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ABSTRACT

DATA MINING AND SPATIOTEMPORAL ANALYSIS OF MODERN MOBILE DATA

Modern mobile network technologies and smartphones have successfully penetrated nearly

every aspect of human life due to the increasing number of mobile applications and services.

Massive mobile data generated by mobile networks with timestamp and location informa-

tion have been frequently collected. Mobile data analytics has gained remarkable attention

from various research communities and industries, since it can broadly reveal the human

spatiotemporal mobility patterns from the individual level to an aggregated one. In this dis-

sertation, two types of spatiotemporal modeling with respect to human mobility behaviors

are considered, namely the individual modeling and aggregated modeling.

As for individual spatiotemporal modeling, location privacy is studied in terms of user

identifiability between two mobile datasets, merely based on their spatiotemporal traces

from the perspective of a privacy adversary. The success of user identification then hinges

upon the effective distance measures via user spatiotemporal behavior profiling. However,

user identification methods depending on a single semantic distance measure almost always

lead to a large portion of false matches. To improve user identification performance, we pro-

pose a scalable multi-feature ensemble matching framework that integrates multiple explored

spatiotemporal models.

On the other hand, the aggregated spatiotemporal modeling is investigated for network

and traffic management in cellular networks. Traffic demand forecasting problem across the

entire mobile network is first studied, which is considered as the aggregated behavior of
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network users. The success of demand forecasting relies on effective modeling of both the

spatial and temporal dependencies of the per-cell demand time series. However, the main

challenge of the spatial relevancy modeling in the per-cell demand forecasting is the uneven

spatial distribution of cells in a network. In this work, a dependency graph is proposed

to model the spatial relevancy without compromising the spatial granularity. Accordingly,

the spatial and temporal models, graph convolutional and recurrent neural networks, are

adopted to forecast the per-cell traffic demands.

In addition to demand forecasting, a per-cell idle time window (ITW) prediction applica-

tion is further studied for predictive network management based on subscribers’ aggregated

spatiotemporal behaviors. First, the ITW prediction is formulated into a regression problem

with an ITW presence confidence index that facilitates direct ITW detection and estimation.

To predict the ITW, a deep-learning-based ITW prediction model is proposed, consisting

of a representation learning network and an output network. The representation learning

network is aimed to learn patterns from the recent history of demand and mobility, while the

output network is designed to generate the ITW predicts with the learned representation and

exogenous periodic as inputs. Upon this paradigm, a temporal graph convolutional network

(TGCN) implementing the representation learning network is also proposed to capture the

graph-based spatiotemporal input features effectively.
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CHAPTER 1

INTRODUCTION

Since the appearance of the first commercial cellular network launched by Nippon Tele-

graph and Telephone (NTT) in 1979, mobile network technology has become a necessity of

human society during the past four decades of its amazingly rapid development. In 2009,

the long-term evolution (LTE) network (the most popular fourth generation standard) was

first deployed in Oslo, Norway, and Stockholm, Sweden. Since then, mobile phones (smart-

phones) have successfully penetrated nearly every aspect of human life, due to the flourished

mobile applications and services. At the same time, the massive data generated by mobile

devices, during mobile network operations, and at backend servers, termed as mobile big

data, has attracted significant attention from various research communities and industries.

However, large-scale collection and analysis on mobile big data only become possible in the

past decade, resulting from the advance of the computing and transmission capability in

dealing with such a large volume of mobile data. In this dissertation, we focus on data

mining on mobile big data collected by cellular network operators.

1.1 Spatiotemporal Data

One of the most distinct characteristics of mobile big data is its spatiotemporal feature.

Almost every entry in mobile big data is tagged with a time stamp and certain geolocation

information, which enables a large number of new applications. Almost every smartphone

is equipped with a GPS receiver, which provides accurate outdoor location information
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with raw data containing the latitude and longitude. Even when the location service of a

smartphone based on GPS is not enabled or not reliable, different granularities of location

information can be inferred by other data entries, e.g., service set identifier (SSID) of WiFi

access points, cell ID in call detail records (CDR) [3], WiFi signal strength [4–6], and even

IP addresses [7–9].

