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Part III, Free Convection

1, Table of Notations

a = radius of a cylinder or of a sphere
b = half-width as defined in the text

B : as defined in the text
C = a numerical constant

Ac = difference in concentrations of vapor at two significant
points, correspouding to A Y

e, = specific heat at constant pressure
E = rate of mass-transfer of vapor per unit area
f, £, f3,=== & functions as defined in the text

g = gravitational acceleration

G

e

strength of point source of heat, as defined in the text.

3
Grashof number for heat transfer = gl A%£ To

Gr

3
Gr' = Grashof number for evaporatimm = L.1r13374314?

h ceefficient of heat transfer
h' = coefficient of vapor transfer
hp = mean value of h

h'p = mean value of L'

k = thermal conductivity
K = vapsr diffusivity

L = a length

n = a constant

Nu = Nusselt number for heat transfer = hy L/k

Nu'= Nusselt number for vapor transfer = hﬁm L/K

P pressure

q rate of heat transfer per unit area
Om = mean value of q
Qh,ys Qh,ds Qyv.us Gy g ¢ 25 defined in the text

r = radial distance in two or three dimensions
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absolute temperature

ambient temperature, absolute scale

. absolute temperature of the surface

Tg = T

longitudinal velocity-component

radial or transverse velocity - component
longitudinal distance

transverse distance

thermal diffusivity = k/@gr

specific weight

difference of specific weights at two significant points
a function of dimensionless parameters

dimensionless parameters

a function of dimensionless parameters or an ordinate
functions of dimensionless parameters

dynamic viscosity

kinematic viscosity = jﬁQ?

3.11159---

density

Prandtl number for heat transfer = 1}44

Prandtle number for evaporation = V /| 1<

the third spherical coordinate

stream-function or Stokes' stream-function

a function of dimensionless parameters
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2. Introduction

When a convectional current is caused by differences in the
specific weight of a substance or a mixture of substances, the
phenomenon is called free convection. Since in free convection the
distribution of wvelocity and that of temperature or moisture are
interdependent, the answer to a particular problem can only be found
by solving the equations of motion and of diffusion simultaneously
in the case of laminar flow, and by systematic experimentation in
the case of turbulent flow, Due to the difficulties introduced by
the non-linearity and simultaneity of the equations in question,
theoretical results in laminar free convection are very few. In the
next section, two theoretical solutions in laminar free convection
will be given, to be followed by experimental results presented in
Section 5. Proposed theoretical solutions are presented in Section L.

3. Theoretical Results in Laminar
Free Convection

Because of the lack of a conclusive theory of turbulence,
theoretical solutions for turbulent free convection are non-existent.
In the laminar case, there exist only two theoretical solutions: one
for the vertical plate by Pohlhausen (230, 1930) and the other for a
point source by €. S. Yih (23, 19L8),

(a) Vertical plate

In 1881, 1. Lorenz (221) dealt with heat transfer from a
vertical surface at a uniform and constant temperature Tg to a
colder gas in contact with it when gravity is the only force acting
on that gas. He correctly recognized that the gas close to the
surface streams straight upwards, that the horizontal velocities

were negligible and that consequently the pressure distribution is
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hydrostatic. This, obviously, is the case of streamline flow on a
vertical wall. He further assumed that the ambient temperature T,
at an infinite distance from the wall was constant, that the physical
constants of the gas are independent of the temperature, and that the
temperature distribution is a function of the distance from the plate
alone. This last assumption has since been proved to be wrong. :

Setting up 2 heat valance for a differential section of the

fluid and integrating, Lorenz obtained (denoting Tg = T, by & T)

& 3P%Cek®aT
hm Cﬂ FE A A (1)

where hy is the mean ccoefficient of heat trensfer by convection,
L is the height of the surface; C is a constant for which Lorenz
found the value 0.5L8, g the gravitdtional acceleration, and the
other symbols have the same meanings as in Part I. This formula,
in spite of Lorenz's wrong assumption about the temperature distribu-
tion, is in a form which has been proved valid with good approximation
through more than half a century,

Oone consequence of Eq 1 is that the rate of heat exchange, .4,
is proportional to (A T)é&. This has been proved by numerous
experiments, beginning with those of Dulong and Petit (211, 1817),
who arrived at an exponent 1.23, instead of 1.25. Nusselt (225, 1909)
directed attention to the fact that, according to experiments with
air, the equation becomes less exact at temperature excesses below
200F and fails entirely when A T approaches zero. In 1928,
Nusselt and Juerges (228) succeeded in essentially improving the
theory, but the conclusive result is due to E. Schmidt and

