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ABSTRACT 
 
 
 

IN VITRO AND IN VIVO STUDIES ON PRE-mRNA SPLICING IN PLANTS 
 
 
 

In the processes of eukaryotic gene expression, the nascent precursor messenger RNAs (pre-

mRNAs) must undergo extensive processing including splicing. Pre-mRNA splicing is the 

process of removing introns from the transcript and ligation of exons together. Splicing is 

catalyzed in two-step trans-esterification reaction by a dynamic ribonucleoprotein (RNP) 

machine termed the spliceosome that is comprised of five different snRNPs along with other 

non-snRNP proteins. Since most of the eukaryotic genes contain multiple introns, pre-mRNA 

splicing is a vital step in the posttranscriptional regulation of gene expression. 

As in other eukaryotes, the majority of plant protein-coding genes contain introns that are 

subjected to splicing during gene expression. Plant pre-mRNA splicing is fundamental for 

controlling gene expression, and recent studies underscore the importance of this process in 

regulating plant growth and developmental processes in response to intrinsic and environmental 

signals.  Several lines of evidence suggest that plants have unique pre-mRNA splicing regulatory 

mechanisms; however, these mechanisms are poorly understood and have not received attention 

equivalent to those of animals and yeast. Thus, understanding how plant introns are recognized 

and processed requires innovative in vitro and in vivo approaches that will enhance our 

understanding of splicing regulatory mechanisms in plants.  

Arabidopsis SR45, one of the serine/arginine-rich (SR) proteins, is a well-characterized splicing 

factor that controls multiple biological processes. However, little is known about SR45-regulated 

global changes in gene expression and alternative splicing (AS) that are likely to mediate its 
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biological functions. To address this gap, we performed transcriptome analysis in wild-type and 

sr45 loss-of-function mutant using high-throughput RNA-seq to identify SR45-dependent 

changes in gene expression and AS. By comparing the transcriptomes of sr45 mutant and wild-

type, we identified 1,345 differentially expressed (DE) genes and 927 differentially spliced (DS) 

genes. Further analysis of AS events distribution revealed that the choice of 3' alternative 

splicing sites (A3'ss) was the predominant AS type in DS genes, suggesting that SR45 has a 

major role in selecting the 3'ss. Gene Ontology (GO) enrichment analysis of DE and DS genes 

revealed that they are highly enriched in terms associated with hormonal signaling and response 

to abiotic stresses, including heat stress. Our phenotypic and molecular analysis with the sr45 

mutant confirmed that this splicing factor is required for basic thermotolerance. SR45 pre-mRNA 

is alternatively spliced to generate two splice variants that encode two distinct functional 

proteins, SR45.1 (long) and SR45.2 (short), which differ in eight amino acids. Interestingly, 

complementation of SR45 mutant with each isoform independently revealed that SR45.1 but not 

SR45.2 is a positive regulator of thermotolerance. Furthermore, protein phosphorylation analysis 

using Phos-tag SDS-PAGE indicated both SR45 isoforms are phosphorylated in response to high 

temperature. Since there are multiple experimentally confirmed and predicted phosphorylation 

sites both in the common and unique regions of SR45 isoforms, the Phos-tag SDS-PAGE results 

did not allow us to address the role of putative phosphorylation sites unique to the long form. To 

address the role of phosphorylation sites unique to the long isoform, we used complemented 

lines expressing mutated proteins in which the phosphorylation sites of only the long isoform are 

affected. Analysis of heat shock response in these transgenic lines revealed that threonine 218 is 

likely to be critical for thermotolerance in Arabidopsis. These findings establish the importance 
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of a specific splice isoform of a splicing factor in heat stress response and indicate that a 

particular amino acid in the long isoform is important for its function in thermotolerance. 

In vitro splicing systems using nuclear or cytoplasmic extracts from mammalian cells, yeast, and 

Drosophila have provided a wealth of mechanistic insights into eukaryotic pre-mRNA splicing. 

A corresponding plant-derived in vitro splicing system has long been awaited; therefore, we 

present here an effort toward developing such a system from plants. We show that nuclear 

extract (NE) derived from dark-grown (etiolated) Arabidopsis seedlings is capable of converting 

a truncated LIGHT-HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3 (LHCB3) pre-

mRNA substrate with a single intron into the expected size of mRNA. Based on several lines of 

evidence, we suggest that this is an authentic in vitro splicing reaction. Supporting evidence 

include: i) generation of an RNA product that corresponds to the size of the expected mRNA, ii) 

generation of RNA species that migrate within the size range expected for splicing intermediates, 

iii) indications from a junction-mapping assay using S1 nuclease that the two exons are linked 

together, iv) remarkable similarities between plant and non-plant in vitro splicing assay reaction 

conditions, such as requirements for ATP and Mg+2, and v) finally, more importantly, mutations 

in conserved donor and acceptor sites abolished the production of the putative spliced product.  

Unlike mammalian in vitro splicing assays, the optimal incubation temperature for splicing with 

plant extract was lower (24oC), within the optimal growth temperature range of Arabidopsis 

seedlings. Collectively, our results suggest that Arabidopsis NE is capable of splicing pre-mRNA 

substrate and that the in vitro reaction conditions are similar to those found with non-plant 

extracts. This is the first step toward developing a plant-derived in vitro pre-mRNA splicing 

assay.  Further confirmation of these results with additional approaches and optimization of this 

assay would lead to development of a robust in vitro splicing assay and open new avenues to 
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investigate spliceosome assembly and composition, splicing regulatory mechanisms specific to 

plants, and thereby enhance the overall understanding of post-transcriptional gene regulatory 

mechanisms in plants. 
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 CHAPTER I 
 
 
 

Transcriptome-wide analysis of SR45-regulated changes in gene expression and alternative 

splicing revealed a role for this splicing factor in stress responses 

SUMMARY 

Pre-mRNA splicing is one of the fundamental mechanisms that significantly increases eukaryotic 

transcriptome complexity and proteome diversity. Arabidopsis SR45, one of the serine/arginine-

rich (SR) proteins, is a well-characterized splicing factor that regulates multiple biological 

processes. However, little is known about SR45-regulated global changes in gene expression and 

alternative splicing (AS) that are likely to mediate its biological functions. To address this gap, 

we performed transcriptome analysis in wild-type and sr45 loss-of-function mutant using a high-

throughput RNA-Seq to identify SR45-dependent changes in gene expression and AS. By 

comparing the transcriptomes of SR45 mutant and wild-type, we identified 1,345 differentially 

expressed (DE) genes and 927 differentially spliced (DS) genes. Further analysis of AS events 

distribution revealed that the choice of 3' alternative splicing sites (A3'ss) was the predominant 

AS type in DS genes, suggesting that SR45 has a major role in selecting the 3'ss. Gene Ontology 

(GO) enrichment analysis of DE and DS genes revealed that they are highly enriched in terms 

associated with hormonal signaling and response to abiotic stresses, including heat stress. Our 

phenotypic and molecular analysis with the sr45 mutant confirmed that this splicing factor is 

required for basic thermotolerance. SR45 pre-mRNA is alternatively spliced to generate two 

splice variants that encode two distinct functional proteins, SR45.1 (long) and SR45.2 (short), 

which differ in eight amino acids. Interestingly, complementation of SR45 mutant with each 

isoform independently revealed that SR45.1 but not SR45.2 is a positive regulator of 
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thermotolerance. Furthermore, protein phosphorylation analysis using Phos-tag SDS-PAGE 

indicated both SR45 isoforms are phosphorylated in response to high temperature. Since there 

are multiple experimentally confirmed and predicted phosphorylation sites both in the common 

and unique regions of SR45 isoforms, the Phos-tag SDS-PAGE results did not allow us to 

address the role of putative phosphorylation sites unique to the long form. To address the role of 

phosphorylation sites unique to the long isoform, we used complemented lines expressing point 

mutants in which the phosphorylation sites of only the long isoform are affected. Analysis of 

heat shock response in these transgenic lines revealed that threonine 218 is likely to be critical 

for thermotolerance in Arabidopsis. These findings establish the importance of a specific splice 

isoform of a splicing factor in heat stress response and indicate that a particular amino acid in the 

long isoform is important for its function in thermotolerance. 

INTRODUCTION 

The properties and biological functions of each cell type are determined by the cell type-specific 

expression of information stored in genes. While certain genes are expressed to produce 

functional proteins, other genes are responsible for generating regulatory RNA molecules such as 

microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Land plants, like other 

organisms, have the ability to change the expression pattern of their genes in response to intrinsic 

as well as external signals. Thus, gene expression is the most vital mechanism by which the 

genotype influences the phenotype.   

The process of gene expression in eukaryotes comprises of several steps: transcription, co/post-

transcriptional processing of primary transcripts, transport of mRNA to cytoplasm, RNA decay 

and translation. Transcription is the generation of messenger RNA (mRNA) via the enzyme 

RNA polymerase, using DNA as a template. Transcription is both the first and a central step in 
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the pathway from DNA to protein, and plays a fundamental role in controlling gene expression to 

dictate cell function. Transcription involves several steps, such as transcription initiation, 

elongation, and termination, and all of them are tightly regulated mechanisms (reviewed in 

Singh, 1998; Wu, 2014). For example, sequence-specific DNA-binding proteins, termed 

transcription factors, play fundamental roles in regulating transcription initiation and transcript 

levels. The regulation of gene expression at the transcriptional stage largely controls when and 

how often a given gene is transcribed. Transcription of genes in plants and other eukaryotes 

results in precursor mRNAs (pre-mRNA) that are further processed (See “Pre-mRNA 

processing” section below) into mature mRNA. Following processing, mRNA is exported out of 

the nucleus to the cytoplasm where it is translated into a protein. While a cell regulates 

expression of its genes at the transcriptional level, it can also control expression at the pre-

mRNA processing or post-transcriptional level. Gene regulation at the pre-mRNA processing 

level largely influences transcriptome diversity and increases the proteome complexity. 

Translation is the synthesis of protein using the information that was transcribed into mRNA. 

Post-transcriptional regulatory mechanisms include transcript export, localization, mRNA 

stability, translation, posttranslational modifications of proteins, and protein stability and 

degradation (reviewed in Floris et al., 2009; Glisovic et al., 2008). 

Pre-mRNA Processing 

Eukaryotic pre-mRNA processing involves three major steps towards generating functional 

mRNA: addition of a 5' cap, addition of a 3' polyadenylate tail, and splicing. First, during the 

synthesis of pre-mRNA, a 7-methylguanosine (m7G) cap is linked to the 5′ end of the growing 

transcript via an uncommon 5'-to-5' triphosphate linkage. In addition to protecting the nascent 

transcript from degradation, mRNA m7G capping plays a vital role in the coordination of 
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mRNA-associated processes such as splicing, mRNA export, and translation (reviewed in 

Cowling and Cole, 2010; Lewis and Izaurralde, 1997). Once transcription elongation is 

completed, the nascent pre-mRNA is cleaved downstream from the AAUAAA conserved 

sequence. Following cleavage, poly(A) polymerase, a component of the polyadenylation 

machinery, adds adenine residues to form a poly(A) tail at the new 3' end of the RNA. The 

poly(A) tail plays an essential role in mRNA stability, nuclear export, and translation (reviewed 

in Garneau et al., 2007; Guhaniyogi and Brewer, 2001; Proudfoot, 2011). During Pre-mRNA 

splicing, an important processing event, the introns are removed and exons are ligated together to 

form a mature mRNA. Pre-mRNA splicing is an incredible mechanism in molecular biology that 

influences transcriptome complexity and proteome plasticity. Since the focus of my research is 

investigating the role of Arabidopsis thaliana splicing regulator SR45, pre-mRNA splicing 

mechanisms will be discussed in greater detail below. 

Introns 

Phillip Allen Sharp and Richard J. Roberts discovered interrupted or split genes independently in 

1977, for which they shared the Nobel Prize in Physiology or Medicine in 1993 (Berget et al., 

1977; Chow et al., 1977). In 1978, Walter Gilbert suggested the terms introns for non-expressed 

regions, and exons for expressed regions (Gilbert, 1978). While originally observed in viruses, 

pre-mRNA splicing was rapidly confirmed to occur in eukaryotic organisms as well. 

Furthermore, with the complete sequencing of many plant and animal genomes, it has become 

clear that introns represent a large fraction of genomic DNA in eukaryotes. However, the 

percentage of intron-containing genes varies enormously across the genomes of different 

organisms. About 4% of genes in the lower eukaryote Saccharomyces cerevisiae contain introns, 

compared to about 80% in model organisms Drosophila melanogaster, Caenorhabditis elegans, 
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and Arabidopsis, and more than 90% in human, rat, and mouse genomes (reviewed in 

Atambayeva et al., 2008). Intron density is not related to complexity levels of organisms; for 

instance, Drosophila melanogaster and Caenorhabditis elegans genomes contain comparable 

fractions of intronic DNA (29.1% and 30.4% respectively) and numbers of introns per gene (4.22 

and 5.46 respectively) (Morello and Breviario, 2008). Even though introns are ubiquitous in 

eukaryotic genomes, their origin and evolution remain unclear (Rogozin et al., 2012). 

Introns cannot be considered junk DNA, due to the accumulated evidence of their vital functions 

in controlling gene expression. One of the well-understood functions of introns in eukaryotes is 

the enhancement of protein expression of the intron-bearing gene. This function is particularly 

prevalent in plants, and is used in genetic engineering to increase the expression of engineered 

proteins (Clark et al., 1993; Morello and Breviario, 2008; Rose, 2008). In addition to directly 

affecting expression, some transcribed introns are processed after splicing to generate regulatory 

non-coding RNAs including miRNAs (Rearick et al., 2011). Introns also play an essential role in 

pre-mRNA splicing and alternative splicing (AS), which will be discussed in more detail later. 

Spliceosomal Introns  

Following the discovery of introns, extensive analysis of sequence and structural features of 

introns led to the identification of four main types: introns in nuclear protein-coding genes that 

are spliced via the spliceosome (spliceosomal introns), introns in nuclear and archaeal tRNA 

genes that are fully catalyzed by protein enzymes (tRNA introns), self-splicing group I introns, 

and self-splicing group II introns (reviewed in Irimia and Roy, 2014). Types other than 

spliceosomal introns are beyond the scope of my research, so we will keep the discussion focus 

only on the spliceosomal introns.  



*!

Spliceosomal introns are present in a high percentage of eukaryotic protein-coding genes. For 

example, sequencing analysis of Arabidopsis and rice (Oryza sativa) genomes shows about 80% 

of coding genes contains spliceosomal introns, with similar intron densities of about 4 introns per 

gene (Morello and Breviario, 2008). Spliceosomal introns share a conserved splicing mechanism 

and contain conserved regulatory sequences. First, the removal of spliceosomal introns is 

catalyzed via a spliceosome, large ribonucleoprotein machinery that will be discussed later in 

great detail. Second, these introns have conserved cis-regulatory elements that are recognized 

and bound by core components of the spliceosome and by other splicing regulatory proteins. 

Most spliceosomal introns have a short conserved 5! splice site (5!ss) border, a short conserved 3! 

splice site (3!ss) border, a branch point (BP) with a conserved adenine, and a polypyrimidine 

tract region (PPT) between the BP and 3!ss (Figure 1) (reviewed in Irimia and Roy, 2014). When 

these conserved splicing sites are used to produce a single mature mRNA, this is identified as 

constitutive splicing (CS). Using different sets of splice sites to generate various mature mRNAs 

from a gene is termed alternative splicing (AS) (see below).  

Figure 1: Cis-regulatory elements that contribute to regulation of CS and AS. Schematic 
diagram shows the sequence features in pre-mRNA that drive AS by trans-acting regulatory 
factors. The cis-regulatory elements including splice sites at the beginning and end of each 
intron (GU and AG), branch point (A), polypyrimidine tract (Yn), exonic splicing enhancer 
(ESE), intronic splicing enhancer (ISE), exonic splicing suppressor (ESS), and intronic 
splicing suppressor (ISS). (adopted from Syed et al., 2012). 
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Alternative Splicing (AS) 

Pre-mRNAs from most intron containing genes produce multiple distinct transcripts. For 

example, about 95% of human multi-exonic genes are alternatively spliced, and more than 60% 

intron-containing genes in Arabidopsis also produce two or more splice isoforms (Pan et al., 

2008; Syed et al., 2012; Wang et al., 2008). Eukaryotes have five major types of AS events 

(Figure 2). First, exon skipping or cassette exons, in which an exon may be spliced out of pre-

mRNA together with its flanking introns. Second, mutually exclusive exons, in which nearby 

exons are processed in such a manner that only one of them is contained at a time in the mRNA. 

Third, alternative donor sites, in which either a proximal or distal 5'ss is used. Fourth, alternative 

acceptor sites, in which either a proximal or distal 3'ss is used. Finally, intron retention, in which 

an intron may be retained in the mRNA. Remarkably, intron retention is the most predominant 

class of AS event in plants (reviewed in Mastrangelo et al., 2012; Reddy, 2007; Reddy et al., 

2013; Syed et al., 2012). 

AS is a way to expand transcriptome and proteome complexity. Generation of multi-transcripts 

with distinct functions from a single gene could explain how higher organisms accomplish their 

complexity despite having comparable gene numbers (Reddy et al., 2013). Different studies have 

demonstrated several functions of AS. First, AS generates different protein isoforms with distinct 

biological functions. For example, Arabidopsis SR45 is alternatively spliced to generate two 

isoforms that differ by 8 amino acids, SR45.1 and SR45.2, and these isoforms have different 

roles in plant development. While SR45.1 controls flower development, SR45.2 regulates root 

growth (Zhang and Mount, 2009). A second function of AS is to down-regulate gene expression 

via generating non-functional transcripts, or by nonsense-mediated mRNA decay (NMD)   



,!

Figure 2: Types of AS events. Schematic diagram of different AS events in eukaryotes: 
exon inclusion or skipping, alternative splice-site selection, mutually exclusive exons, 
and intron retention. Exons (colored boxes), introns (solid lines) and spliced segments 
(triangles). (adopted from Edwalds-Gilbert, 2010). 



	
  
	
  

9	
  

(Kalyna et al., 2012). Third, AS regulates mRNA and protein intracellular localizations via 

incorporating different localization sequences (Kabran et al., 2012; Stoss et al., 1999). For 

example, Arabidopsis Zinc Induced Facilitator-like1 (ZIFL1) is alternatively spliced, creating 

two isoforms with a dinucleotide difference. The full-length protein is located to the plasma 

membrane and plays a regulatory role in auxin signaling transduction pathway, while the 

trimmed protein is located to the tonoplast membrane and plays a role in drought response 

(Remy et al., 2013). In addition to these three examples, AS can affect the recruitment of mRNA 

to ribosomes, translation productivity, protein stability, enzyme function, and posttranslational 

changes (reviewed in Reddy et al., 2013; Stamm et al., 2005). 

Advances in high-throughput sequencing technologies have accelerated our understanding of 

AS. RNA sequencing (RNA-Seq) has emerged as a powerful method for characterization and 

profiling of genome-wide AS (Goodwin et al., 2016). A transcriptome-wide study using RNA-

Seq has revealed that in Arabidopsis, more than 60% of intron-containing genes undergo AS to 

generate multiple mRNA isoforms (Syed et al., 2012). Furthermore, transcriptome-wide analyses 

in plants indicate extensive changes of AS profiles at various developmental stages or under 

different conditions (reviewed in Staiger and Brown, 2013). Condition-specific AS (regulated 

splicing) is providing significant insights into plant development mechanisms and how plants 

communicate with their environments (reviewed in Staiger and Brown, 2013). 

