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ABSTRACT

HIERARCHICAL BAYESIAN MODELS FOR

POPULATION ECOLOGY

Models, by their definition, are abstractions of the systems they describe and require a

delicate balance of inclusion of information with reduction. Hierarchical Bayesian models

are well suited for ecological problems, because they facilitate the de-composition of highly

complex ecological systems into lower dimensional elements. We can partition variability that

arises from the ecological processes separately from variability that arises from sampling

error, thereby rigorously accounting for uncertainty. In this way, we can better answer

questions pertaining to the ecology of populations and aid in better management of their

ecosystems.

Estimation of abundance is the central challenge in population ecology, and we begin

this dissertation by addressing the problem of determining the population size of elk across

multiple time and spatial scales during five winters. In Chapter 2, I build upon existing multi-

state mark-recapture methods using a hierarchical Bayesian N -mixture model with multiple

sources of commonly collected data on abundance, movement, and survival, to accurately

estimate the abundance of a mobile population of elk on the winter range of Rocky Mountain

National Park and Estes Park, CO.

Classification data are used in ecology to examine population trends through model-based

theoretical approaches. For ungulates such as elk, wildlife managers use sex-ratios and stable

age or stage distributions to assess population growth or decline. However, physical ambi-

guities and observer skill can lead to biased results. In Chapter 3, I develop two hierarchical

models to address the sample bias that results when data are missing-not-at-random, which

occurs when individuals are observed but not classified.
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Forecasts are used to aid management to evaluate the probability that resource objectives

will be met given different management actions. In Chapter 4, I develop a hierarchical

model incorporating a discrete time, stage structured model assimilated with abundance

and classification data, to provide forecasts under a variety of management actions to aid

decision makers to meet objectives.

I use Bayesian hierarchical models that incorporate multiple sources of information to

address common estimation problems that arise in population ecology. We are frequently

interested in constructs and latent processes that are not necessarily observable in ecological

systems. I use theoretical models of the underlying processes to extract information per-

taining to populations and management goals. Compounding the challenge is that we must

rely upon survey samples rather than complete census. I illustrate the utility of hierarchical

Bayesian models using data on the population of elk (Cervus elaphus nelsoni) on the winter

range of Rocky Mountain National Park in Colorado, USA.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Ecological theory is primarily focused on the assessment of patterns of species distribu-

tions and abundance, as well as the mechanisms of interactions that drive those patterns.

Effective monitoring of wildlife is vital for resource management of natural systems and

requires quantitative information of population distributions, rates of harvest, survival, re-

production, movement, habitat, and space use (Lebreton et al., 1992; Ludwig et al., 1993).

Assessment of these features along with their spatial and temporal variation is the hallmark

of population ecology (Krebs, 2001). Conclusions about population dynamics and ecological

processes are often inferred from samples rather than complete census of the population of

interest and highlight the importance of rigorous statistical methods for estimation (Royle

and Dorazio, 2008). Advances in survey design and analysis methods can improve popu-

lation monitoring. This is particularly true for species in remote places where options for

monitoring are constrained by policy and budget.

Overabundant ungulates throughout the United States can harm biological diversity of

plant communities and impair ecosystem function. Wildlife managers have used a variety

of methods for regulating ungulate populations including regulated hunting harvest, culling,

and fertility control (Bradford and Hobbs, 2008; Ransom et al., 2012). Observations of exces-

sive browsing by elk Cervus elaphus nelsoni on woody deciduous plants on the winter range

of Rocky Mountain National Park during the last three decades motivated the development

of the Elk Vegetation Management Plan (National Park Service, 2007). The goal of the plan

is to reverse degradation of plant communities by reducing elk abundance and by protecting
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stands of vegetation from browsing (Singer et al., 1998; Zeigenfuss et al., 1999; Lubow et al.,

2002; Binkley et al., 2003; Schoenecker et al., 2004). Implementing the Management Plan

requires comparing estimates of the elk population size to ecologically sound targets, which

requires reliable census and modeling approaches for monitoring the state of the elk popu-

lation. Several estimation problems have arisen from altering survey methods and because

these data are collected by multiple government agencies.

Figure 1.1: Elk crossing the Big Thompson River in Moraine Park in Rocky Mountain
National Park on November 6, 2014. Photograph by Alison C. Ketz
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1.2 Chapter Introductions

This dissertation was prepared in manuscript format in accordance with the requirements

of the Graduate School of Colorado State University. The text is divided into four chapters,

including this introduction. The format of each chapter follow most of the guidelines of the

target journal for which they were prepared or submitted. In some cases, text that was

omitted for publication due to page and word limitations were included in the main body of

the text for this dissertation. Chapter 4 has been published (November 2016).

Estimation of abundance forms the central challenge in population ecology, because pop-

ulations change over time and space, and because complete census of populations is not

possible. Detection of individuals or groups inside the study area must be adjusted to cor-

rect for the bias that occurs when individuals are present in a study area but not observed.

Variability in the distribution of mobile species confounds efforts to estimate detection. For a

large free-ranging species such as elk, aerial surveys are the gold standard used to survey pop-

ulations, particularly in geographic regions with harsh terrain. However, aerial surveys can

be prohibitively expensive and dangerous. Estimating abundance with ground based survey

methods can have practical advantages, but observer error and temporary emigration must

be accounted for. In Chapter 2, we build upon existing multistate mark-recapture methods

using a hierarchical Bayesian N -mixture model with multiple sources of commonly collected

wildlife data, to estimate the abundance of elk in Rocky Mountain National Park. We use a

state-space approach to model animal movements using telemetry data to approximate the

number of marked animals present within a fixed conservation area at any observation period,

thereby accounting for a frequently changing number of marked individuals. We then com-

bined this movement model with an abundance estimator in an N -mixture model to obtain

population estimates throughout winter seasons across five years, thereby assessing tempo-

ral variation along the winter range at multiple time scales. We demonstrate the improved

inference of our method compared with existing estimators of abundance. Data collected on
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abundance, movement and survival are commonplace in managed ecosystems. By combining

all of these sources of information we improve inference of abundance estimates, which in

turn, aid in management decisions.

Classifications are used to examine population trends of species and communities through

modeling approaches including sex ratios, stable age/stage distributions, and discriminant

analyses. Assignment of individuals to a category can prove challenging for numerous fac-

tors, including physical ambiguities and varying observer skill. When individuals are observed

but not classified, these “partial” observations must be modified to include the missing data

mechanism to avoid spurious inference. In Chapter 3, we developed two hierarchical Bayesian

models to overcome the assumption of perfectly observed mutually exclusive categories in

the multinomial distribution of categorical counts, when partial classifications are missing or

unknown. Both models incorporate auxiliary information to adjust the posterior distribu-

tions of the proportions of sex and stage classes. We performed a simulation to show the bias

that results when partial observations are ignored and estimation of demographic ratios can

be effected. We developed multiple approaches that use a nested multinomial structure to

account for partially observed data that were missing not at random for classification counts.

Bayesian hierarchical models can assimilate data to provide forecasts, resulting in prob-

abilistic predictions of future states of park ecosystems accompanied by rigorous estimates

of uncertainty. We discuss a novel approach for using these forecasts to aid decision makers

who need to evaluate the probability that National Park Service goals will be met given

different management actions, including the null model of no-action. Forecasts from a dis-

crete time, stage-structured population model assimilated with annual census and sex and

age classifications are being used annually to help park managers decide on actions needed

to meet goals for elk and vegetation. In particular, park managers were able to determine

the probability that the elk population would fall within a desired population range, which

led to both population reduction actions and no action depending on the year of interest.

Moreover, this approach allowed multiple survey methodologies to be incorporated into a
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single model with associated estimates of uncertainty. Models like this one are especially

useful for adaptive management where continuous improvement in models and data result

in long-term improvement in the wisdom of policy and management.

1.3 Mathematical Notation

Conventional notation was used in this dissertation, however, for clarity I define all no-

tation used in this work as follows. Matrixes are denoted in bold capital letters. Vectors are

bold lowercase letters. An exception are population totals, which are typically denoted with

a capital N for single observations and bold font is used for multiple observations in both

matrixes and vectors. Probability distributions are denoted with brackets [ ]. Subscripts

appearing in text font are labels, in italics they are indexes of vectors or matrixes. The

transpose symbol is given by a apostrophe slash on the right hand side of a vector or matrix.

All vectors are assumed column vectors unless otherwise altered with the transpose symbol.
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CHAPTER 2

ESTIMATING ABUNDANCE OF AN OPEN POPULATION WITH AN

N-MIXTURE MODEL USING AUXILIARY DATA ON ANIMAL

MOVEMENTS 1

Estimating abundance and explaining fluctuations in abundance form the central chal-

lenges in population ecology and wildlife management (Seber, 1982). The growth or decline

of populations over time reflects numerous factors, including movement and survival. We

developed a model to simultaneously estimate abundance, survival, and movement probabil-

ities, to address these challenges and to inform decisions on managing animal populations

within areas defined by fixed jurisdictional boundaries. Large mobile animals can move into

and out of these areas, creating challenges for abundance estimation and hence, complicate

decisions on population management.

It is vital that population estimates account for the inevitable bias that results from

animals that are present but not seen. Failing to account for detectability means that

differences in population estimates from year to year may result from errors in observing

the population rather than from differences in the population itself. Many methods have

been proposed to account for the problem of imperfect detection in estimates of animal

abundance. These include mark-recapture (Nichols, 1992; Pollock, 1982; Kendall et al.,

1997), removal sampling (White and Leffler, 1982), and distance sampling (Buckland, 2001).

All of these methods use design based procedures for estimating the probability of detecting

1Ketz, A. C., Johnson, T. L., Monello, R. J., Mack, J., George, J. L., Kraft, B. R., Wild, M. A., Hooten,
M. B., & Hobbs, N. T.,Estimating abundance of an open population with an N -mixture model using auxiliary
data on animal movements.
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individuals given that they are present. Detection probabilities, in turn, are used to account

for individuals that are present but not counted, thereby correcting for “undercounting” bias.

There are many sources of variability that have been accounted for in mark-recapture es-

timators, including individual heterogeneity, environmental heterogeneity, time dependence,

behavior, and combinations of all of these (Kendall, 1999; Borchers et al., 2002). The esti-

mation of the detection probability can be confounded by the fact that only a proportion

of individuals in a population is available for sampling at any given time (Kendall, 1999).

Many mark-recapture estimators have been developed to adjust for mobility of species be-

cause movements in space can be substantially broader than the geographic regions that are

surveyed. Temporary emigration can lead to biased estimates of abundance, resulting from

underestimates of the probability of detection (p) and a corresponding overestimation of the

total population size (N) (Nichols and Kendall, 1995; Kendall et al., 1997). Different types

of movement can lead to a variable number of individuals that are available to sample and

may confound estimates across multiple surveys (Kendall, 1999). Knowledge of the total

population that uses these static regions can help inform management actions that target

animals within fixed boundaries.

We developed a hierarchical Bayesian model for estimating population sizes in a mark-

recapture framework, using an N -mixture model coupled with location data on animal move-

ment and survival. The method provides inference based on the posterior distribution of the

average abundance of animals in a sequence of counts within a specified area without as-

suming that the area is closed to immigration, emigration, or mortality. We use very high

frequency (VHF) telemetry collars and subsequent location information collected on a weekly

timescale to model the temporary movement patterns of individuals into and out of the study

region to estimate abundance in an open population (Chandler et al., 2011; Ivan et al., 2013;

Dail and Madsen, 2011) without making assumptions regarding individual home ranges or

spatial distributions (Royle et al., 2014).
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We used a model-based approach to estimate overall average abundances across mul-

tiple years and simultaneously estimate demographic parameters that provide important

information about the state of the surveyed population. We estimated survival probabili-

ties on weekly and annual time scales and we estimated transition probabilities that reflect

movements among multiple areas within the surveyed region, which allowed us to assess

the connectivity of various subgroups of the population. Our novel approach makes use of

multiple sources of commonly collected data, thereby providing a complete summary of the

state of the population during a specific period of time.

2.1 Materials and Methods

2.1.1 Overview of modeling approach

Locations obtained from VHF collars are prone to errors and missing observations, mo-

tivating the use of a state-space approach to obtain posterior distributions of the true lo-

cations. We separate observed telemetry location data from an underlying true location of

each collared individual. A general state space approach can be described as the conditional

probability of observations (Y ) given a true state (X) and a set of parameters governing the

uncertainty with the data (θd),

[Y |X, θd] , (1)

where the brackets denote a probability distribution. We can link our knowledge of the

ecological system to the observations using a model for the latent state (X) and parameters

8



(θp) governing its behavior such that

[X|θp] . (2)

We separated an underlying Markovian movement process model from a data model specified

for location observations. Using this hierarchical structure, we were able to estimate the

number of marked individuals that were available in the sample area during any week we

surveyed the population. The movement model informs the true, unobserved locations of

marked individuals, which allows us to know, with estimates of uncertainty, the true number

of marked individuals within the study area.

We coupled the movement model with a mark-recapture estimator of independently col-

lected count data from repeated surveys. The observed counts (n) can be modeled with a

conditional probability distribution that depends on the total population size (N) and some

function of detectability (f(X)), that we derived from the movement model true states. In

general, a model combining the movement with census is described as

[n|N, f(X)] . (3)

The data (n) consist of counts of the total number of individuals within the survey region as

well as observations of the number of marked individuals within encountered groups. We also

used additional secondary information to account for imperfectly recorded resighted marks,

by calibrating the resights with telemetry data collected to verify this separate detection

process. We combined the estimates of the true number of marked individuals within the

region of interest with the estimated number of resighted marks, to determine the probability

of detecting an individual in anN -mixture model (Equation 3). We used a Bayesian approach

implemented in JAGS (Plummer, 2014a) to approximate posterior distributions of model

parameters (see supplement).
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2.1.2 Model development for marked individuals

We first considered the general scenario of repeatedly sampling a population of N indi-

viduals for t = 1, ..., T surveys. A subset of the population has been subjected to capture, in

which individuals representative of the population are marked, and subsequently recaptured

or resighted during T occasions.

We know that the total population size will likely change between surveys because of

temporary emigration, immigration, and mortality. Using a hierarchical structure, we were

able to capture sampling error resulting from temporal variation in abundance within the

study area, as well as accounting for observation error resulting from failing to count animals

that were present but not observed. Thus, a sample of nt individuals is distributed as a

binomial random variable such that

nt ∼ binomial(Nt, pt) (4)

Nt ∼Poisson(µ) (5)

µ ∼ gamma(α, β), (6)

where Nt is the total population size during sample t and µ is the overall average number of

individuals that use the study area during the sampling intervals. The detection probability

pt = Rt

Mt
is defined as the ratio of the number of resighted marks (Rt) out of the total number

of marked individuals (Mt), during the tth survey, similar to the classical Lincoln-Petersen

estimator (Otis et al., 1978; Seber, 1982). Auxiliary data must be used to determine pt to

avoid identifiability problems, because both Nt and pt are unknown.

We explicitly modeled the movement behavior of marked individuals using location data

collected with telemetry (VHF), and, in turn, we estimated the true number of marked

individuals available for sampling during census. We made the assumption that closure only
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applies on the time scale of the location data intervals. Additional assumptions include that

detection does not vary with any environmental heterogeneity, and that individuals do not

alter behavior resulting from the initial capture.

