the choice of the value of 

slip modulus can significantly affect the theoretical behavior of the 

floor system. As was pointed out in Sec. 3.3.3, the load-slip 
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relationship for a nailed or glued connection is generally nonlinear 

(see Fig. 3.4), whereas the mathematical floor model developed in 

this study requires a constant value for the slip modulus. Ther~fore, 

selection of a reasonable value of slip modulus from the load-slip 

curve of a nailed or glued connection is very important. 

In the layered beam system study, portion of the wood floor research 

project, Kuo (19) conducted an extensive investigation on the verifi-

cation of the mathematical model of a layered beam system. For 

consistency, the slip moduli used by Kuo (19) for layered beams were 

generally adopted for this study of floors. Thus, the values of 

slip moduli used in the verification study of the mathematical floor 

model follow closely to those values used by Kuo in verifying T-beam 

behavior. The slip modulus values recommended by Kuo (19) are pre-

sented in Table 4.1. The listed values for nailed connectors are all 

for 8-inch spacing. The slip modulus for nail connectors with spacing 

other than 8 inches requires some modification from the values listed 

in Table 4.1. For the three-layer floor specimens, slip moduli were 

not the same for the two cases when nails of top layer were driven or 

not driven into the joists. Adjustment of the slip modulus values 

for nail spacing other than 8 inches and for the top layer nails driven 

into joists in three-layer specimens closely follow those used by 

Kuo (19). The slip moduli used for each floor specimen in this study 

are summarized in Table 4.2. 

4 . 5 Comparison of Computed and Experimental Results 

The data discussed in Sec. 4.3 and Sec . 4.4 were input to the 

mathematical floor model for each floor specimen. The theoretical 

floor deflections at the nodal points were obtained for each floor 



Table 4 . 1 Values of Slip Modulus, k 

Connector 8-d common nails Adhesive 6-d common nails 

Joist Douglas-fir Engelmann spruce D. F., E.S. --------

Particle board 

Sheathing D.F. E.S. D.F. E.S. D.F. E.S. 

lb/in lb/in lb/in lb/in lb/in/in 2 lb/in lb/in 

k 30,000 30,000 30,000 18,000 16,000 4,000 3,000 

Note: These values are for 8 inch nail spacing. Adjustment is made in the values for other nail spacing 
due to the difference in nail loads. 

,_. 
0 
u, 



Table 4.2 Slip Moduli, k, Used for Floor Specimens 

Floor Joists Sheathing Connectors Nails of Top Layer ~ails of Top Layer 
Specimen Not into Joist Dr iven into Joist 

k, lbs/in. k/s lbs/in./in. k, lbs/in. k/s, lbs/in./in. 

F2-8016-l 2x8 OF 3/4 OF Plywd 8-d@ 8" - - 30,000 3,750 
(Cement coated) I 

F3 - 8016-l 2x8 OF 3/4 OF Plywd 8-d@ 8" - - 30,000 3,750 
(Common nails) 

F4-8El6-l 2xl2 ES 3/4 ES Plywd 8-d @ 611 - - 23,000 .),IS.)3 

(Common nails) 
F5-8016-l 2x8 OF 3/4 OF Plywd 8-d@ 4" - - 45,000 11,250 

(Common nails) 
F6-8E16-l 2x8 ES 1/2 ES Plywd 8-d@ 8" - - 18,000 2,250 

(Common nails) 
F7-I2D24-l 2xl2 OF 1/2 OF Plywd 8-d@ 4" - - 45,000 11,250 

(Common nails) 
F8-8019.2-l 2x8 OF 1/2 OF Plywd 8-d@ 8" - - 30,000 3,750 

(Common nails) 
F9-8E24-l 2x8 ES 1/2 ES Plywd 8-d@ 8" - - 18,000 2,250 

(Common nails) 
Fl0-8E24-l 2x8 ES 1/2 OF Plywd 8-d @ 4" - - 45,000 11,250 

(Common nails) 
Fll-8016-1 2x8 OF 1/2 OF Plywd Glued - - 24 000 24.000 

1/2 ES Plywd 8-d@ 8" 30,000 3,750 3,000 375 
F6-8EI6-2 2x8 ES (Common nails) 

1/2 ES Plywd 8-d@ 8" 18,000 2,250 35,000 8,750 
(Common nails) 

1/2 OF DB 6-d@ 4" 4,500 1,125 4,500 1,125 
F7-l2D24-2 2xl2 OF (Common nails) 

1/2 DF Plywd 8-d@ 4" 45,000 11,250 50,000 25,000 I (Common nails) I 



Floor 
Specimen 

F8-8D19.2-2 

F9-8E24-2 

Fl0-8E24-2 

" 
Fll-8Dl6-2 

Note: DF 
ES 
Plywd 
PB 
k 
s 

Table 4.2 Slip Moduli, k, Used for Floor Specimens (continued) 

Joists Sheathing 

1/2 DF PB 
2x8 DF 1/2 DF Plywd 

1/2 OF PB 
2x8 ES 1/2 ES Plywd 

1/2 DF 
2x8 ES 1/2 

1/2 
2x8 DF 1/2 

= Douglas-fir 
= Engelmann spruce 
= Plywood 
=Particleboard 
= Slip modulus 
= Nail spacing 

DF 

DF 

DF 

PB 

Plywd 

PB 

Plywd 

Connectors 

6-d@ 8" 
(Common nails) 

8-d@ 8" 
(Common nails) 

6-d@ 8" 
(Common nails) 

8-d@ 811 

(Common nails) 
6-d@ 411 

(Common na i 1 s) 
8-d@ 8" . (Common nai 1 s) 
6-d@ 811 

(Common nails) 
Glued -

.. ~-

Nails of Top Layer Nails of Top Layer 
Not into Joist Driven into Joist 

k, lbs/in. k/s lbs/in./in. k . lbs/in. k/s, lbs/in./in. 
4,000 500 4,000 500 

3,000 3,750 45,000· 11,250 

3,000 375 3,000 375 

18,000 2,250 35,000 8,750 

4,500 1,125 4,500 1,125 

45,000 5,625 50,000 18,750 

4,000 500 4,000 500 

24,000 24,000 54,000 27,750 

...... 
0 
-..J 
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in this study. Each three-layer floor specimen produced two cases 

for the verification study since the specimen showed different per-

formance with the top layer nails being driven or not driven into the 

joists. Therefore, the verification study of the mathematical floor 

model is comprised of 22 testing cases from 16 floor specimens. 

The experim~ntal deflections at the midspan of selected joists 

are plotted against the computed theoretical deflections along the 

floor centerline (midspan) profile of floor for each of verification 

cases in this study. Also plotted for each case were the deflections 

at the center of floor for both the computed and experimental results 

at several levels of working load. Examples of the computed versus 

the measured results are shown in Fig. 4.4, through Fig. 4.6 for 

specimens F6-8El6-l (a two-layer floor) and F6-8El6-2 (a three-layer 

floor with top layer nails driven and not driven into joists). The 

plots of the computed versus the measured results for the rest of the 

specimens are presented in Appendix D. 

Generally, excellent agreement was obtained between the computed 

and the measured results for each floor specimen as shown in Fig. 4.4 

through Fig. 4.6. The calculated upward deflection at approximately 

the quarter point of the floor length for the computed floor deflection 

profile across midspan does not generally agree with the measured 

deflection near that location. This result may be produced by the 

crossing-beam assumption, since the sheathing strips may be thought as 

being supported by an elastic foundation (the joists). However, the 

deflection at the center area of floor (directly under the applied 

concentrated load) was much greater than anywhere else throughout the 

floor, therefore interest and attention should be focused in this area. 
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The percentage error of the computed deflection at center of 

floor with resepct to the corresponding measured deflection was cal-

culated for each floor specimen. Table 4.3 summarizes the percentage 

errors of the verification study of all the floor specimens. Generally, 

good results were obtained. The percentage errors ranged from less than 

one percent to a maximum of 12 percent. The computed deflections fluc-

tuated above and below the measured deflections (a positive percentage 

error means the mathematical model overpredicts the deflections and a 

negative percentage error means the mathematical model underpredicts the 

deflection). For the three-layer specimens, a general trend showed that 

the percentage error was less when the top layer nails were not driven 

into joists than when the nails were driven into joists. This indicates 

that the assumed increase in the value of slip modulus due to this effect 

was generally not enough when the top layer nails were also driven into 

the joists. 

The average absolute error of the computed deflections with 

respect to the corresponding measured deflections for all the floor 

specimens is 6.44 percent, whereas the average algebraic error is 

+3.24 percent. The deflection at the center of floor (directly under 

the concentrated load) predicted by the mathematical floor model were 

generally slightly greater than the corresponding measured deflections 

and are therefore conservative. The assumption made in Sec. 2.3 that 

the effect due to the torsion action of sheathing can be neglected would 

aid in producing the computed results for the mathematical floor model 

to overestimate the deflections slightly. 

Overall, the percentage errors of the computed deflections with 

respect to the measured deflections at center of floor are relatively 

small, especially when the average percentage error is considered. 