Spliceosome  

The spliceosome machinery is a large complex of ribonucleoproteins (RNPs) containing five 

small nuclear RNAs (U1, U2, U4, U5, and U6 snRNA) and up to 300 proteins (Matera and 

Wang, 2014; Nilsen, 2003; Rino and Carmo-Fonseca, 2009; Ritchie et al., 2009; Wahl et al., 

2009). During the splicing reaction, both conformation and composition of the spliceosome are 
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highly dynamic, resulting in accuracy and flexibility of this process. The spliceosome follows a 

stepwise assembly process on its target pre-mRNA substrate (Figure 3). Assembly begins with 

the ATP-independent interactions of the U1 snRNP to the pre-mRNA 5′ss, and of the U2 

auxiliary factor (U2AF) to the BP and the PPT. These collectively form the early complex (E 

complex). Subsequently, the E complex is converted into the pre-spliceosomal A complex 

through binding of the U2 snRNP to the pre-mRNA BP in an ATP-dependent manner. After 

formation of the A complex, the pre-catalytic B complex is formed via association of U4/U6 and 

U5 as a preassembled tri-snRNP. The B complex undergoes several conformational and 

compositional changes, resulting in its activation as the catalytic B* complex. This B* complex 

catalyzes the first transesterification step of the splicing reaction, in which the 2′ OH group of the 

conserved adenosine in the BP of the intron carries out a nucleophilic attack on the 5′ss, resulting 

in cleavage at the 5′ss and lariat formation. This leads to the formation of complex C and 

activated C* complex, which catalyzes the second step of the splicing reaction. In this step, the 

3′ss is attacked by the 3′ OH group of the 5′ exon; this results in the ligation of exons and release 

of introns to form mature mRNA (reviewed in Hoskins and Moore, 2012; Lee and Rio, 2015; 

Matera and Wang, 2014; Papasaikas and Valcarcel, 2016; Shefer et al., 2014; Will and 

Luhrmann, 2011). 

Interestingly, in addition to the previously described spliceosomal introns, eukaryotes have a 

second type spliceosomal intron, termed minor or U12 intron. While both types are spliced in the 

same manner, the minor spliceosome has four distinct snRNAs (U11, U12, U4atac, and U6atac), 

and additional specific regulatory proteins. The functions of these snRNAs are identical with 

their counterparts (U1, U2, U4, and U6) in the major spliceosome. The other components of both 

spliceosomes are similar (reviewed in Turunen et al., 2013).  



%%!

Figure 3: Schematic representation of step-wise assembly of spliceosome in 
eukaryotes. Spliceosome assembly is initiated with binding of U1 snRNA to 5!ss, 
followed by recruiting U2 snRNA to the BP to form A complex. Then, the pre-catalytic 
B complex is formed via association of U4/U6 and U5 as a preassembled tri-snRNP. B 
complex is activated via additional factors as the catalytic B complex. Next, the first 
step of splicing takes place at B* complex. In the next step, C and activated C* 
complexes are formed to catalyze the second step of splicing. Subsequently, the intron 
is released from the spliceosomal complex in the form of a lasso (lariat) and the 
snRNPs are recycled for subsequent rounds of splicing.  Colored boxes indicate exons; 
thin black lines show intron and intron lariat (adapted from Will and Luhrmann, 2011). 
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Plant Spliceosome 

Plants, like other eukaryotes, have both types of spliceosomal introns. However, the plant 

spliceosome assembly pathway and its protein composition are yet to be elucidated 

experimentally. Despite the lack of a plant-derived in vitro splicing assay, efforts have been 

made to illustrate distinct plant splicing-related mechanisms. Computational analysis using 

sequence similarities has identified the core components of plant spliceosomes, including 

snRNAs and several orthologous of known spliceosomal proteins (Koncz et al., 2012; Lorković 

et al., 2000; Reddy et al., 2013; Ru et al., 2008; Wang and Brendel, 2004). Moreover, the 

splicing consensus cis-elements (5′ss, 3′ss, and BP) are similar between plants and animals 

(Reddy, 2007). These similarities are clear evidence for comparable mechanisms of intron 

processing in plants and animals. However, several indications of plant-specific splicing 

regulatory mechanisms have been reported. First, animal pre-mRNAs cannot be processed to 

mature mRNAs by plant systems (Barta et al., 1986). Second, orthologous analysis of splicing-

regulatory factors in Arabidopsis indicates that there is almost twice the number of plant splicing 

factors compared to the number in humans (Koncz et al., 2012; Reddy et al., 2013). Third, the 

average size of plant introns (~180 bp) is shorter than that of animal introns (~3300) (Reddy et 

al., 2013). Fourth, intron retention is the predominant mode of pre-mRNA AS in plants (Ner-

Gaon et al., 2004; Syed et al., 2012), whereas exon skipping is the predominant mode in animals 

(Kim et al., 2007). Fifth, serine/arginine-rich (SR) proteins, a family of fundamental splicing 

regulatory proteins conserved in eukaryotes, are more numerous in plants compared to other 

eukaryotes. For example, Arabidopsis has 19 SR proteins and rice contains 24, while there are 

only 11 in animal and 7 in C. elegans (Figure 4) (Kalyna and Barta, 2004; Reddy, 2007). Several 

SR proteins are conserved and others are species specific, suggesting similarities and differences  



%'!

Figure 4: Schematic diagram representing structural features of Arabidopsis 
and rice serine/arginine-rich (SR) proteins. Abbreviations: RRM, RNA 
recognition motif; RS, arginine/serine-rich domain; Z, zinc knuckle. (adopted 
from Barta et al., 2010). 
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in pre-mRNA splicing mechanisms between different organisms. Taken together, these indicate 

that the process of intron detection and regulated splicing in plants may vary from yeast and 

animals, and likely include plant-specific splicing regulatory factors. 

Regulation of Splicing 

AS is due to differential usage of splice sites. However, canonical splicing cis element are short 

consensus sequences (5′ss, 3′ss, BP, and PPT), and by themselves are not sufficiently 

informative to direct splice site selection during intron removal. Therefore, additional splicing 

regulatory sequences are needed to control CS and AS.  These include exonic splicing enhancers 

(ESEs) or silencers (ESSs) and intronic splicing enhancers (ISEs) or silencers (ISSs) (Figure 1 

and 5) (Chen and Manley, 2009; Fu and Ares, 2014; Syed et al., 2012).  UA-richness in plant 

introns is another feature that is essential for efficient splicing in plants, and has also been 

observed in animals (Brown et al., 2002; Syed et al., 2012).  Finally, GC-rich exons also 

influence splice site usage (Lorković et al., 2000). These regulatory elements play central roles in 

splicing regulation and splice site selection in a context-dependent manner. 

Regulation of splicing depends on interactions between sequence elements (cis-elements) and a 

large number of proteins (trans-acting factors) (Figure 5). Trans-acting factors involve members 

of well-characterized SR proteins and heterogeneous nuclear ribonucleoprotein (hnRNP) 

families (reviewed in Lin and Fu, 2007; Long and Caceres, 2009; Martinez-Contreras et al., 

2007; Meyer et al., 2015). These proteins recognize and bind to cis-elements in a concentration-

dependent manner to recruit and stabilize spliceosomal components (core components) (Matlin 

et al., 2005; Reddy et al., 2013). Trans-acting factors may be splicing activators or inhibitors, 

and some can act as either depending on the cis-elements and position of the target site in the 

pre-mRNA (Figure 5) (Ule et al., 2006).  



%)!

Figure 5: Splice site selection is regulated through cis-elements and trans-acting factors. 
Four types of cis-elements, termed ESEs, ISEs, ESSs or ISSs, regulate splicing. These 
splicing cis-elements function by recruiting splicing factors, which either promote or 
inhibit recognition of adjacent splice sites. Common splicing regulators are SR proteins 
(promote splicing), and heterogeneous nuclear ribonucleoproteins (hnRNPs) (inhibit 
splicing), which affect the function of U2 and U1 snRNPs at the early stage of 
spliceosome assembly. The conserved sequences of splice sites are displayed in the 
colored character.  The height of each letter represents nucleotide frequency in each 
position. The formation of spliceosomal complex across exon is indicated by a dashed 
line. (adapted from Matera and Wang, 2014). 
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Serine/Arginine-Rich Proteins (SR Proteins) 

The SR proteins are master regulators of CS and AS (reviewed in Graveley, 2000; Long and 

Caceres, 2009; Reddy, 2004). SR proteins are highly conserved in animals and plants, with one 

or two RNA recognition motifs (RRMs) at the N terminus and a C-terminal domain rich in 

arginines and serines (RS domain) (Figure 4). While the RRMs recognize and bind to cis-

elements, RS domains regulate protein-protein interaction and assembly of spliceosomal 

components. RS domains of SR proteins contain subcellular localization signals, and these 

proteins are mostly found in the nucleus. However, several studies have shown that some SR 

proteins shuttle between the nucleus and cytoplasm (reviewed in Twyffels et al., 2011).  

SR proteins also exhibit altered expression and AS under different conditions and developmental 

stages. In Arabidopsis, most of the genes encoding SR proteins are alternatively spliced, 

collectively generating about 95 transcripts; this dramatically increases the complexity of the SR 

gene family transcriptome (Palusa et al., 2007). Importantly, expression and differential splicing 

of SR proteins are regulated in a developmental-, tissue-, hormone-, and abiotic stresses-

dependent manner (Palusa et al., 2007). While the functions of most SR splice variants are not 

known, the majority of them contain a premature stop codon (PTC) and are targeted for 

degradation by NMD (Palusa and Reddy, 2010). 

In addition to splicing regulation, other roles have been documented for SR proteins in RNA 

metabolism and gene regulation. Several studies in animal systems have shown that SR proteins 

influence mRNA transfer, stability, and translation; chromatin binding; transcription elongation; 

subcellular localization of transcripts; genome stability and foundation of cellular RNA granules; 

and miRNA processing (reviewed in Long and Caceres, 2009). However, roles in RNA 
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metabolism and gene regulation beyond pre-mRNA splicing remain to be illustrated in plants 

(Reddy et al., 2013).  

Phosphorylation and dephosphorylation influence the function of SR proteins in pre-mRNA 

splicing. SR-specific protein kinase (SRPK) and Clk/Sty (LAMMER-type kinases) are well-

characterized protein kinases that phosphorylate SR proteins in both animals and plants (Misteli, 

1999; Savaldi-Goldstein et al., 2003). Phosphorylation analysis of SR proteins shows that serine 

residues of the RS domain are highly phosphorylated; these modifications regulate subcellular 

localization and activity of SR proteins (reviewed in Lin and Fu, 2007; Reddy et al., 2012; Zhou 

and Fu, 2013). Additionally, in animals the interaction between splicing regulator SF2/ASF and 

other splicing factors, such as U1-70K, is mediated by phosphorylation of the RS domain (Xiao 

and Manley, 1997). In plants, the distribution, localization, and mobility of SR proteins are 

altered upon inhibition of phosphorylation (reviewed in Reddy et al., 2012). In vitro 

phosphorylation assays have confirmed that plant SR proteins are phosphorylated by LAMMER-

type protein kinases (Golovkin and Reddy, 1999). In vivo phosphoproteomic analysis has shown 

that Arabidopsis SR proteins are highly phosphorylated (de la Fuente van Bentem et al., 2006). 

In contrast, dephosphorylation of some SR proteins during splicing is needed for splicing 

catalysis to continue (Cao et al., 1997). Furthermore, signal transduction pathways have been 

shown to regulate AS; for instance, the phosphatase PP1 dephosphorylates SRp38 in response to 

heat shock, which results in a general inhibition of splicing (Shi and Manley, 2007; Shin et al., 

2004). Thus, the phosphorylation state of SR proteins appears to be a vital post-translation 

modification that modulates SR protein functions during splicing.  

Genetic studies of SR proteins have revealed their roles in plant development and stress 

responses. In Arabidopsis, overexpression of SR30 and RS2Z33 affect the splicing patterns of 
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their own pre-mRNAs and several endogenous Arabidopsis genes; this results in pleiotropic 

developmental and morphological changes (Kalyna et al., 2003; Lopato et al., 1999). Loss of 

function mutations in SC35 and SC35-like (SCL) proteins influence plant development and 

flowering via controlling the splicing and transcription of FLOWERING LOCUS C FLC (FLC) 

(Yan et al., 2017b). Interestingly, overexpression of LAMMER-type protein kinases that 

phosphorylates SR proteins in Arabidopsis results in changes in expression and splicing profiles 

of several SR genes as well as other Arabidopsis genes, and causes many developmental 

abnormalities (Savaldi-Goldstein et al., 2003). Expression analyses in Arabidopsis also show 

promising involvement of SRs in abscisic acid (ABA)-mediated stress responses (Cruz et al., 

2014). Furthermore, mutations of plant-specific SR proteins RS40 and RS4 result in ABA and 

salt stress hypersensitive phenotypes (Chen et al., 2013). These studies illustrate the key roles of 

SR proteins to plant development and performance. 

Arabidopsis Splicing Regulator SR45 

Arabidopsis SR-like splicing proteins exhibit essential roles in both CS and AS of pre-mRNAs. 

Arabidopsis SR45, unlike other SR proteins, has two RS domains, hence it is consider as an SR-

like proteins, and shows homology to animal RNA binding protein S1 (RNPS1) (Ali et al., 2007; 

Golovkin and Reddy, 1999; Mayeda et al., 1999). This protein is localized to nuclear speckles, 

and its mobility is dependent on ATP, phosphorylation, and transcription (Ali et al., 2003; Ali et 

al., 2008; Ali and Reddy, 2006). It has been established as an essential pre-mRNA splicing factor 

(Ali et al., 2007) and has been shown to interact with several spliceosomal proteins and other 

SRs such as U1-70K, AFC2 kinase, U2AF35, SC35-like (SR33), RSZ21, SR34, and SR34a (Day 

et al., 2012; Golovkin and Reddy, 1999; Zhang et al., 2014). Furthermore, in vitro mechanistic 

analysis suggests that SR45 recruits U1snRNP and U2AF to 5′ and 3′ splice sites, respectively, 
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by interacting with the pre-mRNA (10th intron of SR30), U1-70K, and U2AF35, and thus 

modulates AS (Day et al., 2012). 

Arabidopsis SR45 exhibits fundamental regulatory functions in plant development and abiotic 

stress responses. The knockout mutant of SR45 (sr45) displays abnormal developmental 

phenotypes including narrow leaves and petals, altered number of petals and stamens, and 

delayed root growth and flowering (Ali et al., 2007). In addition, it shows hypersensitivity to 

glucose (Glc) and abscisic acid (ABA) during early seedling development, indicating that SR45 

has a negative role in plant sugar response in early seedling growth (Carvalho et al., 2010). 

Recently, it has been suggested that the glucose-responsive function of SR45 is involved in 

modulating the degradation of the SnRK1 energy sensor in response to sugars (Carvalho et al., 

2016). Furthermore, we have recently shown that sr45 is highly sensitive to high temperature and 

high salinity stresses at different developmental stages. These phenotypes can be caused by an 

SR45 mutation disrupting the expression and splicing of several stress-responsive genes 

(Albaqami, 2013). Another study has shown that SR45 functions in the establishment and 

maintenance of DNA methylation in Arabidopsis via small interfering RNA-mediated DNA 

methylation and gene silencing (Ausin et al., 2012). These studies indicate the biological 

significance of SR45 as a splicing regulator in plant development and environmental responses.  

As with many Arabidopsis SR proteins, the SR45 gene is alternatively spliced to produce two 

splice variants, SR45.1 and SR45.2. The SR45.1 isoform has an in-frame additional 21-nucleotide 

sequence as a result of an alternative 3′ss selection event at the beginning of the seventh exon 

(Palusa et al., 2007; Zhang and Mount, 2009). Because the AS conserves the reading frame, both 

isoforms are translated into functional proteins with a single arginine in the SR45.2 form 

replaced by eight amino acids (TSPQRKTG) in SR45.1 (Zhang and Mount, 2009). Interestingly, 
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isoform-specific complementation of sr45 indicates that the two isoforms have different 

biological functions (Zhang and Mount, 2009). While SR45.1 functions only in flower 

development, SR45.2 plays a role in root growth (Zhang and Mount, 2009). Similarly, SR45.1 is 

the only isoform that is capable of complementing the mutant’s heat and salt stress phenotypes 

(Albaqami, 2013). However, in the case of Glc and ABA response phenotypes, both SR45.1 and 

SR45.2 are able to complement the mutant phenotypes (Carvalho et al., 2010). A recent study 

showed that a single phosphorylation site at threonine 218 in SR45.1, within the alternatively 

spliced region, promotes the function of SR45.1 in flower development (Zhang et al., 2014). In 

addition, another study identified about 4000 transcripts associated with SR45.1 using RNA 

immunoprecipitation (RIP) followed by high-throughput sequencing (RIP-seq), and Gene 

Ontology (GO) analysis revealed them to be enriched in hormone and stress signaling pathways 

(Xing et al., 2015). These assays indicate that SR45 regulates plant development and abiotic 

stress response in an isoform-dependent manner.  

Although SR45 is a well-characterized SR-like protein in plants and it has well-known functions 

in both pre-mRNA splicing and several biological processes, how its biological functions are 

mediated by SR45-regulated AS events remains to be explored. Towards this end, we aimed to 

identify the genes regulated by SR45, directly or indirectly.  By comparing the whole 

transcriptomes of sr45 and wild-type (WT) using high-throughput RNA-Seq, we identified 

thousands of SR45-regulated genes that were either differentially expressed (DE) or 

differentially spliced (DS). Furthermore, analyses of AS events distribution along the gene 

bodies of DS genes indicated that SR45 primarily affects the choice of 3′ss within the coding 

DNA sequence (CDS) region. Gene Ontology (GO) enrichment analyses of those genes revealed 

that they are involved in both previously suggested and novel biological functions of SR45. 
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Importantly, we successfully confirmed the role of SR45 in heat stress response at the time of 

seed germination in Arabidopsis, and provided evidence that SR45 confers thermotolerance in an 

isoform-dependent manner at this stage, where SR45.1 but not SR45.2 rescues the mutant heat 

stress phenotype. Finally, our work suggests that phosphorylation events may mediate the 

function of SR45.1 in thermotolerance, as a point mutation the unique phosphorylation site at 

threonine 218 of SR45.1 fails to rescue the mutant phenotype in response to heat stress.  

MATERIALS AND METHODS 

Plant Materials and Growth Conditions  

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used as the wild-type (WT) in all 

experiments. A homozygous line for the sr45-1 T-DNA insertion mutant (sr45) was isolated and 

described previously (Ali et al., 2007). Complementation lines (35S:SR45.1-GFP and 

35S:SR45.2-GFP) were kindly provided by Dr. Xiao-Ning Zhang (Zhang and Mount, 2009). 

Lines overexpressing substitution mutations of predicted phosphorylation sites of SR45.1 

(SR45.1-T218A-GFP, SR45.1-S219A-GFP, and SR45.1-T218A+S219A-GFP) were described 

previously (Zhang et al., 2014; Zhang and Mount, 2009). For all genotypes, seeds used in this 

study were harvested at the same time from plants grown on soil under the same conditions (22 

°C; long-day-16-h/8-h light/dark photoperiod; 120 mmol/m2/s white fluorescent light). Mutant 

and transgenic lines were genotyped by RT-PCR using gene-specific primers, and by 

immunoblotting using SR45 or GFP antibodies. For immunoblotting, seedlings were prepared as 

follows: seeds (50 mg) were surface-sterilized with 70% ethanol followed by 15% bleach and 

stratified for 3 days at 4 °C (to break dormancy). Then the seeds were placed into 100 mL of 

Murashige and Skoog (MS) medium (1x MS basal salt, 1 mL/L MS vitamin solution, and 1% 

sucrose, pH 5.7) in a 250 mL flask and grown in a growth chamber. The growth condition was 
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22 °C with a 16-h/8-h light/dark photoperiod, and flasks kept on a shaker at 150 rpm. One-week-

old seedlings were harvested, washed three times with Nanopure water, and Kimwipes were used 

to remove excessive water. Afterwards, the seedlings were weighed, directly frozen in liquid N2, 

and stored at -80°C. For RNA expression analysis under heat stress treatment, seedlings were 

prepared as above.  

