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ABSTRACT OF DISSERTATION

LINEAR SYSTEMS AND RIEMANN-ROCH THEORY ON GRAPHS

Graphs can be viewed as discrete counterparts to algebraic curves, as exemplified by

the recent Riemann-Roch formula for integral divisors on multigraphs. We show that

for any subring R of the reals, the Riemann-Roch formula can be generalized to R-

valued divisors on edge-weighted graphs over R. We also show that a related abelian

sandpile model extended to R on edge-weighted graphs leads to a group, which has

many interesting properties. The sandpile results are used to prove various proper-

ties of linear systems of divisors on graphs, including that the set of divisors with

empty linear systems is completely determined by a lattice of nonspecial divisors. We

use these properties of linear systems on graphs to study line bundles on binary and

ternary algebraic curves that match the dimension of their graph counterparts.
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Chapter 1

Introduction

1.1 Overview

This dissertation concerns the study of algebro-geometric properties of graphs and

their connections to algebraic curves, inspired by the recent proof of a Riemann-

Roch theorem for graphs by Baker and Norine [3]. In this chapter, an overview of

motivating results and related work is presented. New results are contained in the

subsequent chapters, which are grouped in two areas.

The first area involves extending the Riemann-Roch theory in [3] from integral

divisors to divisors over any subring R of the reals. In Chapter 2, a Riemann-Roch

theorem for such R-divisors is shown, based on extending the framework in [3]. Fol-

lowing that, Chapter 3 presents a related result for sandpiles or chip-firing games

on graphs which have weighted edges over R. These results are then used to prove

results for linear systems in Chapter 4.

The second area of research, contained in Chapter 5, concerns finding compatible

line bundles on nodal curves corresponding to their discrete counterparts, divisors on

graphs. In this sense, an n-vertex graph and divisor serve as a model for a particular

type of curve with n rational components with line bundles corresponding to an

effective divisor on the graph. Such a line bundle is called compatible if its dimension
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is equal to the dimension of the linear system of the corresponding graph divisor.

Although such curves and graphs both obey Riemann-Roch, it is not obvious or even

clear that the discrete graph object and a corresponding algebraic curve have such a

compatible divisor-bundle pairing.

1.2 Graph Curves

Graph curves, discussed extensively in [4], [7], [8] and [15], are reducible algebraic

curves which are in a sense characterized by graphs.

Let G be a finite, connected graph with vertex set V (G) and edge set E(G), where

the degree of each vertex v ∈ V (G) is at most 3. Such a graph is said to be sub-

trivalent ; if the degree of every vertex is exactly 3, the graph is trivalent. Multiple

edges and loops (where an edge connects a vertex to itself) are allowed, where we

define pvw to be the number of edges joining vertices v and w.

Using G as a model, we construct a connected, reducible algebraic curve XG over

a field k as follows. For each v ∈ V (G), let Xv
∼= P1k. The intersection number

Xv ·Xw = pvw, where Xv and Xw meet transversely pvw times at distinct coordinates.

The graph curve XG is then defined to be

XG =
⋃

v∈V (G)

Xv

with the above intersection conditions. The genus of XG is given by

g = |E(G)| − |V (G)|+ 1.

For graphs that are trivalent, the corresponding graph curves are stable curves, in the

sense of Deligne and Mumford [9].

We will consider curves of the form XG where we allow G to be any finite connected

graph with multiple edges, with the restriction that loops will not be allowed.
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1.3 Baker-Norine Theory

In this section we describe the theory of linear systems on graphs used in [3], much of

which was formulated in [1]. Let G be a connected graph with multiple edges allowed,

but without loops, with vertices V (G) = {v1, . . . , vn} and pij denoting the number

of edges joining vertices vi and vj. Note that since loops are not allowed, pii = 0

for all i. Set the number of edges of G to be m =
∑

i<j pij, then the genus of G is

g = m− n+ 1.

A divisor on G is essentially a map V (G)→ Z, which we will write as the formal

sum

D =
n∑
i=1

di · vi

where each di ∈ Z. The group of divisors is denoted by Div(G). The degree of D is

deg(D) =
n∑
i=1

di.

We say that D is effective (write D ≥ 0) if each di ≥ 0. The subgroup of zero divisors

Div0 are the divisors with degree zero.

Let Hj = deg(vj) · vj +
∑

i 6=j −pij · vi for each j = 1, . . . , n, noting that the valence

or degree of vj is deg(vj) =
∑n

i=1 pij. The principal divisors PDiv(G) are generated by

the set {H1, . . . , Hn} over Z. Note that since eachHj ∈ Div0(G), PDiv(G) ≤ Div0(G).

We say that two divisors D,D′ ∈ Div(G) are linearly equivalent (write D ∼ D′) if

and only if D −D′ ∈ PDiv(G).

The complete linear system associated with a divisor D is defined as

|D| = {D′ ∈ Div(G) | D′ ≥ 0, D′ ∼ D}

and the rank of D is

r(D) = min{deg(E) | E ≥ 0, |D − E| = ∅} − 1.

Let K be the canonical divisor

K =
n∑
i=1

(deg(vi)− 2) · vi.
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The main result of [3] can now be stated, the Riemann-Roch theorem for graphs.

Theorem 1.1 (Baker-Norine). If D ∈ Div(G) then

r(D)− r(K −D) = deg(D)− g + 1.

1.4 Tropical Curves

A different way to view a graph in an algebro-geometric sense is as a tropical curve.

Following [13] and [12], a (compact) tropical curve is essentially a connected metric

graph G. A tropical rational function on G is a real-valued continuous piecewise

linear function with integer slopes. Note that tropical functions are defined on the

edges of G as well as the vertices. The order of a tropical rational function f at a

point p ∈ G, ordp(f), is the sum of the slopes of f for all edges emanating from the

point p. We will denote the space of all tropical rational functions on G as M(G).

A tropical divisor D on G is a formal sum

D =
∑
p∈G

ap · p

where set of nonzero coefficient ap is finite, and the degree of D is deg(D) =
∑

p ap.

The divisor D above is called effective if each ap ≥ 0. A tropical rational function

f ∈M(G) can be represented as a divisor using its order:

(f) =
∑
p∈G

ordp(f) · p.

If D is a tropical divisor on G, the space R(D) is the set of all f ∈ M(G) such

that the divisor D + (f) is effective. The dimension r(D) of the space R(D) is

r(D) = max{n | R(D − p1 − · · · − pn) 6= ∅ for all choices of p1, . . . , pn ∈ G}.

We define the canonical divisor K as before to be

K =
∑

v∈V (G)

(deg(v)− 2) · v.
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Independently, Milkhlakin and Zharkov [14], and Gathmann and Kerber [12],

recently showed that a Riemann-Roch formula

r(D)− r(K −D) = deg(D)− g + 1

holds for tropical curves. The original proof in [14] involved using Jacobians of tropical

curves, where the proof in [12] depends on the Baker-Norine result in [3]. A revised

version of [14] provides a simpler proof, again based on [3].

1.5 Edge-Weighted Graphs

The finite connected graphs used in Baker-Norine theory can be generalized to edge-

weighted graphs in the following way. Let G now be a connected simple graph; that

is, loops and multiple edges are not allowed. Let V (G) = {v1, . . . , vn} be the vertex

set of G, and assign each edge a nonnegative weight, wij, corresponding to the edge

connecting vertices vi and vj. If vi and vj are not connected, set wij = 0. If the

weights are real-valued, G is then a metric graph, where the lengths are lij = w−1ij for

wij = 0. More generally, we will consider weights in a subring R of the reals.

We define the degree of a vertex vj ∈ V (G) to be

deg(vj) =
∑
i 6=j

wij.

The weight sum m is

m =
∑
i<j

wij

so that the genus of G is

g = m− n+ 1.

For non-integral weights, it is then possible to have a non-integral, or even negative

genus.

For edge weights in Z, an edge-weighted graph G is a multigraph, as described

in the sections above, where the number of edges pij = wij. For edge weights in R,
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we have a metric graph. Divisors over R are defined as in [3], with one exception: a

divisor D is effective if its ceiling dDe ≥ 0, or equivalently D > −1. This definition

allows for compatibility with linear systems over Z.

In Chapter 2, we develop the theory of linear systems on edge-weighted or R-

graphs by extending the results of Baker and Norine. Chapters 3 and 4 use develop

new independent results for linear systems on R-graphs.
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Chapter 2

Riemann-Roch on R-graphs

2.1 Introduction

Let R be a subring of the real numbers R. An R-graph G is a finite connected graph

(without loops or multiple edges) where each edge is assigned a weight, which is a

positive element of R. If we let the n vertices of G be {v1, . . . , vn}, we will denote by

pij = pji the weight of the edge joining vi and vj. If there is no edge connecting vi

and vj, we set pij = pji = 0.

We define the degree of a vertex vj of G to be the sum of the weights of the edges

incident to it:

deg(vj) =
∑
i 6=j

pij.

The edge matrix P of G is the symmetric n× n matrix defined by

(P )ij =

 −pij if i 6= j

deg(vj) if i = j.

