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ABSTRACT

THE EFFECT OF THE TIME DISTRIBUTION

OF RAINFALL INTENSITIES ON SMALL WATERSHED FLOODS

The time-intensity pattern of the storm rainfall is described by
taking the moments of area of the hyetograph about the intensity-axis
and about the time-axis. The effect of these parameters on the shape
of the hydrograph is studied by means of multiple regressions.

Three groups of hydrograph parameters are used as dependent vari-
ables in the regressions. They are: the moments of area of the hydro-
graph about the discharge-axis; the traditional hydrograph parameters
of volume, peak and rise time; and the parameters of a mathematical
function fitted to the hydrograph.

The fitted function was an incomplete gamma function of the form

tYr e—y(t—r)

1% % T

where q is the unit discharge in inches/hour, qp 1is the peak unit
discharge in inches/hour, t is the time in minutes, Y is shape
parameter with the units of reciprocal minutes, r 1is the rise time

in minutes, and e 1is the base of Naperian logarithms.

iii



The fitting process was accomplished by the method of weighted
least squares, whereby the squared deviations between the observed
discharge and computed discharge were weighted in proportion to the
observed discharge.

The results indicate that the moments of the hyetograph are
objective descriptors of the time distribution of rainfall intensities.
All three groups of hydrograph parameters can be predicted with nearly
equal accuracy. The similarity of the relationships for the observed
peak and the fitted peak, and the observed rise time and the fitted
rise time attest to the methodology of fitting the three-parameter

gamma function to the observed hydrograph.

Richard Neal Downer

Department of Civil Engineering
Colorado State University

Fort Collins, Colorado

August, 1967
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Chapter 1

INTRODUCTION

1.1 Nature of the Problem

A flood is the overflowing of the natural or artificial banks of
a stream. Man and his works have been menaced by these hydrologic
phenomena since the beginning of time. The Chinese long ago learned,
by trial and error, the art of river control by diking, but only in
the last century has man made an effort to understand and control this
troublesome part of his environment through systematic observations and
the development of its regularities. In the past much attention has
been given to recording floods and their effects; however, only in the
last two to three decades have researchers turned their attention to a
better understanding of factors that affect and determine the magnitude
of floods.

The problem, then, is to provide a better understanding of the
causes and effects of a flood; more particularly, to isolate and define
the interactions between causes and effects. Until every cause and its
resulting partial effects can be tabulated, man's understanding of this

aspect of his environment cannot be considered complete.



1.2 Need for the Study

In the United States alone, floods annually cause in excess of
$700 million damage [Weber, 1965, p. 60]. Far too frequently benefit-
cost studies place their emphasis on the larger, more costly structures
neglecting the multitude of smaller structures. At present the cost of
the individual smaller structure is too small to warrant detailed indi-
vidual hydrologic investigation and design. However, the need for
improved general design techniques does exist.

The large watershed is, in general, more sensitive to channel
storage, whereas the small watershed is normally more sensitive to both
high-intensity rainfalls of short duration and to land use. Hydrolo-
gists [Horton, 1935; Horner, 1936; Horton, 1939; Brater, 1940] have
recognized these differences but only recently have they turned their
attentions toward research on small watershed responses. Large water-
shed design techniques,modified for small watersheds [Brater, 1940], have,
in general, been adequate for the design of small structures. However,
the rising cost of labor and materials has brought into focus the need
for more precise small watershed design techniques.

Therefore, there exists a need for research on small watershed
floods. The complexity of the problem indicates the necessity of limit-
ing, dividing and subdividing until every cause and every effect can be

understood.



1.3 Scope of the Study

This study is limited to small watershed floods. A small watershed
is defined as one whose sensitivity to high-intensity rainfalls of short
duration and to land use is not suppressed by the channel character-
istics [Chow, 1964, p. 14-5]; and a flood is defined in this study as a
condition of high-water whose peak discharge has a return period of two

years or greater. Only summer storms are considered.

1.4 Purpose

The purpose of this study is to: (1) define a set of parameters
which characterize the time distribution of the rainfall, (2) define a
set of parameters which adequately characterize the shape of the hydro-
graph, and (3) show a relationship between the rainfall parameters and

the hydrograph parameters.



Chapter II

BACKGROUND OF THE PROBLEM

2.1 Early Contributions to Runoff Prediction

Early designers of hydraulic structures relied heavily on
practical experience and engineering judgment. Such methods gave
satisfactory, but sometimes crude results. As an individual gained
experience his observations began to show a certain regularity; and

the first empirical rules were born.

2.1.1 Waterway Area Formulas

The first significant recorded contribution to runoff prediction
was made by John Roe, a London Surveyor, who in 1852 prepared a ''table
expressing the relation between the diameter and slope of a circular
outlet sewer and the size of its drainage area [Chow, 1962, p. 27]."

Numerous waterway area formulas seem to have originated in the
period 1850 to 1890. Among the more famous were the Myers formula and
the Talbot formula [Chow, 1962, pp. 70-71]. For the most part these

formulas took the form:

a=b A",



where a is the waterway area in square feet, b 1is a coefficient
incorporating the parameters of basin slope and cover, A 1is the basin
area in acres, and m is an exponent ranging from 0.5 to 1.0.

Although they recognized basin size, slope and cover as factors
influencing the runoff process these early waterway area formulas are
today considered rough engineering tools because of one's inability to
correctly select the proper value of b for the basin concerned.
Application of the formulas has generally been limited to small drainage

basins in the regions for which they were developed.

2.1.2 Discharge Formulas

In 1889 Emil Kuichling [Kuichling, 1889] published the discharge
formula which is commonly referred to as the Rational Formula. This
simple discharge formula, which combines the rainfall intensity, drain-
age area and a coefficient of runoff, represents one of the early
efforts to combine empirical experience with scientific principles.

The discharge was given by

in which Q 1is the peak discharge in cfs; C 1is a coefficient em-

bodying the ideas of a percentage of rainfall appearing as runoff, of
overland flow, of channel or basin storage, and of basin cover; i is
the rainfall intensity in inches per hour and is assumed to represent
the average intensity over the drainage basin for a duration equal to

the time of concentration of the basin; A 1is the area in acres.



Presumably because of its simplicity, the Rrational Formula has
retained wide favor among designers [Chow, 1962, p. 33]. Its sim-
plicity, however, has also brought it under severe criticism from many
hydrologists. As in the case of the waterway area formulas the deter-
mination of the proper coefficient is the weakness of the Rational
Formula. 1In an effort to circumvent this difficulty Horner and Jens
[Horner, 1942] developed a method which did not require the use of a
coefficient. A report by Potter [Potter, 1950] pointed out the defi-
ciencies of the Rational method and suggested the introduction of
probabilities of rainfall and runoff as a way of solving the coefficient

problem.

2.2 Hydrograph Synthesis

Not satisfied with merely predicting the peak discharge, efforts
[Folse, 1929; Report, 1930; Sherman, 1932] turned toward methods of
hydrograph analysis. In 1932 Sherman [Sherman, 1932] introduced the

well-known unit hydrograph concept.

2.2.1 The Unit Hydrograph Method

As first proposed by Sherman the unitgraph (hereafter called unit
hydrograph) representec the hydrograph of direct runoff resulting from
an isolated event of reinfall excess occurring uniformly over the drain-
age area and at a uniform rate for a unit of time. Originally the word
unit referred to the time of effective or excess rainfall. Normal
usage, however, has altered the meaning to a "unit depth of surface

runoff occurring over the basin."



Since 1932 the method has been improved and modified by the work
of Bernard [Bernard, 1935], Horner and Flynt [Hornmer, 1936], Hoyt
[Hoyt, 1936] and others [Brater, 1940]. The basic assumptions, how-
ever, remain the same:

(a) the effective rainfall is uniformly distributed in time and
the duration is less than the time of concentration;

(b) the effective rainfall is uniformly distributed in space;

(c) the period of surface runoff is approximately constant
regardless of the storm intensity;

(d) the ordinates of the derived hydrograph at any time are pro-
portional to the ordinates of the unit hydrdgraph times the volume of
effective rainfall;

(e) the observed hydrographs, from which the unit hydrograph is
constructed, reflect all the combined physical characteristics of the
drainage basin, including infiltration, surface detention and storage
regardless of magnitude of the unit storm.

It is at once apparent that the foregoing assumptions cannot be
rigidly satisfied. Of interest to this study are the limitations
imposed by suppositions (z2), (d) and (e).

Supposition (e) implies the invariance of basin characteristics
with season, time, or the influences of man. Clearly, any sound method
of hydrograph synthesis must be tolerant of changing catchment charac-
teristics.

Supposition (d) infers that the principle of superposition is
applicable for constructing hydrographs resulting from effective rain-

falls of different intensities by simply adding or superimposing the



ordinates of the individual resulting hydrographs. Implicit in (d),
therefore, is the assumption of linear watershed response. Further
ramifications of this assumption will be subsequently discussed in
connection with Minshall's work.

Supposition (a) is less restrictive than the aforementioned, if
one takes into account instantaneous unit hydrograph methods [Clark,
1945; 0'Kelley, 1955; Dooge, 1955]. The instantaneous unit hydrograph
method eliminates the need for uniform effective durations of rainfall,
but because of the magnitude of the computations required to compute
the instantaneous unit hydrograph it has not gained wide favor with

practicing hydrologists.

2.2.2 The Instantaneous Unit Hydrograph

The instantaneous unit hydrograph is a unit hydrograph resulting
from an infinitesimally short burst of effective rainfall. This ruse
allows one to construct a unit hydrograph from nonuniform rainfall by
subdividing the total storm into smaller, more uniform bursts. Using
linear hydrograph theory [Dooge, 1959] the individual hydrographs are
combined into a single resulting hydrograph. It should be pointed out
that this modification of unit hydrograph theory does not overcome the

basic restrictions of linear basin response and time invariance.

2.3 Recent Hydrograph Studies

The preceding discussion has been concerned with methods and

formulas developed by practicing engineers in need of more reliable



procedures for predicting storm responses. Recently investigators
such as Gray, Minshall and Reich have attempted to delve deeper into
the cause and effects of hydrologic responses and show the inter-

relationships between various parameters.

2.3.1 Gray's Method

In 1962 Gray [Gray, 1962] presented a procedure for unit hydro-
graph synthesis based on a method of fitting a two-parameter gamnma
function to empirically derived dimensionless unit hydrographs. A
relationship between the hydrograph parameters and watershed charac-
teristics was obtained. The study represents one of the more complete
investigations of the interplay between various catchment topographic

characteristics and parameters of the hydrograph.

2.3.2 Minshall's Work

Using data from the Agricultural Research Station at Edwardsville,
Illinois, Minshall [Minshall, 1962] showed that for three very small
watersheds, less than 290 acres, the base of the unit graph was not
constant but actually increased as rainfall intensity decreased. For
the catchments studied, late peaking storms showed a strong relztion-
ship between rainfall intensity and the peak discharge. Although a
very limited study, Minshall's work does show the inherent limitations

of the unit hydrograph method.
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2.3.3 Reich's Work

From a study [Reich, 1962] of 47 flood events at scattered points
throughout the United States Reich was able to show a relationship
between the parameters of a two-parameter gamma function fitted to the
observed hydrograph and a combination of catchment characteristics plus
the thirty-minute maximum rainfall intensity. Reich's work can be con-
sidered a pilot study of the feasibility of fitting a mathematical
function directly to the hydrograph of observed runoff rather than to

the unit hydrograph.

2.4 Previous Descriptors of Rainfall Characteristics

Many workers have stated that the distribution of rainfall intensi-
ties throughout a storm has a marked effect on the hydrograph of surface
runoff. However, the failure to index the temporal distribution of
rainfall intensities has made it difficult to quantitatively evaluate
these effects.

Schiff [Schiff, 1943] working only with data from Coshocton, Ohio,
observed that rainfall excess was dependent upon the duration and order
in which rates of rainfall occur and condition of the watershed, and was
primarily the difference between the rainfall rate and the infiltration
rate. He states, 'the intensities of rainfall and their order or pat-
tern exert a marked influence on the change in conditions of watershed
during a storm as well as on antecedent conditions of watershed, and

thus on the infiltration rate."
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Using continuous rainfall storms, without gaps exceeding six or

more hours and recording more than 0.25 inches, he grouped the storms

into the following arbitrary classes:

TABLE 1. SCHIFF'S STORM CLASSIFICATIONS

Class

Rainfall Intensity

IT

ITT

Iv

Uniform intensities up to and including 0.50 inches
per hour, a deviation of 1 1/2 times the mean rate
permitted for the maximum intensity within a storm.

