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Part III, Free Convection 

1. Table of Notations 

a: radius of a cylinder or of a sphere 

b: half-width as defined in the text 

B : as defined in the text 
C • a numerical constant 

Ac: differenc e i n conc ~ntrat ions of vapor at t wo signi f icant 
points, correspond:'..ng to A '21"' 

cp = specific heat at constant pressure 

E ~ rate of mass-transfer of vapor per unit area 

f, £2, f3,- - ~ ~ functions as defined in the text 

g ~ gravitational acceleration 

G = strength of point source of heat, as defined in the text,, 

Gr : Grashof number for heat transfer :; 9L3 ~ }{1 1 To 

Gr' • Grashof number for evaporatinn : L3"t4'1/q..u...Z. 
h = coefficient of heat transfer 

h 1 = coefficient of vapor transfer 

hm = mean value of h 

h'm= mean value of h1 

k = thermal conductivity 

K = vap~r diffusivity 

L = a length 

n = a constant 

Nu• Nusselt number for heat transfer:~ L/k 

Nu'= Nusselt nQ.mber for vapor transfer: h8m L/K 

p = pressure 

q : rate of heat transfer per unit area 

qm = mean value of q 

qh.u' qh.d~ qv.u> qv~d: as defined in the text 

r : radial distance in two or th.fee diI!l8neions 
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T • absolute temperature 

T0 = ambient temperature, absolute scale 

Ts : .. absolute temperature of the surface 

U • longi~udinal velocity-component 

v • radial or transverse velocity - component 

x = longitudinal distance 

y : transverse distance 

o< :a: thermal diff usivity = k/f.\r 
o : specific weight 

~ t : difference of specific weights at t wo significant points 

'5 = a function of d:tro.ensionless parameters 

~, 3 : dimensionless parameters 

e : a function of dimensionless parameters or an ordinate 

CJ~, 0 ,-- = functions of dimensionless parameters 

µ 
v 

0 
() I 

= 

= 
= 
= 
= 
= 
= 

= 

= 

dynamic viscosity 

kinematic viscosity: P/f 
J.14159---
density 

Prandtl number for heat transfer a "'0/tX. 

Prandtle number for evaporation :. v/1< 
the third spherical coordinate 

stream-function or Stokes' strean-function 

a function of dimensionless p~ameters 



2. Introduction 

When a convectional current is caused by differences in the 

specific weight of a substance or a mixture of substances, the 

phenomenon is called free convection. Since in free convection the 

distribution of velocity and that of temperature or moisture are 

interdependent, the answer to a particular probl.an cai only be found 

by solving the equations of motion and of diffusion simultaneously 

in the case of laminar flow, and by systematic experimentation in 

the case of turbulent flow. Due to the difficulties introduced by 

the non-linearity and simultaneity of the equations in question, 

theoretical results in laminar free convection are very few. In the 

next section, two theoretical solutions in laminar free convection 

will be given, to be followed by experimental results presented in 

Section S. proposed theoretical soluti ons are presented in Section 4. 
3. Theoretical Results in Laminar 

1' ree Uonvection 

Because of the lack of a conclusive theory of turbulence, 

theoretical solutions for turbulent free convection are non-exist ant, 

In the laminar case, there exist only two theoretical solutions: one 

for the vertical plate by Pohlhausen (230, 1930) and the other for a 

point source bye. s. Yih (234, 1948). 

(a} Vertical plate 

In 1881, L. Lorenz (221) dealt with heat transfer from a 

vertical surface at a uniform and constant temperature Ts to a 

colder gas in contact with it when gravity is the only force acting 

on that gas. He correctly recognized that the gas close to the 

surface streams straight upwards, that the horizontal velocit~es 

were negligible and that consequently the pressure distribution is 
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hydrostatic. This, obviously, is the case of streamline now on a 

vertical wall. He further assumed that the ambient temper ature T0 

at an infinite distance from the wall was const ant, that the physical 

constants of the gas are independent of t he t emperature, and that the 

temperature distribution is a function of t he dis tance from the plate 

alone. This last assumption has since be en proved to be wrong. : 

Setting up a heat valance for a differential section of the 

fluid and integrating, Lorenz obtained (denoting Ts - T0 by 6. T) 

where bro is the mean coefficient of heat tra.nsfer by convection, 

L is the height of the surfacei C is a constant for which Lor enz 

found the value OsS48, g the gravitational acceleration, and the 

other symbols have the same meanings as i n Part I. This formula, 

(1) 

in spite of Lorenz's wrong assumption about the temperature distribu-

tion, is in a fonn which has been proved val id with good approximation 

through more than half a century. 

one consequence of Eq 1 is that the rate of heat exchange, .4, 

is proportional to (A T)
1/4. This has been prov&d by numerous 

experiments, beginning with t hose of Dulong and Petit (211, 1817), 

who arrived at an exponent 1.23, instead of 1.25. Nusselt (225, 1909) 

directed attention to the fact that, according to experiments with 

air, the equation becomes less exact at temperature excesses below 
0 20 F and fails entirely when 6. T approaches zero. In 1928, 

Nusselt and Juerges (228) succeeded in essenti&lly improving the 

theory, but the conclusive r esult is due to E. Schmidt and 

Beckmann (230) in 1930, :i,n cooperation wit}'} Pohlhausen, who fo,md 
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a way to integrate the differential equations set up by these authors. 

