DISSERTATION

LINEAR SYSTEMS AND RIEMANN-ROCH THEORY ON GRAPHS

Submitted by
Rodney James
Department of Mathematics

In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University

Fort Collins, Colorado
Spring 2010

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY RODNEY JAMES ENTITLED LINEAR SYSTEMS AND RIEMANN-ROCH THEORY ON GRAPHS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

> Jeanne Duflot

Chris Peterson

Sanjay Rajopadhye

Advisor: Rick Miranda

Department Head: Gerhard Dangelmayr

ABSTRACT OF DISSERTATION

LINEAR SYSTEMS AND RIEMANN-ROCH THEORY ON GRAPHS

Graphs can be viewed as discrete counterparts to algebraic curves, as exemplified by the recent Riemann-Roch formula for integral divisors on multigraphs. We show that for any subring R of the reals, the Riemann-Roch formula can be generalized to R valued divisors on edge-weighted graphs over R. We also show that a related abelian sandpile model extended to R on edge-weighted graphs leads to a group, which has many interesting properties. The sandpile results are used to prove various properties of linear systems of divisors on graphs, including that the set of divisors with empty linear systems is completely determined by a lattice of nonspecial divisors. We use these properties of linear systems on graphs to study line bundles on binary and ternary algebraic curves that match the dimension of their graph counterparts.

Rodney James
Department of Mathematics Colorado State University Fort Collins, Colorado 80523

Spring 2010

Contents

1 Introduction 1
1.1 Overview 1
1.2 Graph Curves 2
1.3 Baker-Norine Theory 3
1.4 Tropical Curves 4
1.5 Edge-Weighted Graphs 5
2 Riemann-Roch on R-graphs 7
2.1 Introduction 7
2.2 Change of Rings 10
2.3 Reduction to \mathbb{Q}-graphs 14
2.4 Scaling 15
2.5 Reduction to \mathbb{Z}-graphs 18
2.6 Conclusions 20
3 Sandpiles on R-graphs 21
3.1 Introduction 21
3.2 Superstable Sandpiles 23
3.3 Allowable Topplings 26
3.4 Superstable Group 29
3.5 Conclusions 30
4 Applications to Linear Systems 31
4.1 Introduction 31
4.2 Graph Jacobian 32
4.3 Empty Linear Systems 33
4.4 Conclusions 38
5 Compatible Line Bundles 39
5.1 Introduction 39
5.2 Binary Curves 41
5.3 Ternary Curves 43
5.4 Conclusions 47
Bibliography 48

Chapter 1

Introduction

1.1 Overview

This dissertation concerns the study of algebro-geometric properties of graphs and their connections to algebraic curves, inspired by the recent proof of a RiemannRoch theorem for graphs by Baker and Norine [3]. In this chapter, an overview of motivating results and related work is presented. New results are contained in the subsequent chapters, which are grouped in two areas.

The first area involves extending the Riemann-Roch theory in [3] from integral divisors to divisors over any subring R of the reals. In Chapter 2 , a Riemann-Roch theorem for such R-divisors is shown, based on extending the framework in [3]. Following that, Chapter 3 presents a related result for sandpiles or chip-firing games on graphs which have weighted edges over R. These results are then used to prove results for linear systems in Chapter 4.

The second area of research, contained in Chapter 5, concerns finding compatible line bundles on nodal curves corresponding to their discrete counterparts, divisors on graphs. In this sense, an n-vertex graph and divisor serve as a model for a particular type of curve with n rational components with line bundles corresponding to an effective divisor on the graph. Such a line bundle is called compatible if its dimension
is equal to the dimension of the linear system of the corresponding graph divisor. Although such curves and graphs both obey Riemann-Roch, it is not obvious or even clear that the discrete graph object and a corresponding algebraic curve have such a compatible divisor-bundle pairing.

1.2 Graph Curves

Graph curves, discussed extensively in [4], [7], [8] and [15], are reducible algebraic curves which are in a sense characterized by graphs.

Let G be a finite, connected graph with vertex set $V(G)$ and edge set $E(G)$, where the degree of each vertex $v \in V(G)$ is at most 3. Such a graph is said to be subtrivalent; if the degree of every vertex is exactly 3, the graph is trivalent. Multiple edges and loops (where an edge connects a vertex to itself) are allowed, where we define $p_{v w}$ to be the number of edges joining vertices v and w.

Using G as a model, we construct a connected, reducible algebraic curve X_{G} over a field k as follows. For each $v \in V(G)$, let $X_{v} \cong \mathbb{P}_{k}^{1}$. The intersection number $X_{v} \cdot X_{w}=p_{v w}$, where X_{v} and X_{w} meet transversely $p_{v w}$ times at distinct coordinates. The graph curve X_{G} is then defined to be

$$
X_{G}=\bigcup_{v \in V(G)} X_{v}
$$

with the above intersection conditions. The genus of X_{G} is given by

$$
g=|E(G)|-|V(G)|+1
$$

For graphs that are trivalent, the corresponding graph curves are stable curves, in the sense of Deligne and Mumford [9].

We will consider curves of the form X_{G} where we allow G to be any finite connected graph with multiple edges, with the restriction that loops will not be allowed.

1.3 Baker-Norine Theory

In this section we describe the theory of linear systems on graphs used in [3], much of which was formulated in [1]. Let G be a connected graph with multiple edges allowed, but without loops, with vertices $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $p_{i j}$ denoting the number of edges joining vertices v_{i} and v_{j}. Note that since loops are not allowed, $p_{i i}=0$ for all i. Set the number of edges of G to be $m=\sum_{i<j} p_{i j}$, then the genus of G is $g=m-n+1$.

A divisor on G is essentially a map $V(G) \rightarrow \mathbb{Z}$, which we will write as the formal sum

$$
D=\sum_{i=1}^{n} d_{i} \cdot v_{i}
$$

where each $d_{i} \in \mathbb{Z}$. The group of divisors is denoted by $\operatorname{Div}(G)$. The degree of D is

$$
\operatorname{deg}(D)=\sum_{i=1}^{n} d_{i}
$$

We say that D is effective (write $D \geq 0$) if each $d_{i} \geq 0$. The subgroup of zero divisors Div 0 are the divisors with degree zero.

Let $H_{j}=\operatorname{deg}\left(v_{j}\right) \cdot v_{j}+\sum_{i \neq j}-p_{i j} \cdot v_{i}$ for each $j=1, \ldots, n$, noting that the valence or degree of v_{j} is $\operatorname{deg}\left(v_{j}\right)=\sum_{i=1}^{n} p_{i j}$. The principal divisors $\operatorname{PDiv}(G)$ are generated by the set $\left\{H_{1}, \ldots, H_{n}\right\}$ over \mathbb{Z}. Note that since each $H_{j} \in \operatorname{Div}^{0}(G), \operatorname{PDiv}(G) \leq \operatorname{Div}^{0}(G)$. We say that two divisors $D, D^{\prime} \in \operatorname{Div}(G)$ are linearly equivalent (write $D \sim D^{\prime}$) if and only if $D-D^{\prime} \in \operatorname{PDiv}(G)$.

The complete linear system associated with a divisor D is defined as

$$
|D|=\left\{D^{\prime} \in \operatorname{Div}(G) \mid D^{\prime} \geq 0, D^{\prime} \sim D\right\}
$$

and the rank of D is

$$
r(D)=\min \{\operatorname{deg}(E)|E \geq 0,|D-E|=\emptyset\}-1
$$

Let K be the canonical divisor

$$
K=\sum_{i=1}^{n}\left(\operatorname{deg}\left(v_{i}\right)-2\right) \cdot v_{i}
$$

The main result of [3] can now be stated, the Riemann-Roch theorem for graphs.

Theorem 1.1 (Baker-Norine). If $D \in \operatorname{Div}(G)$ then

$$
r(D)-r(K-D)=\operatorname{deg}(D)-g+1
$$

1.4 Tropical Curves

A different way to view a graph in an algebro-geometric sense is as a tropical curve. Following [13] and [12], a (compact) tropical curve is essentially a connected metric graph G. A tropical rational function on G is a real-valued continuous piecewise linear function with integer slopes. Note that tropical functions are defined on the edges of G as well as the vertices. The order of a tropical rational function f at a point $p \in G, \operatorname{ord}_{p}(f)$, is the sum of the slopes of f for all edges emanating from the point p. We will denote the space of all tropical rational functions on G as $M(G)$.

A tropical divisor D on G is a formal sum

$$
D=\sum_{p \in G} a_{p} \cdot p
$$

where set of nonzero coefficient a_{p} is finite, and the degree of D is $\operatorname{deg}(D)=\sum_{p} a_{p}$. The divisor D above is called effective if each $a_{p} \geq 0$. A tropical rational function $f \in M(G)$ can be represented as a divisor using its order:

$$
(f)=\sum_{p \in G} \operatorname{ord}_{p}(f) \cdot p
$$

If D is a tropical divisor on G, the space $R(D)$ is the set of all $f \in M(G)$ such that the divisor $D+(f)$ is effective. The dimension $r(D)$ of the space $R(D)$ is

$$
r(D)=\max \left\{n \mid R\left(D-p_{1}-\cdots-p_{n}\right) \neq \emptyset \text { for all choices of } p_{1}, \ldots, p_{n} \in G\right\}
$$

We define the canonical divisor K as before to be

$$
K=\sum_{v \in V(G)}(\operatorname{deg}(v)-2) \cdot v .
$$

Independently, Milkhlakin and Zharkov [14], and Gathmann and Kerber [12], recently showed that a Riemann-Roch formula

$$
r(D)-r(K-D)=\operatorname{deg}(D)-g+1
$$

holds for tropical curves. The original proof in [14] involved using Jacobians of tropical curves, where the proof in [12] depends on the Baker-Norine result in [3]. A revised version of [14] provides a simpler proof, again based on [3].

1.5 Edge-Weighted Graphs

The finite connected graphs used in Baker-Norine theory can be generalized to edgeweighted graphs in the following way. Let G now be a connected simple graph; that is, loops and multiple edges are not allowed. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertex set of G, and assign each edge a nonnegative weight, $w_{i j}$, corresponding to the edge connecting vertices v_{i} and v_{j}. If v_{i} and v_{j} are not connected, set $w_{i j}=0$. If the weights are real-valued, G is then a metric graph, where the lengths are $l_{i j}=w_{i j}^{-1}$ for $w_{i j}=0$. More generally, we will consider weights in a subring R of the reals.

We define the degree of a vertex $v_{j} \in V(G)$ to be

$$
\operatorname{deg}\left(v_{j}\right)=\sum_{i \neq j} w_{i j}
$$

The weight sum m is

$$
m=\sum_{i<j} w_{i j}
$$

so that the genus of G is

$$
g=m-n+1
$$

For non-integral weights, it is then possible to have a non-integral, or even negative genus.

For edge weights in \mathbb{Z}, an edge-weighted graph G is a multigraph, as described in the sections above, where the number of edges $p_{i j}=w_{i j}$. For edge weights in \mathbb{R},
we have a metric graph. Divisors over R are defined as in [3], with one exception: a divisor D is effective if its ceiling $\lceil D\rceil \geq 0$, or equivalently $D>-1$. This definition allows for compatibility with linear systems over \mathbb{Z}.

In Chapter 2, we develop the theory of linear systems on edge-weighted or R graphs by extending the results of Baker and Norine. Chapters 3 and 4 use develop new independent results for linear systems on R-graphs.

Chapter 2

Riemann-Roch on R-graphs

2.1 Introduction

Let R be a subring of the real numbers \mathbb{R}. An R-graph G is a finite connected graph (without loops or multiple edges) where each edge is assigned a weight, which is a positive element of R. If we let the n vertices of G be $\left\{v_{1}, \ldots, v_{n}\right\}$, we will denote by $p_{i j}=p_{j i}$ the weight of the edge joining v_{i} and v_{j}. If there is no edge connecting v_{i} and v_{j}, we set $p_{i j}=p_{j i}=0$.

We define the degree of a vertex v_{j} of G to be the sum of the weights of the edges incident to it:

$$
\operatorname{deg}\left(v_{j}\right)=\sum_{i \neq j} p_{i j} .
$$

The edge matrix P of G is the symmetric $n \times n$ matrix defined by

$$
(P)_{i j}= \begin{cases}-p_{i j} & \text { if } i \neq j \\ \operatorname{deg}\left(v_{j}\right) & \text { if } i=j .\end{cases}
$$

The genus of G is defined as

$$
g=\sum_{i<j} p_{i j}-n+1
$$

An R-divisor D on G is a formal sum

$$
D=\sum_{i=1}^{n} d_{i} \cdot v_{i}
$$

where each $d_{i} \in R$; the divisors form a free R-module $\operatorname{Div}(G)$ of rank n. We write $D_{1} \geq D_{2}$ if the inequality holds at each vertex; for a constant c, we write $D \geq c$ (respectively $D>c$) if $d_{i} \geq c$ (respectively $d_{i}>c$) for each i.

The degree of a divisor D is

$$
\operatorname{deg}(D)=\sum_{i=1}^{n} d_{i}
$$

and the ceiling of D is the divisor

$$
\lceil D\rceil=\sum_{i=1}^{n}\left\lceil d_{i}\right\rceil \cdot v_{i} .
$$

The degree map is a homomorphism from $\operatorname{Div}(G)$ to R, and the kernel $\operatorname{Div}_{0}(G)$ of divisors of degree zero is a free R-module of rank $n-1$.

