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ABSTRACT 
 
 
 

THE WHOLE IS GREATER THAN THE SUM OF THE PARTS:  

PIECING TOGETHER MICROBIAL METHYLATED AMINE METABOLISM  

 

Microbial metabolism of methylated amines (MAs), simple nitrogen compounds 

containing one or more methyl groups, has vast impacts across the globe including mediating 

greenhouse gas production and human health. In the last decade, new reactions in the microbial 

MA cycle have been identified and biochemically characterized. While these detailed studies 

delivered key knowledge of previously elusive MA enzymes, there had not been any studies that 

collectively interrogated these separate reactions in a holistic manner. The overarching aim of 

this dissertation was to piece together MA metabolism into a framework that could be applied 

across ecosystems and ultimately expose implications for this microbial metabolism at an 

ecosystem level.  

To begin to uncover the prevalence of this metabolism, I first needed to summarize what 

is known about microbial MA metabolism. Thus, Chapter 1 summarizes the key biochemical 

reactions and enzymes that make up the known microbial MA metabolic network. I also explain 

in this chapter, how in order to mine these metabolisms from metagenomic datasets, I needed to 

overcome annotation bottlenecks. It is the combination of newly discovered enzymes, and their 

poor annotation, that likely explains why these critical processes (e.g. how microbes adapt to 

deep shales or contribute to cardiovascular disease) remain so enigmatic. It is my hope that my 

annotation framework will provide a roadmap for mining MA metabolism from genomic 

datasets. Lastly, the experimental design rational for the data presented in this dissertation is 
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described in Chapter 1, highlighting how cultivation-based investigations coupled to high-

resolution meta-omics at laboratory and field scales was used to tease apart these previously 

cryptic microbial metabolisms from two environments. 

In Chapter 2, I go on to investigate MA metabolism in hydraulically fractured shales. 

Briefly, hydraulic fracturing of shale is the industrial process behind the surging natural gas 

output in the United States. This technology inadvertently creates an engineered microbial 

ecosystem thousands of meters below Earth’s surface. To define the MA metabolic network in 

hydraulically fractured shales, my thesis research first focuses on the methylotrophic 

methanogens prevalent across geographically distinct shales (Chapter 2). Understanding the 

metabolism of these methane-producing archaea is necessary to explore the possibility of 

biostimulation strategies that may be used to increase energy recovery and longevity in 

hydraulically fractured shale wells, analogous to approaches used on methanogens in coal beds. 

Next in chapter 3, I scale up MA analyses to the entire microbial community, presenting how 

pervasive the cycling of these compounds is to persisting shale taxa (Chapter 3). Collectively, 

Chapters 2-3 illuminate the how microorganisms are utilizing and exchanging MAs for 

osmoprotection and energy, as well as carbon and nitrogen sources, knowledge that can inform 

industrial practices for management of microorganisms in hydraulic fracturing ecosystems.  

Specifically, in Chapter 2, the biogeography of methanogens across hydraulic fracturing 

wells is investigated, finding that members of genus Methanohalophilus are recovered from 

every unconventional reservoir sampled to date by metagenomics. Notably, this organism is a 

methylotrophic methanogen, producing methane from MA compounds such as trimethylamine 

(TMA). Here, we provide the first genomic sequencing of three isolate genomes, as well as two 

metagenome assembled genomes within the genus Methanohalophilus. Utilizing six other 
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previously sequenced genomes, we perform comparative analysis of the 11 genomes 

representing this genus. This genomic investigation revealed distinctions between surface and 

subsurface derived genomes that are consistent with constraints encountered in each 

environment. Genotypic differences were also uncovered between isolate genomes recovered 

from the same well, suggesting niche partitioning among closely related strains. These genomic 

substrate utilization predictions were then confirmed by physiological investigation. Moreover, 

fine-scale microdiversity was also observed in CRISPR-Cas systems of Methanohalophilus, with 

genomes from geographically distinct unconventional reservoirs sharing spacers targeting the 

same viral population. Findings in Chapter 2 not only provides insight into the genotypic 

differences between strains of the prevalent genus Methanohalophilus, but also shows that 

coupled physiological analyses provided new information on growth parameters that could not 

have been inferred from genomics alone. Notably, this approach defined different substrate 

utilization patterns between two closely related and co-occurring strains of this field relevant 

methanogen, knowledge that is necessary when considering manipulating methanogenic 

communities in the deep biosphere.  

While Chapter 3 also focuses on hydraulic fracturing, it goes beyond a single genus to the 

microbial community scale, and ultimately aims to define the MA-utilizing members that support 

shale-relevant Methanohalophilus. We used metagenomic, metabolite, and cultivation methods to 

investigate microbial metabolisms in fluids collected from 5 wells in the Utica and Marcellus 

shales. Community analyses showed that concomitant with increasing salinities in these wells,  

persisting microbial communities converged to a similar membership and structure over time, 

despite differences in operators, shale formations, and input communities/chemistries. Based on 

the detection of the osmoprotectant glycine betaine (a MA compound) across produced fluids, we 
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hypothesized that this metabolite may be synthesized in situ to support microbial adaptation to 

increasing salinities.  

Based on field data, I designed laboratory reactors to manipulate and monitor persisting 

shale microbial communities that are currently not feasible in field scenarios. These reactors 

revealed not only that glycine betaine was synthesized in situ by Methanohalophilus, but also that 

other members of the community (Halanaerobium), could ferment it to trimethylamine (TMA) a 

substrate for methanogenesis. Metaproteomic and metabolite findings from the laboratory were 

then corroborated using regression-based modeling performed on field metagenomic and 

metabolite data from more than 40 produced fluid samples from five hydraulically fractured shale 

wells. Collectively, my thesis research showed that Halanaerobium, Geotoga, and 

Methanohalophilus strain abundances predicted a significant fraction of carbon and nitrogen 

metabolites at the field scale. Combined laboratory and field results revealed that microorganisms 

persisting in hydraulically fractured shales must maintain osmotic balance in hypersaline fluids, 

gain energy in the absence of electron acceptors, and acquire carbon and nitrogen to synthesize 

cell building blocks. This research provided evidence that co-fermentation of amino acids and their 

derivatives, like glycine betaine, meets these organismal needs and thus Stickland fermentations 

function as a keystone metabolism conserved across hydraulically fractured shale communities. 

Scaling these results from the laboratory to the field identified mechanisms underpinning 

biogeochemical reactions, yielding knowledge that can be harnessed to potentially increase energy 

yields and inform management practices in hydraulically fractured shales.  

I became curious on the extent of methylamine metabolism across ecosystems. As such, 

Chapter 4 focuses on the human gut, identifying microbial MA reactions that contribute to 

cardiovascular disease in humans, centered around metabolite trimethylamine (TMA), the same 
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key MA leading to methanogenesis in hydraulically fractured shales. Trimethylamine, a 

nitrogenous metabolite produced by the gut microbiome, is a precursor to trimethylamine-N-oxide, 

a known promoter of cardiovascular disease in humans. To understand the microbial metabolisms 

contributing to the microbial formation of this atherogenic metabolite, we built a Gut-Associated 

Methylated Amine database (GAMAdb) from 238,530 metagenome assembled and isolate 

genomes, identifying 8,721 genes in 6,341 genomes from 13 phyla that encode methylated amine 

(MA) metabolism. GAMAdb was coupled to metaproteomics of MA fed gut laboratory reactors 

that not only show an intricate metabolic network of MA utilizers, but also confirm activity of 

quaternary amine degradation by gut-derived microorganisms. Moreover, pairing GAMAdb to 

fecal metagenomic samples from 218 individuals with atherosclerotic cardiovascular disease and 

187 healthy controls revealed that MA gene diversity and abundance predicted human 

cardiovascular disease. Together, generation and application of GAMAdb expanded the diversity 

of this disease-relevant metabolism, as well as provided a resource for predicting cardiovascular 

disease from the gut microbiome. Reinforcing the importance of the connection between our 

microbiota, our metabolites, and our health, this chapter uncovers previously unrecognized players 

in the gut MA network that are collectively predictive of cardiovascular disease. 

The final chapter of this dissertation summarizes the key findings from the hydraulically 

fractured shales and the human gut. Furthermore, over the course of this dissertation, the relevance 

of this metabolism in other terrestrial ecosystems has been brought to light using the framework 

developed in Chapter 1, thus Chapter 5 also aims to summarize the key findings regarding MA 

metabolism in other terrestrial ecosystems. 

In summary, the aims of this dissertation were to summarize the biomarkers and 

mechanisms underpinning MA cycling in the environment (Chapter 1), uncover MA metabolic 
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networks in two disparate ecosystems (Chapters 2-4), and summarize the prevalence of this 

metabolism across several terrestrial ecosystems (Chapter 5). Cumulatively, this dissertation 

examines MA metabolism in two ecosystems, across multiple scales, to identify the 

microorganisms and enzymes catalyzing these critical, yet previously cryptic processes 

undermining microbiome function. 
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Chapter 1: Introduction 
 
 
 
1.1 Methylated amine compounds 

Methylated amines (MAs) are nitrogen containing compounds with one or more methyl 

group(s), with primary, secondary, tertiary, and quaternary classifications being assigned based 

on the number of carbons bonded directly to the nitrogen atom (Figure 1.1A). These compounds 

are found across a range of environments and are implicated in catalyzing key biotic functions in 

plants, animals, and microbes.  For example, glycine betaine is a well-characterized osmolyte 

that accumulates in plant tissue for protection from environmental stresses such as, drought, 

salinity, UV radiation, and extreme temperatures (1–3). While choline can also function as an 

effective osmolyte in plants, it is an essential nutrient in humans, functioning as a precursor to 

phosphatidylcholine, a major component of neuron membranes and shown to have effects on 

neurocognitive function (4). Likewise, trimethylamine-N-oxide, also has implications on human 

health, including promotion of atherosclerotic cardiovascular disease in humans (5–7). 

Moreover, MAs have also been shown to be prevalent in brackish and saline environments, 

where they originate from marine organisms (8, 9). These compounds also have global 

implications in terms of climate change, as all levels of methylated amines, including glycine 

betaine, trimethylamine, dimethylamine, and monomethylamine (Figure 1.1A) are recognized 

substrates for methanogenesis (10–14).  

Given the ubiquity of MAs across Earth’s biomes (5, 8, 9, 14–19), it is important to 

consider the impact of microorganisms on these metabolite pools. Microorganisms, like plants 

and animals described above, use MA compounds for a variety of functions (Figure 1.1B). 

Foremost, these compounds contain carbon and nitrogen, which are essential nutrients for all 
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living organisms and are required for the biosynthesis of key cellular components, such as 

proteins and nucleic acids (Figure 1.1B). Similar to plants, microorganisms also utilize MAs as 

osmoprotectants, whereby an organic molecule (e.g. MA like glycine betaine) is accumulated 

within the cell to maintain osmotic pressure while pumping out the salt (15, 20, 21). Utilization 

of MAs as osmoprotectants occurs by either uptake from the environment or de novo synthesis 

(15, 20, 21). Lastly, these metabolites represent an energy source for bacterial and archaeal 

lineages (Figure 1.1B), being utilized in a variety of microbial metabolisms including Stickland 

fermentation, methanogenesis, acetogenesis, and respiration (11, 14, 22–26).  

1.2 Mechanisms of microbial methylated amine metabolism 

Microbial transformations of MAs are made up of four key reactions types, including (i) 

demethylation (pyrrolysine-containing), (ii) demethylation (non pyrrolysine-containing), (iii) 

MA cleavage, and (iv) MA interconversions (Figure 1.2). Although these reactions are  

interconnected to create an overall metabolic network (Figure 1.2), the publications 

incorporating methylated amine metabolisms often only consider a single reaction type in 

microbiome studies. For example, microbiome studies in the human gut often only consider MA 

cleavage reactions leading to trimethylamine (e.g. choline TMA lyase, cutC), even though 

demethylation reactions are well documented to also occur in these habitats (27–30). Reasons for 

lack of integration may be that many of these genes, especially the demethylating genes, have 

only been recently discovered. Additionally, there are challenges with high throughput 

annotation of these genes, largely due to the incorporation of pyrrolysine, which is commonly 

annotated instead as an amber stop codon in metagenome datasets (described below in section 

1.3). Thus, the MA network presented in Figure 1.2 represents the first compilation of these 

metabolisms into a summary metabolic framework, with each reaction type described below. 
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Demethylation (pyrrolysine and non-pyrrolysine containing). Demethylation of 

quaternary amines and trimethylamine are carried out by enzymes belonging to the MttB 

(trimethylamine amine methyltransferase) superfamily (28). This superfamily consists of 

pyrrolysine containing and non-pyrrolysine enzymes, yet only those with pyrrolysine can have 

the enzyme function clearly inferred from gene sequence content. These enzymes can 

demethylate trimethylamine (TMA) to dimethylamine (DMA) (11, 31). Alternatively, the 

functional assignment of the non-pyrrolysine containing members cannot be inferred from gene 

sequence content alone (28). A hypothesis first put forth in Ticak, et al. suggests that non-

pyrrolysine containing members demethylate quaternary amines (e.g. glycine betaine, carnitine, 

choline), and many of these have been demonstrated in the past five years (13, 25, 32). Intriguing 

biochemical evidence has supported this hypothesis, showing that that non-pyrrolysine 

containing members can demethylate quaternary amines, such as glycine betaine, carnitine, and 

proline-betaine (25, 28, 32). Considering the chemistry of the pyrrolysine containing 

demethylating enzymes, it is possible that these non-pyl and pyl containing enzymes function 

similarly, where the pyrrolysine forms an adduct with trimethylamine, essentially converting it to 

a quaternary amine before demethylation (28). These demethylating metabolisms have been 

described in both bacterial and archaeal lineages, with discoveries of pyrrolysine containing 

MttB occurring in methanogen Methanosarcina barkeri, and non-pyrrolysine containing MttB in 

acetogen Desulfitobacterium hafiense, among others.  

Other reactions in the demethylating category are carried out by enzymes like 

dimethylamine methyltransferase (mtbB) and monomethylamine methyltransferase (mtmB). Both 

of these enzymes were discovered in Methanosarcina barkeri and contain pyrrolysine to remove 

a methyl-group from dimethylamine and monomethylamine, respectively (10, 11). Notably, 



 4 

these demethylation reactions of MAs represent a direct link between carbon and nitrogen 

cycling, ultimately producing carbon dioxide (CO2) or methane (CH4) and ammonia (NH3) 

(Figure 1.2). This contribution of methylamine metabolism to methane production in soils and 

other sediments is increasingly being recognized for its more global importance and broad 

biological prevalence (14). This highlights how microbial MA metabolism influences carbon and 

nitrogen biogeochemistry.  

MA cleavage. These reactions are characterized as one MA being cleaved into a smaller 

MA (Figure 1.2). A pertinent example of MA cleavage are the set of defined reactions that 

convert quaternary amines into trimethylamine. Aerobic TMA-producing reactions are carried 

out by enzymes CntA (carnitine monooxygenase) discovered in Acinetobacter baumannii and 

YeaW (butyrobetaine monooxygenase) in Escherichia coli, while anaerobic enzymes include 

CutC (choline-TMA-lyase) discovered in Desulfovibrio desulfuricans and GrdI (glycine betaine 

reductase) in Eubacterium acidaminophilum (22, 27, 33, 34) (Figure 1.2). Notably, these 

enzymes are key gene targets in human gut, as trimethylamine produced from these reactions is 

oxidized by host liver enzymes to trimethylamine-N-oxide, a cardiovascular disease promoting 

metabolite (5–7).  

The reactions in this category can be linked to amino acid metabolism. Particularly the 

glycine betaine reductase (grdI), which is a part of a larger family of enzymes including 

sarcosine reductase that produces monomethylamine from sarcosine and glycine reductase that 

produces ammonium from glycine (35, 36). These enzymes can carry out reductions that make 

up half of a Stickland fermentation, which is the oxidation of one amino acid (or derivative) to 

the reduction of another amino acid (or derivative) (23, 24, 37). This co-fermentation of amino 

acids generates energy in the form of ATP via substrate level phosphorylation. This metabolism 
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has been shown to be present in protein-rich environments (15, 38, 39), underlining another 

aspect of MA metabolism that is critical to microbial life. 

Interconversions. Interconversion of MAs represent reactions that are not energy 

generating metabolisms but convert one MA to another. A prime example of an interconversion 

is the synthesis of glycine betaine for osmoprotection. Glycine betaine can be synthesized by 

microorganisms de novo from glycine or choline. The three step pathway from glycine is a series 

of anaerobic methylation reactions that leads to osmolyte glycine betaine (20, 21, 40). These 

pathways have been demonstrated in methanogenic archaea, including genus Methanohalophilus 

(41). Glycine betaine production from choline requires a two-step, aerobic pathway with a 

betaine aldehyde intermediate, that has been characterized in genus Halomonas (42). Similar to 

the interconversion of choline and glycine betaine, carnitine can be converted to butyrobetaine 

with a croto-betaine intermediate (43).  

1.3 Methylated amine annotation bottlenecks 

Although microbial MA metabolism has been implicated in important ecosystem 

processes (5, 7, 14, 15, 44), efforts to computationally inventory MA genes is hampered by the 

lack of characterization in public databases (25, 28, 32), high amino acid sequence similarity 

within each family (27, 28, 35), superfamily members with unknown functions (27, 28, 45), or 

genes that are truncated due to pyrrolysine (10, 11, 28, 31).  

Considering each of these annotation bottlenecks individually illuminates a workflow to 

decode the MA functional potential harbored in microbiomes. First, a majority of these genes 

were discovered and characterized within the last decade (25, 27, 32, 46, 47). Prior to this 

biochemical annotation, these genes were non-specifically annotated in genome datasets (e.g. 

glycerol dehydratase, or pyruvate formate lyase), reflecting semblance to their other family 
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members but not their function (27, 45). In fact, this continues today, as the non-pylrolysine 

quaternary amine methyltransferases are misannotated as trimethylamine methyltransferases in 

genomes. Or, in another example, the glycine betaine reductase shares a high sequence similarity 

with glycine and sarcosine reductases (34–36) and has a bit score of >200, which is well above 

the default parameters for most automated annotation pipelines (48–50). As such sequence 

homology alone is not sufficient for annotating these gene types and requires extensive manual 

curation, likely explaining the absence of these genes in many genome databases.  

Simply stated, our current, growing knowledge of microbial biochemistry outpaces our 

ability to update and disseminate this content into public databases, thus hindering rapid 

annotation of emerging metabolisms (45, 49, 51). To combat this element of MA gene 

annotation, I have built custom databases of MA genes to perform targeted searches (Figure 1.3). 

To enable more accurate annotation of these genes, phylogenies of each family should be built 

(e.g. glycyl radical enzyme family for cutC, glycine reductase family for grdI, etc.) and active 

residues confirmed to assign substrate specificity (27, 35) (Figure 1.3). 

 While huge strides have been made to define the biochemical functions of MA 

superfamily members, there are still large branches of each superfamily phylogenetic tree that 

have unknown functions (28, 45). For example, the MttB superfamily is made up of pyrrolysine 

containing and non-pyrrolysine methyltransferases (11, 31), of which we can only assign 

substrates to pyrrolysine containing methyltransferases that demethylate trimethylamine to 

dimethylamine. The presence of pyrrolysine indicates the position of an amber stop codon, 

which causes genes to be truncated during automated gene calling. The read-through of this 

commonly annotated stop codon, and repurposing to pyrrolysine, is another step that needs 

manual curation of MA genes in genomic datasets (Figure 1.3).  
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Throughout my thesis, I have identified these gene fragments and manually linked their 

other halves. Next, I briefly describe this workflow. To differentiate between non-pyrrolysine 

and pyrrolysine containing homologs in the MttB superfamily, sequences were filtered by length 

and aligned to known MttB superfamily members. Sequences that were longer than 360 and 

aligned through the pyrrolysine residue (e.g. not truncated at the pyrrolysine) are non-pyrrolysine 

containing members. The remaining truncated genes (e.g. break before where pyrrolysine should 

be) indicate these genes should be reannotated using the amber read-through detection (Figure 

1.3). The resulting sequences are pyrrolysine containing MttBs. This same approach should be 

used for defining functions of monomethylamine and dimethylamine methyltransferases, which 

also contain pyrrolysine residues (10, 11, 28, 31). Lastly, the MA metabolisms defined in this 

dissertation also included additional measures to achieve beyond homology based annotation 

alone (e.g. cultivation of isolates, metaproteomics, and metabolomics).  

1.4 An ecosystem perspective on microbial methylated amine metabolism 

This body of research uses cultivation-based investigations, coupled to high-resolution 

multi-omics to interrogate microbial methylated amine metabolism. Specifically, the overarching 

questions addressed in this dissertation are what is the diversity, prevalence, and 

interconnectedness of methylated amine metabolic networks and how might these impact overall 

ecosystem processes. To begin to address these questions, we sampled microbial communities in 

deep hydraulically fractured shales and the human gut to build representative metabolic networks 

that were the basis for predictions of ecosystem chemistry and function using multi-omic 

methodologies. These methodologies were used across different scales of complexity, increasing 

from isolates and microcosms from one well to field scale investigations across multiple wells in 

disparate shale formations to a different ecosystem altogether, the human gut. Notably, this 
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approach highlights the value of scalable and translational studies that was required for 

deciphering this previously cryptic methylated amine microbial metabolic network. The three 

primary objectives of my dissertation research were to:  

1. Examine metabolic potential and physiology of genus Methanohalophilus, a prevalent 

methylotrophic methanogen in hydraulically fractured shale (Chapter 2) (52).   

2. Resolve microbial interactions that underpin persistence in hydraulically fractured 

shales (Chapter 3) (44).  

3. Uncover the diversity and prevalence of microbial methylated amine metabolism in the 

human gut to predict cardiovascular disease in humans (Chapter 4).  

The final chapter summarizes the findings from hydraulically fractured shales and the human gut 

together with other terrestrial ecosystems, ultimately highlighting how microbial methylamine 

metabolism may play unrecognized roles in carbon and nitrogen turnover.  
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Figure 2.1 Methylated amine structure and importance. 

A) Levels of amine (primary, secondary, tertiary, and quaternary) are shown, with methylated 
amine structures given as examples of each. B) Boxes show key roles that that methylated 
amines play in microbial ecosystems. 
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Figure 2.2 Pathways for microbial methylated amine metabolism.  

On left, colored boxes denote categories of methylated amine metabolism. Arrows follow the 
box color scheme in the overall pathway summary (on right). Overall pathway summary shows 
how methylated amine metabolism integrates together into one network that ultimately feeds into 
carbon or nitrogen cycles.  
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Figure 2.3 Workflow for annotation of methylated amine metabolism.  

Annotation of methylated amine metabolism in microbial genomes is shown, with each arrow 
indicating key steps in the annotation process that overcomes the bottlenecks associated with 
surveying this metabolism in multi-omic datasets.  
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Chapter 2: Comparative genomics and physiology of the genus Methanohalophilus, a prevalent 

methanogen in hydraulically fractured shale1 

 
 
2.1 Introduction 

Hydraulic fracturing has substantially increased hydrocarbon recovery from 

unconventional reservoirs, including black shales (siliceous fine-grained mudstones dominated 

quartz, clays, and carbonates) and micrites (fine-grained organic-rich or “muddy” carbonates 

with a range of clay content and minor quartz) (53–57). Black shales and micrites, which are 

commonly classified geologically as mudstones, are thought to be devoid of microbial life 

following geological “pasteurization” associated with basin loading, burial, and geothermal 

heating that leads to catagenesis (58, 59). The process of hydraulic fracturing, however, brings 

life to these unconventional reservoirs by introducing a myriad of biogeochemical, 

hydrogeological, and structural changes that allow microorganisms to colonize the deep 

subsurface (59). 

Characterized by its name, hydraulic fracturing is the high-pressure injection of water, 

proppant, and chemical additives into the subsurface that creates fractures in the rock matrix, 

subsequently releasing economically important hydrocarbons (57, 59, 60). Injected fluids act as a 

microbial inoculum, transporting surface microorganisms to the deep subsurface. Concomitantly, 

these injected fluids contain biocides and stabilizers that act as a source of substrates for injected 

microorganisms (59, 61). These structural and chemical changes create the space and resources 

 
1 This chapter was reproduced verbatim from “Borton, et al. Comparative genomics and physiology of the genus 
Methanohalophilus, a prevalent methanogen in hydraulically fractured shale. Environmental Microbiology (2018)”. 
The text benefitted from writing and editing contributions from contributing authors and reviewers selected by the 
publisher. The ordering of the materials in this dissertation are consistent with the content available online but have 
been renumbered to reflect incorporation into this dissertation.  
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necessary for microbial life. Previous studies by our group and others have shown that a subset 

of members from injected microbial communities persist more than 300 days after hydraulic 

fracturing and even proliferate in these systems (15, 44, 62). 

Microorganisms injected into natural-gas wells invariably have an impact on the deep 

biosphere environment. The metabolic activity of some persistent microorganisms in 

unconventional reservoirs can lead to sulfide production, resulting in souring and infrastructure 

corrosion (63, 64), while the accumulation of microbial biomass may lead to clogging of 

fractures (65). Other persistent microbial community members include methane producing 

archaea, which could have a positive impact on energy yields. One prior study predicted that 

biogenic methane accounted for more than 12% of methane produced in a shale-gas well lifetime 

(66). Similar to stimulation of methanogens in coal beds (67–69), there is potential to enhance 

methanogenic metabolism in hydraulically fractured unconventional reservoirs to increase 

methane recovery and well longevity. In order to make this potential a reality, a deeper 

understanding of biotic and abiotic processes within the subsurface ecosystems associated with 

unconventional reservoirs is needed to manipulate and manage methanogenesis.  

Here, we survey the biogeography of methanogens across hydraulically fractured 

unconventional reservoirs, including shales, and perform a comparative analysis of 11 genomes 

from the most prevalent methanogen, Methanohalophilus. This genomic investigation of 

Methanohalophilus strains living in surface and subsurface environments provides insight into 

the genotypic differences between strains under different environmental constraints. Predicted 

metabolic differences between strains were supported by laboratory cultivation experiments 

using Methanohalophilus strains isolated from unconventional reservoir produced fluids. 

Understanding how these methanogens are carving out a life in these dynamic, subsurface 
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environments is imperative to move forward in field manipulations of their metabolisms for 

human benefit. 

2.2 Results and discussion 

2.2.1 Methanohalophilus is a prevalent member of persisting microbial communities in 

hydraulically fractured unconventional reservoirs 

Given the potential economic importance of methane producing archaea to the recovery 

of natural gas from unconventional reservoirs, such as shale, we surveyed publicly available 

sequencing data (single gene and metagenomic) from produced fluids for the presence of 

methanogens (Table 2.1). We combined data from prior published reports spanning five different 

unconventional energy plays, both from our group (15, 44) and other studies (62, 63, 70–79). We 

also include new data from the STACK play in Oklahoma (deposited in NCBI Bioproject 

#PRJNA308326). The unconventional reservoir plays analyzed here represent a variety of 

different geological histories and geographic locations and thus have variable chemistries and 

conditions for microbial life.  

Due to the bias of universal primers (80, 81), especially for archaea (82), we 

preferentially utilized metagenomic data when available (Table 2.1). We report the metagenomic 

data in two ways, i) read mapping to known methanogens to assess relative abundance and ii) 

metagenome assembled genomes (MAGs) for assessment of metabolic potential (see methods). 

Here we release five new Methanohalophilus genomes, comprised of three isolates and two 

MAGs (Table 2.2). For wells analyzed without metagenomics data, especially those from other 

groups and formations, 16S rRNA gene data was the only available information (Table 2.1). For 

these, we assessed methanogen presence and diversity, but did not include relative abundance. 

Together, our analyses include data from 44 natural-gas wells across six unconventional 
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formations, enabling a biogeographical survey of potentially important methane producing 

archaea.  

To date, every microbial community analysis in hydraulically fractured unconventional 

reservoirs that included archaea detected the presence of methanogens (Table 2.1, Figure 2.1A). 