Table 4.3 Comparison of Computed and Experimental Results 

Floor Computed Deflection Experimental Deflection Load 
at Center of Floor, at Center of Floor, 1..,r Level % of Error Specimen (in.) (in.) (lbs) -

F2-8Dl6-l 0.278 0.261 1,000 +6.51 
F3-8Dl6-l 0.251 0.269 1,000 -6.69 
F4-12El6-l 0.11 2 0.1 27 1,000 -11. 81 
F5-8Dl6-l 0. 236 0.217 1,000 +8.76 
F6-8El6-l 0.270 0.260 600 +3.85 
F7-12D24-l 0.168 0.165 1,000 +1.82 
F8-8Dl9.2-l 0.296 :) 0.337 1,000 -12.17 
F9-8E24-l 0.41 7 0.395 600 +5.57 
F10-8E24-l 0.366 0.359 800 +1.95 
Fll-8Dl6-l 0.209 0.215 1,000 -2.78 
F6-8El6-2 

(Nails of top layer 0.336 0.303 800 +10.89 
not into joists) 

F6-8El6-2 
(Nails of top layer 0.352 0.326 1,000 7.98 
driven into ioists) 

F7-12D24-2 
(Nails of top layer 0.146 0 .141 1,000 +3.55 
not into joists) 

F7-12D24-2 
(Nails of top layer 0.144 

~ 
0 .132 1,000 +9.09 

driven into joists) • 
F8-8Dl9.2-2 ~ (Nails of top layer 0.284 0.278 1,000 +2.16 

not into joists) ,/"""" 



Table 4.3 Comparison of Computed and Experimental Results (continued) 

Floor Computed Deflection Experimental Deflection Load 
Specimen at Center of Floor, at Center of Floor, (,. Level % of Error 

(in.) (in.) (lbs) 
-.1 L , 

F8-8Dl9.2-2 
(Nails of top layer 0.274 0.250 1,000 +9.60 
driven into joists) 

F9-8E24-2 
(Nails of top layer 0.413 0.410 800 +0. 73 
not into joists) 

F9-8E24-2 
(Nails of top layer 0.387 0.394 800 -1. 78 
driven into joists) 

Fl0-8E24- 2 
(Nails of t op layer 0.367 0.352 1,000 +4. 26 
not into joists) 

Fl0-8E24-2 
(Nails of top layer 0.361 0.321 1,000 +12.46 
driven into joists) 

Fll-8El6-2 
(Nails of top layer 0.206 0.195 1,000 +5.64 
not into joists) 

Fll-8El6- 2 
(Nails of t op layer 0.199 0.183 1,000 +8.74 
driven into joists) ,, 

Average Absolute Error = 6.44% 

Average Algebraic Error= +3.24% 
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Therefore, the mathematical floor model developed in this study is 

regarded as having a very good accuracy in predicting the behavior of 

the wood joist floor system. 



CHAPTER 5 

PARAMETER STUDIES AND DEMONSTRATIONS 

5.1 Introduction 

As discussed in Chapter 3, each floor specimen was designed to be 

different from the others in several respects and since the effects of 

various parameters are often strongly interrelated, precise quantita-

tive information on how the several variables affect floor response is 

difficult to obtain through experimental study. However, parameter 

studies using the verified mathematical model can better isolate the 

effect of a specific variable on the floor behavior by fixing the rest 

of the variables as constants. 

The validity of the mathematical model has been proved in the 

previous chapter. In this chapter, the effect of each of the several 

parameters of special interest on the floor behavior is investigated 

and demonstrated through the application of the verified mathematical 

floor model. Computed quantitative information from parameter studies 

is presented. 

Also to be presented in this chapter are the parameter studies 

on how the various parameters of a layered beam system can affect the 

effective flange width of the beam. The mathematical model for 

effective flange width, developed in Chapter 2, is used in the 

parameter study. 

5.2 Example Floor Specimen Used in Parameter Study 

A two-layer floor specimen with dimensions shown in Fig. 2.3 

was selected as the basic floor for the parameter studies on the 

floor behavior. Fixed data included 144-inch floor span, 192-inch 

116 
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floor length, 2x8 inch nominal joist sizes and 16-inch joist spacings, 

8-inch nail spacings and one row of nails per joist. Basic data 

included a 3/4 inch sheathing thickness, a sheathing MOE of 2,000,000 

psi parallel to grain and of 1,000,000 psi perpendicular to grain, a 

joist MOE values of 2,000,000 psi and a slip modulus of 30,000 pounds 

per inch. 

The face grain of the sheathing was oriented to be perpendicular 

to the joist span in all cases. The floor was assumed to have no gaps 

in the sheathing and was idealized as containing 11 T-bearns and 11 

sheathing strips crossing each other at right angles. Simple supports 

were assumed at all edges of the floor. 

Two example loading patterns were considered. The first was 

a single concentrated load of 1100 pounds applied at the center of 

floor; the second was a uniform load of 120 psf throughout the 

floor which is equivalent to a concentrated load of 160 pounds at each 

nodal point. These load magnitudes were chosed such that if no two-

way or composite action occurred, the deflections of the center joist 

would be nearly the same for each loading. 

5.3 Effects of Parameters on Floor Behavior 

In this section, the isolated effects of connector slip modulus, 

MOE value of joists, and effective flange width on the floor behavior 

are examined using the verified mathematical floor model. Several 

different values of the parameters which effect floor behavior are 

studied. The effects of the other variables are held constant by 

inputting the fixed and basic data of these variables into the mathe-

matical model. 
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5.3.1 Effect of Slip Modulus 

The effect of slip modulus on the composite action is shown in 

Fig. 5.1 for the concentrated loading case. The midspan deflections of 

joists is plotted versus the slip modulus values. For slip modulus 

values less than about 1,000 pounds per inch, the sheathing does not 

act as a T-beam flange. Rather, the sheathing and the joist carry 

all of the load in the joist direction through nearly independent 

action. This represents the region of insignificant composite action. 

While little composite action is present for low values of slip 

modulus, two-way action exists as seen by the resulting deflections 

of the adjacent joists as shown in Fig. 5.1. For slip modulus 
6 values greater than 10 pounds per inch, essentially complete compos-

ite action is present and the joist plus effective flange behave nearly 

as a rigidly-connected beam. Consequently, the deflections are reduced 

by a substantial amount. Values of slip modulus between 103 and 106 

pounds per inch represent the region of incomplete composite action. 

Both significant composite action and interlayer slip occur in this 

region. The slip moduli of currently used structural connectors, except 

very rigid glues, fall in this range. Thus, either by the neglect of 

interlayer slip or the assumption of fully composite behavior for the 

commonly used connectors can lead to gross error. 

Similar behavior is observed for the same floor subjected to 

uniform load, as is shown in Fig. 5.2. Fairly uniform deflections are 

noted for the joists. The small differences in deflection of joists 

are due to the fact that while the same load is applied to each 

joist, the sheathing carries a portion of the load to the supports 

at the ends of sheathing strips. 
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5.3.2 Effect of Joist MOE 

One of the mnjor parameters affecting the floor hcha.vior i s 

the MOE value of joists. Fig. 5.3 shows this effect on the floor 

deflections for the case of a concentrated load at center of floor. 

The joist MOE-deflection curves are seen to be very sensitive in the 

low joist MOE range (less than 106 psi) and become less sensitive in 

the high joist MOE range (greater than 2x106 psi). As the joist 

MOE increases from 106 psi to 2xl06 psi with all other parameters 

being constant, the midspan deflection of the loaded joist decreases 

by 40 percent. The MOE values of the Douglas-fir and Engelman spruce 

joists used in the experimental program of this study generally fall 

between 106 and 2xl06 psi. The nonlinear deflection versus the joist 

MOE behavior is due to the two-way interaction of T-beams and sheathing 

strips. Similar behavior is observed for the same floor subjected 

to uniform load as seen in Fig. 5.4. 

5.3.3 Effect of Effective Flange Width 

The plot of floor deflections versus the effective flange width 

for the case of a concentrated load at center of floor is presented in 

Fig. 5.5. The 16-inch flange width corresponds to the joist spacing. 

It is seen from Fig. 5.1 that the deflections are relatively insensi-

tive to the effective flange width. For example, reducing the effective 

flange of the loaded T-beam by 50 percent from 16 to eight inches, which 

is equivalent to assuming that only 50 percent of the available flange 

is effective in carrying load, results in only an eight percent increase 

in deflection of the loaded joist when the other parameters are held 

constant and even smaller percentage increases are noted for the 

other joists. Results of the study of effective flange width 
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indicate that for the range of parameters studied, the flange is fully 

effective at some distance away from the ends and gaps in sheathing, 

which is consistent with the study by Amana and Booth (2). 

A similar trend for the behavior of the effective flange width 

versus the floor deflections for the uniform load case is illustrated 

in Fig. 5.6. 

