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ABSTRACT 

 
 
 
 

METHODOLOGIES FOR TRANSFORMING DATA TO INFORMATION AND 

ADVANCING THE UNDERSTANDING OF WATER RESOURCES SYSTEMS TOWARDS 

INTEGRATED WATER RESOURCES MANAGEMENT 

 

The majority of river basins in the world, have undergone a great deal of transformations in 

terms of infrastructure and water management practices in order to meet increasing water needs 

due to population growth and socio-economic development. Surface water and groundwater 

systems are interwoven with environmental and socio-economic ones. The systems’ dynamic 

nature, their complex interlinkages and interdependencies are inducing challenges for integrated 

water resources management. Informed decision-making process in water resources is deriving 

from a systematic analysis of the available data with the utilization of tools and models, by 

examining viable alternatives and their associated tradeoffs under the prism of a set of prudent 

priorities and expert knowledge. 

In an era of increasing volume and variety of data about natural and anthropogenic systems, 

opportunities arise for further enhancing data integration in problem-solving approaches and thus 

support decision-making for water resources planning and management. Although there is a 

plethora of variables monitored in various spatial and temporal scales, particularly in the United 

States, in real life, for water resources applications there are rarely, if ever, perfect data. 

Developing more systematic procedures to integrate the available data and harness their full 
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potential of generating information, will improve the understanding of water resources systems 

and assist at the same time integrated water resources management efforts. 

The overarching objective of this study is to develop tools and approaches to overcome data 

obstacles in water resources management. This required the development of methodologies that 

utilize a wide range of water and environmental datasets in order to transform them into reliable 

and valuable information, which would address unanswered questions about water systems and 

water management practices, contributing to implementable efforts of integrated water resources 

management. More specifically, the objectives of this research are targeted in three complementary 

topics: drought, water demand, and groundwater supply. In this regard, their unified thread is the 

common quest for integrated river basin management (IRBM) under changing water resources 

conditions. All proposed methodologies have a common area of application namely the South 

Platte basin, located within Colorado. The area is characterized by limited water resources with 

frequent drought intervals. A system’s vulnerability to drought due to the different manifestations 

of the phenomenon (meteorological, agricultural, hydrological, socio-economic and ecological) 

and the plethora of factors affecting it (precipitation patterns, the supply and demand trends, the 

socioeconomic background etc.) necessitates an integrated approach for delineating its magnitude 

and spatiotemporal extent and impacts. Thus, the first objective was to develop an implementable 

drought management policy tool based on the standardized drought vulnerability index framework 

and expanding it in order to capture more of drought’s multifaceted effects. This study illustrated 

the advantages of a more transparent data rigorous methodology, which minimizes the need for 

qualitative information replacing it with a more quantitative one. It is believed that such approach 

may convey drought information to decision makers in a holistic manner and at the same time 

avoid the existing practices of broken linkages and fragmentation of reported drought impacts. 
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Secondly, a multi-scale (well, HUC-12, and county level) comparative analysis framework was 

developed to identify the characteristics of the emergent water demand for unconventional oil and 

gas development. This effort revealed the importance of local conditions in well development 

patterns that influence water demand, the magnitude of water consumption in local scales in 

comparison to other water uses, the strategies of handling flowback water, and the need for 

additional data, and improved data collection methods for a detailed water life-cycle analysis 

including the associated tradeoffs. Finally, a novel, easy to implement, and computationally low 

cost methodology was developed for filling gaps in groundwater level time series. The proposed 

framework consists of four main components, namely: groundwater level time series; data 

(groundwater level, recharge and pumping) from a regional physically-based groundwater flow 

model; autoregressive integrated moving average with external inputs modeling; and the Ensemble 

Smoother (ES) technique. The methodology’s efficacy to predict accurately groundwater levels 

was tested by conducting three numerical experiments at eighteen alluvial wells. The results 

suggest that the framework could serve as a valuable tool in gaining further insight of alluvium 

aquifer dynamics by filling missing groundwater level data in an intermittent or continuous (with 

relative short span) fashion. Overall, it is believed that this research has important implications in 

water resources decision making by developing implementable frameworks which advance further 

the understanding of water systems and may aid in integrated river basin management efforts. 
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LIST OF TERMS 

 
 

The following glossary provides the necessary information to familiarize the reader to specific 

notions in Colorado’s water law, as well as defining terms used in chapter 3. 

 

Municipal Use Water from a municipal or quasi-municipal entity that is treated or 
considered wastewater effluent. Leased water must be used inside 
existing service area. 

Industrial Use Water that is leased or purchased from an existing industrial water use. 

Agricultural Use Agricultural water rights often undergo a change in type of use from 
irrigation to municipal and industrial through the water court process. 
Water can be leased or purchased, but changed use must include 
industrial. 

Free River 
Diversion 

Water that is diverted during times of excess water. The diversion needs 
to be in priority and is likely not a consistently reliable source of water 
for oil and gas development. Some reservoir owners have stored water 
during times of free river for oil and gas companies. Because this type of 
water is diverted and stored at a time during which there is no call on the 
river, the water can be used for any beneficial use, including oil and gas 
activities. 

Tributary 
Groundwater 

Groundwater that has a hydrological connection to the surface stream 
system. Each well permit requires an augmentation plan or substitute 
water supply plan for replacement of water. 

Nontributary 
Groundwater 

As defined by Colorado Senate Bill 213, effective July 6, 1973 is the 
"groundwater, located outside the boundaries of any designated ground 
water basin in existence on January 1, 1985, the withdrawal of which will 
not, within 100 years, deplete the flow of a natural stream, ...at a rate 
greater than one tenth of one percent of the annual rate of withdrawal." 
[C.R.S. 37-90-137(4) and 37-90-107(7)] 

Nontributary 
Groundwater 
located in the 
Denver Basin and 
Designated Basins 

New sources of nontributary groundwater which have a limited 
hydrological connection to surface water. Nontributary groundwater is 
not administered within the legal priority system and does not require 
replacement of water. 
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New 
Determinations  
of Nontributary 
Groundwater 

Nontributary groundwater located outside of the Groundwater located in 
designated groundwater basins which has a limited hydrological 
connection to surface water. This water is not administered within the 
legal priority system and does not require replacement of water. This is a 
relatively new source of water for oil and gas operations in the Denver-
Julesburg Basin. 

Multi-use water Return flows from the first use of water are claimed by the Northern 
Water District for successive uses by other downstream water users 

Produced water Water that is native to the surrounding formation and is produced 
throughout the oil and gas recovery process. Produced groundwater is a 
diversion that is subject to administration and well permitting by the 
Colorado Division of Water Resources. The State Engineer has authority 
to conduct rulemaking to determine whether groundwater in specific oil 
and gas formations underlying certain geographic areas is nontributary. 
Pursuant to section 37-90-137(7), C.R.S., an oil and gas company who 
withdraws nontributary groundwater during the mining of minerals is not 
required to obtain a water well permit, unless the produced groundwater 
being removed will be beneficially used a,b. 

Flowback water Flowback is water that is returned to the surface during hydraulic 
fracturing and may be recycled and reused for subsequent needs, 
depending on its quality. Recycled flowback water is not a new source of 
water because it was previously acquired for oil and gas well 
development.  
Note: Form 5A classifies “Flowback Volume Recovered” to include 
treatment fluids and produced water. 

 

a This statement is not applicable to coalbed methane wells because the Colorado Supreme Court found 

that the withdrawal of water in the coalbed methane extraction process is, in and of itself, a beneficial 

use [Colorado Supreme Court, 2009]. Therefore, each coalbed methane well that produces water must 

be permitted as a water well by the Colorado Division of Water Resources. 

b While a water well permit is required if the nontributary ground water is put to a beneficial use, a 

provision, in section 37-90-137(7) C.R.S., states that no water well permit is required if the nontributary 

ground water is used for the mining of minerals in the same geological basin. 
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1 General Introduction 
 
 
 
 
 

1.1 Overview 

Water permeates natural, social, and economic systems, thus being the link between many 

sectors and needs [Grigg, 2017]. Early on, planning and management of water resources revolved 

around the themes of development and preservation [Vlachos and Hendricks, 1977]. Over the last 

decades, the concept of Integrated Water Resources Management (IWRM) has gained worldwide 

acceptance and its adoption has fundamentally changed water planning and management 

processes. Water planners, managers, and engineers acknowledging the increasing complexity and 

the intensifying water quantity and quality challenges, which were originating from economic 

development, expanding populations and extreme climatic events, have shifted from practicing 

fragmented approaches towards the paradigm of holistic management that the IWRM framework 

is representing. The integrated notion is underscoring that the water, land and related resources are 

interconnected sub-systems, but also emphasizes that the common development and management 

goals should not compromise the ecosystems and that the maximized socio-economic benefits of 

this process need to be allocated in an equitable way [Global Water Partnership, 2000]. The 

IWRM framework accounts for the interlinkages of the different water uses, resulting in cross-

sectoral integration (Figure 1). 

The implementation of the IWRM principles at the river basin level it has come to be known 

also as Integrated River Basin Management (IRBM) and can also assist in sustainable development 

efforts by delivering a triple bottom line of economic, social, and environmental benefits  
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[Grigg, 2017]. The intricate interconnections of the physical and socio-economic systems along 

with the diverse natural, socio-political and economic challenges, as well as development priorities 

from case to case, do not allow for a common implementation blueprint [Global Water 

Partnership, 2000; Lenton and Muller, 2009; Pegram et al., 2013; Grigg, 2017]. The challenges 

can be found in the institutional part of IRBM which the stakeholders and institutional 

organizations can differ drastically in each basin. Furthermore, the political boundaries rarely 

coincide with river basin boundaries, hampering integration efforts [Coelho et al., 2011]. At the 

same time, the transformations taking place in a river basin level are constant and manifold, 

affecting different subsystems, creating a complex and rapidly changing environment that water 

managers and planners need to respond to. Vlachos [1999] characterized such conditions with the 

composite term of “raplexity”, which reflects the complexity and the rapidity of change. Given the 

raplexity taking place in river basins it is difficult to attain the triple bottom line of economic 

efficiency, social equity and environmental sustainability, which renders IWRM implementation 

an iterative process. 

Decision Support Systems (DSS) are among the tools water scientists and water managers use 

in order to inform the general public, stakeholders and decision-makers when they need to make 

water resources related choices and describe the associated tradeoffs [Grigg, 1996, 2017; Global 

Water Partnership, 2013; Fontane, 2016]. Monitoring programs are the main source of providing 

raw data to the DSS [Fontane, 2000]. Indeed, a great volume of raw data regarding the 

environment, are collected and stored in various databases in order to be utilized for planning and 

management purposes. Technological advances improved the quality and accuracy of 

measurements and have made inexpensive data collection and storage possible. This has allowed 

the sampling of datasets that would be considered as secondary a few decades ago. Likewise, the 
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temporal and spatial sampling resolution of data measured by satellites has increased, now 

permitting real-time analysis for small geographical extents [Thenkabail, 2015]. 

 

 
Figure 1: Integrated water resources management (IWRM) and its relations to sub-sectors [Global Water 
Partnership, 2000] 

 

Public participation and stakeholder involvement is a key element in the IRBM process for 

deciding the development priorities and the common goals in a river basin [COROADO, 2014]. 

Fontane [2000] stresses that the collected data and the information must serve all the divergent 

communities that might need it. Transparency in data collection, the methods used for their 

transformation to information, and the dissemination of the information is a way to build trust. 

Thus, due to the growing raplexity and increasing amount of data collected, along with the different 

needs of the various groups involved in the decision process, information systems are an essential 

element in IRBM. The creation of a knowledge base in basin level study that would contain 

information about the hydrological cycle, the ecosystem, hazards, socio-economic activities etc., 
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and would assist in water resources assessment, is key to effective water management [Global 

Water Partnership, 2013]. Despite the modern technological capabilities and the continuously 

increasing quality of the collected data, the complexity of managing the information is also 

increasing [Dalcanale et al., 2011].  

 

 
Figure 2: Hierarchy of information and knowledge [Grigg, 2005; Karavitis, 2007; Vlachos, 2008] 

 

The IRBM process has decision steps in which information and knowledge generated by data 

and models reveals the implications of an array of alternative actions and examine the associated 

trade-offs. In order to move up into the “information and knowledge” hierarchy [Grigg, 2005; 

Vlachos, 2008], illustrated in Figure 2, and have an informed decision making process, the 

available raw data must be transformed first into patterns (isolated information), and then into 
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meaningful knowledge (general trends). The attained knowledge from data analysis, modeling and 

interpretation can ultimately lead to wise decisions for the problem/issue at study, through 

experience and common sense. Thus, the tremendous amounts of data in an array of scientific 

disciplines (hydrological, atmospheric, environmental, ecological etc.) and the availability of 

operational, financial, and socio-economic datasets are presenting unique problem-solving 

opportunities for water resources planning and management issues. At the same time these 

opportunities are being followed by new challenges. 

While the fact that the awareness has increased dramatically regarding water resources related 

issues and multiple paradigms, contexts and methods that have being introduced, there are still 

great challenges in water resources management in practice [Vlachos, 2008]. One of the sources 

of these challenges in IWRM process has to do with data and information issues. There are several 

data inefficiencies or the data are such that they cannot be used, or cannot be accessed. Quite often 

water resources information is scarce; fragmented; outdated; not suitable; wrong data analysis 

methods are used; lack of evenly spatial-temporal information of water resource conditions; which 

in practice hinders proper assessment of the resources and increases the risk of making suboptimal 

decisions and taking management actions that could have adverse impacts [Global Water 

Partnership, 2013]. In the context of IWRM and data use, another important aspect is the 

challenges of integrating different sources of data. All aforementioned factors may affect the 

transformation of data to accurate and meaningful information for decision-making. 

The overarching challenge, still present, is to extract the most information from data and 

models and utilize them in the decision making process [Grigg, 1985]. The challenges of ascending 

the “information knowledge” hierarchy related to data hindrances could be classified in six main 

types, as illustrated in Figure 3. Despite the abundance of data, there are cases where when the 
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data exist but cannot be accessed or the wrong kind of data are collected (data out of institutional 

scope, low institutional priority, etc.). The second category of hindrances is related to data quality. 

It is very common for the datasets of interest to include gaps (intermittent or continuous) or their 

collection does not cover the intended period of study, which impedes their use in decision making 

processes and their statistical analysis without proper treatment to avoid spurious results. 

Furthermore, data quality as a term can refer also to the spatial and temporal resolution of the data, 

and/or the existence of errors and duplicates entries. Technology has transitioned hard copy data 

into digital formats. Sources of data may not be used effectively due to poor documentation and/or 

metadata, which may result in their misuse and misapplication. Despite the collected data being 

available online, there are cases that do not offer ways for user-friendly acquisition. At the same 

time, when online queries are possible, the available digital data can be in databases structured in 

such a way that make the retrieval of specific attributes difficult due to fragmentation. Another 

common challenge is data uncertainty, including uncertainty inherent in the datasets and 

uncertainty introduced through data manipulation (interpolation, etc.). In the era of “big data”, a 

critical challenge is surfacing on how much sense can be made out of huge volumes of data and 

identify opportunities for their integration, allowing to further the understanding of water systems 

and their interconnections with social systems. Therefore, there is still the need to develop more 

systematic procedures for both data collection and methodologies, in order to improve the 

transformation of data to information and knowledge, with the ultimate goal to assist integrated 

water resources planning and management. 
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Figure 3: Hindrances for transforming data to information and knowledge 

 

Vlachos [1999, 2008] has underlined the importance of new methodologies that would 

improve the understanding of the current complex setting and the need of combining data, 
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aforementioned hindrances for transforming data to useful information. However, their unified 

thread is the common quest for IRBM under changing water resources conditions. The three 

research cases described in this dissertation have been presented to academic conferences and one 

has been already published to a refereed scientific journal. More specifically, initial aspects of the 

formulation of a more quantitative integrated way of capturing drought vulnerability were 

presented in the annual conference of the American Water Resources Association (AWRA) 

[Karavitis et al., 2015]. The second research effort is part of a larger National Science Foundation 

research project and different parts of this work have been presented in AWRA and American 

Geophysical Union (AGU) conferences [Oikonomou et al., 2015c, 2015b]. Some of the results 

have been published at the Journal of Environmental Management [Oikonomou et al., 2016]. Initial 

results for part of the last research effort was presented at a national AWRA conference 

[Oikonomou et al., 2015a]. 

IRBM attempts to take into account the interdependencies of water systems with other systems 

such as ecological, economic, infrastructure and social, when decisions are made. This decision-

making environment is highly complex, requiring the use of a wide array of different datasets and 

their transformation into useful information. Hydroclimatic uncertainty is an additional factor that 

contributes to the complexity of water resources planning and management. In the context of 

stressed systems, drought events are challenging our ability to cope with their impacts that spread 

into the different components of human systems. Vlachos and Braga [2001] emphasize that 

improvements should be made into methods for risk assessment and vulnerability analysis related 

to water resources. The difficulty of capturing the intensity and the extent of the drought hazard 

hinders the identification of areas that are most vulnerable. Hence, information about drought 

vulnerability can assist decision makers in taking anticipatory actions and developing drought 
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strategies. At the same time, a system’s vulnerability is affected also by nonphysical components 

such as the efficacy of the available water infrastructure and supply capacity and demand patterns. 

Since a deeper understanding of the different dimensions of the system is needed in order to inform 

appropriate decisions, data play a critical role in describing the conditions and understanding the 

nature of the constraints (physical and anthropogenic).  

While extreme dry variations of the physical system are imposing multifaceted risks, impacts 

and challenges onto human systems, the increasing population growth, conflicting and competing 

water uses within river basins with limited water supplies, are further stretching the system’s 

ability to meet all the different water demands in an efficient and the effective manner. Data that 

potentially influence water demand trends in a river basin are important knowledge that can aid in 

decisions that focus on balancing water supply and demand. Such an example is the recent boom 

of unconventional oil and gas exploration in the United States adding another water demand on 

systems already in stress. This “new” water demand that has emerged as a result of technological 

advancements in unconventional oil and gas development and has received high attention since it 

is considered fully consumptive, it rarely returns to the system, but also due to concerns about 

potential risk for groundwater contamination [U.S. Environmental Protection Agency, 2012; 

Vengosh et al., 2014]. 

During drought periods, sustainable conjunctive use of surface and groundwater resources is 

often essential for meeting water demands. Furthermore, groundwater and surface water systems 

integration is one of the main objectives of IWRM. Despite increased computational prowess and 

data availability of a plethora of relevant information (measurements, satellite derived data etc.) 

supporting the advancement of novel tools and methods in water resources, there are still gaps that 

must be filled. Information about groundwater resources is still an area where data are lacking both 
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in spatial and temporal extent. The development of methods and tools that enhance our 

comprehension through data augmentation is essential for better water planning and management 

actions. The western United States is a region characterized by limited water resources with 

frequent drought intervals. The vulnerability of the western physical and human systems to drought 

is an open question. 

The present research is inspired by the aforementioned topics, and tries to close some of the 

knowledge gaps by proposing methodologies that advance the understanding of water systems 

from an IWRM perspective, and provides solutions to existing challenges and offers 

recommendations for further research. 

 

1.2 Research Objectives 

The overarching objective of this study is to develop tools and approaches to overcome data 

obstacles in water resources management. The methodologies developed in this research take 

advantage of the constantly increasing available water resources related datasets in a way that 

address the aforementioned challenges in a manner that would be useful to water resources 

planners and managers. The interrelations and interactions of the elements of the study are 

illustrated in Figure 4. 

Drought management is a key element in regional planning, and understanding the way that 

different components contribute to drought vulnerability is an important step towards the 

development of integrated management strategies and policies. The first objective of this study is 

to develop a framework that advances the quantification of drought vulnerability based on an 

integrated approach including aspects of the physical, structural, and socio-economic components. 
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This was achieved by evolving the Standardized Drought Vulnerability index [Karavitis et al., 

2014], from a qualitative measure to a quantitative one. Components that contribute to drought 

vulnerability include demand, supply, infrastructure and impacts were advanced to incorporate 

satellite derived information, operational model outputs, measured data and some qualitative 

information. The approach not only allows for increased spatial representation of the combined 

drought vulnerability, but it can also be used to trace weak components of the system and try to 

create action to enhance their individual vulnerability status. In addition, it was attempted to create 

a spatiotemporal unified representation of the multifaceted drought impacts that could inform 

decision makers and planners about their magnitude and extent. 

 

 
Figure 4: Central components of the study with their interrelations and interactions 
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New trends and emerging water demands can change the setting and lead towards greater 

uncertainty about the efficacy of established drought plans. The quantification of water demand, 

the analysis of its characteristics, the potential effects and tradeoffs between traditional water 

demands is crucial knowledge. The second objective of the research is to develop a methodology 

for quantifying and analyzing water demand for unconventional energy development. Since there 

is uncertainty regarding how much water is needed for the completion of a hydraulic fracturing 

operation, first the characteristics affecting water use intensity were identified. By demarcating the 

extracted information into standardized measures, the comparison of wells in different regions is 

possible. Analyzing a new water demand in different scales (county and HUC-12 level) gives the 

ability to quantify its share and understand better possible tradeoffs and effects on a local scale. In 

addition, the average water recovered for each formation is quantified and its handling was 

identified. The last two are important pieces of the analysis since can indicate reuse opportunities 

and treatment challenges. 

Furthermore, conjunctive use of both surface and groundwater resources during occasions of 

water stress and scarcity is essential, but many times the actions taken are limited by imperfect 

knowledge of groundwater dynamics caused by missing observation measurements. Thus, the 

final objective is to develop and test a novel methodology for bridging data gaps in groundwater 

level measurements by taking advantage of available groundwater models and their outputs in a 

framework that includes statistical modeling and the Ensemble Smoother. The testing of the 

proposed computationally low cost framework was achieved by three numerical experiments 

performed in 18 spatially dispersed wells. The design of the numerical experiments was created to 

represent different patterns of missing data. 
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1.3 Contributions 

The contributions of the current research are manifold and are not restricted to one area of 

water resources planning and management. The first contribution is the evolution of an integrated 

drought vulnerability index to an operational stage through the incorporation of spatially 

quantitative datasets. Although the application was performed in an area of data abundance, 

alternatives are presented for expanding the index on less data-rich settings. The new approach for 

calculating the index can lead toward an efficient, timely and effective decision-making in cases 

of drought events. 

An additional contribution demonstrated by the study was the importance of fully 

understanding the implications of new water demands that compete with traditional ones. 

Providing ways of evaluating the magnitude of the new water demand in different geographical 

scales can inform about implications visible only on a local scale. Significant was the 

demonstration of the different factors influencing water intensity and the comparison of different 

shale formations. The study was also able to identify data gaps hindering the full understanding of 

the water cycle (source-use-handling) and the need for additional data and reporting harmonization 

policies across the US. 

Finally, a major contribution is the proposal of a novel framework for bridging data gaps in 

groundwater level measurements in alluvial aquifers. The suggested methodology is an innovative, 

easy to implement and computationally low cost approach for filling gaps in groundwater level 

time series. At the same time, it augments the value of readily available regional groundwater 

models since their information is used in the method. The proposed approach is shown to provide 

satisfactory results for the first two numerical experiments that were tested, offering a viable 

solution in retrieving missing information about groundwater levels. The design of the framework 
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is not geographically bound and thus can easily be applied to any modeled alluvial aquifer. Its 

transferability is guaranteed since no aquifer specific parameters are required. This key 

characteristic is making the method suitable for providing to water planners and managers a more 

complete picture about local groundwater variability and trends, which is a vital component for 

integrated water resources management. 

 

1.4 Structure of the Study 

Apart from the described sections, the rest of the manuscript is comprised of four more 

chapters. The design is schematically presented in Figure 5. Chapter 2 focuses on developing and 

presenting an implementable drought management policy tool through improving the Standardized 

Drought Vulnerability Index. The components of the index are presented and then the modification 

in its calculation is described in detail along with the specific datasets used for its application in 

the South Platte. The results of the components and the overall index are presented and discussed. 

A summary of the approach is given in the last section along with further testing and future work 

propositions. 

The next chapter discusses the emergent water demand for unconventional oil and gas in Weld 

County, since this is the county with highest well concentration in the South Platte basin, and is 

compared with Garfield County to examine the importance of localities. The water development 

patterns and water use intensity are presented based on state data. The study moves between well 

scale, HUC-12 level and county scale for drawing implications in these different levels. The end 

of the life cycle of the oil and gas water is revealed with the challenges and opportunities for water 
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reuse. Data discrepancies in the publicly available databases are discussed and concrete 

suggestions are made regarding additional data to be collected and ways to improve data reporting. 

 

 
Figure 5: Architecture of the Study 

 

Chapter 4 is introducing a new method for filling data gaps in time series of groundwater head 

measurements. A thorough review about the use of the techniques in water resources that are 

included in the framework pinpoint the novelty of the approach. The methodology is taking 

advantage of an already built regional groundwater physical model, an exogenous seasonal auto-

regressive moving average model (SARIMAX) and the Ensemble Smoother. The applicability and 

the performance of the proposed framework was tested by three numerical experiments in eighteen 

groundwater wells of the South Platte alluvial aquifer. The results of each numerical experiment 

are discussed in details followed by alternative schemes to be tested in the future. 
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The final chapter of this study includes a summary of the research, the key findings of the 

presented approaches and summarized future research suggestions. 
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2 Developing Implementable Drought Management Policy Tools: 

Evolving the standardized drought vulnerability index 

 

2.1 Introduction 

The drought phenomenon has diachronically manifested its existence in almost every culture 

by affecting social and economic welfare to an extent that cumulatively exceeds any other natural 

disaster. Drought is a recurrent natural phenomenon striking many areas around the world defying 

their normal climatic conditions. The nature, characteristics and impacts of drought have 

continuously drawn the attention of the scientific community, state and federal entities, and the 

general public, resulting in the production of a rich menu of drought literature that mostly provides 

crucial information on its parameters [Rosenberg, 1978, 1980; Hagman, 1984; Grigg and Vlachos, 

1993; Fontane and Frevert, 1995; Karavitis, 1998; Wilhite, 2004; Cancelliere et al., 2005; Traore 

and Fontane, 2007; Vasiliades and Loukas, 2009; Karavitis et al., 2012a; Grigg, 2014; Karavitis 

et al., 2015]. 

