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ABSTRACT 

 

IMPACTS OF DROUGHT ON GRASSLAND PRODUCTIVITY ACROSS THE  

WET-DRY GRADIENT IN THE U.S. GREAT PLAINS IN 2010-2012 

 
Severe, prolonged droughts are predicted to occur more frequently due to global 

climate change.  Since grasslands already grow in regions that are water limited, they are 

particularly vulnerable to changes in precipitation.  Climate models are used to investigate how 

grasslands will respond to climate change; however, current land surface models have difficulty 

in simulating grasslands and their response to drought.  The main objective of this research 

project was to investigate the dominant relationships between grassland productivity and 

precipitation and to see if this behavior could be predicted in a model.  To do this, we focused on 

both climate (dry to wet gradient) and drought (climate anomalies) using a combination of data 

and the Simple Biosphere Model Version 4 (SiB4).  In order to have a better understanding of 

the relationship between grassland productivity and precipitation on a regional scale, this 

research studies nine sites across the U.S. Great Plains over which there is a significant 

precipitation gradient.  In addition to the climatic gradient in precipitation, we took advantage of 

a natural experiment from 2010 through 2012, during which a significant drought occurred in 

this region.  

Observed west-to-east gradients in grassland productivity were generally well-captured 

by the model: there was an increase in leaf area index (LAI) with increasing precipitation, with a 

nearly identical linear relationship in both the observations and the model.   SiB4 overestimated 

the magnitude of the seasonal-mean LAI; however, this bias was constant across the precipitation 

gradient.  The drought decreased grassland productivity:  both the observations and the model 
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showed reduced LAI and a shorter growing season due to drought, and an analysis of the 

standardized anomalies in LAI and precipitation demonstrated that both the observations and the 

model have a nearly identical linear response to drought (difference in slope < 10%).   Although 

SiB4 has a bias in the magnitude of seasonal-mean LAI, it has the same precipitation responses 

as seen in the data, thus showing the ability to capture the behavior of grasslands both across a 

dry-wet gradient and for a specific drought event. 
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CHAPTER 1: INTRODUCTION 

 

1.1    Land Surface Models and Grasslands 

Climate predictions are important in order to understand how ecosystems will respond to 

the increasing levels of CO2.  Due to the increase in CO2, there has been and will continue to be 

an increase in global temperatures.  Predictions have indicated that extreme events such as 

drought will be more commonplace with the changing climate (IPCC 2013).  Droughts can 

significantly reduce ecosystem productivity; however, the effects of drought may be buffered by 

the CO2 fertilization effect, as both plant productivity and water use efficiency increase with the 

increase in atmospheric CO2 concentrations (Moran et al., 2014; Donohue et al., 2013; Swann et 

al. 2016).  Drought reduces the productivity of grasslands and crops, which impacts stakeholders. 

Climate models have some skill in predicting these drought impacts on productivity, but many  

“impacts” models driven by climate model output do not include the effect of CO2 on water use 

efficiency and therefore substantially overestimate drought impacts (Swann et al., 2016).  

Terrestrial biosphere models (TBMs) incorporate the main processes influencing 

vegetation to provide analysis of the land surface interactions.  These TBMs are incorporated 

into the global climate models that perform climate predictions.  While TBMs are essential in 

climate prediction, grasslands in particular have been one of the hardest vegetation types for 

TBMs to model accurately.  Recently, the North American Carbon Program (NACP) organized 

several synthesis activities to evaluate and inter-compare TBMs (Huntzinger et al., 2013).  Three 

studies have analyzed the performance of TBMs, including specific grassland evaluations.  First, 

a paper from Schwalm et al. (2010) compared observed and modeled monthly carbon fluxes 

from 44 flux tower sites and 22 terrestrial biosphere models.  This study included over 220 site-
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years, 10 biomes, and two significant droughts.  After evaluating modeled seasonal cycles of 

CO2 exchange using numerous metrics, they concluded that overall model performance was 

poor.  They found that the models performed better at capturing the gross fluxes in forested sites 

compared to unforested sites, such as grasslands.  

Next, a study by Schaefer et al. (2012) used 29 models and 39 flux towers to evaluate model 

prediction of GPP.  This study found that none of the models matched estimated GPP within 

observed uncertainty; however, it did show that the models estimated the GPP more accurately at 

forest sites than at crop, grass and savanna sites.  Overall, the models overestimated the gross 

fluxes of grassland sites during the growing season, which could be the result of the model’s lack 

of ability to accurately determine the stresses due to soil moisture, drought and humidity stress 

(Schaefer et al. 2012).   

Finally, Razcka et al. (2013) compared 17 models against 36 flux tower sites in North 

America over a five-year timeframe to determine how well TBM models predict carbon and 

energy fluxes.  The models performed the best at deciduous broadleaf forest sites and the worst 

at crop, evergreen and grassland sites.  For grasslands, there were biases of 66% in net ecosystem 

exchange (NEE), 41% in gross primary productivity (GPP) and 61% in total respiration (RE).  In 

regards to seasonal variability, modeled fluxes for crop and grassland sites performed the most 

poorly when comparing the model to observations.  Although the study concludes that these 

models better simulated the seasonality than the inter-annual variability, for grasslands the TBMs 

had a lag in the start of the growing season and the growing season length was two or three 

months too long. All of these examples illustrate the need to improve the TBM’s prediction of 

carbon and energy fluxes in grasslands.  The significant seasonal discrepancies and poor skill at 

capturing inter-annual variability indicate that grasslands need substantial improvement in 
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TBMs.  Being capable of predicting inter-annual variability is a key step to accurately predicting 

drought, one of the most influential disturbances in grassland regions. 

Grasslands are driven by disturbances such as fire, grazing and drought.  Grasses have 

evolved unique morphology, development patterns and physiology over time to best adapt to 

these disturbances.  However, grasslands are still sensitive to short-term climate variability and 

long-term climate change.   Many areas of the U.S. Great Plains are susceptible to drought 

because the annual water loss combined from transpiration by plants and from evaporation is 

higher than the annual precipitation.  The trend of climate projections of the U.S. Great Plains 

indicate that there will be more dry days and higher temperatures that will lead to an increase in 

evapotranspiration and a decrease in water resources (Blair et al., 2014).   Climate change, 

especially in conjunction with increased grazing pressure, is expected to have long-term impacts 

on sustainability of grassland ecosystems including a decrease in species habitat for permanent 

and migrating species (Bagne et al., 2012).  Thus, it is essential that we improve our 

understanding of how grasslands in the U.S. Great Plains will respond to the changing climate 

and drought.   

 

1.2    Climate Change and Drought 

These terrestrial biosphere models are important in predicting the impacts of climate 

change. The global climate is changing and this change is apparent across a wide range of 

observations. According the National Climate Assessment, the average temperature in the United 

States has increased by about 0.7°C to 1.0°C since 1895, but most of the increase has occurred 

since 1970. The recent decade was the warmest on record for the U.S, and temperatures in the 

U.S. and other locations around the world are expected to continue to increase (Walsh et al., 
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2014; IPCC 2013).  Figure 1 illustrates the projected temperature change for the U.S. in the later 

part of this century relative to the later part of the last century under a low and high emission 

scenario.   As a worst case, the temperatures increase at least 3.3°C (6°F) for the entire U.S., with 

the majority of the contiguous U.S. increasing approximately 4.44°C (8°F).  Even with a drastic 

reduction in emissions from the current rate, temperatures still increase from about 1.7°C (3°F) 

to 2.78°C (5°F.)   Due to warming, the length of the growing season has been increasing since 

the 1980s and is expected to keep increasing (Kunkel 2016).  

In regards to the response of precipitation to climate change, the difference between wet 

and dry areas will increase both in the U.S. and globally: wet areas will get wetter while dry 

areas will get drier (IPCC 2013; Walsh et al., 2014; Shafer et al., 2014).  In addition, certain 

types of extreme weather events with links to climate change have become and will continue to 

be more frequent and/or intense, including prolonged periods of heat, heavy downpours, and, in 

some regions, floods and droughts (IPCC 2013; Walsh et al. 2014). Days considered to be “hot 

days” are expected to increase in number over the U.S. especially by the late century. Heat 

waves have already occurred more frequently and have become more intense in the recent 

decade.  The Southwest and Central regions of the U.S. are projected to have more frequent and 

more intense heat waves in the summer (Melilo et al., 2014; Shafer et al., 2014).  Under higher 

emissions scenarios, widespread drought is projected to become more commonplace over most 

of the central and southern United States (Melilo et al., 2014; Walsh et al., 2014).    

Changes in precipitation and temperature create feedbacks that further impact the climate.  

Figure 2 illustrates projected changes in water balance due to climate change from the 

Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) using a high 

emission scenario (RCP 8.5) for 2081-2100 relative to 1986-2005 (Stocker et al., 2013).  
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Changes in precipitation over the U.S Great Plains (center of black circle) are indeterminate, but 

increases in evaporation due to warmer temperatures are robust, even accounting for increased 

water use efficiency due to higher CO2. As a result, projected soil moisture shows a significant 

decrease of around 10% for the southwest portion of the domain which means that there will be 

additional drought stress. The projected increase in temperature results in increased evaporation, 

decreased soil moisture, additional heat stress and, therefore, higher energy demand for cooling.  

Even in areas where the precipitation does not decrease, the increase of the loss of moisture 

through the leaves of water loss from plants can lead to soils drying out at a quicker rate, which 

in turn leads to hotter summers under drier climatic conditions. In addition, the ecosystem water 

balance might change overall due to the change in rainfall and the carbon sinks might offset 

some of the carbon emissions (Walsh et al., 2014, Shafer et al., 2014; Swann et al., 2016).   