While Methanohalophilus (Figure 2.1B) have been found in the six unconventional reservoirs 

plays sampled to date, other methanogens including Methanolobus and Methanoplanus have 

been occassionally detected (15, 76). Consistent with other methanogenic ecosystems(83–85), 

the relative abundance of methanogens in unconventional reservoirs, including shales, is 

generally low, typically less than 7% (Figure 2.1C). The cosmopolitan nature of 

Methanohalophilus in source rock formations from the Marcellus, Utica, Barnett, Antrim, and 

STACK unconventional reservoir plays, hints at a keystone role in these ecosystems. 

To better define a “universal” niche occupied by Methanohalophilus, we mapped 

metagenomic reads to Methanohalophilus isolate genomes and MAGs to determine the relative 

abundance of these genotypes in fluids produced from unconventional reservoirs over time. Time 

series metagenomic data shows that Methanohalophilus was detected in samples up to 488 days 

post-hydraulic fracturing, the latest time point sampled (Appendix A). Previous studies have 

used 16S rRNA gene data to show that microbial communities in unconventional reservoirs often 

converge to a similar microbial community at late time points regardless of input chemistry, 

operator, geographic location, or type of source rock (i.e., shale, organic-rich micrite) (44, 59). 

Methanohalophilus is a part of this persisting community, along with Halanaerobium, Geotoga, 

and Marinobacter (Figure 2.2).  

One hypothesis for this convergence of similar genotypes across natural-gas well samples 

from different unconventional reservoirs is strong environmental filtering. A likely critical 
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environmental forcing is salinity, which changes throughout the lifecycle of a natural-gas well. 

In many cases salinity can range from freshwater (<100 mg/L) up to hypersaline conditions 

(>110 g/L) over this time period (15, 44, 75). In general, salinity increases in a power function 

with time, with the shift to saline conditions occurring on a time scale of weeks to months 

(Figure 2.3). Metagenomic data paired to salinity data shows a shift to saline conditions over 

approximately 40 days after hydraulic fracturing (Figure 2.3), a change that is reflected in 

microbial membership (Figure 2.2). Notably, the change in microbial community membership is 

characterized by an enrichment of halophilic or halotolerant taxa 40 days after hydraulic 

fracturing.   

Here we use metagenomic data to define a salinity window for Methanohalophilus across 

the transition from flowback to produced fluids. Open circles show that Methanohalophilus was 

not detected below 25 g L-1 chloride, while closed circles show the upper limit for 

Methanohalophilus in produced fluids is 112 g L-1 chloride (Figure 2.1C). The upper limit is also 

the maximum concentration for this dataset and thus we cannot conclude the maximum chloride 

concentration tolerated by this genus in hydraulically fractured unconventional reservoirs. This 

reported range is consistent with a published report indicating the upper limit for methylotrophic 

methanogenesis (not just Methanohalophilus) is 250 g L-1 chloride (20). Based on analysis of the 

literature for cultivated Methanohalophilus spp. (41, 86–88), we conclude the salinity range for 

this genus spans from 17- 155 g L-1 chloride, with an optimum of around 80 g L-1 chloride (Table 

2.3). Here our produced fluid data suggests that there is no clear optimum salinity concentration 

(Figure 2.1C), and in fact there are several samples containing around 80 g L-1 chloride where 

Methanohalophilus was not detected, and low salinity samples (STACK formation) where 

Methanohalophilus was detected.  
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We suggest several explanations for the variable Methanohalophilus distribution. The 

first is methodological, in that the absence of data at certain time points can be impacted by 

sampling, i.e., the sequencing depth combined with the lower relative abundance of methanogens 

relative to other members in the community may result in non-detection of methanogens. 

Second, there are other chemical and biological factors that can mediate the presence of 

Methanohalophilus in hydraulically fractured unconventional reservoir systems. For example, 

we have previously shown that methanogenesis by Methanohalophilus can be fueled by 

Halanaerobium fermentation of glycine betaine to yield methanogenic substrates such as 

trimethylamine (15). Consistent with this interdependency, Halanaerobium is present in every 

sample in which Methanohalophilus is detected. However, here we failed to find any clear 

relationship between Methanohalophilus presence or relative abundance and the presence or 

concentration of methylotrophic substrates (Figure 2.4). Lastly, we previously demonstrated that 

viral genomes could be linked to Methanohalophilus (15), and that viral predation and 

Methanohalophilus CRISPR immunity were actively expressed (44); thus predation may also 

contribute to variable Methanohalophilus abundance patterns. We conclude that 

Methanohalophilus requires a specific set of yet-defined conditions (and maybe even microbial 

members) to persist in deep hydraulically fractured unconventional reservoirs. Developing more 

detailed knowledge of the constraints on this organism will be required to successfully 

manipulate this system for enhanced biogenic methane production. 

2.2.2 New Methanohalophilus MAG and isolate genomes double prior genomic sampling of this 

genus 

For this study, we supplemented publicly available genomes with in-house MAGs (n=2) 

and isolate genomes (n=3) all belonging to the genus Methanohalophilus (Table 2.2). In total, we 
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compared 11 genomes; six isolates and five MAGs, three of which are in one contig 

(Methanohalophilus mahii SLP DSM 5219, Methanohalophilus portucalensis FDF-1, and 

Methanohalophilus euhalobius WG1-MB) (Table 2.2, Appendix A). Three of the genomes are 

from surface environments (86, 87, 89), including lake sediments (Methanohalophilus mahii 

SLP), salt pans (Methanohalophilus portucalensis FDF-1), and cyanobacterial mats 

(Methanohalophilus halophilus Z-7982). The remaining eight genomes are from subsurface 

environments, with all but one, which is from an oil well in Russia (90), being from 

hydraulically fractured unconventional reservoirs in the US (15, 44, 71) (Table 2.2).  

The 11 genomes range in size from 1.6-2.09 Mbp, with no size differences noted due to 

differences in isolate versus metagenome-derived genomes (Table 2.2, Appendix A). The 

genomes encode 1,889-2,233 predicted proteins and have between 41.9-42.6% G+C content. All 

of the genomes are estimated to be >80% complete with <4.8% contamination (Appendix A). 

Genomes first described here include three isolates and two MAGs, which nearly doubles the 

number of sequenced representatives of this genus. All of the genomes analyzed share more than 

91% average nucleotide identity (Figure 2.5). Pangenome analysis revealed 3,112 gene clusters 

among the 11 genomes, with 901 genes constituting the core (present in every 

Methanohalophilus genome). The accessory genome included 1,445 genes present in at least two 

genomes and 766 unique genes that were present in only one genome (Figure 2.6, Appendix A). 

The core genes account for 42.5-49.4% of the total genes across the 11 genomes. A phylogenetic 

analysis constructed with the core genes, as well as standard Archaeal marker genes (91), 

showed that three different Methanohalophilus species (mahii, halophilus, and portucalensis 

spp.) were sampled from surface habitats (n=3 genomes), while Methanohalophilus euhalobius 

was only sampled in the deep subsurface (n=8 genomes) (Figure 2.5, 2.7).  
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The percentage of genes in the Methanohalophilus core genome is much lower than 

Thermotoga (>90% core genes, n=11), a bacterium that spans surface (n=4) and deeper (n=7) 

ecosystems (92). In fact, the relative abundance of genes in the core genome for 

Methanohalophilus is closer to Prochlorococcus, a highly abundant marine photosynthetic 

bacterial genus, with a core genome of about 50% (n=49) (93). Within the archaea, a genome 

comparison of a single genus and species, Sulfolobus islandicus (n=7), recovered from surface, 

geothermal areas revealed 74% of the genes made up the core genome. Here a similar analysis of 

Methanohalophilus euhalobius genomes recovered exclusively from the deep hydrocarbon 

systems (n=8), had only 46% of the genes in the core genome.  

Reasons for the low percentage of genes in the Methanohalophilus core genome may be 

due to the engineered nature of hydraulically fractured rocks in unconventional reservoirs, which 

are atypical from other subsurface or deep ecosystems. Microorganisms from undisturbed deep 

biosphere environments often have slow growth rates that may hinder nucleotide substitution 

accumulation, ultimately keeping diversity low (94). However, previous studies have shown that 

in hydraulic fractured rocks in unconventional reservoirs, biomass can increase by over several 

orders of magnitude over a period of several months (15). Moreover, increased genetic diversity 

within Methanohalophilus euhalobius strains relative to other subsurface archaea, like S. 

islandicus may be attributed to environmental instability, which is a key driver of genetic 

diversity (95). The ecosystem created following hydraulic fracturing is characterized by extreme 

changes in salinity, redox conditions, temperature, pressure, nutrients, and perhaps even viral 

predation throughout the lifetime of the natural-gas well (15). It is important to consider that 

these environmental drivers and the static conditions prior to hydraulic stimulation vary 

considerably for each unconventional reservoir (44) (Figure 2.3). For example, among 
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unconventional reservoirs, there are important differences in dominant (e.g. quartz, clay, 

carbonates) and trace (e.g. sulfides) mineral assemblages, burial depth (0.5 to >3km), reservoir 

temperature (40 to ~150oC), total organic carbon content (0.5 to ~20%), kerogen type, basin 

burial history, and geologic history (e.g., occurrence of volcanic intrusions, faulting, fracture 

intensity, style) (58, 59, 96–103). Together these differences may facilitate the increased 

genomic diversity we observed within the genus Methanohalophilus.  

The core genome of Methanohalophilus includes the expected housekeeping genes, but 

also the genes necessary for methylotrophic methanogenesis and production of the osmolyte 

glycine betaine (Appendix A). For the methylotrophic substrates, only the utilization of methanol 

and monomethylamine are conserved, while trimethylamine and dimethylamine utilization are 

flexible genome attributes (Figure 2.7). Specifically, all 11 genomes have the capacity to 

demethylate methanol and monomethylamine via substrate specific pyrrolysine-containing 

methyltransferases (mtaB and mtmB, respectively) that transfer the methyl group to respective 

activated cognate corrinoid proteins, which are also conserved (mtaC and mtmC, respectively). 

Methyl groups are ultimately transferred to coenzyme M via a methylcorrinoid:CoM 

methyltransferase (mtbA), which is encoded in all 11 genomes. Genes for pyrrolysine 

biosynthetic enzymes (pylBCD), methyl coenzyme M reductase (mcrA), and a pyrrolysine-tRNA 

synthetase (pylRS) were also recovered from all 11 genomes, as these are required to utilize 

methylamines. Genes for the utilization of other methanogenic substrates such as acetate or 

quaternary amines (e.g. glycine betaine, (28)) were not recovered in any of these 11 genomes. 

This is consistent with prior reports in which Methanohalophilus is an obligate methylotrophic 

methanogen, requiring the presence of methanol or methylamines to generate energy (86, 104).  
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Given the elevated and increasing salinities in produced fluids through time, we surveyed 

the Methanohalophilus pangenome for the presence of genes involved in osmoadaptation. 

Notably, genes for the synthesis of glycine betaine from glycine, as well as the transport of 

glycine betaine from the environment into the cell, is present in all 11 genomes. The synthesis or 

transport of other osmolytes was not in the core genome for Methanohalophilus. This shows the 

importance of glycine betaine to Methanohalophilus physiology. Given that glycine betaine is 

the only osmolyte to be detected in all produced fluids from late time points, we had previously 

suggested that this compound was a keystone metabolite in the ecosystem created by hydraulic 

fracturing (44). Moreover, we demonstrated using metaproteomics data from laboratory reactors 

that this compound can forge metabolic interactions between persisting taxa. For instance, 

glycine betaine is synthesized from glycine by Methanohalophilus, used as an osmoprotectant by 

Methanohalophilus and Geotoga, and used as an energy source by Halanaerobium and 

Frackibacter (15, 44, 105). Also, given that glycine betaine is an amino acid derivative 

(C5H11NO2), it can serve as a source of organic nitrogen in this system. Similarly, 

Methanohalophilus-fueled glycine betaine metabolisms are also reported in a surface hypersaline 

lake (17). Thus, the highly conserved capacity to produce of glycine betaine by 

Methanohalophilus may represent a public good, contributing to ecosystem stability in saline, 

methanogenic ecosystems.  

2.2.3 Unique attributes of subsurface Methanohalophilus genomes 

It is widely presumed that the flexible part of an organism’s genome confers fitness 

advantages to specific strains within different environmental conditions (93). As such, we 

examined the flexible genome between surface and subsurface Methanohalophilus genomes. 

There are 83 gene clusters unique to surface genomes and 40 gene clusters unique to subsurface 
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genomes. Of these, 51% and 45% are hypothetical proteins or genes with unknown function, 

respectively, alluding to the currently cryptic biochemistry that resides in lineages with well-

characterized members (106, 107). 

Genes present only in subsurface genomes may have implications for adaptation and 

persistence in the deep biosphere. For instance, one gene cluster that was only found in 

subsurface derived genomes was made up of 37 annotated transposases. Although there are other 

transposase gene clusters in surface genomes, the subsurface genomes contain significantly more 

copies of transposases relative to surface genomes (p<0.05). The relative abundance of 

transposase genes to total genes in a given genome was 0.3-0.6% for the Methanohalophilus 

surface genome, and 1.0-2.3% for subsurface genomes. Interestingly, this percentage cut-off of 

1% is consistent with prior reports showing that surface genomes derived from marine systems 

typically have 0.6% transposase relative abundance, while “extreme” environments like acid 

mine drainage have 1% transposase relative abundance (94). The abundance of transposases in 

genomes from subsurface or extreme environments suggests an active role for genome plasticity 

and adaptation in environments with strong selective pressures (108). 

Other genes exclusive to subsurface genomes include a specific CRISPR-associated 

protein belonging to the Csx1 family. This particular protein has been previously implicated as 

an endoribonuclease that acts selectively on single-stranded RNA and cleaves specifically after 

adenosines (109). We note from a prior proteomic examination of Methanohalophilus 2-

GBenrich genome that this CRISPR gene was expressed in a laboratory maintained consortium 

experiencing viral predation (44). Thus, the conservation of this gene may suggest an adaptation 

of subsurface Methanohalophilus against viruses that surface Methanohalophilus may not have 

encountered, a hypothesis we examine in more detail below. Genes for an alcohol dehydrogenase 
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(ADH) were also found exclusively in the subsurface genomes. While this may confer adaptation 

to chemical conditions in oil and natural-gas wells, further investigation into the specificity and 

annotation of this gene is necessary. Notably, genes for glycan production were also found 

exclusively in subsurface Methanohalophilus genomes, potentially associated with a role in 

biofilm formation in the deep biosphere (110, 111).  

Genomes from the surface contain genes that may confer adaptation to unfavorable redox 

or light conditions that are more common in these habitats. For example, catalase genes were 

only recovered from surface Methanohalophilus genomes. Recent reports from soils have 

suggested the expression of this gene is associated with oxygen detoxification and can enable 

methane production in oxic habitats (112). Other genes exclusively encoded in surface genomes 

included nitric oxide reductases. This is consistent with a prior publication showing that other 

methanogens may use this gene as a detoxification mechanism (113). Lastly, surface 

Methanohalophilus genomes exclusively contain genes for photo-lyase enzymes, which repair 

DNA damaged by ultraviolet light. In summary, we identified disparities in genomic content that 

reflect the differences in environmental selective pressures encountered by these microorganisms 

in surface (salt pan, cyanobacterial mat, lake sediments) and subsurface (unconventional 

petroleum reservoir) habitats.  

Genes for the utilization of trimethylamine (TMA), a common methylotrophic substrate, 

was part of the flexible genome. We identified differences in the use of TMA by two closely 

related strains isolated from the same natural-gas well. In fact, these two organisms were so 

phylogenetically similar that they were indistinguishable by 16S rRNA gene sequence (100% 

identify of 1,456 basepairs) and shared nearly 99% average nucleotide identity at the genome 

level. Specifically, Methanohalophilus WG1-DM does not encode the genes for trimethylamine 
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utilization (corrinoid protein and trimethylamine methyltransferase), while Methanohalophilus 

WG1-MB does contain these genes (Figure 2.7-2.8). The presence of trimethylamine 

methyltransferase was detected in all other Methanohalophilus genomes (n=9 of 11, except the 

DM isolate and a closely related MAG from the same sample). Other genome differences 

between these two closely related strains cultivated from the same natural-gas well include an 

oligopeptide permease ABC transporter operon (opp) and antitoxin system (pemK/mazF). 

Knowledge of the differential substrate utilization patterns between strains represent necessary 

information when considering the rational design of biogenic methane-producing communities. 

Moreover, these inferences cannot be made based on genomes alone, as physiological parameters 

like growth efficiency and rate also need to be considered when enhancing methanogenesis at the 

field scale.  

2.2.4 Genome strain differentiation validation through physiological investigation 

Due to methodological constraints involved in assembly and binning, the absence of 

genes in isolate and metagenomic derived genomes is not alone sufficient for inferring 

physiology. To validate the absence of TMA utilizing genes in strain WG1-DM, we performed 

physiological characterization of these two closely related strains (Methanohalophilus WG1-DM 

and Methanohalophilus WG1-MB). Between strains we compared the growth rate, growth yield, 

and the total methane produced on four separate methylotrophic substrates (Figure 2.8). All of 

the methylotrophic substrates evaluated here (methanol, trimethylamine, dimethylamine, 

monomethylamine) were present through time in the produced fluids, demonstrating the 

relevance of these compounds to the ecology of Methanohalophilus (Figure 2.8).  

Our physiological data verified the substrate utilization patterns inferred by genomics.  

For instance, WG1-MB increased to >1 optical density (O.D. measured at 600nm) and produced 



 25 

31.5 μmol of methane produced over a period of nine days, while no growth or methane 

production was observed by strain WG1-DM on the same concentration of TMA given the same 

amount of time. Additionally, physiological analyses provided new information on growth 

parameters that could not be concluded from a genome. For example, the exponential growth rate 

of WG1-DM and WG1-MB did not differ when grown on dimethylamine or methanol but was 

statistically different on monomethylamine. For this latter substrate, WG1-MB had a faster 

exponential growth rate than WG1-DM, but no significant differences in total cell or methane 

yield were observed. We note that these enzymes and their corresponding coronoid proteins are 

identical at an amino acid level. Also, in these experiments, we attempted to account for 

differences in starting biomass, resting metabolic state, and substrate concentrations, as we used 

washed cell suspensions with the similar cell density for inoculation. Thus, it is possible that 

these growth rate differences could be attributed to variations in substrate transport or uptake 

(e.g. transporter, cell envelope proteins), growth forms (biofilm, planktonic), or currently 

unknown enzyme or kinetic or pathway efficiencies.  

2.2.5 Viral predation in Methanohalophilus leads to strain differentiation 

Previous work from our laboratory has shown that viruses are important controllers in 

unconventional reservoir ecosystems (15, 44). In line with these findings, nine of the eleven 

Methanohalophilus genomes in this study contain CRISPR-Cas systems, which is an acquired 

immune system used by bacteria and archaea to ward against viruses and other invading foreign 

DNA. A CRISPR array is a hyper variable region within a bacterial or archaeal genome, 

composed of direct repeats and spacers, with each spacer recording a successful defense against 

viral or foreign DNA invasion (114). All Methanohalophilus euhalobius genomes, which were 

sampled exclusively from natural-gas and oil wells, have CRISPR arrays (Appendix A), with a 
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majority being denoted as type I CRISPR systems (especially type I-A) (114) (Appendix A). 

Comparison of the CRISPR-Cas arrays revealed 11 direct repeat sequences, which were either 30 

or 37 bp in length. Collectively, the Methanohalophilus genomes contained a total of 993 spacers 

in 28 CRISPR-Cas arrays. All but one of the arrays were not at the end of contigs, suggesting 

these numbers are not methodologically inflated due to assembly breaks. Remarkably, 52% of 

the collective spacers in Methanohalophilus genomes are shared by at least one other 

Methanohalophilus genome (Figure 2.9A, Appendix A), despite differences in reservoir 

geographic location (ranging from the U.S.A. to Russia), reservoir formation (e.g. Marcellus, 

Haynesville, and Utica), and reservoir age (spanning from the Ordovician (Utica: ~465-450 Ma) 

through the Jurassic (Haynesville: ~151- 125 Ma)). Taken together, our findings suggest that 

Methanohalophilus genomes are under similar predatory stress regardless of their geographic 

location, rock type (ranging from shales (siliceous) to micrites), or depositional age (spanning 

from ~465-125Ma in this study).  

The two highly similar Methanohalophilus isolates, WG1-MB and WG1-DM, that 

originated from the same natural-gas well and were physiologically characterized (see above), 

share 26 identical spacers in three different CRISPR-Cas arrays (Figure 2.9A). While some of 

these arrays are identical (WG1-DM CRISPR-4 and WG1-MB CRISPR-4), other arrays 

contained a series of identical spacers followed a series of divergent spacers. For example, WG1-

MB CRISPR-2 and WG1-DM CRISPR-1 share nine consecutive spacer sequences but each have 

three unique spacers at the end of the array. Similarly, WG1-MB CRISPR-5 and WG1-DM 

CRISPR-3 share identical first four spacers and the next 13 spacers are divergent (Figure 2.9A). 

Together these data suggest that in recent evolutionary history, the Methanohalophilus isolates 

WG1-MB and WG1-DM may have constituted a single population that diverged, with each 
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strain subsequently encountering different viruses. Both of the closely related strains are present 

during the Utica 2 natural-gas well lifetime, with no differences in relative abundance, thus we 

could find no fitness advantage by the type of spacers maintained in these genomes (Appendix 

A). Here we show differences in substrate utilization, growth rate, and perhaps some yet 

appreciated component of viral immunity may contribute to subtle micro-diversity maintained in 

the deep subsurface.  

Beyond isolates, a comparison of MAG CRISPR arrays allow for microdiversity and 

viral history characterization across geographic distances. For instance, a comparison of MAGs 

from two separate Marcellus natural-gas wells (genomes 1-M1, DAL1), operated by different 

companies and data collected by separate groups, revealed an identical CRISPR arrays spanning 

34 spacers. These two genomes also have an array that shares the first 14 spacers, but the DAL1 

genome has additional 55 spacers unique to that genome (Appendix A). This suggests while viral 

populations have a broad host range, others may be natural-gas well or strain specific.  

This pattern, of identical and divergent arrays, also holds true when comparing arrays 

within an isolate from an oilfield in Bonduzkhoe, Russia (Methanohalophilus euhalobius DSMZ 

10369) and a MAG from a natural-gas well in the Marcellus Formation, sampled in West 

Virginia, U.S.A (Methanohalophilus sp. 4-M4). Eleven spacers are 100% identical (10 

consecutive spacers) between these two genomes.  Collectively, these data suggest that despite 

being sampled from different natural-gas wells in the same unconventional formation (i.e., a 

shale in this instance), different unconventional reservoir formations within the U.S.A., and 

between the U.S.A. and Russia, Methanohalophilus genomes sampled to date have likely 

encountered the same viral genomes or populations.  
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The comparison of methanogen spacer sequences to viral genomes assembled and binned 

from the same samples (15), allowed us to link viral sequences to Methanohalophilus genomes. 

We found that 61 spacers, or ~8% of the total spacers, in the seven Methanohalophilus 

euhalobius derived from hydraulically fractured unconventional reservoirs, matched a single 

viral genomic population (Figure 2.9B). We note the other non-shale Methanohalophilus 

euhalobius genome (DSMZ 10369), which has a CRISPR system with some shared spacers to 

these unconventional reservoir genomes lacked spacers for this virus. A genome representing 

this conserved unconventional reservoir virus was reconstructed, resulting in a circular 54,653 bp 

genome (15). We mapped Methanohalophilus spacers to this viral genome to identify viral 

genome regions commonly incorporated as spacers in Methanohalophilus euhalobius. Studies 

have suggested these new spacers are organized around protospacer adjacent motif (PAM) (115), 

thus future identification of Methanohalophilus PAMs may continue to improve insight into 

Methanohalophilus viral immunity. 

In summary, our comparative genomic and viral analyses lead to several conclusions 

about Methanohalophilus viral-interactions. First, many of our Methanohalophilus spacers could 

not be linked to viral genomes, suggesting we are under-sampling the archaeal viral diversity. 

Second, the fact that a single viral population had 63 links to Methanohalophilus genomes from 

unconventional reservoirs suggests that this viral genome is broadly distributed within the 

subsurface, at least in the Appalachian Basin. Moreover, this viral population can infect multiple 

Methanohalophilus strains in and between wells. Additionally, multiple spacer hits (up to 23) in 

a single methanogen genome to this viral population suggests that the Methanohalophilus and 

their viruses are in an arms-race between host immunity adaptation through CRISPR-Cas spacer 

incorporation and viral mutation (116, 117). Optimizing methane production in these 
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economically important ecosystems is likely going to require knowledge not only of methanogen 

physiology, but also predator-prey interactions. 

2.3 Conclusion  

We performed the first comparative genomic analyses of a methanogen prevalent in 

saline ecosystems. We contribute five isolate and metagenome-assembled genomes for the genus 

Methanohalophilus. We highlight genes that may enable adaptation in both surface and deep 

subsurface habitats. We couple genome predictions to laboratory physiological characterizations 

to define niche partitioning between two closely related, and co-occurring strains. We provide 

data that supports our speculation that in hydraulically stimulated, unconventional reservoirs the 

genome plasticity observed in our Methanohalophilus genomes could be maintained both by 

dynamic changes in environmental conditions, as well as viral predation and transposable 

elements. These results have implications for manipulating methanogenic communities in the 

deep biosphere, a rational, ecosystem-based design which could ultimately minimize souring, 

and lead to enhanced natural-gas production with extended natural-gas well longevity. 

2.4 Materials and Methods 

2.4.1 Isolation of two Methanohalophilus strains from produced fluid of a Utica 2 natural-gas 

well 

Methanohalophilus WG1-DM and Methanohalophilus WG1-MB were isolated from 

produced fluid samples collected from the same gas–fluid separator 94 and 96 days post 

hydraulic fracturing, respectively. Each isolation was done using modified DSMZ 479 media 

dispensed in Balch tubes sealed with butyl rubber stoppers and aluminum crimps under an 

atmosphere of N2/CO2 (80:20, vol/vol). The modified DSMZ medium (per liter) included 87 g 

sodium chloride, 1.5 g potassium chloride, 6.0 g magnesium chloride, 0.4 g calcium chloride, 1.0 
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g ammonium chloride, 2.0 g yeast extract, 2.0 g trypticase peptone, 0.2 g coenzyme M, 0.2 g 

sodium sulfide, 4.0 g sodium bicarbonate and brought to a pH of 7.2 using 1 mM NaOH. Both 

strains of Methanohalophilus were isolated via serial dilutions on trimethylamine (WG1-MB) 

and dimethylamine (WG1-DM).  

2.4.2 Methanohalophilus imaging 

Methanohalophilus WG1-MB cells were imaged (Figure 2.1B) at the Molecular and 

Cellular Imaging Center, Ohio State University (https://mcic.osu.edu/home). An equal volume of 

2x fixative (6% glutaraldehyde, 2% paraformaldehyde in 0.1 M potassium phosphate buffer pH 

7.2) was added directly to 1 ml of cell culture. Cells were precipitated and resuspended in 50 uL 

of 0.1 M potassium phosphate buffer pH 7.2 and applied to a silicon waffle (Electron 

Microscopy Sciences, catalog # 71893-08). The sample was dehydrated in a graded ethanol 

series, transitioned into 100% hexamethyldisilazane, and air dried. Images were then obtained 

with the Hitachi S4700 scanning electron microscope. 

2.4.3 Sample collection, geochemistry and metabolite analyses of produced fluids 

Sample collection, geochemistry, and metabolite analyses (via NMR) from Utica/Point 

Pleasant and Marcellus natural-gas wells were reported previously in (44). These samples were 

from natural-gas wells in Ohio (n = 2), West Virginia (n = 2), and Pennsylvania (n = 1). New 

samples included here were from Oklahoma wells (n=3) in the STACK play and do not include 

metabolite analysis by NMR. Reservoirs sampled here range in age of formation:  Utica: ~465-

450Ma; Marcellus: ~390-365Ma; Antrim: ~375-360Ma; STACK: ~375-350Ma; Barnett: ~350-

323Ma; Haynesville: ~151-125Ma. 