Drought is a dynamic creeping phenomenon without a definition that may be widely accepted. 

As such, its holistic description is very demanding and consequently, once it occurs, it is seemingly 

difficult to confront being a non-event, that is, the absence of enough water [Yevjevich et al., 1983; 

Karavitis, 1999; Bordi et al., 2006; Eriyagama et al., 2009; Karavitis et al., 2014]. It has been 

noted that various terms exemplify a confusion among such concepts signifying “dry 

environments” or “water deficiencies” and these terms vary from desertification, to aridity, to 

drought and to water shortages [Vlachos, 1982] illustrated in Figure 6. Vlachos [1982] organized 

these concepts combining water availability manifestations (permanent vs. temporary) and causes 
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of environmental transformation (human induced vs. nature produced) as is shown in the figure. 

In this respect, aridity signifies the stable natural state of an area; water shortage is mainly 

connected with temporary deficiencies and with limited areal extent created mostly by 

anthropogenic factors; desertification is a permanent anthropogenic phenomenon and finally, 

drought is a temporary climatic episode, which may occur regularly in a fixed or unpredictable 

pattern. 

 

Figure 6: The “Xerasia” processes matrix [Vlachos, 1982; Karavitis, 1992; Karavitis et al., 2014] 
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Drought constitutes a rather severe hazard to all human activities [Blauhut et al., 2015], and 

especially to water supply. The vulnerability magnitude of various areas to that particular hazard 

depends on their exposure to water deficiency and to the existing water management policy 

framework [Karavitis, 2012]. In this context, several attempts have been made in order to describe 

the different dimensions of the phenomenon such as severity, duration and impacts [Changnon 

and Easterling, 1989; Byun and Wilhite, 1999; Shiau, 2006; Esper et al., 2007; Wilhite et al., 2007; 

Shiau and Modarres, 2009]. Other attempts have chosen to focus on drought monitoring and 

forecasting [Mishra and Desai, 2005; Cancelliere et al., 2007; Belayneh and Adamowski, 2012; 

Kavalieratou et al., 2012; Karavitis et al., 2015]. In all of these, the common thread seems to be 

the quest for the formation of holistic drought management schemes, incorporating contingency 

planning. Such emerging efforts have started to have a pivotal role in the determination of 

proactive management measures for mitigating the multifaceted adverse drought impacts 

[Karavitis et al., 2015]. In this pursuit, numerous indices have been developed and some are used 

quite frequently. The Standardized Precipitation Index (SPI) developed by McKee et al. [1993] 

serves as such. Furthermore, some recently established indices focus on examining drought within 

a different context such as the Reconnaissance Drought Index RDI [Tsakiris and Vangelis, 2005; 

Tsakiris et al., 2006] and the Standardized Precipitation Evapotranspiration Index [Vicente-

Serrano et al., 2010]; whereas, other more complex ones are referring directly or indirectly to 

vulnerability to water scarcity concepts, with prominent among them the Water Poverty Index 

[Sullivan, 2002]. 

Nevertheless, the concept of vulnerability to drought is a challenging one to display due to a 

disciplinary and/or individually based series of interpretations [Gallopín, 2006]. The vulnerability 

term is composed of two nascent elements, namely; hazard and impacts (Eq. 1) [Karavitis et al., 
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2014]. In this respect, without a disaster or a system in stress (hazard) there is no vulnerability. 

Sometimes, exposure may be counted as a vulnerability component. However, it is mainly 

considered to link the system of interest to a specific disturbance [Bohle, 2001]. Hence, exposure 

may be a risk component [UNISDR, 2004]. Nevertheless, the vulnerability concept mostly refers 

to the components affecting both a system’s capacity to cope and its potential to be harmed, while 

it is strongly influenced by a plethora of factors. Finally, vulnerability is not a static approach and 

it changes from time to time, complying with the changes that emerge in the various systems 

[O’Brien and Leichenko, 2001; O’Brien et al., 2004; Adger, 2006; Eakin and Luers, 2006]. 

Consequently, the definitions of vulnerability adapt to those changes as well rendering 

vulnerability assessments quite challenging tasks. 

࢚࢟࢏࢒࢏࢈ࢇ࢘ࢋ࢔࢒࢛ࢂ ൌ ,ࢊ࢘ࢇࢠࢇࡴሺࡲ  ሻ (1)࢙࢚ࢉࢇ࢖࢓ࡵ

 

In the case of vulnerability to drought, the rainfall patterns, the supply and demand trends, and 

the socioeconomic background are the most important ones. Water demand is an important part of 

the societal vulnerability to drought and therefore the occurring supply deficits may affect the 

socio-economic development in some parts of the world. Water demand deficits may increase due 

to supply failures or because of sudden changes in land use patterns (i.e. increased irrigation 

requirements) or urgent population needs [DeFries and Eshleman, 2004]. At the same time, 

infrastructure status along with access to technology affect vulnerability levels [Rosenberg, 1980], 

for example efficient irrigation practices could counterbalance some of the effects of drought 

events. Under such conditions, some regions are more vulnerable than others are. 
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Drought characterization is a difficult task and thus, a classification system is used [Grigg, 

2014]. Accordingly, characterization of vulnerability to drought becomes by default challenging 

since it is dependent to more information about impacts and risk of exposure. Rosenberg [1980] 

stresses that vulnerability to drought in one water user group has a ripple effect to the society at 

large. Evidence on this is the increased prices of agricultural products due to shortages attributed 

to the drought of 2011-2012 in the US [Grigg, 2014]. 

Despite the abundance of environmental information, drought impacts and factors 

contributing to vulnerability of systems are scarcely reported, even in developed states [Blauhut et 

al., 2015, 2016]. Grigg et al. [2014] underlines the eluding nature of drought impacts since they 

could occur in different ways, times and places. Drought reports are generally characterized by 

fragmentation and lack of synthesis and thus do not give an integrated perspective of impacts 

[Grigg, 2014]. At the same time, statistical data gathered by the relevant authorities are not very 

detailed and have a coarse spatial scale since they are aggregated. 

Duncan et al. [2015] argues that drought planning and management can be benefited by high 

spatial resolution analysis, since climatic and morphological conditions (e.g. rainfall patterns, 

plains, mountainous chains) can be masked in regional analysis. Likewise, factors affecting 

vulnerability to drought, such as demand and supply patterns, infrastructure efficiency, vary 

spatially too. Therefore, drought vulnerability assessment in high spatial resolution could serve as 

an additional water resources management tool informing managers and planners on priority 

actions. 

In this respect, the present effort focuses on the assessment of drought vulnerability in the 

South Platte River Basin during the drought event of 2012. This event was selected since it affected 



26 
 

a large portion of the US including a large part of the state of Colorado [Grigg, 2014]. The 

employment of indicators and indices is a common practice for describing complex phenomena 

and concepts. The SDVI (SPI-based Drought Vulnerability Index) is an integrated attempt for 

characterizing drought vulnerability based on a classification system. It was constructed by the 

Agricultural University of Athens, in the context of the Project Drought Management Centre in 

Southeastern Europe [Karavitis et al., 2011, 2014]. The application of the Index is visualized 

through geo-statistical methods in a GIS environment. 

The index was initially applied in Greece and the procedure and implementation process is 

presented in detail by Karavitis et al. [2014]. In all previous applications of the SDVI, due to lack 

of information, the values of the last three components (supply, infrastructure and impacts) are on 

a basin or sub-basin scale (in the case of infrastructure, general values were used). In that respect, 

the study is attempting to evolve the SDVI to the next step of its development, which is a less 

qualitative and more transparent data rigorous method of calculating the index in cases of data 

abundance, with the ultimate goal to lead in an efficient, timely and effective decision making in 

cases of drought events. The main argument is that drought planning can be benefited, by the use 

of such a tool. It could convey drought information to decision makers in a holistic manner, 

avoiding existing practices of broken linkages and fragmentation of reported impacts. Better 

understanding the vulnerability levels the different components of a system are experiencing 

during occurred extreme events can guide decisions and target mitigation and adaptation actions 

thus allowing for an integrated management approach. 
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2.2 Area of Application 

The assessment of the drought vulnerability index was performed in the South Platte River 

Basin of northeast Colorado (Figure 7). Its total area reaches 49,000 km2 [Dennehy et al., 1993], 

while the total population is estimated approximately at 3,700,000 inhabitants (70% of state 

population) [Colorado Department of Local Affairs, 2016]. Furthermore, the South Platte is a 

highly developed area with various competing and conflicting water demands. The agricultural 

sector is large with estimated coverage of the irrigated parcels in the basin in 2010 to be 3,426 km2 

(846,634acres) [Colorado Decision Support Systems, 2016]. It is a semi-arid basin with average 

annual precipitation of about 400 mm. According to McKee at al. [2000] the basin’s climate in the 

upper section (mountainous area) is wet during December-April and dry in June and August-

October, while the lower section is dry from November-February and wet from April-July. The 

dependence on snow accumulation during the winter months is significant since it serves as a 

natural storage for the basin to meet the demands during the summer period, along with several 

manmade storage structures. 

Colorado has faced the impacts of droughts throughout the 20th century [McKee et al., 2000], 

and most certainly with the 2002 and 2012 droughts. Additionally, climate change might increase 

the severity of future droughts [Colorado Water Conservation Board et al., 2013]. During the most 

recent drought of 2012, Colorado experienced severe impacts, resulting to a damage of 

approximately $409 million in agricultural revenue [Pritchett et al., 2013]. Thus, August 2012 was 

selected as representative time frame for the application of vulnerability assessment in the South 

Platte basin. 
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Figure 7: The South Platte basin within Colorado 

 

2.3 Methods and Data 

In spite of the uniqueness of decision making in a given time and locale, there is a unifying 

principle behind every successful decision - communication in a given organizational framework. 

Indicators are playing the role of the “channel” between slices of a complex reality (“sender”) and 

decision makers (“receiver”). In addition, efficient communication requires clarity and simplicity. 

Thus, indicators have to simplify the complex interrelations of the reality and convey them in an 

unambiguous fashion. At the same time, they have to reflect information that should be derived 



29 
 

indirectly from the stated properties. Therefore, they should represent the results of the links and 

the interactions between the natural system and the socio-economic development. 

In this context, the advancement of the Standardized Drought Vulnerability Index to 

accurately depict occurring conditions is essential for use of this index for water resources planning 

and management under drought conditions. At the same time, incorporating into the information 

needed in order to calculate the index, datasets that are available for the whole globe are enhancing 

the value and applicability of the index. The general methodological framework of the SDVI is 

described below, which is followed by a detailed description of the data and tools used in the 

current effort. 

2.3.1 The initial version of the Drought Vulnerability Index 

The SDVI reflects a composite structure (index) which has been produced during the 

DMCSEE Project [Karavitis et al., 2011, 2012b, 2014]. The SDVI aims at delineating an 

integrated estimation of drought vulnerability based on four drought manifestations namely: 

meteorological, hydrological, social and economic. Considering Eq. 1 that expresses 

vulnerability11, the hazard is expressed with the use of the 6-month and 12-month Standardized 

Precipitation Index, while the rest of the indicator’s components demand, supply, infrastructure 

and socio-economic impacts are the affecting the impacts of a system. 

ࡵࢂࡰࡿ ൌ ,૟ࡵࡼࡿሺࡲ ,૚૛ࡵࡼࡿ ,ࢊ࢔ࢇ࢓ࢋࡰ ,࢟࢒࢖࢖࢛ࡿ ,ࢋ࢛࢚࢘ࢉ࢛࢚࢙࢘ࢇ࢘ࢌ࢔ࡵ  ሻ (2)࢙࢚ࢉࢇ࢖࢓ࡵ
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The six components SDVI are classified in four groups. The pertinent components embodied 

in the index are presented graphically in Figure 8 along with their interconnections in Karavitis et 

al. [2014]. 

 

 
Figure 8: The relation between SDVI components and drought aspects [Karavitis et al., 2014] 

 

i. The 12-month Standard Precipitation Index (SPI-12) provides information about the 

precipitation patterns over a long period (12 consecutive months) and thus it may reflect 

the urban/tourism, industrial, reservoir storage and hydropower water availability 

[Karavitis et al., 2014]. The 6-month Standard Precipitation Index (SPI-6) compares 

precipitation over 6 consecutive months, thus may display more accurate seasonal 

variations and also reflects water availability during the crop growing season, especially 

for rain fed crops [Karavitis et al., 2014; Karavitis et al., 2012a]. Additionally the SPI-6 

may display existing seasonality particularly in dry climates [Wu et al., 2007]. It would 

seem that such a concurrent inclusion may promote links and interdependencies among the 

climatic precipitation parameters [Karavitis et al., 2014]. 
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The values of the SPI components are computed on a point (meteorological station) scale and 

then spatially interpolated with geostatistical techniques such as Kriging. Several other 

areas/points can be included in the process for a more adapted to the existing conditions visual 

calibration of the index to be deployed. Areas with zero drought vulnerability – such as mountain 

peaks, bare land etc. – may serve that cause [Karavitis et al., 2014]. 

On the other hand, the SDVI is including other components (e.g. anthropogenic factors such 

as water demand, which is independent of the demand values of the adjacent points), thus such a 

correction is not desired. Hence, the Inverse Distance Weighing (IDW) should be chosen for spatial 

visualization of SDVI, since IDW assumes that each measured point has a local influence that 

diminishes with distance. It seems to fit more appropriately the SDVI spatial interpolation than 

Kriging for the rest of the index’s components, when spatially detailed data are not available. In 

this context, any comparison of precipitation variation (SPI) with the vulnerability variation 

(SDVI) has to be made by comparing premises and outcomes, and not by applying the same spatial 

interpolation method, which in this case could not guarantee similar calculation errors. The SDVI 

may be computed for any given area should no precipitation data exist (no meteorological stations) 

providing that data for the remaining components of the vulnerability index are available.  

ii. The Supply and Demand components illustrate the supply capacity deficits. Their 

respective scale lies on both the availability of water and the delivered volume for supply, 

and on changing demand patterns including various lifestyles and cultural traits. During 

normal conditions, supply satisfies the demand at all times. Then, according to the SDVI 

classification if no supply deficit occurs, a demand deficit will not also occur. Conversely, 

if a supply deficit of 15% occurs, an equal demand deficit may occur. However, this will 

not always trigger the input of a demand deficit in the Index calculation, if despite the 
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reduction in supply; the demand may be still fully satisfied. For example, if the minimum 

water amount required per inhabitant is 1500 m3/inhabitant/month and the maximum 

supply capacity is 1770 m3/inhabitant/month, then a supply deficit of 15% (265.5 

m3/inhabitant/day) will not cause any deficit in demand coverage, since the remaining 

water quantity covers the demand (1504.5 > 1500 m3). 

iii. Infrastructure that portrays the existing level of infrastructure in terms of inadequacies (e.g. 

divergence from the designed supply capacity). The terms of infrastructure and supply may 

cause some times confusion, since e.g. a 15% infrastructure inefficiency may cause an 

equal deficit in supply. However, infrastructure status may not reflect this information in 

all cases. For instance, agricultural water infrastructure might be well developed and in 

excellent operational condition, nevertheless the limited water supply may be rerouted 

during a drought to an urban network so as to satisfy only the urban demand, leaving 

agriculture with significant deficits. In this context the two parameters do not reflect each 

other and have to be differentiated. Thus, the main role of this term is to capture the 

infrastructure adequacy status. 

iv. The component of Impacts describes the inflicted drought damages caused due to the 

drought deficiencies in the supply/demand equilibrium. The component had focused on the 

costs forced on society. The impacts which are posed to the environment at previous 

applications of the index are not taken under consideration, since it was difficult to have a 

direct monetary representation, particularly with the data at hand [Karavitis et al., 2014]. 
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Table 1: SDVI components vulnerability scale [Karavitis et al., 2014] 

Vulnerability Level 

Classification of SDVI Components 

SPI-6  
& 

SPI-12 
Supply Demand Impact Infrastructure 

Less Vulnerable (0) ≥1.50 
0% 

Deficits 
0% 

Deficits 
0% 

Deficits 
0% 

Deficiency 

Vulnerable (1) 0 to 1.49 
≤15% 

Deficits 
≤15% 

Deficits 
≤15% 

Deficits 
≤15% 

Deficiency 

Highly Vulnerable (2) 0 to -1.49 
16-50% 
Deficits 

16-50% 
Deficits 

16-50% 
Deficits 

16-50% 
Deficiency 

Extremely Vulnerable (3) ≤ -1.50 
>50% 

Deficits 
>50% 

Deficits 
>50% 

Deficits 
>50% 

Deficiency 

 

The main premise of SDVI is that the six components can coexist in an interdependent and 

complementary way. More specifically, the SPI components represent the hazard/risk element 

while the remaining four components represent the impacts element within the vulnerability 

concept. Hence, the SPI components describe the divergence of the accumulated precipitation from 

normal conditions and the remaining components describe both the effects of the precipitation 

deficits or surplus and the response conditions within the regions of interest. Thus, as also depicted 

in the works of Sullivan et al., [2003, 2009], Sullivan and Meigh [2007] and Sullivan [2002, 2011], 

a region with high positive SPI values may still display high drought vulnerability conditions, if it 

lacks the mechanisms and the capacity to exploit the available precipitation/water resources. For 

example, Greece exploits approximately 12% of the annually available water resources [Barraqué 

et al., 2008]. Consequently, on one hand the country’s vulnerability may be greatly affected by 

precipitation deficits, while on the other hand, precipitation surplus in some time periods cannot 
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guarantee the country’s safety against drought impacts. Thus supply and demand deficits are quite 

possible even when there is an abundance of water available, but it may not be usable for the 

societal needs due to the undeveloped water infrastructure. In this case, infrastructure development 

level and demand management may be the cornerstones towards drought impacts and vulnerability 

mitigation. 

Continuing, the six parameters are classified according to their performance into the presented 

in Table 1 vulnerability categories (0 - 3 scale). Then, the vulnerability to drought is calculated in 

compliance with Eq. 3 [Karavitis et al., 2014]. 

SDVI ൌ 	∑ ୗୡୟ୪ୣୢ	୚ୟ୪୳ୣୱ	୭୤	୲୦ୣ	େ୭୫୮୭୬ୣ୬୲ୱ

୒୳୫ୠୣ୰	୭୤	େ୭୫୮୭୬ୣ୬୲ୱ	
ே
୧ୀଵ          , where	N ൌ 6 (3) 

 

That equation infers that the SDVI components are of equal importance. That particular 

technique has been chosen since it one of the most applied ones in the development of composite 

indicators despite the likelihood for some components to be over or underestimated [Organisation 

for Economic Cooperation and Development, 2008]. Furthermore, assigning weights on the 

components of a complex phenomenon could be a challenging task. A recent study focusing on 

assessing the uncertainty caused by different weighting methods on the SDVI index [Tsesmelis et 

al., 2017] concluded that the equal weighting method is performing equally effective compared to 

more complex ones. The difference between the required and the supplied water quantities is the 

factor that determines the effects of the deficits. A supply deficit may cause no impact in demand 

coverage if the supply is still greater than the demand. Finally, the computed SDVI values are 

categorized into six classes of vulnerability as demarcated in Table 2. 
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Table 2: SDVI scaled values [Karavitis et al., 2014] 

SDVI     Vulnerability Scale Signal 

0.00 – 0.49  No or Least Vulnerable  

0.50 – 0.99  Low Vulnerability  

1.00 – 1.49  Medium Vulnerability  

1.50 – 1.99  High Vulnerability  

2.00 – 2.49  Very High Vulnerability  

2.50 – 3.00  Extreme Vulnerability  

 

2.3.2 Index Adjustment and Application 

The SDVI application in the South Platte basin is the first application of the index outside the 

geographical area of Southeast Europe (SEE), which is where it was first tested. The fact that SEE 

has different climatic conditions and levels of socio-economic development, makes it suitable for 

developing an index that would not be geographically constrained. At the same time though, it 

lacks detailed information (except from precipitation data) in order to satisfactorily portray the 

spatial and temporal variability the SDVI components. The abundance of publicly available state 

datasets along with the employment of remote sensing information was a great opportunity to 

revise the way the index was applied until now and thus increase the insight gained from its 

application. In this respect, the application in the South Platte basin, could not follow the same 

assumptions of its original application, nor similar datasets. The initial application of the SDVI 

had certain key limitations, namely: the impacts component was static through the monthly 

calculation of the index; ecosystem and secondary socio-economic impacts were not considered; 

the datasets used were aggregated to a basin or sub-basin level which can mask local variations of 
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drought vulnerability levels. The premises adopted for index facilitation, the datasets used and the 

procedures of spatial representation of each component are described below. Through the proposed 

approach the above-mentioned limitations were addressed. Drought impacts are now time varying 

and most importantly, through the incorporation of multiple datasets the impact component now 

accounts for ecosystem impacts (mainly natural vegetation), recreational and aquatic habitat 

impacts. The holistic impact representation that was developed could help depict impacts extent 

and magnitude in a non-fragmented way. Lastly, the inclusion of high resolution spatiotemporal 

datasets in the calculation of this index offers new capabilities of examining local vulnerability 

variations and comparing adjacent areas. 

2.3.2.1 SPI 

The values of SPI-6 and SPI-12 are computed on point scale (for every available 

meteorological station with the required data). In this context, monthly precipitation records from 

24 meteorological stations (Figure 9), that have at least a 50-year record (November 1982 - October 

2012), were retrieved from the NOAA’s Regional Climate Centers (RCCs) Applied Climate 

Information System (ACIS) (http://scacis.rcc-acis.org/). The majority of the records had 

intermittent data gaps which were filled by multiple regression analysis using the Hydrognomon 

software (version 4.01) [ITIA N.T.U.A., 2010] (for more information regarding the filling results, 

please see Appendix A). 

The monthly precipitation data for the period  were used as input to the SPI algorithm of the 

“SPEI” R package [Beguería, 2013]. In order to spatially visualize the calculated SPI values, 

several geostatistical approaches (Ordinary Kriging, Simple Kriging, Universal Kriging, 

Cokriging) and model types (Circular, Spherical, Tetraspherical, Pentaspherical, Exponential, 
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Gaussian, Rational Quadratic, Hole Effect, K-Bessel, J-Bessel and Stable) have been tested in an 

ArcGIS environment.  

 
Figure 9: Precipitation stations within and in proximity to the South Platte basin 

 

The combined application of Simple Kriging and Rational Quadratic provided the smallest 

Root-Mean-Square and Average Standard Errors. Hence this combination has been chosen for the 

6-month and 12-month SPI visualization that is shown in Figure 10 and Figure 11 respectively. 

All in all, the Kriging method provides a way for minimum error distribution, while correcting 

potential errors within the raw data. The method works in accordance with the premise that two 
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values that are nearby will have the same information. This is a feature presenting a significant 

advantage, where describing random phenomena such as precipitation patterns. 

 

 
Figure 10: 6-Month SPI for JAS of 2012 
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Figure 11: 12-Month SPI for JAS of 2012 

2.3.2.2 Demand 

Urban centers during drought events, are by default the most vulnerable locations since the 

impacts could be devastating. In the current effort, instead of showing by default the urban centers 

as highly vulnerable, it was selected to show the actual vulnerability level they experienced during 

the drought event. Usually, the monthly domestic water demand for the summer periods although 

bit higher than the rest of the seasons, is well calculated by the pertinent water authorities, and they 

are well prepared, not considering it a surprise. The 2011 National Land Cover Database was used 

in order to identify the exact areal extent of the urban areas. 
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Figure 12: Evapotranspiration stations used in the analysis. (Look in the Appendix D for station names 
based on the number) 

 

On the other hand, vegetation/crop water requirements vary since evapotranspiration is also 

dependent on climatic conditions (temperature, humidity, sunshine and wind). Thus during hot and 

sunny days, evapotranspiration is higher than during cooler and cloudy ones. Optimal plant growth 

is occurring when an equal amount of the water lost through the evapotranspiration process is 

applied back to the crop through rainfall and/or irrigation. In this respect, in order to estimate the 

scale of the demand component for basin’s vegetation, reference evapotranspiration (ETo) was 

considered the most suitable unit of measurement. Due to the high importance of agriculture in the 
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South Platte basin there is a large number of ETo monitoring stations. But there are only 18 stations 

with long record (2000-2016). One more station (Windy Gap), with the same record length is 

located outside the basin and is located on the west slope of the continental divide at 2,418 m, 

which due to its higher elevation was preferred to approximate ETo conditions for the mountainous 

area of the South Platte basin. These 19 stations (Figure 12), are part of the CoAgMet 

(www.coagmet.colostate.edu) and the Northern Colorado Water Conservancy District (NCWCD) 

(www.northernwater.org) networks. Monthly ETo was selected as an indicative measurement of 

vegetation water demand. The average monthly ETo for the whole period was compared with July, 

August and September (JAS) of 2012. The excess of monthly vegetation/crop demand 

classification is shown in Table 1. ETo point information was transformed to spatial information 

based on the Thiessen polygons, a simple technique was chosen rather a geostatistical approach, 

due to the complexity of the phenomenon and the small number of ETo stations at the lower part 

of the South Platte basin. 

