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ABSTRACT 
 

 

 

NONSTATIONARY FLOOD RISK ASSESSMENT IN COASTAL REGIONS UNDER 

CLIMATE CHANGE 

 

 

 

Coastal cities are exposed to multiple flood drivers including high tide, storm surge, 

extreme rainfall, and high river flows. The occurrence of these flood drivers, either in isolation or 

in combination, can cause significant risk to property and human life. Climate change is placing 

greater pressure on coastal communities by increasing frequency and intensity of flood events 

through sea level rise (SLR) and more extreme rainfall and storm events. Therefore, effective 

adaptation strategies are essential to reduce future flood risk in exposed communities. The 

planning and implementation of effective adaptation strategies require a comprehensive 

understanding of future flood hazards and risks under future climate conditions and adaptation 

options.  

The overarching goal of this dissertation is to improve the capacity to understand, estimate 

and mitigate future flood hazards and risks in coastal areas under uncertain climate change. To 

achieve this goal, first, a nonstationary mixture probability model was developed that enables 

simultaneous characterization of minor and major flood events under future sea level conditions. 

The probability model was used to estimate minor and major flooding frequency at 68 locations 

along the coasts of the Contiguous United States (CONUS). The results showed a significant 

increase in frequency of both minor and major flood events under future sea level conditions. 

However, the frequency amplification of minor and major flooding varied by coastal regions. 
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While regions in the Pacific and southeast Atlantic coast are likely to be exposed to higher 

frequency amplification in major flooding, the Gulf and northeast Atlantic coastal regions should 

expect the highest minor flood frequency amplification.  

Second, the proposed mixture probability model was employed in a flood risk assessment 

framework to enable assessing future acute and chronic coastal flood risks under different SLR 

and adaptation levels. The HAZUS-MH flood loss estimation tool was used to estimate property 

damage. The application of the framework in Miami-Dade County revealed that as sea level rises, 

chronic risks from repetitive nonextreme flooding may exceed acute risks from extreme floods. 

Third, a nonstationary bivariate flood hazard assessment method was developed that enables 

estimation of future frequency of compound coastal-riverine flooding with consideration of 

impacts of climate change including SLR and variations in extreme river flows. The proposed 

method was employed at 26 paired tidal-riverine stations along the CONUS coast. Specifically, 

the joint return period of compound major coastal-riverine flooding, defined based on 

flood impact thresholds, was explored by mid-century. The results showed that under current 

climate conditions the northeast Atlantic and western part of the Gulf coasts are exposed to the 

highest compound major coastal-riverine flood probability. However, considering future SLR, 

emerging high compound major flooding probability was evident in the southeast Atlantic coast. 

The impact of changes in extreme river flows was found to be negligible in most of the locations. 

Finally, four stormwater intervention scenarios including gray (i.e., conventional centralized 

conveyance systems and water treatment plants) and green (i.e., decentralized infiltration 

measures) infrastructure systems, were assessed in New York City (NYC). The results revealed 

that in developed and urbanized cities like NYC, green systems should not be considered as a 
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substitute for gray systems. Complementary benefits on flood and combined sewer outflow (CSO) 

reduction can be gained through integration of green and gray systems.   
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CHAPTER 1.  

INTRODUCTION 

 

 

 

1.1. Research background 

Floods are considered to be one of the most devastating and frequently occurring natural 

disasters responsible for significant annual economic losses, social and environmental damages, 

and loss of lives in the United States (NWS 2014; Walsh et al. 2014) and globally (Hallegatte et 

al. 2013; Hinkel et al. 2014). Coastal cities are more vulnerable to floods due to exposure to 

multiple flood drivers such as extreme coastal high tide, storm surge, and extreme rainfall and river 

flow (Lian et al. 2013; Moftakhari et al. 2017b). The occurrences of these flood drivers alone or 

in combination could cause significant damages and costs to coastal communities.  

Climate change, which is leading to sea level rise (SLR) and extreme rainfall to increase, 

is putting greater pressure on coastal cities by increasing the frequency and intensity of flood 

events. Consequently, the annual damages caused by flooding events are becoming more extreme 

in recent decades (Hallegatte et al. 2011; Zheng et al. 2014). For example, extreme flooding in 

Houston and the surrounding area caused by Hurricane Harvey in August 2017, caused $125 

billion in damage. Two more extreme floods caused by Hurricane Irma and Maria caused $140 

billion in total damage in the same year.  An extreme rainfall event that sparked extreme flooding 

in Maryland, in May 2018 caused a significant amount of damages (Link and Galloway 2019). 

The damages from tidal flooding (i.e., nuisance flooding) are also increasing across the United 

States (Jacobs et al. 2018; Moftakhari et al. 2017a). Thus, under climate change, a comprehensive 
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nonstationary flood risk assessment is essential for management of flood risk by helping coastal 

planners and policymakers to understand future flood risk levels and their impacts. 

SLR, which is one of the most perceivable effects of global warming is amplifying the 

frequency and intensity of coastal flooding (Rahmstorf and Coumou 2011) and is likely to 

exacerbate economic impacts of flooding due to increasing flood exposure in coastal cities 

(Nicholls and Tol 2006). Many coastal regions will be increasingly exposed to frequent tidal 

flooding as well as acute storm surge events as a result of SLR (Walsh et al., 2014; Ray & Foster, 

2016). Thus, a coherent assessment of the chronic and acute impacts of SLR on coastal flooding 

is vital for the security of coastal communities. 

SLR decreases the freeboard between local flood thresholds and high sea water levels 

(SWL) from tides and storm surges, which leads to increases in the frequency of both minor (Sweet 

et al., 2014; Moftakhari et al., 2015; Vandenberg-Rodes et al., 2016) and extreme flood events 

(Ezer and Atkinson, 2014; Kemp & Horton, 2013; Vousdoukas et al., 2017). Thus, in order to 

quantify coastal flooding risks under nonstationary sea-level conditions the effects of both frequent 

smaller high SWLs (i.e., minor flooding) and less frequent extreme SWLs (i.e., extreme flooding) 

must be reconciled. Development of effective adaptation strategies must take into account the 

cumulative losses from minor flooding as well as acute losses from major flooding. A challenge, 

however, is the inadequacy of widely used probability models in simultaneous characterization of 

both minor and major flooding under higher mean sea levels (MSL). 

Various probabilistic methods are used in literature to characterize the likelihood of 

flooding under nonstationary conditions. Such as the nonstationary Generalized Extreme Value 

(GEV) distribution (Boettle et al. 2013; Menéndez and Woodworth 2010; Obeysekera et al. 2013; 

Salas and Obeysekera 2014) and generalized Pareto (GP) distribution (Méndez et al., 2006; Kyselý 
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et al., 2010). However, using GEV and GP distribution only the tail of water level data can be 

characterized  (Xu & Huang, 2008; Menéndez et al., 2008; Noto & La Loggia, 2009; Roth et al., 

2012). As sea level rises, current local flood thresholds are likely to be exceeded more frequently 

during average high tides. Infrequent floodings which are mostly modeled by the upper tail of the 

sea-level distribution will become more frequent. Thus, in the absence of coastal adaptation 

measures, water level exceedances above the current coastal flood threshold cannot be 

characterized using models that characterize only the upper tail of the water level distribution. To 

address this gap, a statistically coherent mixture probability model is needed to characterize flood 

hazard under future SLR scenarios. 

Flood hazard refers to the likelihood of a particular flood intensity at a specific site, whereas 

flood risk emerges from the interaction of flood hazard probability, exposed values, and their 

vulnerability (Crichton 1999; Merz et al. 2010). Thus, flood hazard probability is not the sole 

component of flood risk and information about exposure inventory (e.g., population, buildings, 

transport network, etc.), and the vulnerability of exposures to flooding hazards are also needed for 

estimating flood risk at a given location. It should be noted that the terms of  “failure probability” 

(Moftakhari et al. 2017b) and “risk of failure” (Serinaldi 2015), which present the probability of 

observing at least one flooding event in a given design life are also used in literature for assessing 

flood risks.  

Deployment of different flood adaptation strategies can alter elements of flood risk (Baxter 

2013). For example, technical engineering measures such as forward pumps, sea walls, flood 

barriers, and levees lower flood probability. Other measures such as elevating houses and wet or 

dry flood proofing (Baxter 2013) can reduce flood risks by lowering the vulnerability of buildings 

(Kreibich et al. 2005; Kreibich and Thieken 2009). Although selecting the most efficient 
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adaptation requires diligent planning, deployment of any of these measures ultimately leads to an 

increase in the SWL at which a community begins to flood (i.e., increase in the flood threshold). 

Flood thresholds are established for many tide gauges and river stations in the U.S. by the 

National Oceanic and Atmospheric Administration (NOAA) (Sweet et al. 2018) and National 

Water Information System (NWIS) World Wide Web site (http://waterdata.usgs.gov/nwis) (NWS 

2019), respectively. Flood categories based on exceedances over flood thresholds describe the 

severity of flood impact. Minor flooding refers to events with minimal or no property damage, 

moderate flooding is accompanied with some inundation of structures and roads and has relatively 

considerable damages to private and commercial property. As flood level increases to the major 

flood threshold, inundated area and infrastructure impact escalate significantly. Implementation of 

flood adaptation strategies enables societies to minimize the impact of flood events through 

increasing flood thresholds and reducing exposure or vulnerability.  

Beside tidal flooding and storm surge events, coastal cities are exposed to heavy 

precipitation. The interaction among these flood drivers may cause a compound flood event 

(Moftakhari et al. 2017b; Wahl et al. 2015a) that could exacerbate flood impacts and cause huge 

social and economic losses (Hemmati et al. 2020; Zscheischler et al. 2018). The same 

meteorological system such as low atmospheric pressure and tropical cyclone can lead to storm 

surge and heavy precipitation events (Zheng et al. 2013, 2014). In regions where the flood level is 

influenced by both extreme sea levels (SLs) and rainfall, considering the co-occurrence of these 

flood drivers is important to predict the potential of high-impact compound flood events 

(Moftakhari et al. 2019). Ignoring the dependence between these flood events may substantially 

underestimate the flood risks at locations that flood hazard can be influenced by the interaction of 

inland and coastal flooding (Kew et al., 2013; Wahl et al., 2015; H. Moftakhari et al., 2019). 
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There is a rapidly growing literature concerning this interaction at local (Fang et al. 2020; Khanal 

et al. 2019; Moftakhari et al. 2017b; Orton et al. 2020), continental (Bevacqua et al. 2019a), and, 

global (Couasnon et al. 2020; Eilander et al. 2020; Ward et al. 2018) scale. However, a 

comprehensive assessment of the impact of climate change on this interaction, particularly the 

interaction of coastal and riverine flooding, has not been explored along the coastal U.S. This 

research gap is important due to several reasons.  

First, as sea level rises due to climate change, the risks of compound flooding are likely to 

increase due to an increase in sea level exceedances over coastal flood threshold (Vandenberg-

Rodes et al. 2016; Vousdoukas et al. 2017; Ghanbari et al. 2019) and also impeding a 

free river discharge to sea (Moftakhari et al. 2019). Thus, it is essential to consider future SLR 

projections in compound coastal-riverine flood hazard assessment. Climate change is also 

influencing extreme hydrological events regionally (Ahn and Palmer 2016; Peterson et al. 2008). 

Some areas have experienced an increase in the frequency of heavy precipitation and extreme 

streamflow events (Pryor et al. 2009; Groisman et al. 2001, 2005). Such changes in hydrological 

conditions have an immediate impact on the risks of urban and riverine flooding. With the increase 

of extreme streamflow frequencies, coastal regions threatened by SLR could experience 

exacerbation of consequence of compound flooding events. Therefore, consideration should be 

given to possible increase in co-occurrence of exceedances of high SLs or river flows. 

Second, a comprehensive assessment of compound coastal-riverine flooding based on the 

definition of impact flood thresholds is lacking. Previous global and national studies on compound 

coastal-riverine flooding explore annual frequency without specific consideration of compound 

flood impacts in different locations. Since in many situations, there is no exact correspondence 

between the extremeness of flood events based on return periods and the impact they cause, 
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assessment should be based on consequences rather than just probability (Hague et al. 2020). 

Considering just probability, a comparison of flooding impacts over large areas is difficult to 

obtain. However, using flood impact thresholds facilitates comparison between different regions. 

Thus, assessment of current and future frequency of compound flooding events, defined based on 

impact flood thresholds, is important to identify hot spot regions in terms of compound flood 

frequency amplification. 

Urban flooding due to extreme precipitation also poses substantial threats to people and 

property across the world (Jha et al. 2012). As already mentioned, these threats can further 

compound by the co-occurrence of high sea level (SL) either from tide or storm surge events in 

coastal urban areas (Smith and Rodriguez 2017). To offset increased future urban and compound 

flood risks in cities, implementation of effective and viable stormwater management strategies is 

essential. Stormwater interventions play a critical role by protecting cities from flooding and water 

quality degradation, particularly when considering the impacts of climate change (Roy et al. 2008). 

Stormwater interventions include gray infrastructure, green infrastructure, and hybrid 

systems (Zhang et al. 2017). Gray infrastructure, such as conveyance pipes, large centralized 

storage basins pump stations, and treatment facilities historically served society’s needs for water 

security, public sanitation, and flood protection. Over recent decades, green infrastructure systems 

have emerged as a promising flood risk management alternative or complementary to gray 

infrastructure (Ferguson et al. 2013; Vogel et al. 2015). 

Green systems are considered nature-based solutions that seek to preserve the site's pre-

development hydrologic conditions or to reduce the impacts of post-development on urban 

hydrology (Li et al. 2019). They provide environmental and social co-benefits since they facilitate 

natural hydrologic and biogeochemical cycles in cities and densely developed urban regions. 
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Green and gray stormwater infrastructure is often referred as either this‐or‐that choice  

(Jayasooriya and Ng 2014; Li et al. 2019). However, there is another opportunity to incorporate 

their complementary functionality and to obtain the best of what systems can offer (Sanders and 

Grant 2020). 

New York City (NYC) is one of the locations that is threatened by compound flooding 

from heavy precipitation and storm surge (Wahl et al. 2015a). Pressures on the city water systems 

are on the rise due to the increased frequency of extreme precipitation events, SLR, and land-use 

change (Karamouz et al. 2015; Yohe and Leichenko 2010). Several studies assess the effectiveness 

of adaptation strategies in reducing stormwater runoff and flood risks in NYC (e.g., Rosenzweig 

et al., 2011; Aerts et al., 2013; Zahmatkesh et al., 2015; Karamouz et al., 2019). However, an 

improved understanding of future urban and compound flood hazard and benefit that can be gained 

from implementation of combinations of different practices as a part of integrated water 

management still need to be investigated thoroughly to improve resiliency of NYC’s water system 

under uncertain future. 

1.2. Research objectives 

The overall goal of this dissertation is to enhance the capacity to understand, estimate and 

mitigate future flooding hazards and risks in coastal areas with consideration of the impact of 

climate change including SLR and changes in extreme precipitation and river flows. Specifically, 

the objectives are to: 

1. Develop a statistically coherent nonstationary mixture probability model for sea levels, which 

enables simultaneous assessment of minor and extreme coastal flooding under future sea level rise 

scenarios. 
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2. Incorporate the proposed mixture probability distribution in a risk assessment framework to 

simultaneously estimate acute and chronic flood risk in coastal regions under different sea level 

rise and adaptation level scenarios. 

3. Develop a bivariate flood hazard assessment framework to estimate the joint return period of 

compound coastal-riverine flooding that accounts for sea level rise and changes in extreme river 

flows.  

4. Examine the complementary and substitutive effect of green stormwater interventions on flood 

control and combined sewer outflow reduction under current and future storm scenarios in NYC. 

Achieving these research objectives provides more accurate flood risk assessment under 

future climate conditions in coastal areas, which in turn could assist coastal planners and policy 

makers in their decision to adopt more efficient adaptation strategies to reduce the adverse effect 

of climate change. This could save billions of dollars that are and will be spent annually for damage 

repair and insurance claims and also enhance the quality of life as it would provide a safer living 

environment. 

1.3. Significance of the dissertation 

This dissertation is significant in several aspects of flood risk assessment and adaptation. 

First, it develops a coherent probability mixture model, which reconciles the probabilistic 

characteristics of the upper tail as well as the bulk of the sea level data. The novel probability 

mixture model allows to simultaneously investigate minor and extreme coastal flooding frequency 

under future SLR conditions. Second, the study provides a flood risk assessment framework for 

assessing chronic and acute flood risks in coastal cities under different SLR and adaptation levels. 

Simultaneous assessment of chronic and acute flood risk under future conditions is novel and 
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enhances the capacity for more resilient coastal management. Third, it presents a copula-based 

bivariate flood hazard assessment framework that enables estimation of compound coastal-riverine 

flooding frequency under future climate conditions. The framework is the pioneer in assessment 

of compound coastal-riverine frequency that accounts for SLR and changes in extreme river flow.  

1.4. Organization of the dissertation 

This dissertation is organized into five chapters, including: 

Chapter 1: presents a holistic research background and the main objectives and 

significance of this dissertation. 

Chapter 2: develops a statistically coherent mixture Normal‐Generalized Pareto 

distribution model which reconciles the probabilistic characteristics of the upper tail as well as the 

bulk of the sea level data. The performance validity of the mixture model was corroborated for 68 

tidal stations along the coasts of the Contiguous United States with long‐term observed data. 

Chapter 3: implements the proposed mixture probability model in a coastal flood risk 

assessment framework to simultaneously estimate acute and chronic risk from minor and major 

flooding in coastal regions under different SLR and adaptation level scenarios. The application of 

the framework was demonstrated for Miami-Dade County. 

Chapter 4: develops a bivariate compound flooding risk assessment method to estimate 

the joint return period of compound coastal-riverine flooding with consideration of SLR and 

changes in extreme river flows. The proposed compound flood risk assessment is conducted at 26 

paired tidal-riverine stations along the coasts of the Contiguous United States with long‐term 

observed data and impact flood threshold.  
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Chapter 5: identifies, models, and assesses different green and gray stormwater 

management intervention scenarios in New York City under current and future climate to 

understand benefit that can be gained from implementation of different practices, individually or 

in combination. 

Chapter 6: presents the main findings of this research study and the summary of the work 

concluded, and provides recommendations for future work. 

Two chapters of the dissertation have been published and one is in review as journal 

articles. The full references for the articles are: 

• Ghanbari, M., Arabi, M., Obeysekera, J., & Sweet, W. (2019). A coherent statistical model 

for coastal flood frequency analysis under nonstationary sea level conditions. Earth's 

Future, 7(2), 162–177. https://doi.org/10.1029/2018EF001089 

• Ghanbari, M., Arabi, M., and Obeysekera, J. (2020). “Chronic and Acute Coastal Flood 

Risks to Assets and Communities in Southeast Florida.” Journal of Water Resources 

Planning and Management, 146(7). https://doi.org/10.1061/(ASCE)WR.1943-

5452.0001245 

• Ghanbari, M., Arabi, M., Kao, S. C., Obeysekera, J., & Sweet, W. (2021). Climate Change 

and Changes in Compound Coastal-Riverine Flooding Hazard Along the U.S. Coasts. 

Submitted to Earth's Future  
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CHAPTER 2.  

A COHERENT STATISTICAL MODEL FOR COASTAL FLOOD FREQUENCY ANALYSIS 

UNDER NONSTATIONARY SEA LEVEL CONDITIONS 

 

 

Highlights  

Flood exposure is increasing in coastal communities due to rising sea levels. Understanding 

the effects of sea level rise (SLR) on frequency and consequences of coastal flooding and 

subsequent social and economic impacts are of utmost importance for policymakers to implement 

effective adaptation strategies. Effective strategies may consider impacts from cumulative losses 

from minor flooding as well as acute losses from major events. In the present study, a statistically 

coherent Mixture Normal-Generalized Pareto Distribution (GPD) model was developed, which 

reconciles the probabilistic characteristics of the upper tail as well as the bulk of the sea level data. 

The nonstationary sea level condition was incorporated in the mixture model using Quantile 

Regression method to characterize variable GPD thresholds as a function of SLR. The performance 

validity of the mixture model was corroborated for 68 tidal stations along the Contiguous U.S. 

(CONUS) coast with long-term observed data. The method was subsequently employed to assess 

existing and future coastal minor and major flood frequency. The results indicate that the frequency 

of minor and major flooding will increase along all CONUS coastal regions in response to SLR. 

By the end of the century, under the “Intermediate” SLR scenario, major flooding is anticipated to 

occur with return period less than a year throughout the coastal CONUS. However, these changes 

vary geographically and temporally. The mixture model was reconciled with the property exposure 

curve to characterize how SLR might influence Average Annual Exposure (AAE) to coastal 

flooding in twenty major CONUS coastal cities. 
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2.1. Introduction 

The global mean sea level (MSL) has been increasing over the past decades (IPCC 2014). 

The rate of sea level rise (SLR) is anticipated to continue to accelerate globally and regionally over 

the 21st century (Howat et al., 2007; Rahmstorf, 2007; Sweet et al., 2017). Consequently, many 

coastal regions will be increasingly exposed to frequent coastal flood inundation (Walsh et al. 

2014). Coastal communities are particularly vulnerable to SLR due to risks from acute storm surge 

as well as chronic tidal flooding events. The implications of SLR may include increases in severity 

and frequency of coastal flooding (Rahmstorf and Coumou 2011; Ray and Foster 2016), posing 

enormous socioeconomic implications in coastal cities (Hinkel et al., 2013; Aerts et al., 2014; 

Hallegatte et al., 2013). Thus, a coherent assessment of the chronic and acute impacts of SLR on 

coastal flooding is vital for security of coastal communities. 

SLR reduces the freeboard between high water levels (either from tide or storm surge) and 

local flood thresholds, causing to increase the frequency of both minor (Sweet et al., 2014; 

Moftakhari et al., 2015; Vandenberg-Rodes et al., 2016; Dahl et al., 2017) and major (Kemp & 

Horton, 2013; Ezer & Atkinson, 2014; Vousdoukas et al., 2017) coastal flood events. Thus, 

quantification of risks from coastal flooding under nonstationary sea level conditions must 

reconcile the effects of both minor and major floods. Development of effective adaptation and 

mitigation strategies must take into account the cumulative losses from frequent smaller high-

water levels (i.e., minor flooding) as well as acute losses from less frequent extreme high-water 

levels (i.e., major flooding). A challenge, however, is the inadequacy of widely used probability 

models in simultaneous characterization of both minor and major flooding under higher mean sea 

levels. 
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Literature is replete with probabilistic methods to characterize the likelihood of major 

flooding under nonstationary condition. Chief among these approaches are the nonstationary 

Generalized Extreme Value (GEV) distribution and Generalized Pareto Distribution (GPD). 

Nonstationarity of sea level conditions is typically taken into account by time-dependent 

distribution parameters for GEV (Boettle et al. 2013; Menéndez and Woodworth 2010; 

Obeysekera et al. 2013; Salas and Obeysekera 2014) or GP (Méndez et al., 2006; Kyselý et al., 

2010) distributions. The increasing frequency of minor flooding due to SLR has motivated several 

recent studies (Sweet et al., 2014; Dahl et al., 2017; Moftakhari et al., 2017; Sweet et al., 2018). 

However, most of these previous studies model minor and major flood events separately. 

Two important considerations must be addressed to fully characterize acute and chronic 

flooding risks in a statistically rigorous manner under nonstationary condition. First, using time as 

a covariate in nonstationary probability models poses planning and management challenges since 

future SLR projections are fraught with uncertainty. Considerable scientific discourse still remains 

how to statistically detect SLR acceleration over time (Nicholls & Cazenave, 2010; Haigh et al., 

2014). Moreover, local factors such as land subsidence, changes in ocean circulation, and 

groundwater pumping may also considerably alter the rate of SLR in a region (Konikow, 2011; 

Ezer et al., 2013). In addition, selecting a meaningful SLR scenario is not a straightforward task 

and several factors should be weighed by policymakers and coastal planners to select an 

appropriate SLR such as the decision type, planning horizon and overall risk tolerance (Hall et al., 

2016; Sweet et al., 2017). Thus, since extreme sea level data are correlated with MSL (Tebaldi et 

al., 2012) nonstationarity may be addressed in terms of changing in MSL instead of time. 
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Further, Extreme Value (EV) distributions are commonly used to characterize the tail of 

water level data  (Xu & Huang, 2008; Menéndez et al., 2008; Noto & La Loggia, 2009; Roth et 

al., 2012; Niroomandi et al., 2018). However, with higher sea levels, current local flood thresholds 

are likely to be exceeded more frequently during average high tides. Flood events that are currently 

characterized as infrequent and are mostly modeled by the upper tail of the sea level distribution 

will become more frequent with SLR and will not be rare events anymore. Thus, in the absence of 

coastal adaptation measures, water level exceedances above the current flood threshold cannot be 

characterized using models that characterize only the upper tail of the water level distribution. This 

limitation impedes full characterization of risks from coastal flooding under nonstationary sea 

level conditions. Thus, requisite to a full characterization of flood risks is an approach that 

reconciles the probabilistic characteristics of the upper tail as well as the bulk of the sea level 

distribution (Stephens et al. 2018). 

This study develops a statistically coherent nonstationary mixture probability model for 

sea water levels to facilitate coastal flood frequency analysis. Specifically, the objectives of the 

study are to: 1) develop and corroborate a nonstationary Mixture Normal-GPD probability model 

with changes in MSL as the covariate; 2) evaluate current and future coastal flood return periods 

for regions along the coastal Contiguous U.S. (CONUS); 3) investigate changes in the frequency 

of minor and major coastal flooding for the stations along the coastal CONUS; and 4) quantify 

current and future exposure to coastal flooding in twenty coastal cities in the CONUS. The new 

mixture probability model enhances the capacity to simultaneously investigate minor and major 

coastal flooding frequency under future SLR scenarios. The study also investigates the time to 

anticipated SLR levels on a decadal basis. 
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2.2. Materials and Methods 

Current local flood thresholds will be exceeded more frequently under higher MSL, which 

can ultimately result in inadequacy of the extreme value distributions (Figure 2.1). We developed 

a nonstationary Mixture Normal-GPD model to enable full characterization of coastal flood 

frequency with SLR as the covariate. In the mixture model, the Normal distribution describes the 

bulk of daily maximum sea levels, while GPD characterizes the upper tail of the data. 

Nonstationarity was incorporated by expressing the location parameters of both Normal 

distribution and GP distribution as a function of SLR. The model was corroborated for 68 tidal 

monitoring locations along the coastal CONUS with long-term observed water level data. We used 

the mixture probability model to assess the effects of SLR on future coastal flood frequency along 

the coastal CONUS. Subsequently, we reconciled the model with exposure curve for coastal assets 

(i.e. property value of buildings) in twenty coastal cities to quantify the Average Annual Exposure 

(AAE) of assets to minor and extreme coastal flooding over a range of SLR levels. Finally, recent 

regional SLR projections were used to investigate how far in the future changes in frequency of 

coastal flooding may be realized. 

 

Figure 2.1. Schematic of changes in water level probability distribution with a 𝛿𝛿 increase in MSL 
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2.2.1. Tidal stations, study cities, and projected SLR scenarios 

We used three sets of data in this study to estimate current and future coastal flood 

frequency and conduct property exposure analysis along the coastal CONUS. First, we used hourly 

observed sea level data from 68 stations with at least 30 years of data to develop and corroborate 

the mixture probability model. These stations are located along CONUS coasts, including 

northeast Atlantic, southeast Atlantic, Gulf, and Pacific coasts. The data represent Still Water 

Elevation (SWEL), which encompass both tide and storm components. All the hourly observed 

water level data are relative to the latest National Tidal Datum Epoch (NTDE), which references 

the 1983-2001 period with MHHW as the tidal datum except the data from two stations along the 

Gulf coast (Grand Isle and Rockport tidal stations), which are on the modified epoch. We modified 

the hourly time series correspond to these two stations to take the sea level data back onto the 

1983-2001 epoch (Sweet et al., 2018). 

Second, we selected twenty populated cities along the coastal CONUS, which cover a 

variety of geographic coastal regions (5 cities in each coastal region). All of the cities are highly 

exposed areas to coastal flooding in terms of infrastructure and other properties. For each city, we 

used cumulative property exposure values correspond to water level above mean higher high water 

(MHHW) from risk finder tool (https://riskfinder.climatecentral.org) provided by Climate Central 

(Climate Central 2016). We obtained the property exposure values for 10 different water level 

values (i.e., 1 to 10 ft above MHHW). Exposure values between these data points were modeled 

by a linear function.  

Third, we used two regional SLR projections to perform a decadal assessment of expected 

time to certain changes in mean sea levels by 2100. We selected the “Intermediate Low” scenario, 

which corresponds to 0.5 m global SLR with 73% chance of being exceeded under RCP 4.5 climate 
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change scenario. We simulated more accelerated SLR conditions using the “Intermediate” scenario 

with 1 m global SLR and 17% chance of being exceeded under RCP 8.5 climate change scenario 

(Kopp et al., 2014; Sweet et al., 2017). Antarctic ice sheet instability could transition to more 

extreme scenarios (i.e., Intermediate-High, High and Extreme) later in the century. However, those 

outcomes are less likely to occur. Thus, the results of the present study may be deemed as plausible 

but conservative estimates compared to other extreme SLR scenarios. 

2.2.2. Minor, moderate, and major coastal flooding classification 

To secure public safety and take steps to increase coastal cities preparedness level, three 

“official” coastal flood thresholds have been established by National Oceanic and Atmospheric 

Association (NOAA). Minor flooding (i.e., exceedances over minor flood threshold) refers to 

events that can cause minimal damage with public threat and inconvenience. Moderate coastal 

flooding (i.e., exceedances over moderate flood threshold) has relatively considerable damages to 

private and commercial property. Major flooding (i.e., exceedances over major flood threshold) is 

destructive and can cause extensive losses to life and property. These thresholds are defined 

observationally during flooding events and are available for less than half of NOAA tide gauges 

in the CONUS (NOAA 2014). 

A recent study done by Sweet et. al (2018) found a common pattern between all “official” 

NOAA coastal flood thresholds based on the local tide range such that in the most cases minor, 

moderate and major coastal flooding begin about 0.5 m, 0.8 m and 1.2 m above the local diurnal 

tide range. Consequently, they estimate a “derived” set of flood threshold based on the statistical 

relationship (regression-based) for nearly all stations along the coastal CONUS. In this study, we 

used these set of “derived” coastal flood thresholds for each station as an approximation of minor, 
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moderate and major flooding threshold, which are spatially consistent and can provide national 

coverage (Sweet et al., 2018).  

