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ABSTRACT

ANALYSIS AND CONTROL CO-DESIGN OPTIMIZATION OF NATURAL GAS POWER

PLANTS WITH CARBON CAPTURE AND THERMAL ENERGY STORAGE

In this work, an optimization model was constructed to help address important design and

operation questions for a novel system combining natural gas power plants (NGCC) with carbon

capture (CC) and hot and cold thermal energy storage (TES) units. The conceptualization of this

system is motivated by the expected evolution of the electricity markets towards a carbon-neutral

electricity grid heavily penetrated by renewable energy sources, resulting in highly variable elec-

tricity prices and demand. In this context, there will be an opportunity for clean, flexible, and cheap

fossil fuel-based generators, such as NGCC plants with CC, to complement renewable generation.

However, while recent work has demonstrated that high CO2 rates are achievable, challenges due

to high capital costs, flexibility limitations, and the parasitic load imposed by CC systems onto

NGCC power plants have so far prevented its commercialization. Coupling TES units with CC

and NGCC would allow to store thermal energy into the TES units when the electricity prices are

low, either by subtracting it from the NGCC or by extracting it from the grid, and to discharge ther-

mal power at peak prices, from the hot storage (HS) to offset the parasitic load of the CC system

and from the cold storage (CS) for chilling the inlet of the NGCC combustion turbine and increase

the output of the cycle beyond nominal value. For the early-stage engineering studies investigating

the feasibility of this novel system, a control co-design (CCD) approach is taken where key plant

sizing decisions (including storage capacities and energy transfer rates) and operational control

(e.g., when to store and use thermal energy and operate the power plant) are considered in an in-

tegrated manner using a simultaneous CCD strategy. The optimal design, as well as the operation

of the system, are determined for an entire year (either all-at-once or through a moving prediction

horizons strategy) in a large, sparse linear optimization problem. The results demonstrate both the
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need for optimal operation to enable a fair economic assessment of the proposed system as well

as optimal sizing decisions due to sensitivity to a variety of scenarios, including different market

conditions, site locations, and technology options. After detailed analysis, the technology shows

remarkable promise in that it outperforms NGCC power plants with state-of-the-art CC systems in

many of the scenarios evaluated. The best overall TES technology solution relies on cheap excess

grid electricity from renewable sources to charge the TES units – the HS via resistive heating and

the CS through an ammonia-based vapor compression cycle. Future enhancements to the opti-

mization model are also discussed, which include additional degrees of freedom to the CC system,

adapting the model to evaluate other energy sources and storage technologies, and considering

uncertainty in the market signals directly in the optimization model.
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Chapter 1

Introduction

1.1 The Climate Crisis and Its Effects on the Energy Market

The increasing concentration of green house gasses (GHG) in the Earth’s atmosphere has con-

tributed to adverse changes to the global climate, which include an increase in the average surface

temperature by 1◦C, an increase in the average ocean temperature by 0.33◦C, shrinking of the

ice sheets, ocean level rising and acidification, and an increase of extreme weather events [7, 9].

These changes constitute a threat not only to Earth’s biosphere but also to humankind, and they are

largely due to the emission of GHG in the atmosphere due to humans’ increasing industrial activi-

ties [9, 10]. Policymakers have reached international agreements to drastically reduce GHG emis-

sions and arrive at “net-zero” by 2050 [11]. The energy sector accounts for around 75% of the total

GHG emissions, which are mainly due to the combustion of fossil fuel-based power plants [12]. In

its effort towards net-zero, the United States has pledged to erase all GHG from the energy sector

by 2035 [13]. The strategy to achieve this goal includes increasing economic penalties associated

with the emission of GHG in the form of a “carbon tax”, and ultimately moving towards an en-

ergy sector dominated by renewable energy resources like solar, wind, bio, geothermal, and hydro

energy, coupled with energy storage [12].

While U.S. fossil fuel-based energy generation still constitutes the dominating energy source,

wind and solar as renewable sources prevail in terms of added capacity, a trend that is expected to

increase in the foreseeable future as the cost of electricity provided by these resources continues

to decrease [14]. In particular, the U.S. Energy Information Administration (EIA) indicated that

solar power will account for 46% (21.5 GW), wind for 17% (7.6 GW), and batteries 11% (2.2 GW)

of new planned generation capacity, while coal plants will account for 85% (12.6 GW) of retired

generating capacity in 2022 [15, 16]. While the levelized cost of electricity (LCOE) for wind and

solar continues to decrease, their increasing penetration will radically change the nature of the
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Figure 1.1: The comparison between a snippet of electricity prices from the month of April 2022 and a

prediction for 2030 shows an expected increase in prices variability.

electricity markets [17]. In fact, because wind and solar are by nature passive energy resources –

their electricity generation strictly depends on current environmental conditions – issues related to

unreliability and intermittency of these sources raise concerns about their ability to fully satisfy an

ever-increasing electricity demand. These concerns are to be reflected in the electricity market in

the form of increasing electricity price, but more importantly, an increase in their variability [18].

For instance, Fig. 1.1 shows a snippet of hourly electricity prices from the state of New York for

April 2022, compared with a prediction for 2030 made for the same area by the capacity expansion

model GenX [19]. While the average electricity price in this scenario is higher for the current data

than it is predicted in the future – 48.6 $/MWh in the current age and 39.3 in 2030 – the standard

deviation of the future data is much higher compared with the present – 25.5 compared to 19.2. The

increased future variability is also clear from the image, where it can be seen how, on a daily basis,

the prices go from almost 0 $/MWh – presumably because of renewable sources over-generation –

to nearly 150 $/MWh – likely because the same renewable sources are offline.

The gap left by intermittent renewable sources in the electricity demand is expected to be filled

by alternative generation sources, which will need to be readily available and flexible to quickly

ramp up generation, cheap enough to be competitive in the market, as well as carbon-neutral (or

close enough), to comply with CO2 policies [17, 20, 21].
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Figure 1.2: Data from the U.S. Energy Information Administration show net generation from NGCC power

plants have steadily increased, a trend that is expected to continue in the near future.

1.2 Natural Gas Combined Cycle Power Plants

Natural gas combined cycle (NGCC) power plant (PP) in the U.S. are currently the largest

source of energy. For instance, Fig. 1.2b shows how in 2021 38% of the net energy generation

of the U.S. came from NGCC plants [22]. In 2022, NGCC plants also account for 21% of new

planned capacity (9.6 GW) [16]. This is part of an ongoing trend that has seen the natural gas

infrastructure substantially grow since the early 2000s, as is shown in Fig. 1.2a. This growth is

expected to continue in the near future, although in the long-term it is not clear how the natural gas

infrastructure will be integrated within electricity markets dominated by renewable sources [23].

As suggested by the name, NGCC power plants combine two power generation cycles, in

which waste heat from the topper cycle is extracted and used within a bottomer cycle to generate

additional power [24]. From a high level, these are the fundamental steps in NGCC power plants:

1) natural gas is combusted to aliment a Brayton cycle in which power is generated through ex-

pansion in a gas turbine; 2) waste heat is extracted from the exhaust of the turbine and used to

generate steam in a large, multi-stage heat exchanger, referred to as a heat recovery steam gen-

erator (or HRSG); 3) the steam at different stages is expanded in a series of steam turbines for

additional power [25]. Through the combination of Brayton and Rankine cycles, combined cycles
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Table 1.1: Comparison in LCOE, CO2 emissions, and flexibility between major energy generation tech-

nologies [1–4].

Parameters Units Resource

Coal Gas Turbine NGCC Nuclear Hydroelectric

Capacity Factor % 85 10 87 90 54

LCOE $/MWh net 82.6 117.9 39.9 88.2 64.3

CO2 Emission lb/MWh net 1714 1150 755 – –

Ramp Rate %/min 6 20 18 2 15

Start Up Time (Hot Start) hr 3 0.16 0.5 – 0.1

can achieve thermodynamic efficiencies as high as 60%, with most NGCC power plants ranging

between 45% and 57% [25].

Experts state that NGCC power plants will continue to play a significant role in future low-

carbon energy markets, even though renewable sources will fulfill a considerable fraction of the

base-load [21,23,26]. The position that NGCC plants would play in that scenario consists of filling

periods of high unsatisfied demand, when renewable energy sources are unable to fulfill it [21,26].

Table 1.1 shows a comparison between some of the most prevalent generation sources in the current

US market. By consulting the overall performance of NGCC power plants, which show by far the

lowest levelized cost of electricity (LCOE) among the technologies reported, it becomes more

clear why this resource is currently prevalent. With the perspective of future markets determined

by low-carbon policies, NGCC power plants show CO2 emissions that are 55% less than coal and

24% less than gas-fired peaking turbines. While gas peaking turbines exhibit remarkable ramp

rates, even compared with NGCC, they also result in much higher LCOE, so that their utilization

is usually relegated to periods of remarkably high prices and demand [3].

Despite the fact that NGCC power plants emit less GHG compared with other fossil-fuel-

based generators, if economic penalties associated with CO2 emissions are instantiated, which

many consider a likely outcome in the near future, it would be difficult to make a case that sees

current NGCC power plants overcome these penalties and retain a substantial fraction of the energy

generation. However, if proven technologies such as post-combustion carbon capture (PCC) can

reduce the CO2 emitted by NGCC power plants before it enters the atmosphere, making these
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Figure 1.3: Illustration of (a) CO2 solvent-based absorber and (b) stripper for solvent regeneration [7] used

for post combustion CO2 capture.

integrated plants essentially carbon-neutral, then really the role played by them in the future could

be significant, as many claim [7, 21, 23, 26, 27].