Beckmann (230) in 1930, in cooperation with Pohlhausen, who found
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a way to integrate the differential equations set up by these authors.
In the following, their solution will be presented, Measuring x
from the lower edge of the plate in a vertical direction and y in a
direction normal to the plate, and denoting the velocity components
in the x- and y-directions by u and v , and the absolute

temperature by T, one has for the equations of motion and of diffusions

Y R VS - 2
uax+va%=vw2+g + (2)
3T )T 1

L = 3
L5x+vw 0(3‘2'2 (3)

where 7)/ is the kinematic viscosity, o< the themmal diffusivity, and
To the ambient temperature in the absolute scale. Eq 1 and 2 are

to be solved simultaneously with the equation of continuity,

- ¥ oo (1)

and the boundary conditions
U=v=0 and T=Tg at 4 =0 (5)
U=0 and T=Tp ot ¢ =29 (6)

Eq L permits the use of the stream-function 4} in terms of which

th and V can be expressed as followss:

. ¢ ‘g;:j 9 V= %-)'(a: (7)
Pohlhausen made the substitutions
= T i : 8
n=8 o (8)
- I:_-.r‘l- =
O = ===6() (9)

y = 4 v Bx%€(n) (10)
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B+ Eqv T]

Substituting Eqe 8 and 10 in Eq 7, he obtains
=4y B x%f () (11)

Lid [
v=vB8X" (nf-3f) (12)
Substitution of Eqs 8, 9, 11 and 12 into Eqs 2 and 3 yields the

where

ordinary differential equations
'y ff'-2(€)% 400 (13)
e"+30cf0'=0 (1k)
where O = 2—:— is the Prandtl number., These equations are to be
solved simultaneously, with the boundary conditions
flo)=fo)=0, @(c)=1 (15)
f(=) =0, ©(0) = 0 (16)
The system consisting of Eqs 13 to 16 was solved by Pohlhausen
by numerical integration, after expanding f and ® into slowly
convergent series in f'} and starting from the values of("(O) and
@ '(v)experimentally determined by E, Schmidt and Beckmann (230, 1930)
who used an unheated leading section, The results are shown in
Fige la

The coefficient of heat transfer is

ht“ Zﬁ“-—(j‘;)‘jog (35:\3 j\/HL”TX@(O) i
where k is the thermal conductivity. Assuming g= = 0,733 for air,
Pohlhausen's solution gives G'(o = =0,508, Substituting this value
in Eq 17 and integrating over the height L, one obtains the mean

coefficient of heat transfer

P T 2 PYRTY (18)
Hu*CHA78 T \/ IR
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This may be compared with Lorenz's result by converting Eq.l

into the form

e /?L’/.s g \7‘&7 A £y /-7?,7;4
= "j 431.1 \ ot i= ‘, — ——
I'm 5 '8 o o G5t l\/ e, (29)
on taking & s WD The difference is only 7%.
Defining the Grashof's number as
3
p ol |
Gy = ‘c"uff‘:’
and the Nusselt number as
ik,

Nu= s

Eq 18 can be written as ,
Nu=04179 (G (16a)

(b) Point Source of heat

The problem of laminar free convection due to a point source of
hea* was solved by Yih (234) in 1948. A point source of heat is
considered to be situated in an infinite plane above which the
atmosphere was originally isothermal and at rest, and the resulting
steady temperature and velocity distributions are sought. Taking
the point source as the origin and the vertical line through it as
the x-axis, 'from which r is measured radially, denoting the
velocity components in the x- and r-directions by y and v ,
and remembering the equation of state, the equations of motion and

of diffusion can be written;

Ax+ )r & r-'_ _;'r' (V‘ A:}+a( s & ) (20)
d T ci i , 13_1

where )7 , T,., and ¢ have the same meanings as in Eqs 2 and 3.

0

The above equations are to be solved simultaneously, with the boundary
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conditions:
u, v, and T-T, vanish at r 2 o0
u and v vanish at x s O except at the origin
v, AT ’ and.%%-vanishatrno

ar
The equation of continuity

ax(ru)-r £i7 (rv) =0
offers the use of the Stokes! stream-function \P s from which the

velocity components can be obtained as followss

A oye- Ly (23)

15 3
ro3r 4 oy
It should be noted that, the flow being steady, the quantity

G= f TTru,/l*T)"“ )

where ); is the specific weight of air at T,, must be constant and
is indeed a measure of the strength of the heat source.