The layer of the SDVI demand component was produced combining the calculated urban and 

vegetation water demand. On top of that classified spatial layer, areas with zero vulnerability (bare 

land, permanent snow, open water etc.) were superimposed. They were also identified from 2011 

National Land Cover Database, and assigned to the low vulnerability class. 

2.3.2.3 Supply 

In order to create a detailed classification, based on Table 1, for the supply component a 

variety of information was utilized. Monthly ditch diversion records, within a 50-year period 

(November 1962 – October 2012), for all ditches in the South Platte basin were extracted from 

Hydrobase, (http://water.state.co.us/DataMaps/Pages/default.aspx) the Colorado’s Division of 



42 
 

Water Resources database. The time series of 310 ditches (see Appendix E for the ditch 

identification number), which include the major ditches in the basin, were selected with the 

criterion to have at least 25 years of data, including information for 2012. The average diversion 

quantity for each month was calculated (excluding 2012) and compared with the amount diverted 

in 2012, in order to determine if there was a supply deficit. For the ditches that did not fulfill the 

above criterion, a supply deficit of 0% was assigned. The supply deficit for each ditch was 

converted to spatial information, utilizing the known ditch service boundaries shown in Figure 13. 

The cultivated crops within the ditch service polygons were assumed to have a uniform spatial 

allocation of water supply deficit.  

For the lands outside the ditch service areas, deviation from the average monthly soil moisture 

in the root zone was chosen as an indicator to represent the supply component in the SDVI. Due 

to lack of measured data, the information from the Noah Land-Surface Model (LSM) [Chen et al., 

1996; Koren et al., 1999] was used. The development of the Noah model was to be part of the 

NOAA NCEP mesoscale Eta model [Betts et al., 1997; Chen et al., 1997; Ek et al., 2003], and it 

is serving as the LSM to the Weather Research and Forecasting (WRF) regional atmospheric 

model, the NOAA NCEP coupled Climate Forecast System (CFS) and the Global Forecast System 

[Xia et al., 2012]. The root zone soil moisture content (measured in kg/m2) for the pixels within 

the area of study were extracted from the NLDAS-2 (North American Land Data Assimilation 

System) Noah Land Surface Model Level-4 Monthly dataset. It has 0.125 decimal degree 

resolution and root depth is defined as 100cm in the forested areas, and 60 cm in the non-forested 

ones [Rui and Mocko, 2014]. The root zone soil moisture content for three months (JAS) in 2012 

was compared to the 30-year (1980 – 2009) monthly averages in order to quantify the difference 
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from the percent of historical average. The classification to the SDVI scales followed that of  

Table 1. 

 
Figure 13: Ditch service areas, irrigation canals and main reservoirs within the South Platte basin 

 

The 2011 National Land Cover Database was used in order to identify areas like bare lands, 

high urbanized areas, industrial areas and water features (e.g. lakes, reservoirs). The supply 

component for the SDVI is classified as having low vulnerability to drought, for land uses like 

bare lands, permanent snow and water features. In order to identify if there was domestic water 

supply deficit and to classify it, time series of monthly reservoir storage data from the Water and 
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Climate Center of the USDA Natural Resources Conservation Service National 

(http://www.wcc.nrcs.usda.gov/) were used. Also, the reservoir storage can be used to depict 

impacts on hydroelectric capacity and recreation, in cases that applies. Each month’s percent 

average storage is a viable indication of water supply capacity by the water utilities serving these 

urban centers. Furthermore, in cases with no information, meeting urban water demand was 

considered to have low vulnerability since the minimum water amount required per inhabitant is 

always satisfied. A complete list of the reservoirs that were included in the analysis can be found 

at the Appendix F. 

2.3.2.4 Infrastructure 

Following the same notion that SDVI infrastructure component should portray the adequacy 

status of the water supply system, South Platte’s systems, both for domestic and agricultural 

purposes, can be classified as having zero deficiency. The South Platte basin climate is semi-arid, 

and, the development of adequate water supply infrastructure for agriculture became early on a 

necessity [Stenzel and Cech, 2013]. Agricultural production in northern Colorado is a very 

important revenue sector, and Weld County is one of highest producing counties in the US. This 

is possible mainly due to irrigated agriculture which is highly dependent on well operated 

reservoirs, and canal networks to allocate water based on the prior appropriation doctrine. For the 

above reasons, the capacity to deliver water in the basin is classified as having 0% deficiency. 

2.3.2.5 Impacts 

The estimation of drought impacts is inherently difficult to perform since they have spatial 

and temporal variability. In previous attempts of the SDVI, drought impacts were associated with 
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the societal cost. Either a theoretical high cost of not supplying water to urban center axiomatically 

depicting urban cities as most vulnerable or the monetary cost due to crop yield loss based on 

relevant reports were used. Although, the practice of measuring crop yield loss is a tangible way 

to portray the drought impacts, its disadvantage is that it cannot give any information of the 

temporal propagation of impacts. At the same time, environmental impacts have not been 

described due to lack of information at the areas of previous applications. The fragmentation of 

usually circumstantial impacts reports does not contribute towards their classification into the 

categories of interest (e.g. social or economic). Instead, the majority of the reports focus on the 

impacts posed on agriculture leaving great information gaps on the other categories (socio-

economic) [Gregorič, 2012; Grigg, 2014]. This area of interest did not escape such traits, limiting 

our understanding about the impacts. 

Responding to this weakness, and with the motive to also incorporate spatial and temporal 

effects of drought events, remote sensing information was employed to capture both agricultural 

and environmental impacts. The Normalized Difference Vegetation Index (NDVI) [Rouse, 1974] 

is a dimensionless transformation of spectral reflectance, that allows one to measure, visualize and 

evaluate healthy and abundance vegetation. It is expressed (Eq. 4) as the difference of the near-

infrared and visible region of the electromagnetic spectrum, divided by their sum. Healthy 

vegetation compared to stressed or diseased vegetation have different spectrum signatures 

[Knipling, 1970]. Healthy vegetation is absorbing much of the blue and red parts of the 

electromagnetic spectrum and is reflecting most of the green, while reflecting a large portion of 

near-infrared [Curran, 1980; Govender et al., 2007]. The NDVI has been used in several drought 

related studies [Hurcom and Harrison, 1998; Brown et al., 2008; Karnieli et al., 2010; Xu et al., 

2011; Tadesse et al., 2014]. 
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NDVI ൌ 	
		Near	IR െ VIS		
		Near	IR ൅ VIS		

 (4) 

 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is carried by 

NASA’s Earth Observing System (EOS) satellites of Terra and Aqua, and one the mission’s scope 

is to produce global vegetation indices. The NDVI is reported globally in a 16-day interval with a 

resolution of 250m from each satellite (products: MOD13Q1 and MYD13Q1). The time-lag (8-

day) of Terra and Aqua satellites give the opportunity of combining the data in order to increase 

temporal resolution to an 8-day time step. Combined MODIS NDVI data, smoothed and gap-filled, 

for the Conterminous US (CONUS) for the period 2000-2015 in a temporal resolution and spatial 

of 8-days and 250m respectively [Spruce et al., 2016], were employed to create the vegetation 

impact. The layer is portraying the NDVI for July, August and September of 2012, as percent of 

average monthly values for are deviating from long term average values. The NDVI dataset 

contains 16 files (one for each year) in netCDF-4 format for the whole CONUS. Due to the size of 

each file exceeding 4 GB, their handling was performed in the Linux Operating System. The 

netCDF Operator (NCO) toolkit [Zender, 2016] was used to manipulate the files in order to obtain 

a geographical subset that included the area of interest. The cropped files were imported into R to 

extract the gridded information of the dates that fall within JAS, for the period 2000-2015, to a 

raster format. Raster layers were calculated based on monthly averages, for each year, and then, 

historical monthly averages for the whole period (excluding 2012). The 2012 NDVI monthly 

average rasters produced were transformed to express the percentage from the long-term average 

and were classified according to Table 1. 

On the other hand, the delineation of impacts in urbanized areas was only possible through 

available reports, retrieved from the Drought Impact Reporter of the National Drought Mitigation 
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Center (droughtreporter.unl.edu). As mentioned in the supply section, reservoir storage could be 

used to represent impacts on hydroelectric capacity generation in areas that apply (e.g. Colorado 

River Basin), and for recreation purposes. Under this notion, the area occupied by the reservoirs 

(Figure 46) is classified according to Table 1, using percent of monthly average storage at the 1st 

of each month, with a reference period 1981-2010. The vegetation, urban and reservoirs’ 

supplement impacts information can be combined to generate the monthly SDVI impact layer. The 

satellite-derived information combined with hard data (reservoir storages) and soft data (reports) 

is an integrated way to depict vegetation (including agricultural crops), hydroelectric (which does 

not apply to the South Platte study area) and recreation/habitat drought impacts. The classification 

of different impacts allows one to visualize drought effects temporally and spatially, and thus 

suggests a way to overcome limitations pressed by information fragmentation and offers a way of 

synthesis. 

 

2.4 Results and Discussion 

The SDVI was conceived as an integrated approach for assessing drought vulnerability and 

thus the vulnerability levels portrayed represent the major components contributing to the overall 

vulnerability. The months of July, August and September were selected for assessing the 

vulnerability of the South Platte basin to the drought event of 2012. The main reason for selecting 

this period was to include in the assessment the vegetation’s growth season. Firstly, in this section, 

a summary and discussion of the individual calculated SDVI components is provided. Afterwards, 

the SDVI results calculated for each month, based on the aforementioned framework, are presented 

and summarized. 
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2.4.1 SDVI Components’ Estimation 

According to the previously described methodology (Section 2.3.2), after the collection of the 

pertinent data for the SDVI components, the next step was their calculation and visualization in an 

ArcGIS environment, which followed their transformation into their respective scaled 

vulnerability values. An example of this transformation presented here, is the calculated SPI-6 and 

SPI-12 (Figure 10 and Figure 11) and their visualization in terms of vulnerability levels is shown 

in Figure 14 and Figure 15 respectively. From the produced maps for the classified SPI-6 (cSPI-

6) and the classified SPI-12 (cSPI-12) presented, a few points may be surfaced. Firstly, the 

vulnerability due to precipitation deficit for the most part of the examined region is between 0 and 

-1.46 – portraying high scale vulnerability. During August of 2012, 49.36% of the basin is 

characterized as extremely vulnerable for the cSPI-6 (Table 3), but it recovers in the next month 

apart from the area northeast of the city of Sterling and southeast of the city of Fort Morgan. The 

shift can be explained since precipitation in August was significantly below normal levels. Drought 

conditions for SPI-12 were below normal (SPI < 0) in all precipitation stations and that is why 

approximately 95% of the basin (Table 4) is depicted as highly vulnerable. In August and 

September of 2012, according to cSPI-12 the area northeast of Sterling was classified in the 

extremely vulnerable level. For both Julesburg and Sedgwick stations, SPI-12 was less than -2 

decreasing more in September. Overall, the northeast tip of the South Platte is the most vulnerable 

area in the basin. The SPI-6 and SPI-12 are representing the hazard component in the function. 
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Figure 14: 6-Month component SPI for JAS of 2012 

 

Table 3: Area and percent area of vulnerability levels for the 6-month SPI in the South Platte basin 

Component Class 
Jul-12 Aug-12 Sep-12 

(km2) (%) (km2) (%) (km2) (%) 

Less Vulnerable (0) - 0.00% - 0.00% - 0.00% 

Vulnerable (1) 103.1 0.21% 3.8 0.01% - 0.00% 

Highly Vulnerable (2) 48,825.2 99.77% 24,779.1 50.64% 46,016.6 94.04% 

Extremely Vulnerable (3) 7.3 0.01% 24,152.7 49.36% 2,918.9 5.96% 

Total Area 48,935.6      
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Figure 15: 12-Month component SPI for JAS of 2012 in the South Platte basin 

 

Table 4: Area and percent area of vulnerability levels for the 12-month SPI in the South Platte basin 

Component Class 
Jul-12 Aug-12 Sep-12 

(km2) (%) (km2) (%) (km2) (%) 

Less Vulnerable (0) - 0.00% - 0.00% - 0.00% 

Vulnerable (1) 2,499.5 5.11% 911.7 1.86% 918.5 1.88% 

Highly Vulnerable (2) 46,354.0 94.72% 46,328.4 94.67% 46,556.5 95.14% 

Extremely Vulnerable (3) 82.1 0.17% 1,695.5 3.46% 1,460.5 2.98% 

Total Area 48,935.6      
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The infrastructure component is not presented since the South Platte basin is highly developed 

and with a well-maintained water infrastructure network, thus classified in the less vulnerable 

condition for the whole period of study. 

The demand component for the South Platte is presented in Figure 16. During July of 2012 

the vegetation water requirements in the mountainous portion of the basin are classified as average 

(less vulnerable) and during the following two months are classified as vulnerable since water 

requirements are not exceeding 15% of average. The “CSU-ARDEC” ETo station had throughout 

the study period measured conditions of less ETo than the historical average, and that is why the 

area of influence (Thiessen polygon) including the northeast part of Larimer County and northwest 

part of Weld County are depicted with green color. The other less vulnerable areas (green color) 

on the maps of Figure 16 are either urban centers, like the Denver metropolitan area at the lower 

left side of the basin, or reservoirs and land uses such as bare land. The defining aspect of the 2012 

drought was abnormally high temperatures and evapotranspiration rates. During July and August 

of 2012 the plain portion of the basin is at the most vulnerable state since 41.88% and 51.66% of 

it was classified in the higher vulnerable conditions for the demand component respectively. The 

phenomenon dissipated during September and only 4.08% of the basin was depicted with 

vegetation water requirements more than 15% of the historical average. The area and the percent 

area of each vulnerability component level is spatially occupying during the three months of study 

are presented on Table 5. 
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Figure 16: Demand component for JAS of 2012 in the South Platte basin 

 

Table 5: Area and percent area of vulnerability levels for the demand component in the South Platte basin 

Component Class 
Jul-12 Aug-12 Sep-12 

(km2) (%) (km2) (%) (km2) (%) 

Less Vulnerable (0) 17,669.5 36.11% 3,262.5 6.67% 3,460.8 7.07% 

Vulnerable (1) 10,770.3 22.01% 20,393.4 41.67% 43,478.6 88.85% 

Highly Vulnerable (2) 20,495.7 41.88% 25,279.6 51.66% 1,996.2 4.08% 

Extremely Vulnerable (3) - 0.00% - 0.00% - 0.00% 

Total Area 48,935.6      
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The SDVI Supply component was calculated for the area of interest, based on information 

regarding monthly water diversions in irrigation canals, the storage level of the reservoirs used for 

domestic demand as an indication of capacity to meet the urban water demand and lastly the root 

zone soil moisture content from the operational Noah LSM model. Urban centers were classified 

as less vulnerable since storage percent anomaly for the reservoirs with domestic purpose across 

the basin did not exceed 50% of storage historic average for the whole period. The reservoirs 

serving Denver and Aurora like Antero and Elevenmile Canyon had above the average storage and 

the Spinney Mountain almost the average storage. At the same time reservoirs with mainly 

agricultural water use delivery were experiencing more than 50% lower storage than their monthly 

historic averages. This could be associated with canal service areas that their delivery was 

classified in the extremely vulnerable level. Examples of this are the Riverside Reservoir and the 

North Sterling Reservoir and the water diversions at their respective canals service areas. The 

deficits regarding the water diversions to the irrigation canals was intensified during September of 

2012. Furthermore, about half of the basin’s area was classified as highly vulnerable in August 

and September since the Noah Land-Surface Model estimated the anomaly of the soil moisture 

content at the root zone for lands outside the ditch service areas to be less than 50% of the historic 

average. The mountainous area of the South Platte basin according to the data from the Noah LSM 

indicated that there were vulnerable to drought and only pockets of average conditions were 

estimated by the model. 
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Figure 17: Supply component for JAS of 2012 in the South Platte basin 

 

 

Table 6: Area and percent area of vulnerability levels for the supply component in the South Platte basin 

Component Class 
Jul-12 Aug-12 Sep-12 

(km2) (%) (km2) (%) (km2) (%) 

Less Vulnerable (0) 10,736.0 21.94% 8,592.4 17.56% 6,422.1 13.12% 

Vulnerable (1) 22,224.9 45.42% 14,431.2 29.49% 15,280.9 31.23% 

Highly Vulnerable (2) 14,855.6 30.36% 23,819.5 48.68% 25,107.7 51.31% 

Extremely Vulnerable (3) 1,119.1 2.29% 2,092.4 4.28% 2,124.8 4.34% 

Total Area 48,935.6      
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The last SDVI component is the occurred impacts on a monthly time step. As described in the 

methodology, satellite derived datasets, reservoirs’ storage information and reports from the 

Drought Impact Reporter database regarding urban impacts were utilized in order to represent a 

composite spatial layer of multifaceted impacts. Overall, cities on the Front Range did not have 

any significant impact thus were represented as less vulnerable. From the maps illustrated in Figure 

18, it is obvious that the vegetation outside ditch service areas is more vulnerable to drought and 

fall within the highly vulnerable component class. In the mountainous part of the South Platte 

basin the vegetation is experiencing some stress but there are also a few areas classified as less 

vulnerable. The anomaly recorded is less than 15% of average greenness. The only exception in 

this is the area at the north within the Larimer County, that has highly and extremely vulnerable 

vegetation. These severe impacts are not credited to drought conditions, but to the Hewlett Gulch 

Wildfire that burned 31 km2 on May of 2012 and the High Park fire, that occurred in June of the 

same year, and burned 350 km2 [Writer et al., 2014]. This exception stresses the fact that additional 

information for each area of application need to be taken into account when interpreting the 

impact’s spatial layer in order to identify eluding causes for depicted irregularities.  

The comparison of the index produced results with the existing condition show a very good 

relation. The other spots of extreme vulnerability that are along the South Platte River are 

reservoirs whose storage was significantly lower than their historic monthly average. 

Representative are the cases of the Empire, Riverside and Jackson Lake reservoirs that were 

completely dried out by 1st of August 2012 and North Sterling reservoir by 1st of September. 

Consequently, affecting not only the irrigation ditches they are serving, but also having recreation 

and environmental/habitational impacts. One report in the Drought Impact Reporter database is 

mentioning that on July 23rd action was taken to salvage fish population in the Barr Lake near 
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Denver, which on the maps of Figure 18 is shown in the extreme vulnerable class. Furthermore, 

boating at the Prewitt reservoir (July) and Horsetooth (August) reservoirs are affected, which again 

are portrayed by the index component as vulnerable spots.  

A significant part of the irrigated agriculture is under stress with the anomaly on the vegetation 

greenness in these areas to be classified as vulnerable (<15%) depicting the deficiency of meeting 

crop water requirements, which the Drought Impact Reporter database is supporting since farmers 

were asking permission from senior water rights to be allowed to pump groundwater from the 

alluvial aquifer. At the same time the crops that are within normal conditions can be attributed to 

their priority on the available water since the land is associated with senior water rights. In Morgan 

County, the irrigated crops are experiencing of vegetation health since the NDVI percent of 

average is decreasing steadily from July throughout August. 

On the other hand, the rest of the vegetation at the plains is depicted as steadily highly 

vulnerable, something expected since most of this area is classified as non-irrigated grass/pasture. 

This high stress observed on grass/pasture lands is in concordance with reports from the media 

retrieved from the Drought Impact Reporter database. There are several entries mentioning in the 

area there was not enough grass to feed cattle and thus forced of selling livestock, or in other cases 

forced to feed alfalfa and hay, which indirectly are displayed in the impacts component maps since 

grass and pasture lands are severely impacted. All in all, the reports retrieved from the Drought 

Impact Reporter database are supporting the results from the selected methodology to portray the 

impacts in a holistic way, but during their interpretation other sources of information (land uses, 

wildfires, etc.) should be taken into account. 
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Figure 18: Impacts component for JAS of 2012 in the South Platte basin 

 

 

Table 7: Area and percent area of vulnerability levels for the impacts component in the South Platte basin 

Component Class 
Jul-12 Aug-12 Sep-12 

(km2) (%) (km2) (%) (km2) (%) 

Less Vulnerable (0) 7,418.1 15.16% 7,950.5 16.25% 6,326.2 12.93% 

Vulnerable (1) 13,643.1 27.88% 16,612.0 33.95% 15,556.1 31.79% 

Highly Vulnerable (2) 27,650.0 56.50% 24,011.7 49.07% 26,689.7 54.54% 

Extremely Vulnerable (3) 224.4 0.46% 361.3 0.74% 363.6 0.74% 

Total Area 48,935.6      

 



58 
 

2.4.2 Drought Vulnerability Estimation 

Figure 19 portrays the monthly vulnerability magnitude and extent of the South Platte basin, 

but also informs about the spatiotemporal propagation of the index. The SDVI results may be 

directly connected to the SPI results (as the SPI values were used in the SDVI estimation 

representing the hazard component), since the most vulnerable area, northeast of Sterling, 

displayed a significant precipitation stress, in both SPI components, compared to the least 

vulnerable ones. Overall, the total extent of the extremely vulnerable class does not surpass 3% of 

the total area. 

The urban areas are characterized as the least vulnerable part of the basin along with parts of 

the basin with higher elevation. For urban areas this low level of vulnerability during the study 

period is attributed to the high percent average of reservoirs’ storage and the very few reports 

retrieved from the Drought Impact Reporter database. It is worth mentioning that the urban areas 

were expected to be classified in one of the least vulnerability classes compared to the other parts 

of the basin, since the political priority given to these areas for mitigating the effects of drought is 

the highest due to potentially catastrophic consequences. The mountainous areas display less 

vulnerability to drought which is accredited to the lower vulnerable demand and supply 

components. The aforementioned impacts of the two wildfires in the impact component estimation, 

were somewhat masked by the rest of the SDVI components and also because in the historical 

NDVI average were included post-fire years, resulting in a classification as one scale more 

vulnerable compared to adjacent areas. The higher vulnerability of post-fire areas is in accordance 

with recent findings that during drought years following the wildfires the vulnerability is higher in 

terms of forest recovery and favored species [Harvey et al., 2016]. Non-irrigated grass/pasture 

lands, which constitute the vegetation with the greatest extent in the basin, were classified among 
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the most vulnerable parts of the basin for the 2012 drought. This SDVI finding is in accordance 

and backed up by the numerous reports available in the Drought Impact Reporter database. 

 

 
Figure 19: SDVI results for the South Platte basin 
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Table 8: Area and percent area of SDVI vulnerability levels in the South Platte basin 

Component Class 
Jul-12 Aug-12 Sep-12 

(km2) (%) (km2) (%) (km2) (%) 

Non Vulnerable (1) - 0.00% 0.4 0.00% - 0.00% 

Less Vulnerable (2) 8,516.7 17.40% 3,095.5 6.33% 3,086.4 6.31% 

Medium Vulnerable (3) 20,173.3 41.22% 18,468.4 37.74% 23,462.5 47.95% 

Highly Vulnerable (4) 20,245.5 41.37% 25,908.3 52.94% 21,438.2 43.81% 

Extremely Vulnerable (5) - 0.00% 1,463.0 2.99% 948.6 1.94% 

Exceptionally Vulnerable (6) - 0.00% - 0.00% - 0.00% 

Total Area 48,935.6      

 

The basin is depicted as more vulnerable during August of 2012, which slightly dissipates the 

next month. From the components presented and discussed in section 2.4.1, this slight 

intensification of about 5,000 km2 shifting to the medium vulnerable class (Table 8) is a result of 

the combined result of the demand, supply, SPI-6 and impacts components. However, the straight-

line borders of vulnerability classes, a non-natural effect, which is visible in almost all three 

months, is product of the coarser datasets (Demand and Supply) that were used for the calculation 

of the index. This denotes the need for incorporating and testing alternative datasets, as they 

become available, with finer resolution. Although, recreation and environmental impacts from 

reservoirs were well portrayed in the pertinent component maps, the SDVI calculations display 

lower vulnerability status of the reservoirs. Especially in the lower section of the South Platte 

where some had zero storage. This is because the minimum demand and supply component for 

socio-environmental uses, was not considered for the reservoirs. Data on thresholds need to be 
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incorporated for a more accurate display of vulnerability levels, but such information is not easily 

accessible. 

 

2.5 Conclusions 

In drought and its multifaceted impacts lurks a complexity that makes the task of their 

spatiotemporal assessment challenging. Indices have attempted to describe the duration, 

magnitude and spatial extent of droughts. Despite the fact that physical and anthropogenic systems 

are interwoven, most of the time the assessments are following a fragmented approach, and fail to 

link components (structural and socio-economic) that could intensify vulnerability to drought 

events. Vulnerability to drought is characterizing the susceptibility of system’s components. 

Vulnerability includes both hazards and impacts and it measures the ability to meet demands at a 

specific time step. Understanding the weaknesses and interconnections of physical and social 

systems can better inform drought management strategies. Sine there is inherent difficulty and 

complexity, the employment of indices that would incorporate different components of 

vulnerability is a viable way forward to developing implementable drought management tools. 

SDVI had been conceived and constructed in such a way in order to include aspects of the physical, 

structural and socio-economic components. Its original development and application though, has 

been assessed in a region of limited data availability. 