Let $H_{j}=\operatorname{deg}\left(v_{j}\right) \cdot v_{j}-\sum_{i \neq j} p_{i j} \cdot v_{i}$, and set $\operatorname{PDiv}(G)=\left\{\sum_{i=1}^{n} c_{i} H_{i} \mid c_{i} \in \mathbb{Z}\right\}$ to be the free \mathbb{Z}-module generated by the H_{j}. (Note that the H_{j} divisors correspond to the columns of the matrix P.) If G is connected, $\operatorname{PDiv}(G)$ has rank $n-1$. Note that $\operatorname{PDiv}(G) \subset \operatorname{Div}_{0}(G)$; the quotient group is called the Jacobian of G.

For two divisors $D, D^{\prime} \in \operatorname{Div}(G)$, we say that D is linearly equivalent to D^{\prime}, and write $D \sim D^{\prime}$, if and only if $D-D^{\prime} \in \operatorname{PDiv}(G)$.

The linear system associated with a divisor D is $|D|=\left\{D^{\prime} \in \operatorname{Div}(G) \mid D \sim D^{\prime}\right.$ with $\left.\left\lceil D^{\prime}\right\rceil \geq 0\right\}=\left\{D^{\prime} \in \operatorname{Div}(G) \mid D \sim D^{\prime}\right.$ with $\left.D^{\prime}>-1\right\}$.

We note that linearly equivalent divisors have the same linear system. The use of the ceiling divisor in the definition above is the critical difference between this theory and the integral theory developed by Baker and Norine [3].

The essence of the Riemann-Roch theorem, for divisors on algebraic curves, is to notice that the linear system corresponds to a vector space of rational functions, and to relate the dimensions of two such vector spaces. In our context we do not have vector spaces; so we measure the size of the linear system in a different way (as does Baker and Norine).

Define the h^{0} of an R-divisor D to be

$$
h^{0}(D)=\min \{\operatorname{deg}(E) \mid E \text { is an } R \text {-divisor, } E \geq 0 \text { and }|D-E|=\emptyset\} .
$$

Note that $h^{0}(D)=0$ if and only if $|D|=\emptyset$, and that linearly equivalent divisors have the same h^{0}.

The canonical divisor of G is defined as

$$
K=\sum\left(\operatorname{deg}\left(v_{i}\right)-2\right) \cdot v_{i}
$$

The Riemann-Roch result that we will prove can now be stated.

Theorem 2.1. Let G be a connected R-graph as above, and let D be an R-divisor on G. Then

$$
h^{0}(D)-h^{0}(K-D)=\operatorname{deg}(D)+1-g .
$$

The results of Baker and Norine (see [3]) are exactly that the above theorem holds in the case of the subring $R=\mathbb{Z}$. Our proof depends on the Baker-Norine Theorem in a critical way; it would be interesting to provide an independent proof.

In [12] and [14], a Riemann-Roch theorem is proved for metric graphs with integral divisors; these results differ from the present result in two fundamental ways. First, our edge weights $p_{i j}$ and the coefficients of the divisors are elements of the ring R. Second, the genus g is in R for the present result, whereas in [12] and [14], g is a nonnegative integer.

As an example, consider the R-graph G with two vertices and edge weight $p>0$. For convenience, we will write the divisor $a \cdot v_{1}+b \cdot v_{2}$ as the ordered pair (a, b). The principal divisors are $\operatorname{PDiv}(G)=\{(n p,-n p) \mid n \in \mathbb{Z}\}$, and $K=(p-2, p-2)$, with $g=p-1$. Note that if $p<1$, we have $g<0$.

For $(a, b) \in \operatorname{Div}(G)$, the linear system $|(a, b)|$ can be written as

$$
\begin{aligned}
|(a, b)| & =\{(c, d) \in \operatorname{Div}(G) \mid\lceil(c, d)\rceil \geq 0 \text { and }(c, d) \sim(a, b)\} \\
& =\{(a+n p, b-n p) \mid n \in \mathbb{Z}, a+n p>-1, b-n p>-1\} .
\end{aligned}
$$

In what follows, we will be brief, and leave most of the details to the reader to verify. One can check that $|(a, b)| \neq \emptyset$ if and only if $\lceil(1+a) / p\rceil+\lceil(1+b) / p\rceil \geq 2$.

Let $\phi_{p}: R \times R \rightarrow \mathbb{Z}$ be defined as

$$
\phi_{p}(x, y)=\lfloor(x+1) / p\rfloor+\lfloor(x+1) / p\rfloor .
$$

The value of $h^{0}((a, b))$ can be computed as follows:

$$
h^{0}((a, b))= \begin{cases}0 & \text { if } \phi_{p}(a, b)<0 \\ \min \{a+1-p\lfloor(a+1) / p\rfloor, b+1-p\lfloor(b+1) / p\rfloor\} & \text { if } \phi_{p}(a, b)=0 \\ a+b-p+2 & \text { if } \phi_{p}(a, b)>0\end{cases}
$$

Note that if $D=(a, b) \in \operatorname{Div}(G)$ then $K-D=(p-2-a, p-2-b)$. To check that the Riemann-Roch theorem holds for D, it is easiest to consider the three cases (noted above) for the formula for $h^{0}((a, b))$. We note that (a, b) is in one of the three cases if and only if $(p-2-a, p-2-b)$ is in the opposite case. It is very straightforward then to check Riemann-Roch in case $\phi_{p}(a, b) \neq 0$; one of the two h^{0} values is zero. It is a slightly more interesting exercise, but still straightforward, to check it in case $\phi_{p}(a, b)=0$.

Unfortunately, this method of direct computation becomes intractible for R-graphs with $n>2$.

2.2 Change of Rings

Note that in the definition of the h^{0} of a divisor, the minimum is taken over all nonnegative R-divisors. Therefore, a priori, the definition of h^{0} depends on the subring R. We note that if $R \subset S \subset \mathbb{R}$ are two subrings of \mathbb{R}, then any R-graph G and R-divisor D on G is also an S-graph and an S-divisor. In this section we will see that the h^{0} in fact does not depend on the subring.

Any $H \in \operatorname{PDiv}(G)$ can be written as an integer linear combination of any $n-1$ elements of the set $\left\{H_{1}, H_{2}, \ldots H_{n}\right\}$. If we exclude H_{k}, for example, then there are
$n-1$ integers $\left\{m_{j}\right\}_{j \neq k}$ such that $H=\sum_{j \neq k} m_{j} H_{j}$, and we can write $H=\sum_{i=1}^{n} h_{i} \cdot v_{i}$ where

$$
h_{i}=\left\{\begin{array}{cl}
m_{i} \operatorname{deg}\left(v_{i}\right)-\sum_{j \neq k, i} m_{j} p_{i j} & \text { if } i \neq k \tag{2.2}\\
-\sum_{j \neq k} m_{j} p_{j k} & \text { if } i=k
\end{array}\right.
$$

Let P_{k} be the $(n-1) \times(n-1)$ matrix obtained by deleting the k th row and column from the matrix P. We can write the h_{i} 's other than h_{k} in matrix form as $\mathbf{h}=P_{k} \mathbf{m}$ where $\mathbf{h}=\left(h_{i}\right)_{i \neq k}$ and $\mathbf{m}=\left(m_{i}\right)_{i \neq k}$ are the corresponding column vectors.

For any $\mathbf{x}=\left(x_{i}\right) \in \mathbb{R}^{n-1}$ and $c \in \mathbb{R}$, we say $\mathbf{x} \geq c$ if and only if $x_{i} \geq c$ for each i; similarly for a matrix $A=\left(a_{i j}\right)$, we write $A \geq c$ if and only if $a_{i j} \geq c$ for each i, j.

Lemma 2.3. If $\boldsymbol{x}=\left(x_{i}\right)_{i \neq k}$ is a column vector in \mathbb{R}^{n-1} such that $P_{k} \boldsymbol{x} \geq 0$, then $\boldsymbol{x} \geq 0$. Furthermore, P_{k} is nonsingular and $P_{k}^{-1} \geq 0$.

Proof. Let $V_{i}=\left\{i^{\prime} \mid p_{i i^{\prime}}>0, i^{\prime} \neq k, i^{\prime} \neq i\right\}$ be the set of indices of vertices connected to v_{i} (excluding k). Suppose that it is the case that $x_{i}<0$, and that $x_{i} \leq x_{i^{\prime}}$ for all $i^{\prime} \in V_{i}$. Then

$$
\begin{aligned}
\left(P_{k} \mathbf{x}\right)_{i} & =x_{i} \operatorname{deg}\left(v_{i}\right)-\sum_{i^{\prime} \in V_{i}} x_{i^{\prime}} p_{i i^{\prime}} \\
& =x_{i} p_{i k}+x_{i} \sum_{i^{\prime} \in V_{i}} p_{i i^{\prime}}-\sum_{i^{\prime} \in V_{i}} x_{i^{\prime}} p_{i i^{\prime}} \\
& =x_{i} p_{i k}+\sum_{i^{\prime} \in V_{i}} p_{i i^{\prime}}\left(x_{i}-x_{i^{\prime}}\right)
\end{aligned}
$$

and we note that with our assumptions, no term here is positive. Since the sum is non-negative, we conclude that all terms are zero. We have verified the following therefore, if $P_{k} \mathbf{x} \geq 0$:

$$
\begin{equation*}
x_{i}<0 \text { and } x_{i} \leq x_{i^{\prime}} \text { for all } i^{\prime} \in V_{i} \Rightarrow p_{i k}=0 \text { and } x_{i}=x_{i^{\prime}} \text { for all } i^{\prime} \in V_{i} . \tag{2.4}
\end{equation*}
$$

Now assume that $\mathbf{x} \nsupseteq 0$; then there is an index j such that $x=x_{j}<0$ and $x_{j} \leq x_{i}$ for all $i \neq k$. By (2.4), we conclude that $x_{i}=x$ for all $i \in V_{j}$, and also that $p_{j k}=0$. We see, by induction on the distance in G to the vertex v_{j}, that we must have $x_{i}=x$ and $p_{i j}=0$ for all $i \neq k$. This contradicts the connectedness of G : vertex v_{k} has no edges on it. This proves the first statement.

Now suppose that $\mathbf{x} \in \operatorname{ker} P_{k}$; then $\mathbf{x} \geq 0$. Also, $-\mathbf{x} \in \operatorname{ker} P_{k}$, and thus $-\mathbf{x} \geq 0$; we conclude that $\mathbf{x}=\mathbf{0}$. Hence $\operatorname{ker} P_{k}=\{\mathbf{0}\}$ and P_{k} is invertible.

Let $\mathbf{y}=P_{k} \mathbf{x}$. Since $\mathbf{y} \geq 0 \Rightarrow \mathbf{x} \geq 0$ and P_{k} is invertible, $\mathbf{x}=P_{k}^{-1} \mathbf{y} \geq 0$ for all $\mathbf{y} \geq 0$. Applying $\mathbf{y}=\mathbf{e}_{i}$ for each $i \neq k$, where $\left(\mathbf{e}_{i}\right)_{j}=1$ for $i=j$ and 0 otherwise, we have $P_{k}^{-1} \geq 0$.

We can now prove the main result for this section.

Proposition 2.5. Suppose that all of the entries of the matrix P are in two subrings R and R^{\prime}, and that all the coordinates of the divisor D are also in both R and R^{\prime}. Then (using the obvious notation) $h^{0}=h^{0^{\prime}}$.

Proof. It suffices to prove the statement when one of the subrings is R and the other is \mathbb{R}. In this case we'll use the notation $R h^{0}$ and $\mathbb{R} h^{0}$, respectively, for the two minima in question.

First note that the linear system $|D|$ is clearly independent of the ring; and in particular, whether a linear system is empty or not is also independent.

Therefore, the minimum in question for the $\mathbb{R} h^{0}$ computation is over a strictly larger set of divisors; and hence there can only be a smaller minimum. This proves that $R h^{0}(D) \geq \mathbb{R} h^{0}(D)$.

Suppose that E is an \mathbb{R}-divisor, $E \geq 0$, and $|D-E|=\emptyset$, achieving the minimum, so that $\mathbb{R} h^{0}(D)=\operatorname{deg}(E)$. If E is an R-divisor, it also achieves the minimum in R and $R h^{0}(D)=\mathbb{R} h^{0}(D)$. We will show that in fact E must be an R-divisor.

Now suppose that E is not an R-divisor, and write $D=\sum_{i=1}^{n} d_{i} \cdot v_{i}$ and $E=$ $\sum_{i=1}^{n} e_{i} \cdot v_{i}$, with k the index of an element such that $e_{k} \notin R$. Since $\mathbb{R} h^{0}(D)=\operatorname{deg}(E)$, for any $\epsilon \in \mathbb{R}$ with $0<\epsilon \leq e_{k}$, we have that $E-\epsilon \cdot v_{k} \geq 0$, and therefore $\left|D-E+\epsilon \cdot v_{k}\right| \neq$ \emptyset. Hence there are principal divisors H such that $D-E+\epsilon \cdot v_{k}+H>-1$.

Let \mathcal{H}_{ϵ} be the set of all such H; by assumption, this is a nonempty set. Note that if $H \in \mathcal{H}_{\epsilon}$, and $H=\sum_{i=1}^{n} h_{i} \cdot v_{i}$, then $d_{i}-e_{i}+h_{i}>-1$ for each $i \neq k$, and

$$
\begin{equation*}
d_{k}-e_{k}+\epsilon+h_{k}>-1 \tag{2.6}
\end{equation*}
$$

Also, since $|D-E|=\emptyset$, there is a k^{\prime} such that $d_{k^{\prime}}-e_{k^{\prime}}+h_{k^{\prime}} \leq-1$; combined with the conditions above, the only possibility is $k^{\prime}=k$. Since $d_{k} \in R, h_{k} \in R$ and $e_{k} \notin R$, $d_{k}-e_{k}+h_{k} \neq-1$, and thus $d_{k}-e_{k}+h_{k}<-1$. Hence $-1-\epsilon<d_{k}-e_{k}+h_{k}<-1$.