The genus of G is defined as

g =
∑
i<j

pij − n+ 1.

An R-divisor D on G is a formal sum

D =
n∑
i=1

di · vi

7



where each di ∈ R; the divisors form a free R-module Div(G) of rank n. We write

D1 ≥ D2 if the inequality holds at each vertex; for a constant c, we write D ≥ c

(respectively D > c) if di ≥ c (respectively di > c) for each i.

The degree of a divisor D is

deg(D) =
n∑
i=1

di

and the ceiling of D is the divisor

dDe =
n∑
i=1

ddie · vi.

The degree map is a homomorphism from Div(G) to R, and the kernel Div0(G) of

divisors of degree zero is a free R-module of rank n− 1.

Let Hj = deg(vj) · vj −
∑

i 6=j pij · vi, and set PDiv(G) = {
∑n

i=1 ciHi | ci ∈ Z} to

be the free Z-module generated by the Hj. (Note that the Hj divisors correspond to

the columns of the matrix P .) If G is connected, PDiv(G) has rank n− 1. Note that

PDiv(G) ⊂ Div0(G); the quotient group is called the Jacobian of G.

For two divisors D,D′ ∈ Div(G), we say that D is linearly equivalent to D′, and

write D ∼ D′, if and only if D −D′ ∈ PDiv(G).

The linear system associated with a divisor D is

|D| = {D′ ∈ Div(G) | D ∼ D′ with dD′e ≥ 0} = {D′ ∈ Div(G) | D ∼ D′ with D′ > −1}.

We note that linearly equivalent divisors have the same linear system. The use of

the ceiling divisor in the definition above is the critical difference between this theory

and the integral theory developed by Baker and Norine [3].

The essence of the Riemann-Roch theorem, for divisors on algebraic curves, is to

notice that the linear system corresponds to a vector space of rational functions, and

to relate the dimensions of two such vector spaces. In our context we do not have

vector spaces; so we measure the size of the linear system in a different way (as does

Baker and Norine).
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Define the h0 of an R-divisor D to be

h0(D) = min{deg(E) | E is an R-divisor, E ≥ 0 and |D − E| = ∅}.

Note that h0(D) = 0 if and only if |D| = ∅, and that linearly equivalent divisors have

the same h0.

The canonical divisor of G is defined as

K =
∑

(deg(vi)− 2) · vi.

The Riemann-Roch result that we will prove can now be stated.

Theorem 2.1. Let G be a connected R-graph as above, and let D be an R-divisor on

G. Then

h0(D)− h0(K −D) = deg(D) + 1− g.

The results of Baker and Norine (see [3]) are exactly that the above theorem holds

in the case of the subring R = Z. Our proof depends on the Baker-Norine Theorem

in a critical way; it would be interesting to provide an independent proof.

In [12] and [14], a Riemann-Roch theorem is proved for metric graphs with integral

divisors; these results differ from the present result in two fundamental ways. First,

our edge weights pij and the coefficients of the divisors are elements of the ring R.

Second, the genus g is in R for the present result, whereas in [12] and [14], g is a

nonnegative integer.

As an example, consider the R-graph G with two vertices and edge weight p > 0.

For convenience, we will write the divisor a · v1 + b · v2 as the ordered pair (a, b). The

principal divisors are PDiv(G) = {(np,−np) | n ∈ Z}, and K = (p − 2, p − 2), with

g = p− 1. Note that if p < 1, we have g < 0.

For (a, b) ∈ Div(G), the linear system |(a, b)| can be written as

|(a, b)| = {(c, d) ∈ Div(G) | d(c, d)e ≥ 0 and (c, d) ∼ (a, b)}

= {(a+ np, b− np) | n ∈ Z, a+ np > −1, b− np > −1}.
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In what follows, we will be brief, and leave most of the details to the reader to verify.

One can check that |(a, b)| 6= ∅ if and only if d(1 + a)/pe+ d(1 + b)/pe ≥ 2.

Let φp : R×R→ Z be defined as

φp(x, y) = b(x+ 1)/pc+ b(x+ 1)/pc.

The value of h0((a, b)) can be computed as follows:

h0((a, b)) =


0 if φp(a, b) < 0

min{a+ 1− pb(a+ 1)/pc, b+ 1− pb(b+ 1)/pc} if φp(a, b) = 0

a+ b− p+ 2 if φp(a, b) > 0

Note that if D = (a, b) ∈ Div(G) then K−D = (p−2−a, p−2−b). To check that

the Riemann-Roch theorem holds for D, it is easiest to consider the three cases (noted

above) for the formula for h0((a, b)). We note that (a, b) is in one of the three cases

if and only if (p− 2− a, p− 2− b) is in the opposite case. It is very straightforward

then to check Riemann-Roch in case φp(a, b) 6= 0; one of the two h0 values is zero.

It is a slightly more interesting exercise, but still straightforward, to check it in case

φp(a, b) = 0.

Unfortunately, this method of direct computation becomes intractible forR-graphs

with n > 2.

2.2 Change of Rings

Note that in the definition of the h0 of a divisor, the minimum is taken over all non-

negative R-divisors. Therefore, a priori, the definition of h0 depends on the subring

R. We note that if R ⊂ S ⊂ R are two subrings of R, then any R-graph G and

R-divisor D on G is also an S-graph and an S-divisor. In this section we will see that

the h0 in fact does not depend on the subring.

Any H ∈ PDiv(G) can be written as an integer linear combination of any n − 1

elements of the set {H1, H2, . . . Hn}. If we exclude Hk, for example, then there are
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n− 1 integers {mj}j 6=k such that H =
∑

j 6=kmjHj, and we can write H =
∑n

i=1 hi · vi

where

hi =

 mi deg(vi)−
∑

j 6=k,imjpij if i 6= k

−
∑

j 6=kmjpjk if i = k.
(2.2)

Let Pk be the (n − 1) × (n − 1) matrix obtained by deleting the kth row and

column from the matrix P . We can write the hi’s other than hk in matrix form as

h = Pkm where h = (hi)i 6=k and m = (mi)i 6=k are the corresponding column vectors.

For any x = (xi) ∈ Rn−1 and c ∈ R, we say x ≥ c if and only if xi ≥ c for each i;

similarly for a matrix A = (aij), we write A ≥ c if and only if aij ≥ c for each i, j.

Lemma 2.3. If x = (xi)i 6=k is a column vector in Rn−1 such that Pkx ≥ 0, then

x ≥ 0. Furthermore, Pk is nonsingular and P−1k ≥ 0.

Proof. Let Vi = {i′ | pii′ > 0, i′ 6= k, i′ 6= i} be the set of indices of vertices connected

to vi (excluding k). Suppose that it is the case that xi < 0, and that xi ≤ xi′ for all

i′ ∈ Vi. Then

(Pkx)i = xi deg(vi)−
∑
i′∈Vi

xi′pii′

= xipik + xi
∑
i′∈Vi

pii′ −
∑
i′∈Vi

xi′pii′

= xipik +
∑
i′∈Vi

pii′(xi − xi′),

and we note that with our assumptions, no term here is positive. Since the sum is

non-negative, we conclude that all terms are zero. We have verified the following

therefore, if Pkx ≥ 0:

xi < 0 and xi ≤ xi′ for all i′ ∈ Vi ⇒ pik = 0 and xi = xi′ for all i′ ∈ Vi. (2.4)

Now assume that x � 0; then there is an index j such that x = xj < 0 and xj ≤ xi

for all i 6= k. By (2.4), we conclude that xi = x for all i ∈ Vj, and also that pjk = 0.

We see, by induction on the distance in G to the vertex vj, that we must have xi = x

and pij = 0 for all i 6= k. This contradicts the connectedness of G: vertex vk has no

edges on it. This proves the first statement.
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Now suppose that x ∈ kerPk; then x ≥ 0. Also, −x ∈ kerPk, and thus −x ≥ 0;

we conclude that x = 0. Hence kerPk = {0} and Pk is invertible.

Let y = Pkx. Since y ≥ 0 ⇒ x ≥ 0 and Pk is invertible, x = P−1k y ≥ 0 for all

y ≥ 0. Applying y = ei for each i 6= k, where (ei)j = 1 for i = j and 0 otherwise, we

have P−1k ≥ 0.

We can now prove the main result for this section.

Proposition 2.5. Suppose that all of the entries of the matrix P are in two subrings

R and R′, and that all the coordinates of the divisor D are also in both R and R′.

Then (using the obvious notation) h0 = h0
′
.

Proof. It suffices to prove the statement when one of the subrings is R and the other

is R. In this case we’ll use the notation Rh0 and Rh0, respectively, for the two minima

in question.

First note that the linear system |D| is clearly independent of the ring; and in

particular, whether a linear system is empty or not is also independent.

Therefore, the minimum in question for the Rh0 computation is over a strictly

larger set of divisors; and hence there can only be a smaller minimum. This proves

that Rh0(D) ≥ Rh0(D).

Suppose that E is an R-divisor, E ≥ 0, and |D−E| = ∅, achieving the minimum,

so that Rh0(D) = deg(E). If E is an R-divisor, it also achieves the minimum in R

and Rh0(D) = Rh0(D). We will show that in fact E must be an R-divisor.