As a result, the mobility of human being can be studied based on the highly infor-

mative mobile big data in the literature. Behavior patterns revealed by the mobile big

data can facilitate many novel data-driven applications spanning subjects from personal-

ized location-based recommendation and pervasive health computing to aggregated public

services, including urban planning and network management. Spatiotemporal modeling is

critical in various mobile data mining and data-driven applications. Data mining on mobile

data can be categorized into two types, namely individual and aggregated spatiotemporal

modeling. On the one hand, the individual spatiotemporal modeling is aimed to analyze

the behavior pattern of a specific subscriber so that further applications, such as destination

prediction, personal advertisement, etc., can be facilitated. On the other hand, the aggre-

gated spatiotemporal modeling can provide a big picture on aggregated or crowd mobility

behaviors, whose potential applications include urban analysis, transportation planning and

management, network management, etc.

1.2 Individual Spatiotemporal Modeling for Privacy Evaluation

In this dissertation, we study individual spatiotemporal modeling in terms of the most

fundamental concern on mobile big data, namely privacy evaluation. User re-identification

attacks consists of one critical privacy concerns on mobile big data [10]. In this work, we

2



study mobile privacy concerning user re-identifiability merely based on their spatiotemporal

traces from the perspective of privacy adversaries. The success of user re-identification hinges

on effective distance measures via successful spatiotemporal behavior profiling to distinguish

two users. However, user re-identification with one single semantic distance measure may

lead to a large portion of false matches, especially when only a few users coexist in two

datasets. In this work, we study and propose a scalable multi-feature ensemble matching

framework to improve the user re-identification performance.

With multiple distance measures, a scalable ensemble matching mechanism is proposed

to integrate these multiple matching results by the majority voting rule. At the same time,

multiple spatiotemporal features are explored to characterize users in various semantic as-

pects. Besides, a user clustering algorithm based on user mobility behaviors is studied to

reduce the overall computational complexity of the proposed ensemble matching framework.

1.3 Aggregated Spatiotemporal Modeling for Traffic Management

The aggregated spatiotemporal modeling is generally employed to study the behavior

pattern of crowds. In this dissertation, we aim to study the aggregated network demands of

subscribers in terms of base stations across cellular networks for predictive network manage-

ment. Two predictive network applications are studied in this dissertation, namely demand

forecasting and idle time window (ITW) prediction.

The demand forecasting plays a crucial role in the predictive physical and virtualized

network/traffic management in cellular networks, which can effectively reduce both the cap-

ital and operational expenditures by fully exploiting the network infrastructure. In this

work, we study the per-cell demand forecasting in cellular networks. The success of de-
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mand forecasting relies on the effective modeling of both the spatial and temporal aspects

of the per-cell demand time series. However, the main challenge of the spatial relevancy

modeling in the per-cell demand forecasting is the irregular spatial distribution of cells in

a network. Consequently, applying grid-based models (e.g., convolutional neural networks)

would lead to degradation of spatial granularity. In this work, we propose to model the

spatial relevancy among cells by a dependency graph based on spatial distances among cells

without losing spatial granularity. Hence, the graph convolutional networks (GCNs) and

long short-term memory (LSTM) from deep learning are employed to model the spatial and

temporal aspects, respectively. Besides, the deep graph-sequence model, graph convolutional

LSTM (GCLSTM), is further employed to simultaneously characterize both the spatial and

temporal aspects of mobile demand forecasting.

Idle time windows (ITW) consist of one critical trigger for various functions in green

intelligent network management and traffic scheduling in mobile networks. In this work, we

study the ITW prediction in mobile networks based on network subscribers’ demand and

mobility behaviors observed by network operators. We first formulate the ITW prediction

into a regression problem with an ITW presence confidence index that facilitates direct ITW

detection & estimation. Feature extraction on the demand and mobility history is then

proposed to capture the current trends of subscribers’ demand and mobility as well as to

account for the periodicity underlying subscribers’ demand and mobility patterns as exoge-

nous inputs. In light of feature engineering, a deep-learning-based ITW prediction model is

proposed, which consists of two components, namely a representation learning network and

an output network. The representation learning network is aimed to learn useful patterns,

while the output network is designed to generate the desired ITW presence confidence index