Chloride concentrations for the new samples provided here from the STACK play were 

analyzed as previously described in (15). Briefly, chloride concentrations from produced fluids 
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were obtained using a Thermo Scientific Dionex ICS-2100 ion chromatograph and are included 

Appendix A. 

2.4.4 Sequencing, genome assembly, annotation and binning  

All isolate genomes were downloaded from the Joint Genome Institute’s Integrated 

Microbial Genomes and Microbiomes (IMG/M) database. For isolates reported here (n=3, Table 

2), DNA was sequenced at the Department of Energy Joint Genome Institute (JGI), Walnut 

Creek, CA, USA. Illumina shotgun libraries were constructed and sequenced using the HiSeq 

2500-1 TB platform. The Illumina sequence data were assembled using the CLC Genomics 

Workbench (version 8.0.1) and AllPaths-LB (version r46652).  

Previously reported MAG scaffolds were downloaded from NCBI using the accession 

numbers specified in Table 2.2(15, 44). MAGs reported here, including Methanohalophilus 3U2 

and Methanohalophilus 4M4, were binned manually using a combination of GC content, 

taxonomy and coverage from the Utica 2 natural-gas well Day 94 metagenome (reported in (44), 

JGI accession number 3300006807) and Marcellus 5 Day 313 metagenome (reported in (44), JGI 

accession number 3300013017), respectively. Sequencing methods for these metagenomes are 

described in detail in (44)(the publication in which they were first released). As described 

previously (15, 118), genome completion was estimated based on the presence of core gene sets 

(Bacteria, 31 genes and Archaea, 104 genes), using Amphora2 (119). Contamination (gene 

copies >1 per bin) indicating potential misbins, along with GC and phylogeny, were used to 

manually remove potential contamination from the bins.   

All genomes were annotated as previously described in(15). Briefly, open reading frames 

were predicted with MetaProdigal (120), and sequences were compared with USEARCH (121) 
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to KEGG, UniRef90, and InterProScan (122) with single and reverse best hit (RBH) matches of 

>60 bases reported.  

2.4.5 Methanohalophilus relative abundance 

Reads from previously published produced fluid metagenomes (44) and 5 additional 

samples reported here were competitively mapped to a database of 11 Methanohalophilus 

genomes and strain CRISPR arrays (Appendix A) using Bowtie2 (123). Relative abundance was 

obtained by quantifying the percent of reads that mapped with zero mismatches (the number of 

reads that mapped divided by the total reads in the metagenome). Presence of Methanohalophilus 

was confirmed by manually looking for Methanohalophilus scaffolds (greater than 2 kb) in each 

assembled metagenome. We note that for one prior publication the reads were not publicly 

available, only genomic scaffolds, and thus relative abundance of Methanohalophilus could not 

be determined for this sample (71).  

2.4.6 Comparative genomics of 11 Methanohalophilus genomes 

The 11 Methanohalophilus genomes were analyzed using the Anvi’o (version 5) 

pangenomic workflow (124, 125). First an Anvi’o contigs database was generated using gene 

calls and annotations from our in-house annotation pipeline, described above and published 

previously (15, 118). Then a contigs database was generated for each Methanohalophilus 

genome using the anvi-gen-contigs-database function in Anvi’o using the --external-gene-calls 

flag to import in-house gene calls generated from MetaProdigal (120). Next using the 

corresponding in-house annotations, the anvi-import-functions was used to import in-house 

annotations.  

The overall pangenome was calculated using the anvi-pan-genome blast and an mcl-

inflation of 10, due to the inclusion of MAGs. Bins of gene clusters unique to subsurface and 
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surface genomes were obtained using the Anvi’o interactive software. As described previously 

(125), this pangenomic workflow calculates similarities of each amino acid sequence in every 

genome against every other amino acid sequence using blastp (126), then weak hits are removed 

using the ‘minbit heuristic’ (here we used the default of 0.5) (127), and gene clusters are 

identified using the MCL algorithm (128). Next the number of occurrences of each gene cluster 

per genome and the total number of gene clusters in each genome contains was calculated. 

Hierarchal clustering of gene clusters based on their distribution across genomes and genomes 

based on gene clusters they share was calculated using Euclidean distance and Ward clustering. 

Average Nucleotide Identity (ANI) among genomes (Figure 2.5, 2.6) was calculated using the 

anvi-compute-ani function in Anvi’o (124).  

Phylogenetic trees of Methanohalophilus single copy core amino acid sequences and 63 

concatenated ribosomal amino acid sequences (91) were generated using Protpipeliner, a python 

script developed in-house for generation of phylogenetic trees 

(https://github.com/TheWrightonLab). Briefly, a maximum likelihood phylogeny for each 

muscle alignment was conducted using RAxML version 8.3.1 under the LG+α+γ model of 

evolution with 100 bootstrap replicates. All phylogenetic trees were visualized in iTOL. 

2.4.7 Viral analyses and CRISPR arrays 

The viral genome shown in Figure 2.9 that linked to 61 Methanohalophilus spacers was 

previously reported in (15). The viral genome was recovered from a Marcellus metagenome 

(Marcellus 1 from day 328 post hydraulic fracturing as reported in (44)), NCBI accession 

number SAMN04417546.  

The CRISPR Recognition Tool plugin (CRT, version 1.2) in Geneious was used to 

identify CRISPR arrays in Methanohalophilus isolate genomes and MAGs. To identify matches 

https://github.com/TheWrightonLab
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between viral protospacers and Methanohalophilus CRISPR-Cas array spacers (as well as 

comparing Methanohalophilus spacers among genomes) we used BLASTn with an E-value 

cutoff of 1e-5. All matches were manually confirmed by aligning sequences in Geneious; one bp 

mismatch was allowed. Matching spacers among Methanohalophilus genomes are included in 

Figure 2.9 and Appendix A. It should be noted that directionality of CRISPR arrays was not 

inferred. Links between viral sequences and Methanohalophilus were used to construct Figure 

2.9. Methanohalophilus CRISPR-Cas systems were classified by manually examining the 

CRISPR-Cas proteins of annotated contigs (114).  

2.4.8 Growth rate experiment 

Methanohalophilus WG1-DM and Methanohalophilus WG1-MB isolate cultures were 

grown on modified DSMZ 479 media (see above) with trimethylamine, dimethylamine, 

monomethylamine, and methanol as a separate carbon sources with a concentration of 5mM. 

Prior to inoculation, cells were washed anoxically using a no carbon substrate modified DSMZ 

479 media and inoculated to the same OD600 (approximately 0.15) in high salt media. A portion 

of the cells were boiled in water for 30 minutes and inoculated into the same media and 

substrates for a control. Growth curves were done in triplicate at 37C for each treatment with 

one substrate addition at the time of inoculation. Using optical density measurements at 600nm 

as an analog for microbial growth, turbidity was measured over a period of 8.5 day (206 hours). 

Isolate methane production was quantified at beginning and end time points using a Shimadzu 

(GC-2014) gas chromatograph equipped with a thermal conductivity detector (TCD) using 

helium as a carrier gas at 100°C.  
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Table 2.1 Microbial studies of hydraulically fractured shale produced fluids.   

STUDY 
ARCHAEA 

ANALYZED 
Methanohalophilus LOCATION 

FORMATION 
(# OF 

WELLS) 
METHOD 

Borton, et al. 

(2018) 
Yes Yes 

Ohio and 
West Virginia 

Marcellus (3) 
and Utica (2) 

Metagenomics 

Daly, et al. (2016) Yes Yes Pennsylvania Marcellus (1) Metagenomics 

Lipus, et al. 

(2016)* 
Yes Yes Unknown Marcellus (1) Metagenomics 

Tucker, et al. 

(2015) 
Yes Yes Pennsylvania Marcellus (4) Metagenomics 

Akob, et al. (2015) Yes Yes Pennsylvania Marcellus 
Enrichment 16S rRNA 

gene analysis 

Cluff, et al. (2014) Yes  Yes Pennsylvania Marcellus (3) 
16S rRNA gene 

analysis 

Davis, et al. (2012) No N/A Texas Barnett (2) 
16S rRNA gene 

analysis 

Fichter, et al. 

(2012) 
Yes Yes Unknown Haynesville (1) 

16S rRNA gene 
analysis 

Liang, et al. (2016) Yes Yes Texas Barnett (6) 
16S rRNA gene 

analysis 

Mohan, et al. 

(2013) a 
No N/A Pennsylvania Marcellus (1) 

16S rRNA gene 
analysis 

Mohan, et al. 

(2013) b 
Yes Yes Unknown Marcellus (1) 

Impoundment 16S 
rRNA gene analysis 

Struchtenmeyer, et 

al. (2012) 
No N/A Texas Barnett (7) 

16S rRNA gene 
analysis 

Waldron, et al. 

(2007) 
Yes Yes Michigan Antrim (8) 

Enrichment 16S rRNA 
gene analysis 

Wuchter, et al. 

(2013) 
Yes Yes Michigan Antrim (3) 

Enrichment 16S rRNA 
gene analysis 

*Reads were not deposited for these metagenomic studies, thus relative abundance could not be assessed.  
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Table 2.2 Overview of 11 Methanohalophilus genomes and their designated species and/or 
strain numbers used in this study.  

GENOME 
SIZE 
(MB) 

TYPE SOURCE ACCESSION REFERENCE 

Methanohalophilus 

euhalobius  DSMZ 10369 
1.87 Isolate 

Oil field 
Russia 

SAMN06296050 
 

this study 

Methanohalophilus 

euhalobius WG-1MB 
1.98 Isolate 

HF shale 
Ohio, USA 

SAMN06295989 
 

this study 

Methanohalophilus sp. 3-

U2 
1.89 MAG 

HF shale 
Ohio, USA 

SAMN06267276 this study 

Methanohalophilus sp. 4-

M4 
1.60 MAG 

HF shale 
West Virginia, USA 

SAMN06264872 this study 

Methanohalophilus sp. 

WG1-DM 
1.94 Isolate 

HF shale 
Ohio, USA 

SAMN07462262 
 

this study 

Methanohalophilus 

halophilus Z-7982 
2.03 Isolate 

Microbial Mat 
Shark Bay, Australia 

CP017921 L’Haridon, et al. 2017 

Methanohalophilus mahii 

SLP DSM 5219 
2.01 Isolate 

Great Salt Lake 
Utah, USA 

CP001994.1 Spring, et al. 2017 

Methanohalophilus 

portucalensis FDF-1 
2.09 Isolate 

Salt Pan 
Portugal 

CP017881.1 L’Haridon, et al. 2018 

Methanohalophilus sp. 

DAL1 
1.89 MAG 

HF shale 
Pennsylvania, USA 

SAMN05258748 
 

Lipus, et al. 2017 

Methanohalophilus sp. 2-

GBENRICH 
1.89 MAG 

HF shale 
Ohio, USA 

SAMN05172267 
 

Borton, et al. 2018 

Methanohalophilus sp. 

T328-1 
2.08 MAG 

HF shale 
Pennsylvania, USA 

 
SAMN04432769 

 
Daly, et al. 2016 
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Table 2.3 Range and optimum salinities for isolated Methanohalophilus spp. 

Methanohalophilus spp.  
OPTIMUM CHLORIDE 
CONCENTRATION 
(G/L) 

RANGE OF CHLORIDE 
CONCENTRATION 
(G/L) 

REFERENCE 

Methanohalophilus. 

portucalensis FDF-1 

77 17-123 Boone, et al. (1993) 

Methanohalophilus. mahii 

SLP 

71 N/A Paterek, et al. (1988) 

Methanohalophilus 

levihalophilus DSM 2094 

13 7-46 Katayama, et al. (2014) 

Methanohalophilus strain 

Z7302 

88 60-155 Lai, et al. (1992) 
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Figure 2.1 Methanohalophilus prevalence across shales and salinities.  

(A) Initial work using metagenomics and single marker gene analyses to identify 
microorganisms from 44 natural-gas wells distributed across several geographically distinct 
unconventional reservoir formations (Antrim, Utica, Marcellus, Barnett, Haynesville, and 
STACK). Only studies that surveyed archaeal diversity are shown. Previously published studies 
denoted by a colored circle with a diamond have time series metagenomic data with paired 
geochemical and metabolite data. Filled black circles represent studies that used 16S rRNA data 
to determine the presence of Methanohalophilus (B) SEM image of Methanohalophilus WG1-
MB isolated from flowback and produced fluids from the Utica/Point Pleasant Formation. (C) 
Methanohalophilus genome relative abundance across 5 natural-gas wells with metagenomic 
data graphed with chloride concentrations shows the salinity window (grey box) for 
Methanohalophilus occurrence in hydraulically fractured unconventional reservoir wells. Color 
of dot denotes natural-gas well and corresponds to map (A), while open circles denote absence of 
Methanohalophilus reads or scaffolds >2 kb (see methods).   
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Figure 2.2 Non-metric multidimensional scaling shows that microbial communities converge at 
late timepoints.   

Samples are colored by well and bubble size denotes time after HF. Bar graph denotes the 
percent membership of late (more than 40 days post hydraulic fracturing) microbial 
communities. Notably, Methanohalophilus, is the 11th most reoccurring member at late (>40 
after hydraulic fracturing) time points. 
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Figure 2.3 Salinity increased overtime after hydraulic fracturing. 

Chloride concentrations over time for field produced and input fluids are shown, with color 
denoting well and corresponding to Figure 2.1A (map).  
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Figure 2.4 Methanohalophilus abundance correlated to salinity. 

Methanohalophilus genome relative abundance across 5 wells with metagenomic data graphed 
with possible Methanohalophilus substrate (trimethylamine, dimethylamine, monomethylamine, 
and methanol) concentrations. Color of dot denotes well (Utica in green and Marcellus in blue, 
corresponding to Figure 2.1A).   
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Figure 2.5 Subsurface derived genomes have a different genomic signature compared to surface 
derived genomes. 

(A) Heatmap shows pairwise comparisons of average nucleotide identities (ANI) across 11 
Methanohalophilus genomes and (B) a maximum likelihood tree of 682 core genes found across 
11 Methanohalophilus genomes. Closed circles on phylogenetic tree are located at every branch 
point and represent bootstraps >99. All subsurface genomes were from hydraulically fractured 
unconventional reservoir except one, denoted by an asterisk (*). 
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Figure 2.6 Comparative genomics of surface and subsurface derived Methanohalophilus. 

Anvi’o (124) pangenome display of 11 Methanohalophilus genomes, with MAGs marked with 
an asterisk (*). Subsurface (red) versus surface (black) genomes are indicated on the left, with 
each row representing 1 genome across the entire figure. Dendrogram at the top represents the 
hierarchical clustering of gene clusters based on occurrence within each genome, with each 
vertical line representing 1 of 1,016 gene clusters. Gene clusters are grouped by Core, 
Subsurface, or Surface at the bottom. Heatmap on the right shows and all-versus-all comparison 
of the Average Nucleotide Identity (ANI) of all genomes shown, with the dendrogram on the left 
denoting the hierarchal clustering of genomes based on ANI.  
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Figure 2.7 Phylogenetic tree of 63 concatenated ribosomal proteins from Methanohalophilus and 
the genetic traits unique or shared across this genus.  

Presence and absence of selected genes in the core and flexible genome (Appendix A) are 
denoted by bubble shading (black, presence; white, absence). The source of genome denoted in 
the first column is based on bubble fill, with surface (white bubble with an X), conventional oil 
well (white bubble) and unconventional reservoir play (colored bubbles from Figure 2.1A). 
  



 45 

 

Figure 2.8 Genomic and physiological comparison of Methanohalophilus euhalobius strains. 

Two Methanohalophilus strains, Methanohalophilus euhalobius WG1-DM and 
Methanohalophilus euhalobius WG1-MB, were isolated from produced fluids originating from 
the same Utica/Point Pleasant Formation natural-gas well two days apart. These isolates are 
indistinguishable by 16S rRNA sequence, yet their genomes harbor ecologically relevant 
differences (A). Gene symbols are colored based on their genomic presence (yellow, present in 
both genomes; green, present only in Methanohalophilus euhalobius WG1-MB; blue, found only 
in Methanohalophilus euhalobius WG1 DM). (B) Methanohalophilus substrates are present in 
flowback and produced fluids. (C) Genomic inferences are validated between the two strains, as 
the growth rates of strains WG1-DM and WG1-MB are different based on substrate. Error bars 
represent one standard deviation. 
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Figure 2.9 Methanohalophilus CRISPR-Cas array comparisons.  

(A) Sequence comparisons of CRISPR-Cas arrays from two isolates from the same natural-gas 
well highlight Methanohalophilus strain level microdiversity, with spacer sequences in an array 
denoted by a box (white boxes are unique to that genome and green boxes are identical matches 
shared between genomes). Pairwise comparisons between the seven other Methanohalophilus 

genomes containing CRISPR-Cas arrays can be found in Appendix A. (B) 61 Methanohalophilus 
spacers hit to the same viral population, represented here by a 54,653 bp circular viral genome 
(virus M1_T328_scaffold_10). Predicted viral ORFs are shown and colored according to their 
annotation in the legend. From the 7 Methanohalophilus genomes that contain a spacer match to 
this virus, we show the unique viral genomic positions targeted by the spacers. The viral genome 
position is denoted by red/orange bar (colored depending on mismatches), and each 
Methanohalophilus is represented by a separate concentric circle. Red numbers in (A) identify 
the 5 spacers from WG1-MB and WG1-DM genomes that target (match) portions of the viral 
genome shown by the same red numbers in (B). 
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Chapter 3: Coupled laboratory and field investigations resolve microbial interactions that 

underpin persistence in hydraulically fractured shales2 

 

3.1 Introduction 

In 2016, natural gas became the main source of electricity in the United States—the first 

time in history that a natural resource other than coal has provided a bulk of the nation’s power 

(129). Sixty percent of the natural gas produced in the United States comes from hydraulically 

fractured shales, a majority of which is generated in Ohio, West Virginia, and Pennsylvania 

(129). Hydraulic fracturing (HF) is the high-pressure injection of water, chemical additives, and 

proppant into the earth’s subsurface to fracture hydrocarbon-bearing shales, thereby releasing 

economically important trapped natural gases. This process unintentionally creates a new 

microbial ecosystem, where a subset of surface-derived microorganisms proliferate in shales 

more than 2,500 meters below the earth’s surface (15).  

 Recent research suggests that microbial life in shales may impact gas and oil 

production efficiencies (59, 66). For instance, the persistence of methanogens in these 

ecosystems may contribute to increased biogenic methane formation by Methanohalophilus, 

while negative impacts, such as corrosion and sulfidogenesis (‘souring’), are associated with 

other prevalent microbial community members including Halanaerobium (15, 59, 62–64, 66, 

130, 131). To grow in fractured shales, microorganisms must adapt to increased salinities and 

reduced chemical conditions where fermentative metabolisms prevail (59). Given these 

 
2 This chapter was reproduced verbatim from “Borton, et al. Coupled laboratory and field investigations resolve 
microbial interactions that underpin persistence in hydraulically fractured shales. PNAS (2018)”. The text benefitted 
from writing and editing contributions from contributing authors and reviewers selected by the publisher. The 
ordering of the materials in this dissertation are consistent with the content available online but have been 
renumbered to reflect incorporation into this dissertation. 
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selective pressures, persisting shale-hosted microbial communities are constrained to several 

halotolerant members, including Halanaerobium and Methanohalophilus which co-occur 

across every fractured shale sampled to date (59). Metagenomic and metabolite analyses from 

a single well suggested that glycine betaine, an amino acid derivative, may play an important 

role as an osmoprotectant and as an energy source for these co-occurring shale organisms 

(15). However, the glycine betaine supported metabolisms employed across geographically 

and geologically distinct fractured shales remains unknown.  

 Here, we use a combination of field investigations and detailed laboratory microcosm 

experiments to define the metabolic network supported by glycine betaine. First, we sample 

glycine betaine prevalence and concentration in the field using temporally collected fluid 

samples collected from Utica and Marcellus fractured shale wells. We then established 

laboratory microcosm reactors with Utica produced fluids collected 96 days after HF and used 

proteomics to define the impacts of glycine betaine on persisting shale microbial communities. 

To extend these laboratory-discovered processes back to the field scale, we conducted the first 

paired metagenome and metabolome analysis from over 40 samples collected across five 

fractured shale wells located in the Appalachian basin. This comprehensive dataset offers unique 

insight into previously cryptic amino acid based metabolisms that may sustain life in these 

economically important ecosystems.  

3.2 Results and Discussion 

3.2.1 From the field to the lab: Constructing model shale microbial communities in the 

laboratory  

 To understand the broader importance of glycine betaine across geographically distinct 

fractured shales, we profiled glycine betaine concentrations in input (fluids injected during HF) 



 49 

and produced fluids from five shale wells sampled up to 600 days after HF (Figure 3.1, 

Appendix B-C). Glycine betaine was present in all hydraulically fractured shale wells, with two 

of the five wells showing a trend where glycine betaine is not detected in the input fluids but is 

then produced and maintained in situ (Marcellus 1 and Utica 2). For these two wells, glycine 

betaine was positively correlated to salinity (Pearson, R= 0.87, p<0.001), corroborating our prior 

hypothesis that this metabolite is likely microbially synthesized in situ to support microbial 

adaptation to brine level salinities (15). In the other three wells, glycine betaine was detected in 

the input fluids, albeit at low concentrations (>0.8 M). This could be a result of operators using 

recycled produced fluids as input fluids or the exogenous addition of glycine betaine as a 

surfactant amended to input fluids ((132), https://fracfocus.org/chemical-use). Glycine betaine 

dynamics in these wells hint at both microbial utilization and production, however it is also 

possible that glycine betaine is leached from the dissolution of shale rock (Figure 3.1).  

 To understand the possible sources and metabolic roles of this prevalent metabolite, we 

generated laboratory microcosms using produced fluids collected 96 days post HF (Utica well 2, 

Figure 3.1, red arrow). To identify the microbial sources of glycine betaine, these reactors were 

established without shale rock. Triplicate anoxic microcosms were amended with and without 

glycine betaine in a chemically undefined medium containing yeast extract (see Methods for 

recipe) and incubated for 20 days, with three time points chosen for metabolite, metagenome, 

and metaproteome analyses. Abiotic controls showed no metabolite changes through the 

experiment (Figure 3.2). Time points were collected at the beginning (T0), at maximum cell 

density on day 2 (TM), and upon substantial methane production (1.5 log fold increase from 

T0) on day 20 (TF) (Appendix C). Metagenomic sequencing facilitated the reconstruction of 

four draft genomes belonging to the genera Halanaerobium, Methanohalophilus, Geotoga, 

https://fracfocus.org/chemical-use)
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and a novel genus within the Clostridiales (Figure 3.3-3.4, Appendix C). The organisms from 

which these genomes were reconstructed were the only members of the microbial community in 

both the glycine betaine and non- glycine betaine enrichment cultures at all time points 

(Figure 3.5). This enrichment reflects the low genus-level diversity previously reported in late 

produced fluids from Utica and Marcellus shales (15, 59, 133).  

 Genomes reported here were estimated to be greater than 93% complete, with less than 

2% contamination, and contained full-length 16S rRNA genes (Appendix C). Based on the 

recently proposed Genomic Standards Consortium standards (134), the genomes recovered here 

would be considered high-quality. The unassigned Clostridiales genome is most closely related 

to Dethiosulfatibacter by 16S rRNA gene analysis (∼90% identity, SILVA) and 

Dethiosulfatibacter aminovorans by average nucleotide identity at the genome level (73.1%) 

(Figure 3.3-3.4). Following the naming convention for genomes assembled from metagenomes 

(135), we propose the genus name Candidatus Uticabacter based on the shale formation from 

which this genome was recovered. 16S rRNA gene fragments (V4 region) were identical to 

the near-complete 16S rRNA gene recovered from our Candidatus Uticabacter genome, 

suggesting that members of this genus have been previously detected in a hydraulically 

fractured shale well in the Sichuan Basin in China (NCBI SRR2094439.12567.1) (131). 

Beyond Ca. Uticabacter, the other members recovered in our laboratory genomic analyses are 

routinely reported in studies from fractured shales across the United States (74, 75, 79). For 

instance, 16S rRNA genes corresponding to Halanaerobium and Methanohalophilus co-occur 

in all but one of these 17 studies (15). Together these findings demonstrate that the 

microorganisms detected in our microcosms, and likely their metabolic interactions, are relevant 

to fractured shale ecosystems.    
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 Next, we used metagenome-resolved metaproteomics to uncover the active 

metabolisms assigned to each genus. A total of 555,973 unique peptides were recovered from 

15 metaproteomes, with an average of 37,046 unique peptides per microcosm sample 

(Appendix B-C). Across all time points and treatments, a majority of the proteins analyzed 

were from the genus Halanaerobium (63%). Proteins from other members of the microbial 

community were also detected, with 15% of total proteins from Methanohalophilus, 11% from 

Ca. Uticabacter, and 7% from Geotoga (Figure 3.1). Interestingly, overall protein content and 

taxonomic assignment could not be statistically differentiated between the glycine betaine and 

non-glycine betaine treatment at the middle time point, largely driven by the dominance and 

conserved metabolism of Halanaerobium across the two treatments. The final time point (TF) 

was statistically differentiated by treatment, with proteins from Methanohalophilus enriched 

in the glycine betaine microcosm where methane was produced in high amounts, while 

proteins assigned to Ca. Uticabacter and Geotoga were more enriched in the non-glycine 

betaine microcosm that produced significantly less methane.  

3.2.2 Osmoprotection mechanisms enabling salinity adaptation in laboratory reactors  

 Given the hypersaline conditions observed in late (>40 days post HF) produced fluids 

(Appendix B-C), we profiled microcosm metaproteomic data for evidence of osmoprotection 

strategies. While it has been well documented by our group, and others, that these organisms 

encode versatile osmoprotection strategies (15, 20, 71), the preferred mechanisms and how 

they change with extracellular availability of an osmoprotectant was unknown. Consistent 

with production and consumption patterns of glycine betaine across wells (Figure 3.1), all 

organisms in the microcosm have the potential to uptake glycine betaine, with 

Methanohalophilus exclusively utilizing the compatible solute strategy through uptake and 
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synthesis (Appendix B, Figure 3.6). From glycine, Methanohalophilus can produce glycine 

betaine through sarcosine and N-N-dimethylglycine intermediates (Appendix B). Notably, this 

pathway is expressed regardless of glycine betaine amendment, signifying that glycine betaine 

may be key to biogenic methane production in fractured shales. 

Collectively, metaproteomic data indicate that Ca. Uticabacter and Halanaerobium 

likely use the salt-in strategy through sodium/proton antiporters, while Methanohalophilus 

and Geotoga are reliant on the osmolyte strategy (Appendix B, Figure 3.6). Inferring 

osmoprotectant function from meta-omics is complicated by the fact that many transporters 

are non-specific and often these compounds can play other roles in cellular assimilation or 

energy production. Despite these challenges, our findings expand upon prior reports that 

Halanaerobium solely uses a salt-in strategy and provides proteomic evidence for the use of 

choline uptake for osmoprotection (Appendix B, Figure 3.6). Given that glycine betaine has 

multiple assimilatory (osmoprotection, nitrogen and carbon source) and dissimilatory (energy 

generation) uses and is prevalent in fractured shales (Figure 3.1), we suggest glycine betaine 

may be a keystone metabolite. Here we used glycine betaine and non-glycine betaine amended 

laboratory microcosms to investigate the ecological interactions, including predation, 

mutualism, and competition, present in fractured shale microbial communities.  

3.2.3 Viral predation and resistance is ongoing in laboratory reactors  

 To elucidate predator-prey interactions in these microcosms we identified viral genomes, 

linked these viruses to hosts, and measured their activity. Fifty-four assembled viral contigs were 

recovered and clustered into 16 unique populations, 25% of which were affiliated with the Order 

Caudovirales, while the remaining majority (75%) were taxonomically novel. Viral dynamics 

were coordinated to their host, and notably not impacted by glycine betaine amendment (Figure 



 53 

3.7, Appendix B). Two of the viral populations found in this microcosm were also previously 

reported (15) in Marcellus well 1 (Figure 3.1, Appendix B-C). This finding demonstrates the 

relevance of these laboratory enriched viruses to the shale ecosystem.  