5.4 Parameter Studies of Effective Flange Width 

The mathematical floor model developed in Chapter 2 simulates a 

physical wood joist floor with two sets of crossing beams: one set is 

the T-beams consisting of joists topped by a sheathing flange, the 

other set is the sheathing strips consisting of sheathing only. Due to 

the wide flange of the T-beam, shear lag may occur in the flange when 

subjected to loading. If ordinary beam theory is to be applied to 

the T-beams, effective flange width must be obtained and used for the 

analysis. In this section, the effects of several important parameters 

on the effective flange width of a T-beam are investigated using a 

computer program developed from the theoretical solution derived i~ 

Sec. 2.2.3. 

The basic T-beam data used for this parameter study included a 

1.5 x 9.25 inch actual joist size, a 3/4-inch thick sheathing with 

24-inch available flange, a joist MOE of 2 x 106 psi, a sheathing MOE 

of 1.2 x 106 psi parallel to the surface ply grain and of 5 x 105 psi 

perpendicular to grain, a sheathing shear modulus of 80,000 psi, and 

one row of connectors spaced at 8 inches with a slip modulus of 

30,000 pounds per inch. The MOE values and the shear modulus value 

for the sheathing were chosen from the average values of the data for 

3/4-inch Douglas-fir plywood panels obtained by the Wood Science 

• 
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Laboratory. In all cases of the parameter study, a 180-inch span for the 

simply supported T-beam was used and the face grain of sheathing was 

oriented perpendicular to the joist span. No gaps were assumed through-

out the sheathing. Two types of loading were used for the study, a 

100-pound concentrated load applied at midspan and a uniform load of 

1 pound per inch distributed along the joist . 

The effective flange width of a T-beam varies along the joist 

length due to varying interlayer shear stress distribution. Generally, 

the effective flange width is greater toward the ends of beam and 

smallest at midspan for concentrated load at midspan and vice versa 

for uniform load. For simplicity the boundary effect at the ends 

is neglected and only the effective flange width at midspan is reported 

in this study. 

5.4.1 Effect of Sheathing Thickness 

The relationship between effective flange width and sheathing 

thickness with the other parameters held constant is presented in 

Fig. 5.7 where the percentage of effective flange width with respect 

to the available flange width is plotted against several different values 

of sheathing thickness for the concentrated load at midspan. The 

effeGtive flange width ratio falls between 87 percent and 89 percent for 

sheathing thickness up to 1.75 inches and approaches 89 percent as an 

upper limit. For most wood structures, plywood of thickness from 3/8 

to 1 inch is used with the corresponding effective flange width ratio 

ranging from 88.38 percent to 88.75 percent, only a 0.37 percent 

variation. Therefore, the effective flange width can be considered as 

independent of the sheathing thickness. 

Similar behavior is observed for the uniform loading case as 

shown in Fig. 5.8. The flange effectiveness almost remains constant 
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except when sheathing thickness is very small where a slight increase 

of effective flange width ratio occurs. Effective flange width may, 

therefore, be considered to be independent of sheathing thickness 

for the uniform loading case as well. 

5.4.2 Effect of Joist Depth 

A plot of the effective flange width ratio versus joist depth is 

presented in Fig. 5.9 for a concentrated load at midspan. The effective 

flange width ratio increases as the joist depth increases. A variation 

of about 5.7 percent in effective flange width ratio is seen for joist 

depths ranging from nearly zero to 14 inches. For most floor construc-

tion, joist depth varies from 5.5 to 13.25 inches which produces approx-

imately a 1.2 percent variation in the effective flange width ratio. 

Therefore, joist depth is considered to have small influence on the 

effective flange width. 

For the uniform load case, the effective flange width ratio 

decreases from 92.9 percent to 92.2 percent when the joist depth in-

creases from nearly zero to 14 inches as shown in Fig. 5.10. For joist 

depths ranging from 5.5 to 13.25 inches as most commonly used in wood 

floor construction, a variation of only 0.2 percent is experienced for 

the flange effectiveness. Consequently, joist depth is considered to 

have no appreciate effect on the effective flange width for uniform 

loading. 

5.4.3 Effect of Slip Modulus 

Fig,1re 5.11 shows the variation in the effective flange width 

ratio for a T-beam with respect to variation in the slip modulus of 

connectors for a concentrated load at midspan. The effective flange 

width ratio remains constant at 90.7 percent when little interaction 
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occurs between the flange and the web as seen in Fig. 5.11 when the slip 

modulus ranges from one to 1000 pounds per inch. When the degree of 

interaction between layers increases as the slip modulus exceeds 

1000 pounds per inch, the effective flange width ratio decreases 

slightly. For all structural connectors except very rigid glues, 

the effective flange width ratio is in the region of from 90 percent 

to 86.2 percent (corresponding to the slip modulus between ·105 to 106 

pounds per inch), a variation of 3.8 percent. Therefore, the effect 

of the slip modulus of ordinary connectors on the effective flange 

width ratio can be regarded as negligible. 

For the uniform load case (as shown in Fig. 5.12), the effective 

flange width ratio remains constant at about 92 percent for a low value 

of slip modulus ranging from one to 1000 pounds per inch: Less than 

one percent of change is seen in the effective flange width ratio for the 

slip modulus varying from one to 106 pounds per inch. For the ordinary 

structural connectors, a variation of about 0.8 percent is experienced. 

Therefore, the slip modulus is considered to have negligible influence 

on the effective flange width for uniform load. 

5.4.4 Effect of Sheathing MOE 

The sheathing MOE values, both parallel to grain and perpendicular 

to grain, and the shear modulus value of plywood are interrelated. A 

ratio of 15:6.25:1 was assumed for the MOE parallel to grain, MOE 

perpendicular to grain and the shear modulus for the study of the 

effect of sheathing MOE on the effectiveness of flange. This ratio 

was obtained from the average data on 3/4-inch Douglas-fir plywood 

panels tested py Wood Science Laboratory. Figure 5.13 shows the effect 

of sheathing MOE on the effective flange width ratio for the 
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concentrated load at midspan. Approximately constant effective flange 

width ratio of 83 percent is seen for low MOE values, less than 1000 psi, 

for sheathing parallel to grain and an increasing effective flange width 

ratio up to about 89 percent when the MOE of sheathing parallel to grain 

increases to 106 psi. For most of the structural plywood a value of 

only 1.4 percent of change in the effective flange width ratio is seen 

for the sheathing MOE parallel to grain ranging from 105 to 106 psi. 

No appreciable effect needs, therefore, to be assumed for the sheathing 

MOE on the effective flange width. 

For the uniform load case (as shown in Fig. 5.14), an even smaller 

variation of the effective flange width ratio is seen with respect to 

the sheathing MOE. For most of the structural plywood, a range of 

0.4 percent of the change in the effective flange width ratio is ex-

perienced. Consequently, this effect may be neglected for uniform load 

as well. 

5.4.5 Effect of Available Flange Width 

The most important parameter that affects the effective flange 

width is the available flange width as shown in Fig. 5.15 for the 

concentrated load case. The effective flange width ratio increases 

toward 100 percent as the available flange width approaches zero and 

decreases down to about 53 percent as the available flange width in-

creases. to 80 inches. The greater the available flange width is, the 

less efficient the flange becomes. Approximately the same behavior 

is observed for the uniform load case as shown in Fig. 5.16. 

For simplicity, straight lines can be used to approximate 

the curves in Fig. 5.15 and Fig. 5.16. The recommended equations for 

an approximate linear relationship between the effective flange 
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width ratio and the available flange width are presented as follows: 

For concentrated load at midspan, 

E = 100 

E = -0.76w + 

E = -0.45w + 

108 

89 

for w < 10 in. 

for 10 < w < 60 in. 

for 60 < w < 80 in. 

For uniformly distributed load, 

where, 

E = 100 for w < 16 in. 

E = -0.73w + 112 for 16 < w < 80 in. 

E = effective flange width ratio, we/w, %, 

we= effective flange width, in., 

w = available flange width, in. 

(5. la) 

(5. lb) 

(S.lc) 

(5. 2a) 

(5.2b) 

In actual design practice, uniform load is used as the design 

criteria for most wood joist floors. The effective flange width 

ratio for the commonly used joist spacings in wood floor construction 

is recommended in Table 5.1 for the uniform load case using the results 

of Eq. (5.2). 

Table 5.1 Recommended Effective Flange Width for Uniform Load 

Joist Spacing, in. Effective Flange Width 
Ratio, w /w, % e 

16 100 

24 94 

36 85 

48 77 

The effective flange width ratio for the concentrated load has 

slightly different values from those for the uniform load case and 

can be evaluated from Eq. (5.1). The resulting effect of effective 
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flange width on the deflection of a typical floor can be evaluated by 

reference to Fig . 5.6 in Sec. 5.3.3. 



CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The theoretical development of a mathematical model of wood joist 

floor systems using both finite difference and finite element tech-

niques has been presented in this study. This model simulates the 

floor system as two sets of crossing beams: one set consists of T-

beams made of joists and sheathing with effective flange width and 

the other set consists of sheathing strips perpendicular to the joists. 

Torsional effects of the sheathing are assumed to be negligible. The 

theory developed for layered beam systems with interlayer slip is 

applied on each T-beam or sheathing strip and compatibility conditions 

are invoked to compute the floor deflections at the crossing points. 