Making the substitutions

: ¢ 6 r
M= TR ) +% (25)
Xo\’—l) e BT \ 26)

5 X/L (9(1”},, :

$ =4y x£(n) (27)

one obtains, in place of Eq 23,
ui=/~l<“@‘ &'{*‘ (28)

(*7 % ek 2

V=2 (/ét-.)“/ (f «55--) (29)

where the primes denote differentiation with respect to r)
Substitution of Eqs 25 to 29 into 20 and 21 yields the simultaneous

ordinary differential equations
% -l
("‘Jf)dn. "g)=f '10® b

o'
£~ %" (31)
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where ¢ = -5‘{; is the Prandtl number, The boundary conditions,
except the one that v g O when x z 0, which will be discussed later,
are now replaced by the following
flo) =¢'(0)=0(c)=0 (32)
§(0)=0 , ((0)=a finite number (33)
Still another boundary condition is furnished by Eq :2lj, which can

be put in the following dimensionless form:

L"’—?,Gdr) 3 _8__%4 (3!4)

The differential system consisting of Eqs 30 to 3L is difficult
to solve for arbitrary values of G~ . But when 5~ has the values
1 and 2 solutions in closed forms can be obtained

Wihen 0~ = 1, it may be assumed

5 TN = ABNT
)((’7\) ‘B(‘ |+At72) H—/\I“)z (35)
Substitution of Egq 35 into 31 . and integration give:
’/ ";‘;M 578 (36)

Viith these functional forms for f and > , Egs 30 to 33 are satis-
fied if B = 3/2 and C = 2142 Eq 3L can then be integrated to

|
yield C= o fron whichA's - .+ Tith these values for

L AP
A, B, and C, Egs 26 and 27 become, by virtue of Eqs 35 and 36:

).’; /(' X (T "T:) l ] (37)
- - 7~ i * \
and s
P=6VX et (38)
GVET + 177
from which
M [Z
/-_,..,_ ) z“ - TR T N S SR I B (39)
\ T R
% it i)



and PZX " 3 'Lj
— (Lo)
/L ) ) \/ ( JZT + ,} }2-

Wihen 6~ = 2, it can be similarly shown that

f P FagE L (1)’

a1

~

l:l

@,m}: __,:ﬁ v (12)

+
W
il

4

i

N

Nl
\ﬂ!

l

! g

.
ol !
-t

and results similar to Egs 37 to LO can be readily obtained.

For air which has a Prandtl number 7 of 0473 under normal
conditions; the solution corresponding to 07 = 1 can be used to give a
close approximation. For (3~ = 1, the value of v at x = 0 can be
shown to be = -%:—_LZ . This has a value of only 0,03 fps-
at r = 0,05 ft (r being taken to be 0,00025 sq. ft. per sec for air)
and varies inversely with r, so that the boundary condition v =0
at x = 0 is approximately satisfied, This approximation will not intro-
duce large errors if x is not extremely small. That the boundary-layer
equations are valid can also be verified a posteriori from Eqs 37 and
39

The patterns of streamlines and isotherms are shown in Fig. 2 and
Fig. 3, respectively. The parameters used are dimensionless.

L. Proposals for Further Theoretical Investigations
on Laminar Free gonvection

In the following specific problems in laminar free convection and their

rroposed solutions are presenteds
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(a) Finite Source--two-dimensional case

¢X Statement of the problems A heated plate of width 2b, serve
ing as the finite source, is considered to be situated in an infinite
plane above which the atmosphere was originally isothermal and at rest,
and the resulting steady temperature and velocity distributions as well
as the heat transfer from the source are sought., In the vertical plane
perpendicular to the longitudinal direction of the heated plate, take
the y-axis along the trace of the heated plate, the origin at its
mid-point, and the x-axis in the vertical direction. The equations

of motion and of diffusion can be written

Tv"'Tm ‘
[’{('(_x -+ \/!J(‘LJ = V(M'xx ¥ %gg)+ ‘3 “:.“-ﬁ- (bB)

5]

uTat v ot (Tt Tyy) (L)

where

velocity component in the x-direction

V = velocity component in the y-direction
Vs ,Lﬁ/% = kinematic viscosity
JA = dynamic viscosity

TN
]

density

gravitational acceleration

R ®
] L[]