For any $H \in \mathcal{H}_{\epsilon}$, there are unique integers m_{i} such that $H=\sum_{i \neq k} m_{i} H_{i}$. Let $\mathbf{d}=\left(d_{i}\right)_{i \neq k}, \mathbf{e}=\left(e_{i}\right)_{i \neq k}$, and $\mathbf{m}=\left(m_{i}\right)_{i \neq k}$ be the corresponding column vectors, and define $\mathbf{f}=\left(f_{i}\right)_{i \neq k}=\mathbf{d}-\mathbf{e}+P_{k} \mathbf{m}$. Note that $\mathbf{f}>-1$, and $h_{k}=-\sum_{i \neq k} m_{k} p_{i k}$ by (2.2).

We can write $\mathbf{m}=P_{k}^{-1}(\mathbf{f}-\mathbf{d}+\mathbf{e})$, and by Lemma $2.3, P_{k}^{-1} \geq 0$. Therefore, since $\mathbf{e} \geq 0$ and $\mathbf{f}>-1$, the m_{i} are bounded from below; set $M \leq m_{i}$ for all $i \neq k$.

We claim that, for $H=\sum_{i \neq k} m_{i} H_{i} \in \mathcal{H}_{\epsilon}$, the possible coordinates $h_{k}=-\sum_{i \neq k} m_{k} p_{i k}$ form a discrete set. It will suffice to show that, for any real x, the possible coordinates h_{k} which are at least $-x$ is a finite set.

To that end, for any $x \in \mathbb{R}$ set $\mathcal{H}_{\epsilon}(x)=\left\{H \in \mathcal{H}_{\epsilon} \mid \sum_{i \neq k} m_{i} p_{i k} \leq x\right\}$; for large enough x this set is nonempty.

Fix $x \in \mathbb{R}$ such that $\mathcal{H}_{\epsilon}(x) \neq \emptyset$ and choose $j \neq k$ such that $p_{j k}>0$. For $H=\sum_{i \neq k} m_{i} H_{i} \in \mathcal{H}_{\epsilon}(x)$ we then have

$$
M \leq m_{j} \leq \frac{x-\sum_{i \neq j, k} m_{i} p_{i k}}{p_{j k}} \leq \frac{x-M \sum_{i \in V_{k}, i \neq j} p_{i k}}{p_{j k}}
$$

Thus the coefficients $m_{j} \in \mathbb{Z}$ are bounded both below and above, and hence can take on only finitely many values. It follows that the set of possible values of $h_{k}=$ $-\sum_{i \neq k} m_{i} p_{i k}$ is also finite, for $H \in \mathcal{H}_{\epsilon}(x)$. As noted above, this implies that these coordinates h_{k}, for $H \in \mathcal{H}_{\epsilon}$, form a discrete set. This in turn implies that there is a maximum value h for the possible h_{k}, since for all such we have $d_{k}-e_{k}+h_{k}<-1$.

Note that if $\epsilon<\epsilon^{\prime}$, then $\mathcal{H}_{\epsilon} \subset \mathcal{H}_{\epsilon^{\prime}}$.
We may now shrink ϵ (if necessary) to achieve $\epsilon<e_{k}-d_{k}-h-1$. This gives a contradition, since now $d_{k}-e_{k}+\epsilon+h_{k} \leq d_{k}-e_{k}+\epsilon+h<-1$ for $H \in \mathcal{H}_{\epsilon}$, violating (2.6). We conclude that E is in fact an R-divisor as desired, finishing the proof.

The result above allows us to simply consider the case of \mathbb{R}-graphs.

At the other end of the spectrum, the case of \mathbb{Z}-graphs is equivalent to the BakerNorine theory.

The Baker-Norine dimension of a linear system associated with a divisor D on a graph G defined in [3] is equal to

$$
r(D)=\min \left\{\operatorname{deg}(E) \mid E \in \operatorname{Div}(G), E \geq 0 \text { and }|D-E|_{B N}=\emptyset\right\}-1
$$

where here the linear system associated with a divisor D is

$$
|D|_{B N}=\left\{D^{\prime} \in \operatorname{Div}(G) \mid D^{\prime} \geq 0 \text { and } D \sim D^{\prime}\right\}
$$

If we are restricted to \mathbb{Z}-divisors on \mathbb{Z}-graphs, the h^{0} dimension is compatible with the Baker-Norine dimension:

Lemma 2.7. If G is a \mathbb{Z}-graph and D a \mathbb{Z}-divisor on G, then $h^{0}(D)=r(D)+1$.
Proof. Note that $\lceil D\rceil=D$ since each component of D is in \mathbb{Z}. This implies that $|D|=|D|_{B N}$ which gives the result.

2.3 Reduction to \mathbb{Q}-graphs

Note that the definition of $h^{0}(D)$ depends on the coordinates of D and on the entries of the matrix P which give the edge-weights of the graph G. Indeed, the set \mathcal{E} of divisors with empty linear systems depends continuously on P, as a subset of \mathbb{R}^{n}. (If \mathcal{F}_{0} is the set of divisors D with $d_{i}>-1$ for each i, then \mathcal{E} is the complement of the union of all the translates of \mathcal{F}_{0} by the columns of P.)

The value of $h^{0}(D)$ is essentially the taxicab distance from D to \mathcal{E}. This also depends continuously on the coordinates of D.

Since \mathbb{Q} is dense in \mathbb{R}, by approximating both P and D by rationals, we see that it will suffice to prove the Riemann-Roch theorem for \mathbb{Q}-graphs:

Proposition 2.8. Suppose that the Riemann-Roch Theorem 2.1 is true for connected \mathbb{Q}-graphs. Then the Riemann-Roch Theorem is true for connected \mathbb{R}-graphs.

2.4 Scaling

Suppose that G is an R-graph, with edge weights $p_{i j}$. For any $a>0, a \in R \subset \mathbb{R}$, define $a G$ to be the R-graph with the same vertices, and edge weights $\left\{a p_{i j}\right\}$. In other words, if P defines G, then $a G$ is the R-graph defined by the matrix $a P$.

We will use subscripts to denote which R-graph we are using to compute with, e.g., $|D|_{G}, h_{G}^{0}(D)$, etc. if necessary.

For any divisor D on G and $a>0$, define

$$
T_{a}(D)=a D+(a-1) I
$$

where

$$
I=\sum_{i} 1 \cdot v_{i} .
$$

The transformation T_{a} is a homothety by a, centered at $-I$.

Lemma 2.9. Let D be an R-divisor. If $a, b>0$ with $a, b \in R$, then the following hold:

1. $T_{b} \circ T_{b}=T_{a b}$
2. $T_{a}(D+H)=T_{a}(D)+a H$
3. $\left.\lceil D\rceil \geq 0 \Leftrightarrow\left\lceil T_{a}(D)\right)\right\rceil \geq 0$
4. $|D|_{G} \neq \emptyset \Leftrightarrow\left|T_{a}(D)\right|_{a G} \neq \emptyset$
5. $|D-E|_{G} \neq \emptyset \Leftrightarrow\left|T_{a}(D)-a E\right|_{a G} \neq \emptyset$

Proof. 1. Suppose that $D=\sum_{i} d_{i} \cdot v_{i}$. Then:

$$
\begin{aligned}
T_{a}\left(T_{b}(D)\right) & =T_{a}\left(\sum_{i}\left(b d_{i}+b-1\right) \cdot v_{i}\right) \\
& =\sum_{i}\left(a\left(b d_{i}+b-1\right)+a-1\right) \cdot v_{i} \\
& =\sum_{i}\left(a b d_{i}+a b-a+a-1\right) \cdot v_{i} \\
& =\sum_{i}\left(a b d_{i}+a b-1\right) \cdot v_{i} \\
& =T_{a b}(D)
\end{aligned}
$$

2. Let $a>0$ and $D, H \in \operatorname{Div}(G)$, then

$$
\begin{aligned}
T_{a}(D+H) & =a(D+H)+(a-1) I \\
& =a D+a H+(a-1) I \\
& =T_{a}(D)+a H
\end{aligned}
$$

3. Let $D=\sum_{i} d_{i} \cdot v_{i} \in \operatorname{Div}(G)$ and $a>0$. Since $T_{a}(D)=\sum_{i}\left(a d_{i}+a-1\right) \cdot v_{i}$, we have

$$
\begin{aligned}
\left.\left\lceil T_{a}(D)\right)\right\rceil \geq 0 & \Leftrightarrow a d_{i}+a-1>-1 \text { for each } i \\
& \Leftrightarrow d_{i}>-1 \text { for each } i \\
& \Leftrightarrow\lceil D\rceil \geq 0
\end{aligned}
$$

4. Suppose $|D|_{G} \neq \emptyset$. Then there is a $H \in \operatorname{PDiv}(G)$ such that $\lceil D+H\rceil \geq 0$. Since $T_{a}(D+H)=T_{a}(D)+a H$ and $a H \in \operatorname{PDiv}(a G)$, by part (3) we have $\left\lceil T_{a}(D)+a H\right\rceil \geq 0$ and thus $\left|T_{a}(D)\right|_{a G} \neq \emptyset$.

The converse is an identical argument.
5. Let $D^{\prime}=D-E$; then from (4), $\left|D^{\prime}\right|_{G} \neq \emptyset \Leftrightarrow\left|T_{a}\left(D^{\prime}\right)\right|_{a G} \neq \emptyset$ where $T_{a}\left(D^{\prime}\right)=$ $T_{a}(D-E)=T_{a}(D)-a E$.

Corollary 2.10. $h_{a G}^{0}\left(T_{a}(D)\right)=a h_{G}^{0}(D)$
Proof. Since $a>0$, from Lemma 2.9 (5) we have

$$
\begin{aligned}
h_{a G}^{0}\left(T_{a}(D)\right) & =\min _{E^{\prime} \in \operatorname{Div}(a G)}\left\{\operatorname{deg}\left(E^{\prime}\right)\left|E^{\prime} \geq 0,\left|T_{a}(D)-E^{\prime}\right|_{a G}=\emptyset\right\}\right. \\
& =\min _{E \in \operatorname{Div}(G)}\left\{\operatorname{deg}(a E)\left|a E \geq 0,\left|T_{a}(D)-a E\right|_{a G}=\emptyset\right\}\right. \\
& =a\left(\min _{E \in \operatorname{Div}(G)}\left\{\operatorname{deg}(E)\left|E \geq 0,\left|T_{a}(D)-a E\right|_{a G}=\emptyset\right\}\right)\right. \\
& =a\left(\min _{E \in \operatorname{Div}(G)}\left\{\operatorname{deg}(E)\left|E \geq 0,|D-E|_{G}=\emptyset\right\}\right)\right. \\
& =a h_{G}^{0}(D) .
\end{aligned}
$$

Lemma 2.11. Let D be an R-divisor. If $a>0$ with $a \in R$ then the following hold:

1. $K_{a G}=T_{a}\left(K_{G}\right)+(a-1) I$
2. $K_{a G}-T_{a}(D)=T_{a}\left(K_{G}-D\right)$
3. $\operatorname{deg}\left(T_{a}(D)\right)=a \operatorname{deg}(D)+(a-1)(n)$
4. $g_{a G}=a g_{G}+(a-1)(n-1)$.

Proof. 1. Since $K_{a G}=\sum_{i}\left(a \operatorname{deg}\left(v_{i}\right)-2\right) \cdot v_{i}$, we have

$$
\begin{aligned}
T_{a}\left(K_{G}\right) & =T_{a}\left(\sum_{i}\left(\operatorname{deg}\left(v_{i}\right)-2\right) \cdot v_{i}\right) \\
& =a \sum_{i}\left(\operatorname{deg}\left(v_{i}\right)-2\right) \cdot v_{i}+\sum_{i}(a-1) \cdot v_{i} \\
& =\sum_{i}\left(a \operatorname{deg}\left(v_{i}\right)-2 a+a-1\right) \cdot v_{i} \\
& =\sum_{i}\left(a \operatorname{deg}\left(v_{i}\right)-a-1\right) \cdot v_{i} \\
& =K_{a G}-(a-1) I .
\end{aligned}
$$

2.

$$
\begin{aligned}
K_{a G}-T_{a}(D) & =T_{a}\left(K_{G}\right)+(a-1) I-T_{a}(D) \\
& =a K_{G}+(a-1) I+(a-1) I-a D-(a-1) I \\
& =a\left(K_{G}-D\right)+(a-1) I \\
& =T_{a}\left(K_{G}-D\right)
\end{aligned}
$$

3.

$$
\begin{aligned}
\operatorname{deg}\left(T_{a}(D)\right) & =\operatorname{deg}(a D+(a-1) I) \\
& =a \operatorname{deg}(D)+(a-1) \operatorname{deg}(I) \\
& =a \operatorname{deg}(D)+(a-1)(n)
\end{aligned}
$$

4.

$$
\begin{aligned}
g_{a G} & =\sum_{i} a p_{i j}-n+1 \\
& =a \sum_{i} p_{i j}-a n+a+(a-1) n+1-a \\
& =a g_{G}+(a-1)(n-1)
\end{aligned}
$$

2.5 Reduction to \mathbb{Z}-graphs

Theorem 2.12. Let $a>0$; then

$$
\begin{equation*}
h_{G}^{0}(D)-h_{G}^{0}\left(K_{G}-D\right)=\operatorname{deg}(D)-g_{G}+1 \tag{2.13}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
h_{a G}^{0}\left(T_{a}(D)\right)-h_{a G}^{0}\left(K_{a G}-T_{a}(D)\right)=\operatorname{deg}\left(T_{a}(D)\right)-g_{a G}+1 . \tag{2.14}
\end{equation*}
$$

Proof. Let $a>0$. Multiplying (2.13) by a, we have

$$
a h_{G}^{0}(D)-a h_{G}^{0}\left(K_{G}-D\right)=a \operatorname{deg}(D)-a g_{G}+a .
$$

The left side of this equation is equal to

$$
h_{a G}^{0}\left(T_{a}(D)\right)-h_{a G}^{0}\left(T_{a}\left(K_{G}-D\right)\right)=h_{a G}^{0}\left(T_{a}(D)\right)-h_{a G}^{0}\left(K_{a G}-T_{a}(D)\right)
$$

using Corollary 2.10 and Lemma 2.11 (2). The right side of the equation is

$$
\operatorname{deg}\left(T_{a}(D)\right)-(a-1)(n)-g_{a G}+(a-1)(n-1)+a=\operatorname{deg}\left(T_{a}(D)\right)-g_{a G}+1
$$

using Lemma 2.11 (3) and (4). This proves that (2.13) implies (2.14); the converse is identical.