 We detected 326 unique viral peptides from 13 of the 16 viral populations (Appendix B-

C). Most of the viral peptides were identified as proteins with unknown function (36%), 

however, peptides involved in virion production (e.g. terminase and head proteins) and viral 

integration into host genomes (e.g. resolvase and recombinase) were also detected (Figure 3.7, 

Appendix B). This expression data show that a majority of the microcosm viruses are active, and 

these include both temperate and lytic infections. Thus, fractured shale microbial communities 

are likely evolving under strong constraints exerted by a diverse set of viruses.  

 Previously we detected spacer incorporation in a Halanaerobium genome over time from 

field produced fluids (Marcellus Well 1) (15). Here we provide the first evidence for the activity 

of the CRIPSR-Cas system from deep biosphere microbial communities. Cas proteins for all 

three functional stages of adaptive immunity were expressed (adaptation, expression, 

interference, Figure 3.8) (136). Of particular importance, both Methanohalophilus and 

Halanaerobium expressed adaptive proteins for incorporating spacers into CRISPR loci (Cas1), 

as well as interference proteins for producing cognate RNAs (Cas5) that bind to and cleave the 

viral DNA (Cas 3, Methanohalophilus only) (Appendix B). The congruence between laboratory 

and field viral populations and evidence of CRISPR-Cas activity demonstrate that the strong 

viral predation captured in our laboratory microcosms reflects ongoing viral-host interactions 

maintained at the ecosystem scale. 
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3.2.4 Mutualistic interactions sustain biogenic methane production in laboratory reactors   

 Consistent with our prior metagenome findings and physiological characterizations of the 

genus (15, 86, 137), Methanohalophilus is inferred to be an obligate methylotrophic methanogen, 

lacking the capacity to utilize hydrogen or acetate. Additionally, this genome lacked the genes 

necessary to directly use quaternary amines like choline and glycine betaine (27, 28, 138). 

Halanaerobium appears to be an obligate fermenter, as the genome lacks an electron transport 

chain and terminal oxidase or reductase genes (64). We have previously suggested based solely 

on metagenomic inferences that the fermentation of the amino acid derivative glycine betaine 

will yield products sustaining methylotrophic methanogens in fractured shales (15). 

 To better elucidate this metabolic cross-feeding, we used linear discriminant analysis to 

identify and report the significant metabolisms occurring at different stages of biogenic 

methane production (LEfSe (139), Appendix B-C). Our proteomics data revealed that glycine 

betaine was fermented by Halanaerobium to yield trimethylamine (TMA) at the middle time 

point, which sustained methanogenesis at the later time point. The proteins necessary for this 

metabolic symbiosis (Halanaerobium GrdHI and Methanohalophilus MttB) were discriminating 

features of the middle and final time points respectively, and we failed to identify any other 

sources for TMA production (Figure 3.9). Other possible sources of methane include methanol 

(MtaB), monomethylamine (MtmB), and dimethylamine (MtbB) but not acetate, as 

corresponding proteins were detected for methylotrophic substrates only. Our findings are 

consistent with prior reports where methylotrophic methanogenesis is more prevalent in saline 

ecosystems, likely because this methanogenesis pathway (rather than hydrogenotrophic or 

acetoclastic alternatives) generates higher energy yields that are needed to sustain the increased 

cost of osmoprotectant synthesis (21, 59). 
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 Metabolite analysis supported the metaproteomic results, revealing that 90% of glycine 

betaine consumed in the first two days was recovered as TMA. 95% of this TMA was 

subsequently converted to methane by the last time point. Interestingly in the non- glycine 

betaine reactors, the proteomic and metabolomic patterns are similar but less prominent, with 

60% of Halanaerobium produced TMA converted to methane. The fact that glycine betaine 

metabolism occurs regardless of experimental manipulations has ramifications for in situ 

processes, as the substrate concentrations in the non-glycine betaine microcosm were similar to 

field conditions (Figure 3.1). Moreover, the synthesis of glycine betaine in the shale-free 

laboratory microcosm supports our supposition that increased glycine betaine over time in the 

field derived produced fluids was due to microbial synthesis (Figure 3.1). The ubiquity of 

Methanohalophilus across fractured shales (59) and the high efficiency of methane production 

demonstrated here indicate that methylamine methanogenesis may be active and important to 

shale natural gas production. Supporting our findings, a prior study predicted that biogenic 

methane accounted for 12% of methane produced in a shale-gas well lifetime (66). Our findings 

leave open the possibility that the augmentation of fractured shales with exogenous methyl-C1 

compounds could enhance biogenic methane production down well, analogous to acetate 

amendment techniques currently employed in coal-bed methane recovery (68).  

 We next examined the capacity for other Stickland fermentations that support 

methanogenesis. Similar to Halanaerobium, Ca. Uticabacter expressed proteins to ferment 

sarcosine (sarcosine reductase, GrdFG) (35), yielding monomethylamine that Methanohalophilus 

utilizes for methane production (Figure 3.10-3.11, Appendix C). Monomethylamine 

concentrations and necessary enzymes (MtmBC) followed the same pattern as trimethylamine 

but were significantly lower (Figures 3.2, 3.10, Appendix B). Unlike glycine betaine, sarcosine 
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does not decrease with monomethylamine formation, but rather increases over time in both 

biological treatments, suggesting microbial sarcosine production exceeds its removal (Appendix 

B). We show that mutualistic exchange of methylamines produces biogenic methane in fractured 

shale microbial communities.   

3.2.5 Untangling the Stickland fermentation network revealed substrate partitioning and 

competition in laboratory reactors 

While our field and laboratory studies indicated that glycine betaine is readily reduced 

to TMA by the prevalent and highly dominant shale bacterium Halanaerobium (59, 130), the 

amino acid electron donor for this fermentation was unknown. Our laboratory study 

illuminated the genomic potential for utilizing known Stickland electron donors and acceptors 

in a shale-derived microbial community, with the reactions and key functional genes for these 

metabolisms summarized in Table 3.1.  

Based on coupled meta-omic data from the glycine betaine enrichment, we conclude 

that lysine is likely the primary electron donor used by Halanaerobium to reduce glycine 

betaine to TMA (Figure 3.10). Using the enzyme 3,5-diaminohexanoate dehydrogenase, 

Halanaerobium is the only bacterium to oxidize lysine to acetate, butyrate and ammonia through 

crotonyl-CoA in the microcosm (Appendix B). The pattern of expression for this enzyme was 

significantly correlated to that of glycine betaine reductase (p<0.01), and metabolite 

stoichiometry demonstrated that 93% of the lysine was oxidized in the first two days during 

primary glycine betaine reduction. Of the other possible Stickland electron donors (24, 37, 140), 

lysine was in the greatest concentration, accounting for up to 17% of glycine betaine reduction, 

while other Halanaerobium Stickland donors implicated by proteomics and metabolomics 

included serine (7.2%), methionine (6.7%), glycine (4.1%) and threonine (3.8%) (Appendix B-
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C). Given that only a little more than a third of glycine betaine reduction can be accounted for 

from known amino acid reductants in the Stickland reaction, Halanaerobium also uses hydrogen 

or other currently unknown reductants as the electron donor for glycine betaine reduction. 

 Unlike lysine, which represents a non-competitive substrate for Halanaerobium, other 

Stickland electron donors are more widely used by members of the community. In addition to 

Halanaerobium, Ca. Uticabacter can also compete for glycine as a Stickland electron donor to 

support sarcosine reduction, or may use glycine as both a donor and acceptor simultaneously 

(23, 35, 36) (Appendix B). Glycine is consumed at all time points except at the last time point of 

the no-glycine betaine amendment (Figure 3.10). From proteomic and metabolite analysis, we 

infer that Geotoga is responsible for this glycine production, via operation of the glycine 

cleavage system in reverse (Figure 3.12, Appendix B), using ethylene glycol as an oxidant. 

Overall, glycine is the most interconnected metabolite based on its variety of uses in the 

microcosm community (Figure 3.12). 

 In summary, the laboratory microcosms demonstrated that glycine betaine and glycine 

have both adaptive and metabolic roles in fractured shale communities.  For instance, glycine 

betaine is synthesized and used as an osmoprotectant by Methanohalophilus, while 

Halanaerobium utilizes glycine betaine to produce energy, providing Methanohalophilus with 

substrates.  Similarly, Methanohalophilus uses glycine to synthesize glycine betaine for 

osmoprotection, while Ca. Uticabacter uses glycine to reduce sarcosine to the methanogenic 

substrate, monomethylamine. In addition to amino acids, sugars like trehalose and maltose 

can also be used as an energy source (Halanaerobium) and an osmoprotectant (Geotoga). 

Overall our study focuses on the multiple uses for amino acids (and their derivatives) in 

facilitating microorganism growth and maintenance in up to 2,500-meter deep fractured 
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shales. Also hinting at the importance of organic nitrogen to rock-hosted systems, Lloyd, et 

al. (141) demonstrated the significance of detrital proteins to supporting life in deep marine 

sediments. It is intriguing to speculate that these nitrogen transformations may be a conserved 

metabolism in the deep biosphere.    

3.2.6 New shale metabolisms and end products discovered in laboratory reactors 

 In addition to predation, mutualism, and competition, we identified non-competitive 

substrates that provide energy for a single organism. Our proteomics data 

showed Halanaerobium uniquely fermented ethanolamine (EutBCEGH) and trehalose (TrePP) 

(Figure 3.2, 3.13), with the former substrate likely relevant to shale where ethanolamine is 

provided exogenously as a corrosion inhibitor and endogenously through biomass turnover of 

cell membranes (142). Collectively, the interconnected amino acid and sugar fermentations result 

in the buildup of methane, ammonium, formate, and acetate (Figure 3.11).  Acetate was the most 

abundant produced metabolite, with the greatest production rate occurring before TM (Figure 

3.11).  As expected, Halanaerobium-mediated glycine betaine reduction was responsible for the 

increased concentration of acetate between the two treatments, accounting for 97% of the 

difference between amended and non-amended glycine betaine microcosms. Congruent with the 

observed accumulation of acetate in microcosm studies, Geotoga, Ca. Uticabacter, and 

Halanaerobium all expressed genes for acetate production, with a 4-9 fold greater expression of 

acetate kinase from Halanaerobium. Other carbon sources supporting acetate production include 

trehalose and ethanolamine fermentation by Halanaerobium and ethylene glycol fermentation 

by Halanaerobium and Geotoga, which together could explain a third of the acetate produced in 

the non-amended reactors (Appendix B-C). The fermentation of ethylene glycol may be 
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important to fractured shales in the field, where this compound is commonly added to input 

fluids for use as a gelling agent in hydraulic fracturing (https://fracfocus.org/chemical-use).  

3.2.7 Extending laboratory reactor findings to the field scale: microcosm generated hypotheses 

are validated in Appalachian Basin produced fluids 

Batch-operated laboratory microcosms more readily permitted the quantification of gas 

and metabolic waste products generated by the shale microbial consortia (Figure 3.11), allowing 

mass-balance calculations that are currently not feasible at the field scale. Key outcomes from 

our laboratory microcosms included (i) deciphering tradeoffs between osmoprotectant and 

energy use, (ii) unveiling the pervasive Stickland fermentation network, and (iii) discovering 

new interconnected metabolites that may be essential to the shale metabolic economy (Figure 

3.11). Specifically, we demonstrated that glycine betaine is a keystone metabolite that is not 

only vital to salinity adaptation, but also is fermented to TMA and acetate by Halanaerobium, 

a metabolism that subsequently fuels methane production by Methanohalophilus. Glycine was 

the most connected metabolite, with proteomics indicating use as an energy source for 

Halanaerobium Stickland reactions, transportation into the cell for osmoprotectant generation 

by Methanohalophilus, and intracellular synthesis for assimilatory purposes by Geotoga.  

To quantify the relevance of these laboratory identified processes at the field scale, we 

analyzed input and produced fluid metagenomic and metabolite data. This includes samples 

from one previously published well (n=5, (15)) and 36 samples from four additional wells 

reported here.  For each well, samples span input fracture fluids to produced fluids collected 

up to at least 300 days after HF. Along this time scale, fluids transition from freshwater to 

hypersaline (>35 chloride g/L) (Figure 3.14). From our field metagenome data, we defined 

microbial strain membership and relative abundance across the samples using a single copy, 

https://fracfocus.org/chemical-use)
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conserved marker gene, RpsC (see Methods, Appendix B-C). Across these produced fluid 

metagenomes, we identified multiple strains of Halanaerobium and Methanohalophilus (9 and 

3 strains, respectively) and a single strain of Geotoga. Ca. Uticabacter was removed from this 

analysis due to detection in less than 5 samples. For comparison, reliance on 16S rRNA gene 

diversity would have only resolved a single sequence type for each of these genera, showing 

this strain-level resolution better captured the genotypic microdiversity previously observed in 

shale fluids (15). 

Consistent with the laboratory reactor data, metabolites related to osmoprotection were 

highly correlated in produced fluids across shale wells, with glycine betaine, choline, 

sarcosine, and creatine positively correlated to chloride (Figure 3.15, Appendix B). Of these 

compounds, glycine betaine is generally regarded as the most potent osmoprotectant (20), and 

thus it is possible that sarcosine and creatine may instead support glycine betaine biosynthesis 

as outlined in the Appendix B. Given that several of these metabolites are detected in the 

input fluids and are known additives in the fracturing process (https://fracfocus.org/chemical-

use) (Figure 3.14), this finding provides further evidence that chemicals added during HF 

support life in this man-made ecosystem.  

Like our laboratory microcosms, in the field, Stickland metabolites have significant 

coordinated associations. glycine betaine was positively correlated to TMA across produced 

fluids from fractured shales, supporting the notion that this osmoprotectant can be fermented 

to yield methanogenic substrates (Figure 3.9, 3.15). Additionally, another Stickland electron 

acceptor identified in our microcosm, sarcosine, was removed concomitant with the 

production of acetate, signifying that methylamine fermentation may contribute to acetate 

buildup in shales (Figure 3.11). Using our laboratory-based proteomics findings as a guide, 

https://fracfocus.org/chemical-use)
https://fracfocus.org/chemical-use)
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and corroborating to our field metabolite data, we conclude that glycine betaine fermentation 

is likely mediated with threonine, leucine, and glycine as possible electron donors in the field. 

Lysine was not detected in produced fluids, which may suggest rapid consumption in the 

field. Similarly, hydrogen may also represent an important electron donor that cannot be 

accurately measured in the field. Alternatively, we must consider the absence of measured 

Stickland donors in the field may signify that electron donors could be an important constraint 

on microbial methane production in situ. Collectively, our field metabolite and metagenome 

data signify the ubiquity of the Stickland reaction across shale well microbial communities.  

Across the field produced fluid samples, microbial communities converge at late time 

points (>40 days after HF), despite initial differences in inoculum, well operator, or location 

(Figure 3.15). Thus, we next examined if the relative abundance of these produced fluid 

microbial communities were predictive of metabolites in the shale produced fluids. Partial 

least squares (PLS) regressions demonstrated that the produced fluid microbial community 

composition predicted the concentration of 7 metabolites in field derived fluids. These predicted 

metabolites included acetate, glycine, TMA, DMA chloride, ethanolamine, and glycine betaine 

(Figure 3.16), many of which were integral metabolites identified in our laboratory microcosms 

(Figure 3.11). However, ethanolamine was not included in Figure 3.14 or these remaining 

analyses because the correlations supporting this prediction in the field data may be spurious 

(Figure 3.16, Appendix B). 

To better resolve the microbial strains associated with shale chemistries, we ranked the 

organisms’ contribution to metabolite prediction using a Value Importance Projection (VIP) 

score to define significance (>2). A single Halanaerobium strain contributed to the predictions of 

all seven metabolites, with the top five highest VIP scores linking one strain to predictions of 
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chloride, acetate, glycine, TMA, and glycine betaine. This finding is consistent with our 

laboratory reactor inferences suggesting in saline fluids (chloride), Halanaerobium uses glycine 

to reduce glycine betaine, generating TMA and acetate. Additionally, the other three 

Halanaerobium were each predictive of different metabolite profiles, suggesting niche 

partitioning at the strain level may occur in this ecosystem.   

Other genera identified in our laboratory microcosms also had predictive value at the 

field scale. For instance, for Geotoga the highest predictive score was for glycine concentrations, 

consistent with our laboratory proteomic evidence for glycine production via the glycine 

cleavage system. Methanohalophilus, which are only detected in low abundance in persisting 

shale microbial communities, had a strain that was predictive of glycine betaine concentrations. 

This is supported by our laboratory proteomics data showing the osmoprotection by these 

methanogens may represent a microbial source for this keystone metabolite in shales. 

Alternatively, this relationship to glycine betaine could be explained by the dependency of 

Methanohalophilus on glycine betaine fermentation for the synthesis of methylamine substrates. 

Collectively, this regression-based modeling of the field collected chemical and biological data 

revealed a near perfect congruence between metabolisms active in our laboratory microcosm and 

field scale biogeochemistry across geographically and geologically distinct fractured shales.  

3.3 Conclusion 

This study demonstrates how cultivation-based investigations, coupled to high-resolution 

meta-omics in both the laboratory and field, can help establish paradigms for microorganisms 

influencing terrestrial microbial ecology and biogeochemistry. Laboratory microcosms 

minimized many of the physical, chemical, and biological confounding factors that prevent 

elucidation of metabolic interactions in the field. Results from these reactors enabled us to tease 
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apart the complex intertwined metabolisms and trade-offs that underpin even a ‘simple’ 

microbial community (Figure 3.11). Using regression-based modeling, we show that the relative 

abundance of the few bacterial taxa identified in our microcosms can predict a significant 

fraction of the carbon and nitrogen variability in hydraulically fractured shales. The Stickland 

reactions identified in this study are critical to microbial persistence, providing gene targets for 

other protein rich environments including the human gut (38) and soils (39), where the 

importance of this amino acid metabolism is largely unrealized. Since our laboratory results 

retain their applicability at the field scale, they provide a conceptual framework to better 

understand or even manipulate desired biogeochemical processes in the deep terrestrial 

biosphere. 

3.4 Materials and Methods 

3.4.1 Experimental design and sample collection 

Hydraulic fracturing input fluids and shale-produced fluids were collected from well 

heads and gas–fluid separators. These fluids were collected from 5 wells in the Utica and 

Marcellus shales, in Ohio (n=2), West Virginia (n=2), and Pennsylvania (n=1). Our earlier 

study temporally characterized geochemical and microbiological signatures of produced fluids 

collected from Marcellus well 1 (15). This study contributes geochemical and metagenomic 

data from 4 additional wells in the Utica and Marcellus shales (Appendix B-C).  

In this study, a single sample from the Utica well 2 time series was used to build microcosms 

to assess microbial interactions among shale microorganisms. The single produced fluid 

sample was collected from a gas–fluid separator in October 2014 (day 96 post hydraulic 

fracturing) from an oil-gas well in Ohio, USA. The microcosm experiment consisted of three 

treatments: 1) 5mM glycine betaine and produced fluid, 2) no glycine betaine and produced 
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fluid, and 3) 5mM glycine betaine and no produced fluid. Each treatment was done in triplicate 

and consisted of 10% anoxic, produced fluid (day 96) and 90% sterile modified DSMZ 479 

media dispensed in Balch tubes sealed with butyl rubber stoppers and aluminum crimps under 

an atmosphere of N2/CO2 (80:20, vol/vol). Before mixing with produced fluids, the modified 

DSMZ medium (per liter) included 87 g sodium chloride, 1.5 g potassium chloride, 6.0 g 

magnesium chloride, 0.4 g calcium chloride, 1.0 g ammonium chloride, 2.0 g yeast extract, 

2.0 g trypticase peptone, 0.2 g coenzyme M, 0.2 g sodium sulfide, 4.0 g sodium bicarbonate 

and brought to a pH of 7.2 using 1 mM NaOH. This undefined medium was selected for two 

reasons (i) to facilitate sufficient biomass production necessary for proteomics measurements 

and (ii) to try to capture the undefined nature of many of the compounds used in the fracturing 

process (https://fracfocus.org/chemical-use). Growth curves were done in triplicate for each 

treatment, using optical density measurements at 600nm as an analog for microbial growth 

(Appendix B-C). Microcosm methane production was quantified at every microcosm time 

point that growth was measured using a Shimadzu (GC-2014) gas chromatograph equipped 

with a thermal conductivity detector (TCD) using helium as a carrier gas at 100°C. All GC 

measurements are included in Appendix C. Samples for metagenomics, metabolites, and 

proteomics were taken at the beginning (T0), at maximum cell density on day 2 (TM), and upon 

substantial methane production on day 20 (TF) (Appendix B-C). To reflect the natural salinity 

gradient established in hydraulically fractured wells, e.g. chloride ranges from 8.3 mg/L in the 

input to 95 g/L over the 328 days of well sampling, our microcosms were established with a 

salinity of approximately 94 g/L chloride.   

https://fracfocus.org/chemical-use)
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3.4.2 Microcosm and field fluid chemistry analysis 

Twenty-one fluid samples from microcosm experiments and forty samples from Utica 

and Marcellus produced fluids were filtered (0.2 micron) at time of collection and sent to the 

Pacific Northwest National Laboratory for metabolite analysis by NMR. Samples were diluted 

by 10% (vol/vol) with 5 mM 2,2-dimethyl-2-silapentane-5-sulfonate-d6 (DSS) as an internal 

standard. All NMR spectra were collected using a Varian Direct Drive 600 MHz NMR 

spectrometer equipped with a 5 mm triple resonance salt-tolerant cold probe. The 1D 1H NMR 

spectra of all samples were processed, assigned and analyzed using Chenomx NMR Suite 8.3 

with quantification based on spectral intensities relative to the internal standard. Candidate 

metabolites present in each of the complex mixtures were determined by matching the 

chemical shift, J-coupling and intensity information of experimental NMR signals against the 

NMR signals of standard metabolites in the Chenomx library. The 1D 1H spectra were 

collected following standard Chenomx data collection guidelines (143), using a 1D nuclear 

Overhauser effect spectroscopy (NOESY) presaturation (TNNOESY)  experiment with 

65,536 complex points and at least 512 scans at 298 K. Additionally, 2D spectra 

(including 1H-13C heteronuclear single-quantum correlation spectroscopy (HSQC), 1H-1H total 

correlation spectroscopy (TOCSY)) were acquired on most of the fluid samples, aiding in the 

1D 1H assignments of acetate, ethanol, ethylene glycol, methanol and MMA. Biological 

triplicates had similar metabolite pools, with all data reported (Appendix B-C). Fluid samples 

from the no cell control were done in single and showed consistent metabolite concentrations 

throughout the experiment. NMR metabolite methods and analyses of Marcellus 1 and Utica 2 

produced fluids were reported previously in Daly et al. (15)). Here, we reanalyzed the same 

produced fluids to search for important compounds outlined by proteomics in the two wells 
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presented in Daly et al. (e.g. Lysine) and analyzed produced fluids from 3 additional wells 

(Appendix B-C). Chloride concentrations from produced fluids were obtained using a 

Thermoscientific Dionex ICS-2100 ion chromatograph and are included in Appendix C. 

3.4.3 Metagenomic sequencing and assembly 

Total nucleic acids were extracted from five microcosm samples (Inoculum (T0), 

glycine betaine + cells at TM, glycine betaine + cells at TF, No glycine betaine + cells at TM, 

and No glycine betaine + cells at TF) using the PowerSoil DNA Isolation kit (MoBio), eluted 

in 100 μl, and stored at −20 °C until sequencing. DNA for the microcosm inoculum (T0) was 

submitted for sequencing at the Genomics Shared Resource facility at The Ohio State University. 

Libraries were prepared with the Nextera XT Library System in accordance with the 

manufacturer’s instructions. Genomic DNA was sheared by sonication, and fragments were 

end-repaired. Sequencing adapters were ligated, and library fragments were amplified with 5 

cycles of PCR before solid-phase reversible immobilization (SPRI) size selection, library 

quantification and validation. Libraries were sequenced on the Illumina HiSeq 2500 platform 

and paired-end reads of 113 cycles were collected. The other 4 metagenomes were sequenced 

at the Joint Genome Institute. Briefly, libraries were created and quantified using an Illumina 

Library creation kit (KAPA Biosystems) with solid-phase reversible 402 immobilization size 

selection. Libraries were then sequenced on the Illumina HiSeq 2500 sequencing platform 

utilizing a TruSeq Rapid paired-end 404 cluster kit. DNA was extracted and sequenced from all 

produced and input fluids as outlined previously (15). All raw reads from microcosms, produced 

fluids, and input fluids were trimmed from both the 5′ and 3′ ends with Sickle, and then each 

sample was assembled individually with IDBA-UD (15, 85, 118, 144) using default parameters. 

Metagenome statistics including amount of sequencing are noted in Appendix B.  
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3.4.4 Metagenome binning and annotation for proteomics database 

All scaffolds ≥2.5 kb were included when binning genomes from the metagenomic 

assembly. Scaffolds were annotated as described previously (15). Briefly, open reading frames 

were predicted with MetaProdigal (120), and sequences were compared with USEARCH (121) 

to KEGG, UniRef90, and InterProScan (122) with single and reverse best hit (RBH) matches of 

>60 bases reported. We obtained near-complete, curated draft (>93% estimated completion, 

<1% overages) genome resolved bins using a combination of phylogenetic signal, coverage, 

and GC content, for a Halanaerobium, Ca. Uticabacter, Methanohalophilus, and Geotoga 

(Appendix B-C). As described previously (15, 144), genome completion was estimated based 

on the presence of core gene sets (Bacteria, 31 genes and Archaea, 104 genes), using 

Amphora2 (119). Contamination (gene copies >1 per bin) indicating potential misbins, along 

with GC and phylogeny, were used to manually remove potential contamination from the 

bins. Given the dominance and high strain variation in some samples, highly abundant 

genomes (>400X, bacterial and viral) often failed to assemble. To recover these genomes 

subassemblies were performed to reconstruct the dominant genomes, using 10, 5, and 1 

percent of the reads (15). Given the high strain variation, we were only able to recover a 

single near-complete Halanaerobium bin from the most abundant strain using a 1% 

subassembly. However, we know there were at least two other strains of Halanaerobium in 

the microcosm. In order to capture the most proteomic signal, we binned Halanaerobium as a 

whole from the inoculum to create a community Halanaerobium bin. This allowed us to see 

the activity of Halanaerobium as a whole in the microcosm, thus here we refer to 

Halanaerobium at the genus level. All genome statistics including 16S rRNA gene presence, 
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completion, and length are reported in Appendix B. Fasta files of nucleotide and amino acid 

sequences for each genome bin are included in Appendix C. 

Near-full-length ribosomal 16S rRNA gene sequences were reconstructed from 

unassembled Illumina reads from microcosms and input and produced fluids using EMIRGE 

(145). To reconstruct 16S rRNA gene sequences we followed the protocol with trimmed 

paired-end reads where both reads were at least 20 nucleotides used as inputs and 50 

iterations. EMIRGE sequences were chimaera checked before phylogenetic gene analyses.  

EMIRGE abundances for the microcosm experiment are shown in Figure 3.5 (SI Appendix).  

Necessary scripts and analyses to perform metagenome assembly, EMIRGE, annotation, and 

single-copy genes can be accessed from github 

(https://github.com/TheWrightonLab/metagenome_analyses).  

Viral genomes were identified from all subassemblies using VirSorter (146, 147) 

hosted on the CyVerse discovery environment (148) (Appendix C). VirSorter was ran with 

default parameters using the virome database, retaining viruses and prophage with category 1 

and 2 status. Viral genomes were then clustered using GenomeCluster hosted on the CyVerse 

discovery environment with 95% average nucleotide identity over 80% of the smallest contig 

(147). We combined the four microbial and sixteen unique viral genome bins to build the 

metagenomic database for proteomic assessment. 