4



and ITW estimates by integrating the learned representation and exogenous as inputs. In

this work, a novel temporal graph convolutional network (TGCN) for representation learning

network is proposed to capture the graph-based spatiotemporal input features effectively.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, data collection at differ-

ent network component of cellular networks is summarized with the studied signaling dataset

introduced. In Chapter 3, the individual spatiotemporal modeling for privacy evaluation is

investigated in terms of user re-identification across two datasets. Two applications based

on aggregated spatiotemporal modeling, namely demand forecasting and ITW prediction,

are studied in Chapter 4 and Chapter 5, respectively. In Chapter 6, concluding remarks are

provided for this dissertation.
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CHAPTER 2

DATA SOURCE, COLLECTION AND DESCRIPTION

2.1 Overview of Data Sources

1Mobile data can be collected from various sources in the mobile network. These data

are usually divided into two categories [12]. One category consists of the app-level data

directly collected by mobile App vendors from mobile phone sensors. As sensor technologies

are ubiquitously equipped in smartphones (e.g., GPS, accelerometer, magnetic field sensor,

gyroscope, etc.), the phone usually acts as a sensor hub with enriched connectivity for data

collection and transmission. The other data category is the network-level one traditionally

collected by content service providers and mobile operators, which is a vast amount of dif-

ferent mobile service contents, as well as spatiotemporal mobile broadband data about their

systems and customers. This type of data records the system status, the service requests, as

well as user information (e.g., user ID, location, device type, time stamps, type of service,

etc.).

In terms of the sources of data collection, the app-level data mainly come from the mobile

terminals, whereas the network-level data are usually from the over the top (OTT) servers

and the network operators. The raw data collected from these sources is summarized in

Fig. 2.1. Embedded in these raw data is a large amount of valuable information about the

users, including user characteristics, habits, preferences, and even motivations and purposes.

Harvesting from these raw data, one can construct more useful information such as context,

1This work has been published in [11].
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behavior, relationship, etc. Based on these, additional and more implicit information can

be further extracted via data mining. Examples include essential user characteristics (age,

gender, race), occupation, group, habit, interest, political opinion, etc. These could then be

used in followup data analytics to restore the original context of the related mobile terminal

utilization.

Data collection is the process in which data containing user characteristics, preferences, or

activities is obtained. How the data collection is implemented can be classified into implicit

and explicit approaches. In the explicit approach, users are prompted to manually provide

various information [13–16]. While being simple and straightforward, this requires each user

to be not only clear about what relevant information he/she is disclosed, but also willing to

take time and effort to participate. However, this is usually hard to achieve, as users could

be discouraged by such inquiries. On the other hand, the implicit approach does not require

manual user intervention and is accomplished without interfering with normal user activities.

The implicit approach also facilitates more frequent information updates since explicit user

responses are not required in such updates. For these reasons, the implicit approach is more

prevalent. Nevertheless, implicitly collected data usually contains quite a lot of redundancy

and irrelevant information, which could complicate the follow-up processing of the data. In

the following subsections, we will present the data in terms of app level and network level.

2.1.1 The App-Level Data

Data collected from mobile devices may be from either the software side or the hardware

side. The hardware-side data includes the device usage information, sensor information, etc.

The software-side data includes the application information, the user profile associated with
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Data Parameter

app-level 

data

Device Device Type, Device Usage, etc.

Profile MSISDN, IMEI, IMSI, User preference, Calendar, Appointment, etc.

Sensor Sensing Data, e.g., GPS, Gyroscope, Accelerometer, etc.

App Terminal Application Type, Application Usage, etc.

Service Service Information, e.g., Bundle Type, Service Charge, etc.

Log Terminal Device Log, Server System Log, etc.

network-

level data

Time Connection Starting Time, Session Starting Time, etc.

Location Terminal Location, BS Location, Router Location, Cell Location, etc.

Address Client IP, Server IP, Client Tunnel IP, Server Tunnel IP, etc.