2.1.3 Elk in Rocky Mountain National Park

The method we offer is general, and could apply to any species that moves in and out

of a static study area during repeated surveys across a season. We developed the approach

to provide estimates of population sizes corresponding to a fixed spatial domain targeted by

management. Estimates reflect the number of individuals that use this domain, rather than

a spatially constant population size, because environmental impact is based on the use of

the conservation area.

We illustrate the approach using data on the wintering elk population in the Estes Valley,

which consists of lower elevation areas on the eastern side of Rocky Mountain National Park

(RMNP) and in the adjacent town of Estes Park, Colorado (EP). Management decisions

based on abundance are made annually and require an estimate for the average number of

elk using the park during the winter.

Aerial survey methods were used to survey elk in RMNP for twenty years (1994-2014),

however, the high costs and dangerous conditions of flying over the eastern slope of the

Rocky Mountains during the winter motivated a change to ground survey methods. We

used weekly VHF telemetry data collected throughout the winter months to determine the

number of marked animals available in the region during ground surveys, where total counts

of groups and counts of marked individuals were made along 10 road transects to obtain the

abundance of elk in both RMNP and EP.

We developed this model to understand movements of elk across static park boundaries,

as well as to develop a ground-based survey method that could be repeated multiple times

during the winter season to understand temporal variation in elk abundance on the winter

range within RMNP and EP.
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2.1.4 Data description

Approximately twenty volunteers drove road transects on the winter range of RMNP and

EP. The volunteers recorded counts (ynt) of elk groups, as well as the number of collared

elk present (mt) during three days during the first or second week of each month of winter

(November-March). The average total number of elk per day within each week, rounded to

the nearest integer, (nt) were used as data in the N -mixture model of equation 4 to account

for sampling variability within survey weeks.

We used the weekly ground telemetry locations of approximately 150 collars that were

deployed by the National Park Service, and Colorado Parks and Wildlife (Figure 2.1) to

correct for animal movements across park boundaries in the model described below. The

dates of collar deployment for each collar are known.

Figure 2.1: Observed telemetry location data over time are represented by points. The green
area represents Rocky Mountain National Park (RMNP) and the yellow region represents
the town of Estes Park (EP). Telemetry locations were collected by two government agencies,
the National Park Service (green points) and Colorado Parks and Wildlife (blue points).
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2.1.5 Movement Model

Ideally, we would know the true locations of these collared elk every week, although

realistically, the true state of the collared elk location was not always observed perfectly.

We used a hierarchical, state space model to account for the movement of elk among three

possible locations. We also incorporate observations of the marked individual’s status, alive

or dead.

First, we describe a process model of the underlying true condition of the collared elk.

We define a vector of seven mutually exclusive categories, or “true states” (Table 2.1). The

three location categories indicate that the ith elk is either alive or dead within RMNP, EP,

or outside the study area (generally the foothills). These areas can be seen in Figure 2.1

with all telemetry observations throughout the winters from 2011-2016.

Table 2.1: We define a vector xi,t with a 1 in one of seven mutually exclusive true states of
the ith collared elk during the tth week of winter, with zeros elsewhere. We define a vector
yi,t with a 1 in one of ten mutually exclusive observed states of the ith collared elk during
the tth week of winter, with zeros elsewhere.

Element j Definition

x1,t Alive in RMNP
x2,t Alive in EP
x3,t Alive outside of Estes Valley
x4,t Dead in RMNP
x5,t Dead in EP
x6,t Dead outside of Estes Valley
x7,t Out of study
y1,t Observed alive in RMNP
y2,t Observed alive in EP
y3,t Observed alive along RMNP/EP boundary
y4,t Observed alive outside the Estes Valley
y5,t Observed alive, but no information on location is obtained
y6,t Observed dead in RMNP
y7,t Observed dead in EP
y8,t Observed dead outside the Estes Valley
y9,t Unobserved
y10,t Out of study
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Θ =



φπ1,1 φ (1− π2,2)π2,1 φ (1− π3,3) (1− π3,2) 0 0 0 0
φ (1− π1,1)π1,2 φπ2,2 φ (1− π3,3)π3,2 0 0 0 0

φ (1− π1,1) (1− π1,2) φ (1− π2,2) (1− π2,1) φπ3,3 0 0 0 0
(1− φ)π1,1 (1− φ) (1− π2,2)π2,1 (1− φ) (1− π3,3) (1− π3,2) 0 0 0 0

(1− φ) (1− π1,1)π1,2 (1− φ)π2,2 (1− φ) (1− π3,3)π3,2 0 0 0 0
(1− φ) (1− π1,1) (1− π1,2) (1− φ) (1− π2,2) (1− π2,1) (1− φ) (π3,3) 0 0 0 0

0 0 0 1 1 1 1


. (7)

Element Definition
π1,1 Probability that an animal in RMNP at time t stays in RMNP at time t+ 1
π1,2 Conditional on the animal moving from RMNP, it moves to EP
π2,2 Probability that an animal in EP at time t remains in EP at time t+ 1
π2,1 Conditional on the animal moving from EP, it moves to RMNP
π3,3 Probability that an animal outside the Estes Valley at time t remains outside at t+ 1
π3,2 Conditional on the animal moving from outside the Estes Valley, it moves to EP

Figure 2.2: The matrix Θ combines transition probabilities (πi,j) for the ith location during
week t and jth location during week t+1 to describe the movement process between RMNP,
EP, and whether individuals move outside the study area or enter the study area.

We used a vector of the true states (xi,t) to represent the true, unobserved location and

condition of the ith collared animal at week t of winter. Individuals were denoted as out

of the study if they were not yet collared or had died during a previous week of winter. A

matrix of across winter histories of the state of the ith individual, Xi, consists of a collection

of the true state vectors across all time points. Thus, each column of Xi represents a weekly

time point for i = 1, ..., I collared elk. We assume a Markovian movement model, such that

the probability of an elk moving from one state to another depends on the state of the elk

during the previous point in time. The probabilities of the individual moving among states

are described in Figure 2.2. We define a constant weekly survival probability φ independent

of movement and inclusive of harvest and incorporate this probability into the transition

matrix. A multinomial distribution was used to model the true latent state of the animal at
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time t− 1 where

xi,t ∼ multinomial(1,Θxi,t−1), (8)

using the transition matrix Θ (Figure 2.2).

If we could actually observe these true states of the elk, then estimating the movement

and abundance would be unnecessary because we would already know the status of the

population without uncertainty. However, there is uncertainty in the observation process –

the true state (Table 2.1) was related to the observed state (Table 2.1) through telemetry

data.

D =



pspvpd 0 0 0 0 0 0
0 pspvpd 0 0 0 0 0

pspv (1− pd) pspv (1− pd) 0 0 0 0 0
0 0 pspv 0 0 0 0

ps (1− pv) ps (1− pv) ps (1− pv) 0 0 0 0
0 0 0 ps 0 0 0
0 0 0 0 ps 0 0
0 0 0 0 0 ps 0

1− ps 1− ps 1− ps 1− ps 1− ps 1− ps 0
0 0 0 0 0 0 1


. (9)

Parameter Definition
ps Probability that the individual is observed.
pv Conditional on being observed, the probability that information on location is obtained.
pd Conditional on being observed with location information,

the probability if it is in RMNP or EP.

Figure 2.3: Detection probabilities are defined for the observations of VHF collared elk and
combined in the detection matrix D.

A multinomial distribution was used to model the set of possible outcomes of observable

states that arise from the underlying latent process. We link the observations of the state of
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the collared elk to the true states of the elk using a detection matrix D such that

yi,t ∼ multinomial(1,Dxi,t), (10)

where the detection matrix and probabilities are defined in Figure 2.3.

The number of marked individuals that could possibly be seen during ground census were

calculated using the sum of the state vectors for the two geographic regions of interest during

week t. The true number of collared elk in RMNP is
∑

i x1,i,t and for EP it is
∑

i x2,i,t. Recall

that x1,i,t represents whether the ith collared elk during the tth week of winter is either alive

and in RMNP (1) or not (0). Similarly, the state of the elk with regards to EP (x2,i,t)

is either a 1 (present) or 0 (not present). We defined the number of marks (Mt) equal

to the summation of the state vectors for the corresponding region of interest. Thus, the

denominator for the detection probability in Equation 4 for the elk in RMNP is
∑

i x1,i,t

and similarly, the denominator in the detection probability for the elk in EP is
∑

i x2,i,t.

Movements between RMNP and EP are not independent because these states are mutually

exclusive. However, because we explicitly model the movement across these regions, we do

not need to incorporate the correlation between the abundance estimates for each area.

2.1.6 Calibration model for resights

Perfectly observed resights of collars is a typical assumption of mark-recapture estimators.

Estimates of population sizes are quite sensitive to violations of this assumption. One of

the strengths of the Bayesian approach for learning about model parameters is that it is

straightforward to alter the model to accommodate idiosyncrasies in the data, in this case,

the failure to observe all marks that were present. The National Park Service deployed brown

telemetry collars within RMNP to make collars less visible to park visitors. However, this

meant that observers counting elk were not always able to see all collars present in a group.

There were obvious errors in the number of marks observed during the ground count (mt)

leading to potentially serious biases in estimates of population size. This was particularly
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problematic when the elk were aggregated into large groups, which is common for calf and

cow herds during winter. We collected data and developed a calibration model to account

for the collars that were present but overlooked.

We observed “true” counts of collars using the VHF signal of collared elk within sighted

herds, simultaneous with the ground count surveys. These locations were collected by expe-

rienced staff in extremely close physical proximity to the sighted herds to minimize errors.

We assumed that the detection process depended on the size of the herd. The higher the

number of elk in a group, the less likely that all of the collars were correctly counted.

We used an N -mixture model approach because we know the true number of marked

elk within a sighted group from the telemetry signal. Let zt,j be the true number of marks

in the jth observed herd within week t of winter. Also note that the observed ground

count (ycount,t), either in EP or in RMNP is the sum of all the herds counted in each area

(ycount,t =
∑

j nherd,t,j). The proportion of resighted collars was estimated as a function of

elk herd size. The model for the resights with l = 1...L observed true telemetry marks (zl)

is

ml ∼ binomial (zl, gl (β0, β1)) , (11)

gl (β0, β1) =
exp(β0 + nherd,lβ1)

exp(β0 + nherd,lβ1) + 1
, (12)

β0 ∼ normal(0, 5), (13)

β1 ∼ normal(0, 5), (14)

where β0 and β1 were estimated using data consisting of the true marks that were collected

with telemetry during a subset of surveys, in both RMNP and EP. A vague prior distribution

of normal(0, 5) was used for the coefficients (β) in the calibration model. We applied the
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coefficients from this model, estimated from a single year of data (2014), to all of the surveyed

groups within the five years of the study. We calculated the posterior distributions of the

calibrated marks, which were derived parameters calculated using the total number of collars

within RMNP and within EP that were summed across the transects within each area as

zk,t,j =
mk,t,j

gk,t,j (β0, β1)
, (15)

zk,t =
∑
j

zk,t,j, (16)

for the jth herd, during the tth week of the k = 1, ..., 5 years. The moment matched

(Hobbs and Hooten, 2015) posterior mean and standard deviation of the maximum number

of collars within survey weeks was used in the prior distribution for the number of resights for

the numerator in the detection probability in Equation 4. We chose the maximum because

multiple day surveys often reported multiple sightings of the same collars within a single

week, but additional collars were also seen on certain days.

Thus, the probability of detection for the tth week of winter in RMNP (Eq. 4) was

pRMNP,t =
zRMNP,t∑

i x1,i,t
, (17)

and similarly, the detection probability for the elk in EP (Eq. 4) was

pEP,t =
zEP,t∑
i x2,i,t

, (18)

with a prior on the corresponding zRMNP,t and zEP,t of

zt ∼ gamma

(
z2mn,k,t

z2sd,k,t
,
zmn,k,t

z2sd,k,t

)
. (19)

As expected, we found an inverse relationship between herd size and collar detectability

(Figure 2.5). We assumed all observers were equally skilled and data were not collected to

capture variability among observers because the pool of volunteer ground counters was large

and changed throughout the surveys.
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2.1.7 Model Fitting

Standard uniform prior distributions were chosen for movement, survival, and detection

probabilites. One ground count survey from the second year of study was omitted from the

analysis due to inaccurate counting. The prior distribution for the average across winter mean

of elk in both RMNP and EP was specified as gamma(3, .01), based on prior information

from previous years of study that the average number of elk approximately ranged in the

low to mid hundreds, in the range of 200 to 400 individuals in either area (Ketz et al., 2016).

The full hierarchical Bayesian model, with the corresponding directed acyclic graph, as

well as the joint and posterior distributions are provided in Appendixes 5.1.1 and 5.1.2,

respectively. We verified that parameters could be accurately recovered during model fitting

using simulations based on known parameters. The model was fit using JAGS (Plummer,

2014a) with the ‘dclone’ package (Sólymos, 2010) for parallel computation of the ‘rjags’

package (Plummer, 2013) in R (R Core Team, 2016). Three chains consisting of 200,000

Markov chain Monte Carlo iterations with a burn-in of 50,000 iterations were generated.

Trace plots, ACF plots, and the Gelman-Rubin (Gelman et al., 2014) diagnostics indi-

cated convergence of virtually all of the marginal posterior distributions of model parameters

and latent states. Convergence problems arose for the approximation of the posterior dis-

tributions of three of the model parameters, namely for the derived probability of detection

from one of the months during the first year of study, and for two of the derived monthly

probabilites of detection during the second year of the study. However, in all instances,

the across winter average population size of elk successfully converged, so inference for this

parameter is valid. After one monthly survey from the third year of the study was removed,

posterior predictive checks showed no evidence of lack of fit (Gelman et al., 2014) for all

years.
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2.1.8 Model Comparisons

We considered three additional models of abundance. Ideally, we could obtain the abun-

dance of this population without using mark-recapture data for cost-effective future ground

surveys. Therefore, we modeled the ground count data in an unmarked context using the

Dail-Madsen model in the Bayesian framework (Dail and Madsen, 2011). We specified the

10 road transects as sites for spatial replication and used 15 surveys of counts from each

winter across the years to obtain the average number of individuals in the combined survey

region (RMNP and EP) for each year.

We modeled the mark-recapture telemetry data with the Jolly-Seber model, useful only

for model comparison because the collars were deployed in a Cormack-Jolly-Seber context

and initial captures were not necessarily fully random nor consisted of marks of all individuals

in sighted/resighted groups. We compared the results of our N -mixture model with the Jolly-

Seber approach by approximating distributions of abundances across winter for each year

separately using the Bayesian occupancy parameterization of the Jolly-Seber model (Royle

and Dorazio, 2008; Kéry and Schaub, 2011).

We then developed a mark-recapture N -mixture model similar to Pollock’s robust de-

sign in a Bayesian framework (Pollock, 1982; Kendall et al., 1997), without adjusting the

number of marked individuals using the state-space model of telemetry data. We specified

a primary sampling period for each of the five months of winter, in which temporary em-

igration was permitted. We assumed closure within the ground survey weeks (secondary

samples) where we used repeated count surveys and used the proportion of re-sighted marks

to the total number of marks for the detection probability. We did not correct the number

of marks available for sampling using the auxiliary telemetry data. All of these models were

approximated using MCMC and standard diagnostics indicated convergence of all posterior

distributions.
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2.2 Results

The estimated population sizes in RMNP and EP were substantially lower than the

historical estimates of overabundant elk on the winter range (Ketz et al., 2016; Hess, 1993;

Lubow et al., 2002) (Figure 2.4 and Table 2.2). The median of the posterior distribution of

the population size in the study area as a whole ranged from a low of 488 individuals in 2012

with an equal-tailed Bayesian credible interval (BCI =462, 515), to a high in 2014, with a

median of 825, (BCI =747, 918) individuals (Table 2.2 and Figure 2.4).