These impacts on climate will affect ecosystems both positively and negatively (Bagne et 

al., 2012).  For grasslands across the U.S., the regions suitable for these ecosystems is expected 

to increase; however, projections vary by grassland type.  In addition to changing the areal 

coverage, climate change will also have an impact on grassland species and community 

composition.  While grasslands will be significantly affected by climate change, complex 

interactions make grassland predictions difficult, and there is still uncertainty in regards to how 

grasslands will respond to the longer, warmer droughts and more intense rainfall events that are 

expected with the changing climate (Moran et al., 2014).  

In addition to impacting vegetation and grasslands, droughts stress the natural resources 

and increase the competition of water demand on a variety of stakeholders.  There are a variety 

of significant economic, social and environmental stresses that can worsen or improve 

drought.  This flow chart (Figure 3) focuses on the drought impacts to agricultural and non-
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agricultural sectors and the negative impacts on end-users, such as farmers, ranchers, tourists and 

municipal water utilities (Kellner & Niyogi 2014). Existing adaptation and planning efforts are 

inadequate to respond to these projected impacts (Parry et al., 2007; Walsh et al., 2014). 

 

1.3    Natural Experiments 

 

1.3.1    Climatological West-East Gradient 

 
The Great Plains is a vast grassland region in the central U.S. that ranges from the flat 

plains near sea level to elevations above 1500 meters near mountainous regions.  In addition to 

the changes in elevation, the annual average precipitation and temperature changes significantly 

across the U.S. Great Plains.  The region has a considerable north-south gradient in the annual 

average temperature that ranges from less than 4ºC in the mountains of Wyoming and Montana 

to higher than 20ºC in South Texas (Figure 4). Annual average precipitation is greater than 1270 

millimeters (50 inches) in the tall-grass prairies in the eastern part of this domain; however, in 

the majority of the domain, the average precipitation is less than 760 millimeters, with annual 

rainfall of less than 300 millimeters along the western edges of the domain (desert grassland in 

New Mexico), as shown in Figure 5 (PRISM). 

Given this variability in temperature and precipitation in the region of the U.S. Great 

Plains as shown in Figures 4 and 5, grasslands vary from the semi-arid short grass steppe in the 

west, the northern mixed prairie, the southern mixed prairie and the sub-humid tall-grass prairie 

in the east.   Temperate, perennial grassland ecosystems in the U.S. Great Plains receive the most 

of their annual precipitation during the growing season and then the grasslands go into dormancy 

in order to survive the cold winter temperatures.   
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The grasslands in this region are composed of C3 and C4 plant functional types (PFTs).  

These two PFTs have important and distinct functionalities in water cycling and productivity.  

C3 grasses tend to grow in the cool-wet season primarily found in the higher latitudes or higher 

elevations (Teeri & Stowe, 1976; Paruelo & Lauenroth, 1996; Tieszen et al., 1997; Davidson & 

Csillag, 2003; Winslow et al., 2003; Still et al., 2003).  C3 grasses usually begin growing early in 

the spring and may have a secondary peak in autumn.  In contrast, C4 grasses are warm-season 

grasses that start growing later and in warmer environments compared to C3 grasses.  Due to the 

difference in photosynthetic pathways, C4 has growth advantages in areas with higher sunlight 

and higher temperatures. 

The C3 and C4 grassland PFTs grow in mixed compositions in the U.S. Great Plains and 

their relative abundance changes due to the weather conditions each year. It is well known from 

observations that C3 and C4 grasses partition along moisture and temperature gradients such as 

in the Great Plains (Chazdon 1978; Vogel et al., 1986).   Since C4 grasses have a higher 

tolerance for higher temperatures compared to C3, C4 species are more dominant in the south, 

while shortgrass C3 species are found mostly in the northern part of this domain.  C3 and C3 

plants can co-exist but C4 plants will be more competitive and thus more abundant in grassland 

regions where the mean monthly air temperature exceeds 22 °C (Collatz et al., 1998; Still et al., 

2003).   

Drought tolerance is also important in this C3/C4 distribution due to the differences in 

photosynthetic pathways.  Generally C4 species are more drought tolerant than C3 species 

because these grasses are more efficient at photosynthesis.  Since C4 grasses eliminate 

photorespiration, C4 plants are much less limited by CO2 and have a higher water use efficiency 

(Taylor et al., 2010; Still et al., 2003).   In addition to being more efficient at photosynthesis, the 
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production of deep roots in C4 grasses has long been discussed as a mechanism to avoid drought 

(Albertson and Weaver 1944; Weaver 1968; Craine et al., 2002; Nippert et al., 2011).   Although 

the root systems of grasslands are highly variable in terms of species-specific patterns, total 

biomass invested, types of roots produced, and distribution throughout the soil profile, in general 

C4 grasses typically have fewer roots that grow to a deeper depth than C3 grasses (Blair et al. 

2014).  While the majority of grassland root biomass is found in the upper layers of the soil, 

during drought these deep roots help the grasses mitigate the impacts of drought. It is important 

to note that C3 and C4 grasses have different root characteristics but that is not represented in the 

current TBMs. 

The U.S. Great Plains provides a natural experiment to investigate the response of 

grassland productivity to different precipitation amounts across a large climatological gradient.  

Grasslands are well-known for growing under a broad range of climatic conditions, and they are 

more responsive to variations in rainfall compared to other biomes or plant functional types (Sala 

et al., 2000, Knapp and Smith 2001, Suttle et al., 2007, Reichmann et al., 2013, Moran et al., 

2014).  Grasslands frequently experience high intra- and inter-annual rainfall variability, making 

both the seasonality (timing) and total annual amount of precipitation critical for these 

ecosystems (Craine et al., 2012).  Thus, for any given location, grasses are highly responsive to 

variations in precipitation (Hsu et al., 2012, Knapp et al., 2015).    

Studies of grassland productivity across the U.S. climatological gradient show a linear 

relationship between aboveground net primary production (ANPP) and annual precipitation 

(Paruelo et al. 1999; Knapp and Smith 2001; Moran et al., 2014).  The linear relationship 

between ANPP and annual precipitation breaks down during very wet conditions, when 

ecosystems are no longer water limited (Knapp and Smith, 2001). Some recent results also 



 

 

9 

indicate that this linearity breaks down for extreme dry conditions (drought) in addition to 

extreme wet conditions; the linearity breaks at both of the extreme ends of precipitation (M. 

Smith, personal communication). In addition to depending on precipitation, grasslands are also 

influenced by temperature, and thus for global grasslands the ratio of the precipitation to the 

potential evapotranspiration (PET) is usually a better predictor of the ecological properties and 

process rates rather than just annual precipitation (Blair et al., 2014).  

Given this previous work, this study will investigate if this linearity between LAI and 

precipitation breaks in both the real world and in SiB4 during the droughts of 2011- 2012 in the 

U.S. Great Plains.  

 

1.3.2    2010-2012 Drought 

The U.S. Great Plains provided another natural experiment to investigate the response of 

a variety of grasslands to significant drought from 2010-2012.   A drought began in late 2010 

(Figure 6) due to a strong La Niña that brought below average rainfall to the southern United 

States.  Figures 6-14 from the National Drought Mitigation Center (NDMC) show the 

progression of the drought across the Great Plains.  In 2011 the drought was primarily located in 

the Southern Great Plains. By the end of spring, the drought expanded from Texas to impact 

seven states in the South, with 21 percent of the country in moderate to exceptional drought 

(NCDC 2012). In terms of the temperature and precipitation data, the drought intensity peaked in 

the late summer and autumn of 2011, and was the most intense drought on record for Texas 

(Figures 7-10).  This region was so hot and dry that it took until the spring of 2015 for this area 

to fully recover.   
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The summer 2011 heat wave and drought in Texas was primarily driven by precipitation 

deficits (Walsh et al., 2014).  According the National Climatic Data Center (NCDC 2012), 

drought and heat wave conditions created major impacts across Texas, Oklahoma, New Mexico, 

Arizona, southern Kansas, and western Louisiana. In Texas and Oklahoma, a majority of range 

and pastures were classified in "very poor" condition for much of the 2011 main crop growing 

season.  Most of these states mentioned broke the record for the highest monthly average 

temperature and hottest summer on record.  The 2010-2011 drought resulted in a loss of over $12 

billion dollars and related to 95 deaths (NCEI 2016).  

While the 2010 and 2011 drought are considered to be the same drought, the significant 

2012 drought was considered a “flash” drought (not a continuation from 2011) and was located 

in the northern and eastern part of the Great Plains (Figures 11-14). The 2012 drought was a 

discrete event that developed suddenly and the official seasonal forecasts issued in April 2012 

did not predict this severe, widespread drought.  The 2012 drought occurred mainly due to the 

lack of atmospheric moisture in the spring from the Gulf of Mexico that usually provides the 

water vapor for the region (Hoerling et al., 2013).  The below-average precipitation total 

stretched from the Intermountain West through the Great Plains into the Midwest and Southeast. 

Nebraska and Wyoming had record dry conditions in 2012.  

The summer temperatures of 2012 ranked in the hottest 10% of the 118-year period of 

record in 28 states covering the Rocky Mountain states, the Great Plains, the Upper Midwest, 

and the Northeast (NCDC 2013).  The 2012 drought is the most extensive drought to affect the 

U.S. since the 1930s. Moderate to extreme drought conditions affected more than half the 

country for a majority of 2012.  According to NCDC (2013), the drought severely impacted the 

agriculture in the center of the country involving a widespread failure in harvest for the main 
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crops of corn, soybeans and others.  Wheat was not largely impacted given the timing of the 

significant drought conditions. Overall, this 2012 cost over $31 billion dollars and related to 123 

deaths.  In addition, the droughts of 2011 and 2012 led ranchers to liquidate large herds due to 

lack of food and water (USDA-ERS 2013; NCEI 2016).  