2.2.3. Mixture Normal-GPD probability model  

We developed a nonstationary mixture model that simultaneously characterize the bulk and 

upper tail of the sea water level distribution. The six parameter model represents extreme values 

by a GPD and bulk data by a Normal distribution. We estimated the parameters of the mixture 

model for the 68 tidal monitoring stations along the coastal CONUS. 

2.2.3.1. Extreme Value Analysis (EVA) 

EVA is commonly used to characterize extreme events with two primary methods for 

selecting extremes: Peak over threshold (POT) and block maxima method (e.g. annual maxima). 

The block maxima approach and corresponding probability models such as the GEV distribution 

can only consider one event per block (e.g. year). However, coastal flooding, particularly minor 

flooding events, may occur with multiple occurrences in a year (Moftakhari et al. 2015; Ray and 

Foster 2016). Hence, we used the POT method in the current study to consider multiple events per 

year. In this approach, a threshold is determined to describe statistical properties of events that 

exceed the threshold over a given period of time. The cumulative distribution (G) of the 

independent exceedances above the threshold follow the GPD is given by (Coles 2001): 

𝐺𝐺𝑢𝑢,𝛼𝛼,𝜉𝜉(𝐻𝐻) = Pr(𝑋𝑋 ≤ 𝐻𝐻 | 𝑋𝑋 > 𝑢𝑢) = ⎩⎨
⎧1 − �1 + 𝜉𝜉 𝐻𝐻 − 𝑢𝑢 𝛼𝛼 �−1𝜉𝜉 𝑖𝑖𝑖𝑖 𝜉𝜉 ≠ 0

1 − exp �−𝐻𝐻 − 𝑢𝑢 𝛼𝛼 � 𝑖𝑖𝑖𝑖 𝜉𝜉 = 0

 (2.1) 

where 𝑢𝑢, 𝛼𝛼 and 𝜉𝜉 denote the location, scale and shape of the GPD distribution.  
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2.2.3.2. Mixture Normal-GPD distribution 

The bulk of daily maximum sea level closely follows a Normal distribution (Sweet & Park, 

2014). Thus, using the idea of extreme value mixture model (Behrens et al. 2004) the GPD model 

for the data above the threshold is mixed with a Normal distribution for the data below the 

threshold to derive a single spliced distribution that coherently characterizes probability density of 

the entire range of sea level data. The cumulative distribution function of the mixture model is 

defined as (MacDonald et al. 2011): 

 𝐹𝐹(𝐻𝐻|𝜇𝜇,𝜎𝜎,𝑢𝑢,𝛼𝛼, 𝜉𝜉,𝜑𝜑) = �(1 − 𝜑𝜑)   
𝑁𝑁 (𝐻𝐻| 𝜇𝜇,𝜎𝜎)𝑁𝑁 (𝑢𝑢| 𝜇𝜇,𝜎𝜎)

        𝑖𝑖𝑖𝑖 𝐻𝐻 < 𝑢𝑢
(1 − 𝜑𝜑) + 𝜑𝜑𝐺𝐺(𝐻𝐻|𝑢𝑢,𝛼𝛼, 𝜉𝜉) 𝑖𝑖𝑖𝑖 𝐻𝐻 ≥ 𝑢𝑢 (2.2) 

where 𝑁𝑁(𝐻𝐻|µ,𝜎𝜎) and  𝐺𝐺(𝐻𝐻|𝑢𝑢,𝛼𝛼, 𝜉𝜉) are the Normal and conditional GPD cumulative 

distribution functions, respectively. Variables 𝜇𝜇 and 𝜎𝜎 represent mean and standard deviation of 

the Normal distribution, and  𝜑𝜑 denotes the probability of independent exceedances over threshold. 

Variable 𝜑𝜑 is the ratio of number of clusters above threshold to the total number of observations 

(Coles 2001). We used the Maximum Likelihood Estimation (MLE) in MATLAB (MathWorks®) 

to estimate parameters of the mixture model for the study locations. 

2.2.4. Characterization of nonstationary sea water level 

The effects of SLR must be considered in both components of the Mixture Normal-GPD 

model. Hence, in the proposed approach, the location parameter of the Normal distribution (𝜇𝜇) and 

the location parameter of the GPD (𝑢𝑢) are expressed as functions of changes in MSL (𝛿𝛿). Climate 

change may also beget changes in storminess of events (i.e., the frequency and intensity of storms) 

that cause coastal flooding (Wolf and Woolf 2006) leading to changes in other parameters (e.g. 

scale and shape parameter) of water level distribution (Arns et al. 2017; Devlin et al. 2017; Wahl 
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2017). However, the changes in storminess were not included in this study for two reasons: (1) 

previous studies have observed that SLR have more immediate threat for the increase in 

exceedances over flood thresholds than possible changes in storm variability (Tebaldi et al., 2012; 

Church et al., 2013; Sweet & Park, 2014); (2) although increase in storminess could change 

extreme events accompanied with storm surge, as sea levels rise most of coastal floodings start at 

normal high tides, with no additional effect of severe weather such as storm or hurricane. The 

approach assumes that SLR will shift the current sea level distribution toward higher water level 

without any deformation of the distribution (Mudersbach & Jensen, 2010; Tebaldi et al., 2012; Le 

Cozannet et al., 2015). Thus, no additional covariate dependency was assumed for scale parameter 

of Normal component as well as scale and shape parameters of the GP component.  

 
Figure 2.2. (Left Panel) Daily mean sea level calculated using linear function fitted to the daily sea levels, 

(Right panel) Variable threshold estimated using Quantile regression method and independent excesses 
over threshold (Battery (NY) tidal station) 

 

The location parameter of GPD may be represented by either choosing a constant or a 

variable threshold. When a constant threshold is used, exceedances of the threshold occur more 

frequently in future years, which may violate the assumption of extreme value analysis (Coles 

2001). Hence, we computed a variable GPD threshold using Quantile Regression method (Koenker 

& Hallock, 2001; Kyselý et al., 2010). The analysis determines the relationship between daily 
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mean sea level (independent variable) and daily maximum sea level (response variable) data. Daily 

mean sea levels (DMSL) were computed from the linear model fitted to the daily sea levels (i.e., 

daily time series of mean of hourly observed water levels) (Figure 2.2, left panel). The linear model 

(Yellow line) was used instead of daily mean sea level time series, which was computed from the 

mean of daily values for 1-year overlapping windows centered at the indicated day (Red line), to 

remove the noise component in the time series and avoid having sample variability. We assume 

DMSL correspond to 183rd day of the year 2017 as current DMSL and present all the computed 

DMSLs as sum of current DMSL and changes in MSL (𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛿𝛿). Eventually, we 

calculated the GPD variable threshold as the 97% (Méndez et al., 2006; Sweet et al., 2014) quantile 

regression assuming linear dependence between daily maximum sea level and DMSL (Figure 2.2, 

right panel). The nonstationary characterization of GPD threshold includes two components and 

is a function of changes in MSL (𝛿𝛿) according to the following equation: 

𝑢𝑢 = 𝑢𝑢(𝛿𝛿) = 𝛽𝛽1( 𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛿𝛿) + 𝛽𝛽0 =  𝛽𝛽1𝛿𝛿 + (𝛽𝛽0 + 𝛽𝛽1 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (2.3) 

where 𝑢𝑢 denotes the value of the variable GPD threshold, 𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  represents the 

daily mean sea level corresponding to the current (i.e., reference) year, 𝛽𝛽1 and 𝛽𝛽0 denote the slope 

and intercept coefficients of the quantile regression model, and 𝛿𝛿 represent change in mean sea 

level from the current level. Year 2017 is used as the reference year in the study. The quantile 

regression coefficients are assumed to remain constant over the range of mean sea levels.         

The estimated slope coefficient (𝛽𝛽1) indicates the rate of change in the GPD threshold, 

which is used to characterize extremes, with changes in MSL. When 𝛽𝛽1 is greater than 1, the 

changes in extreme values are greater than changes in MSL itself. Conversely, a 𝛽𝛽1 value less than 

1 points to smaller changes in extremes relative to changes in MSL. 
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The MLE technique requires independent observations of extremes for robust estimation 

of GPD parameters. Thus, a minimum time interval between water level extremes (i.e., threshold 

exceedances) must be identified such that the resulting sequences are statistically independent. In 

the current study, we employed a minimum of 3-day runs (Méndez et al., 2006; Sweet et al., 2014). 

The maximum of successive extremes within each cluster was used to estimate GPD parameters 

(Figure 2.2, right panel).  

Similarly, the nonstationary component for the bulk of the distribution is incorporated by 

changing the location parameter of the Normal component of the distribution as follows: 

𝜇𝜇 = 𝜇𝜇(𝛿𝛿) = 𝜇𝜇0 + 𝛿𝛿 (2.4) 

where 𝜇𝜇0 represents the estimated Normal distribution location parameter computed from 

historical daily maximum sea level. 

2.2.5. Coastal flood frequency and amplification factor 

The relation between coastal flood level and return period will change under nonstationary 

conditions (Church et al., 2006; Lin et al., 2012), and subsequently, the frequency of exceedance 

of a given flood threshold will increase (Dahl et al. 2017). The annual frequency (expected number 

of days per year) of exceedances above coastal flooding thresholds (𝑛𝑛𝑐𝑐) can be obtained from the 

mixture probability model as follows: 

 

𝑛𝑛𝑐𝑐 =
1𝑇𝑇 =

⎩⎪⎪⎨
⎪⎪⎧𝑛𝑛𝑦𝑦 �1 − � (1 − 𝜑𝜑)

1 + 𝐻𝐻𝑒𝑒𝑖𝑖 �𝑢𝑢 − 𝜇𝜇𝜎𝜎√2
� �1 + 𝐻𝐻𝑒𝑒𝑖𝑖 �𝐻𝐻 − 𝜇𝜇𝜎𝜎√2

����      𝐻𝐻 < 𝑢𝑢
𝜑𝜑𝑛𝑛𝑦𝑦 �1 + 𝜉𝜉 𝐻𝐻 − 𝑢𝑢𝛼𝛼 �−1𝜉𝜉                                                          𝐻𝐻 ≥ 𝑢𝑢 

(2.5) 
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where 𝑛𝑛𝑦𝑦 is the number of observations per year, T denotes the return period and erf is the 

error function. 

While the frequency of coastal flooding increases with SLR, changes in the frequency of 

minor and major flooding may not be the same everywhere. Thus, the effect of SLR on changes in 

frequency of minor and major flooding across coastal regions in the CONUS were assessed using 

the flood frequency amplification factor (𝐴𝐴𝐹𝐹), which is defined as the ratio of current to future 

return period of a given water level under a specific SLR (Buchanan et al. 2017):  

𝐴𝐴𝐹𝐹 =  
𝑇𝑇0(𝐻𝐻)𝑇𝑇𝛿𝛿(𝐻𝐻)

  (2.6) 

where 𝑇𝑇0(𝐻𝐻) is the current return period of water level (𝐻𝐻), and 𝑇𝑇𝛿𝛿(𝐻𝐻) is the return period 

of water level (𝐻𝐻) under a 𝛿𝛿 increase in MSL.  

2.2.6. Average annual exposure to coastal flooding 

Flood risk computation involves quantification of flood probability, assets (or other values) 

at risk, and vulnerability (Kron 2005; Merz et al. 2010). A widely-used risk indicator for flood risk 

assessment is the Average Annual Losses (AAL) (Kron 2005; Purvis et al. 2008). However, in this 

study, we used the exposure values as an approximation of damages due to many uncertainties in 

estimating damages across different types of flooding, especially indirect losses in the case of 

minor flooding. Thus, we estimated Average Annual Exposure (AAE) of property to “minor” and 

“moderate and major” coastal flooding in twenty major CONUS coastal cities.  Here, we use the 

term “extreme” flooding to refer to “moderate and major” flooding since both flooding categories 

can cause considerable damage to property (NOAA 2014). AAE to minor and extreme (i.e., 

moderate and major) flooding is determined by: 
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𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐻𝐻𝐻𝐻𝑒𝑒𝐻𝐻𝐸𝐸𝐻𝐻 = � 𝑛𝑛𝑦𝑦 ∗ 𝐴𝐴�𝐹𝐹−1(1 − 𝑝𝑝)�𝑑𝑑𝑝𝑝1−𝐹𝐹(𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇ℎ𝑐𝑐𝑐𝑐𝑟𝑟ℎ𝑀𝑀𝐹𝐹𝑀𝑀)

0  (2.7.a) 

𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝑖𝑖𝑛𝑛𝑀𝑀𝑒𝑒 = � 𝑛𝑛𝑦𝑦 ∗ 𝐴𝐴�𝐹𝐹−1(1 − 𝑝𝑝)�𝑑𝑑𝑝𝑝1−𝐹𝐹(𝑀𝑀𝑀𝑀𝑐𝑐𝑀𝑀𝑐𝑐 𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇ℎ𝑐𝑐𝑐𝑐𝑟𝑟ℎ𝑀𝑀𝐹𝐹𝑀𝑀)

1−𝐹𝐹(𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇ℎ𝑐𝑐𝑐𝑐𝑟𝑟ℎ𝑀𝑀𝐹𝐹𝑀𝑀)

 (2.7.b) 

 where 𝐴𝐴 denotes the exposure function, and p represents the sea level exceedance 

probability. The AAE to minor and major flooding was computed for twenty cities along the coastal 

regions in CONUS for various SLR levels.  

2.3. Results 

The study reveals that minor and major flood frequency generally increase as sea level 

rises, however, these changes vary geographically along the coastal CONUS. Major flood 

frequency amplification is primarily governed by the value of shape parameter. In regions with 

negative or close to zero shape parameter (i.e., Pacific and Southeast Atlantic coasts) major flood 

frequency amplification is more sensitive to SLR and is higher than minor flood frequency 

amplification. On the contrary, locations with large positive shape parameter (i.e., Gulf and 

northeast Atlantic coasts) are anticipated to be exposed to higher frequency amplification in minor 

flooding. Considering regional SLR projections, events currently classified as major flooding are 

anticipated to occur with return period less than a year in all stations by the end of the century 

under Intermediate SLR scenario.  

2.3.1. Parameters of the Mixture model by region 

The mixture model parameter values for all 68 tidal stations were estimated using the MLE 

method and are summarized in Appendix A Table A1. The GPD shape parameter governs the 

qualitative behavior of GPD distribution (Coles 2001). When the shape parameter is positive (𝜉𝜉 >
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0), the distribution is heavy-tailed and has no upper bound. Conversely, when 𝜉𝜉 < 0 the 

distribution is thin-tailed and has upper limit equal to 𝐻𝐻𝑚𝑚𝑀𝑀𝑚𝑚 = 𝑢𝑢 − 𝛼𝛼𝜉𝜉.  

 
Figure 2.3. (Left) Geographical distribution of GPD shape parameter (Right) Boxplot of GPD shape 

parameter (Q1, Q2, and Q3 indicate lower quartile, median, and higher quartile respectively and n denotes 
the number of stations) 

 

The estimated shape parameters for the stations along the coastal CONUS reveal important 

regional patterns (Figure 2.3). Figure 2.3 (right panel) presents the boxplot of GPD shape 

parameters in each region. From this boxplot, it can directly be observed that locations along Gulf 

and Pacific coasts have the highest and lowest GPD shape parameter respectively and the median 

is almost equal to zero for stations along the southeast Atlantic coasts. The shape parameters for 

stations along the Pacific coast region are negative ranging between -0.02 to -0.1 or highly negative 

with values less than -0.1. These stations historically do not experience tropical cyclone or 

hurricanes and have a very narrow continental shelf that limits storm surge potential. On the other 

hand, stations along the Gulf and northeast Atlantic regions are exposed to tropical cyclones and 

strong winter storms, respectively. The shape parameter for these stations is highly positive with 

values more than 0.1 or positive ranging between 0.02 to 0.1. Stations along southeast Atlantic 

region experience differing degrees of exposure to tropical storms with the shape parameter 
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approximately zero with values in the range of -0.02 to 0.02. It is clear that different experience 

among stations in terms of historical exposure to extreme flooding can be reflected by GPD shape 

parameter (Buchanan et al., 2016).   

Local characteristic of tidal stations could also affect the value of GPD shape parameter. 

For example, Key West and Vaca Key (Florida Keys) stations, which are located close to the 

margins of continental shelf zones, similar to the situation along the Southwestern Pacific coast, 

tend to be exposed to lower surge compared to stations that are located behind the wide shelves. 

Moreover, stations close to estuaries may be also exposed to relatively high storm surge or large 

riverine inputs (e.g. Washington DC station) (Tebaldi et al. 2012).     

 

Figure 2.4. Sensitivity of major flood frequency amplification with SLR and the distribution shape 
parameter 

 

The sensitivity of major flood frequency amplification to the shape parameter over a range 

of SLR levels is illustrated in Figure 2.4. Other parameters of the distribution and Quantile 

Regression coefficients were kept constant at: 𝑢𝑢0 = 1.8;  𝛼𝛼 = 0.4; 𝜇𝜇0 = 0;  𝜎𝜎 = 0.8;𝜑𝜑 =

0.02;𝛽𝛽1 = 1;𝛽𝛽0 = 7. Generally, frequency amplification of major flooding is inversely related to 
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the value of shape parameter. As shape parameter increases, major flooding frequency 

amplification tends to be smaller for changes in MSL. This response is governed by the effects of 

shape parameter on the tail of sea level distribution and the frequency of extreme flood levels. 

Distributions with  𝜉𝜉 > 0 have relatively high frequency of extreme flood levels, while 

distributions with ξ < 0 have an upper bound of extreme flood levels. When shape factor is highly 

negative, e.g. for locations where currently major flooding does not occur or is highly unlikely, 

very large frequency amplifications may be computed.    

Conversely, minor flooding frequency amplification is not sensitive to the value of shape 

parameter. The minor flood threshold typically is not located at the tail of the GPD and is not 

governed by shape parameter. 

2.3.2. Current and future coastal flooding return period  

Changes in the return period of future coastal flooding were assessed under different SLR 

levels in the study locations. The median of these changes by coastal regions is summarized in 

Figure 2.5. Figures A2 to A69 (panel E) in Appendix A provide the results of the analysis for each 

station. Generally, future return periods will become shorter as the sea level rises. A significant 

change is determined for study sites in the Pacific region. For example, 500-year flood will become 

a 10-year, yearly and monthly flood under 0.5, 1, and 2 ft SLR respectively. However, these 

changes in flood return period do not necessarily indicate higher exposure and risks in the future 

since return period alone does not provide sufficient information for risk management policies 

(Tebaldi et al. 2012). For example, the flood levels for the current 100-year event is about 3 ft for 

regions along the Pacific coast, posing little flood risks. 
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Figure 2.5. Current versus future coastal flood return period (Median value for each region) 

 

To make this point clearer, Figure 2.6 depicts the estimated future return period for 

prevailing 100-year coastal flooding events under 0.5 ft (left panel) and 2 ft (right panel) SLR 

levels. Locations along the Gulf region will experience the highest 100-year depth. On the 

contrary, the smallest 100-year flood depths are estimated for locations along the Pacific coast, 

which historically have not been exposed to hurricane and tropical cyclone. A relation is evident 

between the future return period and current 100-year return level (Tebaldi et al. 2012), which 

express that changes in return period alone does not provide sufficient information for risk 

management policies.   

 

Figure 2.6. Future 100-year flood return period classified by current 100-year flood depth. The size and 
color represent the “Future return period” and the “depth” of current 100-year flood, respectively. 
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2.3.3. Current and future frequency of minor and major coastal flooding 

For more practical use of future return period, we calculated the frequency of minor and 

major flooding (i.e., exceedances over ‘derived’ minor and major flood threshold respectively) for 

each station under current and future MSL values. Generally, as sea levels rise, the likelihood of 

flooding increases should the local flooding thresholds remain constant (Kruel, 2016; Dahl et al., 

2017). Figure2.7 (top panels) shows estimated future return period for major flooding events, 

under the current MSL, 1 ft and 2 ft SLR. Under the current condition, major flooding events occur 

along the Gulf and northeast Atlantic coasts with a return period less than 100-year. With 1 ft SLR, 

the large majority of locations (except locations along the southwest Pacific with no exceedances 

above major flood threshold) tend to be exposed to major flooding with a return period of 1- 20 

years. Under 2 ft SLR, should no interventions be implemented, major flooding will become 

commonplace with multiple annual occurrences in most of the CONUS coastal regions. 

Annual Frequency (i.e., expected annual number of exceedances) of minor flooding is 

presented in Figure 2.7 (bottom panels). Annual frequency of minor flooding was computed 

instead of return period since multiple minor flooding events may occur within in a year (i.e. return 

period less than 1 year). Results show that minor flooding currently occurs with the expected 

number of 1 to 20 days per year in most stations along the Atlantic, Gulf, and Northwest Pacific 

coasts. Under the current MSL, the least frequency of exceedances is realized with expected annual 

exceedances of less than 1 day for stations along the southwest Pacific coast as well as the 

southwestern coast of Florida. However, 1 ft SLR will culminate in increased frequency of minor 

flooding to 20-50 days per year in a majority of the study locations. With no adaptations or 

interventions, 2 ft SLR will result in more than 150 days of minor flooding per year in all the 

locations.  
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Figure 2.7. (Top panels) Return period of major coastal flooding; (Bottom panels) Expected annual 
frequency of minor coastal flooding 

 

2.3.4. Frequency amplification of minor and major coastal flooding 

Although the frequencies of minor and major flooding are forecasted to increase as a result 

of SLR, changes in their frequencies are not the same across regions. Thus, frequency 

amplification of minor and major coastal flooding were calculated for all sites to assess the effect 

of SLR on changes in the frequency of minor and major flooding separately across different coastal 

regions (Figure 2.8). 
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Figure 2.8. (Top panels) Major flood frequency amplification; (Bottom panels) Minor flood frequency 
amplification 

 

The frequency amplification of major flooding in the locations along the northwest Pacific 

will increase substantially with 1 ft SLR. Although the region is not historically exposed to major 

flooding, the major flood threshold is anticipated to be exceeded by return period of less than 10 

years under 1 ft increase in the MSL. With 2 ft SLR, major flood frequency amplification in 

southwest Pacific will also increase with more than three orders of magnitude. Thus, SLR 2 ft 

above the current MSL will beget striking amplification of major flooding frequency in all 

locations along the Pacific and southeast Atlantic. With 0.5 ft SLR, minor flood will become more 

frequent by up to ten-fold in all stations, except those located along southwest Pacific coast and 

Florida Keys stations with an estimated two orders of magnitude increase. Under 1 ft SLR, the 

highest amplification in minor flooding (more than 500 times) was found in Florida Keys stations.  
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Figure 2.9. The ratio of frequency amplification of major to minor flooding 

 

We calculated the ratio of major flood frequency amplification to minor flood frequency 

amplification to investigate patterns of change in flood frequency with SLR in the study regions. 

Results indicate varying trends by locations across the coastal CONUS (Figure 2.9). The frequency 

amplification of minor flooding is higher than major flooding in most of the study locations up to 

1 ft SLR except locations along the northwest Pacific coast. Under 2 ft SLR, the frequency of 

major flooding will be amplified at higher rates in locations along the Pacific and southeast 

Atlantic coasts. Minor flooding frequency, on the other hand, tends to be higher along the Gulf 

and northeast Atlantic coasts. Thus, as sea level rises locations that historically are not exposed to 

major flooding are expected to experience higher frequency amplification in major flooding. 

Coastal areas with considerable historical major flooding will be likely exposed to higher 

frequency amplification in minor flooding. 

2.3.5. Regional SLR scenarios for the United States 

Observed and projected acceleration of SLR varies regionally across the coastal CONUS. 

Consequently, the indicated SLR levels in this study are expected to be realized over different time 

horizons in different coastal locations. Different SLR projections have been derived based on 
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alternative climate scenarios although considerable debate still remains about the acceleration of 

SLR (Haigh et al., 2014; Dangendorf et al., 2017). Figure 2.10 (adapted from Sweet et al., 2017) 

illustrates the decade when the indicated SLR (0.5 ft, 1ft, and 2 ft) are anticipated to occur under 

“Intermediate Low” and “intermediate” SLR scenarios. 

 

Figure 2.10. The decade when indicated SLR values are anticipated to occur under Intermediate Low and 
Intermediate SLR scenarios (Sweet et al. 2017) 

 

The expected time to frequent destructive major floods with return period of 1 year under 

“Intermediate Low” and “Intermediate” SLR scenarios are illustrated in Figure 2.11. Under the 

“Intermediate-Low” scenario (Left panel), most of the stations (except stations along the west of 

the Gulf coast) will not experience yearly major flooding by the end of the century. However, 

under the “Intermediate” scenario major flooding will occur one or more times a year by 

approximately 2050-2060 in stations along the western Gulf and mid-Atlantic coasts, 2070-2080 
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in stations along southeast Atlantic (Except Florida Keys) and some stations along the northwest 

Pacific, and 2080-2090 in Florida Keys and stations along the southwest Pacific coasts. In general, 

under the “Intermediate” scenario events that are currently characterized as major flooding are 

anticipated to occur with return period less than a year in all stations by the end of the century. 

 

Figure 2.11. The decade when events currently characterized as major flooding are anticipated to occur 
with return period less than a year 

 

2.3.6. Average annual exposure to coastal flooding  

The AAE to minor and extreme flooding (i.e., Moderate and major flooding) for 20 

populated coastal cities in the CONUS was computed under current condition and 3 different SLR 

levels (Figure 2.12). The AAE to both minor and extreme flooding is the highest in the New York 

City. Although the AAE currently is not a major concern for Miami, with 2 ft SLR Miami will 

encompass the second highest value of assets exposed to minor and extreme coastal flooding. This 

response can be attributed to less extreme water level variance in the Key West station (Church et 

al., 2013; Hunter, 2012), which is the closest station to Miami in this study. 
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Figure 2.12. The AAE to minor and extreme flooding in 20 coastal cities along the coastal CONUS 

 

The ratio of AAE to minor flooding to total AAE was calculated to explore regional trends 

in the contribution of each coastal flood category (Figure 2.13). Under prevailing MSL, extreme 

coastal flooding accounts for more than 50% of total AAE in the cities along the Gulf and northeast 

Atlantic (e.g. New Orleans and New York City). Minor flooding, however, contributes to more 

than 50% of total AAE in the study cities along the southeast Atlantic and Pacific (e.g. Jacksonville 

and Los Angeles). Under smaller amounts (up to 1 ft) of SLR, AAE will be primarily from minor 

flooding in all study cities. However, extreme flooding will dominate the coastal flooding AAE in 

most of the CONUS cities for SLR exceeding 2 ft. 
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Figure 2.13. The ratio of AAE to minor flooding to total AAE for CONUS coastal regions 

 

These responses can be explained by the components of the mixture probability model. 

With no rise in MSL, the tail of the sea level distribution (i.e., GPD) governs the contributions 

from both minor and extreme flooding. Thus, in locations with a positive GPD shape parameter 

contributions from acute AAE to extreme events exceed chronic AAE to minor flooding (i.e., cities 

along the Gulf coast). On the other hand, cumulative AAE from minor flooding is the dominant 

component of total AAE in the study locations with negative GPD shape parameters (i.e., cities 

along the Pacific coast) due to the thin-tailed distribution. With relatively small increases (e.g. up 

to 1 ft) in MSL, a substantial increase in annual exposure to minor flooding is evident. With up to 

1f t SLR, minor flood threshold in all study cities will be smaller than the GPD threshold, and thus, 

exceedances of the minor flood threshold will be governed by the bulk of the Mixture distribution 

(i.e., Normal distribution component). Conversely, with SLR above 2 ft, moderate and major flood 

thresholds will also be shifted to the bulk of the water level distribution, which will lead to a greater 

portion of AAE from extreme flooding events.  
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Minor flooding can cause considerable indirect damages to assets and economic activities 

in cities, such as business interruption, road closure, traffic disruptions, economic losses, public 

inconvenience and long-term chronic degradation of infrastructure from increasing inundation of 

saltwater (e.g. Sweet et al.2014; Moftakhari et al. 2018). We do not consider these impacts in the 

current study. Moreover, repeated events of exposure to coastal flooding are assumed to be 

independent. Thus, the AAE used in this study may be viewed as a worst case risk estimate and is 

likely substantially larger than Average Annual Losses (Hallegatte et al. 2013). Detailed damage 

and restoration functions may be considered when actual losses are computed using the proposed 

mixture probability model and risk analysis approach. The nonstationary mixture model improves 

the capability to assess increasing coastal flood risks due to SLR. However, climate change may 

alter weather conditions that influence increased risks of pluvial flooding from heavy precipitation 

(Wahl et al., 2015; Moftakhari et al., 2017) in addition to storm surge. Further theoretical 

development is needed to reconcile these compounding effects in the analysis of risks to assets and 

communities in coastal region. 

2.4 Conclusions 

A nonstationary Mixture Normal-GPD probability distribution was developed to model 

coastal flooding frequency over a range of SLR levels. The model facilitates a coherent assessment 

of coastal flooding exposure to extreme events as well as minor but more frequent events. The 

model was parameterized for 68 tidal monitoring stations along the coastal CONUS. The results 

show a good fit between the model and observed sea level data in all study locations. Regional 

trends are evident in the estimated values of the mixture model parameters. Particularly, the 

distribution shape parameter, which governs the qualitative behavior of the models and risks to 

both chronic and acute flooding hazards, showed strong regional trends.  
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Model assessments reveal that all regions across coastal CONUS will experience 

significant increases in frequency of minor and major flooding over a range of future SLR levels. 

Under higher SLR scenarios (e.g. 2 ft SLR), infrequent major flooding is likely to occur multiple 

times per year in the majority of stations along Atlantic, Gulf, and northwest Pacific coasts. 

Similarly, minor flooding with exceedances of more than 150 days per year may also occur in most 

of the study locations. However, the frequency amplification of minor and major flooding varies 

by coastal regions. Pacific coast regions should expect the highest major flood frequency 

amplification followed by regions within the southeast Atlantic coast. These regions, especially 

within the Pacific coast, are most vulnerable to the amplification of major flooding frequency since 

under current MSL the major flood threshold is rarely or never exceeded. On the contrary, the Gulf 

and northeast Atlantic coastal regions are likely to be exposed to higher frequency amplification 

in minor flooding.  