URL Uniform Resource Location, Link Information, Link Content, etc. 

Flow Uplink traffic, Downlink Traffic, Packet Number, etc.

Record
Conversation Log, e.g., Conversation Duration, Conversation Time, Conversation

Frequency, etc.

Figure 2.1: Basic data and parameters.

the devices, and the system logs [17]. There have been quite a few projects focusing on the

collection of data from the mobile terminals. Reality mining carried out by the MIT Human

Dynamics Lab over 9 months in 2004 was among the earliest efforts, where 75 faculty and

students with the MIT Media Lab and 25 students at the MIT Sloan business school, par-

ticipated using 100 Nokia 6600 smartphones [18]. In this experiment, call logs, Bluetooth

devices in proximity, cell tower IDs, phone status (charging or idle), and popular application

usage data have been collected. In the more recent Mobile Data Challenge (MDC) by Nokia,

200 volunteers participated using Nokia N95 in the Lake Geneva region from October 2009

to March 2011 [19]. Data collected include calls, short messages, photos, videos, application

events, calendar entries, location points, historically connected cell towers, accelerometer
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Project Time Organization Data Collected

Reality Mining
http://realitycommons.media.mit

.edu/realitymining.html 

2004 MIT Human 

Dynamic Lab

call logs, Bluetooth devices in 

proximity, cell tow IDs, phone 

status, popular application usage 

data

Mobile Data 

Challenge (MDC)
https://www.idiap.ch/dataset/md

c

2009-

2011

Nokia calls, SMS, photos,

videos, application events, calendar 

entries, location points, unique cell 

towers, accelerometer

samples, etc.

Device Analyzer 

Experiment
https://deviceanalyzer.cl.cam.ac.u

k/

2011 - ~ Computer 

Laboratory at

the University 

of Cambridge

covered countries, phone types, OS 

versions, device settings, installed 

applications, system properties, 

Bluetooth devices, WiFi networks, 

disk storage, energy and charging, 

telephony, data usage, CPU and 

memory, alarms, media and 

contacts

Figure 2.2: Summary of Mobile Data Collection Projects

samples, Bluetooth observations, historically connected Bluetooth devices, WLAN observa-

tions, historically connected WLAN access points and audio samples. Since March 2011, the

Device Analyzer experiment at a much larger scale involving 12, 500 Android devices was

carried out by the Computer Laboratory at the University of Cambridge [20,21]. The records

of covered countries, phone types, OS versions, device settings, installed applications, sys-

tem properties, Bluetooth devices, WiFi networks, disk storage status, energy and charging

status, telephony, data usage, CPU and memory status, alarms, media and contacts, as well

as sensors have been collected and analyzed. These campaigns have been summarized in

Fig. 2.2
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2.1.2 The Network-Level Data

These data are typically collected either at the OTT servers or the network operator

servers. The raw information at the OTT servers consists of a vast amount of texts, user

profiles, system logs, audio and visual contents, etc. Most of OTT service providers directly

interact with end users, rendering network operators pure “pipes,” and thus keeping them

away from the invaluable data flow.

On the other hand, the radio access network data mainly come from the interactions

between mobile terminals and base stations, which involve cell search, synchronization, link

establishment, uplink and downlink data transfer, handover, and system information broad-

cast. These lead to the exchange of a variety of data involving multiple network layers, such

as network and device identity, power/carrier/antenna indices, payload and transmission

mode, timing information, and location. Details of data collection by network operators will

be discussed in next section.

Compared with the data from the content service providers and mobile terminal devices,

the server data items unique to network operators include location, address, time, record,

flow, URL, etc. Among these, “location” contains the locations of the base stations (loca-

tion area code, LAC), the cells (service area code, SAC) and the routers (routing area code,

RAC), from which each user’s physical position could be uniquely determined, without the

assistance of the mobile terminal GPS. “Address” contains the IP addresses of the clients,

the servers, and the tunnels, etc. “Time” contains the starting time stamps of user’s con-

nections and sessions. Also uniquely accessible by the network operators are the user mobile

number (MSISDN) and user device identity (IMEI), from which each user’s specific device
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can be determined. These data, being privacy sensitive, are not typically accessible by other

sources of data collection, unless voluntarily provided by the users. The latter case, however,

could potentially compromise the reliability of collected data depending on the user’s real

willingness to disclose such data.