The main objective of this research project was to investigate the dominant relationships 

between grassland productivity and precipitation and to see if this behavior could be predicted in 

a model.  To do this, we focused on both climate (dry to wet gradient) and drought (climate 

anomalies) using a combination of data and the Simple Biosphere Model Version 4 (SiB4).  The 

intention is to use the data to determine the grassland behavior and to use SiB4 to see if these 

processes can be captured and simulated in a model.  To do this, we analyze remotely-sensed leaf 

area index (LAI), fluxes of carbon (net ecosystem exchange and gross primary production), and 

exchanges of energy (latent and sensible heat).  In order to have a better understanding of the 

relationship between grasslands and precipitation on a regional scale, this research studies nine 

sites across the U.S. Great Plains (Figure 15; Table 1), over which there is a significant 

precipitation gradient (Figure 5).  In addition to the climatic gradient in precipitation, we focus 

on the time period from 2010 through 2012, during which a significant drought occurred in this 

region (Figures 6-15).   

There are three main questions that will be addressed in this study: 

1) Over the 15-year MODIS record at the nine sites across the dry-to-wet gradient, is the 

seasonal mean LAI linear with respect to annual mean precipitation?  

2) During the 2012 drought, do reductions in the seasonal mean LAI in response to large 

decrease in precipitation fall on the same line as the average response of LAI to 

climatological precipitation addressed in the first question?  
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3)  Does the model capture these relationships as in the observations addressed in the 

first two questions? 

For an outline of the rest of this paper, Chapter 2 will detail the methods, including the 

data used from both MODIS and FLUXNET, calculations and metrics used in this study, and the 

descriptions of SiB4.  Chapter 3 focuses on the results and discussion of the climatological wet-

dry gradient of the U.S. Great Plains, the seasonality of grassland LAI to precipitation and then 

the interannual variability including periods of drought from 2010-2012. Chapters 4 and 5 

discuss the main conclusions and ideas for future work.  
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CHAPTER 2: METHODS 

 

2.1    MODIS Leaf Area Index 

Changes in aboveground live carbon pools over this three-year time period at various 

grassland sites (Table 1 and Figure 15) were analyzed by comparing simulated leaf area index 

(LAI) from SiB4 to Moderate Resolution Imaging Spectroradiometer (MODIS) data from the 

Terra and Aqua NASA satellites.    

The Terra MODIS products are available with an acquisition date starting in February 

2000, while Aqua are available starting in June 2002.  The MODIS data were downloaded from 

the MODIS Land Product Subset website (https://daac.ornl.gov/MODIS/) data created by the 

Oak Ridge Laboratory Distributed Active Archive Center (ORNL DAAC 2008).   The goal of 

the MODIS Subsets for Selected Field Sites is to prepare summaries of selected MODIS Land 

Products for the community to use for validation of models and remote sensing products and to 

characterize field sites.  

MODIS FPAR is the Fraction of Absorbed Photosynthetically Active radiation that a plant 

canopy absorbs for photosynthesis and growth in the 0.4 – 0.7 nanometer (nm) spectral range. 

Leaf Area Index is the biomass equivalent of FPAR, and is also a dimensionless ratio (m2/m2) of 

leaf area covering a unit of ground area. We used the quality control flags given in the MODIS 

subset product in an intermediate level to smooth the noise out but not harsh enough to lose too 

much data (ORNL DAAC 2008).    

MODIS is the best available dataset to compare to the values of the LAI from SiB4. 

However, there are some key differences.  MODIS has a different timescale and larger footprint 

than SiB4. MODIS LAI values are based on an 8-day composite while SiB4 calculates LAI on a 
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daily time-step.   In general, an 8-day MODIS composite represents the best value for that pixel 

considering all 8 days so that adjacent pixels with the same 8-day date may represent values from 

different overpasses.  In addition, the 7x7 km grid cell of this MODIS product is larger than the 

single SiB4 pixel where the flux tower is/was located. Finally, this particular study only focuses 

on the grassland plant functional types (PFTs); however, the MODIS LAI values include all 

PFTs (ex. forests, crops) within that 7km by 7 km grid cell.  

The nine sites were chosen (Table 1 and Figure 15) for this study from more than 1000 sites 

in this MODIS subset database. Our first selection criterion required that the MODIS subset data 

that was/currently co-located with a flux tower located in the region where the drought occurred 

from 2010-2012 in the U.S. Great Plains.  The second criterion was the site had to be the 

grassland vegetation type as opposed to other types such as crops, forest, shrubland, juniper, etc. 

One additional site (Randall’s Ranch) fit these criteria but was omitted due to its close proximity 

to another site in eastern Kansas, the Konza Prairie site. 

 

2.2    Eddy Covariance/Flux Tower Data 

 
The FLUXNET (flux tower) data, which is available at NASA's ORNL DAAC (Distributed 

Active Archive Center), was downloaded from the website: http://fluxnet.ornl.gov/.  FLUXNET 

is a "network of regional networks," and coordinates regional and global analysis of observations 

from micrometeorological tower sites.  FLUXNET sites use eddy covariance methods to 

measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial 

ecosystems and the atmosphere (Baldocchi 2003).   Eddy covariance data at 30-minute frequency 

are typically maintained not by FLUXNET, but by individual towers.  Contributing to 

FLUXNET enables standardized data processing, gap-filling, and formats (ORNL DACC 2015). 
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The FLUXNET database contains information about tower location and site characteristics as 

well as data availability.    

The four variables from the flux towers used in this study include gross primary production 

(GPP), net ecosystem exchange (NEE) of CO2, latent heat flux (LH) and sensible heat flux (SH).   

GPP is the total amount of carbon fixed during photosynthesis or the uptake of carbon. NEE is 

the GPP minus the RE.  RE is the carbon losses due to respiration which includes both 

autotrophic and heterotrophic respiration. Autotrophic respiration is the loss of carbon from 

plants due to the costs of growth and maintenance.  Heterotrophic respiration is the loss of 

carbon by soil organisms as they decompose organic matter.  NEE values are negative when the 

plant is assimilating and taking up carbon, while positive NEE values mean that the ecosystem 

has more respiration than assimilation. LH and SH are turbulent energy fluxes that balance 

radiation gain by the land surface. 

The 14-day rolling mean values of these four variables (NEE, GPP, LH and SH) were chosen 

to aid in the evaluation of the onset and duration of drought in the model compared to 

observations from 2010-2012.   Based on the limited availability of flux tower data during this 

three-year timeframe, only two flux tower sites were used in this study.  However, it is fortunate 

that these two sites represent the most extreme ends (New Mexico and Kansas) of the climate 

variability in this domain.  The first flux tower site is the Sevilleta Desert Grassland in the 

Sevilleta National Wildlife Refuge in central New Mexico. Sevilleta is an arid-steppe, cold C4 

grassland (ORNL DAAC 2015). The second flux tower site, Konza Prairie research site in 

eastern Kansas, is a mesic, tall-grass C4 grassland (ORNL DAAC 2015).  
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2.3     Seasonal Mean LAI and Water Deficit Calculations 

 
This study focuses on precipitation and drought, which are key factors for grasslands.  To 

investigate the relationship between precipitation and LAI, we have created plots of LAI versus 

precipitation.  To do this, the growing-season mean LAI from every year over a 15-year time-

period was used, in an effort to focus on the main seasonal features and interannual variability.  

The growing-season LAI was calculated by removing the lower 25% of the LAI values and then 

taking the annual mean from the remaining values.  This was done for each grassland site from 

both SiB4 and MODIS.  

Annual mean precipitation was used because it is well-known that there is relationship in 

region of this domain between the mean annual precipitation and the annual net primary 

productivity (ANPP) across sites from arid to mesic ecosystems (Sala et al., 1998; Knapp and 

Smith 2001; Huxman et al., 2004; Moran et al., 2014).  ANPP is directly proportional to the 

maximum LAI.  These seasonal mean LAI values were also used to create the anomaly plots of 

LAI versus the annual precipitation anomaly from SiB4 and MODIS at 9 grassland sites over 15 

years, which is 135-site years of data.  Finally, these anomaly values were broken down into the 

individual years of 2010, 2011 and 2012 to determine how well grasslands respond to drought.  

  Another drought indictor value, water deficit, was calculated at each site across the 

domain.  Values of the water deficit were calculated by taking the rolling sum of the previous 

100 days of the difference of precipitation and potential evapotranspiration (PET) over the 2010-

2012 time period we are focusing on.  From Blair et al. (2014), the ratio of the precipitation to 

the potential (PET) often is a better predictor of the ecological properties and process rates than 

just annual precipitation alone.  Drier conditions occur when the PET is greater than the 

precipitation and those drier conditions can worsen over time.  The PET was calculated using an 
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adapted Thornthwaite scheme for estimating the daily potential evapotranspiration from Pereira 

and Pruitt (2004).  These calculations required temperature data and the daylength, also known 

as the photoperiod for each day.   Other windows of the rolling sum were also tested, such as a 

60-day versus the used 100-day window, but it was determined that these windows produced a 

similar trend of water deficit values just with different severities. 

  

2.4    Simple Biosphere Model Version 4 (SiB4) Background 

 

SiB4 is a comprehensive model of exchanges of heat developed for water, radiation, 

momentum and carbon used in global climate models.  SiB4 predicts latent heat, sensible heat, 

net ecosystem exchange (NEE), gross primary productivity (GPP), leaf area index (LAI), litter 

and soil carbon from temperature, specific humidity, longwave radiation, shortwave radiation 

and wind speed. Conclusions from this study have been aiding the ongoing modifications and 

improvements of SiB4 (Haynes et al., 2016). SiB4 is modified from SiB3 (Baker et al. 2003; 

Denning et al. 1996, Sellers et al. 1996).   