1.3 Post-Combustion Carbon Capture

The separation of CO2 from gas mixtures has been pursued in commercial activities involv-

ing hydrogen, ammonia, and natural gas purification plants [7]. Due to the increased concerns

regarding the climate crisis in recent years, considerable efforts have been taken to develop larger

scale carbon capture (CC) technologies to be implemented within the energy sector. CO2 can be

removed directly from the atmosphere – these technologies are referred to as direct air capture

(DAC) – or from the exhaust of power plants, also referred to as post-combustion carbon capture

(PCC). There are some inherent differences between DAC and PCC which should guide the design

approach of the carbon capture system. For instance, the concentration of CO2 in the atmosphere

is much lower than in the exhaust of a power plant: 0.0390 mol% compared with 12 mol%. Ad-

ditionally, PCC must also overcome challenges associated with a much higher CO2 flow rate and

overall emissions [7].
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The traditional approach for PCC is solvent-based absorption [7]. In the absorption process,

the power plant exhaust enters the absorption column – Fig. 1.3a – where the CO2 is separated

from the gas and dissolved in the solvent. An additional and crucial component is the stripping

column – Fig. 1.3b – where the CO2 is removed from the rich solvent using condensing steam.

A large fraction of the capital investments for PCC systems is represented by the absorber and

stripping columns [7,27]. Most of the power requirement (and costs) associated with PCC systems

is represented by the thermal power required to generate steam for solvent regeneration, the elec-

trical power associated with compressing the removed CO2, and the cost of transport and storage

of the compressed CO2 [27, 28]. In the specific case of NGCC power plants, the steam for solvent

regeneration is extracted directly from the low-pressure steam turbine, which incurs a 10% power

net power decrease [1, 27, 29].

Table 1.2: Parameters comparison between an NGCC power plant with (B31B) and without PCC (B31A).

Parameter Units B31A B31B Difference %

Capacity Factor % 85 85 –

Nominal CO2 Capture % 0 90 –

Gross Power Output MW 740 690 -6.76

Auxiliary Power Requirement MW 14 44 214.3

Net Power Output MW 727 746 -11.14

CO2 Emissions lb/MW net 755 85 -88.74

Total Plant Cost $/kW 780 1984 154.36

LCOE $/MWh 43.3 70.9 63.74

PCC systems have demonstrated that 90+% CO2 removal rates are achievable [30]. This is

encouraging in the light of possible CO2 penalties discussed in Sec. 1.1. However, as shown in

Tab. 1.2, a high CO2 capture rate comes at the cost of substantial penalties placed on the sys-

tem: performance penalties in the form of lower flexibility, decreased gross and net power output;

economic penalties due to the substantial capital investment necessary for the CC system; and in-

creased operational costs. These factors contribute to an overall increase in LCOE for the NGCC

power plant coupled with CC, from 43.3 $/MWh to 70.9 $/MWh. For these reasons, despite rela-

tively high CO2 are feasible, it has been difficult to make a solid commercial case for CC systems
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coupled with any fossil fuel-based generators, including NGCC plants [21, 27–32]. However, so-

lutions have been proposed to overcome these limitations and make CC profitable: some include

coupling CC with external energy storage [21, 31], storing CO2-rich solvent to limit CC’s para-

sitic load at peak electricity prices [28, 33], and venting the CO2 when more profitable than using

CC [34]. A slightly different proposed solution consists in integrating NGCC and CC with hot

thermal energy storage (HS) and cold thermal energy storage (CS) units [5, 6]. This approach is

investigated in more detail in Sec. 1.4.

1.4 Coupling Thermal Energy Storage with Carbon Capture

The existing solutions to increase the flexibility of PP coupled with PCC show limitations

that make them unfeasible for scenarios that call for PCC in the first place [6]. For instance,

while CO2 venting allows a reduction in the impact of the CC system’s parasitic load onto the

host plant, the penalty from emitting CO2 into the atmosphere in the context of aggressive carbon

policies might make this an unfeasible approach [35]. Moreover, storing CO2 in the solvent itself

might seem like an attractive solution as it does offset the parasitic load from the CC system at

peak electricity prices. However, for implementing this approach, the size of the equipment for

solvent regeneration must be increased (and with it the capital investment), or the CO2 rate must

be decreased [34]. In either case, results have shown that this approach might not be economically

feasible in scenarios that justify PCC in the first place [6, 35].

Integrating concrete hot thermal energy storage (HS) and cold thermal energy storage (CS) with

NGCC power plants coupled with CC denotes an alternative approach to make PCC economically

feasible. As thermal energy storage (TES) units, HS and CS are technologies that have been already

investigated in the context of power generation, but never as coupled with PCC [6, 36–39].

The modes of operation of the TES units as coupled with NGCC plants with CC are better

understood in reference to Fig. 1.4. In the neutral phase – Fig. 1.4a – similar to the nominal

operation of an NGCC plant with CC but not TES, thermal energy is extracted from the NGCC

itself to provide the steam necessary to the CC for solvent regeneration; additional electrical loads
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Figure 1.4: Simplified diagram of the different operation modes of TES units coupled with an NGCC plant

and PCC [5].

to power mainly the CO2 compressors also penalize the net power output of the system. In the

charging phase – Fig. 1.4b – hot thermal energy is generated in the HS by extracting it from

the PP; whereas cold thermal energy is generated in the CS through a vapor compression cycle

powered by grid electricity. Note that in this example, the HS requires the PP to be online in

order to be charged. However, HS configurations have been studied which also use grid electricity

to charge (i.e., using resistive heating), so that charging of both HS and CS can occur with the

PP being offline [5, 6]. In the discharging mode in Fig. 1.4c, the CC is still running at nominal

capacity, but the steam required for solvent regeneration is now extracted from the HS, reducing

the net penalty suffered by the NGCC plant. In addition, the discharging of the CS actively cools

the air entering the NGCC combustion chamber, increasing its density and thus the amount of

fuel that can be combusted. Therefore the power generated by the NGCC is beyond its nominal

value [5, 6]. Moreover, an additional operational phase that is not shown in Fig. 1.4 is the so-
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Figure 1.5: Simplified operation of the TES in response to variable electricity prices.

called “boosting mode” and essentially consists in simultaneously charging and discharging the

CS without operating the HS. Since the round-trip efficiency of the CS can be larger than unity

(i.e., the net increase in power output from discharging the CS is larger than the penalty from

charging it), the boosting mode allows for a resulting slight increase in net power output of the

NGCC power plant, at the cost of increased fuel consumption and decreasing the percentage of

CO2 captured [6].

The operational modes described in Fig. 1.4 grant additional flexibility to the NGCC power

plant equipped with CC and provide opportunities for increased profit in response to variable elec-

tricity prices. Fig. 1.5 shows an illustration of how the different operational modes might be utilized

during a given time 24-hr time interval. From 0-hr to 8-hr, the electricity prices are near 0 $/MWh,

so it is not profitable to run the NGCC. However, such low prices are suitable for charging the TES

units if that is done using electricity: this results in negative PP from 0-hr to 4-hr, which signals

that electricity is being extracted from the grid to charge the TES units until at full capacity. From

9-hr to 13-hr, while the electricity prices increase above the break-even line of the PP, the NGCC

plant turns on in the neutral mode, as in Fig. 1.4a. The electricity prices peak between 14-hr to

17-hr, so that in this time interval there is potential for a large profit, which is captured by operating
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Table 1.3: Several TES configurations and their working principles, as presented in [5, 6].

# Heat Pump Type Energy Source Working Fluid

1† Brayton Cycle Flue Gas Flue Gas

2† Brayton Cycle Electricity Ambient Air

3† Brayton Cycle Flue Gas Ambient Air

4 Vapor Compression Flue Gas Ambient Air

5 Vapor Compression Flue Gas Steam

6† Tiered Vapor Compression Electricity Steam, Ammonia, Coolant

7 LP Steam Turbine Direct Extraction Steam

8 IPT Steam Turbine Direct Extraction Steam

9 Resistive Heating Electricity Air

10⋆ Vapor Compression Electricity Ammonia

† combines HS and CS in one configuration
⋆ CS configuration

the NGCC at full capacity and discharging the HS and CS, allowing for an increased PP while still

capturing CO2 through the CC. From 18-hr to 20-hr, the electricity prices are still relatively high,

but the TES units have been emptied: higher-than-nominal power output is achieved through the

boosting mode. Finally, as the prices start dropping, the system cycles back to the neutral mode

before going offline and waiting for the next cycle. An important detail is that despite Figs. 1.4

and 1.5 showing the HS and CS as consistently operating in identical modes, they can be fun-

damentally separated technologies which are independent in their operation (and in their design).

However, their most effective operations follow similar motivations, so their respective operational

modes do often tend to align.

Figure 1.4 shows a high-level description of the HS and CS units in the main operation modes

for non-specific technologies. To generate the hot and cold thermal energy necessary to charge the

TES units, numerous thermodynamics cycles, working fluids, and technical equipment might be

used. In work based on the optimization model in this thesis, a total of 17 different thermal energy

storage configurations have been evaluated [5,6]. Table 1.3 presents a high-level description of the

most relevant configurations, highlighting the type of heat pump and the working fluid used.