While the finite difference technique can not properly handle the 

discontinuity problem caused by the gaps in the sheathing, the finite 

element technique is able to incorporate this effect as well as the 

different size of each beam and varying material properties along 

the length of each beam, in evaluating the floor behavior. 

Due to the shear lag phenomenon in the flange of T-beams used to 

approximate the floor, effective flange width instead of the actual 

available flange width must be used for the T-beams to allow the 

ordinary beam theory to be applied for the T-beams. The theory of 

effective flange width of a wide flange T-beam with interlayer slip 

therefore, also has· been investigated and evaluated. 

Due to the orthogonal orientation of the adjacent veneers of 

plywood, its mechanical properties are different when subjected to 

different types of loading. The detennination of the transformation 
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constant, which converts the effective modulus of elasticity in 

bending of plywood to the effective modulus of elasticity for axial 

loading has been presented and evaluated. 

A total of twenty-two full-scale floor tests were conducted 

1n the experimental phase of this study to supply the experimental 

demonstration of the validity of the mathematical floor model. Of the 

twenty-two tests conducted, ten were two-layer floor systems and 

twelve were three-layer floor systems. Furthermore, of the twelve 

three-layer floors tested, half of them were with the top sheathing 

layer nails driven into the joists, the other half were made with the 

top layer nails driven into the bottom sheathing layer only. The 

material properties of all the sheathing panels of the tested 

specimens were premeasured by the Wood Science Laboratory using non-

destructive testing techniques. The joist MOE (modulus of elasticity) 

values were determined during the construction of floor specimens. 

Most floor specimens were constructed with nails connecting the joists 

and sheathing layers, while selected floor specimens were connected 

with elastomeric adhesives. The slip modulus curves for various 

types of connection were also determined by Wood Science Laboratory. 

Verification of the mathematical floor model was achieved since 

generally excellent agreement between the measured deflections and 

the computed deflections at the centerline of the floor was obtained 

for each floor specimen. The average absolute percentage of error of 

the predicted results by the mathematical model with respect to the 

measured results was only 6.44 percent while the average algebraic per-

centage of error was +3.24 percent. The plus sign of the average alge-

braic percentage error indicates that the predicted deflection at center 
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of floor by the mathematical model is generally slightly greater than 

the measured deflection, and thus the floor model is generally conser-

vative. These results are, at least, partly due to the assumption 

made in neglecting the torsional rigidity of the sheathing. 

Floor deflections depend to a considerable degree on the values 

of the slip modulus. In the working load range the assumption of 

a linear load-slip relationship predicts the floor behavior with 

good accuracy as seen in the verication study of the model. Yet, 

with the load increased to the overload stage, greater discrepancy is 

introduced by using a constant slip modulus. This difficulty re-

sults from the linear floor model being unable to incorporate the 

nonlinear load-slip relationship of connectors. Modification of the 

mathematical floor model to include the non-linear load-slip charac-

teristics is recommended as one aspect of a future study and would 

result in a better depiction of the floor behavior at a load levels 

beyond the working load range. 

The isolated effects of some major parameters on the floor 

behavior were investigated using the verified mathematical flood model. 

The effect of the slip modulus value was seen to be very important in 

the practical range of incomplete composite action. The effect of the 

joist MOE was very critical on the floor behavior. Effective flange 

width appears to have a limited effect on the floor behavior. A reduc-

tion of 50 percent of the effective flange width induced only an eight 

percent increase in deflection of the loaded joist. 

Parameters studies on effective flange were accomplished by 

examining the effect of several major parameters on the determination 

of the proper flange width of T-beams. Sheathing thickness, joist 
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depth, slip modulus of connectors and sheathing MOE in the normal 

range were all observed to have small effect on the effective flange. 

The only parameter which had a substantial effect was the available 

flange width . . For the uniform distributed load case a 16-inch or less 

available flange width may be considered fully effective and a 24-inch 

available flange width was recommended to have an effective flange 

width of 22.5 inches. Approximate linear equations were recommended 

for computing the effective flange width as a function of available 

flange width for both concentrated load and uniform load. 

In conclusion, the verification studies of the linear mathematical 

floor model showed that the model can predict closely the load-

deflection behavior of two and three-layer wood joist floors in the 

working load range. The study of the limiting cases using the floor 

model showed that traditional design practice overestimated the pre-

dicted deflections of the floor model and that both the composite and 

two-way action should be included for a correct representation of 

the behavior of floor systems. The parameter studies using mathemati-

cal models give an improved understanding of how each parameter affects 

the floor behavior and the effective flange width of a T-beam. The 

verified mathematical floor model and the other aspects developed in 

this study can lead the way to a rational design procedure for wood 

joist floor systems and will, therefore, allow more economical 

design and more efficient use of material in the wood joist floor 

construction. 
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APPENDIX A 

TABLE OF MOE TRANSFORMATION CONSTANT FOR PLYWOOD 



Table A. l Value.s of MOE Transformation Constant of Plywood 

Plywood Thickness 
Species in. 

1/2 
Douglas-

Fir 
3/4 

1/2 
Englemann 

spruce 
3/4 

Note: (MOE) axial force 

Surface At 
ply 

in2/ft 

11 3.060 

1 3.060 

11 4.435 

1 4.563 

11 2.641 

1 2.641 

11 3 . 998 

1 2. 728 

= K* · (MOE) b d. en 1ng 

A It I gr gr 
in2/ft in4/ft in4/ft 

6.0 0.1072 0.125 

6.0 0.0183 0.125 

9.0 0.2682 0.422 

9.0 0.1301 0.422 

6.0 0.0781 0.125 

6.0 0.0120 0.125 

9.0 0.2105 0.422 

9.0 0.0794 0.422 

K* = 

A ·I t gr 
A . I gr t 

0.5947 

3.4836 

0.7753 

1.6445 

0.7045 

4.5850 

0.8905 

1.6110 
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APPENDIX B 

DETAILED DATA OF FLOOR SPECIMENS 



1q2" 
48'' 48" Joist Number 

No t:cp layer 

A B 
"" - ---See Det:a.il ! 

"A'' II 
" 

C D E ~ 
A --- ----- - A @ 

I<) 

JJ ' ! ! ! ! ' ' ! ,\ ~l 
~ 12@ /6 11 = 1q2 11 ~ 

Section A-A 
F 6 ---

Plan of Bottom Sheathing Loya r Plan of Top Sheathing Layer 
8 f LI.!' .. 

\'.() 

T~~ 
(ID 

.doints I · I " I 'It-
I .. 

• I ~ 

I <:() 

I • I © 

II 
3/4 oF plywood 

Material Property Joist Number 
I 2 3 4 5 6 7 8 9 10 ll 

2x8 Actual Size, in 11.49 !.48 1.47 /.4(/ 11.48 1.48 1.44 1.47 J.46 /.48 / .SI 
width x depth) " IC " " ,, )( " )( X .. " 

DF ~24 7.14 7. 21 7.'22 7./7 7.20 7.o5 7.24 7.17 7. ?./ 7-26 

joist Average MOE II 2.4-I 2.56 2.42 2.54 2.46 /.70 1.38 /. 76 l.t.3 /.8S 1.87 
Grain, 106 psi 

Joist Data Detail "A11 Section 8-B 

- 40 ~ Average MOE, 10 ti pit 
~ 

.,. 
i C> 0 i-!i ·.: a. >- 0 A B C D E F G H 0 i ..J (!) .~ II ...L. II .L II _L II _L 11 _L II .L II ..L II J.. 

3/4DF 3/4 ..,.~~ Sd 
/.38 a. SI 1.46 a.56 /.40 0.53 a42 !.4-0 0 .53 /.40 /.42 0.59 Bottom plywooc: '!nails /.3/ ass - -

·,a;- A" 

Top - - - - - - - - - - - - - - - - - - - -
Sheathing Data 

Figure B, I Layout and Data of Specimen F3- 8016-1 



48" Joi It Number 
A - _§_ 

See Deta.il 
"A" 

No iop layer A 
C --- D E - - Section A-A 

F G --- -
Plan of Top Sheathing Layer Plan of Bottom Sheathino Layer 

1. .1 ., 
\() 

3/4-11 ES plywood I @ 

Material Property Joist Number 
I 2 3 4 5 6 7 8 9 10 11 

2 X /2 Actual Size, in ~.52 1.52 1.52 I.SI I.SO 1.52 1.50 I.SI I.SO /.SO 1.53 
>( I( "' " )C 'I( " )( )( J( X 

ES width x depth) IJt.21 11.2.0 //. /3 II.SI //.23 /1./4 11.18 1/.20 II.OB 1/.27 11.18 

j olst Average MOE II I. 3/ 0.'12 0.87 /.35 J.-:18 /.39 I.IS 0.97 1.09 0.98 /.0& 
Grain, 106 psi 

• • I :,. 