2.2 Data Collection in Mobile Networks

In this section, the architecture of mobile networks and critical network components, as

well as the mobility management mechanism, are first reviewed, based on which the revealed

user network behaviors could be better understood. Then, the data collection and data

categorization based on the different data collection points in cellular networks are described

and discussed in detail.

2.2.1 Network Architecture Overview

The mobile (cellular) network emerged in the ’90s of the last century and has become

one of the most successful technologies. The first cellular network is aimed to provide voice

service wirelessly by distributing multiple base stations within a covered area, each of which

is covering a small region exclusively (abstracted as a hexagon in Fig. 2.3). The data traffic

capability was added to cellular networks from the second generation of cellular networks

and flourished in the fourth generation, the long-term evolution (LTE). Although cellular

networks have significantly evolved since its first generation, its two main components remain

the same, namely the radio access networks (RAN) and the core networks (CN). In a cellular

network, the RAN is responsible for processing wireless signals (baseband and passband) from

a user equipment (UE), while the CN is aimed to reliably direct the outgoing and incoming
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traffic flow to their respective destinations.

In general, two trends of the cellular network architecture evolution can be observed,

namely the packetization and the user-control plane separation. Such cellular network evo-

lution trends significantly improve network delay performance and capacity, which could also

facilitate accessible network-level data collection. In 3G networks, data traffic service in the

core network is accomplished by the packet switched core (PS Core), while the legacy circuit-

switched core (CS Core) inherited from the 2G cellular networks fulfills the traditional voice

and texting services. However, all services in the LTE cellular networks are fulfilled via the

evolved packet core (EPC), which could simplify the system architecture and enhance sys-

tem efficiency. Data collection in mobile networks can also benefit from packetization, as the

packetized networks could provide more bandwidth for big data collection and transmission.

The other trend of cellular network evolution is the user-control plane separation. In

general, the user plane in a network refers to the network that carries data traffic, while the

control plane is the network for controlling signal transmissions. In LTE networks, the user-

control plane on the interfaces between E-UTRAN and EPC is first separated (interfaces

S1-C and S1-U in Fig. 2.3), and then the interface between the serving gateway (SGW) and

the packet data network gateway (PGW) (interface S5 (internal) / S8 (roaming) in Fig. 2.3)

in 3GPP LTE Standard Release 14. The user-control plane separation could generally reduce

the network delay via a centralized control function and support the increase of data traffic

by adding user plane nodes without changing the network controlling components. At the

same time, the user-control plane separation can also facilitate collection of user data related

to the distinct network behaviors.

As LTE consists of the mainstream of mobile networks nowadays, the mobile network
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Figure 2.3: Cellular network architecture overview (3G and LTE).

architecture will be illustrated from the perspective of LTE, and the counterparts of the

network functionalities in 3G networks will be briefly introduced. In Fig. 2.3, the network

architectures of both 3G and LTE (4G) cellular networks are plotted. The double-arrow

lines in the figure refer to the logical network connection, beneath which physical transport

networks, typically IP networks, are employed to fulfill the network logical connections. Be-

sides, it is worth noting that a logical connection may not necessarily imply a direct physical

connection. For example, the interface among nearby eNodeBs, X2, is not necessarily im-

plemented as direct physical connections but can be achieved by routing through the core

network.

2.2.2 Key Network Components

The architecture of LTE is outlined in Fig. 2.3, and the main components therein are

introduced as follows:

Evolved Node B: The evolved node B (eNodeB or eNB) represents base stations covering
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Figure 2.4: Bearer and various networks area definition in the LTE.

user equipment (UEs) in a certain area, via which a UE can only communicate with and

reach the remote destination. The eNobeB has two main functions. The first function is

to process the uplink and downlink radio signals via analog and digital signal processing,

while the other one is to fulfill low-level controls via signaling messages (e.g., handover). In

fact, the low-level control functions of eNodeB in LTE are inherited from the radio network

controller (RNC) in 3G networks as shown in Fig. 2.3, which could reduce the delay due to

the reduction of control message exchanges between RNC and base stations. Each eNodeB

is connected to EPC via interface S1 and to nearby eNodeBs via interface X2.