Combination of intensities up to and including 0.50
inches per hour, with not more than 15% of the amount
falling at intensities in excess of 0.50 inches per
hour.

Combination of intensities below and above 0.50
inches per hour up to and including 1.00 inches per
hour with more than 157 of the amount falling at in-
tensities in excess of 0.50 inches per hour and less
than 15% of the amount falling at intensities in ex-
cess of 1.00 inches per hour.

Combination of intensities below 0.50 inches per
hour and over 1.00 inches per hour, may include
intensities between 0.50 and 1.00 inches per hour,
with more than 15% of the amount falling at inten-
sities below 0.50 inches per hour and more than 157
of the amount falling at intensities in excess of
1.00 inches per hour, and more than 157 may fall at
intensities between 0.50 and 1.00 inches per hour.

Uniform and combination of intensities of 0.50 inches
per hour and over, with not more than 15% of the
amount falling at intensities to below 0.50 inches
per hour.

Schiff, following the suggestions of Horner and Jens [Hornmer, 1942],

set up some arbitrarily chosen intensity-patterns, referring to them as

uniform, advanced, intermediate, and delayed patterns. He added two
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more terms, interrupted and sporadic. Advanced is applied to a storm
having its highest intensities, representing fifteen per cent or more
of the total amount of the rainfall, near the start of the storm;
intermediate, near the center; delayed, near the end; and interrupted
to a storm having high initial and final intensities separated by a
period during which the intensities are lower. Schiff's classifica-
tions are helpful from a qualitative point of view but lack practical
usefulness because his relationships and findings are not quantitative
and therefore cannot be used universally.

Neal [Neal, 1945] observed that high runoff rates were not neces-
sarily the results of high rainfall intensities alone, but were often
dependent on antecedent moisture conditions in the watershed. Therefore,
he classified rains according to their intensities and the rainfall

occurring in the preceding ten days.

TABLE 2. NEAL'S STORM CLASSIFICATIONS

Class Rainfall Intensity

I Previous 10-day rainfall less than 1.00 inch and
30-minute intensity less than 0.50 inches per hour.

LI Previous 10-day rainfall less than 1.00 inch and
30-minute intensity 0.50 inches per hour or more.

ITI Previous 10-day rainfall 1.00 inch or more, and
30-minute intensity less than 0.50 inches per hour.

IV Previous 10-day rainfall 1.00 inch or more, and
30-minute intensity 0.50 inches per hour or more.
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From his Alabama data he observed that Class III and IV rains
produced the greatest amount of runoff. Neal's results like those of
Schiff's are qualitative rather than quantitative and therefore lack
universality.

Foster [Foster, 1950] proposed five new measures of rainfall which
were in fact combinations of the frequently used 5-minute, l5-minute,
30-minute average storm intensities. He found that the best simple
index of intensity was the 30-minute maximum intensity. His best com-

pound index was that of m; , where
m =I5 ¢+ I3q * (bn)0-33

The quantity b takes on the value 1, 2, or 3 accordingly, whether the
greatest amount of rain falls within the first, second, or third half-
hours. For rains which last longer than three half-hours, time of fall
is divided into three equal portions which follow the same convention.
The factor n defines the number of peaks of the hyetograph exceeding
one inch per hour, providing each peak is at least thirty minutes re-
moved from the neighboring one. Foster's work appears to be the first
to use a quantitative approach.

Hutchinson, et al. [Hutchinson, 1958] proposed that the rainfall
intensities could be examined by dividing the hyetograph into successive
intensity groups (intervals of one inch per hour were chosen), and plot-
ting against the number of minutes during which intensities equaled or
exceeded that amount.

Naturally, for the whole duration of the storm the rain fell at an
intensity greater than zero inches per hour, and rain fell at the peak

rate for zero minutes. These two points, therefore, provide the two end
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points of the curve of duration against intensity. If log duration is
plotted against intensity, the relationship was approximately a straight
line for each individual storm.

Shanholtz and Dickerson [Shanholtz, 1964], using point rainfall to
represent the areal distribution, studied a group of rainfall character-
istics with a view to defining their influence on the volume of surface
runoff from watersheds of ten acres or less. No attempt was made to
investigate watershed factors in this study. Rainfall characteristics
examined included: (a) total amount, (b) intensity, (c) distribution,
(d) pattern, (e) energy, and (f) duration. These were divided into

eleven primary groups as follows:

TABLE 3. SHANHOLTZ AND DICKERSON RAINFALL PARAMETERS

Class Characteristics
i Total Storm Rainfall.
11 Maximum Intensities for Selected Time Intervals.

Intervals used were 2, 5, 10, 15, 20, 30, 60, 90, 120,
150, and 240 minutes.

111 Average Intensity for the Storm. Total rainfall di-
vided by the duration.

1V Average Intensity for the Rain Period. Total rainfall
divided by the effective duration (time in which rain
actually occurred).

\Y Weighted Storm Intensities: (a) The sum of the product
of intensity and rainfall per time interval divided by
the total rainfall. (b) The mean intensity derived by
quartering the rainfall according to chronological
order and computing the average intensity of each of
the partitions separately.

VI Intensity-Amount-Distribution-Index. The slope of
Hutchinson's intensity-duration regression line.
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Class Characteristics

VII Pattern Index. The area under the accumulated per-
centage curve of rainfall versus time. Values of 0.3,
0.5, and 0.8 represent a delayed, an intermediate, and
an advanced storm pattern, respectively.

VIII Weighted Pattern Index. The accumulated sum of the
product of the intensity for each time interval and
the area under the curve for that interval. This
index has the effect of weakening the influence of
very low intensities.

IX Total Storm Energy. E = 916 + 331 « (In i), where i
is expressed in inches per hour and E 1is in foot tons
per acre-inch. Developed primarily to estimate soil
loss, the energy may be related to the amount of run-

off.
X Total Energy <+ 30-Minute Maximum Intensity.
XI Storm Duration.

From a regression analysis on the aforementioned variables plus
some combinations of them it was found that the total rainfall gave the
best single estimate of the runoff volume. The total energy as defined
by Wischmeier, et al. [Wischmeier, 1958] estimated runoff with about the
same accuracy as the total rainfall. The analysis indicated that no
single rainfall characteristics could be used to satisfactorily estimate
runoff volume. This study disclosed the need for further research in
two general fields: first, conditions necessary for runoff to occur;
and second, a method to determine the period which best reflects the
influence of the rainfall intensity on surface runoff for all storms
regardless of duration. This study seems to be the most comprehensive
attempt at developing a transition from qualitative to quantitative

parameters describing the rainfall input which results in runoff.
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Dickinson and Ayers [Dickinson, 1965] developed two indices similar
to the Pattern Index used by Shanholtz and Dickerson. Defining a uni-
form rainfall as one whose mass curve has a slope of one on a unitless
plot, the area between a storm mass curve and the 45° line then becomes
an index of the general uniformity of the rainfall. As this area in-
creases, the storm becomes less uniform with time. They found, however,
that this temporal distribution index was inadequate to describe the
distribution for all storm types. The area under the unitless plot be-
comes an index of the time of occurrence of the major burst. Storms
involving only one major rainfall period could be properly indexed.
However, for the storms analyzed, the time distribution often varied as
much from one gage to another in a particular storm as from one storm to

another.

2.5 Hydrograph Parameters

The design of full-flow or storage structures require a knowledge
of the time distribution of runoff. Clearly, the selected parameters
should be capable of defining the pertinent characteristics of the
hydrograph, such as the peak discharge, the rise time and the volume of

runoff.

2.5.1 A Mathematical Selection of Parameters

Ideally, the hydrograph shape should be reproducible from a limited
number of parameters which can be obtained objectively. 1In 1959 Nash
[Nash, 1959] suggested that if a linear relationship is assumed to exist

between storm runoff and effective rainfall, a relationship should exist
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between the catchment characteristics and the response of the river
basin to a predetermined input of effective rainfall. He called this
response the indicial response and cited the imstantaneous unit hydro-
graph as an example. Nash went on to suggest the moments of the in-
stantaneous unit hydrograph as a series of response parameters and was
able to show that the '"first moment of the instantaneous unit hydrograph
about the instant of effective rainfall is equal to the difference be-
tween the first moments of the storm runoff and effective rainfall about
the time of beginning of effective rainfall." One sees from Figure 1
that this is equivalent to saying that b = a + ¢ . The corresponding

relation’ for higher moments was also derived.

Time

INDICIAL RESPONSE

Time

X
!
I
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Figure 1. Nash's linear transformation
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Diskin [Diskin, 1967] objecting to the restrictions of Nash's
proof, which required that both the volume of effective rainfall and the
volume of runoff be equal to unity, presented a more general proof of
the principle of moments using Laplace transforms. The only restriction
being that a relationship exist between the rainfall and runoff which

can be given by the convolution integral.

2.5.2 Selection of a Mathematical Function to Represent the Hydrograph

Examination of the hydrograph, Figure 2, indicates it has the
general shape of a skewed distribution function. On the assumption that
the hydrograph can be represented by a function of the same type as a
distribution function, the theoretical distribution function of best fit
should have the following characteristics:

1) The function should be continuous;

2) The function should be defined for all positive values of the

unit discharge, q , and the time, ¢t ;

3) The left tail should be bounded;

4) The left tail should be tangent to the t-axis as it approaches

its bound;

5) The right tail should be unbounded;

6) The right tail should be asymptotic to the t-axis for large

values of time, t ;

7) The function should be unimodalj

8) The maximum or peak point should be a finite value and the

first derivative should equal zero;

9) The function should be capable of assuming a large range of

skewness values.
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Karl Pearson [Pearson, 1956] has derived a general class of
functions which satisfy the previous conditions. Of interest here is
his Type III equation which is a skewed function bounded on the left.

This function can be written in the form:

Ya -Yx
) e (2.1)

y =y [ 1 + £
a
in which y = an ordinate ; yy = a constant ; x = an abscissa ; a =
the distance from the lower bound to the origin, origin is at the mode ;
Y = a constant
Using a substitution of the form, x = x - a , to transfer the

origin to zero and then integrating:

o 0

ydx = N = — | x e dx (2.2)

From which

+1 -
NYYa xYa e VX

y = (2.3)
r'(ya + 1)

where T(ya + 1) 1is the "gamma function" of (ya + 1)

I'(n) = J 1 e®dx, n>03; Tr(n+1) =nr(n) =n! [Hilde-
0

brand, 1963, p. 78].
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As originally derived by Pearson Equation 2.3 represented a
probability density function. For the case at hand it is appropriate
to consider it to be a mathematical function since the hydrograph does
not represent the frequency of occurrence of a random variable, but

rather the function of discharge versus time. Therefore, by analogy

let

N = V, the total volume of runoff represented by the area under
the hydrograplt in inches;

y = q, the unit discharge in inches per hour;

X = t, the time since the commencement of flow in minutes;

a =1, the time from commencement of flow to the peak in minutes;

Y = a shape parameter with dimensions of reciprocal of time;

B = conversion factor to convert inches per minute to inches per

hour.

The equation of the hydrograph becomes:

vy !
q = — ——— tYr e—Yt : (2.4)

r(yvr + 1)

Equation 2.4 is commonly referred to as the two-parameter or incomplete

gamma function.

2.5.3 Further Theoretical Considerations

Edson [Edson, 1951] and Nash [Nash, 1958] relying on different
underlying assumptions have developed mathematical expressions which

may be reduced to the common form of Equation 2.4. Since both these
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developments substantizte the application of the two-parameter gamma
distribution to describte the hydrograph the complete derivation as
given by each author is given below.