Corollary 2.15. Suppose that the Riemann-Roch Theorem 2.1 is true for connected \mathbb{Z}-graphs. Then the Riemann-Roch Theorem is true for connected \mathbb{Q}-graphs.

Proof. Given a connected \mathbb{Q}-graph G and a \mathbb{Q}-divisor D on it, there is an integer $a>0$ such that $a G$ is a connected \mathbb{Z}-graph and $T_{a}(D)$ is a \mathbb{Z}-divisor. Therefore by hypothesis, the Riemann-Roch statement (2.14) holds. Hence by Theorem 2.12, (2.13) holds, which is the Riemann-Roch theorem for D on G.

We now have the ingredients to prove Theorem 2.1.

Proof. First, we note again that the Riemann-Roch Theorem of [3] is equivalent to the Riemann-Roch theorem for connected \mathbb{Z}-graphs in our terminology. Therefore, using Corollary 2.15, we conclude that the Riemann-Roch Theorem is true for connected \mathbb{Q}-graphs. Then, using Proposition 2.8 , we conclude that Riemann-Roch holds for connected \mathbb{R}-graphs.

Finally, Proposition 2.5 finishes the proof of the Riemann-Roch theorem for divisors on arbitrary R-graphs, for any subring $R \subset \mathbb{R}$.

2.6 Conclusions

An independent proof of Theorem 2.1 that does not depend on [3] may be possible using properties of linear systems divisors on R-graphs developed in Chapter 4. This was the original motivation for developing the theory of sandpiles on R-graphs in Chapter 3.

One of the most important observations we made in extending the theory of linear systems to edge-weighted graphs was to note that the divisor $(-1,-1, \ldots,-1)$ plays the role of the origin in a sense. This is apparent in the definition of an effective divisor being $\lceil D\rceil \geq 0$, which is equivalent to $D>-1$. As we will see in Chapters 2 and 3 , using the -1 -point is in fact what allows the theory to go through and be consistent with the integral theory for the related sandpiles and linear systems over R on edge-weighted graphs.

Chapter 3

Sandpiles on R-graphs

3.1 Introduction

Biggs [5] showed that the certain configurations of a chip-firing game on a graph led to a group, which he called the critical group of a graph. Earlier work by Dhar [10] and later in [11], referred to such configurations as stable sandpile configurations, after the abelian sandpile model introduced in [2]. In the sandpile model, sand particles located on the vertices are toppled one vertex at a time until the number of particles is less than a critical number, usually the degree of the vertex. When no more sand particles can be toppled, the configuration is called stable. We extend the stable sandpile model to edge-weighted graphs over a subring R of the reals, and consider a different method of toppling where multiple vertices can be toppled concurrently.

Let R be any subring of the reals and G be a connected edge-weighted graph over R with vertex set $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and weight set $W=\left\{w_{i j} \mid i, j=0, \ldots, n\right\}$ where each $w_{i j} \in R$. Multiple edges and loops are not allowed, and we set $w_{i j}=0$ if v_{i} and v_{j} are not connected; otherwise, $w_{i j}>0$. Note that $w_{i i}=0$. We will define the degree of a vertex v_{j} to be

$$
\operatorname{deg}\left(v_{j}\right)=\sum_{i=0}^{n} w_{i j}
$$

and the parameter g (the genus of the graph) to be

$$
g=\sum_{i<j} w_{i j}-n
$$

Note that if $R=\mathbb{Z}$, these definitions coincide with those of a multigraph where the number of edges connecting v_{i} and v_{j} is $w_{i j}$.

Define $V_{0}=V-\left\{v_{0}\right\}$, where v_{0} will be called a sink. the choice of v_{0} to be the sink is arbitrary, and is used for notational convenience. A sandpile on G is a function $s: V_{0} \rightarrow R$ that satisfies $\lceil s(v)\rceil \geq 0$, or equivalently $s(v)>-1$, for each $v \in V_{0}$.

A singleton toppling T_{i} for $i \in\{1, \ldots, n\}$ acts on sandpile s by

$$
T_{i}(s)\left(v_{j}\right)= \begin{cases}s\left(v_{j}\right)-\operatorname{deg}\left(v_{j}\right) & \text { if } i=j \\ s\left(v_{j}\right)+w_{i j} & \text { if } j \neq i\end{cases}
$$

If s is such that $s(v)>\operatorname{deg}(v)-1$ for each $v \in V_{0}$, we say that s is full; if $s(v) \leq$ $\operatorname{deg}(v)-1$ for each $v \in V_{0}$, we say that s is stable. If s is full, any toppling T_{i}, $i \in\{1, \ldots, n\}$, can act on s since $T_{i}(s)(v)>-1$ for each $v \in V_{0}$. Similarly, if s is stable, no singleton toppling T_{i} can act on s since $T_{i}(s)\left(v_{i}\right) \leq-1$ for each i. For $R=\mathbb{Z}$, these definitions are consistent with those for chip-firing and sandpiles on multigraphs such as in [5] and [11].

Let $I \subset\{1, \ldots, n\}$ be nonempty. The subset toppling T_{I} acts on s by

$$
T_{I}(s)\left(v_{j}\right):= \begin{cases}s_{j}-\operatorname{deg}\left(v_{j}\right)+\sum_{i \in I} w_{i j} & \text { if } j \in I \\ s_{j}+\sum_{i \in I} w_{i j} & \text { if } j \notin I\end{cases}
$$

Paoletti [16] refers to this as cluster-toppling.
We can extend subset toppling to a multiset of $\{1, \ldots, n\}$ by choosing coefficients $c(v) \in \mathbb{Z}^{+}$for each $v \in V_{0}$ (where $\mathbb{Z}^{+}=\{n \in \mathbb{Z} \mid n \geq 0\}$); the corresponding multiset toppling T is then

$$
T:=\sum_{i=1}^{n} c\left(v_{i}\right) T_{i} .
$$

which acts on sandpile s by

$$
T(s)\left(v_{j}\right)=s\left(v_{j}\right)-c\left(v_{j}\right) \operatorname{deg}\left(v_{j}\right)+\sum_{i=0}^{n} c\left(v_{i}\right) w_{i j} .
$$

Since a singleton or subset toppling is a multiset toppling, we will use the term toppling to mean a multiset toppling. A toppling $T=\sum_{i=1}^{n} c\left(v_{i}\right) T_{i}$ is called allowable on a sandpile s if $T(s)(v)>-1$ for each $v \in V_{0}$. If no multiset topplings are allowable on a sandpile s, it is called superstable.

3.2 Superstable Sandpiles

It is clear that if s is superstable, no subset topplings are allowable on s. However, it is possible for s to be stable but not superstable. For example, consider a graph with $n=2$ and $w_{01}=w_{02}=w_{12}=1$. The sandpile s with $s\left(v_{1}\right)=s\left(v_{2}\right)=1$ is stable, but not superstable since $T_{\{1,2\}}$ is allowable on s.

Lemma 3.1. A sandpile s is superstable if and only if no subset topplings are allowable on s.

Proof. Since s superstable implies that no subset topplings are allowable, we need only show the converse is true.

Suppose s is not superstable. From the definition of an allowable toppling, it follows that there is a $c: V_{0} \rightarrow \mathbb{Z}^{+}$that is not identically zero such that

$$
s\left(v_{j}\right)>c\left(v_{j}\right) \operatorname{deg}\left(v_{j}\right)-\sum_{i=1}^{n} c\left(v_{i}\right) w_{i j}-1
$$

for each $j \in\{1, \ldots, n\}$. Let $\alpha=\max \left\{c_{1}, \ldots, c_{n}\right\}$ and set $\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}_{+}^{n}$ as follows:

$$
b_{i}= \begin{cases}1 & \text { if } c_{i}=\alpha \\ 0 & \text { otherwise }\end{cases}
$$

We claim that

$$
s\left(v_{j}\right)>b_{j} \operatorname{deg}\left(v_{j}\right)-\sum_{i=1}^{n} b_{i} w_{i j}-1
$$

for each $j \in\{1, \ldots, n\}$.
If $b_{j}=0$, we have

$$
b_{j} \operatorname{deg}\left(v_{j}\right)-\sum_{i=1}^{n} b_{i} w_{i j}-1=-\sum_{i=1}^{n} b_{i} w_{i j}-1 \leq-1<s\left(v_{j}\right)
$$

Let $A_{j}=\left\{i>0 \mid w_{i j}>0\right.$ and $\left.c_{i}<\alpha\right\}, B_{j}=\left\{i>0 \mid w_{i j}>0\right.$ and $\left.a_{i}=\alpha\right\}$. If $b_{j}=1$, then $c_{j}=\alpha$ and

$$
\begin{aligned}
s\left(v_{j}\right) & >c_{j} \operatorname{deg}\left(v_{j}\right)-\sum_{i=1}^{n} c_{i} w_{i j}-1 \\
& =\alpha \operatorname{deg}\left(v_{j}\right)-\sum_{i \in A_{j}} c_{i} w_{i j}-\alpha \sum_{i \in B_{j}} w_{i j}-1 \\
& =\alpha\left(w_{0 j}+\sum_{i \in A_{j}} w_{i j}+\sum_{i \in B_{j}} w_{i j}\right)-\sum_{i \in A_{j}} c_{i} w_{i j}-\alpha \sum_{i \in B_{j}} w_{i j}-1 \\
& =\alpha w_{0 j}+\sum_{i \in A_{j}}\left(\alpha-c_{i}\right) w_{i j}-1 \\
& \geq w_{0 j}+\sum_{i \in A_{j}} w_{i j}-1 .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
b_{j} \operatorname{deg}\left(v_{j}\right)-\sum_{i=1}^{n} b_{i} w_{i j} & =\operatorname{deg}\left(v_{j}\right)-\sum_{i \in B_{j}} w_{i j} \\
& =w_{0 j}+\sum_{i \in A_{j}} w_{i j}+\sum_{i \in B_{j}} w_{i j}-\sum_{i \in B_{j}} w_{i j} \\
& =w_{0 j}+\sum_{i \in A_{j}} w_{i j}
\end{aligned}
$$

thus $s\left(v_{j}\right)>b_{j} \operatorname{deg}\left(v_{j}\right)-\sum_{i=1}^{n} b_{i} w_{i j}-1$ for each $j=1, \ldots, n$. Since $T=\sum_{i=1}^{n} b_{j} T_{j}$ is a subset toppling, s has an allowable subset toppling.

Lemma 3.2. If a sandpile s is superstable, then

$$
\sum_{v \in V_{0}} s(v) \leq g
$$

with equality if and only if there exists a permutation $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ of $(1,2, \ldots, n)$ such that

$$
s\left(v_{j_{k}}\right)=\sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1
$$

for each $k=1, \ldots, n$, where $j_{0}=0$.

Proof. Suppose that s is superstable, then by Lemma 3.1 all subset topplings T_{I}, $I \subset\{1, \ldots, n\}$, are not allowable on s. This means that for each I, there exists a
$j \in I$ such that

$$
\begin{equation*}
s\left(v_{j}\right) \leq \operatorname{deg}\left(v_{j}\right)-\sum_{i \in I} w_{i j}-1=\sum_{i \notin I} w_{i j}-1 . \tag{3.3}
\end{equation*}
$$

Suppose that $I=I_{0}=\{1, \ldots, n\}$, and that that (3.3) is satified for $j=j_{1} \in I_{0}$, then

$$
s\left(v_{j_{1}}\right) \leq \sum_{i \notin I_{0}} w_{i j_{1}}-1=w_{0 j_{1}}-1 .
$$

Now let $I=I_{1}=I_{0}-\left\{j_{1}\right\}$, then (3.3) is satified for some $j_{2} \in I_{1}$ so that

$$
s\left(v_{j_{2}}\right) \leq \sum_{i \notin I_{1}} w_{i j_{2}}-1=w_{0 j_{2}}+w_{j_{1} j_{2}}-1
$$

Similarly, for $I=I_{2}=I_{1}-\left\{j_{2}\right\},(3.3)$ is satisfied for $j=j_{3}$ and

$$
s\left(v_{j_{3}}\right) \leq \sum_{i \notin I_{2}} w_{i j_{3}}-1=w_{0 j_{3}}+w_{j_{1} j_{3}}+w_{j_{2} j_{3}}-1
$$

Continuing this process, set $j_{0}=0$ and let $I_{k}=I_{k-1}-\left\{j_{k}\right\}$ for $k=1, \ldots, n-1$ where j_{k} is the j satisying (3.3) for I_{k-1}, and we have in general

$$
\begin{equation*}
s\left(v_{j_{k}}\right) \leq \sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1 \tag{3.4}
\end{equation*}
$$

Note that the resulting n-tuple $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is a permutation of $(1,2, \ldots, n)$. If we rewrite (3.4) as

$$
s\left(v_{j_{k}}\right)-\sum_{i=0}^{k-1} w_{j_{i} j_{k}}+1 \leq 0
$$

and sum over all k, we have

$$
\sum_{k=1}^{n}\left(s\left(v_{j_{k}}\right)-\sum_{i=0}^{k-1} w_{j_{i} j_{k}}+1\right)=\sum_{j=1}^{n} s\left(v_{j}\right)-\sum_{i<j} w_{i j}+n \leq 0
$$

or equivalently

$$
\sum_{v \in V_{0}} s(v) \leq \sum_{i<j} w_{i j}-n=g .
$$

For the second part, note that if

$$
s\left(v_{j_{k}}\right)=\sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1
$$

holds for some $\left(j_{1}, \ldots, j_{n}\right)$ at each $k \in\{1, \ldots n\}$, then

$$
\begin{equation*}
\sum_{v \in V_{0}} s(v)=g \tag{3.5}
\end{equation*}
$$

follows directly. For the other direction, assume that (3.5) holds. It then follows from above that

$$
s\left(v_{j_{k}}\right)=\sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1
$$

for some permutation $\left(j_{1}, \ldots, j_{n}\right)$ of $(1, \ldots, n)$.