TES constitutes a promising technology in order to make CC coupled with NGCC power plants

more profitable: its implementation would retain the output flexibility of NGCC power plants while

allowing CC to operate at steady-state. Also, it would derestrict the NGCC plant beyond nominal
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operation output during peak price periods by utilizing stored energy from the TES for solvent

regeneration and air pre-chilling. Understating how the different operational parameters of the TES

configurations presented in Tab. 1.3 translate into economic performance in real and future energy

markets is crucial for selecting and further improving the most promising technology: Chap. 2.1

will present how a fair comparison can be achieved, and Sec. 3.5 will discuss some results. More

details on the technology modeling of the TES units are available in [5, 6]. Finally, for the HS and

CS media, concrete blocks have been selected for storing and realizing thermal energy. This choice

was guided by their relatively low cost, remarkable durability, and flexibility to accommodate large

temperature swings [6].

1.5 Control Co-design Optimization

The questions associated with the early-stage design and the economic evaluation of a system

such as an NGCC power plant with CC and TES call for a computational model which integrates

plant design decisions as well as control decisions that must dynamically respond to time-varying

signals such as electricity and fuel prices, CO2 taxes, and temperature data. The strategy underlying

this work represents the system within a control co-design (CCD) optimization problem. As a

growing class of integrated design techniques, CCD considers plant design and control decisions

in an integrated manner and has shown significant advantages in solving complex design problems

over traditional sequential and siloed approaches [40, 41].

There are two fundamental coordination strategies for posing a CCD problem: 1) a simul-

taneous problem formulation, in which both plant design and control optimization variables are

considered within a single optimization problem; 2) a nested formulation, in which two optimiza-

tion problems are formulated: the outer-loop problem, in which usually only plant design variables

are considered optimization variables, and the inner-loop control subproblem, where the design

of the plant is fixed, and the control of the plant is optimized [8, 40]. Towards formalizing this
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(a) Simultaneous CCD. (b) Nested CCD.

Figure 1.6: Illustration of the two fundamental CCD strategies [8].

strategy, Eq. (1.1) shows a general CCD optimization problem, expressed in a simultaneous form:

minimize:
x=[ξ,xc,xp]

o = m
(

ξ0, ξ f ,xc,xp

)

+

∫ t f

t0

ℓ
(

t, ξ,xc,xp

)

dt (1.1a)

subject to: ξ̇(t) − f (t, ξ,xc,xp) = 0 (1.1b)
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where: ξ0 = ξ(t0), ξ f = ξ(t f ) (1.1e)

where (ξ, xc, xp) are respectively the state, plant control and design optimization variables; o(·)

is the objective function of the problem, and is composed by the Lagrange term ℓ(·) which is

integrated between t ∈ [t0, t f ], and the Mayer term m(·), which is time-independent. The dynamic

constraints of the state variables ξ(t) are represented by the first-order differential equation in

Eq. (1.1b); Equation (1.1c) represents the equality constraints of the problem, which are divided

into two distinct sets {ho(·),hi(·)}, where ho(·) depends only on the plant design variables xp. A

similar partitioned form is used for the inequality constraints g(·) [42].
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Figure 1.6 shows a high-level comparison of simultaneous and nested CCD coordination strate-

gies based on the problem in Eq. (1.1). There are advantages and disadvantages associated with

each of these coordination strategies [8,40], with the appropriate choice depending on the specifica-

tions of the problem at hand. In the context of this work, both coordination strategies are explored

and implemented: the simultaneous formulation is more computationally efficient and allows for

the evaluation of the TES technology assuming perfect foresight of the scenario’s techno-economic

signals, whereas the nested approach is used when a more realistic control strategy is implemented

(which assumes only limited knowledge of future signals – see Sec. 2.2.3).

1.6 Research Questions

Although a promising concept, the complexities of an NGCC power plant coupled with CC,

HS, and CS pose certain design and control challenges, including the following decisions that are

addressed in this thesis:

1. For profitable implementation, each of the aforementioned subsystems (NGCC, CC, HS,

CS) needs to simultaneously operate in response to time-varying external signals such as

electricity and fuel price, CO2 tax, and ambient temperature.

2. Sizing decisions accompanying the physical realization of such subsystems are strictly de-

pendent on their day-to-day operation. These decisions include, for example, selecting the

appropriate storage capacity for the respective TES units, as well as the charging and dis-

charging power capacity. Usually, design decisions of this kind speak to trade-offs between

the performance achievable by a system and the capital investments required to attain it. It is

crucial to thoroughly investigate these trade-offs to achieve the best economic performance

of the system and provide a fair comparison against the state-of-the-art.

3. At a fundamental level, as mentioned in Sec. 1.4, because of the novelty surrounding TES

technologies as applied to NGCC power plants with CC, many fundamental questions need

to be answered regarding the appropriate equipment to be used for generating or extracting
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thermal power for charging the TES units, as well as for discharging them. Therefore, while

the parameters describing the different TES configurations can be generated from individual

and detailed thermodynamics analysis, the architecture of the model needs to be configurable

to allow for the efficient evaluation of TES technologies with different characteristics and

operational constraints while still accurately representing their dynamics with a high time

resolution.

4. An authentic evaluation of the system as a whole needs to reflect operation as close to real-

world conditions as possible. For instance, considerations related to the impact of location

and ambient temperature on the performance of the system should be included, and limi-

tations on the information foresight on provided market and environmental signals must be

studied.

5. Many large-scale studies might need to be conducted to explore various TES technologies

against a significant number of different technical, economic, and geographical assumptions.

Therefore, the implementation of the model as a computer program needs to be efficient to

allow for these studies to take place.

1.7 Summary and Thesis Content

Based on the previous discussion, investigating a TES system coupled with NGCC power plants

and CC in broader consideration about the expected evolution of energy markets, the motivations

underlying the need for a flexible and efficient computational model for a realistic economically-

driven evaluation of this novel technology were introduced. The rest of this document provides a

detailed description of the optimization model and is organized as follows: Chap. 2.1 reports the

derivation and the formulation of the optimization problem at the base of this approach; Chap. 3

presents the results of several different case studies demonstrating the capabilities of the optimiza-

tion model to make sound economic judgments of the proposed system. Finally, Chap. 4 presents

the main conclusions from this analysis as well as some recommendations for future work.

14



Chapter 2

Optimization Problem Formulation and Strategy

Based on the research questions presented in Sec. 1.6 underlying the early-stage modeling and

economic feasibility assessment of TES technology as coupled with NGCC power plants and CC,

this chapter presents the thorough derivation of an optimization-based mathematical model tailored

to the maximization of the net present value (NPV) of this system. Based on the discussion in

Sec. 1.5, the model is first posed as a continuous simultaneous CCD problem in Sec. 2.1, while

Sec. 2.2 discusses additional details about the model and strategies regarding obtaining solutions.

2.1 Problem Formulation

In this section, the dynamic optimization model of an NGCC power plant, coupled with CC,

HS, and CS units as well as the NPV calculation are presented. Because of the dynamic nature of

the model, many of the problem variables depend on time t. In addition, some of the model vari-

ables also depend on ambient temperature T0, which is provided to the model as a time-dependent

signal T0(t). Figure 2.1 is a high-level representation of each of the subsystems and the energy

flows between them. Different arrow colors in the image represent different forms or power, in-

cluding heat transfer, electrical power, and inlet-cooling power from discharging the CS (which

increases the efficiency and capacity of the PP). Many of the specific parameters used in the case

study are in App. A.

2.1.1 Thermal Energy Storage

Plant Variables and Constraints

There are three plant variables associated with each of the TES units:

p =

[

ΣHS PHS,in PHS,out ΣCS PCS,in PCS,out

]T

(2.1)
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Figure 2.1: Key subsystems and the flows between them.

where (ΣHS, PHS,in, PHS,out) are the HS storage capacity, maximum energy transfer rate into the HS,

and maximum energy transfer rate out of the HS, respectively, and (ΣCS, PCS,in, PCS,out) are the

equivalent plant variables for the CS.

To ensure that the hot and cold TES capacities are non-negative, we impose the following

constraints:

ΣHS ≥ 0 ΣCS ≥ 0 (2.2)

where no thermal storage is an option if the lower bound is active.

Since the HS configuration’s purpose to take over the CC reboiler duty, we assume that the

maximum energy rate from the HS is the provided nominal design; to avoid technical limitations,

we make a similar assumption for the CS. In addition, we enforce the energy rate from the TES

units to be non-negative. These points are summarized with the following constraints:

0 ≤ PHS,out ≤ PHS,out 0 ≤ PCS,out ≤ PCS,out (2.3)
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Similarly, there are technical limitations imposed onto the maximum charging rates, as well as

non-negativity:

0 ≤ PHS,in ≤ PHS,in 0 ≤ PCS,in ≤ PCS,in (2.4)

Control Variables and Constraints

As TES units, both the HS and CS can dynamically store and release thermal power; these are

the four control variables:

uT (t) =
[

pHS,in(t) pHS,out(t) pCS,in(t) pCS,out(t)

]T

(2.5)

where (pHS,in, pCS,in) are the equivalent input power to the HS and the CS from the electricity

generator, respectively; pHS,out is the output power from the HS to the CC; and pCS,out is the output

power from the CS to the PP module.