The number of elk that used RMNP more than doubled between 2012 and 2013, from

171 (BCI=158, 187) to 422 (BCI=372,478) individuals. Increases in the population on this

time scale were more likely to result from the fluid connectivity of the sub herds that also use

other areas, such as EP or the foothills during the winter than from increased recruitment

of the same animals within RMNP. These results highlight the fact that movement between

RMNP, EP, and the foothills is an important process that must be accounted for during

abundance estimation.
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Table 2.2: Five years of the average number of elk on the winter range from 2012 through
2016 for RMNP (µRMNP), EP (µEP), and the Estes Valley as a whole (µVAL). The right two
columns represent the 0.025 and 0.975 quantiles of the marginal posterior distributions of
the estimated parameters.

Parameter Year Mean Median SD 0.025 0.975
2011 321 321 15.1 293 352
2012 171 171 7.2 158 187

µRMNP 2013 423 422 27.1 372 478
2014 420 418 42.1 344 508
2015 244 238 28.3 207 319
2011 222 222 7.7 207 238
2012 317 317 11.4 295 339

µEP 2013 306 306 13.9 280 334
2014 407 406 14.3 380 436
2015 379 379 16.4 348 412
2011 544 543 16.9 511 577
2012 488 488 13.5 462 515

µVAL 2013 729 729 29.0 674 788
2014 827 825 43.7 747 918
2015 623 619 32.2 573 702

Posterior distributions of the process model parameters were generated for each year

of the study separately, and showed little influence from the prior distributions (Appendix

5.1.3, Figures 5.2,5.3,5.4). The weekly survival probabilities were transformed into annual

estimates of survival, using the transformation φT (Noon and Sauer, 1992), where T was the

number of weeks of winter telemetry observations within each year. Median annual survival

probabilities increased during the first four years of the study, and decreased during the last

year (Table 2.3).

Movement probabilities were consistent among all years and had a similar trend within

years (Appendix 5.1.3, Table 5.2). For example, in 2015, collared individuals that were in

RMNP were more likely to remain (median π11 =0.88 (BCI = 0.86,0.9)) than they were to

leave (median 1 − π11 =0.12 (BCI = 0.1,0.14)). Similarly, the median probability that a

collared individual that was in EP at time t (π22), would stay was 0.85 (BCI = 0.83,0.88).

Although collared individuals were more likely to remain in their location based on these
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Figure 2.4: The median number of elk using Rocky Mountain National Park, µRMNP (circles),
and in the town of Estes Park, µEP (triangles), shows the population during five winters. The
95% Bayesian credible intervals for RMNP (dark gray) and EP (light gray) are the shaded
regions.

transition probabilities, movement between these areas, as well as outside of the study region

was occurring because the mass of probability (> .999) in the posterior distributions of

movement parameters (π) did not include 1.

The probability of detecting a collared individual (ps) decreased throughout the years of

the study (Appendix 5.1.3, Table 5.1). Low probabilities of detecting the marked individuals

(ps) justifies the use of the state space approach for modeling telemetry data, where missing

data are treated as unknown parameters and the posterior distributions of the true locations

can be approximated. After an individual was detected, information about the location of

that individual was likely obtained with posterior median detection probabilities pd = pv = 1.

We found an inverse relationship between herd size and collar detectability, such that

the probability of missing marks within a sighted group decreased by −0.0099, (SD=0.0041)
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Table 2.3: Annual survival (φT ) posterior distribution summary statistics derived from a
constant weekly survival estimated from the weekly telemetry data. The right two column
headings represent the 0.025 and 0.975 quantiles of the marginal posterior distributions.

Year Mean Median SD 0.025 0.975
2011 0.866 0.871 0.047 0.763 0.943
2012 0.927 0.929 0.025 0.872 0.968
2013 0.927 0.929 0.021 0.880 0.963
2014 0.971 0.973 0.014 0.937 0.992
2015 0.961 0.964 0.017 0.922 0.987

as herd size increased with each additional elk (Figure 2.5). The observed proportions of

collared elk accurately detected during ground counts in both RMNP and EP show high

variability in sightability, ranging from 0.13 to 1.0.

Summary statistics of the posterior distributions for the average number of elk in the

winter range of the Estes Valley showed the altered inference that occurred when different

models and different data of the same population were used (Table 2.4). The Jolly-Seber

model, which only considered abundance using the telemetry data, had the lowest mean pop-

ulation sizes, with medians below the ground count population totals. The open population

Dail-Madsen model posterior means, using only the ground count data, were nearly nine

times greater than the Jolly-Seber model posterior means. When observation error of the

telemetry data were ignored, the posterior means of the average overwinter number of elk

were more than three times greater than the posterior means using the state-space model of

movement of the telemetry data.
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Figure 2.5: The probability of detecting collars within a group decreased with group size,
with median estimates of fitted values of the detection probability (closed circles) and 95%
Bayesian credible intervals of fitted values (shaded gray). The observed proportions of the
number of collars detected (open circles) show the high variability in sightability, and that
collars are observed more accurately within smaller groups.
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Table 2.4: Summary statistics of the posterior distributions of the average overwinter popu-
lation sizes (µVAL) of elk in Rocky Mountain National Park and Estes Park for 2011 to 2015
using multiple models, including the open population Lincoln-Peterson style model described
above (LP-move), the Dail-Madsen model (DM), the model similar to Pollock’s robust design
(Robust), and the Jolly-Seber model (JS). The right two columns represent the equal-tailed
Bayesian 95% credible intervals

Models Year Mean Median SD X0.025 X0.975

2011 544 543 16.94 511 577
2012 488 488 13.50 462 515

LP-move 2013 729 729 29.01 674 788
2014 827 825 43.71 747 918
2015 623 619 32.17 573 702
2011 9049 9045 266.19 8544 9584
2012 9223 9218 255.37 8740 9735

DM 2013 8477 8472 249.63 8007 8978
2014 8842 8837 249.48 8371 9343
2015 8599 8594 251.92 8124 9105
2011 1378 1378 20.72 1338 1419
2012 2832 2832 37.37 2760 2906

Robust 2013 2708 2708 40.09 2631 2788
2014 3067 3067 39.29 2991 3145
2015 2741 2741 38.33 2667 2817
2011 79 79 0.93 78 81
2012 139 139 1.61 137 143

JS 2013 149 149 1.67 147 153
2014 140 139 2.34 136 145
2015 139 139 2.14 135 144
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2.3 Discussion

We developed a Bayesian hierarchical model that exploited multiple sources of data to

estimate animal abundance when scales of animal movement are greater than the fixed

spatial domain of management decisions. We illustrated the use of our approach to obtain

the average over-winter population sizes of elk on the winter range of the Estes Valley during

five years of surveys (see Figure 2.4 and Table 2.2). We used movement data to improve

inference for animal abundance within a fixed study area and used auxiliary detection data

to calibrate missed resights. Abundance estimators typically only provide information about

the size of a population, however, our model also provided inference for multiple demographic

population parameters that can be useful for management.

Movements of animals across management jurisdictions pose challenges for estimating

population sizes because the scale of inference often fails to correspond to the scale at which

decisions are made. For example, movements can occur on large geographic scales, such as

the seasonal migration of elk from the alpine during summer to lower valleys during winter

(Hess, 1993). Movements can also occur on small geographic space and time scales, such

as movements among the conservation area of RMNP, the nearby town of Estes Park, and

the foothills, throughout winter. These smaller scale movements can confound efforts to

accurately estimate population sizes because the number of individuals using the managed

areas varies. We explicitly modeled movements with a Markovian process model coupled

with a multinomial data model of telemetry location data. Thus, we were able to accurately

estimate the number of marked individuals available for sampling during any given survey.

The movement probabilities showed a consistent trend; elk were more likely to remain in their

location from one week to the next, than to move to other areas. Nevertheless, study area

boundary movements were sufficiently occurring to necessitate accounting for these small

scale movements in the model.
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Median annual survival probabilities during the later years of this study (Table 2.3)

resembled those of Brodie et al. (2013), who estimated annual elk survival of 0.95 in elk pop-

ulations without predators, and 0.94 in elk populations that were not hunted. However, the

low survival probability for the first year, 0.87 (BCI=0.76,0.94) is similar to the estimated

survival probability in Monello et al. (2014) of 0.85 (BCI=0.75,0.93), with overlapping cred-

ible intervals. The low probability of survival is likely due to the fact that all of the elk

were captured and collared in RMNP, and a high proportion of collared elk wintered in the

park during that year. The increase in annual survival for subsequent years may be due to

the inclusion of elk that were captured and collared outside the park, inclusion of elk that

wintered in areas other than RMNP, and the greater elk population expanding into new

habitat use areas outside the park, where sources of mortality differ and chronic wasting

disease prevalence has been found to be lower (B. Kraft, R. Monello, M. Miller, L. Wolfe

unpublished data).

Elk aggregate into large herds during winter, particularly for calf and cow groups. These

large groups can prevent observers from resighting marks, which in turn, can lead to biased

overestimates of the population size. We were able to calibrate the resighted marks using

auxiliary telemetry data collected during ground census and adjusting for imperfect detection

of resights. Ideally, these auxiliary data could be collected throughout the study, but we

were only able to collect these observations during a small fraction of ground surveys and

then applied the results to all of the surveys across all years. In some cases, we might be

overcompensating for missed resights, as reflected in the high probabilities of detection within

the N -mixture model during some of the winter survey weeks, which then led to convergence

problems in the MCMC samplers. The average population sizes across all winter months

were not sensitive to this over-compensation because the estimates borrowed strength from

the repeated surveys and hierarchical structure of the model (Hobbs and Hooten, 2015).

We obtained population sizes during each month of winter, however, given the convergence

diagnostics, we suggest caution interpreting these statistics.
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We assumed that the probability of detection was constant among all collared elk, despite

the fact that brightly colored collars deployed by Colorado Parks and Wildlife were more

readily visible to ground count volunteers than the brown collars deployed by the National

Park Service. Additionally, the telemetry data were based on collars deployed only on adult

female elk. We applied the estimates of the probability of detection in the abundance es-

timator to data consisting of all sex and stage classes. This is a realistic assumption for

juveniles and yearling males, because juveniles, yearling males, and adult females aggregate

into large herds during winter. Adult males form separate groups and typically have lower

probabilities of detection. Because adult males comprise a relatively small proportion of the

overall population that uses RMNP and EP, assuming a constant probability of detection for

all classes is unlikely to have a substantial influence on overall population size predictions.

There was notable variability of the elk population sizes in RMNP throughout the years

of study (Figure 2.6). This variation could result from variable snow depth, moisture regimes

(there were drought conditions through 2013), forage conditions, development in the town of

Estes Park, and increased fenced areas in the park winter range. The estimated number of

elk in the Estes Valley, CO was much lower than historical estimates (Lubow et al., 2002),

due to several reasons including a population reduction prescribed in the elk and vegetation

management plan (National Park Service, 2007) and a subsequent increase in the number

of elk that winter outside of the Estes Valley in the foothills. The population of elk in

RMNP was lowest during the second season of the study, during the 2012-2013 winter, with

the median of the marginal posterior of µRMNP = 171 (BCI = 158,187). This estimate was

lower than a suggested minimum limit of 200 elk as described by recent ecosystem models

developed for the winter range (National Park Service, 2007). Subsequent increases were

likely due to a larger number of elk remaining in the Estes Valley and RMNP during winter,

versus going to the foothills, rather than resulting from greater survival or recruitment.

Aerial surveys were used to census the elk in RMNP annually from 1994 to 2014. These

surveys were expensive, dangerous, and required staff to be constantly available throughout
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winter to exploit rare periods of weather suitable for flying. Expense and limited opportunity

for flying prevented multiple samples so that during most years, only a single survey was

made. Overwinter variability in population size was necessarily ignored during these years.

Ground based census methods, consisting of monthly counts throughout winter, permitted

estimates of sampling variation. However, ground surveys had their own set of limitations,

such as the restriction of observations to occur close to accessible roads, and difficulty in

properly training volunteers. The National Park Service repeated samples to minimize the

impact of these potential problems. Annual aerial surveys that were corrected using a sighta-

bility model (Lubow 2015, unpublished report) were similar to the medians of the posterior

distributions of population sizes based on the N -mixture model used here (Figure 2.7).

Multiple models showed unrealistic results of the overwinter means of abundance across

the years of the study (Table 2.4). The Dail-Madsen model led to posterior means that were

unrealistically high, and the Jolly-Seber model led to posterior means that were unrealisti-

cally low. Not accounting for temporary emigration, observation error of the telemetry data,

and observation error of the resighted marks also led to unrealistically high mean abundance.

While population sizes obtained using alternative models and different data are naturally

expected to differ, the substantial variability in posterior means was surprising, and shows

the difficulty of implementation of ground based methods for surveys of large mobile wildlife

species.

Using a Bayesian approach enabled us to address sources of uncertainty in both the eco-

logical processes as well as measurement error. We were able to bring together multiple

commonly collected data sources, and account for their corresponding variability. Our ap-

proach is particularly useful for supporting estimates of abundance of mobile animals that

move in and out of conservation areas.
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Figure 2.6: The median number of elk using Rocky Mountain National Park thoughout
winter (circles), and in the town of Estes Park (triangles), shows the population during five
seasons. The 95% Bayesian credible intervals for RMNP (dark gray) and EP (light gray)
are the shaded regions. The lines with small dashes represent the across winter averages in
RMNP, µRMNP, while the lines with large dashes represent the across winter averages of elk
in EP, µEP.
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Figure 2.7: Medians of the posterior distributions of the overwinter population sizes in Rocky
Mountain National Park (open circles), with equal-tailed Bayesian credible intervals (gray
shaded region). Estimated number of elk for each aerial survey based on the sightability
model of Lubow et al. (2002) (closed circles). Vertical bars are ±2 standard errors. No aerial
surveys occured in 2015.
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CHAPTER 3

A HIERARCHICAL BAYESIAN NESTED MULTINOMIAL APPROACH

FOR HANDLING MISSING CLASSIFICATION DATA 2

Demographic population models use the life cycle of a species to link individual organisms

to population dynamics as a whole (Caswell, 2001). These models rely upon classification

data to describe the sex, age, or stages of individuals within the population (Caswell, 2001).

However, uncertainty associated with these data can alter the inference of vital rates, such

as stage or age survival probabilities in marked populations (Challenger and Schwarz, 2009;

Kendall, 2004). Ignoring uncertainty in these models can also alter other demographic statis-

tics such as sex ratios (Bender, 2006), which are important for conservation, monitoring, and

wildlife management. Physical characteristics, such as differences in color, size, alternative

plumage (Rohwer, 1975), and presence or absence of features such as antlers in ungulates

(Smith and McDonald, 2002), etc., are used to differentiate stages or sex categories. Be-

havioral differences, including sexual segregation (Bowyer, 2004; Gregory et al., 2009) and

alternative auditory song patterns (Volodin et al., 2015), are another method used to classify

individuals. Models depend upon the assumption of perfectly observed mutually exclusive

classifications (Agresti, 2002), which is oftentimes unrealistic.