Flood frequency amplification would exacerbate inundation impacts over time and cause a 

considerable increase in AAE of property to coastal flooding. While the communities have 

primarily focused on mitigating acute damages from extreme events, under smaller amounts of 

SLR (i.e., up to 1 ft) the AAE to minor flooding will exceed those from extreme events in a majority 

of CONUS coastal regions. However, AAE will be mainly from extreme flooding should SLR 

exceed 2 ft.  

The time to specific SLR scenarios varies regionally and by future climate scenarios. 

Subsequently, risks from minor and extreme coastal flooding will be influenced by these 

considerations. Planning and design of effective coastal flooding solutions must incorporate both 

chronic and acute risks from minor and extreme events from SLR. The mixture probability model 

and the coastal property exposure analysis presented in this study facilitate full characterization of 



39 
 

risk mitigation strategies by representing their effects on flood thresholds in coastal regions. These 

solutions may include engineering solutions such as higher sea walls and forward pumps, or 

management solutions such as spatial zoning regulations and buildings codes. The analysis 

indicates that adaptation strategies must account for increasing frequency of unprecedented major 

flooding in the Pacific and southeast Atlantic regions. In the Gulf and northeast Atlantic coasts, 

effective infrastructural, policy and management strategies may also target enhanced long-term 

service reliability of flood control systems and their resiliency to the amplification of minor 

flooding. 
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CHAPTER 3.  

CHRONIC AND ACUTE COASTAL FLOOD RISKS TO ASSETS AND COMMUNITIES IN 

SOUTHEAST FLORIDA 

 

 

 

Highlights 

Chronic and acute coastal flood risks in Miami-Dade County are assessed over the range 

of sea-level rise (SLR) scenarios for the coming decades. HAZUS-MH coastal flood hazard 

modeling and loss estimation tool are used to determine flood extent and depth and corresponding 

monetary losses to buildings associated with different sea water levels (SWLs). The frequency of 

SWLs is estimated using a nonstationary mixture Normal-Generalized Pareto distribution under 

current condition and future SLR scenarios. Also, the least adaptation level to cope with SLR-

induced amplification of coastal flooding is assessed in terms of an increase in flood threshold. 

The results indicate that under current sea-level conditions, coastal flood risks are predominantly 

from exposure to acute extreme events. However, chronic risks from repetitive non-extreme 

flooding may exceed those from extreme floods under future SLR scenarios. Therefore, adaptation 

strategies may incorporate consideration about chronic flooding to avoid increasing cumulative 

losses under future SLR scenarios.  

3.1. Introduction  

Coastal flooding poses significant human, ecological, and economic risks in the United 

States (NWS 2014; Walsh et al. 2014) and globally (Hallegatte et al. 2013; Hinkel et al. 2014). 

Climate change increases the exposure of coastal communities to flooding due to the rising sea 

levels and possible increased storminess (Shepard et al. 2012; Ezer and Atkinson 2014;  Rahmstorf  
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2017). Sea-level rise (SLR) decreases the freeboard between local flood thresholds and high water 

levels from tides and storm surges, which leads to increases in the frequency of both minor 

flooding  (Sweet et al. 2014; Moftakhari et al. 2015; Vandenberg-Rodes et al. 2016) and extreme 

events (Ezer and Atkinson 2014; Kemp and Horton 2013; Vousdoukas et al. 2017). SLR has been 

shown to be the primary factor influencing the frequency and intensity of coastal events 

(Woodworth and Blackman 2004) and may be deemed as the chief manifestation of climate change 

impacts in coastal regions (Nicholls et al. 2007; Sweet and Park 2014). 

Exposure to extreme coastal flooding and subsequent acute damages have been extensively 

investigated (Wahl et al. 2015; McInnes et al. 2016; Vousdoukas et al. 2017). However, chronic 

losses from frequent minor flooding events are largely neglected (Moftakhari et al. 2017; Hino et 

al. 2019). Recent studies have shown that the frequency and extent of minor flooding, also referred 

to as tidal or nuisance flooding, has been increasing in response to rising sea levels (Sweet and 

Park 2014; Moftakhari et al. 2015; Ray and Foster 2016; Dahl et al. 2017). Whilst damages from 

a single minor flooding event may be insignificant, the cumulative losses from repeated exposure 

of assets over a long planning period may be increasingly important (Moftakhari et al. 2018). Thus, 

implementation of effective SLR adaptation strategies is predicated upon an improved 

understanding of exposure and vulnerability to both minor and extreme coastal flooding (Purvis et 

al. 2008; Hallegatte et al. 2013; Aerts et al. 2014). 

Extreme value distributions such as Generalized Extreme Value (GEV) or Generalized 

Pareto (GP) distributions are commonly used for frequency analysis of flood events (Boettle et al. 

2013; Menéndez et al. 2008; Salas et al. 2018). However, under nonstationary sea-level conditions, 

they are not sufficient for full characterization of flood probability distributions (Sweet and Park 

2014; Stephens et al. 2018; Ghanbari et al. 2019). Recently, Ghanbari et al. (2019) developed a 
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coherent and statistically rigorous mixture probability model that represents the entire range of sea 

water level (SWL) values, encompassing both the bulk and the upper tail of the sea-level 

distribution. The mixture model uses the Normal distribution for the bulk data and the Generalized 

Pareto Distribution (GPD) for the upper tail values. The approach explicitly accounts for 

nonstationary sea-level conditions using SLR as a covariate. The nonstationary mixture model can 

be used to assess expected damages and other flood risk measures while considering both minor 

and extreme flooding over a range of sea-level rise scenarios.  

The application of the mixture model in a screening-level flood risk assessment framework 

is demonstrated for Miami-Dade County, which encompasses one of the highest values of assets 

exposed to coastal flooding (Genovese et al. 2011; Hanson et al. 2011). The region covers 

approximately 6300 km2 on Florida’s southeastern coast with a population of approximately 2.8 

million inhabitants in 2017. Approximately $38B of property and 384 miles of roads lie 3 feet 

above the current mean sea-level (MSL) (Tompkins and DeConcini 2014). Communities, as well 

as economic and environmental sectors in low elevation and highly populated areas of Miami-

Dade County are increasingly exposed and vulnerable to both minor and extreme coastal flooding 

due to SLR (Genovese et al. 2011; Spanger-Siegfried et al. 2017). 

To date, evaluation of SLR impacts in Miami-Dade County has mostly emphasized 

extreme flooding driven by hurricanes and tropical cyclones (i.e., storm surge) (Genovese et al. 

2011; Klima et al. 2012; Genovese and Green 2015). However, only a few studies have 

investigated the effects of SLR on chronic risk from minor flooding (Wdowinski et al. 2016; 

Moftakhari et al. 2017a). Recurrent minor flooding is already emerging as a new issue in some 

parts of the county (e.g., the City of Miami Beach). With the rising sea levels, many coastal cities 

in this region will face more frequent minor coastal floods per year (Sweet et al. 2014; Sweet and 
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Park 2014). Thus, a simultaneous assessment of chronic and acute risks from both frequent minor 

and extreme flooding under future SLR scenarios is vital to improve investments on flood 

adaptation strategies that would safeguard the Miami-Dade coastal region against the adverse 

effects of SLR.  

Flood adaptation strategies in coastal regions are implemented under deep uncertainty 

about critical driving forces (e.g., SLR) and stakeholder preferences (e.g., climate policy targets). 

These uncertainties pose a challenge to coastal planners and decision makers (Kwakkel et al. 

2015). Traditionally, it is assumed that the future can be predicted and in order to reduce 

vulnerability a restricted plan for the outlined future (i.e., static optimal plan) is developed  (Dessai 

and Hulme 2007; Hallegatte et al. 2012; Walker et al. 2013). However, the strategy would fail if 

the future tends to be different from the hypothesized futures. A more prudent approach would be 

to use a dynamically robust plan that will be successful in a wide range of future scenarios with 

the flexibility to dynamically change adaptation over time as the future unfolds (Kwakkel et al. 

2015; Haasnoot et al. 2013). To achieve this approach, several adaptation strategies should be 

evaluated against different SLR scenarios to develop robust decision-making processes (Lempert 

et al. 2006; Groves and Lempert 2007; Haasnoot et al. 2013). 

This study aims to investigate the effects of SLR on chronic and acute coastal flood risks 

in Miami-Dade County by incorporating a nonstationary mixture probability model in a screening-

level flood risk assessment framework. Specifically, the objectives of the study are to 1) evaluate 

exposure of the region to coastal flooding over a range of SLR conditions; 2) evaluate changes in 

chronic and acute coastal flood risks under different SLR scenarios; 3) estimate the SLR values up 

to which adaptation levels -- in terms of increase in a flood threshold -- could perform acceptably 

and meet the policy target; and 4) identify the minimum adaptation level that might be needed to 
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maintain the current level of flood risk. The study estimates the vulnerability of the region to 

coastal flooding over the course of the 21st century and identifies areas where chronic and acute 

flood risks are potentially high. The results can provide managers and decision makers in Miami-

Dade County with preliminary information about current and future coastal flood risks. The 

improved understanding of risks and adaptation levels enhances the capacity for resilient coastal 

management.  

3.2. Materials and Method 

The nonstationary mixture Normal‐GPD probability model developed by Ghanbari et al. 

(2019) was used within a screening level risk assessment framework to simultaneously assess 

chronic and acute coastal flood risks under higher MSL conditions in Miami-Dade County. The 

flood extent and depth corresponding to different SWL values are estimated using HAZUS coastal 

flood hazard modeling and monetary losses to buildings were estimated using the HAZUS loss 

estimation tool. Adaptation levels in terms of increases in the flood threshold were evaluated over 

a range of continuous SLR values to support the development of robust decision-making processes. 

Three possible SLR scenarios were considered to perform an assessment of expected time to 

certain rises in MSL, including: “Intermediate-Low”, “Intermediate”, and “Intermediate-High” as 

defined in Sweet et al. (2017). 

3.2.1. Sea water level data (SWL) 

69 years of hourly SWL data at the Key West tidal station over the 1950-2018 period 

(https://tidesandcurrents.noaa.gov/) were used for coastal flood frequency analysis. The hourly 

sea-level data are reported relative to the latest National Tidal Datum Epoch (NTDE), which 

references the 1983-2001 period with mean higher high water (MHHW) as the tidal datum. It 
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should be noted that the Virginia Key and South Port Everglades tidal stations are closer to the 

County, however, both stations have been operational for less than 30 years. The datum for the 

Virginia Key tidal station was used to adjust SWL data in Key West tidal station 

(https://tidesandcurrents.noaa.gov/stations.html?type=Datums). 

3.2.2. Losses to buildings from coastal flooding 

HAZUS-MH, FEMA’s standardized modeling tool for estimating potential losses from 

flood events, was used to estimate monetary losses to buildings associated with different SWLs. 

First, HAZUS coastal flood hazard modeling was used to determine flood extent and depth 

corresponding to different SWL exceedances above MHHW (i.e., 0.3 m to 3 m with equidistant 

steps of 0.3 m). Coastal flood hazard modeling in HAZUS is similar to that presently used by 

FEMA to produce coastal Flood Insurance Rate Maps (FIRMs) (Scawthorn et al. 2006a; b). The 

approach considers lands that are adjacent to the sea and are situated below the stillwater flood 

surface to be inundated areas. Low-lying areas without a hydraulic connection to the flood source 

are identified during overlaying the stillwater flood surface over a digital elevation model (DEM) 

in order to identify disconnected areas that should not be considered as floodplains (i.e., Bathtub 

method without hydrological connectivity) (Yunus et al. 2016). The approach neglects the effects 

of terrain roughness and vegetation on the spread of floodwater flow (Ramirez et al. 2016). In 

addition, the duration of the flood event is not considered, and it is assumed that the flood 

propagation is only limited by topography. These limitations and assumptions are the reason that 

the bathtub model could overestimate flood extents (Mcleod et al. 2010; NOAA 2010; Bates et al. 

2010). Regardless of the shortcomings of the bathtub method, the simplicity of the algorithm and 

low computational complexity of this model has made it a valuable method to create regional to 

large scale potential coastal inundation maps (e.g., Mokrech et al. 2014; Lloyd et al. 2016). The 
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bathtub method is primarily based on topography, and the quality of  DEM can significantly affect 

the inundation area (Van de Sande et al. 2012). In this study, we used 1/9 arc-second (~ 3-meter) 

DEM data. 

The produced flood hazard maps (i.e., flood extent and depth) were subsequently used in 

the HAZUS flood loss estimation module to calculate physical damages, which were interpreted 

in direct dollar values of building replacement cost (i.e., the cost of replacement by an identical 

object) (Scawthorn et al. 2006a; FEMA, 2018). Consequently, monetary losses to buildings were 

estimated at the Census block scale for different SWL exceedances above MHHW (i.e., 0.3 m to 

3 m with equidistant steps of 0.3 m). The losses were estimated based on the general building stock 

inventory data aggregated at the Census block scale in HAZUS Level 1 analysis (Scawthorn et al. 

2006b). This approach provides an estimate of the direct losses to buildings and the immediate 

impact of building damages on the community such as business interruption and job losses are not 

incorporated. 

 The available datums in HAZUS-MH are NAVD88 and NGVD29. Thus, the reference 

datum for Key West tidal station was used to change the datum for SWL data from MHHW to 

NAVD88. The estimated damages from HAZUS were used to develop a loss function (i.e., losses 

versus SWL of ℎ, 𝐶𝐶𝑀𝑀(ℎ)) for each Census block (𝑖𝑖) in the region, which accounts for spatial 

variability.  It was assumed that losses value is linearly changed between consecutive SWLs.  

3.2.3. Mixture Normal-GPD probability model 

Historical adjusted SWL data from the Key West tidal station was used to estimate the annual 

exceedance probability of SWL of ℎ under current and future conditions using a nonstationary 

Mixture Normal_GPD probability distribution (Ghanbari et al. 2019). The mixture model uses the 
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Normal distribution to characterize the non-extreme (i.e., bulk) component of the SWL data and 

the extreme component of the data (i.e., upper tail) is represented by the GPD. The nonstationarity 

of SWL data is incorporated by expressing the location parameters of the Normal and GP 

distributions as functions of SLR instead of time. Thus, the future risk of coastal flooding under 

alternative SLR levels can be evaluated regardless of projected time to certain sea-level conditions. 

Following Ghanbari et al. 2019, the mixture cumulative distribution function (𝐹𝐹) of SWL (ℎ) is 

defined as: 

𝐹𝐹(ℎ|𝜇𝜇,𝜎𝜎,𝑢𝑢,𝛼𝛼, 𝜉𝜉,𝜙𝜙) =

⎩⎪⎨
⎪⎧ (1 − 𝜙𝜙)

1 + 𝐻𝐻𝑒𝑒𝑖𝑖 �𝑢𝑢 − 𝜇𝜇𝜎𝜎√2
� [1 + 𝐻𝐻𝑒𝑒𝑖𝑖 �ℎ − 𝜇𝜇𝜎𝜎√2

�]                     ℎ < 𝑢𝑢
(1 − 𝜙𝜙) + 𝜙𝜙[1 − �1 + 𝜉𝜉 ℎ − 𝑢𝑢𝛼𝛼 �−1𝜉𝜉]                    ℎ ≥ 𝑢𝑢         (3.1) 

where 𝑢𝑢, 𝛼𝛼 and 𝜉𝜉 denote the location (i.e., threshold), scale, and shape of the GPD. 

Variables 𝜇𝜇 and 𝜎𝜎 represent location and scale of the Normal distribution, 𝜙𝜙 denotes the probability 

of independent exceedances over threshold, and 𝐻𝐻𝑒𝑒𝑖𝑖 is the error function.   

3.2.4. Coastal flood risk assessment  

Flood risk emerges from the interaction of flood hazard probability, exposed values, and 

their vulnerability (Crichton 1999; Merz et al. 2010).  A commonly used risk indicator for flood 

risk assessment is Average Annual Losses (𝐴𝐴𝐴𝐴𝐴𝐴) (Kron 2005; Purvis et al. 2008). 𝐴𝐴𝐴𝐴𝐴𝐴 can be 

estimated by integrating the area under a loss exceedance function, which is a function that presents 

the relationship between exceedance probability of SWL of ℎ (here 𝑝𝑝(ℎ) =  1 − 𝐹𝐹(ℎ)) and the 

value of losses that the level of water inflicts on property and assets (here 𝐶𝐶𝑀𝑀(ℎ))  (Jonkman et al. 

2008; Grossi et al. 2005). In this study, risks from coastal flooding were categorized into two types: 

(1) chronic risk from frequent non-extreme (i.e., minor) flooding events with multiple occurrences 
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per year, which are largely driven by tidal fluctuations rather than storm surge, and (2) acute risk 

from infrequent extreme flood events with less than one event per year frequency that usually arise 

from hurricanes and extreme weather conditions. Annual losses as a function of the exceedance 

probability of the daily SWL (i.e., loss exceedance function) were estimated for each Census block 

as: 

𝐴𝐴𝑀𝑀(𝑝𝑝) = 𝑛𝑛𝑦𝑦 ∗ 𝐶𝐶𝑀𝑀�𝐹𝐹−1(1 − 𝑝𝑝)�     (3.2) 

where 𝑛𝑛𝑦𝑦 denotes the number of SWL observations per year, 𝐶𝐶𝑀𝑀 represents the loss function 

corresponding to the 𝑖𝑖𝑐𝑐ℎ Census block, 𝐹𝐹−1 is the inverse cumulative distribution function of the 

SWL from Eq. 1, and 𝑝𝑝 represents the daily SWL exceedance probability. Subsequently, acute 𝐴𝐴𝐴𝐴𝐴𝐴 was estimated as follows:     

Acute 𝐴𝐴𝐴𝐴𝐴𝐴 = �� 𝐴𝐴𝑀𝑀(𝑝𝑝) 𝑑𝑑𝑝𝑝𝜏𝜏1  

0
𝑘𝑘
𝑀𝑀=1  (3.3) 

where 𝐴𝐴𝑀𝑀(𝑝𝑝) is loss exceedance function corresponding to the 𝑖𝑖𝑐𝑐ℎ Census block, 𝑘𝑘 is the 

number of Census blocks in Miami-Dade County, and 𝜏𝜏1 denotes the upper bound of daily 

exceedance probability for estimation of acute 𝐴𝐴𝐴𝐴𝐴𝐴. 𝜏𝜏1 may be determined such that acute risk 

encompasses occasional extreme flooding events with an annual return period larger than 1-year. 

 Similarly, chronic 𝐴𝐴𝐴𝐴𝐴𝐴 was estimated by: 
 

Chronic 𝐴𝐴𝐴𝐴𝐴𝐴 = �� 𝐴𝐴𝑀𝑀(𝑝𝑝) 𝑑𝑑𝑝𝑝𝜏𝜏2  

𝜏𝜏1
𝑘𝑘
𝑀𝑀=1  (3.4) 

where 𝜏𝜏2 represents the upper bound of daily exceedance probability in the estimation of 

chronic 𝐴𝐴𝐴𝐴𝐴𝐴. 𝜏𝜏2 may be determined such that the chronic damages from frequent minor flooding 
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events are independent. Thus, 𝜏𝜏2 represents the inverse of the smallest expected length (i.e., 

number of days) between two consecutive minor flooding events that lead to independent damages 

(i.e., the smallest daily exceedance probability). For example, if damages that are at least 1 day or 

5 days apart are assumed to be independent, 𝜏𝜏2  would be equal to 1 or 1/5 d-1, respectively. 

Schematic representation of the relationship between losses and exceedance probability of SWL 

of ℎ is shown in Figure 3.1. 

 

Figure 3.1. Schematic of the relationship between losses and exceedance probability of sea water level of ℎ  
3.2.5. Study region 

The coastal flood risk assessment was limited to the eastern part of Miami-Dade County 

since the preliminary results using the bathtub method provided unrealistic flooding in response to 

SLR in western regions.  It is possible that the western regions could experience flooding due to 

reduced drainage capacity when the existing extensive canal and pumping infrastructure system is 

compromised as sea level rises. However, the determination of the potential flooding in western 

portions of the county requires the application of a comprehensive hydrologic/hydraulic routing 
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model, which also simulates the rising groundwater levels due to both rainfall and SLR. Such a 

modeling task was beyond the scope of this study. Moreover, coastal flooding induced by tidal or 

storm surge currents is likely to be concentrated in the coastal regions.  

3.2.6. Projected SLR scenarios  

The regional SLR projections for Key West tidal station from the report by Sweet et al. 

(2017)  were used to perform an assessment of expected time to certain changes in MSL by 2100. 

The available projections include “Low”, “Intermediate-Low”, “Intermediate”, “Intermediate-

High”, “High”, and “Extreme” SLR scenarios, which correspond to 0.3m, 0.5m, 1m, 1.5m, 2m, 

and 2.5m global SLR, respectively. While the “Intermediate Low” scenario has a 73% chance of 

being exceeded under Representative Concentration Pathway (RCP) 4.5 climate change scenario, 

the “Intermediate” and  “Intermediate-High” scenarios have 17% and 1.3% chances of being 

exceeded under the RCP 8.5 climate change scenario, respectively (Kopp et al., 2014; Sweet et al., 

2017).  The chance of exceedance of more extreme scenarios (i.e., high or extreme scenario) is 

extremely low.  

3.2.7. Adaptation of rising coastal flood risk  

Coastal planners and decision makers should evaluate and implement various adaptation 

strategies to manage and reduce enhanced future flood risk due to uncertain SLR (Hinkel et al. 

2013; Baxter 2013). All three elements of flood risk (i.e., flood hazard probability, exposed values, 

and their vulnerability) can be altered by different strategies (Baxter 2013). For example, technical 

engineering measures such as sea walls, forward pumps, flood barriers, and levees lower the 

chance of flooding and spatial zoning regulations limit the number of people and values at risk. 

Other measures such as elevating houses and wet or dry flood proofing (Baxter 2013) may reduce 
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flood risks by lowering the vulnerability of buildings (Kreibich et al. 2005; Kreibich and Thieken 

2009). Although the choice among these solutions requires diligent planning, deployment of any 

of these measures ultimately leads to an increase in the SWL at which a community begins to flood 

(i.e., increase in the flood threshold). 

In this study, chronic and acute 𝐴𝐴𝐴𝐴𝐴𝐴 were estimated under different SLR levels when 

hypothetical adaptation strategies (e.g., seawall, flood barriers, levee, and coastal retreat) were 

adopted to increase the level at which the region begins to flood (i.e., increase in the flood 

threshold). The flood adaptation was incorporated in the analysis by truncating the loss exceedance 

function at the exceedance probability of the new flood threshold (i.e., revised 𝜏𝜏2) and estimating 

the 𝐴𝐴𝐴𝐴𝐴𝐴 as the area of the remaining part of the loss exceedance function. Chronic and acute 𝐴𝐴𝐴𝐴𝐴𝐴 

from coastal flooding events were calculated under continuous SLR levels (i.e., 0 to 60 cm) and 

increase in flood threshold (i.e., 0 to 90 cm) with equidistant steps of 3 cm.  

3.3. Results and Discussion 

The return period of future coastal flooding events will likely become shorter in Miami-

Dade County if sea level continues to rise.  Subsequently, both chronic and acute coastal flood 

risks could increase. However, under higher MSL conditions, the bathtub model applied here 

suggests that the chronic risk from frequent non-extreme flooding could surpass the acute risk from 

occasional extreme events. In addition, the minimum adaptation level that might be needed to 

maintain the current level of flood risk varies with SLR values. Due to the simplification of the 

physical processes in the determination of flood extent and depth, the results from this study should 

be used with care but they should be useful for screening-level assessments of damages due to 

future stresses such as SLR.  
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3.3.1.  Determination of limits for the estimation of chronic and acute risks  

The upper limit (𝜏𝜏1) in the estimation of acute 𝐴𝐴𝐴𝐴𝐴𝐴 is approximately 1/365 d-1, since acute 

risk is defined as risks from infrequent extreme flood events with a frequency of less than one 

event per year. The precise estimation of expected time between independent damages (i.e., 1/𝜏𝜏2) 

requires information about the relation between the building recovery time (e.g., number of days) 

and the functionality reached for a given damage level (i.e. building restoration functions) (Lin 

and Wang 2017). However, this information specific to the study region is rarely available. Thus, 

in the current study, in order to approximate the upper limit (𝜏𝜏2), the sensitivity of chronic 𝐴𝐴𝐴𝐴𝐴𝐴 to 

the lengths between independent damages (i.e., 1 to 90 days) was explored under three SLR levels 

(Figure 3.2).  

 

Figure 3.2. The empirical relationship between chronic 𝐴𝐴𝐴𝐴𝐴𝐴 and the number of days between 
independent losses under (a) 15 cm SLR (b) 45 cm SLR and (c) 60 cm SLR  

The results show that the number of days between independent losses does not affect 

chronic 𝐴𝐴𝐴𝐴𝐴𝐴 under 15 cm SLR since the expected length between flood events would remain 

greater than 90 days. However, under higher MSL values (e.g., 45 cm and 60 cm SLR) the number 

of days between independent losses affects the estimated chronic 𝐴𝐴𝐴𝐴𝐴𝐴. Clearly, as the length of 

time between independent events decreases, the chronic 𝐴𝐴𝐴𝐴𝐴𝐴 increases. However, the rate of 
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change becomes less steep when the number of days is more than about 21. Thus, it was assumed 

that losses should be at least 21 days apart to be considered as independent. Furthermore, it may 

be assumed that buildings are protected and losses are negligible when SWL is lower than the 

flood threshold. Thus, 𝜏𝜏2 should be less than the daily exceedance probability of the flood 

threshold, which is 0.52 m above MHHW at the Key West station (Sweet et al. 2018). Hence, 𝜏𝜏2 

was set as the minimum of 1/21 (0.048 d-1) and the daily probability of exceedances over the flood 

threshold, which for instance is equal to 0.0005, 0.003, and 0.84 under current condition, 15 cm, 

and 60 cm SLR, respectively. 

3.3.2. Current and future coastal flood frequency  

Figure 3.3 (left panel) illustrates changes in the return periods of future coastal flooding at 

the Key West tidal station under four SLR values. The year when the indicated SLR values are 

anticipated to occur is presented in Table 3.1 under all regional SLR scenarios (Sweet et al. 2017). 

The future return periods of coastal flooding could decrease and even under the smallest indicated 

SLR level (15 cm), a considerable decrease in return periods might happen. For example, the 100-

year flood will become a 5-year flood under 15 cm SLR, which may happen by 2035 or 2045 under 

the “Intermediate” or “Intermediate-Low” SLR Scenarios, respectively. 

Table 3.1. The year when indicated SLR values are anticipated to occur under alternative 
regional SLR scenarios (The values are rounded to the nearest 5-year interval) 

 

15 cm 30 cm 45 cm 60 cm

Low 2050 2090 >2100 >2100

Intermediate-Low 2045 2070 >2100 >2100

Intermediate 2035 2050 2060 2075

Intermediate-High 2030 2040 2050 2060

High 2025 2035 2045 2055

Extreme 2020 2030 2040 2050

SLR value
SLR Scenario
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Figure 3.3. (Left) Current vs. future coastal flood return period at the Key West tide gauge (Right) Return 
level interval curves for the current situation and 60 cm SLR level along with the empirical return period 

return level intervals (dots) 

 

This sensitive response to SLR can be attributed to small extreme sea-level variance at the 

Key West station (Church et al. 2006; Hunter et al. 2013). The empirical and simulated 

relationships between return periods and the corresponding flood heights are depicted in Figure 

3.3 (right panel). The relationship between flood levels and corresponding annual return periods 

will change if sea levels continue to rise (Rahmstorf and Coumou 2011; Ray and Foster 2016).  

3.3.3. Impacts of SLR on acute and chronic coastal flood risks  

Without the implementation of adaptation strategies, based on the bathtub approach used 

here, the total 𝐴𝐴𝐴𝐴𝐴𝐴  could increase to almost 12 billion dollars as a result of SLR (Figure 3.4). 

Under the current condition, acute extreme coastal flooding accounts for most of the expected 

annual losses. However, cumulative chronic 𝐴𝐴𝐴𝐴𝐴𝐴 from frequent minor flood events could exceed 

the acute 𝐴𝐴𝐴𝐴𝐴𝐴 from extreme events under future MSL conditions. With a 15 cm increase in MSL, 

chronic flooding events would account for almost 50% of total 𝐴𝐴𝐴𝐴𝐴𝐴. Under 30 cm SLR value the 

chronic and acute 𝐴𝐴𝐴𝐴𝐴𝐴 could be approximately $1.6 B and $0.9 B, respectively.  
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Figure 3.4. Chronic and acute 𝐴𝐴𝐴𝐴𝐴𝐴 in Miami-Dade County 

 

Chronic coastal flood risks in Miami-Dade County could be highly sensitive to even small 

shifts in sea-level due to low topography and densely populated coastal areas (Chakraborty et al. 

2014; Genovese and Green 2015). Therefore, if sea level continues to rise, appropriate adaptation 

strategies might be needed to protect the region against cumulative losses from frequent non-

extreme flooding events. The spatial distribution of chronic and acute 𝐴𝐴𝐴𝐴𝐴𝐴 under current condition 

and 30 and 60cm SLR is presented in Figure 3.5. The City of Miami Beach has potentially the 

highest chronic and acute flood risks under 30 and 60 cm SLR. Especially the low-lying areas in 

the western part of the city are highly vulnerable to chronic risks from minor flooding induced by 

tidal fluctuations. 
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Figure 3.5. (a), (b), (c) Spatial distribution of acute 𝐴𝐴𝐴𝐴𝐴𝐴 by Census Block under current condition, 30 cm 
SLR, and 60 cm SLR, respectively. (d), (e), (f) Spatial distribution of chronic 𝐴𝐴𝐴𝐴𝐴𝐴 under current 

condition, 30 cm SLR, and 60 cm SLR, respectively. 
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3.3.4. Assessing the effects of flood adaptation strategies 

The relationships between SLR and total AAL under different flood threshold levels could 

be used to specify the magnitude of SLR beyond which current adaptation plans may no longer be 

effective to meet policy targets (i.e., tipping point) (Kwadijk et al. 2010). The analysis can 

subsequently provide information to develop a sequence of adaptation measures over time to meet 

predefined targets under an uncertain future (e.g., Adaptation pathways) (Haasnoot et al. 2013; 

Zandvoort et al. 2017).   