The South Platte basin faces great challenges in water resources management that are further 

intensified due to extreme events. At the same time, it is an area of data abundance compared to 

other parts of the world and thus suitable for evolving the SDVI to have less qualitative inputs and 

thus more accurate approximate the system’s vulnerability. Furthermore, the approach adopted 
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increases the spatial resolution of the results and thus the index serves as a way of providing a 

relative measure such that finer scale areas can be compared. In this way, the SDVI evolves to an 

implementable phase and its results could have more transparency and been better assessed. It 

should be noted that the value of the index cannot be validated at the ground as in most composite 

indicators. Instead, the individual components can be validated and compared with different 

drought events, thus providing information to stakeholders and planners of priority actions at 

different scales (farm to basin). 

The datasets that helped overcome previous limitations of the index include integration of 

remote sensing and measured data, and, some soft data in cases there was not enough quantitative 

information. Apart from the SPI-6 and SPI-12 components, the calculation of the rest of the 

components was reinvented in order to take advantage of the abundant publicly available 

information. The Demand SDVI component used percent ETo from historical average for the 

vegetated areas in order to portray plausible increased water requirements during drought events, 

while domestic and industrial water demands considered as least vulnerable due to their nature. 

The supply component is calculated based on ditch irrigation diversions for irrigated agriculture. 

For the urban areas the percent of reservoirs’ storage was an indication of domestic water supply 

capacity. The South Platte basin is a highly developed with water supply networks well 

maintained, thus the infrastructure component did not have spatial variability and was classified 

in the less vulnerable level. Lastly, the impact SDVI component was composed by different 

datasets in an attempt to capture some of the multifaceted drought impacts (agricultural/vegetation, 

domestic, recreational and environmental). The percent average of NDVI portrayed the impacts in 

vegetated areas. The reports from the NDMC’s Drought Impact Reporter were utilized to classify 
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urban water deficit impacts, while the reservoirs’ percent storage compared to the monthly average 

were used for representing recreational and environmental impacts. 

Overall, the SDVI results can be correlated with the SPI components since they are 

constituting one third of the index’s value. That being said, the incorporation of the other index 

components results in delineating vulnerability levels based on societal, physical and structural 

factors. The SDVI values produced for the South Platte basin seems to offer a deeper understanding 

of vulnerability of the different system’s components. According to the analysis preformed the 

urban areas are classified as least vulnerable, along with the forested land uses. The irrigated 

agriculture is showing less vulnerability than vegetation on the plains located outside ditch service 

areas. This is attributed to SDVI’s supply component since the capacity to meet crop water 

requirements within the ditch service areas is potentially greater than outside of it. At the same 

time, the impacts measured are greater in the grass and pasture lands than in crops. 

Despite the evolution of the index calculation some limitations still exist. Water supply from 

groundwater was not possible to be incorporated since data were not available. Uncertainty in the 

input values for the index calculation is also one of the uncertainty sources affecting the results. 

The components with the least certainty are the demand and supply. Evapotranspiration 

measurements tend to be spatially sparse with limited coverage and with usually short time records. 

A solution to that could be the incorporation of ET data products from satellite observations like 

the MODIS Global Evapotranspiration Project or from the Thermal InfraRed Sensor onboard the 

Landsat 8. The approach adopted in the present effort regarding the supply component, could be 

further enhanced with more accurate representation of the strict water allocation rules in the South 

Platte due to the prior appropriation doctrine. The combination of allocation models will help 

reduce the assumption of equal spatial distribution of supply deficit within each ditch service area 
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and thus have a more detailed effect on finer scale. Alternatively, a more efficient way would be 

the incorporation of soil moisture products from satellites as they become available, e.g. the Soil 

Moisture Active Passive mission, and thus eliminating the need of intensive modeling of water 

supply and tracking changes through time in allocation priorities. Relying more on satellite driven 

data, will lead to a more operational version of the index with the ability to inform about drought 

vulnerability conditions in near-real time. In addition, the incorporation of demand and supply 

components for the reservoirs would result to more precise assignment of overall drought 

vulnerability levels regarding ecological and societal aspects. Detailed representation of 

infrastructure status is needed to be incorporated for the index calculation since it is one of the 

main factors that can affect water storage and delivery and thus contribute to system’s vulnerability 

to drought. 

The identification of system’s vulnerability in an integrated way is crucial to reveal its 

different contributing underline causes, giving a better understanding of the system’s complexities 

to water planners and managers. Thus, the vulnerability categorization of the system’s components 

based on multiple drought events could lead into triggering targeted actions that could result to a 

more integrated approach in drought management linking demand, supply and impact focused 

measures, and at the same time resulting on improving water security. 
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3 Water for Unconventional Oil and Gas Development and the 

Existing Data Challenges1 

 

3.1 Introduction 

There is an intricate connection between energy and water resources formulating the water-

energy nexus [Gleick, 1994]. A subset of this nexus is the supply and use of water for extracting 

unconventional oil and gas resources. Technological advancements, over the past decade, made it 

possible to have a boom in unconventional oil and gas sector across the United States [Murray, 

2013] offering alternative sources of oil and gas and boosting local economies [Higginbotham et 

al., 2010; Considine et al., 2011]. Studies have indicated that the use of unconventional sources of 

energy, especially shale gas, could decrease the overall water consumption for energy production 

if such sources are going to offset the water use of coal power plants [Grubert et al., 2012; Laurenzi 

and Jersey, 2013; Pacsi et al., 2014]. While there are opportunities generated from the 

unconventional oil and gas development, there are also potential environmental and health related 

challenges [Osborn et al., 2011; Clark et al., 2012; McKenzie et al., 2012; Pacsi et al., 2013; 

Walton and Woocay, 2013; Colborn et al., 2014; Vengosh et al., 2014; Mehany and Guggemos, 

2015; Burton et al., 2016; Goodman et al., 2016; McLaughlin et al., 2016] 

The rise of unconventional oil and gas exploration has created a “new” water user with an 

increasing demand, which is competing with traditional water demands. Only recently, few studies 

have reported water use estimates for the United States [Gallegos et al., 2015; Kondash and 

                                                 
1  The research in this chapter was conducted under the AirWaterGas Sustainability Research Network 

(http://airwatergas.org/) funded by the National Science Foundation under Grant No. CBET-1240584. Any opinion, 
findings, and conclusions or recommendations expressed in this chapter are those of the author and do not 
necessarily reflect the views of the National Science Foundation. 
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Vengosh, 2015; Chen and Carter, 2016], but because of their scope of study fail to represent 

differences localities. Several of the developed regions are exhibiting an arid and semi-arid 

climate, which can be seen as an additional stress to the limited available water resources. At the 

same time, the concerns regarding water quality [Vengosh et al., 2014] along with water quantity 

became a priority on the sociopolitical agenda, since the oil and gas activity, due to the 

development boom, was taking place in closer proximity to habited areas than it did in the past. 

Despite the fact that data need to play a critical role in the complex decision-making 

surrounding the water-energy nexus, plenty of datasets (i.e. source of water) are either not easily 

accessible or they are unavailable, hindering trade-off analysis. Openly available data, collected in 

a reliable and transparent fashion, which answer expert and public concerns are needed to inform 

decisions made by oil and gas operators, water managers, and policymakers concerning water use 

related to energy production [Goodwin et al., 2013; Malone et al., 2015; Nicot and Scanlon, 2012; 

Orford, 2013]. Such a practice would promote resource sustainability and facilitate integrated 

water resources planning and management.  

In Colorado, the formations of the Denver-Julesburg Basin in the northeast part of the state 

and the Piceance Basin located in western Colorado have experienced the greatest concentration 

of new drilling (Figure 20) [Colorado Oil and Gas Conservation Commission, 2015]. The Denver-

Julesburg Basin is producing oil and gas, where the Piceance Basin is exploited mainly for its 

natural gas. The 2014 state’s crude oil production increased to 95,192 thousand barrels (49,435 in 

2012) [U.S. Energy Information Administration, 2015b] while the gross natural gas production 

was 1,631,390 million cubic feet (1,709,376 in 2012) [U.S. Energy Information Administration, 

2015a]. At the same time, the statewide water use for oil and gas activities is estimated to be 

approximately 0.1% of overall water use, or 22,202,673 m3 per year [Colorado Division of Water 
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Resources et al., 2012]. The quantity of water used per well is dependent on several different 

factors, including the geologic formation, the type of well (vertical, directional, horizontal), the 

number of hydraulic fracturing stages, the distance of the total reach within the production zone, 

and the type of hydraulic fracturing fluid (e.g. cross-linked gel or slickwater). Thus aggregating 

the estimated water use on state-level isn’t useful on a local scale since development is taking place 

in few basins and also different factors can vary significantly at the local level, including 

competing water demands [Clark et al., 2013; Nicot and Scanlon, 2012; Rahm and Riha, 2012].  

In the Denver-Julesburg Basin, Goodwin et al. [2013] found that horizontal reaches in 

productive shale formations are increasing from 1.6 km to 3.2 km or longer. This has a direct 

impact on water use consumption per each well, since the length of the reach is associated to the 

number of stages and subsequently with total quantity of water used during completion. The same 

study reported the median water requirement in the Denver-Julesburg Basin was 1,363 m3 per 

vertical well, 10,868 m3 per horizontal well while the extended horizontal wells (greater than 25 

hydraulically-fractured stages) require more water (median 21,274 m3). Studies examining water 

use in the Piceance Basin, and more specifically within Garfield County, report a wide range of 

water use estimates. A study conducted by the U.S. Environmental Protection Agency [2012], 

which used FracFocus data, estimated a range of 3,785 to 34,069 m3 per well (median 4,921 m3), 

while another study suggests a median of 6,462 m3 per well [U.S. Environmental Protection 

Agency, 2013]. Comparing the reported numbers of the aforementioned studies, it becomes 

apparent that there are data inconsistencies that can create barriers to predicting future water use 

and associated tradeoffs for making policy decisions and developing regulations. 
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Figure 20: Map of oil and gas wells in Colorado (wells shown as green dots, the polygon in yellow is the 
Denver-Julesburg Basin and Piceance Basin in pink). The number of producing wells in Weld County and 
Garfield counties as of 14/7/2015 is 20,918 and 10,499 respectively. [Colorado Oil and Gas 
Conservation Commission, 2015] 

 

For developing and implementing water resources planning and management that would 

include water use for unconventional oil and gas, it is imperative to understand the whole cycle of 

the water used for this industry. Furthermore, identifying the characteristics influencing industry’s 

development patterns decisions that affect water use intensity along with the source of the water 

is a key to better understand this “new” water demand. The need for accessible and reliable data is 

the basis of developing better water use predictions, which would support complex decisions that 

involve local communities and other competing and conflicting water uses, such as agriculture.  

The present effort analyzed and compared publicly available water use datasets and identified 

well development patterns, normalized water use per well, and flowback and disposal practices 

that are taking place in Garfield and Weld counties. The two Colorado counties, although governed 
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by the same rules, represent two distinctly different basins in terms of geophysical characteristics 

and producing products, which makes this study more representative. In response to the question 

of effects on local water resources, this effort explores briefly the sources of water acquisition for 

oil and gas in these counties, and the relative stress imposed. The additional total water demand 

from oil and gas within the boundaries of each county was quantified and compared to the total 

water withdrawals generated locally. Additionally, this work attempts to identify water intensity 

in a HUC-12 level in Weld County and compare it with other water uses. Finally, the study 

discusses the existing data limitations and the relevance of the analysis for other regions with 

similar industrial activity. 

 

3.2 Methodology and Data 

This multi-scale analysis (well, county and HUC-12 level) and comparative case study 

approach used a variety of sources and several publicly available datasets in order to investigate 

the oil & gas well development patterns and the water that is being used; and what are the channels 

this water is coming from and how it compares with other uses on a county level and a HUC-12 

level. The methodology described below was designed to fill knowledge gaps about the 

aforementioned goals but also to reveal the existing data challenges and practices that hinder the 

efficient and effective study of the whole life cycle of the water used for unconventional oil and 

gas exploration. 
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3.2.1 Water Use and Oil & Gas Well Development Patterns 

Well characteristics and water consumption data per well were extracted from state’s 

organizations publicly available databases and the FracFocus database [FracFocus Chemical 

Disclosure Registry, 2015]. Completed Interval Reports for both counties were extracted from 

January 2011 through 2014. At the time of the research activity, the available data in 2014 for 

Garfield County were current up to July 2014 while for Weld County were current until April 

2014. It should be mentioned, that the existing administrative protocols of the Colorado Oil and 

Gas Conservation Commission (http://cogcc.state.co.us/) requires operators to report their water 

use through the Completed Interval Report form (Form 5A) within 30 days of well completion. 

Data collected on active oil and gas wells contained “total volume of fluids used in treatment”, 

because the amount of the water was not reported frequently in the completion forms. Furthermore, 

information was collected, if available, about the type of the water (fresh or recycled) used, the 

amount of flowback water recovered within the period of well completion and reporting, the 

disposal methods for flowback water and the number of staged intervals. 

The Completed Interval Report dataset was subject to a thorough quality assurance and quality 

control (QA/QC) process that included consolidation of duplicate well entries with fracture jobs 

in several geologic formations, correction of entries reporting values in incorrect units, and 

exclusion of entries with missing values. Furthermore, in order to make sure that discrepancies 

were not present, several QA/QC tests were performed on each record (e.g., amount of total fluids 

used should have been greater than flowback water). After consolidating duplicate well entries, 

the records were 1077 for Garfield County and 2076 for Weld County, which resulted in 712 and 

2022 records, respectively for the two counties after the QA/QC procedure. The main reason for 

discarding a record was lack of reporting total fluids used. Lastly, outliers and spurious data were 
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detected and excluded from further analysis by using an adjusting boxplot method [Hubert and 

Vandervieren, 2008] that accounts for distributional asymmetry. This approach was chosen instead 

of other methods (extreme Studentized deviation, percentiles) because the study data were not 

normally distributed and contained outliers. 

Since one of the factors influencing the quantity of water used per well is the well type 

(vertical, directional, and horizontal), it is essential to categorize the wells into different types. The 

identification of the directional and horizontal wells was possible through the directional well 

database by Colorado Oil and Gas Conservation Commission. Along with the well type, the length 

of each well was retrieved. Any well that was not included in the the directional well database was 

assumed to be a vertical well. The information retrieved from this database (well ID, well type and 

length) was joined with the COGCC’s Completed Interval Report dataset, since the type of each 

well is not provided at the 5A Forms. 

FracFocus (http://fracfocus.org) is an online hydraulic fracturing related database, which 

covers the largest part of the USA. It is managed by the Ground Water Protection Council 

(http://www.gwpc.org) and Interstate Oil and Gas Compact Commission 

(http://iogcc.publishpath.com). Available FracFocus data for the two counties included the 

combined water volume on a per well basis without specifying the water was fresh or recycled, 

and if fresh, its source. Information from FracFocus was extracted for the study period of 2011-

2014. Prior to April 1, 2012, disclosure of certain well completion information by Colorado oil 

and gas companies was reported to FracFocus on a volunteer basis. Since then, operators have 

been required to report data to FracFocus within 60 days following the conclusion of a hydraulic 

fracturing treatment. The data extracted, were evaluated through a QA/QC process. The screening 

for outliers resulted in keeping 1,843 producing gas well records in Garfield County from 1852, 
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and 4,046 producing oil and gas well records in Weld County from 4093. Although FracFocus 

database is easily accessible and gives the option of bulk download, compared to the COGCC, the 

information provided is less detailed regarding water use. Thus, FracFocus for this scope was used 

mainly for cross-checking the statistical characteristics of the total water volume used with that of 

the COGCC dataset. 

 

3.2.2 Water Acquisition Pathways and Water Use on County Scale 

Water sourcing for oil and gas development in Colorado is not reported, since there is no 

relevant state or federal regulation in place at this time, making the gathering of this information 

challenging. Thus, the information is limited and scattered across several datasets (water right 

decrees and substitute water supply plans) which hinders a thorough analysis. The water use 

information gathered at the previous section (3.2.1) was aggregated and was compared to the 

county water use estimates of the report by Maupin et al. [2014]. The different water source 

pathways are reported here, in relation to the estimation of the amount of water used in oil and gas 

on county scale. Furthermore, a significant difference of water administration between Garfield 

and Weld counties is the existence of nontributary (for definition see LIST OF TERMS) 

groundwater wells in Weld County. 

Oil and gas operators see the nontributary groundwater wells located in the South Platte basin 

as a reliable source of water for the industry. This water is not subject to administration within the 

prior appropriation law, meaning that there is no augmentation obligation to senior water right 

owners. The Colorado Division of Water Resources (DWR) open datasets 

(https://data.colorado.gov/browse?category=Water) and Hydrobase were queried in order to 
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identify the nontributary groundwater wells used for unconventional oil and gas operations. 

Although the datasets are products of the same organization, the different formatting and attributes 

made it necessary to use both. A significant obstacle of easy identification of such wells is that the 

state does not categorize the water decrees used for oil and gas separately from other industrial 

uses. This fact increases the chances of not capturing all nontributary groundwater wells used to 

supply water to unconventional oil and gas activities, and thus have uncertain estimates of annual 

maximum allowed water withdrawals from these wells. 

Since there was not a user-friendly and efficient way to acquire the list of the nontributary 

groundwater wells used for oil and gas exploration and their associated attributes, a three-step 

process of data collection, screening and analysis was adopted. First, all the recorded active water 

well structures located within Weld County were identified and the nontributary wells were 

queried from the Department of Water Resources structures dataset. Then, a code was developed 

(Visual Basic for Applications in Microsoft Excel) to automatically retrieve the permit attributes 

(such as permitted use) from the website version of Hydrobase for the water well structures that 

had an associated permit number. This way it was possible to narrow down the nontributary water 

wells to those that included a permitted industrial use. The Department of Water Resources permits 

database was also used to identify industrial water well permits without an associated active well 

structure and to record the issued nontributary groundwater permits with unknown well 

construction status. The latter is important because it depicts the current status and gives an 

accurate picture of what the future water extraction capacity from those wells. The final step 

involved evaluating the documentation of each final candidate well permit in order to identify the 

nontributary groundwater wells used in oil and gas operations. 
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3.2.3 Extreme Oil & Gas Development Scenario in Weld County 

Water amounts used in the oil and gas industry are usually aggregated to state level or per 

shale play, and as a result not depicting localities that might be important. An analysis of water 

use on a finer scale is central for shedding light on water competition and the tradeoffs between 

other uses (agricultural, industrial, thermoelectric and domestic), especially in a county like Weld 

County that is one of the top ten agricultural producing US counties. 

For this scope, the FracFocus dataset was used to retrieve information about drilling locations 

and total water consumption for the 2011-2014 period and manipulated in the ArcGIS environment 

in order to analyze the per HUC-12 consumption every year. An extreme oil and gas development 

scenario was selected representing a high development scenario where water demand for each 

HUC-12 takes the maximum individual value from the period 2011-2014 (not overall). EPA’s 

EnviroAtlas [Pickard et al., 2015] is providing information, among others, on water demand 

estimates in a HUC-12 level. In each HUC-12, these water demand estimates for domestic, 

industrial, agricultural and hydroelectric were compared with the water demand for oil and gas. 

Lastly, assuming a normal water year for irrigation needs for two major crops in Weld County, 

corn and alfalfa, the net irrigation requirements were estimated based on the difference of average 

seasonal crop consumptive use (31.58 in for alfalfa and 21.74 in for corn) and effective 

precipitation (7.32 in) in Greeley, CO [U.S. Department of Agriculture Soil Conservation Service, 

1988]. The total water demand used for oil and gas in each HUC-12 was converted to fully irrigated 

acreage of alfalfa or corn as a measure of the tradeoff between water for energy versus water for 

food. 
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3.3 Results & Discussion 

3.3.1 Development Trends of Oil and Gas Wells 

In Colorado, Garfield and Weld counties dominate gas and oil extraction respectively (Figure 

21), and different oil and gas development practices are taking place in the two counties. Garfield 

Country has experienced a declining rate of new well starts (Figure 21) over the last six years, and 

as shown in Figure 22, directional wells are drilled more than other well types (vertical and 

horizontal). In Weld County, about 1,500 new well starts were recorded every year since 2011 and 

the preferred well type shifted during the last years from vertical to horizontal wells (Figure 22). 

Operational decisions and the geological characteristics of the shale formations, namely the 

exploitable thickness of the formations in Piceance Basin are greater than in the Denver-Julesburg 

Basin, are the main reasons for the difference in well types trends between the two counties. Figure 

23 is a graphical combination of Box-and-Whisker plot and kernel density estimation (the curves 

on each side of the Box-and-Whiskers plot), a useful non-parametric technique for visualizing the 

distribution of the sample data. It portrays the increase of horizontal reach length from 1.5 km 

median length (2011) to more than 1.8 km (2014). In many cases it is extending beyond 3.0 km, 

which is in agreement with the findings of Goodwin et al. [2013]. The rise of median staged 

intervals per well in Weld County (Figure 24) can be explained by the increased numbers of 

horizontal wells drilled and longer lateral lengths. The different shape of the stage interval kernel 

density estimation for 2014 in Weld County (Figure 24) can be explained due to the fact that there 

were very few vertical and directional wells completed by April, 2014. There is no significant 

change in the median number of staged intervals in Garfield County (Figure 24). The outliers in 

Figure 24 depict the high number of staged intervals of horizontal wells.  
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Figure 21: Annual (bars) and cumulative (lines) hydraulic fracturing well starts (COGCC 2015) 
 

 

Figure 22: Well type trends in Garfield and Weld counties, 2011-2014 (COGCC dataset) 
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Figure 23: Length of horizontal wells in Weld County and their rotated kernel densities on each side 
(COGCC dataset) 

 

 

Figure 24: Stage intervals for Garfield and Weld counties and their rotated kernel densities on each side 
(COGCC dataset) 
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3.3.2 Water Use for Oil and Gas Industry 

Several different factors are responsible for the water needed in oil and gas well completions, 

including the geologic formation, the type of well, the number of hydraulic fracturing stages, the 

length of the reach within the production zone, and the type of hydraulic fracturing fluid (cross-

linked gel or slickwater). Reporting a normalized water volume on a per well basis is more 

appropriate rather than lumping records with dissimilar attributes that could skew the results. The 

calculation of the water amount used per stage results in more precise determination of total water 

use per well as suggested by Goodwin et al. [2013]. 

Furthermore, the disaggregation of water use information into single-stage wells vs. multi-

stage wells is essential, because they represent different forms of development. In Weld County, 

the normalized total fluid amount used per staged interval in multi-staged wells is less than for 

single-staged wells. Figure 25 presents the annual normalized total fluids amount used per staged 

interval for Weld County. The water used per stage for single-staged wells is 783.01 m3 and for 

multi-staged wells 542.62 m3/stage. In Garfield County, due to very few records available for 

single-staged wells in Garfield County for the period 2011-2014, it was not possible to estimate 

the statistical characteristics of the normalized total fluids per stage. The median normalized total 

fluid amount used per staged interval at multi-staged wells in Garfield County is 682.02 m3 per 

stage. 

The investigation of the total volume of fluid per length for directional and horizontal wells is 

key metric in order to understand the effects of different development practices on water 

requirements. The difference in the normalized total volume of fluid per length in both counties 

for horizontal and directional wells within the study period are portrayed in Figure 26. From the 

analysis of the data, in both counties, horizontal wells tend to require more water than directional 
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wells. In Garfield County, the median normalized total volume of fluid per length for horizontal 

wells is 19.66 m3 per m and for directional wells is 11.02 m3 per m. There are cases where 

directional wells exceeded 50 m3/ m. In Weld County, the median normalized total volume of fluid 

per well length for horizontals is 7.25 (m3 per m) and for directional wells is 3.43 (m3 per m). The 

upward trend in horizontal well length (Figure 23) increases the number of stages, and 

subsequently, the total quantity of water used during completion. 

 

 
Figure 25: Normalized total volume of fluid used per staged interval in Weld County and their rotated 
kernel densities on each side (NA: not enough data) (COGCC dataset) 

 



93 
 

 
Figure 26: Normalized total volume of fluid used per length of well and their rotated kernel densities on 
each side (COGCC dataset) 

 

The comparison of COGCC and FracFocus datasets for Weld and Garfield counties provides 

a quality check for discrepancies between the two. At the same time it should be underlined that 

the water consumed for oil and gas development reported to COGCC database includes all liquids 

used (treatment fluid, acid and water), while the FracFocus database includes the total amount of 

water. In Garfield County, the median volume of water per well reported in the COGCC database 

is 5,441.02 m3 and in FracFocus is 7,138.39 m3. For Weld County, the median volume of water 

per well is 2,740.62 m3 for the COGCC dataset and 1,706.94 m3 for FracFocus. Some small 

inconsistency was expected be present between the two datasets because the reported amounts are 

not exactly the same. Figure 27 presents the annual distributions and the quantiles in both counties 

for both datasets. The differences depicted in Figure 27 between the datasets raise questions about 

the quality of the reported data. 
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Figure 27: Total volume of fluid consumed for hydraulic fracturing on a per well basis and their rotated 
kernel densities on each side (COGCC and FracFocus dataset) 

 

3.3.3 Flowback Water and Disposition Strategies 

The main weakness of the flowback water quantities reported at the COGCC through the Form 

5A could be skewed since it is not representing the water retrieved based on a fix number of days 

after completion. In reality, this means that in every oil and gas well the operator could take into 

account different amount of days in order to compute the flowback water, but never exceeding 30 

days from the well completion date. For the purpose of this effort, the flowback water is the water 

volume that returns to the surface between completion and reporting to COGCC (max of 30 days). 