Many species exhibit classification ambiguity, which means that animals may be counted,

but cannot be positively classified. As a result, classification data almost always include a

category for counts of unclassified individuals. Handling these unknowns has been demon-

strably problematic in surveys of aquatic (Sequeira et al., 2016; Tsai et al., 2015; Cailliet,

2Ketz, A. C., Johnson, T. L., Hooten, M. B., & Hobbs, N. T., A hierarchical Bayesian nested multinomial
approach for handling missing classification data
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2015), terrestrial (Boulanger et al., 2011; White et al., 2001), and aerial (Nadal et al., 2016;

Cunningham et al., 2016) species. Classification uncertainty has multiple causes, including

physical and behavioral ambiguities, observer skill level, and sampling effort (time). Volun-

teer participants in ecological surveys are used with increasing frequency (Silvertown, 2009).

The skill level of an observer can be difficult, if not impossible to assess, mostly because

numerous factors can influence observational ability including environmental variability such

as weather, methodological variability such as using scopes or the naked eye, and even the

behavior of the surveyed individuals or groups themselves can alter the reliability of clas-

sification data. These uncertainties can be mitigated by using only skilled observers or by

specialized training, however, even experts can be unable to completely classify observed

individuals (Conn et al., 2013; Smith and McDonald, 2002).

Conn et al. (2013) describe three general types of observation problems for classifica-

tion data, including misclassification, partial observation, or both. In the case of partial

observation, individuals are only assigned a category when the observers are certain and the

remainder are assigned to an ‘unknown’ category. Partial observations are a form of missing

data and can lead to bias for stages or ages of a single species when the age distribution in

wildlife populations are not known (Conn and Diefenbach, 2007).

The three types of missing data patterns include missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR) (Little and Rubin, 2002).

Inference depends upon the missing data mechanism, and how it is accounted for in the model

(Nakagawa and Freckleton, 2008). If the data are missing completely at random, the missing

data mechanism has no influence on the outcome of the observations, and can therefore be

ignored (Little and Rubin, 2002). In ecological studies, the distribution of individuals within

a population frequently do not arise from strictly random circumstances even if stochasticity

is present. Treating the data that arise from observations of these systems as completely

random leads to spurious inference of population trends.
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There are several approaches for handling missing data, including ignoring the missing

data, data augmentation, and data imputation (Nakagawa and Freckleton, 2008). Bayesian

models for missing data in a multinomial framework (Agresti and Hitchcock, 2005) have been

used extensively in social and health sciences for dealing with non-ignorable nonresponse data

in which individuals may omit answers to some questions or drop out of the study altogether

(Kadane, 1985; Nandram and Choi, 2010). These existing methods rely on auxiliary data,

such as answers to questions in surveys before drop-out, that can be used as covariates to

account for the missing data. However, in ecology, these data are not necessarily available

or relevant, necessitating an alternative approach. In this work, we developed multiple

approaches for handling partially classified data, in which observers recorded unknowns when

they were unsure of the category of individuals.

We use the multinomial distribution to model classification counts and alter the model

structure to account for the partial observations by incorporating the missing data mechanism

into the model structure. Weak identifiability of the parameters is a fundamental problem

for the multinomial distribution and is amplified by flat priors used for the proportions of

each level, as is common practice when using the conjugate Dirichlet distribution (Swartz

et al., 2004). Introducing additional parameters to account for the non-ignorable partial

observations can exacerbate these identifiability problems, therefore, auxiliary data should

be used when possible (Conn and Diefenbach, 2007). We developed two approaches for

handling partially observed MNAR data when auxiliary data are not available, by explicitly

modeling how the missing data observation process is influencing the observation process.

We urge ecologists to incorporate their knowledge of the system into models (Hobbs and

Hooten, 2015), even if auxiliary data are unavailable or difficult to obtain, to account for the

species or stages that are observed and not classified because of uncertainty.

We used a simulation to demonstrate the bias that occurred when the missing data

mechanism was ignored for partial observations and how this influenced standard metrics of

wildlife populations including demographic ratios (Skalski et al., 2005). Fully observed clas-
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sifications of ungulates can be particularly difficult to obtain because physical characteristics

of the stages of females can be hard to distinguish. We used the models developed here to

obtain the posterior distributions of the ratios of juveniles to adult and yearling females, and

the ratios of adult and yearling males to adult and yearling females for elk (Cervus elaphis

nelsoni) in Rocky Mountain National Park and Estes Park, CO across five winters.

3.1 Materials and Methods

We provide two approaches for modeling the data that properly accounts for uncertainty

arising from the unknown category. Data consisted of counts of individuals in J mutually

exclusive categories (yt,i), along with an additional category of unclassified individuals (zt,i).

The likelihood for the data model of these counts was equivalent for both models, and

different auxiliary data approaches were used for handling the unclassified data. In the first

model, we used a subset of the classification data from a year of the study to inform the

distribution of un-classifieds the following year. In the second model, we used a small subset

of the classifieds to inform the distribution of the un-classifieds within the same year and

excluded that subset from the original classification data.

The classification counts were modeled with a multinomial distribution assuming constant

proportions of each category across i = 1, ..., It surveys within t = 1, ..., T years, such thaty
z


t,i

∼ multinomial (Nt,i,pt) (20)

where Nt,i =
∑J

j=1 yt,i,j + zt,i. The vector of proportions (pt) includes both the proportions

for the j = 1, ..., J classes (πt) and the proportion of the unclassified individuals, pz,t. The

unclassified counts (zt,i) were modeled with a nested multinomial with proportions (ωt)

describing the J classes and the constraint
∑J

j=1 ωj,t = 1. Observed proportions for each
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category when J = 4 are

pt =



π1,t − ω1,t × pz,t

π2,t − ω2,t × pz,t

π3,t − ω3,t × pz,t

π4,t − ω4,t × pz,t

pz,t


. (21)

A prior Dirichlet was specified using independent gamma distributions (Gelman et al., 2014),

with a uniform prior for the unknown category.

πt ∼Dirichlet(αt) (22)

αt =α*t/α0 (23)

α0 =
J∑
j=1

α*j (24)

α*j ∼ gamma(.001, .001) (25)

pz,t ∼ uniform(0, 1). (26)

Additional data, such as environmental covariates or observations to assess the sampling

effort and expertise of observers were not collected in our study system. These data are

necessary to avoid identifiability problems for obtaining the posterior distributions of ωt.

Instead, we made two assumptions using knowledge of the species. We assumed the pop-

ulation was distributed in groups and that the composition of the groups depended on the

sex/stages of the individuals within those groups.

Sexual segregation is common in vertebrate species (Ruckstuhl and Neuhaus, 2005), par-

ticularly for ungulates (Bowyer, 2004), and leads to different compositions of assemblages.

Juveniles of both sexes, and yearling and adult females aggregate into large herds during
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winter, with the occasional presence of very few yearling and adult males. Conversely, year-

ling and adult male elk typically form segregated smaller herds during winter or demonstrate

solitary behavior (Bowyer, 2004). We assumed that unclassified individuals were likely the

result of difficult to distinguish juvenile, yearling and adult female herds.

We defined the subset of the data for the kth group within survey i of the tth year,

(xt,i,k), based on the criteria that the sum of the juvenile, yearling and adult female elk was

greater than the sum of the yearling and adult male elk (
∑2

j=1 xj,t,i,k >
∑4

j=3 xj,t,i,k), and that

there were no unclassified observations in these subsetted groups. Although this assumption

is highly specific for our study system, our approach is easily altered for other species,

particularly because sexual segregation and sexual dimorphism are common (Ruckstuhl and

Neuhaus, 2005).

In the first model, we used an empirical Bayesian approach (Deely and Lindley, 1981),

where all subsetted classification data from year t (xt,i,k) were used to predict the posterior

distribution of the unknowns the following year (ωt+1). For the first year of the study, we

defined a prior distribution for ω1 derived from moment matching proportions (Hobbs and

Hooten, 2015) based on the mean proportions from Peek and Lovaas (1968) for a winter

range area heavily populated by juveniles and adult female elk groups in Montana. The

empirical Bayes model for unclassified data was

xt,i,k ∼multinomial(
J∑
j=1

xj,t,i,k,ωt+1), (27)

ω1 ∼Dirichlet(23, 71, 4, 2), (28)

ωt+1 ∼Dirichlet(1, 1, 1, 1), (29)

for the kth group in the ith survey of the t = 1, ..., T − 1 years.
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In the second model, we used an out-of-sample approach where a small random sample

of the subsetted auxiliary data, x∗t,i,k, was used to predict the posterior distributions of the

proportions of each of the missing data classes ωt within that same year. The subsampled

data were removed from the overall data, such that y∗t,i = yt,i −
∑Kt,i

k=1 x
∗
t,i,k, ensuring that

the data were only used once. Thus, the out-of-sample model was

y∗t,i ∼ multinomial(N∗t,i,pt), (30)

where N∗t,i =
∑J

j=1 y
∗
j,t,i + zt,i. The nested model for the unclassifieds was

x∗t,i,k ∼multinomial(
J∑
j=1

x∗j,t,i,k,ωt), (31)

ωt ∼Dirichlet(1, 1, 1, 1). (32)

For comparison, we used a third model of the classifications suggesting a missing completely

at random process (hereafter, trim model), by ignoring the missing data given by

yt,i ∼multinomial(Nt,i,πt), (33)

πt ∼Dirichlet(αt), (34)

αt =α*t/α0, (35)

α0 =
J∑
j=1

α*j, (36)

α*j ∼ gamma(.001, .001). (37)

for j = 1, ..., J categories, i = 1, ..., It surveys and t = 1, ..., T years, where Nt,i =
∑J

j=1 yj,t,i.
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3.1.1 Model fitting

A simulation was conducted to test the ability of all models to find the posterior dis-

tributions of known parameters. The marginal posterior distributions were approximated

using Markov chain Monte Carlo (MCMC) using the ‘dclone’ package (Sólymos, 2010) for

parallelization of the JAGS software (Plummer, 2014a) in R (R Core Team, 2016). Each of

the models were fit separately, using 3 chains consisting of 100,000 MCMC iterations and a

burn-in of 25,000 iterations. Standard diagnostics indicated no lack of fit, and Gelman-Rubin

diagnostics indicated convergence of all posterior distributions (Gelman et al., 2014). We cal-

culated the difference between the predicted and true proportions of the simulated classes of

adult and yearling females because the asymptotic stable stage distribution is most sensitive

to variations in adult female survival (Gaillard et al., 2000), and because this proportion is

used for estimating demographic ratios (Skalski et al., 2005). For each MCMC iteration, we

derived the difference between the predicted values and the true value that was initially used

for generating data. The empirical Bayes model and the trim model were approximated with

varying values of the proportion of unclassified individuals, pz ∈ {0.1, ..., 0.7} to examine the

influence of bias when ignoring the proportion of unknowns. We then determined the influ-

ence of the out-of-sample size on the width of the equal-tailed Bayesian credible intervals of

the proportion of adult and yearling females by repeatedly fitting the out-of-sample model

for increasing sample sizes (L) of auxiliary data x∗t,i,k.

Five years of elk classification data were collected during ground transect surveys on the

winter range of Rocky Mountain National Park and in the town of Estes Park, Colorado

from 2012-2016. Fifteen surveys occurred throughout winter during each year (except twelve

surveys the first year) and were executed with volunteer observers. There was substantial

variation among volunteers in their ability to classify elk. Smith and McDonald (2002)

estimated the average discrepancies of classifications for antler-less elk, consisting of juveniles,
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yearling and adult females to be 14%, even for skilled observers, demonstrating the difficulty

of obtaining complete classification observations.

The posterior distributions of the proportions of elk in the four sex/stage classifications

across five years were approximated using all three models (empirical Bayes, out-of-sample,

and trim). We calculated the posterior distributions of the derived ratios of juveniles to adult

and yearling females, as well as the ratios of adult males to adult and yearling females. For

the out-of-sample model, we used a sample of 8 observations of the xt,i,k within each year

to approximate the posterior distributions of ωt. The posterior distributions of each of the

models were approximated using 3 chains consisting of 100,000 MCMC iterations. Gelman-

Rubin diagnostics indicated convergence of all posterior distributions (Gelman et al., 2014).

3.2 Results

Simulation results indicated that an increasing proportion of unclassified individuals (pz)

amplified the bias of the proportion of yearling and adult females (Figure 3.1 A) when

unknowns were ignored. Derived from π2,t, both of the ratios of juveniles and adult males

to adult and yearling females were overestimated (Figures 3.1 B and C). The equal tailed

95% Bayesian credible interval width decreased as the out-of-sample size increased, until

approximately 8-10 samples, after which very little change occurred for the credible interval

width (Figure 3.2).
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Figure 3.1: (A) The posterior distributions of the difference between the generated proportion
of π2 and the true value for the empirical Bayes approach (black circles), and ignoring the
unclassified data (red triangles), for increasing proportions of missing unclassified data. The
vertical bars represent the 95% equal-tailed Bayesian credible intervals. The horizontal
dashed line indicates no bias. (B) The increasing bias for the juvenile to adult and yearling
female ratios, and (C) the increasing bias for the ratios of adult and yearling males to adult
and yearling females, as the proportion of unknowns increases.
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Figure 3.2: The equal-tailed 95% Bayesian credible interval width of the proportion of adult
and yearling females (π2) in the simulation, for year 1 (orange), year 2 (light blue), year 3
(green), year 4 (dark blue), and year 5 (red) decreased as the size of the out-of-sample subset
of data increased.

The medians of the marginal posterior distributions of the proportion of adult and year-

ling females for elk in Rocky Mountain National Park, were similar for the empirical Bayes

and out-of-sample models, although differed substantially from the trim model (see Tables

3.1,5.3,5.4,5.5). The empirical Bayes and out-of-sample models had nearly completely over-

lapping marginal posterior distributions of the ratios of juveniles to adult and yearling females

throughout the years (Figure 3.3 A) and for the ratio of adult males to adult and yearling fe-

males (Figure 3.3 B). The posterior distributions for both ratios under both proposed models

were substantially different from the posterior distributions of the trim model.

The posterior distributions for the proportions of adult and yearling females (π2) and

proportions of adult males (π4) across all years of the study demonstrated the altered infer-
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ence that occurred when the partial observations were accounted for in the model (Figure

3.4). For three of the years, the posterior distributions of the proportion of adult males were

nearly identical for the empirical Bayes and out-of-sample models, but with no overlap of the

trim model, suggesting that the bias that occurs when ignoring the unclassified data greatly

alters inference.

Table 3.1: Medians of the posterior distributions of the proportion of each of the classes (πt)
from 2012 through 2016 for elk in Rocky Mountain National Park derived from the three
models including the empirical Bayes approach (EBA), out-of-sample (OOS), and ignoring
(Trim) approaches.