In this study, the current coastal flood risk ($ 170 M) is used as the acceptable 𝐴𝐴𝐴𝐴𝐴𝐴 risk 

target (i.e., policy target) to maintain the current level of flood risk. Figure 3.6 illustrates the 

estimated total 𝐴𝐴𝐴𝐴𝐴𝐴 versus SLR for four flood threshold levels.  As sea-level rises, total 𝐴𝐴𝐴𝐴𝐴𝐴 could 

exceed the target (the current flood threshold line relative to the dashed line). Thus, it could be 

necessary to change the adaptation strategy level to meet the target under higher MSL conditions. 

The analysis also suggests the expected time at which the new adaptation strategies are needed 

based on different SLR projections. For example, in the case of a 30 cm increase in flood threshold, 

the tipping point would be reached within approximately 30, 20 and 15 years (i.e., the year 2050, 

2040, and 2035) under the Intermediate-low, Intermediate, and Intermediate-high SLR projections, 

respectively. 
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Figure 3.6. Total 𝐴𝐴𝐴𝐴𝐴𝐴 under continuous SLR values and four levels of flood threshold and the year when 
indicated sea level rise values are anticipated to occur under Intermediate-Low and Intermediate and 

Intermediate-High sea level rise scenarios (The values are rounded to the nearest 5-year interval) 

 

The potential impacts of different SLR values on chronic and acute AAL under varying 

flood threshold levels are illustrated in Figure 3.7. The x-axis represents the primary driving force 

(i.e., SLR), while the y-axis represents the adaptation strategy levels (i.e., increase in flood 

threshold). This analysis could be used to estimate minimum adaptation levels in terms of increases 

in the flood threshold to prevent increases in chronic, acute, and total AAL at varying SLR levels 

in order to maintain the current level of flood risk. The slope of isolines indicates that the least 

adaption level that would be needed to compensate the negative impacts of SLR varies by SLR. 

The least adaptation level that would be needed to keep the current flood risk at the same value is 
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higher than the value of SLR itself. For example, an approximately 45 cm increase in flood 

threshold is needed to offset a 30 cm SLR. The vertical isolines in the middle panel illustrate the 

level of increase in flood threshold that might not be effective in decreasing acute 𝐴𝐴𝐴𝐴𝐴𝐴 under 

different SLR values. For example, under 30 cm SLR, a 30 cm increase in flood threshold might 

not be effective to compensate the negative impact of SLR on acute 𝐴𝐴𝐴𝐴𝐴𝐴. However, they could be 

effective in decreasing chronic 𝐴𝐴𝐴𝐴𝐴𝐴.  

 

Figure 3.7. Illustration of the relationship between SLR and increases in flood threshold and (a) 
chronic 𝐴𝐴𝐴𝐴𝐴𝐴 (b) acute 𝐴𝐴𝐴𝐴𝐴𝐴, and (c) total 𝐴𝐴𝐴𝐴𝐴𝐴 

 

While quantification of losses using HAZUS analysis may provide reasonable first 

estimates for flood risk analysis, deploying a comprehensive hydrologic/hydraulic routing model 

could improve the flood hazard mapping. Moreover, management of surface waters in the region 

via the existing extensive canal and pumping infrastructure system were not considered in the 

current study, which likely leads to overestimation of flood risks. Furthermore, indirect losses such 

as traffic disruptions, business interruption, road closures, economic losses, and public 

inconvenience (Sweet and Park 2014; Moftakhari et al. 2018) were not included in the analysis 

and should be taken into account in future studies Risks from pluvial flooding and heavy 
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precipitation may also increase due to alterations in groundwater (Groves et al. 2018) and weather 

conditions. Thus, the compounding effect of pluvial/fluvial and coastal flooding (Nadal et al. 2010; 

Karamouz et al. 2015; Moftakhari et al. 2017b)  should also be considered in future work.  

3.4. Conclusion 

The potential chronic and acute impacts of SLR on coastal flooding were assessed in 

Miami-Dade County under nonstationary sea-level conditions by incorporating a nonstationary 

mixture Normal-Generalized Pareto distribution in a screening-level risk assessment framework. 

Flood inundation maps and corresponding monetary losses to buildings associated with different 

SWLs were estimated using HAZUS coastal flood hazard modeling and loss estimation tool. 

Under higher MSL conditions, the approach applied here suggests that the chronic risk from 

frequent minor flooding events may surpass the acute risk from extreme events. The possibility 

that chronic risk from frequent minor events may aggregate over time and turn into high-cost 

impacts could become a serious challenge for policymakers and politicians in Miami-Dade 

County. The coastal communities of Miami-Dade County should take steps toward adaptation 

strategies to reduce losses from minor repetitive events since their chronic impacts could pose 

considerable cumulative costs over time.  

In order to identify the effect of different adaptation levels on future coastal flood risks, the 

chronic and acute 𝐴𝐴𝐴𝐴𝐴𝐴 from coastal flooding were estimated under different plausible 

combinations of SLR and adaptation level values. The results specify how increases in the flood 

threshold could affect chronic and acute risks from minor and extreme flooding events under a 

continuous range of SLR values.  The approach is less dependent on SLR projections than 

traditional top-down approaches that start from SLR scenarios. This approach also allows 

estimation of the minimum adaptation level to compensate the negative impacts of SLR in order 
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to maintain the current level of chronic and acute flood risk. The results show that delayed response 

to chronic risks could result in costly losses that might have been avoided if appropriate adaptation 

strategies had been adopted in time.  
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CHAPTER 4.  

CLIMATE CHANGE AND CHANGES IN COMPOUND COASTAL-RIVERINE FLOODING 

HAZARD ALONG THE U.S. COASTS 

 

 

 

Highlights 

The co-occurrence of coastal and riverine flooding leads to compound events with 

substantial impacts on human life, property, and infrastructure safety in low-lying coastal areas. 

Climate change could increase the level of compound flood hazard through higher extreme sea 

levels (SLs) and river flows. In this study, a bivariate flood hazard assessment method is proposed 

to estimate compound coastal-riverine frequency under current and future climate conditions. A 

copula-based approach is used to estimate the joint return period (JRP) of compound floods by 

incorporating sea level rise (SLR) and changes in extreme river flows into the marginal 

distributions of flood drivers. Specifically, the changes in JRP of compound major coastal-riverine 

flooding, defined based on flood impact thresholds, are explored by mid-century. Subsequently, 

the compound flood risk is assessed in terms of probability of occurrence of at least one compound 

major coastal-riverine flooding for a given design life. The proposed compound flood hazard 

assessment is conducted at 26 paired tidal-riverine stations along the Contiguous United States 

coast with long‐term observed data and defined flood impact thresholds. We show that the 

northeast Atlantic and western part of the Gulf coasts are experiencing the highest compound 

major coastal-riverine flood probability under current conditions. However, future SLR scenarios 

show emerging high compound major flooding probability along the southeast Atlantic coast. The 

impact of changes in extreme river flows is found to be negligible in most of the locations except 
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the southeast Atlantic coast. However, even in this region, its impact is considerably less than that 

of SLR.  

 4.1. Introduction 

Coastal cities are exposed to multiple flood drivers such as extreme coastal high tide, storm 

surge, extreme precipitation, and river flow. The interaction among these flood drivers may cause 

a compound flood event (Moftakhari et al., 2017; Wahl et al., 2015) that could exacerbate flood 

impacts and cause huge social and economic losses (Hemmati et al. 2020; Zscheischler et al. 2018). 

In regions where the flood level is influenced by both extreme sea levels (SLs; either from tide or 

storm surge) and river flows, considering the co-occurrence of these flood drivers is important to 

predict the potential of high-impact compound flood events (Moftakhari et al., 2019).  

Compound coastal-riverine flooding could happen as a result of two distinct mechanisms: 

1) low-pressure systems passing through coasts have the potential to increase SLs above the coastal 

flood thresholds. The accompanying frontal systems lead to excessive precipitation, which can 

result in streamflows exceeding critical thresholds (Zheng et al., 2014; Feifei Zheng et al., 2013). 

When these flood drivers coincide in space and time compound flood events happen, which can 

amplify flood risk and severity in coastal low-lying areas. 2) river flow can be affected by high 

SLs due to backwater effects and impeding a free river flow to sea. Estuary regions with low 

elevation may be affected more by this mechanism (Ganguli and Merz 2019).  

Several compound coastal-riverine flood events have been recorded in the past century in 

the U.S. Among the most severe of them, the coincidence of storm surge and excessive 

precipitation during Hurricane Harvey in August 2017 resulted in extensive flooding with over 80 

fatalities and large economic costs in Houston (Van Oldenborgh et al. 2017). Hydrographs show 
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that most rivers and bayous in Houston crested within a 24-hour period. Despite several recent 

studies on interaction between extreme SLs and river flows at local (Fang et al. 2020; Khanal et 

al. 2019; Moftakhari et al. 2017b; Orton et al. 2020), continental (Bevacqua et al. 2019a) and, 

global (Couasnon et al. 2020; Eilander et al. 2020; Ward et al. 2018) scale, a comprehensive 

assessment of impact of climate change on compound coastal-riverine flooding has not been 

explored along the coastal U.S. This research gap is important due to several reasons.  

First, climate change is expected to increase the level of compound coastal-riverine flood 

hazard through higher extreme SLs and river flows. The global mean sea level (GMSL) has risen 

over the past decades and it is anticipated to continue to rise at increasing rates, globally and 

regionally (Le Cozannet et al. 2015; Howat et al. 2007; Rahmstorf 2017). The freeboard between 

high SLs and local flood thresholds will reduce as a result of sea level rise (SLR). Thus, coastal 

flood thresholds will be exceeded more frequently under higher GMSL (Kemp and Horton 2013; 

Vandenberg-Rodes et al. 2016; Vousdoukas et al. 2017). Considering SLR, the risks of compound 

flooding are likely to increase due to an increase in exceedances over coastal flood threshold 

(Ghanbari et al. 2019) and also impeding a free river flow to sea (Moftakhari et al. 2019). Thus, it 

is essential to consider future SLR projections in compound coastal-riverine flood hazard 

assessment.  

Several studies based on modeling and observations show that climate change is also 

influencing extreme hydrological events regionally (Ahn and Palmer 2016; Peterson et al. 2008). 

For example, while some areas have experienced an increase in the frequency of heavy 

precipitation and extreme streamflow events (e.g., central U.S., Pryor et al. 2009; and eastern U.S., 

Groisman et al. 2001, 2005), some other regions have experienced prolonged droughts (e.g., 

Southwest U.S. , Cook et al. 2015; Heidari et al. 2020a; b). Such changes in hydrological 
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conditions have an immediate impact on the risks of fluvial and pluvial flooding. With the increase 

of extreme streamflow frequencies, coastal regions threatened by SLR could experience 

exacerbation of consequence of compound flooding events. Therefore, consideration should be 

given to possible increase in co-occurrence of exceedances of high SLs or river flows above flood 

thresholds.  

Under rapidly changing environments, nonstationarity in the future extreme does not 

necessarily depend on the historical series characteristics and the future may not follow the trend 

laid down in the past. Hence, incorporating the model-driven climate change projections in 

assessing compound flood hazard has now become more and more essential to obtain the future 

realizations of sea level and streamflow extremes. It is important to understand the effect of 

projected SLRs and river flows on compound flood hazards in coastal communities to better 

support coastal planners and policymakers for more informed adaptation and mitigation strategies. 

Second, a comprehensive assessment of compound coastal-riverine flooding based on 

impact flood thresholds is lacking. The flooding impacts are dependent on the existing flood 

defenses, the extent of infrastructure vulnerabilities, adaptation strategies that are in place, and the 

social and economic status of the region (Hague et al. 2019). Previous global and national studies 

on compound coastal-riverine flooding explore annual exceedance probability without specific 

consideration of compound flood impacts in different locations. To explore high flood levels due 

to the concurrence of high SLs and river flows at a large scale, metrics should be based on 

consequences rather than just probability (Hague et al. 2020). In many situations, there is no exact 

correspondence between the extremeness of flood events based on return periods (i.e., probability 

of occurrences) and the impact they cause. Considering just probability, a comparison of flooding 
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impacts over large areas is difficult to obtain. However, using flood impact thresholds facilitates 

comparison between different regions.  

Impact flood thresholds are established for many tide gauges and river stations in the U.S. 

by the National Oceanic and Atmospheric Administration (NOAA)(Sweet et al. 2018) and 

National Water Information System (NWIS) World Wide Web site (NWS 2019), respectively, for 

forecasting purpose, securing public safety, and taking steps to increase preparedness level. Flood 

categories based on exceedances over impact flood thresholds describe the severity of flood 

impact. While minor flooding refers to events with minimal or no property damage, moderate 

flooding is accompanied with some inundation of structures and roads and has relatively 

considerable damages to private and commercial property. As flood level increases to major flood 

threshold, inundated area and infrastructure impact escalate significantly.  

Now suppose that both coastal and riverine major flood thresholds are exceeded 

simultaneously or in close succession (hereinafter, compound major flooding). The flood extent, 

depth, and duration can be exacerbated, and consequently, the disruptive impact increases strongly. 

The joint occurrence of compound major flooding may elevate flood water levels to a critical point 

that devastate coastal communities through erosion and inundation of low-lying areas and might 

consequently have implications for flood protection policy. Thus, the information about the current 

and future frequency of simultaneous or near-simultaneous exceedances over both coastal and 

riverine flood thresholds should be considered in planning and designing in estuary regions 

especially the projects that are highly sensitive to flood impacts such as critical infrastructure. 

In this study, we propose a bivariate flood hazard assessment framework, which aims to 

investigate the impacts of climate change including SLR and changes in extreme river flows on 

compound coastal-riverine flooding events defined by impact flood thresholds. Specifically, the 
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objectives of the study are to 1) develop a nonstationary bivariate flood hazard assessment that 

accounts for the joint behaviors of extreme SLs and river flows; 2) project frequencies at which 

both major coastal and riverine flood thresholds will be exceeded simultaneously or in close 

succession by mid-century along the coastal CONUS with consideration of projected SLR and 

changes in extreme river flows; and 3) quantify the increase in compound flood risk in selected 

estuary regions by mid-century. Considering projections of SLR and streamflow in compound 

flood hazard assessment based on flood impact flood threshold may bring model-driven climate 

change signals into future flood risk predictions that can raise local awareness by allowing 

localization of compound flood risks and lead to an increase in resilience of coastal communities.  

4.2. Materials and Methods 

To capture the effects of climate change including SLR and changes in extreme river flows 

on compound coastal-riverine flood events and to better understand changes of compound flood 

risk in the estuary regions, we propose a bivariate flood hazard assessment framework focusing on 

extreme SLs and river flows. Projected SLR and streamflow are used to incorporate the potential 

impact of climate change in the analysis. The flood impact thresholds are used to define major 

coastal and major riverine flooding events. The study involves the following steps, which are 

described in later sections: 

1) Selecting datasets of SLs and river flows along the coastal CONUS 

2) Selecting pairs of extreme SLs and river flows for bivariate analysis 

3) Quantifying joint return period (𝐽𝐽𝐽𝐽𝐽𝐽) of extreme SLs and river flows using the selected 

pairs 

4) Assessing 𝐽𝐽𝐽𝐽𝐽𝐽 of floods exceeding both major coastal and riverine threshold (i.e., 

compound major flooding) under current and future conditions  
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5) Assessing changes in risk of failure due to compound major flooding over a 30-year design 

lifetime   

4.2.1. Selecting datasets of SLs and river flows along the coastal CONUS 

For the coastal component, we use the hourly observed sea level data from tidal stations. 

The data are available from the NOAA (http://tidesandcurrents.noaa.gov/) and composed of mean 

sea level, astronomical tide height, and non-tidal residual components.  For the riverine 

component, we use daily streamflow provided by the U.S. Geological Survey (USGS) 

(waterdata.usgs.gov/nwis/rt). The paired NOAA-USGS stations are selected if a USGS station 

with at least 30 years of data and defined flood impact thresholds are found within 100 km of the 

NOAA tidal station. Figure 4.1 presents the 26 selected paired stations along with their watershed 

boundaries. The information about stations is provided in Table B1. Major coastal and riverine 

flood thresholds are obtained from Sweet et al. (2018) and the national weather service website 

(https://water.weather.gov/ahps/rss/alerts.php), respectively. 

4.2.2. Selecting pairs of extreme values for compound coastal-riverine analysis 

The bivariate model should be fitted with pairs of extreme SLs and river flows to prevent 

representation of extreme tail with bias. Different methods were used in literature for sampling 

pairs of extreme events from the full bivariate time series that the most common of them are 

threshold-excess, point process, and conditional methods (Zheng et al. 2014). Each method has its 

advantages and disadvantages. While the threshold-excess method offers approximately unbiased 

estimates for dependence parameters, the point process and the conditional method overestimate 

and underestimate the dependence strength, respectively. However, the threshold-excess method 

is unable to fully handle flood events that only one of the drivers is extreme (Zheng et al. 2014).   
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Figure 4.1. The location of tidal and riverine gauges 

 

Both conditional method (Moftakhari et al., 2017; Wahl et al., 2015; Ward et al., 2018) and 

threshold-excess method (Bevacqua et al., 2019; Kew et al., 2013) were used in previous studies 

on estimation of the statistical dependence between coastal-riverine flood drivers. Here, the 

threshold-excess method is implemented to identify bivariate extreme events since our focus is on 

the compound flood events that both drivers are extreme. 

For the coastal component, we use the variable threshold approach provided by Ghanbari 

et al. (2019), which is applied to the daily sea level observations to identify extreme sea level 
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samples. The variable threshold is used to avoid exceedances over threshold occurring more 

frequently in future years that could violate the basic assumption of extreme value analysis (Coles 

2001). The variable threshold is computed as the 97% quantile regression (Koenker and Hallock 

2001; Kyselý et al. 2010) assuming linear dependence between daily mean sea level (explanatory 

variable) and daily maximum sea level (response variable). Using this approach, we consider SLR 

(i.e., changes in mean SL) as a covariate instead of time (Salas and Obeysekera 2014). Figure 

4.2(b) shows how the variable threshold determines extreme SLs in Washington D.C. station (all 

the dots above the threshold). For some locations, we reduce the threshold using a 95% quantile 

regression to ensure that sufficient data are selected to support bivariate frequency analysis. We 

also assume that exceedances of sea level should be at least 3 days apart to be considered as 

independent (Runs Method, Coles, 2001) and take only the maximum of successive extremes. 

For the riverine component, the daily river flow above the 97th quantile is considered as the 

extremes. The quantile regression method is used to determine the threshold by determining the 

relationship between time and daily river flow as is shown in Figure 4.2(a) for the Potomac River. 

3-day window is used to ensure independent events. Then, pairs of extremes are selected when 

both sea level and river flow values exceed their defined thresholds within ±1 days from each other 

(Moftakhari et al., 2017). Green dots in Panel c illustrates the pairs of independent extreme sea 

level and river flow (𝐻𝐻𝑐𝑐𝑚𝑚𝑐𝑐 ,𝑄𝑄𝑐𝑐𝑚𝑚𝑐𝑐). 
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Figure 4.2. Threshold-excess  method for identifying (a) Extreme river flows (b) Extreme sea levels; (c) 
Selected pairs of independent extreme sea level and river flow (𝐻𝐻𝑐𝑐𝑚𝑚𝑐𝑐 ,𝑄𝑄𝑐𝑐𝑚𝑚𝑐𝑐) 

 

For the pairs of extreme sea level and river flow we estimate the parameters of generalized 

Pareto distribution (GPD) as the marginal distribution (since the threshold-excess method is used 

for selecting extremes) with cumulative distribution function as follow: 
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𝐹𝐹𝑋𝑋 �𝐻𝐻|𝜃𝜃𝑚𝑚𝛿𝛿(𝑐𝑐)� = 𝐹𝐹𝑋𝑋�𝐻𝐻|𝜉𝜉,𝛼𝛼,𝑢𝑢𝛿𝛿(𝑐𝑐)� = ⎩⎨
⎧1 − �1 + 𝜉𝜉 𝐻𝐻 − 𝑢𝑢𝛿𝛿(𝑐𝑐) 𝛼𝛼 �−1𝜉𝜉 𝑖𝑖𝑖𝑖 𝜉𝜉 ≠ 0

1 − exp �−𝐻𝐻 − 𝑢𝑢𝛿𝛿(𝑐𝑐) 𝛼𝛼 � 𝑖𝑖𝑖𝑖 𝜉𝜉 = 0

 (4.1) 

where 𝐹𝐹𝑋𝑋 �𝐻𝐻|𝜃𝜃𝑚𝑚𝛿𝛿(𝑐𝑐)� is the GPD function with SLR (𝛿𝛿) or time (𝐻𝐻) as a covariate.𝑢𝑢𝛿𝛿(𝑐𝑐), α 

and ξ denote the location (i.e., variable threshold), scale, and shape parameters of GPD. 𝑢𝑢𝛿𝛿 equals 

to  𝛽𝛽1 × 𝛿𝛿 + 𝑢𝑢  and in 𝑢𝑢𝑐𝑐 equals to  𝛽𝛽1 × 𝐻𝐻 + 𝑢𝑢, which 𝛽𝛽1 denotes the slope coefficient of the 

quantile regression model and 𝑢𝑢 is the current threshold of SLs or river flows. If no trend is found 

in extreme river flow data (97th quantile), the slope of threshold (𝛽𝛽1) would be equal to zero and 

consequently 𝑢𝑢𝑐𝑐 would be constant and equal to 𝑢𝑢 (i.e., no nonstationarity based on historical 

extreme river flows). However, the future can be nonstationary even though there is stationarity in 

the past observations (Mondal and Mujumdar 2016). This nonstationarity in the future is captured 

by incorporating the streamflow projections as discussed in the next sections. 

The year 2020 is used as the reference year in the study and the 183rd day of the year 2020 

(the middle day of the year) or the value of daily MSL corresponding to that day is used to calculate 

the current threshold value (i.e., current GPD location parameter (𝑢𝑢)) for river flow and SL, 

respectively. Here, the nonstationarity is considered only in the first moment and the shape and 

scale parameters are treated as constants.  

4.2.3. Quantifying JRP of extreme SLs and river flows using the selected pairs 

The significance of statistical dependence between the paired data (𝐻𝐻𝑐𝑐𝑚𝑚𝑐𝑐 ,𝑄𝑄𝑐𝑐𝑚𝑚𝑐𝑐) is assessed 

using Kendall’s rank correlation coefficient (𝜏𝜏), which provides a nonparametric measure of 

association between extreme paired sea level and river flow (Sokal and Rohlf 2001).  
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The copula method is then used to build the joint distribution of pairs data with significant 

dependence. Copula functions have been widely applied in hydrological studies over the last 

decade to model the dependence structure of two (or more) random variables regardless of their 

marginal distributions (Bender et al. 2014; Jiang et al. 2015; Ming et al. 2015; Moftakhari et al. 

2017b; Sadegh et al. 2018; Salvadori et al. 2007). According to Sklar’s theorem (Sklar 1959), 

copulas describe and model the dependence structure between random variables (Salvadori and 

De Michele 2004). A bivariate distribution function 𝐹𝐹𝑋𝑋𝑋𝑋 of two random variables 𝑋𝑋 and 𝑌𝑌 with 

marginal distributions 𝐹𝐹𝑋𝑋(. ) and 𝐹𝐹𝑋𝑋(. ) can be written in the form: 

𝐹𝐹𝑋𝑋𝑋𝑋(𝐻𝐻,𝑦𝑦) = 𝐶𝐶(𝐹𝐹𝑋𝑋(𝐻𝐻|𝜃𝜃𝑚𝑚),𝐹𝐹𝑋𝑋�𝑦𝑦|𝜃𝜃𝑦𝑦�|𝜃𝜃𝑐𝑐) (4.2) 

where 𝐹𝐹𝑋𝑋𝑋𝑋 is a joint distribution function with marginals 𝐹𝐹𝑋𝑋 and 𝐹𝐹𝑋𝑋, 𝜃𝜃𝑚𝑚 and 𝜃𝜃𝑦𝑦 are the 

marginal distribution parameters, 𝐶𝐶(. , . ) is a unique copula of the two continuous random variables 𝑋𝑋 and 𝑌𝑌 with the parameters of 𝜃𝜃𝑐𝑐. 
If there is a significant dependence between paired data, the best copula fit among 26 

copulas is selected for bivariate dependence analysis based on maximum likelihood, Akaike 

Information Criterion (AIC), and Bayesian Information Criterion (BIC) to describe the dependence 

structure between the paired data (Sadegh et al. 2017). 

Unlike univariate analysis, hazard scenarios are not unique in bivariate analysis (Salvadori 

et al. 2011). Several definitions of hazard scenarios are available in the literature including OR, 

AND, Kendal, and survival Kendal (Salvadori et al. 2014; Salvadori and De Michele 2004). Each 

definition provides specific information and the aim of the study should be considered for choosing 

the proper definitions. In this study, we consider AND hazard scenario since we are interested to 

estimate the frequency of simultaneous or near-simultaneous exceedances over both coastal and 
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riverine flood thresholds. Moreover, AND hazard scenario is proposed to estimate the 𝐽𝐽𝐽𝐽𝐽𝐽 of 

extreme SLs and river flows for assessing compound coastal-riverine flooding risk in estuaries 

(Moftakhari et al., 2019). In case of interest in information about the probability of flooding due 

to exceedance over either coastal or riverine flood threshold or both OR hazard scenario should be 

used (Bender et al., 2016; Moftakhari et al., 2017; Ward et al., 2018). The Kendall and the Survival 

Kendall hazard scenarios do not have a direct physical/structural interpretation and they should be 

used for preliminary risk assessments (Salvadori et al., 2016).   

If 𝐻𝐻∗ and 𝑦𝑦∗ are coastal and riverine flood thresholds, respectively, the joint exceedance 

probability based on AND hazard scenario refers to the probability of exceedances over 𝐻𝐻∗ and  𝑦𝑦∗ 
simultaneously or in close succession (Herweijer et al., 2008; Salvadori et al., 2011; Salvadori et 

al., 2016; Salvadori & De Michele, 2004; Salvadori et al., 2007) [ 𝑝𝑝(𝑋𝑋 > 𝐻𝐻∗  ∩ 𝑌𝑌 >  𝑦𝑦∗)] and 

defined as follow:  

𝐽𝐽𝐴𝐴𝐴𝐴𝐴𝐴 = 1 −  𝐹𝐹𝑋𝑋(𝐻𝐻∗|𝜃𝜃𝑚𝑚) − 𝐹𝐹𝑋𝑋�𝑦𝑦∗|𝜃𝜃𝑦𝑦� +  𝐶𝐶(𝐹𝐹𝑋𝑋(𝐻𝐻∗|𝜃𝜃𝑚𝑚),𝐹𝐹𝑋𝑋�𝑦𝑦∗|𝜃𝜃𝑦𝑦�|𝜃𝜃𝑐𝑐) (4.3) 

Subsequently, the joint return period is defined as: 

𝐽𝐽𝐽𝐽𝐽𝐽 =
λ𝐽𝐽𝐴𝐴𝐴𝐴𝐴𝐴 (4.4) 

where λ is the average interarrival time between compound flood events occurrences. 

Specifically, in this study, thresholds (𝐻𝐻∗and 𝑦𝑦∗) are defined as major coastal and riverine 

flooding threshold (i.e., 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐) since our focus is on 𝐽𝐽𝐽𝐽𝐽𝐽 of compound major flooding.  
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4.2.4. Assessing JRP of compound major floodings under current and future conditions  

Under a changing climate, the marginal distributions of high SLs or river flows or their 

dependence structure might be nonstationary. The nonstationarity of 𝐹𝐹𝑋𝑋𝑋𝑋 could be due to 

nonstationarity in (1) marginal distributions of variables (i.e., a change of univariate distribution 

parameters 𝜃𝜃𝑚𝑚𝑐𝑐 and 𝜃𝜃𝑦𝑦𝑐𝑐), (2) the dependence structure of variables (i.e., a change of copula 

parameters 𝜃𝜃𝐶𝐶𝑐𝑐 ), or (3) both(Salvadori et al. 2018). Here we incorporate nonstationarity into the 

marginal distributions of extreme SLs and river flows using projected SLR and river flows. 

 To incorporate nonstationarity into the marginal distribution of extreme SLs, first the new 

GPD threshold (𝑢𝑢𝛿𝛿 = 𝛽𝛽1 × 𝛿𝛿 + 𝑢𝑢) is estimated under different SLR values (𝛿𝛿) and the frequency 

of major coastal flooding is recalculated using the new threshold (Ghanbari et al. 2019). Then the 

regional SLR projections provided by Sweet et al. (2017) are used to perform an assessment of 

expected time to certain SLR values. The available projections include Low, Intermediate-low, 

Intermediate, Intermediate-high, High, and Extreme SLR scenarios, which correspond to 0.3m, 

0.5m, 1m, 1.5m, 2m, and 2.5m global SLR, respectively. For each of the six scenarios there is a 

low, medium and high sub-scenario, corresponding to the 17th, 50th, and 83rd percentile of the 

climate-related sea level projections consistent with the GMSL scenario. The value for medium 

sub-scenario is used in this study. 

While Intermediate-Low and Intermediate scenarios have a 96% and 17% chance of being 

exceeded under Representative Concentration Pathway (RCP) 8.5 climate change scenario, 

respectively, Intermediate-high scenario has a chance of 1.3%. The chance of exceedance of High 

and extreme scenarios is too low (0.3% and 0.1%). Here, we consider the Intermediate-low, 

Intermediate scenarios as they are the most probable scenarios by mid-century. 
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To incorporate nonstationarity into the marginal distribution of extreme river flows, we use 

a ten-member ensemble streamflow projection derived from runoff simulated by Naz et al. (2016). 

The projected daily runoff is simulated by the Variable Infiltration Capacity (VIC) hydrologic 

model forced with ten dynamically downscaled Global Climate Models (GCMs) from the Coupled 

Model Intercomparison Project phase 5 (CMIP5) archive under the RCP 8.5 emission scenario. 

Each downscaled GCM consists of 40 years in the historic baseline (1966–2005) and near future 

(2011–2050) periods. The simulated VIC runoff is then routed using the Routing Application for 

Parallel Computation of Discharge (RAPID; David et al., 2011a, 2011b) routing model along the 

NHDPlus (McKay et al. 2012) river network. Although these ten sets of hydroclimate projections 

do not capture the overall uncertainty in the future, they can provide a best-available model-based 

projection of potential future streamflow conditions for the purpose of our study. Naz et al. (2016) 

provide a detailed description of the VIC model setup and evaluation. The use of RAPID routing 

model along with NHDPlus river network can be further referred to Tavakoly et al. (2017) and 

Forbes et al. (2019). Observed flow data are compared with simulated flow data using different 

statistical indices (Figure B2-1 to B2-26).  