Edson states that if isochrones could be drawn to represent the
time required for each local element of effective rainfall to reach the
mouth of a watershed, the cumulation of area, A , with time, t , would

result in an approximate parabola

A<t , m>1 (2.5)

so that the runoff discharge, q , might become

qett, m>1. (2.6)

However, the time of travel required for each component is so affected
by the presence of the other components that the hypothetical isochrones
are invalidated. The consequent delay in delivery is generally regarded
as the result of valley storage. In a sense the valley acts as a reser-
voir, the discharge of which is known to decrease exponentially with

time.

q « e 5 1_1)0 (2.7)

Thus the reservoir action of the valley is seen to have a dampening
effect on the flow implied by proportion (2.6). Accordingly, proportion
(2.6) must continue in effect indefinitely. On the other hand, since
valley storage must exist for even the slightest amount of discharge,
proportion (2.7) is seen to be in effect from the very inception of run-

off. The combined effect, therefore becomes
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q a t e (2.8)

which possesses all the pertinent characteristics of the unit hydrograph.
The fact that the falling limb of a unit hydrograph becomes approximately
linear when plotted on semilogarithmic paper simply means that propor-
tion (2.6) is dominated by proportion (2.7) some time after the peak
discharge. At no time prior to the peak discharge, however, is propor-
tion (2.7) dominated by proportion (2.6) so that proportion (2.8) cannot
be developed in its cumulative form into an empirical equation by the
usual methods of straight line fitting in transformed coordinates.

On the basis of proportion (2.8), the following equation was

adopted

q =Bt e (2.9)

By integration, the total volume, V , is obtained. To facilitate

the integration let m =Vv -1 and Z = ut . Then

3] oo _ _\)oo- _ 1-
V=Jth=[BtmeUtdt=Bu1 [ZvleZdZ=Bu Yr(v) (2.10)

vu t e s (2.11)

I'(v)

Again the conversion factor B is necessary to obtain the desired

units.
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This is Edson's equation for the unit hydrograph developed from
a consideration of times of concentration and valley storage. It is
easily recognizable that with the following substitutions M =Y and
V.= Yr + 1 , Edson's equation (2.11) and equation (2.4) are identical.

Nash assumes that any catchment may be replaced by a series of n
reservoirs, each having the linear storage characteristic s = kq , the
outflow from one reservoir becoming the inflow to the next. When the
instantaneous inflow v takes place to the first reservoir its level is
raised by an amount sufficient to accommodate the increased storage and
the discharge rises instantaneously from zero to v/k and diminishes

with time according to the equation

v e-t/k

q = - (2.12)
k

q; becomes the inflow I to the second reservoir and we get

j =
e_t/k I et/k dt
q, = (2.13)
k
0
t
e—t/k Ve—t/k et/k dt
= (2.14)
k k
0
-tk
ve t
q, = (2.15)
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Successive routing shows that the outflow from the nth  reservoir is

given by:
ve_t/k t L 1
9, = - (2.16)
k k (n - 1)!
But (n - 1)! = T(n) ,
ve t/E § ol
q, = _ (2.17)

kT (n) k

Nash's equation is also easily reduced to the form of Equation 2.8

with the following substitutions, k = L , v=V and n=Yyr + 1

Y
On the basis of the characteristics of the Pearson Type III curve

and the independent developments of Edson and Nash it is evident that

the hydrograph can be represented by the two-parameter gamma distribu-

tion (2.8) with parameters Y and r estimated by statistical pro-

cedures from experimental data.

2.6 Losses

Losses are defined here as the difference between the total pre-
cipitation and the total surface runoff for a given storm. This
difference is commonly subdivided into leakage, evaporation, and
transpiration. Each oI these divisions could well be the subject
of a study by itself. Realizing the complexity of the problem early
hydrologists used the runoff coefficient concept to account for the

losses. Other methods of evaluating storm runoff developed in recent
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years have included short-term water balances, and various correlation
or multivariate analyses. In most cases sufficient data for using these
methods is not available.

The concept of loss rates provides a method of estimation which is
applicable to regions of limited data. Loss rate is defined here as the
average loss of rainfall on the watershed during the supply period of
the storm. Tabulations of average loss rates are available for the
United States [Creager, 1945] and Australia [Laurenson, 1963]. Pilgrim
[Pilgrim, 1966] in a recent study has shown that loss rates can be
transferred from a region of adequate data to another similar region
with limited data. He states that for a given watershed loss rate is a
more stable value than the runoff coefficient, and can be objectively

calculated whenever data is available.
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Chapter III

ANALYTICAL CONSIDERATIONS

Figure 3 shows a typical response (hydrograph) resulting from a
varying input (hyetogrzph). It is at once obvious that no simple mathe-
matical function could ever be fitted to the hyetograph and still retain
the intensity pattern intact. The problem, therefore, is to find a

quantitative descriptor of the hyetograph.
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Figure 3. Typical hyetograph and hydrograph
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Once this descriptor is found the problem of testing it becomes
immensely more difficult. Faced with the Herculean task of measuring
the causes and effects of the hydrologic cycle early investigators re-
signed themselves to racording only precipitation (input) and runoff
(output). As a result the present day investigator finds himself in the
situation of holding the ends of an invisible chain. In the one hand he
has the input (hyetograph), in the other hand the response (hydrograph)
and in between are the invisible links of infiltration, leakage in and
out of the river basin, evaporation, evapotranspiration, channel storage
and wave attenuation. Thus, until information about these invisible
links is available for the periods preceding and during an event, in-
vestigations must be confined to imput-output studies.

This study, in a sense, is an attempt to evaluate statistically a
relationship between the input and the response. To establish this re-
lationship by means of a statistical correlation it is necessary to
define the catchment characteristics, the hydrograph, and the hyetograph
by numerical parameters. Once defined, the hydrograph parameters will
be considered as the dependent variables, while the hyetograph para-
meters and catchment characteristics will be considered as the independ-
ent variables.

Consider that the recorded hyetograph represents an unknown func-
tion f(t*) . Further, consider that the recorded hydrograph is a
transformation of the hyetograph and as such can be represented by the
function £(T*) . The transform function, f(T%) , is also unknown, but
one may ascertain some of its general properties by examining the prop-

erties of the input, f(t*) , and the output, f(T*) .
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Clearly, the paramsters chosen to represent the hyetograph and
hydrograph must be numerical and easily obtainable. This leads one to
consider first the method of moments. Although the inversion between a
function and its moments is not generally unique, it is often possible
to estimate the parameters of a function when its functional form is
known or assumed. Such is the case here. On the basis of sections
(2.5.2) and (2.5.3) it is reasonable to assume that the functicnal form
of the hydrograph is that of the two-parameter gamma function for single-
peaked hydrographs.

From an a postericri knowledge of the hyetograph-hydrograph rela-
tionship and section (Z.5.1) one hypothesizes that a functional rela-
tionship should exist between the parameters (moments) of these Znmput-
output functions. Therefore, the following moments are introduced (see
Figure 4).

The weighted moments of the hyetograph are given by:

where mn' represents the nth weighted moment of the hyetograph about
the commencement, it 1is the intensity occurring over the interval t

bl

and t; is the distance from the commencement to the center of the

interval in question. Note that

I o~

i * Aty 1is equal to the total

t=0



30

rainfall occurring for the duration of the storm, T . The central
moments or moments about the mean time of the hyetograph are designated

by m, .

Similarly, the weighted moments of the hydrograph are given by:

qt + 94

« At, + t, 0
% t 0

I o~> 2

o

Qe + dpyqy

¢« At
> t

Il o2

o

where Mn' is the nth weighted moment of the hydrograph about its
commencement, qy 1is the discharge at time t , At; is the interval
between t and t+1 , and t; is the distance from the commencement
to the center of area of the interval in question. In this case the
denominator is equal to the total observed runoff.

Having hypothesized on the relationship between the hyetograph and
hydrograph moments, it remains to postulate on the effects of basin loss
and storage characteristics. It is obvious that for any transform func-
tion, f(t*) , to be m=2aningful, the relationship between its variables
must be in keeping with the basic understanding of watershed response.
For example, the response function should exhibit a tendency to decrease
in value with increasing loss rates. Ordinates of the response should
be inversely proportional to the catchment characteristics parameters
such as slope and distance of travel which are measures of storage or

delay.
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Chapter IV

ANALYSIS OF DATA

4.1 The Data Available

This study is based on hydrologic data assembled under the
auspices of the "Small Watershed Program' at Colorado State University
[Laurenson, et al., 1963; Markovic, et al., May 1964; Markovic, et al.,
July 1964; Research, 1967]. At the time of this writing the assembly
consisted of 1219 watersheds scattered throughout the United States.
Catchment characteristzcs (see section 4.2.2) had been calculated and
were available on magnetic tape for 192 watersheds. Associated with
these catchments were 898 separate flood events, of which 551 had been
selected and reduced to digital form.

In conjunction with the assembly a study of the annual flood
series was carried out. Frequency plots of the annual flood series
were prepared using both the Gumbel [Gumbel, 1954] and Jenkinson
[Jenkinson, 1955] methods for all annual series with two or more years
of record. A great savings of time was achieved at this point by
programming the computer to calculate the frequencies and plotting
positions for each of the floods of the annual series for each of the
catchments. Further, the cathode ray tube system attached to the com-
puter was programmed to draw the plots. Figure 5 is an example of such

a plot.
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Figure 5. Frequency plot of an annual flood series

The preliminary selection of catchments and events was made using
the annual series frequency plots and the following criteria:

1. 1In order to confine the study to floods and not merely to cases
of high water only events with peak discharge return periods greater
than two years were selected. Previous studies [Reich, 1962, p. 46]
have shown that the peaks with lower return periods adversely affect any
prediction equations which predict floods of the magnitudes required for

design purposes.
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2. 1In order to assure that the frequency plots used to select the
two-year or greater return period events were sufficiently reliable,
only catchments with annual series of five years or longer were con-
sidered.

Using the two criteria previously mentioned resulted in the reduc-
tion of the sample size to some 156 events. In line with the general
intent to isolate the effect of rainfall on the catchment response, only
flood hydrographs resulting entirely from rainfall were selected. This
restriction necessarily confined the study to events resulting from
summer storms.

Up to this point in the selection process no consideration was
given to the geographic location, size, or climatic features of the
watersheds. Neither was consideration given to the types of storms
causing the floods or the shape of the resulting hydrographs. In as
much as the study was intended to show a relationship between a set of
rainfall parameters and a set of hydrograph parameters no selection of
"textbook'" type single-peaked hydrographs was made. Multi-peaked hydro-
graphs obviously attributable to separate and distinct rainfall bursts
were either separated or eliminated depending on the degree to which the
hydrograph recession had developed prior to commencement of the next
rise.

The distribution of watersheds used in this study according to
their geographic location by state is shown in Table 4. Their size dis-
tribution is shown in Figure 6. Note that 71% of the sample have catch-
ment areas less than 1 square mile. As stated earlier only events with
peak discharge return periods of two years or greater were selected for

this study. As a check of possible biasness of the sample toward certain
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TABLE 4. DISTRIBUTION OF WATERSHEDS AND FLOOD EVENTS BY STATES
Number of Number of
Number States Watersheds Events
1 Arizona 5 14
2 Illinois 1 2
3 Towa 1 4
4 Mississippi 3 3
5 Nebraska 3 7
6 New Mexico 5 11
7 Ohio 7 22
8 Oklahoma 3 5
9 Texas 4 9
10 Virginia 2 3
11 Wisconsin 3 10
Totals ;;—. —;5_
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return periods Figure 7 was plotted. From the figure one sees that the
sample is remarkably uniform, having events for return periods ranging
from two years to fifty years. The distribution of the Pattern Irdex,
PI , (for definition see Table 3) for the various storms is shown in
Figure 8. Here too, the distribution is nearly uniform in the range of
Pattern indices from 0.4 to 0.9. Pattern indices greater than 0.6 are
generally regarded as indicating early-peaking storms. From the figure
one sees that 60% of the storms selected are early-peaking, indicating
that most of the floods on this sample of small watersheds are caused by

early-peaking storms.
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4.2 Procedural Details

This section describes the details involved in choosing and
calculating the various parameters for this study. The parameters
considered can be divided into three major groups: (1) those para-
meters which describe the hyetograph, or the input, (2) those para-
meters which describe the influence of the watershed and its ability
to modify the input, and (3) those parameters which describe the hydro-

graph, or the output.