Generation of RNA-Seq Data  

RNA-Seq analysis was performed with 2-week-old seedlings of WT and sr45 grown on MS 

medium under long-day conditions. Two biological replicates were used for RNA-Seq analysis.  

Total RNA was extracted and purified using the RNAeasy Plant Mini kit (Qiagen, Hilden, 

Germany). On-column DNase digestion was performed according to the manufacturer's protocol. 

Prior to generating the RNA-Seq library, RNA quality for all samples was evaluated with an 

Agilent 2100 Bioanalyzer using the RNA 6000 Nano kit (Agilent Technologies, Santa Clara, 

CA). All RNA samples had a high RNA integrity (RIN) value of around 8. Poly(A) RNA was 

isolated from total RNA using oligo-dT beads and sheared to about 200 nt under elevated 

temperature (80oC); cDNA was synthesized using random primers. RNA-Seq libraries were 

generated from cDNA using TruSeq kit (Illumina, San Diego, CA) for adapter ligation and PCR 

amplification. Single-end 75 nt reads were generated on the Illumina GAIIx platform (IGSP core 

resource, Duke University). 

RNA-Seq Analyses  

The RNA-Seq data was first evaluated using FastQC, then mapped to the TAIR10 version of 

Arabidopsis genome using either TopHat or MapSplice with default parameters (Trapnell et al., 

2009; Wang et al., 2010). Sequences mapped using MapSplice were analyzed using 

SpliceGrapher (Rogers et al., 2012) to generate splice graphs. Sequences mapped using TopHat 
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were analyzed using Cufflinks package version 2.0 (Trapnell et al., 2012). Briefly, an in silico 

annotation file was first generated using Cufflinks to best explain the mapped sequences. 

Annotation files from each sample and TAIR10 were then merged together using Cuffmerge. 

Using the merged file as a reference, the mapped sequences from each sample were compared 

and Cuffdiff used to identify DE genes.  Differential splicing analysis was performed using 

MISO (Katz et al., 2010) and iDiffIR (https://bitbucket.org/comp_bio/idiffir).    

GO Enrichment Assays 

DE and DS genes were pooled together and enriched GO terms identified using GENECODIS 

(Carmona-Saez et al., 2007). Analyses were conducted with these parameters: reference list, all 

annotated genes in the Arabidopsis genome; statistical method, hypergeometric; method to 

correct p values for multiple hypothesis testing, false discovery rate. 

Analysis of Heat Shock Response   

Seed heat tolerance assays were performed as previously described (Silva-Correia et al., 2014). 

In brief, after seed sterilization and stratification of all lines, seeds were placed into 1.5 mL 

microfuge tubes containing 500 mL sterilized water and either exposed to heat stress using a 

heating block at 50oC for 60 min or kept at 22oC as an experimental control. Subsequently, both 

heat-stressed and control seeds were germinated on MS medium in long-day (16h/8h light/dark 

photoperiod, 120 mmol/m2/s white fluorescent light) at 22°C. After 10 days, pictures were taken 

and germination rate (radicle emergence and formation of green cotyledons) calculated. The 

germination frequency was determined in relation to total sown seeds of each genotype. 

RNA Extraction and RT-PCR Analyses  

For validation of DE and AS results, total RNA from two week-old seedlings of WT and sr45 

grown on MS plates under long-day conditions was extracted using the RNeasy Plant Mini Kit 
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(Qiagen, Hilden, Germany). RNA samples were quantified using a NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and treated with DNase I 

(Fermentas, Hanover, MD) to remove residual genomic DNA. For RT-PCR, 1.5 µg of DNase-

treated total RNA was used to synthesize first-strand cDNA with an oligo(dT) primer and 

SuperScript III (Invitrogen, Carlsbad, CA) in a 20 mL reaction. The 1st strand cDNA was further 

amplified by regular PCR using gene-specific primers. The PCR reaction mixture was heated at 

94°C for 3 min, cooled to 55°C, and 2 units of Ex-Taq polymerase (Takara Bio, Inc., Kusatsu, 

Japan) was added to initiate the amplification reaction. Thirty cycles of amplification were 

performed on a Mastercycler Gradient (Eppendorf, Hamburg, Germany), each consisting of 

denaturation at 94°C for 30 sec, annealing at 55°C for 30 sec, and extension at 72°C for a time 

period based on the expected length of the PCR product. The amplified products were resolved 

by electrophoresis and gel pictures captured using ChemiDocTM XPS+ (BioRAD, Hercules, 

CA). ACT2 was used as an internal control to show equal amount of template in different 

samples. 

To determine expression levels of SR45 isoforms under heat stress, WT seedlings were grown in 

liquid MS medium as described above. One-week-old seedlings in a 250 mL flask containing 

100 mL liquid MS medium were exposed to heat stress (38oC) for 3 hours or kept at 22°C as 

control plants. For the recovery assay, one flask was moved back to 22°C for 3 hours after heat 

stress. Subsequently, the seedlings were washed three times with Nanopure water and wrapped 

in a few sheets of Kimwipes to remove excessive water. The seedlings were weighed, 

immediately frozen in liquid N2, and stored at -80°C for total RNA isolation. RNA extraction 

and cDNA synthesis were performed as described earlier. The 1st strand cDNA was further 

amplified using either regular or quantitative PCR with SR45 isoform-specific primers (Table 1). 
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Table 1: Primers used for RT-PCR. 

  

Gene ID Forward Primer Reverse Primer 
AT1G16610 AAGTCCTGCTGGACCTGCTA CCTTCTTCGAACAGGACTGC 

AT1G16610.1 CATCTCCTCAACGGAAAACA AACGGCCTCTAGATGGTGAT 
AT1G16610.2 CGCCCAAGAGAGAGGCTTTC AACGGCCTCTAGATGGTGAT 
AT2G26150 GCTTTGTGGTGTGGGATTCT CATCCCAGATCCTTGCTGAT 
AT5G37850 TTCCACAAGGACCACAATCA CCCCAACAATTGAAGAGGAA 
AT2G33380 CGGAACGATTTGGAGGAAAC AGTATCCATTCAACTTTGTTT 
AT1G45249 CGAGAATCAGCTGCAAGGTC AAGGTCCCGACTCTGTCCTC 
AT3G18780 GGCAAGTCATCACGATTGG CAGCTTCCATTCCCACAAAC 
AT4G31877 GAGAAACGCATAGAAACTGA GAATCGGAGCCGGAATCT 
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For quantitative PCR, amplification reactions were conducted as described in (Albaqami, 2013) 

using LightCycler 480 SYBR Green 1 master mix on a LightCycler 480 (Roche Applied 

Science, Penzberg, Germany). A reaction of 20 µl comprises 10 µl of Roche master mix, 0.5 

µmol of forward and reverse primers, and 1 ul cDNA template of the original RT reaction. The 

q-PCR settings were 95°C for 4 min followed by 40 cycles of 95°C for 10 s, annealing temp 

(estimated as Tm -5°C for each primer pair) for 10 s, and 72°C for 30 s. The threshold (CT) 

value was determined and used to compare gene expression from different samples; CT values 

for all examined genes were standardized to the CT value of the housekeeping gene (ACT2), by 

withdrawing the CT value of ACT2 from the CT value of the examined gene. 

Nuclear Protein Isolation  

For immunoblot and Phos-tag western blotting assays, nuclear proteins were extracted as 

previously described (Xing et al., 2015). Briefly, for each sample 3 g of one-week-old seedlings, 

grown in liquid MS as described above, were ground into a fine powder in liquid nitrogen. 

Subsequently, each sample was homogenized in 25 mL of Honda buffer (1.25% Ficoll 400, 2.5% 

Dextran T40, 0.44M sucrose, 10mM MgCl2, 0.5% Triton X-100, 20mM HEPES KOH, pH 7.4, 5 

mM DTT, 1 mM PMSF, and 1% protease inhibitor cocktail [P9599; Sigma-Aldrich]). The 

homogenate was filtered through two layers of Miracloth into a 30 mL Corex tube and the filtrate 

centrifuged at 2000 g for 15 min at 4°C. The supernatant was discarded and the pellet 

resuspended in 1 mL Honda buffer, then transferred to a new 1.5 mL microcentrifuge tube and 

centrifuged at 1500 g for 10 min at 4°C. This washing step was repeated two more times. The 

pellet was then resuspended in 500 mL nuclei lysis buffer (50 mM Tris-HCl, pH8.0, 10 mM 

EDTA, 1% SDS, 1 mM PMSF, and 1% protease inhibitor cocktail) by pipetting up and down 

and sonicated using a Covaris M220 Focused-ultrasonicator for 1 min at 7°C (peak power, 75; 
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duty factor, 20; cycles/burst, 300). The extract was then centrifuged for 30 min at maximum 

speed (16,000 g) at 4°C and the supernatant transferred to a new 1.5 mL microcentrifuge tube. 

Concentrations of the nuclear protein were evaluated by a standard Lowry assay to confirm 

similar concentrations through all samples (Lowry et al., 1951).  Aliquots of 100 mL for each 

sample were made and frozen in liquid N2, and stored at -80 °C. 

SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Nuclear proteins were separated using denaturing sodium dodecyl sulphate polyacrylamide 

(SDS-PAGE) gels (Laemmli, 1970). 10% SDS-PAGE was suitable for resolving SR45 proteins. 

The recipe for 8 mL of 10% separating gels is: 3.2 mL ddH2O, 2 mL 30% acrylamide, 2.67 mL 

2M Tris pH 8.8, 80 µL 10% SDS, 80 µL 10% APS, and 8 µL TEMED. Stacking gel (6%, 5 mL) 

was prepared with: 2.6 mL ddH2O, 1 mL 30% acrylamide, 1.25 mL 2M Tris pH 8.8, 50 µL 10% 

SDS, 50 µL 10% APS, and 5 µL TEMED. Protein samples were boiled for 5 minutes at 100°C in 

1X SDS sample buffer before loading. The gels were run in a mini-gel apparatus (Bio-Rad, 

Hercules, CA) in 1X SDS electrophoresis buffer (25 mM Tris, 192 mM glycine, 0.1% SDS) at 

150 V for 90 minutes. 

Western Blot Analysis 

For regular western blot analysis, electrophoresed proteins were transferred onto a methanol-

activated PVDF membrane by wet blot procedure using a Bio-Rad Mini Trans-Blot cell (Bio-

Rad, Hercules, CA). The transfer was performed at 200 V for 2 h using transferring buffer 

containing 25mM Tris, 190mM glycine, and 20% methanol. Subsequently, the membrane was 

rinsed 2-3 times with a TBS-Tween solution (20 mM Tris pH 7.5, 150 mM NaCl, and 0.1% 

Tween 20) for 5 min each. The membrane was then blocked for 1 h at RT in a TBS-Tween 

solution containing 5% fat-free milk powder to prevent nonspecific interactions between the 
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antibody and the membrane. Following that, the antibody was added to blocking solution in the 

designated dilution and incubated at 4oC overnight. On the next day, the membrane was washed 

3 times with TBS-Tween for 5 min each; then the second antibody (HRP-conjugated secondary 

antibody) was added and incubated for 1 h at RT. After that, the previous washing steps were 

repeated to prepare the membrane for colorimetric detection by alkaline phosphatase reaction. 

Phos-tag Western Blotting 

For SR45 protein phosphorylation analysis, seedlings of overexpression lines (sr45::SR45.1 and 

sr45::SR45.2) were grown in liquid MS as described above (plant materials and growth 

conditions). One-week-old seedlings in a 250 mL flask containing 100 mL liquid MS medium 

were exposed to heat stress (38oC) for indicated times. Subsequently, nuclear proteins were 

isolated as described above. Phos-tag™ SDS-PAGE was prepared according to manufacturer’s 

protocol (Wako Pure Chemical Industries, Ltd., Osaka, Japan) (Kinoshita et al., 2009). In brief, 

standard 10% SDS-PAGE was prepared as described above with the addition of 50 mM Mn2+-

Phos-tag. Following electrophoresis, gels were soaked for 10 min in a general transfer buffer 

containing 1 mM EDTA, with gentle agitation to eliminate excess manganese ion and improve 

transfer efficiency. After that, the standard western blotting procedure was performed as 

described above. 

RESULTS 

Transcriptome Analysis of Arabidopsis SR45 Mutant  

The T-DNA insertion mutant of Arabidopsis SR45 (sr45) was isolated and described previously 

(Figure 6A) (Ali et al., 2007). Defects in root growth and late flowering phenotypes of sr45 are 

shown in (Figure 7). Before using sr45 in the transcriptome assay, we further confirmed the 

knockout at both RNA and protein levels using RT-PCR and Western blotting respectively. RT-
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PCR amplification with SR45-specific primers showed that SR45 was expressed normally in WT 

plants but not in T-DNA insertion mutants (Figure 6B). Nuclear proteins isolated from 

Arabidopsis WT and mutant plants and probed with SR45 antibody confirmed expression of 

SR45 protein in WT but not in mutant plants (Figure 6C). 

To identify global changes in gene expression and AS in sr45, we performed RNA-Seq analysis 

on Arabidopsis WT and the SR45 mutant. The steps of the RNA-Seq experiment are shown in 

(Figure 8). Total RNA from two biological replicates for WT and sr45 were sequenced using an 

Illumina GAIIx platform. For each sample, about 22 million reads were obtained (Table 2). 

Quality assessment of the reads using FastQC tools revealed that the average base quality score 

was between 36 and 40 (with the exception of the last base whose average quality score was 

around 30) and the average read quality score was around 39, indicating very high quality 

sequences (Figure 9). Importantly, sequence qualities are very consistent across all biological 

replicates of both genotypes (Figure 9AB), allowing an un-biased down-stream analysis. 

Mapping of RNA-Seq Reads to the Arabidopsis Reference Genome 

Sequence reads were mapped to the TAIR10 Arabidopsis reference genome using two different 

mapping tools, TopHat and MapSplice (Trapnell et al., 2009; Wang et al., 2010). Mapped reads 

were rather evenly distributed across the whole genome except in centromeric regions, which are 

known for lower gene density; this suggests there was no genome-level bias of the sequencing 

data (Figure 10).  Both programs gave high rates of mapping. With MapSplice, 95% of total 

reads were mapped to the genome, while the mapping rate was 90% with TopHat (Table 2). The 

discrepancy between the two aligners was largely attributed to the greater sensitivity of 

MapSplice for spliced reads (reads aligning to exon junctions); MapSplice detected about 24% of 

spliced reads while TopHat detected about 20% of spliced reads (Table 2). MapSplice also  
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Figure 6: Genotypic characterization of Arabidopsis SR45 T-DNA insertion mutant. (A) The 
upper diagram shows the gene organization of SR45 (AT1G16610). Exons are indicated by 
red rectangles; introns are indicated by black lines; ATG and TAA are start and stop codons, 
respectively; the T-DNA insertion in the 7th exon are shown by reversed open triangle. The 
lower illustration shows SR45 protein structure and domain arrangement. The downward 
arrows indicate corresponding gene parts coding for the N-terminal arginine/serine-rich 
(RS1) domain, the central RNA recognition motif (RRM), and the C-terminal RS2 domain 
(adapted from Ali et al., 2007). Arrows underneath the second and ninth exons show the 
positions of the forward (F) and reverse primers (R) used in RT-PCR. (B) RT-PCR detection 
of the SR45 transcript. Total RNA from two-week-old seedlings of WT and sr45 was used 
for cDNA synthesis. The full-length transcript of SR45 was detected only in WT plant. ACT2 
was used as an input control. (C) Immunodetection of SR45 protein. Nuclear proteins from 
7day-old-seedlings of WT and sr45 were electrophoresed on a denaturing polyacrylamide gel 
and probed with the SR45 antibody. The SR45 protein was detected as a ~ 45kD band only in 
WT plants. 
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Figure 7: Phenotype of sr45 plants. (A) A representative photograph shows the 
difference in root growth between WT and sr45. Seeds of WT and sr45 were germinated 
and grown under the same conditions on Murashige and Skoog medium for two weeks. 
(B) Root length quantification of WT and sr45. Statistical significance (t-test P<0.05) is 
indicated by (*). (C) sr45 plants show delayed flowering as compared to WT plants. 
Plants were grown on soil under long-day condition (16h:8h – light:dark) for 37 days 
(adapted from Ali et al., 2007). 
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Figure 8: Schematic overview of RNA sequencing 
(RNA-Seq) experiment of two-week-old WT and sr45 
seedlings. 
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  Table 2: Mapping Statistics of RNA-Seq data with TopHat and MapSplice. 

 
  

Source Reads 
Aligned Reads 

Ungapped Spliced Total 
Wild-type 

Replicate1 
Replicate2 
TopHat Total 

22,538,960 
21,637,979 
44,176,939 

15,506,079 (68.8%) 
15,095,551 (69.8%) 
30,601,630 (69.3%) 

4,741,752 (21.0%) 
4,488,085 (20.7%) 
9,229,837 (20.9%) 

20,247,831 (89.8%) 
19, 583,636 (90.5%) 
39,831,467 (90.2%) 

Replicate1 
Replicate2 
MapSplice Total 

22,538,960 
21,637,979 
44,176,939 

15,912,625 (70.6%) 
15,481,294 (71.5%) 
31,393,919 (71.1%) 

5,524,452 (24.5%) 
5,224,188 (24.1%) 
10,748,640 (24.3%) 

21,437,077 (95.1%) 
20,705,482 (95.7%) 
42,142,559 (95.4%) 

SR45 Mutant 

Replicate1 
Replicate2 
TopHat Total 

18,322,494 
20,504,063 
38,826,557 

12,771,565 (69.7%) 
14,296,063 (69.7%) 
27,067,628 (69.7%) 

3,692,480 (20.2%) 
4,157,370 (20.3%) 
7,849,850 (20.3%) 

16,464,045 (89.9%) 
18,453,433 (90.0%) 
34,917,478 (89.9%) 

Replicate1 
Replicate2 
MapSplice Total 

18,322,494 
20,504,063 
38,826,557 

13,146,617 (71.8%) 
14,695,749 (71.7%) 
27,842,366 (71.7%) 

4,313,690 (23.5%) 
4,857,766 (23.7%) 
9,171,456 (23.6%) 

17,460,307 (95.3%) 
19,553,515 (95.4%) 
37,013,822 (95.3%) 
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Figure 9: Assessment RNA-Seq reads quality using the FastQC tool. On the left, box-
and-whisker plots showing per base sequence quality of WT and sr45 (A-replicate 1, B-
replicate 2), respectively. The yellow box represents the inter-quartile range (25-75%), the 
upper and lower whiskers represent the 10% and 90% points, and the blue line represents 
the mean quality. The central red line in the yellow box represents the median value. The 
y-axis shows the quality scores, with the higher scores having the better base call. The 
background colors on the graphs indicate good quality calls (green), calls of reasonable 
quality (orange), and calls of poor quality (red). On the right, per-sequence quality scores 
distribution of all sequences of WT and sr45-1 (A-replicate 1, B-replicate 2). The x-axis 
on the graph shows the mean quality of sequences (Phred score) and Y-axis shows the 
number of reads. 
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Figure 10: The distribution of RNA-Seq reads of WT and sr45 across the genome. 
Reads for the replicates were combined and mapped on the chromosomes labeled 1-5.  
WT, blue; sr45, red; the read difference between WT and sr45 for a 1kb window 
across each chromosome (Chr) was presented in the middle panel for each 
chromosome. 
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performed better in terms of re-capitulating the splice junctions annotated on TAIR10, 

identifying more than twice as many annotated splice junctions as TopHat (Table 3). We thus 

determined differential AS between WT and sr45 using the data aligned with MapSplice coupled 

with SpliceGrapher (Rogers et al., 2012). In analyzing differential gene expression, we used 

TopHat alignments coupled with the Cufflinks package (Trapnell et al., 2012). 