K p Ce = thermal diffusivity
k = thermal conductivity
Cp = specific heat at constant pressure
T, = ambient temperature (abs. scale)
T = temperature at any point (abs. scale)
The equation of continuity is

ux* Vj:() (hS)
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which permits the use of the stream function ‘L‘ such that
u = \1)5 : v ==Y (L6)
Eqs L3, Lk and L5 are to be solved with the boundary conditions
(i) VWhen x = 0, T &« Tg for |Y|¢}, where Ty is the temperature
of the plate and 2b is the width of the plate, and T = T,
for |4{>b « This condition may be approximated by the

continuous distribution

B . e
Tx ‘:o“ T:) _ 1‘ & (—?—\i ¥ s \gm\l\\
b / b

where AT 3 Tg = To’ and n is taken to be a very large

positive integer,

(ii) VWhen x = 0, u, v, and \{J are all equal to zero,
(iii) When X = o s T 5 Ty

(iv) When y

O,\L:o, V = 0, uygo,Tyao

(v) Vhen y

t0, TgzT,

(j, Dimensional Analysis, A dimensional analysis of the variables
by X 3s fis sk O Tor T=Toy 4T g, ) with T - 7 and )
as the dependent variables and b, /U ’ f) s Cps and To as the

repeating variables yields

3
TRy 80 e
. o 1, e A Ay

hd

2913
Vi R A S ﬁﬁ_"i)

2
el a2 o
Writing E for x/b, | for y/b, and § for the Prandtl number
/“- cp/k, the above relationships can be written
™ - & 3l
s . 81 Y W, G i (L7)
_r_o = _T; ; ’ To l_)z_
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757G 20 5

Using Eq L6, Eq L5 is automatically satisfied, In terms of the

) (48)

dimensionless paraemters Eqs. 43 and L4 become

3 l‘) ff';- - 5} Y&m o 5‘"|§§ + \qufm 04 6"‘ G (hg)
A s = & =, o
y%59§ ty% é;v & (fggg S 4 69?ﬂ>

where Gr = gb3 4 T/-p Tois the Grashof's number, The dependence of s
and €@ on the Grashoft's number and, the Prandtl number ¢  is then

obvious. The boundary conditions become

(1) Vhen 3 =0° 5'—5’5=r=o
(i) when N=0! €=¢ =
(iii) Vhen §’7=Oi :.:9 ‘-isl + 1'22”)”'
(1v) Vhen [)=O! (9,? ~d

(v) Vihen ‘5 200; ® =0
(vi) vhen 47-_00. (% =0

rjproposed method of solution, Assume

S IAGIS A ACIES N AT (51

the coefficients of }o and ; being zero as required by 3, Ce
(boundary condition) (i) + The functions f should obviously
be odd functions by symmetry, Assuming the odd functions £ to

be entire functions, it is obvious that B, C, (ii) is automatically
satisfied, To satisfy B, C, (iii) and (v), assuue

s (il (s2)

«m

RN D430,(n)r
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where
=13

S,= (1+n*") (53)

The functions (5@ ,69,,"-- are obviously even functions by symmetry,
so that B, C, (iv) is automaticadlly satisfied, In solving for tie '
functions (¥, @, ,~-~, only B, C, (vi) remains to be satisfied,
It is of course assumed that the series in Eq 52 is convergent for
all real values of "7 and all real finite velues of ; o« If
the series diverges at fz eo , Bs C, (v) will be satisfied if the
degree of divergence is less than that of €xp/ ? ?)as 5———- s
This will be tenatively assumed,

Substituting Egs. 51 and 52 into Eqs 49 and 50, and equating
coefficients of like powers of F s two series of ordinary differ-

ential equations in (7 are obtained, The first series is furnished

by Eq.L9:

go: 2,(21-!— Gr.8,:0 (54)
S,  6f,16r0,-0 (55)
€2 t (i

Sl +F v Be (OB (56)

3 w. HRY i X w \
g . 278 ~2f, b B §5 = (.a +G"<(9"a‘¢91 ) ok

\]

1

S5 D%
30 5,4 by +6r (847Gt Z> (58)

el

H & RS .
§ . 5’(2{3 '3&3&."2 Fn.{:!
etc,

The second series ig furnished by Eq 50:

? : B =6, - "/‘2“) (59)
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j f@ -f = <é('5 @/*(9!”):0

S 2: [,6,-30,~2§,0/=5 (126, -120:+(6,4 o - (96") (61)

3 ' {7
§, £,0,426,(0.-0,) -4/£,0, f@ 2 6a(01-6) ()

=g (206,-208, HO(Q +35-06")