There were some key changes in SiB4 from SiB3 that are important to note including 

switching from biomes to plant functional types (PFTs), adding tiles for fractional coverage per 

grid cell (for example, one grid cell can have 20% C3 grass and 80% C4 grass), and introducing 

defined phenology stages (ex. leaf-out, senescence).  SiB4 combines prognostic phenology, plant 

physiology, and ecosystem biogeochemistry.  SiB4 is a land surface model that seeks to improve 

the estimates of carbon sources and carbon sinks (carbon cycle) as well as terrestrial fluxes of 

energy, moisture and momentum.  The timing of carbon uptake and release is controlled by plant 

physiological processes such as temperature, moisture and light (Scheifinger et al., 2002; 

Larcher, 2003).  Seasonal and inter-annual climatic variations influence the timing of plant 
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development, which in turn influences the temporal variability in ecosystem productivity 

(Baldocchi et al., 2001; Richardson et al., 2010). 

Figure 16 illustrates how SiB4 works to supplement the text.  SiB4 incorporated carbon pools 

by modifying the SiB-CASA scheme (Schaefer et al. 2008).  There are five live carbon pools 

(leaf, fine root, coarse root, wood, product) and six dead carbon pools (coarse woody debris, 

metabolic litter, structural litter, soil litter, soil slow, soil armored).  The live and dead carbon 

pools are illustrated in Figure 16 by the green and dark tan boxes, respectively.  SiB4 predicts 

phenology to produce values of consistent carbon fluxes, pools and leaf area index (LAI) and 

calculates sub-hourly fluxes and updates phenology/pools daily.  Prognostic phenology models 

can be used to investigate the relationship between climate variables, plant development and 

carbon fluxes, in addition to providing continuous estimates of the biophysical state (Stockli et 

al., 2008, 2011; Jolly et al., 2005).    

SiB4 calculates fluxes of photosynthesis and respiration every time-step. Photosynthesis is 

predicted from enzyme kinetics coupled to stomatal physiology following Farquhar et al. (1980) 

and Collatz et al. (1991, 1992). SiB4 utilizes dynamic prognostic phenology and five phenology 

stages (phenostages) after the dormancy period (Stage 0).  The five phenostages in order, include 

leaf-out (Stage 1), growth, maturity, stress and senescence (Stage 5).  The three primary 

determinants for the start of the growing season (shown in Figure 16 referred to as Leaf-Out 

Initiation) include temperature, soil moisture, and light (day-length). Once in a growing season, 

the phenostage is determined by a leaf cost-to-benefit factor and an assimilation factor. The leaf 

cost-to-benefit factor combines the relationship between LAI and the fraction of 

photosynthetically active radiation (FPAR) with climatological and real-time stresses to 

determine the phenology stage when the plant is growing (leaf-out, growth and maturity phases). 
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The assimilation factor is used to determine the phenology stage when the rate of assimilation is 

decreasing (stress, senescence).  These values, combined with further adjustments for 

temperature and moisture, are used to allocate the assimilated carbon to the live pools.  

Autotrophic respiration from the live pools includes growth respiration and maintenance 

respiration, which is calculated every time-step.  The transfer of carbon from the live to dead 

carbon pools is based on phenology stage, temperature and moisture.  In regards to the six dead 

carbon pools, the heterotrophic respiration and transfer from these pools depends on PFT-

dependent turnover times that are modified for each site based on temperature and soil moisture 

factors, as well as carbon pool size.  The gains and loses for each carbon pool are summed daily, 

and the carbon pools are updated at midnight (local time).  The vertical distribution of all carbon 

pools located in the soil is based on the rooting profile of the PFT.  For grasslands, the live above 

ground biomass is used to calculate the LAI, which is used to calculate the carbon assimilation, 

completing the carbon cycle.   

There are three stress parameters in SiB4 that hinder stomatal conductance (such as during 

drought or at end of the growing season) including temperatures stress, humidity stress and root 

zone water stress.  The soil moisture within SiB4 does respond to change in precipitation but it 

also depends on soil characteristics.   Once the soil moisture is calculated, then the root zone 

water stress parameter can be calculated from the root-density-weighted excess of soil moisture 

above the wilting point in each layer of soil. Finally, then the running mean of this soil moisture 

stress is calculated and it has to surpass a PFT-specific value in order to start growing.  For 

example, if the start of the growing season is delayed in SiB4, that could result in a shift of 

timing in the magnitude of carbon assimilation (change timing of phenostages). 
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SiB4 is a self-consistent global land surface model that requires minimal input data as shown 

in Figure 17 such as weather, soil properties and PFT. The input data of soil 

properties/characteristics comes from the 0.5° Global Gridded Surfaces of Selected Soil 

Characteristics (IGBP-DIS) dataset which include the percent fraction of percentages of silt, clay 

and sand as well as the soil reflectance (Global Soil Data Task Group 2000).   From these values, 

the Clapp and Hornberger (1978) power curve equations were used to obtain more soil 

parameters such as porosity, conductance, field capacity and wilting point.  Finally, the input 

weather data is from NASA’s Modern Era Retrospective-Analysis for Research and Applications 

(MERRA - Reinecker et. al 2011). MERRA is a retrospective-analysis that integrates a variety of 

observing systems with numerical models to produce a temporal and spatially consistent 

synthesis of observations and analysis of variables not easily observed, which is ideal for 

investigating climate variability globally.    

In the SiB4 model, the MERRA variables used include hourly temperature, wind speed, 

shortwave radiation, longwave radiation, precipitation and specific humidity with a grid cell of 

0.5° by 0.67° over the whole globe.   MERRA precipitation is then rescaled by the monthly 

values from the Global Precipitation Climatology Project (GPCP) version 1.2 product (Huffman 

et al., 2001).  That product has monthly precipitation from an average of rain gauges in 1° by 1° 

grid cells.  For every MERRA gridcell, monthly total precipitation is scaled to the nearest GPCP 

monthly estimate.  Finally the meteorological input data is re-scaled to 0.5° by 0.5°.  For this 

study, we have used the data from the gridcell containing each tower.   

It is well-known that re-analysis precipitation products such as MERRA have a tendency to 

smear out the precipitation.  For example, there are many small precipitation events in MERRA 

as opposed to large, isolated precipitation events (Ashouri et al. 2015).  Given this, it is expected 
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that there will be discrepancies in the timing of the rainfall within each month between MERRA 

and local observations.  Since in this study we are focusing the seasonality and the interannual 

variability, the MERRA monthly-scaled by GPCP is sufficient because both the rain gauge data 

and MERRA are equal on the monthly timescale.  

The plant functional type (PFT) used at each tower is the associated PFT representing the 

vegetation coverage at that tower.  We have selected sites that are dominated by C3 grass and C4 

grass.  In the model, like the real world, C4 and C3 have different photosynthetic pathways and 

different responses to heat stress: C4 has a higher tolerance to warmer temperatures than C3.  

One key difference is that unlike the real world, SiB4 does not use different root structure/depths 

between C3 and C4, which could alter the root stress in periods of drought (Blair et al. 2013).  

Terrestrial biosphere models (TMBs) like SiB4, do have limitations because the models can only 

resolve PFTs but not the different species of the PFTs, which could have a significant impact on 

simulated variables such as soil moisture, root zone stress, etc.   In addition to input data, as with 

all land surface models, SiB4 requires a variety of parameters.  The parameters and their 

associated values are provided in Haynes et al. (2016).  It should be noted that since SiB4 is a 

global model, it is not calibrated for specific sites.   

Grazing has been introduced into this newest version of SiB4.   To calculate the impact of 

grazing, first spin-up runs of 18 years were used to determine the net primary production.  

Second, we calculated a daily grazing amount that was equal to 40% of the 18-year NPP divided 

by the total number of grazing days, where a day was considered to be grazed if the LAI was 

above 0.7.  This calculated daily grazing rate was then used in the simulations, and on the 

appropriate days carbon was transferred from the above-ground pools (leaf, stem, product) to 

respiration and other carbon pools.   
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CHAPTER 3: RESULTS AND DISCUSSION 

 

3.1    Climatological Wet-Dry Gradient 

 
The U.S. Great Plains has a large west-east climatological gradient from the dry climate in 

the west at Sevilleta, New Mexico to the wet climate in the eastern side of the domain (Konza 

Prairie, Kansas) as shown in Figure 5.  Some of the chosen grassland sites including Sevilleta 

and Konza are also instrumented with phenocameras.  According to White et al. (2009), the 

current methods used to analyze phenology include ground-truth direct observations of plants 

(National Phenology Network), eddy flux towers, digital cameras/remotely sensed data such as 

phenocameras and MODIS and terrestrial biosphere models such as SiB4. In an attempt to 

improve the timing of phenology in terrestrial biosphere models and remote sensing platforms, 

phenocameras from the PhenoCam network can be utilized. Phenocameras are high-resolution 

digital cameras placed on towers that provide images every half an hour (Richardson et al., 

2009).   

Figures 18 and 19 are phenocameras images from Konza Prairie, Kansas site on August 11th 

2012 (first year data was available) which was a drought year and August 11th 2015, a non-

drought year. Figure 20 is the image from Sevilleta, New Mexico on August 11th 2015 during a 

non-drought year (first year data was available).  The difference in vegetation is apparent 

between the two extreme sites with the drought in 2012 the vegetation appearing browner and 

more sparsely vegetated (Figure 18).  This corresponds well with the calculated LAI and flux 

values that will be explained later on.  