In the following, their solution will be presented. Measuring x 

from the lower edge of the plate in a vertical direction and y in a 

direction normal to the plate, and denoting the velocity components 

in the x- and y-directions by u and v , and the absolute 

temperature by T, one has for the equattons of motion and of diffusion: 

(2) 

(3) 

where V is the kinematic viscosity, o< the thennal diffusivity, and 

T
0 

the ambient temper ature in tt~ absolute scale. Eq 1 ani 2 are 

to be solved simult aneously with the equation of continuity, 

anc;i the boundary conditions 

u -= v=o 
/j._ ·;; 0 

d T : T o.t 1..J : 0 0 .0. . I 5 0 

a.f'\d T : 1~ 0-t ~ -= o0 

(4) 

(5) 

(6) 

Eq 4 permits the use of the stream-function 'fJ in terms of which 

u. and V can be expressed as 

ti u ·1 d ~ ' 

follows: 

V =i::' ~ ~x 
Pohlhausen made the substitutions 

'l = B x~ ~ 
~ ::- T - T<:_ = $ ( t) ) 

~I 

l}' -== L/ V 13 x 3
/~ ( ( 1) 

(7) 

(8) 

(9) 

(10) 
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where 

Substituting Eqe 8 and 10 in Eq 1, he obtains 

µ == J./ v Bi X ¼ (( ~ ) 

V ::: v B X-'/4 (11 ( '·- 3 ( ) 
Substitution of Eqe· 8, 9, 11 and 12 into Eqs 2 and 3 yields the 

ordinary differential equations 

(
11 '-t- (f 11-2. (f')z + <:J = 0 

e 11 +3(Y"f0 1 ~0 
where 0- =. V 

C)( 
is the Prandtl number. These equations are to be 

solved simultaneously, with the boundary conditions 

((o) = ((o)= O , 

( (c.0) :. 0' 

@( 0 ) ::: 1 

e(o0) :- o 

The system consisting of Eqs 13 to 16 was solved by Pohlhausen 

by numerical integrat ion, after expanding f and ~ into slowly 

convergent series in ~ and starting from the values of f' '(o) and 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

1.9 '(o) experimentally determined by E, Schmidt and Beckmann (230, 1930 ) 

who used an unheated leading section. The results are shown in 

Fig. 1. 

The coefficient of heat transfer is 

h ~ - ___ L (~I ) . v;: -. f (·~~ l :: -; ,~/ ~t 4T_ (91 ( 0 ) (17) 
C:. ·t \ J ~ ~ : o \ d 'a I ·ro ' VJ../ Lf' I,; X ' 

where k is the thermal conductivity. Assuming o- : O. 733 for air,' 

Polilhausen's solution f:, ives ~'(o): -o~5o8. Substituting this value 

in Eq 17 and integrating over the height L, one obtains the mean 

coefficient of heat transfer 
a l.,l·v a -L, 6_,.---h rt) = 0 ,'-I 7'1 3L- !L -v :_ ro (18) 
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This may be compared vd.th Lorenz•s result by converting Eq,; 1 

into the form r~, J./ , .. ·-··--3--=-.. --··- l{ ·- ---·· J. 4 --;----;-:·· :;::-
I _ (' CJJ"8 '· vi 'a L LI r V, 1Y _ J _ ,, . :.: v' ·' '- -Q , - · ~ · ·-· --·- ·-- - ( 5 I ··, -- :i_. __ _ I . ,.J . ; , • l 1? i.. ~,·- .:..:; ' ., I -, 7 2 ._I rn -· , o i.- ,.. (J 

on taking 6-· V = -··- ~ O 733 c)( • • The difference is only 7%. 
Defining the Grashof•s number as 

. _ C;i J .. 311-, G t" - ~iP:To . 
and the Nusselt number as 

hL Nu"£--,_-- -
Eq 18 can be written as 

J 

(19) 

N :: o· l. l ·1 q (f'2. " Li LA. . , l \ l.::::.1- J (18a) 

( b) Point s-ource of_ h e.1!.'ti 

The problem of laminar free convection due to a point source of 

hea~ was solved by Yih (234) in 1948. A point source of heat is 

considered to be situated in an infinite plane above which the 

atmosphere was originally isothermal and at rest, and the resulting 

steady temperature and velocity distributions are sought. Taking 

the point source as the origin and the vertical line throu:gh it as 

the x-axis, from which r is measured radially, denoting the 

velocity components in the x- and r-directions by u and v , 

and remembering the equation of state, the equations of motion and 

of diffusion can be wri ttens 

(,).. .J '-i.. t V ti v... -· 
d x J r 

u. ;.i, t c1T = 
.. dX V dt' 

\? 

r 

where 1,? ' T0 , and c< have the same meanings as in Eqs 2 and 3. 