I IV) 

I ~ 
I-' 

• I u, ..,. 
I 't 

~ 

I • I i 

Joist Data Detail 11A11 Section B-B 

- Cl) .. Average MOE, 10 '> p11 .. 4'I i C> 0 a, ·~ Q. >- ii-~ 0 A B C D E F G H 0 i (!) 1111 
...J ,Q II J... II ..L II ..L II .l.. II .L II ..L II .1. II .l 

3/4ES SIB ;~~ Sd 
Bottom tplywoocj na.il~ /.29 o.42 /.39 IJ.40 1.37 tJ.39 1.49 o.4o /.37 0.39 /.48 o.46 /. "29 tJ.44 - -

@ 6" 

Top - - - - - - - - - - - - - - - - - - - -
Sheathing Data 

Figure B,2 Layout and Data of Specimen F4-12El6-I 



1q2" 
48'' 48" 

A .-12._ - See Detail 
"A" 

No top layer A C D IE --- --- ---
-L. G ----

Pion of Top Sheathing Loyer Pion of Bottom Sheothino Loyer 

Material Property Joist Number 
I 2 3 4 5 6 7 8 9 

2><8 Actual Size, in /.47 /.47 I.SO 1.4-Q /.45 I .SI 1.49 / • .SO I.SI 

width x depth) " K X K " )( )( )( )C 

D~ 7.'2./ 7.21 7.29 7."22 7.ob 7.'29 7.23 7.27 7.2i! 

joist Average MOE II /. 29 1.24 1.22 /AS /.SI:> 1.21 1.44 1.08 1.53 
Grain, 106 psi 

~ 

l 
II 

"' 
A 

q) 
'q-

@) 
1'? 

10 
/.~ 

)< 

7.o4 

/.42 

J o i I t Num btr 

1, ! ! ! ! ! , ! ! ,t ~ l 
~· 12@ 16 11 = 1q2" .. , 

fl 
1.48 

)C 

7.'26 

/ .0/ 

8d 

Section A-A 

I 
I 

I I 
I • I 

3/411 DI=- plywood 
.glued sap 

Joist Data Detail 11A11 
Section B-B 

- Cl) .. Average MOE, ,oti p11 .. Cit .2 C) 0 • ·.: a. I ,. C • 0 A B C D E F G H 0 i 11-~ ..J (!) 
II ...1.. II ...L II ...L II ...L II ...L II .l. II j_ 11 .l 

3/4 OF 3/4 s/ue.d Sd 
/.3/ /.29 k::>.S6 1.56 Bottom plywood nails O.S2. /.::.z5 0.53 o.SS /.25 0.53 /.33 o.se. /.21 o.~I 

12r14.• - -
Top - - - - - - - - - - - - - - - - - - - -

Sheathing Data 

Figure B. 3 Layout and Data of Specimen FS-8016-1 
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I ~8" I 48" 4811 48'' :\ · · · I · ·I ... 
192" 

co 
V 

'24" ?4" ?4" 48 11 2411 ?4" 24''1 f- ·11:.:!·I- ·I· ·I- , .. ·I- 4
• 

A B C - - ---
0 E F 

Joist Number --
_A__ --L :: ! D O ffl D O D D l 

I 2 3 4 5 6 7 - ---- -
V 
V: A -a, 

V 

See C,ea,.il 'A" 
.-.H..._ ....L 

Plan of Top Sheathing Layer 

Material Property I 2 
,Z,c/2 Actual Size, In. I.So ;_4q 

(width x depth) K X 

DF //. /0 /1 . 07 

joist Averaoe MOE 11 
Groin, 106 psi 1.47 1.58 

A 

I 
C D E ::: ---- - -- ,. 8 <iii 24" = 192" .1 

F .. G - ,_ ..... 

Section A-A 

1//DFP8 I • I ~ 
Plan of Bottom Sheathing Layer I I @ 

huHes:Jj I 
f-ig},t • I 

II 1/2 OF plywood 

Joist Number 
3 4 5 

1.49 1.48 /.SI 
J( )( I( 

II. OJ //. 12 11. /2 

2.:Yl /.39 /. 68 

6 
I . SI 

" /I. lb 

/. 37 

7 
I.SI 

X 
1/.25 

1.31 

.joist 
8d ----1"""41l I 

common 
no.ils@4!' 

Joist Data Detail 11 A11 Section 8-B 
en ... 

106 psi 
0 :.~ 0 Average MOE, 

~ ~ i C> 
~ i C, A B C D E F G H I J K L 
0 (!) 
..J I~ .2i II .J. II .J. II .J. II .1. II .L II J. II .l. II .l. II .L II .L II .L II J. 

l/2DF 1/2 bl.lfkd Sd 
Bott~ plywood 1/t /,' 9'1/' 

no.ifs /..83 ~23 /.62 a%4 {.l.4 o.25 /.79 a:22 /,/,f b.25 '·"' 0.24 ,.,6 o.24- - - - - - - - - - -
ta.i4-" 

Top l/2DF ,;~ bufled 6d 1.1.61' c.46 PB '1oi/s a.60 o.*8 O.&o o.48 o.48 o.45 o.34 o.'35 k>.62 ~.SI ofl-5 o.34 "-~ L>..3.5 o.1,1. IJ,SI lo.45 o.35 a!l-5 435 a_g o.3.5 no 8"'!' '® 4" 

Sheathing Data 

Figure B. 4 Layout and Data of Specimens F7-12D24-I and F7-12024-2 
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,q2" 
1, q_2.'.l,,£

1
,9.2·~q_i.

1 
38-4 ••• 1,9_t·1,'/.gr~:z"r-~·1 

A B C ---- -
" 0 CX) 
'} --- __g_ F 

See Detai I '~'' -
~ 

'It-
~ ,. 

G H I:() 
~ ........ -
.. J i - K L --- -

Plan of Top Sheathf no Layer 

Material ! Property I 2 3 

2x8 Actual Size, in. /.58 I. SO 1.50 
(width x depth) IC .I( J( 

OF 7.'2/ 7.20 7. 14 

joist A'ierage 'OE /.83 2.41 2. 31 Grain, I psi 

Joist Data 
co .. .. C, co 0 
Cl ~ i C) -~ cc ,... 

i 0 A 
0 iS-- C) • ..J ;e .~ II J. II 
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1q2" 

A B ---- ---
C 0 E - --- -

F G ----- --

--
"' 

.. 

,_ ... 

Joist Number 

1uuunuunnm1 
:123456789' 

I- IO @ ,q_ '2 11 == 1q211 -1 
Section A-A 

11211 
DI= P8 

1f2" 01= plywood 

Plan of Bottom Sheathing Layer 6d common 
nails 

Joist Number 
4 5 6 7 8 

1.49 /.48 1.48 /.48 I.SI 
1( " )( J( 1( 

7.25 7.30 7. IC/ 7.29 7.24 

2.IS 2.01 2 .58 2.08 2.'27 

Averaoe 
B C 0 E 

.l. II l. II ..L II 

9 
/.50 

"' 7.30 

,_q4 I 
MOE, 

F 
.1. II .L 

'=id common I 
nails I • 

,~ 
I ~ 
1@ 

"A" _Qet ai I 

1ocs psi 
G H I 

II l. II l. II .l. 

-:joist 
8d c.ommon 
no..ils@8II 

Section B-B 

J K L 
II .l. II ..L II .1. 

1/2DF 1/2 IO.ZS io.a6-Botton plyw(X)( 0/.'gtJ.P no.ifs 1/.58 1.41 IJ.25 lo.27 !t.90 ~.24 ~25 la27 11.61, lo.24 II.so 'a.21 - - - - - - - - - -
ltmA" 

Top V2 OF huffed 6c! ~62 PB t/2 -ti91d: no.i Is ~l,2 lo.SO io.,2 !(,.So {).50 ~65 '().SI o.S8 lo.47 ~65 a.SI ltJ.~z 1,().5/ I0.41 lo.3S o.62 ,,_51 I0.6Z 'o.So lo.62 D}iO 1.,.62 4SO 
@e.'' . Sheathing Data 

Figure 8,5 Layout and Data of Specimens FS-8019.2-1 and FS-8019.2-2 
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!;4" 24" 24'1 4811 2411 ?411 ?4fll f ·I- ·I- ·I· ·I- ·l., it=-· 
A B C -- - ----

0 - E --- F -
See Oeta.il ':.\" 

-.1:L -L 

19211 

-.A__ ~ 

C - D E ---- ---A 

_f .. G - .. 
Pl an of Top Sheathing Layer Plan of Bo1tom Sheathing Layer 

Material Property 
Joist Number 

I 2 3 4 5 6 1 
2><8 

Actual Size, In. /.4-8 I.SI I.SI 1.48 I. 51 /.50 /.50 
(width x depth) 

>( K X X X K X 

ES 7.13 7. lb 7. 1q 7.17 7 . '2/ 7.24 7 . 1S 

joist Average MOE II 
/. lb J.48 1.41 1. 25 /.6C/ /.44 Groin, 106 psi /. (,4 

Joist Data 

- "' ~ Averac;ie MOE. ... -~ :.~ Q. i G> 
>. j " A B C D E F 
0 I~ (!) 