4.2.1 Hyetograph Parameters

On the basis of the hypothesis of Chapter III the weighted moments
of the hyetograph, mn' , were calculated. These moments have more than
mathematical significance. They, in effect, provide a description of
the time-intensity pattern of the rainfall and, moreover, are objective
and easy to calculate. The first two moments are analogous to the
center of area and the moment of inertia so familiar to mechanics. The
central moments (moments about the mean), mpy , calculated from the
moments about the origin, give an indication of the dispersion of the
rainfall bursts in time. The third and fourth central moments are quite
sensitive to small masses at large distances from the mean and are
therefore good descriptors of interrupted storms composed of smaller
bursts of rainfall separated from the primary burst of rainfall.

Although the weighted moments about the vertical reflect effects of

both time and intensity, they have a tendency to be unduely influenced

by the timing of bursts and therefore do not always properly account for

high intensities. To overcome this weakness another set of moments was
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introduced. The weighted moments of the hyetograph about the horizontal

axis,

provide an objective means of characterizing the intensity levels of the
storm (see Figure 4).

Other more traditional parameters considered were the storm total,
PT , the storm duration, Dy , and the maximum storm intensities for
selected time intervals of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 90,
and 120 minutes. Also tabulated were the pattern index, PI , and the
probability of nonoccurrence of the rainfall for the given total rain-
fall and duration, Pp

In order to describe the watershed moisture conditions prior to the
beginning of the event in question the following two parameters were
chosen: the infiltration capacity, f , and the five-day antecedent
precipitation, APg . The infiltration factor was computed using the
method of Hiemstra and Reich [Hiemstra, 1967] which is a modification of
the method given in the Hydrology Handbook of the American Society of
Civil Engineers [Hydrology, 1949, pp. 47-51]. A typical calculation is
shown in Table 5. The five-day antecedent precipitation is the sum of
all rainfall occurring prior to the storm. This included any rain fall-
ing on the same day of the storm. Continuous low intensity rainfall
occurring in the early stages of the storm at rates less than the mini-

mum infiltration rate was also considered as antecedent precipitation.



A. Texture
1. 2. 3. 4. 5. 6. 7. 8. 9.
Sand loamy sand sandy loam loam silt loam silt sandy clay loam clay loam silty clay loam
0.200 0.150 0.100 0.080 0.050 0.020 0.018 0.006 .
10. 11. 12,
sandy clay silty clay clay
0.002 0.001 0.000
Structure
1. 2. 3. 4.
B. Strength of aggregates structureless weak moderate strong
0.030 0.005 0.002 0.001
1. 2. 3. 4. 5.
C. Size of aggregates very coarse coarse medium fine very fine
0.020 0.008 0.004 0.002 0.001
1. 2. 3. 4. 5. 6. 7.
D. Shape of aggregates crumbs granular subangular blocky angular blocky columnar prismatic platy
0.010 0.015 0.003 0.003 0.003 0.001 0.001
1. 2; 3, 4, 5. . 7.
E. Permeability very rapid rapid moderately rapid moderate moderately slow slow very slow
0.200 0.150 0.100 0.080 0.050 0.020 0.005
1. 2. 3. 4. 5.
F. Internal Soil Drainage very rapid rapid medium slow very slow none
0.200 0.150 0.100 0.050 0.015 0.000
1. 2. 3. 4.
G. Erosion Class few rills; up to shallow gullies, 25- shallow and deep gullies intricate pattern of
25% of A-hor. gome 75% of A-hor. lost 75-100% of A-hor. lost gullies soil profiles
0.020 0.015 0.008 destroyed 0.001
5.
recent alluvial and
colluvial deposits
0.020-0.001
I II III v )
H. Land Capability very good for cultiva- goad for cultivation, moderately good for fairly good cultiva-
tion, nearly level gently sloping cultivation, moderate tiom, strong slope,
0.010 0.008 slope 0.005 shallow 0.003
v Vi VII VIII
not for cultivation, good moderately good for grazing fair grazing, not suitable for
for grazing and forestry stony, shallow steep slope grazing or forestry
0.001 0.001 0.000 0.000
1. 2. 3. 4,
I. Surface Drainage excellent good fair imperfect
0.001 0.002 0.003 0.005
1. 2. 3. 4, 5.
J. Slope 0 - 32 3-8 8 - 152 15 - 252 25% +
0.015 0.010 0.005 0.002 0.002
EXAMPLE: Safford, Arizona. A. R. S. No. 45.4.
A. Stony, sand loam 0.180
B. Structureless 0.030
C. Medium size 0.004
D. Granular, blocky shape 0.007
E. Moderately slow permeability 0.050
F. Slow internal drainage 0.050
G. Erosion class 1. 0.020
H. Land capability VI-VII 0.001
I. Surface drainage, good 0.002
J. Slope, 8 - 15% 0.002
Hence, f = 0.346
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TABLE 5. EVALUATION OF

f
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4.2.2 Basin Characteristics

The following basin Characteristics were availablejat the time of

this study on magnetic tape [Laurenson, et al., 1963].

Catchment area, A

The catchment area of the stream above a gaging station is that
area, expressed in square miles, which is enclosed by a drainage divide.
In all cases the area was delineated on an appropriate topographic map.
This afforded an opportunity to check the area by planimetering and to

note any topographic peculiarities of the watershed.

Length of the main stream, L

The main stream is defined as that stream draining the greatest
area. The stream was extended to the watershed boundary in accordance
with the contours and its length recorded in miles. This parameter is

one measure of the length of the watershed.

Total length of extended streams, Lg

Where possible all marked streams were extended to the watershed
boundary in accordance with the contours. Exceptions to this rule were
streams which appeared to originate in springs or swamps. The total
length of all these extended streams including the main stream repre-

sents a measure of the conveyance and storage of the stream system.
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Drainage density, Dy

The drainage density, expressed in miles per square miles, is the

total length of extended streams, L. , divided by the catchment area,

s

A . The drainage density reflects the conveyance and storage character-

istics on a unit area basis.

Length to center of area, L,

This is the distance, in miles, along the main stream to a point
adjacent to the center of area projected to the main stream. The writer
discovered that the center of area could be found quickly and easily and
with a fairly high degree of accuracy by centering over the map of the
watershed a clear plastic overlay with a system of four intersecting
lines drawn on it to form octants. By balancing areas and distances
within each of the octants one can determine the center of area in a
minute or two. This is one of several measures of the mean travel dis-

tance of a catchment.

Mean travel distance, Lt

The mean travel distance, in miles, is determined by measuring the
travel distance to the outlet along the stream system from each inter-
section of a square grid placed over a map of the catchment and averag-
ing these distances. The grid was always orientated in a North-South,
East-West orientation and was of such a size that between 30 and 50

intersections fell within the catchment boundary.
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Standard deviation of the travel distances, s¢

This self-explanatory parameter has the units of miles.

Dimensionless mean travel distance, Lj

Dimensionless standard deviation of the mean travel distance, sy

Sd=

N

Total fall, H

The total fall is the difference in elevation expressed in feet
between the highest point on the main stream and the datum of the stream

gage; sometimes considered a measure of the steepness of the watershed.

Stream slope, S,

S; 1is the total fall, H , divided by the length of the main
stream, L , and is expressed in feet per mile. This and the following

three stream slopes are attempts at finding parameters which relate to

the travel time of a watershed.
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Stream slope, Sj

S, 1is the weighted mean slope of the main stream.

2 § 1,24
Sp = ——— , feet per mile
L2

where 1;

i 1s the distance along the main stream between successive

contours in miles, and zi is the average elevation above the outlet

for each reach in feet, 1j .

Stream slope, S3

2
Iy
S3 = , feet per mile

where 1i is the distance along the main stream between successive

contours in miles, and si is the slope for each reach, 1; .

Stream slope, Sy

Sy 1is the difference between the elevation of the main stream at
85% of its length and the elevation at 10% of its length divided by 757%

of its total length in feet per mile.
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Overland, R;

c
Ry = —— , feet per mile
A
where c¢ 1is the contour interval of a topographic map of the catchment,
Lo 1is the total length of all contour lines on the map, and A 1is the

catchment area. This is one of six attempts at obtaining a single para-

meter which is representative of the overland slopes of a catchment.

Overland slope, Ry

1.57¢cN

Ry = —— , feet per mile

Lg

where c¢ 1is the contour interval of a topographic map of the catchment,

N 1is the total number of intersections of the grid lines with all con-

tour lines (see explanation of grid under Mean travel distance, L¢ ),

and Lg is the total length of grid lines within the catchment measured

in both the North-South and East-West directions.

Overland slope, Rj3

, feet per mile

where Ahj is the difference in elevation between two successive con-

tours, L.  is the average length of those two contour lines, and A
i
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is the catchment area. This is a form of weighted mean overland slope

where L. is a measure of the area between successive contours, the
i

value of which would be exceedingly difficult to determine.

Overland slope, Ry

Ry 1is the mean overland slope determined by point sampling of the
catchment slopes at the intersections of the grid (see explanation of

grid under Mean travel distance, L )
1 c
Ry = — » — f 1
= z a ° eet per mile
where n is the number of grid intersections, c¢ 1is the contour inter-
val, and d; 1is the distance between contours at each intersection of

the grid.

Overland slope, Rg

Rg is the median overland slope, in feet per mile, determined by
arranging the n values comprising Ry in descending order and finding

the value which evenly splits the array.

Relief ratio, Rg

A dimensionless variable, Rg equals the total fall, H , divided
by the longest straight line dimension between any two points on the

catchment boundary.
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Perimeter, P

The perimeter is the length around the catchment boundary in miles

and is a measure of the compactness of the watershed area.

Average catchment width, W

Expressed in miles, W equals the catchment area, A , divided by

the length of the main stream, L .

Form factor, F

The form factor is a dimensionless variable which likens the shape
of the catchment to a square and is obtained from the ratio of the
catchment area, A , to the square of the length of the main stream,

L2 .

Compactness coefficient, C

The compactness coefficient is another dimensionless variable which
is intended to describe the shape of the catchment. C is the ratio of
the perimeter of the catchment, P , to the circumference of a circle

having the same area as the catchment. Thus,

0.28 P

VA
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The preceding parameters can be considered as possible descriptors
of the fixed catchment characteristics. Included in the next group of
parameters are those which may vary from flood to flood but which
rightly should be associated with the basin characteristics.

Since the watersheds used in this study represent a wide variety
of climatic regions, it was deemed necessary to introduce the following
pseudo-climatic parameters: the 10-year l-hour precipitation, C;; mean
annual precipitation, C, . A third parameter; the mean monthly temper-
ature, C3 ; is both a descriptor of climate and indirectly a descriptor
of evaporation and transpiration. Since adequate data was not available
to fully describe all possible losses it was decided to use the loss
rate, LR , for this purpose.

Lastly, the probability of the hydrograph peak discharge, Pq P
introduced as a variable related to the hydrograph, but which when con-
sidered as an array of variables is properly associated with the indi-

vidual catchment.

4.2.3 Hydrograph Parameters

As mentioned earlier no attempt was made in this study to separate
the total runoff into surface flow and ground water flow. Experience
has shown that for small watersheds of the size involved in this study
the assumption of negligible ground water flow is often valid.

In most cases the tabulated data indicated that the hydrographs
receded to zero flow rather rapidly. For the few hydrographs where this
was not the case the recessions were extended to zero flow using the

familiar recession expression,
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ai = s, e—At/k

where q; 1is the flow at any instant, qi_, 1is the flow at any
previous instant, t 1is the time lapse between time i and time

i-1 , and k 1is a recession constant. k is the only unknown and can
be found using the tabulated data. Zero flow was defined as a flow less
than 0.00005 inches per hour, since true zero flow would occur only
after a very long time.

In nearly all cases the antecedent flow was zero. For the few
cases where the antecedent flow was not zero the following separation
technique was used. The recession characteristics of small watersheds
do not change appreciably with successive storms because of the lack of
catchment storage. This assumption was borne out by the work of Ho [Ho,
1967] in his study of small watershed recessions. Similar justification
for the similarity of recessions can be found in unit hydrograph theory.
The separation was accomplished by transposing the hydrograph recession
horizontally until it matched the antecedent flow at the time of the
commencement of the rising limb. This transposed segment or pseudo-
antecedent recession was then subtracted from the observed flow to give
a hydrograph with a discharge rising from zero.