To ensure that the non-negative power inputs are less than the limits, we include the following

inequality constraints:

0 ≤ pHS,in(t) ≤ µHS,in(T0) · PHS,in (2.6a)

0 ≤ pCS,in(t) ≤ µCS,in(T0) · PCS,in (2.6b)

where (µHS,in, µCS,in) define the fraction of the nominal power input available at the current temper-

ature T0. Similar constraints are imposed on the allowed power outputted from the TES units:

0 ≤ pHS,out(t) ≤ µHS,out(T0) · PHS,out (2.7a)

0 ≤ pCS,out(t) ≤ µCS,out(T0) · PCS,out (2.7b)

where (µHS,out, µCS,out) similarly constraint the effective discharging power available to the TES

units at any time.
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States and Constraints

There are two key state for the TES units, namely the current amount of stored thermal energy,

(EHS, ECS) respectively. The differential equations are simple balances between the input and

output powers for each:

ĖHS = κHS,in · pHS,in(t) − κHS,out · pHS,out(t) (2.8a)

ĖCS = κCS,in · pCS,in(t) − κCS,out · pCS,out(t) (2.8b)

where (κHS,in, κCS,in) are the coefficients converting the electricity subtracted from the PP to thermal

power to the TES units; whereas (κHS,out, κCS,out) indicate the conversion from the TES discharging

electrical power to the thermal power flowing out of the TES units. The initial states of the thermal

storage subsystems are:

EHS(t0) = EHS,0 ECS(t0) = ECS,0 (2.9)

To ensure that the thermal energy storage is positive and below the maximum level allowed, we

finally include:

0 ≤ EHS(t) ≤ ΣHS 0 ≤ ECS(t) ≤ ΣCS (2.10)

2.1.2 Natural Gas Combined Cycle Power Plant

Control Variables and Constraints

There is one control optimization variable associated with the NGCC power plant, which rep-

resents the requested power output:

uP(t) =
[

pPP(t)

]T

(2.11)
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We include a constraint to ensure the requested power output to be non-negative and less than the

allowed limits:

0 ≤ pPP(t) ≤ µPP(T0) · PPP (2.12)

where PPP is the provided maximum nominal power of the NGCC and µPP defines the fraction of

power available depending on the ambient temperature.

States and Constraints

The requested power output in Eq. (2.11) is used in a dynamic equation describing the PP

power level PPP, a state variable in the problem:

ṖPP(t) =
1

τPP

(

− PPP(t) + pPP(t)
)

(2.13)

where (τPP) is the ramp rate of the PP. The initial state of the PP is:

PPP(t0) = PPP,0 (2.14)

We also include a constraint to ensure the effective power output to be non-negative and less than

the allowed limits:

0 ≤ PPP(t) ≤ µPP(T0) · PPP (2.15)

where PPP is the provided upper bound on the NGCC power output.

During combined operation of the PP and TES, we would like to limit charging and discharging

of TES to only when the PP is operating, so we include the following inequality constraints:

pHS,in(t) ≤ PPP(t) pCS,in(t) ≤ PPP(t) (2.16a)

pHS,out(t) ≤ PPP(t) pCS,out(t) ≤ PPP(t) (2.16b)
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so energy can only flow to or from any TES element if PPP > 0.

Intermediate Functions

From a combination of plant and control variables, states, and problem parameters from the

HS, CS, and PP, the instantaneous fuel consumption of the PP is:

m f (t) = ρ f · µ f · PPP(t) + ∆ρ f · µ∆ f (T0) · pCS,out(t) (2.17)

where ρ f is the nominal conversion factor between power output generated by the NGCC and

fuel consumed, and ∆ρ f is the same quantity but associated with discharging the CS. (µ f , µ∆ f ) are

factors affecting these quantities depending on the ambient temperature. Equation (2.17) represents

a fundamental intermediate function in the calculation of the expenses associated with running the

system in Eq. (2.28b).

2.1.3 Carbon Capture

The CC subsystem is implemented such that it is always operating when the PP is operating.

Therefore, all its characteristics are dependent on the signals described in the previous subsection.

One of the key aspects of the CC subsystem is the instantaneous CO2 capture rate, which is:

βC(t) = cn · µc(T0) · PPP(t) − ∆cd · µ∆c(T0) · pCS,out(t) (2.18)

where cn is the percentage of carbon captured from the flue gas when the PP runs in the neutral

state, and ∆cd is the decrease in capture when the CS is being discharged. (µc, µ∆c) describe how

these nominal capture rates are affected by ambient temperature. Here, we are assuming that total

amount of CO2 generated by the whole system is directly proportional to the fuel burned, m f from

Eq. (2.17), according to the conversion coefficient αC. It follows that of the total CO2 generated,
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the portion captured and emitted into the atmosphere are respectively:

mC,in(t) = m f (t) · αC · βC(t) (2.19a)

mC,out(t) = m f (t) · αC ·
(

1 − βC(t)
)

(2.19b)

As currently described, (mC,in, mC,out) are nonlinear terms in the objective function. We have found

that we can maintain the linearity without virtually losing any accuracy in the solution by approxi-

mating the expressions above using two known points of operation: 1) the neutral phase of the PP,

and 2) the discharging phase of the CS. So we rewrite Eq. (2.19) as:

m̂C,in(t) = ρC,in(T0) · PPP(t) + ∆ρC,in(T0) · pCS,out(t) (2.20a)

m̂C,out(t) = ρC,out(T0) · PPP(t) + ∆ρC,out(T0) · pCS,out(t) (2.20b)

where (ρC,in, ρC,out) are the CO2 captured and emitted by the whole system in neutral mode per unit

power generated:

ρC,in = αC · ρ f · µ f (T0) · cn · µc(T0) (2.21a)

ρC,out = αC · ρ f · µ f (T0) ·
(

1 − cn · µc(T0)
)

(2.21b)

and (∆ρC,in, ∆ρC,out) are the coefficients describing the linear trajectory from the neutral phase to

the maximum discharging of the CS, per unit power generated from discharging the CS. There

are thermal and electrical power requirements, respectively PCCT and PCCE, to run the CC unit,

which depend on the technology implemented, the PP power level, and the nominal CO2 capture

percentage βC:

PCCT = PCCT(PPP, βC) PCCE = PCCE(PPP, βC) (2.22)
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where PCCE is electrical power directly extracted from the PP output, while PCCT is thermal power

in the form of steam, which is either also extracted from the PP or is provided by discharging the

HS. It follows that the power that must be extracted from the PP is whatever fraction of PCCT that

is not provided by the HS:

PPCT(t) = PCCT(PPP, βC) − ηHS · pHS,out(t) (2.23)

where ηHS accounts for any efficiency losses.

2.1.4 Electricity Generation

The electricity generated by the system is the primary source of revenue driving the NPV

objective. The corrected thermal power outputted from the PP, here indicated as PTH, depends on

the PP level and on the discharging of the CS:

PTH(t) = PPP(t) + ηCS · pCS,out(t) (2.24)

where ηCS represents any efficiency losses from discharging the CS. The gross electricity generated

is then:

PPE(t) = ηGE ·
(

PTH(t) − PPCT(t)
)

(2.25)

where ηGE is the efficiency of conversion between thermal and electrical power, and PPCT is the

thermal power diverted to the CC as in Eq. (2.23). From the gross electrical power generated by

the system, a fraction is diverted to the CC in Eq. (2.22); a fraction might be sent to charge the

TES units; finally, some power is required to satisfy the system’s auxiliary loads PAUX, which can

depend on the state of the PP. Therefore, the net power outputted to the grid is:

PG = PPE − PCCE − pHS,in − pCS,in − PAUX (2.26)
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2.1.5 Techno-Economic Analysis

Revenue and Expenses

vrev is the revenue gained by outputting power to the grid PG calculated in Eq. (2.26) at the

current electricity price celec:

vrev(t) = celec(t) · PG(t) (2.27)

and vexp represents the expenses of the system, which are divided in cost of fuel vfuel and other

operation costs vop:

vexp(t) = vfuel(t) + vop(t) (2.28a)

vfuel(t) = cfuel(t) · m f (t) (2.28b)

vop(t) = cCO2
· m̂C,out(t) +CVOM(t) +CFOM(t) (2.28c)

where (m f , m̂C,out) are the instantaneous fuel consumed and CO2 emitted into the atmosphere by the

system, respectively, as described in Eqs. (2.17) and (2.20b). Conversely, cfuel is the instantaneous

fuel market price, while cCO2
is the selected carbon tax. CVOM encompasses all the additional costs

which directly depend on the active utilization of each of the subsystems:

CVOM(t) = cPP,VOM · PPP(t) + cCC,VOM · m̂CO2,in(t) + cHS,VOM ·
(

pHS,in(t) + pHS,out(t)
)

· · ·

+ cCS,VOM ·
(

pCS,in(t) + pCS,out(t)
)

(2.29)

where the first term depends on the PP power level PPP; the second term depends on the CO2

captured by the system from Eq. (2.20a); the last two terms are associated with the power charging

and discharged by both TES units. Finally, CFOM includes the fixed operation costs from each of
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the subsystems, which are independent from their utilization:

CFOM(t) = cPP,FOM + cCC,FOM + cHS,FOM ·
(

PHS,in + PHS,out

)

· · ·

+ cCS,FOM ·
(

PCS,in + PCS,out

)

+ cHS,TES,FOM · ΣHS + cCS,TES,FOM · ΣCS (2.30)

Capital Costs

The system’s capital costs Ccap are:

Ccap(p) = CPP +CCC +CHS(p) +CCS(p) (2.31)

where (CPP, CCC) are the fixed capital investment to realize the PP and the CC subsystems, while

(CHS, CCS) are the costs for the TES units and depend on p:

CHS(p) = cHS,in · PHS,in + cHS,out · PHS,out + cHS,TES · ΣHS (2.32a)

CCS(p) = cCS,in · PCS,in + cCS,out · PCS,out + cCS,TES · ΣCS (2.32b)

where (cHS,in, cHS,out) represent the capital costs scaling with the desired charging and discharging

power capacity of the HS unit, while cHS,TES is the cost of the HS medium. Conversely, (cCS,in,

cCS,out, cCS,TES) represent the similar costs for the CS. The following subsection analyzes more in

depth the economic model for calculating the net present value of the overall system, the primary

metric of interest.