Now, let’s focus on how these grassland sites respond to the 15-year mean precipitation over 

this large precipitation gradient.  The first question posed in this study was as follows: Over the 

15-year MODIS record at the nine sites across the dry-to-wet gradient, is the seasonal mean 
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LAI linear with respect to annual mean precipitation?  Figure 21 shows the 2000-2014 

seasonal mean LAI versus the annual mean precipitation for both SiB4 and MODIS. Comparing 

mean precipitation against seasonal mean LAI reveals a strikingly linear relationship between 

seasonal mean LAI and precipitation across the precipitation gradient in the U.S.  Although there 

is some site variability, the desert grassland (US-Seg), has minimal precipitation and minimal 

LAI as shown in the phenocameras image.  As the precipitation increases moving eastward, the 

LAI also increases nearly linearly.  

 In the mid-region of this study, an annual precipitation of ~600 mm corresponds with an 

LAI of ~1.0 in SiB4.  Shifting east again towards the productive sites, both precipitation and LAI 

increase together so that at sites with ~1000 mm of precipitation (4x the desert sites) the LAI is 

~2.0 for SiB4.  The slope in SiB4 was 0.001825 m2m-2 per millimeter or 1.825 m2m-2 per meter 

meaning that for every 1 meter of precipitation, there is a gain of 1.825 units of LAI.  The slope 

of MODIS was 0.00179 m2m-2 per mm or 1.79 m2m-2 per meter meaning that for every 1 meter 

of precipitation, there is a gain of 1.79 units of LAI.  In SiB4, the R2 equals 0.800 and for 

MODIS, the R2 equals 0.700.  

These R2 values explain 70-80% of the variance which proves that the strength of this 

relationship of LAI versus precipitation is significant in both MODIS and SiB4.  This may 

indicate that while temperature and evaporation are important variables in the growing season, 

these plots show that precipitation is the dominant factor, and that there is a linear relationship 

between annual precipitation and seasonal mean LAI 

SiB4 produces the same linear response of LAI to precipitation as the observations (MODIS) 

with a difference in slope of <0.00003.   This could indicate that the model has skill in predicting 

grasslands, the LAI and the grassland response to precipitation.   Even though the slopes are 
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almost identical, SiB4 does overestimate the magnitude of the LAI, as seen by the offset from the 

MODIS data. However, this offset is consistent across all sites, meaning that SiB4 has a bias in 

LAI.  This bias is particularly noticeable in the C3 grass parameters given that the two extreme 

(C4) grass sites seem to be in the most agreement compared to the mixed grassland and the lone 

C3 grassland site, US-Ctn (K. Haynes, personal communication).   

 

3.2    Seasonality 

 
3.2.1 Leaf Area Index (LAI) 

 

From 2010 to 2012, SiB4 simulated the known west-to-east gradients in grassland 

productivity as shown in the LAI (Figures 22-30) values from the dry climate in the west 

(Sevilleta – Fig. 22) to the wet climate in the eastern side of the domain (Konza – Figure 30).   

Overall, SiB4 does fairly well in calculating values of the leaf area index (LAI) compared to 

observations from MODIS.  SiB4 generally overestimated the value of LAI compared to the 

observations in the majority of the grassland sites similar to the pattern seen in the 15-year mean 

results shown in Figure 21. The maximum of the LAI (peak of season) is also generally too high 

in SiB4.  SiB4 did fairly well capturing the interannual variability in addition to the seasonal 

cycle (timing of onset and senescence). However, the C4 grassland sites (Sevilleta and Konza) at 

the extremes of the climatological gradient in this domain seem to perform better in the model 

than the mixed grassland sites and the one C3 grassland site in South Dakota (Fig. 25) in the 

middle of this domain. 

The accumulative water deficit was chosen as another drought indicator because a large 

amount of water deficit means that there is a higher amount of potential evapotranspiration 

compared to precipitation that over time could lead to drought conditions.  As expected, when 



 

 

25 

sites experienced drought conditions, there were large decreases in LAI with large negative 

values of water deficit (more potential evapotranspiration than precipitation). The WD values do 

not work quite as well at US-Seg given that the growing season and precipitation are based on 

individual events, not seasonality. 

Now to take a look at all nine sites in detail in regards to the LAI and water deficit (WD) 

values, starting with the driest, western site of Sevilleta (US-Seg).  US-Seg has low values of 

LAI as expected in both MODIS and the model; see indications that it is water stressed every 

year.  2011 was the least productive year with almost no growing season compared to 2010 and 

2012.  There was a drought in 2011 according to the National Drought Mitigation Center 

(NDMC) as shown in Figures 7-10.   The northern mixed grassland sites (Figures 23–26) include 

the Shortgrass Steppe in northeast Colorado (US-SGS), Sandhills in Nebraska (US-SdH), 

Cottonwood in central South Dakota (US-Ctn) and Brookings in eastern South Dakota (US-

Bkg).  US-SGS is the second least productive site within this domain.  Both MODIS and SiB4 

indicate that the maximum LAI values dropped by more than half in 2012 compared to 2010 and 

2011 while the accumulative water deficit decreased from around a 20-30mm in 2010 to about -

550mm  in 2011 at US-SGS, US-SdH and US-Ctn. This agrees with the drought maps from the 

NDMC shown in Figures 12-14 that show that a drought occurred at these sites in 2012.   US-

Bkg (Fig. 26) also shows a drop in 2012 in the LAI and WD compared to 2010 and 2011 but not 

as severe as the other three northern mixed grassland sites.  

SiB4 does seem to get the timing of the seasonality correct at these northern mixed 

grassland sites.  However, the model does end the growing season in 2012 at US-Bkg a bit 

earlier than MODIS though. In addition, the model does overestimate the LAI values at the peak 

of the growing season. The values of LAI in both the model and MODIS in these four northern 
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mixed grassland sites go to zero in the winter when there are cold enough temperatures that 

grasses do not grow.    

This is in contrast with the southern mixed grasses including the ARM site in Oklahoma 

(US-Arc) and at Freeman, Texas (US-Fr1) shown in Figures 27-28.  While SiB4 does go to zero 

at these two sites, MODIS does not.  This indicates that the model at the warmer sites is 

underestimating the LAI because the model is not realizing that in the winter in this area, there 

can still be some grass growing due to warm enough temperatures. In addition, MODIS LAI 

values include other PFTs than just grasslands so that could explain some of the discrepancies 

between model and observations.   

In US-Arc, the maximum LAI in SiB4 dropped from 2.5 in 2010 to 1.3 in 2011.  US-Fr1 

also shows a decrease of maximum LAI from about 3.5 in 2010 and 2012 to only .75 in 2011. 

The MODIS at both sites indicated a dip in the LAI in 2011 as well but the decrease was not as 

dramatic, again probably due to the fact that MODIS is seeing vegetation types other than just 

grassland PFTs.  The WD values dropped significantly in 2011 at US-Arc from about a zero WD 

in 2010 to  -550mm in 2011 and had a similar water deficit in 2012. The WD values at US-Fr1 

also dropped in 2011 to about -500mm but there is some recovery of water deficit in 2012.  

Compared to 2010, there is a shortened growing season in 2011 in US-Arc and US-Fr1 in 

conjunction with the drought (Figures 7-10).  In 2012 at US-Fr1, the model ended the season too 

abruptly compared to MODIS and WD which could be due to end of season stresses in the model 

such as temperature and moistures stress.  Even though it appears that from the WD values that 

there is potentially enough water to sustain growth, SiB4 is unable to start growing again, so this 

indicates that there is an issue with the temperature stress in the model.   Compared to the other 

sites, SiB4 has the most difficulty with the seasonality in US-Arc and US-Fr1.  This could be due 



 

 

27 

to the model being too sensitive to temperatures; it doesn’t get nearly as cold at these two sites 

compared to the others.   Another issue could be that the MODIS covers a 7km by 7km swath 

and from further investigation, these two sites have another vegetation types that are altering the 

values of LAI in the MODIS while SiB4 only uses the two grassland PFTs.  For example, at 

Freeman Ranch in Texas, this site is next to woodland and juniper sites. 

The final two sites are the tallgrass prairies sites in eastern Kansas: Walnut Creek (US-Wlr) 

and Konza Prairie (US-Kon) shown in Figures 29-30.  These two sites are the most productive in 

this domain with maximum LAIs at about 3 within this timeframe compared to the maximum 

LAI value of 0.25 at the desert site (US-Seg).  US-Wlr shows a dip in production in 2011 and 

2012 compared to 2010 with a decrease of about 0.5 units of LAI in the model.  The WD values 

drop to about -400mm in 2011 and 2012.  US-Kon shows a decrease of the maximum LAI in 

2012 compared to 2010 and 2011.  There is also a shortened growing season in conjunction with 

a significant water deficit that corresponds with the known drought conditions (Figures 13-14).  

Although, it is important to note that MODIS cuts the growing season short in 2011 unlike SiB4. 

While the pattern in general agrees between MODIS and SiB4 at these two sites, there is an issue 

in 2012 in regards to the shoulder season (the end of the season).  

Overall for all sites, there are some WD dips during summer due to the seasonality which is 

when it would be normal to see some water deficit.  However, periods of large WD severity in 

combination with low LAI values were of the most interest because it indicated drought.  In 

some cases, SiB4 seems to have issues with the shoulder seasons, the time periods at the 

beginning and end of the main growing season.  Cases of early and delayed start of the growing 

season in SiB4 could be due to the three triggers that start the growth: temperature, soil moisture 

and daylength.    
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In some cases, SiB4 also ramps down the growing season too quickly towards the end of the 

season (eg. US-Arc in 2012 and US-Kon in 2012).  There are two combined ideas that explain 

this. The first part is that the model is calculating low enough amounts of carbon assimilation 

towards the end of the growing season that it cannot continue to grow. Once the values of 

respiration dominate over assimilation, the plant goes into the senescence phase and it doesn’t 

recover due to the three stress factors (humidity, temperature and root zone moisture). The 

second part of the explanation is that there are differences from SiB4 versus observations on the 

timing and magnitude of the transfer of live carbon pools to dead carbon pools.  