4 ' - 'y
S0 F00t26,(0,-6,)42£(3,-8)- 5
_4{4@.'\35%(69’, )-L( (B "@ )

b 30@4,"3094‘”29; ~-58 H9‘, -0, + C; )
A close inspection of Eqs 54 to 63 shows that f, » 6, and

£, are at once known from Eqs 5k, 59 and 56 since (, is given,and
further, that if one function is known in addition, all the other
functions can be solved, at least theoretically., Since the power

series in Eqs 51 and 52 must be convergent for finite values of

’é’ y 1t follows that

fim £y =0 [ ®,=0

R = od n— %0

Consequently, for an appreximate soluticn, it is pessible to take
either fq er (9,-‘ to be zero, provided n 1s sufficiently large.
Concerning actual cemputation, 6’ can be first taken to be zero,
Then Eqs 5L, 55, 56, 58, 59, 60, 61 furhish the solution Af {3 5
and all functions are known, The differential equation one finally
obtains after elimination among the above-mentioned equatiens is
linear and of second order, thus presenting no difficulty for its
solution, The degree of approximation can now be checked by
computing (9(; , O, -3 (gq e The smallness and decreasing

magnitudes of these functions serve as a check for the cleseness
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of the approximatione. If greater accuracy is required.one can take

resulting system furnishes after elimination a linear differential

or Cé s or in general €; (q*> é,) to be zero, If the

equation, it can be solved directly, Otherwise, the results
previously obtained can be used to linearize the non-linear differ-
ential equation, and the perturbation can be iterated until the
corrective term becomes sufficiently small, If the final results

thus obtained do not differ appreciably from those previously cbtained,
the problem can be considered as solved, Otherwise, a larger n has
to be taken until two consecutive sets of results do not differ
appreciably, In the process of solution, B, C, (vi) must of course

be taken into account,

(b) Finite source, axially symmetric case

o{ » Statement of the Prcblem, The problem is completely analogous
to the one presented in (&) . , except that instead of _a plate of
width 2b the heat source is now realized by a heated circular disc
of radius a . The center of the disc is taken to be the origin,
from which the x-axis is erected in the vertical direction, Instead
of y, 1r 1is used, which is measured radially from the xwaxis,
Thus, replacing b by a and y by r, ene obtains
the variables for the present problem from those in the last problem,
Understanding v te be the radial component of velocity, the differ-

ential equations to be satisfied are

Uy +VvU, = VLw,x+",',‘.(kU‘,)vJ-+5j—_:rIﬁ (6k)

aTAVT = x [Tt £ (r Tr), ] (65)



- i -
Cruw)+(rv), =0 (66)
the last of which permits the relations
wrk e, ve-ti @

where k‘/ is the Stokes! stream-function. The boundary conditions are

similar to those in (a)'< .

%Dimensional Analysis. Taking the variables from (a) ( j ané
replacing b by a and y by r, the following relations can

be obtained:

3
2ot PR T &1 . ek
. . <§ .8, D ) (68)
\p B - " ST : -_3
m‘)(f,!‘)\ﬁ,‘ﬁfs%}) (69)

where 5 x/a and 7 = r/a, Substituting Eqs 67 to 69 in Egs

6L and 65, the following dimensionless equations are obtained:

~ L 4 g .l ‘?.
qf’? 5?"1+ )55y i nn ') ﬁm’”} f;w"7 1o 10y 1610 (19)

fn@%‘&@n =& (10 +N 8T O, (71)%
where now g a—zAl‘
GV i '*"{j?‘fo"

The boundary conditions for Eqs 70 and 71 are similar to

these in (b)_.@«

)’, Proposed Method of Solution, The propesed method ef

solution is similar to that in (a) + ¥ .

(¢) Horizontal ¢ylinder

O Statement of the Problem, A heated horizontal cylinder of radius
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a at a temperature Ts is placed in the atmosphere originally at
rest and isothermal of temperature T, , and the resulting temperature
and velocity distributions as well as the heat transfer from the
cylinder are sought. In a plane perpendicular to the axis of the
cylinder, the trace of the cylinder is a circle, the center of which
is chosen as the crigin, from which r is measured radially. The
line drawn from the origin vertically upward is taken as the polar
axis, from which © is measured countercleckwise, Denoting by

U and v the velocity components in the r and ® directions

respectively, one has the equations

\/ ; A \ T‘-rla
UL t77 uo-yf = 17((,{,,,.-1-“,': Uy ‘f"?a“ea "“%:\/@"T;,,Hq—-f.«cos& (72)
; i ;

(73)