Now suppose that E is not an R-divisor, and write D =
∑n

i=1 di · vi and E =∑n
i=1 ei ·vi, with k the index of an element such that ek /∈ R. Since Rh0(D) = deg(E),

for any ε ∈ R with 0 < ε ≤ ek, we have that E−ε·vk ≥ 0, and therefore |D−E+ε·vk| 6=

∅. Hence there are principal divisors H such that D − E + ε · vk +H > −1.

Let Hε be the set of all such H; by assumption, this is a nonempty set. Note that

if H ∈ Hε, and H =
∑n

i=1 hi · vi, then di − ei + hi > −1 for each i 6= k, and

dk − ek + ε+ hk > −1. (2.6)
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Also, since |D − E| = ∅, there is a k′ such that dk′ − ek′ + hk′ ≤ −1; combined with

the conditions above, the only possibility is k′ = k. Since dk ∈ R, hk ∈ R and ek /∈ R,

dk − ek + hk 6= −1, and thus dk − ek + hk < −1. Hence −1− ε < dk − ek + hk < −1.

For any H ∈ Hε, there are unique integers mi such that H =
∑

i 6=kmiHi. Let

d = (di)i 6=k, e = (ei)i 6=k, and m = (mi)i 6=k be the corresponding column vectors, and

define f = (fi)i 6=k = d−e+Pkm. Note that f > −1, and hk = −
∑

i 6=kmkpik by (2.2).

We can write m = P−1k (f− d + e), and by Lemma 2.3, P−1k ≥ 0. Therefore, since

e ≥ 0 and f > −1, the mi are bounded from below; set M ≤ mi for all i 6= k.

We claim that, forH =
∑

i 6=kmiHi ∈ Hε, the possible coordinates hk = −
∑

i 6=kmkpik

form a discrete set. It will suffice to show that, for any real x, the possible coordinates

hk which are at least −x is a finite set.

To that end, for any x ∈ R set Hε(x) = {H ∈ Hε |
∑

i 6=kmipik ≤ x}; for large

enough x this set is nonempty.

Fix x ∈ R such that Hε(x) 6= ∅ and choose j 6= k such that pjk > 0. For

H =
∑

i 6=kmiHi ∈ Hε(x) we then have

M ≤ mj ≤
x−

∑
i 6=j,kmipik

pjk
≤
x−M

∑
i∈Vk,i 6=j pik

pjk
.

Thus the coefficients mj ∈ Z are bounded both below and above, and hence can

take on only finitely many values. It follows that the set of possible values of hk =

−
∑

i 6=kmipik is also finite, for H ∈ Hε(x). As noted above, this implies that these

coordinates hk, for H ∈ Hε, form a discrete set. This in turn implies that there is a

maximum value h for the possible hk, since for all such we have dk − ek + hk < −1.

Note that if ε < ε′, then Hε ⊂ Hε′ .

We may now shrink ε (if necessary) to achieve ε < ek − dk − h − 1. This gives a

contradition, since now dk − ek + ε+ hk ≤ dk − ek + ε+ h < −1 for H ∈ Hε, violating

(2.6). We conclude that E is in fact an R-divisor as desired, finishing the proof.

The result above allows us to simply consider the case of R-graphs.
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At the other end of the spectrum, the case of Z-graphs is equivalent to the Baker-

Norine theory.

The Baker-Norine dimension of a linear system associated with a divisor D on a

graph G defined in [3] is equal to

r(D) = min{deg(E) | E ∈ Div(G), E ≥ 0 and |D − E|BN = ∅} − 1

where here the linear system associated with a divisor D is

|D|BN = {D′ ∈ Div(G) | D′ ≥ 0 and D ∼ D′}.

If we are restricted to Z-divisors on Z-graphs, the h0 dimension is compatible with

the Baker-Norine dimension:

Lemma 2.7. If G is a Z-graph and D a Z-divisor on G, then h0(D) = r(D) + 1.

Proof. Note that dDe = D since each component of D is in Z. This implies that

|D| = |D|BN which gives the result.

2.3 Reduction to Q-graphs

Note that the definition of h0(D) depends on the coordinates of D and on the entries

of the matrix P which give the edge-weights of the graph G. Indeed, the set E of

divisors with empty linear systems depends continuously on P , as a subset of Rn. (If

F0 is the set of divisors D with di > −1 for each i, then E is the complement of the

union of all the translates of F0 by the columns of P .)

The value of h0(D) is essentially the taxicab distance from D to E . This also

depends continuously on the coordinates of D.

Since Q is dense in R, by approximating both P and D by rationals, we see that

it will suffice to prove the Riemann-Roch theorem for Q-graphs:

Proposition 2.8. Suppose that the Riemann-Roch Theorem 2.1 is true for connected

Q-graphs. Then the Riemann-Roch Theorem is true for connected R-graphs.
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2.4 Scaling

Suppose that G is an R-graph, with edge weights pij. For any a > 0, a ∈ R ⊂ R,

define aG to be the R-graph with the same vertices, and edge weights {apij}. In

other words, if P defines G, then aG is the R-graph defined by the matrix aP .

We will use subscripts to denote which R-graph we are using to compute with,

e.g., |D|G, h0G(D), etc. if necessary.

For any divisor D on G and a > 0, define

Ta(D) = aD + (a− 1)I

where

I =
∑
i

1 · vi.

The transformation Ta is a homothety by a, centered at −I.

Lemma 2.9. Let D be an R-divisor. If a, b > 0 with a, b ∈ R, then the following

hold:

1. Tb ◦ Tb = Tab

2. Ta(D +H) = Ta(D) + aH

3. dDe ≥ 0⇔ dTa(D))e ≥ 0

4. |D|G 6= ∅ ⇔ |Ta(D)|aG 6= ∅

5. |D − E|G 6= ∅ ⇔ |Ta(D)− aE|aG 6= ∅
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Proof. 1. Suppose that D =
∑

i di · vi. Then:

Ta(Tb(D)) = Ta

(∑
i

(bdi + b− 1) · vi

)
=

∑
i

(a(bdi + b− 1) + a− 1) · vi

=
∑
i

(abdi + ab− a+ a− 1) · vi

=
∑
i

(abdi + ab− 1) · vi

= Tab(D).

2. Let a > 0 and D,H ∈ Div(G), then

Ta(D +H) = a(D +H) + (a− 1)I

= aD + aH + (a− 1)I

= Ta(D) + aH.

3. Let D =
∑

i di · vi ∈ Div(G) and a > 0. Since Ta(D) =
∑

i(adi + a− 1) · vi, we

have

dTa(D))e ≥ 0 ⇔ adi + a− 1 > −1 for each i

⇔ di > −1 for each i

⇔ dDe ≥ 0.

4. Suppose |D|G 6= ∅. Then there is a H ∈ PDiv(G) such that dD + He ≥ 0.

Since Ta(D + H) = Ta(D) + aH and aH ∈ PDiv(aG), by part (3) we have

dTa(D) + aHe ≥ 0 and thus |Ta(D)|aG 6= ∅.

The converse is an identical argument.

5. Let D′ = D − E; then from (4), |D′|G 6= ∅ ⇔ |Ta(D′)|aG 6= ∅ where Ta(D
′) =

Ta(D − E) = Ta(D)− aE.
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Corollary 2.10. h0aG(Ta(D)) = ah0G(D)

Proof. Since a > 0, from Lemma 2.9 (5) we have

h0aG(Ta(D)) = min
E′∈Div(aG)

{deg(E ′) | E ′ ≥ 0, |Ta(D)− E ′|aG = ∅}

= min
E∈Div(G)

{deg(aE) | aE ≥ 0, |Ta(D)− aE|aG = ∅}

= a

(
min

E∈Div(G)
{deg(E) | E ≥ 0, |Ta(D)− aE|aG = ∅}

)
= a

(
min

E∈Div(G)
{deg(E) | E ≥ 0, |D − E|G = ∅}

)
= ah0G(D).

Lemma 2.11. Let D be an R-divisor. If a > 0 with a ∈ R then the following hold:

1. KaG = Ta(KG) + (a− 1)I

2. KaG − Ta(D) = Ta(KG −D)

3. deg(Ta(D)) = a deg(D) + (a− 1)(n)

4. gaG = agG + (a− 1)(n− 1).

Proof. 1. Since KaG =
∑

i(a deg(vi)− 2) · vi, we have

Ta(KG) = Ta(
∑
i

(deg(vi)− 2) · vi)

= a
∑
i

(deg(vi)− 2) · vi +
∑
i

(a− 1) · vi

=
∑
i

(a deg(vi)− 2a+ a− 1) · vi

=
∑
i

(a deg(vi)− a− 1) · vi

= KaG − (a− 1)I.
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2.

KaG − Ta(D) = Ta(KG) + (a− 1)I − Ta(D)

= aKG + (a− 1)I + (a− 1)I − aD − (a− 1)I

= a(KG −D) + (a− 1)I

= Ta(KG −D).