3.4.5 Metaproteomic extraction, spectral analysis and data acquisition 

Liquid culture (1.2 ml) from each microcosm sample was collected anaerobically, 

centrifuged for 15 minutes at 10,000xg, separated from the supernatant, and stored at -80C until 

shipment to Pacific Northwest National Lab. Proteins in the pellet were precipitated and washed 

twice with acetone. Then the pellet was lightly dried under nitrogen. Filter Aided Sample 

https://github.com/TheWrightonLab/metagenome_analyses
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Preparation (FASP) kits were used for protein digestion according to the manufacturer’s 

instructions. Resultant peptides were snap frozen in liquid N2, digested again overnight and 

concentrated to ~30 μl using a SpeedVac (Labconco, Kansas City, MO, USA). Final peptide 

concentrations were determined using a bicinchoninic acid (BCA) assay. All mass spectrometric 

data were acquired using a Q-Exactive Plus (Thermo Scientific, Waltham, MA, USA) connected 

to an nanoACQUITY UPLC M-Class liquid chromatography system (Waters, Milford, MA, 

USA) via in-house 70cm column packed using Phenomenex Jupiter 3μm C18 particles 

(Torrence, CA, USA) and in-house built electrospray apparatus. MS/MS spectra were compared 

with the predicted protein collections using the search tool MSGF+ (149). Contaminant proteins 

typically observed in proteomics experiments were also included in the protein collections 

searched. The searches were performed using ±20 p.p.m. parent mass tolerance, parent signal 

isotope correction, partially tryptic enzymatic cleavage rules and variable oxidation of 

Methionine. In addition, a decoy sequence approach (150) was employed to assess false 

discovery rates. Data were collated using an in-house program, imported into a SQL server 

database, filtered to ~1% FDR (peptide to spectrum level) and combined at the protein level to 

provide unique peptide count (per protein) and observation count (that is, spectral count) data. 

Spectral count data for each identified protein was normalized using Normalized Spectral 

Abundance Frequency (NSAF) calculations, accounting for protein length and proteins per 

sample (Appendix C). Note, metaproteomics were not done on produced fluid samples from the 

field.  

3.4.6 Microcosm metabolic, phylogenetic and statistical analyses 

Proteins for osmoprotection (Figure 3.6, Appendix B), the Stickland reaction, and other 

metabolisms discussed were mined from the amino acid annotation files of binned genomes 
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using BLASTp with a bit score cut off of 60 (a technical homolog) and cross-checked in 

metaproteomics data. For each metabolism discussed, scaffold and gene location for genes of 

interest are included (Appendix C). If >75% percent of proteins required for a multi-subunit 

enzyme were detected in the proteomics, we gave it the status of detected in the proteome.  

Significance of activity reported was based on linear discriminant analysis effect size (LEfSe) 

(139, 151). Linear discriminant effect size (LEfSe) analysis was performed between timepoints 

(e.g. TM to TF in glycine betaine) and treatments (e.g. TM of glycine betaine to TM of no glycine 

betaine) to find features (proteins) differentially active. LEfSe combines the standard tests for 

statistical significance (Kruskal-Wallis test and pairwise Wilcoxon test) with linear discriminate 

analysis (139). It ranks features by effect size, which puts features that explain most of the 

biological difference at top. LEfSe analysis was performed at the α value of 0.05 for the Kruskal-

Wallis test and the threshold of 2 on the logarithmic LDA score for discriminative features. All 

error bars shown here are indicative of one standard deviation from the mean and all significance 

statements refer to a p-value of less than 0.05. 

Phylogenetic analyses were performed for genome bins and metagenomes using 

ribosomal S3 protein amino acid sequences (genomes and metagenomes) and 16S rRNA 

genes (genomes only). 16S rRNA genes recovered from microcosm genomes and their nearest 

neighbors (SILVA database, (152)) were aligned using MUSCLE version 3.8.31. The 

resulting alignment was manually curated and a phylogenetic tree was constructed with 

RAxML 7.2.9 (GTR Gamma nucleotide model, 100 bootstrap replicates). For the S3 protein 

tree, amino-acid sequences were pulled from the microcosm bins and augmented with 

sequences mined from NCBI and JGI-IMG databases. Sequences were aligned using 

MUSCLE version 3.8.31 and run through ProtPipeliner, a python script developed in-house 



 71 

for generation of phylogenetic trees (https://github.com/TheWrightonLab). A maximum 

likelihood phylogeny for the alignment of S3 ribosomal proteins and 16S rRNA genes was 

conducted using RAxML version 8.3.1 under the LG+α+γ model of evolution with  100 

bootstrap replicates. All phylogenetic trees were visualized in iTOL (Figures 3.3-3.4. 

3.4.7 Phylogenetic and statistical analysis of field data  

Ribosomal S3 proteins were used to track strain resolved abundance patterns across 

the hydraulic fracturing dataset (Appendix B-C). First all annotated ribosomal S3 proteins 

from 41 input and produced fluid metagenomes were pulled to build an S3 database. Then 

using Bowtie 2 (123), metagenomic reads were competitively mapped by sample to the S3 

database using zero mismatches. Strain resolved relative abundance was obtained by 

quantifying the percent of total reads that mapped divided by the length of the sequence and 

then normalizing to within each sample (https://github.com/TheWrightonLab). Strains 

included in this analysis had to have 95% of the S3 sequence covered with mapped reads. 

Ribosomal protein tree with all amino acid sequences used in this analysis was obtained using 

methods outlined above and is shown in Appendix C. 

In order to predict fluid metabolites from the microcosm microbial community, we 

used sparse Partial Least Squares (sPLS) (153, 154) as implemented in the R package 

mixOmics (155). In other words, this approach enabled us to model a relationship between 

microbial abundance and fluid chemistry traits. In addition, the predictors were ranked 

according to their Value Importance in Projection (VIP) (156). The VIP measure of a 

predictor estimates its contribution in the PLS regression. The predictors having high VIP 

values are assumed important for the PLS prediction of the response variable. The VIP values 

of the prokaryotic functional subnetworks are provided in Appendix C.  

https://github.com/TheWrightonLab
https://github.com/TheWrightonLab
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3.4.8 Viral Analyses 

We used two methods to link viral contigs to microbial hosts. First, as described 

previously, CRISPR arrays were identified in each genome bin by using the CRISPR 

recognition tool plugin in Geneious R8 (157). To link microbial hosts and viruses, we used 

BLASTn to identify viral contigs with matching spacer sequences. All matches were manually 

confirmed as perfect matches by aligning sequences in Geneious R8. Second, we used the d2
S 

hexamer frequency dissimilarity measure (158) between viral contigs and host genomes to 

predict viral-host associations. Analyses were run with 5 microcosm genomes and 16 viral 

population representatives. In all cases, the d2
S dissimilarity measure predictions were congruent 

with CRISPR spacer array linkages. 

In Figure 3.7, expressed viral proteins are divided into 7 categories: DNA/Replication, 

Lysogeny, Structure, Lysis, hypothetical, transposase, and other.  DNA/replication category 

referred to amino acid sequences associated with DNA metabolism such as DNA 

methyltransferases and helicases. Lysogeny refers to the viral lysogenic cycle and was made up 

of recombinases and resolvases.  The structural category included tail sheath proteins, 

terminases, and phage tail tape measures. The transposase category was only made up of 

transposase associated amino acid sequences, while hypothetical referred to proteins of unknown 

function or hypothetical distinction.   
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Table 3.1 Summary of Stickland half reactions. 

Compound Relevant gene Half Reaction Donor/Acceptor 

GB 
GB reductase 

(grdHI) GB  Acetyl-P + TMA Acceptor 

Sarcosine 
Sarcosine reductase 

(grdFG) 
Sarcosine  Acetyl-P + 

Monomethylamine 
Acceptor 

Glycine Glycine reductase (grdBE) 
Glycine  Acetyl-P + 

Ammonium 
Acceptor 

Lysine 
3,5 diaminohexanoate 

dehydrogenase 
(kdd) 

Lysine + NAD+   3,5 
diaminohexanoate + NADH 

Donor 

Threonine 
Threonine dehydrogenase 

(tdh) 
Threonine + NAD+  L-2-

amino-3-oxobutanoate + NADH 
Donor 

Glycine Glycine dehydrogenase 
(gvcD) 

Glycine + NAD+ Ammonium + 
CO2 + NADH 

Donor 
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Figure 3.1 Glycine betaine concentrations across five wells. 

Area plots show glycine betaine concentration trends through time across five HF wells in two 
different shale formations, with the number of samples denoted. Inocula for microcosm 
experiments were obtained from the well shown in red at the time point indicated by the red 
arrow. Data is shown from a previous study (Daly, et al.) and is indicated by the (*).Hierarchal 
clustering of microcosm experiment metaproteomes is shown for detected proteins from 50 hour 
(T2) and 425 hour (T20) time points. Stacked bars below represent each metaproteome with 
relative abundance of proteins from each organism indicated by color within each sample. Time 
point and microcosm treatment are indicated in black and grey below, respectively. 
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Figure 3.2 Microcosm metabolite concentrations over time.  

Graphs show all metabolites detected in microcosms by NMR, with all treatments shown (with 
glycine betaine= Black, no glycine betaine= grey, Media Control= blue). Points indicate 
triplicate average and error bars show one standard deviation from the mean.   
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Figure 3.3 Ribosomal S3 protein trees.  

Maximum likelihood S3 ribosomal protein trees of archaea (A) and Thermotogaceae (B), and 
Firmicutes (C), showing the taxonomic assignment of genomes from the microcosm 
experiment. S3 amino acid sequences from bins in this study are shown in orange, while 
sequences from (4) are shown in green. 
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Figure 3.4 16S rRNA gene tree.   

Maximum likelihood 16S rRNA tree, showing the taxonomic assignment of genomes from the 
microcosm experiment. 16S rRNA from bins in this study are shown in orange, while 
sequences from (4) are shown in green. 
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Figure 3.5 EMIRGE relative abundance in microcosms. 

Relative abundance by EMIRGE of all time points in the glycine betaine and non-glycine betaine 
microcosm experiments. Stacked bars are colored by organism within each metagenome. 
Organisms with >0.05% relative abundance are shown.  
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Figure 3.6 Osmoprotection strategies utilized by microcosm microbial community. 

Heatmap denotes active and potential osmoprotection strategies utilized by microcosm microbial 
community. Both salt-in and compatible solute strategies are considered. Compatible solute 
compounds found in the produced fluid Utica well time series are denoted with an asterisk (*), 
while sugar compatible solutes are shown in blue text. For multisubunit enzymes, >75% percent 
of proteins were required for detected in the proteome status. 
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Figure 3.7 Viral peptide abundance in microcosms. 

(A) Stacked bar chart denotes detected unique viral peptides per representative genome broken 
into 7 different categories (see methods). (B) Genome relative abundance of microbial hosts 
(bottom) and viral population representatives (top) are shown across time and within treatments 
(No glycine betaine and With glycine betaine shown on the left and right, respectively). Only 
viral populations with >0.1% relative abundance in at least one timepoint in glycine betaine 
microcosm are shown. Viral OTUs represented in B include 00 (Methanohalophilus, red), 02 
(Ca. Uticabacter, blue, decreasing from T0 to TF) ,10 (Halanaerobium, orange, least abundant), 
13 (Ca. Uticabacter, blue, increasing from T0 to TF), and 15 (Halanaerobium, orange, most 
abundant). 

B)

A)
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Figure 3.8 Halanaerobium and Methanohalophilus CRISPR-Cas systems. 

Halanaerobium and Methanohalophilus CRISPR-Cas system genes are shown, with 
corresponding peptides detected in proteomics highlighted in orange and red, respectively. Genes 
for adaptive immunity are denoted by functional stage, with Adaptation (A), Expression (E), and 
Interference (I) stages all represented in metaproteomic data. 
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Figure 3.9 Metabolite and metaproteomic evidence for Stickland reactions in microcosms.  

(A) Center colored pathway shows Stickland reactions from glycine betaine and sarcosine to 
TMA and methylamine (MMA) respectively, fuel methanogenesis with pathways colored by 
organism. Chemical structures are shown, with cleaved products colored. Corresponding line 
graphs shows average metabolite concentrations with standard deviation of triplicate samples 
through time colored by treatment (black= glycine betaine and grey= No glycine betaine).  Note, 
TMA is reported with a dual y-axis and all dynamics of methanogenesis substrates (TMA, DMA, 
and MMA) are shown in red boxes and acetate concentrations overtime can be found in Figure 
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3.9. Geotoga is not represented here because it does not have the potential to carry out a 
Stickland reaction. (B) Heat maps display NSAF values for proteins detected by metaproteomics 
in glycine betaine amended (top) and No glycine betaine (bottom) microcosms at the TF 
timepoint. 
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Figure 3.10 Activity of reductase systems for glycine, glycine betaine, and sarcosine in 
microcosms. 

(A) Phylogenetic analyses of GrdE (blue, glycine), GrdG (green, sarcosine), GrdI (orange, 
glycine betaine), and PrdA (red, proline) proteins from microcosm experiments showed that 
proteins clustered by substrate specificity. Halanaerobium had two active copies of glycine 
betaine reductase and Candidatus Uticabacter had an active glycine and sarcosine reductase, as 
these formed monophyletic clades with known glycine betaine, with known reducers of the 
respective methylamine substrates, Eubacterium acidominophilum and Clostridium sticklandii. 
Sequences from this study are in bold and include the genome and scaffold number followed by 
the relevant gene number(s). Bootstraps >90 are shown with closed circles at nodes. (B) 
Proteomic expression of reductases in (A) is shown by time point (x-axis) with color denoting 
reductase mechanism. Bars represent average activity of biological triplicates with standard 
deviation shown (error bars). 
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Figure 3.11 Metabolic network of interactions revealed by metaproteomics and metabolite 
analyses. 

(A) Network of Halanaerobium (orange), Methanohalophilus (red), Ca. Uticabacter (blue), and 
Geotoga (green) shows the interconnected metabolisms of shale organisms. Arrows pointing 
toward and away from microbes show utilization and production, respectively. Arrow line color 
denotes substrate utilization: red (oxidant in the Stickland reaction), blue (reductant in the 
Stickland reaction), grey (osmoprotectant). Bold black lines indicate the production of substrates 
and terminal end products are noted in black boxes. (B) Line graph shows average with standard 
deviation of triplicate metabolite concentrations through time colored by treatment (black= 
glycine betaine and grey= No glycine betaine). Abiotic control metabolite concentrations did not 
change significantly over time but showed glycine was added from media not produced fluids 
(Figure 3.2, Appendix C). 
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Figure 3.12 Glycine cleavage system.  

Schematic of the glycine cleavage system (Gvc) is shown, with all of the enzymes denoted by 
blue ovals detected in metaproteomics.    
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Figure 3.13 Ethanolamine utilization in Halanaerobium.  

(A) Pathway of ethanolamine utilization by Halanaerobium. All proteins shown were detected in 
the metaproteomics. (B) Relative quantification of ethanolamine utilization proteins. Each bar 
represents the average NSAF value for each protein (in triplicate) within each time point by 
treatment. 
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Figure 3.14 Predictions of field metabolite data with microbial abundance.  

(A) Chloride concentrations for field samples with paired metabolites and metagenomes are 
shown (n=41), with color denoting well. Above the dashed line indicates hypersaline conditions. 
Circles on the inserted map show each well’s geographic location. (B) Bar graph shows the 
prevalence of key metabolites uncovered by laboratory experiments across 41 input and 
produced fluid samples from 5 wells. Substrates are colored by metabolism (red= 
methanogenesis substrates, blue= Stickland reaction substrates). Asterisks signify metabolites 
detected in at least one of the input fluids described here.  Concentration of field metabolites that 
could be significantly predicted (sPLS regression, R2>0.3). by the field relative abundance of 
microorganisms are denoted with black boxes. Taxa from microcosm experiments that were 
significant variables (VIP values >2) in metabolite prediction are shown by connections between 
metabolites and Halanaerobium (Halan), Methanohalophilus (MH), and Geotoga (Geo), with the 
thickness of the line denoting variable importance. Top 3 predictions are shown for each strain, 
with Halanaerobium strains numbered 1-4. 
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Figure 3.15 Field scale metabolite correlations.  

(A) Nonmetric multidimensional scaling (NMDS) of microbial community abundance overlaid 
with geochemistry. All vectors show significant associations between microbial communities 
and paired sample chemistry (envfit, p-value<0.05). Samples are colored by well and bubble size 
denotes time after HF. (B) Bubble plot shows significant correlations between metabolites 
analyzed by NMR in 26 produced fluid samples collected from five HF wells, inputs were 
excluded from the analysis for clarity. Bubble color and size denotes correlation coefficients 
using colored scale bar below. 
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Figure 3.16 Correlations of measured versus sPLS predicted metabolites at field scale. 

Produced fluid microbial communities predict acetate, chloride, dimethylglycine, glycine, 
trimethylamine, and glycine betaine using sPLS. Correlations of measured versus predicted for 
each metabolite is shown (all p-values < 0.05). 
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Chapter 4: Microbial methylated amine metabolism in the gut is predictive of cardiovascular 

disease in humans 

 

4.1 Introduction 

Mounting evidence implicates the gut microbiome as a critical component of human 

health and disease, with a well-defined illustration of this relationship being the link between gut 

microorganisms and atherosclerotic cardiovascular disease (ACVD) (5–7). In particular, 

methylated amines (MAs), nitrogen-containing compounds bearing one or more methyl groups, 

are key metabolites in this disease-relevant metabolic network. Specifically, extensive evidence 

from mouse and human studies showed that trimethylamine-N-oxide (TMAO) has a strong 

clinical prognostic value for ACVD and is derived from a microorganismal pathway fueled by 

the human diet (5, 7, 47, 159, 160). This research showed that microorganisms convert diet-

derived quaternary amines, such as choline, glycine betaine, carnitine, and butyrobetaine to the 

proatherogenic metabolite trimethylamine (TMA) (Figure 4.1A, orange), a metabolite 

exclusively produced by the gut microbiota (5, 7, 47, 159). From the gut, TMA enters the 

bloodstream and host liver enzymes oxidize it to TMAO, a compound that triggers macrophage-

mediated lipid deposition and ultimately ACVD (160, 161). More recently, other biochemical 

evidence revealed alternative pathways for quaternary amine degradation that do not produce 

TMA, in which quaternary amines are instead demethylated to nonatherogenic by-products such 

as dimethylglycine and norcarnitine (Figure 4.1A, green) (25, 28, 32). By leveraging 

biochemical knowledge uncovered within the last two decades, it has become possible to piece 

together a holistic view of microbial MA metabolism in the gut. 
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 Using a combination of methods, proatherogenic (TMA-producing) and nonatherogenic 

(not TMA-producing) enzymes and their respective genes were recently discovered, and a 

handful of model microorganisms characterized (22, 25, 27, 28, 32, 34) (Figure 4.1B). In 

general, proatherogenic enzymes cleave quaternary amines to release TMA, whereas 

nonatherogenic enzymes demethylate quaternary amines and trimethylamine. TMA-producing, 

proatherogenic genes include cutC (choline-TMA-lyase) discovered in Desulfovibrio 

desulfuricans, grdI (glycine betaine reductase) in Eubacterium acidaminophilum, cntA (carnitine 

monooxygenase) in Acinetobacter baumannii, and yeaW (butyrobetaine monooxygenase) in 

Escherichia coli (22, 27, 33, 34) (Figure 4.1B). Alternatively, nonatherogenic enzymes for the 

demethylation of MAs have been identified across Bacteria and Archaea (25, 28, 32, 46). These 

non-atherogenic genes are comprised of methyltransferases that do or do not encode for amino 

acid pyrrolysine, making automated annotation difficult (31). Particularly, genes belonging to the 

MttB superfamily of trimethylamine methyltransferases that encode for pyrrolysine demethylate 

trimethylamine (mttB), while those that do not, have been shown to demethylate quaternary 

amines (mtcB and mtgB) (10, 11, 28). Likewise, dimethylamine (mtbB) and monomethylamine 

(mtmB) methyltransferases, first discovered in methylotrophic methanogens, also encode for 

pyrrolysine (Figure 4.1A) (10, 11). While these detailed studies delivered key biochemical 

knowledge, there remains to be a study that integrates these features into a comprehensive 

metabolic network, applying it to large scale datasets. Limited study of MA metabolism in the 

gut is likely due to the difficulty in accurate annotation of these genes. Bottlenecks in annotation 

occur due to lack of characterization in public databases, specificity often depends on single 

amino acid level differences, or genes are truncated due to pyrrolysine which are mistakenly 

assigned as stop codons during gene calling (22, 27, 28, 31). 
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Cultivation independent investigations of MA metabolism have been gene-focused rather 

than genome focused or considered only proatherogenic TMA producing pathways (29, 30, 162–

165). The best profiled methylamine gene across datasets is cutC, with investigations 

demonstrating that the potential for choline degradation to TMA is prevalent in 96% of HMP 

stool metagenomes (162). The impact of methylotrophic methanogens in the human gut has also 

been considered, finding that the presence of Methanomassiliicoccales mttB was associated with 

lower concentrations of fecal TMA (30). However, this same study also found an increased 

number of TMA producing pathways (cutC, grdI, and cntA) was not significantly associated with 

higher fecal TMA concentrations (30). This suggests that TMA is subject to metabolic handoffs 

across the gut microbiome and indicates that methylamine genes must be investigated within the 

context of an integrated metabolic network as well as activity measurements in order to 

understand human health outcomes. Beyond methylamine gene surveys, 16S rRNA gene and 

metagenomic studies examining the gut microbiome of patients with and without ACVD or with 

elevated levels of circulating TMAO have shown increased levels of Collinsella, Klebsiella, 

Escherichia, Prevotella, Peptostreptococcaceae, Clostridium, and Fusibacter, as well as 

increased potential for TMA-production, peptidoglycan synthesis, and degradation of fatty acids 

(6, 29). These studies also hint at genome-level differences within specific genera that may 

influence ACVD, as members of the genus Eubacterium have been associated with both control 

and ACVD patients in separate studies (7, 29, 163, 166). Despite these intellectual and 

methodological advances, published studies do not use genome-resolved approaches, measure 

microbial activity, or consider microbial interactions (e.g. cooperation and competition for 

substrates).  As a result, a systems-level understanding of MA metabolism is lacking in the 

human gut. 
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To address this knowledge gap, we built a Gut-Associated Methylated Amine database 

(GAMAdb) comprised of 6,341 microbial genomes from 13 phyla that encode genes for MA 

metabolism. Data for GAMAdb was collected through our metagenomic reconstruction of 

hundreds of near-complete genomes from 54 human gut metagenomes, and also mined from 

237,273 previously published metagenome-assembled and isolate genomes from the human gut 

(167, 168). This database was coupled to metaproteomic and metabolomic time series data from 

methylamine fed gut laboratory reactors that not only demonstrate the activity of quaternary 

amine degradation, but also indicate MA metabolism is an emergent property in gut microbial 

communities.  Beyond laboratory studies, human gut multi-omic analyses demonstrated 

predictability of disease relevant host metabolites (e.g. trimethylamine) and cardiovascular 

disease from microbial gene abundances. These datasets and analyses provide unprecedented, 

comprehensive insight into the diversity and ecology of MA metabolism that ultimately unveils 

key predictors of ACVD in the gut microbiome.  

4.2 Results and Discussion 

4.2.1 Fecal microbiota membership predicts host metabolite concentrations  

To characterize the gut microbiome in relation to quaternary amine degradation, we 

collected paired fecal and urine samples from 125 subjects at a single time point for microbial 

community and metabolite analysis (Figure 4.1C). After removal of subjects who failed to meet 

study inclusion criteria (Methods), our final cohort consisted of 113 subjects, from which we 

collected paired fecal and urine samples at a single time point for chemical and microbiological 

analyses (Figure 4.1-4.2, Appendix D). This cohort included 76 males and 37 females self-

described as healthy, with an average age of 42.3 ± 11.7 years (Figure 4.1DE). Cigarette 

smoking was reported by 60% of males and 40% females (Figure 4.1D), a smoking status 
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comparable to metabolite studies performed in this region of the United States (169). Factoring 

height and weight together, the cohort had an average Body Mass Index (BMI) of 26.4 ± 5.7, 

with 29% classified as overweight (BMI>25) and 21% classified as obese (BMI>30) (Figure 

4.1DE, 4.3). The dietary meat consumption and mean body mass index  of this cohort is 

consistent with the American average (170, 171).  

We investigated the relationship between host factors and the distribution of MA 

metabolites. From paired fecal and urine samples from each subject (n=113), we performed 

targeted metabolite analysis of quaternary amines (derived from the diet and microbial 

transformations), TMA (the key proatherogenic metabolite produced exclusively by the gut 

microbiota), and TMAO (the host produced metabolite that is prognostic of ACVD). Of the four 

quaternary amines, glycine betaine had the highest average (6.9 μM/mM ± 27.5) and maximum 

concentration (283.1 μM/mM), while butyrobetaine had the lowest average concentration (0.9 

μM/mM ± 1.2) (Figure 4.4A, Appendix D). Across the cohort, fecal TMA ranged from below 

detect to 570 nmol/gram feces, while TMAO ranged from below detection to 174.3 μM/mM in 

the urine (Figure 4.4A, 4.5). The average concentration and variance of these metabolites did not 

differ by sex or other host criteria (Figure 4.6).  

Our analyses failed to identify a significant relationship of a subject’s MA profile and 

sex, BMI category, or smoking status (Figure 4.6). Interestingly, the only non-atherogenic 

demethylation product we measured, dimethylglycine, was positively correlated to its precursor 

glycine betaine, while no relationship was observed between glycine betaine and TMA. This 

finding suggests the gut microbial community more readily demethylates this gut quaternary 

amine to an innocuous metabolite, rather than reduce it to the proatherogenic TMA. Our 
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collective metabolite results showed that quaternary amines and their microbial degradation 

products are prevalent and variable across this human cohort (Figure 4.5). 

To assess the integrated diet–microbial host cometabolism of MAs, we performed 16S 

rRNA gene sequencing on cohort fecal samples, analyzing microbial community data together 

with metabolite and host metadata. Consistent with our metabolite data, microbial community 

membership, diversity, and richness were not statistically different by methylamine profile, 

gender, smoking status, or BMI (Figure 4.7). Given that this metabolism may not be broadly 

encoded, we hypothesized that groups of organisms, rather than features of the entire 

community, could be correlated to MA metabolites. We built a network where nodes were 

microbial taxa (16S rRNA Amplicon Sequence Variants, ASV) and links represented the co-

occurrence of these taxa across our cohort. This network was then clustered into modules (n=39) 

that were correlated to host metadata to examine significant module–methylamine relationships. 

Nearly a fourth (n=9) of these modules showed a significant positive correlation to quaternary 

amines, TMA, or TMAO concentrations, of which, three modules (6,8,9) were predictive of fecal 

TMA (153), host TMAO concentrations, and even a subject’s meat consumption, further 

supporting a relationship between diet and the enrichment of specific bacterial taxa (47, 170) 

(Figure 4.4B-G). Analysis of the membership in these methylamine related modules was 

consistent with prior reports inferring positive associations between gut microbial taxa and 

ACVD risk or onset (Figure 4.4D, 4.8). For example, in mice and humans, members of 

Prevotella, Lachnospiraceae, and Ruminococcus were associated with circulating TMAO 

concentrations, while Ruminococcus had greater relative abundance in ACVD individuals (7, 29, 

163, 166). Moreover, Eubacterium limosum is a model organism for demethylating quaternary 

amine to nonatherogenic products, with demonstrated growth on carnitine, butyrobetaine, and 
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glycine betaine (25, 172) . Here we expand these findings to show that specific groups of taxa 

can predict MA concentrations in the gut, yet despite this perceived importance, the mechanisms 

underpinning these relationships are not yet realized.  