 

3.2.2. Energy and Carbon Fluxes 

 
  

The two extreme sites of US-Seg and US-Kon were further explored to analyze and discuss 

some additional differences between SiB4, MODIS and the flux towers.  The precipitation from 

both MERRA and the U.S. Climate Reference Network (USCRN - Diamond et. al. 2013) at 

these two sites (US-Seg and US-Kon) is illustrated in Figures 31-32.   Konza receives more 

precipitation than Sevilleta, which is what was expected given the phenocameras images 

(Figures 18-20). Note that the y-axes have different scales in order to see the individual 

precipitation events at Sevilleta.   

From these precipitation data, precipitation at Konza is strongly seasonal, with a summer 

maximum and winter minimum; this seasonal cycle is less obvious in Sevilleta.  At Sevilleta, 

there is a large growth response to individual precipitation events which one may not know until 

further looking at these rain events and also in the LAI values. The timing of the climate 

variability (in this case, the timing of the precipitation event) is just as important, if not more 
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important, than its magnitude (Craine et al., 2012). For example, if the precipitation event occurs 

during the shoulder seasons, SiB4 may not have a growth response. 

While most temperate grassland sites have a strong seasonal cycle, US-Seg (desert grassland) 

is driven by individual precipitation events. Using precipitation data (Fig. 31), these significant 

events that occurred in the growing season have been numbered on all of the US-Seg plots to aid 

in the understanding. Two significant precipitation events (1 and 2) occurred in the mid-part of 

the growing season in 2010 and 2012 while medium-sized events (3 and 4) occurred during the 

shoulder seasons of 2010.   US-Seg had the most production in 2010, a year with no indication of 

drought conditions.  2011 had very little growth, which was a combination of a severe drought in 

the overall southern region of this domain as well as an extreme freezing event in February 2011 

(personal communication, Dr. Marcy Litvak, PI of Sevilleta LTER).  

Overall, the carbon and energy flux values between the model and the flux tower do match 

up fairly well (Figures 33–36). The NEE values (Fig. 33) are low but do have the same pattern as 

the individual rain events.  However, there are some differences in the timing of the main 

growing season in 2012 and the shoulder seasons in 2010.  The GPP (Fig. 34) values are also 

quite low in both with a maximum less than 2.0 micromoles of C m-2 s-2; these small maximums 

matched well with the precipitation events. The latent heat values look remarkably good and 

again, LH follows the pattern of the main rain events (Fig. 35).  As expected in a desert site, the 

sensible heat dominates over the latent heat, again can even see where the main two precipitation 

events (1 and 2) occur where the SH drops suddenly in 2010 and 2012 (Fig. 36).  The daily 

Bowen ratio used in many drought studies (the ratio of sensible to latent heat) is at times greater 

than 10 which is expected in desert/semi-arid locations.  2012 showed indications of production 
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but also experienced some drought conditions that will be explained later on using the anomaly 

plots.  

Figures 37- 40 illustrate the linearity between the model and flux tower for the four flux 

variables at US-Seg over the same three-year time period.  While the model shows some skill, 

there is still need for improvement.  Figure 37, the NEE, has an R2 value of 0.3273.  This low 

value reflects the discrepancy in 2011 between the model and the observations due to the almost 

complete lack of growth during the extreme drought that year.  However, the other three 

variables have higher correlation values with GPP having an R2 value of 0.6975, LH having an 

R2 value of 0.6349 and SH an R2 value of 0.8346. 

In contrast to US-Seg, US-Kon is a productive grassland with a clear seasonal cycle which is 

shown not only in the LAI and the precipitation plot, but also in the carbon and energy fluxes 

(Figures 41–44).   The GPP is much higher in Konza (Fig. 42) compared to US-Seg (Fig. 34).  

Overall, SiB4 generally agrees with the flux tower data. In both the model and observations, the 

GPP has a strong seasonal cycle, the NEE is less than zero at midseason and the NEE is greater 

than zero in shoulder seasons (Fig. 41) when the respiration (RE) is greater than GPP 

(NEE=GPP-RE).  The seasonal pattern of LH (Fig. 43) is similar to GPP while SH has its 

maximum in the shoulder seasons (Fig. 44). It is important note that the values of GPP could be a 

little low in model because the flux tower is in the productive annual burn site which this model 

does not include (no fire in model).    

For the interannual variability, 2011 has a drop off in the observations of GPP and NEE with 

a larger drop in LH but not in the model. In 2012, both SiB4 and observations show reductions of 

GPP, NEE, LH and an increase in SH due to the significant drought that occurred (Figures 12-

15). In the NEE plot of US-Kon (Fig. 41), the model is able to get the shape correct and even 
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capture the pulses of respiration before and after the growing season with the correct magnitude. 

The latent heat is remarkably good, can even see the significant precipitation events.  There is a 

drop during 2012 that corresponds to the known drought (Fig. 43).   

The sensible heat at US-Kon is lower than US-Seg which is expected. The sensible heat 

values in the model do simulate the general pattern of having a double peak during the shoulder 

seasons but does consistently underestimate the SH (Fig. 44).  SH is greatest during the shoulder 

seasons (around March/April and October) when there is a significant amount of net radiation 

due to sparse vegetation cover on the surface. It is difficult for the model to remove water from 

soil in spring and fall when the surface of the ground is brown as opposed to green during the 

growing season.  The underestimation of SH in the model suggests an underestimate of net 

radiation which is likely due to the overestimation of albedo at this particular site.    

  MODIS as well as the flux values indicate a shorter and less productive growing season 

compared to SiB4 in 2011 (Figure 30, 41–44). This is indicated by less uptake of CO2 in the 

NEE values, lower LH values and lower GPP values.  This difference of the length of growing 

season was further explored to see if it could be explained by the annual burning of Konza.  The 

annual burn happened earlier on in the season (around March/April) so this hypothesis turned out 

to be false. As explained previously, this inhibition of plant growth in 2012 shown in the GPP 

plot is the result of low carbon assimilation values and the timing and magnitude transfer from 

live to dead carbon pool. 

  Figures 45- 48 illustrate the linearity between the model and flux tower for the 

four flux variables at US-Kon over the same three-year time period.  While the model shows 

some skill, there is still need for improvement.  In Figure 45, the NEE, has an R2 value of 

0.6445. The R2 value for GPP is 0.8140, LH is 0.718 and SH is 0.4166. This low R2 value in 
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sensible heat plot makes sense given the difference of values also shown in Figure 44.  

Underestimation of SH in the model suggests an underestimate of net radiation which is likely 

due to the overestimation of albedo in the model at this particular site, probably due to 

insufficient retention of senescent grass.    

 

3.3    Interannual Variability 

 

To further explore the relationship between grassland and drought, the standardized 

anomalies of the seasonal mean LAI in both MODIS/Obs and SiB4 using the 15-year means 

were calculated and plotted against the standardized anomalies of the annual mean precipitation 

(Figures 49-50).  The standardized seasonal LAI anomaly equals the seasonal mean LAI of a 

specific year minus the average seasonal mean LAI over the 15 years divided by the standard 

deviation of the average seasonal mean LAI over the 15 years.  The standardized precipitation 

anomaly equals the mean precipitation of a specific year minus the average precipitation over the 

15 years divided by the standard deviation of the mean precipitation over the 15 years.  The 

standardized anomaly for each year for each site (or 135 site-years) was plotted for both Obs and 

SiB4. 

 Interestingly, there is also a linear relationship between the annual mean precipitation 

anomaly and the seasonal mean LAI anomaly.  Again, MODIS and SiB4 have similar slopes. 

However, there is more scatter in the Obs compared to SiB4 which indicates that there are other 

controls of LAI.  The R2 values also indicate that about half of the anomaly can be explained by 

precipitation but this is still significant considering all the factors that go intro growth such as 

different species, temperature, evapotranspiration, grazing, fire, other disturbances, etc.  Overall, 
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this indicates that there is a linear response of grassland LAI anomalies to precipitation 

anomalies.  

To match the timeframe of the LAI plots, the anomalies for the individual years of 2010, 

2011 and 2012 were analyzed (Figure 51-53).  As indicated in the LAI plots, most sites were 

drought-free in 2010.  Although, we could be seeing signs of the drought that started to develop 

in the southern part of the domain towards the end of the year that led into 2011 (ex. Freeman, 

Texas – US-Fr1 site).   In 2011, the southern sites experience drought while the northern and 

eastern sites did not indicate drought conditions.  Given that Texas and Oklahoma had record dry 

conditions and record high temperatures in 2011 (NCDC 2012), it is known that temperature in 

addition to precipitation is an important factor when it comes to drought.   

Then in 2012, all nine sites experienced drought with Texas slowly coming out of the 

drought.  It is important to remember that while the late-season 2010 drought continued into 

2011 in the southern sites, the 2012 drought was a flash drought that was not a continuation from 

the previous year.   These plots prove further that SiB4 did well in capturing the interannual 

variability.  It simulated drought at the appropriate sites on the correct year.  