The quantile regression method, as described above is used to estimate the threshold for 

the projected near future river flows, which allows the estimation of trends at extreme quantiles of 

the river flow distribution (Koenker and Hallock 2001). We assume that the slope of the new 

threshold expresses the trend in the future extreme river flows. This is based on the idea that the 

variations in the future extremes (i.e., either upward or downward trend) can be expressed by the 

slope of an extreme quantile (Yu et al. 2003). Hence, the future changes in riverine flooding 

frequency (i.e., extreme river flows) are explored by incorporation of the new slope into the 

location parameter of GPD. The new slope (𝛽𝛽1∗) is then used as the slope of the variable threshold 
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of historical river flows (𝛽𝛽1) to estimate the new threshold as 𝑢𝑢𝑐𝑐 =  𝛽𝛽1∗ × 𝐻𝐻 + 𝑢𝑢 (i.e., location of 

GPD). Upward trend in extreme quantiles of river flows (𝛽𝛽1∗ > 0) implying more riverine flooding.  

4.2.5. Assessing changes in risk of failure over design lifetime  

Return period alone does not account for planning horizon and is unable to characterize the 

likelihood of an event occurring during a project lifetime (Read and Vogel 2015). Risk of failure 

over a given design life is shown to provide a more suitable measure for risk assessment and 

communication (Serinaldi 2015). Here risk of failure is defined as the probability of observing at 

least one compound major flooding in a given design life (Salvadori et al., 2016; Serinaldi, 2015) 

and formulated to allow for changing exceeding probabilities over time. For a hypothetical 

structure, having design life 𝑛𝑛, the failure probability is a monotonically increasing function of 𝐻𝐻 
and is given by: 

𝐽𝐽𝐹𝐹 = 1 −�(

𝑐𝑐
𝑐𝑐=1 𝐹𝐹𝑋𝑋(𝐻𝐻∗|𝜃𝜃𝑚𝑚𝑐𝑐) + 𝐹𝐹𝑋𝑋�𝑦𝑦∗|𝜃𝜃𝑦𝑦𝑐𝑐� −  𝐶𝐶�𝐹𝐹𝑋𝑋(𝐻𝐻∗|𝜃𝜃𝑚𝑚𝑐𝑐),𝐹𝐹𝑋𝑋�𝑦𝑦∗|𝜃𝜃𝑦𝑦𝑐𝑐��|𝜃𝜃𝐶𝐶𝑐𝑐) (4.5) 

As already mentioned, in this study, 𝐻𝐻∗ and 𝑦𝑦∗ are major coastal and riverine flood 

thresholds, respectively, and 𝐽𝐽𝐹𝐹 indicates the risk of failure due to compound major flooding 

(hereinafter, 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐). 

4.3. Results and Discussions 

The proposed bivariate flood hazard framework to quantify compound flooding is based 

on exceedances above coastal and river flood thresholds with consideration of projected SLR and 

changes in extreme river flows. We demonstrate the applicability of the framework in assessing 

the frequency of compound major flooding (i.e., simultaneous or near-simultaneous exceedance 

of SLs and river flows above major flood thresholds) by mid-century along the Contiguous United 
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States (CONUS) coast. First, we investigate the dependence between the extreme SLs and river 

flows based on the observed dataset, utilizing data from the NOAA tidal station and the closest 

USGS river station. Then we estimate the 𝐽𝐽𝐽𝐽𝐽𝐽 of compound major flooding in locations with 

significant dependence structure between high SLs and river flows under current and future 

conditions.  We show that, under current conditions, the northeast Atlantic and Gulf coast regions 

are experiencing the highest compound major flood probability. However, future SLR scenarios 

show emerging high compound flooding probability along the southeast Atlantic coast. The impact 

of changes in extreme river flows is found to be negligible in most of the locations except the 

southeast Atlantic coast. However, even in this region, its impact is considerably less than that of 

SLR. It should be noted that here we focus on major flood thresholds; however, the framework is 

applicable to any flood threshold.  

4.3.1. Spatial variability in dependence of extreme sea levels and river flows 

The dependence between extreme pairs of high SLs and river flows is assessed using 

Kendall’s rank correlation coefficient. The dependence behavior patterns are almost similar to 

those found by previous studies (Ward et al. 2018; Couasnon et al. 2020), although the method for 

selecting pairs of extreme events are not the same.  For the northeast Atlantic coast, we find 

significant dependence at all stations. Concurrent extreme SLs and river flows along the northeast 

Atlantic coast can be associated with the combination of storm surge and heavy precipitation due 

to the passage of extratropical cyclone and nor’easter (i.e., macro-scale extratropical), which are 

usually accompanied by very heavy rain or snow that can cause compound flooding. For the 

southeast Atlantic coast, significant dependence was found for most of the stations except two 

stations (Oregon Inlet and Fort Pulaski). In this region, tropical cyclones produce high SLs and 

intense precipitation. However, other mechanisms also lead to high river flows such as convective 
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storms (Berghuijs et al. 2016). For the Gulf coast, we find statistical dependence for the western 

part, however, no significant dependence is found for the eastern part. High SLs in this region 

typically occur during hurricane seasons when the flow of the western part is also at its highest. 

However, the maximum flow for the east part of the Gulf is late winter and early spring (Berghuijs 

et al. 2016). For the Pacific coast, we find significant dependence at most locations except Santa 

Monica and Seattle stations. This is attributed to relatively high variability in tide levels compared 

to small storm surges variability in these two stations. Kendall’s rank correlation coefficient (𝜏𝜏) 

are presented in Table B2 along with the p-values.  

4.3.2. The JRP of compound major flooding under current conditions 

The current 𝐽𝐽𝐽𝐽𝐽𝐽 between co-occurrence of high SLs and river flows is estimated for all the 

studied locations using the proposed bivariate flood hazard assessment method. Figure 4.3 

illustrates the results for Potomac River Estuary, Washington D.C. as an example and the same 

information for the rest of the studied estuary locations is presented in Figures B3-1 to B3-26. The 

figure shows that, if we consider only the coastal component, the return period of major coastal 

flooding (i.e., exceedances above major coastal flood threshold (𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐)) is approximately 20 

years (Panel c). If we consider only the riverine component, the return period of major riverine 

flooding (i.e., exceedances above riverine flood threshold (𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐)) is estimated to be 

approximately 50 years (Panel a). Now the question is: what is the frequency of compound 

extremes such as major coastal-riverine flooding? Using AND hazard scenario, exceedance above 

both major coastal and riverine flood threshold  (𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐), appears to be a 180-year 

extreme compound event, which is indicated by a red square in panel b. In other words, 

(𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐) with the 𝐽𝐽𝐽𝐽𝐽𝐽 of 180 years has marginal univariate return periods equal to 20 and 
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50 years. The comparison between fitted marginal distributions and empirical distribution along 

with Q-Q plots are provided in Figures B1-1 to B1-26. 

It should be highlighted that the estimated 𝐽𝐽𝐽𝐽𝐽𝐽 is based on the AND hazard scenario and 

presents the frequency of compound flood events when both coastal and riverine flood thresholds 

are exceeded simultaneously or in close succession. In the case when the frequency of exceedance 

over either coastal or riverine flood threshold or both is of interest, the 𝐽𝐽𝐽𝐽𝐽𝐽 should be estimated 

based on the OR hazard scenario. 

 

Figure 4.3. Marginal distribution based on generalized Pareto Distribution (GPD) for (a) extreme river 
flows, (c) extreme sea levels; (b) joint return period of extreme paired data based on the selected copula. 
The dashed red line shows the major flood threshold and corresponding univariate return period in panel 

(a) and (c). The red square in panel (b) shows the JRP of compound major flooding under current 
conditions.  
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Figure 4.4 presents the relationship between the return period of major coastal and major 

riverine flooding based on univariate analysis and the corresponding 𝐽𝐽𝐽𝐽𝐽𝐽 for all the studied 

locations, which is shown by the size of the circles. The figure shows how major coastal and 

riverine flood thresholds are exceeded with different return periods in different coastal regions and 

how the associated return period deviates from a 100-year event. This highlights the necessity for 

using impact flood thresholds to compare compound flooding impacts over large areas. It should 

be noted that most of the locations in the Pacific coasts are not historically exposed to major 

flooding. Thus, the major coastal flood return period in these locations are shown by larger than a 

1000-year event. Also, the 𝐽𝐽𝐽𝐽𝐽𝐽 of locations with no significant dependence between SLR and river 

flows, which are marked by an asterisk (*), are present as larger than a 1000-year event. 

 

Figure 4.4. The relationship between the return period of major coastal and riverine flooding based on 
univariate analysis and the corresponding joint return period (𝐽𝐽𝐽𝐽𝐽𝐽) based on bivariate analysis. The 

locations with no significant dependence are marked by an asterisk (*). The 𝐽𝐽𝐽𝐽𝐽𝐽 is shown by the size of 
the circles. 
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4.3.3. The JRP of compound major flooding under future conditions 

With SLR the likelihood of exceedances of high SLs above coastal flood thresholds will 

increase (Ghanbari et al. 2020). Changes in extreme river flows might also increase the likelihood 

of exceedances of high river flow above riverine flood thresholds (Groisman et al. 2001). 

Consequently, in a warming climate the frequency of compound major flooding could increase 

(i.e., shorter 𝐽𝐽𝐽𝐽𝐽𝐽). Thus, a further question is, to what extend SLR and changes in extreme river 

flows could affect the frequency of compound major flooding? 

Frequencies at which SLs and river flows are projected to exceed the major flood 

thresholds simultaneously or in close succession are estimated in terms of the 𝐽𝐽𝐽𝐽𝐽𝐽 for all the 

selected locations. Figure 4.5, illustrates the changes in 𝐽𝐽𝐽𝐽𝐽𝐽 by 2050 in Potomac River Estuary, 

Washington D.C. as an example.  The results show almost 15% and 25% decrease in 𝐽𝐽𝐽𝐽𝐽𝐽 by 2050 

under Intermediate-low and Intermediate SLR scenarios, respectively. The impact of changes in 

extreme flows in addition to the Intermediate SLR scenario is illustrated by the dashed pink line 

(multi-model ensemble) and gray lines (single GCM). Previous research has demonstrated that 

multi-model ensemble forecasts perform better than any single GCM. 

The frequency of compound major flood events might slightly increase when the 

nonstationarity of extreme streamflow is considered. However, the impact of SLR is much greater. 

The same information for the rest of the selected studied locations is presented in Figure B4-1 to 

B4-26. 
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Figure 4.5. The changes in the joint return period (𝐽𝐽𝐽𝐽𝐽𝐽) of compound major flooding by mid-century in 
Potomac River Estuary, Washington D.C.  

 

 Figure 4.6 shows the 𝐽𝐽𝐽𝐽𝐽𝐽 along the coastal CONUS under the current condition (middle 

panel) and by mid-century under Intermediate-low SLR scenario (panel a), Intermediate SLR 

scenario (panel b), and Intermediate SLR with changes in extreme river flows (Panel c). The 

frequencies of compound major flooding are anticipated to change as a result of climate change, 

however, changes in their frequencies are not the same across regions. Thus, frequency 

amplification of compound major flooding is also calculated as the ratio of current 𝐽𝐽𝐽𝐽𝐽𝐽 to future 𝐽𝐽𝐽𝐽𝐽𝐽 to assess the changes in the frequency of compound major flooding across different coastal 

regions, which is illustrated by changes in color. 



8
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Figure 4.6. The joint return period of compound major flooding (middle panel) under current condition, (a) with consideration of 
Intermediate-low SLR scenario (2050), (b) with consideration of Intermediate-low SLR scenario (2050), (c) with consideration of 

Intermediate-low SLR scenario and river flow change. Black circles denote locations with no significant dependence. 
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Under the current condition, the northeast Atlantic and west Gulf coast regions are 

experiencing the highest compound flood major probability. However, the future SLR scenarios 

show emerging high compound major flooding probability along the southeast Atlantic coasts. 

Under the Intermediate SLR scenario, by 2050, the southeast Atlantic coast could experience the 

amplification of up to 5 times and all the locations tend to be exposed to major coastal riverine 

flooding with a return period of 200-400 years. For the pacific coast, despite the significant 

dependence between high SLs and river flows (Table B2), 𝐽𝐽𝐽𝐽𝐽𝐽 of compound major flooding is 

infinite since the major coastal flood threshold has not yet been exceeded in the majority of Pacific 

coast locations. However, as sea level continues to rise, the region may experience compound 

major flooding by the end of century.  

While SLR exacerbates compound major flooding along the coastal CONUS, the impact 

of river flow change is spatially diverse. The impact of river flow change is found to be negligible 

in most of the locations except in southeast Atlantic coasts where future 𝐽𝐽𝐽𝐽𝐽𝐽 is found to be 

impacted by changes in extreme streamflow flows as well. However, its impact is considerably 

less than that of SLR, highlighting the important impact of SLR on future frequency of compound 

flooding events. 

4.3.4. The risk of failure over a design lifetime (2020-2050) 

The risk of failure due to compound major flooding (𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐) over a 30-year design life 

(2020-2050) is calculated for all selected locations. Figure 4.7 illustrates the behavior of  𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 

in Washington D.C. and Wilmington as an example. The same information for the rest of the 

selected estuary locations is presented in Figure B4-1 to B4-26. 
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This plot compares 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 without consideration of SLR (dashed black line) versus that 

with consideration of the two most probable SLR projections by the mid-century. Even without 

consideration of SLR the 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 would increase as service time of hydrologic infrastructure 

increases(Xu et al. 2019). For example, in Washington D.C., the 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 is equal to 0.5% (i.e., 

180-year event as estimated in the previous section) in the first year, increases to 6% and 18% 

when the service time is 10 and 30 years, respectively, according to Intermediate SLR scenario. 

This highlights the point that return period is not explicitly tied to a planning horizon and may not 

be representative of the time to the next flood event (Read and Vogel 2015). 

Moreover, in general, the risk of failure assuming stationarity is smaller than the ones 

considering any of the SLR scenarios. For example, based on the current conditions, the 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 

in Wilmington after 30 years of design life is expected to be 3%. Now if we consider the 

Intermediate-low SLR scenario, the failure probability increases to 5%. The situation becomes 

worse under the Intermediate SLR scenario (𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 = 6%).  

Figure 4.7.  Bivariate risk of failure due to compound major flooding �𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐� over a design life of 30 

years (2020-2050). The dashed black line shows the estimated 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 computed according to current 

climate conditions. 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 for the Intermediate-low and Intermediate SLR scenarios are shown with a 

blue and green line, respectively. The highlighted boundaries show low and high SLR sub-scenario, 
corresponding to the 17th and 83rd percentile. 
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Figure 4.8 illustrates the 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 after 30 years of design life (2050) for eight major cities 

close to estuaries with high dependence structure between extreme SLs and river flows. The figure 

suggests that under future SLR scenarios the 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 will increase in all the selected locations. 

However, the changes in 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 are regionally different. The highest increase in 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 is 

found for the locations along the southeast Atlantic coast. The coastal cities along the southeast 

Atlantic coast are expected to be exposed to double risk of compound major flooding by 

midcentury under the Intermediate SLR scenario. These findings highlight the potential for 

compound major flooding to produce destructive impacts more frequently if sea levels continue to 

rise. 

 

Figure 4.8. Risk of failure due to compound major flooding �𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐� after 30 years of design life (2020-

2050) 

 

It should be noted that the calculations do not consider nonstationarity in the dependency 

between high SLs and river flows. Lack of such consideration likely produces underestimation in 
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projected JRP and is worthy to be considered in future studies. Although it was shown that in some 

cases incorporating nonstationarity in the marginal distribution parameters is substantially more 

important than incorporating nonstationarity in the copula parameter (i.e., the dependence structure 

(Bender et al. 2014)), future work could improve on this by incorporating future changes in 

dependence structure between variables. 

 

4.4.Conclusion 

The interaction between high SLs and river flows determines the flood level in estuaries. 

Knowledge about the joint return period of high SLs and river flows is essential to understand the 

risk of flooding in these regions. Climate change could alter the statistical characteristic of these 

flood drivers, leading to increase in frequency of compound coastal-riverine flooding. Thus, a 

statistically robust analysis of compound coastal-riverine flooding requires incorporation of future 

projections of climate change. This study proposes a bivariate flood hazard assessment framework 

that accounts for compound coastal-riverine flooding with consideration of the impact of SLR and 

changes in extreme river flows. In particular, projected SLR and streamflow are incorporated in 

the marginal distribution of high SLs and river flows, respectively, as drivers of compound coastal-

riverine flooding.  

We focus on major coastal and riverine flood thresholds and project how often these two 

impact flood thresholds will be exceeded simultaneously or in close succession by mid-century 

along the coastal CONUS. Bivariate flood analysis based on impact thresholds under current and 

future conditions can raise local awareness by allowing localization and personalization of flood 

risks. Identifying current and future hotspots of compound major coastal-riverine flooding is 

highly relevant information for flood risk management in estuary regions. In locations with 
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dependence between high SLs and river flows a storm could cause inundation not only above the 

coastal major flood threshold but also above the riverine major flood threshold, leading to extreme 

flood level.  

The results show regional differences in 𝐽𝐽𝐽𝐽𝐽𝐽 of compound major flooding under current 

climate conditions.  The northeast Atlantic and western part of the Gulf coasts are experiencing 

the highest compound major flood frequency. Projected 𝐽𝐽𝐽𝐽𝐽𝐽s according to the Intermediate-low 

and Intermediate SLR scenarios show a high frequency of compound major flooding along the 

southeast Atlantic coast. The impact of changes in extreme river flows is found to be negligible in 

most of the locations except the southeast Atlantic coast. However, even in this region SLR is the 

dominant reason for increasing the frequency of compound major flooding.  

Our results highlight that the increased risk of co-occurrence of major coastal and riverine 

flooding under future climate conditions cannot be neglected in a robust risk assessment.  More 

major coastal-riverine flooding can be expected due to the impacts of climate change, especially 

SLR, which should be considered as a basis for a range of future adaptation responses in estuary 

regions.  
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CHAPTER 5.  

GREEN STORMWATER INFRASTRUCTURE IN NEW YORK CITY: COMPLEMENTARY 

OR SUBSTITUTIVE?  

 

 

 

Highlights 

Urban and compound flooding poses serious threats to many cities around the world. 

Climate change could increase the level of urban and compound flood hazard through higher 

extreme precipitation and sea level rise (SLR). To offset future flood risks in urban cities like New 

York City (NYC), implementation of effective and viable stormwater management strategies is 

essential. In this study, we assess four stormwater intervention scenarios including gray (i.e., 

conventional centralized conveyance systems and water treatment plants) and green (i.e., 

decentralized infiltration measures) infrastructure, to examine whether green systems’ effects on 

flood control and combined sewer outflow (CSO) reduction are complementary or substitutive. A 

citywide Hydrologic and Hydraulic model was used to evaluate the effects of interventions on 

flood control, combined sewer outflow (CSO) mitigation, and potential co-benefits. The results 

revealed that although the effect of green interventions on flood control was substantial, they 

cannot substitute traditional gray interventions, particularly given their inability to deal with 

extreme rainfalls and compound flooding. On the other hand, gray systems appear to be most 

effective in mitigating CSOs. The results revealed that in developed and urbanized cities, green 

and gray systems should not be considered as competing but rather as complementary and mutually 

reinforcing. Sustainable stormwater management approaches should consider strategies that 

implement both systems in combination to provide complementary effects on flood and CSO 
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reduction and other co-benefits. Also, adding cloudburst systems in different locations could 

substantially reduce flood hazard during extreme storm events. 

5.1. Introduction 

Urban flooding from extreme precipitation poses public safety risks and substantial threat 

to human life and property across the world (Jha et al. 2012). In coastal urban areas like New York 

City (NYC), these threats can further compound by the co-occurrence of high sea level (SL) either 

from tide or storm surge events (Smith and Rodriguez 2017). The co-occurrence of high 

precipitation runoff and high sea level may cause compound flooding events, like that caused by 

Superstorm Sandy in 2012, which can result in substantial damages and fatalities (Moftakhari et 

al. 2017b; Wahl et al. 2015a; Ward et al. 2018). 

Climate change is increasing the risk of urban and compound flooding due to increasing 

frequency and intensity of extreme precipitation events (Rahmstorf and Coumou 2011), sea level 

rise (SLR) (Rahmstorf 2007; Sweet et al. 2017; Ghanbari et al. 2019), and increasing frequency 

and magnitude of surge events and tides (Rahmstorf and Coumou 2011; Bevacqua et al. 2019; 

Ganguli et al. 2020; Hallegatte et al. 2013). Considering the increased risk of flooding, the complex 

network of stormwater conveyance systems is increasingly overwhelmed, leading to flooding and 

water quality degradation. Water systems in NYC comprise a complex network of natural and built 

infrastructure that is increasingly vulnerable to flooding and water quality degradation 

(Rosenzweig et al. 2007). Pressures on the city water systems are on the rise due to the increased 

frequency of extreme precipitation events, SLR, and land-use change (Karamouz et al. 2015; Yohe 

and Leichenko 2010).  
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Stormwater interventions play a critical role in enhancing the resilience of urban cities by 

protecting them from flooding and water quality impacts, particularly when considering the 

impacts of climate change (Roy et al. 2008). Stormwater interventions include gray infrastructure 

(i.e., centralized conveyance systems), green infrastructure (i.e., distributed infiltration systems), 

and hybrid systems that can be designed and deployed individually or in combination as a part of 

a comprehensive strategy (Zhang et al. 2017).  

Gray infrastructure, such as pipelines, large-scale storages, and treatment plants 

historically served society’s needs for water security, public sanitation, and flood protection. 

However, over time, this system causes negative environmental impacts to downstream receiving 

environments and exacerbates the pressure from climate change, and subsequently erodes the 

resilience of cities (Bell et al. 2019). Over recent decades, green infrastructure systems have 

emerged as a promising flood risk management alternative or complementary to gray infrastructure 

(Ferguson et al. 2013; Vogel et al. 2015). Green stormwater management infrastructure treats 

stormwater as a resource to be infiltrated, stored, and/ or re-used at the site instead of dealing with 

runoff as waste (Li et al. 2019; Moore et al. 2016; Zhang et al. 2017). The main goal of green 

practices is to achieve a reduction in runoff volume and peak using decentralized stormwater 

control measures and subsequently reducing runoff on gray stormwater systems, while increasing 

infiltration, groundwater recharge, and water quality enhancement (Ahiablame et al. 2012).  

While green and gray stormwater infrastructure is often referred as either this‐or‐that 

choice  (Jayasooriya and Ng 2014; Li et al. 2019), there is another opportunity to incorporate their 

complementary functionality and to obtain the best of what both green and gray systems can offer 

for flood hazard control, combined sewer outflow (CSO) reduction and other co-benefits (Sanders 

and Grant 2020). More recently attention has also been paid to the integrated use of green and gray 
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infrastructure (Tavakol-Davani et al. 2016; Hu et al. 2019). In order for an ultra-urban city like 

NYC to better prepare for future stormwater issues, it is important to implement and deploy 

effective and viable stormwater management strategies to improve the reliability and resiliency of 

stormwater systems across the city. A prerequisite for this is to identify, model, and assess different 

green and gray intervention options, individually or in combination, to find the most beneficial 

and effective intervention scenarios for offsetting flood impacts (Rosenzweig et al. 2011; Meney 

and Pantelic 2020). 

The main goal of this study is to examine the effect of green systems, as a complementary 

and substitutive stormwater management intervention, on flood impacts in NYC. Specifically, the 

objectives of the study are to (1) evaluate the effectiveness of different green and gray stormwater 

intervention measures, individually or in combination, on flood hazard and CSO reduction under 

current and future climate; (2) quantify potential co-benefits of green practices at varying 

implementation levels; (3) assess the intervention scenarios using a multi-criteria evaluation 

approach. Control of urban flooding through the most effective and efficient stormwater 

interventions reduces flood-induced damages and water quality impacts and subsequently 

enhances the safety and resilience of communities. 

5.2. Methodology 

Four stormwater intervention scenarios including prevailing and currently funded green 

and gray stormwater interventions, planned green and gray stormwater interventions for the City 

by 2050, and additional gray interventions to manage volume targets were assessed using a 

citywide hydraulic and hydrology (H&H) model under five current and future storm scenarios. 

The combination of intervention strategies and storm behaviors provides insight into how different 

types and levels of interventions influence the performance of interventions. 
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5.2.1. Hydraulic and hydrologic (H&H) model 

A citywide H&H model, which had been developed as part of the NYC Stormwater 

Resiliency study was used to model and evaluate intervention scenarios. InfoWorks Integrated 

Catchment Model (ICM) was used to present both the overland runoff (i.e., 2D hydrologic model) 

and underground sewer system components (i.e., 1D hydraulic model) of the NYC stormwater 

system. The 2D elements simulate generation and movement of surface water from various land 

covers along the terrain into the 1D collection and conveyance elements.  

To develop the model, stormwater conveyance components were extracted from the 

existing Department of Environmental Protection (DEP) InfoWorks 1D sewer models. Several 

additional City data sources including high-resolution digital elevation model data (DEM) from 

the most recent 2018 LiDAR surveys to represent the terrain and create the 2D model, land use 

data from the NYC Parks’ Department to represent pervious surfaces, parameters for surface 

roughness, and infiltration processes, and the location of surrounding water bodies were used in 

the model.  

The H&H model was separated into 13 sewershed models as follows: 26thWard, Bowery 

Bay, Coney Island-Owls Head, Hunts Point, Jamaica, Newtown Creek, North River, Oakwood 

Beach, Port Richmond, Red Hook, Rockaway, Tallman Island, and Wards Island. The resolution 

of the model was a triangular mesh network with minimum areas of 250 ft2 and maximum areas 

of 1000 ft2.  

5.2.2. Storm scenarios 

Several different storm types such as tropical cyclones, extratropical and convective storms 

can cause precipitation over NYC. Convective storms, during the warm season, have temporal 
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scales of minutes to hours and spatial scales ranging from miles to over all of NYC (Colle et al. 

2012; Lombardo and Colle 2010). The rain rates in convective storms can exceed 2 inches per 

hour (Smith and Rodriguez 2017). During the late summer and fall, tropical cyclones can move 

northward along the east coast and cause an extensive region of heavy precipitation (5-15 inches) 

over a 12- to 24-hour period that extends hundreds of miles ahead of the storm, such as that during 

Tropical Storm Floyd in 1999 (Colle 2003). Cool-season extratropical storms can also produce 

large areas of heavy rain over several hours. The coincidence of storm surge with the precipitation 

from these cyclones may lead to compound flooding.  

Given these multiple storm types, requisite to a coherent flood risk assessment is utilizing 

scenarios spanning a wide range of rain intensity, storm duration, tide level, and storm surge 

layered with climate change effects. Thus, five storm scenarios were created to cover the wide 

range of NYC rain and coastal sea level parameters. Each storm scenario includes both a rainfall 

time series and spatially varying sea water level time series for local tidal waterways. These 

scenarios cover a mixture of current and future rainfall and tide scenarios, compound (extreme 

precipitation and surge) scenarios, and common and extreme scenarios. Climate change was 

represented for the midcentury with the high-end estimates (90th percentile) of future changes in 

sea level and rain intensity.  

Extreme Value Analysis (Coles 2001) was used to determine current relationships between 

rainfall return periods, durations, and intensities under the current climate. Results from 

DeGaetano and Castellano (2017) were used to determine these return period relationships for a 

future climate (i.e., the year 2050). Storm surge depth was assigned to a certain storm scenario 

based on results from analyzing the joint probability that rainfall and storm surge events occur 

simultaneously (Salvadori et al. 2007, 2016b). SLR, for future scenarios, was determined based on 
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high-end (90th percentile) projections of the 2050s, based on results from the New York City Panel 

on Climate Change, NPCC (Horton et al. 2015), which is 30 inches above a baseline at 2000-2004.  

Table 5.1. Characteristics of the storm scenarios used in the H&H model

 

 
 

All storm scenarios incorporated time-varying tides, one scenario incorporated a surge, and 

one scenario incorporated SLR imposed on top of the tide. The offshore water level data, which 

represents the combination of tide, surge, and SLR, was determined from the New York Harbor 

Observing and Prediction System (NYHOPS; e.g., Georgas and Blumberg 2009; Orton et al. 

2016). Rain durations vary from 1 to 24-hour events, with intensity varying and peaking over 

periods as short as 5 minutes, capturing the range of rain characteristics from common convective 

downpours to hurricane events. For detailed information about the creation of the storm scenarios 

refer to Appendix C, Section C1. 

Table 5.1. shows the characteristics of the storm scenarios. SC1 is currently used by the 

NYC Emergency Management (NYCEM) and is the least severe storm modeled for the study. SC2 

represents a short duration and high intensity event. SC3 repeats SC2 to include surge at a 90th 

percentile based on statistical analysis of the joint occurrence of extreme rain and surge. SC4 is 

Scenario  Intensity Depth Duration 
Current 

Return Period 

Future 

Return Period 

Present or 

Future Climate 
SLR Surge 

 (in/hr) (in) (hours) (years) (years)   (feet) (feet) 

SC1 1 1 1 < 1 < 1 
Present day 

rainfall - - 

SC2 1.77 1.77 1 5 < 5 
Present day 

rainfall - - 

SC3 1.77 1.77 1 5 < 5 

Present day 

rainfall and 

surge 

- 1.3 

SC4 0.85 2.55 3 5 <5 
Present day 

rainfall - - 

SC5 0.38 9.12 24 >50 50 
2050s SLR and 

rainfall 2.3 - 
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used to evaluate the DEP site retention standard. SC5 is a future event that models future 50-year 

event factoring in SLR. In summary, the scenarios show how rain intensity increase (SC2), a 

combination of rain intensity increase and surge (SC3), rain duration increase (SC4), and 

combination of rain duration increase and SLR (SC5) will worsen flooding and consequently affect 

the effectiveness of interventions. 

 5.2.3. Stormwater interventions 

Stormwater intervention strategies consist of gray, green, and hybrid infrastructure that 

may be used individually or in combination to mitigate flood hazard, reduce CSO and provide 

other and co-benefits.  