Net Present Value Calculation

NPV was selected as main economic indicator for the proposed system, because it represents

the return on investment over its entire lifetime [43]. Other indicators, such as LCOE, are typically

used for power generation systems, but due to the arbitrage nature of the system being evaluated,

they would not accurately represent its benefit.
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In simplified terms, NPV is the difference between the present value of cash inflows and the

present value of cash outflows during a period of time. To convert future values into a present

value, a discount factor DF is used, which depends on the year evaluated y and the selected rate of

return IRR:

DF(y) =
1

(1 + IRR)y
(2.33)

Assuming the capital investment to build the plant is made before the start of the operation, an

equation to calculate NPV is:

NPV = Vincome −Ccap (2.34)

The income generated from the system Vincome is the summation of the profit made discounted over

the system’s lifetime, here represented by the loan term Lt and expressed in units of years y:

Vincome =

Lt
∑

y=1

(

Vrev(y) − Vexp(y)
)

· DF(y) (2.35)

where (Vrev, Vexp) are respectively the revenue and expenses from running the system, which are

based on Eq. (2.27) and (2.28a) and are obtained upon integration over a year of operation:

Vrev(y) =

∫ Tyear

0

[

vrev(t) ·
(

1 + ie

)y−1
]

dt (2.36a)

Vexp(y) =

∫ Tyear

0

[

vfuel(t) ·
(

1 + i f

)y−1
+ vop(t)

]

dt (2.36b)

To reduce the size of the problem, in this analysis we assume the control strategy of the plant

over its lifetime is identical to that of the first year of operation (t ∈ [0,Tyear]). However, we reflect

the expected annual increase in electricity and fuel prices with the factors (ie, i f ). We use Eq. (2.36)
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to rewrite Vincome as:

Vincome =

∫ Tyear

0

Lt
∑

y=1

[

vrev(t) −vfuel(t) −vop(t)

]
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where: re =
1 + ie

1 + IRR
r f =

1 + i f

1 + IRR
rd =

1

1 + IRR

The non-constant terms within the sum in Eq. (2.37) resemble a geometric series for which a

closed-form solution exists [44]:

n
∑

i=1

aqi−1 =
a(1 − qn)

1 − q
(2.38)

Applying the geometric series solution to Eq. (2.37) – the terms which depend on the variable i

are substituted by those which depend on y – allows to rewrite the NPV of the system in a more

elegant, simpler to evaluate closed form:

NPV = −Ccap +

∫ Tyear

0

[

vrev(t) −vfuel(t) −vop(t)

]
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where: Re =
1 − r

Lt
e

1 − re

R f =
1 − r

Lt

f

1 − r f

Rd =
1 − r

Lt

d

1 − rd

2.1.6 Objective Function and Summary

We now provide a brief summary of the CCD problem described in the previous sections. We

start by reporting the six total plant design optimization variables first presented in Eq. (2.1):

p =

[

ΣHS PHS,in PHS,out ΣCS PCS,in PCS,out

]T

(2.40)
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Additionally, there are four control variables associated with operating the TES units defined

in Eq. (2.5), and one control variable for the NGCC from Eq. (2.11). Therefore, there is a total of

five open-loop controls optimized in the problem:

u(t) =
[

pHS,in(t) pHS,out(t) pCS,in(t) pCS,out(t) pPP(t)

]T

(2.41)

Finally, there are three state variables:

ξ(t) =
[

EHS(t) ECS(t) PPP(t)

]T

(2.42)

which respectively describe the HS, CS, and PP levels, and whose linear time-invariant (LTI)

dynamic equations are shown in Eqs. (2.8) and (2.13). Additionally, there a several inequality and

equality constraints (both path and boundary types), but all are linear. Finally, the linear objective

function of the problem is to maximize NPV of the system in Eq. (2.39). The unconstrained

objective function is:

maximize
u,ξ,p

NPV(t,T0,u, ξ,p) (2.43)

Overall, the problem is a linear dynamic optimization problem; all constraints are linear and,

due to the approximation described in Sec. 2.1.3, the objective is linear as well. Such problems

can be efficiently solved using linear solvers [45]. So, much of the complexity in solving this par-

ticular CCD problem comes from the complexity of a variety of intermediate functions, combined

with a multitude of time-varying environmental inputs and large timescales (and resulting large

optimization problem) to consider.

2.2 Optimization Strategy Considerations

Here we discuss additional aspects surrounding the construction and solving of the linear CCD

optimization problem from the previous section.
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2.2.1 Approximations

One approximation was already discussed in Sec. 2.1.3 where a quadratic expression was lin-

earized to maintain a linear objective function. The maximum error in calculating the NPV found

by comparing the exact and linearization results over many real scenarios was never found to be

larger than 0.01%. While a quadratic objective function would still result in a linear-quadratic

dynamic optimization problem, it was determined that the relatively small error and efficiency of

the approximation was worth its implementation.

2.2.2 Problem Discretization

To solve the dynamic optimization posed in Sec. 2.1, direct transcription (DT) is used [45–47].

In this case, the resulting finite-dimensional optimization is a large, sparse linear program and

was constructed using the open-source MATLAB-based software DTQP [48]. Then, MATLAB’s

linprog solver using the interior-point method was found to be quite effective at solving the

resulting linear program [49].

The time mesh was selected to be at hourly intervals as it is a reasonable assumption for the

frequency at which control decisions (e.g., power plant’s power level would be changed) are made

during realistic operation. The control decisions over these hourly intervals were assumed to be

constant. With constant controls and linear dynamics, the zero-order hold (ZOH) method was

used to discretize the dynamic constraints since there would be no discretization error [45]; a basic

composite Euler forward method was chosen for quadrature. The ZOH method is particularly

efficient to implement if matrices are time invariant. However, There are several locations in

the formulation where time (really temperature) dependence would be useful, such as Eqs. (2.8)

and (2.13).

This was particularly true for the state equations governing the flow of energy to and from the

TES units described in Eq. (2.8) since it is desirable to allow the control variables (pHS,in, pCS,in,

pHS,out, pCS,out) to be temperature-dependent to limit the amount of power flowing in or out of

the TES units at certain temperatures – see Sec. 3.3 for more details. While an intuitive way is
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directly expressing these values as time-varying, this would result in a time-varying linear (LTV)

system, slowing down the problem construction step. An alternative but equivalent formulation

was utilized by instead imposing time-dependent upper bounds on the relevant controls. This is

demonstrated in the following notional example:

ξ̇ = a(t) · u(t) and 0 ≤ u(t) ≤ 1 (LTV case) (2.44a)

ξ̇ = ū(t) and 0 ≤ ū(t) ≤ a(t) (LTI case) (2.44b)

In this formulation, Eqs. (2.6) and (2.7) are the relevant control constraints while Eq. (2.8) are

expressed without any direct dependence on T0. When the upper bounds in Eqs. (2.6) and (2.7) are

active, it can easily be shown that Eq. (2.8) assume the desired temperature-dependence.

2.2.3 Moving Prediction Horizons

As currently posed, the open-loop optimal control problem can be solved for any desired time

horizon. As discussed in Sec. 2.1.5, the goal is to obtain results for one year of operation for use

in the NPV calculations. This can be accomplished with a single optimization problem using an

entire year’s worth of data.

However, despite this capability, solving a single horizon problem is not a realistic scenario as

key environmental signals are not known with certainty so far into the future. In the real markets,

signals such as electricity and fuel prices and ambient temperature are known to utility operators

with reasonable accuracy only with limited foresight (e.g., 24 hours of future information [50]). To

reflect this imperfect knowledge, which is crucial when determining the most profitable control

strategy, the problem is also posed in as a sequence of shorter moving “prediction horizons” where

information is known. Based on notions of model predictive control (MPC), this approach entails

leveraging the knowledge of the future signals, despite being limited, to construct a tentative con-

trol strategy that is then updated when new information about the signals is available [51]. There

are examples in the literature where similar control strategies based on limited future knowledge

are applied to residential heating and cooling systems coupled with storage [52, 53].
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Figure 2.3: Moving prediction horizons and control window illustration.

When the moving horizons approach is taken, a nested CCD strategy formulation is used be-

cause separation is needed between the plant and control decisions [8,40,54]. As shown in Fig. 2.2,

the inner loop is formulated as a sequence of control subproblems whose objective is to maximize

the income generated by the system in Eq. (2.35) with respect to the states and controls (ξ,u) for

fixed plant variables (p†). The inner-loop solutions are then used in the objective function of the

outer loop, which attempts to maximize NPV in Eq. (2.39).