4.2.2 The GAMA-gene database comprehensively catalogs the myriad of methylamine enzymes 

encoded by the gut microbiome 

To develop a strategy for unveiling the biochemical repertoire encoded by the human gut 

microbiome, we constructed the Gut Associated Methylated Amine (GAMA) database (Figure 

4.9AB, Appendix D). Here we cataloged the microbial methylamine related genes in the feces of 

our cohort, including the metagenomic sequencing, assembly, and binning of DNA extracted 

from (i) 54 subjects and from (ii) 5 samples from methylamine-enriched laboratory reactors 

established with feces from our cohort. We also combined our data with (iii) 700 genomes from 

isolates in the Human Microbiome Project (HMP) and (iv) 237,273 gut derived metagenome-

assembled genomes (MAGs) from previously published studies (167) and (168). These later 

MAGs were compilation studies, where MAGs were accumulated across many publications 

representing many different lifestyles, disease types, and diets (167, 168). This entire genome 

collection (n=238,530) was computationally mined for genomes containing proatherogenic or 

nonatherogenic genes (Methods, Figure 4.10) to create first of its kind GAMA genome-resolved 

and gene-resolved databases. 

Despite their intriguing connections to human biology, and the vast amount of sequence 

space sampled in the human microbiome (167, 168), efforts to inventory MA genes 

computationally is impeded by the high amino acid sequence similarity within family (e.g. GrdI 

(34)), the many superfamily members with unknown functions (CutC (27)), and the presence of a 

stop codon that encodes pyrrolysine (MttB (11)). At the gene level we validated GAMAdb 
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inclusion using bioinformatic analyses to identify clusters of enzymes with shared quaternary 

amine biochemistry from their close-functionally disparate neighbors (i.e. CutC from other GRE 

(27)) (Figure 4.10). Additionally, for the proatherogenic genes we confirmed the active sites and 

assigned substrates for these that are known (Methods). An exception is the enzymes for 

carnitine (CntA) and butyrobetaine (YeaW) which we report together as specificity cannot be 

inferred from sequence information (22). In total, our well curated GAMA-gene database 

included 5,374 (1,597 unique) proatherogenic microbial genes, with cutC (choline), cntA/yeaW 

(carnitine/butyrobetaine), and grdI (glycine betaine) accounting for 25, 16, and 12 percent of the 

entire GAMA-gene database (Figure 4.9B). For each gene, this represents 3 to 12 fold more 

unique genes than was previously reported in prior studies of each individual gene (30, 45, 162) 

(Methods), demonstrating that human gut microbial communities harbor vast numbers of 

enzymes that convert quaternary amines from the diet into disease activating TMA.   

Unlike the proatherogenic genes, the substrates of the nonatherogenic MttB superfamily 

genes can only be inferred if the gene contains pyrrolysine, as these are assumed to be 

trimethylamine specific (28). For the remaining MttB superfamily sequences that could not be 

assigned a specific quaternary amine substrate, we denoted these as MtxB to indicate an 

unassigned substrate “X”, nomenclature consistent with the MttB superfamily (e.g. MtgB for 

glycine betaine (28), MtcB for carnitine (25)). While not acting directly on TMA, we included 

methyltransferase genes specific for dimethylamine (DMA, n=61) and monomethylamine 

(MMA, n=70), as methanogens in the gut convert TMA to these nonatherogenic products (10, 

11). In summary, the GAMA-gene database included 3,022 nonatherogenic genes (1434 unique) 

and was composed of 15% pyrrolysine mttB, 28% non-Pyrrolysine mttB (here denoted mtxB), 

and 4% methyltransferases for DMA and MMA in the entire GAMA-gene database. The 
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specificity of our analyses to the gut samples, coupled with the comprehensiveness afforded by 

sampling genomes independent of cultivation, ensure GAMAdb enables new avenues of research 

into microbial mechanisms for ameliorating cardiovascular disease risk.  

Of particular interest was the unprecedented sampling of nonatherogenic mttB 

superfamily gene diversity (Figure 4.9C). For context, the GAMA mttB gene content is 2.5 fold 

more than the only prior report (28), which was restricted to complete genomes, from a subset of 

cultivated organisms. Here we used a sequence similarity network to visualize the gene similarity 

across this superfamily (n=1,031 nodes), revealing 17 clusters, with the presence or absence of 

pyrrolysine most impacting cluster assignment. Within clusters, genes were most closely 

positioned based on vertical descent of their genome host, and not substrate specificity. For 

example, two experimentally verified non-pyrrolysine methyltransferases from the same 

Eubacterium genome cluster tightly in clade 8, even though one uses carnitine (25) and the other 

proline betaine (32), another quaternary amine (Figure 4.9C). Our analyses included 

biochemically characterized representatives from the non-pyrrolysine (n=3) and pyrrolysine 

containing (n=3) members of the superfamily, which collectively were assigned to two clusters 

(Figure 4.9C). Nearly 41% of the GAMA newly sampled mttB homologs reside outside these 

two clusters, and while inferred to demethylate quaternary amines, these findings highlight the 

substantial biochemical functions remaining to be elucidated in this superfamily. We note these 

yet to be described sequences are included GAMAdb to facilitate our subsequent community 

expression analyses (metatranscriptome, metaproteome) from in vivo and laboratory reactors, 

with the goal to further illuminate possible functional roles.  
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4.2.3 The GAMA-genome database uncovers gene diversity and abundance within genomes  

From the 238,530 gut derived MAG or isolate genomes from this and prior studies 

(Figure 4.11A), we discovered that the capacity to utilize MAs for energy generation was 

encoded by 3% of these gut microbial members, or 6,341 genomes (Appendix D). Broadly, 

microorganisms capable of MA metabolism were assigned to a single archaeal (all are 

methanogen associated lineages) and 12 bacterial phyla (Figure 4.9A). Bacterial members of the 

Proteobacteria and Firmicutes contained the most members, reflective of their representation in 

the original genome collection, while the phylum Desulfobacterota (containing the genera 

Bilophila and Desulfovibrio) had proportionally the most genomes when this sampling bias was 

accounted for (Figure 4.9A). This genome resolved approach provided the first genetic evidence 

for this metabolism from previously unrecognized lineages including two phyla (Synergistota, 

Spirochaetota), but also 79 new genera (25% GAMAdb) distributed across the 13 GAMA phyla 

(Methods).  One of the most powerful aspects of GAMAdb is the underlying genomic context 

which allows users to (i) compare MA gene distribution along taxonomic lines resolved at the 

genome level, (ii) interrogate MA metabolism within the metabolic capacity of a genome, and 

(iii) contextualize GAMAdb content from multi-omic datasets.  

Given that 16S rRNA taxonomy, and not genome content, is the common linkage to 

ACVD risk factors, we first sought to identify lineages that could be clearly assigned to certain 

MA metabolisms. A comparison of MA gene distribution revealed that at broad taxonomic levels 

like phylum or order, only several lineages could be classified as containing genomes that were 

exclusively proatherogenic (Fusobacteriota) or nonatherogenic (all Archaea). However, the 

associated functionality becomes more resolved at genus level, with most representatives of a 

single genus containing only genomes with atherogenic or proatherogenic gene types (Figure 
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4.11B). A notable exception is members of the Desulfovibrionaceae, which contained several 

genomes from Bilophila sp. and Desulfovibrio piger that simultaneously contained a 

nonatherogenic mtxB and/or mttB, along with an atherogenic cutC (Figure 4.11B).  

Based on these genus level generalizations, it could be tempting to justify linking 16S 

rRNA taxonomic identity of certain lineages to ACVD risk. However, our analysis demonstrate 

some critiques of this interpretation. First, many lineages that contain MA genes by genus level 

naming are not monophyletic at the genome level. For example, by 16S rRNA analysis, members 

of the genus Eubacterium were assigned to genomes in the Lachnospiraceae, Anaerovoracaceae, 

and to 4 separate lineages with Eubacteriaceae. Articulating this point, the model MA E. 

limosum (ATCC 8486) (25) is assigned to the genome-resolved genus Eubacterium, while the 

isolated E. halii is the genus Eubacterium_E of the Lachnospiraceae. While we expect this issue 

to be better resolved as 16S rRNA taxonomy becomes more tied to genome phylogeny, our 

analysis also revealed concerns for phylogenetically coherent lineages. Namely, just a because a 

genus has representatives in GAMAdb, it must be noted that not all genomes for a genus contain 

this metabolism. It is our hope that the GAMA-gene and -genome resolved view of this 

metabolism will enable more precise linkages to ACVD in the future.  

The GAMA-genome database also enables us to examine MA metabolism at the holistic, 

genome level. First, this analysis showed the variability in copy numbers for closely related 

genomes. For instance, Bilophilia is third in the number of genomes in GAMAdb but is second 

in number of genes contributed to GAMAdb because it encodes 1-5 MA genes. Similarly, 

members of the genus Eubacterium in GAMAdb range from having 7-43 genes, hinting at the 

utility of this genome in metabolizing MA compounds in the gut. For context, the model isolate 

E. limosum has 43 genes non-pyl mttB genes, whereas E.coli has only a single cutC or cntA gene 
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for MA metabolism. The maintenance of these differences in gene copies may indicate relevance 

of these metabolisms to the overall cellular energy budget, however expression analyses are 

needed to validate these inferences.  

A comparative metabolic analysis using DRAM broadly revealed the metabolic 

capacities of these GAMAdb genomes. For the genomes containing genes assigned to the MttB 

superfamily, we confirmed the presence of the methyl branch of the Wood-Lungdahl, which is 

required subsequent processing of the methyl-CoM or methyl-tetrahydrofolate produced by 

demethylation of MA (Figure 4.12). Broad analysis of energy metabolism in GAMAdb genomes 

indicated that 37% have aerobic respiratory capacity, 49% can respire anaerobically (e.g. nitrate, 

sulfate), while 51% are inferred to be obligate fermenters (Appendix D, Methods). Of the 

genomes with aerobic capacity, >75% contain proatherogenic cntA (carnitine) or yeaW 

(butyrobetaine) that encoding oxygenases active with the indicated substrate (33), hinting at 

linkages between gut inflammation as a source of reactive oxygen species and multiple disease 

states (6, 7, 173). Other broad capabilities of these genomes include the universal capacity to 

produce short chain fatty acids, which are host energy source and hormone signaling molecules 

vital for gut homeostasis (6, 174).  

4.2.4 Whole community analysis enabled by GAMA-genome database shows that potential 

methylamine utilizers are low-abundant, prevalent members of the human gut 

To understand MA metabolism in a community context, we utilized the MAGs we 

reconstructed from 54 fecal and 5 enrichment metagenomes to obtain the genome relative 

abundance profiles within the feces of each human subject (Appendix D). Here, we selected fecal 

donors based on a TMA concentration gradient, with near equal representations of samples of 

each TMA concentration by quartile (Figure 4.11C). To deeply sample this metabolism, we 
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sequenced up to 65 Gbp per sample, which is 17-800 times more than the average metagenome 

study commonly used today which has 0.08-3.8 giga-basepairs (Gbp) per sample. We evaluated 

the importance of this sequencing in MA gene recovery using a rarefaction analysis to show that 

32 Gbp is sufficient to saturate MA gene recovery, but that gene recovery of these critical-health 

related genes doubles significantly when sequencing is doubled from 4 to 8 Gbp/sample (Figure 

4.11D). Beyond sequencing depth, our approach was genome-recovery motivated, using a 

combination of sequential assemblies and coassemblies to reconstruct genomes across the dataset 

(Appendix D). Ultimately, our approach de novo reconstructed 557 medium or high quality 

MAGs (324 unique genomes). Reflecting the high quality of our gut MAGs reconstructed here, 

nearly a third of these genomes were maintained in the GAMA-genome database, a number more 

than any of the other two compilation metagenome studies, despite their increased number of 

MAGs included for consideration (Figure 4.11A).  

Reconstruction of MAGs provided more than just gene and genome representatives for 

GAMAdb, as quantification of these organisms revealed the abundance and distribution of 

genomes containing MA genes in the human gut. Mapping reads from 52 metagenomes 

uncovered the relative genome abundance profiles within each human fecal sample, and 

highlighted that genomes encoding MA metabolism were rare members, or less than 0.1% 

average relative abundance. All 15 unique MAGs with the potential for MA metabolism were 

ranked from 52-324 out of 324 genomes. In contrast to their low abundance, MAGs with the 

potential for MA metabolism were cosmopolitan in the human gut, present in every human fecal 

sample (n=52). For instance, the most abundant MA containing MAG was assigned to the genus 

Dorea, which was ranked as the 52nd most abundant member of the overall gut community with 

an average relative abundance of 0.3%, yet was present in every human. (Figure 4.11E). 
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Consistently, two thirds of our MAGs had a 50% occupancy across the sampled cohort, 

including Dorea (n=2 MAGs), Clostridium M (n=3 MAGs), Bilophilia, Oscillospiraceae sp., 

Eubacterium, Anaerovoracaceae sp., and Intestinibacter.  Of these MAGs, 2 were exclusively 

proatherogenic, 1 was exclusively nonatherogenic, and 4 had undetermined atherogenic response 

as they contained both non and pro gene types. Our findings also showed no single winner, as 

these MAGs often co-occurred in the human sample, hinting at niche partitioning and larger 

metabolic cross-feeding networks that may exist, but are currently underappreciated in the gut. 

Because these MAGs are prevalent and often co-occur, this highlights the potential substrate 

competitions handoffs that may be present in the gut microbial community. Collectively, our 

analysis reveals that keystone metabolisms which are critical for human health may not be 

encoded in the most abundant genomes, and thus require deeper sequencing than is typically 

performed, combined with targeted methods for genome recovery.  

4.2.5 Proteomic and metabolic evidence from fecal laboratory reactors reveal an active 

methylamine degrading network.  

 To understand the metabolic roles of these disease relevant quaternary amines, we 

constructed laboratory microcosms using fecal material collected from subject 74. Triplicate 

anoxic microcosms were periodically amended with 1mM glycine betaine, choline, carnitine, 

butyrobetaine, or TMA to a final addition of 30.4 μmol of substrate and incubated for 25 days 

(Figure 4.2, 4.13A, Methods). Samples were collected at the time of inoculation (T0), 13 days 

after inoculation (T1), 20 days after inoculation (T2), and at the final time point (TF), with the 

final time points chosen for paired metabolomic and metaproteomic analysis (Data File S. To 

obtain genomes relevant to these microcosms, metagenomics was performed on one microcosm 

from each substrate at the final timepoint, resulting in 78 MAGs that were incorporated into the 
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genome database described above. Recovery of methylamine genomes enhanced methylamine 

medium and high quality MAG recovery by 3-fold (Figure 4.14). These data show that these low 

abundant members of the community that may become prevalent when dosed with dietary 

relevant concentrations of quaternary amine.  

Quaternary amine addition significantly restructured the membership of the microbial 

communities over time relative to the T0 microbial communities (Figure 4.15). Specifically, 

communities fed with quaternary amines cluster together, while TMA amended microbial 

communities are more similar to the no substrate controls. NMDS analysis of methylamine gene 

metaproteomic data also revealed that among quaternary amine microcosms, carnitine and 

butyrobetaine were the most similar to each other, likely reflecting their similar chemical 

structure (Figure 4.1, 4.15).  

To contextualize the use of quaternary amines by the gut microbial community relative to 

cardiovascular disease, we profiled the metaproteome from each microcosm for methylamine 

genes with peptide recruitment and corresponding metabolite changes (Figure 4.13B-G). In the 

choline microcosm, proatherogenic choline-TMA lyase (CutC) dominates with choline being 

converted to TMA 85% from T0 to TF  (Figure 4.13C). Interestingly, choline utilization in these 

microcosms is spread among several organisms, and different replicates have different 

dominating CutC. Specifically, in one microcosm choline utilization mostly carried out by a 

novel genus of the Oscillospiraceae (21% of the peptides recruited to MA genes), while in the 

other two replicates a Clostridium M dominates (18-23% of the peptides recruited to MA genes) 

(Figure 4.13D). For all 3 replicates, a CutC belonging to a novel genus within the 

Peptococcaceae is the second most abundant (Figure 4.13D).  



 106 

Opposite of the choline microcosms, carnitine and butyrobetaine microcosms exclusively 

produce nonatherogenic demethylation products (Figure 4.13FG). Interestingly, metabolite 

profiles showed that the carnitine microcosms had both norcarnitine (direct demethylation 

product of carnitine) and dimethylaminobutyrate (indirect demethylation product by way of 

butryrobetaine). This suggests that carnitine is first being converted to butyrobetaine and then 

demethylated to dimethylaminobutyrate, which is corroborated by the peptide recruitment to 

butyrobetaine hydroxylase in the metaproteome. Also, of note is that this carnitine-amended 

microcosm does not produce TMA. Coupled to lack of CntA peptide recruitment and the loss of 

carnitine over the 25-day period, we contribute evidence for an anaerobic mechanism for the 

degradation of carnitine that does not lead to TMA. Both carnitine and butyrobetaine microcosm 

metaproteomes recruitment to GAMAdb showed that the same non-pyrrolysine containing 

methyltransferase (MtxB) from Eubacterium was the dominant protein.  

The glycine betaine-amended microcosms were the only ones to show production of both 

proatherogenic TMA and nonatherogenic dimethylglycine. For the glycine betaine microcosms, 

nonatherogenic processes dominate, with 50% of glycine betaine added demethylated to 

dimethylglycine by a Eubacterium non-pyrrolysine containing methyltransferase. TMA is less 

prevalent, with 14% being cleaved from glycine betaine primarily by Clostridium M glycine 

betaine reductase (GrdI) (Figure 4.13E). The glycine betaine enrichment highlights potential 

competition in the gut that may occur for this particular quaternary amine.  

Batch-operated laboratory microcosms coupled to the methylamine gene database more readily 

permitted the quantification metabolic by-products generated by the gut microbial consortia 

(Figure 4.13). Key outcomes included (i) unveiling the methylamine diversity harbored in the 

human gut (ii) quantification of proatherogenic and nonatherogenic metabolites by quaternary 
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amine substrate, and (iii) discovering interconnected metabolisms that may be essential to the gut 

metabolic economy.  

4.2.6 Methylamine gene database abundance profiles predict cardiovascular disease in humans 

To quantify the relevance of GAMAdb and the corresponding mechanisms uncovered in 

laboratory microcosms, we analyzed publicly available human gut metagenomic (29), 

metranscriptomic (175), and metaproteomic (176) data in light of the methylamine gene database 

(Figure 4.16A-D). Using GAMAdb nucleotide and amino acid sequences, mapping multi-omic 

data revealed that MA metabolism is harbored in more than 50% of gut samples across three 

different studies and data types. These genes were detected in every metagenome sample, 82% of 

metatranscriptomic samples, and 58% of metaproteomic samples surveyed here. Considering 

each gene type individually revealed that proatherogenic choline-trimethylamine lyase (cutC) 

and nonatherogenic non-pyrrolysine methyltransferases (mtxB) were on average most abundant 

across data types and studies, while nonatherogenic monomethylamine methyltransferase (mtmB) 

genes were the least detected.  

We next wanted to apply GAMAdb to a disease model and hypothesized that given the 

metabolism and previous published work on MA concentrations linked to ACVD that we could 

use the gut metagenome from a subject to predict that subject does or does not have 

atherosclerotic ACVD. Using gut metagenomes from a cohort of 218 individuals with 

atherosclerotic cardiovascular disease and 187 healthy controls (29), reads were mapped to the 

methylamine gene database to obtain relative abundance of genes across humans with and 

without cardiovascular disease.  Across all subjects, proatherogenic genes were more abundant 

than nonatherogenic genes, with degradation of carnitine and butyrobetaine (cntA/yeaW) having 

the highest median relative abundance across all gene types (Figure 4.16B).  For nonatherogenic 
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genes, non-Pyrrolysine containing methyltransferases (mtxB) were the most abundant. Mapping 

data also showed that a significant number of people are outliers from the mean, suggesting some 

gut microbiomes have a disproportionate abundance of these MA genes (Figure 4.16B). 

Consistent with atherogenic status defined in Figure 4.1A, when MA gene abundance of ACVD 

patients was compared to non-ACVD controls, all proatherogenic genes (cntA/yeaW, cutC, and 

grdI) were statistically increased in ACVD patients, while nonatherogenic mttB  were 

statistically decreased (Figure 4.16B).  

To quantify the relationship of these methylamine genes to cardiovascular disease, we 

used logistic regression to predict cardiovascular disease status from gene abundance.  Receiver 

operating curves demonstrate that methylamine gene abundance is significantly predictive of 

cardiovascular disease with a 71% area under the curve value (Figure 4.16E).  Comparing to the 

widely used blood markers (HDL, LDL, triglycerides), paired data show that area under the 

curve is 81%. While less, surprisingly the microbiome content was within 10% of predictions 

with traditional blood markers, demonstrating a clear role of the microbiome in ACVD.  

To better resolve the genes and specific organisms associated with cardiovascular 

disease, we ranked the genes contribution to disease prediction. The most predictive gene types 

were MttB superfamily members, revealing their potentially important role in nonatherogenic 

metabolite production from quaternary amines or TMA.  Single gene predictions using logistic 

regression showed that individual gene predictions were better than random chance >50%, but 

were not as good as all MA genes together, highlighting the importance of considering the 

overall MA metabolic network. The highest single gene prediction was with proatherogenic 

CntA/YeaW (AUC =.66) (Figure 4.16F). Beyond gene types, to assess the contribution of 

particular genes linked to MAGs in ACVD gene prediction, we ranked each GAMAdb gene 
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contribution. Notably, each proatherogenic and nonatherogenic gene type had a representative in 

the top 20 most important variables. For the predictive nonatherogenic genes, mttB and mtxB 

from Bilophila genomes were key important variables. Important proatherogenic genes included 

those from the genera Escherichia (cntA/yeaW), Klebsiella (cutC), Clostridium (grdI), and 

Pyramidobacter (grdI), as well as families of the Lachnospiraceae and Oscillospiraceae. 

Collectively, these data highlight the importance of microbial methylamine metabolism in 

cardiovascular disease and provide potential targets for microbiome based therapeutics. 

4.3 Conclusion 

The direct link between intestinal microorganisms, dietary quaternary amines, and ACVD 

risk was established less than 10 years ago (22, 25, 27, 28). While numerous biochemical 

discoveries have teased apart microbial mechanisms underpinning ACVD pathogenesis, 

relatively few studies have holistically interrogated this metabolism relative to the entire 

microbial community. By combining previously published MAGs and isolate genomes, multi-

omic informed cultivation methods, and two cohort focused analyses, we have developed 

GAMAdb, a Gut-Associated Methylated Amine database, that when applied to human gut 

metagenome datasets, is predictive of ACVD. Our work shows that the majority of known MA 

metabolism in the human gut is made up of the MttB superfamily. These genes were previously 

uncharacterized in gut metagenomes and currently have 3 biochemically characterized members. 

Analysis of these nonatherogenic genes demonstrated an alternate route for quaternary amine 

degradation, as well as contextualized these genes relative to other MA genes in the gut. 

Application of GAMAdb to different datasets and data types revealed several key players 

in the human gut MA metabolic network including Eubacterium, Bilophilia, members of the 

family Anaerovoracaceae, and Clostridium. Collectively, our study showed that these organisms 



 110 

were prevalent across humans, active in human gut metatranscriptomic and metaproteomic 

datasets, and had peptide recruitment to MA amino acid sequenced when dosed with quaternary 

amines. Specifically, microcosm experiments coupled to genome resolved metaproteomics was 

able to untangle the use of quaternary amines by a gut microbial community. Moreover, these 

anoxic microcosms showed different products for each quaternary amine, with the choline 

microcosm producing the most TMA, butyrobetaine and carnitine microcosms exclusively 

producing nonatherogenic by-products, and the glycine betaine microcosms producing both 

proatherogenic and non-atherogenic by-products. Microcosm TMA yields are consistent with 

large scale metabolomics studies showing that choline and glycine betaine are predictive of 

ACVD in humans (5, 7, 159). This study goes beyond previous inventories of MA gene content, 

by coupling high-resolution multi-omic analysis to cultivation methods, enabling quantification 

of quaternary amine degradation genome-level processes. 

Overall, this study provides critical evidence in support of an intellectual framework for 

manipulation of the microbiota to combat ACVD. Predictions of ACVD using GAMAdb show 

that both proatherogenic and nonatherogenic genes are the most important variables. Moreover, 

communities dosed with quaternary amines have the potential for nonatherogenic demethylation 

and proatherogenic degradation to TMA, indicating gut communities support both sides of MA 

metabolism. Coupled to the diversity of these genes outlined by GAMAdb, this study provides 

targets for microbiota based therapeutics. The consistency of our main findings and their high 

reproducibility among data generated here as well as other published studies suggests that 

microbiome-modulating strategies based on MA metabolism could be successfully applied on a 

population-wide basis. 
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4.4 Materials and Methods 

4.4.1 Study and Data Overview  

The current study considered samples collected from 125 individuals aged 21 years or 

older under the auspices of Dr. Alan George Smulian either at the University of Cincinnati 

College of Medicine or the University of Cincinnati Medical Center Holmes Hospital Outpatient 

Services. Each individual provided self-collected fecal and urine samples, along with data on 

medical history (e.g. antibiotic usage, recent colonoscopy), weight, age, dietary habits, and 

smoking status (Appendix D). Donor identities were stripped from the paired samples and their 

associated data and each donor assigned a unique identification number. Fecal 16S rRNA 

amplicon sequencing data were generated for the total population, while 54 samples were 

selected based for fecal metagenomic sequencing. Targeted metabolomic analyses of methylated 

amines (MAs) were carried out on both fecal and urine samples from all 125 individuals. Based 

on surveys, subjects and their corresponding samples were removed from analyses due to 

antibiotic use in the last 6 months, lack of patient information, or a colonoscopy in the last 6 

months, confining the cohort to 113 subjects. Five sets of donated samples were removed from 

analyses due to donor antibiotic use and seven were removed for lack of donor de-identified data. 

Written, informed consent was obtained from all study participants, and subject treatment and 

experiments with donated samples were approved by Institutional Review Boards of the 

University of Cincinnati and the Ohio State University. 

In this study, a single fecal sample from subject 74 was used to build microcosms to 

assess microbial interactions among guts microorganisms. The microcosm experiment consisted 

of six treatments all set up with fecal material from subject 74: (i) TMA and fecal material, (ii) 

no substrate and fecal material, (iii) glycine betaine and fecal material, (iv) carnitine and fecal 
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material, (v) butyrobetaine and fecal material, and (vi) choline and fecal material. Each treatment 

was done in triplicate and consisted of 10% anoxic, fecal slurry (10% by weight) and 90% sterile 

basal bicarbonate-buffered medium dispensed in Balch tubes sealed with butyl rubber stoppers 

and aluminum crimps under an atmosphere of N2/CO2 [80:20 (vol/vol)]. Before mixing with 

fecal slurry, the medium (per liter) included 0.25 g ammonium chloride, 0.60 g sodium 

phosphate, 0.10 potassium chloride, 2.5 g sodium bicarbonate, 10 ml DL-vitamin mixture, and 

10 ml DL-mineral mixture and was brought to a pH of 7.0 using 1 mM NaOH (14). Tubes were 

incubated at 37°C. Samples for metagenomics and metaproteomics were taken at the final (TF) 

timepoint, while 16S rRNA and metabolite samples were taken throughout the course of the 25 

day incubation (Figure 4.2, 4.13).  

4.4.2 Fecal and urine metabolite analyses 

Prior to analysis, urine samples were thawed on ice followed by centrifugation of an 

aliquot at 16100x g for 10 min in a microfuge kept at 4°C. Subsequently 467 μL of each 

supernatant was mixed with 52.5 μL of D2O and 5.3 ul of 10 mM Sodium 

trimethylsilylpropanesulfonate (DSS) (Sigma-Aldrich, St. Louis, MO). The samples were then 

transferred to 5 x 178 mm NMR tubes. 

Fecal samples were removed from the freezer and transferred to a biosafety cabinet on 

dry ice. A total of 0.2 to 0.5 g (wet weight) of frozen chips of each sample were weighed and 

transferred to a 5 ml centrifuge tube. To extract metabolites from the fecal samples, 1 ml 0.75 M 

potassium phosphate buffer (PBS buffer) in 50% D2O, pH 7.2, was added to each tube, resulting 

either 3x volume/weight dilution (for fecal samples with more than 0.3 g in wet weight) or 5x 

volume/weight dilution (for fecal samples with less than 0.3 g in wet weight) of the original 

samples. The slurries were then vortexed for a total of 3 minutes to extract metabolites. 
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Vortexing was paused several times in order to cool the sample on ice to avoid overheating. The 

vortexed samples were then centrifuged at 1000x g for 10 minutes at 4°C. The supernatant was 

transferred to a 1.5 ml microcentrifuge tube and were centrifuged again twice at 4°C (16100x g, 

10 min) to remove remaining debris. Total 200 ul of final supernatant were mixed with 100 uM 

DSS and transferred to a 3 mm x 178 mm NMR tube for NMR analysis. 