For most genes, the RNA-Seq data accurately re-capitulated known exon-intron structures. Of all 

genes supported by the RNA-Seq data, around 17.2% were found to be single-exon genes, lower 

than the proportion of 23.7% indicated in TAIR10 gene models; conversely, 82.8% mapped as 

multi-exon genes, higher than the 76.3% in TAIR10 annotations (Table 4). To some extent these 

discrepancies likely reflect the categorical differences of genes expressed at seedling stage versus 

the overall genome composition. Alternatively, with increased sequence depth, previously 

unknown cryptic introns within some annotated single-exon genes might be revealed, therefore 

reducing the observed proportion of single-exon genes. Among multi-exon genes, 93.8% had 

only U2 type splicing sites (93.9% in sr45), 0.1% of genes had only U12 type, and 6.1% 

contained both U2 and U12 splicing sites. These results are rather similar to the ratios of 94%, 

0.2%, and 5.0%for each respective category in TAIR10 annotations (Table 4). 

Differentially Expressed Genes in sr45  

To rule out a potential genome-wide, non-specific effect of SR45 on gene expression, the density 

of genes with varied expression was plotted against expression levels for both WT and sr45. The 

gene density distribution curve for sr45 was almost identical to that of WT, suggesting that the 

effect of SR45 on gene expression, if any, was not expression-level dependent (Figure 11). This 

conclusion was further confirmed by plotting expression levels between WT and sr45 for each 

individual gene. The regression line for all genes largely overlapped the theoretical line, which  
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  Table 3: Comparison of spliced alignment statistics for TopHat and MapSplice.  
 

 
 
 
 
 
 
Table 4: Summary of spliceosome activity found in RNA-Seq data for the WT and the sr45 data 
sets. 

  

Source 
Covered Genes 

Recapitulated Junctions 

Known Novel All 

Total Unique Total Unique Total Unique Total Unique 

sr45 
TopHat 8,162 13 45,477 64 1,654 18 47,131 82 

MapSplice 16,822 8,673 98,448 53,035 4,705 3,069 103,153 56,104 

WT 
TopHat 8,206 14 46,370 63 1,956 33 48,326 96 

MapSplice 16,929 8,737 99,829 53,522 5,333 3,410 105,162 56,932 

Gene Spliceosome Statistics 

Source 
Gene Statistics Multi-Exon Genes 

Single-Exon Multi-Exon U2 Only U12 Only U2&U12 
Wild-type 

SR45 mutant 
3,593 (17.2%) 
3,578 (17.2%) 

17,288 (82.8%) 
17,181 (82.3%) 

16,214 (93.8%) 
16,126 (93.9%) 

22 (0.1%) 
21 (0.1%) 

1,052 (6.1%) 
1,034 (6.0%) 

TAIR10 Gene Models 6,746 (23.7%) 21,750 (76.3%) 20,436 (94.0%) 33 (0.2%) 1,281 (5.9%) 
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Figure 11: Expression density plot. All annotated Arabidopsis genes (y-axis) 
and their expression level are presented in the x-axis as log10 (FPKM) values. 
Blue line represents WT, and orange line represents sr45. The distributions of 
the genes with varied abundance (log10 (FPKM)) are almost identical between 
WT and sr45, suggesting no sequencing bias for the two samples. 
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assumed no overall expression difference (Figure 12). However, for genes with extremely high 

abundance, their expression was slightly higher in WT than in sr45 (Figure 12), likely due to an 

authentic effect of SR45 on the expression of a few genes, though it could also be simple 

sampling error. In short, there is no obvious evidence for an overall expression bias in either sr45 

or WT. Any differential expression between WT and sr45 for a given gene is most likely 

attributable to the specific effects of SR45.         

We identified 1345 differentially expressed (DE) genes between WT and sr45, defined as having 

>2-fold expression change at a false discovery rate of 0.05 (Figures 13 and 14). Among them, 

571 were up-regulated and 774 down-regulated. These DE genes included 6 genes encoding 

microRNAs (Table 5), and 19 genes not previously annotated, designated here as novel genes.  

As expected, among the DE genes was SR45, whose 3′ end transcripts were totally eliminated 

and whose 5′ end transcripts preceding the T-DNA insertion was barely present (Figure 15). This 

finding was further verified using RT-PCR (Figure 15), and is consistent with previous results 

(Ali et al., 2007). To validate the identified DE genes, we performed RT-PCR analyses for 

randomly selected, 12 each, up- and down-regulated genes. Expression of all 24 genes was 

consistent with the RNA-Seq read depth (Figure 16 and 17). 

Of the six DE microRNA genes, three (MIR156C, MIR398B, MIR163) are known to play a role 

in response to phosphate starvation (Hsieh et al., 2009; Lundmark et al., 2010), and MIR156C 

has been recently reported to function in Arabidopsis heat stress response (Stief et al., 2014). 

MIR167A is involved in nitrogen response, while MIR824A and MIR850A had no known 

function (Gifford et al., 2008). Five out of the six have known or putative targets (Hsieh et al., 

2009; Jones-Rhoades and Bartel, 2004; Lundmark et al., 2010; Wang et al., 2014). Significantly, 

at least one target gene for each of four micro RNAs is also differentially expressed between WT   
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Figure 12: A scatter plot showing the expression of genes in WT and 
sr45. 
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Figure 13: Volcano plot showing the differentially expressed genes 
in WT and sr45. The x-axis shows the log2 fold change in gene 
expression between WT and sr45, and the y-axis shows the statistical 
significance of the differences (log10 (p-value)). Dots represent 
different genes. Genes that have similar expression in both WT and 
sr45 are indicated by red dots, and the differentially expressed genes 
are indicated by blue dots (p-value < 0.05). 
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Figure 14: The Heat map of transcript levels of 
differentially expressed genes in WT and sr45 (all 
biological replicates). Columns in the heat maps 
represent samples, and rows represent genes. Color 
scale (below the heat map) indicates gene expression 
level. Red indicates high expression while blue 
indicates low expression. 
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Figure 15: The Integrated Genome Bowser (IGB) view of sequence read depth in WT and 
sr45 for SR45 and ROC5. Panels on the left show the read depth in replicates both samples. 
The y-axis indicates read depth. The gene structure is displayed on the top of each IGB view. 
Thick boxes represent exons; lines represent introns, and thin boxes represent UTR. The 
expression of SR45 was abolished as expected in the knockout mutant of SR45 (sr45). ROC5, 
a non-differentially expressed gene, was used as a control. Panels on the right show RT-PCR 
results. 
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Figure 16: RT-PCR verification of down-regulated genes in sr45. Twelve down-
regulated genes were randomly selected from the differentially expressed gene list. 
Panels on the left show the read depth graphs of both replicates of WT and SR45 
mutant. The y-axis indicates read depth for each gene. The gene structure is displayed 
underneath of each IGB display. Thick boxes represent exons; lines represent introns, 
and thin boxes represent UTR. ROC5, which is expressed equally in both samples 
(Fig.15), was used as an input control. Panels on the right show validation of RNA-seq 
results using RT-PCR, Gene ID numbers are shown next to the RT-PCR panel. 
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Figure 17: RT-PCR verification of up-regulated genes in sr45. Twelve up-regulated 
genes were randomly selected from the differentially expressed gene list. Panels on left 
show the read depth graphs of both replicates of WT and SR45 mutant. The y-axis 
indicates read depth for each gene. The gene structure is displayed underneath of each 
IGB view. Thick boxes represent exons; lines represent introns, and thin boxes represent 
UTR. ROC5, which is expressed equally in both samples (Fig.15), was used as an input 
control.  Panels on the right show validation of RNA-seq results using RT-PCR, Gene 
ID numbers are shown next to the RT-PCR panel. 
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and sr45 (Table 6). To validate the differential expression of these micro RNA genes, we 

performed RT-PCR for one randomly selected micro RNA gene, MIR156C. Interestingly, the 

expression and AS of MIR156C was misregulated in sr45 (Figure 18A). The down-regulation of 

MIR156C in sr45 suggests that its targets will be up-regulated; indeed, the RNA-Seq data shows 

that the expression at least three of its known target genes is increased in sr45 (Figure 18B). 

Alternative Splicing (AS) 

For a given gene, if there was more than one transcript detected in the pool of both WT and sr45 

samples, the gene was defined as an AS gene. We detected 6,820 AS events derived from 4,881 

genes (Table 7), about 20% of annotated multi-exon genes. When broken down by type of AS 

event, we found that intron retention (IR) accounted for 51% of AS transcripts, followed by 

alternative 3′ splicing sites (A3′ss, 27%), alternative 5′ splicing sites (A5′ss, 13%) and exon 

skipping (ES, 9%). This distribution of AS event types remains consistent when WT and sr45 are 

analyzed individually (Figure 19; Table 8). 

Differentially Splicing in sr45  

Qualitative difference (present in one sample but not in the other) in transcript isoforms from a 

gene between WT and sr45 is defined as DS.   Pre-mRNAs from a gene may undergo one or 

more differential AS events. Using SpliceGrapher, we identified a total of 927 DS genes. To 

validate DS events, we performed RT-PCR analyses for four randomly selected genes. Pre-

mRNAs from all four genes were validated as differentially spliced in sr45 (Figure 20). The 

proportions of types of AS events among DS genes were very close to the genome-wide 

proportions of AS genes either in WT, sr45, or in the combined data; however, the proportions of 

IR and A3′ss in DS genes were slightly lower and higher, respectively, as compared to the AS 

events in the genome  (Figure 19 and 21A).  However, when we examined the distribution of DS 

events, we found that DS events were biased to A3′ss, 
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  Table 5: The DE microRNAs. 

 
 
	
  

 
                  Table 6: The DE microRNAs and their DE targets. 
  

Micro RNA 

Gene TAIR-ID Locus WT (RPKM) sr45 
(RPKM) 

log2(fold_c
hange) q_value 

MIR156C AT4G31877 4:15413161-15415898 0.472418 3.61654 2.93647 0.034059 

MIR167A AT3G22886 3:8108020-8109338 0.999193 4.09948 2.03661 4.03E-07 

MIR398B AT5G14545 5:4690938-4694086 3.51711 8.70034 1.30668 0.00284476 

MIR824A AT4G24415 4:12623529-12626432 4.23015 1.38813 -1.60756 0.00433161 

MIR850A AT4G13493 4:7842966-7846899 152.103 58.1566 -1.38703 0.0311145 

MIR163 AT1G66725 1:24883930-24892046 19.6925 4.07464 -2.2729 4.73E-10 

Micro RNAs Target 
Micro RNAs Gene-ID Gene-name Log2 (Fold-change) Q-value 

MIR156C 

AT5G43270 SPL2 1.12472 2.26E-11 
AT5G50570 SPL13A 1.51974 1.83E-11 
AT5G50670 SPL13B 1.47982 0 
AT2G42200 SPL9 -1.24685 1.76E-07 

MIR167A 
AT4G23980 ARF9 -0.602337 6.25E-07 
AT2G46530 ARF11 -0.949295 2.42E-07 

MIR824A 
AT4G11880 AGL14 -1.10266 0.000113046 
AT2G45660 AGL20 (SOC1) -1.0964 0 

MIR163 AT3G44860 FAMT -1.52081 1.40E-06 
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Figure 18: IGB view and RT-PCR verification of differentially expressed microRNA in 
sr45. (A) Mir156C (AT4G31877), one of the differentially expressed microRNAs in 
sr45, was selected for further verification. (B) Expression profile of selected mir156C 
target genes. Panels on the lift for A and B show the RNA-seq read depth from IGB of 
all replicates. The y-axis indicates read depth for each gene. The gene structure was 
displayed underneath of each IGB view. The box represents exon; line represents intron, 
and the thin box represents UTR. ROC5, a non-differentially expressed gene, was used 
as an input control (Fig.15). The RT-PCR verification of read depth differences of 
Mir156C is shown on the right of panel A. Panels on the right for A and B show genes 
names, and gene’s ID numbers.  
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     Table 7: AS statistics based on RNA-Seq data for WT and sr45.  

 
 
 
 
 
 
 
 
                        Table 8: The % AS events for each type of splicing. 
   

Source AS Genes IR A3'SS A5'SS ES Total 
Unique Wild-type 1379 1235 546 283 219 

6820 
Unique SR45 mutant 1100 1064 446 195 167 
In both WT& SR45 2402 1182 874 414 195 

Total 4881 3481 1866 892 581 
% 51 27 13 9 100 

Samples IR A3'SS A5'SS ES 

Total 51.0 27.4 13.1 8.5 

WT 48.8 28.7 14.1 8.4 

sr45 49.5 29.1 13.4 8.0 

DAS 46.8 30.8 13.6 8.9 
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Figure 19: The percentage of different type of AS events. The upper graph 
(Total) represents the total AS events derived from all the mapped sequence 
reads of WT and sr45 replicates (~ 80 million reads). Lower graphs (WT and 
sr45) show the percentage of AS events derived from WT and sr45 
individually. Intron retention (IR), alternative 3′ splice site (A3′ss), alternative 
5′ splice site (A5′ss), and exon skipping (ES). 
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Figure 20: RT-PCR verification of selected differentially spliced genes in sr45. Left 
panels show the gene structure. Thick boxes represent exons; lines represent introns, 
and the thin boxes represent UTRs. ACT2 was used as a control for cDNA template 
input. Right panels show RT-PCR verification of differential splicing, ID numbers. 
Arrowheads under the gene structure indicate the location of primers used in RT-PCR. 
Sizes of amplified products are shown next to the RT-PCR panel.  
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suggesting that SR45 preferentially affects the choice of 3′ splice sites (Figure 21B). When the 

distribution of the DS events was broken down along the gene body, the A3′ss within coding 

sequence (CDS) stood out as the most prevalent AS type, followed by A5′ss within CDS and 3′ 

UTR (Figure 22; Table 9). ES events were the least represented AS type in any part of the DS 

gene body (Figure 22; Table 9). Taken together, this indicates that SR45 largely regulates the AS 

of its targets by affecting the 3′ splicing sites within CDS regions. 

SR45 Functions in Hormonal Signaling and Abiotic Stress Responses 

Previous genetic and biochemical studies revealed that SR45 plays a role in plant development, 

probably through controlling pre-mRNA splicing, and also functions in abiotic stress responses 

(Albaqami, 2013; Ali et al., 2003; Ali et al., 2007; Carvalho et al., 2010; Zhang and Mount, 

2009). To determine whether SR45-regulated genes mediate previously reported functions and/or 

have additional biological roles, we performed a Gene Ontology (GO) enrichment assay on DE 

and DS genes together or separately in sr45 using GeneCoDis (Carmona-Saez et al., 2007). 

Pooled genes of DE and DS were significantly enriched in 46 GO biological process terms 

(Figure 23; Table 10). Remarkably, among enriched GO terms are response to abscisic acid 

stimulus, salt stress, and heat stress; these categories are in agreement with the previously 

suggested functions of SR45 (Albaqami, 2013; Carvalho et al., 2010). Most strikingly, 26 out of 

the 46 enriched GO terms are involved in either response to hormones or response to abiotic and 

biotic stresses (Table 10), suggesting that the major role of SR45 is in regulating Arabidopsis 

response to developmental and environmental stimuli. Similar results were obtained when GO 

analysis were performed with either DE or DS separately (Figure 24 and 25). Taken together, the 

enriched GO terms are consistent with SR45’s biological and molecular functions and suggest 

that SR45 is a key regulator for the reprogramming of gene expression, 
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Figure 21: The percentage of differential AS events in sr45. (A) 
A pie chart showing the proportion of each type of AS event in 
differentially spliced genes. (B) The proportion of differential AS 
events between WT and sr45. Intron retention (IR), alternative 3′ 
splice site (A3′SS), alternative 5′ splice site (A5′SS), and exon 
skipping (ES). 
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Figure 22: Distribution of differential AS events across the gene body. Intron 
retention (IR), alternative 3′ splice site (A3′SS), alternative 5′ splice site (A5′SS), 
and exon skipping (ES), in different parts of the transcript (z-axis). 5′ untranslated 
region (5′UTR), Coding sequence (CDS), 3′ untranslated region (3′UTR). 
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       Table 9: The distribution of DS events along the gene body for each type of splicing. 

 
 
 
  

 IR A3'SS A5'SS ES 

Overall 265 (19%) 660 (47%) 390 (28%) 92 (13%) 

5'UTR 88 116 61 13 

CDS 66 512 174 40 

3'UTR 111 32 155 39 
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Figure 23: Gene Ontology term enrichment analysis of the differentially expressed and 
differentially spliced genes using GeneCoDis (http://genecodis.cnb.csic.es). Obs., the number 
of observed differentially expressed and differentially spliced genes; Exp., the number of 
expected differentially expressed genes; q-Value, the adjusted p-value calculated based on 
hypergeometric statistics and presented as “-Log10(Hyp-c)”. 
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   Table 10-1: The enriched GO terms in DE and DS genes. 

GO-term-Description 
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response to water deprivation (BP) 58 2822 201 33602 2.32E-17 1.16E-14 

response to salt stress (BP) 86 2822 382 33602 1.93E-17 1.93E-14 

response to abscisic acid stimulus (BP) 75 2822 324 33602 4.39E-16 1.46E-13 

regulation of transcription, DNA-dependent (BP) 209 2822 1563 33602 8.41E-12 2.10E-09 

response to jasmonic acid stimulus (BP) 37 2822 139 33602 1.73E-10 3.46E-08 

response to wounding (BP) 38 2822 151 33602 5.79E-10 9.64E-08 

response to cadmium ion (BP) 61 2822 327 33602 2.80E-09 3.99E-07 

response to ethylene stimulus (BP) 29 2822 106 33602 7.96E-09 9.94E-07 

response to heat (BP) 34 2822 139 33602 9.95E-09 1.10E-06 

response to cold (BP) 50 2822 255 33602 1.37E-08 1.36E-06 

response to chitin (BP) 31 2822 127 33602 4.61E-08 4.19E-06 

response to salicylic acid stimulus (BP) 30 2822 127 33602 1.64E-07 1.26E-05 

response to karrikin (BP) 30 2822 127 33602 1.64E-07 1.26E-05 

response to gibberellin stimulus (BP) 25 2822 95 33602 1.91E-07 1.36E-05 

response to auxin stimulus (BP) 48 2822 267 33602 4.09E-07 2.72E-05 

response to stress (BP) 25 2822 114 33602 7.10E-06 0.000394254 

response to UV-B (BP) 15 2822 49 33602 7.04E-06 0.000413891 

response to osmotic stress (BP) 22 2822 93 33602 6.84E-06 0.000426965 

metabolic process (BP) 97 2822 760 33602 2.38E-05 0.00124877 

galactolipid biosynthetic process (BP) 5 2822 7 33602 7.57E-05 0.0034361 

jasmonic acid and ethylene-dependent systemic 
resistance (BP) 

5 2822 7 33602 7.57E-05 0.0034361 

positive regulation of transcription, DNA-dependent 
(BP) 

27 2822 145 33602 6.97E-05 0.003482 

defense response to bacterium (BP) 33 2822 196 33602 9.43E-05 0.00409403 

negative regulation of transcription, DNA-dependent 
(BP) 

21 2822 106 33602 0.000174856 0.00671852 

cold acclimation (BP) 9 2822 26 33602 0.00017101 0.00683358 

protein folding (BP) 35 2822 219 33602 0.000170969 0.00711659 

defense response to fungus (BP) 24 2822 130 33602 0.00019655 0.00727237 

response to high light intensity (BP) 11 2822 40 33602 0.000335833 0.0115689 

cellular response to phosphate starvation (BP) 18 2822 88 33602 0.000328009 0.0117029 

abscisic acid mediated signaling pathway (BP) 15 2822 68 33602 0.000432105 0.0143891 
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    Table 10-2: The enriched GO terms in DE and DS genes. 