3.

deg(Ta(D)) = deg(aD + (a− 1)I)

= a deg(D) + (a− 1) deg(I)

= a deg(D) + (a− 1)(n).

4.

gaG =
∑
i

apij − n+ 1

= a
∑
i

pij − an+ a+ (a− 1)n+ 1− a

= agG + (a− 1)(n− 1).

2.5 Reduction to Z-graphs

Theorem 2.12. Let a > 0; then

h0G(D)− h0G(KG −D) = deg(D)− gG + 1 (2.13)

if and only if

h0aG(Ta(D))− h0aG(KaG − Ta(D)) = deg(Ta(D))− gaG + 1. (2.14)
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Proof. Let a > 0. Multiplying (2.13) by a, we have

ah0G(D)− ah0G(KG −D) = a deg(D)− agG + a.

The left side of this equation is equal to

h0aG(Ta(D))− h0aG(Ta(KG −D)) = h0aG(Ta(D))− h0aG(KaG − Ta(D))

using Corollary 2.10 and Lemma 2.11 (2). The right side of the equation is

deg(Ta(D))− (a− 1)(n)− gaG + (a− 1)(n− 1) + a = deg(Ta(D))− gaG + 1

using Lemma 2.11 (3) and (4). This proves that (2.13) implies (2.14); the converse is

identical.

Corollary 2.15. Suppose that the Riemann-Roch Theorem 2.1 is true for connected

Z-graphs. Then the Riemann-Roch Theorem is true for connected Q-graphs.

Proof. Given a connected Q-graph G and a Q-divisor D on it, there is an integer

a > 0 such that aG is a connected Z-graph and Ta(D) is a Z-divisor. Therefore

by hypothesis, the Riemann-Roch statement (2.14) holds. Hence by Theorem 2.12,

(2.13) holds, which is the Riemann-Roch theorem for D on G.

We now have the ingredients to prove Theorem 2.1.

Proof. First, we note again that the Riemann-Roch Theorem of [3] is equivalent to the

Riemann-Roch theorem for connected Z-graphs in our terminology. Therefore, using

Corollary 2.15, we conclude that the Riemann-Roch Theorem is true for connected

Q-graphs. Then, using Proposition 2.8, we conclude that Riemann-Roch holds for

connected R-graphs.

Finally, Proposition 2.5 finishes the proof of the Riemann-Roch theorem for divi-

sors on arbitrary R-graphs, for any subring R ⊂ R.
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2.6 Conclusions

An independent proof of Theorem 2.1 that does not depend on [3] may be possible

using properties of linear systems divisors on R-graphs developed in Chapter 4. This

was the original motivation for developing the theory of sandpiles on R-graphs in

Chapter 3.

One of the most important observations we made in extending the theory of linear

systems to edge-weighted graphs was to note that the divisor (−1,−1, . . . ,−1) plays

the role of the origin in a sense. This is apparent in the definition of an effective

divisor being dDe ≥ 0, which is equivalent to D > −1. As we will see in Chapters

2 and 3, using the −1-point is in fact what allows the theory to go through and be

consistent with the integral theory for the related sandpiles and linear systems over

R on edge-weighted graphs.
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Chapter 3

Sandpiles on R-graphs

3.1 Introduction

Biggs [5] showed that the certain configurations of a chip-firing game on a graph led to

a group, which he called the critical group of a graph. Earlier work by Dhar [10] and

later in [11], referred to such configurations as stable sandpile configurations, after

the abelian sandpile model introduced in [2]. In the sandpile model, sand particles

located on the vertices are toppled one vertex at a time until the number of particles

is less than a critical number, usually the degree of the vertex. When no more sand

particles can be toppled, the configuration is called stable. We extend the stable

sandpile model to edge-weighted graphs over a subring R of the reals, and consider a

different method of toppling where multiple vertices can be toppled concurrently.

Let R be any subring of the reals and G be a connected edge-weighted graph over

R with vertex set V = {v0, v1, . . . , vn} and weight set W = {wij | i, j = 0, . . . , n}

where each wij ∈ R. Multiple edges and loops are not allowed, and we set wij = 0 if

vi and vj are not connected; otherwise, wij > 0. Note that wii = 0. We will define

the degree of a vertex vj to be

deg(vj) =
n∑
i=0

wij
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and the parameter g (the genus of the graph) to be

g =
∑
i<j

wij − n.

Note that if R = Z, these definitions coincide with those of a multigraph where the

number of edges connecting vi andvj is wij.

Define V0 = V −{v0}, where v0 will be called a sink. the choice of v0 to be the sink

is arbitrary, and is used for notational convenience. A sandpile on G is a function

s : V0 → R that satisfies ds(v)e ≥ 0, or equivalently s(v) > −1, for each v ∈ V0.

A singleton toppling Ti for i ∈ {1, . . . , n} acts on sandpile s by

Ti(s)(vj) =

 s(vj)− deg(vj) if i = j

s(vj) + wij if j 6= i.

If s is such that s(v) > deg(v) − 1 for each v ∈ V0, we say that s is full ; if s(v) ≤

deg(v) − 1 for each v ∈ V0, we say that s is stable. If s is full, any toppling Ti,

i ∈ {1, . . . , n}, can act on s since Ti(s)(v) > −1 for each v ∈ V0. Similarly, if s is

stable, no singleton toppling Ti can act on s since Ti(s)(vi) ≤ −1 for each i. For

R = Z, these definitions are consistent with those for chip-firing and sandpiles on

multigraphs such as in [5] and [11].

Let I ⊂ {1, . . . , n} be nonempty. The subset toppling TI acts on s by

TI(s)(vj) :=

 sj − deg(vj) +
∑

i∈I wij if j ∈ I

sj +
∑

i∈I wij if j /∈ I.

Paoletti [16] refers to this as cluster-toppling.

We can extend subset toppling to a multiset of {1, . . . , n} by choosing coefficients

c(v) ∈ Z+ for each v ∈ V0 (where Z+ = {n ∈ Z | n ≥ 0}); the corresponding multiset

toppling T is then

T :=
n∑
i=1

c(vi)Ti.

which acts on sandpile s by

T (s)(vj) = s(vj)− c(vj) deg(vj) +
n∑
i=0

c(vi)wij.
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Since a singleton or subset toppling is a multiset toppling, we will use the term

toppling to mean a multiset toppling. A toppling T =
∑n

i=1 c(vi)Ti is called allowable

on a sandpile s if T (s)(v) > −1 for each v ∈ V0. If no multiset topplings are allowable

on a sandpile s, it is called superstable.

3.2 Superstable Sandpiles

It is clear that if s is superstable, no subset topplings are allowable on s. However, it

is possible for s to be stable but not superstable. For example, consider a graph with

n = 2 and w01 = w02 = w12 = 1. The sandpile s with s(v1) = s(v2) = 1 is stable, but

not superstable since T{1,2} is allowable on s.

Lemma 3.1. A sandpile s is superstable if and only if no subset topplings are allow-

able on s.

Proof. Since s superstable implies that no subset topplings are allowable, we need

only show the converse is true.

Suppose s is not superstable. From the definition of an allowable toppling, it

follows that there is a c : V0 → Z+ that is not identically zero such that

s(vj) > c(vj) deg(vj)−
n∑
i=1

c(vi)wij − 1

for each j ∈ {1, . . . , n}. Let α = max{c1, . . . , cn} and set (b1, . . . , bn) ∈ Zn+ as follows:

bi =

 1 if ci = α

0 otherwise.

We claim that

s(vj) > bj deg(vj)−
n∑
i=1

biwij − 1

for each j ∈ {1, . . . , n}.

If bj = 0, we have

bj deg(vj)−
n∑
i=1

biwij − 1 = −
n∑
i=1

biwij − 1 ≤ −1 < s(vj).
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Let Aj = {i > 0 | wij > 0 and ci < α}, Bj = {i > 0 | wij > 0 and ai = α}. If bj = 1,

then cj = α and

s(vj) > cj deg(vj)−
n∑
i=1

ciwij − 1

= α deg(vj)−
∑
i∈Aj

ciwij − α
∑
i∈Bj

wij − 1

= α(w0j +
∑
i∈Aj

wij +
∑
i∈Bj

wij)−
∑
i∈Aj

ciwij − α
∑
i∈Bj

wij − 1

= αw0j +
∑
i∈Aj

(α− ci)wij − 1

≥ w0j +
∑
i∈Aj

wij − 1.

Also, we have

bj deg(vj)−
n∑
i=1

biwij = deg(vj)−
∑
i∈Bj

wij

= w0j +
∑
i∈Aj

wij +
∑
i∈Bj

wij −
∑
i∈Bj

wij

= w0j +
∑
i∈Aj

wij

thus s(vj) > bj deg(vj)−
∑n

i=1 biwij − 1 for each j = 1, . . . , n. Since T =
∑n

i=1 bjTj is

a subset toppling, s has an allowable subset toppling.

Lemma 3.2. If a sandpile s is superstable, then

∑
v∈V0

s(v) ≤ g,

with equality if and only if there exists a permutation (j1, j2, . . . , jn) of (1, 2, . . . , n)

such that

s(vjk) =
k−1∑
i=0

wjijk − 1

for each k = 1, . . . , n, where j0 = 0.