Figure 28 presents, for both counties, the annual flowback water as a percentage of total fluids 
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used. COGCC data show that the flowback water is about 48% of the total volume of fluid injected 

in Garfield County. On the other hand, flowback water in Weld County is only 11% of the total 

volume of fluid injected. 

 

 
Figure 28: Flowback water as percentage of total fluids used and their rotated kernel densities on each 
side (NA: not enough data) (COGCC dataset) 

 

Figure 29 portrays the fate of the flowback water expressed as percentages. The reported 

amount of flowback water recycled in Garfield County is 96% compared to only 28% in Weld 

County. The percentage of flowback water retrieved could be linked with how much of the 

flowback water is reused. The data indicate that in Garfield County a significant amount of the 

fluids recovered could have created incentives for the industry to adopt a pro-reuse strategy. At 

the same time, companies in Garfield County that recycle nearly all of their flowback water are 

also acquiring new water rights. This could be explained from the fact that more water is needed 
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for new hydraulic fracturing jobs than the readily available recovered flowback water. Although 

there is a shift towards reuse in Weld County, the magnitude of the 2014 shift illustrated in Figure 

29 could be an artifact of incomplete data. However, the adoption of pro-reusing and pro-recycling 

practices for the flowback water appears to be of interest to oil and gas companies as these practices 

can decrease the diversions of freshwater which would be beneficial especially during drought 

periods, but also it would reduce the amounts going to deep well injection disposal and thus 

reducing the risk of seismic activity. The COGCC well completion records indicate that fresh water 

is the primary water source for new wells in Weld County. On the contrary, in Garfield County 

the water used in hydraulic fracturing is mainly recycled water. 

 

 
Figure 29: Percentage of annual flowback water recycled or disposed in Garfield and Weld counties 
(COGCC dataset) 
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3.3.4 Water Acquisition Sources in Weld and Garfield Counties 

All water rights in Colorado have a legal designated use. Water acquired to be used in oil and 

gas development must be adjudicated as industrial or multi-use water (see LIST OF TERMS). 

Understanding how water is acquired, by the oil and gas industry gives us insight into the changing 

nature of water use, in this case in the South Platte and Colorado River Basins, and thus the 

assessment of possible impacts on these water systems is possible [Nicot et al., 2014]. Because 

available surface and groundwater supplies in both basins are for the most part fully appropriated, 

water for oil and gas development is typically acquired from existing users and sources. These 

sources include municipalities, agricultural organizations and producers, tributary and 

nontributary groundwater, native produced water, and although rare, acquisitions through new 

appropriations during times of excess water [Colorado Division of Water Resources et al., 2012; 

Colorado Division of Water Resources, 2014]. The major sources of water for gas development in 

Garfield County are the Colorado River and its tributaries. In Weld County, oil and gas companies 

are meeting their needs acquiring water from the South Platte River and groundwater aquifers. The 

water generated in South Platte River Basin is been augmented by diversions across the continental 

divide. One of these diversions is the Colorado Big Thompson Project, which has a multi-use 

designation and can be used by the oil and gas operators. Due to the fact that the state does not 

require from oil and gas operators to record and report the source of the water used, there is limited 

available information about water sourcing. Thus, a comprehensive study that would assign a value 

of total water quantity to each of the sources is not feasible. An alternative to understand the 

possible effects of this water demand to local scale is to combine the information about the general 

pathways of water acquisition in each county, with the total annual water used for oil and gas, and 

compare it with traditional uses. 
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Figure 30: Nontributary groundwater wells used for oil and gas in Weld County (red diamonds; includes 
permitted with unknown status of completion, and permitted with constructed status) [Colorado Division 
of Water Resources, 2015]. 

 

In Weld County most companies prefer to lease needed water from municipalities, private 

entities such as water service companies, as well as irrigation and reservoir companies. There are 

few oil and gas companies who actually own water rights. Oil and gas companies in Weld County, 

due to the short-term nature of exploration and drilling, are implementing flexible strategies to 

ensure reliable water supplies for their operations. This includes acquiring water from nontributary 

freshwater aquifers. This helps reduce competition for fully-appropriated surface water and 

tributary groundwater sources. Nontributary groundwater has a limited hydrological connection to 

surface water and it is considered a viable source for oil and gas companies, because it is not 

administered within the priority system. Currently, data from the Colorado Division of Water 

Resources indicate that there are 103 records (77 permitted and constructed; 26 permitted with 
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unknown status of completion) of nontributary groundwater wells related to oil and gas 

development in Weld County (Figure 30). The annual maximum average withdrawal for all 103 

nontributary well permits could yield about 15x106 m3. If they were to be used exclusively for oil 

and gas development they could meet 2.5 times the current estimated water demand in the county. 

New well permits are issued for properties which have already secured a nontributary groundwater 

right, allowing the water rights holder to utilize the full permitted amount. In addition to industrial 

use, all of the wells have additional uses (e.g., irrigation, commercial, municipal). 

 

 
Figure 31: Estimated water withdrawals and their sources in Weld County, along with the sources of 
water acquisition for oil and gas. The annual average water used for oil and gas development during 
2011-2013 is expressed as percentage of total withdrawals [Maupin et al., 2014; FracFocus Chemical 
Disclosure Registry, 2015]. 
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Figure 31 is a graphical representation of Weld’s County water withdrawal estimates based 

on Maupin et al. [2014] and expressed in percentages of total withdrawals. The last link of the 

Sankey diagram is portraying the pathways of water acquisition for oil and gas development. 

According to the FracFocus records for Weld County, the annual average water used for oil and 

gas for the period of 2011-2013 was 16,240 m3/day, which, according to the county’s total 

estimated water use [Maupin et al., 2014], is approximately equal to 1.0% of total annual 

withdrawals. This small percentage of water is not necessarily all from sources within the county. 

The reason that the links of the last section in Figure 31 are of equal width is due to the fact that it 

is unknown how much water is transferred from each use. 

The picture of water transfers to oil and gas operations in Garfield County is very different 

from Weld County described in the paragraph above. In general, Garfield County oil and gas 

companies obtained water rights during the 1950s through the 1970s. The relatively senior date of 

Garfield County oil and gas companies’ water rights gives them some certainty of available water. 

Some companies lease reservoir units from local and federal water entities. The current water 

transfer practices scaled to a local level can reveal significant differences from other regions within 

Colorado. Garfield’s County water withdrawal estimates based on Maupin et al. [2014], are 

expressed in percentages of total withdrawals in Figure 32 by using a Sankey diagram. The last 

level of connection was added in order to show the pathways of water acquisition for gas 

development identified and to link water use for oil and gas with other uses. According to the 

FracFocus records for Garfield County, the annual average water used for oil and gas for the period 

of 2011-2013 was 19,319 m3/day, which, according to the county’s total estimated water use 

[Maupin et al., 2014], is approximately equal to 2.0% of total annual withdrawals. This small 

percentage of water is not necessarily all from sources within the county. Again, the reason that 
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the links of the last section in Figure 32 are of equal width is due to the fact that it is unknown how 

much water is transferred from each use. 

 

 
Figure 32: Estimated water withdrawals and their sources in Garfield County, along with the sources of 
water acquisition for oil and gas. The annual average water used for oil and gas development during 
2011-2013 is expressed as percentage of total withdrawals [Maupin et al., 2014; FracFocus Chemical 
Disclosure Registry, 2015] 

 

3.3.5 Oil and Gas Water Utilization under Extreme Development Scenario in HUC-12 
Scale 

Figure 33 portrays the estimated water demands for domestic, agricultural, thermoelectric and 

industrial uses for each HUC-12 that lays within or it is intersected by the Weld’s County borders. 

Agriculture is the largest consumptive sector and apart from the comparisons about water intensity 

of each use at every HUC-12, it is also clear that in Weld’s County southwestern part is 

experiencing competition for land use. Oil and gas most intense development is taking place in the 
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same area of intense agricultural activity since the Wattenberg field is located at the southwestern 

part of the County. 

According to the extreme water development scenario (Figure 34), water use for oil and gas 

in most of the HUCs is ranked as the second water user. On the other hand, if oil and gas water 

demand is presented as percent of the total water demand then in very few HUCs it surpasses 5%. 

The only exceptions are hydrologic units where agricultural demand is very small or zero, mainly 

in the north and northeast parts of the County. The lower part of Figure 34 is illustrating the acres 

per HUC-12 that could be planted with alfalfa or corn and meet net irrigation requirements for a 

normal water year by using the water used for oil and gas within each HUC-12. The total water 

amount used for all HUCs it is equivalent to 10,230 acres of alfalfa and 17,218 acres of corn. These 

numbers of course represent an extreme scenario with the purpose to investigate the tradeoff 

between water for food and water for unconventional energy. At the same time, it should be 

reiterated that the period of 2011-2014 is representing a booming period for the oil and gas 

industry. Under a more realistic scenario, assuming average development in every HUC the 

acreage becomes 4,237 and 7,131 for alfalfa and corn respectively. In contrast to the 2014 

Colorado Agricultural Statistics, a close to normal water year in the South Platte basin, the planted 

acres for alfalfa were 82,000 and 116,900 for corn in Weld County [USDA NASS Mountain 

Regional Office and Colorado State Department of Agriculture, 2015]. The acreages of the average 

scenario are representing about 5% more acres of alfalfa or 6% more acres of corn. Despite the 

fact that it is a relatively small amount of water, it could be a valuable water supplement source 

during droughts for crops, if the industry moved to reusing and recycling its flowback and 

produced water. 
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Figure 33: Agricultural, domestic, thermoelectric and industrial water demand per HUC-12 in Weld 
County, CO [Pickard et al., 2015] 
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Figure 34: Oil and Gas Maximum Development Scenario in Weld County, CO. Water Use for 2011-2014 
per HUC-12; Water Use as % of Total Water use per HUC-12; and the lower section the net irrigation 
requirement equivelent in acreage for alfalfa and corn 
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3.4 Conclusions 

Colorado is a water-limited region with strict water administration and much attention is paid 

to the water volumes required for drilling and hydraulic fracturing of oil and gas wells since this 

water is considered fully consumed as it is rarely returned back to the system. Understanding an 

emerging water demand, its characteristics and the effects from possible water use shifts within a 

basin, is important information to communities/regions as they plan for their water future by 

making decisions about tradeoffs associated with oil and gas development in an integrated 

management manner. Especially so in water-stressed regions like Colorado, where the water-

energy nexus is a topic of heated discussion with conflicting water users and uses. Uncertainties 

including market fluctuations; advancements in extraction and water recycling technologies; 

changes in industry regulations; local bans or moratoria; and the availability and price of water 

each year is making water planning even more challenging. 

The current chapter focused on understanding the factors that affect water demand for 

unconventional oil and gas development. Publicly available water use datasets were analyzed and 

compared in order to identify well development patterns, normalized water use per well, and 

flowback water and its disposal practices that are taking place in Garfield and Weld counties. This 

effort reveals the different oil and gas development practices (types of wells drilled, general 

pathways of water acquisition, handling of flowback water) and water use intensity in Weld and 

Garfield counties in Colorado. Furthermore, in order to understand better possible effects of this 

water demand in different spatial scales, analysis was done at three different spatial resolutions. 

Such an analysis can offer a complete picture of the water use in oil and gas industry and could be 

utilized for water resources planning and management in the area by constructing scenarios for 

this sector. By studying two different formations in Colorado was able to show that the challenges 
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are local and that planning and management of water resources should be tailored for the specific 

area of interest in order to achieve water sustainability.  

More specifically, it was illustrated that in Garfield County there is a decline of new well 

activity and that the preferred type is primarily multi-stage directional wells. On the east side of 

the continental divide, in the Denver-Julesburg formation within Weld county, there is a totally 

different development pattern with a steady, more or less, new well starts and a shift towards multi-

stage horizontal. The available data show an increasing length and fracturing stages in horizontal 

wells. The comparison of single-stage wells and multi-stage wells in Weld County revealed that 

the normalized per stage water consumption is lower for multi-stage wells. 

There is also difference between the two counties regarding the flowback water and its 

handling. The reported amount of water returning to the surface as percentage of total fluids used 

is much greater in Garfield County than in Weld. In Garfield County, the industry has adopted a 

pro-recycle strategy for the flowback water so the water used for the hydraulic fracturing is mainly 

recycled water. Further research is required to determine if the low re-use practice in Weld County 

is driven by the limited flowback water quantity or there are water quality issues that dictate such 

practice. The chemical profile of the flowback water might be such that re-use of treated flowback 

water might be costlier than its disposal. 

Data related to water leases and sales are limited and create challenges when drawing 

conclusions and comparing findings between the two counties. The main difference in the two 

counties in terms of water administration is the existence of non-tributary groundwater within 

Weld County. This gives the opportunity to the industry to have a secure source of water that it is 

not subject to prior appropriation doctrine. The identification of these wells in Weld County 

showed that they could potentially satisfy current water demand of the unconventional oil and gas 
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industry. At the same time, another main dissimilarity is that in Garfield County the natural gas 

companies own the rights of the water they are using and they only lease if the demand is greater 

that their stock water. In Weld County, the arrangement for water acquisition is decentralized since 

most oil companies do not hold water rights and they mainly lease the needed water quantities for 

their operations. The county-level analysis that compared the average amount of water used for 

shale gas and oil exploration is relatively small if compared with other uses. In Garfield and Weld 

counties, this use is estimated to represent only 2% and 1% respectively, compared to the total 

water withdrawn. The analysis on water use for unconventional oil and gas development in HUC-

12 level, for the Weld County, revealed that under even a high development scenario, in which the 

industry’s water demand in each HUC-12 would be the highest of the recorded demand between 

2011-2014, the total amount of water needed it is a small fraction of other uses. 

A major finding of this study is the identification of data gaps and the additional data and 

metadata needed to be collected in Colorado for such analysis. Water use data for oil and gas 

development are self-reported by the operators. Different reporting approaches by operators cause 

inconsistencies and errors that might not always be addressed by the regulating agency unless 

brought to their attention. Most of the well completion reports used for this study had blank data 

fields resulting to valuable information to be lost. Some data records were reported multiple times, 

or in differing units than instructed, which made QA/QC process a cumbersome effort in order to 

correct or discard unreliable records before further analysis. Having in place an automated 

reporting system that would ensure compulsory information to be filled and have a filter for 

potential error entries, would help reduce the loss of information and data errors. Currently, in 

Colorado, there in not in place a policy that requires the reporting of water acquisition methods 

and sources, thus missing a significant part of the water life cycle and not allowing water’s 
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traceability. Another issue identified in the well completion reports is that flowback water volumes 

reported are not tied with the number of days flowback water is recovered. Since operators have a 

30-day window to submit the well completion report to COGCC, it creates variation on the amount 

of the water reported. Instead, the reported flowback water should be the amount recovered in a 

fixed time period in order to have a meaningful unified metric of flowback recovery in every basin. 

Furthermore, volumes of water used in secondary activities such as dust suppression, drilling mud, 

and site restoration, although insignificant to the amount used for hydraulic fracturing, should be 

also included in the report. Finally, data reported to FracFocus combines total water volume per 

well (freshwater, produced water, or recycled water), which makes it impossible to determine 

separate volumes for each element.  

Analysis of the decrees and lease agreements from the Colorado Division of Water Resources 

was a very time-intensive process and could be avoided with a different classification, in which 

separates oil and gas activities from other industrial uses. Moreover, data downloads provided no 

direct method to distinguish nontributary groundwater sources used for oil and gas operations from 

other industrial uses. Therefore, additional review of each permit and its supporting documents 

was required to determine if it was related to oil and gas activities. 

Availability of reliable data for the entire water life cycle (source, drilling, fracturing, 

flowback/produced water recovery, and disposal/reuse) is critical for water resources planning and 

quantifying tradeoffs associated with oil and gas development. The use of an integrated, standard 

reporting system would allow for consistency across different scales and geographic regions 

improving our understanding about water use the sourcing strategies and their effects. This will 

help reduce conflicting perspectives, which shape the water-energy discussion and allow for water 

resources planning and management that is environmental and socially acceptable. 
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4 A Framework for Bridging Data Gaps in 

Groundwater Level Measurements 

 

4.1 Introduction 

Hydrological data are an integral part of informed water resources planning and management 

for meeting the growing water demands under sustainable conjunctive use of surface and 

groundwater resources. Environmental datasets are constantly increasing both in spatial and 

temporal resolution due to technological innovations and advancements that has spurred data 

collection and reduced collection cost. In the US, there are several national water resources related 

data repositories from federal organizations (e.g. USGS, USDA, NOAA and EPA). But even in 

data-rich countries like the US, there are cases where available times series could have missing 

observations (intermittent or continuous) or be of short span or both. In general, the sources of data 

fragmentation could be classified into technological (e.g. equipment failure, time off for service), 

institutional (e.g. not an institutional priority, inadequate funding and/or personnel resources), 

anthropogenic (e.g. errors in measuring, handling or storing data) and natural (e.g. floods, 

hurricanes, landslides) causes [Salas, 1993]. 

Long and continuous water resources records are required for hydrologic analysis, as 

calibration/validation points in physically-based models for understanding and managing the 

simulated water system and also for forecasting purposes. In many cases though, hydrologists are 

challenged to work with short and fragmented geophysical time series. Thus, scientific methods 

were developed to fill in or extend these time series. In relevant literature, different approaches 

have been suggested to fill in or extend geophysical time-series, such as weighted average methods 
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[Pappas et al., 2014], regression methods [Salas et al., 1980; Salas, 1993; Makhuvha et al., 1997; 

Schneider, 2001; Koutsoyiannis and Langousis, 2011], empirical orthogonal functions [Alvera-

Azcárate et al., 2007], time series statistical models [Salas et al., 1980; Salas, 1993; Hipel and 

McLeod, 1994], interpolation methods [Ashraf et al., 1997; Teegavarapu and Chandramouli, 

2005; Teegavarapu, 2007, 2012], artificial neural networks [Kuligowski and Barros, 1998; 

Elshorbagy et al., 2002], spectral analysis [Kondrashov and Ghil, 2006] and others. Filling data 

gaps specifically in groundwater head time series turns out to be a practically impossible task if 

the measurements have low frequency and long gaps, due to the intrinsic complexity of geology, 

subsurface flows, land cover, basin hydrology, and heterogeneity of aquifer parameters, along with 

weak monitoring initiatives and the anthropogenic interventions (i.e. groundwater pumping, water 

diversions, recharge structures). 

The original Kalman Filter (KF) [Kalman, 1960; Kalman and Bucy, 1961] and its many 

variants, where pitfalls of the standard method are overcome and non-linear formulation is 

possible, have been extensively employed in several environmental fields [Dee, 1991; Walker and 

Houser, 2001; Keppenne and Rienecker, 2002; Houtekamer et al., 2005; Aanonsen et al., 2009]. 

There are also many examples in the pertinent literature of the application of the KF technique in 

hydrology [Szollosi-Nagy, 1976; Li et al., 1978; Rodriguez-Iturbe et al., 1978; Kitanidis and Bras, 

1979, 1980; Schreider et al., 2001; Zhou et al., 2006; Clark et al., 2008; Xie and Zhang, 2010; Wu 

et al., 2013; Lei et al., 2014], hydraulics [Chiu and Isu, 1978; Li et al., 1978; Simons et al., 1978; 

Sen et al., 2004; Ye and Fenner, 2011], water quality [Schrader and Moore, 1977; Bowels and 

Grenney, 1978; Pastres et al., 2003; Lee et al., 2009; Javaheri and Babbar-Sebens, 2014] and 

water resources systems [Chan and Loucks, 1978; Duong et al., 1978; Okeya et al., 2014; Jung 

and Lansey, 2015; Jung et al., 2016]. 
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Early applications [Kitanidis, 1976; McLaughlin, 1976, 1978; Wilson et al., 1978] examined 

the opportunities of the KF method in groundwater, despite the computational and methodological 

constraints present at that time. In groundwater numerical modeling it has been an attractive 

alternative for parameter estimation in comparison to classical optimization methods. Different 

KF have been used for solving the inverse problem, in other words, characterizing spatial 

heterogeneous model parameters (i.e. hydraulic conductivity ܭ, contaminant decay rate, etc.) by 

assimilating observed data (i.e. piezometric head, contaminant concentration) under different 

schemes [Eppstein and Dougherty, 1996; Ferraresi et al., 1996; Cahill et al., 1999; Sun et al., 

2009; Bailey and Baù, 2010, 2012; Zhou et al., 2011; Bailey et al., 2012; Li et al., 2012; Alzraiee 

et al., 2014]. Crestani et al. [2013] compared the ability of the Ensemble Kalman Filter and the 

Ensemble Smoother (ES) to predict the spatial distribution of hydraulic conductivity in a 

groundwater flow and transport modeling scheme, showing that EnKF outperforms the smoother. 

Optimal design of groundwater monitoring networks is a common practical problem where prior 

information of the hydrogeological parameters is crucial. Studies in this domain employ the KF in 

different sampling frameworks with noteworthy improvements with main goals to minimize the 

prediction errors and the cost associated with the number of observation wells [Herrera and 

Pinder, 2005; Zhang et al., 2005; Kollat et al., 2011; Alzraiee et al., 2013].  

In the Kalman filtering literature there are very few articles that deal with the problem of 

filling the gaps in missing data. Bennis et al. [1997] used a multivariable ARIMA model with 

reference stations and a single-variable linear interpolation, for filling streamflow data, with a 

Kalman Filter operating both forward and backward in time, succeeding to have better prediction 

only at the first missing data point and the peak flow, compared with ordinary least squares. In a 

similar way, in the sense that the Kalman Filter calculates the model parameters and then the 
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smoother is updating the estimates, Alavi [2006] used a regression model of available energy and 

vapor pressure deficit in order to fill gaps in latent heat flux data, with successful results. Gove 

and Hollinger [2006] and Jarvis et al. [2004] used Kalman Filters to fill missing data to eddy 

covariance net carbon fluxes time series. More specifically, Bierkens et al. [1999] calibrated a 

physically based daily ARIMAX model by embedding it to a simple KF combined with a 

maximum likelihood criterion. The ARIMAX process used bi-monthly time series of precipitation 

surplus as the exogenous variable and simulated daily groundwater head levels with the purpose 

of filling in groundwater head data gaps. 

The Autoregressive Integrated Moving Average (ARIMA) models [Box and Pierce, 1970] is 

one of the most common tools for environmental time series analysis and prediction [Hipel and 

McLeod, 1994]. Early on, Salas et al. [1980] classified and reviewed different ARIMA models for 

hydrologic time series. ARIMA models have been used for analysis and forecasting in a wide 

range of water studies including floods, drought, water management, water quality [Irvine and 

Eberhardt, 1992; Toth et al., 1999; Ahmad et al., 2001; Papamichail and Georgiou, 2001; Sun and 

Koch, 2001; Durdu, 2010; Kim et al., 2011; Wang et al., 2014, 2015; Karavitis et al., 2015]. 

Modeling and forecasting of groundwater levels through ARIMA models with model variations, 

including seasonality and/or stationarity, is a very common practice [Changnon et al., 1988; Von 

Asmuth et al., 2008; von Asmuth et al., 2012; Mirzavand and Ghazavi, 2014]. Ahn and Salas [1997] 

applied ARIMA models for determining a uniform sampling time in order to represent the 

groundwater head fluctuations. A different approach for groundwater level forecasting is the use 

of Artificial Neural Networks [Daliakopoulos et al., 2005; Uddameri, 2006; Shirmohammadi et 

al., 2012; Chang et al., 2016]. 
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Moreover, scholars have proposed methods that combine stochastic time series models of 

groundwater head with the KF, however, they have focused mainly on inverse applications. 

Knotters and Bierkens [2000] used the methodology in Bierkens et al. [1999] in order to predict 

the effect of interventions on groundwater dynamics on a daily time step. The use of KF for 

parameter estimation for transfer function-noise was the practice of Berendrecht et al. [2003] and 

Yi et al. [2004]. Bierkens et al. [2001] combined the same framework with auxiliary information 

(e.g. Digital Elevation Model, soil maps etc.) for calibrating a daily regional ARX model with the 

groundwater estimated states, which is to be used in applications of optimal prediction, network 

optimization and conditional simulation. At an earlier study, an empirical KF algorithm 

incorporating a regional SARIMA model constructed based on monthly groundwater level data 

from 21 wells, was evaluated for state estimation [Graham and Tankersley, 1993]. A scheme for 

regional spatiotemporal groundwater head prediction that a simple KF and a global optimization 

algorithm were used for calibrating, at known points, transfer function-noise models with excess 

precipitation as exogenous input and afterwards the regionalization of the model parameters for 

ungauged locations via clustering was evaluated by Yuan et al. [2008]. 

Regional physically based groundwater models are becoming more representative of the 

aquifer systems due to computational prowess for finer scale representation and improved data 

availability, offering critical insight to the overall behavior. Despite that, most of the time, their 

use is limited to the original premises they are built for, resulting in valuable information remaining 

unutilized. In the current effort, a new methodology for missing groundwater head data estimation 

is presented. It utilizes information from regional physically based groundwater flow models to 

build a stochastic linear model, embedding it into an Ensemble Smoother (ES), which uses the 

measured groundwater head data for its updating scheme. The performed literature review revealed 
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that there is not a similar framework, nor has the Ensemble Smoother (ES) been evaluated for this 

task. The suggested methodology is an innovative, easy to implement and computationally low 

cost approach for filling gaps in groundwater head time series. At the same time, it augments the 

value of readily available regional groundwater models; hence its transferability to any modeled 

alluvial type aquifer is guaranteed since no aquifer specific parameters are required. 