5.2.3.1. Gray infrastructure system 

Gray systems include conveyance pipes, large centralized storage basins (i.e., tanks, vaults, 

tunnels), pump stations, weirs, and treatment facilities. An extensive network of centralized gray 

infrastructure systems underpins stormwater and flood control in NYC. The long-term control 

plans (LTCPs) provide recommendations for improvements of gray systems by identifying the 

appropriate CSO controls necessary to achieve water-body specific water quality standards for 

enhanced performance and readiness for future weather and sea level conditions (DEP 2019).   

Subsurface storage tanks and tunnels are designed to increase the storage capacity of 

combined sewer systems. Storage tunnels were represented in the H&H model by modifying 

existing nodes along the stormwater system to represent the added underground storage capacity. 

Additional storage prevents water from ponding on the surface and reduces flooding.  

Storage within pipe systems can be used as a strategy to add storage capacity within the 

gray infrastructure when extreme flooding occurs. This is because sewer pipes are designed and 
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installed with a minimum freeboard to ensure that overflow does not occur at peak flow. Therefore, 

placing a weir or other elevation regulating structure can allow water to back up within the pipes 

into the unutilized storage space. This strategy was modeled in the H&H model by adding weir 

links to the system to control the depth of water within the system and fully utilize pipe capacity. 

Pumping stations are implemented in low-lying areas of cities near bodies of water that are 

threatened by flooding due to heavy precipitation, SLR, and other pressures, particularly in 

locations where terrain restricts the ability to move water by gravity. Pumping can also be used to 

increase the flow rate of water moving through the sewer system, causing less water to back up 

onto the surface. Pumps were represented in the H&H model using pumping elements in the model 

that control release rates. 

5.2.3.2. Green infrastructure system 

Green infrastructure systems, such as rain gardens, sand filters, green roofs, and permeable 

pavement are implemented as distributed systems and are widely used for flood mitigation, water 

quality control, and improved ecological, social and economic co-benefits in cities. Green 

interventions consist of infrastructure implemented across catchments to manage rainfall where it 

falls and are typically designed to manage small drainage areas such as public right-of-way, 

stretches of roadways, parking lots, and private lots. These systems are considered nature-based 

solutions with environmental and social co-benefits since they facilitate natural hydrologic and 

biogeochemical cycles in cities and densely developed urban regions (Benedict and McMahon 

2002). In this study flood reduction benefits from the city-led planned and constructed green 

infrastructure assets, from green infrastructure constructed as part of new/redevelopment, and from 

green infrastructure projected from potential stormwater regulation changes were evaluated. The 

information for each green intervention used in this study is provided in Appendix C, Section C2. 
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To model the already constructed green infrastructure intervention with the actual known 

location in the H&H model, a node with the storage capacity of the infrastructure is added to the 

2D model to receive water from the 2D surface. The node was connected to an artificial outfall 

using a conduit link that was 1 inch in diameter, 1,000 ft long, at a slope of 0.5 percent to activate 

it within the H&H model. The connection significantly restricts flow, creating a near static volume 

within the node. These were the tested conduit parameters that allowed for the smallest flow rates 

without causing instability within the H&H model. 

 To model the planned green interventions, which their exact spatial locations were not yet 

determined, nodes were added to the H&H model in a distributed fashion adding one node for each 

100 ft by 100 ft cell across the subcatchment. All nodes within each sewershed or subcatchment 

were then given a storage volume commensurate with the total planned storage capacity for each 

sewershed or subcatchment. These nodes were linked with an artificial outlet node via a 1-inch 

diameter 1,000 ft long pipe to allow the elements to function properly within the H&H model, in 

the same manner as previously described. 

5.2.3.3. Cloudburst system 

Cloudburst systems are promoted to manage stormwater in response to events referred to 

as “cloudburst” with extremely high amounts of rain over a short period of time (Ramboll 2017). 

Cloudburst management is a safe-to-fail approach where certain areas are allowed to flood without 

causing harm to people or property. By identifying areas that could be allowed to be flooded, the 

City could increase the available storage within the system to manage prevailing extreme events, 

while also increasing the resiliency of the system to changes in climate.  
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Cloudburst system was used as an intervention in this study and modeled in the H&H 

model by manually adding nodes using a 25 ft by 25 ft grid within an area that would be managed 

by cloudburst, with a design volume obtained from procedures outlined in the 2017 NYC DEP 

Cloudburst Studies Report (Ramboll 2017). The nodes were allowed to interact with the 2D mesh 

elements capturing water from the surface and storing within the node.  The total volume managed 

was determined based on the type of cloudburst management being pursued and was evenly 

distributed to all nodes. All cloudburst nodes were connected to a collection point which was tied 

into the existing sewer system at the nearest point using a 0.5 inch diameter pipe which provided 

a stable model but still allowed the storage provided by cloudburst to be used. 

5.2.3.4. Stormwater intervention scenarios 

Four intervention scenarios were developed to examine the effects of centralized grey 

infrastructure, distributed green infrastructure, and combinations thereof to assess the 

complementary and substitutive effects of interventions under different storm scenarios. The 

scenarios include prevailing and currently funded green and gray stormwater interventions, 

planned green and gray stormwater interventions for the City by 2050, additional interventions to 

manage volume targets, and changes to private on-site detention requirements. The citywide H&H 

model was used to simulate flooding under these four intervention scenarios using the five storm 

scenarios.  

Most interventions were modeled as nodes within the H&H model with a calculated 

volume that interacts with the 2-D mesh allowing water to fill the node until the node is at capacity 

after which it will continue to flow within the 2-D mesh until entering the 1-D storm sewer system.  

The stormwater intervention scenarios are incremental to the preceding scenarios and are as 

follows: 
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IS0: Baseline Conditions  

The baseline scenario represents the prevailing NYC combined sewer and separate storm 

sewer collection and conveyance systems. 

IS1: Current and Planned Distributed Green Infrastructure to 2035 

IS1 represents constructed and imminent green infrastructure planned for implementation 

through 2035. The Intervention includes green infrastructure in both combined and separate storm 

sewers and includes both City-funded green infrastructure and green infrastructure implemented 

as a result of stormwater regulations. The storage volume of each added node was computed based 

on the constructed and planned green infrastructure dataset obtained from NYC DEP.   

IS2: 2040 Long Term Control Plan Infrastructure 

IS2 evaluates how the LTCP affects flooding in NYC and includes the distributed 

interventions from IS1 as well as additional gray infrastructure. Additional infrastructure elements 

were found by comparing the infrastructure in the current H&H model with the baseline LTCP 

models received from the City. These baseline models included infrastructure improvements 

meant to reduce CSO. The additional gray infrastructure elements in the baseline LTCP model 

include storage nodes scattered throughout the model, occasional tunnels or pipes for holding large 

quantities of water, additional/modified pump curves to provide additional pumping, or in some 

cases a change of the pipe network configuration.   

IS3: Planned distributed Green infrastructure to 2050 and cloudburst systems 

IS3 represents the additional green infrastructure throughout the city that would be required 

by proposed updates to the onsite water management rules for both combined and separate sewers. 

Currently, DEP is evaluating stormwater regulations that would require 1.5 inches of stormwater 

retention on sites that disturb 20,000 ft2 or more of soil. IS3 investigates how reducing the threshold 
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to 15,000 ft2 would influence stormwater runoff and flooding. This expansion of the rule is 

estimated to add approximately 142 MG of distributed storage. Additionally, the scenario 

incorporates cloudburst management strategies in Bowery Bay and Jamaica Bay sewersheds. At 

the Bowery Bay location, 53,000 ft3 of capacity was added to the system, and at the Jamaica Bay 

location, 38,400 ft3 was added. 

IS4: Additional Gray Infrastructure Scenario 

IS4 evaluates how additional gray infrastructure impacts flooding. The additional 

infrastructure improvements such as pumps, tunnels, and conduits were identified from the 

recommended LTCP models and were added into the H&H model in addition to the interventions 

from IS1, IS2, and IS3. New infrastructure elements were identified similarly to IS2. 

Overall, IS1 and IS3 contain distributed green infrastructure and provide approximately 

190 and 142 MG capacity, respectively. IS2 and IS4 encompass centralized gray systems and 

provide approximately 121 and 68 MG capacity. Consequently, the total additional capacity 

obtained by IS1 through IS4  is approximately 190, 311, 453, and 521 MG. More detailed 

information about each intervention scenario is provided in Appendix C, section C3. 

5.2.4. Assessment of intervention scenarios 

The Intervention scenarios were added to the H&H model to generate 5 ft by 5 ft gridded 

maximum flood depth raster for five storm scenarios. The total volume of flooding greater than 4 

inches and total area exposed to depth greater than 4 inches were calculated for primary evaluation 

of intervention scenarios. The total volume of flooding was calculated by multiplying the depth of 

flooding by the area of a raster cell size. The 4-inch threshold is selected from a definition of 

nuisance flooding considering hydrology, transportation, public health risk, and safety impacts 
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(Moftakhari et al. 2018). The effect of interventions on CSO volumes was also evaluated in 

comparison to the baseline scenario.  The accumulated volumes of CSO were calculated for each 

outfall and were aggregated. 

Many of the interventions, particularly distributed green systems, provide other benefits 

besides flood or CSO reduction. Co-benefits including carbon sequestration, reduction of heat 

adsorption leading to urban heat island effects (UHIE), reduced wastewater treatment costs, 

stormwater jobs, and air quality improvements were also quantified using equations provided 

through the NYC Green Infrastructure Co-benefit Calculator. The estimates are based on the 

surface area or volume of each practice that was implemented. More detailed information about 

the calculation of co-benefits is provided in Appendix C, section C4. 

5.3.Results and Discussions 

The effects of four stormwater management intervention scenarios on urban flood control 

in terms of flood depth, volume, and extent, and also CSO volume were assessed in NYC under 

five storm scenarios. Green infrastructure systems were found to be the most effective in 

controlling smaller storms in terms of percent reduction in flood volume and extent. However, the 

system was estimated to provide marginal benefits in capturing flood volumes for extreme 

precipitation events at which the capacity of the systems is fully utilized. Cloudburst management 

was by far the most effective strategy for controlling flooding from extreme storm events. 

Moreover, gray infrastructure systems appear to be most effective in mitigating CSOs. 
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5.3.1. Flood control assessment 

5.3.1.1. Urban water balance 

The effect of intervention scenarios was evaluated on water balance for storm SC4, which 

is used to evaluate the DEP site retention standard. Urban water fluxes estimated by the H&H 

model were divided into six categories including (1) Normal Boundaries, which refers to the water 

outflow from the surface of the 2D mesh; (2) Infiltration, which refers to water infiltrated or lost 

due to interventions; (3) CSOs, which refers to water outflow through combined sewer overflows; 

(4) WRRFs, which refers to water treated by the wastewater pollution control plants; (5) Additional 

1D, which refers to water remaining in the 1D system at the end of the model simulation; and (6) 

2D Remaining, which refers to water remaining on the 2D system at the end of the model 

simulation. 

 

Figure 5.1. Urban water balance for storm SC4 under baseline condition and four intervention scenarios. 
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Figure 5.1 illustrates these urban water balance components under the baseline condition 

and four intervention scenarios. The bar graph shows the distribution between 2D remaining 

volume and outflows depicted in the pie charts. 

Overall, the urban water balance was slightly altered by the intervention scenarios 

investigated in this study. This can be attributed to the small capacity of added interventions 

compared with the inflow rainfall and sewage volumes for storm scenario SC4 (1.3%, 2.1%, 3%, 

and 3.5% of the total inflow volume for storm SC4 for IS1 through IS4, respectively) 

IS1 contained a large number of retention-based practices, which resulted in a 3% increase 

in infiltration compared to the baseline scenario. The increase in infiltration was achieved in 

conjunction with a 2% reduction of CSO volume. IS2 contained detention-based practices in 

addition to interventions in IS1. The additional interventions provided a 1% increase in water 

detained (i.e., Additional 1D) and a 1% reduction of CSO volume. Although the added storage 

capacity was merely 1% of the combined inflow rainfall and sewer volumes, Infiltration was 

increased by approximately 3% and CSO volume was reduced by 4%. 

As it can be seen urban water balance is influenced by the implementation of both green 

and gray infrastructure systems. However, increased infiltration primarily resulted from 

implementation of green infrastructure systems. 

5.3.1.2.Green and gray stormwater interventions 

The gridded citywide maximum flood volumes were used to analyze changes in flood 

volume and extent for all interventions and storm scenarios. To evaluate the effects of each unique 

intervention scenario across various storms, the citywide maximum flood volume maps were 
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compared to the baseline scenario to compute the difference in volume and extent for each storm 

scenario. 

Flood volume reduction was improved from approximately 1% to 6% between the storm 

and intervention scenarios (Figure 5.2). IS1 and IS3 provided the greatest changes to the estimated 

flood volume. This observation may be explained by the larger capture area of distributed green 

systems compared with the centralized gray components, although gray systems may affect large 

changes for only a small area. The complementary benefit of additional gray practices (i.e., IS2) 

on flood volume is evident for longer storms (i.e., SC4 and SC5). 

 

Figure 5.2. The effects of interventions on maximum flood volume and flood extent (The number in 
parentheses is the total additional capacity obtained by each intervention scenario) 
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Figure 5.2 also indicates that the change in flood extent that corresponded to a maximum 

flood depth greater than four inches was limited to only up to 4% of the baseline scenario. Changes 

for storm SC1 were the greatest in terms of percent change from baseline. Changes to flood extent 

for storm SC2, SC3, and SC4 varied between approximately 1% to 2.5% across the four 

intervention scenarios. The lowest change in flood extent was computed for storm SC5. Overall, 

these results indicate that changes in flood extent are not commensurate with changes in flood 

volume. This also suggests that maximum flood depths were changed by a small portion across 

large areas and not by a large portion in small areas. 

On the basis of the above results, we can conclude that the effects of an intervention on 

maximum flood depth, volume, and extent depend on the capacity of the intervention, the intensity 

of rainfall, and the timing of the peak intensity of the rainfall.  These factors collectively 

contributed to three situations that influenced the effectiveness of any given intervention based on 

its available volume capacity: 

1. The existing capacity of the intervention was fully used when the peak intensity of rainfall 

occurred. In this situation, the capacity of the system was optimally used to minimize 

maximum flood depth, volume, and extent. 

2. The intervention did not receive enough runoff volume to fully utilize its capacity because 

the storm and/or the upgradient contributing area were small. Under these circumstances, 

the capacity of the system is underutilized. This situation was most often observed for 

storm SC1 and SC2, which represented smaller events.  

3. The capacity of the intervention was too small for runoff volume because the storm and/or 

the upgradient contributing area were too large, and thus, the intervention capacity was full 

before the peak rainfall intensity occurred, limiting the effectiveness of the intervention to 
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mitigate part of the storm that most likely produces the maximum flood depth. Although 

the full capacity of the system is utilized in this situation, the available storage in the system 

is not optimally used to manage the maximum flood depth. Also, interventions appeared 

less effective in mitigating maximum flood depth and volume of long storms for which 

peak intensity occurred hours after the storm began. In the case of storm SC5, it was 

observed that many of the added intervention nodes filled up before the peak intensity 

occurred.  

Overall, the interventions added in IS1 and IS3 including decentralized green infrastructure 

outperformed gray centralized interventions added in IS2 and IS4 for flood control, especially 

during smaller storms. The modeling results indicate that the proximity of decentralized 

stormwater infrastructure to runoff sources is a key factor in their capacity to control flood volume 

and depths compared to centralized interventions. 

However, flood control benefits of gray systems vary by sewershed and storm scenarios. 

For example, the additional 39.25 MG storage in IS2 in Hunts Point is estimated to reduce flood 

volume at maximum depth by approximately 0.5 percent for storm SC5. Conversely, the 12.65 

MG of additional storage in IS2 in the Bowery Bay sewershed is estimated to reduce flood volume 

only by only 0.01 percent for the same storm scenario. This can be attributed to the larger volume 

of storage in Hunts Point provides the adequate capacity to reduce flood volume at peak runoff, 

whereas in Bowery Bay the interventions reach full capacity prior to the occurrence of peak runoff. 

On the other hand, the 23.6 MG additional centralized interventions in IS4 provide substantial 

reduction of CSO volume (2.4%) for storm SC5 in the Bowery Bay sewershed. 

It should be noted that lack of complete representation of stormwater and sewer elements 

in the 1D component of the H&H model could influence the assessment of the flood impacts of 
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interventions. Without including all of the pipes and inlets of the 1D system, higher runoff volumes 

remain overland than actually would be observed on site. Thus, the effects of increased capacity 

and conveyance improvements provided by additional interventions in scenario IS2 and IS4 may 

have been underestimated. 

5.3.1.3.Cloudburst Management 

Since cloudburst systems were implemented only in two locations,  their effects were 

evaluated at a sewershed scale. Based on the flood depth maps and by investigating the response 

of the intervention nodes representing the cloudburst interventions, cloudburst management shows 

great promise for mitigating flooding from larger events. 

While the percent capacity used at Bowery Bay for storm SC1 through SC5 were 59.5%, 

86.6%, 86.6%, 98.0%, and 100%, The percent capacity used at Jamaica Bay were 55.3%, 76.2%, 

70.1%, 93.8%, and 100%, respectively. During storm SC1, SC2, and SC3 the capacity of the 

interventions was not completely used. Thus, the use of cloudburst management for smaller storms 

may not be justified. However, cloudburst management was estimated to effectively improve 

flooding from storm SC4 (2.55 inches of rainfall). At both locations, storm SC4 produced 

stormwater volumes close to the full capacity of IS3 and the additional cloudburst capacity while 

maintaining adequate capacity for managing peak runoff conditions. Implementation of the 

cloudburst management system for storm SC4 was estimated to eliminate flooding in the area 

downgradient of the intervention.  

However, cloudburst management interventions resulted in no improvement to the 

maximum flood depth extent for storm SC5 because the full capacity of the system was reached 

prior to peak stormwater runoff. These results demonstrate that 9.1 inches of rainfall generate too 
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much runoff that would even exceed the capacity of cloudburst management systems. Clearly, 

adding cloudburst management in more locations could substantially reduce flood volume, 

maximum depth, and extent throughout the city sewersheds. 

Overall, the analysis revealed that cloudburst management is a highly effective intervention 

strategy for flood control under extreme precipitation events. However, more investigations are 

needed to understand the optimal level of and strategies for cloudburst implementation to 

effectively mitigate extreme flooding from compounding effects of heavy precipitation and SLR 

as represented in storm SC5. 

5.3.2. Co-benefits assessment 

Co-benefits including CSO reduction, carbon sequestration, reduction of heat adsorption 

leading to urban heat island effects (UHIE), reduced wastewater treatment costs, stormwater jobs, 

and air quality improvements were also calculated. 

5.3.2.1 Combined sewer overflows  

Substantial percentage reductions of CSO volumes were estimated to range between 2% to 

40% of baseline depending on storm and intervention scenarios. Figure 5.3 shows the effects of 

interventions on CSO volume reduced from baseline for the five storm scenarios. 

CSOs were mostly influenced by gray interventions in IS2 and IS4 especially for storms 

with shorter duration since the interventions were not overwhelmed and their capacity can be fully 

utilized. It should be noted that since IS4 contains specific infrastructure improvements, CSO 

improvements were typically observed at the targeted outfall. A negligible percentage reduction 

in CSOs observed for SC3. This can be attributed to the negative compounding effect of storm 

surge that leads to submerging of outfalls and preventing water to drain. 
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Figure 5.3. The effects of interventions on CSO volume reduction  

 

5.3.2.2. Additional co-Benefits 

Co-benefits of interventions are largely dependent on the type of intervention that is being 

used. According to the NYC Co-benefits calculator, the calculation of most co-benefits is 

dependent on the volume managed by each intervention. However, some benefits, such as UHIE, 

and carbon sequestration, are estimated by the surface area of the intervention type. 

In order to calculate co-benefits, the total volume managed for each sewershed was 

partitioned into seven types of green infrastructure consistent with the options available in the 

NYC green infrastructure co-benefits calculator. These systems include blue roofs, green roofs, 

porous asphalt, porous concrete, rain gardens, rainwater harvesting, and subsurface detention. The 

amount of each type of intervention to be placed into each sewershed was estimated based on the 

general volumes expected to be managed. Then, an extensive review of the NYC green 

infrastructure design criteria was conducted to obtain a ratio of volume managed to surface area 
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of various systems. The detailed procedure for calculation of unit volume ratios for different 

intervention technologies is provided in Appendix C, section C4.1. 

Added surface area of each intervention type for IS1 and IS3 was estimated and the 

estimated volumes and surface areas for IS1 and IS3 were used in the NYC Green Infrastructure 

Calculator to compute co-benefits for the intervention scenarios. For more detailed information 

about the co-benefit analysis refer to Appendix C, section C4.2. 

 

Figure 5.4. Total co-benefits from the NYC Green Infrastructure Benefit Calculator for each intervention 
scenario  

 

Figure 5.4 shows the resulting co-benefits for each intervention scenario. IS1 and IS3 

provided the largest co-benefits as these scenarios contain additional decentralized green 

interventions. IS2 and IS4 encompass additional gray systems, which do not provide significant 

co-benefits. Many of the co-benefits calculated vary with the type of the implemented 

infrastructure. For example, Rain gardens and green roofs both provide carbon sequestration, 
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stormwater jobs, and air quality benefits. Management strategies can reduce or improve the co-

benefits a specific practice provides. These decisions include plant selection, amount of plant 

diversity and cover as well as overall maintenance strategies for ensuring the practice continues to 

function (Li 2015; Young and McPherson 2013).  

5.3.3. Multi-criteria assessment  

A multi-criteria assessment of the intervention scenarios is illustrated in Figure 5.5. The 

value of “0” and the value of ”1” reflect the values for IS0 and IS4, respectively. The capital, 

operation, and maintenance costs of grey and green infrastructure systems depend on their design 

specifications. Since these considerations were available for the planned and recommended 

interventions, the planned storage volumes were used as a surrogate for these costs. Thus, the total 

volume of additional storage to be achieved by improvement of the green and gray infrastructure 

systems is summarized for each intervention scenario. 

For smaller storms, the additional gray infrastructure volume added in IS2 and IS4 was not 

effective in flood volume reduction. However, the effects of this additional storage on CSO volume 

reduction were substantial. Also, for longer storms, this additional gray capacity had a slightly 

positive effect on lowering flood volume (Sanders and Grant 2020). Overall, the multicriteria 

assessment indicates the complementary benefits of additional decentralized green infrastructure 

systems for flood and CSO mitigation.  
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Figure 5.5. A multi-criteria assessment of the intervention scenarios 
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5.4. Conclusion 

With the increased frequency of extreme precipitation and SLR, the prevailing stormwater 

conveyance network in NYC is increasingly overwhelmed, leading to flooding and water quality 

degradation. Recent storms demonstrate that NYC’s stormwater conveyance system faces 

increasing risks from the impact of climate change that must be addressed through implementation 

of further stormwater management interventions. 

Four scenarios comprising interventions from the baseline LTCP, distributed green 

interventions required by prevailing and planned onsite water management regulations, and other 

recommended LTCP interventions were assessed using a citywide H&H model under current and 

future storm scenarios. Storm scenarios were created so that span a wide range of intensity and 

duration, as well as compound rain plus storm surge scenarios, and climate change effects. The 

suite of interventions and storm scenarios provide insight on ways to improve climate resiliency 

in the City. 

Distributed green practices were found significantly effective in reducing flood hazard 

during nonextreme storm events. On the other hand, gray infrastructure systems were found to be 

necessary to mitigate flood hazard during more extreme storm events and also compound flooding. 

Also, they appear to be most effective in mitigating CSOs. Overall the results suggest that in 

urbanized and developed cities green and gray stormwater management practices should be 

considered complementary and mutually reinforcing. Decentralized green stormwater 

management strategies should be implemented as complementary systems to centralized gray 

measures. Flood and CSO reduction and other co-benefits, can be gained from integration of green 

and gray infrastructure. 
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One of the intervention scenarios also incorporated a cloudburst management system in 

two locations, which was found a highly effective strategy for flood control under extreme 

precipitation events. The results indicated that diligent design and implementation of cloudburst 

systems could completely eliminate downstream flooding even for large storm exceeding 2 inches. 

Adding cloudburst management in more locations could substantially reduce flood volume, 

maximum depth, and extent throughout the city sewersheds.  

All the interventions seem to have less effect on flood hazard and especially CSO reduction 

for the compound rain plus storm surge scenario. This indicated that compounding effects of 

extreme precipitation and storm surge can cause more water quality degradation and expose a 

much greater amount of assets at risk of flooding unless further stormwater management 

interventions compensate the risks. 
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CHAPTER 6.  

SUMMARY AND FUTURE RESEARCH DIRECTION 

 

 

 

6.1. Summary and closing remarks 

Coastal cities are more vulnerable to flood hazard since they are exposed to multiple flood 

drivers including high tide and storm surge, extreme precipitation, and high river flows. Climate 

change impacts could exacerbate the existing vulnerabilities by changing the statistical behavior 

of flood drivers. This dissertation was an attempt to compensate the negative impacts of climate 

change in coastal cities through a better understanding and estimation of flood hazard and risk 

under future climate conditions and adaptation options. 

To achieve this goal, two nonstationary flood risk assessment frameworks were developed, 

which facilitate univariate and bivariate flood risk analysis under future climate conditions. First, 

a nonstationary mixture probability distribution was developed in order to simultaneously 

characterize minor and extreme coastal flood events under future sea level conditions. The reason 

for utilizing a mixture probability model was insufficiency of common extreme value distributions 

in characterization of future frequency of minor flood events under future sea level rise (SLR). 

Using the idea of extreme value mixture model, a Generalized Parero distribution (GPD) for the 

data in the tail of the sea level distribution was mixed with a Normal distribution for the data in 

the bulk of the sea level distribution to derive a single‐spliced distribution that coherently 

characterizes probability density of the entire range of sea level data. 

The application of the proposed mixture probability model along the Contiguous United 

States (CONUS) coast shows a significant increase in frequency of both minor and major flood 
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events under future sea level conditions. However, the frequency amplification of minor and major 

flooding varies by coastal regions. The Gulf and northeast Atlantic coastal regions should expect 

the highest minor flood frequency amplification. On the contrary, Pacific coast regions followed 

by regions within the southeast Atlantic coast are likely to be exposed to higher frequency 

amplification in major flooding. The study suggests that while effective adaptation strategies 

should give more priority to measures reducing unprecedented major flood risk in the Pacific and 

Southeast Atlantic regions, they must account for increasing frequency of repetitive minor flooding 

in the Gulf and northeast Atlantic coasts. 

Three Regional SLR projections (Sweet et al. 2017) including “Intermediate-Low”, 

“Intermediate”, “Intermediate-High” scenarios were used to perform a decadal assessment of 

expected time to certain changes in mean sea levels. The projections correspond to 0.5m, 1m, 1.5m 

global SLR, respectively. While the “Intermediate Low” scenario has a 73% chance of being 

exceeded under Representative Concentration Pathway (RCP) 4.5 climate change scenario, the 

“Intermediate” and  “Intermediate-High” scenarios have 17% and 1.3% chances of being exceeded 

under the RCP 8.5 climate change scenario, respectively (Kopp et al., 2014; Sweet et al., 2017).  

Antarctic ice sheet instability could transition to more extreme scenarios (i.e., Intermediate-High, 

High, and Extreme) later in the century. However, those outcomes are less likely to occur. The 

regional projections are relative sea levels, which include both ocean-level change and vertical 

land motion projections. Important factors such as shifts in oceanographic factors, vertical land 

movement (subsidence or uplift), and changes in the Earth’s gravitational field and rotation were 

considered in the regional projection of relative SLR (Sweet et al. 2017). The results show that by 

the end of the century, under the “Intermediate” SLR scenario, major flooding is anticipated to 

occur with return period less than a year throughout the coastal CONUS. 
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The proposed mixture model was incorporated in the risk assessment framework in order 

to assess future acute and chronic coastal flood risk under different SLR and adaptation levels in 

Miami-Dade County, which encompasses one of the highest value of assets exposed to coastal 

flooding. The HAZUS-MH coastal flood hazard modeling and loss estimation tool was used to 

develop flood inundation maps and corresponding monetary losses to buildings associated with 

different sea water levels. Under current sea level conditions, coastal flood risks were found to be 

predominantly from exposure to acute extreme events. However, as sea level rises, chronic risks 

from repetitive nonextreme flooding may exceed those from extreme floods. 

The possibility that chronic losses from repetitive nonextreme flooding will aggregate over 

time into high-cost losses is a big challenge for decision makers and coastal planners. As sea level 

rises, chronic losses from repetitive nonextreme flooding have the potential to become cumulative 

losses when their frequency increases. Responding too late to these cumulative losses can result in 

significant costs. Estimation of chronic and acute flood risk under combinations of different SLR 

values and adaptation levels provides insight on ways to improve understanding about when these 

cumulative losses will be aggregated to significant cumulative losses and how different levels of 

adaptation could compensate the negative impact of SLR. The approach allows estimating the 

minimum adaptation level needed to offset the negative impacts of SLR to maintain the current 

level of flood risk. In Miami-Dade County, the least adaptation level that would be needed to keep 

the current flood risk at the same value was found to be higher than the value of SLR itself. 

In addition to storm surge and tidal flooding events, coastal cities are exposed to urban and 

riverine flooding. The concurrence of these flood events could exacerbate flood impacts, which 

may become more exacerbated under future climate conditions. Thus, in the next step, a bivariate 

flood hazard assessment framework was developed that accounts for compound coastal-riverine 
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flooding with consideration of the impact of SLR and hydrologic changes including changes in 

extreme river flows. The compound flood hazard assessment framework was applied in 26 paired 

tidal-riverine stations along the CONUS coast with long‐term observed data and defined flood 

impact thresholds. Definition of compound flooding based on exceedances above flood impact 

thresholds can allow localization and personalization of flood risks that help to explore and 

compare compound flood risk at a large scale.  

