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LONGITUDINAL DISTRIBUTION OF VIRTUAL MASS, 

VIRTUAL MOMENT OF INERTIA, DAMPING FORCE 

AND DAMPING MOMENT ON A PITCHING 

AND HEAVING SHIP 

INTRODUCTION 

This study, sponsored by the S-3 Panel of the Hull Structure Committee, 

Society of Naval Architects and Marine Engineers was undertaken as an experi­

mental check of the theoretical forces and moments computed by Lewis (1) on 

a Model T2-SE-Al Tanker. A series of tests were conducted in the Wave Basin 

at Colorado State University on a model divided into seven segments of equal 

water-line length. Each segment was suspended in such a fashion that it was 

structurally independent of other segments. The whole model was then sub­

jected to forced oscillations in pitch or heave and the force on each seg­

ment measured by a strain-gage dynamometer. The recorded traces of force as 

a function of time were used to determine the virtual mass and moment of 

inertia coefficients and the damping coefficients. To obtain a better fit 

of measured data to the assumed e~uation, certain terms proportional to the 

square of the angular frequency were determined. 
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EXPERIMENTAL EQUIPMENT 

Model 

To afford a direct comparison with tests and computations previously 

conducted by Lewis (1); a Model T2-SE-Al Tanker hull was chosen for the 

tests. Constructed according to the lines shown in Figure l; the model 

was molded from fiberglass laminate approximately 1/8-inch thick. (Model 

particulars nre shown in Table 1). Since the model was expected to perform 

forced oscillations of nearly two inch ru:.plitude; its freeboard was made 

large enough to prevent swamping (3.1 inches). 

It was specified by the panel that the distribution of force and moments 

on the hull were to be studied. Ideally; it would have been necessary to 

slice the nodel in many thin segments. Cost and time prevented any exten­

sive subdivision . It was decided to cut .the five-foot-long hull into seven 

equal length segments (8.57 inches) as shown in Figure 2, Each hull segment 

was made water tight by sheet metal bulkheads fitted into the cut ends. 

(Segment particulars are shown in Table 2). 

Force Balances 

A phosphor bronze spring spanned each hull segment fore and aft along 

the model center line. At the center of each spring; a vertical column was 

attached firmly and the column was then connected to an aluminum beam or 

strongback (Figure 3). The segments were mounted in such a fashion that no 

contact existed with the adjoining segments (Figure 4). As a result of the 

foregoing precaution; it was assumed that the influence of a huli segment on 

other hull segments was purely hydrodynamic. 
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