(20) 

(21) 

The above equations are to be solved simultaneously, with the boundary 
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co ndi ti ons, 

u, v, and T-T0 vanish at r: c,o 

u and v vanish at x a O except at the origin 

v, d T , and .b u.. vanish at r • 0 
d r o Ir 

The equation of continuity 

J_ ( r- u_) + _ _L ( fr V) = 0 
dX Jr 

offers the use of the Stokes i stream-function + , from which the 

velocity components can be obtained as follows: 

' 
_ I J lj, V-----r ~ X 

It should be noted that, the flow being steady, the quantity 

( 
00 )( 

G -=- , z 17' r u .. ( T - -1~ ) ~J__:_" d r· 
.) o I ,:, 

where Yo is the specific weight of air at T0 , must be constant and 

is indeed a measure of the strength of the heat source. 

one obtains, in place of Eq 23, 

(23) 

(24) 

(2S) 

(26) 

(27) 

, 1 =- L( (.0_ ) ½ _L (28) 
(./1. _µ ,. r 

(,11(;)~ ~(·1·1 2.f) (29) V -= 2 \f .._ - )< ._ , s - tf-
where the primes denote differentiation with respect to r) . 
Substitution of Eqs 25 to 29 into 20 and 21 yields the simultaneous 

ordinary differential equations 
( f ) d ( -(') C 111 .1T"l 1-4 di) ,y -= J +r:il..Y (JO) 

f ~ - L/ :s- -: I r) (31) 
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where O - ·v_. is the Prandtl number. The boundary conditions, 
- CK. 

except the one that v = 0 when x; o, which will be discussed later, 

are now replaced by the following 

f (O) ~ ( 1(0 ) ::: (9·1(a ) = O (32) 

c:9 (oa ) ::. o , f' (oa )::.. a {,r:Ae nul'l1ber (33) 

Still another boundary condition is furnished by Eq ,.2lh which can 

be put in the following dimensionless form: 

(34) 

The differential system consisting of Eqs 30 to 34 is difficult 

to solve for arbitrary values of ff' • But when c ...,, has the values 

1 and 2 solutions in closed f orms can be obtained 

When a--' : 1., it may be assumed 

Substitution of Eq 35. •int·o,Jil. . 

- !' (3 \J~-
/ t At') 2 

and integration give: 

(35) 

G '( n) -==- -- ·--C. ·-~ --~- (36) 
I (, t At/) , 8 

With these functional forms for f and 0- , Eqs 30 to 33 are satis-

fied if · 'B = 3/2 .and C .., 24!2 • F.q 34 can then be integrated to 
I 

yield C = ···-- fron. which A.' a 1 • With these values f or 3 If &-r,i:fi 
A, B, and c, Eqs 26 and 27 become, by virtue of Eqs 35 and 36: 

(37) 

and 

(38) 

frorn which 

( }.)_ '·z -) u.,, :~. 
\ G 

(39) 
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When~; 2, it can be similarly shown that 

f ,. ) l 
\ ,.,{ 7:: I - ·-- rs-· - z. 

/+ ·-·:==-- p 8 i J. Tr < 

--
~ { i1) "= b; 

and results similar to Eqs 37 to 40 can be readily obt ained. 

(40) 

. (4lf° 

(42) 

For air which has a Prandtl number~ of 0.73 under normal 
l 

conditions, the solution corresponding to CY; : l can be used to give a 

close approximation. For (5.,,. : 1, the value of v at x : 0 can be 

shown to be - This has a value o;f only o. 03 fps ·. 

at r: o.os ft (r being taken to be 0.0002s s-q. ft. per sec for air) 

and varies inversely with r, so that the boundary condition V : 0 

at x = 0 is approximately satisfied. This approximation will not intro-

duce large errors if xis not extremely small. That the boundary-layer 

equations are valid can also be verified a posteriori from Eqs 37 and 

The patterns of streamlines and isotherms are shown in Fig. 2 and 

Fig. 3, respectively. The parameters used are dimensionless. 