The rest of this chapter consists of the methodology section, which explains the theory of the 

Ensemble Smoother (ES) and the seasonal ARIMAX model and shows in detail how these two 

techniques are combined in order to yield the proposed framework of bridging groundwater level 

data gaps. The next section is divided in two parts: The first is describing the South Platte River 

Basin and its alluvial aquifer in Colorado, which serves as the area of application, the regional 

groundwater model employed and the groundwater head measurement data used. As for the second 

part, the three numerical experiments evaluating the efficacy of the proposed methodology along 

with the selected well locations are presented. The forth section of this paper includes the results 

of the numerical experiments and the discussion regarding their performance. The conclusions of 

this work consist of a brief summary of the proposed framework, underlining its advantages and 

challenges, and proposing the needed future work that could investigate the effect of different 

modifications for increasing overall performance. 

 

4.2 Methods 

This section gives a brief introduction of the theory of ARIMA and Kalman Filtering 

methodologies and also introduces the proposed framework for bridging gaps in groundwater head 

time series. 
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4.2.1 ARIMA models 

The ARIMA models are describing how the present observation of a time series ሼݕ௧ሽ, from a 

stationary or a non-stationary process, can be determined based on a linear relationship between 

previous observations (ݕ௧ିଵ, ,௧ିଶݕ … ,  and ones of previous (௧ߝ) ௧ି௣), the current white noise termݕ

time steps (ߝ௧ିଵ, ,௧ିଶߝ … ,  ௧ି௤) [Box and Jenkins, 1976]. The stationary case of an ARIMA modelߝ

is commonly noted as or ARMAሺ݌,  :ሻ, and its mathematical formulation isݍ

௧ݕ ൌ 	߮ଵݕ௧ିଵ ൅ ߮ଶݕ௧ିଶ ൅	…	൅	߮௣ݕ௧ି௣ ൅	ߝ௧ െ ௧ିଵߝଵߠ െ ௧ିଶߝଶߠ െ	…	െ	ߠ௤ߝ௧ି௤ (5) 

where, ߮ and ߠ are the autoregressive and moving average coefficients respectively, while ݌ 

is the order of the autoregressive process, and, ݍ is the order of the moving average process. 

Frequently, time series demonstrate seasonal variations, thus the ARIMA model includes 

additional parameters to account for these linear cyclical relationships. The general notation of 

such a model is written as ARIMAሺ݌, ݀, ,ሻሺܲݍ ,ܦ ܳሻݏ, where ݀ symbolizes the order of the 

integrative part (order of differencing), ݏ, the seasonality of the time series, while ܲ,ܦ, ܳ denote 

the order of the seasonal autocorrelation, integration, and the moving average processes 

respectively. Employing the backshift operator ܤ, which is defined as ݕܤ௧ ൌ ௧ݕ௞ܤ ௧ିଵ andݕ ൌ

  :Ժ|, we can define the non-seasonal autoregressive and moving average operators as|	߳	ߢ ,௧ି௞ݕ

߮௣ሺܤሻ ൌ 	1 െ ߮ଵܤ െ	߮ଶܤଶ െ	…	െ	߮௣ܤ௣ (6) 

ሻܤ௤ሺߠ ൌ 	1 ൅ ܤଵߠ ൅	ߠଶܤଶ ൅	…	൅	ߠ௤ܤ௤ (7) 

and similarly, the seasonal autoregressive and moving average operators are defined as: 

Φ௉ሺܤ௦ሻ ൌ 	1 െ Φଵܤ௦ െ	Φଶܤଶ௦ െ	…	െ	Φ௉ܤ௉௦ (8) 
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Θொሺܤ௦ሻ ൌ 	1 ൅ Θଵܤ௦ ൅	Θଶܤଶ௦ ൅	…	൅	Θொܤொ௦ (9) 

Time series of dynamic processes exhibiting non-stationarity can be modeled as stationary via 

differential transformation. In most environmental time series, there is no need of higher order 

differencing ሺ݀ ൐ 2ሻ. The first order differences could be notated as: 

௧ݕ׏  ൌ ሺ1 െ ௧ݕ	ሻܤ ൌ ௧ݕ	 െ   (10)	௧ିଵݕ	

In case second order differencing (݀ ൌ 2) is required, then the second order difference is: 

 

௧ݕଶ׏ ൌ ሺ1 െ ௧ݕ	ሻଶܤ ൌ ሺ1 ൅ ଶܤ െ ௧ݕ	ሻܤ2 ൌ ௧ݕ ൅ ௧ݕଶܤ െ ௧ݕܤ2

ൌ ௧ݕ	 ൅ ௧ݕଶܤ െ ௧ݕܤ2 ൌ 		 ௧ݕ ൅ ௧ିଶݕ െ ௧ିଵݕ2

ൌ ሺݕ௧ െ ௧ିଵሻݕ െ ሺݕ௧ିଵ െ ௧ିଶሻݕ ൌ ௧ݕ׏	 െ  ௧ିଵݕ׏

(11) 

Equations 2 - 7 are used to express the general notation of the Seasonal ARIMA (SARIMA) 

process, which takes the following form: 

 ߮௣ሺܤሻΦ௉ሺܤ௦ሻ׏ௗ׏௦஽ݕ௧ ൌ  ௧ (12)ߝ௦ሻܤሻΘொሺܤ௤ሺߠ	

If exogenous variables ሼݔ௧௠ሽ are influencing the stochastic process, in that case, the model is 

abbreviated often as SARIMAX and then the equation 8 takes the following form: 

 ߮௣ሺܤሻΦ௉ሺܤ௦ሻ׏ௗ׏௦஽ݕ௧ ൌ ௧ߝ௦ሻܤሻΘொሺܤ௤ሺߠ	 ൅  ௧௠ (13)ݔ௠ߙ

 

4.2.2 Kalman Filtering Techniques 

The Kalman Filter [Kalman, 1960] is a sequential filtering technique, which is applied to 

linear systems whose residuals are following the Gaussian distribution [Meinhold and 

Singpurwalla, 1983]. To break free from the linearity constraints and the difficulty to estimate 
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objectively the error statistics necessary to apply the Kalan Filter, variants of the classical method 

were developed. One of its advantages is that it combines model and ground truth information of 

a system into a framework that takes into account uncertainty, both in the model and measurements 

[Eigbe et al., 1998]. The Extended Kalman Filter (EKF) (see [Gelb, 1974]) is suitable for small 

systems with nonlinear dynamics but there are pitfalls with the linearized transformation [Julier 

and Uhlmann, 2004] and also when vigorous instabilities and strong nonlinearities are present 

[Miller et al., 1994]. An alternative to the EKF is the Unscented Kalman Filter [Julier and 

Uhlmann, 1997; Wan and Van der Merwe, 2001], which does not linearize the models, but instead, 

uses the actual nonlinear function of the system and propagating a set of points (sigma points) in 

time.  

Another alternative suitable for nonlinear systems is the ensemble Kalman filter (EnKF) 

[Evensen, 1994], which has gained popularity due to its simple formulation, ease of application 

and also to its minimal computational requirements. It combines a Monte Carlo method for 

estimating the error statistics and the Kalman filter [Evensen, 1994]. Evensen [1997] presented the 

EnKF successful performance on a chaotic and highly nonlinear system of the Lorenz equations, 

and there are numerous applications proving its applicability to real case studies [Evensen, 2003]. 

An extension to the EnKF is the Ensemble Kalman Smoother (EnKS) [Evensen and van Leeuwen, 

2000], which can also be applied in highly nonlinear systems in a sequential way. The main 

variation from the EnKF is that it updates the state estimates based on the future observations. In 

general, the filter algorithms are more suitable when forecasting is the primary purpose; while 

smoothers are more appropriate for process studies [van Leeuwen and Evensen, 1996]. On a similar 

scheme, the Ensemble Smoother (ES) [van Leeuwen and Evensen, 1996] is taking advantage of 

the utilization of the Monte-Carlo technique to represent model’s probability densities. The 
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Ensemble Smoother (ES) does not run in a sequential mode like EnKS and thus, it is suitable for 

“off-line” applications [Baù et al., 2015]. The main disadvantage of Ensemble Smoother (ES) is 

its suboptimal performance for nonlinear systems [van Leeuwen and Evensen, 1996; Grønnevik 

and Evensen, 2001; Crestani et al., 2013]. In the next subsection, the Ensemble Smoother (ES) 

will be discussed with more detail. 

 

4.2.3 Ensemble Smoother 

The Ensemble Smoother (ES), introduced by van Leeuwen and Evensen [1996], is a Monte 

Carlo-based Kalman method that consists of a forecasting-updating scheme, where the system 

state is updated in a way that it minimizes the updated state’s variance when there are known 

measurements of the state. The ensemble framework is used for the estimation of the error 

statistics. Let’s define ࡭௙ as the ensemble matrix, which is holding a finite set of ensemble 

members. The ensemble members ߰௜ are vectors of the forecasted model states, with length ݊: 

௙࡭ ൌ ቀ߰ଵ, ߰ଶ, … , ߰ேቁ 				 ∈ Ը௡ൈே (14) 

The forecast error covariance matrix ࡼ௘
௙ is defined as 

௘ࡼ
௙ ൌ

ሺ	࡭௙ െ ௙࡭	ሻሺ	ഥఛ࡭ െ ሻ்	ഥఛ࡭

ܰ െ 1
				 ∈ Ը௡ൈ௡ (15) 

With the assumption that true mean of ࡭ഥఛ is equal to ࡭ഥ௙ for large enough ensemble members 

the ࡼ௘
௙ can be computed according to the following equation 
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௘ࡼ
௙ ൌ

ሺ࡭௙ െ ௙࡭ഥ௙ሻሺ࡭ െ ഥ௙ሻ்࡭

ܰ െ 1
ൌ
ᇱ௙࡭ᇱ௙࡭		

்

ܰ െ 1
				 ∈ Ը௡ൈ௡ (16) 

During the update step of the Ensemble Smoother (ES) the matrix ࡭௙ is being corrected using 

݉ state measurements. The Kalman framework is allowing for incorporating uncertainty not only 

at the model but also in the measurements. In this regard, the observation vector ݀௝, where 

j=1,2,…,N, can be expressed by two parts, the true value vector ݀  plus a random noise error vector 

 ,ߝ

݀௝ ൌ ݀ ൅ ௝ߝ 			 ∈ Ը௠ (17) 

Similar to the forecast ensemble matrix, the measurement vectors can be stored in a matrix  

ࡰ ൌ ൫݀ଵ, ݀ଶ, … , ݀ே൯ 				 ∈ Ը௠ൈே	 (18) 

and the ensemble of error vectors in the ए matrix  

ए ൌ ൫ߝଵ, ,ଶߝ … , ே൯ߝ 				 ∈ Ը௠ൈே	 (19) 

The error vector ߝ is assumed to be a random process following a Gaussian distribution with 

mean equal to zero, thus, the covariance matrix ࡾ௘ is equal to  

௘ࡾ ൌ
एए்

ܰ െ 1
				 ∈ Ը௠ൈ௠	 (20) 

The following equation is the update step of the Ensemble Smoother (ES) scheme and it allows 

to update the estimate of the state of the system, when observations are available. 

௨࡭ ൌ ௙࡭ ൅ ࡰሺࡷ െ ௙ሻ࡭ࡴ 				 ∈ Ը௡ൈே			 (21) 

Where, ࡴ ∈ Ը௠ൈே is a binary matrix that maps the locations of the measurements in such 

way that the rows symbolize the number of the measurement and the columns the time step that 
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was observed. More specifically, if the second measurement is representing the state of the system 

for ݐ ൌ 10, then its location in the ࡴ matrix will be ܪଶ,ଵ଴. 

ࢪ ൌ ௘ࡼ
௙்ࡴ൫ࡼࡴ௘

௙்ࡴ ൅ ௘൯ࡾ
ିଵ
				 ∈ Ը௡ൈ௠			 (22) 

Lastly, ࢪ is the Kalman gain matrix, where the formulation is responsible for minimizing the 

variance error, while yielding the best linear unbiased estimator. Additionally, the Kalman gain 

matrix is incorporating both measurement and model covariance matrices ࡾ௘ and ࡼ௘
௙ into its 

calculation, signifying that the correction applied to ࡭௙ is related to the entrenched uncertainties 

in these two matrices [Baù et al., 2015]. 

 

4.2.4 Framework for Filling Missing Groundwater Head Measurements 

Advancements in computational prowess and parallelization schemes that improved 

efficiency have given the ability to physically model large groundwater systems in complex basins 

in a more detailed way than it was in the past. Regional models tend to inform about the overall 

state of the studied groundwater system, thus essentially being a mass balance with little efficacy 

about local conditions. They lack the ability to fully capture the finer local variations due to system 

simplifications, imperfect input information, and the scale of model discretization. Hence, even 

though the model provides the best unbiased estimate for a cell, it cannot be used as a true measure 

of the system. Groundwater head measurements are still the most reliable information of the 

systems’ state and the fundamental building block of any further analysis. Despite that, in many 

real cases, the lack of systematic groundwater head measurements in combination with the 

different sampling timing and frequency has led to groundwater level time-series with gaps and 

irregular time intervals, thus creating challenges for further analysis. 
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The proposed framework for inputting missing observations in head levels is intending to 

bridge the disconnect between regional modeling and localities in system fluctuations, by utilizing 

all available data, direct (known measurements) and indirect (model information), in an efficient 

scheme with low computational cost. The framework is illustrated in Figure 35 with its main 

components listed below: 

1. The observation data for the location of interest, 

2. The extracted information from the groundwater flow model, 

3. Stochastic modeling via Seasonal ARIMA with exogenous inputs, and 

4. The Ensemble Smoother (ES) algorithm 

First, the observation well of interest is identified and all available groundwater head 

measurements for that location are recovered from a public repository. The framework does not 

require the sampling frequency to be consistent across the observation record. The only two 

prerequisites are to aggregate measurement data to the time step of the groundwater model in case 

the sampling frequency is higher, and the measurements have been taken within the time span of 

the simulation of the aquifer. The simulated head time series for the specific well location in the 

model domain is extracted. Additionally, the time series, representing the average rates for 

recharge and pumping for several areas with different radii around the well location are retrieved. 
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Figure 35: Groundwater Level Measurement Gap-filling Methodology 

 

The next main component of the framework is the construction of a stochastic model 

representative of the process of the simulated head time series is indicating. The groundwater head 

level time series is modeled by a seasonal auto-regressive integrated moving average (SARIMAX) 

process, with exogenous inputs of recharge and pumping in order to give physical meaning to the 

statistical model. All the different time series of recharge and pumping should be tested during the 

SARIMA construction process in order to select the model with the best fit. The construction of a 

SARIMAX model consists of an iterative process of three steps: The identification that includes 

stationarity and seasonality testing, and, model identification; the parameter estimation; and the 

last diagnostic checking [Box and Jenkins, 1976; Hipel and McLeod, 1994]. Two supplementary 
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approaches are used in order to determine the order of integration ሺ݀ሻ in the SARIMAX models. 

The first approach is the use of visual identification with the autocorrelation function (ACF) and 

partial autocorrelation function (PACF). The second approach runs statistical tests. The augmented 

Dickey-Fuller (ADF) test was used to determine if a unit root was present in the time series. 

Additionally, the time series were tested by the Kwiatkowski-Phillips-Schmidt-Shin test, which 

complements the ADF unit root test, since it has low power against near unit root alternatives 

[Karlsson and Löthgren, 2000]. Seasonality, as well model selection can be identified by looking 

the ACF and PACF graphs. Table 9 describes the behavior of the ACF and PACF functions for 

SARIMAX models. For the SARIMAX construction, except from the above approaches, the 

“forecast” package in R is also involved in order to identify the model automatically, to do 

parameter selection and to run diagnostics of the SARIMAX models [Hyndman and Khandakar, 

2008; Hyndman, 2016]. The SARIMAX model parameter estimation was done by using maximum 

likelihood estimation, and also by a t-test to measure statistical significance of each parameter, so 

not to include spurious terms. The overall fit of model parameters, with the same integration order, 

was evaluated by the Akaike Information Criterion (AIC) [Akaike, 1974]; however, the ACF of 

the residuals of each fit should also resemble a white noise sequence. 

The exogenous variables are assumed to follow in each month a Gaussian distribution. 

Synthetic exogenous variables are generated based on the original first order statistic of each 

month and with variances that are a bit larger than those computed. The larger variances were 

introduced to increase indirectly the ensemble uncertainty in cases where the groundwater flow 

model was not approximating the behavior of the measured data. The optimal SARIMAX model 

with the exogenous synthetic time series are used to produce the ensemble of time series needed 

for the Ensemble Smoother (ES) [van Leeuwen and Evensen, 1996]. At the final step, the ES is 
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employed to impute the gaps in the time series, by taking into account also the information 

provided by the groundwater head observations. 

The description above of proposed framework's scheme was designed to have the following 

key characteristics: Low computational cost, since it is not dependent on the groundwater model 

for the generating the forecast ensemble for each evaluation point; ease of implementation, the 

ability to incorporate information from readily available groundwater models irrespective of the 

coarse scale of application; and the ability of this methodology to be applied in any alluvial aquifer 

regardless of local conditions.  

 

Table 9: Behavior of identification functions for SARIMA models [Hipel and McLeod, 1994, p.432] 

FUNCTION 

TYPES of MODELS 
   

PURE AR 
ሺ݌, ݀, 0ሻሺܲ, ,ܦ 0ሻݏ 

PURE MA 
ሺ0, ݀, ,ሻሺ0ݍ ,ܦ ܳሻݏ 

MIXED 
ሺ݌, ݀, ,ሻሺܲݍ ,ܦ ܳሻݏ 

    
    

ACF Attenuates 
Truncates 

after lag ݍ ൅  ܳݏ
Attenuates 

    
    

PACF 
Truncates 

after lag ݌ ൅   ܲݏ
Attenuates Attenuates 

    

 

4.3 Materials and Numerical Experiments 

4.3.1 Application Area, Available Model and Data 

The area selected to evaluate the performance of the proposed computationally low-cost 

groundwater data-filling framework, is the alluvial aquifer of South Platte River. The South Platte 

River Basin in northeast Colorado has a drainage area of about 49,000 km2 [Dennehy et al., 1993] 

and, it is characterized by a semi-arid climate, with a high dependence on melting snow. The South 
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Platte River Basin, on the eastern plains, has undergone a huge transformation due to land 

reclamation, agricultural development and population increase. It is the most populated region of 

Colorado, since approximately 70% of state’s population (more than 3,700,000) is living in this 

particular area [Colorado Department of Local Affairs, 2016]. The South Platte is an over-

appropriated basin that has multiple water needs and, apart from the domestic sector, it has to 

satisfy a large agricultural demand. In 2010, the estimated irrigated parcel area in the basin was 

3,426 km2 (846,634 acres) [Colorado Decision Support Systems, 2016]. Industrial activities are 

also present in the basin, including water demand for unconventional oil and gas development 

[Oikonomou et al., 2016]. Groundwater plays a substantial role in meeting these water needs, 

particularly in the agricultural sector. 

The physical conditions, anthropogenic stresses and interventions, along with the water 

legislative environment governing the South Platte basin are adding to water system’s complexity. 

This complexity is also reflected by the different water management approaches over the time to 

bring groundwater into the prior appropriation system, so as not to harm senior surface water rights 

[Waskom, 2013]. The 2002-2003 drought in Colorado was a catalyst for implementing a stricter 

water administration, requiring full augmentation for system depletions caused by pumping 

tributary groundwater. One effect of this water management shift was the curtailment in 2007 of 

about 5,000 wells that lacked an approved augmentation plan [Waskom, 2013]. At the same time, 

in certain areas of the basin, were reported incidents of adversely impacted properties by high 

groundwater levels [Waskom and Oikonomou, 2014] forcing the State of Colorado to act in this 

emergency [Colorado General Assembly, 2015a]. 
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Figure 36: Application Area and location of selected groundwater wells (the mesh represents the 
alluvium and the irrigated parcels with green color) 

 

The state of Colorado has requested research projects [Colorado General Assembly, 2012, 

2015b, 2015c], that would assist the administrative authorities to have a better understanding of 

surface-groundwater interactions and thus, to implement a basin-wide efficient, equitable and 

integrated water resources planning and management. Through the Colorado Decision Support 

Systems (CDSS) initiative (www.cdss.state.co.us), a physically-based groundwater flow model 

was built and tested by CDM-Smith for the South Platte Alluvium (SPDSS-MODFLOW). The 

model was developed in MODFLOW-2000 [Harbaugh et al., 2000] with a monthly time step from 

January 1950 to December 2006 [CDM-Smith, 2013]. The SPDSS-MODFLOW is covering 

approximately 6,475 km2 (2,500 mi2), and the aquifer is represented as a single layer having a 

uniform grid of 304.8 m (1,000 ft) which results to 555,440 cells [CDM-Smith, 2013]. It was built 
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for regional scale analysis, focusing on aquifer-stream interactions, and thus, it is not able to 

simulate accurately local groundwater level variations. 

In the South Platte, there are few dedicated monitoring wells with continuous data loggers 

(spanning from 2003 or 2004 until the present), but the majority are irrigation wells measured 

biannually (Fall and Spring). The water table generally follows a cyclic pattern, with highest 

observations occurring during the fall period following the irrigation season, and the lowest, in the 

spring. Some of the observation wells have a longer water level record, going back to the 1930s 

and 1940s. Of course, there are several years that the irrigation wells have no available 

groundwater head measurements, in both an intermittent and continuous fashion. It is clear that, 

through the years, there were periods that the groundwater-monitoring program was not a top 

priority of the institutions involved in collecting groundwater head measurements. 

For the purposes of this study, 18 South Platte Alluvium wells (Figure 36, grey and green 

spheres), which had the longest available observation record, were selected. These wells are 

monitored by the Colorado Division of Water Resources (DWR) and the Central Colorado Water 

Conservancy District (CCWCD). For brevity, the focus is given to only five wells, represented in 

Figure 36 with green spheres, while the rest are shown in the Appendix G. Their selection was 

based on their representation of different sections of the alluvium, proximity to the stream, 

exogenous predictor variables radius of influence, and the modeled stochastic process. The 

groundwater head observations are publicly available through the State’s water database, called 

“Hydrobase” (http://water.state.co.us/DataMaps/Pages/default.aspx), along with several metadata 

for each well; such as its position, owner’s name, permit number, adjudicated uses, etc. The 

monthly simulated head at each well’s location, the mean recharge and total pumping within 

different radii from each well were extracted from the SPDSS-MODFLOW. A SARIMAX model 
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for each well was used to model the groundwater head, since all wells exhibited a 12-month cycle. 

The simulated monthly head for the five selected wells is plotted in Figure 37 with the recorded 

actual measurements (Appendix H the rest wells). The graphs support the aforementioned 

statement that the regional model should be used for regional scale analysis. On a local scale, the 

SPDSS-MODFLOW can only represent a general indication of groundwater behavior 

(seasonality), without being able to simulate accurately the water table level. At well 

01N5531DCD, that is located at the beginning of the alluvium of the Beaver Creek tributary of the 

South Platte, the model fails to simulate the actual general behavior of the water table at that 

location. At the same time, it captures the seasonal variability rather well (small head fluctuation 

from fall to spring season). At the particular cell that the well 04N6422DCD is located at the Box 

Elder Creek tributary, the SPDSS-MODFLOW is not able to approximate the local water table 

trend as well; however, at the same time, it is capturing the magnitude of seasonal variability. For 

the other three wells, the model at these points is representing more appropriately the water table, 

considering it is a regional model. It should be underlined that, since the groundwater head 

measurements are taken biannually, it is assumed that those observations are representative of the 

true mean head for these months. Additionally, all of the tested wells are used for agricultural 

purposes and the unceasing probability of some outliers to be present due to measurements taken 

after water was pumped for irrigation.  

Evaluating the performance of the proposed methodology for filling gaps in groundwater head 

time series in a complex hydrologic system with multiple stresses and governed under a strict 

scheme can be an excellent proof of its robustness. The South Platte basin below Denver and its 

aquifer, as mentioned above, fulfill all of the criteria that make it an ideal area of study. 

Overcoming existing data limitations, with methodologies that augment the available water system 
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information, could contribute to new insights that would contribute into taking better decisions 

towards sustainable groundwater management. 

 
Figure 37: Modeled monthly groundwater level (red line) and biannual observed level (blue dots) 

 

10N4902CBC 01N5531DCD 

04N5931CB 04N6422DCD 

04N6506DAB 
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4.3.2 Design and Assumptions of Numerical Experiments 

The observed groundwater head over time is the only available measure of evaluating the 

effectiveness of the methodology. The performance of the proposed methodology for filling data-

gaps in groundwater time series has been evaluated by three numerical experiments. The first 

numerical experiment is assuming that all known water table measurements are available for 

updating the Ensemble Smoother (ES), except one. The Ensemble Smoother (ES) algorithm is run 

iteratively, and after each reiteration, another known point is treated as unknown. The average 

prediction performance is described by calculating dimensioned statistics (in this case in meters), 

namely: the root mean squared error (RMSE) and the mean absolute error (MAE)  

 

ܧܵܯܴ ൌ ൥݊ିଵ෍݁௜
ଶ

௡

௜ୀଵ

൩

ଵ
ଶൗ

 (23) 

 
ܧܣܯ ൌ 	݊ିଵ෍|݁௜|

௡

௜ୀଵ

 (24) 

where, ݁௜ ൌ ௜ݕ	 െ  ො௜ the estimated value, and ݊ the sampleݕ ,௜ is the observed valueݕ ,ො௜ݕ

number, of observations. The use of RMSE though, can be misleading many times, due to the fact 

that the larger the squared error variance is, the larger is the RMSE value (Eq. 23). The MAE  

(Eq. 24) has been suggested by Willmott and Matsuura [2005] as a more natural measure of 

average model performance error. In this study, both RMSE and MAE are presented, since they 

represent the common measures of average prediction performance; however, in the results 

section, the focus is MAE. 