Year Parameter EBA Median OOS Median Trim Median

π1 0.148 0.152 0.148
2012 π2 0.534 0.561 0.546

π3 0.095 0.065 0.066
π4 0.223 0.222 0.239
π1 0.181 0.183 0.182

2013 π2 0.616 0.615 0.526
π3 0.066 0.054 0.063
π4 0.138 0.147 0.228
π1 0.179 0.188 0.183

2014 π2 0.595 0.576 0.519
π3 0.073 0.078 0.084
π4 0.153 0.158 0.214
π1 0.159 0.153 0.153

2015 π2 0.592 0.597 0.560
π3 0.063 0.055 0.065
π4 0.186 0.194 0.222
π1 0.201 0.203 0.202

2016 π2 0.587 0.577 0.577
π3 0.066 0.068 0.067
π4 0.146 0.151 0.153
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Figure 3.3: The marginal posterior distributions for (A) the ratio of juveniles to adult and
yearling females and (B) the ratio of adult males to adult and yearling females, from 2012
through 2016, using the medians (grey circles) of the empirical Bayes model with equal-tailed
95 % Bayesian credible intervals (grey shaded region), medians of the out-of-sample model
(yellow circles) and Bayesian credible intervals (yellow shaded region), and medians of the
trim model (red circles) and Bayesian credible intervals (red shaded region).
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Figure 3.4: The densities of the marginal posterior distributions for the proportions of each
stage/sex classes including juveniles (π1), adult and yearling females (π2), yearling males
(π3), and adult males (π4) from 2012 through 2016, using the empirical Bayesian approach
(grey), out of sample approach (yellow), and the trim model ignoring the unclassified data
(red).
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3.3 Discussion

Demographic and population models routinely use classification data for model fitting

(Skalski et al., 2005; Caswell, 2001). Uncertainty in classification data commonly arises

because individuals are counted but not classified, producing an “unknown” category. Cor-

recting for bias that can result from falsely assuming that this unknown category is propor-

tionally the same as the knowns is critical if these data are to be used for fitting demographic

models (Conn et al., 2013).

There are three problems with classification data, including misclassification, partial ob-

servations, or both (Conn et al., 2013). When classification counts are partially observed,

these data are likely to be missing not at random (Little and Rubin, 2002) because most

species are not distributed completely randomly. This is notable for ungulates because they

aggregate by sex (Bowyer, 2004). We developed multiple approaches for handling partially

classified data, in which surveyors recorded unknowns when they were unsure of the sex or

stage category of observed individuals.

We used a simulation to demonstrate the increasing sample bias that occured as the

number of unknown individuals increased when these observations were ignored (Figure 3.1).

The result is intuitive, but would not have occurred if the data had been missing completely

at random. As the out-of-sample size increased, there was no effect on the bias when the

proportion of partially observed groups remained constant (Figure 3.5). We showed that the

proportion of adult females was underestimated when unknowns were ignored (Figure 3.1).

In turn, this led to overestimation of sex and stage ratios.

We used the simulation to determine the number of samples required for an out-of-sample

approach, where a small subset of observations were used to estimate the proportions of

the unknown counts (Figure 3.2). Calculating the minimum sample size for a multinomial

model depends on several factors, including the number of categories and the values of the

proportions of each of the categories (Thompson, 1987). For this reason, we advise the use
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of simulation for determining the minimum sample size to use as much data as possible

for the data likelihood. Results suggested that in our study system, after approximately

8-10 observed groups (Figure 3.2), the width of the Bayesian credible interval no longer

decreased substantially. We chose to use an out-of-sample size of 8, to use the greatest

possible proportion of the data in the likelihood.

Simulations showed that the empirical Bayes model provided the most accurate bias

adjustment for the posterior distributions of the proportion of adult and yearling females

(Figure 3.6). The out-of-sample model was able to recover parameters, but the credible

intervals of the marginal posterior distributions of adult and yearling females proportions

were less centered around the true parameter values, although many of the equal-tailed 95%

Bayesian credible intervals were able to capture them.

The results of our case study showed little difference in the posterior distributions for

the empirical Bayes and out-of-sample models, but the proportions of adults of both sexes

were substantially different from the trim model (Figure 3.4). This suggests that there

may be no difference among years for the distribution of juvenile, yearling and adult female

groups, which calls into question the assumption of a time-varying composition explicit in

the empirical Bayes model. However, it could also mean that both models adequately adjust

for the bias resulting from ignoring partial classifications.

We made the critical assumption that the unclassified data arose from groups of juveniles

and adult females because adult and yearling males can be easily differentiated based on

their antlers (Smith and McDonald, 2002). Although this particular assumption is highly

specific for elk, there are numerous examples of other species where ecologists could apply

similar knowledge of the biology of the species, in order to subset the data for estimating the

proportions in the nested multinomial models that we developed. For example, bighorn sheep

(Ovis canadensis) in Colorado provide an identical classification problem to elk, because

juvenile, yearling, and adult females aggregate and are difficult to differentiate (George et al.,

2009). A different system for which our models could be useful is for biannual surveys of
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white-tailed ptarmigan. Classifications only occur for spring surveys when all individuals are

physically captured and sex/stage status can be accurately determined (Wann et al., 2014).

During fall surveys, approximately 20% of observed individuals cannot be classified because

the ptarmigan have not yet molted, so identification of sex is impossible for these individuals

(Wann et al., 2014). Because hunting liscenses are deployed in the fall, it would be useful for

managers to have an accurate post breeding fall estimate of sex and juvenile ratios (Soininen

et al., 2016). Thus, we could use the classification data from the spring surveys to determine

the unclassified ptarmigan distribution in autumn.

The two proposed models that account for missing data have strengths and weaknesses

that could be exploited for different study systems. Empirical Bayesian methods are typically

criticized for using the data twice and for assuming exchangability (Gelman, 2008). However,

for rare or difficult to detect species, empirical Bayes would be a better choice than the out-

of-sample model because all of the data collected are used in the data observation likelihood.

For species that are neither rare nor difficult to detect, such as caribou (Boulanger et al.,

2011), the out-of-sample model avoids using the data twice with little loss of information.

One of the fundamental assumptions of the multinomial distribution is that the outcomes

of each event are mutually exclusive and all inclusive (Agresti, 2002). In this paper, we devel-

oped a nested multinomial distribution to account for circumstances when this assumption

is violated. We used multiple approaches that overcame this assumption and improved infer-

ence. Another assumption of the multinomial model is that detection is constant for all class

proportions (Skalski et al., 2005). Elk sexually segregate (Bowyer, 2004; Gregory et al., 2009)

and consequently, it is unlikely that detection is constant or equivalent for all classes. We

explicitly rely upon their aggregating behavior to adjust the marginal posterior distributions

of the proportions of each of the classes.

Conn and Diefenbach (2007) provided a general statistical framework for estimating the

stage distribution of a sample when mis-classification rates could be estimated, which occurs

in a population with known ages or if double observer sampling protocols are followed (Conn
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et al., 2013). We build upon this work for modeling wildlife populations in which classification

data need analysis and auxiliary data are unavailable or difficult to obtain. Identifiability

problems arise (Swartz et al., 2004), but these can be mitigated by using informed priors

and incorporating biological knowledge of the study system.

We presented our models in a generalized framework so that they could be altered for

other systems. It is essential for these models to have auxiliary data, or at the very least, aux-

iliary information that can be used to obtain the distribution of unknown partially classified

data for the parameters to be identifiable. We improved the inference of the proportions of

four sex/stage classes (πt,i) of elk on the winter range of Rocky Mountain National Park and

Estes Park, CO (Figure 3.4), and in turn, we were able to improve inference for demographic

ratios used by wildlife managers.
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Figure 3.5: The posterior distributions of the difference between the generated proportion
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bars represent the 95% equal-tailed Bayesian credible intervals. The horizontal dashed line
indicates no bias.
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Figure 3.6: The densities of the marginal posterior distributions for the proportions of each
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CHAPTER 4

INFORMING MANAGEMENT WITH MONITORING DATA: THE VALUE

OF BAYESIAN FORECASTING 3

The fundamental challenge of resource management is to evaluate the ability of alternative

actions to meet goals for the future. This statement holds true for privately and publicly

owned resources and for all classes of institutions that manage those resources – governments,

businesses, and non-profit organizations. Informed management requires three intersecting

elements: reliable information on the past and current state of the system being managed,

clearly stated goals, and a way to evaluate the effect of potential actions on the future state

of the system relative to those goals.

A primary motivation for inventory and monitoring of resources within the U.S. national

parks is to provide scientifically reliable information needed to support wise management.

Hundreds of different variables are monitored annually based on statistically credible sam-

pling designs in parks nationwide. The mission statement for the National Park Service

guides development of goals that are specific to individual parks; goals that are often for-

mulated in conjunction with other management agencies, citizen stakeholders, and local

governments. There are usually multiple alternative approaches that could potentially be

implemented to move toward achieving those goals, including the null model, “No action.”

Thus, many national parks have two of the elements needed for scientifically informed man-

agement: information on the current and past state of parks and well-articulated goals for

3Ketz, A. C., Johnson, T. L., Monello, R. J., & Hobbs, N. T. (2016). Informing management with
monitoring data: the value of Bayesian forecasting. Ecosphere, 7(11).
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the future. However, the third element, an ability to understand the effect of current actions

on the future state of parks relative to goals, remains undeveloped.

In this paper, we develop the idea that forecasting models are critical for supporting

this third element needed for scientifically informed management of national parks and,

arguably, for all natural resources. We use the term forecasting to mean predictions of the

future state of a system accompanied by honest estimates of uncertainty (Clark et al., 2001).

We develop a framework for forecasting that evaluates actions relative to management goals

in national parks. We then illustrate the application of that framework to management of

elk and vegetation in Rocky Mountain National Park (RMNP) where elk were overabundant

and highly concentrated for decades as a result of anthropogenic ecosystem impacts, leading

to deterioration of habitat that supports a wide variety of plants and animals (Schweiger

et al., 2016). Elk that use the park are part of a regional population that ranges across park

boundaries, necessitating interagency collaboration to coordinate management actions.

4.0.1 A Bayesian approach to adaptive management based on monitoring data

Adaptive management combines science and policy to quantify the outcomes of natural

resource management actions in an iterative process of improvement (Holling, 1978; Walters,

1986; Ringold et al., 1996; Nyberg, 1998; Schreiber et al., 2004). The data provided by

inventory and monitoring can be combined with management goals within a hierarchical

model to make probablistic forecasts. The reliability of these forecasts, in turn can be

evaluated with future data as they become available (Dorazio and Johnson, 2003).

A critical step in adaptive management is specifying a model that reflects what is un-

certain about the system and suggests the best course of action given those uncertainties

(Walters, 1986; Dorazio and Johnson, 2003). Quantitative models within the adaptive man-

agement framework are explicit about assumptions, both in terms of our goals for how a park

system should be managed (Rumpff et al., 2011) and our assumptions of how the underlying

ecological process works (Restif et al., 2012). Managers can use the inference and support
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of these explicit assumptions and structures for guiding their decision making (Restif et al.,

2012).

Bayesian modeling offers a natural framework for synthesis of data in support of decision

making (Nichols et al., 1995; Dorazio and Johnson, 2003; Hobbs et al., 2015; Raiho et al.,

2015). Here, we illustrate the utility of Bayesian hierarchical models for supporting decisions

informed by monitoring data, which we define as data collected at regular intervals over an

extended period. The approach we describe was originally formulated by Berliner (1996) and

has been elaborated by Clark (2003),Cressie et al. (2009), and Hobbs and Hooten (2015).

Bayesian forecasts are predictions of the future behavior of a system that include rigorous

estimates of uncertainty. It is reasonable to ask, “Why are forecasting models important?

What do they have to do with data and decisions based on data?” The answer to these

legitimate questions arises from our original description of the challenge of management,

which is “to evaluate alternatives for action in terms of their ability to meet goals for the

future.” Data alone cannot inform wise decisions on actions, a truth that is revealed daily

in raw numbers cascading from the stock market. Data contain noise as well as information

and it is ill-advised to make decisions based on noise. Distinguishing between noise and

information in data is the purpose of statistical models. However, the ability of actions to

meet goals for the future requires a particular type of statistical model, a model capable of

making forecasts. Forecasts, we reemphasize, include uncertainty that may arise from many

sources. Although many kinds of statistical and mathematical models have been used to

make predictions to support management in the past, true forecasting is relatively new.

Goals for management of national parks are often stated in terms of thresholds. In some

cases, the goal is to move a state below a threshold, a goal that would be appropriate for

the prevalence of some diseases, the abundance of an exotic species, or a measure of noise

or light pollution. In other cases, the goal is to move the state above a threshold, which

would describe the outcome sought for a threatened, native species or the linear distance of

trails in good condition. In all cases, the goal is to maintain the resource within acceptable
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boundaries, and alternative actions can be used to move the resource toward these explicit

goals. Using monitoring data to evaluate alternatives in a way that includes uncertainty has

not been possible until recently.

Bayesian forecasting models provide marginal posterior distributions that describe state

variables of interest based on past monitoring data from a particular time frame (Figure

4.1). This form of inference is likely to be familiar to anyone who has used traditional,

nonhierarchical statistical analysis of time series. In contrast, hierarchical models also pro-

vide predictive process distributions, which are simply the probability distributions of future

states based on what we have learned from their behavior in the past (Figure 4.1). Modern

weather forecasts as well as predictions of voting in presidential elections are based on these

distributions.
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Figure 4.1: Observed data over time are represented by points. The marginal posterior dis-
tributions for summary statistics (black lines) show a shift in the system state over time.
The marginal predictive process distributions (dashed lines) demonstrate the increasing un-
certainty as forecasts are made further into the future.
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Predictive process distributions can be related to goals by overlaying one of the thresholds

described above (Figure 4.2). For expository purposes, presume that our goal is to move a

state below a threshold. Given the uncertainty in the monitoring data and the model, there

is some probability that the goal will be reached in the future given no action, as shown

in the grey shaded area of Figure 4.2. A model portraying the operation of an ecological

process (Appendix 5.3.1, Eq. 64) informed by the data and prior information, predicts how

the posterior process distribution shifts in response to a “take action” alternative (the solid

line in Figure 4.2), increasing the probability of meeting the goal (hatched area) if the action

has the desired effect on the future state. The net effect of active management is given by

the ratio of the probabilities of meeting the goal by taking the action relative to no action.

This analysis supports statistically rigorous statements like “The probability of meeting the

goal three years into the future is five times more likely using management action A relative

to taking no action, and three times more likely than using management action B.”
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Figure 4.2: Alternatives for management actions can be evaluated by comparing the pre-
dictive process distributions relative to a threshold. The dashed line shows the probability
distribution of a state variable with no management action at a specified point in the future
given no management action. The probability that the population will be below the objective
(vertical solid line) is the grey area under the curve. The solid line shows the probability
distribution of the state at the same point in the future given management action. The diag-
onally hashed area under the solid line curve gives the probability of meeting the objective
given management action. The net effect of management is the ratio of the hashed and the
shaded areas.

4.1 Materials and Methods

4.1.1 Elk in Rocky Mountain National Park

Elk were considered abundant in the Estes Valley when the area was settled by Euro-

Americans in the 1860s, but were extirpated by market hunting. Twenty eight elk were

translocated from Yellowstone National Park to reestablish a population during 1913-1914,

prior to park establishment the following year (Stevens, 1980). Rapid growth of the popula-
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tion in the absence of hunting and predation motivated a program of population reduction

to improve winter range conditions in the 1940s, which continued until the late 1960s (Hess,

1993).

Population control was replaced by a hands-off approach referred to as natural regulation

that allowed elk numbers to increase to ecological carrying capacity after 1968 (Hess, 1993;

Sinclair, 1998). Despite hunting that occurred outside the park, the population grew rapidly

eventually leading to over-browsing of aspen and willow communities on the elk winter range

(Hess, 1993). This initiated a decade of research and development of a management plan

that laid out specific population and vegetation goals. This called for using a combination

of conservation tools, including population reductions to attain 600-800 elk using the winter

range inside RMNP (National Park Service, 2007).

The framework we outline above is general because it is abstract. We now describe a

specific example of this adaptive management approach using the elk population in Rocky

Mountain National Park as a model system. Long term monitoring of the elk population

in RMNP provides the data needed to implement a model capable of forecasting the conse-

quences of alternatives for management. We use a hierarchical model of population dynamics

to forecast the consequences of alternative management actions consisting of different culling

regimes within the park and different hunter harvest licensing limits outside the park. Other

examples of the use of forecasts in a Bayesian framework of adaptive management are de-

scribed in Horsley et al. (2003), Hobbs et al. (2015), and Raiho et al. (2015).