To find parameters which describe the hydrograph, three methods of
approach were considered. First, the hypothesis of Chapter III was fol-
lowed in computing the moments of the hydrograph. Second, the more
traditional hydrograph parameters of total volume, V ; peak unit dis-

charge, dp 3 and rise time, t, ; were computed. Third, a mathematical
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function was fitted to the hydrograph and the parameters of this fitted
function were determined. The function was a modification of the Zn-

cormplete gamma function.

+
gvy Tt

g4 g=—— tTe (2.4)
r'(yr + 1)

This function has all the characteristics of the hydrograph and has

already been discussed and justified on a theoretical basis [Edson,

1951; Nash, 1958]. To improve its ability to fit the observed hydro-

graph a more elemental form (see equation 2.1) was used,

Yr
qpt

Yr
r

e_Y(t—r) (4.1)

af =
here qf 1is the unit discharge at any time, ¢t , 4 is the peak unit
discharge, Y 1is a shape parameter, and r is the distance from the
origin to the peak.

It was decided to use a weighted least squares fitting process to
estimate the three parameters: q, > Y and r . In general, the
hydrologist is primarily concerned with the agreement of the observed
and fitted hydrographs in the portion of the rising limb and the crest.
By weighting the fitting process in proportion to the observed discharge
a better agreement in the crest portion could be assured. Three weight-
ing coefficients were tried: (1) the observed discharge, (2) the square
root of the observed discharge, and (3) the cube root of the observed
discharge. A preliminary investigation of the results obtained using
each of the factors showed no appreciable difference in hydrograph fits

and it was decided to use only the observed discharge.



ol
By least squares
z(qobserved - qfitted)2 =4 (4.2)
and weighting in proportion to the observed discharge gives
Jagp(ay = ag)2 = A . (4.3)

Minimizing by differentiating with respect to each of the variables and
setting the results equal to zero produced three equations in three un-

knowns :

T
L laob * * %, ~ doby " 9, | = O (4.4)

T ( \ )
2 2 =
z q *qf —q *q *+ 1 -14+1Int-1Inr|f =20 (4.5)
=0 oby ft oby ft .
T ( ] ( }
2 2 =
q *qde — ¢q *q *l1-t+Int-1Inxr| =0 (4.6)
tEOK o " 9g, " Gob " 9r, ) :

Since these could not be solved explicitly an iterative procedure
was used whereby the computer closed in on the solutions after having
been given a first estimate of the variables. The estimation of these
three parameters: q, , Y , and r completed the list of parameters
used to describe the hydrograph.

It is interesting to note that Equation 4.1 when fitted by the
weighted least squares method gives a remarkably good fit to the hydro-

graph. The fitting process was carried out on the 90 selected events
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and Figures 9 and 10 show one of the best and one of the poorest fits,
respectively. The adaptability of this iterative solution to the

weighted least squares can be seen in Figure 11 where the computer has
produced a sensible fit to a very difficult shaped hydrograph. Space

limitations precluded showing more of these fits.

4.3 Multivariate Analysis

Multivariate analysis may be defined as the branch of statistical
analysis which is concerned with the relationships of sets of dependent
variables [Kendall, 1961, p. €]. '"In such analyses, a vector of means
and a matrix of covariances of several variables are used instead of the
simple mean and variance of a single variable. This concept allows the
association of errors with more than one variable, . . . [Chow, 1964,

p. 8-67]".

Numerous volumes have been written on multivariate analysis and
more specifically multiple linear correlation and regression. Some of
these are by Kendall [1943], Snedecor [1956], Ford [1959], Efroymsen
[1960], and Chow [1964, Chapter 8, Part II]. Therefore, it is felt that
it is not necessary to go deeper into multiple linear regression theory,
except as it applies to this study. The concern here is to show a re-
lationship between the parameters of the hydrograph, the hyetograph, and
the basin characteristics. To this end multiple linear regression pro-

vides an approach.
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This study is not concerned with the association of errors with
individual variables or with estimating the independent contributions
of these variables. Therefore, it is not imperative that the basic
assumptions of multiple linear regression of no errors in the independ-
ent variables and no correlation between the independent variables be

absolutely met.

The multiple linear regression relation takes the form

y =a; +ayx; +axxy + - ¢ ¢ oax, (4.6)

where y 1is the dependent variable, the x's are the independent vari-
ables, and the a's are the regression coefficients. The best func-
tional relationship is that one which in accordance with the method of
least squares produces the minimum of the squared deviations between the
observed and the computed dependent variable. In practice this relation
is arrived at in a stepwise fashion by adding to the relation one in-
dependent variable at a time in a manner such that the variable added
has the highest partial correlation with the dependent variable partial-
ed on the previously added independent variables.
It is conceivable that the relation between the dependent variable

and independent variables may not be additive, but rather multiplica-

tive. 1In this case the form may be

y = axleZCX3d I ’ (4.7)

This nonlinear relation can be avoided by using a logarithmic transform

to produce

y=1Ina+blnx; +clnxp+dlnxz+ + + +, (4.8)
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a linear relation. A computer program for performing all the requisite
computations previously mentioned is available [Dixon, 1964]. The re-
sults shown in the following sections were derived using this program.

Two statistics are commonly used to measure the efficiency of a
regression. They are the standard error of estimate, Sey > and the
coefficient of multiple determination, R? .

The standard error of estimate is by definition the standard devi-
ation of the residuals, or differences between the estimated values and
the actual values. It indicates the closeness with which new estimates
may be expected to approximate the true but unknown values. Basic to
this is the assumption of drawing from the same universe for both the
regression variables and new variables. Its dimensions are the same as
those of the original dependent variable. 1In the case of logarithms the
the dimensions are in logarithms.

The coefficient of multiple determination is by definition the
ratio of the explained variance to the total variance and shows how much
of the variation in the dependent variable is accounted for by the in-
dependent variables.

The relative closeness of an estimate is best measured by R? ,
where as the absolute closeness is best measured by Sey . In the case
of logarithms Sey represents a percentage difference rather than an

absolute value.
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4.4 A Preliminary Look at the Data

A preliminary look at the deata involved computing the means,
standard deviations and the correlation matrices for the variables and
the logarithms of the variables mentioned in sections 4.2.1, 4.2.2 and
4.2.3. Table 6 shows the means and standard deviations. Tables 7 and
8 are summaries of these matrices showing only those variables whose
absolute simple correlation was greater than 0.600.

Inspection of the matrix of regular variables, Table 6, showed no
simple correlation of sufficient magnitude between the hydrograph
moments and the hyetograph moments to suggest a linear relationship
existed. It did, however, indicate a simple correlation of +0.386
between the first moment of the hyetograph, ml' , and the hydrograph
rise time, t, . The correlations between the rise time and the other
hyetograph moments were equally significant; ranging from +0.863 down to
+0.556. No other hydrograph parameters showed significant simple cor-
relations with the hyetograph parameters.

The lack of simple linear correlation between the hydrograph and
the hyetograph moments is apparently due to the moment-producing effect
of the hydrograph tail. As the order of the moments increased the cor-
relation decreased. This would suggest a possible multiplicative rela-
tionship.

Inspection of Table 7, the correlation matrix of the logarithms of
the variables, showed the above hypothesis to be highly probable. Loga-
rithms of all the hydrograph moments showed significant correlations

with the logarithms of the hyetograph moments; ranging from +0.706 down
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to +0.507. The fact that all the correlations are positive adds more
credence to the hypothesis of a relation between input and output
moments since a longer duration input would intuitively indicate longer
response periods.

The correlations for the logarithm of the fitted rise time improved
significantly, showing correlations with the logarithms of the hyeto-

graph moments ranzing from +0.795 down to +0.682.
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TABLE 6. MEANS AND STANDARD DEVIATIONS OF VARIABLES
Standard
Standard Mean of Deviation of
Variable Units Mean Deviation Logarithm Logarithm

LR inches/hour .71920 .62658 - .80217 1.19410
Pp per cent 64711 .30316 - .67583 .90629
PI dimensionless .64839 .13878 - .45779 .22785
Cs °F 69.86111 9.05508 4.23686 .14556
4 inches/hour .49789 .20091 - .80114 .50256
C inches 2.26244 .53135 .78578 .25715
C, inches 27.10044 12.46747 3.15159 .60080
m' minutes 42.34141 37.73534 3.44852 .76629
my' minutes? 4439.47529 10271.64004 7.26842 1.51222
m3' minutes? 894661.53833 3791925.59739 11.30018 2.27353
m,' minutes" 279832189.97778 1629044556.17597 15.46008 3.05790
mp minutes? 1238.53260 2807.02558 5.91664 1.59241
mg minutes? 78631.78313 243360.03883

my, minutes* 37965152.51301 160138726.05096 13.04201 3.48509
' inches/hour 1.35365 .60291 .19749 .48917
y2' (inches/hour) ¢ 2.72955 2.47058 .64293 +93171
y3' (inches/hour) ¢ 7.36846 12.00374 1.22540 1.37372
vu' (inches/hour) 3999.90121 37706.50565 2.02422 2.12727
q inches/hour .86794 .56762 - .35096 .66579
Y minutes=! .15527 .12354 - 2.10549 .72350
minutes 60.11111 61.35592 3.74334 .B2674
A square miles 1.03044 1.36754 - .58937 1.08405
L miles 1.78989 1.48852 .29827 .73311
Lg miles 5.33822 5.21538 1.26556 .93461
Lc miles .94256 .99802 - .41250 .78002
L¢ miles .99800 .78021 - .26307 .70629
st miles .45970 .42952 - 1.10593 .76847
sd dimensionless .47733 .20643 - .81890 .38643
P miles 4.13900 2.81987 1.23800 .58119
H feet 237.34444 250.97402 5.10548 ~  .B83342
S feet/mile 162.52222 126.15562 4.81033 .77501
Sy feet/mile 117.07778 77.56233 4.51512 .75443
S3 feet/mile 125.25556 81.39908 4.57884 .76420
Sy feet/mile 134.13333 99.90256 4.60473 .31122
D4 miles/square miles 8.29422 8.45754 1.85610 .54306
W miles .47933 .29601 - .87638 .51425
F dimensionless .40111 .26389 - 1.14042 .71166
C dimensionless 1.51678 1.50431 .27748 .43648
Lp dimensionless 1.03522 .30502 - .00487 .27723
Ry feet/mile 472.18889 256.14045 5.98662 .53272
.0 feet/mile 460.16667 254.16217 5.95733 .53016
R3 feet/mile 470.64444 251.43687 5.98419 .53903
Ry feet/mile 415.02222 225.10003 5.85713 .52153
Rg feet/mile 373.52222 219.97422 5.72548 .66393
Rg dimensionless .03210 .02332 - 3.67803 .70199
ap inches/hour .87035 .56973 - .34980 .656919
Pq per cent .73904 .14432 - .32212 .20223
Lag minutes 19.07778 18.02135

ty minutes 61.23333 58.68102 3.78933 .79413
I, inches/hour 4.76567 1.96164 1.47575 .42938
Ig inches/hour 4.16511 1.50092 1.35505 .39798
I o inches/hour 3.56711 1.25051 1.20164 .40158
I,5 inches/hour 3.13278 1.15864 1.06419 .42292
I0 inches/hour 2.78711 1.06319 .94138 .43991
Is inches/hour 2.49967 .96984 .82648 .45860
I39 inches/hour 2.27522 .89773 .72625 .47662
I35 inches/hour 2.07156 .84720 .61707 .52938
Iyg inches/hour 1.91122 .79781 .52444 .58110
Isg inches/hour 1.68556 .71474 .39396 .59742
Igo inches/hour 1.49689 .65843 .26934 .61009
Igg inches/hour 1.10433 .54096 - .05343 .64525
I)20 inches/hour .87622 .46460 - .29444 .64592
Dt minutes 138.22222 134.11447 4.58262 .81811
Pr inches 1.91156 1.13883 49624 .55864
APg inches 1.52278 1.91245

v inches .83344 .54126 - .43660 .76622
Mp' minutes 149.32374 210.99595 4.51749 .91559
My' minutes? 309113.74456 1471726.31906 9.75177 2.12087
M3' minutes3 2966849144 .46666 18733997080.56616 15.52092 3.46977
M,' minutes 43294018897567.25000 314511513814762.00000 21.60932 4.87556