Given the severity of drought in 2012, the second question posed in this study was as 

follows: During the 2012 drought, do reductions in the seasonal mean LAI in response to 

large decrease in precipitation fall on the same line as the average response of LAI to 

climatological precipitation?  Figure 54 illustrates the 15-year mean values for the seasonal 

mean LAI vs. annual mean precipitation values (same as Figure 21) displayed as closed square 

and circles.  In addition, the LAI vs precipitation values for 2012 for each site are displayed as 

the OPEN squares (model) and circles (observations).  This figure allows the user to easily see 

the difference of 2012 compared to the 15-year average.  In response to the 2012 drought, all 
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nine sites maintained this same linear relationship even with a significant decrease in LAI and 

precipitation.  For example, Konza in the gold color, decreased from ~1.75 LAI in both SiB4 and 

Obs from the 15-year mean to ~1.0 LAI in SiB4 and ~0.6 LAI in the observations, with a 

decrease of about 300 millimeters in precipitation in 2012.   The linear relationship between LAI 

and precipitation did not break during periods of extreme drought.   

The third question was as follows: Does the model match the observations as shown in the 

first two questions?  Despite the consistent overestimation in LAI magnitude in the model 

compared to observations, the model was able to capture the same linear relationships as the 

observations in regards to the climatological gradient and the drought response as shown in 

Figures 21 and 54, respectively.   
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CHAPTER 4: CONCLUSIONS 

 
Using grasslands across the U.S. Great Plains, we were able to investigate how grassland 

behavior changed across this region, which experiences a significant precipitation gradient.   

There were three main questions that were addressed in this study:   

1. Over the 15-year MODIS record at the nine sites across the dry-to-wet gradient, 

is the seasonal mean LAI linear with respect to annual mean precipitation?  

2. During the 2012 drought, do reductions in the seasonal mean LAI in response 

to large decrease in precipitation fall on the same line as the average response 

of LAI to climatological precipitation addressed in the first question?   

3. Does the model capture these relationships as in the observations addressed in 

the first two questions? 

There was an increase in LAI with increasing precipitation, which has a linear 

relationship in both the observations and the model using 15-years of data which answers the 

first main question. SiB4 generally overestimates the LAI compared to observations in the 

majority of the 9 chosen grassland sites.  However, SiB4 did fairly well in capturing the 

interannual variability in addition to the seasonal cycle in most sites. In Sevilleta the desert site, 

there was low precipitation, low LAI, low fluxes and a daily Bowen ratio at times above 10.  The 

growth was based on individual precipitation events, not the seasonal cycle.   

As the precipitation increases moving eastward in this domain, the LAI also increases 

nearly linearly.  The LAI values from 2010-2012 from model and observations as well as the 

accumulative water deficit were analyzed at four northern mixed grasses, two southern mixed 

grasses and two tall-grass sites in eastern Kansas.  At the four northern mixed grassland sites 

located in Colorado, Nebraska, and South Dakota, the model does seem to get the timing of the 
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seasonality correct.  The model also accurately indicated that there were drought conditions in 

2012 in all 4 of these sites.  

The two southern mixed grass sites are located in Oklahoma and Texas. SiB4 does not 

capture the seasonality as well as these two sites compared to the four northern mixed grassland 

site but it accurately indicated drought conditions in 2011.  The last two sites of interest called 

tall-grass prairies (the most productive sites) are located in eastern Kansas.  There was a strong 

seasonal cycle, large amounts of precipitation, large LAI, and large flux values. There was more 

latent heat than sensible heat due to evapotranspiration at mid-summer, so the daily Bowen ratio 

was less than 1.  Again, the model generally captures the seasonality and the drought in 2012.  

However, there are some differences in the timing of the end of the growing season in 2011 and 

with the shoulder season in 2012.   

 In addition to studying the general response of grassland productivity to precipitation, 

this study investigates the response of grasslands to drought.  This region experienced significant 

drought at particular sites in 2011 and 2012, which is recent enough to allow us to look at those 

events more in depth.  To answer the question if the linear relationship between LAI and 

precipitation breaks during periods of extreme drought, it does not appear to break linearity in 

this study by comparing the response of the sites in the 2012 drought compared to the 15-year 

mean which answers the second main question of this study.   Again, there was the same linear 

response in the anomaly plots and that relationship is the same in the model and the observations.  

For both the model and observations, one-half of the anomaly can be explained by precipitation 

but this is still significant considering all the factors that go intro growth such as different 

species, temperature, evapotranspiration, grazing, fire, other disturbances, etc    
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Overall, this study indicates that there is a linear response to grassland LAI to 

precipitation in both the model and the observations which answers the third main question of 

this study. SiB4 has a bias in the magnitude of seasonal-mean LAI, but it has the same response 

to precipitation, and shows the ability to capture the behavior of grasslands both across a dry-wet 

gradient and for a specific drought event.  Finally, SiB4 shows improvement in capturing the 

seasonality and especially the interannual variability compared to earlier terrestrial biosphere 

models (Schwalm et al., 2010; Schaefer et al., 2012; Razcka et al., 2013).  
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CHAPTER 5: FUTURE WORK 

 
The U.S. Great Plains region was chosen for the large precipitation gradient from west-

east and the time frame of 2010-2012 was chosen due to the significant drought conditions. 

However, this study was limited to only two flux tower C4 grassland sites, Konza and Sevilleta, 

due to data availability.  It would be beneficial to include additional flux tower sites in further 

studies. There is also a need to evaluate other regions around the globe with significant 

precipitation gradient to see if they have the same linear relationship between LAI and 

precipitation values in grasslands as found in this study.  Are they dominated by this same linear 

response? We know from this study that we are capturing the overall behavior of annual net 

primary productivity (ANPP) values (capturing the extreme ends, low ANPP/low LAI at US-Seg 

and high ANPP/LAI at US-Kon).  Values of the ANPP are available at certain Long-Term 

Ecological Research (LTER) sites in this domain.   

While this study focuses on the ANPP (directly related to the maximum LAI) of 

individual years, it could also be beneficial to plot the average of two years of ANPP  to improve 

the relationship of ANPP versus precipitation in the short-term according to Moran et al. (2014).  

Moran et al. (2014) found that the ANPP responded primarily to the current-year precipitation in 

the extreme sites while the mesic sites responded mainly to the previous-year ANPP. 

It would also be a good idea to find data for belowground net primary production (BNPP) 

in addition to ANPP.  The carbon cycle also depends on the belowground carbon pools which 

include three dead carbon pools (soil carbon being the largest) and one live carbon pool (live 

roots). If have measurements of all the four below ground carbon pools, then one can determine 

the root turnover time which would help the allocation of carbon in the model (how much and 

when). In addition, another area of exploration could be how much drought years alter the 
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ANPP/BNPP.   Another idea is that these relationships could be explored beyond the grassland 

sites into other PFTs.  Given that grasslands are highly sensitive to disturbances such as grazing 

and fire, grazing amounts could be varied in the model and fire could be introduced into model 

for sites that have prescribed burns (ex. Konza Prairie has annual burn in April).  

In addition, in multiple sites/years, there is still room for improvement on the shoulder 

season in SiB4 compared to MODIS and the flux tower data.   To improve this, modifications 

could be made in SiB4 in regards to how it calculates respiration and the transfer of live and dead 

carbon pools towards the end of the season. Lastly, the next thing to investigate is the root zone 

water stress parameter because it directly relates to soil moisture and, therefore, drought.  

Improving this parameter could also improve the issues that are prevalent in the shoulder 

seasons.   It is quite possible that the soil in the model is drying out too quickly, leading to more 

water stress, which could be an artifact of the wrong soil moisture and root zone water stress. 
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TABLES AND FIGURES 

 

Table 1.  Details of the Grassland Sites and Plant Functional Type (PFT). 
 

Tower Site Name 
Site 

Location 
Lat Lon Description 

US-Arc 
ARM SGP 
Control Site 

Oklahoma 35.55 -98.04 
Mixed Grass Prairie with 

Grazing (40% C3, 60% C4) 

US-Bkg Brookings South Dakota 44.34 -96.84 
Mixed Grass Prairie with 

Grazing (40% C3, 60% C4) 

US-Ctn Cottonwood South Dakota 43.95 -101.85 
Arid Steppe Cold Grassland 

with Grazing (100% C3) 

US-FR1 Freeman Ranch Texas 29.93 -98.01 
Mixed Grass Prairie with 

Grazing  (30% C3, 70% C4) 

US-Kon Konza Prairie Kansas 39.08 -96.56 
Tall Grass Prairie with 

Grazing Burned Annually 
(100% C4) 

US-SdH 
Nebraska 

SandHills Dry 
Valley 

Nebraska 42.07 -101.41 
Mixed Grass Prairie with 

Grazing (40% C3, 60% C4) 

US-Seg 
Sevilleta Desert 

Grassland 
New Mexico 34.36 -106.7 

Arid Steppe Cold Grassland 
 (100% C4) 

US-SGS 
Shortgrass 

Steppe LTER 
Colorado 40.81 -104.19 

Arid Steppe Cold Grassland 
with Grazing (15% C3,  

85% C4) 

US-Wlr 
Walnut River 

Watershed 
Kansas 37.52 -96.86 

Mixed Grass Prairie with 
Grazing (35% C3, 65% C4) 
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Figure 1.  Projected change in average surface air temperature in the later part of this century 
(2071-2099) relative to the later part of the last century (1970-1999) under a scenario that 
assumes low emission scenario (B1, left) and a higher emissions scenario that assumes continued 
increases in global emissions (A2, right).  Walsh et al., 2014. 
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Figure 2. IPCC AR5 Change in Water Cycle using the High Emission Scenario (RCP 8.5). 
Annual mean changes in precipitation (P), evaporation (E),  E – P, and soil moisture for 2081–
2100 relative to 1986–2005.  Hatching indicates regions where the multi-model mean change is 
less than one standard deviation of internal variability. Stippling indicates regions where the 
multi-model mean change is greater than two standard deviations of internal variability and 
where 90% of models agree on the sign of change.  Stocker et al., 2013. 
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Figure 3.  Drought impacts on the economy, societies and the environment moving through time 
from the top to the bottom of the chart. Kellner and Niyogi 2014.  
 