I~ II .L II .L II .L _. II .L II .L II J. 
1/2 E.S 3/8 buffed 8d 

/.5i Bottorr plywood J/ti.'S6P n(l.j/S J.45 o.zJ o.~3 /.47 ~.21 / • .$3 11!.73 /.+7 ',o.21 [.4-2 'o.t2 
Iii:', ,pf' 

Top l/2DF 1/z l,u+/ed 6-d 
PB -ti9M: ne,.i/r. o.4-Z 0. 32 0.57 'o.47 lo.4-1 ~.32 la.44 ~.34 o.58 lo,47 tJ.44 0.32 

@8'' 

Sheathing Data 

Joist Number l D D fl n m u D l 
I 2 3 4 5 6 7 

1. 8 (!II 24" = 192" .1 
Section A-A 

Detail "A" 

106 psi 
G H I 

II .L II ..L II 

1-59 'O: Z2 - - -

1/211 £5 plywood 

Bd 
c.ommon 
nails 
@8" 

Section B-.B 

J K 
.L II .J. II .L 

- - - - -
II 

-

L 
J. 

-
b.44- "·34 i,o.+s lo.34 i'I.,# b.3'1 I! 4a o.32 lo.57 lo.47 o..42. b.32 

Fioure B. 6 Layout and Dato of Specimens F9-8E24-I and F9-8E24-2 

t-" 
V1 
00 
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V 
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S~e Deta.if ')1." 

_Ji_ ~ 
A 

C D E = ---- ----
...... ---- F ,,, G .. 

--
Pion of Top Sheathing Layer Plan of Bottom Sheathing Layer 

Material Property Joist Number 
I 2 3 4 5 6 7 

2X8 Actual Size, In. ,.so I.SI I. S2 !.S2 1.52 1.52 ,.so 
(width x depth) 

)( )( J( " " )( >( 

ES 7.15 7.24 7.22 7.22 7.25 7.'24 7.20 

joist Average MOE II 
I. 6& /. t,Z /. 2o /.4q 1.31 /. '25 /_4.q Grain, 106 psi 

Joist Data 
en .; 

0 :.~ 0 Averaae MOE. .. i «> I ~ 
>, 0 A B C D E F 
0 

~ 
(.!) ! II .J. II .J. II .J. .J II .J. II .J. II J. 

Sci. 

Joist Number ! D D U D O D O ! 
I 2 3 4 5 6 7 

1. 8@ 24" = 192" .1 

I I 
6d...-r""·, 

c,ommon I 
n4.its I I • 

Detail 11 A11 

106 psi 
G H 

II .l. II .1. 

Section A-A 

I 
II .l. 

8d--..:, 
c,omnu,n 
na.ils@4'1 

Section 8-B 

J K 
II J. II .J. II 

L 

1/2 D/: 1/2 but-W lo.15 Bottom plywood 14lsap n4,j/S /.54 /).26 ,.n '(;>.2, f.83 o.~3 /.M a:23 I.B3 0.:23 /.76 I.So o.25 - - - - - - - - -
lr,n 4" 

(,.d. 

J. 

-
Top l/2DF 

1/2 
bll+kd 0.32 ~6.3 PB -ti9ht" /lo.ii~ 0.42 o.32 o.S7 ",t>.47 ~58 o.47 0.5'B ~.+7 1).6/ 'rJ.5/ lo.44 0.44 a.34 't(),51 0,44 lo.34 i,a.42 ~32 0.'57 o.47 'v.-1-t 0.32 

© 4" 

Sheathing Data 

Figure B. 7 Layout and Data of Specimens FI0-8E24-I and FI0-8E24-2 
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3211 /6N/611 64" 1611 161 32 11 

.. A B C ~ --- ----- ---
E F ---See Dei:o.il .......... 

:::: "A" "'" ~ .... G H I - --- -
J .JL L - ....._ 

Pion of Top SheothlnQ Layer 

Material Property I 2 3 

2x8 Actual Size, ln. I.SO I.SI l.4q 
(width x deoth\ 

X )( ;( 

OF 7.23 7.10 7.13 

j ol st 
Average MOE// 1.64 2.20 2.40 Grain, 106 psi 

A B --- ----
C D E 
~ ~ -

F G ------
Pion of Bottom Sheathing Layer 

Joist Number 
4 5 6 7 8 9 10 

1.46 1.50 /.50 /.50 1.50 1.49 1.48 
X X X )( X )( X 

7.25 7.22 7-21 7.24 7.27 7.20 7. 13 

1.54 2.15 2.57 2.IZ /.5312.89 2.31 

Jo I st Number 

-,!U U U O ~MU Um OH,! l I 2 3 4 5 6 7 8 9 10 II · 

~ 1- 12 @ 16'1 :::. 1'1211 ... / 

II 
1.48 

>( 

7.10 

2.12 

section A-A 

su 1e .. ! •.,UQJ 
1@ . , 

¾-
. I ;. 

0d o/"md" I :::: no.,/s I io I. I @ 
doi.st 

Joist Data Detail 11 A 11 Section B-B 

lo, 0 i~ I Averooe MOE, 1n6 psi 
G> "i: Q. A B C D E F G H I ::a,.. i 0 J K L 
j ~ (.!) II .l. II .l. II .l II .l II .l II .l II J. II .l. II ..L II .L II .L II .L 

1/2DF glued glue 1.2b 0.'22 /.b3 (l. '26 J.48 o.z6 /.&7 a24 1.48 0.26 l.4Q 0.24 1/.50 o.21, Bottom plywood 1/2 - - - - - - - - - -
1/2 OF butted bCl 

0.4-i, Top " nails lo.S'S ~47 o.1:,2. a.so o.44 o.34 'i0.47 0.3s 0.34 o.5B to.47 o.58 '0.47 ~-42 0.35 o.4S o.34 ().bZ o.so k,.62 ~So b.&2 o.!,o 
PB 1/2 t/t6 gap @ 8" 

Sheathing Data 

Figure e. 8 Layout and Data of Specimens Fll-8016-1 and Fl 1-8016-2 
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APPENDIX C 

AVERAGE CONNECTOR SLIP MODULI VALUES 



Table C.l Average Connector Slip Moduli Values 

Load D0u11las fir Joist DF Joist DF Joist ES Joist ES Joist Joist Joist 1/2" DF Partic . e board 
Level Dou~las fir Plywood 3/4" DF 3/4" ES 3/4" ES 3/4" OF 1/2" OF "tl/2" ES 1/2" Dr 172" ES 

lb. Para! lei Perpendicular Plywood Plywood Plywood Plywood- Plywood Plywood Plywood Plywood 
t•> veneer to veneer 

8d cement-coated 8d com:aon 6d conunon 

lb/in. lb/in. lb/in. I 
I 

Average tangent moduli 

KT 25 93,200 3,280 69,800 59,400 36,300 48,000 29,025 32,900 3,920 "3,900 

KT 50 58,900 3,S40 56,4il0. 33,700 32,500 2S,SOO 15,070 13,800 3,870 3,930 

KT 100 16,200 3,S70 27,300 10,500 10,300 14,200 3,300 3,620 3,370 2,340 

KT ISO 6,080 2,890 20,000 4,160 3,700 4,900 1,217 2,300 2,460 1,010 

' Average secant moduli 

KS 25 --- --- 75,900 56,800 52,700 63,100 29,475 31,120 4,000 3,780 

KS so 83,400 3,260 73,500 53,700 39,000 45,200 23,900 21,360 3,900 3,810 

KS 100 41,900 5,420 49,200 25,300 23,000 30,10.0 9,S83 8,922 3,?80 3,450 

KS ISO --- --- 31,200 12,200 11,300 12,800 3,958 4,502 3,480 2,560 

Note : All values from tests conducted by the Wood Science Laboratory, see Section 3.3.3. The slip modulus is divided by the nail spacing to 
obtain the effective slip modulus per linear inch of joist length. For glued connections the values given is multiplied by joist 
width to obtain the slip aodulus per linear inch of joist length. 

OF Jois~ 
OF Plywoo:J 

Gluc 

lb/in./in. 2 

46,llC/C 

36,700 

7,810 
' 

2,7SO 

39,400 

37,300 

24,000 

I 8,440 
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APPENDIX D 

COMPUTED VERSUS MEASURED DEFLECTIONS 

OF FLOOR SPECIMENS 
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Joist number 
1 2 3 4 5 6 7 8 9 10 11 
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cd 0 - Experimental 
"' 200 
cd 
0 

...l 

0 

0 0.050 0.100 0 . 150 0.200 0.250 0.300 
(b) Load-deflection behavior 

Figure D.l Computed vs Measured Results of Floor Specimen F3-8Dl6-l 
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Joist number 
l 2 3 4 5 6 7 8 9 10 11 

0 

i:: .~ 
.050 

~ 

i:: Computed 0 ·~ µ 
.100 u 

O- Experimental Q.) 
M 
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0 .150 
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u 400 
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'O 
cd 200 0 

,_J 

0 
0.025 0.050 0.075 0.100 0.125 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

Figure D.2 Computed vs Measured Results of Floor Specimen F4-8E16-1 
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Joist number 
1 2 3 4 5 6 7 8 9 10 

Computed 1000 lbs cone. 
load at center of 
floor o - Experimental 

(a) Deflection profile at centerline of joists 

Computed 

o-Experimental 

.050 .100 .150 .200 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

11 

.250 

Figure 0.3 Computed and Measured Results of Floor Specimen FS-8016-1 
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.Joist number 
4 5 6 7 

Computed 

0- Experimental 

(a) Deflection profile at centerline of joists 

Computed 

0 - Experimental 

0.050 0.100 0.150 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

0.200 

Figure D.4 Computed vs Measured Results of Floor Specimen F7-12D24-l 
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Joist number 
4 5 6 7 

Computed 

0-Experimental 

(a) Deflection profile at centerline of joists 

0- Experimental 

0.050 0.100 0.150 

Deflection at center of floor, in. 