1D 1H and 2D 1H-13C HSQC NMR spectra were conducted at 298 K on a Bruker Avance 

III HD 800 MHz (Billerica, MA) at Ohio State campus chemical instrument center (CCIC) NMR 

facility. Proton NMR, about 4 min for one data set, was acquired using 1.28s acquisition time, 2s 

relaxation delay, and 64 number of scans. The water suppression was achieved using excitation 

sculpting with gradients.  2D 1H-13C HSQC was acquired with a standard Bruker pulse sequence 

in which phase-sensitive was using echo/antiecho-TPPI gradient selection.  The experiment 

parameters include ~4ms acquisition time in 13C dimension, ~80ms acquisition time in 1H 

dimension, 1s relaxation delay, 16 number of scans, 13C GARP decoupling during acquisition, 

and data matrix of 2048 X 128.  The experimental time is roughly 38 min for one data set.   

Standards with 100 uM of target metabolites (>98% purify) were analyzed under the same 

conditions. When appropriate, sample aliquots were spiked with a known concentration of a 

target metabolite in order to confirm peak assignments.  

All NMR data were processed with Bruker Topspin 3.6.1 (Billerica, MA). The data were 

typically zero-filled one time in both 1H and 13C dimension prior the application of window 

functions, followed by Fourier transformation, phasing, and baseline correction.  Chemical shifts 

were internally referenced to DSS at 0.00 ppm.  

All peak assignments were made based on standards employing commercially available 

compounds of >98% purity. Existing databases 
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(https://academic.oup.com/nar/article/46/D1/D608/4616873) and literature reports ( 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.00730765) were also used to 

assist peak assignments and metabolite identification.  For quantification purposes, integrals of 

the non-overlapping signal fragments were used. The concentration of a given metabolite were 

estimated employing standards of known concentration and comparing the integral of peaks to 

DSS. Urine metabolites were normalized to creatinine while fecal metabolites are reported per g 

wet weight.   

4.4.3 16S rRNA gene sequencing and analysis 

Total nucleic acids were extracted using the PowerSoil DNA Isolation kit (MoBio), 

eluted in 100 μl of elution buffer provided, and stored at −20 °C until sequencing. DNA was 

submitted for sequencing at Argonne National Lab at the Next Generation Sequencing facility 

using Illumina MiSeq with 2 × 251 bp paired end reads following established HMP protocols. 

Briefly, universal primers 515F and 806R were used for PCR amplification of the V4 

hypervariable region of 16S rRNA gene using 35 cycles. The 515F primer contained a unique 

sequence tag to barcode each sample. Both primers contained sequencer adapter regions. 

Reads were demultiplexed and analyzed within QIIME2 v.2018.11 (177) using DADA2 

(178) to produce an amplicon sequence variant (ASV) by sample table (Appendix D). Raw reads 

below 10,000 were discarded due to low data quality. The ASV table was analyzed using the 

statistical package “vegan” (179). Alpha diversity was calculated with the diversity function to 

investigated both richness and Shannon’s diversity. Beta diversity was calculated by analyzing 

Bray-Curtis dissimilarities using the relative abundance of samples, and then plotting these 

values with non-parametric multi-dimensional scaling (NMDS) plots in R. Both a multi response 

permutation procedure and mean dissimilarity matrix (mrpp) function and an analysis of 

file:///C:/Users/yuan.9/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/U705D10A/(https:/academic.oup.com/nar/article/46/D1/D608/4616873)
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similarities (anosim) function were calculated to determine the significance of differences 

between sample groups.  

4.4.4 Fecal metagenomic sequencing, assembly, and binning 

Total nucleic acids were extracted from five microcosm samples and 54 human fecal 

samples using the PowerSoil DNA Isolation kit (MoBio), eluted in 100 μL, and stored at −20 °C 

until sequencing. DNA was submitted for sequencing at the Genomics Shared Resource facility 

at The Ohio State University. Libraries were prepared with the Nextera XT Library System in 

accordance with the manufacturer’s instructions. Genomic DNA was sheared by sonication, and 

fragments were end-repaired. Sequencing adapters were ligated, and library fragments were 

amplified with five cycles of PCR before solid-phase reversible immobilization size selection, 

library quantification, and validation. Libraries were sequenced on the Illumina HiSeq 2500 

platform, and paired-end reads of 113 cycles were collected. All raw reads from microcosms and 

fecal samples were trimmed from both the 5′ and 3′ ends with Sickle, and then each sample was 

assembled individually with IDBA-UD  using default parameters (15, 44). Metagenome statistics 

including amount of sequencing are noted in Appendix D. 

All microcosm metagenomes (n=5) and the ten deep sequencing metagenomes (Appendix 

D) were binned using metabat2 (180) with default parameters. Bins were then assessed for 

quality using checkM (181) or Amphora . Metagenomic reads from the binned samples were 

then mapped to bins >50% completion and 10% contamination (medium or high quality bins 

(134)) 99% identity using bbmap (182). Reads that did not map to medium or high quality bins 

were then reassembled using IDBA-UD (183), completing iterative assemblies for each of the 15 

samples, until no new bins could be recovered (184). The resulting 557 bins were then 

dereplicated into 324 bins using drep (185). Abundance data reported in Figure 4.11E was based 
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on the 324 unique bins. Briefly, reads from all 54 metagenomes were mapped to 324 unique bins 

using bbmap with 90% identity. Read counts were then transformed into relative abundance, 

accounting for genome length and metagenome size.  

4.4.5 GAMAdb construction and analysis 

 Combining the 557 bins recovered in this study with (i) 700 genomes from isolates in the 

Human Microbiome Project (HMP) and (ii) 237,273 gut derived metagenome-assembled 

genomes (MAGs) from previously published studies (167, 168), we obtained 238,530 gut 

associated genomes for analysis of MA metabolic potential. As outlined in Figure 4.10, each 

gene type in Figure 4.1A was assessed separately. First, using an experimentally validated amino 

acid sequence, each gene type was searched against the predicted amino acid sequences of the 

238,530 gut associated genomes using BLAST (126), retaining sequences with >60 bitscore. For 

CutC, CntA, YeaW, and GrdI, sequences were aligned with experimentally validated reference 

sequences using muscle, and phylogenetic trees were built using RAxML. Individual gene trees 

were visualized in iTOL, and the branch containing sequences of interest were selected. For the 

remaining sequences, active residues were confirmed as outlined for CutC (27), CntA, YeaW, 

and GrdI (34, 36). Of note, is CntA and YeaW, which we report together as specificity cannot be 

inferred from sequence information alone (22). The remaining sequences with active residues 

were then incorporated into GAMA gene database, as well as their corresponding genomes into 

GAMA genome database.  

 For MttB superfamily genes that do or do not contain pyrrolysine, a different approach 

was taken due to pyrrolysine interpreted as a stop codon during gene calling (Figure 4.10) (31). 

After recovery of putative MttB homologs using amino acid BLAST (126), obtained sequences 

were length filtered to 360 bp and aligned to known MttB superfamily members. Sequences 
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longer than 360 do not contain pyrrolysine and aligned through the pyrrolysine residue were 

incorporated into the GAMA gene database as non-pyrrolysine containing MtxB, as well as their 

corresponding genomes into the GAMA genome database.  The remaining truncated genes were 

then manually called in Geneious (186) from the original genome scaffolds using the amber 

read-through option to detect pyrrolysine. The resulting sequences that encoded for pyrrolysine 

were incorporated into the GAMA gene database as pyrrolysine containing MttB, as well as their 

corresponding genomes into the GAMA genome database.  

MttB superfamily genes in GAMAdb were used to construct a sequence similarity 

network via the EFI-EST webtool (187). Networks were generated with initial edge values of 

>80%, and sequences with 100% sequence similarity were collapsed into single nodes. The 

resulting representative node network was visualized with Cytoscape 3.8 (188) using the prefuse 

force directed layout option and is showcased in Figure 4.9C. Genomes in GAMAdb were 

analyzed with GTDB-tk (189) for taxonomy, checkM (181) for quality, and DRAM (49) for 

genome annotation. All tools were ran with default parameters, with results reported in Appendix 

D.  

4.4.6 Microcosm metabolomic data acquisition and analysis 

Samples from microcosm experiments were filtered (0.2 μm) at time of collection and 

sent to the Pacific Northwest National Laboratory for metabolite analysis by NMR. Samples 

were diluted by 10% (vol/vol) with 5 mM 2,2-dimethyl-2-silapentane-5-sulfonate-d6 as an 

internal standard. All NMR spectra were collected using a Varian Direct Drive 600-MHz NMR 

spectrometer equipped with a 5-mm triple resonance salt-tolerant cold probe. The 1D 1H NMR 

spectra of all samples were processed, assigned, and analyzed using Chenomx NMR Suite 8.3 

with quantification based on spectral intensities relative to the internal standard. Candidate 



 118 

metabolites present in each of the complex mixtures were determined by matching the chemical 

shift, J-coupling, and intensity information of experimental NMR signals against the NMR 

signals of standard metabolites in the Chenomx library. The 1D 1H spectra were collected 

following standard Chenomx data collection guidelines (143), using a 1D NOESY presaturation 

(TNNOESY) experiment with 65,536 complex points and at least 512 scans at 298 K. 

Additionally, 2D spectra (including 1H–13C heteronuclear single-quantum correlation 

spectroscopy, 1H-1H total correlation spectroscopy) were acquired on most of the fluid samples. 

Biological triplicates had similar metabolite pools, with all data reported (Appendix D). Fluid 

samples from the no-cell control were done in single and showed consistent metabolite 

concentrations throughout the experiment.  

4.4.7 Microcosm metaproteomic extraction, spectral analysis, and data acquisition  

Liquid culture (1.2 mL) from each microcosm sample was collected anaerobically, 

centrifuged for 15 min at 10,000 × g, separated from the supernatant, and stored at −80 °C until 

shipment to Pacific Northwest National Laboratory. Proteins in the pellet were precipitated and 

washed twice with acetone. Then the pellet was lightly dried under nitrogen. Filter-aided sample 

preparation kits were used for protein digestion according to the manufacturer’s instructions. 

Resultant peptides were snap-frozen in liquid N2, digested again overnight, and concentrated to ∼30 μL using a SpeedVac (Labconco). Final peptide concentrations were determined using a 

bicinchoninic acid assay. All mass-spectrometric data were acquired using a Q-Exactive Plus 

(Thermo Scientific) connected to an nanoACQUITY UPLC M-Class liquid chromatography 

system (Waters) via in-house 70-cm column packed using Phenomenex Jupiter 3-μm C18 

particles and in-house built electrospray apparatus. MS/MS spectra were compared with the 

predicted protein collections using the search tool MSGF+ (149). Contaminant proteins typically 
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observed in proteomics experiments were also included in the protein collections searched. The 

searches were performed using ±20-ppm parent mass tolerance, parent signal isotope correction, 

partially tryptic enzymatic cleavage rules, and variable oxidation of methionine. In addition, a 

decoy sequence approach (150) was employed to assess false-discovery rates. Data were collated 

using an in-house program, imported into a SQL server database, filtered to ∼1% false-discovery 

rate (peptide to spectrum level), and combined at the protein level to provide unique peptide 

count (per protein) and observation count (that is, spectral count) data. Spectral count data for 

each identified protein was normalized using normalized spectral abundance frequency (NSAF) 

calculations, accounting for protein length and proteins per sample (Appendix D). Note that 

metaproteomics were not done on raw fecal samples. Metaproteomes were mapped to 

dereplicated GAMAdb predicted amino acid sequences, as well as predicted amino acid 

sequences of MAGs recovered from this study.  

4.4.8 CVD prediction from human gut metagenomic data 

All reads were downloaded from EBI from Jie, et al., a study of metagenomes from 218 

individuals with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls (29). 

Adapters were stripped using bbduk.sh with the parameters ktrim=r, k=23, mink=11, hdist=1. 

Reads were trimmed using sickle with default parameters. Reads were mapped to GAMAdb 

genes using bbmap.sh (bbtools suite (182)) using perfectmode=t and ambiguous=random. 

Counts were extracted from the bbmap covstats output and compiled into a table. The counts 

were then transformed to geTMMs (190). 

GeTMMs were then used in a logistic regression model using scikit-learn (191) to predict 

ACVD status (0=No ACVD, 1=ACVD) as designated in (29). Models were evaluated using 

stratified 10 fold cross-validation with mean false positive and true positive rates reported and 
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used to calculate the area under the receiver operator characteristic curve (AUC-ROC) (192). 

Additionally models were trained based on gene type where the geTMMs of all genes of the 

same type were summed per sample and then used in the same model and based on methylating 

or demethylating. We also used each gene type also to evaluate the model using the summed per 

sample gene abundances for each gene only as the input to the model. Finally, to compare to the 

classification of blood marker levels we built a model of ACVD status using triglyceride 

mmol/L, LDL mmol/L and HDL mmol/L from (29) using the sample model structure. 

4.4.9 Transcriptome mapping of published data 

All reads were downloaded from EBI from Abu-Ali, et al. (175, 193), a study of 

metatranscriptomes from adult men. Adapters were stripped using bbduk.sh with the parameters 

ktrim=r, k=23, mink=11, hdist=1. Reads were trimmed using sickle with default parameters. 

Reads were mapped to GAMAdb genes using bbmap.sh (bbtools suite (182)) using 

perfectmode=t and ambiguous=random. Counts were extracted from the bbmap covstats output 

and compiled into a table. The counts were then transformed to geTMMs (190). 

4.4.10 Proteome mapping of published data 

All proteome .mgf files were downloaded from Lloyd-Price, et al. (176). Files were then 

searched against the GAMAdb using MSGF+ (149) using the parameters inst 3, tda 1, ti 1,3, ntt 

1 and maxLength 50. After the search files were converted to TSVs using the parameter 

showDecoy 1. To determine hits, first all hits with a pep q-value greater than removed. Then for 

each sample proteins with more than one peptide hit were identified. This list of proteins per 

sample were the ones considered present. 
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Table 4.1 Overview of methylated amine genes and reactions. 

Methylated amine related genes from Figure 4.1A, noting the full reaction and citation (10, 11, 22, 
25, 27, 28, 32, 34, 47) for each gene product. Asterisk (*) notes MtxB, which are 
methyltransferases from the MttB superfamlity capable of quaternary amine demethylation. The 
substrate specificity for the proteins encoded by three of these genes has recently been published 
(mtgB, mtpB, and mtcB), demonstrating the potential for quaternary amine demethylation.  
 

GENE REACTION PUBLICATION 

cutC choline –> trimethylamine + acetaldehyde Craciun & Balskus (2012)  

grdI glycine betaine –> trimethylamine + acetate Meyer, et al. (1995)  

cntA carnitine + oxygen –> trimethylamine + malate Zhu, et al. (2014) 

yeaW butyrobetaine + oxygen –> trimethylamine + succinate Koeth, et al. (2014)  

mtgB glycine betaine + cob(I)alamin –> dimethylglycine + methylcobalamin Ticak, et al. (2014)  

mtcB carnitine + cob(I)alamin –> norcarnitine + methylcobalamin Kountz, et al. (2020)  

mttB trimethylamine + cob(I)alamin –> dimethylamine + methylcobalamin Ferguson & Krzycki (1997)  

mtbB dimethylamine + cob(I)alamin –> monomethylamine + methylcobalamin Paul, et al. (2000) 

mtmB monomethylamine + cob(I)alamin –> ammonium + methylcobalamin James, et al. (2001) 

mtxB* 
quaternary amine + cob(I)alamin –> demethylated quaternary amine + 

methylcobalamin 

Ticak, et al. (2014), Picking, et al. 
(2019), 

Kountz, et al. (2020) 
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Figure 4.1 Interrogation of methylated amine metabolism in the human gut of 125 subjects using 
multi-omics analyses.  

(A) Overview of microbial methylated amine (MA) metabolism in the human gut leading to 
proatherogenic (shown in orange) and nonatherogenic (shown in green) metabolites. Genes in the 
MttB superfamily are shaded in grey, while those encoding a pyrrolysine residue are noted with 
an asterisk. Abbreviations for metabolites are as follows- GB: Glycine Betaine, Carn: Carnitine, 
BB: Butyrobetaine, DMA: Dimethylamine, and MMA: Monomethylamine. Genes showcased in 
this figure are cited in Table 4.1. (B) Table of MA related genes from Figure 4.1A, noting the 
model organism and year discovered. Asterisk (*) notes genes that encode for pyrrolysine. (C) 
Outline of analyses performed on 125 human subjects. Twelve subjects were removed from all 
downstream analysis due to antibiotic use or a colonoscopy in the last six months, constraining the 
cohort to 113 humans. All further analyses were carried out with the resulting cohort of 113 human 
subjects. (D) Bar chart showing cohort statistics including sex, smoking status, and BMI category 
of 113 human subjects. E) Boxplots denote the inner quartile range and median values of age, 
weight, and BMI statistics across the cohort (n=113). Points above or below boxplots signify 
outliers, or values outside of the upper or lower quartile. 
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Figure 4.2 Overall experimental design.  

Outlines of the objectives for each experiment carried out to interrogate microbial methylamine 
metabolism in the gut.  
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Figure 4.3 Boxplots of human metadata by sex.  

Boxes represent the inner quartile range, while points represent outliers.   
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Figure 4.4 Combined community and metabolite analyses reveal microbial subnetworks are 
predictive of metabolite concentration in the gut.  

(A) Boxplots denote the inner quartile range and median log transformed values of fecal and 
urine MA concentrations across the cohort, with the non-log transformed range of metabolite 
concentrations stated. Metabolite names and boxplots are colored by proatherogenic (orange) or 
non-atherogenic (green), while other MAs are black. (B) Weighted gene coexpression network 
analysis (WGCNA) revealed that 9 modules are significantly correlated to key MA metabolites, 
labeled 1-9. Colored circles, or nodes, denote features (n=170) within each module (clusters of 
nodes), with grey lines between features corresponding to intramodule connections. Shading 
behind modules denotes positive correlations between modules and metabolites. Grey shading 
notes a significant correlation, while red shading notes module is significantly correlated, as well 
as predictive of metabolite concentration by Sparse Partial Least Squares (SPLS) analysis. (C) 
Heatmap shows significant correlations of microbial modules determined by WGCNA to host 
and metabolite data for a cohort of 113 subjects, with CVD promoting metabolites shown in 
orange text. Subnetworks that were predictive of host TMA, TMAO, and meat consumption are 
highlighted by a red box and asterisk (*). Module numbers correspond to module numbers in 
(Figure 4.4B). (D) Bar chart summarizes the ASV genus level taxonomy of the nine WGCNA 
modules correlated to methylated amine compounds or meat consumption (Figure 4.4B), with 
genera that had two or more ASVs present across the nine subnetworks shown. Single microbial 
subnetworks are strongly associated to TMA-N-oxide (E), TMA (F), and meat consumption (G). 
The WGCNA approach directly links subnetworks to environmental parameters, i.e. the more the 
features contribute to the subnetwork structure (topology), the more their abundance are 
correlated to the parameter. This measure allows to identify subnetworks for which the overall 
structure, summarized as the eigen vector of the subnetwork, is related to the host metabolites. 
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Figure 4.5 Methylated amine concentrations across human subjects. 

Heatmap shows the normalized concentration of methylated amine metabolites across urine and 
fecal samples, with proatherogenic metabolites shown in orange text and nonatherogenic 
metabolites shown in green. Samples are ordered left to right by increasing TMA concentrations, 
with fecal samples chosen for metagenomic sequencing noted at the bottom by black and white 
boxes. Corresponding urine TMAO concentrations are denoted by the black bar chart at the top of 
the heatmap. 
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Figure 4.6 Host metadata correlations.  

Principle component analysis of methylated amine metabolite concentrations is shown (A-C), 
with each point colored by (A) Sex, (B) Smoking status, and (C) BMI category. Scatter plots 
show the first two principle components of the metabolite data, which together account for 55% 
of the total variation in the metabolite data. (D) Correlation plot shows the only significant 
correlations (p-value<0.05) among host metadata and metabolite concentrations. Circles are 
colored and sized by the correlation R value. 
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Figure 4.7 Microbial community diversity statistic across the human cohort.  

(A-D) The relative similarity of microbial communities across humans was examined by 
calculating a Bray-Curtis dissimilarity matrix and visualized using non-metric multidimensional 
scaling (NMDS) in two dimensions. This ordination is colored by several 4 host factors (A-D) and 
shows that overall structure and membership of the human gut microbial communities examined 
in this study were not significantly different by sex (A), BMI category (B), smoking status (C), or 
meat consumption (D). (E) Bar chart shows Shannon’s diversity index of cohort (n=113), with 
each bar representing one gut microbial community. Bars are colored by sex and labeled by BMI 
category on the x-axis.  
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Figure 4.8 Weighted Gene Co-expression Network Analysis (WGCNA)  subnetwork 
membership shown in Figure 4.4.  

Stacked bar chart of WGCNA subnetwork membership by Phylum for the 9 subnetworks 
correlated to methylated amine concentrations.  
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Figure 4.9 Gut- Associated MethylAmine database (GAMAdb) uncovers diversity of MA 
metabolism in the gut.  

(A) Bubble plot shows taxonomy levels defined by GTDB-Tk (left to right: Domain, Phylum, 
Class, Order, Family) of isolate genomes and MAGs represented in GAMAdb, with bubble size 
denoting number of genomes and bubble color denoting proatherogenic and nonatherogenic 
status as outlined in Figure 4.1.  (B) Bar chart highlights the number of genes by type in 
GAMAdb, with bars noting the number of dereplicated genes in black. (C) A sequence similarity 
network of the MttB superfamily was constructed such that all nodes are connected by an edge if 
the pairwise sequence similarity is >80% sequence identity. Each of the 1,031 nodes represents 
one or more genes in GAMAdb, with identical genes (100% amino acid identity) collapsed into 
single nodes. Nodes are colored by the phylum and outline signifies previously characterized 
genes (yellow) and detection in reactor metaproteome (red, described below). 



 131 

 

 
Figure 4.10 Bioinformatic workflow for building GAMAdb.  
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Figure 4.11 Prevalence and abundance of methylated amine utilizers.  

(A) Barchart showcases the source of 6,341 genomes encoding MA metabolism in GAMAdb 
(grey bars) retrieved from a larger set of 238,530 MAGs, as well as the percent unique genomes 
that remained in GAMAdb (blue bars). (B) Summarized by genus, barcharts note the total 
number of genomes in GAMAdb, total MA genes, and number of MA genes per genome, with 
the top 20 represented genera shown. Bars are colored by proatherogenic (orange) or 
nonatherogenic (green), or both (grey) to show if all members encode a particular gene type as 
defined in Figure 4.1. (C) Boxplot shows the inner quartile range and median of fecal TMA 
concentrations across the cohort, with points representing individual subject TMA concentration 
and colored by metagenomic sequencing of corresponding microbial community. (D) 
Rarefaction curve (top) and corresponding stacked bar chart (bottom) represent a subsampling of 
the reads from 54 human gut metagenomes in this study mapped to the methylamine gene 
database. Methylamine gene count for both graphs represents the number of unique genes 
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detected in each subsampled dataset. Most recent microbiome studies to date have sequencing 
depth less than 4Gbp and shows what methylamine genes would be missed at lower sequencing 
depths. (E) Heatmap shows presence and absence of 325 genomes recovered from each human 
metagenome (n=52), with genomes containing methylated amine genes highlighted in red and 
genus specified at the bottom. Bar graphs at the top of the heatmap denote average relative 
abundance (top) and occupancy (bottom) of each genome across 52 human metagenomes. 
Genomes across all three graphs are ordered by average relative abundance to show rank of each 
genome.   
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Figure 4.12 Incorporation of demethylation by-product, methyl-THF, into the Wood-Lungdahl 
pathway (26, 28).  
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Figure 4.13 Enriched fecal microbial communities degraded methylated amines.  

(A) Diagram shows the enrichment experimental design, including treatments and sampling 
scheme. Using fecal material from Subject 74, 6 enrichment types were started in triplicate and 
sampled periodically over 25 days. Timeline denotes points at which samples were taken for 
each multi-omic analysis with grey boxes. (B) Bubble plot displays the relative abundance (circle 
size) of methylated amine gene entries in GAMAdb determined by peptide recruitment for each 
replicate of each microcosm using metaproteomics. Bubbles represent one amino acid sequence 
in the database and are colored by GTDB-Tk family level taxonomy. The full bubble plot 
including TMA and no substrate controls are shown in Figure S11. (C) Area plots show the 
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relevant methylamine metabolite concentrations over time in the microcosms, with curve colored 
by substrate added (grey), proatherogenic metabolite TMA (orange), or nonatherogenic 
metabolite(s) (green). (D-G) Boxplots show the top four detected GAMAdb entries by 
metaproteomics for each enrichment, with points and boxplots colored by pro- and non-
atherogenic. Boxplots are labeled by genus. Asterisks note a single Eubacterium that were active 
in two separate microcosms.   
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Figure 4.14 Rank abundance curve of all unique MAGs recovered in this study in humans and 
microcosm experiments. 

Rank abundance curve of all 324 unique MAGs recovered in this study shows average relative 
abundance of each genome across humans in black, with corresponding abundance of the same 
genomes in the microbial communities enriched with QAs in red. Genome phylum is denoted 
along the bottom of the rank abundance curve. Genomes with the potential for methylamine 
metabolism, as defined in Figure 4.1A are highlighted with the genus name and colored by 
Phylum.  
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Figure 4.15 Microbial community response to methylamine addition. 

(A) NMDS showing the microbial response to different methylamine additions over time, with 
each point representing one microbial community at a given point in time.  Points are sized by 
timepoint and colored by methylamine addition. (B) NMDS displaying the difference between 
methylamine gene metaproteomic content among microcosms at the final timepoint. 
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Figure 4.16 GAMAdb genes predict Atherosclerotic CardioVascular Disease (ACVD) in 
humans. 

(A) Bar chart denotes the percentage of samples per study that members of GAMAdb is present 
or active. Studies include metagenomic data from a cohort of 218 individuals with 
atherosclerotic cardiovascular disease and 187 healthy controls (29), metatranscriptomic data 
from 361 adult men (193), and metaproteomic data from longitudinal sampling of 132 patients 
with irritable bowel syndrome (176). (B) Boxplots show the presence of GAMAdb genes in 
ACVD patients or non-ACVD patient control metagenomes from Jie, et al. Gene names are 
colored by proatherogenic (orange) and nonatherogenic (green) as outlined in Figure 4.1A, and 
boxplots are colored by ACVD (red) or no ACVD (grey). Double asterisk below gene name 
indicates significant difference of gene abundance between ACVD and non-ACVD controls. (C) 
Boxplots show the detection of GAMAdb genes in metatranscriptomics from 361 adult men 
from Abu-Ali, et al. Genes are colored by proatherogenic (orange) and nonatherogenic (green). 
(D) Boxplots show the detection of GAMAdb genes in metaproteomics from 132 patients with 
irritable bowel syndrome from Lloyd-Price, et al. (176). Genes are colored by proatherogenic 
(orange) and nonatherogenic (green). (E) Using gut metagenomes from a cohort of 218 
individuals with atherosclerotic cardiovascular disease and 187 healthy controls (Jie, et al.), 
reads were mapped to the methylamine genome database. ROC curves show the ability of blood 
markers (LDL, HDL, and triglycerides), gene type (yellow), or each GAMAdb entry mapping 
(all mappings, red) to predict CVD status in humans. (F) Bar chart shows mean area under curve 
(AUC) for individual gene predictions.  
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Chapter 5: Conclusion 

 
 

The collective aim of this dissertation was to piece together MA metabolism across 

microbial environments to uncover the diversity and interconnectedness of these metabolic 

processes, but also understand how the environmental context shaped these metabolisms. By 

interrogating microbial communities using a suite of multi-omics methods across a range of 

scales in two ecosystems, this overarching aim was met. In hydraulically fractured shales, 

microbial abundance patterns of MA cycling microorganisms were able to predict in situ 

metabolite concentrations at the field scale (Chapter 2-3). In the human gut, abundance patterns 

of MA genes in fecal metagenomes were able to predict cardiovascular disease status in humans 

(Chapter 4). Chapters 2-4 have defined the MA reactions relevant to hydraulically fractured 

shales and human guts, knowledge that can be leveraged for genome scale metabolic models that 

account for MA metabolism. 