3.3 Allowable Topplings

We now show that the maximum of two allowable topplings is allowable.

Lemma 3.6. Let s be a sandpile. If $T=\sum_{i=1}^{n} c\left(v_{i}\right) T_{i}$ and $T^{\prime}=\sum_{i=1}^{n} c^{\prime}\left(v_{i}\right) T_{i}$ are allowable topplings on s, then

$$
\max \left(T, T^{\prime}\right)=\sum_{i=1}^{n} \max \left(c\left(v_{i}\right), c^{\prime}\left(v_{i}\right)\right) T_{i}
$$

is also an allowable toppling on s.

Proof. Since $T(s)(v)>-1$ and $T^{\prime}(s)(v)>-1$ for each $v \in V_{0}$, we have

$$
s\left(v_{j}\right)>\sum_{i=1}^{n}\left(c\left(v_{j}\right)-c\left(v_{i}\right)\right) w_{i j}+c\left(v_{j}\right) w_{0 j}-1
$$

and

$$
s\left(v_{j}\right)>\sum_{i=1}^{n}\left(c^{\prime}\left(v_{j}\right)-c^{\prime}\left(v_{i}\right)\right) w_{i j}+c^{\prime}\left(v_{j}\right) w_{0 j}-1
$$

If $\max \left(c\left(v_{j}\right), c^{\prime}\left(v_{j}\right)\right)=c\left(v_{j}\right)$, then

$$
s\left(v_{j}\right)>\sum_{i=1}^{n}\left(c\left(v_{j}\right)-\max \left(c\left(v_{i}\right), c^{\prime}\left(v_{i}\right)\right)\right) w_{i j}+c\left(v_{j}\right) w_{0 j}-1
$$

and similarly if $\max \left(c\left(v_{j}\right), c^{\prime}\left(v_{j}\right)\right)=c^{\prime}\left(v_{j}\right)$,

$$
s\left(v_{j}\right)>\sum_{i=1}^{n}\left(c^{\prime}\left(v_{j}\right)-\max \left(c\left(v_{i}\right), c^{\prime}\left(v_{i}\right)\right)\right) w_{i j}+c^{\prime}\left(v_{j}\right) w_{0 j}-1 .
$$

Combining these, we have

$$
s\left(v_{j}\right)>\sum_{i=1}^{n}\left(\max \left(c\left(v_{j}\right), c^{\prime}\left(v_{j}\right)\right)-\max \left(c\left(v_{i}\right), c^{\prime}\left(v_{i}\right)\right)\right) w_{i j}+\max \left(c\left(v_{j}\right), c^{\prime}\left(v_{j}\right)\right) w_{0 j}-1
$$

for each $j \in\{1, \ldots, n\}$, thus $\max \left(T, T^{\prime}\right)$ is allowable on s.
Let $x: V_{0} \rightarrow \operatorname{Frac}(R)$ be an arbitrary function, and Δ_{0} be the reduced Laplacian of G given by

$$
\Delta_{0} x\left(v_{j}\right)=x\left(v_{j}\right) \operatorname{deg}\left(v_{j}\right)-\sum_{i=1}^{n} x\left(v_{i}\right) w_{i j}
$$

where $j \in\{1, \ldots, n\}$. For $x, y: V_{0} \rightarrow \operatorname{Frac}(R)$, we will use the following notation:

$$
x \geq y \Leftrightarrow x(v) \geq y(v) \text { for all } v \in V_{0}
$$

and similarly with a scalar $a \in \operatorname{Frac}(R)$

$$
x \geq a \Leftrightarrow x(v) \geq a \text { for all } v \in V_{0} .
$$

Let s be any sandpile. The toppling associated with $c: V_{0} \rightarrow \mathbb{Z}^{+}$is then allowable on s if and only if $s+1>\Delta_{0} c$.

Lemma 3.7. Let $x, y: V_{0} \rightarrow \operatorname{Frac}(R)$.

1. If $\Delta_{0} x \geq 0$, then $x \geq 0$.
2. The inverse Δ_{0}^{-1} exists, and if $y \geq 0$ then $\Delta_{0}^{-1} y \geq 0$.
3. If $x \geq 0, y \geq 0$ and $y \geq \Delta_{0} x$, then $\Delta_{0}^{-1} y \geq x$.

Proof. (1): Suppose that $\Delta_{0} x \geq 0$ and and $x\left(v_{i}\right)<0$ for some i. Let $\beta=\min \{x(v) \mid v \in$ $\left.V_{0}\right\}$ and set

$$
K_{j}=\left\{i \mid w_{i j}>0 \text { and } 0<i \leq n\right\} .
$$

We can then write

$$
\operatorname{deg}\left(v_{j}\right)=w_{0 j}+\sum_{i \in K_{j}} w_{i j}
$$

and

$$
\Delta_{0} x\left(v_{j}\right)=x\left(v_{j}\right) \operatorname{deg}\left(v_{j}\right)-\sum_{i \in K_{j}} x\left(v_{i}\right) w_{i j} \geq 0
$$

If $x\left(v_{j}\right)=\beta$, then $w_{0 j}=0$ and

$$
x\left(v_{j}\right) \operatorname{deg}\left(v_{j}\right)=\sum_{i \in K_{j}} x\left(v_{i}\right) w_{i j}
$$

thus $x\left(v_{i}\right)=\beta$ for each $i \in K_{j}$. Since G is finite and connected, we have $w_{0 k}=0$ for each $1 \leq k \leq n$, which implies that the $\operatorname{sink} v_{0}$ is not connected to any other vertex; thus by contradiction, $x(v) \geq 0$ for all $v \in V_{0}$.
(2): Assume (1) holds, and $\Delta_{0} x(v)=0$ for each $v \in V_{0}$ for some $x: V_{0} \rightarrow \operatorname{Frac}(R)$. Since $\Delta_{0} x \geq 0 \Rightarrow x \geq 0$ and $\Delta_{0} x=0 \Rightarrow \Delta(-x)=0$, we have $x=0$. Since $\Delta_{0} 0=0, \operatorname{ker}\left(\Delta_{0}\right)=\{0\}$ and thus Δ_{0} has an inverse. Suppose $y=\Delta_{0} x \geq 0$. By (1), $\Delta_{0}^{-1} y=x \geq 0$.
(3): Since (2) $\Rightarrow \Delta_{0}^{-1} y \geq 0$ whenever $y \geq 0$, and $y \geq \Delta_{0} x, y-\Delta_{0} x \geq 0$ thus we have $\Delta_{0}^{-1}\left(y-\Delta_{0} x\right)=\Delta_{0}^{-1} y-x \geq 0$, and $\Delta_{0}^{-1} y \geq x$.

Let $\mathcal{A}(s)=\left\{c: V_{0} \rightarrow \mathbb{Z}^{+} \mid \sum_{i=1}^{n} c\left(v_{i}\right) T_{i}\right.$ allowable on $\left.s\right\}$. Note that if s is superstable, then $0 \in \mathcal{A}(s) \neq \emptyset$.

Lemma 3.8. For any sandpile s, there exists a function $b: V_{0} \rightarrow \operatorname{Frac}(R)$ such that $b \geq c$ for all $c \in \mathcal{A}(s)$.

Proof. Let $c \in \mathcal{A}(s)$, then $s+1>\Delta_{0} c$, where $s+1>0$. By Lemma 3.7, we have $\Delta_{0}^{-1} s \geq c$, thus set $b=\Delta_{0}^{-1} s$.

Lemma 3.9. For each sandpile s, there is a unique $c \in \mathcal{A}(s)$ such that $s-\Delta_{0} c$ is superstable.

Proof. By Lemmas 3.6 and 3.8, there is a unique maximal $c \in \mathcal{A}(s)$. If $s-\Delta_{0} c$ is not superstable, then there is a $d \in \mathcal{A}\left(s-\Delta_{0} c\right)$ and $s-\Delta_{0} c+1>\Delta_{0} d$. Then, we would have $s+1>\Delta_{0}(c+d)$, which means that $c+d \in \mathcal{A}(s)$. Since $d \neq 0, c$ cannot be maximal in $\mathcal{A}(s)$, which leads to a contradiction. Hence $s-\Delta_{0} c$ is superstable.

3.4 Superstable Group

Let $c \in \mathcal{A}(s)$ be the unique maximal element in Lemma 3.9 and define $[s]:=s-\Delta_{0} c$. If r and s are any two sandpiles, we write $r \sim s$, if and only if $[r]=[s]$. Let \mathcal{S} be the set of all superstable sandpiles (on G). For any two superstable sandpiles $r, s \in \mathcal{S}$, define $r \oplus s$ to be $[r+s]$.

Define the set of zero sandpiles to be

$$
\mathcal{Z}=\{s \mid[s]=0\}=\left\{\Delta_{0} c \mid c: V_{0} \rightarrow \mathbb{Z}^{+}\right\} .
$$

Lemma 3.10. Given any sandpile s, there is a $\hat{s} \in \mathcal{Z}$ such that $\hat{s} \geq s$.
Proof. Let $\left.C_{0}=\left\{x: V_{0} \rightarrow \mathbb{R}\right) \mid \Delta_{0} x \geq 0\right\}, C_{s}=\left\{x: V_{0} \rightarrow \mathbb{R} \mid \Delta_{0} x \geq s\right\}$, and $K=\left\{x: V_{0} \rightarrow \mathbb{R} \mid x \geq 0\right\}$. By Lemma 3.7, $C_{s} \subset C_{0} \subset K$. If $x, y \in C_{0}$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha, \beta \geq 0$, then since Δ_{0} is linear

$$
\Delta_{0}(\alpha x+\beta y)=\alpha \Delta_{0} x+\beta \Delta_{0} y \geq 0
$$

and thus $\alpha x+\beta y \in C_{0}$ (which is a cone), and since Δ_{0} is injective C_{0} has an interior. Hence C_{s} is a nondegenerate affine cone in \mathbb{R}^{n} and $C_{s} \cap\left(\mathbb{Z}^{+}\right)^{n}$ contains an infinite number of integer lattice points. Let $c \in C_{s} \cap\left(\mathbb{Z}^{+}\right)^{n}$ such that $\Delta_{0} c \geq s$ and set $\hat{s}=\Delta_{0} c \in \mathcal{Z}$.

Theorem 3.11. The set of superstable sandpiles \mathcal{S} form a group under \oplus.
Proof. Addition on \mathcal{S} is clearly commutative and closed. The zero sandpile 0 is the unit for \mathcal{S} since $s \oplus 0=s$ for all $s \in \mathcal{S}$.

Let $q, r, s \in \mathcal{S}$. By Lemma 3.9 there are $a, b: V_{0} \rightarrow \mathbb{Z}^{+}$such that $q \oplus r=q+r-\Delta_{0} a$ and $(q \oplus r) \oplus s=(q \oplus r)-\Delta_{0} b$. Similarly, there are $c, d: V_{0} \rightarrow \mathbb{Z}^{+}$such that $r \oplus s=r+s-\Delta_{0} c$ and $q \oplus(r \oplus s)=q+(r \oplus s)-\Delta_{0} d$. Since we have

$$
(q \oplus r) \oplus s=\left(q+r-\Delta_{0} a\right)+s-\Delta_{0} b=q+r+s-\Delta_{0}(a+b)
$$

and also

$$
q \oplus(r \oplus s)=q+\left(r+s-\Delta_{0}(c)\right)-\Delta_{0}(d)=q+r+s-\Delta_{0}(c+d)
$$

the fact that $[q+r+s]$ is unique implies that $a+b=c+d$, hence \oplus is associative.
Let $s \in \mathcal{S}$. From Lemma 3.10, let $\hat{s} \in \mathcal{Z}$ be such that $\hat{s} \geq s$, and set $s^{\prime}=[\hat{s}-s]$. Since $s^{\prime} \oplus s=[\hat{s}-s+s]=[\hat{s}]=0, s^{\prime} \in \mathcal{S}$ is the inverse of s.

3.5 Conclusions

In Chapter 4 we show that the superstable group is isomorphic to the graph Jacobian $\operatorname{Jac}(G)$. Biggs [5] showed that the critical group of the graph, which is equivalent to the abelian sandpile group of Dhar [10], is also isomorphic to $\operatorname{Jac}(G)$. Thus for $R=\mathbb{Z}$, the superstable group and the critical group are isomorphic. These two groups do not generally have the same indentity, however, since the superstable identity is the zero sandpile, while the critical group identity is almost always not the zero sandpile (see for example [6]).