(nr), +Vs=0 (7L)

the last of which permits the use of the stream=function &P such that
g e
M“?% ) \/"q}f' (75)

The boundary conditions are
(1) VWnhen @ =0 or 7 *1_(’:"3 » V=0 3 Ug=0O
(i1) When r = a; \{1 0y, W0, V=0
(111) VWhen @ =0 or * M. e =0
(iv) VWhenr=a: T =Tg

(v) Vinenr = »O T=T



(i Dimensional Analysis, Taking the variables from (a) ..@ and
replacing x and y by r and @ and b by a, a dimensional

analysis yields

T-Te T -% A q<13
T N Xl 8o, e “572) (76)
3
/ % AT 40
%,: e, 0,0, 5> 7) (77)

where f = r/a, Substituting Eqs 76 end 77 into Egs 72 and 73,

ene ebtains

T for fo Jo =8 f1 Joo = I 51 5= § fyp0 % $ 156" Fous (76)
+ f"CEr,)L'c05¢9
$(f g 5K ) = (§5 %55+ $X 5+ Xos) (79)

The boundary conditions can be readily written in dimensionless form,

)( Proposed Methed of Solution, The proposed method of solution

is similar to that in (a) .} , with a few modifications,
(d)Sphers

(. Statement of the Problem, A heated sphere of radius a at

temperature T

s 1s placed in the atmosphere originally at rest

and isothermal at temperature T, , and the resulting temperature
and velocity distributions as well as the heat transfer are sought,
Spherical coordinates (r,@?,(f7) will be used, By symmetry all
unknown quantities are not functions of <f e« Using u and v
to dencte the velocity components in the r- and ©-directions,

respectively, one has the equations

v Py 2 A zu. _ zcote
Uity + -7 g~ =V (u,.%-r-,:urrﬁéitf;@uef reolhos™ 2 --;—;—‘\/(80)
T-Ts
= %&.%ﬁ) $ A - —F
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(,(:7; f‘\;'TG ’D(Trr'f Tf r@“’ rg‘ ‘OG) (81)
SinB(ur*) +(rvsno)s =0 (82)
the last of which permits the use of the stream~function L}) such
that
- I V: - ! 53
e ‘r*s.q@(‘})‘g . rsime 17 (83)

The boundary conditions are

() When ©:=0,0r £ ¢ =0, V20 , Up=0O
Vv

(i1) VWhen r=a: Y -0, W0, V=0
(111) When 8= or T ; Te=0
(iv) When r=a: T=T,

(v) When r=o0 3§ T= T

€, Dirensional Analysis, Understanding r now as in three dimensions,
the variables in (c) . ecan be used here and the resulting rela-

tionships are

3

i : a
S - '““‘QT’ ' N s O 7 iﬁ‘ (L)

l o J

{ 3
& -1(f,00, 21, 42 (85)

Substitutien of Egs 83 to 85 into Eqs 80 and 81 yields two dimen-
sionless equations comparable to Eqs 78 and 79, the unknowns being
and f e The boundary conditions can be readily put in

dimensionless form,
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’9- Proposed method of selution, The propssed method of solution

is similar to that in (a) .7/ , with a few modifications.

5. Experimental results in free convection

In the follcwing, experimental results in free convection from
vertical and horizental plates and cylinders and from a point source

(turbulent case) will be presented,

(a) Vertical plates

The theory pertaining to free convection from a vertical plate
has been prescnted in 3 (a), Experiments by Lorenz (221) as well
as more recent (1935) ones of R, Weise (232) led to values about
25% higher than that given by Eq 18, This may be due to the influ=
ence of the edges and to motions of the ambient air, Schmidt and
Beckmann (230) used vertical plates about 5 and 20 inches in height,
with sharpened lower edges and vertical bounding plates at the edges
to prevent lateral convection, For the small plates their experimental
coefficients are in perfect agreement with Eq 18, while for large
plates they are L% higher than the theoretical values, 1’ being taken
to be that of the ambient air, The temperatures were measured with
a thermocouple with wires of 0,015 mm, in diameter, 10 to 20 mm,
long, The deflections were read by a microscope, the calibration
showing that the deflection is not propertional to the velocity,

The use of the theory developed in 3 (a) is restricted to
certain heightis depending on the fluid and on the témperature differ-
ence, For air and the temperature differences used in (28), the
theory is not valid beyond h = 2 ft, Above this height turbulence
plays an essential role, Experiments on turbulent heat transfer
from a vertical plate were done by Griffiths and A. H, Davis