Proof. Suppose that s is superstable, then by Lemma 3.1 all subset topplings TI ,

I ⊂ {1, . . . , n}, are not allowable on s. This means that for each I, there exists a
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j ∈ I such that

s(vj) ≤ deg(vj)−
∑
i∈I

wij − 1 =
∑
i/∈I

wij − 1. (3.3)

Suppose that I = I0 = {1, . . . , n}, and that that (3.3) is satified for j = j1 ∈ I0, then

s(vj1) ≤
∑
i/∈I0

wij1 − 1 = w0j1 − 1.

Now let I = I1 = I0 − {j1}, then (3.3) is satified for some j2 ∈ I1 so that

s(vj2) ≤
∑
i/∈I1

wij2 − 1 = w0j2 + wj1j2 − 1.

Similarly, for I = I2 = I1 − {j2}, (3.3) is satisfied for j = j3 and

s(vj3) ≤
∑
i/∈I2

wij3 − 1 = w0j3 + wj1j3 + wj2j3 − 1.

Continuing this process, set j0 = 0 and let Ik = Ik−1−{jk} for k = 1, . . . , n−1 where

jk is the j satisying (3.3) for Ik−1, and we have in general

s(vjk) ≤
k−1∑
i=0

wjijk − 1. (3.4)

Note that the resulting n-tuple (j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n). If we

rewrite (3.4) as

s(vjk)−
k−1∑
i=0

wjijk + 1 ≤ 0

and sum over all k, we have

n∑
k=1

(
s(vjk)−

k−1∑
i=0

wjijk + 1

)
=

n∑
j=1

s(vj)−
∑
i<j

wij + n ≤ 0

or equivalently ∑
v∈V0

s(v) ≤
∑
i<j

wij − n = g.

For the second part, note that if

s(vjk) =
k−1∑
i=0

wjijk − 1
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holds for some (j1, . . . , jn) at each k ∈ {1, . . . n}, then

∑
v∈V0

s(v) = g (3.5)

follows directly. For the other direction, assume that (3.5) holds. It then follows from

above that

s(vjk) =
k−1∑
i=0

wjijk − 1

for some permutation (j1, . . . , jn) of (1, . . . , n).

3.3 Allowable Topplings

We now show that the maximum of two allowable topplings is allowable.

Lemma 3.6. Let s be a sandpile. If T =
∑n

i=1 c(vi)Ti and T ′ =
∑n

i=1 c
′(vi)Ti are

allowable topplings on s, then

max(T, T ′) =
n∑
i=1

max(c(vi), c
′(vi))Ti

is also an allowable toppling on s.

Proof. Since T (s)(v) > −1 and T ′(s)(v) > −1 for each v ∈ V0, we have

s(vj) >
n∑
i=1

(c(vj)− c(vi))wij + c(vj)w0j − 1

and

s(vj) >
n∑
i=1

(c′(vj)− c′(vi))wij + c′(vj)w0j − 1.

If max(c(vj), c
′(vj)) = c(vj), then

s(vj) >
n∑
i=1

(c(vj)−max(c(vi), c
′(vi)))wij + c(vj)w0j − 1

and similarly if max(c(vj), c
′(vj)) = c′(vj),

s(vj) >
n∑
i=1

(c′(vj)−max(c(vi), c
′(vi)))wij + c′(vj)w0j − 1.
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Combining these, we have

s(vj) >
n∑
i=1

(max(c(vj), c
′(vj))−max(c(vi), c

′(vi)))wij + max(c(vj), c
′(vj))w0j − 1

for each j ∈ {1, . . . , n}, thus max(T, T ′) is allowable on s.

Let x : V0 → Frac(R) be an arbitrary function, and ∆0 be the reduced Laplacian

of G given by

∆0x(vj) = x(vj) deg(vj)−
n∑
i=1

x(vi)wij

where j ∈ {1, . . . , n}. For x, y : V0 → Frac(R), we will use the following notation:

x ≥ y ⇔ x(v) ≥ y(v) for all v ∈ V0

and similarly with a scalar a ∈ Frac(R)

x ≥ a⇔ x(v) ≥ a for all v ∈ V0.

Let s be any sandpile. The toppling associated with c : V0 → Z+ is then allowable

on s if and only if s+ 1 > ∆0c.

Lemma 3.7. Let x, y : V0 → Frac(R).

1. If ∆0x ≥ 0, then x ≥ 0.

2. The inverse ∆−10 exists, and if y ≥ 0 then ∆−10 y ≥ 0.

3. If x ≥ 0, y ≥ 0 and y ≥ ∆0x, then ∆−10 y ≥ x.

Proof. (1): Suppose that ∆0x ≥ 0 and and x(vi) < 0 for some i. Let β = min{x(v) | v ∈

V0} and set

Kj = {i | wij > 0 and 0 < i ≤ n}.

We can then write

deg(vj) = w0j +
∑
i∈Kj

wij
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and

∆0x(vj) = x(vj) deg(vj)−
∑
i∈Kj

x(vi)wij ≥ 0.

If x(vj) = β, then w0j = 0 and

x(vj) deg(vj) =
∑
i∈Kj

x(vi)wij

thus x(vi) = β for each i ∈ Kj. Since G is finite and connected, we have w0k = 0 for

each 1 ≤ k ≤ n, which implies that the sink v0 is not connected to any other vertex;

thus by contradiction, x(v) ≥ 0 for all v ∈ V0.

(2): Assume (1) holds, and ∆0x(v) = 0 for each v ∈ V0 for some x : V0 → Frac(R).

Since ∆0x ≥ 0 ⇒ x ≥ 0 and ∆0x = 0 ⇒ ∆(−x) = 0, we have x = 0. Since

∆00 = 0, ker(∆0) = {0} and thus ∆0 has an inverse. Suppose y = ∆0x ≥ 0. By (1),

∆−10 y = x ≥ 0.

(3): Since (2) ⇒ ∆−10 y ≥ 0 whenever y ≥ 0, and y ≥ ∆0x, y −∆0x ≥ 0 thus we

have ∆−10 (y −∆0x) = ∆−10 y − x ≥ 0, and ∆−10 y ≥ x.

Let A(s) = {c : V0 → Z+ |
∑n

i=1 c(vi)Ti allowable on s}. Note that if s is super-

stable, then 0 ∈ A(s) 6= ∅.

Lemma 3.8. For any sandpile s, there exists a function b : V0 → Frac(R) such that

b ≥ c for all c ∈ A(s).

Proof. Let c ∈ A(s), then s + 1 > ∆0c, where s + 1 > 0. By Lemma 3.7, we have

∆−10 s ≥ c, thus set b = ∆−10 s.

Lemma 3.9. For each sandpile s, there is a unique c ∈ A(s) such that s − ∆0c is

superstable.

Proof. By Lemmas 3.6 and 3.8, there is a unique maximal c ∈ A(s). If s−∆0c is not

superstable, then there is a d ∈ A(s−∆0c) and s−∆0c+ 1 > ∆0d. Then, we would

have s + 1 > ∆0(c + d), which means that c + d ∈ A(s). Since d 6= 0, c cannot be

maximal in A(s), which leads to a contradiction. Hence s−∆0c is superstable.
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3.4 Superstable Group

Let c ∈ A(s) be the unique maximal element in Lemma 3.9 and define [s] := s−∆0c.

If r and s are any two sandpiles, we write r ∼ s, if and only if [r] = [s]. Let S be the

set of all superstable sandpiles (on G). For any two superstable sandpiles r, s ∈ S,

define r ⊕ s to be [r + s].

Define the set of zero sandpiles to be

Z = {s | [s] = 0} = {∆0c | c : V0 → Z+}.

Lemma 3.10. Given any sandpile s, there is a ŝ ∈ Z such that ŝ ≥ s.

Proof. Let C0 = {x : V0 → R) | ∆0x ≥ 0}, Cs = {x : V0 → R | ∆0x ≥ s}, and

K = {x : V0 → R | x ≥ 0}. By Lemma 3.7, Cs ⊂ C0 ⊂ K. If x, y ∈ C0 and α, β ∈ R

with α, β ≥ 0, then since ∆0 is linear

∆0(αx+ βy) = α∆0x+ β∆0y ≥ 0

and thus αx+βy ∈ C0 (which is a cone), and since ∆0 is injective C0 has an interior.

Hence Cs is a nondegenerate affine cone in Rn and Cs ∩ (Z+)n contains an infinite

number of integer lattice points. Let c ∈ Cs ∩ (Z+)n such that ∆0c ≥ s and set

ŝ = ∆0c ∈ Z.

Theorem 3.11. The set of superstable sandpiles S form a group under ⊕.

Proof. Addition on S is clearly commutative and closed. The zero sandpile 0 is the

unit for S since s⊕ 0=s for all s ∈ S.