For a general subring R, however, it appears that we need to show that the set of stable sandpiles obtained by a sequence of singleton topplings from a full sandpile (where each $s(v)>\operatorname{deg}(v)-1$) form a group that is isomorphic to the superstable group. This would then generalize the critical group to R-valued sandpiles on R graphs.

Chapter 4

Applications to Linear Systems

4.1 Introduction

In this chapter we apply results from Chapter 3 to linear systems of divisors on graphs. We will use the notation of Chapter 3, where R is a subring of the reals, G is a R-graph with vertices $V(G)=\left\{v_{0}, \ldots, v_{n}\right\}$ and edge weights $\left\{w_{i j}\right\}$.

Recall that a divisor $D \in \operatorname{Div}(G)$ on the R-graph G is a function $D: V \rightarrow R$, which we can write as the formal sum

$$
D=\sum_{i=0}^{n} D\left(v_{i}\right) \cdot v_{i} .
$$

The degree of D is defined as $\operatorname{deg}(D)=\sum_{v \in V} D(v)$, and the divisors of degree zero are denoted $\operatorname{Div}^{0}(G)$. The principal divisors $\operatorname{PDiv}(G)$ are generated by $\left\{H_{j} \mid j=\right.$ $0, \ldots, n\}$ over \mathbb{Z}, where

$$
H_{j}=\operatorname{deg}\left(v_{j}\right) \cdot v_{j}-\sum_{i \neq j} w_{i j} \cdot v_{i}
$$

We can extend a sandpile s from V_{0} to V by defining

$$
s\left(v_{0}\right)=-\sum_{i=1}^{n} s\left(v_{i}\right),
$$

creating a natural map from sandpiles to divisors of degree zero on G. Similarly, a
multiset toppling $T=\sum_{i=1}^{n} c\left(v_{i}\right) T_{i}$ applied to s corresponds to the divisor

$$
\left.\left(s\left(v_{0}\right)+\sum_{j=1}^{n} c\left(v_{j}\right) w_{0 j}\right)\right) \cdot v_{0}+\sum_{j=1}^{n}\left(s\left(v_{j}\right)-c\left(v_{j}\right) \operatorname{deg}\left(v_{j}\right)+\sum_{i=1}^{n} c\left(v_{i}\right) w_{i j}\right) \cdot v_{j}
$$

which can also be written as

$$
\left(\sum_{i=0}^{n} s\left(v_{i}\right) \cdot v_{i}\right)-\left(\sum_{j=1}^{n} c\left(v_{j}\right) H_{j}\right)
$$

Note that the second term $\sum_{j=1}^{n} c\left(v_{j}\right) H_{j} \in \operatorname{PDiv}(G)$, thus multiset toppling corresponds to translation of a divisor by a principal divisor.

4.2 Graph Jacobian

The graph $\operatorname{Jacobian} \operatorname{Jac}(G)$ (or degree zero Picard group $\operatorname{Pic}^{0}(G)$) is the quotient $\operatorname{Div}^{0}(G) / \operatorname{PDiv}(G)$. The correspondence between multiset toppling and principal divisors can be used to show that the superstable sandpile group \mathcal{S} is isomorphic to $\operatorname{Jac}(G)$.

Theorem 4.1. $\mathcal{S} \cong \operatorname{Div}^{0}(G) / \operatorname{PDiv}(G)$.
Proof. Define $\phi: \mathcal{S} \rightarrow \operatorname{Div}^{0}(G) / \operatorname{PDiv}(G)$ by $s \mapsto \sum_{i=0}^{n} s\left(v_{i}\right) \cdot v_{i}+\operatorname{PDiv}(G)$ as defined above. If $s, s^{\prime} \in \mathcal{S}$, we clearly have $\phi\left(s+s^{\prime}\right)=\phi(s)+\phi\left(s^{\prime}\right)$ so ϕ is a homomorphism.

Choose $D \in \operatorname{Div}^{0}(G)$. By Lemma 3.10, choose $\hat{s} \in \mathcal{Z}$ such that

$$
\hat{s} \geq\left|\min _{i}\left\{D(v) \mid v \in V_{0}\right\}\right|
$$

and set $s(v)=\hat{s}(v)+D(v)$ for each $v \in V_{0}$. Then $s(v) \geq 0$ for each $v \in V_{0}$ and there is a unique $c: V_{0} \rightarrow \mathbb{Z}^{+}$such that $[s]=s-\Delta_{0} c \in \mathcal{S}$. Since $\phi(\hat{s})=0+\operatorname{PDiv}(G)$, we have $\phi([s])=D+\operatorname{PDiv}(G)$, and thus ϕ is surjective.

Let $s \in \operatorname{ker} \phi$, and suppose that $s \neq 0$. Since $\phi(s)=\operatorname{PDiv}(G)$, we must have $\sum_{i=0}^{n} s\left(v_{i}\right) \cdot v_{i} \in \operatorname{PDiv}(G)$, so $s=\Delta_{0} a$ for some $a: V_{0} \rightarrow \mathbb{Z}^{+}$. By Lemma 3.7, $s \geq 0$ implies that $a \geq 0$, and thus either s is not superstable or $s=0$, which leaves us with ker $\phi=0$ and ϕ injective.

It follows directly from Theorem 4.1 that the superstable sandpile group \mathcal{S} is independent (up to isomorphism) of choice of $\operatorname{sink} v_{0}$.

Corollary 4.2. Up to isomorphism, \mathcal{S} is independent of choice of sink v_{0} in $V(G)$.

Up to this point, we have assume v_{0} to be the sink, and our notation has reflected this assumption by using the subscript 0 for $V_{0}=V(G)-\left\{v_{0}\right\}$ and Δ_{0} for the reduced laplacian. We will generally continue using v_{0} as the sink for notational convenience, but Corollary 4.2 implies that the sandpile results hold for any sink in $V(G)$. Thus, in general any v_{k} could the sink, with $V_{k}=V(G)-\left\{v_{k}\right\}$, etc. We will exploit this symmetry in the next section.

4.3 Empty Linear Systems

Recall that two divisors D and D^{\prime} are linearly equivalent, written $D \sim D^{\prime}$, if $D-D^{\prime} \in$ $\operatorname{PDiv}(G)$, and the linear system associated with D is

$$
|D|=\left\{D^{\prime} \mid D^{\prime} \sim D, D^{\prime}>-1\right\} .
$$

We aim to describe in this section the divisors whose linear system is empty.
Define the set of divisors with empty linear systems as

$$
\mathcal{E}(G)=\{D \in \operatorname{Div}(G)| | D \mid=\emptyset\},
$$

and let

$$
\mathcal{N}(G)=\{D \in \operatorname{Div}(G)|\operatorname{deg}(D)=g-1,|D|=\emptyset\} \subset \mathcal{E}(G)
$$

Lemma 4.3. Let $D \in \operatorname{Div}(G)$. There is a unique $D_{0} \in \operatorname{Div}(G)$ such that $D_{0} \sim D$ and the sandpile defined by $D_{0}(v)$ for $v \in V_{0}$ is superstable.

Proof. Define the sandpile s on G as follows: set

$$
\alpha=\min _{v \in V_{0}}\{D(v)\}
$$

and $z \in \mathcal{Z}$ such that $z(v) \geq \max \{0,-\alpha\}$, then let

$$
s^{\prime}(v)=D(v)+z(v)
$$

for $v \in V_{0}$, thus $s^{\prime}(v) \geq 0$ for each $v \in V_{0}$. Now, let $s=\left[s^{\prime}\right]=s^{\prime}-z^{\prime}$ where $z^{\prime} \in \mathcal{Z}$ and set

$$
\beta=D\left(v_{0}\right)+\sum_{i=1}^{n} z^{\prime}\left(v_{i}\right)-z\left(v_{i}\right)
$$

so that s is the unique superstable sandpile (by Lemma 3.9). Define the divisor D_{0} by

$$
D_{0}(v)= \begin{cases}\beta & v=v_{0} \\ s(v) & v \in V_{0}\end{cases}
$$

where we have $D \sim D_{0}$.
We will call such a divisor D_{0} in Lemma 4.3 the superstable divisor corresponding to D. Such divisors are referred to as reduced in [3], and are an example of a so-called G-parking function (see [17]).

An immediate application of Lemma 4.3 gives a sufficient condition for a linear system of a divisor to be nonempty.

Lemma 4.4. Let $D \in \operatorname{Div}(G)$. If $\operatorname{deg}(D)>g-1$ then $|D| \neq \emptyset$.

Proof. Let D be a divisor with $\operatorname{deg}(D)>g-1$, and let D_{0} be the unique superstable divisor such that $D_{0} \sim D$. Since D_{0} restricted to V_{0} is a superstable sandpile by Lemma 3.2

$$
\sum_{v \in V_{0}} D_{0}(v) \leq g .
$$

By assumption we have

$$
\operatorname{deg}(D)=\operatorname{deg}\left(D_{0}\right)=D_{0}\left(v_{0}\right)+\sum_{v \in V_{0}} D_{0}(v)>g-1
$$

or equivalently

$$
D_{0}\left(v_{0}\right)>-\sum_{v \in V_{0}} D_{0}(v)+g-1,
$$

thus $D_{0}\left(v_{0}\right)>-1$. Since $D_{0}(v)>-1$ for each $v \in V_{0},|D| \neq \emptyset$.

Lemma 4.5. If D_{0} be a superstable divisor, then $\left|D_{0}\right| \neq \emptyset$ if and only if $D_{0}\left(v_{0}\right)>-1$.

Proof. If $D_{0}\left(v_{0}\right)>-1$, then $D_{0}(v)>-1$ for all $v \in V$ and $\left|D_{0}\right| \neq \emptyset$. Now assume that $\left|D_{0}\right| \neq \emptyset$, thus there is a $P \in \operatorname{PDiv}(G)$ such that $D_{0}+P>-1$. Since D_{0} restricted to V_{0} a superstable sandpile, there are no allowable topplings on V_{0}, hence the only $P \in \operatorname{PDiv}(G)$ which would satisfy $D_{0}+P>-1$ must have $P(v) \geq 0$ for all $v \in V_{0}$. Since $\operatorname{deg}(P)=0, P\left(v_{0}\right) \leq 0$, thus we must have $D_{0}>-1$ in order for $\left|D_{0}\right|$ to be nonempty.

Finally, we turn our attention to the subset of empty divisors $\mathcal{N}(G)$.

Lemma 4.6. If D_{0} is a superstable divisor with $\operatorname{deg}\left(D_{0}\right)=g-1$ and $\left|D_{0}\right|=\emptyset$, then

$$
D_{0}\left(v_{j_{k}}\right)= \begin{cases}-1 & k=0 \\ \sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1 & k>0\end{cases}
$$

where $j_{0}=0$ and $\left(j_{1}, \ldots, j_{n}\right)$ is a permutation of $(1, \ldots, n)$.

Proof. Since D_{0} is superstable with $\left|D_{0}\right|=\emptyset$, by Lemma $4.5 D_{0}\left(v_{0}\right) \leq-1$, thus by Lemma 3.2 we then have $\sum_{i=1}^{n} D_{0}\left(v_{i}\right)=g, D_{0}\left(v_{0}\right)=-1$ and

$$
D_{0}\left(v_{j_{k}}\right)=\sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1
$$

for some permutation $\left(j_{1}, \ldots, j_{n}\right)$ of $(1, \ldots, n)$.

We will denote the set of such superstable divisors by

$$
\mathcal{N}_{0}(G)=\{D \in \mathcal{N}(G) \mid D \text { is superstable }\} .
$$

Note that $\left|\mathcal{N}_{0}(G)\right| \leq n$!. A direct consequence of Lemma 4.6 then gives us the composition of $\mathcal{N}(G)$, which is a lattice generated by $\mathcal{N}_{0}(G)$.

Lemma 4.7. $\mathcal{N}(G)=\left\{D \in \operatorname{Div}(G) \mid D \sim D_{0}\right.$ where $\left.D_{0} \in \mathcal{N}_{0}(G)\right\}$.

Proof. If $D \in \mathcal{N}(G)$, then by Lemma 4.3 there is a $D_{0} \in \mathcal{N}_{0}(G)$ such that $D \sim D_{0}$.

The canonical divisor on G is given by $K=\sum_{v}(\operatorname{deg}(v)-2) \cdot v$. We shall see that $\mathcal{N}(G)$ is invariant under the map $D \mapsto K-D$.

Lemma 4.8. $D \in \mathcal{N}(G)$ if and only if $K-D \in \mathcal{N}(G)$.

Proof. Since any $D \in \mathcal{N}(G)$ can be written as $D=N_{0}+P$ for some $P \in \operatorname{PDiv}(G)$, it is sufficient to assume $D \in \mathcal{N}_{0}(G)$.

Assume that D is superstable and that $D=N_{0}$ for some $N_{0} \in \mathcal{N}_{0}(G)$. By Lemma 4.6 $N_{0}\left(v_{j_{0}}\right)=-1$ and $N_{0}\left(v_{j_{k}}\right)=\sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1$ for some permutation $\left(j_{1}, \ldots, j_{n}\right)$ of $(1, \ldots, n)$ with $j_{0}=0$. Since $K\left(v_{i}\right)=\sum_{j=0}^{n} w_{i j}-2$, for $k>0$ we have

$$
(K-D)\left(v_{j_{k}}\right)=\sum_{i=0}^{n} w_{j_{i} j_{k}}-2-\sum_{i=0}^{k-1} w_{j_{i} j_{k}}+1=\sum_{i=k}^{n} w_{j_{i} j_{k}}-1
$$

and for $k=0$

$$
(K-D)\left(v_{j_{0}}\right)=\sum_{i=0}^{n} w_{j_{i} j_{0}}-1 .
$$

Note that $(K-D)\left(v_{j_{n}}\right)=-1$. Let $l_{k}=j_{n-k}$ for $k=0, \ldots, n$. We then have

$$
(K-D)\left(v_{l_{0}}\right)=-1
$$

and

$$
(K-D)\left(v_{l_{k}}\right)=\sum_{i=0}^{k} w_{l_{i} l_{k}}-1 .
$$

Thus, since $\left(l_{1}, \ldots, l_{n}\right)=\left(j_{n-1}, \ldots, j_{0}\right)$ is a permutation of n-tuple derived from the vertex index space $V_{j_{n}}$, and by Corollary $4.2 K-D \in \mathcal{N}_{j_{n}}(G) \subset \mathcal{N}(G)$.