Trade-offs in both control window and prediction horizon lengths (see Fig. 2.3) are explored

in Sec. 3.4. The prediction horizon is the amount of time in the future information is known and

includes many operational decisions to be made (e.g., from points t0 to t7 in the figure). The control

window is the initial part of the prediction horizon that is implemented. After solution in the control

window is implemented, the next optimization problem is solved starting where the previous con-

30



trol window ended. Understanding these trade-offs will help lead to implementable CCD-informed

control solutions [55].
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Chapter 3

Results and Discussion

This chapter presents several sets of results generated using the optimization model introduced

in the previous sections with the purpose of validating its implementation and demonstrating some

of its capabilities. Several TES technology configurations operating in different market scenarios

and geographical locations will be examined. A detailed thermodynamic analysis has been con-

ducted to generate the technical parameters identifying each of the TES configurations listed in

App. A.2, which have then been modeled as integrated with the NGCC plant coupled with a Can-

solv CC system [30] presented in the 2019 report by the National Energy Technology Laboratory

(NETL), denoted case B31B [1]. Further details into the derivations of these parameters are in

other publications [5, 6].

The electricity and fuel prices and corresponding CO2 tax used for this work represent future

grid scenarios and have been generated by capacity expansion models built by Princeton University

and the National Renewable Energy Laboratory (NREL) [19,56]. Temperature data from six of the

more representative cities in the US was pulled from NREL’s National Solar Radiation Database

from 2018 [57]. Finally, the economic and financial values assumed for the calculation of NPV in

these studies are reported in App. A.1.

When solving the optimization problem using the simultaneous strategy for an entire year,

the setup and iterations of the required linear program takes between 20 and 50 s1. Using the

moving prediction horizons approach for a fixed plant, prediction horizon of 24 hours, and a control

window of 12 hours, the computational cost is around 13 s and varies slightly depending on the

moving horizon parameters. These computational times are reasonable for online implementation

at the time scales considered.

1The computer architecture was a workstation with an AMD 3970X CPU at 3.7 GHz and 128 GB 3200 MHz RAM.

32



(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Snippet of an entire year’s solution illustrating the control, states, and net power output.

3.1 Control Strategy Results

The results presented in this section describe the workings of the control optimization to max-

imize NPV. In Fig. 3.1, a snippet of 33.5 hours of operation is shown from a year-long solution

(i.e., prices and other signals are known and the controls must be determined simultaneously for

an entire year) with hourly time resolution. Figures 3.1a–3.1c show all 5 of the control variables

(u from Eq. (2.41)) governing the system, normalized with respect to their upper bounds (e.g.,

uHS,in = pHS,in/(µHS,in · PHS,in)). Figures 3.1d–3.1e respectively show the HS and CS level, two state

33



variables in the model (see Eq. (2.42)). Finally, Fig. 3.1f shows the net power output to the grid, in

which we can recognize several discrete and typical operation modes.

In the first few hours, while the electricity prices are lowest, both the HS and CS units are being

charged as the normalized control variables (uHS,in, uCS,in) are equal to unity in Figs. 3.1a–3.1b,

and the TES units levels (EHS, ECS) in Fig. 3.1d–3.1e increase. The TES technology configuration

chosen allows for charging while the PP is offline, and that is why in this mode, the control variable

to the PP (uPP) is equal to zero in Fig. 3.1c and the net power output in Fig. 3.1e is negative,

meaning that electricity is consumed from the grid rather than delivered. Successively, after one

time-interval in which the entire system is offline, the PP goes online in neutral mode for a few

time-steps, which is represented by uPP = 1 and all other control variables equal to zero. Then,

when electricity prices are higher, it becomes profitable to access the system’s boosting mode,

which consists in charging and discharging the CS at the same time (i.e., uCS,in = uCS,out = 1 in

Fig. 3.1b). Because the power increase from discharging the CS is larger than the penalty for

charging it, the boosting mode results in a slight increase in the system’s net power output as

compared with the PP neutral mode. In principle, the model does not prevent the HS from also

operating in boosting mode, but because the HS generally requires more power to charge than it

can generate, the boosting mode is only effective with the CS.

In the region of the plots where the electricity prices are highest, both TES units are depleted

to output the maximum amount of power to the grid. This is shown by the larger power output in

Fig. 3.1e, by the control variables (uHS,out, uCS,out) being equal to unity in Figs. 3.1a–3.1b, and by

the TES levels decreasing in Figs. 3.1d–3.1e. Successively, as the electricity prices are still high

but the TES units are depleted, the system is again operated in boosted mode before descending

back to neutral and finally beginning another charging cycle with the PP off. For similar figures

showing a more extended control solution in time, see App. B.

It appears that the optimal control solution returned from the model reflects the behavior ex-

pected from each of the system’s submodules in order to maximize the revenue generated. As

additional evidence, Fig. 3.2 shows the correlation between the electricity prices and each of the
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Figure 3.2: The optimization results show certain correlation between typical operational modes of the

system and the electricity prices.

operating modes of the system for an entire year of operation, using a TES configuration that

can charge with the PP offline, a fixed design including 4 hours of TES, nominal energy transfer

rates for HS and CS, respectively, and market conditions specified by the “HighWindTax” market

scenario provided by the GenX capacity expansion model [19].

As discussed, there is a distinct electricity price value – the break-even point – above which

operating the PP becomes profitable, and in this scenario, this is around 25 $/MWh. The control

decisions concerning operating the HS are also fairly intuitive: charging occurs at prices between

0 $/MWh and 18 $/MWh while discharging becomes advantageous at prices above 34.5 $/MWh.

While the correlation between the operation modes is relatively intuitive for the PP and the HS, the

optimal control decisions for the CS are slightly more complex, in part due to the additional degree

of freedom represented by the boosting mode previously described in Sec. 1.4, but also because

contrary to the HS, discharging the CS results in additional fuel consumption and a decreased CC

rate – as explained in Sec. 1.4. These two factors make an intuitive correlation between the opera-

tion modes of the CS and the electricity prices difficult to draw, and significant overlap between the

price regions is observed. In addition to electricity prices at any given time, the optimal operation
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mode for the CS is likely more affected by considerations related to current storage availability,

future pricing signals, and additional costs associated with consuming more fuel and emitting more

CO2 for discharging the CS.

3.2 Justifications for Open-loop Control Co-design

Results of the previous section present insights on the optimal control solution for an NGCC

power plant equipped with CC and TES in response to typical market signals (mainly electricity

prices). While a specific correlation between the electricity pricing signals and the optimal opera-

tion modes of the system can be generally drawn (potentially leading to a heuristics-based control

strategy), here, the case is made that the CCD approach taken in this work is appropriate to achieve

the system’s best economic performance and therefore most fair evaluation.

To make this case, intuition-based control heuristics for the system are compared with the

model’s CCD optimal solution. A fundamental assumption underlying these heuristics is that

electricity prices generally show daily periodicity so that each day can be solved as an independent

problem. Then, a simple strategy can be designed as follows, assuming a fixed plant design and

hourly control decisions:

1. The daily time-intervals are sorted based on the value taken by the electricity prices: de-

pending on the selected TES capacity, the lowest intervals are assigned to charging, and the

highest to discharging the TES units

2. The remaining time intervals are assigned to neutral mode if they are above the break-even

line or to boosting if more profitable

3. At the time periods in which the electricity prices are below the break-even point, the PP is

shut off

While relatively simple and surely expandable to account for more nuanced situations, the

heuristics presented can be a somewhat effective starting point for making operation decisions

about the TES system. However, there are some critical flaws that are difficult to address and which
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Figure 3.3: A comparison with an heuristic-based control strategy shows the benefits of the optimization-

based approach in handling specific situations (a), and returning more accurate results (b).

can make this approach ineffective and inaccurate. First, these heuristics consider the HS and CS

as a single unit. This implies that they always operate in the same modes and that their storage

capacities are identical. While generally similar factors influence the decisions to operate the TES

units – see Sec. 1.4 – this needs not always be the case, and more importantly, as discussed in more

detail in Sec. 3.5, it turns out the optimal storage capacities for HS and CS are usually substantially

different. Figure 3.3a shows a snippet of 36 hours of operation comparing the solutions returned by

the heuristics-based approach and the optimization model: assuming the TES capacity for HS and

CS are both 4 hours, two additional fundamental flaws in the heuristics become clear: this strategy

can often be ineffective, choosing to charge the storage units, and in this case turning on the NGCC

plant, when the prices are extremely low, incurring in enormous operation costs (indicated as ‘1’ in

Fig. 3.3a); it also lacks in accuracy, discharging more thermal energy that is allowed by the storage

capacity – indicated as ‘2’ in the image – because successive days are considered as independent

problems.

These are some of the reasons justifying an optimization-based approach to the dynamic control

of the TES technology in favor of a heuristics-based approach. Figure 3.3b shows a comparison

between 5 TES configurations and an NGCC power plant with CC but not TES (i.e., B31B):

not only using the optimization model results in a general positive difference between the TES
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Figure 3.4: Motivation for open-loop control co-design optimization.

technologies and B31B, but the relationships among the technologies themselves are also radically

different.