At the second numerical experiment, five random measurements are treated as unknowns, 

while the RMSE and MAE are calculated and stored. This experiment was selected in order to test 
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the performance of the method to simulate the case of intermittent gaps present in the groundwater 

head time series. The numerical experiment is repeated for each well with each iteration having a 

new random set of five values, until there is convergence on the mean and the standard deviation 

of the sample RMSE. Convergence was assumed when there was no improvement more than 0.1% 

of both moments for the past 1000 runs. The density histograms of RMSE and MAE were 

calculated and plotted, because the number of iterations for each well could vary. The density 

property was expressed in percentages and the entire histogram equals one. The last numerical 

experiment is constructed to simulate the case of continuous missing values in the groundwater 

level. A contiguous five-year window is selected randomly and the observations within the 

window are treated as unknowns. The Ensemble Smoother (ES) algorithm is employed to calculate 

the RMSE and the MAE of each iteration. Similar to numerical experiment #2, each iteration has 

a new random five-year window. The numerical experiment for each well is completed with the 

same convergence assumptions, as in the previous numerical experiment. 

As presented in the methodology section, the modeled groundwater head at the well locations 

was modeled with a SARIMAX model. Different time series of the exogenous predictor variables 

(recharge and pumping), representing different radii of exogenous influence, were tested in order 

to represent the stochastic physical process more accurately. For consistency reasons, the set of 

radii selected to be tested for each well location was 914 m (3,000 ft), 1829 m (6,000 ft), 3,048 m 

(10,000 ft) and 4,877 m (16,000 ft). The radii originating from each well location that intersected 

the river, were not taken into account for testing the effect in the SARIMAX fitting. Table 10 

shows the best SARIMAX models of each radius of influence and their AIC. In some cases, the 

model approximation for pumping was not statistically significant in order to be included in the 

model parameters. The autocorrelation function (ACF) of the residuals of the SARIMAX models 
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(Figure 38) is evidence of good fit [Box and Pierce, 1970; Box and Jenkins, 1976]. The 

autocorrelation plots show that only few autocorrelations are outside the 95% confidence interval 

around zero. This can be explained by the unconfined aquifer's nonlinear dynamics, since the 

ARIMA family of models assumes global linearity. 

 

Table 10: SARIMAX models for the tested radii and the AIC 

Well ID ARIMA MODEL Radii in m (ft) AIC 
    

  
 

 

10N4902CBC 

(1,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

914 (3000) -194.02 

(1,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

1829 (6000) -8.37 

(1,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

3,048 (10000) -29 
    
    

01N5531DCD 

(1,1,2)(1,0,1)[12] 
with zero mean, xreg = R, P 

914 (3000) -3732.05 

(1,1,2)(1,0,1)[12] 
with zero mean, xreg = R, P 

1829 (6000) -3765 

(1,1,2)(1,0,1)[12] 
with zero mean, xreg = R, P 

3,048 (10000) -3828.69 

(1,1,2)(1,0,1)[12] 
with zero mean, xreg = R, P 

4,877 (16000) -3804.66 
    
    

04N5931CB 
(2,1,0)(1,0,1)[12] 

with zero mean, xreg = R 
914 (3000) 210.02 

    
    

04N6422DCD 

(1,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

914 (3000) -67.93 

(1,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

1829 (6000) -84.04 

(2,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

3,048 (10000) -99.85 

(2,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

4,877 (16000) -69.03 
    
    

04N6506DAB 

(1,0,2)(2,0,1)[12] 
with non-zero mean, xreg = R 

914 (3000) -31.63 

(2,0,1)(2,0,1)[12] 
with non-zero mean, xreg = R 

1829 (6000) -53.3 
    

 

The ensemble matrix (࡭) accounting for model uncertainty characterization is populated with 

500 time series members, generated from the best SARIMAX model for each well location. The 
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exogenous predictor variables extracted from SPDSS-MODFLOW are assumed to follow a 

Gaussian distribution for each month. The synthetic exogenous time series used as inputs to 

SARIMAX have the same monthly mean, with an increased monthly standard deviation. In all 3 

numerical experiments, for each well, the same ensemble matrix was used. Furthermore, the 

statistics of the measurement errors in most practical applications are unknown, so in order to 

incorporate the measurement uncertainty, the measurement error covariance matrix (ࡾ௘) was 

constructed assuming the errors follow a Gaussian distribution with a mean zero and variance of 

10.16 cm2 (1/3 ft2). This assumption represents the possible human error during a groundwater 

head measurement. The incorporation of a larger error could also relax the assumption that a single 

water table observation is assumed to represent the average groundwater head for that specific 

month. 



141 
 

 
Figure 38: Autocorrelation function of residuals of the SARIMAX models 

 

10N4902CBC 
01N5531DCD 

04N6422DCD 

04N6506DAB 

04N5931CB 
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4.4 Results and Discussion 

4.4.1 Numerical Experiment #1 

The purpose of this experiment is to illustrate the performance of the suggested framework in 

the five selected wells where only a single measurement is to be filled in. The scatter plots of the 

measured versus the predicted value are shown in Figure 39. Each point in the graphs of Figure 39 

represents the individual error with its magnitude being the perpendicular distance from the 

diagonal line. In all scatter plots, the data points are clustered around the diagonal, indicating that 

the Ensemble Smoother (ES) algorithm has almost no bias. Furthermore, the graphs show a 

homoscedastic behavior, since in different water table levels of each well there is no difference in 

the variance of the prediction error. In well 04N6422DCD however, there is a consistent tendency 

of overestimation in the lower water table values. This bias effect is most probably caused due to 

the fact that the water table in the period of 1964 to 1970 is at the lowest point and after that, it 

bounces back. 

One key outcome of this numerical experiment was the inability of this methodology to predict 

piezometric heads when there were no similar measurements in temporal proximity. The water 

table divergence from temporally adjacent observations could be outliers due to drought/flood 

conditions, since the South Platte alluvial aquifer responds quickly to surface hydrology 

variability. The divergence could also be attributed to human errors during measurement or to 

measurements taken soon after the well was pumped. Low performance is expected when the 

SARIMAX model fitted on the groundwater levels simulated from the SPDSS-MODFLOW in the 

specific cell of the aquifer has no similar behavior. A characteristic example of a satisfactory 

prediction of an observation value, which is significantly different from its immediate temporal 

neighbors, is the last known point of well 04N6506DAB (Figure 37). Despite the abrupt change 
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of the water table, the proposed methodology managed to give a rather precise estimate. This is 

because the physical groundwater model of the well 04N6506DAB is able to represent the 

groundwater upward trend after 2001 and this information is transferred to the SARIMAX model. 

Similarly, at temporal points where a change in the water table is taking place, and there are 

no intermediate observations in between, the predicted value is frequently not accurate. Despite 

the fact that the Ensemble Smoother (ES) update step is assimilating all available measurements, 

adjusting the average updated ensemble to follow an abrupt change is not possible when there are 

no relevant data points and when the SARIMAX model is not representing this change. More 

specifically, the highest water level observed at well 04N5931CB exhibits a large prediction error 

(~3m), since there is no observation to inform the update scheme of the Ensemble Smoother (ES) 

for this change. This specific example is showing how important is to have key measurements that 

capture accurately the response of the water table in time. 

The prediction of an observed “missing” point in general is giving satisfactory results as the 

MAE is low. In all tested wells– and not only the presented ones– the overall estimation via the 

Ensemble Smoother (ES) algorithm was closer to the observed value, than filling the “missing” 

points with the average water table value. The RMSE and MAE values for each well are shown on 

the top right of each scatter plot of Figure 39. All wells except 04N5931CB have MAE less than 

0.3m. 

It is worth reiterating that the suggested algorithm was tested on wells measured on a biannual 

step, which had significant data gaps, ensuring a realistic test on the suggested methodology. The 

temporal scarcity of observation points in the tested wells in combination with the use of a regional 

groundwater model, which in many cases is unable to approximate the groundwater fluctuations, 

are impediments of having even better results. 
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Figure 39: Results of numerical experiment #1 
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4.4.2 Numerical Experiment #2 

Numerical experiment #2 is more challenging than the previous one, since five random 

observations are treated as unknown. Subsequently, the experiment was repeated enough times in 

order for the samples to be representative. The probability distribution of two prediction error 

metrics of the results for each well is presented by density histograms of RMSE and MAE. The 

iterations needed for the mean and standard deviation of RMSE to converge for each well are not 

the same and thus frequency histograms are not an appropriate representation. The iterations 

needed for each well for the first two moments of RMSE to convergence, as the sample size 

increased, are shown in Table 11. 

 
Table 11: Iterations needed for convergence of the two first moments of RMSE 

Well ID 10N4902CBC 01N5531DCD 04N5931CB 04N6422DCD 04N6506DAB 

Iterations 5,157 5,307 8,889 11,433 6,253 

 
The density histograms of all wells are shown in Figure 40 and Figure 41, and the density is 

expressed in percentage for ease of representation. The histograms appear to be roughly symmetric 

or slightly right-skewed, since there is the natural limit of zero error, and the temporal points that 

were larger than the average error in experiment #1 are influencing the average error metrics. The 

distribution of all wells appear as unimodal with the only exception of the RMSE histogram of 

well 04N5931CB. The bimodal distribution can be attributed to the increased weight RMSE is 

giving to larger errors, since the random sample of “unknown” observations could contain values 

from the cluster of points between 1966-1968, that diverge from well’s general trend (see Figure 

37). It is worth mentioning that the bimodality is not present in the histogram of MAE, since the 

large individual errors are masked. 
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Figure 40: Relative density histograms of RMSE and MAE for wells 10N4902CBC, 01N5531DCD 
and 04N5931CB 
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Figure 41: Relative density histograms of RMSE and MAE for wells 04N6422DCD and 04N6506DAB 

 

The proposed methodology for filling the gaps has a very satisfactory performance, since the 

median MAE is small (less than 0.3 m). Similar to Experiment #1, well 04N5931CB has a larger 

sample MAE median compared to other wells (just below 0.4 m). It can be considered as a 

reasonable well prediction, since its “outliers” and non-stationary behavior are challenging factors 

for accurate prediction. The maximum MAE recorded in these numerical experiments is 

significant; however, it should be kept in mind that the wells tested have low measurement 

frequency (biannual) and significant data gaps. 



148 
 

4.4.3 Numerical Experiment #3 

Numerical experiment #3 is the most challenging of all numerical experiments, since in a five-

year window, the available information of the piezometric level is treated as unknown. Long 

periods could enclose prolonged drought occurrences and miss critical data points at the update 

phase of the Ensemble Smoother (ES), resulting to a poor water level prediction. Such information 

becomes even more important when the subject aquifer is an unconfined alluvial formation when 

the water table is responding to surface variability. Similar to the previous numerical experiment, 

the iterative process of treating observations within a five-year period as unknown was terminated 

when there was convergence in the first two moments of the sample RMSE. The needed iterations 

for convergence in each well are shown in Table 12. Furthermore, the predication performance of 

the methodology is presented in an analogous way to the Numerical Experiment #2. Figure 42 and 

Figure 43 show the density histograms of the RMSE and MAE for all selected random samples. 

 
Table 12: Iterations needed for convergence of the two first moments of RMSE 

Well ID 10N4902CBC 01N5531DCD 04N5931CB 04N6422DCD 04N6506DAB 

Iterations 5,114 11,024 9,752 7,631 5,245 

 
It is clear from the presented histograms, that the symmetry on both error metrics is lost with 

right skewness, and large spread and bi/multi-modality are the key characteristics of the produced 

error distributions. Only in well 10N4902CBC is the prediction performance within satisfactory 

levels (maximum MAE is 0.42m) considering the large gap attempted to be filled. In all other 

wells, the calculated errors in many of the randomly selected samples are large. The spread of the 

error distributions for well 04N5931CB is 3.5m with many outliers from the main pattern. This is 
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indicative of the poor performance in this specific well; but it also emphasizes the crucial role the 

known measurements play for the under-prediction time interval. 

Due to the gaps existing in the tested time series, especially in wells 04N6422DCD and 

04N6506DAB, there were incidents that the randomly selected five-year windows contained only 

a few observations. The errors from those samples, being the outliers of the general pattern, can 

be traced in RMSE histograms as the rectangles erecting from low error bins. High error outliers 

are occurring when the observations under prediction are including possible outliers or these values 

are too different from the rest of the recorded measurements in the same location. At the same 

time, this indicates that the methodology is applicable for predicting water table values, while 

short-term continuous data are missing. Overall, the tested framework should be used with caution 

particularly in cases which, continuous data gaps are attempted to be filled. 
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Figure 42: Relative density histograms of RMSE and MAE for wells 10N4902CBC, 01N5531DCD and 
04N5931CB 
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Figure 43: Relative density histograms of RMSE and MAE for wells 04N6422DCD and 04N6506DAB 

 

4.5 Conclusions 

Groundwater level data is the building block of data driven analysis and modeling. 

Groundwater head observations often have missing observations and suffer from inconsistent 

measurement frequency. In the current effort, a novel framework for filling gaps in groundwater 

head time series was proposed. It attempts to enhance groundwater head time series by utilizing 

information of all available sources, direct (known measurements) and indirect (groundwater flow 



152 
 

model information), through an efficient scheme with low computational cost. The framework 

employs an exogenous seasonal autoregressive integrated moving average (SARIMAX) stochastic 

model to describe the groundwater level fluctuation process and the Ensemble Smoother (ES) for 

predicting the water table level. The methodology was implemented in South Platter River basin, 

which has complex hydrology due to its dependence on melting snow with significant hydrology 

modification. The application of the proposed methodology in such a complex water system adds 

value to numerical experiments, since it indicates the transferability of the framework to other 

areas. 

Three numerical experiments were designed to evaluate the prediction performance of the 

proposed framework for 18 well locations with biannual measurements; however, only five are 

presented for brevity. The scope of the first numerical experiment was to test the performance of 

the methodology for cases, where a single measurement is missing. Its performance was 

satisfactory, since the average MAE of all five wells is 0.28m. The algorithm encountered 

difficulty in predicting a sudden change in head measurement when there were no similar 

measurements in temporal proximity. Furthermore, if the model was not approximating the general 

tendency or the seasonality of the measured values, then the prediction error increased. The second 

numerical experiment’s design was an iterative process, in which every run a new set of five 

randomly chosen observations were treated us unknowns. The experiment was concluded only 

when there was convergence on the first two moments of the sample RMSE, and the results of all 

wells are very satisfactory with similar error metrics, as in Experiment #1. On the contrary, 

Numerical Experiment #3 was the least successful, since this time a random five-year window was 

selected and the observations that lie within were treated as unknowns. Similar to experiment #2, 

the iterative process was terminated when there was convergence of the sample RMSE. The 
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histograms produced from the results of Experiment #3 are characterized with right skewness, 

large spread and bi/multi-modality of the produced error distributions. The importance of 

measured points to guide the updated step of the Ensemble Smoother (ES) is signified in this 

experiment. In addition, it should be noted that missing data in sequential fashion does not reveal 

the presence of extended drought and might overestimate the water table. There was only one well 

of the five presented where the prediction performance was satisfactory and this can be attributed 

to the small water fluctuations within the period of measurements. Numerical Experiment #3 

proved to be the more challenging and performing poorly in most of the 18 tested wells. 

The proposed framework is the first step of a formulation, and there is room for improvement. 

Future research could evaluate the performance of the framework taking into account that through 

time, the water table fluctuations could enter different regimes, and thus modeling the process in 

a piecewise fashion, by different temporal local SARIMAX models, could represent the process 

more accurately resulting in better performance. Such an approach might produce better results. 

Another interesting expansion of this work is the use of clustering methods with the purpose of 

constructing SARIMAX models for the sections of the aquifer with similar processes. The benefit 

of such an approach would be to prevent the need to construct a new SARIMAX model at every 

point of interest. Lastly, the performance of a different smoother algorithm, such as the Ensemble 

Kalman Smoother (EnKS), should be evaluated. With the employment of other Kalman smoothing 

frameworks, it would be possible to test the incorporation of non-linear stochastic models, which 

could perhaps result in improving the prediction accuracy. The framework could serve as a 

valuable tool for enhancing groundwater time series, for both intermittent missing data and of 

continuous gaps with short span. By advancing, the quality of input data in building physically 

based groundwater flow models and data driven analysis could gain further insight about aquifer 
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dynamics and improve conjunctive use of surface water and groundwater resources as the 

integrated water resources management framework is promoting. 
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5 Conclusions and Recommendations 
 
 
 
 
 

5.1 Data and Integrated River Basin Management 

The methodologies presented in this research cover a range of water resources planning and 

management activities and could have significant implications in Integrated Water Resources 

Management efforts. Their unified thread is the common quest for IRBM under changing water 

resources conditions. The IRBM framework requires high quality information in order to account 

for the various activities and transformations taking place in a river basin, including their 

interdependencies. Technology has revolutionized the technical tools of Integrated River Basin 

Management but in spite of this development there are still challenges to be addressed for 

improving the implementation of IRBM. One of the main challenges is the development of 

innovative ways to surpass obstacles imposed by data deficiencies in order to extract the most 

information possible for assisting decision making. 

Even though the South Platte is considered a data rich area with advanced management 

schemes compared with other parts of the world, the methodological approach in the three case 

studies reviled areas of concern which are classified in Table 13. South Platte is characterized by 

a semi-arid climate with limited resources where there is a significant increase of economic activity 

over the last decades and a constantly expanding population. The water of the basin is considered 

to be over appropriated as South Platter river is considered to be one of the hardest working rivers 

of the west. Economic development and the increasing population has put further stress on the 

already natural water scarcity. As a result, there has been changes in land uses and shifts in water 
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demands trends over the decades. One can argue that these pressures on water resources have 

triggered the different water administration eras implemented in the basin as a means of problem 

solving. While the developed infrastructure has served the purposes it was built for, climate 

uncertainty along with the changing demand setting call for an integrated assessment of future 

vulnerabilities and alternative management schemes. 

 

Table 13: Categories of concern deriving from the three case studies 

River Basin Data 
Transformation  
to Information 

Integrated River 
Basin Management 

Limited water 
resources, 
Climatic uncertainty, 
Over-appropriated 
water resources, 
Increasing 
population, 
Rapid changes in 
land uses, 
Shifting water 
demands, 
Infrastructure 
developed for 
different pressures 
 

Fragmented, 
Quality Questions, 
Non-user friendly 
access,  
Non-existing, 
Inconsistent data 
collection intervals, 
Time gaps in 
monitoring programs, 
Inappropriate data 
collection protocols, 
Not fully cover the 
spatial extent 
 

No framework to 
combine data, 
Complexity, 
Wrong data used, 
Models in not 
appropriate scale for 
local issues, 
Lack of multi-scale 
data analysis 
approaches 

Sub-optimal 
conjunctive use of 
surface water and 
groundwater 
resources, 
Non-holistic ways of 
vulnerability drought 
assessment, 
Non-integrated 
drought impact 
efforts, 
Conflicting views 
derived from limited 
information, 
Non-defined water 
trade-offs for oil & 
gas development 

 

Under conditions of rapid socioeconomic and natural transformations, IRBM is an adaptive 

management style where the basin system, consisting of interacting natural sub-systems and 

anthropogenic sub-systems, is monitored and frequently the system status is reevaluated. Despite 

having such a need in most river basins in the world, implementation of an adaptive framework is 

hindered due to data issues and the ways of transforming imperfect data to meaningful information. 
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Likewise, the cases in this research studied in the South Platte River Basin revealed an array of 

existing data hindrances including issues of data fragmentation; data quality questions; non-

monitored variables; time gaps in monitoring programs; infrequent sampling; limited spatial 

coverage etc. At the same time, there are concerns about the extracted information from data in 

order to support the decision-making process under the IRBM framework, since South Platte is a 

highly complex basin with diverse human activities. Imperfect/incorrect data are often used; the 

existing models are not scale appropriate to provide solutions in local issues; there is a lack of 

multi-scale analysis approaches; and a lack of a framework to combine multi-source and diverse 

data. 

 

Table 14: Realities in South Platte River basin applying IRBM and the premises of an ideal scheme of 
IRBM. 

Practice of IRBM Ideal Premises of IRBM 

Non-integrated drought vulnerability 
practices. 

Holistic drought risk assessment and risk 
management. 

Absence of a plan that incorporates fully 
water for energy (unconventional oil and gas 
sub-sector not included). 

Cross-sectoral integration between water use 
sub-sectors. 

Unconventional oil and gas flowback water 
has a relative small percentage of reuse. 

Integrating water and wastewater 
management to increase the available 
resources. 

Non-optimal conjunctive use of surface water 
and groundwater. 

Integration of surface water and groundwater 
management. 

 

In all three case studies, common data hindrances were identified based on the classification 

of Figure 3 (see Chapter 1). The following Figure 44 illustrates these categories and links the case 

studies with IRBM technical instruments where the information can be used to improve the 
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implementation closer to the ideal premises of IRBM. Table 14 illustrates the comparison of the 

main ideal premises of IRBM and the practical issues in the South Platte River Basin as presented 

in this work. This allows elaboration of the specific contribution areas towards key premises of 

IRBM. 

 

 
Figure 44: Common data hindrances identified in all three case studies and the direct links of the case 
studies to technical management instruments/tools in IRBM 
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5.2 Conclusions 

This research effort attempts through the described methodologies to overcome three main 

challenges, namely: integrated drought vulnerability assessment; unconventional oil and gas 

demand assessment; and reconstructing groundwater level time series towards IRBM. This was 

achieved through the illustrated problem solving methodologies integrating data in order to 

transform them to information and thus to contribute towards bridging the gap among ideal 

conditions of IRBM and constraints in practice, as portrayed in Figure 45.  

Drought events are further challenging the ability of a water resources system to meet 

demands. The development of a framework that advances the quantification of drought 

vulnerability based on an integrated approach including aspects of the physical, structural, and 

socio-economic components was the first objective. The identification of the vulnerability of a 

system to drought events in a quantitative manner and their delineation was presented. The study 

evolved the SDVI closer to an operational phase and at the same time tests the index in a 

geographical local very different than other previous applications. In this context, the objective 

was achieved. 

In a setting with limited resources like the South Platte basin, the finite water resources of 

river basins are claimed by competing and conflicting uses and users. Understanding shifts in water 

demands in a basin is essential for updating water management plans and strategies in order to 

balance water supply and demand. The development of oil and gas shale formations in the US 

introduced an additional water user which now competes with traditional users for the available 

water. The characteristics of this emerging water demand for energy development and the factors 

affecting it are not exactly known since it is a relatively new activity and the reported information 

is incomplete. Since the second objective was to produce a multi-scale methodology for 
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quantifying and analyzing water demand for unconventional oil and gas development, through the 

above presented processes this objective was also achieved. 

 

 
Figure 45: The studied challenges and the problem-solving scheme for integrating data 
and transform them to information 

 

Groundwater information when compared with surface water information is significantly less 

available. The difficulties in monitoring groundwater systems has resulted in data gaps. The 
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importance of knowledge of water level variations caused by natural and manmade events is a key 

for modeling efforts and data driven analysis. Lack of such information leads to sub-optimal use 

of the groundwater resources. Especially during extreme dry conditions, alluvial groundwater 

resources are vulnerable but at the same time they can be a great supplement source for mitigating 

some of the multifaceted drought impacts. The conjunctive use of groundwater and surface water 

resources is a key premise of IRBM. The last objective of this research was the development and 

testing of a novel methodology for bridging data gaps in groundwater level measurements in 

dynamic alluvial formations, by taking advantage of available outputs of regional groundwater 

physical models in a framework that includes statistical modeling and the Ensemble Smoother. 

Hence, the presented process shows that this last objective was also achieved. 

Overall, a summary of the results and key points from the completed research are presented 

below: 

1. The SDVI calculated with the proposed methodology was proved appropriate for 

portraying the levels of vulnerability to drought in a fine spatial scale. The drought 

event of 2012 during the months of July, August and September were used as an 

example for evaluating the datasets used for the representation of the index’s 

components, which were considered successful since when cross-checking was 

possible it matched the observations. A contribution of the methodology is an 

integrated way to portray the spatiotemporal extent and magnitude of the multifaceted 

drought impacts incorporating a plethora of different data. The integration of the other 

index components results to delineating vulnerability levels based on societal, physical 

and structural factors. The SDVI values produced for the South Platte basin seems to 

offer a deeper understanding of vulnerability of the different system’s components. 
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2. The study of the emergent water demand for unconventional energy reveals that the 

different oil and gas development practices and water acquisition approaches followed 

in Weld and Garfield counties in Colorado, is affecting water use intensity. The 

comparison of the two Colorado counties showed that the challenges are local and thus 

solutions should be tailored for the specific area of interest in order to achieve 

sustainable water management. There is an urgent need for more data to be collected 

in order to understand fully the whole life cycle of this water demand. There were data 

discrepancies between the available databases. Furthermore, data reported to 

FracFocus combine total water volume per well (freshwater, produced water, or 

recycled water), which makes it impossible to determine separate volumes for each 

element. Finally, volumes of water used in secondary activities such as dust 

suppression, drilling mud, and site restoration, although insignificant to the amount 

used for hydraulic fracturing, should be also reported. 