Now assume that $K-D \in \mathcal{N}_{0}(G)$. Let $D^{\prime}=K-D$, and from above we have $K-D^{\prime}=D \in \mathcal{N}(G)$.

We now give a description of the empty set $\mathcal{E}(G)$.

Theorem 4.9. If $D \in \mathcal{E}(G)$, then $D \leq N$ for some $N \in \mathcal{N}(G)$.

Proof. Let $D \in \operatorname{Div}(G)$ with $|D|=\emptyset$. By Lemma 4.3, there is a unique superstable divisor $D_{0} \sim D$. Since $\left|D_{0}\right|=\emptyset$, Lemma 4.5 implies that $D_{0}\left(v_{0}\right) \leq-1$. By the proof
of Lemma 3.2, we have that (3.4) holds for each $D_{0}(v)$ where $v \in V_{0}$, so for some permutation $\left(j_{1}, \ldots, j_{n}\right)$ of $(1, \ldots, n)$,

$$
D_{0}\left(v_{j_{k}}\right) \leq \sum_{i=0}^{k-1} w_{j_{i} j_{k}}-1
$$

and thus $D_{0} \leq N_{0}$ for one of the $N_{0} \in \mathcal{N}_{0}(G)$. Let $P \in \operatorname{PDiv}(G)$ such that $D=$ $D_{0}+P$, and let $N=N_{0}+P$. Then we have $D \leq N$ where $N \in \mathcal{N}(G)$.

The set of divisor with empty linear systems is thus generated by the set of superstable divisors of degree $g-1$ with empty linear systems. Over \mathbb{R}, the boundary of this set is a polyhedral surface in $(n+1)$-space.

As an example, consider a graph G with $n=1$ (two vertices) and edge weight p. Let $D=(a, b) \in \operatorname{Div}(G)$, then following the example in $\S 2.1$, we have $|D|=\emptyset$ if and only if $\lceil(1+a) / p\rceil+\lceil(1+b) / p\rceil<2$. We can use this condition to plot the empty set (the gray region) in \mathbb{R}^{2} as shown below for the two-vertex graph with $p=1$. The center point of the plot is $(0,0)$ with unit grid spacing in both directions. The empty set $\mathcal{E}(G)$ is then the set of all points (a, b) such that $a \leq n p-1$ and $b \leq-n p+p-1$ for all $n \in \mathbb{Z}$.

For a three vertex graph with $n=2$, suppose the edge-weights are $p_{01}=p, p_{12}=q$, and $p_{02}=r$. The genus is $g=p+q+r-2$, and the two superstable divisors of degree
$g-1$ with empty linear systems are $(-1, p-1, q+r-1)$ and $(-1, p+q-1, r-1)$. These two points generate a lattice in the plane of divisors of degree $g-1$ via linear equivalence.

By defining the empty set geometrically, we can define the dimension $h^{0}(D)$ as the minimum distance in R^{n+1} from D to $\mathcal{E}(D)$. Define the distance function d : $\operatorname{Div}(G) \times \operatorname{Div}(G) \rightarrow R$ to be

$$
d\left(D, D^{\prime}\right)=\sum_{v \in V(G)}\left|D(v)-D\left(v^{\prime}\right)\right|
$$

for $D, D^{\prime} \in \operatorname{Div}(G) \cong R^{n+1}$.
Lemma 4.10. For any $D \in \operatorname{Div}(G)$,

$$
h^{0}(D)=\min \{d(D, E) \mid E \in \mathcal{E}(G), D-E \geq 0\} .
$$

Proof. The result follows directly from the definition of $h^{0}(D)$:

$$
\begin{aligned}
h^{0}(D) & =\min \{\operatorname{deg}(D-E)|D-E \geq 0,|E|=\emptyset\} \\
& =\min \{d(D, E) \mid E \in \mathcal{E}(G), D-E \geq 0\}
\end{aligned}
$$

4.4 Conclusions

Perhaps the most interesting result in this chapter is that the set of divisors of degree $g-1$ with empty linear systems is generated by a known finite set of size $\leq n$! by Lemma 4.6. This enables the set of divisors with empty linear systems to be defined by cones from the points in $\mathcal{N}(G)$. Exploiting the symmetry of the $\mathcal{N}(G)$ set may lead to an independent proof of Theorem 2.1. Also, knowing what the points in $\mathcal{N}(G)$ are allows the computation of $h^{0}(D)$ for a fixed G, which we will use for \mathbb{Z}-graphs in Chapter 5.

Chapter 5

Compatible Line Bundles

5.1 Introduction

In this chapter we wish to address the following question: Given a n-vertex \mathbb{Z}-graph G with an effective divisor $D=\left(d_{1}, \ldots, d_{n}\right)$, can we find a nodal curve X_{G} and a line bundle L_{D} with multidegree $\left(d_{1}, \ldots, d_{n}\right)$ on X_{G} such that the dimension of L_{D} matches $h^{0}(D)$?

Consider a \mathbb{Z}-graph G with two vertices v_{1} and v_{2} joined by p edges. G corresponds to the curve $X_{G}=X_{1} \cup X_{2}$ where $X_{1}, X_{2} \cong \mathbb{P}^{1}$, with X_{1} and X_{2} intersecting transversely p times. If $D=\left(d_{1}, d_{2}\right) \in \operatorname{Div}(G)$ is an effective divisor, let L_{1}, L_{2} be line bundles on X_{1}, X_{2} (respectively) with degree d_{1}, d_{2}. The k th intersection condition for the bundles L_{1} and L_{2} on X_{1} and X_{2} is

$$
f_{1}\left(q_{12 k}\right)=\lambda f_{2}\left(q_{21 k}\right)
$$

where $q_{12 k}$ and $q_{21 k}$ are the respective coordinates of the k th intersection point with $1 \leq k \leq p, f_{1}$ and f_{2} are polynomials of degree d_{1} and d_{2}, and λ is a nonzero parameter. Let $f_{i}(x)=\sum_{j=0}^{d_{1}} a_{i j} x^{j}$ for $i=1,2$, and the intersection condition for the k th point is

$$
\begin{equation*}
a_{10}+a_{11} q_{12 k}+\cdots+a_{1 d_{1}} q_{12 k}^{d_{1}}=\lambda\left(a_{20}+a_{21} q_{21 k}+\cdots+a_{2 d_{2}} q_{21 k}^{d_{2}}\right) \tag{5.1}
\end{equation*}
$$

Now assume G is a \mathbb{Z}-graph with n vertices $V(G)=\left\{v_{1}, \ldots, v_{n}\right)$, and $p_{i j} \geq 0$ edges joining vertices v_{i} and v_{j}. Set $m=\sum_{i<j} p_{i j}$ to be the total number of edges. The corresponding nodal curve is $X_{G}=\cup_{i=1}^{n} X_{i}$.

Suppose $D=\sum_{i=1}^{n} d_{i} \cdot v_{i}$ is an effective divisor on G, with corresponding line bundle L_{D} on X_{G} with multidegree $\left(d_{1}, \ldots, d_{n}\right)$. Let $A_{i j}^{d}$ be the Vandermonde matrix

$$
A_{i j}^{d}=\left(\begin{array}{ccccc}
1 & q_{i, j, 1} & q_{i, j, 1}^{2} & \cdots & q_{i, j, 1}^{d} \\
1 & q_{i, j, 2} & q_{i, j, 2}^{2} & \cdots & q_{i, j, 2}^{d} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & q_{i, j, p_{i j}} & q_{i, j, p_{i j}}^{2} & \cdots & q_{i, j, p_{i j}}^{d}
\end{array}\right)
$$

corresponding to the polynomial $f_{i}(x)=a_{i, 0}+a_{i, 1} x+\cdots+a_{i, d_{i}} x^{d_{i}}$ evaluated at the points $q_{i j k}$ for $1 \leq k \leq p_{i j}$. Note that if we assume the $q_{i j k}$ are distinct, this matrix has full rank.

Let \mathbf{f}_{i} be the coefficient vector

$$
\mathbf{f}_{i}=\left(\begin{array}{c}
a_{i, 0} \\
a_{i, 1} \\
\vdots \\
a_{i, d_{i}}
\end{array}\right)
$$

and set $\underline{\lambda}_{i j}=\left(\lambda_{i j 1}, \ldots, \lambda_{i j p_{i j}}\right)$, the row vector of gluing data, with each $\lambda_{i j k} \in \mathbb{C}^{*}$. The intersection condition (5.1) for $X_{i} \cdot X_{j}$ can then be written as

$$
A_{i j}^{d_{i}} \mathbf{f}_{i}-\lambda_{i j} A_{j i}^{d_{j}} \mathbf{f}_{j}
$$

For the entire graph G, we construct by concatenation the coefficient vector

$$
\mathbf{f}=\left(\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\vdots \\
\mathbf{f}_{n}
\end{array}\right)
$$

and we can represent the intersection conditions by the following block matrix

$$
M=\left(\begin{array}{cccccc}
A_{12}^{d_{1}} & -\underline{\lambda}_{12} A_{21}^{d_{2}} & 0 & \cdots & 0 & 0 \\
A_{13}^{d_{1}} & 0 & -\underline{\lambda}_{13} A_{31}^{d_{3}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
A_{1 n}^{d_{1}} & 0 & 0 & \cdots & 0 & -\underline{\lambda}_{1 n} A_{n 1}^{d_{n}} \\
0 & A_{23}^{d_{2}} & -\underline{\lambda}_{23} A_{32}^{d_{3}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & A_{2 n}^{d_{2}} & 0 & \cdots & 0 & -\underline{\lambda}_{2 n} A_{n 2}^{d_{n}} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_{n-1, n}^{d_{n-1}} & -\underline{\lambda}_{n-1, n} A_{n, n-1}^{d_{n}}
\end{array}\right)
$$

as Mf, where 0 above represents the appropriate zero block matrix. Note that the size of M is $m \times(\operatorname{deg}(D)+n)$, and that each row has two nonzero blocks and each column has $n-1$ nonzero blocks. The dimension of the linear system can then be computed using the rank-nullity theorem by

$$
\begin{equation*}
\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=\operatorname{deg}(D)+n-\operatorname{rank}(M) \tag{5.2}
\end{equation*}
$$

Our aim in this chapter is to describe the conditions on the parameters λ and intersection coordinates q such that dimension of the bundle on X_{G} matches that of the dimension of the corresponding divisor D on $G, h^{0}(D)$, which is given by

$$
\begin{equation*}
h^{0}(D)=\min \{\operatorname{deg}(E) \mid E \in \operatorname{Div}(G), E \geq 0 \text { and }|D-E|=\emptyset\} \tag{5.3}
\end{equation*}
$$

as in $\S 2$, which is equivalent to the $r(D)+1$ in [3].

5.2 Binary Curves

We will begin with a binary curve, which is described by a graph with two vertices v_{1} and v_{2} connected by p edges. The block matrix for the intersection conditions is

$$
M=\left(\begin{array}{ll}
A_{12}^{d_{1}} & -\underline{\lambda} A_{21}^{d_{2}}
\end{array}\right)
$$

where $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$.

Theorem 5.4. Let G be a two vertex graph with p edges, and $D=\left(d_{1}, d_{2}\right)$ an effective divisor on G. If the corresponding intersection points on each component of X_{G} are equal, that is $q_{12 k}=q_{21 k}$ for each $k=1, \ldots, p$, then

$$
\max _{\underset{\lambda}{ }}\left\{\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)\right\}=h^{0}(D) .
$$

Proof. Since $\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=\operatorname{deg}\left(L_{D}\right)+n-\operatorname{rank}(M)$, the maximum dimension occurs when M has minimum rank.

If $p \leq \max \left\{d_{1}, d_{2}\right\}$, each of the Vandermonde matrices $A_{12}^{d_{1}}$ and $A_{21}^{d_{2}}$ have rank p. Then M also has rank p and $\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=d_{1}+d_{2}+2-p$. Since $h^{0}(D)=$ $\operatorname{deg}(D)-p$ (see the example at the end of $\S 2.1)$, we have $\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=h^{0}(D)$.

If $p>\max \left\{d_{1}, d_{2}\right\}$, we need to determine λ_{k} 's such that

$$
M=\left(\begin{array}{cccccccc}
1 & q_{121} & \cdots & q_{121}^{d_{1}} & -\lambda_{1} & -\lambda_{1} q_{211} & \cdots & -\lambda_{1} q_{211}^{d_{2}} \\
1 & q_{122} & \cdots & q_{122}^{d_{1}} & -\lambda_{2} & -\lambda_{2} q_{212} & \cdots & -\lambda_{2} q_{212}^{d_{2}} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & q_{12 p} & \cdots & q_{12 p}^{d_{1}} & -\lambda_{p} & -\lambda_{p} q_{21 p} & \cdots & -\lambda_{p} q_{21 p}^{d_{2}}
\end{array}\right)
$$

has minimal rank. Since $q_{12 k}=q_{21 k}$ for each k, if we set $\lambda_{k}=\lambda$ for each k, M will have a minimal set of linearly independent columns and have rank $\max \left\{d_{1}, d_{2}\right\}+1$, thus

$$
\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=d_{1}+d_{2}-\max \left\{d_{1}, d_{2}\right\}+1=\min \left\{d_{1}, d_{2}\right\}+1
$$

Since $h^{0}(D)=\min \left\{d_{1}, d_{2}\right\}+1$, we have again $\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=h^{0}(D)$.