(213, 1922), Their results showed that the mean heat transfer



e

coefficient h 1s propartional to (AT )¥3 | or that the mean rate
of heat transfer per unit area, qm, is proportional to (& T)q/ L
both hy and qp being independent of the height of the plate L,
Experiments by the authors on vertical cylinders undergoing turbulent
heat transfer showed approximately the same coefficient 1/3 for A'T
in the expression for h., The form of the formula

NusC (Gr .0 )l/3 (86)

where Gr and ¢~ were defined before, has been verified by a
correlation of King (218,1932) and by Jakob and Linke (217,1933)
to be valid for not only vertical plates and cylinders, but also
horizontal plates and cylinders, when the flow is turbulent,

In the laminar range, King recommended the following formula
in British technical units for vertical plates of less than 2 or

3 feet in height:

4
h=0.275 \)% (87)

The height-limits correspond to the AT «range of the data which
King correlated,

Jacob and Linke (217) suggested that when L < leglo (Gr 0~ )
£ 8, the formula

EY
Nu = 0,555 (Gr » & ) * (88)
be used, and when B & loglO (Gr .6 )< 12, the formula
Nu = 0,19 (Gr o G )1/3 (89)

be used,

According to the mcst recent measurements of Touloukian,
Hawkins and Jakob (231, 1948) on vertical cylinders in water and
ethylene glyccl, with &~ ranging from 2,4 to 117,8 and Gr

from 22 (106) to 326 (109), the results may be represented as follows:



L
Naz0.726 Gr .0 )& (0.2(10).< Gr < L0(10%) ) (90)

Na 2 0,067k (Gr ;.60 )

(W0 (10°) < Gr o~ < 900(10%)) (91)
both with a maximum deviation of about X 10%, Correlation with

Nu = 0,086 (Gr & )3 (52)
was possible with about the same maximum deviation, but with a
ccnsiderable systematic deviation, The authors claimed that since
the cylinder diameter was 2.75 inches the influence of curvature was
probably so small that the results will not differ appreciably from

those for vertical plates;

(b) Horizontal plates

Jakob and Linke (217) showed that the form of Eq 89 can also be
used for the turbulent convection on the upper side of horizontal
plate, according to their experiments with water boiling on such
surfaces, Their results can be represented by the formula
Nu = 0,273 (6r O~ /3 (93)
which gives a Nu more than twice as large as that given by Eq 89,
This difference is prcbably due to the better mechanism of heat
transfer from horizontal plates, and due to the boiling of the liquid.
From the experiments of Griffiths and Davis (213) it can be
shown that the rate of heat transfer for a horizontal plate, facing
upward in air, is, in British technical units,
A, = 0.275 (4 T3 (9L)
Compared with the same authors! values of g, for vertical plates
2 and 8 2/3 feet high, one has
Qpy M 28 qy (95)
the difference being only 28% instead of the more than 100% found for
boiling water,

For horizontal plates facing dowrnward, the same authers found

U,q =050 qy o (96)



The factor 0,50 might be even smaller but for the secondary influences
at the edge of the plate. Taking mean,

Qh.u - Qh.d = 0¢96 qv \\5: qv (97)
2

which is true of course only when the flew is turbulent,

Experiments to determine the temperature distribution in the
air surrounding a heated horizontal plate were done by R. Weise
(232, 1935), who used square &l uminum plates, about 16 and 2L cm in
side length, 1,0 and 1,5 cm, thick, respectively, which were hung
up in a wide room and heated electrically, The boundary layer
thickness is about 1,5 cm in the center below the plate and 1 cm close
to the edge, Detailed data are presented in the form of isotherms,
These data are not useful for the case of free evaporation from the
surface of a lake, since the heated plate has two surfaces in contact
with the atmosphere,

In Octcber, 194k, G, H, Hichox published his University of

California Dissertation (106), a part of which dealt with evaporation in

still air. He used an evaporation pan 1 ft in diameter and an inter-

ferometer to measure the fall of the water surfaces From his experimentm

al data he suggested the formula (98)
9

|
Nu' = 6.645 (Gr'o )7
hit EL

Nu = the nusselt number for evaporation = < - T5e

. Byay

Gr’' = the Grashof number for evaporation = g M

where

}

o the Prandtl number for evaporation = ‘;?
h'p being the mean coefficient of vapor transfer, E being the mass
transferred per unit time per unit area, L being a representative
length which can be taken to be the diameter d in this case, K
being the vaper diffusivity, AL and V having the usual meanings,
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AC being equal to the difference of the saturation concentration
¢] at the prevailing temperature and theconwentrationcq of the
ambient air, [ Dbeing the specific weight of the ambient air and
Zk)( being corfesponding to AC , It must be noted that Eq 98
is of the same form as Eqs 88 and 90, and that the ccefficient 0,6L5
in Eq $8 is almost the mean of the ccefficients 0,555 and 0,726
occurring in Egqs 88 and 90, respectively, in spite of the difference
in orientations of the evaporation surface,