Let q, r, s ∈ S. By Lemma 3.9 there are a, b : V0 → Z+ such that q⊕r = q+r−∆0a

and (q ⊕ r) ⊕ s = (q ⊕ r) − ∆0b. Similarly, there are c, d : V0 → Z+ such that

r ⊕ s = r + s−∆0c and q ⊕ (r ⊕ s) = q + (r ⊕ s)−∆0d. Since we have

(q ⊕ r)⊕ s = (q + r −∆0a) + s−∆0b = q + r + s−∆0(a+ b)

and also

q ⊕ (r ⊕ s) = q + (r + s−∆0(c))−∆0(d) = q + r + s−∆0(c+ d),
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the fact that [q + r + s] is unique implies that a+ b = c+ d, hence ⊕ is associative.

Let s ∈ S. From Lemma 3.10, let ŝ ∈ Z be such that ŝ ≥ s, and set s′ = [ŝ− s].

Since s′ ⊕ s = [ŝ− s+ s] = [ŝ] = 0, s′ ∈ S is the inverse of s.

3.5 Conclusions

In Chapter 4 we show that the superstable group is isomorphic to the graph Jacobian

Jac(G). Biggs [5] showed that the critical group of the graph, which is equivalent to

the abelian sandpile group of Dhar [10], is also isomorphic to Jac(G). Thus for R = Z,

the superstable group and the critical group are isomorphic. These two groups do

not generally have the same indentity, however, since the superstable identity is the

zero sandpile, while the critical group identity is almost always not the zero sandpile

(see for example [6]).

For a general subring R, however, it appears that we need to show that the set

of stable sandpiles obtained by a sequence of singleton topplings from a full sandpile

(where each s(v) > deg(v) − 1) form a group that is isomorphic to the superstable

group. This would then generalize the critical group to R-valued sandpiles on R-

graphs.
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Chapter 4

Applications to Linear Systems

4.1 Introduction

In this chapter we apply results from Chapter 3 to linear systems of divisors on

graphs. We will use the notation of Chapter 3, where R is a subring of the reals, G

is a R-graph with vertices V (G) = {v0, . . . , vn} and edge weights {wij}.

Recall that a divisor D ∈ Div(G) on the R-graph G is a function D : V → R,

which we can write as the formal sum

D =
n∑
i=0

D(vi) · vi.

The degree of D is defined as deg(D) =
∑

v∈V D(v), and the divisors of degree zero

are denoted Div0(G). The principal divisors PDiv(G) are generated by {Hj | j =

0, . . . , n} over Z, where

Hj = deg(vj) · vj −
∑
i 6=j

wij · vi.

We can extend a sandpile s from V0 to V by defining

s(v0) = −
n∑
i=1

s(vi),

creating a natural map from sandpiles to divisors of degree zero on G. Similarly, a
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multiset toppling T =
∑n

i=1 c(vi)Ti applied to s corresponds to the divisor

(s(v0) +
n∑
j=1

c(vj)w0j)) · v0 +
n∑
j=1

(s(vj)− c(vj) deg(vj) +
n∑
i=1

c(vi)wij) · vj

which can also be written as

(
n∑
i=0

s(vi) · vi)− (
n∑
j=1

c(vj)Hj).

Note that the second term
∑n

j=1 c(vj)Hj ∈ PDiv(G), thus multiset toppling corre-

sponds to translation of a divisor by a principal divisor.

4.2 Graph Jacobian

The graph Jacobian Jac(G) (or degree zero Picard group Pic0(G)) is the quotient

Div0(G)/PDiv(G). The correspondence between multiset toppling and principal di-

visors can be used to show that the superstable sandpile group S is isomorphic to

Jac(G).

Theorem 4.1. S ∼= Div0(G)/PDiv(G).

Proof. Define φ : S → Div0(G)/PDiv(G) by s 7→
∑n

i=0 s(vi) · vi + PDiv(G) as defined

above. If s, s′ ∈ S, we clearly have φ(s+ s′) = φ(s) + φ(s′) so φ is a homomorphism.

Choose D ∈ Div0(G). By Lemma 3.10, choose ŝ ∈ Z such that

ŝ ≥ |min
i
{D(v) | v ∈ V0}|

and set s(v) = ŝ(v) +D(v) for each v ∈ V0. Then s(v) ≥ 0 for each v ∈ V0 and there

is a unique c : V0 → Z+ such that [s] = s−∆0c ∈ S. Since φ(ŝ) = 0 + PDiv(G), we

have φ([s]) = D + PDiv(G), and thus φ is surjective.

Let s ∈ kerφ, and suppose that s 6= 0. Since φ(s) = PDiv(G), we must have∑n
i=0 s(vi) · vi ∈ PDiv(G), so s = ∆0a for some a : V0 → Z+. By Lemma 3.7, s ≥ 0

implies that a ≥ 0, and thus either s is not superstable or s = 0, which leaves us with

kerφ = 0 and φ injective.
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It follows directly from Theorem 4.1 that the superstable sandpile group S is

independent (up to isomorphism) of choice of sink v0.

Corollary 4.2. Up to isomorphism, S is independent of choice of sink v0 in V (G).

Up to this point, we have assume v0 to be the sink, and our notation has reflected

this assumption by using the subscript 0 for V0 = V (G)−{v0} and ∆0 for the reduced

laplacian. We will generally continue using v0 as the sink for notational convenience,

but Corollary 4.2 implies that the sandpile results hold for any sink in V (G). Thus,

in general any vk could the sink, with Vk = V (G) − {vk}, etc. We will exploit this

symmetry in the next section.

4.3 Empty Linear Systems

Recall that two divisors D and D′ are linearly equivalent, written D ∼ D′, if D−D′ ∈

PDiv(G), and the linear system associated with D is

|D| = {D′ | D′ ∼ D,D′ > −1}.

We aim to describe in this section the divisors whose linear system is empty.

Define the set of divisors with empty linear systems as

E(G) = {D ∈ Div(G) | |D| = ∅},

and let

N (G) = {D ∈ Div(G) | deg(D) = g − 1, |D| = ∅} ⊂ E(G).

Lemma 4.3. Let D ∈ Div(G). There is a unique D0 ∈ Div(G) such that D0 ∼ D

and the sandpile defined by D0(v) for v ∈ V0 is superstable.

Proof. Define the sandpile s on G as follows: set

α = min
v∈V0
{D(v)}
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and z ∈ Z such that z(v) ≥ max{0,−α}, then let

s′(v) = D(v) + z(v)

for v ∈ V0, thus s′(v) ≥ 0 for each v ∈ V0. Now, let s = [s′] = s′ − z′ where z′ ∈ Z

and set

β = D(v0) +
n∑
i=1

z′(vi)− z(vi)

so that s is the unique superstable sandpile (by Lemma 3.9). Define the divisor D0

by

D0(v) =

 β v = v0

s(v) v ∈ V0
where we have D ∼ D0.

We will call such a divisor D0 in Lemma 4.3 the superstable divisor corresponding

to D. Such divisors are referred to as reduced in [3], and are an example of a so-called

G-parking function (see [17]).

An immediate application of Lemma 4.3 gives a sufficient condition for a linear

system of a divisor to be nonempty.

Lemma 4.4. Let D ∈ Div(G). If deg(D) > g − 1 then |D| 6= ∅.

Proof. Let D be a divisor with deg(D) > g− 1, and let D0 be the unique superstable

divisor such that D0 ∼ D. Since D0 restricted to V0 is a superstable sandpile by

Lemma 3.2 ∑
v∈V0

D0(v) ≤ g.

By assumption we have

deg(D) = deg(D0) = D0(v0) +
∑
v∈V0

D0(v) > g − 1,

or equivalently

D0(v0) > −
∑
v∈V0

D0(v) + g − 1,

thus D0(v0) > −1. Since D0(v) > −1 for each v ∈ V0, |D| 6= ∅.
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Lemma 4.5. If D0 be a superstable divisor, then |D0| 6= ∅ if and only if D0(v0) > −1.

Proof. If D0(v0) > −1, then D0(v) > −1 for all v ∈ V and |D0| 6= ∅. Now assume

that |D0| 6= ∅, thus there is a P ∈ PDiv(G) such that D0 + P > −1. Since D0

restricted to V0 a superstable sandpile, there are no allowable topplings on V0, hence

the only P ∈ PDiv(G) which would satisfy D0 + P > −1 must have P (v) ≥ 0 for all

v ∈ V0. Since deg(P ) = 0, P (v0) ≤ 0, thus we must have D0 > −1 in order for |D0|

to be nonempty.

Finally, we turn our attention to the subset of empty divisors N (G).

Lemma 4.6. If D0 is a superstable divisor with deg(D0) = g − 1 and |D0| = ∅, then

D0(vjk) =

 −1 k = 0∑k−1
i=0 wjijk − 1 k > 0

where j0 = 0 and (j1, . . . , jn) is a permutation of (1, . . . , n).

Proof. Since D0 is superstable with |D0| = ∅, by Lemma 4.5 D0(v0) ≤ −1, thus by

Lemma 3.2 we then have
∑n

i=1D0(vi) = g, D0(v0) = −1 and

D0(vjk) =
k−1∑
i=0

wjijk − 1

for some permutation (j1, . . . , jn) of (1, . . . , n).