  
 

* Hyp = Hypergeometric p-value, Hyp-c = corrected Hypergeometric p-value. 

  

  

GO-term-Description 

Su
pp

or
t 

Li
st

 si
ze

 

R
ef

er
en

ce
 

Su
pp

or
t 

R
ef

er
en

ce
 si

ze
 

H
yp

*   

H
yp

_c
* 

 

carbohydrate metabolic process (BP) 51 2822 377 33602 0.000504034 0.0162429 

protein phosphorylation (BP) 96 2822 820 33602 0.000590094 0.0173383 

response to red light (BP) 12 2822 49 33602 0.000585651 0.0177292 

syncytium formation (BP) 6 2822 14 33602 0.00057955 0.0180928 

response to oxidative stress (BP) 35 2822 235 33602 0.000660267 0.0188459 

response to virus (BP) 9 2822 31 33602 0.000750907 0.0208377 

response to temperature stimulus (BP) 6 2822 15 33602 0.000897447 0.0235934 

defense response to insect (BP) 6 2822 15 33602 0.000897447 0.0235934 

microtubule-based movement (BP) 11 2822 45 33602 0.000997823 0.0255596 

glucosinolate catabolic process (BP) 5 2822 11 33602 0.00124883 0.0297044 

cellular response to heat (BP) 5 2822 11 33602 0.00124883 0.0297044 

unidimensional cell growth (BP) 18 2822 98 33602 0.00124772 0.0311619 

cellular glucan metabolic process (BP) 6 2822 17 33602 0.00191647 0.0445246 

heat acclimation (BP) 7 2822 23 33602 0.00214844 0.0466586 

trehalose biosynthetic process (BP) 7 2822 23 33602 0.00214844 0.0466586 

hyperosmotic salinity response (BP) 11 2822 49 33602 0.0020981 0.0476364 



*'!

Figure 24: Gene Ontology term enrichment analysis of the 
differentially expressed genes using GeneCoDis 
(http://genecodis.cnb.csic.es). Obs., the number of observed 
differentially expressed and differentially spliced genes; Exp., the 
number of expected differentially expressed genes; q-Value, the 
adjusted p-value calculated based on hypergeometric statistics and 
presented as “-Log10(Hyp-c)”. 
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Figure 25: Gene Ontology term enrichment analysis of the differentially 
spliced genes using GeneCoDis (http://genecodis.cnb.csic.es). Obs., the 
number of observed differentially expressed and differentially spliced genes; 
Exp., the number of expected differentially expressed genes; q-Value, the 
adjusted p-value calculated based on hypergeometric statistics and presented 
as “-Log10(Hyp-c)”. 
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potentially through AS of a variety of transcription factors, in response to a variety of environmental 

stimuli. 

SR45 Plays a Role in Heat Stress Response 

The GO term response to heat stress merited further investigation for several reasons: (1) high 

temperature widely threatens plant growth and production (Bita and Gerats, 2013); (2) AS of 

pre-mRNAs has been shown to play a central role in thermotolerance (Guerra et al., 2015); (3) it 

was one of the significantly enriched GO terms for SR45-regulated genes (Figure 23); and (4) 

We recently showed that SR45 functions in response to heat stress (Albaqami, 2013).  

Furthermore, SR45 itself is alternatively spliced, generating two isoforms, SR45.1 and SR45.2 

(Figure 26A) (Palusa et al., 2007; Zhang and Mount, 2009). Both isoforms have different 

functions in plant development and abiotic stresses (Albaqami, 2013; Zhang and Mount, 2009), 

and we determined in a previous study that these isoforms also function differently in 

Arabidopsis response to heat stress; SR45.1 but not SR45.2 positively regulates thermotolerance 

(Albaqami, 2013).  

As SR45.1 is the only isoform that rescues the mutant heat stress phenotype, we hypothesized 

that SR45.1 is more highly expressed than SR45.2, and determined the expression profile of each 

isoform in response to high temperature (Figure 27AB). When WT plants were exposed to 38oC, 

q-PCR expression analysis of both isoforms showed that SR45.1 was, in fact, more highly 

expressed than SR45.2 (Figure 27C). However, three hours of recovery at normal temperature 

(24oC) was sufficient to return expression of SR45.1 to normal, unstressed levels (Figure 27C). 

These results support my previous finding that SR45.1 plays a positive role in thermotolerance.  

My previous work also demonstrated the role of SR45.1 in thermotolerance at different 

developmental stages, including early growing seedlings and 35-day-old rosette leaves 

(Albaqami, 2013). However, its importance in maintaining the normal germination of  
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Figure 26: Overexpression of long (SR45.1) or short (SR45.2) isoforms of SR45 in sr45. 
(A) Schematic diagrams showing AS of SR45 pre-mRNA that produces two splice 
isoforms: long (SR45.1) and short (SR45.2). White boxes indicate exons, black lines 
indicate introns, black boxes indicate untranslated regions, and splicing is indicated by 
open triangles. Alternatively spliced region is indicated by a downward arrowhead.  
Seven amino acids and their corresponding nucleotides included in SR45.1 but missing 
in SR45.2 are shown on the top of the alternatively spliced region. (B) Confirmation of 
genotypes of WT, sr45 and sr45 expressing either long (sr45::SR45.1-GFP) or short 
isoform (sr45::SR45.2-GFP) using RT-PCR. ACT2 was used as an input control (C) 
Immunodetection of overexpressed long and short isoform of SR45 using a GFP 
antibody. (D) Visualization of GFP-tagged long (sr45::SR45.1-GFP) and short isoform 
(sr45::SR45.2-GFP)  in the nucleus as speckles using a fluorescent microscope (two 
pictures for each). 
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Figure 27: Expression of SR45.1 and SR45.2 splice isoforms in response to heat 
shock. (A) Schematic diagram showing the location of isoform-specific primers 
used in RT-PCR. (B) RT-PCR analysis to test the specificity of primers and the size 
of amplified product from SR45.1 and SR45.2 transcript in WT plants. (C) 
Quantification of expression of SR45.1 and SR45.2 isoform in control (24oC) and 
heat-treated (38oC) seedlings and in recovered seedlings after heat stress for 3hrs at 
24oC. Statistical significance (t-test P<0.05) is indicated by *).  SR45.1 is more 
abundant than SR45.2 under heat stress (38oC). This data represents one of three 
biological replicates experiments. 
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Arabidopsis seeds under high temperature is unclear. Therefore, we evaluated the effects of heat 

stress on germination in WT, sr45 mutant, and SR45 isoform overexpression lines. Consistent 

with my previous results, sr45 and the line overexpressing SR45.2 exhibited significantly lower 

germination under heat stress as compared WT and the line overexpressing SR45.1. No 

differences in germination were observed among these under normal temperature (Figure 28AB). 

Taken together, these results show that SR45.1 plays a positive role in thermotolerance at 

different developmental stages in Arabidopsis.  

Phosphorylation-Mediated Regulation of SR45.1 

Arabidopsis phosphoproteome studies showed that both SR45 protein isoforms are highly 

phosphorylated under normal conditions (Figure 29) (Reiland et al., 2009 and Arabidopsis 

Protein Phosphorylation Site Database (PhosPhAt)). The additional seven amino acids 

(TSPQRKT) in SR45.1 but not in SR45.2 contain potential phosphorylation sites at threonine 

218 (T218) and serine 219 (S219) (Figure 29) (Reiland et al., 2009; Zhang and Mount, 2009 and 

PhosPhAt). In fact, a previous study showed that phosphothreonine 218 is essential for the 

function of SR45.1 in controlling normal flower petal growth in Arabidopsis (Zhang and Mount, 

2009). Moreover, sequence similarity analysis showed that S219 is highly conserved among 

different organisms; however, T218 appears to be a semi-conserved amino acid, and in some 

cases it is substituted with another S that is likely to be phosphorylatable (Figure 30). However, 

whether these SR45.1 specific-phosphorylation sites play a biological role in thermotolerance 

remain unknown. To investigate this, we isolated SR45 proteins from heat-stressed seedlings of 

overexpression lines and detected phosphorylated forms using SDS-PAGE-Phos-tag. This 

method differentiates phosphorylated protein species compared to their non-phosphorylated 

counterparts by the interaction of protein phosphogroups with a polyacrylamide-bound dinuclear  
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Figure 28: Basal heat tolerance of WT, sr45 and sr45 complemented with either the long 
(sr45::SR45.1) or short (sr45::SR45.2) isoform. (A) Surface sterilized seeds were stratified 
for three days at 4oC, kept at 24oC as a control or subjected to a 50°C heat shock for 
60 min.  Control (left) and treated (right) seeds of all lines were then germinated and grown 
under the same conditions on M.S medium. (B) The effect of heat stress on germination of 
seeds from WT, sr45 and complemented lines.  Percent germination was calculated after 
10 days. Statistically significant differences (t-test, P<0.05) are indicated by asterisks. sr45 
is highly sensitive to heat stress than WT. Only the SR45.1 rescued the germination to WT 
level under heat stress. This data represents one of three biological replicates experiments. 
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Figure 29: Predicted and experimentally verified phosphorylation sites in SR45 isoforms. 
Protein sequence of both isoforms (SR45.1 and SR45.2) was extracted from UniProt 
(Universal Protein Resource) database. Experimentally verified phosphorylation sites (green, 
Reiland et al., 2009)and predicted phosphorylation sites (blue) were from the Arabidopsis 
Protein Phosphorylation Site Database (PhosPhAt 4.0). Pink color shows the difference in 
amino acid sequences between two splice isoforms. Protein part highlighted in gray indicates 
RNA recognition motif. 
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Figure 30: Conservation of alternatively spliced region across species. Top panel: A schematic 
diagram showing the domain organization of SR45.1. N-terminal arginine/serine-rich (RS1) 
domain, the middle RNA recognition motif (RRM), and the C-terminal RS2 domain are 
indicated. Bottom panel: sequences of SR45 homologues from six species were aligned with 
Clustal Omega. Amino acids 218 to 224 (TSPQRKT) in RS2 domain that are present in 
SR45.1 but missing in SR45.2 are highlighted in light green. Protein sequences and domain 
annotation were extracted from UniProt (Universal Protein Resource) database. 
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Mn2+ complex (Mn2+-Phos-tag) (Kinoshita et al., 2009). Both SR45 isoforms exhibited a 

phosphorylation mobility shift in response to high temperature, and this shift increased with 

incubation time (Figure 31). Also, we noted that the stability of both SR45 isoforms was reduced 

under heat stress (Figure 31). However, this phosphorylation detection method was not sensitive 

enough to distinguish phosphorylation differences between the two protein isoforms, since the 

only differences between them are two possibly phosphorylated amino acids. Therefore, to 

investigate potential functional differences between SR45.1 and SR45.2 in response to heat 

stress, we used previously reported genetically modified SR45.1 lines with point mutations at the 

SR45.1-specific sites T218 and S219 (Zhang et al., 2014; Zhang and Mount, 2009). Several lines 

with different point mutations were used: (1) substitution of T218 with non-phosphorylatable 

alanine (SR45.1T218A); (2) substitution of S219 with non-phosphorylatable alanine 

(SR45.1S219A); and (3) substitution of both T218 and S219 with non-phosphorylatable alanines 

(SR45.1 T218A+S219A) (Figure 32A).  Figure 32B is a representative picture of the seedling 

growth of these lines and the SR45.1 overexpression line on MS medium under normal 

conditions. When seeds were heat-stressed before germination, lines overexpressing 

SR45.1T218A and SR45.1T218A+S219A exhibited significantly lower germination capacity 

than lines overexpressing SR45.1 and SR45.1S219A; no difference was observed under normal 

temperature (Figure 33AB). These results indicate that SR45.1 plays a positive and vital role in 

thermotolerance, likely mediated by the phosphorylation state of T218 but not S219. 

DISCUSSION 

Even though AS events are highly prevalent in plant transcriptomes (Filichkin et al., 2010; 

Marquez et al., 2012; Wang and Brendel, 2006), the regulatory mechanisms behind them are yet 

to be elucidated. To address the role of an SR protein (SR45) in AS regulation in Arabidopsis,   
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Figure 31: Phosphorylation status of SR45 splice isoforms in response to 
heat shock. Complemented lines expressing either long or short isoform 
were grown for seven days, seedlings were heat-treated (38oC) and tissue 
was collected at different time points (0, 1, 2, 3, and 4 hrs.). Nuclear protein 
from these seedlings was the used for immunodetection using SR45 
antibody. Top, immunoblot of nuclear proteins separated on a denaturing gel 
(SDS-PAGE). Bottom, immunoblot of the same samples separated on a 
Phos-tag gel  (50mM Phos-tag™ SDS-PAGE). T, heat treatment time points 
in hours. The thin horizontal line on the second gel is to reflect different 
mobility of proteins.  
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Figure 32: Substitutions of threonine 218 and serine 219 residues of SR45.1 with a non-
phosphorylatable amino acid, alanine. (A) A schematic diagram showing the domain 
organization of SR45.1 as described before (Fig.28) tagged with green fluorescent protein 
(GFP). Amino acids substitutions in SR45 long isoform: SR45.1T218A, SR45.1S219A, and 
SR45.1T218A+SR45.1S219A are highlighted in red. (B) Seedling growth of transgenic 
plants overexpressing SR45.1, SR45.1T218A, SR45.1S219A, and 
SR45.1T218A+SR45.1S219A in sr45 mutant background. Seedlings were grown under the 
same conditions on M.S. medium for two weeks. 
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Figure 33: Basal heat tolerance of transgenic plants overexpressing different substitution 
mutations in SR45.1 (long isoform) (A) Seeds were surface sterilized, stratified at 4oC for 
three days at 24oC as a control (left) or subjected to a 50°C heat shock for 60 min (right). 
Following treatment, seeds of all lines were germinated and grown under the same 
conditions on M.S. medium. (B) Germination percentage was quantified after 10 days. 
Asterisks indicate statistically significant differences (t-test, P<0.05). SR45.1T218A and 
SR45.1T218A+ SR45.1S219A showed increased sensitivity to heat stress as compared to 
SR45.1 and SR45.1S219A. 
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we compared the transcriptomes of the SR45 mutant (sr45) and WT using high-throughput 

RNA-Seq. Previous studies with Arabidopsis SR45 have indicated that it is a spliceosomal 

protein that interacts with U1-70K, AFC2 kinase, U2AF35, SC35-like SR (SR33), RSZ21, SR34 

and SR34a, and plays multiple roles in plant development (Ali et al., 2007; Day et al., 2012; 

Golovkin and Reddy, 1998, 1999; Xing et al., 2015; Zhang et al., 2014). The single-base 

resolution and quantitative nature of RNA-Seq allowed us to identify DE and DS genes. Our 

RNA-Seq analysis identified 1,345 DE genes and 927 DS genes as SR45-regulated with an FDR 

of 5%. Given the known molecular functions of SR45, the DE genes are most likely indirect 

targets of SR45 while the DS genes are potentially its direct and indirect targets (see below). 

Analysis of DS events indicates that SR45 most likely influences the A3′ss within the CDS. 

However, in some transcripts, changes in A5′ss within CDS, IR within 3′ UTR, and A5′ss within 

3′ UTR were also observed, suggesting its effect on other AS events also. A prior study has 

indicated that SR45 binds in vitro to an intronic region near 5′ss and recruits spliceosomal 

proteins U1-70K and U2AF35 to both A5′ss and A3′ss, respectively (Day et al., 2012).  

However, SR45 has also been shown to play a role in regulating the splicing of several other 

splicing factors (Ali et al., 2007). Therefore, some of these DS events might be indirect effects of 

SR45, mediated by other splicing regulators directly affected by SR45. Nonetheless, the 

differentiation of DS from DE genes sets up a framework for further dissecting the pathways 

connecting SR45-regulated AS events to its biological functions. 

The high changes in gene expression due to loss of SR45 may result from altering splicing 

patterns of certain transcription factors. In our previous work, we have shown that SR45 binds 

and regulates splicing of the heat stress transcription factor HSFA2 (AT2G26150); loss of SR45 

leads to altered splicing of HSFA2 and affects the expression level of at least eight downstream  
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target genes (Albaqami, 2013). In agreement with this result, HSFA2 (AT2G26150) was one of 

the DS genes in sr45, and validated by RT-PCR (Figure 20). 

The altered patterns of gene expression in sr45 might also be due to the fact that Arabidopsis 

SR45 is involved in RNA-mediated DNA methylation and gene silencing (Ausin et al., 2012). 

Furthermore, SR45 is involved in regulating the splicing and expression of non-coding RNAs. It 

is known from previous studies that pre-miRNA AS regulatory mechanisms control miRNA 

biogenesis (Hirsch et al., 2006; Yan et al., 2012). Several miRNA genes in plants are located in 

the intronic regions of protein-coding genes, and their expression and processing co-occur with 

that of their host genes (Brown et al., 2008; Yan et al., 2012; Yang et al., 2012). Our RNA-Seq 

data revealed that expression levels of six microRNA genes were altered in the mutant, and RT-

PCR analysis of mir156C validated that its splicing is altered in sr45 (Figure 18A). Significantly, 

at least one target gene for each of the four micro RNAs was also differentially expressed 

between WT and sr45. These results indicate that SR45 likely plays a direct or indirect role in 

transcription and/or microRNA processing. In addition to these findings, the expression of 

Arabidopsis intronic mir400 has been shown to be down-regulated in a splicing regulator (SR30) 

mutant (Yan et al., 2012). Here, we suggest that splicing factors including SR45 likely regulate 

the processing of pre-miRNA and intronic miRNAs in plants. Further investigation of the 

interactions between those factors and microRNAs will be very helpful in increasing our 

understanding of AS regulation and miRNA biogenesis in Arabidopsis.  

Genes identified as DE or DS in the RNA-Seq data were analyzed for enrichment of GO 

biological process terms. Enriched terms included “response to abscisic acid stimulus,” 

“response to salt stress,” “response to heat stress,” “carbohydrate metabolic process,” and 

“regulation of root development”; supporting the validity of this analysis as these terms are 
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consistent with the previously reported functions of SR45 in ABA/sugar signaling, abiotic stress 

responses, and root development (Albaqami, 2013; Ali et al., 2007; Carvalho et al., 2010; Zhang 

and Mount, 2009). While GO terms involved in flowering time were not enriched among 

misregulated genes, the expression of FLC, a flowering time control gene, which is also a known 

target of SR45, was dramatically increased in the SR45 mutant, consistent with a previous report 

(Ali et al., 2007). The lack of observed enrichment for any GO terms directly related to 

flowering suggests that flowering control might is likely due to its effect on one or more key 

genes rather than a large number of genes involved in flowering. In total, several dozen GO 

terms were enriched, indicating that SR45 functions in multiple biological processes. However, 

most of those GO terms were related to hormonal and stress responses (Table 10), suggesting a 

possible intrinsic relationship among them. It is thus tempting to speculate that SR45 might be a 

central regulator in the signaling hierarchy of hormonal and stress response pathways. That the 

biological process “regulation of transcription, DNA-dependent” and the molecular function 

“sequence-specific DNA binding transcription factor activity” were among the most enriched 

GO terms might even add another layer of detail to this speculation. That is, it is through AS or 

altered transcription of transcription factors that SR45 reprograms those pathways in response to 

a variety of internal and external stimuli.  