4.1.2 Monitoring data

The NPS has annually surveyed the elk population in RMNP since 1969 using a variety

of methods. Data collected during 1969-1980 were raw counts and classifications from single

ground surveys with no attempt to account for detection or sampling variability. The surveys

from 1980-1993 were also collected without a robust sampling design using a combination of

aerial and ground observations. Single annual aerial counts and classifications during 1994-
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2009 were adjusted for imperfect detection with a sightability model to account for elk that

were missed because of varying environmental conditions and elk behavior (Lubow et al.,

2002). Beginning in 2010, up to three helicopter surveys were attempted annually in order

to capture the variability in the number of elk throughout the winter (Schoenecker et al.,

2016). However, surveys were sometimes limited to a single flight each year by high costs of

flight time, aircraft availability and difficult mountain flying conditions, preventing any way

to estimate sampling variability within these years. This motivated development of robust

ground survey methods to collect data to account for variation in the use of the park across

winter months, while also correcting for sampling error that results from missing elk that

are not visible from ground transects.

We used data that were collected during 10 simultaneous ground and aerial surveys that

were conducted from 2008 to 2015 to estimate the mean proportion of elk detected in ground

surveys (49%) that had been seen during aerial surveys, with an equal tailed Bayesian credible

interval (BCI) of (37%,64%). We calibrated all ground surveys across winter using this mean

detection probability.

Colorado Parks and Wildlife conducted hunter surveys annually to estimate the number

of elk harvested in areas adjacent to the park within the Data Analysis Unit 20. These data

were reported without standard errors from 1969 to 1988, and included standard errors from

1989 through the present. Ground classification data of yearling elk were aggregated with

adults because the hunter harvest data did not differentiate stage classes older than juveniles.

4.1.3 Process Model

We represented the elk population in RMNP using a discrete, stage structured model

(Lefkovitch, 1965; Caswell, 2001) portraying three stage/sex classes: juveniles (n1), adult

females (n2), and adult males (n3). Juveniles are both male and female calves under one

year of age. Adults are defined as any individuals greater than one year of age. Thus,

nt = (n1, n2, n3)
′
t is the true unobserved stage/sex classified population sizes during the tth
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survey year and the total population size is
(
Ntotal,t =

∑3
i=1 ni,t

)
. Model census occurred in

February and the birth pulse occurred in June. Let m be the proportion of juveniles that

are male, and hence 1 − m is the proportion of juveniles that are female. Time varying

recruitment parameters (rt) were defined as the average number of offspring that survive to

their first census produced per adult female during year t (Gaillard et al., 1998).

We used a single survival probability for each stage/sex class, where s1 is the probability

that male and female juveniles survive from age 8 months to 20 months, s2 is the probability

of survival of females aged 1.7 years and older, and s3 is the probability of survival of adult

and yearling males over age 1.7 years. We assumed there was no difference in survival of

juvenile males and females, which is biologically reasonable because both sexes typically live

within the same large herds alongside adult females, at least for their first winter season

(Toweill et al., 2002). We define the projection matrix

At =


0 rts

1/3
2 0

(1−m)s1 s2 0

ms1 0 s3

 (38)

that reflects the life cycle diagram in Figure 4.3. The term for recruitment (a1,2) has adult

survival raised to the 1/3 because females must survive 1/3 of the year between census and

the birth pulse (Noon and Sauer, 1992).

The survival parameters reflect mortality caused by predation, environment, and chronic

wasting disease (Monello et al., 2014), however, the parameters exclude mortality caused by

hunting or culling, which are specified within the process model explicitly. We use hunting

data reported by Colorado Parks and Wildlife, defined as hobs,i,t for the ith age and sex

class at time t, along with their observed variances σ2
hunt,i,t. We used the vector htrue,t =

(htrue,1, htrue,2, htrue,3)
′
t to model the unobserved true number of elk removed by hunter harvest
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outside the park using:

htrue,i,t ∼ gamma

(
h2obs,i,t
σ2
hunt,i,t

,
hobs,i,t
σ2
hunt,i,t

)
, (39)

for i = {1, 2, 3}. For years prior to 1989, there were no reported observation errors, so a

single time and classification invariant model parameter was estimated. Only a proportion of

the reported harvest consisted of elk actually removed from the population we are modeling

because elk that use RMNP is a subset of the total population subject to harvest outside of

the park. This is denoted αj, for j = {1, 2} because the geographic boundary of the hunted

area changed in 1989.

Figure 4.3: The life cycle diagram represents the elk population in three distinct sex and
stage classes including juveniles (n1), adult females (n2) and adult males (n3). Parameters in
this life cycle include survival (s) and mortality caused by hunting (aH) for each sex/stage
class. Additionally, the proportion of juveniles that transition into adult males or females
are described by m.
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The Elk and Vegetation Management Plan (National Park Service, 2007) requires park

managers to determine how many elk, if any, should be culled annually to meet population

objectives. Model results were used each year in this decision since 2008. We incorporated

culling data into the process model specifying the number of female elk that were culled

either before (cpre) or after (cpost) the breeding pulse to be the vector ct = (rtcpre, cpost, 0, 0)′t

where rt is the average recruitment.

The natural log of the process model can be specified stochastically using a multivariate

normal distribution with a vector of means for each stage and sex class (µt) such that

µt = log (At−1nt−1 − αjhtrue,t − ct) (40)

log (nt) ∼ multivariate normal (µt,Σp)

with a process model covariance assuming independence and variation according to the three

classes, defined in log space as a matrix Σp with σp,1, σp,2, and σp,3 on the diagonal and 0

elsewhere (see Appendix 5.3.2 for details) 4.

4.1.4 Data Model

Data included observations of overwinter population sizes and classification counts from

1969 through 2015. The different sampling regimes over the years required three separate

likelihoods to account for uncertainty of the total population sizes. However, the basic

structure of the data model was

Nobs,t ∼ normal(Ntotal,t, σ
2
obs,t), (41)

where Ntotal,t =
∑3

i=1 ni,t is derived from the process model (see Appendix 5.3.3 for additional

details on the alternative likelihoods). We justify the choice of the normal distribution for

4Inclusion of a briefly used fertility treatment was omitted, but details can be found in Appendix 5.3.3
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the data likelihood by the Central Limit Theorem because the Nobs are derived quantities

consisting of the overwinter means of counts or derived quantities from multiple counts.

We were also able to link the process model to observations using categorical data con-

sisting of counts within the stage/sex classifications (y2,t). The likelihood of these data is

specified with a multinomial distribution such that

y2,t ∼ multinomial

(
pt,

3∑
i=1

y2,i,t

)
(42)

where pi,t =
ni,t

Ntotal,t
for i = 1, ..., 3 are calculated from the process model. Observation error

arising from the harvest data are described in the previous section. The complete model

can be found in Appendix 5.3.2 with the corresponding full posterior and joint distributions.

Marginal posterior distributions of all latent quantities and parameters were approximated

using Markov chain Monte Carlo (MCMC) methods implemented in the JAGS package

(Plummer, 2014b) with R software (Team, 2015). Inference was based on three chains

including 100,000 iterations retained after a burn-in of 50,000. Gelman-Rubin diagnostics

(Gelman et al., 2014) and visual inspection of trace plots indicated convergence of all chains.

Posterior predictive checks using the test statistic 1
T−1

∑T
t=2 |yt − yt−1| for time series data

(Reilly et al., 2001), did not reveal lack of fit (Gelman et al., 2014) . Prior distributions are

specified in Table 4.1.

64



65

Table 4.1: Prior distributions for model parameters are informed from previous literature on elk vital rates. When literature
was unavailable, vague priors were used.

Parameter Description Prior Mean(St.Dev) Notes
s1 Juvenile survival beta(1.51, 2.76) 0.354(0.21) Raithel et al. (2007)
s2 Adult female survival beta(3215.75, 198) 0.942(0.004) Brodie et al. (2013)
s3 Adult male survival beta(31.22, 1.92) 0.942(0.04) Brodie et al. (2013)
m Juvenile sex ratio beta(49.5, 49.5) 0.5(0.05) Simulation
rt Recruitment at time t beta(g(µr, σr)) µr, σr
µr Ave. recruitment lognormal(log(0.464), 1) 0.464 Raithel et al. (2007)
σr Recruitment st. dev. uniform(0.001, 0.25) 0.13 simulation
α1 Proportion hunted uniform(0, 1) 0.5(0.29) before/including 1988
α2 Proportion hunted uniform(0, 1) 0.5(0.29) after 1988
σ−2p,i St. dev. ith stage/sex class gamma(0.001,0.001) 1(31.65) i = {1, 2, 3}
σd,1 St. dev. abundance data uniform(0, 500) 250(144.33) 1969− 1994
σd,2 St. dev. abundance data uniform(0, 500) 250(144.33) 1995− 2010



4.1.5 Choosing alternatives for management

Fitting the model to monitoring data provided us with information about the current and

past states of the system. Partitioning the model variance into components arising from the

observation system and components arising from the model of the population process allowed

us to make forecasts, that is, predictions of the future state of the population accompanied by

rigorous estimates of uncertainty. Forecasts are based on the predictive process distribution

of the population size (See Hobbs and Hooten, pages 196-201 for details). We compared the

distribution of the posterior predictive values to a range of values that reflected the park’s

management objectives and calculated the probability of meeting those goals given different

potential levels of culling.

We used the full hierarchical model to forecast the overwinter elk population size for

three years into the future, conditioned on all the data observed up to the present year. For

example, we used data collected through 2008 and subsequently forecasted elk abundance in

2009, 2010 and 2011. We used the same model fitting procedure each subsequent year after

2008. The final year of analysis consisted of data observed through 2015, with forecasted elk

abundance in 2016, 2017, and 2018.

To demonstrate the utility of these forecasts, we further compared two years of analysis

that reflected different states of the elk population. The forecasts from our hierarchical model

answered the question of whether or not population growth was outside the target range of

600-800 elk, with attendant uncertainty. However, in an adaptive management framework,

it is not enough to know whether a target was achieved; we need to know annually how

management actions could influence the population trajectory and if those actions will meet

our goals.

A fundamental question for elk management in RMNP is whether and how many elk

should be culled to meet management objectives. We have annually provided managers

with information since 2008 to help answer these questions by forecasting the future state
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of the population under multiple alternatives for culling: 0, 25, 50, or 75 adult females. We

calculated the probability that the population size would be within the target given each

level of culling. The highest probability of obtaining the target goal would naturally inform

the choice of management action, including “no action” when culling was set to 0 within the

forecasts.

4.2 Results

Marginal posterior distributions of the total elk population size during winter tracked

the observed increase and decline in elk abundance (Figure 4.4). The population increased

until the mid 1980s, when it appeared to stabilize at approximately 1,000 animals. The

population decreased steadily after the early 2000s (Figure 4.4), a decline that has several

potential causes, including harvest, the movement of large numbers of elk to new winter

range areas, and disease (Monello et al., 2014; National Park Service, 2007). Beginning in

2002, a shift in the winter distribution of elk with increased use of areas east of the Estes

Valley was evident. Concerns of an over-abundant elk population in the Data Analysis Unit

that contains RMNP led Colorado Parks and Wildlife to increase hunting licenses for females

(Figure 4.5). The adult female harvest from the mid 1990s nearly tripled in the early 2000s,

peaking at just over 400 elk in 2006. In addition, between 2009 and 2011 a total of 130 female

elk were removed from the population by culling, including 71 elk that were euthanized and

used for research (Monello et al., 2013), in order to reduce and maintain elk numbers at the

low end of the population objective. No culling has occurred since 2011.
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Figure 4.4: The median (black line) and 95% quantiles (grey shaded region) for the posterior
distributions of the true elk population size on the winter range in Rocky Mountain National
Park during 1969 to 2015 shows the variability of the population size over time. The black
dots represent the observed elk population sizes.
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Figure 4.5: Mean harvest of adult females from 1995-2015 (dots with 95% Bayesian credible
intervals) for Data Analysis Unit 20 reported by Colorado Parks and Wildlife, increased
steadily during 1995-2005 before declining to approximately the same level as in 1995. There
was an increase of adult female harvest in the early 2000s, peaking in 2006.

The median estimated average recruitment (µr) from which all of the time varying re-

cruitment parameters were drawn was 0.29 (BCI = 0.25, 0.33) calves per adult female elk

surviving to census. This was much lower than the average adult female recruitment of

0.464 used in the prior distribution (Table 4.1), that was reported by Raithel et al. (2007)

using data from multiple elk populations throughout the Rocky Mountain region. A simple

linear regression line of recruitment versus time has a decreasing trend such that the average

69



recruitment decreased by 0.0028 (equal tailed BCI for the coefficient = −0.0040,−0.0015)

calves per adult female per year (Figure 4.6).
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Figure 4.6: Open circles give the mean of the posterior distribution and grey shaded ares are
95% equal-tailed credible intervals of annual recruitment rates, rt, the number of offspring
produced per yearling and adult female that survive to their first census during year t. The
dashed line gives the fit of the simple linear regression of the average annual recruitment
rates (rt) versus time (t).

The proportion of animals 8 months old that survived to 20 months of age, had a me-

dian juvenile survival of s1 = 0.49, with an equal tailed Bayesian credible interval (BCI =

0.22, 0.78). Adult males had a median probability of survival of 0.91 (BCI = 0.79, 0.99), in

the absence of hunting. Adult female survival, 0.94 (BCI = 0.93, 0.95), was slightly greater

than survival of males and resembled survival in other unhunted elk populations (Brodie
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et al., 2013). The process variance parameters, on the log scale, of the three stage/sex

classes were greater for males than for adult females. There typically is greater variability

for male survival in ungulates (Gaillard et al., 2000).

Table 4.2: The marginal posterior means, standard deviations, medians, and 95% equal-
tailed credible intervals for all parameters included in the model. Note that σp,i are on the
log scale.

Parameter Definition Mean St. Dev. Median 2.5% 97.5%
s1 Juvenile survival 0.49 0.14 0.49 0.22 0.78
s2 Adult female survival 0.94 0.00 0.94 0.93 0.95
s3 Adult male survival 0.91 0.05 0.92 0.79 0.99
m Proportion male juveniles 0.49 0.05 0.49 0.40 0.59
µr Ave. Recruitment 0.29 0.02 0.29 0.25 0.33
σr St. dev. recruitment 0.10 0.02 0.10 0.05 0.14
α1 Proportion hunted 1968-1989 0.12 0.09 0.10 0.01 0.33
α2 Proportion hunted 1990-2015 0.07 0.05 0.07 0.00 0.18
σp,1 St. dev. juveniles 0.11 0.09 0.08 0.02 0.36
σp,2 St. dev. adult females 0.18 0.06 0.17 0.08 0.33
σp,3 St. dev. adult males 0.55 0.10 0.54 0.37 0.76
σd,1 St. dev. abundance data 124.65 34.59 122.13 63.45 201.11
σd,2 St. dev. abundance data 240.75 80.68 236.64 86.74 415.40

Culling activities ceased after 2011 because forecasts indicated the population size was

lower than the objective of 600-800 elk, although still within the broad objective of 200-800

elk (National Park Service, 2007). The abundance of elk using the winter range of RMNP was

estimated at 294 (BCI=223,369) individuals in 2015. The decline in abundance appears to

have stabilized from 2013 to 2015 (Figure 4.4), with the elk population consistently estimated

in the high 200s.