We will denote the set of such superstable divisors by

N0(G) = {D ∈ N (G) | D is superstable }.

Note that |N0(G)| ≤ n!. A direct consequence of Lemma 4.6 then gives us the

composition of N (G), which is a lattice generated by N0(G).

Lemma 4.7. N (G) = {D ∈ Div(G) | D ∼ D0 where D0 ∈ N0(G)}.

Proof. IfD ∈ N (G), then by Lemma 4.3 there is aD0 ∈ N0(G) such thatD ∼ D0.
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The canonical divisor on G is given by K =
∑

v(deg(v)− 2) · v. We shall see that

N (G) is invariant under the map D 7→ K −D.

Lemma 4.8. D ∈ N (G) if and only if K −D ∈ N (G).

Proof. Since any D ∈ N (G) can be written as D = N0 + P for some P ∈ PDiv(G),

it is sufficient to assume D ∈ N0(G).

Assume that D is superstable and that D = N0 for some N0 ∈ N0(G). By

Lemma 4.6 N0(vj0) = −1 and N0(vjk) =
∑k−1

i=0 wjijk − 1 for some permutation

(j1, . . . , jn) of (1, . . . , n) with j0 = 0. Since K(vi) =
∑n

j=0wij − 2, for k > 0 we

have

(K −D)(vjk) =
n∑
i=0

wjijk − 2−
k−1∑
i=0

wjijk + 1 =
n∑
i=k

wjijk − 1

and for k = 0

(K −D)(vj0) =
n∑
i=0

wjij0 − 1.

Note that (K −D)(vjn) = −1. Let lk = jn−k for k = 0, . . . , n. We then have

(K −D)(vl0) = −1

and

(K −D)(vlk) =
k∑
i=0

wlilk − 1.

Thus, since (l1, . . . , ln) = (jn−1, . . . , j0) is a permutation of n-tuple derived from the

vertex index space Vjn , and by Corollary 4.2 K −D ∈ Njn(G) ⊂ N (G).

Now assume that K − D ∈ N0(G). Let D′ = K − D, and from above we have

K −D′ = D ∈ N (G).

We now give a description of the empty set E(G).

Theorem 4.9. If D ∈ E(G), then D ≤ N for some N ∈ N (G).

Proof. Let D ∈ Div(G) with |D| = ∅. By Lemma 4.3, there is a unique superstable

divisor D0 ∼ D. Since |D0| = ∅, Lemma 4.5 implies that D0(v0) ≤ −1. By the proof
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of Lemma 3.2, we have that (3.4) holds for each D0(v) where v ∈ V0, so for some

permutation (j1, . . . , jn) of (1, . . . , n),

D0(vjk) ≤
k−1∑
i=0

wjijk − 1

and thus D0 ≤ N0 for one of the N0 ∈ N0(G). Let P ∈ PDiv(G) such that D =

D0 + P , and let N = N0 + P . Then we have D ≤ N where N ∈ N (G).

The set of divisor with empty linear systems is thus generated by the set of

superstable divisors of degree g−1 with empty linear systems. Over R, the boundary

of this set is a polyhedral surface in (n+ 1)-space.

As an example, consider a graph G with n = 1 (two vertices) and edge weight p.

Let D = (a, b) ∈ Div(G), then following the example in §2.1, we have |D| = ∅ if and

only if d(1 + a)/pe + d(1 + b)/pe < 2. We can use this condition to plot the empty

set (the gray region) in R2 as shown below for the two-vertex graph with p = 1. The

center point of the plot is (0, 0) with unit grid spacing in both directions. The empty

set E(G) is then the set of all points (a, b) such that a ≤ np− 1 and b ≤ −np+ p− 1

for all n ∈ Z.

For a three vertex graph with n = 2, suppose the edge-weights are p01 = p, p12 = q,

and p02 = r. The genus is g = p+q+r−2, and the two superstable divisors of degree
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g − 1 with empty linear systems are (−1, p− 1, q + r − 1) and (−1, p+ q − 1, r − 1).

These two points generate a lattice in the plane of divisors of degree g − 1 via linear

equivalence.

By defining the empty set geometrically, we can define the dimension h0(D) as

the minimum distance in Rn+1 from D to E(D). Define the distance function d :

Div(G)×Div(G)→ R to be

d(D,D′) =
∑

v∈V (G)

|D(v)−D(v′)|

for D,D′ ∈ Div(G) ∼= Rn+1.

Lemma 4.10. For any D ∈ Div(G),

h0(D) = min{d(D,E) | E ∈ E(G), D − E ≥ 0}.

Proof. The result follows directly from the definition of h0(D):

h0(D) = min{deg(D − E) | D − E ≥ 0, |E| = ∅}

= min{d(D,E) | E ∈ E(G), D − E ≥ 0}.

4.4 Conclusions

Perhaps the most interesting result in this chapter is that the set of divisors of degree

g − 1 with empty linear systems is generated by a known finite set of size ≤ n! by

Lemma 4.6. This enables the set of divisors with empty linear systems to be defined

by cones from the points in N (G). Exploiting the symmetry of the N (G) set may

lead to an independent proof of Theorem 2.1. Also, knowing what the points in N (G)

are allows the computation of h0(D) for a fixed G, which we will use for Z-graphs in

Chapter 5.
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Chapter 5

Compatible Line Bundles

5.1 Introduction

In this chapter we wish to address the following question: Given a n-vertex Z-graph

G with an effective divisor D = (d1, . . . , dn), can we find a nodal curve XG and a

line bundle LD with multidegree (d1, . . . , dn) on XG such that the dimension of LD

matches h0(D)?

Consider a Z-graph G with two vertices v1 and v2 joined by p edges. G corre-

sponds to the curve XG = X1 ∪X2 where X1, X2
∼= P1, with X1 and X2 intersecting

transversely p times. If D = (d1, d2) ∈ Div(G) is an effective divisor, let L1,L2 be line

bundles on X1,X2 (respectively) with degree d1, d2. The kth intersection condition

for the bundles L1 and L2 on X1 and X2 is

f1(q12k) = λf2(q21k)

where q12k and q21k are the respective coordinates of the kth intersection point with

1 ≤ k ≤ p, f1 and f2 are polynomials of degree d1 and d2, and λ is a nonzero

parameter. Let fi(x) =
∑d1

j=0 aijx
j for i = 1, 2, and the intersection condition for the

kth point is

a10 + a11q12k + · · ·+ a1d1q
d1
12k = λ

(
a20 + a21q21k + · · ·+ a2d2q

d2
21k

)
. (5.1)
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Now assume G is a Z-graph with n vertices V (G) = {v1, . . . , vn), and pij ≥ 0

edges joining vertices vi and vj. Set m =
∑

i<j pij to be the total number of edges.

The corresponding nodal curve is XG = ∪ni=1Xi.

Suppose D =
∑n

i=1 di · vi is an effective divisor on G, with corresponding line

bundle LD on XG with multidegree (d1, . . . , dn). Let Adij be the Vandermonde matrix

Adij =


1 qi,j,1 q2i,j,1 · · · qdi,j,1

1 qi,j,2 q2i,j,2 · · · qdi,j,2
...

...
...

...

1 qi,j,pij q2i,j,pij · · · qdi,j,pij


corresponding to the polynomial fi(x) = ai,0 + ai,1x + · · · + ai,dix

di evaluated at the

points qijk for 1 ≤ k ≤ pij. Note that if we assume the qijk are distinct, this matrix

has full rank.

Let fi be the coefficient vector

fi =


ai,0

ai,1
...

ai,di


and set λij = (λij1, . . . , λijpij), the row vector of gluing data, with each λijk ∈ C∗.

The intersection condition (5.1) for Xi ·Xj can then be written as

Adiij fi − λijA
dj
ji fj.

For the entire graph G, we construct by concatenation the coefficient vector

f =


f1

f2
...

fn
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and we can represent the intersection conditions by the following block matrix

M =



Ad112 −λ12Ad221 0 · · · 0 0

Ad113 0 −λ13Ad331 · · · 0 0

...
...

...
...

...

Ad11n 0 0 · · · 0 −λ1nAdnn1
0 Ad223 −λ23Ad332 · · · 0 0

...
...

...
...

...

0 Ad22n 0 · · · 0 −λ2nAdnn2
...

...
...

...
...

0 0 0 · · · A
dn−1

n−1,n −λn−1,nAdnn,n−1


as M f , where 0 above represents the appropriate zero block matrix. Note that the

size of M is m × (deg(D) + n), and that each row has two nonzero blocks and each

column has n − 1 nonzero blocks. The dimension of the linear system can then be

computed using the rank-nullity theorem by

dim(H0(XG, LD)) = deg(D) + n− rank(M). (5.2)

Our aim in this chapter is to describe the conditions on the parameters λ and

intersection coordinates q such that dimension of the bundle on XG matches that of

the dimension of the corresponding divisor D on G, h0(D), which is given by

h0(D) = min{deg(E) | E ∈ Div(G), E ≥ 0 and |D − E| = ∅} (5.3)

as in §2, which is equivalent to the r(D) + 1 in [3].