Estimation of the joint return period of compound major coastal-riverine flooding by 

midcentury under current and future climate conditions showed regional differences. While the 

northeast Atlantic and western part of the Gulf coasts are experiencing the highest compound 

major flood frequency, locations along the southeast Atlantic coasts are exposed to fewer 

compound major flood events. The majority of the stations along the Pacific coast are exposed to 

no risk from compound major coastal-riverine flooding.  However, Projected joint return periods 

according to the Intermediate-low and Intermediate SLR scenarios showed a significant 

amplification in the frequency of compound major flooding along the southeast Atlantic coast. The 

impact of changes in extreme river flows on compound major coastal-riverine flood events was 

found to be negligible except for the locations along the southeast Atlantic coast.  However, even 

in this region, its impact is considerably less than that of SLR. In general, the results revealed that 

although the frequency of compound major coastal-riverine flooding under current climate 

conditions is low, climate change impact, especially SLR, may lead to more frequent compound 

events in the future, which cannot be ignored for future adaptation responses in estuary regions. 

The increasing flood risk must be addressed through implementation of flood adaptation and 

intervention measures. 
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 In the final step, different green (i.e., distributed infiltration systems) and gray (i.e., 

centralized conveyance systems) stormwater infrastructure, alone or in combination, were assessed 

in New York City (NYC) using a citywide hydraulic and hydrologic model under current and 

future storm scenarios. Four intervention scenarios were proposed which include interventions 

based on baseline and other recommended Long Term Control Plan, distributed green 

interventions required by prevailing and planned onsite water management regulations, and 

Cloudburst systems. Five storm scenarios were used so that cover a mixture of current and future 

rainfall and tide scenarios, compound (extreme precipitation and surge) scenarios, and common 

and extreme scenarios. 

Distributed green measures were found significantly effective in reducing flood hazard in 

terms of flood volume during nonextreme storm events. On the other hand, gray infrastructure 

systems were found to be necessary to mitigate flood hazard during more extreme storm events 

and compound flooding. Also, they appeared to be most effective in mitigating combined sewer 

outflows (CSOs). Overall the results suggest that in urbanized and developed cities green and gray 

stormwater management practices should not be considered as competing but rather as 

complementary and mutually reinforcing. Green systems provide complementary effects on 

flooding impacts and cannot substitute gray systems. Flood and CSO reduction and other co-

benefits can be gained from integration of green and gray infrastructure. Moreover, the results 

indicated that diligent design and implementation of cloudburst systems could reduce flood 

hazards during extreme storm events. 

In general, this dissertation enhances the capacity for more resilient coastal management 

under uncertain future climate through a better understanding of future flood hazards and risks in 

coastal regions and evaluation of different adaptation levels. The developed univariate and 
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bivariate flood risk assessment framework incorporates the model-driven climate change 

projections in assessing flood hazards and risks in coastal regions that help to better support coastal 

planners and policymakers for more informed adaptation and mitigation strategies under uncertain 

climate conditions. 

6.2. Future research directions 

Throughout the study period, several directions for future research were identified to better 

quantify future flood hazards and risks and to provide better guidance for adaptation strategies. 

The recommended areas of future research are outlined below: 

1. Considering changes in storminess can improve estimation and prediction of extreme 

coastal flood events. Allowing for changes in storminess should be based on reliable high 

resolution forcing from global climate models. Although previous studies showed that sea 

level rise has more immediate threat for the increase coastal flood frequency than possible 

changes in storm variability, this does not imply that changes in storm severity have a 

negligible impact on the return period of extreme events and worthy to be considered in 

future studies. 

2. Estimated chronic and acute average annual losses can be improved in several ways. First, 

two-dimensional (2D) hydrodynamic modeling can be used to provide more accurate and 

detailed flood extent and depth. Second, loss estimation accuracy can be enhanced with 

more detailed information about the terrain and the located building inventory and depth-

damage curves. Level-2 and Level-3 analysis in HAZUS-MH allows users to utilize more 

detailed and updated building inventory information and modified depth-damage curves to 

develop a more accurate hazard assessment. The accuracy of loss estimation through  
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HAZUS-MH will be enhanced with specific and updated data and a higher level of 

analysis. 

3. In order to estimate future compound coastal-riverine flood frequency, considering 

variations in the dependency between extreme sea levels and river flows are also important 

and could improve analysis accuracy. The current analysis considered nonstationarity in 

the marginal distributions of flood drivers. However, future study is recommended to also 

assess changes in dependency between flood drivers under different climate conditions. 

4. More accurate assessment of green and gray stormwater management systems in New York 

City can be gained through improving representation of distributed green stormwater and 

cloudburst systems at sufficiently finer resolution in space to adequately represent their 

responses to storm events. Also, lack of complete representation of stormwater and sewer 

elements in the 1 dimensional (1D) component of the H&H model could influence the 

assessment of the flood impacts of green and gray interventions. Including all of the pipes 

and inlets of the 1D system could provide more realistic estimates of the effect of 

interventions on flood control and CSO reduction.  
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Figure A1 illustrates the schematic Mixture Normal-Generalized Pareto Distribution (GPD) nonstationary 

model under the present and future condition (e.g., 2 ft increase in MSL). The changes in location parameter 

of Normal and GP distribution are express as a function of changes in mean sea level(𝛿𝛿). 𝛽𝛽1 denotes the 

slope coefficients of the Quantile Regression model. 

Figures A2 to Figures A69 provided detailed analysis information for each station as follows: 

(Panel A) Present Daily mean sea level (DMSL) calculated using linear function (blue line) fitted to the 

daily sea levels (i.e. Daily time series of mean of hourly observed water levels) 

(Panel B) Present estimated variable threshold (red line) using Quantile Regression method. Daily 

maximum sea level is response variable and daily mean sea level is independent variable. Green dots 

presents independent excesses which are estimated using declustering Run Method and are at least 3 days 

apart. 𝛽𝛽1 and 𝛽𝛽0 denote the slope and intercept coefficients of the Quantile Regression model. 

(Panel C) Present empirical cumulative distribution function (blue line) and Mixture Normal-GPD 

cumulative distribution function (red dashed line) along with GPD threshold (black dash-dotted 

line). 

(Panel D) Present return level interval (𝐻𝐻𝐴𝐴) curves using mixture model for current situation (pink 

line) and 2ft sea level rise scenario (blue line) along with the return level interval using empirical 

CDF (Black dots). the 95% confidence intervals for GPD component are estimated via the delta 

method (Coles 2001) as follows: 

𝑉𝑉𝑉𝑉𝑒𝑒(𝑚𝑚𝑁𝑁) ≈ ∇𝐻𝐻𝐴𝐴𝑇𝑇𝑉𝑉∇𝐻𝐻𝐴𝐴  

𝑉𝑉 = �𝜑𝜑(1 − 𝜑𝜑)/𝑛𝑛 0 0

0 𝑣𝑣1,1 𝑣𝑣1,2
0 𝑣𝑣2,1 𝑣𝑣2,2� ∇𝐻𝐻𝐴𝐴𝑇𝑇 = [𝛼𝛼𝑁𝑁𝜉𝜉𝜑𝜑𝜉𝜉−1, 𝜉𝜉−1�(𝑁𝑁𝜑𝜑)𝜉𝜉 − 1�,−𝛼𝛼𝜉𝜉−2�(𝑁𝑁𝜑𝜑)𝜉𝜉 − 1� + 𝛼𝛼𝜉𝜉−1(𝑁𝑁𝜑𝜑)𝜉𝜉 log(𝑁𝑁𝜑𝜑)] 
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where 𝛼𝛼 and 𝜉𝜉 and 𝛷𝛷 are estimated scale and shape parameters of the GPD distribution. 𝜑𝜑 denotes 

the probability of independent exceedances over threshold. 𝑣𝑣𝑀𝑀,𝑀𝑀 denotes the (𝑖𝑖, 𝑗𝑗) term of the 

variance-covariance matrix of 𝛼𝛼 and ξ. n is total number of observations (Coles 2001). 

(Panel E) Present current return period versus future return period under 0.5ft (blue line), 1ft (green 

line) and 2ft (red line) sea level rise levels. 

Table B1 presents Summary of mixture model parameters. 𝛼𝛼 and 𝜉𝜉 denote the scale and shape of 

the GPD distribution along with confidence interval (CI) in parentheses. 𝜑𝜑 denotes the probability 

of independent exceedances over threshold. 𝜇𝜇 and σ represent mean and standard deviation of the 

Normal distribution. 

  

Figure A1. Schematic of the nonstationary Mixture Normal-GPD probability model 
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Figure A2. BarHorbor (ME) station 
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Figure A3. Portland (ME) station 
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Figure A4. Boston (MA) station 
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Figure A5. Woods Hole (MA) station 
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Figure A6. Nantucket Island (MA) station 



161 
 

 
Figure A7. Newport (RI) station 
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Figure A8. Providence (RI) station 
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Figure A9. New London (CT) station 
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Figure A10. Bridgeport (CT) station 
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Figure A11. Montauk (NY) station 
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Figure A12. Battery (NY) station 
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Figure A13. Bergen Point (NY) station 
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Figure A14. Sandy Hook (NJ) station 
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Figure A15. Atlantic City (NJ) station 
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Figure A16. Cape May (NJ) station 
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Figure A17. Reedy Point (DE) station 
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Figure A18. Lewes (DE) station 
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Figure A19. Cambridge (MD) station 
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Figure A20. Tochester Beach (MD) station 
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Figure A21. Baltimore (MD) station 



176 
 

 
Figure A22. Annapolis (MD) station 
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Figure A23. Solomons Island (MD) station 
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Figure A24. Washington D.C. station 
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Figure A25. Wachapreague (VA) station 
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Figure A26. Kiptopeke (VA) station 
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Figure A27. Lewisetta (VA) station 
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Figure A28. Sewells point (VA) station 
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Figure A29. Chesapeake Bay Bridge (VA) station 
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Figure A30. Duck (NC) station 
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Figure A31. Oregon Inlet (NC) station 
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Figure A32. Beaufort (NC) station 
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Figure A33. Wilmington (NC) station 
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Figure A34. Springmaid Pier (SC) station 
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Figure A35. Charleston (SC) station 
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Figure A36. Fort Pulaski (GA) station 
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Figure A37. Fernandina Beach (FL) station 
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Figure A38. Vaca Key (FL) station 
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Figure A39. Key West (FL) station 
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Figure A40. Naples (FL) station 
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Figure A41. Fort Myers (FL) station 
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Figure A42. St. Petersburg (FL) station 
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Figure A43. Cedar Key (FL) station 
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Figure A44. Apalachicola (FL) station 
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Figure A45. Panama City (FL) station 
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Figure A46. Pensacola (FL) station 
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Figure A47. Grand Isle (LA) station 
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Figure A48. Sabine Pass (TX) station 
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Figure A49. Galveston Pier 21 (TX) station 
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Figure A50. RockPort (TX) station 
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Figure A51. Port Isabel (TX) station 
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Figure A52. San Diego (CA) station 
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Figure A53. La Jolla (CA) station 
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Figure A54. Los Angeles (CA) station 
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Figure A55. Santa Monica (CA) station 
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Figure A56. Port San Luis (CA) station 
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Figure A57. Monterey (CA) station 
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Figure A58. San Francisco (CA) station 
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Figure A59. Alameda (CA) station 
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Figure A60. Point Reyes (CA) station 
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Figure A61. Humboldt Bay (CA) station 
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Figure A62. Charleston2 (OR) station 
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Figure A63. South Beach (OR) station 
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Figure A64. Toke Point (WA) station 
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Figure A65. Port Angeles (WA) station 
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Figure A66. Port Townsend (WA) station 
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Figure A67. Seattle (WA) station 
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Figure A68. Cherry Point (WA) station 



223 
 

 
Figure A69. Friday Harbor (WA) station 
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Table A1. Summary of mixture model parameters (Feet above MHHW) 

 

Station Station ID α (CI) ξ (CI) φ µ σ 

Bar Harbor, ME 8413320 0.41 (0.36, 0.49) -0.14 (-0.25, -0.06) 0.016 -0.09 1 

Portland, ME 8418150 0.36 (0.31, 0.42) -0.05 (-0.16, 0.05) 0.017 0 0.89 

Boston, MA 8443970 0.37 (0.31, 0.44) 0.07( -0.05, 0.19) 0.016 -0.01 0.91 

Woods Hole, MA 8447930 0.32 (0.27, 0.38) 0.19( 0.08, 0.35) 0.021 0.01 0.57 

Nantucket Island, MA 8449130 0.35 (0.28, 0.38) -0.01 (-0.03, 0.18) 0.020 0.02 0.55 

Newport, RI 8452660 0.36 (0.3, 0.4) 0.11( -0.04, 0.18) 0.019 0.02 0.67 

Providence, RI 8454000 0.4( 0.34, 0.46) 0.14( 0.03, 0.26) 0.020 0.01 0.73 

New London, CT 8461490 0.37 (0.32, 0.43) 0.13( 0.01, 0.24) 0.022 0.02 0.58 

Bridgeport, CT 8467150 0.38 (0.33, 0.45) 0.15( 0.03, 0.27) 0.021 -0.03 0.81 

Montauk, NY 8510560 0.37 (0.31, 0.43) 0.16( 0.03, 0.28) 0.022 0.05 0.59 

Battery, NY 8518750 0.43 (0.37, 0.5) 0.11( 0.01, 0.21) 0.019 0.04 0.76 

Bergen Point, NY 8519483 0.47 (0.4, 0.55) 0.08( -0.02, 0.18) 0.018 0.07 0.78 

Sandy Hook, NJ 8531680 0.44 (0.38, 0.51) 0.06( -0.04, 0.15) 0.019 0.02 0.8 

Atlantic City, NJ 8534720 0.44 (0.38, 0.51) 0.02( -0.08, 0.12) 0.019 0 0.78 

Cape May, NJ 8536110 0.36 (0.31, 0.43) 0.05( -0.07, 0.18) 0.019 0.02 0.73 

Reedy Point, DE 8551910 0.32 (0.28, 0.38) 0.03( -0.08, 0.13) 0.019 0.02 0.72 

Lewes, DE 8557380 0.42 (0.36, 0.5) 0.07( -0.05, 0.19) 0.019 0.02 0.73 

Cambridge, MD 8571892 0.29 (0.25, 0.34) 0.04( -0.06, 0.14) 0.021 0.09 0.59 

Tochester Beach, MD 8573364 0.35 (0.28, 0.37) -0.03 (-0.01, 0.2) 0.024 0.08 0.61 

Baltimore, MD 8574680 0.31 (0.27, 0.36) 0.11( 0.02, 0.21) 0.021 0.05 0.66 

Annapolis, MD 8575512 0.29 (0.25, 0.34) 0.1(0 , 0.19) 0.020 0.05 0.63 

Solomons Island, MD 8577330 0.26 (0.22, 0.31) 0.06( -0.03, 0.23) 0.019 0.12 0.6 

Washington, D.C. 8594900 0.34 (0.28, 0.4) 0.2( 0.1, 0.35) 0.017 0.01 0.72 

Wachapreague, VA 8631044 0.4( 0.39, 0.56) 0.06( -0.08, 0.19) 0.018 0.01 0.71 

Kiptopeke, VA 8632200 0.44 (0.37, 0.53) -0.03 (-0.15, 0.1) 0.016 0.02 0.62 

Lewisetta, VA 8635750 0.31 (0.27, 0.36) 0.03( -0.07, 0.12) 0.017 0.06 0.6 

Sewell point, VA 8638610 0.52 (0.49, 0.68) -0.01 (-0.12, 0.1) 0.016 0.03 0.67 

Chesapeake Bay Bridge, VA 8638863 0.57 (0.49, 0.69) -0.04 (-0.18, 0.06) 0.016 0.04 0.69 

Duck, NC 8651370 0.43 (0.36, 0.51) -0.02 (-0.14, 0.1) 0.017 0.06 0.69 

Oregon Inlet, NC 8652587 0.27 (0.23, 0.31) 0.03( 0.1, 0.33) 0.020 0.07 0.48 

Beaufort, NC 8656483 0.29 (0.24, 0.34) 0.02( -0.1, 0.14) 0.015 0.01 0.56 

Wilmington, NC 8658120 0.26 (0.21, 0.3) 0.05( -0.05, 0.2) 0.015 0.02 0.5 

Springmaid Pier, SC 8661070 0.33 (0.28, 0.39) -0.04 (-0.15, 0.06) 0.016 -0.03 0.77 

Charleston, SC 8665530 0.29 (0.23, 0.32) 0.05( -0.01, 0.18) 0.015 0 0.71 

Fort Pulaski, GA 8670870 0.28 (0.24, 0.33) 0.03( -0.06, 0.13) 0.014 -0.02 0.8 

Fernandina Beach, FL 8720030 0.32 (0.28, 0.38) -0.04 (-0.13, 0.05) 0.015 -0.03 0.73 

Vaca Key, FL 8723970 0.19 (0.14, 0.19) 0.05( 0.03, 0.23) 0.014 0.06 0.39 
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Key West, FL 8724580 0.16 (0.14, 0.19) 0.04( -0.04, 0.13) 0.013 0.02 0.4 

Naples, FL 8725110 0.23 (0.19, 0.27) 0.2(0 .07, 0.34) 0.018 0.04 0.47 

Fort Myers, FL 8725520 0.24 (0.19, 0.28) 0.29( 0.2, 0.52) 0.017 0.03 0.52 

St. Petersburg, FL 8726520 0.27 (0.21, 0.3) 0.16( 0.08, 0.35) 0.019 0.03 0.53 

Cedar Key, FL 8727520 0.26 (0.22, 0.3) 0.3(0 .22, 0.48) 0.021 0.01 0.69 

Apalachicola, FL 8728690 0.31 (0.26, 0.37) 0.3(0 .16, 0.44) 0.019 0.06 0.53 

Panama City, FL 8729108 0.28 (0.19, 0.28) 0.29( 0.14, 0.45) 0.018 0.1 0.51 

Pensacola, FL 8729840 0.22 (0.18, 0.27) 0.37( 0.28, 0.63) 0.016 0.07 0.51 

Grand Isle, LA 8761724 0.22 (0.16, 0.27) 0.38( 0.26, 0.67) 0.016 0.12 0.53 

Sabine Pass, TX 8770570 0.27 (0.22, 0.34) 0.28( 0.12, 0.44) 0.015 0.06 0.56 

Galveston Pier 21, TX 8771450 0.33 (0.28, 0.39) 0.24( 0.07, 0.32) 0.017 -0.05 0.61 

RockPort, TX 8774770 0.22 (0.2, 0.3) 0.17( 0.04, 0.33) 0.030 0.17 0.65 

Port Isabel, TX 8779770 0.2( 0.16, 0.24) 0.26( 0.11, 0.41) 0.013 0.07 0.48 

San Diego, CA 9410170 0.25 (0.26, 0.35) -0.29 (-0.42, -0.23) 0.029 -0.06 0.83 

La Jolla, CA 9410230 0.32 (0.27, 0.38) -0.32 (-0.42, -0.22) 0.013 -0.07 0.78 

Los Angeles, CA 9410660 0.23 (0.24, 0.33) -0.22 (-0.36, -0.16) 0.029 -0.06 0.77 

Santa Monica, CA 9410840 0.25 (0.22, 0.3) -0.29 (-0.23, -0.09) 0.029 -0.01 0.77 

Port San Luis, CA 9412110 0.25 (0.24, 0.34) -0.16 (-0.27, -0.05) 0.029 -0.05 0.69 

Monterrey, CA 9413450 0.23 (0.22, 0.32) -0.1( -0.26, -0.02) 0.029 -0.04 0.66 

San Francisco, CA 9414290 0.27 (0.22, 0.32) -0.02 (-0.13, 0.11) 0.013 -0.07 0.63 

Alameda, CA 9414750 0.24 (0.24, 0.34) -0.1( -0.19, 0.04) 0.029 -0.07 0.66 

Point Reyes, CA 9415020 0.27 (0.23, 0.32) -0.09 (-0.25, 0) 0.029 -0.03 0.69 

Humboldt Bay, CA 9418767 0.39 (0.32, 0.46) -0.15 (-0.3, -0.04) 0.012 0.03 0.78 

Charleston2, OR 9432780 0.39 (0.34, 0.51) -0.11 (-0.22, 0.07) 0.029 -0.08 0.86 

South Beach, OR 9435380 0.42 (0.41, 0.62) -0.15 (-0.33, -0.01) 0.029 -0.06 0.93 

Toke Point, WA 9440910 0.58 (0.66, 0.92) -0.16 (-0.27, -0.04) 0.015 -0.07 1.07 

Port Angeles, WA 9444090 0.39 (0.43, 0.61) -0.11 (-0.3, -0.06) 0.029 -0.03 0.7 

Port Townsend, WA 9444900 0.45 (0.47, 0.66) -0.22 (-0.4, -0.17) 0.029 -0.03 0.67 

Seattle, WA 9447130 0.53 (0.44, 0.62) -0.22 (-0.33, -0.11) 0.014 -0.05 0.77 

Cherry Point, WA 9449424 0.49 (0.41, 0.63) -0.22 (-0.41, -0.19) 0.029 -0.08 0.76 

Friday Harbor, WA 9449880 0.49 (0.45, 0.61) -0.27 (-0.31, -0.12) 0.030 -0.07 0.71 
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Tables B1 presents a summary of information for the paired coastal and riverine stations 

including latitude and longitude. 

Table B2 presents a summary of information about univariate and bivariate analysis 

including the return period (RP) of major coastal and riverine flooding under current condition, 

the selected copula, and the joint return period (JRP) of compound major coastal-riverine flooding. 

Figures B1-1 to B1-26 presents the comparison between fitted generalized Pareto distribution 

(GPD) and empirical cumulative distribution function (CDF) along with Q-Q plot for (right panels) 

sea water levels and (left panels) river discharge. 

Figures B2-1 to B2-26 illustrates the flow duration curve for simulated and observed river 

discharge along with statistical information including Nash–Sutcliffe coefficient of efficiency, Mean 

relative error (MRE), Kling-Gupta efficiency (KGE), and percent bias (PBIAS), which are estimated 

as follows: 

𝑁𝑁𝐷𝐷𝐴𝐴 = 1 − ∑ (𝑄𝑄𝑟𝑟𝑀𝑀𝑚𝑚𝑐𝑐 − 𝑄𝑄𝑀𝑀𝑜𝑜𝑟𝑟𝑐𝑐 )2𝑇𝑇𝑐𝑐=1∑ (𝑄𝑄𝑀𝑀𝑜𝑜𝑟𝑟𝑐𝑐 − 𝑄𝑄�𝑀𝑀𝑜𝑜𝑟𝑟)2𝑇𝑇𝑐𝑐=1  

where 𝑄𝑄𝑟𝑟𝑀𝑀𝑚𝑚𝑐𝑐  is simulated discharge, 𝑄𝑄𝑀𝑀𝑜𝑜𝑟𝑟𝑐𝑐  is observed discharge at time t and 𝑄𝑄�𝑀𝑀𝑜𝑜𝑟𝑟 is the mean 

of observed discharges. 

𝐷𝐷𝐽𝐽𝐴𝐴 =  
1𝑛𝑛��𝑄𝑄𝑠𝑠𝑖𝑖𝐸𝐸𝐻𝐻 − 𝑄𝑄𝑀𝑀𝑜𝑜𝑠𝑠𝐻𝐻𝑄𝑄𝑀𝑀𝑜𝑜𝑠𝑠𝐻𝐻 �𝑐𝑐
𝑐𝑐=1  

where n is the number of observations. 

𝐾𝐾𝐺𝐺𝐴𝐴 = 1 −�(𝑒𝑒 − 1)2 + (
𝜎𝜎𝑟𝑟𝑀𝑀𝑚𝑚𝜎𝜎𝑀𝑀𝑜𝑜𝑟𝑟 − 1)2 + (

𝜇𝜇𝑟𝑟𝑀𝑀𝑚𝑚𝜇𝜇𝑀𝑀𝑜𝑜𝑟𝑟 − 1)2 
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Where 𝜎𝜎𝑟𝑟𝑀𝑀𝑚𝑚 is the standard deviation in simulations, 𝜎𝜎𝑀𝑀𝑜𝑜𝑟𝑟 is the standard deviation in 

observations,  𝜇𝜇𝑟𝑟𝑀𝑀𝑚𝑚 is the simulation mean, and 𝜇𝜇𝑀𝑀𝑜𝑜𝑟𝑟 𝑖𝑖𝑠𝑠 the observation mean (i.e. equivalent to 𝑄𝑄�𝑀𝑀𝑜𝑜𝑟𝑟) 
𝐽𝐽𝑃𝑃𝑃𝑃𝐴𝐴𝐷𝐷 =  

∑ (𝑄𝑄𝑠𝑠𝑖𝑖𝐸𝐸𝐻𝐻 −  𝑄𝑄𝑀𝑀𝑜𝑜𝑠𝑠𝐻𝐻 )𝑐𝑐𝑐𝑐=1∑ 𝑄𝑄𝑀𝑀𝑜𝑜𝑠𝑠𝐻𝐻𝑐𝑐𝑐𝑐=1 × 100 

Figures B3-1 to B3-26 present marginal distribution based on generalized Pareto Distribution 

(GPD) for (top left panel) extreme river discharges, (bottom right panel) extreme sea water levels 

(SWL); (top right panel) joint return period of extreme paired data based on the selected copula. The 

dashed red line shows the major flood threshold and corresponding univariate return period in the top 

left and top right panels. The red square (top right panel) shows the JRP of compound major flooding 

under current conditions. The figure is not provided for the stations with no significant dependence 

structure between high SWLs and river dicharges. 

Figures B4-1 to B4-26 illustrate (left panel) the changes in joint return period (JRP) of 

compound major flooding, (right panel) the risk of failure (RF) due to compound major flooding 

over a 30-year design lifetime. 
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Table B1. Summary of information for the paired coastal and riverine stations 

Coastal Station 

 

Lat Long Riverine Station 

USGS  

Station 

Number 

Lat Long 

Boston  42.4 -71.1 Charles River 01104500 42.4 -71.2 

New London  41.4 -72.1 Shetucket River 01122500 41.7 -72.2 

BridgePort  41.2 -73.2 Housatonic River 01205500 41.4 -73.2 

Battery  40.7 -74.0 Saddle River 01391500 40.9 -74.1 

Reedy Point 
 

39.6 -75.6 
Brandywine 

Creek 
01481500 39.8 -75.6 

Baltimore  39.3 -76.6 Dead Run 01589330 39.3 -76.7 

Annapolis 
 

39.0 -76.5 
Western Branch  

Patuxent River 
01594526 38.8 -76.7 

Washington DC  38.9 -77.0 Potomac River  01646500 38.9 -77.1 

Sewell point  36.9 -76.3 James River 02037500 37.6 -77.5 

Duck  36.2 -75.7 Blackwater River 02049500 36.8 -76.9 

Oregon Inlet  35.8 -75.5 Tar River 02083500 35.9 -77.5 

Beaufort  34.7 -76.7 Neuse River 02091814 35.3 -77.3 

Wilmington 
 

34.2 -78.0 
Northeast Cape 

 Fear River 
02108000 34.8 -77.8 

Charleston  32.8 -79.9 Edisto River 02175000 33.0 -80.4 

Fort Pulaski  32.0 -80.9 Savannah River 02198500 32.5 -81.3 

Fernandina 

 Beach 

 
30.7 -81.5 Saint Marys River 02231000 30.4 -82.1 

Apalachicola 
 

29.7 -85.0 
Apalachicola 

River 
02359170 29.9 -85.0 

Panama City  30.2 -85.7 Econfina Creek 02359500 30.4 -85.6 

Pier 21  29.3 -94.8 Buffalo Bayou 08074000 29.8 -95.4 

Rock Port  28.0 -97.0 Mission River 08189500 28.3 -97.3 

Santa Monica  34.0 -118.5 Santa Clara River 11109000 34.4 -118.7 

North Spit  40.8 -124.2 Mad River 11481000 40.9 -124.1 

Charleston 2  43.3 -124.3 Umpqua River 14321000 43.6 -123.6 

South Beach  44.6 -124.0 Siletz River 14305500 44.7 -123.9 

Toke Point  46.7 -124.0 Willapa River 12013500 46.7 -123.7 

Seattle  47.6 -122.3 Green River 12113000 47.3 -122.2 

 

 

 



230 
 

Table B2. Summary of information about the univariate and bivariate analysis 

 

 
  Univariate Analysis Bivariate Analysis 

Coastal 

Station 
Selected  

Copula Tau 

RP Major 

 coastal 

flooding [yr] 

RP Major  

Riverine 

flooding [yr] 

JRP_compound  

major flooding 

[yr] 

Boston Gumbel 0.18 96 172 526 

New London Galambos 0.16 66 97 349 

Bridge Port Galambos 0.16 71 11 214 

Battery Joe 0.11 62 8 335 

Reedy Point Galambos 0.15 79 41 408 

Baltimore Gumbel 0.16 83 113 460 

Annapolis 
Gumbel 0.12 87 32 472 

Washington Galambos 0.30 20 48 115 

Sewell point Gumbel 0.11 79 19 309 

Duck Joe 0.11 108 30 990 

Oregon Inlet Independence 0.03 103 11 N/A 

Beaufort Gumbel 0.11 109 28 499 

Wilmington 
Gumbel 0.16 318 20 884 

Charleston Joe 0.14 276 43 999 

Fort Pulaski Independence 0.06 245 48 N/A 

Fernandina 

 Beach Tawn 0.27 271 11 833 

Apalachicola Independence 0.02 22 11 N/A 

Panama City Independence -0.03 37 79 N/A 

Pier 21 Galambos 0.27 33 60 210 

Rock Port Gumbel 0.24 43 13 N/A 

Santa 

Monica Independence -0.09 N/A 39 N/A 

North Spit Tawn 0.17 N/A 27 N/A 

Charleston 2 Tawn 0.18 N/A 110 N/A 

South Beach Tawn 0.11 N/A 75 N/A 

Toke Point Gumbel 0.17 85 39 911 

Seattle Independence 0.03 N/A 12 N/A 
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Boston - Charles River

 
Figure B1-1 

 

 

 

Figure B2-1 
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Figure B3-1 

 

 

 

Figure B4-1  
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New London - Shetucket River 

 
Figure B1-2 

 

 

 
Figure B2-2 
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Figure B3-2 

 

 

 
 

Figure B4-2 

 

 

 

 

 

 



235 
 

Bridge Port - Housatonic River 

 
Figure B1-3 

 

 
Figure B2-3 
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Figure B3-3 

 

 

 
 

Figure B4-3 
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Battery - Saddle River 

 
Figure B1-4 

 

 
Figure B2-4 
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Figure B3-4 

 

 

 

 
Figure B4-4 
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Reedy Point - Brandywine Creek 

 
Figure B1-5 

 
Figure B2-5 

 



240 
 

 
Figure B3-5 

 

 
Figure B4-5 
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Baltimore - Dead Run 

 
Figure B1-6 

 
Figure B2-6 
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Figure B3-6 

 

 
Figure B4-6 
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Annapolis - Western Branch Patuxent River 

 
Figure B1-7 

 
Figure B2-7 
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Figure B3-7 

 

 

 

 
Figure B4-7 
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Washington D.C. - Potomac River 

 
Figure B1-8 

 
Figure B2-8 
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Figure B3-8 

 

 

 

 
Figure B4-8 
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Sewell point - James River 

 
Figure B1-9 

 

 
Figure B2-9 
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Figure B3-9 

 

 

 

 
Figure B4-9 
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Duck - Blackwater River 

 
Figure B1-10 

 

 

 
Figure B2-10 
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Figure B3-10 

 

 

 

 
Figure B4-10 

 

 

 

 

 



251 
 

Oregon Inlet - Tar River 

 
Figure B1-11 
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Beaufort - Neuse River 

 
Figure B1-12 

 
Figure B2-12 
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Figure B3-12 

 

 

 

 
Figure B4-12 
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Wilmington - Northeast Cape Fear River 

 
Figure B1-13 

 

 
Figure B2-13 
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Figure B3-13 

 

 

 
Figure B4-13 
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Charleston - Edisto River 

 
Figure B1-14 

 

 
Figure B2-14 
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Figure B3-14 

 

 

 
Figure B4-14 
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Fort Pulaski - Savannah River 

 
Figure B1-15 
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Fernandina Beach - Saint Marys River 

 
Figure B1-16 

 
Figure B2-16 
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Figure B3-16 

 

 

 
 

Figure B4-16 
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Apalachicola - Apalachicola River 

 
Figure B1-17 
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Panama City - Econfina Creek 

 
Figure B1-18 
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Pier 21 - Buffalo Bayou 

 
Figure B1-19 

 

 
Figure B2-19 
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Figure B3-19 

 

 
 

Figure B4-19 
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Rock Port - Mission River 

 
Figure B1-20 

 
Figure B2-20 
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Figure B3-20 

 

 

 

 
Figure B4-20 
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Santa Monica - Santa Clara River 

 

 
Figure B1-21 
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North Spit - Mad River 

 
Figure B1-22 

 

 
Figure B2-22 
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Charleston 2 - Umpqua River 

 
Figure B1-23 

 

 
Figure B2-23 
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South Beach - Siletz River 

 
Figure B1-24 

 

 
Figure B2-24 
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Toke Point - Willapa River 

 
Figure B1-25 

 

 
Figure B2-25 
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Figure B3-25 

 

 

 
Figure B4-25 
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Seattle - Green River 

 

 
Figure B1-26 
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SUPPORTING INFORMATION FOR CHAPTER 5: GREEN STORMWATER 

INFRASTRUCTURE IN NEW YORK CITY: COMPLEMENTARY OR SUBSTITUTIVE? 
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C1. Storm scenarios 

C1.1. Univariate Extreme Value Analysis  

Extreme Value Analysis (EVA) was used with observed rain data to assign return periods 

to rain events. Hourly continuous observed rain data from all rain gauges within 15.5 miles of 

Central Park, plus others on Long Island (16 total) were downloaded from NOAA's National 

Climatic Data Center (NCDC 2016). Rain gauge years of operation vary, but the entire 16 rain 

gauge dataset covers a whole period of record from 1948 to 2013. All station-years of data were 

pooled together, and a sliding time window was used to sum the rain total depth for a specific 

duration time by moving hour by hour over the entire rain record. 