The observed elk abundance data is compared with the forecasts and their 95% Bayesian

credible intervals (Figure 4.7). Credible intervals on forecasts overlapped the one-to-one line

where forecasts equal observations during 15 out of 18 years, indicating considerable skill

in our model. Credible intervals on forecasts expanded with an increasing forecast horizon,

71



suggesting that forecasts beyond three years would have limited predictive value (Figures

4.7B and 4.7C).
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Figure 4.7: Observed population estimates are plotted against forecasts with corresponding
95% Bayesian Credible Intervals for one (figure A), two (figure B) and three (figure C)
years into the future. The dashed line indicates the one-to-one line in which the forecasted
population size equals the observed population size.
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Figure 4.8: The marginal posterior distributions (left column) and posterior predictive dis-
tributions (center and right columns) for elk abundance during 2008-2010 and 2016-2018.
The vertical dashed lines indicate the target range for the elk population of 600-800 elk, and
the light shaded grey regions are the probability that the population is within the target
range.

The marginal posterior distribution of the population size for the current year and the

posterior process distributions for future years can be seen in Figure 4.8. In 2008, the

estimate of the population size was 611 (BCI = 338, 972) elk, which was more than double

the population sizes estimated in 2015. This estimate was within the target range, however,

forecasts indicated that if no animals were culled, the number of elk would likely increase

to 701 elk in 2009, 742 elk in 2010, and 777 elk in 2011 (see Table 4.3). We calculated the
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probability that the population size would be above, within, and below the target range

of 600-800 elk in future years. The choice to cull 0, 25, 50 or 75 animals all had roughly

equivalent probabilities of maintaining the population within the target range for the three

subsequent forecasts into the future. However, under the no cull management action, there

was a much greater probability of the population increasing above the 800 elk threshold than

culling individuals. Because management was primarily concerned with overabundance, the

NPS culled a total of 46 elk in 2009, including 32 individuals that were euthenized for a study

on chronic wasting disease (Monello et al., 2013). The elk population size and forecasts have

been estimated well below the target range after 2011, therefore no elk have been culled since

that year.

Table 4.3: Forecasts for different culling regimes conditioned on observed data through 2008,
with corresponding 0.025 and 0.975 equal tailed Bayesian credible intervals for overwinter
abundance. The probability that elk abundance is below, within, and above the target range
is shown in the rightmost three columns.

Cull Year N .025 .975 P < P in P >
2009 701 347 1240 0.30 0.37 0.32

0 2010 742 331 1451 0.27 0.32 0.41
2011 777 312 1680 0.25 0.28 0.47
2009 655 302 1186 0.39 0.36 0.25

25 2010 686 282 1364 0.36 0.32 0.33
2011 713 258 1572 0.33 0.28 0.38
2009 626 277 1141 0.45 0.34 0.21

50 2010 651 253 1320 0.42 0.31 0.28
2011 675 228 1502 0.39 0.27 0.34
2009 600 258 1109 0.50 0.31 0.19

75 2010 618 229 1267 0.47 0.29 0.24
2011 640 203 1454 0.44 0.26 0.30
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4.3 Discussion

Deterministic, simulation models have been used to support decisions on management of

natural resources since the early 1970’s (Walters and Gross, 1972; Holling, 1973; Maynard

Smith, 1974; May and Oster, 1976; May, 1976; Freedman, 1980; Otto and Day, 2007). These

types of models have been criticized because confidence in their predictions led to notable

failures in policy and management (Pilkey and Pilkey-Jarvis, 2007). Reliable use of models

to support decisions requires honest estimates of uncertainty.

Combining models with monitoring data along with the results of designed studies of

processes in the Bayesian framework allows the outputs of models to be properly tempered

by rigorous estimates of uncertainty arising from multiple sources. Such assimilation adds

value to monitoring data by providing inference on the true, unobserved states of systems

being managed. Informed management requires three components: reliable data on the past

and current state of the system being managed, clear objectives for management, and a

way to evaluate the ability of alternative actions to achieve those outcomes. Bringing these

components together in a coherent framework for modeling is vital for successful adaptive

management as it was originally formulated by Walters (1986). The monitoring data of elk

in RMNP provides an ideal system for implementing adaptive management because the NPS

has invested in a long-term time series of data relative to key resource decisions–how to best

manage the elk population. In addition, innovative science was used to formulate appropriate

management goals. Having clearly stated objectives for the winter range population size

enabled us to evaluate possible management outcomes.

By employing the Bayesian framework, we were able to partition the variability inherent

in the biological and management processes from the uncertainties that arise through sam-

pling and estimation error. We estimated demographic parameters such as recruitment and

survival from observations of the population of elk over time, and then used these parameters

to predict the future abundance of elk accompanied by an honest assessment of uncertainty.
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These forecasts were assessed by comparing them to the estimated observed number of elk

as these data became available (Figure 4.7). Results indicated that the forecasts from a

single year into the future accurately predicted the observed number of elk and emphasizes

the importance of taking management actions on this time scale. Forecasts further into the

future became less accurate and appeared to overestimate the observed population size. This

is likely an artifact of the long time series of data with high population sizes early in the

time series that inflate the forecasted population sizes later in the time series .

Under the policy of natural regulation in the absence of significant predation, elk abun-

dance grew throughout the 1970s. The population size appears to have stabilized at approx-

imately 1,000 elk during the 1980s (Hess, 1993). Hobbs et al. (1982) estimated a carrying

capacity on the elk winter range of 1,481 elk for one year and 991 elk for a second year

based on the energy and nitrogen availability of forage in the ecosystem. Lubow et al.

(2002) estimated a similar carrying capacity of 1,069 elk using a demographic projection

model paired with a sightability model using the ground and aerial data collected in the

1990s. The consistency of the carrying capacity estimates provides support that one should

expect the population in the winter range to vary around 1,000 elk under natural regulation

without substantial predation. Density dependence has been shown to decrease fecundity

and increase age at first reproduction in large herbivores (Singer et al., 2007; Sæther, 1997;

Clutton-Brock et al., 1987; Sauer and Boyce, 1983), which are suggested as the primary

mechanisms for this trend (Lubow et al., 2002; Coughenour, 2002). The estimates of recruit-

ment demonstrate a paradoxical trend regarding density dependence in this population. One

would expect that recruitment should increase as the population size decreases, if a density

dependent feedback mechanism were present. However, this has not occurred for the elk in

RMNP despite the possible density dependence demonstrated during high population years

(Lubow et al., 2002; Coughenour, 2002).

Recent estimates are considerably lower than might be expected given the predominant

narrative of overabundant elk in RMNP (Hess, 1993). However, trends during the last three
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years suggest that the population may be stabilizing after an extended period of decline

(Figure 4.4). The decline in elk numbers after 2008 not only guided management actions,

but also helped spur additional research to discover the role of chronic wasting disease,

emigration, and novel patterns of elk winter range use in RMNP (unpublished data). Past

modeling work had found that elk numbers were relatively stable across winter and that

surveys in February were likely a good indicator of elk conditions on the winter range (Lubow

et al., 2002; Singer et al., 2007). New monitoring data contradicts this pattern and new survey

methods are being used to assess the variability of the elk use of the winter range.

High levels of harvest by hunters outside of the park during the early 2000s likely con-

tributed to the current, reduced abundance of the elk population (Figure 4.5). However,

harvest rates have been relatively constant since 2008. If the harvest remains at the current

level, the elk abundance may rebound, particularly since the decadal decline in elk coin-

cided with peaking harvest rates. However, it is important to note that large, unanticipated

changes in parameters such as adult female survival or emigration may alter the relationship

between hunter harvest outside the park and population trajectory (Clutton-Brock et al.,

2002; Petersburg et al., 2000; Nielsen et al., 1997; Labonté et al., 1998; Monello et al., 2014).

An important future step could be to assess a range of hunter harvest quantities within the

hierarchical model by setting multiple limits for each stage/sex category and calculating the

predicted abundance given alternative harvests in order to provide guidance to Colorado

Parks and Wildlife for setting harvest objectives. Altering harvest quantities could also be

useful in other managed systems (Nichols et al., 1995; Johnson et al., 2002).

The approach we illustrate could be useful for managing national parks throughout the

world. Investment in monitoring data is justified in terms of its value for determining if

the state of parks is consistent with goals for park ecosystems. Our illustration shows how

a Bayesian approach can be applied to gain insight from monitoring data by evaluating

alternatives for management in terms of the ability to meet goals for the future. Wide

use of these methods will require collaboration among scientists and mangers. Investment in
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training decision makers in the foundations of Bayesian methods would likely offer substantial

dividends.

Our experience in this example and others (Hobbs et al., 2015; Raiho et al., 2015) suggests

that monitoring past states of park ecosystems provides sufficient information to support

forecasts with a limited horizon, usually less than four years. Forecasts are necessarily

short term because there is an accumulation of uncertainty for each subsequent year that

causes the credible intervals to expand rapidly, the further into the future that we try to

forecast. This limitation reinforces the need for adaptive management over a frequent cycle:

monitoring data are used to improve the model, the model is used to enhance decisions.

Multiple iterations of this cycle increase understanding of the processes creating variability

in the system being managed and provide a science-based foundation for decisions that can

be explained to an engaged public.
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CHAPTER 5

APPENDICES

5.1 Appendix Chapter 2

5.1.1 Directed acyclic graph

Yt

Xt

mtnt

ztNRMNP,t,NEP,t

π
1,1
,...,π

3,3
,φ β

0
,β

1
μRMNP,μEP

nherd,t

Figure 5.1: Directed Acyclic Graph (DAG) of the full model shows the hierarchical relation-
ships between the data (top row), latent states (middle row), and hyperparameters (bottom
row). The solid arrows represent dependent relationships and the dashed line represents
relationships derived from random variables. Data includes weekly telemetry locations (Yt),
monthly average ground counts (nt), monthly resights of collards (mt), herd size counts
within a subset of montly ground counts (nherd,t). Latent states include true locations of col-
lared individuals (Xt), the population size during the tth week of winter in Rocky Mountain
National Park (NRMNP,t) and in the town of Estes Park (NEP,t), and the calibrated number
of marks (zt). Hyperparameters include movement probabilities (π), weekly probability of
survival (φ), overwinter average population size (µ) and coefficients in the calibration model
for adjusting the number of resights (β0, β1).
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5.1.2 Model statement, full posterior, and joint distributions

Combining the components of the model statement described above, the full posterior

and joint disributions are:

[N,X, z, π1,1, . . . , π3,3, ps, pv, pd, β0, β1, µ|Y,m,n] ∝
T∏
t=2

rt∏
i=1

[yi,t|1, gd (ps,pv, pd, φ,xi,t)] (43)

× [xi,t|1, gp (φ, π1,1, . . . , π3,3,xi,t−1)] (44)

× [mt|zt, β0, β1] (45)∏
τ

[nτ |Nτ ,Xτ , zτ ] [Nτ |µ] (46)

× [µ] [β0] [β1] [π1,1, . . . , π3,3] [φ] [ps] [pv] [pd] ,

(47)

where

gd (ps,pv, pd,yi,t) = Di,txi,t (48)

gp (φ, π1,1, . . . , π3,3,xi,t−1) = Θxi,t−1 (49)

The parameters in the posterior and joint distributions include the overwinter average pop-

ulation size (µ), the monthly population sizes (N ), the matrix of true telemetry locations

(X), the matrix of calibrated resights (Z), coeffiecients for the calibration model (β0, β1),

movement probabilities (π11, ...π33) that are used in the matrix Θ, detection probabilities

(ps, pv, pd) that are used in the matrix D, and weekly survival probability (φ). The data

include the observed telemetry locations for the I marked indviduals during the T weeks of

winter (Y ), the resighted marks (m) and mean of the ground surveys (nτ ) during T weeks

that are a subset of the T telemetry sampling occasions.
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5.1.3 Parameter results - tables and plots

Here we present tables of summary statistics of model parameters across all years of the

study, for movement and detection. We also present plots of prior and posterior distributions

for model parameters of overwinter average population sizes in Rocky Mountain National

Park (µRMNP) and the town of Estes Park, CO (µEP), and weekly surival (φ) for all years

of the study. We also plot prior and posterior distributions of movement probabilites for

the final year of surveys (2015). Prior distributions are markedly different than posterior

distributions which shows that the data are informing the posterior distributions of model

parameters.

Table 5.1: Estimated detection probabilites for the data model of the telemetry observations
across all years of the study. Probabilites are defined as ps is the probability of detecting a
telemetry collar, pv is the probability that a location was obtained given a detection, and pd
is the conditional probability that a collared individual is in the study region give that the
collar was detected and location information was observed. The right two column headings
represent the 0.025 and 0.975 quantiles of the marginal posterior distributions.

Year Parameter Definition Mean Median SD 0.025 0.975
ps detected 0.833 0.833 0.012 0.808 0.856

2011 pv location 0.999 0.999 0.001 0.995 1.000
pd study area 0.996 0.996 0.002 0.990 0.999
ps detected 0.644 0.644 0.009 0.626 0.661

2012 pv location 0.999 1.000 0.001 0.998 1.000
pd study area 0.989 0.989 0.003 0.984 0.993
ps detected 0.542 0.542 0.008 0.527 0.557

2013 pv location 1.000 1.000 0.000 0.998 1.000
pd study area 0.977 0.977 0.004 0.969 0.983
ps detected 0.437 0.437 0.008 0.421 0.453

2014 pv location 0.999 1.000 0.001 0.998 1.000
pd study area 0.985 0.985 0.003 0.978 0.991
ps detected 0.479 0.479 0.008 0.463 0.495

2015 pv location 0.999 1.000 0.001 0.998 1.000
pd study area 0.999 1.000 0.001 0.997 1.000
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Table 5.2: Movement probabilities estimated for all years of the study (Figure 2). All
probabilities are notated such that the location during the tth time period is represented
with an i and the location at time t+ 1 is represented with a j (πij). The right two columns
are the 0.025 and 0.975 quantiles of the marginal posterior distributions.

Year Probabilities Mean Median SD 0.025 0.975
π11 0.87 0.87 0.02 0.84 0.90
π12 0.97 0.98 0.02 0.92 1.00

2011 π21 0.94 0.94 0.03 0.85 0.99
π22 0.80 0.80 0.03 0.74 0.84
π32 0.67 0.71 0.24 0.16 0.99
π33 0.96 0.97 0.03 0.90 1.00
π11 0.85 0.85 0.01 0.82 0.87
π12 0.99 0.99 0.01 0.97 1.00

2012 π21 0.80 0.80 0.03 0.73 0.87
π22 0.86 0.86 0.01 0.84 0.89
π32 0.58 0.61 0.22 0.12 0.93
π33 0.97 0.97 0.01 0.95 0.99
π11 0.89 0.89 0.01 0.88 0.91
π12 0.91 0.92 0.04 0.84 0.98

2013 π21 0.53 0.53 0.05 0.44 0.62
π22 0.83 0.83 0.01 0.80 0.86
π32 0.42 0.42 0.05 0.32 0.52
π33 0.85 0.85 0.01 0.82 0.87
π11 0.83 0.83 0.01 0.80 0.86
π12 0.97 0.97 0.02 0.92 0.99

2014 π21 0.62 0.62 0.04 0.53 0.70
π22 0.83 0.83 0.01 0.80 0.86
π32 0.53 0.53 0.06 0.41 0.64
π33 0.82 0.82 0.02 0.78 0.85
π11 0.88 0.88 0.01 0.86 0.90
π12 0.97 0.97 0.02 0.91 0.99

2015 π21 0.59 0.59 0.05 0.50 0.69
π22 0.85 0.85 0.01 0.83 0.88
π32 0.34 0.34 0.06 0.23 0.46
π33 0.83 0.83 0.02 0.80 0.86

91



0 100 200 300 400 500 600

0.
00

0.
02

0.
04

0.
06

2011

µ

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0.
02

0.
04

0.
06

2012

µ

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0.
02

0.
04

0.
06

2013

µ

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0.
02

0.
04

0.
06

2014

µ

D
en

si
ty

0 100 200 300 400 500 600

0.
00

0.
02

0.
04

0.
06

2015

µ

D
en

si
ty

Figure 5.2: Marginal posterior distributions of the overwinter population size of elk in Rocky
Mountain National Park (solid line) and the town of Estes Park (dotted line). Vague prior
distributions were used for the population size in RMNP and EP (dashed line).