In addition to realizing the optimal control of the TES technology, appropriate design decisions

such as storage capacity and energy transfer rates for the HS and CS are crucial when assessing this

technology. This is due to a delicate balance between performance and capital investment, which is

also technology and scenario dependent. Figure 3.4 shows the difference in economic performance

between a TES technology and B31B in various market scenarios under three different design

conditions: 1) the TES capacity is set for 4 hours for both units, based on the observation that often

the electricity prices show daily peaks of that duration, and the energy transfer rates are the nominal

values. 2) the TES capacities are included as optimization variables, but the energy transfer rates

are still fixed, resulting in an increase in average value by 14 million $. 3) both capacity and energy

transfer rates are considered in the full CCD problem, which on average increases the NPV by 20

million $. Similar differences are generally encountered while examining other configurations and

motivate the presented CCD approach to evaluate the TES technology accurately.
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3.3 Temperature-dependence Results

We now look at validating temperature dependence within the model and show the impact of

location characteristics on the examined system. Temperature dependence was included in the

model to represent the systems more accurately in real-world scenarios: it is known that power

generation systems like NGCC power plants are susceptible to ambient conditions [58]. In ad-

dition, the operation of the TES units is also impacted by temperature. In particular, concerns

regarding the effectiveness of CS operating at temperatures below a certain design point can be

investigated using this model.

Cold Storage Operation Validation

A concern regarding the CS operation at temperatures below its design point is in the potential

for ice formation in the ducting and physical damage to the unit. As a safe assumption to avoid

these issues (and as a more accurate assessment of the technology in colder climates), CS utiliza-

tion is limited to temperatures above 0◦C, with partial restrictions from 0◦C to the system’s design

point (15◦C). Figure 3.5 validates the implementation of this assumption in the model; it shows the

signal to use the CS boosting mode in two very different US geographical locations (Fargo and San

Diego), during a year-long operation period. The market signals provided to generate these sets

of results are identical, as well as the plant design; only the temperature signals identifying each

of the US locations are different. With these assumptions, it is shown that a system deployed in

Fargo, which is described by large seasonal temperature fluctuations and remarkably cold winters,

will only be able to access the CS full capabilities during the warmer summer months. On the

other hand, in a location like San Diego, the CS can be virtually used all year round because of its

milder climate and higher temperatures.

System Performance Validation

The entire system is expected to be affected by ambient temperature, not just the CS. In par-

ticular, the efficiency of the PP and the HS are expected to significantly decrease as temperature

increases, and this characteristic has been integrated within the model. Figure 3.6 shows the im-
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(a) Fargo.

(b) San Diego.

Figure 3.5: CS boosting operation for two different locations demonstrating temperature-dependent optimal

operation.

pact of temperature on the NPV of both a PP with CC and TES, as well as a base plant which is

equipped with CC but no TES (denoted B31B). For this study, the techno-economic input signals

are kept the same, while recorded time-varying temperature signals are selected to represent the

US cities shown.

For these results, CCD optimization was conducted to make a fair assessment of these systems’

optimal design decisions and performance depending on their location. As shown in Fig. 3.6,

while NPV’s for both B31B and the TES configuration noticeably decrease in warmer climates,

the difference between the PP equipped with TES and the base plant tends to increase with average

temperature. This trend is generally observed in Fig. 3.6, although since the model evaluates

the effects of temperature at each time step, it is the entire temperature distribution affecting the

performance of the system rather than just the mean value. For example, the system might perform

better in Fargo than in Salt Lake City, despite the higher average annual temperature in the latter

location.
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Figure 3.6: Comparing optimal net present value results for several locations and correlating them with

their mean temperatures.

3.4 Moving Prediction Horizons Strategy Results

Introduced in Sec. 2.2.3, a moving prediction horizons (MPH) is a pragmatic approach to the

control of the system discussed in this thesis involving limited future foresight of the techno-

economic signals upon which the optimal control strategy depends. Nonetheless, it will be shown

that under realistic circumstances, the MPH approach ensures an economic performance extremely

close to the results with perfect foresight and could be a suitable candidate for online control

operation of an NGCC plant with CC and TES.

First, to better illustrate an MPH solution, Fig. 3.7 shows the net power output of the system

for a few time intervals. The top row shows four successive intervals, each with its own control

trajectory. The optimal strategy is computed for a total of 6 hours in advance (prediction horizon)

but is updated every 3 hours (control window) because it is assumed that new information about

the market is provided. On the bottom, the four intervals plotted above are shown as they compose

the complete control strategy.

In Fig. 3.8, we can conclude that for certain values of the prediction horizon and control win-

dow, an MPH is an effective strategy for this system. Several different control window lengths

were examined, and we observe NPV convergence towards the best possible value (simultaneous
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Figure 3.7: Illustration of the moving prediction horizon approach with a prediction window of 6 hours and

control window of 3 hours.

optimization of the entire year, i.e., prediction horizon is 8760 hours) in all cases. Marked with ‘1’

in the figure, assuming accurate estimates of the electricity prices are available 24 hours in advance

(which is usually true in most markets), we can observe solutions with control windows between

1–12 hours are close to the maximum NPV line. Even if signals are available only half a day in

advance (i.e., 12-hr prediction horizon, marked with ‘2’ in the figure), any strategy with a smaller

control window still performs well. The success of the MPH approach can at least partially be

explained by the general daily periodic nature of electricity prices, as well as by the TES capacities

usually encountered by these systems being rarely above 12 hours. Due to these two factors, not

much prior knowledge of future signals is required to operate this system effectively.

3.5 TES Technology Comparison Results

One of the more valuable features of the optimization model described in this thesis is its versa-

tility assessing a wide range of different PP, CC, HS, and CS technologies without much additional

work. Here, we demonstrate this versatility with the assessment of two TES technology configu-

rations compared with NETL’s NGCC plant with CC (B31B). These configurations are examined

using four future market scenarios provided by the Princeton capacity expansion model [19].
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Figure 3.8: Net present value results for various prediction horizon and control window lengths in the

moving prediction horizon approach compared to the maximum NPV for this scenario.

The TES configurations examined are based on different thermodynamic principles, which

result in some different operational constraints. The ‘IPTE’ configuration is constructed by in-

tegrating B31B with an HS unit which is charged by directly pulling steam from the PP. This

configuration requires the PP to be online to operate in this mode. Conversely, the ‘ER’ configura-

tion uses resistive heating and electricity either from the grid or subtracted from the NGCC gross

output to charge its HS. For this reason, while the ER HS unit inflicts a more significant power

penalty for charging (89% more than IPTE), it has the advantage of being able to charge while the

PP is offline and to be significantly cheaper in terms of HS medium cost (by 78%). Conversely,

the CS is similar for both TES configurations: it is based on an ammonia vapor compression cycle

powered through electricity, and it can therefore also be charged independently of the PP. These

extra operational degrees of freedom are implemented in the model by removing the inequality

constraints in Eq. (2.16a). Again, see App. A.2 for the parameters defining each configuration. For

additional details on the specific technologies and their modeling, see Refs. [5, 6].

Figure 3.9a compares the optimal NPV of the technologies across the market scenarios. Al-

though we notice a relatively wide range of results, ER appears to be consistently the most prof-

itable configuration analyzed, which can be explained by both its relatively low capital investment
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Figure 3.9: Comparing three different system configurations under several market scenarios including

(a) net present value; (b) optimal storage capacities ΣHS and ΣCS; (c) optimal TES charging power penalties

PHS,in and PHS,in; and (d) equivalent optimal thermal energy transfer to the TES units.

and the optimal plant sizing decisions shown in Figs. 3.9b and 3.9c. The storage capacity values in

Fig. 3.9b are represented in units of time, after being normalized with respect to the power required

to run the HS and CS.

We first notice how the HS design decisions are significantly different between the IPTE and

ER configurations and generally point towards a much larger optimal storage capacity and net

charging power penalty for the HS (PHS,in) for the latter. This observation can be explained by:

1) the lower cost for the ER’s HS medium, and 2) its ability to charge independently of the plant

coupled with the nature of future electricity prices. The latter reason is particularly insightful

in the context of future electricity markets with high renewable penetration: the higher penalty

44



associated with charging the ER becomes irrelevant when the electricity prices are close to zero

due to renewable’s overgeneration [6]. Under these conditions, the overgenerated electricity can

be stored directly from the grid within a large HS and at a high rate (demonstrated by large optimal

HS normalized charging energy rate in Fig. 3.9d) to then take advantage of when the renewables

are offline, and the prices are peaking. For the CS, the results for the two different configurations

do not vary much as the CS unit is similar in both. A set of plant optimization variables is not

shown in Fig. 3.9, namely the maximum energy transfer rates out of the TES units PHS,out and

PCS,out: under the current assumptions, their optimal values were always the maximum allowed.

Many other configurations and market scenarios were explored using this CCD optimization

model in Refs. [5, 6].
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Chapter 4

Conclusion

4.1 Summary

In this thesis, an optimization model was constructed to help address important design and

operation questions for a novel system combining natural gas NGCC power plants with carbon

capture CC and thermal energy storage TES.

The motivation behind the conceptualization of this system is the expected evolution of the

electricity markets towards a carbon-neutral electricity grid heavily penetrated by renewable energy

sources, resulting in highly variable electricity prices and demand. In this context, there will be

an opportunity for clean, flexible, and cheap fossil fuel-based generators, such as NGCC plants

with CC, to complement renewable generation. However, while recent work has demonstrated

that high CO2 rates are achievable, challenges due to high capital costs, flexibility limitations,

and the parasitic load imposed by CC systems onto NGCC power plants have so far prevented its

commercialization. Coupling TES units with CC and NGCC would allow storing thermal energy

into the TES units when the electricity prices are low, either by subtracting it from the NGCC or by

extracting it from the grid and to discharge thermal power at peak prices, from the TES to offset the

parasitic load of the CC system, and from the TES for chilling the inlet of the NGCC combustion

turbine, increasing the output of the cycle beyond nominal value.