4. Proposals for Further Theoretical Investigations 
on Laminar Free Convection 

In the following specific problems in laminar free convection and th~ir 

Jroposed solutions are presented, 
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(a) Finite Source--two-dimensional ease 

t">(. Statement of the problem. A heated plate of width 2b, serv-

ing as the finite source, is considered to be situated in an infinite 

plane above which t he atmosphere was originally isothermal and at rest, 

and the resulting steady temperature and velocity distributions as well 

as the heat transfer from the source are sought. In the vertical plane 

perpendicular to the longitudinal direction of the heated plate, take 

th·e y-axis along the trace of the heated plate, the origin at its 

mid-point, and the x-axis in the vertical direction. The equations 

of motion and of diffusion can be written 

where 

U : velocity component in the x-direction 

V: velocity component in they-direction 

·1) = .,l<./f = kinematic viscosity 

)). = dynamic viscosity 

f = density 

g : gravitational acceleration 

= thermal diffusivity 

k = .thermal conductivity 

Cp ~ specific heat at constant pressure 

T0 • ambient temperature (abs. scale) 

T : temper~ture at any point (abs. scale) 

The equation of continuity is 

(43) 

(44) 

(45) 
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which permits the use of the stream function qJ such that 

Eqs 43, 44 and 45 are to be solved with the boundary conditions 

(i) When x • O, T • Te for \ 'j \,:b where Ts is the temperature 

of the plate and 2b is the width of the plate, and Ta T
0 

for ! l_j \ 'J b , This condition may be approximated by the 

continuous distribution 

where AT a T13 - T0 , and n is taken to be a very large 

positive integer, 

(ii) V'lben x : 0 1 u, v, and ~ are all equal to zero, 

( iii.) Whem x = 00 1 T : T 0 

(iv) When y : 0, ~ : o 1 v a o, 
I 

( v) When y : ± 00 , T : T 0 

~ - Dimensional Analysis, A dimensional analysis of the variables 

b, x, y, µ , f , k, cp, TO, T - TO , iJ. T, g, ~ with T - TO and . 4i 
as the dependent variables and b, JJ , p , cp, and T

0 
as the 

repeating variables yields 

-1 -G F, ( i; 'j )!_ CI' LI T r ' "I b' ) - -- - ' - - I -r T o b ' \< T a 

\1/ :t y t.\ CI c. T f i j ~} 
~ 2 ( "f ' I ! - I t·- ) -=· b \<. lo 1,) 

Writing ~ for x/b, \ \ for y/b, and o for t he Prandtl number 

f - cplk, the above relati onships can be written 

T-Tu 
l o 

(47) 

(46) 
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Usine Eq 46, Eq 45 is automatically satisfied, In terms of the 

dimensionless paraemters Eqs.43 and 44 become 

(48) 

(49) 

(50) 

where Gr = gt) .6-f /1lT0 is the Gr ashof Is number . The dependence of ) 

and $ on. the Gr ashof ts number and. the Prandtl number o- i s t hen 

obvious. The boundary conditions become 

(i) When J ;: O : ) ~ )3 :: )() -= 0 

(ii) when 17 -= o: -s=s ~s; ::: o 
$ ri1 I 

(iii) When J ; Q: (9 ":. ( ' 1- ''t'~ ())-
(iv) When 17 ~o: (9 "'-0 ? 

(v) When '! :::.oo; (3} =- 0 
) 

(vi) When ;- ' '7 ~ - oO • (:) =-0 

y'.(Pr9posed me t hod of solution. ssume 

0 
the coeff icients of J and J being zero as r equired by J , c. 

(boundary condition) (i) , The functions f should obviously 

be odd functions by symmetry. Aesumicg the odd f unctions f to 

be entire functions, it is obvious thut B, C, (ii) is automatically 

s atisfied. To satisfy B, c. (iii) and (v), assume 

C. 

<J ~ C -
3 [<9" ( 7 ) t l 0 1 ( ") } -r j z, $ ~ ( 'J ) ;- - - -] 

(.51) 

(S2) 



where 

(53) 

The functions G',, , 0 , , - - -· are obviously even f uncti ons by symmetry, 

so that B. c. (iv) is automatically satisfied, In solving for t he 

functions 010 .,0,, -- - -, only a. c. (vi) remains to be satisfied. 

It is of course assumed that the series in Eq .52 is convergent fOI' 

all real values of ·17 and _all real finite vdues of J • I.£ 

the ser~es di ver~es at r ::. oO • B. c. ( V) will be satisfied if the 

degree of divergence is less than that of ex1:i(f )as J- ea , 

This will be tenatively assumed, 

Substituting Eqs, 51 and 52 into Eqs 49 and 50, and equating 

coefficients of l ike powers of J , two series of N"dinary differ-

ential equations in r; are obtained. The first series is furnished 

by Eg,49: 

I 

Z (~-t-G r .C9o ~ o 

etc. 