As a case study for the potential role of SR45 in stress responses, we investigated SR45’s 

function in thermotolerance. It is noteworthy that SR45 is alternatively spliced, generating two 

isoforms (SR45.1 and SR45.2), and these two isoforms have been shown to function differently 

in Arabidopsis development as well as in response to abiotic stresses (Albaqami, 2013; Zhang 

and Mount, 2009). Consistent with our previous work, we found that SR45.1, but not SR45.2, 

was a positive regulator of thermotolerance (Figure 28) at different developmental stages in 
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Arabidopsis (Albaqami, 2013). In addition, the expression of SR45.1 under heat stress was 

significantly higher than that of SR45.2 (Figure 27).  

It is known from our previous studies that SR45.1 likely mediates thermotolerance by regulating 

the AS of certain transcription factors involved in heat stress response (Albaqami, 2013). For 

example, Arabidopsis HSFA2, a key transcription factor in heat stress response, is alternately 

spliced under heat stress to generate three isoforms, two of which are known to function 

positively to enhance thermotolerance (Liu et al., 2013). Intriguingly, it has been shown that 

splicing patterns and expression levels of HSFA2 were altered in sr45 at both normal and high 

temperatures, and SR45.1 binds to an alternatively spliced HSFA2-intron in vitro (Albaqami, 

2013). Furthermore, expression of several downstream targets of HSFA2 are regulated by 

SR45.1 (Albaqami, 2013). These observations and the RNA-Seq analysis results highlight the 

role of SR45.1 in thermotolerance.  

In an attempt to understand how SR45.1 confers thermotolerance while SR45.2 does not, we 

investigated the differences between these two isoforms. SR45.1 is distinguished from SR45.2 

by eight amino acids (TSPQRKTG). Arabidopsis phosphoproteome analysis and previous 

studies revealed that two of these additional residues, T218 and S219, are potential 

phosphorylation sites (Reiland et al., 2009; Zhang and Mount, 2009 and PhosPhAt). It is also 

noteworthy to mention that other phosphorylation sites are predicted in both isoforms, and a 

large-scale Arabidopsis phosphoproteome assay has revealed that SR45 is extensively 

phosphorylated at different residues (Figure 29) (Reiland et al., 2009 and PhosPhAt). Similarly, 

when we examined the phosphorylation status of both isoforms under heat stress using Phos-

tag™ SDS-PAGE, we found that both of them were phosphorylated; however, it was not 

possible to resolve any phosphorylation differences between isoforms using this method. Thus, 
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given the different heat stress responses of both overexpression lines, the overall change of 

phosphorylation of both isoforms under heat stress added another layer of regulation concerning 

SR45’s role in heat shock response.  

It is known that the phosphorylation/dephosphorylation cycle of SR proteins plays a fundamental 

role in splice site selection and spliceosome assembly (Zhou and Fu, 2013). Furthermore, SR 

proteins are known to function in either a cooperative or antagonistic fashion (Bradley et al., 

2015), but it is not known if this behavior is specific to certain splice variants. Therefore, we 

cannot exclude the possibility that the phosphorylation of SR45.2 under heat stress interferes 

with Arabidopsis heat stress tolerance through antagonistic heat-induced alternative splicing 

events. Future investigation is needed to determine whether SR45.2 might be a negative 

regulator of thermotolerance in Arabidopsis. 

Nevertheless, the different responses of these splice variants of SR45 to heat stress, and the 

conservation of phosphorylation sites within SR45.1’s unique amino acids among different 

organisms (Figure 30), made us wonder if phosphorylation of these residues influences the 

specific role of SR45.1 in thermotolerance. Therefore, we used genetically modified SR45.1 with 

alanine substitution mutations at potential phosphorylation sites T218 and S219, which are 

located in the alternatively spliced region. Heat stress responses of these mutants confirmed that 

T218 is likely phosphorylated and that this phosphorylation, but not at S219, is required for 

thermotolerance in Arabidopsis (Figures 32 and 33). Further studies using the long form with 

“phosphomimetic” mutation at T218 and/or phophoproteomics analysis of SR45 under heat 

stress are needed to further confirm that phosphorylation of T218 is critical for its role in 

thermotolerance.  From our findings, we suggest that the unique predicted phosphorylation site at 

T218 of SR45.1 contributes to the different capabilities of these two isoforms in regulating 
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thermotolerance. Although mutation of S219 alone did not result in a heat stress response 

phenotype, it may also be involved in different biological roles. Taken together, these findings 

and previous phosphorylation assays strongly suggest the likelihood that phosphorylation of 

SR45.1 mediates its biological role in response to heat shock in Arabidopsis. The 

phosphorylation status of the long isoform may influence its function in several different ways.  

First, it may affect the localization of SR45.  It has been shown that subnuclear localization of 

SR45 is altered by heat stress (Ali et al., 2003). Second, it may alter its ability to interact with 

other spliceosomal proteins since SR45 is known to interact with U1-70K, AFC2 kinase, 

U2AF35, SC35-like SR (SR33), RSZ21, SR34 and SR34a. Finally, the interaction of SR45.1 

with cis-elements in pre-mRNAs may be regulated by phosphorylation. An important are for 

further investigation is to identify RNA targets of SR45 splice isoform. Further investigations 

will add more insight into how protein phosphorylation of SR45 influences its splicing activities.  

Conclusion  

Arabidopsis SR45, one of the SR-like proteins, has been well-characterized as an essential pre-

mRNA splicing regulator that functions in plant development and environmental responses. 

However, how SR45’s biological roles are mediated by SR45-regulated alternative splicing 

events remains to be discovered. Therefore, to address this question and to gain insights into the 

mode of action of SR45, we compared the transcriptomes of the sr45 mutant and WT using high 

throughput sequencing.  This analysis has allowed us to identify thousands of DE and DS genes 

in the mutant.  Furthermore, the distribution of AS events along the gene bodies of DS genes 

suggests that SR45 likely regulates the selection of 3' ss within the CDS region. The top over-

represented GO biological process terms in DE and DS genes related to hormonal signaling and 
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response to abiotic stresses. Remarkably, supporting the validity of these GO enrichment results, 

the enriched terms include previously characterized functions of SR45.  

GO terms suggested that SR45 plays a role in heat stress response; hence, we used that as a case 

study to investigate the role of SR45 in abiotic response. However, SR45 itself is alternatively 

spliced to generate two functional proteins, SR45.1 and SR45.2, in which SR45.1 has an 

additional seven amino acids. We included both isoforms in my investigation to gain insight into 

how alternative splicing regulates SR45 functions. Heat shock responses of WT, sr45, and 

complemented lines of both isoforms indicated that SR45 has a vital role in thermotolerance in 

Arabidopsis. However, the heat stress responses of plants expressing specific isoforms revealed 

that only SR45.1, not SR45.2, has a positive role in thermotolerance; this is likely through 

modulating AS and expression of several heat stress responsive genes. Furthermore, we found 

that post-translation phosphorylation modifications likely differentiate the function of SR45.1 

from SR45.2, where the SR45.1-specific phosphorylation residue T218 impacts its biological 

role in Arabidopsis heat shock tolerance.  

Finally, this research established the direct and indirect targets of Arabidopsis SR45; however, 

further investigation to identify direct targets of SR45 isoforms under heat shock will be needed 

to gain more insights into how SR45.1 confers thermotolerance. Global gene expression analysis 

with complemented lines under normal and high temperature will be a very suitable first step in 

this investigation. Mass spectrometry analysis of immunopurified SR45 isoforms will reveal the 

phosphorylation differences between them under heat stress. It will additionally be important to 

investigate how the mutation of a single amino acid in SR45.1, T218, specifically affects the 

expression and AS of heat stress responsive genes that were shown to be misregulated by SR45 

mutation.  
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CHAPTER II 
  

 
 

Development of a Plant-derived In Vitro Pre-mRNA Splicing System 

SUMMARY  

Precursor messenger RNA (pre-mRNA) splicing is an essential post-transcriptional process 

common to all eukaryotes. Evidence indicates that plants may have unique pre-mRNA splicing 

regulatory mechanisms; however, these mechanisms are poorly understood and have not 

received attention equivalent to those of animals and yeast. In vitro splicing systems using 

nuclear or cytoplasmic extracts from mammalian cells, yeast, and Drosophila have provided a 

wealth of mechanistic insights into eukaryotic pre-mRNA splicing. A corresponding plant-

derived in vitro splicing system has long been awaited; therefore, we present here an effort 

toward developing such a system from plants. We show that nuclear extract (NE) derived from 

dark-grown (etiolated) Arabidopsis seedlings is capable of converting a truncated LIGHT-

HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3 (LHCB3) pre-mRNA substrate with a 

single intron into the expected size of mRNA. Based on several lines of evidence, we suggest 

that this is an accurate in vitro splicing reaction. Supporting evidence include: i) generation of an 

RNA product that correspond to the size of expected mRNA, ii) generation of RNA species that 

migrate within the size range expected for splicing intermediates, iii) indications from a junction-

mapping assay using S1 nuclease that the two exons are linked together, iv) remarkable 

similarities between plant and non-plant in vitro splicing assay reaction conditions, such as 

requirements for ATP and Mg+2, and v) finally, more importantly, mutations in conserved donor 

and acceptor sites abolished the production of the putative spliced product. Unlike mammalian in 

vitro splicing assays, the optimal incubation temperature for splicing with plant extract was 
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lower, within the optimal growth temperature range of Arabidopsis seedlings, 24oC. Collectively, 

our results suggest that Arabidopsis NE is capable of splicing pre-mRNA substrate and that the 

in vitro reaction conditions are similar to those found with non-plant extracts. This is the first 

step toward developing a plant-derived in vitro pre-mRNA splicing assay.  Further confirmation 

of these results with additional approaches and optimization of this assay would lead to 

development of a robust in vitro splicing assay and opens new avenues to investigate 

spliceosome assembly and composition, splicing regulatory mechanisms specific to plants, and 

thereby enhances the overall understanding of post-transcriptional gene regulatory mechanisms 

in eukaryotes. 

INTRODUCTION 

Shortly after the discovery of introns in 1977, different groups developed the mammalian cell-

free system (in vitro), using nuclear or cytoplasmic extracts, which were competent for pre-

mRNA splicing (Hernandez and Keller, 1983; Krainer et al., 1984; Padgett et al., 1984). 

Subsequently, the preparation of efficient splicing extracts and the in vitro splicing assay have 

been adapted to other organisms such as budding yeast (Saccharomyces cerevisiae) and fruit 

flies (Drosophila melanogaster) (Lin et al., 1985; Rio, 1988). The development of mammalian, 

yeast, and Drosophila in vitro systems to study pre-mRNA splicing has provided essential 

insights into spliceosome assembly, its composition and splicing mechanisms in non-plant 

systems. The characterization of the splicing two-step trans-esterification reaction, pre-mRNA 

splicing intermediates, and the formation of final mature mRNA and lariat structure of intron 

have all been revealed by in vitro splicing studies (Padgett et al., 1984; Ruskin et al., 1984). 

Furthermore, in vitro splicing combined with immunodepletion has long been used to determine 

the roles of spliceosomal components, such as small nuclear ribonucleic proteins (snRNP) (Black 



	
  
	
  

85	
  

et al., 1985; Krainer and Maniatis, 1985). Several other splicing regulators were characterized by 

their ability to promote the in vitro splicing assay (Krainer et al., 1990; Screaton et al., 1995). 

Furthermore, the formation of spliceosomal complexes and their stepwise assembly pathway 

have been deduced in vitro by native (nondenaturing) agarose/polyacrylamyde gel 

electrophoresis (Das and Reed, 1999; Konarska and Sharp, 1986; Wahl et al., 2009). 

Additionally, many in vitro biochemical splicing studies have allowed purification of 

spliceosomes and provided a wealth of information on the spliceosome’s composition, its 

structures, and the structure conformational dynamics of spliceosomal complexes (Bertram et al., 

2017; Galej et al., 2016; Matera and Wang, 2014; Papasaikas and Valcarcel, 2016; Wahl et al., 

2009; Yan et al., 2015; Yan et al., 2017a). The identification of additional splicing regulatory cis-

elements, such as splicing enhancers or silencers and their cognate factors, has also been 

expedited by studies using in vitro biochemical assays (Ge and Manley, 1990; Liu et al., 1998; 

Mayeda and Krainer, 1992; Reed and Maniatis, 1986; Schaal and Maniatis, 1999; Tian and 

Maniatis, 1992). The in vitro splicing assay has also been a valuable technique for dissecting 

abnormal splicing events which cause human genetic disease, and in developing new therapeutic 

approaches for human disease (Hua et al., 2008; Krainer et al., 1984). Finally, the in vitro 

splicing assay has been used to evaluate molecules with splicing inhibitory functions, such as 

spliceostatin A (Kaida et al., 2007). These are just several examples of how in vitro splicing 

assays contribute important information regarding this fundamental gene expression regulatory 

mechanism. The in vitro splicing systems have been, and will continue to be, indispensable tools 

for studying the mechanism of splicing.  

As in animals, pre-mRNAs from a majority (over 80%) of plant genes contain non-coding 

sequences and are processed to generate mature mRNAs via a splicing mechanism where 
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noncoding sequences (introns) are removed and coding sequences (exons) are ligated together 

(Reddy, 2007). Pre-mRNA splicing is a post-transcriptional regulatory mechanism that is not 

only fundamental for controlling gene expression. Recent studies indicate the developmental and 

environmental cues can reprogram gene expression in plants by regulating post-transcriptional 

processes, especially pre-mRNA splicing (Lee and Kang, 2016; Lorkovic, 2009; Mazzucotelli et 

al., 2008; Palusa et al., 2007). However, the molecular mechanism of basic splicing in plants 

remains completely unknown. Furthermore, the composition of the plant spliceosome and its 

assembly intermediates are currently undefined (Barta et al., 2012; Reddy et al., 2013). Thus, the 

study of pre-mRNA splicing in plants requires innovative approaches, which will greatly 

empower this field of research. 

In spite of the absence of an in vitro plant-splicing system, efforts have been made to identify 

distinct plant splicing-related mechanisms. Bioinformatics analyses using sequence similarity 

have identified the core components of the plant spliceosome, including five snRNAs and several 

orthologs of known spliceosomal proteins (Koncz et al., 2012; Lorković et al., 2000; Reddy et 

al., 2013; Ru et al., 2008; Wang and Brendel, 2004). Likewise, the highly conserved sequences at 

the 5' splice site (5'ss), 3' splice site (3'ss), polypyrimidine tract and branch point sequence (BPS) 

are similar between plants and animals (Reddy, 2007). These similarities are strong signs for 

comparable basic mechanisms of intron processing across eukaryotic systems, but there are also 

numerous indications of plant-specific splicing regulatory mechanisms. For example, animal 

introns cannot be processed in plant systems (Barta et al., 1986), the average sizes of plant 

introns are shorter than their mammalian counterparts (Reddy et al., 2013), and analysis for 

proteins similar to mammalian spliceosomal proteins indicates that there is almost twice the 

number of plant splicing factors compared to human splicing factors (Koncz et al., 2012; Reddy 
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et al., 2013). Furthermore, comparative analysis of alternative splicing (AS) events 

between plants and animals has revealed that intron retention is the predominant mode of AS in 

plants (Ner-Gaon et al., 2004; Syed et al., 2012), whereas exon skipping is the predominant 

mode in animals (Kim et al., 2007). Although the pre-mRNA splicing mechanisms in plants are 

poorly understood, based on the reasons cited above it is likely that the mechanisms of 

recognition of introns and exons may differ between plant and animals. 

The development of in vitro systems to study RNA-related mechanisms in plants is limited and 

challenging (Sugiura, 1997). An in vitro pre-mRNA splicing system to uncover plant splicing 

regulatory mechanisms has long been awaited (Barta et al., 2012; Reddy et al., 2013). Therefore, 

despite difficulties inherent to plant cells, here we describe our efforts to develop an in vitro 

system for plant pre-mRNA splicing using nuclear extracts (NE) prepared from Arabidopsis 

seedlings. We present a detailed procedure for the preparation of the NE and a subsequent in 

vitro splicing reaction using a plant pre-mRNA substrate containing a single intron from LIGHT-

HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3 (LHCB3). We show that plant NE is 

capable of converting LHCB3 pre-mRNA substrate to the size of expected mRNA. Based on 

several lines of experimental evidence, we show that Arabidopsis NE can process a plant pre-

mRNA to produce a putative spliced product. These evidences include i) generation of an RNA 

product that correspond to the size of expected mRNA, ii) generation of RNA species that that 

have sizes of predicted splicing intermediate, iii) indication of exon-exon junction using S1 

mapping assay, iv) remarkable similarities between plat and non-plant in vitro splicing assay 

reaction conditions, such as requirements for ATP and Mg+2, and v) finally, changing conserved 

5' and 3' splice site sequences affected the in vitro generation of putative splicing product as well 

as the putative splicing intermediates. Together, our results suggest that Arabidopsis NE is 
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capable of splicing pre-mRNA substrate and that the in vitro reaction conditions are similar to 

those found with non-plant extracts. This is the first step toward establishing a plant-derived in 

vitro pre-mRNA splicing assay.  Further confirmation of these results with additional approaches 

and optimization of this assay would lead to development a robust in vitro splicing and opens 

new avenues to investigate spliceosome assembly and composition, splicing regulatory 

mechanisms specific to plants, and thereby enhances the overall understanding of post-

transcriptional gene regulatory mechanisms in eukaryotes. 

MATERIAL AND METHODS  

Arabidopsis Nuclear Extract Preparation 

The nuclear extract preparation method presented here is a modification of protocols described 

previously (Folta and Kaufman, 2006; Kataoka and Dreyfuss, 2008; Xing et al., 2015). For plant 

material preparation, seeds (50 mg) of Arabidopsis thaliana ecotype Columbia-0 (Col-0) were 

surface-sterilized with 70% ethanol followed by 15% bleach and stratified for 3 days at 4 °C (to 

break dormancy). Then, seeds were placed into 100 mL of Murashige and Skoog (MS) medium 

(1x MS basal salt, 1 mL/L MS vitamin solution, and 1% sucrose, pH 5.7) in a 250 mL flask and 

moved to a growth chamber. Seedlings were grown in dark at 2°C for 4 days, with flasks on a 

shaker at 150 rpm. Four-day-old seedlings were harvested, rinsed three times with Nanopure 

water, and excessive water was removed using a few layers of Kimwipes. Afterwards, the 

seedlings were weighed, directly frozen in liquid N2, and stored at -80°C. 

For nuclear protein preparation, 5 g of etiolated seedlings were ground into a fine powder in 

liquid nitrogen. Subsequently, the sample was homogenized in 25 mL of Honda buffer (1.25% 

Ficoll 400, 2.5% Dextran T40, 0.44M sucrose, 10mM MgCl2, 0.5% Triton X-100, 20mM 

HEPES KOH, pH 7.4, 5 mM DTT, 1 mM PMSF, and 1% protease inhibitor cocktail [Sigma-
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Aldrich, St. Louis, MO; catalog number: P9599]) for 15 min on ice, with gentle mixing every 

minute. The homogenate was filtered through two layers of Miracloth into a 50 mL Corex tube. 