(b) Load-deflection behavior 

Pigure 0.5 Computed vs Measured Results of Floor Specimen F7-12D24-2 
(Nails of Top Layer Not Driven into Joists) 
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Figure 0.6 Computed vs Measured Results of Floor Specimen F?-12024-2 
(Nails of Top Layer Driven into Joists) 
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1000 

C/l 800 ..c ...... 
~ 

i-.. 600 (I) 
+.J 
i::: 
(!.) 
(.) 

+.J 
400 

ro 
"Cl ro 
0 200 -J 

0 

0 

171 

Joist number 
1 2 3 4 5 6 7 8 9 

Computed 1000 lbs cone. 
load at center 
of floor O - Experimental 

(a) Deflection profile at centerline of joists 

Computed 

O - Experimental 

.050 .100 .150 .200 .250 .300 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

Figure 0.8 Computed vs Measured Results of Floor Specimen F8-8Dl9.2-2 
(Nails of Top Layer Not Driven into Joists) 



172 

Joist number 
1 2 3 4 5 6 7 8 9 

0 
i:: -~ .100 
~ 

i:: 
0 -~ 1000 lbs cone. .µ 
u .200 load at center Computed 
Cl) ...... of floor 4-< 
Cl) o- Experimental 

Cl 
.300 

(a) Deflection profile at centerline of joists 

1000 

Cl) 800 
.0 ...... 
~ 

~ 600 Cl) 
.µ 
i:: 
Cl) 
u Computed 
.µ 400 
ell O -Experimental 
-0 
ell 
0 200 ...J 

0 

0 .050 .100 .150 .200 .250 .300 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

Fi.gurc D.9 Computed vs Measured Hcsults of Floor Specimen FS-8019.2-2 
(Nails of Top Layer Or i.ven into Joi.sts) 



.100 

i::~. 200 
0 ·~ 
+' u 
~ .300 
~ 
Q) 

Cl 

<f) 
.Q ..... 
~ 

1-1 
Q) 
+' 
i:: 
Q) 
u 
+' ro 

"' ro 
0 

...J 

.400 

600 

500 

400 

300 

200 

100 

0 
0 

173 

Joist number 

1 2 3 4 5 6 7 

Computed 600 lbs cone. 
load at center 
of floor 0- Experimental 

(a) Deflection profile at centerline of joists 

O -Experimental 

.100 .200 .300 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

.400 

Figure 0.10 Computed vs Measured Results of Floor Specimen F9-8E24-l 
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Figure D.11 Computed vs Measured Results of Floor Specimen F9-8E24-2 
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i:: .100 ,,-1 

~ 

i:: 
0 

,,-1 • 200 
.µ 
u 
Q.) ...... 
~ 

~ .300 

.400 

1000 

en 800 .D ...... 

~ 
Q.) 600 .µ 
i:: 
Q.) 
u 
.µ 400 (1j 

"d 
(1j 
0 200 ...:i 

0 

0 

1 2 

1000 lbs cone. 
load at center 
of floor 

177 

Joist number 
3 4 5 6 7 

Computed 

o - Experimental 

(a) Deflection profile at centerline of joists 

Computed 

0 -Experimental 

.100 .200 .300 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

.400 

Figure D.14 Computed vs Measured Results of Floor Specimen Fl0-8E24-2 
(Nails of Top Layer Not _Driven into Joists) 



i:: .100 
'M 

i:: 

-~ . 200 µ 
u 
~ 

M 
4-, 
~ .300 

Cl 

.400 

1000 

Vl 800 
.D 
M 

~ 

h 600 ~ 
µ 
i:: 
~ 
(.) 

µ 400 C1l 

'O 
C1l 
0 200 ...J 

0 

0 

1 2 

1000 lbs cone. 
load at center 
of floor 

178 

Joist number 
3 4 5 6 7 

Computed 

0 - Experimental 

(a) Deflection profile at centerline of joists 

Computed 

o - Experimental 

.100 .200 .300 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

.400 

Fjgure ll.15 Computed vs Measured Results of Floor Specimen Fl0-8E24-2 
(Nail!- of Top Layer Driven into Joists) 



r:: .050 
•.-i 

~ 

r:: 
.~ .100 µ 
u 
Cl) ..... 

'-H 
Cl) .150 

Cl 

.200 

1000 

V1 800 ,.0 ..... 
~ 

I-< 
Cl) 600 µ 
r:: 
Cl) 
u 
µ 400 
t1l 

'O 
t1l 
0 

...J 200 

0 

1 

0 

2 3 

1000 lbs cone. 
load at center 
of floor 

4 

179 

Joist number 
5 6 7 8 9 IO 

Computed 

0 - Experimental 

(aJ Deflection profile at centerline of joists 

Computed 

O - Experimental 

.050 .100 .150 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

11 

.200 

Figure D .16 Computed vs Measured Results of Floor Specimen Fll-8Dl6-l 

I ' . 



i: . 050 ·~ 
~ 

C 
. ~ .100 
.µ 
u 
Q) 

.-< 

t .150 
Cl 

.200 

1000 

t/l 
.0 800 
.-< 

I-< 
Q) 

600 .µ 
C 
Q) 
u 
.µ 

400 c'd 

"O 
c'd 
0 

...:i 200 

0 
0 

1000 1 bs cone . 
load at center 
of floor 

180 

Joist number 

Computed 

O - Experimental 

(a) Deflec~ion profile at centerline of joists 

Computed 

0- Experimental 

.050 .100 .150 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

.200 

Figure D.17 Computed vs Measured Results of Floor Specimen Fll-8Dl6-2 
(Nails of Top Layer Not Driven into Joists) 



181 

Joist number 
1 2 3 4 5 6 7 8 9 10 11 

0 

C .050 
•r-i 

~ 

C 
0 

•r-i 
µ 
0 
<I) ...... 
~ 
<I) 

0 

Vl 
.0 ...... 

~ 

H 
<I) 
µ 
C 
<I) 
0 

µ 
ell 

"O 
ell 
0 

...J 

.100 

.150 

.200 

1000 

800 

600 

400 

200 

0 

0 

1000 lbs cone. 
load at center 
of floor 

0- Experimental 

(a) Deflection profile at centerline of joists 

Computed 

O-Experimental 

.050 .100 .150 
Deflection at center of floor, in. 

(b) Load-deflection behavior 

.200 

Figure D.18 Computed vs Measured Results of Floor Specimen Fll-8Dl6-2 
(Nails of Top Layer Driven into Joists) 



182 

APPENDIX E 

LISTING OF A COMPUTER PROGRAM FOR 

EVALUATING EFFECTIVE FLANGE WIDTH OF 

T-BEAM SYSTEMS 



rTN, 
u;o. 
0000000000000000000000 

P~OGRI\M (F'LANr.E 
j (INPUT,OUTPUT,TAPES•INPUT,TAPE~•OUTPUTl 

183 

REAL K,LOAD,NU1LAMl,LAM2,LMl,LM2,NROW,I1,I2,KSTR,MNT(IOO) 
DIMENSION W(lOOl ,PIIOO> ,0(100) ,CHI 1100) ,CH2Cl00l ,SHI (100l ,SH2(100l 

j ,D ( I 00 l ,POI (100) ,P02 (J 001 ,OH l (I 001 ,CH?.2 (1001,SHll(1001, 
2 SH2?1lOOl,CF(l00l,CG(l00ltCR(l00l,CS(l00l,FS(l00l,CHllOO 
J l,EFWl(l00l,SIGX(201,CHlY(lOOl,CH2Y(l00l,SHlY(lOOlt 
4 SH2Yll00l 