Note that if $q_{12 k} \neq q_{21 k}$ for each k, in the case $p>\max \left\{d_{1}, d_{2}\right\}$ above, $\operatorname{rank}(M)=$ $\min \left\{p, d_{1}+d_{2}\right\}$ when $\lambda_{k}=\lambda$, thus the requirement that the intersection points have the same coordinates on both components is in general a necessary condition.

5.3 Ternary Curves

For a three-vertex graph, the intersection condition matrix with the condition $q_{i j k}=$ $q_{j i k}$ at each intersection point is

$$
M=\left(\begin{array}{ccc}
A_{12}^{d_{1}} & -\lambda_{12} A_{12}^{d_{2}} & 0 \\
A_{13}^{d_{1}} & 0 & -\lambda_{13} A_{13}^{d_{3}} \\
0 & A_{23}^{d_{2}} & -\lambda_{23} A_{23}^{d_{3}}
\end{array}\right)
$$

where the $\lambda_{i j}$ are again vectors of length $p_{i j}$. We shall see that for ternary curves, we do not have the nice result as above with binary curves. Consider the following examples.

Example 5.5. Let $p_{12}=p_{13}=1, p_{23}=2$, with divisor $D=3 \cdot v_{1}+0 \cdot v_{2}+0 \cdot v_{3}$. Note that this curve is not stable. The corresponding intersection condition matrix is

$$
M=\left(\begin{array}{rrrr|r|r}
1 & q_{1} & q_{1}^{2} & q_{1}^{3} & -\lambda_{1} & 0 \\
\hline 1 & q_{2} & q_{2}^{2} & q_{2}^{3} & 0 & -\lambda_{2} \\
\hline 0 & 0 & 0 & 0 & 1 & -\lambda_{3} \\
0 & 0 & 0 & 0 & 1 & -\lambda_{4}
\end{array}\right)
$$

which has rank 4 for general λ 's and thus

$$
\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=3+3-4=2
$$

The graph dimension is $h^{0}(D)=2$ for G, so the general line bundle has the correct dimension. However, with $\lambda_{1}=\lambda_{2}$ and $\lambda_{3}=\lambda_{4}=1, M$ has rank 3 and thus

$$
\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=3+3-3=3
$$

and thus

$$
\max _{\underline{\lambda}}\left\{\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)\right\}>h^{0}(D) .
$$

Example 5.6. Let G be a three-vertex graph with edges $p_{12}=1, p_{13}=p_{23}=2$ and again set $D=3 \cdot v_{1}+0 \cdot v_{2}+0 \cdot v_{3}$. This graph corresponds to a stable curve.

The graph dimension for this graph is $h^{0}(D)=2$. For general $\underline{\lambda}, \operatorname{rank}(M)=5$, thus $\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=3+3-5=1$. If we set $\underline{\lambda}_{13}=\underline{\lambda}_{23}, \operatorname{rank}(M)=4$ and $\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=2$.

Lemma 5.7. If $D_{0} \in \operatorname{Div}(G)$ is superstable and effective, then $h^{0}\left(D_{0}\right) \leq d_{1}+1$.

Proof. Assume that v_{1} is the sink. For D_{0} to be superstable and effective, we have

$$
d_{1} \geq 0
$$

with either

$$
\begin{aligned}
& 0 \leq d_{2} \leq p_{12}-1 \\
& 0 \leq d_{3} \leq p_{13}+p_{23}-1
\end{aligned}
$$

or

$$
\begin{aligned}
& 0 \leq d_{3} \leq p_{13}-1 \\
& 0 \leq d_{2} \leq p_{12}+p_{23}-1
\end{aligned}
$$

From [3], we know that we can compute $h^{0}(D)$ by

$$
h^{0}(D)=\min \left\{\operatorname{deg}^{+}\left(D^{\prime}-\nu\right) \mid \nu \in \mathcal{N}(G), D^{\prime} \sim D\right\}
$$

where

$$
\operatorname{deg}^{+}(D)=\sum_{d_{i} \geq 0} d_{i}
$$

and $\mathcal{N}(G)=\{D \in \operatorname{Div}(G)|\operatorname{deg}(D)=g-1,|D|=\emptyset\}$. We know from the results of Chapter 4 that $\mathcal{N}(G)$ is generated from $\mathcal{N}_{0}(G)=\left\{N_{1}, N_{2}\right\}$ where

$$
\begin{aligned}
& N_{1}=\left(-1, p_{12}-1, p_{13}+p_{23}-1\right) \\
& N_{2}=\left(-1, p_{12}+p_{23}-1, p_{13}-1\right)
\end{aligned}
$$

Thus, we have

$$
h^{0}\left(D_{0}\right) \leq \min \left\{\operatorname{deg}^{+}\left(D_{0}-N_{1}\right), \operatorname{deg}^{+}\left(D_{0}-N_{2}\right)\right\} \leq d_{1}+1
$$

Theorem 5.8. Let G be a three vertex graph with $g=0$. If D is an effective divisor on G, then there is a L_{D} on X_{G} such that $h^{0}(D)=\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)$.

Proof. A genus zero graph has two edges, and there are three such configurations. It suffices to show the statement holds for one of the three, so we will choose $p_{12}=$ $p_{13}=1$ and $p_{23}=0$. Let $D=\left(d_{1}, d_{2}, d_{3}\right)$. The intersection matrix is

$$
M=\left(\begin{array}{ccc}
A_{12}^{d_{1}} & -\lambda_{12} A_{12}^{d_{2}} & 0 \\
A_{13}^{d_{1}} & 0 & -\lambda_{13} A_{13}^{d_{3}}
\end{array}\right)
$$

where $\operatorname{rank}\left(A_{12}\right)=\operatorname{rank}\left(A_{13}\right)=1$. It follows that $\operatorname{rank}(M)=2$, thus

$$
\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=\operatorname{deg}(D)+1
$$

Since $g=0$, Riemann-Roch implies that

$$
h^{0}(D) \geq \operatorname{deg}(D)+1
$$

Let $D_{0}=\left(\bar{d}_{1}, \bar{d}_{2}, \bar{d}_{3}\right)$ be a superstable divisor such that $D \sim D_{0}$ by Lemma 4.3. From Lemma 5.7, we have

$$
h^{0}\left(D_{0}\right) \leq \bar{d}_{1}+1
$$

and since $g=0$, this forces $\bar{d}_{2}=\bar{d}_{3}=0$. We then have

$$
h^{0}\left(D_{0}\right) \leq \operatorname{deg}\left(D_{0}\right)+1
$$

and thus

$$
\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)=h^{0}(D)
$$

There are two types of three-vertex graphs of genus one: the $p_{12}=p_{13}=p_{23}=1$ graph, and six variants of $p_{12}=2, p_{13}=1, p_{23}=0$. We show below that in the first case, there is a compatible L_{D} for any effective D on G.

Theorem 5.9. Let G be a three vertex graph with one edge connecting each vertex to the other two vertices. If D is an effective divisor on G, then there is a line bundle L_{D} on X_{G} such that $h^{0}(D)=\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)$.

Proof. The intersection matrix for L_{D} is

$$
M=\left(\begin{array}{ccc}
A_{12}^{d_{1}} & -\lambda_{12} A_{12}^{d_{2}} & 0 \\
A_{13}^{d_{1}} & 0 & -\lambda_{13} A_{13}^{d_{3}} \\
0 & A_{23}^{d_{2}} & -\lambda_{23} A_{23}^{d_{3}}
\end{array}\right)
$$

where $\operatorname{rank}\left(A_{i j}^{d_{k}}\right)=1$ for each i, j, k since each $p_{i j}=1$, and thus $\operatorname{rank}(M) \leq 3$. Also, M could be of the form

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right)
$$

which has a rank of 2 , thus $\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)$ is either $\operatorname{deg}(D)$, or $\operatorname{deg}(D)+1$ if $\operatorname{rank}(M)=2$.

Let $D_{0} \sim D$ be superstable, in which case either $d_{2}=0$ and $d_{3} \leq 1$ or $d_{3}=0$ and $d_{2} \leq 1$. Riemann-Roch implies that $h^{0}(D) \geq \operatorname{deg}(D)$. For this configuration, we have $N_{1}=(-1,0,1)$ and $N_{2}=(-1,1,0)$, and principal divisors $P_{1}=(2,-1,-1)$ and $P_{2}=(-1,2,-1)$. Let $N_{3}=N_{1}+P_{1}, N_{4}=N_{2}+P_{1}, N_{5}=N_{2}-P_{2}$ and $N_{6}=N_{1}-P_{1}-P_{2}$; collectively, the N_{i} represent the six permutations of $(-1,1,0)$. Using the argument in Lemma 5.7, we have

$$
h^{0}\left(D_{0}\right) \leq \min \left\{\operatorname{deg}^{+}\left(D_{0}-N_{j}\right) \mid j=1, \ldots, 6\right\} .
$$

Note that if $\operatorname{deg}\left(D_{0}\right) \geq 1$, we have $h^{0}\left(D_{0}\right) \leq \operatorname{deg}\left(D_{0}\right)$. If $\operatorname{deg}\left(D_{0}\right)=0$, we have $h^{0}\left(D_{0}\right) \leq 1=\operatorname{deg}\left(D_{0}\right)+1$, and since $\left|D_{0}\right| \neq \emptyset$, it is in fact an equality. In this case, a compatible L_{D} corresponds to the special rank 2 matrix above. For $\operatorname{deg}\left(D_{0}\right) \geq 1$, the general L_{D} gives the correct dimension, and thus we have $h^{0}(D)=\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)$.

It seems probable that this is always the case for any three-vertex graph G, and we have yet to find a counterexample, but proving the general case would seem to require a different technique than used above.

5.4 Conclusions

The original motivation of the work in this chapter was to find a way of describing the (X_{G}, L_{D}) pairs that correspond to a given graph-divisor pair (G, D), where the dimensions of L_{D} and D match. Ideally, one would prefer to find a family of such $\left(X_{G}, L_{D}\right)$ that can be easily described as with the two-vertex case, but such a description has been elusive thus far. In fact, although it seems probable, we do not know that for any (G, D), such a $\left(X_{G}, L_{D}\right)$ exists. We conjecture that this is indeed the case:

Conjecture 5.10. Let G be a connected multigraph. If D is an effective divisor on G, then there is a line bundle L_{D} on X_{G} such that

$$
h^{0}(D)=\operatorname{dim}\left(H^{0}\left(X_{G}, L_{D}\right)\right)
$$

Immediate future work involves proving the conjecture for ternary curves. Ultimately, beyond proving the conjecture for any (G, D), we would like to understand much more about the deeper connections between Riemann-Roch theory for graphs and that of algebraic curves.

Bibliography

[1] R. Bacher, P. de la Harpe, T. Nagnibeda. The lattice of integral flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math. France 125 (2) (1997).
[2] P. Bak, C. Tang and K. Wiesenfeld. Self-organised criticality. Physical Review A 38 (1988).
[3] Matthew Baker and Serguei Norine. Riemann-Roch and Abel-Jacobi Theory on a Finite Graph. Advances in Mathematics 215 (2007).
[4] Dave Bayer and David Eisenbud. Graph Curves. Advances in Mathematics 86 (1991).
[5] N.L. Biggs. Chip-Firing and the Critical Group of a Graph. Journal of Algebraic Combinatorics 9 (1999).
[6] Sergio Caracciolo, Guglielmo Paoletti and Andrea Sportiello. Explicit characterization of the identity configuration in an Abelian sandpile model. Journal of Physics A: Mathematical and Theoretical 41 (2008).
[7] C. Ciliberto, J. Harris, and R. Miranda. On the surjectivity of the Wahl map. Duke Mathematics Journal (1989).
[8] C. Ciliberto and R. Miranda. Graph curves, colorings, and matroids. In ZeroDimensional Schemes. Proceedings of the International Conference held in Ravello, Italy, June 1992. F. Orecchia and L. Chiantini, Eds. Walter de Gruyter, Berlin, New York (1994).
[9] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math., 36 (1969).
[10] D. Dhar. Self-organised critical state of sandpile automaton models. Physical Review Letters 64 (1990).
[11] D. Dhar, P. Ruelle, S. Sen and D-N Verma. Algebraic aspects of Abelian sandpile models. J. Phys. A: Math. Gen., 28 (1995).
[12] Andreas Gathmann and Michael Kerber. A Riemann-Roch Theorem in Tropical Geometry. Mathematische Zeitschrift 259 (2008).
[13] Ilia Itenberg, Grigory Mikhalkin and Eugenii Shustin. Tropical Algebraic Geometry. Oberwolfach Seminars, Volume 35. Birkhäuser Verlag AG, Berlin (2009).
[14] Grigory Mikhalkin and Ilia Zharkov. Tropical Curves, Their Jacobians, and Theta Functions. preprint arXiv:math/0612267v2 [math.AG] (2007).
[15] Rick Miranda. Graph Curves and Curves on K3 Surfaces, unpublished lecture notes.
[16] G. Paoletti. Abelian Sandpile Models and Sampling of Trees and Forests. Master's Thesis, Università degli Studi di Milano (2007).
[17] A. Postnikov and B. Shapiro. Trees, parking functions, syzygies, and deformations of monomial ideals. Transactions of the American Mathematical Society 356 (8) (2004).