5.2 Binary Curves

We will begin with a binary curve, which is described by a graph with two vertices

v1 and v2 connected by p edges. The block matrix for the intersection conditions is

M =
(
Ad112 −λAd221

)
where λ = (λ1, . . . , λp).
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Theorem 5.4. Let G be a two vertex graph with p edges, and D = (d1, d2) an effective

divisor on G. If the corresponding intersection points on each component of XG are

equal, that is q12k = q21k for each k = 1, . . . , p , then

max
λ

{
dim(H0(XG, LD))

}
= h0(D).

Proof. Since dim(H0(XG, LD)) = deg(LD) + n− rank(M), the maximum dimension

occurs when M has minimum rank.

If p ≤ max{d1, d2}, each of the Vandermonde matrices Ad112 and Ad221 have rank p.

Then M also has rank p and dim(H0(XG, LD)) = d1 + d2 + 2 − p. Since h0(D) =

deg(D)− p (see the example at the end of §2.1), we have dim(H0(XG, LD)) = h0(D).

If p > max{d1, d2}, we need to determine λk’s such that

M =


1 q121 · · · qd1121 −λ1 −λ1q211 · · · −λ1qd2211
1 q122 · · · qd1122 −λ2 −λ2q212 · · · −λ2qd2212
...

...
...

...
...

...

1 q12p · · · qd112p −λp −λpq21p · · · −λpqd221p


has minimal rank. Since q12k = q21k for each k, if we set λk = λ for each k, M will

have a minimal set of linearly independent columns and have rank max{d1, d2} + 1,

thus

dim(H0(XG, LD)) = d1 + d2 −max{d1, d2}+ 1 = min{d1, d2}+ 1.

Since h0(D) = min{d1, d2}+ 1, we have again dim(H0(XG, LD)) = h0(D).

Note that if q12k 6= q21k for each k, in the case p > max{d1, d2} above, rank(M) =

min{p, d1 + d2} when λk = λ, thus the requirement that the intersection points have

the same coordinates on both components is in general a necessary condition.
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5.3 Ternary Curves

For a three-vertex graph, the intersection condition matrix with the condition qijk =

qjik at each intersection point is

M =


Ad112 −λ12Ad212 0

Ad113 0 −λ13Ad313
0 Ad223 −λ23Ad323


where the λij are again vectors of length pij. We shall see that for ternary curves,

we do not have the nice result as above with binary curves. Consider the following

examples.

Example 5.5. Let p12 = p13 = 1, p23 = 2, with divisor D = 3 · v1 + 0 · v2 + 0 · v3.

Note that this curve is not stable. The corresponding intersection condition matrix is

M =



1 q1 q21 q31 −λ1 0

1 q2 q22 q32 0 −λ2

0 0 0 0 1 −λ3

0 0 0 0 1 −λ4


which has rank 4 for general λ’s and thus

dim(H0(XG, LD)) = 3 + 3− 4 = 2

The graph dimension is h0(D) = 2 for G, so the general line bundle has the correct

dimension. However, with λ1 = λ2 and λ3 = λ4 = 1, M has rank 3 and thus

dim(H0(XG, LD)) = 3 + 3− 3 = 3

and thus

max
λ

{
dim(H0(XG, LD))

}
> h0(D).

Example 5.6. Let G be a three-vertex graph with edges p12 = 1, p13 = p23 = 2 and

again set D = 3 · v1 + 0 · v2 + 0 · v3. This graph corresponds to a stable curve.
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The graph dimension for this graph is h0(D) = 2. For general λ, rank(M) = 5,

thus dim(H0(XG, LD)) = 3 + 3 − 5 = 1. If we set λ13 = λ23, rank(M) = 4 and

dim(H0(XG, LD)) = 2.

Lemma 5.7. If D0 ∈ Div(G) is superstable and effective, then h0(D0) ≤ d1 + 1.

Proof. Assume that v1 is the sink. For D0 to be superstable and effective, we have

d1 ≥ 0

with either

0 ≤ d2 ≤ p12 − 1

0 ≤ d3 ≤ p13 + p23 − 1

or

0 ≤ d3 ≤ p13 − 1

0 ≤ d2 ≤ p12 + p23 − 1.

From [3], we know that we can compute h0(D) by

h0(D) = min{deg+(D′ − ν) | ν ∈ N (G), D′ ∼ D}

where

deg+(D) =
∑
di≥0

di

and N (G) = {D ∈ Div(G) | deg(D) = g − 1, |D| = ∅}. We know from the results of

Chapter 4 that N (G) is generated from N0(G) = {N1, N2} where

N1 = (−1, p12 − 1, p13 + p23 − 1)

N2 = (−1, p12 + p23 − 1, p13 − 1).

Thus, we have

h0(D0) ≤ min{deg+(D0 −N1), deg+(D0 −N2)} ≤ d1 + 1.
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Theorem 5.8. Let G be a three vertex graph with g = 0. If D is an effective divisor

on G, then there is a LD on XG such that h0(D) = dim(H0(XG, LD)).

Proof. A genus zero graph has two edges, and there are three such configurations.

It suffices to show the statement holds for one of the three, so we will choose p12 =

p13 = 1 and p23 = 0. Let D = (d1, d2, d3). The intersection matrix is

M =

 Ad112 −λ12Ad212 0

Ad113 0 −λ13Ad313


where rank(A12) = rank(A13) = 1. It follows that rank(M) = 2, thus

dim(H0(XG, LD)) = deg(D) + 1.

Since g = 0, Riemann-Roch implies that

h0(D) ≥ deg(D) + 1.

Let D0 = (d̄1, d̄2, d̄3) be a superstable divisor such that D ∼ D0 by Lemma 4.3. From

Lemma 5.7, we have

h0(D0) ≤ d̄1 + 1

and since g = 0, this forces d̄2 = d̄3 = 0. We then have

h0(D0) ≤ deg(D0) + 1

and thus

dim(H0(XG, LD)) = h0(D).

There are two types of three-vertex graphs of genus one: the p12 = p13 = p23 = 1

graph, and six variants of p12 = 2, p13 = 1, p23 = 0. We show below that in the first

case, there is a compatible LD for any effective D on G.

Theorem 5.9. Let G be a three vertex graph with one edge connecting each vertex to

the other two vertices. If D is an effective divisor on G, then there is a line bundle

LD on XG such that h0(D) = dim(H0(XG, LD)).
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Proof. The intersection matrix for LD is

M =


Ad112 −λ12Ad212 0

Ad113 0 −λ13Ad313
0 Ad223 −λ23Ad323


where rank(Adkij ) = 1 for each i, j, k since each pij = 1, and thus rank(M) ≤ 3. Also,

M could be of the form 
1 −1 0

1 0 −1

0 1 −1


which has a rank of 2, thus dim(H0(XG, LD)) is either deg(D), or deg(D) + 1 if

rank(M) = 2.

Let D0 ∼ D be superstable, in which case either d2 = 0 and d3 ≤ 1 or d3 = 0

and d2 ≤ 1. Riemann-Roch implies that h0(D) ≥ deg(D). For this configuration,

we have N1 = (−1, 0, 1) and N2 = (−1, 1, 0), and principal divisors P1 = (2,−1,−1)

and P2 = (−1, 2,−1). Let N3 = N1 + P1, N4 = N2 + P1, N5 = N2 − P2 and

N6 = N1 − P1 − P2; collectively, the Ni represent the six permutations of (−1, 1, 0).

Using the argument in Lemma 5.7, we have

h0(D0) ≤ min{deg+(D0 −Nj) | j = 1, . . . , 6}.

Note that if deg(D0) ≥ 1, we have h0(D0) ≤ deg(D0). If deg(D0) = 0, we have

h0(D0) ≤ 1 = deg(D0) + 1, and since |D0| 6= ∅, it is in fact an equality. In this case, a

compatible LD corresponds to the special rank 2 matrix above. For deg(D0) ≥ 1, the

general LD gives the correct dimension, and thus we have h0(D) = dim(H0(XG, LD)).

It seems probable that this is always the case for any three-vertex graph G, and

we have yet to find a counterexample, but proving the general case would seem to

require a different technique than used above.
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5.4 Conclusions

The original motivation of the work in this chapter was to find a way of describing

the (XG, LD) pairs that correspond to a given graph-divisor pair (G,D), where the

dimensions of LD and D match. Ideally, one would prefer to find a family of such

(XG, LD) that can be easily described as with the two-vertex case, but such a de-

scription has been elusive thus far. In fact, although it seems probable, we do not

know that for any (G,D), such a (XG, LD) exists. We conjecture that this is indeed

the case:

Conjecture 5.10. Let G be a connected multigraph. If D is an effective divisor on

G, then there is a line bundle LD on XG such that

h0(D) = dim(H0(XG, LD)).

Immediate future work involves proving the conjecture for ternary curves. Ulti-

mately, beyond proving the conjecture for any (G,D), we would like to understand

much more about the deeper connections between Riemann-Roch theory for graphs

and that of algebraic curves.
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