EVA was performed separately for 1,3, and 24 hours rain durations.  For each duration, the 

“peak” rain totals were identified throughout the record. “Peak” rain totals are the maximum rain 

totals for the duration, with no overlapping events allowed. Two common EVA distributions were 

tested, the Generalized Extreme Value (GEV) distribution and the Generalized Pareto Distribution 

(GPD). The GEV distribution was applied to annual maximum peak rain totals or the maximum 

rain totals for a duration in a given year. The GPD was applied to Peaks Over Threshold (POT) 

data, within the period of record.  

Rain totals for each return period duration were used to create Intensity-Duration-

Frequency (IDF) curves. Intensity is defined by the rain total divided by the duration, and 

frequency is defined by the return period. 

C1.2. Bivariate Extreme Value Analysis  

The joint probability of extreme precipitation and surge were quantified to create the 

scenario of compound flooding. The analysis only looks at compound events conditioned on the 
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occurrence of extreme precipitation, as opposed to compound events conditioned on the 

occurrence of extreme surge, because this study is primarily a study of urban flooding. 

Hourly rain data from all rain gauges in a radius of 15.5 miles around the Battery tide gauge 

site (14 total) were used to estimate the joint probability of extreme precipitation and storm surge. 

These gauge data were then averaged to estimate a spatial average. This focuses the analysis on 

synoptic rain events, as opposed to localized convective rain events, as the former are much more 

likely to be accompanied by storm surge (Wahl et al. 2015a). Hourly continuous storm surge data 

were used for the whole period of record (1928-2012) from the Battery tide gauge. The storm surge 

value was obtained from total water level by subtracting astronomical tide data created using 

harmonic analysis (Pawlowicz et al. 2002). We use the maximum surge during the rain event, 

departing from methods used in the Wahl et al. (2015) study that used maximum surge within a 

window of ±1 day, because the relatively small NYC sewersheds have very short recession times 

(e.g., minutes-to-hours). 

Copula method was used to estimate the joint probability of compound extreme 

precipitation and surge (Salvadori et al. 2007, 2011, 2016a). Copulas are a powerful tool to analyze 

the dependence structure between multiple variates and to construct the multivariate probability 

distribution. The Multivariate Copula Analysis Toolbox (MvCAT) was used to perform joint 

probability analysis with a large set of 26 candidate copula models (Sadegh et al. 2017) and select 

the best copula model to fit the observed data. Return periods associated with co-occurring extreme 

precipitation and surge were calculated and the highest-likelihood event for each return period 

based on joint probability density were chosen.  
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C1.3. Offshore Sea Level Forcing for Tide and Storm Surge 

All storm scenarios in this study are essentially forms of compound events, either including 

only rain and tide, or including rain, tide, and surge. The coupling of rain and these offshore water 

levels occurs through provision of time series of hourly offshore water level as open boundary 

conditions (OBCs) for the H&H model. Spatially and temporally varying water level data, from 

pre-existing regional hydrodynamic model simulations, were utilized for these OBCs. The use of 

the model results, from the New York Harbor Observing and Prediction System (NYHOPS), 

captures the spatial variation in tides around the city (Long Island Sound and Jamaica Bay have 

much larger tide ranges than Manhattan; Orton et al. 2016), as well as the non-linear enhancement 

of tide range by SLR in Long Island Sound (Kemp et al. 2017). 

C1.4. Accounting for Climate Change 

Climate change was represented for the 2050s time horizon with the high-end (90th 

percentile) estimates of future changes in sea level and rain intensity.  

C1.4.1. Future precipitation 

Two approaches were used to construct rain time series in a future climate, where the 

approach depends on the present-day time series. In both cases, we find realistic rain time series 

from the large catalog of historical simulations. 

For rain intensities coinciding with present-day extreme events (greater than 5-yr return 

period), published IDF curves (Castellano and Degaetano 2017) were used. Rain time series for 

those future rain events were constructed identically to the present-day scenarios, namely the 

catalog of dynamically downscaled rain simulations was searched for time series matching the 

intensity and duration.  
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For a priori specified durations such as 1 in/hr, and generally common events, a quantile-

matching approach was adopted to determine intensity scaling. The approach scales current 

quantiles to future quantiles. A recent downscaled climate simulation produced at the National 

Center for Atmospheric Research (NCAR, Liu et al. 2017) was used to provide future downscaled 

rain over the NYC region, and compare that with our historical downscaled rain catalog. The 

changes indicated by the Liu et al. (2017) dataset were used to “scale” precipitation time series 

like what the Liu et al. (2016) simulations indicate.  

C1.4.2. Future sea level 

For the future climate in the 2050s, a SLR projection of 30 inches above a baseline at 2000-

2004 is applied. This is the NPCC 90th percentile projection (Horton et al. 2015). With this 

projection, the 2050s sea level is projected to be 29.1 inches NAVD88. This mean sea level is 

simply superimposed upon the offshore boundary condition water levels of tide or tide and surge. 

It should be noted that the “present-day” simulations incorporate a projection of the year 2018 

mean sea level which is 1.7 inches NAVD88. 

 

C2. Green Infrastructure System 

Rain gardens (i.e., right-of-way bioswales, tree pits, bioretention) are vegetated or 

landscaped depressions designed with an engineered soil layer. These technologies promote 

infiltration of storm- water runoff into the underlying soil as well as increased evapotranspiration. 

In addition to direct rainfall, stormwater runoff from surrounding im- pervious surfaces, such as 

sidewalks and rooftops, can be directed into the rain garden to infiltrate into the ground or be taken 

up by plants. 
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Green roofs consist of a top vegetative layer that grows in an engineered soil on roof tops, 

which sits on top of a drainage layer. A green roof can be “intensive” with thicker soils that support 

a wide variety of plant growth, or “extensive” with a light layer of soil and minimal vegetation. 

Runoff is captured, stored on the roof, and slowly released through a drainage mat or is lost through 

evapotranspiration. 

Permeable pavements (i.e., pervious concrete, porous asphalt) use a range of materials 

and techniques to allow water seepage through paving materials into the ground. Some pavement 

technologies include an underdrain to help drain the system where poor soils are present. 

Permeable paving can be used instead of traditional impermeable concrete or asphalt allowing for 

the use of parking/ driving areas for stormwater management. 

Site-scale detention systems have similar functions to centralized storage tanks and 

tunnels but capture smaller volumes, up to tens of thousands of gallons of water. Site-scale 

detention systems can be deployed by both public and private entities and are typically placed 

underground. These systems are primarily implemented to store and slowly release stormwater 

into an existing sewer system. However, in some cases captured stormwater is retained and either 

allowed to infiltrate into native soils or used for either irrigation or other suitable purposes. Site-

scale storage strategies examined in this study include subsurface drainage, blue roof, and 

rainwater harvesting systems. 

Subsurface detention systems provide temporary, underground storage of stormwater 

runoff. However, these systems generally include capabilities for controlled infiltration. 

Additional detention volume can be gained via an open-bottom that can incorporate perforated 

pipe and stormwater chambers. These systems are primarily designed with a layer that stores water 

until it can infiltrate into the ground or it is slowly released into the sewer system. There are several 
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types of subsurface detention systems including storage vault, gravel bed, perforated pipe and 

stormwater chamber systems. The choice of stormwater management system depends on site 

conditions and the preferences of developers for proposed projects. In this study, the design of 

subsurface systems was informed by the DEP’s criteria and several other factors such as the 

available footprint area onsite, sewer elevation, and the pretreatment system. 

Blue roofs temporarily store stormwater with various types of detention systems located 

on the roofs of buildings. Unlike green roofs, blue roofs do not have vegetation and are only used 

to capture rainwater. While blue roofs have similar hydrologic effects as green roofs, their co-

benefits are limited. On the other hand, blue roofs have lower maintenance requirements than green 

roofs. 

Cisterns and rain barrels are watertight receptacles designed to catch and store 

stormwater from roofs and other impervious surfaces for rainwater harvesting. Cisterns are often 

larger than rain barrels and can be located underground, at ground level, or on an elevated stand. 

Rain barrels are connected to the existing downspout of a roof and reuse the stormwater for 

watering plants and other landscaping or non-potable purposes. 

 

C3. Stormwater Intervention Scenarios 

C3.1. IS1: Current and Planned Distributed Infrastructure to 2035 

C3.1.1. Combined sewer interventions  

Combined sewer interventions included additional storage volume to reduce CSOs through 

publicly funded green infrastructure as well as existing regulated private on-site rules for combined 
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sewer and those currently under evaluation. The storage volume of each added node was computed 

based on the constructed and planned GI dataset for NYC combined sewer subcatchments obtained 

from NYC DEP. Fig. S2 illustrates the location of GI assets that are implemented or planned and 

added to the H&H model with associated storage volume. 

C3.1.2. Separate Storm Sewer Infrastructure  

Distributed green practices in separate storm sewer areas were determined based on the 

municipal separate storm sewer systems (MS4) onsite retention rules that DEP is currently 

evaluating. These potential regulations would require privately developed or redeveloped lots of a 

certain size to capture 1.5 inches of rainfall. These are similar requirements as discussed above in 

combined sewers, however, these requirements lead to the implementation of green infrastructure 

within MS4 areas. Based on these stormwater rules under current evaluation, the total disturbed 

acres between 2021-2035 is estimated to be 1,105 acres. The storage volume that would be 

required to capture up to 1.5 inches of rainfall over the disturbed 1,105 acres was estimated to be 

45 MG for the separate storm sewer systems. 

This storage volume was distributed across the NYC systems based on the percent of total 

available MS4 area within each sewershed. First, the spatial distribution of new development or 

redevelopment acres was determined using MS4 area within each sewershed. Furthermore, the 

disturbed areas across the NYC sewersheds were compared to development patterns by water 

bodies to corroborate the procedure. The amount of MS4 area within the watershed boundary for 

each water body was determined using maps of watershed boundaries obtained from NYC green 

infrastructure 2018 annual report (NYC 2018). Finally, the required storage volume in each 

sewershed was determined by multiplying the total disturbed acres by 1.5 inches rainfall depth. 
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The estimated storage volume was evenly distributed across MS4 areas using the 100 ft by 100 ft 

grid in the respective sewersheds. 

 

 

Figure C1. Map of the green infrastructure assets with known geospatial location 
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C3.3. Planned distributed infrastructure to 2050 and cloudburst systems (IS3) 

C3.3.1. Combined Sewer Infrastructure  

If the onsite water management threshold is lowered from 20,000 to 15,000 square ft, it is 

estimated that 2,280 acres citywide would be required to capture 1.5 inches of rainfall events, over 

the period of 2036-2050. The additional storage volume to accommodate this requirement is 

approximately 92.9 MG. This additional storage capacity was distributed across the city according 

to 1) the estimated disturbed land within the watershed boundaries of NYC water bodies of 

disturbed land; and 2) percentages of combined sewer area within each waterbody for each 

sewershed. 

C3.3.2. Separate Storm Sewer Infrastructure  

Lowering the onsite water management threshold in MS4 regions was investigated as well. 

The total amount of new/redevelopment that meets this criterion is estimated at a rate of 79 acres 

per year. Thus, an additional 1,185 acres are predicted to be developed from 2036 to 2050. 

Management of onsite water according to the regulations would require an additional 48.3 MG of 

storage across NYC. This estimated storage was distributed to sewersheds using the procedures 

described for onsite water management in IS1.  

C3.3.3. Cloudburst Systems  

Two different locations were selected to model cloudburst management. In the South 

Jamaica Houses, cloudburst management was applied to two blocks in the housing projects. The 

proposed project is estimated to manage 38,400 ft3 of stormwater runoff for approximately 6 acres 

of the housing development. The second cloudburst management system was applied in the Astoria 



284 
 

neighborhood, located southeast of Queensbridge Park in the Bowery Bay. The proposed project 

is estimated to manage 53,000 ft3 of stormwater runoff. 

C4. Co-Benefit Analysis 

C4.1. Unit Volume Ratios for Different Intervention Technologies 

A typical cross-section of green infrastructure contains a ponding layer above the ground 

surface, a media layer at the top of the intervention, with a storage layer directly beneath.  By 

multiplying the depth of each layer by the porosity it is possible to determine what the storage of 

each intervention type is on a per area basis. Table C1 shows the volume to surface area ratios for 

prevailing green infrastructure systems in NYC. 

Equation S1-1 and S1-2 show how to find the unit volume (𝑉𝑉𝑈𝑈) of storage from various 

layers for different infrastructure interventions. 

𝑉𝑉𝑈𝑈 =  ��𝐷𝐷𝑙𝑙𝑉𝑉𝑦𝑦𝐻𝐻𝑒𝑒 ∗ 𝜂𝜂𝑙𝑙𝑉𝑉𝑦𝑦𝐻𝐻𝑒𝑒� (C1-1) 

where 𝑫𝑫𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 and 𝜼𝜼𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 are depth and porosity of each layer, respectively. 

𝑉𝑉𝑈𝑈 = 𝐷𝐷𝐴𝐴 ∗ 𝐽𝐽 ∗ 𝑛𝑛 (C1-2) 

where 𝐷𝐷𝐴𝐴 is the surface area of the roof, 𝐽𝐽 is the rainfall depth, and 𝑛𝑛 is the efficiency. 

Subsurface Detention Systems have a unit volume ratio estimated to be 0.54-1.5 ft3/ft2 

depending on the type of subsurface detention. The characteristics of the general subsurface of the 

system were assumed to have a depth of 4 ft with a gravel media porosity of 0.3. These were input 

into S1-1 to find the Volume/Area ratio to be 1.2 ft3/ft2. 
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For Rain Gardens, Equation S1-1 was used with the design specifications for open-graded 

stone and engineered soil. The depths of various layers in the system were determined from the 

design specifications as 3 ft and 1.5 ft for open-graded stone base and engineered soil, respectively. 

The porosity for these storage layers were assumed to be 0.3 and 0.33 for open-graded stone base 

and engineered soil, respectively. The summation of the characteristics of the different layers were 

input into Equation S1-1 to find the unit volume storage to be 1.9 ft3/ft2. 

The unit volume ratio for green roofs was characterized using Equation S1-1 with the 

design specifications for engineered soil, available ponding, and moisture retention fabric. The 

depth of the engineered soil media and moisture retention fabric were assumed to be 4 inches and 

0.25 inches, respectively. The porosity for these storage layers were assumed to be 0.33 and 0.385, 

respectively. The ponding layer was assumed to be 1 inch. The summation of the characteristics 

of the different layers were input into Equation S1-1 to find the unit volume storage to be 0.2 ft3/ft2. 

Blue roofs’ unit volume ratio were characterized using Equation S1-1 with the design 

specifications for gravel storage layer and ponding: There is no media layer for blue roofs hence 

the volume was determined based on gravel storage depths and available ponding allowed above 

the roof. According to structural analysis and building code, the required storage layer depths of a 

blue roof are a minimum of 2 inches and a maximum of 4 inches. Additional assumptions included 

a gravel storage layer of 3 inches with porosity of 0.3 and a ponding layer of 1 inch. The summation 

of the characteristics of the different layers were input into Equation C1-1 to find the unit volume 

storage to be 0.16 ft3/ft2. 

The unit volume ratio for rainwater harvesting systems comes from the expected height 

of rainwater harvesting systems in NYC. A traditional 60-gallon barrel has a 2 ft diameter. Tanks 

for rainwater harvesting systems in NYC typically range in size from 300 to 1000 gallons but can 
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be as small as 55 gallons and as big as 10,000 gallons. The amount of water that can be harvested 

varies on the size of the roof and was calculated using Equation C1-2. For estimations of available 

volume, NYCDEP assumes capturing the first inch of rainfall and an efficiency of 0.75. 

The permeable pavement unit volume ratio was characterized using Equation C1-1 for 

permeable pavements including a surface layer, a choker course, and a base or sub-base layer. 

There are three types of surface layers: permeable pavers, pervious concrete, and porous asphalt. 

The depths of these layers depend on the type and feasibility for the system. The depth of the open 

graded base layer was assumed to be 4 ft. The porosity of the base layer was assumed to be 0.33. 

The unit volume of storage was determined to be 1.32 ft3/ft2. 

Table C1. The volume to surface area ratios for prevailing green infrastructure systems in NYC. 

 

 

 

 

C4.2. Green Infrastructure Calculator Co-benefit Equations 

Urban Heat Island Mitigation 

Thermal properties of common urban surfaces can lead to warmer air temperatures. By 

using natural surfaces that are cooler and reflect more solar radiation, green infrastructure can help 

reduce urban heat island effects (UHIE). UHIE was calculated as the percent reduction of heat 

absorption capacity provided by changing the underlying surface material and distributed across 

the sewershed. The NYC Green Infrastructure Co-benefits Calculator calculated the percent 

   

Green Infrastructure Type Volume/Area Ratio (ft3/ft2) 

Blue Roof 0.16 

Green Roof 0.2 

Permeable Pavement 1.32 

Rain Garden 1.9 

Rainwater Harvesting 4 

Subsurface Detention Systems 1.2 
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reduction of UHIE from the difference in albedo of the initial paved area and the added albedos of 

the components of the green infrastructure project (Yamamoto 2006). This co-benefit is calculated 

for the following practices: Green Roof, Porous Concrete, and Rain Garden. These practices are 

chosen because they are replacing darker asphalt that is on roofs and sidewalks. The following 

equation shows the way UHIE is measured. 

𝑈𝑈𝐻𝐻𝑃𝑃𝐴𝐴 𝑒𝑒𝐻𝐻𝑑𝑑𝑢𝑢𝑟𝑟𝐻𝐻𝑖𝑖𝑀𝑀𝑛𝑛(%) = 𝑈𝑈𝐻𝐻𝑃𝑃𝐴𝐴 𝐽𝐽𝐻𝐻𝑑𝑑𝑢𝑢𝑟𝑟𝐻𝐻𝑖𝑖𝑀𝑀𝑛𝑛 𝐹𝐹𝑉𝑉𝑟𝑟𝐻𝐻𝑀𝑀𝑒𝑒(%) ∗ 𝐴𝐴𝑒𝑒𝐻𝐻𝑉𝑉 𝑀𝑀𝑖𝑖 𝑝𝑝𝑒𝑒𝑉𝑉𝑟𝑟𝐻𝐻𝑖𝑖𝑟𝑟𝐻𝐻𝐷𝐷𝐻𝐻𝑆𝑆𝐻𝐻𝑒𝑒𝑠𝑠ℎ𝐻𝐻𝑑𝑑 𝐴𝐴𝑒𝑒𝐻𝐻𝑉𝑉   

The area of practice changes per scenario and the sewershed area is the total area of the 

sewer- shed that the practice is being added to. Table C2 shows the UHIE Reduction Factor for 

each practice. 

Table C2. The urban heat island effects (UHIE) Reduction Factor 

Practice UHIE Reduction Factor (%) 

Green Roof 12 

Porous Concrete 44 

Rain Garden  14 

 

Reduced Wastewater Treatment (WWT) 

By reducing the amount of runoff that enters the sewer system, green infrastructure reduces 

the amount of water reaching NYC’s treatment plants, thereby reducing the amount of chemicals, 

energy, and costs associated with treating that water. The calculation of the reduced treatment 

needs was based on the saved money from the amount of untreated water removed. This co-benefit 

is seen throughout all the infrastructure interventions. The following equation shows the monetary 

value of wastewater treatment needs. 
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Reduced WWT �$ 𝑦𝑦𝑒𝑒� � = 0.6 ∗ 0.0003 ∗ 𝐴𝐴𝑛𝑛𝑛𝑛𝑢𝑢𝑉𝑉𝑙𝑙 𝑉𝑉𝑀𝑀𝑙𝑙𝑢𝑢𝐸𝐸𝐻𝐻 𝐶𝐶𝑀𝑀𝑛𝑛𝐻𝐻𝑒𝑒𝑀𝑀𝑙𝑙𝐻𝐻𝑑𝑑 ∗ 7.48052   

Where 0.6 is the portion diverted from treatment plant, $0.0003 is the treatment cost per 

gallon, 7.48052 is the conversion from cubic ft. to gallons. 

Carbon Sequestration  

Carbon Sequestration is associated only with practices that have vegetated surfaces to 

promote natural interactions with the environment. The only practices in this study that fit this 

criteria are Rain Gardens and Green Roofs. Below equations are the Carbon Sequestration 

equations for Rain Gardens and Green Roofs, respectively. 

𝐶𝐶𝐷𝐷Sequestered(𝐽𝐽𝑉𝑉𝑖𝑖𝑛𝑛 𝐺𝐺𝑉𝑉𝑒𝑒𝑑𝑑𝐻𝐻𝑛𝑛) =  (𝐷𝐷𝐻𝐻𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 ∗ 𝐷𝐷𝐻𝐻𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀 + 𝐷𝐷𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 + 𝐷𝐷𝐻𝐻𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀) ∗ (
𝐶𝐶𝑂𝑂2 𝐶𝐶� )𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐  

𝐶𝐶𝐷𝐷Sequestered(𝐺𝐺𝑒𝑒𝐻𝐻𝐻𝐻𝑛𝑛 𝐽𝐽𝑀𝑀𝑀𝑀𝑖𝑖) =  (𝐺𝐺𝐽𝐽𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 ∗ 𝐺𝐺𝐽𝐽𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀) ∗ (
𝐶𝐶𝑂𝑂2 𝐶𝐶� )𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐  

Where 𝐶𝐶𝐷𝐷Sequestered refers to carbon dioxide sequestered per year (lbs/year), 𝐷𝐷𝐻𝐻𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 is 

Shrub and Herbaceous Carbon Sequestration Rate (lbs/sq. ft.*year), 𝐷𝐷𝐻𝐻𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀 is shrub and 

herbaceous area (sq. ft.), 𝐷𝐷𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 is soil carbon sequestration rate (lbs/sq. ft.*year), 𝐺𝐺𝐽𝐽𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 is green 

roof carbon sequestration rate (lbs/sq. ft.*year), 𝐺𝐺𝐽𝐽𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀 is green roof area (sq. ft.), (
𝐶𝐶𝑂𝑂2 𝐶𝐶� )𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 is 

equivalence rate of atomic weight from C to CO2=2.67. Table C3 shows the sequestration rate 

values for the different interventions. 
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Table C3. The sequestration rate values for the different interventions 

Infrastructure Intervention Sequestration Rate (lb C/year/ft2) 
Annual Capture 

Ratio 

Soil Sequestration Rate 0.14 

Shrub and Herbaceous Sequestration 0.02 

Green Roof Sequestration Rate 0.07 

 

Improved Air Quality 

The analysis of improved air quality involves the pollutant reduction of 5 different 

pollutants: ozone, PM10, NO2, SO2, and CO. Only infrastructure interventions with vegetative 

surfaces reduce pollutant concentrations through various mechanisms. The only technologies for 

this study that improve the air quality by reducing air pollutant concentrations are green roofs and 

rain gardens. The following equations show the way air pollutant reduction is measured for rain 

gardens and green roofs. 

𝐽𝐽𝑐𝑐,𝑚𝑚 =  𝐽𝐽𝐺𝐺𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀 ∗ 𝐽𝐽𝐺𝐺𝑅𝑅𝑅𝑅  

Where 𝐽𝐽𝑐𝑐,𝑚𝑚 denotes “x” type of pollutant removed (lb removed/yr),  𝐽𝐽𝐺𝐺𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀 is rain garden 

area (sq. ft.), and 𝐽𝐽𝐺𝐺𝑅𝑅𝑅𝑅 is Reduction Rate of “x” pollutant from rain garden. 

𝐽𝐽𝑐𝑐,𝑚𝑚 =  𝐺𝐺𝐽𝐽𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀 ∗ 𝐺𝐺𝐽𝐽𝑅𝑅𝑅𝑅  

Where 𝐽𝐽𝑐𝑐,𝑚𝑚 denotes “x” type of pollutant removed (lb removed/yr),  𝐺𝐺𝐽𝐽𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀 is rain garden 

area (sq. ft.), and 𝐺𝐺𝐽𝐽𝑅𝑅𝑅𝑅 is Reduction Rate of “x” pollutant from rain garden. 

 

Stormwater Jobs 
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Stormwater Jobs refer to the amount of jobs that are supported each year from the 

construction and maintenance of infrastructure interventions. The following are the interventions 

where information on maintenance and construction costs were found: Blue Roof, Green Roof, 

Porous Asphalt, Porous Concrete, and Rain Garden. The following equation shows the 

characterization of number of jobs per implementation of each intervention type. 

Jobs supported �𝑗𝑗𝑀𝑀𝑜𝑜𝑠𝑠 𝑦𝑦𝑒𝑒� �
= �𝐶𝐶𝑀𝑀𝑛𝑛𝑠𝑠𝐻𝐻𝑒𝑒𝑢𝑢𝑟𝑟𝐻𝐻𝑖𝑖𝑀𝑀𝑛𝑛 𝐶𝐶𝑀𝑀𝑠𝑠𝐻𝐻 �1 𝑖𝑖𝐻𝐻2� � + 𝐷𝐷𝑉𝑉𝑖𝑖𝑛𝑛𝐻𝐻𝐻𝐻𝑛𝑛𝑉𝑉𝑛𝑛𝑟𝑟𝐻𝐻 𝐶𝐶𝑀𝑀𝑠𝑠𝐻𝐻 �1 𝑦𝑦𝑒𝑒 ∗ 𝑖𝑖𝐻𝐻2� �
∗ 𝑦𝑦𝐻𝐻𝑉𝑉𝑒𝑒𝑠𝑠� ∗ 𝐴𝐴𝑒𝑒𝐻𝐻𝑉𝑉 𝑀𝑀𝑖𝑖 𝑖𝑖𝑛𝑛𝐻𝐻𝐻𝐻𝑒𝑒𝑣𝑣𝐻𝐻𝑛𝑛𝐻𝐻𝑖𝑖𝑀𝑀𝑛𝑛𝐷𝐷𝑉𝑉𝑙𝑙𝑉𝑉𝑒𝑒𝑦𝑦 𝑀𝑀𝑖𝑖 𝐷𝐷𝐻𝐻𝑀𝑀𝑒𝑒𝐸𝐸𝑆𝑆𝑉𝑉𝐻𝐻𝐻𝐻𝑒𝑒 𝑊𝑊𝑀𝑀𝑒𝑒𝑘𝑘𝐻𝐻𝑒𝑒   

 

 

Where, years is the number of years that each intervention requires maintenance (25 years), 

Salary of stormwater worker- $58,824 in 2012 according to the NYCDEP Co-benefits Calculator, 

Area of intervention is variable based on input for each sewershed and scenario. Table C4 shows 

the construction and maintenance costs for the various interventions. 

Table C4. The construction and maintenance costs for the various interventions 

Intervention 
Maintenance Cost per 

 year ($/sq.ft.) 

Construction 

Cost ($/sq.ft) 

Blue  Roof 1 16 

Green Roof 1 21 

Porous Asphalt  1 20 

Porous Concrete 1 20 

Rain Garden 1.46 120 
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