The need for integrated design, control co-design in particular, is demonstrated for the consid-

ered system. The thermal energy storage elements and power plant require a dynamics-focused

approach and how they are exercised is a critical decision that affects profitability and overall

technology assessment. The proposed open-loop optimal control problem for this system is effi-

ciently solved as a large-sparse linear program for an entire year at once or utilizes a more realistic,

information-limited moving prediction horizons approach to investigate implementable operation.

Optimal system control is generally not enough to realize its full economic potential due to several
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critical plant decisions, including storage capacities and maximum energy transfer rates. Often

driven by trade-offs in their capital cost versus the additional profit attained, the optimal plant

sizing decisions change depending on the configuration and environmental signals such as (both

current and future) electricity prices and location temperature.

After detailed analysis, the technology shows remarkable promise in that it outperforms NGCC

power plants with state-of-the-art CC systems in many of the scenarios evaluated. The best overall

TES technology solution relies on cheap excess grid electricity from renewable sources to charge

the TES units – the HS via resistive heating and the CS through an ammonia-based vapor com-

pression cycle.

4.2 Future Work

In addition to the current capabilities of the optimization model, which have been described in

this thesis, future work could attempt to implement several updates to improve the model in several

aspects. Following is a short list of some of the envisioned improvements:

Market Uncertainty Considerations

One of the most appealing features of the model in this thesis is the more realistic representation

of limited information signals provided by the moving horizons approach described in Secs. 2.2.3

and 3.4. Although this solution constitutes a more realistic approach than assuming perfect fore-

sight of future signals, in reality even the limited future information available to utilities might

come with a particular uncertainty (i.e., what is given is not exactly what happens). Future work

will attempt to integrate this uncertainty into the model, understand its impacts on economic per-

formance and optimal solutions, and account for it robustly to guarantee effective system perfor-

mance under uncertainty. Additionally, data generated from these studies will be analyzed to better

understand optimal operation, potentially leading to feedback control solutions [55].
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Carbon Capture System Dynamics

As explained in the optimization problem formulation in Sec. 2.1.3, the CC system currently

is implemented in the model as always operating when the PP is operating. While for the work

presented in this thesis this is likely a reasonable approximation, in general, it is expected for CC

systems to be described by different dynamics from NGCC plants. A solution is then to modify the

current model to include the CC’s capture rate as an additional state variable in the model similar

to Eq. (2.42). This addition would give the opportunity to associate the CC system with its own

dynamic equation but also explore new operation modes, including shutting off the CC, bypassing

it and venting the CO2 if profitable, and looking into pre-warming the CC by using steam generated

from the HS while the NGCC is offline to effectively reduce its start-up time.

Other Improvements to the Optimization Model

In Sec. 2.1.5, the economic model for calculating NPV was presented. While this model was

sufficiently accurate to evaluate the economic performance of the integrated system with differ-

ent environmental as well as technology assumptions, the calculation of NPV can be made more

nuanced to reflect more accurately the capital investments necessary to finance a system like that

described in this work. For instance, rather than assuming all capital investments are made at once

before the operation of the system begins, a construction period, annual loan installments with ap-

propriate interests, and tax payments can be implemented in a more complete discounted cash-flow

analysis which would ultimate results in more accurate estimates of NPV.

Continuing, in Sec. 2.1.5 it was presented how the computational expenses of representing the

system’s operation over its entire lifetime (here assumed to be 30 years) at hourly resolution were

decreased by computing the optimization over one year and then assuming an identical control

strategy in the following years. This approach would be completely effective if the external signals

remained identical throughout the system’s lifetime. However, since in Eq. (2.36) we enforced

a rate at which some of the signals (electricity and fuel prices) are expected to change annually,

it cannot be guaranteed the optimal control strategy would remain identical to that including the

original signals. Although some testing has shown that in most cases, the assumption made in
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Eq. (2.36) is reasonable, yielding conservative results, future work should consider and character-

ize its implications in more detail towards a more accurate financial assessment of the technology.

Finally, while not explicitly covered in the context of this thesis, another current assumption in

the model is that changes to fuel prices (natural gas in this study) occur relatively infrequently and

are not a major factor dictating the operation of the system. However, in real-world energy markets,

fluctuations in the price of fuels such as natural gas can significantly impact utility operators.

Considerations regarding the impact of such variability in natural gas prices would make the model

more accurate and potentially open up additional arbitrage opportunities.

Solution Efficiency Improvements to the Optimization Model

As discussed in Sec. 2.2.3, when the moving predictions horizon is the chosen approach for the

control strategy of the system, the CCD problem is formulated as a nested optimization problem.

Despite the inner loop analysis being comprised of series of linear subproblems which can be

efficiently solved, the function wrapping these subproblems cannot be regarded as linear itself but

rather as a black-box, input-output type of function. Therefore, an appropriate strategy must be

selected to solve the outer-loop optimization problem so that the calls to the (expensive) inner loop

are limited. Both gradient-free and surrogate-based optimization methods have been considered as

potential solutions, as well as a hybrid approach combining the two.
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Appendix A

Case Study Parameters

A.1 NPV Economic Assumptions

Standard economic and financial assumptions used to generate the NPV results for this paper

are presented in Tab. A.1 [14,59]. All dollar values were adjusted to December 2018 dollars based

on historical inflation rates as calculated by the Bureau of Labor Statistics using the Consumer

Price Index [60].

Table A.1: Economic assumptions for the calculation of net present value in the case studies.

Parameter Units Value

Lt [59] years 30

IRR [59] 10%

ie [14] %/year 3.5%

i f [14] %/year 2.2%

A.2 Technology Parameters

The parameters describing the technologies examined in the case studies presented in Sec. 3

are shown in Table A.2. The parameters reported reference the nomenclature of the optimization

model in Sec. 2.1 and are evaluated at 15◦C.
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Table A.2: Techno-economic parameters for the technology configurations examined in the case studies.

Parameter Units B31B ER IPTE

ρ f kg NG/s/MW 0.04082 0.04082 0.04082

cn 0.9 0.9 0.9

κHS,in hr TES/MW 0 0.005949 0.01126

κCS,in hr TES/MW 0 0.1609 0.1609

κHS,out hr TES/MW 0 0.02211 0.02028

κCS,out hr TES/MW 0 0.01986 0.02075

∆ρ f kg/s/MW 0 0.03783 0.03951

∆cd 0 0.06163 0.06163

∆ρCO2,in kg CO2/MW 0 -0.00025 -0.00026

∆ρCO2,out ton CO2/MW 0 0.0067 0.0070

PCCT , PCCE MW 0 0 0

αC ton CO2/kg NG 0.0029 0.0029 0.0029

η⋆ 1 1 1

cPP,VOM $/MWh 1.705 1.705 1.705

cCC,VOM $/ton CO2 7.2 7.2 7.2

c
†

TES,VOM
$/MWh 0 0.75 0.75

cPP,FOM M$/year 12.9773 12.9773 12.9773

cCC,FOM M$/year 14.5360 14.5360 14.5360

cHS,in,FOM k$/MW/year 0 2.5881 2.5881

cCS,in,FOM k$/MW/year 0 15.0721 0 15.0721

cHS,out,FOM k$/MW/year 0 4.12186 4.12186

cCS,out,FOM k$/MW/year 0 0.79725 0.79725

cHS,TES,FOM k$/hr of TES/year 0 41.9579 190.2704

cCS,TES,FOM k$/hr of TES/year 0 45.5942 56.9928

CPP M$ 537.7230 537.7230 537.7230

CCC M$ 743.6010 743.6010 743.6010

cHS,in k$/MW 0 64.7012 39.3198

cCS,in k$/MW 0 376.8015 376.8018

cHS,out k$/MW 0 103.0466 30.3505

cCS,out k$/MW 0 19.9311 20.8169

cHS,TES M$/hr of TES 0 1.048947 4.756760

cCS,TES M$/hr of TES 0 1.139856 1.424820

PPP MW 634.741 634.741 634.741

PHS,in MW 0 840.515 443.9915

PCS,in MW 0 31.06755 31.06755

PHS,out MW 0 45.2353 49.303

PCS,out MW 0 50.3432 48.2011

⋆η is for (ηGE, ηHS, ηCS)
† cTES,VOM is for (cHS,VOM, cCS,VOM)
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Appendix B

Extended Time Horizon Visualizations

Figures B.1–B.4 show 20 days of continued operation extracted in each of the 4 seasons and

visualize more of the control solution trajectories extracted from the optimization of a full year

of operation in the “BaseCaseTax” market scenario presented by GenX [19]. The HS technology

examined is resistive heating with 4 hours of equivalent TES capacity and nominal energy transfer

rates, and vapor compression is the CS technology with 2 hours of equivalent capacity. Recall that

in the simultaneous case, all 365 days are optimized all-at-once, not just the 20 day snippets shown

here.
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Figure B.1: Control signals for optimal TES operation for 20 days in February.
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Figure B.2: Control signals for optimal TES operation for 20 days in May.
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Figure B.3: Control signals for optimal TES operation for 20 days in August.
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Figure B.4: Control signals for optimal TES operation for 20 days in November.
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