TABLE 7. SUMMARY OF CORRELATION MATRIX OF REGULAR VARIABLES
WITH CORRELATION COEFFICIENTS 2 |0.600|
Correlation Correlation Correlation Correlation Correlation
Variables Coefficient Variables Coefficient Variables Coefficient Variables Coefficient Variables Coefficient
f-R; .609 y1'-I19 .860 Le-P .888 Ry-Rg .657 I5-I4p <935
C;-C, 773 y1'-Is .814 Le-Ly .685 R3-Ry .908 Iy5-Isg .880
Cy-v .647 y1'-I20 .761 s¢-84 .814 R3-Rs .824 I,5-Igg .825
m'-mp’ .900 y1'-Iz5 .715 8¢-P .864 R3-Rg .664 I;5-Igg 723
m) '-m3' .768 v1'-I3p .653 8st-Lpy .760 Ry-Rs .940 I,5-I120 .647
my '-my"' .697 y2'-y3' .942 sq-F -.704 Ry-Rg .653 I30-1I35 .990
m) '-m, .850 y2'-I, .854 8q-Lyg .954 t.-Dr .767 I30-I4g .975
my "-my .702 y2'-Is .801 P-W 714 I-1g .870 I30-Isp .928
m'-r .873 y2'-Ip .781 $,-S2 .903 I,-19p .785 I39-Igo .879
my'-t, .889 y2'-I5 «711 $1-S3 .889 I,-I5 .737 I30-Igg .786
my '-Dp .800 y2'=Iz9 .632 S-Sy .904 I,-I59 .679 I30-I120 2012
my'-m3' .967 y3'-Iy .802 S1-R; 714 I,-I5s .637 I35-Iyg .994
my"-my' .933 y3'-Is .637 S1-Rp .702 Is-I)g 944 I35-Isg .958
my'-my .975 y3'-I;9 .602 S1-R3 .684 Is-I;5 .882 I35-Igg .914
my'-my .885 q,-9p .997 S1-Ry .690 Is5-I5 .820 I35-Igg .829
my'-y,"' .874 -ty -995 S1-Rg .893 I5-I55 71 I35-I370 .756
my'-t, .878 r-Dp .767 Sy-S3 971 Is-I3g .712 I35-Pp .617
my'-Dp 734 A-L A1 S-Sy .939 Is-I35 .653 I40-Is0 .979
m3'-my' .994 A-Lg J745 S,-Ry .684 Igs-Iyg .609 Iuo-Igo .944
m3'-my .957 A-L. .683 S,-Ry .679 I,0-I;5 .961 I40-Igg .867
m3'-my .916 A-L¢ .776 So-Rg .651 I10-I20 .908 I,o0-I120 .798
m3'-r .804 A-s¢ .738 So-Ry .686 I0-1I25 .851 Iyo-Pp .662
m3'-t, .798 A-P .924 S,-Rg .792 I10-I30 .797 Iso-Igo .988
m3'-Dp .629 A-W .839 S3-Sy .910 I,0-I3s 741 Is0-Igg .934
my '-my .928 L-Lg .886 S3-R, .725 I0-I40 .697 Iso-I120 881
my ' -my .910 L-L¢ .958 S3-Ry 712 I;0-Isg .622 Iso-Pr .756
my'-r .758 L-Ly +955 S3-R3 .688 I,5-I59 .982 Igo-Igp .965
my'-t, . 749 L-s¢ .934 S3-Ry .715 I;5-1Izs .943 Igo-I120 .928
my-mj .655 L-sq .720 S3-Rg .782 I)5-I3g .892 Igo-Pr .821
mp-my .932 L-P .874 Sy-Ry .609 I,5-I35 .842 Ig0-I;20 .982
my-r .869 L-Lp .741 Sy-Ry .613 I;1s5-I4p .804 Igp-Pp 902
my-t, .867 Lg-L¢ .851 Sy-Ry .628 I;5-Isg .736 I120-PT 960
my-Dp .797 Lg-L¢ .873 Su-Rg .786 I)5-Igo .670 Pp-V .617
m3-my 77 Lg-s¢ 773 F-Lp -.806 I70-1I25 .982 My '-Mp' .882
m3-Dp .849 Lg-P 776 Ry-Ry .985 Iz0-I3¢ .947 My '-M3' ,819
my-r .784 Le-Le .886 Ry-R3 .983 I30-I3s .907 My '-M' .778
my-ty .766 Le-st .870 Ry-Ry .927 Iz0-Iyo .876 My '-Mj3' .987
my=Dp 774 Le-8sg .666 Ri-Rg .845 I50-Isp .813 My'-M,' .964
y1'-y2' .864 Lc-P .821 R1-Rg 683 I20-Igo .750 M3'-M,' ,993
y1'=y3' .728 Le-Lp .716 Ry-R3 .966 I50-Igp .634
y1'-Ip .834 Le-8¢ .939 Ry-Ry .926 I35-I3p .985
y1'-Ig .887 Le-8q .686 Ry-Rg .857 I55-I35 .959
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S3-S,
S3-Ry
S3-Rg
Sy-Rg
Dg-W
F-ly
Ry-R;
Ri-R3
Ry-Ry
Ry-Rs
R;-Rg
Ry-Rj
Ry-Ry
Ry-Rs
R2-Rg
R3-Ry
R3-Rs
R3-Rg
Ry-Rs
Ry-Rg
r-Dr
-V
r-M;'
r-My'
r-Mz'
r-M,'
I,-1s
I2-Iy0
I-I1s
I2-I20
I2-I25
I2-I30
Is-Iy0
Is-Is
Is-I20
Is-I25
Is-I30
Is-I3s
Lio-Iis
T10-I20
Iy0-I2s
I10-I30
I10-I35
T10-Tuo
I1s-1I20
Iy5-I25
I1s5-I30
I)5-I3s
I1s-Iuo
I)s5-Iso
I15-Is0
I20-125

Correlation

TABLE 8.
WITH CORRELATION COEFFICIENTS 2 |0.600|
Correlation Correlation Correlation

f-R) .684 my-T .750 A-L .911
f-Ry .691 my-t, .762 A-Lg .807
£-R3 .655 my-Dp .957 A-L¢ .870
€1-C, .845 my-My ' .668 ALy .918
Cy-v .742 mp-My ' .607 A-s, .889
Ca-Pp .604 eyt .682 A-P .966
Co-V .647 -t .692 AW .795
Co-My' .600 my-Dp .943 L-Lg .830
Ca-M3' .608 my-M; ' .665 L-L. .977
Co-My' .622 y1'-y2' .937 L-L¢ .975
g "-mp" .988 v1'-y3 .914 L-s¢ 974
m '-m3' .967 y1'-vy' .89 L-sq .668
S — .948 y1'-1, .845 L-P .909
m '-my .891 y1'-1s .902 L-F -.675
mp " -my .792 y1'-110 .889 L-Lp .688
my'=r .795 y1'-1y5 864 Lg-Le .805
ml'—:r .814 y1'-I20 .820 Lg-L¢ .839
my'-Dp .844 1 -z .778 Lg-si .770
my'-Py .637 T .705 Lg-P .823
m -V .626 y1'-I35 .626 Le-Lg 934
m "My .699 ¥2'-y3' .995 Lo-se .968
my'-Mp' .611 ya'-yy' .753 L.-sq .715
my'-ms' .994 v2'=I; .861 Lc-P .888
mp'-my' .984 y2'-1g .898 Le-F -.706
mg'-my .948 v2'-Iyp .889 Lo-Ly .741
mg'-my, .860 y2'-I)5 .848 Le-st .949
my'-r .790 y2'-Iz 792 Le-sq .609
my'-t, .808 y2'-Ips .739 Le-P .919
my' =Dy .90L y2'=1I3p .667 L¢-F -.614
my' =Py .628 y3'-yy' .748 Le-Lp .629
mp' =V .625 y3'=1; .886 8¢-84 .749
mp'=M;"' .706 y3'-Ig .905 8¢-P .900
mp'=Mp' .620 y3'=I)p .884 8¢~F -.658
m3'-my' .997 y3'-I5 .837 s¢=Lp .717
m3'-mp 973 y3'-Iy 779 sq-F -.885
my'-m, .900 ¥3'-Ips .726 84-Ln .951
m3'-r 777 y3'-I39 .656 P-W .725
m3'-t, .793 y,'-1, .854 H-Ry .826
m3'-Dp 936 A .861 H-R, .790
m3'-Pp .618 ya'-110 .796 H-R3 .813
my'-V .621 ¥4 =I5 .766 H-Ry .718
my'-M; " 706 ¥4'=Igg .721 H-Rg .654
my'-M," .621 v.'-Izs .696 815, .963
my ' -my .982 v.'-I30 634 $1-S3 .950
m, ' ~my, 922 a,-ap .997 5i=8, .935
my'-r .764 y-M;' -.656 S1-Ry .652
m, 'ty .780 Y-Mp' -.627 S1-Ry .662
m,'-Dp .957 Y-M3' -.605 S1-R3 .602
m,'-Pp .612 r-Dp .687 S1-Ry .660
my'-V .619 My .829 S)-Rg .822
my "My ' .705 r-Mp' .720 $,-S3 .972
m, "My .623 r-M3' .671 S,-Sy .952
mpy-my .940 r-M,' .652 S2-Rg .750

I20-I3p

Iz0-I3s
I20-Iuo
I20-Iso
I20-Igo
I20-I90
I20-I120
I35-139
I35-I35
I25-Tuo
I25-Isg
I25-Ig0
I25-1g9
I5-1120
I5-Pp
I30-13s
I30-Tug
I30-Isp
I30-Ig0
I30-Igp
I30-I120
I30-Pp
I35-Tup
I35-Isp
I35-Ig0
I35-Ig9
I35-I120
135-PT
Zy0-Iso
Iuo-Igo0
Zu0-Ig0
Zyo-I120
T4o-Pp
Zs0-Is0
I50-I90
Is0-Ti20
Iso-Pr
Te0-Ig0
Iso-T120
Ieo~Pr
Ig0-T120
I90-Pr
Iy20-PT
Pp-V
v-M, '

My '-My'
Mp'-My'
Mp'-M,'
My'-Mj'
My'-M,'
M3'-M,'

SUMMARY OF CORRELATION MATRIX OF LOGARITHMIC VARIABLES

Correlation

.879
.821
779
.745
.683
.654
.987
.941
.894
.858
.828
.774
.745
.626
.975
.G46
.516
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Chapter V

RESULTS

The correlation matrices indicated some dependence between the
so-called independent variables, but a critical review of the physics
of the problem suggested inclusion of the somewhat interrelated vari-
ables. After preliminary runs determined the order or significance of
the independent variables for each of the dependent variables, it was
decided to have the computer limit the number of independent variables
appearing in the output to five, since beyond this number the increase
in the coefficient of multiple correlation does not generally justify
the increased effort involved in collecting the additional data. Plots
of R? versus tae number of variables in the regression, Figures 12
through 21, in general support this decision.

Each group of dependent variables will be discussed individually.
The relationships for each of the dependent variables for both the
linear and logarithmic cases are shown in Tables 9 through 18.

Table 9 shows the regression equation at each step. Tabulated
below each equation for ml' are the coefficient of multiple correla-
tion, R? ; the standard error of estimate, Sey ; and the F-ratio, F
Note that for each step the coefficients of regression change. 1In the
interest of concerving space subsequent tabulations will show only the

last equation, but will indicate the RZ , s and F associated

ey

with each previcus step.
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5.1 Prediction of Hydrograph Moments

Ml' , first moment of the hydrograph

As shown in Table 9 the coefficient of multiple determination,
R2 , is only 0.45 for equation 5.1 after the inclusion of five vari-
ables. With such a low value of RZ? this equation could hardlyv be
used for prediction. Figure 22, a plot of the observed versus estimated
values of ml' using equation 5.1, shows a wide scatter of point, thus

supporting the inadequacy of this equation for prediction.

In Ml' , log, of first moment of the hydrograph

The 1n ml' relationship (equation 5.2) indicates that 72% of the
variance of 1n ml' can be explained by five variables. This Is a
marked improvemert over the 45% for the linear relationship.