3. Three numerical experiments were designed to evaluate the prediction performance of 

the proposed groundwater data-filling framework for 18 well locations with biannual 

measurements. The first two numerical experiments were very satisfactory. The 

algorithm encountered difficulty in predicting a sudden change in head measurement 

when there were no similar measurements in temporal proximity. Furthermore, if the 

model was not approximating the general tendency or the seasonality of the measured 

values, then the prediction error increased. On the contrary, Numerical Experiment #3 

was the least successful. It was anticipated to perform less good than the previous two, 

since in experiment #3, a sequential random five-year window was selected and the 

observations that lie within that period were treated as unknowns. The framework 
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should be a valuable tool for enhancing groundwater time series in alluvial formations, 

for both intermittent missing data and short spanned continuous gaps. 

Giving such conclusion in the following section some recommendations are presented towards 

IRBM implementation. 

 

5.3 Recommendations 

While the methodologies proposed have tangible results towards bridging the gap between 

ideal and real implementation of IRBM under changing conditions, areas of potential 

recommendations have been identified that could lead in extending further the outcomes of this 

work. 

Regarding the SDVI, the first recommendation is related to the uncertainty in the input values 

for the index calculation, which is one of the uncertainty sources affecting the results. The 

difficulty of validating the spatial information and in many cases the limitations of spatial coverage 

in needed data hinders the use of the index especially in a data scarce area. One promising solution 

to this problem is using satellite derived information to supplement needed data for the 

components. Hard measured data are equally important for calculating the index but if there are 

limited data points available they can be used as validation points. Relying more on satellite data, 

will lead to a more operational version of the index with the ability to inform about drought 

vulnerability conditions in near-real time. In addition, the incorporation of demand and supply 

components for reservoirs would lead to more precise assignment of overall drought vulnerability 

levels regarding to ecological and societal aspects. 
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The recommendations based on the research of the Chapter 3 are mainly related to data 

limitations and quality since they were the main hindrance. Hence, the availability of additional 

data parameters would greatly improve the understanding of water use for oil and gas development 

in Colorado. The source of water used in hydraulic fracturing should be included in the reporting 

as well as the flowback water reported should be associated with a fixed number of days. 

Suggestions of creating a seamless database with no demarcated responsibilities from the pertinent 

authorities is needed along with a user friendly way to identify water rights of nontributary water 

associated with oil and gas activities. Introducing an automated system for reporting with stricter 

quality criteria accompanied with appropriate training would help minimize future data gaps in 

future reports. Also, water volumes of water used in secondary activities such as dust suppression, 

drilling mud, and site restoration, although insignificant to the amount used for hydraulic 

fracturing, should be also reported. This work could be extended by building a hydrologic models 

to examine the potential stresses on water resources under drought conditions considering future 

scenarios for oil and gas industry’s water demand, based on the presented findings. Finally, 

investigating recycle and reuse pathways for flowback and produced water, after appropriate 

treatment, could lead in cost-effective solutions to reduce industry’s water requirements or reveal 

other beneficial alternative water uses. 

The recommendations regarding the proposed groundwater data-filling framework are 

considering alternative schemes and techniques. The evaluation of the performance of the 

framework in a piecewise manner by using different temporal local SARIMAX models for 

different periods. Such an approach might produce better results. Another interesting expansion of 

this work is the use of clustering methods with the purpose of constructing SARIMAX models for 

the sections of the aquifer with similar processes. The benefit of such an approach would be to 
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prevent the need to construct a new SARIMAX model at every point of interest. Lastly, the 

performance of different smoother algorithms, such as the Ensemble Kalman Smoother (EnKS), 

should be evaluated. With the employment of other Kalman smoothing frameworks, it would be 

possible to test the incorporation of non-linear stochastic models, which could perhaps result in 

improving the prediction accuracy. 

 

5.4 Epilogue 

All in all, the quest to increase the degree of integration in IRBM efforts through efficient and 

effective transformation of data to information and knowledge is continuous since the dynamic 

nature of the study systems call for adaptive approaches in water management. The methodologies 

developed and presented herein can be part of the technical armory that water resources engineers 

and managers have towards IRBM. The findings and recommendations of this research effort are 

subject to localities and data availability constraints. However, the developed methodologies can 

serve as a guide to other neighboring basins and by extension to other areas of the world facing 

similar problems, where they may be adapted to each locale. 
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Appendix A. Precipitation Stations Metadata 

# Station Name UTM X UTM Y Elev. (m) Period Status 

1 Akron Washington CO Arpt. 651857.9 4447781 1421.28 1963-2012 Filled 

2 Antero Reservoir 422760.9 4316411 2718.82 1963-2012 Complete 

3 Bailey 458966.4 4361797 2356.10 1963-2012 Filled 

4 Boulder 477231.9 4426892 1671.52 1963-2012 Filled 

5 Briggsdale 556945.4 4498458 1473.40 1963-2012 Filled 

6 Byers 5 ENE 574758.4 4399287 1554.48 1963-2012 Complete 

7 Cheesman  475976.4 4341250 2097.02 1963-2012 Filled 

8 Cheyenne Muni. Arpt. 515380.8 4555425 1868.42 1963-2012 Complete 

9 Denver Stapleton Int. Arpt. 511182.9 4401498 1611.17 1963-2012 Filled 

10 Estes Park 458758.4 4469679 2279.90 1963-2012 Combined 

11 Fleming 3 SW 680987.7 4501919 1297.23 1963-2012 
Combined + 
Filled 

12 Fort Collins 488893.4 4495995 1525.22 1963-2012 Complete 

13 Fort Morgan 600725.2 4457288 1328.62 1963-2012 Filled 

14 Greeley UNC 525533.4 4472443 1437.13 1963-2012 Combined 

15 Julesburg 729613.9 4540858 1057.35 1963-2012 Filled 

16 Kassler 491813.6 4371159 1702.92 1963-2012 Filled 

17 Lake George 8 SW 459200.3 4306617 2606.04 1963-2012 Filled 

18 Leroy 9 WSW 662532.3 4483878 1386.84 1963-2012 Filled 

19 Longmont 2 ESE 494321.8 4444408 1508.76 1963-2012 Filled 

20 New Raymer 21 N 595318.5 4531814 1578.86 1963-2012 Combined 

21 Sedalia 4 SSE 504115.5 4361567 1821.18 1963-2012 Filled 

22 Sedgwick 5 S 709311.4 4526085 1216.15 1963-2012 Filled 

23 Sterling 651524.3 4498995 1211.28 1963-2012 Filled 

24 Waterdale 482160.7 4475018 1594.10 1963-2012 Filled 
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Precipitation Time Series Fill-in Details  

1. Akron Washington CO Arpt. 

Filled from Akron 4 E station with coefficient of determination 0.824 

2. Antero Reservoir 

It had a complete time series 

3. Bailey 

Filled from Grant station with coefficient of determination 0.741 

4. Boulder 

Filled from Longmont 2 ESE station with coefficient of determination 0.723 

5. Briggsdale 

Filled from Fort Morgan, Greeley-Combined and New Raymer-Combined stations with 
coefficient of determination 0.693 

6. Byers 5 ENE 

It had a complete time series 

7. Cheesman  

Filled from Bailey and Lake George 8 SWstations with coefficient of determination 0.763 

8. Cheyenne Muni. Arpt. 

It had a complete time series 

9. Denver Stapleton Int. Arpt. 

Filled from Denver International Airport station with coefficient of determination 0.748 

10. Estes Park 

It was combined with Estes Park 1 SSE 

11. Fleming 3 SW 

It was combined with Fleming and then filled from Sedgwick 5 S and Sterling stations with 
coefficient of determination 0.775 
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12. Fort Collins 

It was complete 

13. Fort Morgan 

Filled from Akron Washington Airport, Greeley-Combined, Briggsdale and Sterling 
station with coefficient of determination 0.737 

14. Greeley UNC 

It was combined with Greeley station 

15. Julesburg 

Filled from Big Springs (NE) station with coefficient of determination 0.775 

16. Kassler 

Filled from Strontia Sp. Dam station with coefficient of determination 0.778 

17. Lake George 8 SW 

Filled from Florissant Fossil Beds station with coefficient of determination 0.740 

18. Leroy 9 WSW 

Filled from Fleming-Combined and Sterling stations with coefficient of determination 
0.797 

19. Longmont 2 ESE 

Filled from Boulder, Fort Collins, Greeley-Combined and Waterdale stations with 
coefficient of determination 0.815 

20. New Raymer 21 N 

It was combined with Kauffman 4 SSE 

21. Sedalia 4 SSE 

Filled from Castle Rock station with coefficient of determination 0.697 

22. Sedgwick 5 S 

Filled from Crook station with coefficient of determination 0.731 
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23. Sterling 

Filled from Fleming-Combined, Leroy 9 WSW and New Raymer-Combined stations with 
coefficient of determination 0.737 

24. Waterdale 

Filled from Flat Iron Reservoir and Fort Collins stations with coefficient of determination 
0.776 
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Appendix B. SPI-6 Graphs 
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Appendix C. SPI-12 Graphs 
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Appendix D. Evapotranspiration Station Metadata 

 

# Station Name ID Network UTM X UTM Y Elev. (m) Period 

1 Haxtun HXT01 CoAgMet 698876.6 4505032.6 1231.39 2000-2016 

2 Sterling ID_108 NCWCD 649217.0 4493283.5 1210.06 2000-2016 

3 Brush ID_107 NCWCD 610990.7 4454763.8 1303.93 2000-2016 

4 
Eastern Adams 
County 

EAC01 CoAgMet 602923.8 4404663.7 1495.65 2000-2016 

5 Wiggins ID_106 NCWCD 583709.2 4461883.4 1362.76 2000-2016 

6 Briggsdale BRG01 CoAgMet 557622.7 4493989.5 1480.72 2002-2016 

7 Kersey 1 KSY01 CoAgMet 539728.0 4469684.9 1409.70 2000-2016 

8 Lucerne LCN01 CoAgMet 524836.0 4480587.7 1447.80 2000-2016 

9 Ault ALT01 CoAgMet 523701.2 4490951.5 1496.57 2000-2016 

10 Peckham PKH01 CoAgMet 523196.6 4462478.4 1432.86 2000-2016 

11 Greeley West ID_224 NCWCD 520601.2 4472638.6 1483.77 2000-2016 

12 Eaton ID_104 NCWCD 519433.6 4491764.8 1510.28 2000-2016 

13 Gilcrest ID_105 NCWCD 513447.2 4456955.7 1455.42 2000-2016 

14 Fort Lupton FTL01 CoAgMet 512889.1 4427890.3 1540.76 2000-2016 

15 
Fort Collins 
East 

ID_101 NCWCD 503463.1 4496888.2 1571.55 2000-2016 

16 CSU - ARDEC FTC03 CoAgMet 500000.0 4500182.5 1557.53 2000-2016 

17 Loveland ID_102 NCWCD 494149.2 4475394.2 1521.56 2000-2016 

18 
Longmont 
South 

ID_103 NCWCD 493444.9 4436021.4 1519.12 2000-2016 

19 Windy Gap ID_350 NCWCD 417671.2 4440149.4 2416.76 2000-2016 
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Appendix E. Ditch Identification numbers 

WDID 

0100503 0200885 0400521 0500539 0600516 0600603 0801362 2300894 6400502 8000673 

0100507 0200887 0400522 0500542 0600518 0600608 0801412 2300902 6400503 8000674 

0100511 0200888 0400523 0500545 0600523 0600610 0801413 2300904 6400504 8000706 

0100514 0300905 0400524 0500546 0600525 0600621 0801426 2300922 6400506 8000713 

0100515 0300910 0400530 0500547 0600527 0600650 0900535 2300923 6400508 8000729 

0100517 0300911 0400532 0500548 0600528 0600735 0900731 2300924 6400511 8000730 

0100518 0300912 0400534 0500549 0600532 0700502 0900752 2300926 6400513 8000732 

0100519 0300913 0400541 0500550 0600536 0700527 0900767 2300931 6400514 8000759 

0100525 0300914 0400543 0500551 0600537 0700540 0900958 2300932 6400515 8000760 

0100526 0300915 0400574 0500552 0600538 0700547 2300500 2300933 6400516 8000761 

0100687 0300918 0400578 0500553 0600542 0700549 2300502 2300936 6400518 8000773 

0100688 0300919 0400582 0500554 0600543 0700551 2300503 2300937 6400520 8000774 

0200808 0300922 0400588 0500557 0600551 0700569 2300504 2300948 6400522 8000776 

0200809 0300926 0400592 0500558 0600553 0700570 2300505 2300963 6400524 8000777 

0200810 0300929 0400599 0500559 0600554 0700597 2300506 2300975 6400525 8000784 

0200812 0300930 0400600 0500561 0600560 0700601 2300516 2300977 6400528 8000785 

0200813 0300931 0400601 0500563 0600564 0700614 2300564 2300986 6400530 8000792 

0200817 0300932 0400602 0500564 0600565 0700632 2300568 2300987 6400531 8000794 

0200821 0300934 0400603 0500565 0600566 0700647 2300569 2300991 6400532 8000799 

0200822 0300935 0500511 0500568 0600567 0700652 2300573 2300993 6400533 8000800 

0200824 0300937 0500523 0500569 0600569 0700698 2300579 2300994 6400535 8000801 

0200825 0300994 0500526 0500570 0600570 0700699 2300585 2301003 6403906 8000812 

0200826 0301038 0500527 0500571 0600575 0801004 2300586 2301005 8000650 8000827 

0200828 0301039 0500528 0500572 0600576 0801124 2300691 2301018 8000651 8000828 

0200830 0301041 0500529 0500573 0600580 0801215 2300760 2301020 8000657 8000829 

0200834 0400501 0500530 0500574 0600582 0801230 2300763 2301022 8000659 8000831 

0200836 0400502 0500534 0500589 0600585 0801237 2300774 2301025 8000660 8000843 

0200837 0400503 0500535 0500601 0600586 0801241 2300787 2301075 8000661 8000895 

0200872 0400517 0500536 0600501 0600588 0801250 2300789 2301083 8000662 8000896 

0200873 0400519 0500537 0600513 0600592 0801264 2300797 2301138 8000667 8000897 

0200874 0400520 0500538 0600515 0600593 0801279 2300887 2302910 8000668 8000921 
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Appendix F. Reservoirs Location and Metadata 

 
Figure 46: Main South Platte's reservoirs location 
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Table 15: Main South Platte's reservoirs metadata 

# Reservoir Station ID Elev. (m) County UTM X UTM Y 

1 Antero Reservoir 6016010 2727.96 Park 422055.78 4316052.29 

2 Barr Lake 6016020 1569.72 Adams 519647.05 4422233.14 

3 
Black Hollow 
Reservoir 

6016030 1548.38 Weld 510149.92 4496581.85 

4 Boyd Lake 6016040 1508.76 Larimer 497455.34 4475485.30 

5 Cache La Poudre 6016050 1493.52 Larimer 502540.13 4488805.26 

6 Carter Lake 6016060 1761.74 Larimer 481308.81 4463298.38 

7 Cheesman Lake 6016080 2090.93 Douglas 476689.48 4340115.74 

8 Cobb Lake 6016090 1569.72 Larimer 502536.35 4499905.44 

9 
Elevenmile 
Canyon Reservoir 

6016100 2615.18 Park 458377.41 4305789.18 

10 Empire Reservoir 6016110 1371.6 Weld 572269.61 4458072.02 

11 
Fossil Creek 
Reservoir 

6016120 1481.33 Larimer 499152.54 4482144.86 

12 Gross Reservoir 6016130 2209.8 Boulder 469248.07 4422269.87 

13 
Halligan 
Reservoir 

6016140 1935.48 Larimer 471353.66 4525491.79 

14 
Horse Creek 
Reservoir 

6016370 1542.29 Adams 535845.90 4428951.70 

15 
Horsetooth 
Reservoir 

6016150 1661.16 Larimer 485616.65 4494368.78 

16 
Jackson Lake 
Reservoir 

6016160 1335.02 Morgan 578094.43 4470341.34 

17 
Julesburg 
Reservoir 

6016170 1127.76 Logan 699509.43 4534802.34 

18 
Lake Loveland 
Reservoir 

6016180 1530.1 Larimer 493213.25 4474377.96 

19 
Lone Tree 
Reservoir 

6016190 1569.72 Larimer 489807.82 4465501.99 

20 
Mariano 
Reservoir 

6016200 1539.24 Larimer 487267.30 4469945.77 

21 
Marshall 
Reservoir 

6016220 1725.17 Boulder 481207.17 4422230.99 

22 
Marston 
Reservoir 

6016210 1688.59 Jefferson 493134.51 4386695.29 

23 Milton Reservoir 6016230 1456.94 Weld 529775.45 4453344.32 
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# Reservoir Station ID Elev. (m) County UTM X UTM Y 

24 
North Sterling 
Reservoir 

6016240 1234.44 Unknown 645981.66 4515775.82 

25 Prewitt Reservoir 6016250 1249.68 Washington 637434.73 4475635.34 

27 
Riverside 
Reservoir 

6016270 1371.6 Weld 562021.01 4463530.91 

28 
Spinney 
Mountain 
Reservoir 

16016025 2647.49 Park 446290.228 4313630.375 

29 
Standley 
Reservoir 

6016280 1676.4 Jefferson 489737.437 4413335.622 

30 Terry Reservoir 6016290 1554.48 Boulder 489791.284 4453292.463 

31 Union Reservoir 6016300 1508.76 Weld 497445.946 4447736.279 

32 
Windsor 
Reservoir 

6016310 1456.94 Weld 508475.902 4481039.62 
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Appendix G. Locations of all studied wells 

 
Figure 47: Locations of all studied groundwater wells 

 



206 
 

Appendix H. Modeled monthly groundwater head & biannual observations 

 

Well ID: 02S6535DCD 

 

Well ID: 02S6523ADC 
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Well ID: 01N6525CCD 

 

 

Well ID: 03N6618CAC1 
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Well ID: 04N6614BAA 

 

 

Well ID: 04N6401CCC 
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Well ID: 11N4728BBB 

 

 

Well ID: 09N5131BBB 
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Well ID: 04N6412CCC 

 

 

Well ID: SB00306618CAC 
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Well ID: 04N6627ADD 

 

 

Well ID: SB00406012CCC-CSU1 
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Well ID: 68-1 
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Appendix I. SARIMAX models for the tested radii and the AIC 

Well ID ARIMA MODEL Radii in m (ft) AIC 
    

  
 

 

02S6535DCD 

(1,1,2)(2,0,1)[12] 
with zero mean, xreg = P 

914 (3000) 1764.3 

(1,1,2)(2,0,1)[12] 
with zero mean, xreg = P 

1829 (6000) 1764.32 

(1,1,2)(2,0,1)[12] 
with zero mean, xreg = R, P 

3,048 (10000) 1741.7 

(1,1,2)(2,0,1)[12] 
with zero mean, xreg = R, P 

4,877 (16000) 1734.74 

    
    

02S6523ADC 

(2,1,1)(0,0,3)[12] 
with zero mean, xreg = R 

914 (3000) 
-

1734.51 

(1,1,2)(2,0,0)[12] 
with zero mean, xreg = R 

1829 (6000) 
-

1750.94 

(2,1,1)(3,0,1)[12] 
with zero mean, xreg = R, P 

3,048 (10000) 
-

1744.26 

(2,1,0)(2,0,0)[12] 
with zero mean, xreg = R, P 

4,877 (16000) 
-

1818.01 
    
    

01N6525CCD 

(2,1,0)(2,0,1)[12] 
with zero mean, xreg = R 

914 (3000) 563.3 

(2,1,1)(2,0,1)[12]  
with zero mean, xreg = R, P 

1829 (6000) 692.09 

    
    

03N6618CAC1 

(1,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

914 (3000) -668.94 

(1,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

1829 (6000) -587.59 

    
    

04N6614BAA 

(1,0,2)(3,0,0)[12] 
with non-zero mean, xreg = R 

914 (3000) 533.48 

(1,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

1829 (6000) 544.36 

(1,0,2)(1,0,1)[12] 
with non-zero mean, xreg = R 

3,048 (10000) 551.35 

    

    

04N6401CCC 

(1,0,1)(3,0,0)[12] 
with non-zero mean, xreg = R 

914 (3000) 475.86 

(1,0,1)(3,0,0)[12] 
with non-zero mean, xreg = R 

1829 (6000) 429.54 

(1,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

3,048 (10000) 222.6 
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Well ID ARIMA MODEL Radii in m (ft) AIC 
    

  
 

 

(1,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

4,877 (16000) 246.99 

    

    

11N4728BBB 

(1,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

914 (3000) 565.88 

(1,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

1829 (6000) 574.01 

    

    

09N5131BBB 
(3,0,0)(1,0,1)[12] 

with non-zero mean, xreg = R, P 
914 (3000) 621.35 

    

    

04N6412CCC 

(2,0,1)(1,0,2)[12] 
with non-zero mean, xreg = R 

914 (3000) -98.92 

(2,0,1)(1,0,2)[12] 
with non-zero mean, xreg = R 

1829 (6000) -104.16 

(3,0,0)(1,0,2)[12] 
with non-zero mean, xreg = R, P 

3,048 (10000) -286.79 

(3,0,0)(1,0,2)[12] 
with non-zero mean, xreg = R, P 

4,877 (16000) -279.02 

    

    

SB00306618CAC 
(1,0,2)(1,0,1)[12] 

with non-zero mean, xreg = R 
914 (3000) -413.56 

    

    

04N6627ADD 

(3,0,0)(3,0,0)[12] 
with non-zero mean, xreg = R 

914 (3000) -473.94 

(3,0,0)(3,0,0)[12] 
with non-zero mean, xreg = R 

1829 (6000) -477.49 

(2,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

3,048 (10000) -991.87 

(2,0,1)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

4,877 (16000) -819.56 

    

SB00406012CCC 
CSU1 

(2,1,1)(3,0,0) [12] 
with zero mean, xreg = R 

914 (3000) -40.99 

(2,1,1)(3,0,0)[12] 
with zero mean, xreg = R 

1829 (6000) -89.25 

(2,1,2)(2,0,0)[12] 
with zero mean, xreg = R, P 

3,048 (10000) -109.67 
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Well ID ARIMA MODEL Radii in m (ft) AIC 
    

  
 

 

68-1 

(2,1,2)(1,0,1)[12] 
with zero mean, xreg = R 

914 (3000) -277.91 

(2,1,2)(1,0,1)[12] 
with non-zero mean, xreg = R, P 

1829 (6000) -237.9 
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Appendix J. ARIMA ACF of Residuals 

 

Well ID: 02S6535DCD 

 

 

Well ID: 02S6523ADC 
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Well ID: 01N6525CCD 

 

 

Well ID: 03N6618CAC1 
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Well ID: 04N6614BAA 

 

 

Well ID: 04N6401CCC 
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Well ID: 11N4728BBB 

 

 

Well ID: 09N5131BBB 
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Well ID: 04N6412CCC 

 

 

Well ID: SB00306618CAC 
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Well ID: 04N6627ADD 

 

 

Well ID: SB00406012CCC-CSU1 
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Well ID: 68-1 
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Appendix K. Results of Numerical Experiment #1

 

Well ID: 02S6535DCD 

 

Well ID: 01N6525CCD 

 

 

 

 

Well ID: 02S6523ADC 

 

 

Well ID: 03N6618CAC1 
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Well ID: 04N6614BAA 

 

 

Well ID: 11N4728BBB 

 

 

Well ID: 04N6401CCC 

 

 

Well ID: 09N5131BBB 
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Well ID: 04N6412CCC 

 

 

Well ID: 04N6627ADD 

 

 

Well ID: SB00306618CAC 

 

 

Well ID: SB00406012CCC-CSU1 
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Well ID: 68-1 
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Appendix L. Results of Numerical Experiment #2 

Including the five wells presented in the main body of the chapter since their convergence 

plots was not presented. 

 

Well ID: 02S6535DCD 
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Well ID: 02S6523ADC 
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Well ID: 01N6525CCD 
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Well ID: 03N6618CAC1 
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Well ID: 04N6614BAA 
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Well ID: 04N6401CCC 
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Well ID: 10N4902CBC 
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Well ID: 11N4728BBB 
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Well ID: 04N5931CB 
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Well ID: 09N5131BBB 
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Well ID: 04N6506DAB 
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Well ID: 01N5531DCD 

 

  



239 
 

 

Well ID: 04N6422DCD 
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Well ID: 04N6412CCC 
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Well ID: SB00306618CAC 
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Well ID: 04N6627ADD 
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Well ID: SB00406012CCC-CSU1 
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Well ID: 68-1 
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Appendix M. Results of Numerical Experiment #3 

Including the five wells presented in the main body of the chapter since their convergence 

plots was not presented. 

 

Well ID: 02S6535DCD 
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Well ID: 02S6523ADC 
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Well ID: 01N6525CCD 
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Well ID: 03N6618CAC1 
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Well ID: 04N6614BAA 
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Well ID: 04N6401CCC 
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Well ID: 10N4902CBC 
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Well ID: 11N4728BBB 
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Well ID: 04N5931CB 
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Well ID: 09N5131BBB 

 

  



255 
 

 

Well ID: 04N6506DAB 
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Well ID: 01N5531DCD 
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Well ID: 04N6422DCD 
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Well ID: 04N6412CCC 
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Well ID: SB00306618CAC 
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Well ID: 04N6627ADD 
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Well ID: SB00406012CCC-CSU1 
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Well ID: 68-1 

 

 

 

 