The second series is furnished by Eq- 50:: 

(54) 

(55) 

(56) 

t59) 



(60) 

(61) 

u 
5: f~ e, +2.(;/(c.92-C\)+z r2-'(e3 -c9,)- -s-(.·C9: C6.3> 

- ~ f~C9i-s(3(6},-00 )- Z ( 17_(t!;~' -Q/ ) ,, 
=. _j_ (~ ,,,_., .. , ID. ,~ _ /71\ 11 II (;lo ) er .,o L..,."' - , o l7-4 -i-· l '2-G.:i ·- 5 t::.-,0 t '9.1-i - <9 c + · z 

A close inspection of Eqs 54 to 6.3 shows that f"':L , (9;). and 

~ are at. once known from Eqs 54, 59 and 56 since (9-0 is given, and 

further, that if one f unction is known in addition, all the other 

functions can be solved, at least theoretically. Since the p~er 

series in Eqs 51 and 52 must be convergent for finite values of 

$ , it follows that 

lim f~ == o , 
11 _,. oCl 

Consequently, for an approximate solutim, it is p0ssible to take 

ei ther f ri ~r 0,.1 to be zero, provided. n is sufficiently large. 

Concerning actual computation, (<.. can be first taken to be zer~. 

Then Eqs S4, 55, 56, 58, 59, 60, 61 furhish the solution 1=1f {- , 
j 

and all f unctions are known. The differential equation one finally 

obtains after elimination among the above-mentioned equati~ns is 

linear and of second order, thus pres.enting no difficulty for its 

solution. The degree of appro.ximation can now be checked by 

computing (9~ , (9 7 - - , (9 '1 • The smallness and decreasing 

magnitudes of these functions serve as a check for the claseness 
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of the approx:i,.matione. If greater accura.cy is required .on€:l can ta~e 

~? or (:~ , or in general { 11 ( 11 "> b) to be zero. If the 

resulting system furnishes after elimination a linear differential 

equation, it· can be solved directly. Otherwise, the results 

previously obtained can be used to linearize the non-linear differ-

ential equation, and the perturbation can be iterated until the 

corrective term becomes sufficiently smalle If the final results 

thus obtained do not differ appreciably from those previously obtained, 

the problem can be considered as solved. Otherwise, a larger n has 

to be taken until two consecutive sets of results do not differ 

appreciably. In the process of solution, B. c. (vi) must of course 

be taken into account. 

(b) Finite s0urce~ axially symmetric case 

D<: • Statement of the Pr0blem. The problem is completely analogous 

to the one presented in (o., ) P<. , except that instead of _a plate of 

width 2b the heat source is now realized l-.y a heated circular disc 

of radius a The center of the disc is taken to be the origin, 

from which the x-axis is erected in the vertical direction. Instead 

of y, r is used, which is measured radially from the x-axis. 

Thus, replacing 'b . by a and y by r, ene obtains 

the variables for the present problem from those in the last problem. 

Vnderstanding v te be the radial component of velocity, the differ-

ential equations to be satisfied are 

----,,, (64) 

(65) 
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( r- l,,, ) x + ( r- v) ~- :: 0 

the last of which permits the relations 

., V::: ·- _L il1 
i T X 

-(66) 

( 6.7) 

where f is the Stokes t stream-functi on. The boundary conditions are 

similar to those in (a) ·C)( • 

·?· Dime-nsi-onal .Analysis., . Taking the variables from (a)· (~·~' and 

replacing b by a and y by r, the following relations can 

be .obtained: 

-r---r., -,0 ~ --1 ~ ( ~T -::. -··- 19 ) 17 c:-- -- ' . To '- ) ' ., u ' ,-;; . 

!-
a a.. ) •J -----v :::, 

where g = x/a and ? = r/a, Substituting Eqs 67 to 69 in Eqs 

64 and 65, the following dimensionless equations are obtained: 

where now ·- qa,.,,Li.T __ _ 
vi To 

The boundary conditions for Eqs 70 and 71 are similar to 

these in (b) • (3,• 

'{. Proposed Method of Solution. The prop0sed method -.ef 

solution ;is similar to that in (a) _. 't o 

· ( c ) . Horizontal cylinder 

{X ,Statement -of the Prob:bem. .A heated horizontal cylinder of .radius 

. (68) 

(69) 
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a at a temperature Ts is placed in the atmosphere originally at 

rest and isothermal of temperature TO , and the resulting "temperature 

and velocity distributions as well as the heat transfer from the 

cylinder are soughto In a plane perpendicular to the axis of the 

cylinder, the trace of the cylinder is a circle, the center of which 

is chosen as the origin, from which r is measured radiallye The 

line drawn from the origin vertically upward is taken as the polar 

axi s, from which (9 is measured countercleckwise. Denoting bs' 

U.. and v the velocity components in the r and ~ directions 

respectively, ~ne has the equations 

....,_ + v -II.- Ir· -- 10 r (73) 

(74) 

the last of which permits the use of the stream-function f such that 

(75) 

The boundary conditions are 

(i) When ~ "<.o o r .:: T: : If ::.::) , V -= o 9 U0 """ a 

(ii) When r = a; i) -: 0 ' I.A. = 0 ' V-=0 

(iii) When 0 ::.o or + 1r: T ~ :; O -
(iv) When r = a : T: Ts 

(v) When r = ~ T: T 
() 
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~ Dimensional Analysis . Taking the variables from (a) • {i and 

replacing x and y by r and (3 and b by a, a dimensional 

analysis yields 

T-To Ts - T,, X (~ --=::--- (9.o 
J;, To ' , ' 

lo 

AT -3a_3 

-,-, v~) 
, 0 

where f : r/ao Substituting Eqs 76 and 77 into Eqs 72 and 73, 

one G1btains 

(7') 

(77) 

(78) 

(79) 

The boundary conditions can be readily written in dimensionless form. 