Beyond the contents in this dissertation, I also contributed my knowledge of MA 

metabolism to other systems, including wetlands soils (14) and prairie pothole lakes (19). 

Additionally, further reports by other groups documenting this metabolism have increased since 

the start of this dissertation, further solidifying the prevalence of this microbial metabolism 

across ecosystems. To provide this broader ecosystem context of MA metabolism, the following 

paragraphs summarize other studies in which I or others have interrogated MA metabolism.  

Wetland soils are one of the largest natural contributors to methane emissions, yet current 

biogeochemical models of methanogenesis exclude methylotrophic sources, focusing instead 

only on hydrogenotrophic and acetoclastic methanogens (194, 195). There is growing body of 

research that suggests in certain soils and lake systems, methylotrophic metabolism may be 
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important to overall methane flux (12, 14). To understand the contributions of MAs to methane 

production in mineral, freshwater, hydric soils, we integrated laboratory and field experiments 

for methylotrophic methanogenesis in Old Woman Creek (OWC), a temperate freshwater 

wetland located in Ohio, USA (14). Our multi-omic results demonstrated that methylotrophic 

methanogens of the family Methanomassiliicoccaceae were present and active in a freshwater 

wetland, with metatranscripts indicating that methanol, not methylamines, was the likely 

substrate under the conditions measured here (14). However, laboratory experiments indicated 

the potential for other methanogens to become enriched in response to trimethylamine, revealing 

the reservoir of methylotrophic methanogenesis harbored in these soils is likely much more vast 

than we could measure under discrete field scales (14). Consistent with our findings, other 

studies have also shown the potential for methylotrophic methanogenesis in wetlands through 

isolation or enrichment studies (196, 197). 

Other freshwater terrestrial ecosystems, such as the Prairie Pothole Region of North 

America, composed of millions of small wetlands also has measurable concentrations of 

methylated amines in soil porewater (19, 198). To understand the role of MAs in this freshwater 

terrestrial ecosystem, 18 sediment samples were collected for metagenomics from two adjacent 

wetlands in the Prairie Pothole Region, which were paired to metabolite analysis confirming the 

presence of MAs. Genomes recovered from this metagenomic study revealed the potential for 

MA utilization in both sulfate-reducing bacteria, as well as methanogenic archaea, indicating that 

C1- compounds like trimethylamine and glycine betaine may play a significant role in high 

sulfate reduction rates and methane emissions in this ecosystem (19, 198). Collectively, these 

two studies highlight the how MA-utilization maybe climatically relevant and present in high 

methane emitting ecosystems. Despite this growing appreciation, relative to acetoclastic and 
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hydrogenotrophic methanogenesis, methylotrophic methanogenesis is comparatively 

understudied in freshwater terrestrial ecosystems (199–201). This lack of information may have 

not yet realized implications for biogeochemical models and highlights the need to further 

explore these microbial metabolisms in terrestrial ecosystems (30, 194, 195, 202).  

Considering other ecosystems, in addition to hydraulically fractured shale (Chapter 2-3), 

these metabolisms have been shown to be increasingly important in other rock-hosted 

environments (16, 18, 141). Specifically, stable isotope incubations of shale bed samples from 

2km below the seafloor showed that microorganisms were capable of metabolizing 

methylamines, albeit at extremely slow growth rates (16). Likewise, MAs were shown to be 

important substrates in Movile Cave, an underground ecosystem located near the coast of the 

Black Sea, where microorganisms utilized them as carbon, energy, and nitrogen sources (18). 

These studies highlight the importance of organic nitrogen compounds and how their 

transformations may facilitate microorganismal growth and maintenance across ecosystems.  

In summary, methylated amines (MAs) are exceptionally important microbial metabolites 

in carbon and nitrogen cycling across ecosystems (5, 7, 8, 14–16, 18, 19, 44, 52). Microbial 

transformations of these metabolites can contribute to the production of greenhouse gasses in 

terrestrial ecosystems (12–14, 52), allow for persistence in saline and rock-hosted ecosystems 

(15, 16, 18, 141), and even modulate cardiovascular disease in humans (7, 159). The novelty and 

complexity of annotating MA microbial metabolisms (described in detail in Chapter 1) have 

historically impaired the elucidation of these pathways from multi-omic data. While biochemical 

investigations and isolate characterizations have confirmed the mechanisms for these processes, 

genome-resolved approaches describing microbial metabolic potential and activity are pushing 

the boundaries of these yet to be realized microbial metabolisms across ecosystems.  
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Appendices 

  

Appendix A: Chapter 2 data tables including geochemistry, genome statistics, and abundance 

information.  

 
See supplemental file “APPENDIXA_Methanohalophilus.xlsx” for Appendix A: 

 
Tab 1: Genome relative abundance of Methanohalophilus across wells (location), time (days post 

hydraulic fracturing), chloride concentrations (grams per liter) and methylamine concentration. 

Tab 2: Genome statistics table including genome completion, genome overages, GC content, 

length, number of proteins and number of core genes. 

Tab 3: Anvi'o gene clusters denoting core and flexible gene clusters. 

Tab 4: CRISPR‐Cas system and array information for each isolate. 

Tab 5: Extension of Figure 2.9 with all Methanohalophilus genomes. 
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Appendix B: Chapter 3 supplementary text including additional details on osmoprotectants, 

the Stickland reactions, and viruses.   

 

Osmoprotection Activity 

Hydraulic fracturing creates a unique environment for life in which salinities increase 

from freshwater to brine through time. In Utica well 1 sampled, salinities reached up to 95 g/L 

chloride (Appendix C).  The pressure of salinity is reflected in the microcosm microbial 

community, as the genomes recovered are halotolerant and have the genomic potential to cope 

with elevated osmolarity (Figure 3.6). Further, both mechanisms for osmoprotection, including 

the salt-in strategy and production of compatible solutes, are detected in the metaproteome (1-

2) (Figure 3.6).   

 Halanaerobium use the salt-in strategy, specifically utilizing multiple copies of 

sodium/proton antiporters (nhaC) that regulate intracellular sodium concentration while also 

balancing the number of protons in the cell (1). Contrary to prior reports (1), Halanaerobium in 

this microcosm also actively import and synthesize known osmoprotectants (Figure 3.6). We 

show that choline, proline, and glutamine are being actively imported or synthesized by 

Halanaerobium with no mechanism for degradation (Figure 3.6). While proline and glutamine 

could be assimilated by the cell, choline is imported and neither degradation mechanism 

(choline lyase or choline dehydrogenase) is present in the proteome or genome. Furthermore, 

no published Halanaerobium genomes, isolates or from metagenomics, have the genomic 

potential to degrade choline. Halanaerobium strains can also import maltose and trehalose via 

ABC transporters, but these compounds are actively degraded to D-glucose by maltose 

phosphorylase and alpha, alpha-trehalose phosphorylase, respectively. Similarly, 

Halanaerobium can transport and degrade glycine betaine, making it an unlikely 

osmoprotectant. It should be noted that taurine and mannitol are likely not being imported into 
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the cell because these compounds are not detected in the microcosm or in Utica produced fluids. 

Likewise, the respective transporters are not substrate specific and are able to import glycine 

betaine and fructose, respectively (Figure 3.6).  

 Like Halanaerobium, Ca. Uticabacter, employs both the salt-in and compatible solute 

strategy simultaneously. Ca. Uticabacter utilizes sodium/ proton antiporter (nhaC) and uptakes 

glycine betaine, proline, and glutamine, but does not degrade these compounds, suggesting that 

it is using them for osmoprotection (Figure 3.6). It is also possible that proline and glutamine 

are being used in protein synthesis. Methanohalophilus actively imports and synthesizes glycine 

betaine for osmoprotection from glycine and sarcosine by glycine and sarcosine 

methyltransferases, respectively (Figure 3.6). Geotoga uptakes trehalose, maltose, glutamine 

and glycine betaine, with glycine betaine and the sugars being the likely compatible solutes. 

Maltose and trehalose are being interconverted via maltose alpha-D-glucosyltransferase by 

Geotoga but the proteins for degradation are not detected. Notably, the only two 

osmoprotectants detected in the produced fluids from the Utica well time series were glycine 

betaine and choline, suggesting that these two amines are key in microbial salinity tolerance 

(Appendix C). Furthermore, based on glycine betaine trends, we infer both utilization (for 

osmoprotection, energy generation, and carbon and nitrogen assimilation) and production (for 

osmoprotection) of glycine betaine.  

Viruses 

Viruses accounted for 0.9% of the total microcosm metagenomic reads, denoting their 

prevalence in this in vitro ecosystem. Notably, viral peptides were detected in the metaproteomics 

data. Our microcosom proteomic data also provided evidence for the activity of both viral 

lifestyles. Evidence for virion-producing active infections, as opposed to a lysogenic state, was 
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provided by detection of multiple peptides for capsid production (e.g. terminase and head 

proteins). Also, we have evidence that some viral members are entering the lysogenic cycle and 

integrating themselves into host genome, as viral recombinase and resolvase proteins were also 

expressed.  

Using nucleotide frequency (3), we demonstrated that viruses could be associated with 

every host. We predicted Halanaerobium was the most likely host for 8 viruses, 

Methanohalophilus for 2 viruses, Ca. Uticabacter for 4 viruses, and Geotoga for 2 viruses. 

Coordinated host and viral abundance patterns over time revealed no significant differences due 

to glycine betaine amendment, suggesting this treatment had little impact on viral predation. For 

three of the four microbial members, the microcosm viruses exhibited the same dynamics as their 

hosts over time (Figure 3.7). Alternatively, for Methanohalophilus and its most abundant 

associated virus, there was a clear decoupling between host and virus abundance patterns over time 

regardless of amendment. 

To more directly link host and viral population genomes, we performed Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR) array analysis. Two of our microbial 

members had CRISPR arrays, with Methanohalophilus encoding 148 spacers in two CRISPR 

arrays and Halanaerobium encoding 206 spacers in four CRISPR arrays encoded a CRISPR-Cas 

system. None of the spacer sequences within the Methanohalophilus arrays matched viral genomes 

in our microcosms, suggesting that these spacers likely reflected historical viral encounters. We 

were able to link 8 Halanaerobium spacer sequences to 4 microcosm viral populations. 

Additionally, 14 of these Halanaerobium spacers also linked to 8 viruses recovered in the well 

used for this inoculum, as well as 2 viruses from another previously published well (4).  
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To predict if viral predation was ongoing in microcosms, we examined hosts for expression 

of CRISPR-Cas immunity genes. CRISPR-Cas proteins for the three functional stages of adaptive 

immunity were detected (adaptation, expression, interference) (Figure 3.8). Both 

Methanohalophilus and Halanaerobium expressed proteins for the adaptive stage of immunity 

(Cas1), suggesting active incorporation of spacers into the CRISPR loci. Concurrently, both also 

expressed proteins for the interference stage of viral immunity. Halanaerobium proteins were 

detected for the first part of the interference stage (Cas 5), which is implicated in producing cognate 

RNA that binds to invading DNA (5). Alternatively, Methanohalophilus proteins were detected 

for both parts of the interference stage (Cas 5 and Cas3), including cleavage of foreign viral DNA 

(5). Proteins for the expression stage (Cas6) were only detected from Methanohalophilus (Figure 

3.8).  

Stickland Reaction 

The Stickland reaction is characterized by the oxidation of one amino acid coupled to the 

reduction of another (6,7). Since the discovery of this metabolism in 1934, several other non-amino 

acids have been characterized to take part in this reaction, including glycine betaine, sarcosine, 

and ornithine (7-9). Organisms use this metabolism to generate energy in the form of ATP via 

substrate level phosphorylation (10). Several organisms have been described to take part in this 

reaction, most of them members of the class Clostridia (9-10). Here we describe an active Stickland 

reaction in Halanaerobium and Candidatus Uticabacter. 

 Both Halanaerobium and Candidatus Uticabacter in the microcosm experiment use 

reductase mechanisms related to the glycine reductase mechanism (9). This family of reductase 

systems can reduce glycine, sarcosine, proline, or glycine betaine. In each system, there are 

generally three proteins: protein A (encoded by grdA), protein B (encoded by different genes based 
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on substrate specificity), and protein C (encoded by grdCD) (9). In the microcosm, Halanaerobium 

use the glycine betaine specific protein B (GrdHI), while Candidatus Uticabacter use both the 

sarcosine and glycine specific protein B (GrdFG and GrdBE, respectively). Methods for 

determining reductase specificity were reported previously (4). Briefly, alignments of the 

GrdE/I/G/PrdA homolog amino acid sequences from our metagenomic database and known 

GrdE/I/G/PrdA from Eubacterium acidominophilum and Clostridium sticklandii revealed that the 

Halanaerobium homolog lacked a conserved cysteine residue and formed a monophyletic clade 

with other known glycine betaine specific reductases (Figure 3.10). Furthermore, two Candidatus 

Uticabacter homologs clustered with known sarcosine and glycine reductases. Both organisms 

actively employ these reductase mechanisms, with all proteins detected in the proteome. For 

Halanaerobium, a bin likely composed of multiple strains, there are two full mechanisms turned 

on: grdA (scaffold_194_1, scaffold_93_1), grdH (scaffold_194_3, scaffold_93_3), grdI 

(scaffold_194_2, scaffold_93_2), grdC (scaffold_69_9, scaffold_93_9), and grdD (scaffold_69_8, 

scaffold_93_10).  Ca. Uticabacter used a sarcosine reductase and a glycine reductase: grdA 

(scaffold_169_8, scaffold_23_32), grdB (glycine specific, scaffold_169_4), grdE (glycine 

specific, scaffold_169_3), grdG (sarcosine specific, scaffold_23_26), grdF (sarcosine specific, 

scaffold_23_27), grdC (scaffold_169_9, scaffold_23_33), and grdD (scaffold_169_10, 

scaffold_23_34). For Candidatus Uticabacter, all proteins were detected except for GrdA. Given 

that GrdA was detected in low amounts relative to the rest of the operon for the highly abundant 

Halanaerobium, we posit that Candidatus Uticabacter is likely using the sarcosine reductase and 

GrdA is just below detection. Candidatus Uticabacter using multiple reductase mechanisms has 

been found previously in other organisms including C. sticklandii and C. difficile (9). Moreover, 

this finding is consistent with the only other published genome from this genus 
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(Dethiosulfatibacter aminovorans DSM 17477) has the genomic potential for three reductase 

mechanisms specific to glycine, sarcosine, and glycine betaine (Figure 3.10). One possible source 

of sarcosine is creatine through enzyme creatinease, which is expressed in Ca. Uticabacter. 

 Several reductants can be used to reduce glycine betaine, sarcosine and glycine. Here we 

show that Halanaerobium use lysine, serine, threonine, glycine, methionine, glutamate and 

alanine, while Ca. Uticabacter uses glutamate, leucine, phenylalanine, glycine and threonine. The 

oxidation of one amino acid in the Stickland reaction provides reducing power for the reduction 

of another amino acid. The key enzyme in the generation of this reducing power for each reductant 

follows: lysine (3,5-diaminohexanoate dehydrogenase, E.C. 1.4.1.11), serine (serine dehydratase, 

E.C. 4.3.1.17), threonine (threonine dehydratase, E.C. 4.3.1.19 and threonine dehydrogenase E.C. 

1.1.1.103), glycine (glycine cleavage system), methionine (methionine gamma-lyase, E.C. 

4.4.1.11), glutamate (glutamate dehydrogenase, E.C. 1.4.1.4), alanine (alanine dehydrogenase, 

E.C. 1.4.1.1), and leucine (leucine dehydrogenase, E.C. 1.4.1.9) (10). 

 These reductants could account for about 39% of glycine betaine reduced from T0 to TM, 

with lysine (17%), serine (7.2%), threonine (3.8%), glycine (4.1%), and methionine (6.7%) of 

glycine betaine reduction (Appendix C). Although glutamate and alanine are likely reductants in 

the Stickland reaction with glycine betaine, as the respective dehydrogenases were detected in the 

Halanaerobium proteome, these were not apparent by metabolite analyses, suggesting that alanine 

and glutamate are being synthesized more quickly than Halanaerobium is oxidizing them 

(Appendix C).  

Lysine and glycine betaine are the most likely Stickland pair in the microcosm. Lysine is 

oxidized to acetate, butyrate and ammonia through crotonyl-CoA, with the key enzyme for the 

Stickland reaction being 3,5-diaminohexanoate dehydrogenase (10). This enzyme is active 
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concomitant with the glycine betaine reductase mechanism with the highest detection at TM in the 

glycine betaine microcosm. Metabolites confirm the oxidation of lysine, as lysine is reduced by 

93% overtime and accounts for 17.1% of glycine betaine reduction from T0 to TM (Figure 3.9). 

Moreover, butyrate is produced (8.130.5 moles) in a nearly 1 to 1 ratio with lysine loss (7.80.5 

moles) from T0 to TF, congruent with lysine oxidation. 

Glycine Cleavage System 

As discussed previously, glycine is used as a Stickland oxidant (Ca. Uticabacter), a 

Stickland reductant (Ca.s Uticabacter and Halanaerobium), and also in osmoprotectant synthesis 

(Methanohalophilus) (Figure 3.11). This multi-enzyme complex oxidizes glycine to CO2 and 

methylene-THF (11). Although the reaction can be ran in reverse, we hypothesize that 

Halanaerobium and Ca. Uticabacter are oxidizing the metabolite, freeing electrons to complete 

the Stickland reaction. Metabolites confirm this finding in the glycine betaine amended 

microcosm as 265.76.3 moles of glycine is depleted to 21.11.0 moles from T0 to TF. 

Moreover, we speculate that Geotoga, runs the glycine cleavage system in reverse, producing 

glycine because metabolites show glycine production from TM to TF in the no glycine betaine 

microcosm, when Geotoga activity is highest (Figure 3.1).  

Ethanolamine Utilization 

Halanaerobium employs a mechanism for ethanolamine utilization (Figure 3.11). 

Congruently, ethanolamine was detected in every time point of Utica produced fluids sampled here 

(Appendix C). In the microcosm, Halanaerobium converts ethanolamine, present in the produced 

fluid inoculum, into acetaldehyde and ammonium by using the ethanolamine ammonia lyase 

(EutBC, 4.3.1.7) (Figure 3.11, Figure 3.13). Acetaldehyde is then converted into acetyl-aldehyde 

by the aldehyde oxidoreductase (EutE) and subsequently to acetate through acetylphosphate. 
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Alternatively, acetaldehyde can be converted to ethanol by an alcohol dehydrogenase (EutG), 

which is often thought to be used as a detox mechanism (12) (Figure 3.13). Microcosm metabolites 

confirm this metabolism, as ethanolamine is reduced from a concentration of 165.3  7.4 moles 

and 119.0  27.4 moles to below detect in glycine betaine and no glycine betaine microcosms, 

respectively (Figure 3.11). In the both the glycine betaine and no glycine betaine enrichment, EutE 

is detected at higher levels than EutG, suggesting that Halanaerobium is using ethanolamine for 

energy, rather as a detoxification mechanism.  

 Halanaerobium-encoded detected proteins for ethanolamine utilization include: 

ethanolamine ammonia lyase large subunit (EutB, scaffold_31_26), ethanolamine ammonia lyase 

small subunit (EutC, scaffold_31_25), acetylaldehyde dehydrogenase (EutE, scaffold_31_22), 

alcohol dehydrogenase (EutG, scaffold_31_10), microcompartments/ carboxysome structural 

proteins (scaffold_31_14, scaffold_31_21, scaffold_31_24), ethanolamine transporter (EutH, 

scaffold_31_13). All proteins detected in Halanaerobium proteome for the Eut operon are shown 

in Figure 3.13. Ethanolamine ammonia lyase is a vitamin B12 requiring enzyme, thus 

Halanaerobium imports this cofactor via transporters and does not make it de novo. We note that 

ethanolamine transporter protein EutH is detected in low levels and that ethanolamine is likely 

diffusing across the membrane concurrent with transport (12) (Figure 3.13). 

Methane and Acetate Mass Balance Calculations 

Given the importance of glycine betaine to hydraulically fractured shale organisms, both 

as a substrate and an osmoprotectant, and the presence of glycine betaine in the Utica well 

sampled, we amended produced fluids with glycine betaine and tracked microbial activity and 

metabolites through time (Figure 3). In the microcosm, Halanaerobium utilized glycine betaine 

reductase to reduce glycine betaine to TMA (grdHI), which was most active at TM in the glycine 
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betaine amended microcosm. Analysis of metabolites by NMR support the proteomics data, 

showing that in the glycine betaine amended microcosm 42.12.4 moles of glycine betaine 

was reduced to 37.90.6 moles of TMA from T0 to TM, a 90% reduction (Figure 3). Similarly, 

in the no glycine betaine microcosm, 2.60.1 moles of glycine betaine was 81.2% reduced to 

TMA from T0 to TM (Figure 3.9).  

The TMA produced by Halanaerobium is utilized by Methanohalophilus, a 

methylotrophic methanogen (Figure 3.9).   The most methane is produced from TM to TF in the 

glycine betaine amended microcosm (Figure 3.9). From TM to TF, 95% and 60% of TMA is 

converted to methane in the glycine betaine and no glycine betaine microcosm, respectively 

(Figure 3.9). Congruently, the most Methanohalophilus proteins are detected in TF timepoints, 

with the glycine betaine amended microcosm having statistically more than the no glycine 

betaine microcosm.  Furthermore, the trimethylamine specific pyrrolysine-containing 

methyltransferase (MttB) and the corresponding corrinoid protein (MttC) were highly detected 

in TF in the glycine betaine amended microcosm, statistically more than in any other sample. 

Methyltransferase proteins specific to dimethylamine, monomethylamine, and methanol and all 

proteins necessary for methanogenesis were also detected (Appendix C). Dimethylamine and 

monomethylamine concentrations followed the same pattern as trimethylamine, increasing from 

T0 to TM and decreasing in from TM to TF (Appendix C). If we assume all methane production 

was fueled indirectly by glycine betaine, 72% of glycine betaine accounts for all methane 

produced in the glycine betaine amended microcosm from T0 to TF (Figure 3.9). There was no 

potential for glycine betaine or choline demethylation in our microcosm experiments, as no 

non-pyrrolysine trimethylamine methyltranserfases were detected (13-14).  
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Acetate, also produced one to one with TMA in the reduction of glycine betaine, had a 

net increase of 63.81.5 moles from T0 to TM in the glycine betaine amended microcosm 

(Figure 3.11). The excess acetate (25.91.5 moles) produced in the glycine betaine amended 

microcosm can be accounted for by residual carbon fermentation, as the no glycine betaine 

microcosm produced 24.01.7 moles acetate, of which only 2.50.1 moles came from 

glycine betaine fermentation. Given that acetate is produced in a one to one stoichiometric 

balance with TMA from glycine betaine reduction (9), we know that excess acetate (not 

accounted for by glycine betaine reduction, 25.91.5 moles) was produced in the glycine 

betaine amended microcosm. Notably this accounts for ~97% of acetate in non-amended 

microcosm (24.01.7 moles), where no glycine betaine was added. With glycine betaine 

accounting for 46% of acetate production, the excess can be accounted for through sugar 

fermentation, with glucose (2.3%), trehalose (21.1%), ethylene glycol (11.1%), ethanolamine 

(1.4%), pyruvate (0.3%), maltose (2.3%), and fructose (4.0%) accounting a substantial portion 

of acetate production in the amended glycine betaine microcosm. See Appendix C for detailed 

acetate mass balance calculations.  

Back to the field: Validation of microcosm generated hypotheses across wells 

 We compared our metabolic findings from microcosm experiments to previously published 

hydraulically fractured shale datasets and 33 metagenomes paired to metabolites published here. 

Prior to the Daly, et al. study, HF microbiology studies were limited to 16S rRNA analyses, did 

not have time series data including injected fluids, or did not include metabolites (15-17). Given 

that Daly et al. was a single well, it was necessary to apply our microcosm findings to other wells 

in different shale formations. Here we add 33 metagenomes and paired metabolites to build a HF 

database of 38 metagenomes. The 33 additional metagenomes came from injected fluids and 
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produced fluids from four wells in the Marcellus and Utica shales.  Two Utica wells were located 

in Ohio, two Marcellus wells in West Virginia, and one Marcellus well in Pennsylvania (Figure 

3.14). Chloride concentrations increased over time in all wells (Figure 3.14). Metabolites and 

metagenome information can be found in Appendix C.   

 In light of the importance of the Stickland reaction to hydraulically fractured shale 

organisms, we mined the published isolate genomes and metagenomes from produced fluids for 

the necessary genes (4,18-19). We found that 24% of genomes in our shale database had the 

potential to use glycine betaine, 5 of them Halanaerobium. Moreover, we found that the most 

abundant Halanaerobium strain at late time points in the well sampled here has a GrdI 

(Halanaerobium 6-U2, genome previously published in Booker, et al. (18). As previously reported, 

Frackibacter, a new genus within the Halobacteroidaceae discovered in shale, has the potential to 

reduce glycine betaine (4), and 2 of 3 publicly available Frackibacter genomes have the genomic 

potential to use glycine betaine.  
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Appendix C: Chapter 3 data tables including geochemistry, genome statistics, mass balance 

calculations, and key genes.  

 

See supplemental file “APPENDIXC_GBData.xlsx” for Appendix C. 
 

Tab 1: Detected metabolites (M) and chloride (mg/L) from field time series (n=41) collection. 
Concentrations of zero denote that the metabolite was below detection.  
 
Tab 2: Detected metabolites (M) from microcosm experiments (n=21). Concentrations of zero 
denote that the metabolite was below detection.  
 
Tab 3: Microcosm mass balance calculations.  
 
Tab 4: Optical density and gas chromatography measurements through time in the microcosm 
experiment. 
 
Tab 5: Table of metagenome stats for produced fluids and microcosm sequencing.  
 
Tab 6: Metagenome assembled bacterial and archaeal genome quality statistics.  
 
Tab 7: Metagenome assembled viral genome quality statistics.  
 
Tab 8: Scaffold and gene information for key metabolisms discussed. 
 
Tab 9: NSAF values for each protein detected in the microcosms by metaproteomics.  
 
Tab 10: Strain resolved microbial abundances (by ribosomal S3 protein) across input and 
produced fluid samples. 
 
Tab 11: Value Importance in Projection for each predicted metabolite in Figure 3.14.  
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Appendix D: Chapter 4 data tables including cohort statistics, metabolite concentrations, 

genome statistics, GAMAdb entries, and genome DRAM annotations.  

 
See supplemental file “APPENDIXD_GutData.xlsx” for Appendix D. 
 
Tab 1: Cohort statistics including sex, age, weight, BMI, smoking status, meat consumption, etc. 
  
Tab 2: Urine and fecal metabolites for patient cohort. 
 
Tab 3: 16S rRNA taxonomic abundance for patient cohort. 
 
Tab 4: Metagenome sequencing information including size (Gbp), reads, and accession numbers.  
 
Tab 5: Relative abundance of MAGs recovered from human gut metagenome samples in this 
study, utilized in Figure 4.11E.  
 
Tab 6: Quality and taxonomy information recovered from human gut metagenome samples in 
this study. 
 
Tab 7: Important genes for ACVD predictions.  
 
Tab 8: GAMAdb entries, including genome, taxonomy, and gene type. 
 
Tab 9: DRAM summary annotation file for genomes in GAMAdb. 
 
Tab 10: Microcosm metaproteomic data. 
 
Tab 11: Microcosm metabolite data. 
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