Then the residue left behind on the Miracloth was washed with 25ml ice-cold Honda buffer, and 

then the filtration step was repeated and collected into the same Corex tube. The filtrate (total 50 

ml) was centrifuged at 2000 g for 15 min at 4°C. The supernatant was discarded and the pellet 

resuspended in 15 mL ice-cold Honda buffer, then incubated on ice for 15 min with gentle 

mixing every minute. It is not recommended to pipet up and down when mixing, as this can 

disrupt the nuclei; instead, a camel-hair brush can be used to resuspend the nuclei pellet. After 

complete resuspension, the sample was centrifuged at 1500 g for 15 min at 4 °C. This washing 

step was repeated two times. The pellet was then resuspended in 15 mL ice-cold washing buffer 

(20 mM HEPES KOH, pH 7.9, 100 mM KCl, 0.2 mM EDTA, 10% (v/v) glycerol, 1mM DTT, 1 

mM PMSF, and 1% protease inhibitor cocktail [Sigma-Aldrich, St. Louis, MO; catalog number: 

P9599]) for 15 min on ice, mixed gently every minute. It is also not recommended to mix by 

pipetting here. After complete resuspension, the sample was centrifuged at 1500 g for 15 min at 

4°C. The nuclei pellet was then resuspended in 0.5X ice-cold nuclei swelling buffer (50 mM 

Tris–HCl (pH 7.9), 10 mM 2-mercaptoethanol, 20% glycerol, 5 mM MgCl2, 0.44 M sucrose, 1 

mM PMSF, and 1% protease inhibitor cocktail [Sigma-Aldrich, St. Louis, MO; catalog number: 

P9599]) and transferred to a 1.5 ml microcentrifuge tube, then incubated at 4°C for 30 min with 

gentle rocking. The extract was then centrifuged for 30 min at maximum speed (16,000 g) at 4°C 

and the supernatant removed to a new 1.5 mL microcentrifuge tube. Then, the NE was 

distributed into 50 ml aliquots, flash-frozen in liquid nitrogen and stored at -80oC for in vitro 

splicing assay.  
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DNA Templates and In Vitro Pre-mRNA Synthesis 

For in vitro pre-mRNA synthesis, DNA templates were amplified by PCR from Arabidopsis 

genomic DNA, using a gene-specific forward primer plus SP6 promoter sequence and reverse 

primer plus an adaptor sequence. PCR products of the correct size were then gel-purified using 

the Thermo Scientific GeneJET Gel Extraction Kit (Thermo Fisher Scientific, Waltham, MA; 

catalog number: K0691). Purified DNA templates were quantified using a NanoDrop 1000, and 

approximately 0.250 µg of amplified DNA template was used for in vitro transcription. To 

generate mutations at conserved splicing sites, DNA template sequences with desired sequences 

were synthesized at Integrated DNA Technologies, Inc. (Coralville, IA; https://www.idtdna. 

com).  

Preparation of P32-labelled pre-mRNA substrates was conducted using an in vitro transcription 

system as described previously in (Palusa and Reddy, 2013). The pre-mRNA substrates were 

internally labeled with 45 µCi of [a-32P] UTP (800 Ci mmol-1, PerkinElmer, Waltham, MA) 

using SP6 RNA polymerase (Fermentas, Thermo Fisher Scientific, Waltham, MA; 

www.fermentas.com) in the presence of 500 µM ATP and CTP, 50 µM GTP and UTP, 50 µM 

cap analog (7mGpppG), and 20 U RNase inhibitor. In vitro synthesized P32-labelled pre-mRNAs 

with the correct size were gel-purified using TNS solution (25 mM Tris-HCl (pH 7.5), 400 mM 

NaCl, 0.1% SDS) for overnight at room temperature. Radioactive pre-mRNAs were measured 

using a liquid scintillation counter (Tri-Carb Liquid Scintillation Counter, PerkinElmer, 

Waltham, MA); 25,000 CPM (~20 fmol) of P32-labelled pre-mRNA substrates was used for in 

vitro splicing reactions, unless otherwise specified (see figure legends). 
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In Vitro Splicing  

Unless otherwise specified (see figure legends), in vitro splicing reactions (25 µl) contained 1 

mM ATP, 20 mM creatine phosphate (CP), 10 U RNase inhibitor, 1 mM DTT, 72.5 mM KOAc, 

25,000 CPM (~20 fmol) P32-labelled pre-mRNA, and 50% NE. Reactions were incubated at 

30°C for the times indicated in figure legends. Subsequently, 175 µl of proteinase K master mix 

(1× proteinase K buffer, 0.25 mg/ml glycogen, 0.25 mg/ml proteinase K, and sterile water) was 

added, and the solution incubated at 37oC for 20 min. Afterward, RNA was purified by adding an 

equal volume of phenol:chloroform, precipitating with 2.5 volumes of 100% ice-cold ethanol, 

and air-drying the isolated pellet for 5 min (Movassat et al., 2014). Finally, RNA samples were 

dissolved with formamide/EDTA stop dye (formamide with 0.1% bromophenol blue, 0.1% 

xylene cyanol, and 2 mM EDTA).  

Visualization of Splicing Products 

Purified RNA from in vitro splicing reactions was analyzed by fractionation on a 6% 

polyacrylamide-urea gel as described previously (Movassat et al., 2014). RNA samples were 

heated at 95oC for 3 min, and loaded onto a pre-run gel. The gel was run at 200 V for 3 hours. 

Subsequently, the gel was transferred onto Whatman paper and dried for 2 hours using a Bio-Rad 

Gel Dryer at 80°C with suction. The gel was then exposed to a phosphor-imaging screen 

overnight, and imaged using a STORM 840 imager (Molecular Dynamics, GE Healthcare, Little 

Chalfont, United Kingdom; www.gehealthcare.com). 

S1 Nuclease Protection Assay 

For the S1 nuclease protection assay, in vitro spliced RNA (putative spliced RNA) was gel-

purified as described above. To enhance the intensity of P32-labelled RNA, putative spliced 

product from at least three samples were pooled together. 100 µM of DNA oligo (50 nt) with 
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sequence complementary to the exon/exon junction was hybridized to the purified RNA in S1 

hybridization buffer (80% formamide, 40mM PIPES (pH 6.4), 500 mM NaCl, 1 mM EDTA) for 

2 hours at room temperature after denaturing at 95oC for 5 min (Dupuy and Sonenshein, 1998). 

Subsequently, total hybridized P32-labelled RNA/oligo DNA was digested with S1 nuclease 

(100U) (Promega, Madison, WI; catalog number: M5761) in 1x S1 nuclease buffer (provided 

with the enzyme) for 1 hour at 37oC. The undigested P32-labelled RNA was purified by 

phenol:chloroform extraction and visualized as described above. 

RESULTS  

Arabidopsis NE Processed LHCB3 Pre-mRNA to Produce an Expected Size mRNA 

Generally, in vitro splicing reactions are conducted using NE prepared from HeLa cells; 

however, there are reports of NEs from other cells, such as Drosophila Kc cells, also being used 

(Hicks et al., 2005). The quality of NE is a vital factor for a successful and efficient in vitro 

splicing assay (Hicks et al., 2005). Therefore, we aimed first to develop a method for the 

preparation of NE from Arabidopsis etiolated seedlings to use in in vitro splicing assays (Figure 

34). This method is adapted from different protocols (Folta and Kaufman, 2006; Kataoka and 

Dreyfuss, 2008; Xing et al., 2015), and described in the Materials and Methods. 

To test this Arabidopsis NE for in vitro splicing activity, several pre-mRNA substrates from 

Arabidopsis genes were designed.  Each pre-mRNA contained a single intron flanked with two 

truncated exons. In addition, most of these substrates were selected based on their expression 

pattern throughout different developmental stages and under a variety of environmental 

conditions (Czechowski et al., 2005). These substrates included UBC9, UBC10, PP2AA3, 

GAPC2, AP2M, PEX4, TIP41-like family protein, MON1, RHIP1, and PTB1 (Figure 35 and 36). 

In addition to these substrates, we included light harvesting complex B3 (LHCB3), which is a  
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Figure 34: Schematic diagram showing the steps in NE preparation 
from four-day-old Arabidopsis thaliana etiolated seedlings. See 
material and methods for details. 
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Figure 35: Schematic diagrams of Arabidopsis pre-mRNA substrates that were 
tested in in vitro splicing assay with Arabidopsis NE.  Gene names and ID 
numbers are displayed at the top of each substrate. In each substrate, intron is 
shown as a black line, first exon is depicted as an orange box, and second exon as 
a green box. SP6 promoter is indicated as a red box. Numbers within the boxes or 
at the top of the introns indicate the length (in nucleotides - nt) of each region. 
The numbers listed on the right indicate the full length of each substrate. 
Diagrams are not drawn to scale. 
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Figure 36: Sequences of all Arabidopsis pre-mRNA substrates presented in 
Fig. 35. Sequences were extracted from The Arabidopsis Information Resource 
(TAIR). Exonic sequences are shown in upper case letters, while the intronic 
sequence are shown in lower case. SP6 promoter sequence is highlighted in 
yellow; primers are highlighted in green and conserved splicing sites are 
highlighted in black. 
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Figure 37: Preparation of LHCB3 32P-labeled pre-mRNA substrate used for in vitro splicing 
assay.  (A) Top, A schematic representation of a region of Arabidopsis LHCB3 
(AT5G54270) gene used to prepare DNA template for pre-mRNA substrate. A portion of the 
third and fourth exons (Orange and green boxes, respectively, labeled as exon 1 and exon2) 
and second intron (black line, labeled as intron) was used. F primer, forward primer with SP6 
promoter sequence (red line), R primer reverse primer with an adaptor sequence (red line). 
Bottom, PCR fragment amplified with F and R primers using Arabidopsis genomic DNA. 
The PCR product was gel purified and used for in vitro transcription reaction. (B) Top, 
schematic of DNA template that was used to synthesize 32P-labeled LHCB3 pre-mRNA 
substrate. Bottom, A representative autoradiogram of in vitro 32P-labeled LHCB3 pre-mRNA 
substrate. (C) Top, Schematic representation of labeled LHCB3 pre-mRNA substrate used for 
in vitro splicing assay. Bottom, predicted mRNA after in vitro splicing of pre-mRNA 
substrate. Sizes of intron, exons, pre-mRNA, and predicted mRNA are indicated. Red 
asterisks indicate 32P-nucleotides in RNA. 
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Figure 38: Sequences of DNA template (A), pre-mRNA substrate (B), and 
predicted mRNA (C). Arabidopsis LHCB3 (AT5G54270) sequence was 
extracted from The Arabidopsis Information Resource (TAIR). Exonic 
sequences are shown in upper case letters, while the intron sequence is shown 
in lower case. SP6 promoter sequence is highlighted in yellow; primers are 
highlighted in green with either SP6 or adapter sequences: conserved splicing 
sites (GT – AG) are highlighted in black, and adaptor sequence is highlighted in 
blue. 
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Figure 39: Preparation of DNA template for all Arabidopsis pre-mRNA substrates 
described in Figure 35. PCR reactions were performed with Arabidopsis genomic DNA 
using the primers shown in Figure 36.  The numbers listed on the right of each gel 
indicate the length of the expected size PCR product. 
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plant-specific gene related to the photosynthesis system (Figure 37A and 38). Arabidopsis 

genomic DNA was used to generate DNA templates for in vitro pre-mRNA synthesis, and an 

SP6 promoter sequence was appended to the forward primer for all substrates (Figure 37A and 

39). An in vitro transcription system using SP6 polymerase was used to radiolabel the substrates 

(Figure 37B and 40).  Initially, all P32-labelled pre-mRNA substrates were tested for in vitro 

splicing activity using Arabidopsis NE. Interestingly, only two of them, LHCB3 and UBC10, 

produced labeled RNA bands other than the template size upon incubation in the Arabidopsis NE 

(Figure 41 and 42). The other pre-mRNA substrates that were tested did not exhibit any RNA 

products above background (Figure 43).    

The LHCB3 pre-mRNA substrate carried an 82 nt 5' exon, the 64 nt intron, and 51 nt of 3' exon 

plus a 22 nt adaptor sequence for a total length of 219 nt (Figure 37B). The P32-labelled LHCB3 

pre-mRNA was incubated at 30oC in Arabidopsis NE for 0, 90, or 180 min. The reaction 

products were isolated and analyzed by 6% denaturing polyacrylamide gel (Figure 41). We did 

not observe any P32-labelled RNA products at 0 min incubation time; however, at 90 and 180 

min there were a variety of P32-labelled species smaller than the pre-mRNA substrate. The 

predicted spliced mRNA is 155 nt long (Figure 37C). Certainly, a 155 nt RNA species, the 

expected size of spliced mRNA, was observed after 90 min, and this product was accumulated to 

a higher level after 180 min. We also generated a P32-labelled marker mRNA from an LHCB3 

cDNA template (M*) for comparison with the in vitro product. In addition, we observed several 

other RNA species, one of the size of the intron plus the second exon (~137nt), and one with size 

of only the intron (~ 65nt), which may correspond to the pre-mRNA splicing intermediates. This 

finding suggests the possible in vitro splicing of LHCB3 pre-mRNA using Arabidopsis NE. 

However, a variety of other RNA species were also observed at both 90 and 180 min incubation  
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Figure 40: An autoradiogram showing the size of ten different 32P-labelled pre-
mRNA substrates prepared from the DNA templates shown in Figure 39. 
Radioactive pre-mRNA substrates were synthesized in vitro from DNA 
templates using SP6 RNA polymerase as described in materials and methods. 
32P-pre-mRNAs corresponding to the expected size were gel purified and used 
in in vitro splicing reaction. 



%.%!

Figure 41: In vitro splicing assay with the Arabidopsis LHCB3 pre-mRNA substrate. 
Radioactive LHCB3 pre-mRNA substrate was synthesized in vitro with a DNA template 
using SP6 RNA polymerase (see Fig. 37B) as described in materials and methods. 32P-
labeled LHCB3 pre-mRNA substrate (25,000 cpm) was incubated with nuclear extract 
from Arabidopsis etiolated seedlings at 30oC as described in materials and methods. 
Samples were withdrawn at intervals (0, 90 and 180 min), 32P-RNA was extracted and 
analyzed by electrophoresis on a 6% polyacrylamide gel containing 7 M urea, The gel 
was dried and exposed to a phosphor-imaging screen. M indicates 32P-labeled RNA 
markers synthesized in vitro using RNA CenturyTM-Plus Marker Templates (Applied 
Biosystems, AM7782). M* lane contains 32P-labeled LHCB3 pre-mRNA, spliced mRNA, 
and exon1. Schematic diagrams on the right show pre-mRNA, spliced mRNA and exon 1 
and their sizes. One of the 32P-RNA products formed in in vitro splicing assay 
corresponds to the size of spliced 32P-mRNA marker, suggesting that it could be a 
putative spliced product. The arrowheads on the right side indicate the potential splicing 
intermediates. Other 32P-RNA products could be another pre-mRNA splicing 
intermediates and/or degradation products. 
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Figure 42: Time course of in vitro splicing of Arabidopsis 32P labeled 
UBC10 pre-mRNA substrate. (A) Top, Schematic representation of 
UBC10 pre-mRNA substrate used for in vitro splicing assay. Bottom, 
Predicted mRNA after in vitro splicing. Sizes of intron, exons, pre-mRNA 
and predicted mRNA are shown. (B) In vitro splicing of UBC10 32P pre-
mRNA substrate. 32P-labeled pre-mRNA (25,000cpm) was incubated at 
30oC in the Arabidopsis nuclear extract under in vitro splicing conditions 
as described above. Samples were withdrawn at 0, 90 and 180 min. 32P-
RNA was then isolated and analyzed by electrophoresis on a 6% 
polyacrylamide-7 M urea gel, followed by autoradiography. M indicates 
32P-RNA markers.  M* lane contains 32P-labeled RNA markers for UBC10 
pre-mRNA and spliced mRNA that are synthesized in vitro with DNA 
template using SP6 polymerase. Panel on the right shows schematic 
diagrams of pre-mRNA and the spliced product and their sizes.   
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Figure 43: In vitro splicing assay with different pre-mRNA 
substrates. Labeled pre-mRNAs substrates were incubated 
individually in the Arabidopsis nuclear extract at 30oC.  In 
vitro splicing reaction conditions were as described above. 
Samples were withdrawn at time “0” and after 3 hrs (180 
mins). 32P-RNA was recovered and analyzed by electrophoresis 
on a 6% polyacrylamide-7 M urea gel, followed by 
autoradiography. (Top gel) Splicing of UBC10, PP2AA3, 
GAPC2, PEX4, and RHIP1, (Bottom gel) Splicing of UBC9, 
AP2M, TIP41, MON1, and PTB1. M indicates 32P-RNA 
marker. 
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times, which may be other splicing intermediates, aberrant splicing or degradation products.   

The UBC10 pre-mRNA substrate contains a 107 nt 5' exon, the 116 nt intron, and 43 nt of 3' 

exon for a total length of 266 nt (Figure 42A). A timecourse in vitro splicing reaction using 

Arabidopsis NE and the P32-labelled UBC10 pre-mRNA was conducted and processed as 

described above (Figure 42B). Based on the known sequence of the UBC10 pre-mRNA 

substrate, the expected size of the spliced mRNA is 150 nt (Figure 42A); P32-labelled UBC10 

mRNA M* was also included here as a marker. However, the in vitro splicing reaction revealed 

unexpected results. None of the RNA species produced from the in vitro splicing reaction 

matched the size of the predicted UBC10 mRNA. That said, there was an RNA species close to 

the size of the predicted mRNA; this discrepancy may be a result of inaccurate processing in 

vitro compared to what happens in vivo. 

Taken together, these findings suggest that the NE derived from Arabidopsis etiolated seedlings 

may support splicing activity in vitro of LHCB pre-mRNA. However, the variety of RNA species 

that were produced indicates it can also give rise to false positive results. Despite this 

uncertainty, these findings provide an opportunity for further investigation and illustrate the 

potential of developing a plant in vitro splicing system. Since only the LHCB3 pre-mRNA 

substrate exhibited promising results and generated the exact expected size of mRNA from the in 

vitro reaction (Figure 41), We concentrated our efforts on investigating this further to confirm 

that splicing of LHCB pre-mRNA. For further experiments, we used only LHCB3 pre-mRNA 

substrate and considered the RNA band of correct size as the putative in vitro spliced product. 

Heating of Arabidopsis NE Inactivated In Vitro Splicing Reaction  

Pre-mRNA splicing is mediated via the spliceosome, which is a large and dynamic machine 

containing five snRNPs and numerous proteins (Wahl et al., 2009). It has been reported that 
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heat-treated NE prepared from HeLa cells or yeast whole cell extract were unable to form a 

functional spliceosome and splice pre-mRNA in vitro (Lin et al., 1987; Shukla et al., 1990). 

Therefore, we incubated the Arabidopsis NE at 90oC for 3 min, and then tested its splicing 

activity with P32-labelled LHCB3 pre-mRNA substrate. While the untreated NE converted the 

input pre-mRNA to the expected product, heat-treated NE was unable to do so (Figure 44). In 

agreement with non-plant splicing extracts, these results suggest that the Arabidopsis NE 

contains heat-sensitive components that are required for producing the putative splicing product.  

Putative Spliced Product Increased With Increasing NE and Pre-mRNA Concentration 

In order to determine the effect of NE concentration on the production of the putative spliced 

mRNA, a range of NE concentrations from 0 to 50% (v/v) were tested while maintaining 

consistent volume and chemical composition of the reactions by adding an appropriate amount of 

NE-containing buffer. Indeed, the production of the putative splicing product increased with 

increasing NE concentration (Figure 45). In addition, it seems that 30% (v/v) is an optimal NE 

concentration for this in vitro splicing assay. Thus, these results support that the appearance of 

the spliced mRNA is dependent on the concentration of proteins present in the NE. 

 Likewise, we examined the effect of input pre-mRNA substrate concentration on formation of 

the putative spliced mRNA. We found that increasing concentration of LHCB3 pre-mRNA 

substrate increased the putative spliced product (Figure 46). This result suggests that the 

production of putative spliced mRNA depends on the amount of pre-mRNA substrate that is 

available to be processed in vitro. 