¥: Proposed Methed of Solution. The proposed method of solution 

is similar to that in (a).'{ , with a few modificat ions. 

(d)Sphere 

(X, Statement of the Problem. A heated sphere of radius a at 

temperature Ts is placed in the atmospher e originally at rest 

and isothermal at temperature T
0

, and the resulting temperature 

and velocity distributions as well as the heat transfer are sought., 

Spherical coordinates (r, ,9 , <f ) will be used. By symmetry all 

unknown quantities are not functions ~ <f • Using u and . v 

to den"'te the v~loci ty components in the r- and e -directions., 

respectively, one has the equati ons 
V ?.. 

UU..,.- t 7 Ue, - ~ =V 
-; .. ve) +~·c))s<3' · 

( 
2 c ...... ,1'\, , _:2 U- _ _ :i co+~.~ 

I, -.. ~ , I .._ •.Q.J...\,,z' I J -1- ~ - / J - I/' , !Arr' r v,..,- ' ·- r-1- -~ ! r.e. IA(9(9, r" ,.1.. (80) 
T-T .. --,=;-



T. V '-r 2. ( i0 . ..L - ) 
{,<., rt 7 T~ =1.1( 1rr -tr T, + ~ r<9 -t r~ 1~(9 

the last of which permits the use of the stream-function f such 

that 

' V=----r -s ,.I'\ <9 

The boundary conditions are 

(i) When (9. .:() 'O( ± "jj': ~ ;::Q ' V-: Q , {), ~-=- 0 

(ii) When r = a lf :. 0 , u..,::o, V-= O 

(iii) When e -,., -u or !. 1i' ~ -,(y -::: 0 

(iv) When -r: a . T : T • . 
B 

(v) When r: c:,() . T = T ' 0 

( 81) 

82) 

(83) 

~· Dirrensional Analysis. Understanding r now as in three dimensions, 

the variables in (c) o ~ can be used here and the resulting rela-

tionships are 

T-To 'x-(1,& ,o' 
) 

OT -

Substituti~n of Eqs 83 to 85 into Eqs 80 and 81 yields two dimen-

sionless equations comparable to Eqs 78 and 79, the unknowns being 

X., and f • The boundary conditions can be readily put in 

dimensionless form. 

(84) 

(85) 
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~. Proposed method of s.olution, The prop~sed method of solution 

is similar to that in (a) • Y , with a few modif.icationi3. 

5. EXI?erimental results in free convection 

In the follcwing, experimental results in free convection from 

vertical and horizontal plates and cylinders and ~rom a point source 

(turbulent case) will be presented. 

(a) Vertical plates 

The theory pertaining to free convection from a vertical plate 

has been presented in J (a). Experiments by Lorenz (221) as well 

as more recent (1935) ones of R. Weise (232) led to values about 

25% higher than that given by Eq 180 This may be due to the influ-· 

ence of the edges and to motions of the ambient air. Schmidt and 

Beckmann (230) used vertical plates about 5 and 20 inches in height, 

with sharpened lower edges and vertical bounding plates at the edges 

to prevent lateral convection, For the small plates their experimental 

coefficients are in perfect agreement with Eq 18, while for large 

plates they are 4% higher than the theoretical values, 1) being taken 

to be that of the ambient air, The temperatures were measured with 

a thermocouple with wires of 0,015 mm0 in diameter, 10 to 20 mm, 

long. The deflections were read by a microscope, the calibration 

showing that the deflection is not propertional to the velocity, 

The use of the theory developed in e:3 (a) is restricted to 

certain heights depending on the fluid and on the temperature differ-

ence, For air and the temperature differences used in (28), the 

theory is not valid beyond h: 2 ft. Above this height turbulence 

plays an essential role. Experiments on turbulent heat transfer 

from a vertical plate were done by Griffiths and A. H, Davis 

(213, 1922). Their results showed that the mean heat transfer 
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coei'ficient hm is propo.rtional to (tl T ) V:, , or that the mean rate 

of heat transfer per unit area, ~i, is proportional to ( .Ci T) 'l/3 , 

both hm and q ru being independent of the height of the plate L. 