Moreover, a multicative relationship is more in keeping with basic
hydrologic knowledge. A closer look at the equation indicates that the
signs of the independent variables are also in keeping with the present
physical understanding of the hydrologic processes. The positive sign
before ml' , the first moment of the hyetograph, indicates that &s the
intensity and duration of the storm increase the first moment of the
hydrograph also increases. Further, not that the first variable, ml' 5
alone accounts fecr 497% of the total variance, thus adding support for
the hypothesis that the hyetograph moments are good discriptors of the
hyetograph.

The annual precipitation, Cy, , is a climatic factor indicative of

greater volumes cf runoff and larger volumes prcduce larger hydrograph
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moments. The standard deviation of the travel distances, st , is a
measure of the variation in the travel times of the catchment. There-
fore, the positive sign is quite appropriate.

Increases in loss rate, LR , would result in less runoff and thus
smaller moments. The negative sign of PI , the pattern index, arises
from the fact that for a given recession characteristic a small water-
shed would tend to peak earlier with an early-peaking storm and thus
produce less volume.

The observed versus estimated values for this relationship, equa-
tion 5.2, are plotted in Figure 23. The standard error of estimate is
equal to the logarithm 0.4976. When considered in relation to the
standard deviation of the dependent variable, which was the logarithm

0.9156, this is a reasonable value.

Mz' , second moment of the hydrograph

The relationship for the second moment of the hydrograph is shown
in Table 10 and Figure 24. The explained variance for this equation is

only 25%. This would preclude its use for predictions.

In My' , loge of second moment of the hydrograph

In Chapter IT it was noted that the hydrograph could be represented

by the following equation:

+1
BVYYr

q=—""—""¢& e . (2.4)
T(yr + 1)
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Knowing this one can show that the moment generating function is:

y=(yr-1)

¥(t) = B[ - —E-J

Using this one can easily tabulate the first four moments:

1st § » A1
¥
ond g « [XE=1L} VXIJ
Y Y
3rd B - YL__l_ . Y_r) . [_Yr + 1)
Y Y Y
sth g . (=) . ’Y_r) . [xr;l} ) [Yr_+a]
Y Y Y Y

From the above it is at once obvious that each succeeding moment in-
volves a product of the previous moments. Therefore, the use of a

logarithmic relationship is justified for all moments higher than one.

1n M3' , log, of third moment of the hydrograph

On the basis of the discussion of 1n M,' it is sufficient to say
that 1n M3' 1is a function of the variables in 1n M;' and 1lr M,' and
that 617 of the variance can be explained by five variables. Figure 26

shows this relationship.

1n M,' , loge of fourth moment of the hydrograph

Equation 5.8 of Table 12 indicates that 627 of the variance of

1n M;' can be explained by five variables which are similar te those
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used in the relationships for 1n M;' , 1n Mp' and 1In M3' . A test
of physical meaniag accounts for all the variables except L , the
length of the main stream. An increase in L would ordinarily suggest
a decrease in 1n M,' since L 1is generally considered to be a measure
of catchment travel times. However, for the small watershed the drain-
age net is usually very sparse and the main stream may represent the
only dominant feature of the drainage pattern. In this case L repre-
sents a measure of channel storage and as such increases in L would

result in decreases in 1n M,' .



TABLE

9. REGRESSION EQUATIONS FOR THE FIRST MOMENT OF THE HYDROGRAPH

Equation

M;' = 51.40712 + 0.70840 Dp
R2 0.2027
Sey 189.4633

22.3794

M;' = 476.82714 + 0.58857 Dy - 5.85243 Cy
R? 0.2600
Sey 183.5762
F 15.2862

M;' = 632.20820 + 0.49452 D - 9.07873 C3 + 180.57997 st
R2 0.3774
Sey 169.3606
F 17.3794

M;' = 594.14139 + 0.50539 Dp - 8.11767 C3 + 467.98813 sy - 90.89844 L
R? 0.4286
Sey 163.2055
F 15.9385

My' = 648.31472 + 0.49947 Dp - 7.76893 C3 + 470.61113 s¢ - 89.97562 L - 35.41488 Ij, (5.1)
R? 0.4508
Sy 160.9566
F 13.7880

In M;' = 6.70899 + 0.41717 1n m;' + 0.53905 1n C2 + 0.42138 1n sy - 0.15700 1n LR - 1.17750 1ln Cq (5.2)

R2 0.4887 0.5690 0.6389 0.7001 0.7212
Sey 0.6584 0.6079 0.5597 0.5131 0.4976
It 04.007 57.4359 5N 7137 49,6023 43.4575

8L



TABLE 10. REGRESSION

EQUATIONS FOR THE SECOND MOMENT OF THE HYDROGRAPH

Equation
M,' = 2.0985x10° + 3.8908x10%s, - 8.6826x10°L - 2.9758x10%C3 + 4.9761x103S; - 6.0172x1035, (5.3)
R? 0.0658 0.1780 0.2074 0.2263 0.2476
Sey 1.4306x106 1.3496x10° 1.3329x10° 1.3247x10° 1.3140%10°
F 6.1944 9.4200 7.5010 6.2141 5.5296
In M,' = 18.01299 + 0.21802 1n my' + 1.76354 1n Cp + 6.71453 1n Ly - 3.61391 In C3 + 1.671453 1n F  (5.4)
R* 0.3882 0.4875 0.5585 0.6097 0.6351
Sey 1.6682 1.5356 1.4336 1.3558 1.3187
F 55.8491 41.3852 36.2621 33.1995 29.2419
TABLE 11. REGRESSION EQUATIONS FOR THE THIRD MOMENT OF THE HYDROGRAPH
Equation
Mz' = 1.7312x10'0 + 5.4390x1010s; - 1.3163x100L - 2.3345x1010PI - 1.0262x1010pp + 1.2027x1010f  (5.5)
R? 0.0749 0.1956 0.2144 0.2282 0.2423
Sey 1.8121x1010 1.6994x1010 1.6892x1010 1.6841x1010 1.6786x1010
F 7.1244 10.5761 7.8214 6.2829 5.3718
In M3' = 30.99064 + 2.51276 1n C, + 1.66863 1n sy - 0.41895 1n LR - 5.73813 1n C3 + 0.18648 1n m, (5.6)
R? 0.3699 0.4667 0.5607 0.5924 0.6117
Sey 2.7699 2.5628 2.3395 2.2668 2.2257
F 51.6574 38.0676 36.5877 30.8828 26.4606

6L



TABLE 12. REGRESSION EQUATIONS FOR THE FOURTH MOMENT OF THE HYDROGRAPH

Equation

4.6109x101% + 1.0859x10!%sy - 2.3303x10%L -

0.0833
3.0284x10"
7.9927

45.61272 + 4.23659 1n C, + 6.16779 1n s¢ - 0.

.5700
.2523
.0021

0.3873
3.8380
55.6272

0.2084
2.8302x10"
11.4554

0.4833
3.5447
40.6884

0
3
38

4.4796x1014PT -

0.2324
2.8032x10*
8.6774

95620 In LR - 7.

0.2434
2.7994x%101"
6.8359

0.5995
3.1571
31.8126

1.1857x101%pp -

10244 1n C5 - 4.

.6180
3.
.1790

0

27

2.7806x101%s4

0.2540
2.7962x101*
5.7187

05409 1n L

1018

(5.7)

(5.8)

08
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of the first moment of the hydrograph for equa-
tion 5.1



82

InM, = 6.70899+0.47I7 Inm; +0.53905 InC, +0.42138InS,
—0.5700 InLR —LI7750 InCy

Inm, = log, of first moment of hyetograph

InCy = loge of mean annual precipitation

InS; = logg of standard deviation of the mean travel distance

INLR = log, of loss rate

InC5 = log, of mean monthly temperature
RZ = 07212, S¢y=0.4976, n =90 events
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M, =2.09849x10%+3.89076xI08S, —8 68264 xI0° L-297577x10%C,
+497614x10°S, -601718 x 103 S,

S, = standard deviation of travel distances, miles
L =length of main stream ,miles

Cs =mean moninly temperature, degrees F

S, =stream slope, feet/mile

S = stream slope, feet/mile

R? =0.2476, S, =13140xI0%minutes squared, n = 90 events
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InM, = 18.01299 + 0.2I802 In m, +1. 76354 InC,+6.71453 In L,
= 361391 InC; +1.671453 InF

Inm,= log, of fourth moment of hyetograph

InC, = loge of mean annual precipitation

InL,= log, of dimensionless mean travel distance

InC5= logy of mean monthly temperature

InF log, of form factor

R? = 0635, S, =1.3187, n =90 events
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In M'3= 30.99064 +2.51276In C,+166863InS, ~0.41895InLR
-5.73813InC;+0.18648In m,

InC; = loge of mean annual precipitation

InS; = log, of standard deviation of travel distances

InLR= log, of loss rate

InC5 = log, of mean monthly temperature

Inm,=log, of fourth central moment of hyetograph

R? =067, Sg =2.2257, n =90 events
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lnM; =4561272 +4.23659InC, 4616779 InS, —0.95620InLR
—710244 InC;—4.05409 InL

InC, =l0g, of mean annual precipitation

InSt =log b of standard deviation of travel distances

InLR=logg of loss rate

InC3=log, of mean monthly temperature

lnL slog, of length of main stream

R% = 06180, S =3.018, n=90events
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5.2 Prediction of Observed Hydrcgraph Parameters

V , volume of runoff

The R? for equation 5.9 of 0.75 is acceptable. A check of the
F-ratio indicates that all the variables are significant at the 17 level
and the signs of the regression coefficients appear to be consistent
with the expected effects of each of the variables. Regions of higher
10-year 1l-hour precipitation, C; , are generally humid and exhibit
higher volumes of runoff per unit area for a given rainfall. As ex-
pected the volume of runoff increases with the storm total, Py . In-
creasing loss rates, LR , imply less effective rainfall and in turn
less runoff. Similarly, increased infiltration capacities, f , also
imply less runoff. As discussed in connecticn with equation 5.2, the
negative sign before the pattern index, PI , is consistent.

In spite of its high R and consistent signs this relationship
is not compatible with the multiplicative nature of quantities in hydro-
logy. Intuitively, therefore, the logarithmic relationship should be

more in accordance with the present knowledge of the physics of nature.

In V , loge volume of runoff

Inspection of equation 5.10 reveals that physical significance can

be attached to all of the variables and that the coefficient of mul:iple
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determination is 0.78, a slightly higher value than for the linear
relationship of equation 5.9.

Increases in the 10-year l-hour precipitation, C; ; the first
moment of the hyetograph, ml' ; and the 120-minute maximum intensity,
I,50 ,» all imply increases in the volume of runoff. As expected in-
creases in the infiltration capacity, f , and the loss rate, IR ,
result in decreased volume of runoff. These facts coupled with the
multiplicative nature of the relationship make this a very useful re-
lationship. See Figure 29 for a plot of the observed versus the esti-

mated values.

dp > observed hydrograph peak discharge

From Table 14 the relation for qp explains 62% of the variance.
The positive coefficient for Pq , the probability of the peak, needs
no further explanation. The catchment perimeter, P , is indicative of
travel distances. Therefore, longer perimeters would suggest less com-
pact catchments and longer supply distances which would result in lower
peaks as the negative sign of P indicates. TFor 1Igp , the 60-minute
maximum intensity, it is sufficient to say that increased intensities
of rainfall produce higher rates of runoff. The infiltration capacity,
f , has a negative sign as it should; and the stream slope, S3 , has
a positive sign indicating that higher slopes mean higher velocities and

shorter supply periods which have the effect of increasing the peak.
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1In a4p > loge observed hydrograph peak discharge

As in the case of the equations for the volume of runoff one finds
little difference between the coefficients of multiple determination
for the linear and logarithmic relationships. Here too, one would be
inclined to choose the logarithmic relationship over the linear cne
since it conforms to the multiplicative concept in hydrology.