 

 
 

Figure 4.  Parameter-elevation Relationships on Independent Slopes Model (PRISM) 30-year 
(1981-2010) Average Annual Temperature in Farenheit. From 
(http://www.prism.oregonstate.edu/normals). PRISM. 
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Figure 5. PRISM 30-year (1981-2010) Average Annual Precipitation in Inches  (from 
http://www.prism.oregonstate.edu/normals).  PRISM. 
 
 
 
 

 
Figure 6.  U.S. Drought Monitor Map for November 30th, 2010 http://droughtmonitor.unl.edu/.  
NCDC. 
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Figure 7.  U.S. Drought Monitor Map for March 15th, 2011. http://droughtmonitor.unl.edu/.  
NCDC. 
 
 
 
 

 
 
Figure 8.  U.S. Drought Monitor Map for June 14th, 2011. http://droughtmonitor.unl.edu/.  
NCDC. 
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Figure 9.  U.S. Drought Monitor Map for September 13th, 2011. http://droughtmonitor.unl.edu/. 
NCDC. 
 
 

 
Figure 10.  U.S. Drought Monitor Map for December 13th, 2011. 
http://droughtmonitor.unl.edu/. NCDC. 
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Figure 11.  U.S. Drought Monitor Map for March 13th, 2012. http://droughtmonitor.unl.edu/. 
NCDC. 
 

 
Figure 12.  U.S. Drought Monitor Map for June 19th, 2012. http://droughtmonitor.unl.edu/. 
NCDC. 
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Figure 13.  U.S. Drought Monitor Map for September 11th, 2012. 
http://droughtmonitor.unl.edu/.  NCDC. 

 
Figure 14.  U.S. Drought Monitor Map for December 18th, 2012. 
http://droughtmonitor.unl.edu/.  NCDC. 
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Figure 15.  U.S. Drought Monitor Map for August 21st, 2012 with the locations of grassland 
sites chosen for this study. http://droughtmonitor.unl.edu/. NCDC. 
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Figure 16.  Diagram illustrating how the Simple Biosphere Model Version 4 (SiB4) works.   
 
 

 
 

Figure 17. Input Variables (blue boxes) and Output Variables (red boxes) from the Simple 
Biosphere Model Version 4 (SiB4). 
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Figure 18.  Konza Phenocamera Aug 11, 2012.  PhenoCam Network. 
https://phenocam.sr.unh.edu/. Richardson et al., 2009. 
 
 
 

 
Figure 19.  Konza Phenocamera Aug 11, 2015.  PhenoCam Network. 
https://phenocam.sr.unh.edu/. Richardson et al., 2009. 
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Figure 20.  Sevilleta Phenocamera Aug 11, 2015.  PhenoCam Network. 
https://phenocam.sr.unh.edu/. Richardson et al., 2009. 
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Figure 21. 2000-2014 Seasonal Mean LAI (m2/m2) versus Annual Mean Precipitation (mm).  
Solid squares represent SiB4 values and solid circles represent MODIS/Obs values.  SiB, the red 
line, slope of 0.00183.  Obs (MODIS), blue line, slope of 0.00179. 
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Figure 22.  Leaf Area Index (LAI) of the SiB4 (red) and MODIS from Terra (blue) and Aqua 
(green) for Sevilleta, New Mexico (US-Seg).  Purple solid line represents the water deficit 
values. Plant Functional Type (PFT): 100% C4. 
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Figure 23.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for 
Shortgrass Steppe, Colorado (US-SGS).  Water Deficit (purple).  PFT: 15% C3, 85% C4. 
 

 

 
Figure 24.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for Sandhills, 
Nebraska (US-SdH).  Water Deficit (purple).  PFT: 40% C3, 60% C4. 
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Figure 25.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for 
Cottonwood, South Dakota (US-Ctn).  Water Deficit (purple).  PFT: 100% C3. 
 

 
Figure 26.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for 
Brookings, South Dakota (US-Bkg).  Water Deficit (purple).  PFT: 15% C3, 85% C4. 
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Figure 27.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for ARM 
Control Site, Oklahoma (US-Arc). Water Deficit (purple). PFT: 40% C3, 60% C4. 
 

 

 
Figure 28.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for Freeman 
Ranch, Texas (US-Fr1).  Water Deficit (purple).  PFT: 30% C3, 70% C4. 
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Figure 29.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for Walnut 
River Watershed, Kansas (US-Wlr).  Water Deficit (purple).  35% C3, 65% C4. 
 

 

 
Figure 30.  LAI of the SiB4 (red) and MODIS from Terra (blue) and Aqua (green) for Konza 
Prairie, Kansas (US-Kon).  Water Deficit (purple).  PFT: 100% C4. 
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Figure 31. Daily Precipitation in millimeters from 2010-2012 for Sevilleta, New Mexico (US-
Seg). Red Lines: MERRA data in SiB4. Black Lines: Rain Gauge Data (USCRN - Diamond et 
al. 2013). 
 

 
Figure 32. Daily Precipitation in millimeters from 2010-2012 at Konza Prairie, Kansas (US-
Kon). Red Lines: MERRA data in SiB4. Black Lines: Rain Gauge Data (USCRN – Diamond et 
al. 2013). 
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Figure 33. Net Ecosystem Exchange (NEE) at Sevilleta, New Mexico (US-Seg).  Red line is 
from SiB4 and black line from flux tower.  #’s represent precipitation events. 
 

 
Figure 34.  Gross Primary Productivity (GPP) at Sevilleta, New Mexico (US-Seg).  Red line is 
from SiB4 and black line from flux tower.  #’s represent precipitation events. 
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Figure 35. Latent Heat (LH) values at Sevilleta, New Mexico (US-Seg).  Red line is from SiB4 
and black line from flux tower.  #’s represent precipitation events. 

 

 
Figure 36. Sensible Heat (SH) values at Sevilleta, New Mexico (US-Seg).  Red line is from 
SiB4 and black line from flux tower.  #’s represent precipitation events. 
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Figure 37.  Daily values of Net Ecosystem Exchange (NEE) at Sevilleta, New Mexico.  SiB4 
(model) versus Fluxnet (observations) from 2010-2012. 
 

 
Figure 38. Daily values of Gross Primary Production (GPP) at Sevilleta, New Mexico.  SiB4 
(model) versus Fluxnet (observations) from 2010-2012. 
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Figure 39. Daily values of Latent Heat (LH) at Sevilleta, New Mexico.  SiB4 (model) versus 
Fluxnet (observations) from 2010-2012.  
 

 
Figure 40. Daily values of Sensible Heat (SH) at Sevilleta, New Mexico.  SiB4 (model) versus 
Fluxnet (observations) from 2010-2012.  
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Figure 41. Net Ecosystem Exchange (NEE) values at Konza Prairie, Kansas (US-Kon).  Red line 
is from SiB4 and black line from flux tower.  

 
Figure 42. Gross Primary Production (GPP) values at Konza Prairie, Kansas (US-Kon).    Red 
line is from SiB4 and black line from flux tower.  
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Figure 43. Latent Heat (LH) values at Konza Prairie, Kansas (US-Kon).  Red line is from SiB4 
and black line from flux tower.  

 
Figure 44. Sensible Heat Flux (SH) values at Konza Prairie, Kansas (US-Kon). Red line is from 
SiB4 and black line from flux tower. 
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Figure 45.  Daily values of Net Ecosystem Exchange (NEE) at Konza Prairie, Kansas.  SiB4 
(model) versus Fluxnet (observations) from 2010-2012. 
 

 
Figure 46. Daily values of Gross Primary Production (GPP) at Konza Prairie, Kansas.  SiB4 
(model) versus Fluxnet (observations) from 2010-2012. 
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Figure 47. Daily values of Latent Heat (LH) at Konza Prairie, Kansas.  SiB4 (model) versus 
Fluxnet (observations) from 2010-2012.  
 

 
Figure 48. Daily values of Sensible Heat (SH) at Konza Prairie, Kansas.  SiB4 (model) versus 
Fluxnet (observations) from 2010-2012.  
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Figure 49. Standardized Anomalies of Seasonal Mean LAI of SiB4 versus the Annual 
Precipitation Anomaly. Red line is correlation for SiB4.  Slope = 0.6963 and R2 = 0.489. 
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Figure 50. Standardized Anomalies of Seasonal Mean LAI of Observations (MODIS) versus the 
Annual Precipitation Anomaly. Red line is the correlation for SiB4.  Slope = 0.6963 and R2 = 
0.489. 
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Figure 51. 2010 Standardized Anomalies of Seasonal Mean LAI of SiB4 and MODIS (Obs) 
versus the Annual Precipitation Anomaly. States listed for each site. 
 

 

 
Figure 52. 2011 Standardized Anomalies of Seasonal Mean LAI of SiB4 and MODIS (Obs) 
versus the Annual Precipitation Anomaly. States listed for each site. 
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Figure 53. 2012 Standardized Anomalies of Seasonal Mean LAI of SiB4 and MODIS (Obs) 
versus the Annual Precipitation Anomaly. States listed for each site. 
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Figure 54.  2000-2014 Seasonal Mean LAI (m2/m2) versus Annual Mean Precipitation (mm).  
Solid squares represent SiB4 values (15-year mean) and solid circles represent MODIS/Obs 
values (15-year mean). Open squares represent the 2012 SiB4 values while the open circles 
represent the obs values in 2012.  
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