Experiments by the authors on vertical cylinders undergoing turbulent 

heat transfer showed approximately the same coefficient 1/3 for AT 
in the expression for~ ·~ The form of the formula 

Nu ~ C ( Gr ,, (J ) l/J 

where Gr and o-' were defined before, has been verified by ia 
' 

correlation of King (218,1932) and by Jakob and Linke (217,1933) 

to be valid for not only vertical plates and cylinders, but also 

horizontal plates and cylinders, when the flow is turbulento 

In the laminar range, King recommended the foll9Wing formula 

in British technical units for vertical plates of less than 2 or 

3 feet in height: 

'lhe height-limits correspond to the 4T -range of the data which 

King correlated. 

(86) 

(87) 

Jacob ard Linke (217) siUggested that when 4 < 1Gg10 (Gr , u ) 
L.. 8, ;the, !ormula 

Nu: Oo555 (Gr • ) .J.. a .. 4 

be used, and when 8 < log10 (Gr .a )< 12, the formula 

Nu: 0.,129 (Gr. • 0 )113 

be used. 

According to the mcst recent measurements of !ouloukian, 

Hawkins and Jakob (231, 1948) on vertical cylinders in water and 

ethylene glycol, with o ranging from 2.4 to 117.8 and Gr 

(88) 

(89) 

from 22 (106) to 326 (109), the results may be r~presented as follows: 
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Nu : O. 726 (Gr o (r )¼ · (0~2(109) .( Gr(;·< 40(109) ) (90) 
1.29 1/3 9 9 Nu: 0.06?4 (Gr / • o- ) (40 (10) < Gr .a-< 900(10 )) (91) 

both with a maximum deviation of about .! 10%, Correlation with 

Nu= 0.086 ( Gr .o )1/ 3 (92) 

was possible with about the same maximum deviation, but with a 

considerable systematic deviation. The authors claimed that since 

the cylinder diameter was 2~7S inches the influence of curvature was 

probably so small that the results will not differ appreciably from 

those for vertical plates, 

(b) Horizontal plates 

Jakob and Linke (217) showed that the form of Eq 89 can also be 

used for the turbulent convection on the upper side of horizontal 

plate, according to their experiments with water boiling on such 

surfaces. Their results can be represented by the formula 

Nu= 00273 (Gr ,0- )113 

which gives a Nu more than twice as large as that given by Eq 89. 

This difference is probably due to the better mechanism of heat 

(93) 

transfer from horizontal plates, and due to the boiling of the liquid. 

From the experiments of Griffiths and Davis (213) it can be 

shown that the rate of heat transfer for a horizontal plate, facing 

upward in air, is, in Britiwh technical units. 

= o. 27$ ( G T)4/3 

Compared with the same authors' values of qv for vertical plates 

2 and 8 2/3 feet high, one has 

(94) 

(9S) 

the difference being only 28% instead .of the more than 100% found for 

boiling watero 

For horizontal plates facing downward, the same authors found 

(96) 
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The factor o.50 might be even smaller but for the secondary influences 

at the edge of the platee Taking mean, 

• 

which is true of course only when the fl~ is turbulent. 

Experiments to determine the temperature distribution in the 

air surrounding a heated horizontal plate were done by R. Weise 

(232, 1935), who used square aluminum plates, about 16 and 24 cm in 

side length, 1.0 and 1.5 cm. thick, respectively, which were hung 

(97) 

up in a wide room and heated electrically0 The boundary layer 

thickness is about 1.5 cm in the center below the plate ani l cm close 

to the edge. Detailed data are presented in the form of isotherms. 

These data are not useful for the case of free evaporation from the 

surface of a lake, since the heated plate has two surfaces in contact 

with the atmosphere. 

In October, 1944, G. H. Hichox published his University of 

California Dissertation (106), a part of which dealt with evaporation in 
stil+ air. He used an evaporation pan 1 ft in diameter. and ~n inter-

• t . t • • . ' • • • • 

f erometer to measure the fall of the wat er surface. From his e:ig,eriment. 
al data he· suggested the formula 

where 
Nil~ o.~1-L5 (G~'lJ- ')Y4 

I hJiL EL 
Nu: the nusselt number for evaporation= K: ~C 

l\.~I 

I Gr': the Grashof number for evaporation= 

I 

0-- : the Prandtl number for evaporation : 1.? 
~K--

h·m being the mean coefficient of vapor transfer, E being the mass 

transferred per unit time per unit area, L being a representative 

length which can be taken to be the diameter d in this case, K 

being the vapor dif'fus1v1ty, ).,'- and 1J having the usual meanings, 

(98) 
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~C being equal to the difference of the saturation concentration 

01 at the prevailing temperature and the con'c~ntration cQ. of the 

ambient air, 0 being the specific weight of the ambient air and 

b. Y being corresponding to ~ C. o It must be noted that Eq 98 

is of the same form as Eqs 88 and 90, and that the c~efficient o.645 

in Eq 98 is almost the mean of the coefficients o.555 and 00726 

occurring in Eqs 88 and 901 respectively, in spite of the difference 

in orientations of the evaporation surface. 