In this relationship, equation 5.12, the physical significarce of
the variables is identical to those in equation 5.11, except that Ijj
has replaced Igp and R, has replaced S3 . The correlation cf the

observed and estimated values is shown in Figure 31.

ty , observed hydrograph rise time

The actual time of rise is a somewhat nebulous number because of
the difficulty inherent in defining the point of commencement. Many
hydrographs rise slowly for some time prior to a distinct rapid rise.
Therefore, it is not unreasonable to see a value of the standard error
of estimate for ty of 20 minutes. Thé accompanying value of R? is
0.88. A test of physical meaning accounts for all the variables. Note
that the fourth moment of the hyetograph, vy,' , is a measure of the
maximum intensities of the storm and that higher storm intensities are
generally associated with shorter duration storms, the combinatiom of

which would tend to produce shorter rise times.
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In ty , log, observed hydrograph rise time

Although one would expect the logarithmic relationship to be more
meaningful than the linear one, this is not the case. Not only is the
value of R? smaller for equation 5.14 than for equation 5.13, but one
finds it extremely difficult to attach physical meaning to the stream
slope, S3 . This is not to preclude the multiplicative concept for the
rise time, but rather to cast doubt on the quality of the data usec in
the study. The computer chooses variables on the basis of mathematical
significance, not hydrologic significance. If the independent variables
have large variances as many of them do (see Table 6), then the variable

with the highest partial correlation with the dependent variable may not

be hydrologically significant.



TABLE 13.

REGRESSION EQUATIONS FOR THE VOLUME OF RUNOFF

Equation
V = 0.39754 + 0.35949 C; + 0.26916 Py - 0.33684 LR - 0.50313 f - 0.61565 PI (5.9)
R2 0.4189 0.5907 0.6946 0.7268 0.7497
Sey 0.4150 0.3502 0.3043 0.2895 0.2787
F 63.4290 62.7800 65.1949 56.5419 50.3318
1n V = - 1.80357 + 0.82662 1n C; + 0.00230 1n m;' - 0.14805 1n f + 0.78436 1ln Py - 0.25138 1n LR (5.10)
R2 0.5511 0.6478 0.6833 0.7180 0.7797
Sey 0.5163 0.4599 0.4387 0.4164 0.3701
F 108.0305 80.0102 61.8464 54.0960 59.4755
TABLE 14. REGRESSION EQUATIONS FOR THE OBSERVED PEAK
Equation
gp = - 0.53083 + 1.69662 Pq - 0.01414 P + 0.36737 Igg - 1.45997 £ + 0.00306 S3 (5.11)
R?2 0.2092 0.3435 0.4930 0.5398 0.6155
Sey 0.5077 0.4653 0.4113 0.3941 0.3624
F 23.2764 22.7643 27.8702 24.9267 26.8971
ln qp = - 2.91277 + 1.59242 1n P, = 0.43509 1n P + 0.49737 1n I,5 - 0.65413 1n f + 0.45018 1n R, (5.12)
R2 0.2031 0.3665 0.4781 0.5127 0.6056
Say 0.5993 0.5374 0.4906 0.4768 0.4315
F 22.4262 25.1702 26.2596 22.3613 25.7996

16



TABLE 15. REGRESSION EQUATIONS FOR THE OBSERVED RISE TIME

Equation
ty = - 12.45951 + 0.76878 m;' + 0.00991 m, + 9.16701 A - 0.00013 y,' + 9.54705 C; (5.13)
R? 0.7895 0.8346 0.8712 0.8784 0.8841
Sey 28.5466 25.4497 22.5865 22.0767 21.6808
F 330.1017 219.5239 193.9560 153.5178 128.1668
In ty = 2.52790 + 0.68346 1n m;' - 0.34094 1n S3 - 0.27182 1n Dg + 0.20049 1n R, - 0.2199 1n I;g (5.14)
R? 0.6633 0.7331 0.7567 0.7714 0.7857
Sey 0.4644 0.4158 0.3993 0.3893 0.3792
F 173.3345 119.4597 89.1620 71.6966 61.5766

6



Observed volume of runoff (inches)
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V.  =039754 +0.35949C, +0.26916 PT—O.33684 LR
-0.50313f —0.61565 Pl

C, =10-year |-hour precipitation, inches

DT = storm total, inches

LR = loss rate, inches/hour

 j = infiltration capacity, inches / hour

Pl = pattern index, dimensionless

R2 = 0.7497, sey =0.2787, n =90 events
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Figure 28. Correlation of observed versus estimated values
of the volume of runoff for equation 5.9
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InV = -180357 +0.82662 InC, + 0.00230 In m, —0.14805 Inf
+0.78436 In PT—O.25I38 InLR

InC, = loggof I0-year |-hour precipitation

Inm; = Ioge of first moment of hyetograph

Inf = Ioge of infiltration capacity

InP; = loge of total storm rainfall

InLR = log, of loss rate

R = 0.7797, Sg=0.3701, n=90 events
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0
Y
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-0.53083 +1.69662 R-0.01414P +0.36737 lgg 1145997 f +0.00306 S3
probability of peak
= catchment perimeter, miles

n

8— 0,0

= 60-minute maximum intensity, inches /hour
= infiltration capacity, inches/hour

= stream slope, feet/mile
=0.6I55 , Sgy=0.3624, n=90events
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equation 5.11



Logarithm of observed hydrograph peak
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Inq, = -2.91277 +159242InP; —0.43509InP +0.49737 Inlzs
-0654i3 Inf +0.45018 In R,

sn% = logg of probability of peak

InP = log, of catchment perimeter

Inl,s= loge of 25-minute maximum intensity

Inf = log, of infiltration capacity
InR, = loge of overland slope

R? = 06056, S, =0.43I5, n =90 events
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Figure 31. Correlation of observed versus estimated values
of the logarithm of the observed hydrograph peak
discharge for equation 5.12
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tr = —12.4595| +0.76878 m, + 0.0099I m, +9.1670I A
-0.00013y,4 +9.54705 C,

m, = first moment of hyetograph, minutes

m, = second central moment of hyetograph, minutes squared

A catchment area, square miles

ys = fourth moment of hyetograph about t-axis , (inches/ hour)?

C, =10-year |-hour precipitation, inches

R? =0.8841, Sey=21.6808, n=90 events

Observed rise time , (minutes)
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Figure 32. Correlation of observed versus estimated values
of the observed hydrograph rise time for equa-
tion 5.13



Logarithm of observed rise time
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Int, = 252790 +0.68346 Inm, -0.34094 InS, —0.27182 In Oy

Inm, = log, of first moment of hyetograph

InS3 = log, of stream slope

InD, = log

s of drainage density

InR, = loge of overland slope , feet/mile
Inl,5= logg of 25—minute maximum intensity
= 0.7857, S,z 0.3792, n =90 events
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Estimated logarithm of rise time, In 1,
Figure 33. Correlation of observed versus estimated values

of the logarithm of the observed hydrograph rise
time for equation 5.14

6.4
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5.3 Prediction of Fitted Hydrograph Parameters

q, , fitted hydrograph peak discharge

The variables included in the relation, equation 5.15, for
predicting the fitted hydrograph peak, q, , are identical to those
used to predict the peak, equation 5.11. 1In this case the computer
found the 60-minute maximum intensity, Igy , to have a higher partial
correlation than the probability of the peak, Pq , with the dependent

variable. The R2? of 0.62 and Sey ©f 0.3624 inches per hour are

y

also similar values. Even the regression coefficients are in the same

orders of magnitude.

In q, > log, fitted hydrograph peak discharge

Since equations 5.12 and 5.16 are identical except for the regres-
sion coefficients, which if rounded off would be equal, the reader is
referred to section 5.2 for a discussion of the meaning of the variables.
It should be noted, however, that the similarity of these two equations

lends tacit support to the applicability of the fitted function.

Y , fitted hydrograph shape parameter

In this instance, equation 5.17, Table 17, the coefficient of
multiple determination is 0.43. A poor linear relationship is not un-
expected since examination of the fitted function, equation 2.4, sug-

gests a multiplicative relationship.
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In ¥ , loge fitted hydrograph shape parameter

As expected the value of R? is higher, 0.59, for the logarithmic
relationship. But, because Y is a shape parameter incorporating the
concepts of skewness and variation it is difficult to attach physical
significance to the variables of the relationship. Significant though
is the fact that Y is a function of S, , the stream slope; Rg , the
overland slope; and C; , the 10-year l-hour precipitation. All of these
are parameters which are associated with an individual catchment. The
same concept is implicit in unit hydrograph theory since the unit hyvdro-

graph is assumed to have a constant shape for a given watershed.

r , fitted hydrograph rise time

The fitted rise time, r , can be predicted with an R2 of 0.88
and Sey of 22 minutes. The dependent variable is a function of five
variables, three of which are measures of the time distribution of the
rainfall. As expected, increases in the mean time of the hyetograph
result in increases in the rise time. The factors my' and my evi-
dently entered the relation as a means of relating the dispersion of
hyetograph intensities. The increase of r with A 1is indicative of
increased travel distances. The inclusion of so many rainfall para-
meters in this relationship would tend to cast doubt on their physical
significance, especially since they are all known to be related. For
this reason the logarithmic relation is considered to be physically

more sound.
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In r , log, fitted hydrograph rise time

The logarithmic function, equation 5.20, explains 77% of the total
variance. Note the similarity between this equation and equation 5.14,
the logarithmic relation for the observed rise time, ty . Here is
further evidence of the adequacy of the fitting methodology. The reader

is referred to section 5.2 for a discussion of the meaning of the vari-

ables.



TABLE 16.

REGRESSION EQUATIONS FOR THE FITTED PEAK

Equation
q, = - 0.50615 + 0.36978 Igp - 0.01393 P + 1.65563 Py - 1.48639 £ + 0.00315 S3 (5.15)
R2 0.1991 0.3892 0.4897 0.5371 0.6172
Sey 0.5109 0.4487 0.4125 0.3952 0.3615
21.8717 27.7194 27.5105 24,6543 27.0887
ln q = - 2.92476 + 1.56171 1n Py - 0.44558 1n P + 0.49504 1n Ip5 - 0.65738 1n f + 0.45200 1n R (5.16)
R? 0.1947 0.3669 0.4780 0.5133 0.6074
Sey 0.6009 0.5358 0.4894 0.4753 0.4294
F 21.2754 25.2085 26.2527 22.4120 25.9970
TABLE 17. REGRESSION EQUATLONS FOR THE FITTED SHAPE PARAMETER
Equation
Y = 0.21921 - 0.07105 C; + 0.00064 S3 + 0.01682 I5 - 0.16544 f + 0.00012 H (5.17)
R2 0.1788 0.3092 0.3554 0.3903 0.4338
Sey 0.1126 0.1039 0.1009 0.0987 0.0957
F 19.1660 19.4680 15.8046 13.6045 12.8708
In Y = - 6.10978 + 0.78830 1n Sy - 0.13057 1n Dy - 0.38137 1n Rg + 0.07744 1n y,' - 0.65678 1n C; (5.18)
R2 0.3337 0.4542 0.5088 0.5459 0.5859
Sey 0.5939 0.5406 0.5159 0.4989 0.4792
F 44,0815 36.2050 29.6882 25.5429 23.7740

Z0T



TABLE 18. REGRESSION EQUATIONS FOR THE FITTED RISE TIME

Equation

Il

6.08576 + 0.

0.
29.
284.

2.46616 + O.

0.
0.
151.

00039 mp' + 10.8937 A + 0.71942 m;' - 0.00015 y,' + 0.00906 m,

7639 0.8344 0.8598 0.8694 0.8770
9844 25.2550 23.3742 22.6910 22.1460
6603 219.1512  175.7459 141.4308 119.8295

67864 1n m;' - 0.37896 1ln S3 - 0.29465 1n Dg + 0.24133 1n Ry - 0.23532 1n I,

6320 0.7068 0.7329 0.7526 0.7677
5044 0.4528 0.4347 0.4208 0.4101
1050 104.8774 78.6440 64.6363 55.5239

£5.,19)

(5.20)

€0T
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4, = -0.506I5+0.36978 |,,~0.01393P + 165563 P,

-148639f +0.003I5 S,

o - ©0-minute maximum infensity, inches/hour

= catchment perimeter, miles

q = Pprobability of peak discharge

= infiltration capacity, inches/hour

s = stream slope, feet/mile

RZ =0.6172, Sey =0.36I5inches/hour , n = 90 events

Observed peak of fitted hydrograph (inches/hour)
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Figure 34. Correlation of observed versus estimated values

of the fitted hydrograph peak discharge for
equation 5.15
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