Since 0" and ¢ are practically constant, it can be concluded
from Eq 98 that

25
£ ~at (i;?%)o : (99)

P
Since Y o, & s and J¢ 7T  appreximately, the above

proportionality further gives

Ty & : (100)

Lo,’l,S PO,’?S

Efv(Ac)'

Eq 98 apparently corresponds to laminar flew enly, When the
flow is turbulent, the exponent 1/l in Eq 98 can be expected to
change to 1/3, and the rate of evaporation E can be expected to
be independent of L, as in the case of heat transfer,

The effect of the pasition of the water surface in the evapora=-
tion pan can be systematically treated by allowing the pertinent
dimensionless parameter to vary (See Part IV}, In this way
more conclusive results for pan evaporation can be obtained.

Transpiration rate frem a leaf-shaped surface as a function of
temperature and relative humidity has been measured by Emmett Martin
(222,19L3),
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(¢) Horizontal and vertical ®wylinders

Correlation by Nusselt (226,1915) shows thet for (Gre g ) < 10=5
h = 0.4 k (103.)
—r

and for (G .G ) ""~;1.05

Nu = 0,52 (Gr o0 )3 (102)
In the range between ].0"5 and 10° , the trend gradually varies from
Eq 101 to 102, The Nu and Gr are of course based upon the diameter D,

The correlation by Jakob and Linke (217) shows that free con=
vection from horizontal cylimnders also obeys Egs 88 or 89, according
as the flow is laminar or turbulent,

When the diameters are large enough for the curvatures to be
reglected, free convection from vertical cylinders obeys the same
equations as free convection from vertical plates, Correlation by
Jakob and Linke (217) shews that turbulent free convection from
vertical cylinders obeys Eq 89, As has been mentioned in 5 a, mere
recent results obey Eqs 90 and 91,

The heat transfer from vertical wires, 15,5 to 12,3 inches long,
to air by free convection has been investigated by Meuller (223, 1942)
in the range of temperature differences from 1 to 100° C, No effect
of wire length was noticed, while the effect of the diameter was
marked, Based on the diameter, the pertinent parameters obey:: the
relation

Nu= (Gr O )01 (103)
in the range :l.O-7 £ e 6 =~ 102 and possibly up to
Gr o & Wl
For free convection in enclosed plane and cylindrical gas

layers, see (32,1949), pp. 534-5L2,
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(d) Point source of heat

The laminar case of the free convection due to a point source of
heat has been treated in 2(b), When the flow is turbulent, Yih's
experiments (23L,19L48) give the following results (the symbols that
appeared in 2 (b) retaining their meanings):

(1) For temperature distribution

} / .X < >
( a—w/ (T 7’) noe (10L)

T\ € a2

(4i) Fer the distribution of the longiiudinal rolouity

12
fc’f() Su=q.7¢ = (e (205)
(1ii) For the Stokes! streamfunction
S i sl il o NK
‘\P "CLOZM(%)’["f = (55) ] (106)

(iv) For discharge through a horizontal secticn at an elevation x:

Q=0.153 (-5;—’5—1)"3'

(v) For the momentum flux through a horizental section at an

(107)

elevation x:

M=0.% (Gz,oﬁ x (208)

(vi) For the height h at which transition from laminar to
turbulent flow occurs:
L6 q
0 % 43 x10

A
It may be remarked that in Yih's experiments, low flames were

(109)

used for the heat source, The mass-source and momentum-source
characters of the flames are believed to be negligible at suffici-
ently high elevations,

6, Concluding remarks

Frem the foregoing, the following remarks can be made:



2 8

(a) Equations for turbulent free convection have not been
mathematically formulated, while the well formulated ones for
laminar free convections are in general difficult to solve,

(b) Due to the many variables involved in free convection,
dimensional analysis is particularly important in this branch off
research,

(e) So far, the physical "constants" except 'Y and P
have been considered as invarient, Future research should be con-
cerned with the effect of the changes in these "constants." This
is more true in the case of laminar flow where 77 and the (heat er
vapor) diffusivity play important roles, than in the case of turbulent

flew,
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