Since tJ"" and g are practically constant, it can be concluded 

from Eq 98 that 

p 
Since j rv T , and .fl ""I.. ff approximately, the above 

proportionality further gives 

(99) 

- ( ), .::i.s- T 
t_ r'v ~ C . L 0 . 1. s po .?s 

(100) 

Eq 98 apparently corresponds to laminar fl("W only$ When the 

flow is turbulent, the exponent l/4 in Eq 98 can be expected to 

change to 1/3, and the rate of evaporation E can be expected to 

be independent of L, as in the case of heat transfer. 

The effect of the pnsition of the water surface in the evapora-

tion pan can be systematically treated by allowing the pertinent 

dimensionless parameter to vary (See Part IV). In this way 

mm-e conclusive results for pan evaporation can be obtainedc, 

Transpiration rate fr("lll a l eaf-shaped surface as a function of 

temperature and relative humidity has been measured by Emmett Martin 

(222, 1943) • 
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("c) Horizontal and v·ertical l!lylinders 

Correlation by Nusselt (226,1915) shows thet for (Gr.o) < 10-5 

h ~ 0.,4 k (lOl.) • D 

and for (G:r .. <Y" ) '.·,. :;105 
l 

Nu= 0~52 (Gr .a- )4 (102) 

In the ra."lge between 10-5 and 1o5 , the trend gradually varies from 

Eq 101 to 102 0 The Nu and Gr are of course based upon the diameter D. 

The correlation by Jakob and Linke (217) shews that free con-

vection from horizontal cylinders also obeys Eqs 88 or 89, according 

as the flow is laminar or turbulent. 

When the diameters are large enough for the curvatures to be 

Eeglected, free convection from vertical cylinders obeys the same 

equations as free convection from vertical plates. Correlation by 

Jakob and Linke (217) shews that turbulent free convection from 

vertical cylinders obeys Eq 89. As has been mentioned in 5 a, m~e 

recent results obey Eqs 90 and 910 

The heat transfer from vertical wires, 15o5 to t2.3 inches long, 

to air by free convection has been investigated by Meuller (223, 1942) 

in the range of temperature di.t'ferences from 1 to 100° c. No effect 

of wire length was noticeq, while the effect of the diameter was 

marked. Based on the diameter, the pertinent parameters obey, ,. the 

relation 

Nu : (Gr • CJ )O"l 
-7 L in the range 10 - Gr oO 10-2 and possibly up to 

Gr • o = lo 

For free convection in enclosed plane and cylindrical gas 

layers, see (32,1949), ppQ 534-5420 

(103) 
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(d) Point source of heat 

The laminar case of the free convection due to a point source of 

heat has been treated in 2(b)~ When the flow is t~t"bulent, Yih's 

experiments (234jl948) give the following results (the symbols that 

appeared in 2 (b) retaining their meanings): 

(i) For temperature distribution . ( ..-- )1, 
t ( x 5 ---)-~(T-') :- l-i\.D,084)(.. 

·r e r.. 2. I O / I , 0 e 
( C, \ ..;;, / 

(104) 

(ii) Fer UP d~.stribution of th& longi·\·«Jd;i.nal "T;"o;.o~ity 

f. y. .!...( , .. )!. ( GZ) ) u -: L/. 7 e - 2 0-,o ,z.x (10$) 

(iii) For the Stokes• streamfunction 

f ~ 0,02,41/(G{} [, -e -U,,-";:j;,,)'] (106) 

(iv) For discharge through a horizontal section at an elevation x: 

Q-= 0.153 ( 
':l- I 

Gx )'J f> . 
(v) For the momentum flux through a horizontal section at an 

elevation x: 

(vi) For the height hat which transition from iaminar to 

turbulent flow occurs: 

,f' l/ G 'i 
,, -:::. a>(IO 

_,,).,,{, J 
It may be remarked that in Yih 1s experi~nts, low flames were 

used for the heat source. The mass-source and momentum-source 

characters of the fla.mes are believed to be negligible at suffici-

ently high elevationso 

6. eoncluding remarks 

Frcm the foregoing, the following remarks can be made: 

(107) 

(108) 

(109) 
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(a) Equations for turbulent free convection have not been 

mathematically formulated, while the well formulated ones for 

laminar free convections are in general difficult to solve. 

(b) Due to the many variables involved in free convection, 

dimensional analysis is particularly important in this branch Cl.'!' 

research., 

(c) So far, the physical 11 constants" except y and p 
have been considered as invarient. Future research should be con-

cerned with the effect of the changes in these 11 constants. 11 This 

is more true in the case of laminar flow where lJ and the (heat Gr 

vapor) diffusivity play important roles, than in the case of turbulent 

flew. 
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