C 
C 
C READ TN AN ALPHANUMERIC HEADER CARD, PLACE 1 IN COLUMN 1 or HEADER CARD, 
?00 NEAOIS,3001 
JOO rORMATf801i 

I 
IflEO,(Sll 1oij,SO 

C 
C 
C READ IN MATERIAL PROPERTIES, CONNECTOR PROPERTIES, ANO GEOMETRIC DIMENSIONS, 
C EIX. MODULUS or ELASTICITY or TOP LAYER IN REAM DIRECTION, 
C E!Y • MODULUS Of ELASTICITY OF TOP LAYER IN ,LANGE DIRECTION. 
C EZX. MODULUS OF ELASTICITY or BOTTOM LAYER IN BEAM OI RE CiION, 
C G • SI-IEAR MODULU S IN ,LANGE PLANE, 
C NU• P0t5SON,S RATIO OF TOP LAYER FOR PASSIVE STRAIN IN rLANGE DIRECTION, 
C DUE TO ACTIVE STRAIN IN BEAM OTRECTION, 
C K • CONNECTOR <;LIP MODULUS, 
C S • CONNECTOR SP•CINr., 
C NPOW. NO, or ROWS or CONNECTOR, 
C Hl. THICKNESS or TOP LAYER, 
C HZ s DEPTH Of AOTTOM LAYER, 
C WI • WJOTH Of TOP LAYER, 
C W2 c WIDTH or 80TTOM LAYER. 
C NMAX. NO, or TERMS IN A SERIES TO BE SUMMED UP, 
C LOAD• CONCENTRATED LOAD AT MIO-SPAN IN LBS OR UNIFORMLY OISTRJRUTEO LOAD 
C_ IN L9S/JNCH, 
50 RE•DIS,4001 EJX,ElY,E?.X,G,NU,K,StNROW 

Rf.AOIS,410> SPAN, Hit Wlt H2t W2t ~STR, LOAD, NHAX 
400 roRMAT(AFl0,21 
410 FORHAT(7fl0,3,I10l 
C 
C 
C COMPUTE GEOMETRIC CONSTANTS, 

fl<;TR " KSTR•ElX 

C 
C 

Al • Ml•WI 
A2 • H2•W2 
II• ~1•1-11••3/12, 
12 • W2*H2••J/l2, 
Cl2 = O,S•IHI • H21 

C COMPUTE CONSTANTS INVOLNlNG MATERIAL PROPERTIES BUT INDEPENDENT Of NO, 
C OF TERMS N, 

EI • EtX•II • E?.X•I2 
ALF'A = o.s•El~/G - NU 
8F.:TA • ElXIEl Y 
LAMI • SQRT(ALfA • SORT(ALFA••? • RETAIi 
LAM?• 5QRT(ALFA - S0RT(ALrA••2 - RETAIi 
GAMA• ElX/G • NU 
CP • LAMl/LAH?,•(LAM1••2•GAHA)/(LAM?••2-GAMAl 
LM! • 0,5•(LAM2 • LAMll 
LM2 • 0,5•(LAM2 • LAMll 



C 

C 
C 
C 
C 
C 
C 

SOI 
C 
C 

(' 

C 
C 

510 

'i)O 

c;c;o 

6?0 

BUILD fN CONSTANTS. 
PII' • l• l .. 159,!65 
EXPO• ?.•718ZR183 

184 

MEAO IN NO. Of NOOE POINT WH[PE THE EffECTIVE fLANGE WIDTH ANO BEAM 
OEl'LECTION ARE TO BE COMPUTED. 
~EY: I FOR CONCENTRATED LOAD AT MIO SPAN Of BEAM. 
~EY s O FOR UNlfORMLY DISTRIBUTED LOAO. 

R~AOIS,501) NOSX,K[Y 
fOP•UTIZIIOI 
ANOS,sNOSX 

SPN~ • SPACING BET0EEN NOOE POINTS. 
NOP• NO. Of NOOE POINT. 

SDNGX = SPAN/ANOSX 
•WP•• NOSX- l 

PQINT HfAOINGS ANO INPUT DATA. 
wr::ITE!t,,JOOI 
W'H TE,,_ ,'ii 01 
fORHAT(II• MATERIAL ANO CONNECTOR PROPERTIES•> 
WRITE lf.•5701 
l'OQHAT(/• ElX ElY EZX 

1r. NU K S NROW•I 
WRIT(!6,5301 F"lX, Ell• EZX, G, NU, Kt St NROW 
rORMATl813X,Fl2,ZII 
o1PITE(6,54'll 
fORMATII/• u[OMETRIC Ol~ENSIONS•I 
WRJTf(t,,5501 
rOPMAT(/• SPAN HI Wl H2 

j Wi.>•> 
WPITf(~,56?> SPAN,HltWl,H2,W2 
rOOMATISl4X,riO,J)I 
WRITE!6t5601 KSTA 
l'CPMATII/• ~STR • 91'10,4) 
WRITE16,6001 SPANtNOSX 
FOPMAT(//• PIEC~ LENGTH. •r •• o •• THIS PIECE IS DIVIDED INTO •I)• 

1c;Pac1'1r;s.•1 
00 20 M=l,NOPX 
AM s M 
X: A'4•SPNGX 
SUICl: OoO 
suwz. o.o 
M"IT (14) s 0,0 
El'lll (M) • 0,0 

C trllt(Ml • EFfECTIVE rLANGE WIDTH AT NODE POINT M. 
r; 
(' 
C q[GINNINr; or DO LOOP TO EVALUATE CONSTANTS INVOLVING NO. Of TERM N. 

C 

OD I~ J • 1,NMAX 
N s ?•J - l 
AN s N 
WIN) s AN•PIE/SPAN 
P!Nl = 9,5•LAMl•W(N)•Wi 
OINI s O,S*LAMZ•W(N>•Wl 

C CHl:COSH(P(NII 
C CH~CNl•C0SH(Q(Nll. 
C SHl(Nl:SINHIP(Nllo 
C SHZ!N):SINH(O!Nll. 

CHI IN) • o.s•cEXPO••P(N) • EXP0••1-P(N))) 
CH21NI • o.s•([~PO••OIN) • EXPO••(-Q(N)I) 
SHl!NI • O,S•(EXPO••P(NI • EXPO••(•P(N)II 
.,., , ... ~••• - • ,-a,rv"""••""'••• _ .,."""'••• ·"'u,,, 



C 

POI CNl • P CNI • 0 CNI 
P07CNI • PCNI • OCNI 

185 

C C")IOO 2COSHCPOICNll0 
C CH221NI • COSH(PQ2CNllo 
C S" I I I'll " SI NH C P :l l C NI I o 
C S"~?.CNl • S1NHCP02lNl1o 

C 
C 
C 

C 

C 
C 

JOJ .. o .. 
C 

10 
<100 
100 

;,o 
ioo 

CHl)CNI • o.s•CEXPO••POlCN) • EXPO••c-POICN))) 
CH72CNI • o.s•CEXPO••PC?.CNI • EXPO••c•P02CN))) 
~HllCNI • o.s•lEXPO••POl(N) - EXPO••C-POllNI)) 
SH72CNI • o.s•CEXPO••P02(N) - . EXPO••C-P02(N))) 

Cf'CNl • A(Nl/D(NI 
CGl~I • ~lNI/D(Nl 

CFCNl • CLH2•cHllCNI • LMt•CH22(N) • LAM2•CP)/(CP•cLM2•SHllCN) • 
l l"l *Sl122 CIO 11 
CGCNI • CLAMl • CP•CLHZ•CHllCNl • LMl•CH22CNl)I/CCP•CLM2•SHllCN) • 

l L"l*SH22CNIII 

CQCNI : WCNl••2•CCFINl•ILAHl••2 • NU) • CGCNl•CLAM2••2 • NUii 
CSINI • WCNl•CCCFC Nl• SHl(Nl•CHlCNI/CP•l•/CPl•LAMl • CCGCNl•SH2CNI 

j •Cl12CNl•lol•LAM21 
f'Sl'll • f'OURIE~ COE'fFICIENT OF MOMENT EXPANDED IN SINE SERJESoVlRIES 

WITH LOlDINr. CONDITIONS. 
JFl~~y .lOo II GO TO JOJ 
FS1Nl•L0AD•~4AOO.•llo•COSCAN•PtEl)/(AN•PJEl••J 
JflKEY .ca. O! GO TO 404 
FSlNl•LOAO•J60o*SlNCAN•PIE•Oo5l/CAN•PlE>••2 
CONT(NUE 

CHIN) a Dc,u,rscNI o 
C'11NI a Cl2/E(ICCRlNI/EJSTA • 2o•Hi•CSINl•Clo/A2/E2X • Cl2••2/El • 

I WCN1••2•S/K/NRDWII 
01~1 • CHCN)•FSCNl 
MNTlMl • MNTCMI • fSC Nl•SINCAN•PIE•X/SPANI 
SIJt,11 • SIJMI • 2o•OCNl•CS(Nl•SJNIWCNl•XI 
SU.,.2 • SUM2 • OCNl•WCNl••2•CCFCNl•LAM1••2 • 1CGCNl•LAM2••2>•S1N( 

l W I'll •111 
S1Jt,1 • SUM I /SUH2 
[FIii (Ml a SUH 
CO 'l TINIJ[ 
wsini::r.,,1001 
f'OP,.AT (I/• 

I Gto.s•, NO. 
CO'lT(NUE 
c;o TO 200 
CO>iTINUE 
STOP 
ENO 

Ht EFWl(Mlo Jt MNTCH) 
~E&H NOOE POINT• •t2•• EFFECTIVE FLANGE W(DTH • • 

OF TEIIHS • •t3•t MOMENT• •GlOoJl 
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