92



0.975 0.980 0.985 0.990 0.995 1.000

0
40

80
12

0

2011

φ

D
en

si
ty

0.975 0.980 0.985 0.990 0.995 1.000

0
10

0
30

0

2012

φ

D
en

si
ty

0.975 0.980 0.985 0.990 0.995 1.000

0
20

0
40

0

2013

φ

D
en

si
ty

0.975 0.980 0.985 0.990 0.995 1.000

0
20

0
60

0

2014

φ

D
en

si
ty

0.975 0.980 0.985 0.990 0.995 1.000

0
20

0
40

0
60

0

2015

φ

D
en

si
ty

Figure 5.3: Flat prior distributions (dashed lines) and posterior distributions (solid lines) for
the weekly survival parameter (φ) for all years of the study.
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Figure 5.4: Prior distributions (dashed lines) and posterior distributions (solid lines) for the
conditional movement probabilities from the the transition matrix (Θ) in the process model
(see Figure 2).
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5.2 Appendix Chapter 3

5.2.1 Model statement, full posterior, and joint distributions

Here, we describe the components of the classification model. The three models presented

in the text follow the same multinomial structure for the likelihood. To be concise, we

present a full model, with posterior and joint distributions for the empirical Bayes model

only. The data consist of counts of groups of individuals, summed across i = 1, ..., I surveys

during the t = 1, ..., T years, denoted yi,t, for 4 sex/stage classes and an additional unknown

category. The group level data that were subsetted according to adult female and juvenile

herds are denoted by xkt . Parameters include the “true” proportions of each stage/sex (πt),

the proportion of unknown classifications (pz,t), the proportions of the calf/cow herds (ωt),

and prior distributions for these parameters. Thus, the full model statement is given by

yi,t ∼ multinomial(Ni,t,pt), (50)

πt ∼ Dirichlet(αt), (51)

αt =α*t/α0, (52)

α0 =
J∑
j=1

α*j, (53)

α*j ∼ gamma(.001, .001), (54)

pz,t ∼ uniform(0, 1), (55)

xkt ∼ multinomial(
J∑
j=1

xj,k,t,ωt+1), (56)

ω1 ∼ Dirichlet(23, 71, 4, 2), (57)

ωt+1 ∼ Dirichlet(1, 1, 1, 1), (58)
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where Ni,t =
∑J+1

j=1 yj,i,t, and

pt =



π1,t − ω1,t × pz,t

π2,t − ω2,t × pz,t

π3,t − ω3,t × pz,t

π4,t − ω4,t × pz,t

pz,t


. (59)

We combine all components of the model into the full posterior and joint distributions.

[
Π,α*,pz,Ω|Y ,X

]
∝

T∏
t=2

It∏
i=1

[yi,t|πt, pz,ωt−1]

Kt∏
k=1

[xk|ωt]× (60)

[ωt]
[
π|α*

] [
α*
]

[pz]× (61)[
yi,1|α*

1

]
[xk1
|ω1] [ω1] (62)
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5.2.2 Summary statistics tables

Table 5.3: Summary statistics of the marginal posterior distributions of the proportions of
all classes (π) from 2012 through 2016 for elk in Rocky Mountain National Park using the
empirical Bayes approach.

Year Parameter Mean Median SD .025 .975

π1 0.153 0.152 0.012 0.133 0.179
2012 π2 0.577 0.578 0.014 0.548 0.602

π3 0.061 0.060 0.006 0.052 0.075
π4 0.209 0.208 0.008 0.195 0.226
π1 0.181 0.181 0.005 0.172 0.190

2013 π2 0.616 0.616 0.006 0.604 0.628
π3 0.066 0.066 0.003 0.060 0.072
π4 0.138 0.138 0.004 0.129 0.146
π1 0.179 0.179 0.005 0.168 0.190

2014 π2 0.595 0.595 0.007 0.581 0.609
π3 0.073 0.073 0.004 0.066 0.080
π4 0.154 0.153 0.005 0.143 0.164
π1 0.159 0.159 0.007 0.147 0.173

2015 π2 0.591 0.591 0.008 0.574 0.608
π3 0.063 0.063 0.004 0.056 0.072
π4 0.186 0.186 0.005 0.176 0.197
π1 0.201 0.201 0.005 0.190 0.212

2016 π2 0.587 0.587 0.007 0.574 0.600
π3 0.066 0.066 0.003 0.060 0.073
π4 0.146 0.146 0.005 0.137 0.155
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Table 5.4: Summary statistics of the marginal posterior distributions of the proportions of
all classes (π) from 2012 through 2016 for elk in Rocky Mountain National Park using the
out-of-sample approach.

Parameter Mean Median SD .025 .975

π1 0.152 0.152 0.006 0.141 0.164
2012 π2 0.561 0.561 0.008 0.545 0.576

π3 0.065 0.065 0.004 0.058 0.073
π4 0.222 0.222 0.006 0.210 0.235
π1 0.183 0.183 0.011 0.163 0.205

2013 π2 0.615 0.615 0.012 0.590 0.639
π3 0.054 0.054 0.006 0.044 0.066
π4 0.148 0.147 0.006 0.137 0.160
π1 0.188 0.188 0.012 0.166 0.213

2014 π2 0.576 0.576 0.014 0.548 0.602
π3 0.078 0.078 0.008 0.065 0.094
π4 0.158 0.158 0.007 0.144 0.173
π1 0.153 0.153 0.007 0.140 0.168

2015 π2 0.597 0.597 0.009 0.579 0.615
π3 0.055 0.055 0.003 0.049 0.062
π4 0.194 0.194 0.006 0.182 0.207
π1 0.204 0.203 0.006 0.192 0.215

2016 π2 0.577 0.577 0.007 0.563 0.591
π3 0.068 0.068 0.004 0.061 0.075
π4 0.151 0.151 0.005 0.141 0.161
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Table 5.5: Summary statistics of the marginal posterior distributions of the proportions of
all classes (π) from 2012 through 2016 for elk in Rocky Mountain National Park using the
ignoring (trim) approach.

Parameter Mean Median SD .025 .975

π1 0.148 0.148 0.005 0.138 0.159
2012 π2 0.546 0.546 0.008 0.531 0.561

π3 0.066 0.066 0.004 0.059 0.074
π4 0.239 0.239 0.007 0.227 0.252
π1 0.182 0.182 0.006 0.170 0.194

2013 π2 0.526 0.526 0.008 0.510 0.542
π3 0.063 0.063 0.004 0.056 0.071
π4 0.228 0.228 0.007 0.215 0.242
π1 0.183 0.183 0.007 0.169 0.198

2014 π2 0.519 0.519 0.009 0.501 0.537
π3 0.084 0.084 0.005 0.074 0.094
π4 0.214 0.214 0.008 0.199 0.229
π1 0.153 0.153 0.005 0.143 0.163

2015 π2 0.560 0.560 0.007 0.546 0.574
π3 0.065 0.065 0.003 0.058 0.072
π4 0.222 0.222 0.006 0.211 0.234
π1 0.202 0.202 0.006 0.191 0.214

2016 π2 0.577 0.577 0.007 0.564 0.591
π3 0.067 0.067 0.004 0.060 0.074
π4 0.153 0.153 0.005 0.143 0.163
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5.3 Appendix Chapter 4

5.3.1 Bayesian Modeling

Here, we provide a schematic treatment of Bayesian forecasting models. We begin by

defining the term state variable to mean a numerical quantity describing a condition of

interest at a given point in time. Examples of state variables might include the number of

invasive plants per unit area, the levels of particulates in the air, the prevalence of a disease,

the size of an ungulate population, or the levels of dissolved nutrients in streams. We will

use the notation zt to mean the true, unobserved value of the state variable at time t.

It is rarely possible to observe the true state perfectly. Observations often need to be

calibrated to correct for bias. Sampling variation usually needs to be quantified, simply

because it is not possible to observe all instances of the state variable of interest in all

possible locations. To deal with this uncertainty, we define a stochastic model of monitoring

data as

[yt|zt,θd]. (63)

The notation reads the probability distribution of an observation (yt) conditional on the true

value of the state (zt) that gave rise to the observation and the parameters describing the

observation process (θd), including the uncertainty that arises from calibration and sampling.

The purpose of collecting monitoring data is to quantify how the state variable changes

over time. We define a model for the temporal change in the state variable as

[zt|zt−1,θp] (64)

where the notation reads the probability distribution of the true state at time t conditional on

its value at time t− 1 and parameters (θp). Included in θp are parameters in a deterministic

model portraying the temporal trajectory of the state and, notably, an estimate of process
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variance, which includes all of the influences on the state variable that are not included

in the deterministic model. Equation 64 is customarily called a process model. It can be

mechanistic or empirical or a blend of the two and can be regarded as the hypothesis for

explaining how the ecological system works.

By assembling the process model (Equation 64) and data model into a single expression

using Bayes Theorem and the laws of probability for factoring joint distributions we obtain

[θd,θp, z|y] ∝
∏
t∈T

[yt|θd, zt]︸ ︷︷ ︸
data model

T∏
t=2

[zt|θp, zt−1]︸ ︷︷ ︸
process model

[θd] [θp] [z1|θp] (65)

where T is the set of observations in a time series of monitoring data.5 Equation 65 is a

Bayesian hierarchal model, also called a Bayesian state space model (Berliner, 1996; Newman

et al., 2006; Calder et al., 2010). The model is hierarchical because it contains a model of the

data linked probabilistically to a model representing the processes giving rise to the data.

The left hand side of the proportional symbol (∝) is the posterior distribution. It informs

us about the probability distributions of all of the unobserved parameters and true states

by updating prior information model parameters (including the possibility that not much

is known) with observed monitoring data. All sources of uncertainty are combined in the

model (equation 65) in a statistically coherent way.

5.3.2 Process model, full posterior, and joint distributions

Here, we bring together all of the components of the process model described in the text

(see the Methods section, Chapter 4). The true, unobserved number of elk n within three

stage and sex classes are modeled as a function of survival s, fecundity r, the proportion of

male juveniles m, the true number of hunted elk htrue within a winter range subset (α), the

5There can be ”gaps” in the time series of observations. Missing data are handled in the same way all
other unknown quantities in the Bayesian framework.
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number of culled elk (c) before (pre) and after (post) census, as well as the proportion of the

number of adult females that have been subject to fertility treatments (I) described in ??.

Variability in the process model is accounted for using the multivariate normal distribution

and subsequent variances on the log scale (Σp). The true number of hunted elk (htrue) is

estimated using the estimates of the observed number of hunted elk (hobs) and their standard

errors (σhunt). The total population size Ntotal at time t is calculated from the process model

as the sum of the estimates in each stage/sex category and thus, the true proportion of elk

in each category is pt.

log (nt) ∼multivariate normal (log(µt),Σp) (66)

htrue,i,t ∼gamma

(
h2obs,i,t
σ2
hunt,i,t

,
hobs,i,t
σ2
hunt,i,t

)
(67)

µ1

µ2

µ3


t

=


0 rts

1/3
2 0

(1−m)s1 s2 0

ms1 0 s3



n1

n2

n3


t−1

−αj


htrue,1

htrue,2

htrue,3


t−1

−


rtcpre

cpost

0


t−1

−


rtInIps2

0

0


t−1

(68)

Ntotal,t =
3∑
i=1

ni,t (69)

pt =

(
n1,t

Ntotal,t

,
n2,t

Ntotal,t

,
n3,t

Ntotal,t

)′
(70)

We combine all components of the model into the full posterior and joint distributions.

Model parameters described above are conditioned on observed data consisting of total pop-

ulation size counts (y1), classification counts in three distinct stage and sex categories (Y2),

and the observed number of hunted elk (Hobs).

[n, s,α,m, r, µr, σr,Htrue,σp,σd|y1,Y2,Hobs] ∝
T∏

t=2

[
y1,t|Ntotal,t, σ

2
dj,t

] [
y2,t|

3∑
i=1

y2,i,t,pt

]
× (71)
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[nt|µt−1,Σp]
[
hobs,t|htrue,t,σ

2
hunt,t

]
[rt|µr, σr]× (72)

[n1|y1,1,Y2,1] [s][α][m][µr][σr][σ
2
p][σ2

d] (73)

5.3.3 Fertility

Bradford and Hobbs (2008) designed a model and simulated population management

strategies contrasting fertility control (both lifelong and year-long) with culling of adult

female elk, for maintaining population growth rates in a stage structured model. In 2008,

47 elk were treated with contraception and the number of infertile elk for the subsequent

few years were estimated given the initial number of females treated. The model simulation

suggested that the use of fertility treatments could lead to extinction, even with the use

of adaptive management, and that culling provided a more efficient method of population

reduction to meet target goals if population size needed reduction. The park service opted

to use culling as the predominant method of population size management as implemented in

the Elk and Vegetation Management Plan beginning in 2009.

The influence of fertility treatments during the years 2008 through 2011 are included in

the model by specifying the number of treated females (In,t) and the proportion of those

females that are actually infertile (Ip,t) and consequently should not be included in the

number of female elk surviving to reproduce since they are unable to do so. The number

of infertile female elk for the years in which there is data, are {47, 26, 13, 4} which could

potentially influence the overall growth of the population.

Data model likelihoods

Multiple likelihoods were used to model the data because multiple sampling methods

were employed, including aerial surveys, ground surveys and a combination of these census
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methods. For the first 25 years of the study from 1969-1994, when there was no clear survey

sampling design, we combine the estimation and sampling error using a single constant vari-

ance parameter σ2
d,1 and specify the likelihood for the data as Nobs,t ∼ normal

(
Ntotal,t, σ

2
d,1

)
,

where Ntotal,t =
∑3

i=1 ni,t, which is derived from the three categories of the state space process

model.

Estimation error was provided for the single annual aerial surveys that occurred from

1995-2010 in the form of a standard error estimated through bootstrapping (Lubow et al.,

2002). Hence, the elk abundance during those years are modeled with an additional level of

structure that allows us to separate estimation error from sampling error. A single constant

variance parameter (σ2
d,2) was used for the estimation error. Thus,

λt ∼ normal(Ntotal,t, σobs,t) (74)

Nobs,t ∼ normal(λt, σd,2) (75)

where λt represents the mean from the distribution from which the total population arises

and Ntotal,t, as well as Nobs,t are defined above.

For the years 2011-2015, variation in the observation error that incorporates both sam-

pling and estimation uncertainty can be estimated directly from the data because multiple

surveys were used. The likelihood for the abundance data uses the observed variation across

the multiple surveys within each winter season described as

Nobs,t ∼ normal(Ntotal,t, σ
2
obs,t). (76)
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