Characterization of Putative Spliced Product Using S1 Nuclease Protection Assay 

To determine whether the P32-labelled LHCB3 pre-mRNA substrate was accurately spliced in 

vitro, the putative spliced product was analyzed by S1 nuclease protection assay. For this assay,  
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Figure 44: Heat-inactivation of Arabidopsis NE abolished the 
production of a putative spliced product. NE from Arabidopsis 
etiolated seedlings was incubated at 90oC for 3 min or kept on ice (as 
a control) were used for splicing assays at 30oC with the LHCB3 32P-
pre-mRNA. Samples were withdrawn at different time points (0, 90 
and 180 minutes), 32P-RNA was extracted and analyzed as described 
above in Fig. 8 legend. RNA markers (M and M*) and schematic 
diagrams on the right were also described in Fig. 41. 
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Figure 45: Putative spliced product is increased with increasing 
nuclear extract concentration. In vitro splicing of 32P-labeled LHCB3 
pre-mRNA substrate (25,000 cpm) was carried out at 30oC in 25 ml 
reaction volume containing different concentrations 0-50% (v/v) of 
nuclear extract as described in materials and methods. All reactions 
were stopped after three hours; 32P-RNA was extracted and analyzed 
by electrophoresis on a 6% polyacrylamide gel containing 7 M urea, 
followed by autoradiography. RNA markers (M and M*) and 
schematic diagrams on the right were described in Fig. 41. 
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Figure 46: Increasing concentration of 32P-labeled LHCB3 pre-
mRNA substrate in the in vitro splicing assay resulted in a 
proportional increase in putative spliced product. Different 
concentrations of 32P-pre-mRNA substrate (6,250; 12,500; 25,000 
cpm) were incubated at 30oC with 50% (v/v) nuclear extract. 
Reactions were stopped after three hours; 32P-RNA was isolated and 
analyzed by electrophoresis as described above. RNA markers (M 
and M*) and schematic diagrams on the right were described in 
Fig.41. 
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we used a DNA oligonucleotide (50nt) probe designed to pair with the exon junction that is 

predicted to be joined together during in vitro splicing (Figure 47A). The in vitro putative splice 

product was gel-purified and at least three samples pooled together to enhance the amount of 

RNA present. Probes were allowed to hybridize with the purified RNA sample. In addition, the 

probes were also hybridized with the unspliced P32-labelled LHCB3 pre-mRNA substrate as a 

negative control, and with P32-labelled LHCB3 mRNA as a positive control. Subsequently, the 

hybridized molecules were digested with single-strand nucleic acid-specific S1 nuclease. The S1-

resistant products were then separated on a denaturing polyacrylamide gel and visualized by 

autoradiography (Figure 47B). The estimated size of the protected sequence is ~50 nt long, and 

indeed, both the predicted in vitro splice product and the positive control generated S1-resistant 

products with approximately equal sizes of ~50 nt. Conversely, the unspliced pre-mRNA 

generated only S1-resistant products with a size of 25 nt that correspond to unligated exon 

regions on each side of the intron. These results suggest that the LHCB3 pre-mRNA is being 

accurately spliced in vitro to generate the authentic mRNA sequence spanning the LHCB3 

exon1-exon2 junction.  

Mutations in Conserved Splice Sites Modulate The Production of Spliced Product 

During the pre-mRNA splicing process, the spliceosome assembles around the 5ʹss at the 

beginning of an intron and the 3ʹss at the end of that intron (Matera and Wang, 2014). It is well-

established that each splice site in plants and animals consists of consensus sequences, and these 

include almost invariant dinucleotides: GT at the 5ʹss and AG at the 3ʹss (Reddy, 2007). In 

addition to these major conserved splice site sequences, there are minor non-canonical splice 

sites with AT at the 5ʹss and AC at the 3ʹss (Reddy, 2007). In vitro mutation analysis of the 

conserved 5ʹss GT revealed that these mutations could modulate splice site choices and reduce  
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Figure 47: Characterization of putative spliced product using S1 nuclease. (A) Schematic 
representation of S1 nuclease protection assay. Top, diagram of hybrid formed between 
spliced RNA and DNA oligonucleotide (50nt) complementary to exons junction. Bottom, 
diagram of protected sequences after S1 nuclease digestion. (B) Putative spliced 32P-RNA 
produced in in vitro splicing assay was gel purified as described in material and methods. 
32P-pre-mRNA (negative control), 32P-mRNA (positive control), and putative spliced 
product 32P-RNA were hybridized to oligo DNA that is complementary to exons junction. 
Following hybridization, 32P-RNA-DNA hybrids were digested with S1 nuclease that 
degraded single stranded nucleic acids. +oligo DNA+S1. 32P-RNA-DNA hybrids with S1 
nuclease; +oligo DNA –S1 32P-RNA-DNA hybrids without S1 nuclease; oligo DNA+S1 
32P-RNA without oligo DNA hybridization and plus S1 nuclease digestion. The size of 
the protected region (50nts) is indicated. Red arrowhead shows protected exon junction 
sequence with putative spliced product. 
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the rate of two exons ligating (Aebi et al., 1987). Therefore, we aimed here to investigate if 

substitution mutations of consensus splice site sequences in the LHCB3 pre-mRNA substrate 

affect the production of its putative in vitro spliced product.  To this end, we generated different 

LHCB3 pre-mRNA substrates carrying several substitution mutations of one or both splice sites 

(Figure 48A). These mutated substrates include: 5ʹss GU to AC (Mutant 1, M1), 3ʹss AG to UC 

(Mutant 2, M2), and both 5ʹss GU to AC and 3ʹss AG to UC (Mutant 3, M3). In addition, we 

generated a pre-mRNA substrate in which the major conserved splice site sequences were 

substituted by minor splice site sequences, changing the 5ʹss GU to AU and 3ʹss AG to AC 

(Mutant 4, M4). Since a previous study showed that mutation of the 5ʹss GU did not prevent 

cleavage in 5ʹss, but only modulated the production of spliced mRNA (Aebi, M. et al., 1987), we 

also included another mutated pre-mRNA substrate (Mutant 5, M5). In this substrate, both 5ʹss 

and 3ʹss conserved sequences (-3, +5) are changed to less conserved sequences reported in 

(Reddy, 2007).  

In vitro splicing assays using these pre-mRNA substrates revealed that mutations of the 

conserved splice site sequences modulate the in vitro production of putative LHCB3 spliced 

mRNA (Figure 48B).  In agreement with a previous study (Aebi et al., 1987), M1 did not 

completely abolish the production of spliced mRNA; however, this mutation clearly reduced the 

generation of the putative spliced mRNA. M2 enhanced the production of the spliced mRNA, 

while M3 did not exhibit any clear effect on in vitro splicing. Interestingly, M4 was capable of 

normal in vitro generation of the putative spliced mRNA. Mutant M5 completely eliminated the 

production of the expected product, and instead resulted in a new RNA band of ~100 nt. These 

findings further demonstrate the authenticity of our in vitro splicing assay using Arabidopsis NE, 

and potential for developing a robust plant in vitro splicing assay system.  



%%&!

Figure 48: Mutations in conserved splice sites of LHCB3 pre-mRNA substrate 
modulated the production of putative spliced product. (A) Diagram shows sequence 
substitutions of conserved 5' GU and 3' AG splice sites (ss) of LHCB3 pre-mRNA 
substrate. DNA templates with different splice site mutations (M1-5) were 
synthesized (Integrated DNA Technologies, Inc., Coralville, IA) for in vitro 32P-
labelled RNA synthesis. (B) In vitro splicing of 32P-labeled wild type and five 
mutants (M1 to M5) of LHCB3 pre-mRNA substrate was carried as described 
before. Reactions were stopped after three hours. 32P-RNA was isolated and 
analyzed by electrophoresis as above. The arrowhead on the right side indicates a 
new RNA band of ~100 nt that results from M5.  
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Effects of ATP and Mg2+ on Pre-mRNA Splicing In Vitro 

It has been well-established that mammalian, yeast, and Drosophila in vitro splicing reactions 

require exogenous ATP and Mg2+ (Krainer et al., 1984; Lin et al., 1985; Rio, 1988). Therefore, 

we aimed here to investigate and optimize the requirement of these cofactors for the 

Arabidopsis-derived in vitro splicing reaction. Notably, the NE preparation method does not 

involve a dialysis step against the swelling buffer, hence the NE contains endogenous 

concentrations of ATP and Mg2+. In addition, the 25 ul in vitro splicing reaction containing 50% 

NE has 2.5 mM Mg2+, as the swelling buffer contains 5 mM MgCl2.   

The ATP concentration of the in vitro splicing reaction was varied while holding the 

concentrations of remaining components constant (Figure 49). In the absence of ATP, some 

RNA degradation was observed. In contrast, the addition of ATP maintained input pre-mRNA 

integrity and also enhanced production of the putative spliced mRNA. There were no obvious 

differences in effect between the ATP concentrations (1, 2, and 3 mM) tested. Therefore, these 

results indicate that the addition of exogenous ATP might support splicing in vitro, and the 

optimal concentration is ~1 mM.  

In the same manner, the effect of varying Mg2+ concentration on the in vitro reaction was 

investigated (Figure 50). We found that 2.5 mM Mg2+ was likely an optimal concentration for 

the in vitro splicing reaction. Indeed, increasing Mg2+ to 5 mM caused input pre-mRNA 

instability. On the other hand, in vitro splicing activity was reduced by the addition of 2.5 or 5 

mM EDTA, an ion-chelating agent, indicating a divalent cation requirement (Figure 50). Taken 

together, these findings suggest that the plant-derived in vitro splicing reaction is like other in 

vitro splicing system requires ATP and Mg2+.  
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Figure 49: Exogenous ATP to in vitro splicing assay increased the amount of 
putative spliced product from LHCB3 pre-mRNA. In vitro splicing reaction of 
LHCB3 32P-pre-mRNA substrate (25,000cpm) was carried out as described 
above without  (0mM) with increasing concentrations ATP (1, 2, 3mM). 
Reactions were stopped after three hours; 32P-RNA was recovered and analyzed 
by electrophoresis on a 6% polyacrylamide gel containing 7 M urea, followed by 
autoradiography. RNA markers (M and M*) and schematic diagrams on the right 
were described in Fig.41. 
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Figure 50: Effect of various concentrations of Mg2+ on the production of putative 
spliced product. In vitro splicing reaction of LHCB3 32P-pre-mRNA substrate 
(25,000cpm) was performed as described previously with different concentrations 
of Mg2+ (2.5 and 5 mM), or in the presence of different concentration (2,5 and 5 
mM) of EDTA, a divalent cation chelator (EDTA). Reactions were stopped after 
three hours. 32P-RNA was recovered and analyzed by electrophoresis on a 6% 
polyacrylamide-7 M urea gel, followed by autoradiography. RNA markers (M and 
M*) and schematic diagrams on the right were described in Fig.41. 
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Incubation Temperature of In Vitro Splicing Reaction affects Putative Spliced Product 

It has been shown previously that different in vitro splicing reactions have narrow optimum 

temperatures. The optimum temperature for the mammalian in vitro splicing assay is 30oC, while 

for the yeast in vitro splicing system it is 25oC (Krainer et al., 1984; Lin et al., 1985). Therefore, 

to address the effect of incubation temperature on the accumulation of predicted spliced product, 

reactions were carried out at different temperatures: 24oC, 30oC, 37oC, and 42oC (Figure 51). The 

results showed that 24oC is likely the optimal incubation temperature for high accumulation of 

the putative spliced mRNA. The quantity of spliced product is decreased with increasing 

incubation temperature. In fact, the incubation at 42oC greatly reduced the appearance of spliced 

mRNA, suggesting sensitivity of the reaction to high temperature, as was shown in the previous 

experiment (Figure 44). Thus, these findings indicate that the in vitro splicing assay using 

Arabidopsis NE has an optimal temperature of 24oC, and further demonstrate that the NE 

contains heat-labile components required for generating the putative spliced product. 

DISCUSSION 

In vitro splicing systems derived from mammals, yeast, and Drosophila have allowed remarkable 

progress in illustrating splicing mechanisms in eukaryotes. There is no in vitro splicing assay for 

plant systems.  Hence, many aspects of pre-mRNA splicing in plants are unknown. In an effort to 

develop a plant in vitro pre-mRNA splicing system, we report here, for the first time, 

experimental evidence suggesting that NE derived from Arabidopsis etiolated seedlings is 

capable of splicing plant pre-mRNA in vitro. This system should provide a starting point for 

further development of plant in vitro splicing assay to investigate plant-specific pre-mRNA 

splicing mechanisms.  

In this study, we show that Arabidopsis NE was able to convert the pre-mRNA of LHCB3   
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Figure 51: The amount of putative spliced product at different temperatures. In 
vitro splicing of LHCB3 32P-pre-mRNA substrate (25,000cpm) was carried out 
as described earlier at different temperatures  (24oC, 30oC, 37oC, 40oC). 
Reactions were stopped after three hours. 32P-RNA was recovered and analyzed 
by electrophoresis on a 6% polyacrylamide-7 M urea gel, followed by 
autoradiography. RNA markers (M and M*) and schematic diagrams on the right 
were described in Fig. 41. 
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substrates into an expected size of spliced mRNA. Although additional experiments are 

necessary to further confirm the identity of the splice product, all the data presented here strongly 

suggest that the RNA product that corresponds to the spliced mRNA marker is likely a spliced 

product.   Production of the expected size of mRNA upon incubation of pre-mRNA template in 

the NE, indication that the two exons are linked together according to a junction mapping assay 

using S1 nuclease, and demonstration that substitution mutations of conserved splice site 

sequences inhibit the appearance of putative spliced mRNA – all suggest splicing of LHCB pre-

mRNA in plant NE.  In addition, we found this system to be similar to the well-established non-

plant in vitro pre-mRNA splicing assays in several ways. First, this system is sensitive to high 

temperature; second, it requires Mg2+; and third, ATP is necessary for the generation of putative 

spliced mRNA. From these experiments, we conclude that this is a promising progress towards 

developing an efficient plant in vitro splicing system.  

The establishment of an in vitro splicing system for plants has been long overdue; difficulties in 

developing one may be because of characteristics inherent to plant cells. Our success in 

establishing this in vitro assay may be attributed to plant materials used for NE preparation, NE 

preparation method, and choice of pre-mRNA substrate. My NE is sourced from Arabidopsis 

seedlings that were grown under dark conditions, which are actively growing. The actively 

growing seedlings have high levels of gene expression for which active pre-mRNA splicing 

machinery is also needed. Furthermore, unlike other preparation methods that include a high salt 

lysis buffer, we applied a method that uses low denaturing conditions. This may maintain protein 

integrity and result in protection of the native states of spliceosomal machinery. Moreover, it is 

known that not every pre-mRNA substrate can be spliced in vitro, and each substrate requires 

optimized in vitro splicing conditions (Mayeda and Krainer, 1999a). Thus, the choice of pre-
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mRNA substrate and its primary structure is a significant factor for successful in vitro splicing 

systems. Interestingly, none of the pre-mRNA substrates that we tested exhibited encouraging 

results, except the LHCB3 pre-mRNA, indicating that this substrate was the most appropriate 

selection for in vitro splicing and for further studies.  In animals also, only a few pre-mRNAs 

such as β-globin, β-tropomyosin, adenovirus, δ-Crystallin, and Simian virus 40 (SV40) pre-

mRNA are widely used, suggesting that only few pre-mRNA are efficiently spliced under in 

vitro conditions (Mayeda and Krainer, 1999a; Padgett et al., 1983; Reichert and Moore, 2000).  

Convincing evidence also suggests that the plant in vitro splicing assay system is quite similar to 

assays used for mammals, yeast, and Drosophila. Similarities involve assay conditions, including 

concentrations of ATP, Mg2+, and K+ (Hicks et al., 2005). In addition, the time course of a 

splicing reaction (0 to 180 min) is comparable between this in vitro splicing assay and other such 

systems (Krainer et al., 1984; Lin et al., 1985; Rio, 1988). Meanwhile, the optimal incubation 

temperature for this splicing reaction was unlike other splicing systems; it was within the range 

of the optimal growth temperature for Arabidopsis (23-25oC) (Rivero et al., 2014).  

Another point of interest is that in vitro splicing of the LHCB3 pre-mRNA substrate generated a 

number of RNA species in addition to the putative accurately spliced RNA. Given the sizes of 

each part of the pre-mRNA substrate, the production of RNA species within the size range of the 

intron alone (64nt) and the intron plus exon2 (137nt) suggest these species are likely splicing 

intermediates; this is supported by the well-characterized two-step splicing intermediates in other 

eukaryotes (Padgett et al., 1986; Ruskin et al., 1984). In addition, the other RNA species that 

exhibited unexpected mobility on the gel might correspond to lariat-containing RNA 

intermediates generated during splicing (Padgett et al., 1986; Ruskin et al., 1984). Meanwhile, 

we cannot rule out the possibility that some of these RNA species might result from degradation 
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of the pre-mRNA substrate. It would be interesting to further confirm the identity of these RNA 

species using nuclease protection assay, primer extension, RT-PCR and DNA sequencing. It is 

also possible to examine each RNA species for the lariat structure using RNase R, which digests 

only linear but not circular RNAs (Suzuki et al., 2006).  

Still another point of interest is provided by the observation that substitution mutations of splice 

site consensus sequences in the LHCB3 pre-mRNA modulate the in vitro splicing reaction. Some 

early studies using a point mutation strategy in the mammalian in vitro splicing assay have 

investigated the function of splice site consensus sequences (Aebi et al., 1986; Aebi et al., 1987). 

Compared with their results, my finding that mutation of the 5'ss causes reduction of splicing 

efficiency indicates some similarities between these two systems. However, unlike the prior 

study, we found that mutation of the 3'ss of the LHCB3 pre-mRNA enhanced in vitro splicing 

efficiency, suggesting some differences in splicing regulation for plants. It would be interesting 

to further investigate how this mutation affects the splicing rate in vitro and whether this 

mutation has the same effects in vivo. Taken together, these findings strongly support the view 

that a robust plant in vitro splicing system could be developed to uncover plant-specific splicing 

regulatory mechanisms.  

It is also noteworthy that the efficiency of splicing in this in vitro system was rather low. This 

low efficiency limited our ability to proceed with more validation experiments such as 

sequencing of the spliced RNA and splicing intermediates. It is worth mentioning that the 

efficiency of other initial in vitro splicing assays was also low; however, researchers were able to 

develop highly efficient assays over time (Goldenberg and Hauser, 1983; Kole and Weissman, 

1982; Reichert and Moore, 2000). Further investigations will be very helpful in gaining more 

insights for improving the efficiency of this plant in vitro splicing assay. In addition, it is 



	
  
	
  

121	
  

possible that the concentration of some spliceosomal proteins is less than optimum in our NE, 

leading to low efficiency.  In animals, splicing deficient extracts can be made competent by 

adding one or more splicing factors such as SR proteins (Krainer et al., 1990; Mayeda and 

Krainer, 1999b).  In future, one could purify one or more SR proteins and supplement the NE or 

use transgenic lines that are overexpressing one or more SR proteins to prepare NE to enhance 

splicing efficiency.   

Conclusion  

In summary, this work represents a first step toward developing a plant-derived in vitro pre-

mRNA splicing assay.  We show, for the first time, that NE derived from Arabidopsis etiolated 

seedlings is capable of splicing LHCB3 pre-mRNA. This system that we developed will permit 

further refinement of a plant in vitro splicing assay system.  Further confirmation of these results 

with additional approaches and optimization of this assay would lead to development of a robust 

in vitro splicing assay, which would open new avenues to investigate the spliceosome assembly 

and composition in plants, splicing regulatory mechanisms specific to plants, and thereby 

enhance the overall understanding of post-transcriptional gene regulatory mechanisms in 

eukaryotes. 
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