Tracking Area (TA): To facilitate mobility management, one partitions the entire covered

area into multiple tracking areas (TA), each of which is exclusively comprised of several

base stations (eNodeBs) spatially adjacent to each other. In fact, the TA serves as a basic

geographic unit for the service coverage area of network components as shown in Fig. 2.4(b).

Also, the TA is the basic location unit for user mobility management in LTE networks when

users are in the idle state.

Mobility Management Entity (MME): Mobility management entity (MME) is the critical
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controlling component in LTE networks, which is the main signaling node in the EPC control

plane. Some control functionalities of the MME are inherited from the RNC in 3G networks.

In the initial UE attaching phase (UE switch on), the MME will first authenticate and

authorize the UE by cooperating with the home subscriber server (HSS) and then assign a

proper serving gateway (SGW) to serve the UE. The MME also balances the load of SGWs

by directing UE from a heavy-loaded SGW to the light-loaded one. Also, the MME keeps

tracking the location of each assigned UE at the granularity of TAs in their idle state (details

provided in the next subsection). Based on the location information of UEs, the MME is also

responsible for waking up idle UEs, termed as paging in the context of mobile networks, when

an incoming flow for the UE arrives at the associated MME. The MME is the component

in the LTE network that could monitor user spatiotemporal behaviors, regardless of the

UE status (active or idle), which could potentially provide tremendous value to the data

collected here.

Serving Gateway (SGW): The serving gateway acts as a high-level router, forwarding the

data (user) traffic between eNodeBs and packet data network gateways (PGWs). A network

typically contains many serving gateways, each of which handling UEs in a geographical area

in terms of TAs. The latter is termed as the SGW serving area, which is not necessarily

the same as MME pool area (as shown in Fig.2.4(b)). The SGW is also responsible for

inter-eNodeB handovers in the user plane to seamlessly direct data traffic from the outdated

eNodeB to the updated one. The downlink traffic for an idle UE is also buffered at the SGW

before the idle UE is woken up via the paging procedure scheduled by the MME.

Packet Data Network Gateway (PGW): The packet data network gateway (PGW) is the

15



point of connection between the PC and external IP networks via interface SGi. Each

packet data network (PDN) can be pinpointed by an identifier termed as the access point

name (APN). Each UE will be assigned a default PGW in its switch-on initialization. The

latter could be attached to other PDNs for private accesses. Typically, the HSS holds

a PDN list to which a UE can connect. PGWs are also responsible for packet filtering,

charging support, QoS rule, and policy enforcement, which is fulfilled by the policy control

enforcement function (PCEF). Generally, the PCEF resides in the PGW and is connected

to the policy and charging rule function (PCRF) via interface S7, which is responsible for

policy control decision-making and the flow-based charging functionality. PCRF could be

viewed as a data aggregation combining device, network, location, and billing information

of subscribers. PCRF is a typical data collection point in cellular networks.

Bearers: In LTE, the logical connection between two nodes in the EPC is termed as the

bearer (session). It could be viewed as a bidirectional tunnel. The bearer is designed to

address the unique issues in LTE networks, namely mobility and quality of service control.

Two types of bearers are defined in LTE networks, namely control-plane (signaling) bearers,

and user-plane (data traffic) bearers. In Fig. 2.4(a), the user-plane bearer from UE to

PGW is illustrated. A default evolved packet system (EPS) bearer will be assigned to

UEs in their switch-on initialization, which provides a tunnel for UEs to communicate with

external networks. The EPS bearer is comprised of three low-level bearers, each of which

corresponding to a specific interface. The resultant bearers include the radio bearer, the S1

bearer, and the S5/S8 bearer. The activation of these bearers relies on the network behaviors

of UEs, which will be discussed in the following subsection.

16



Service Request
Paging

EMM-REGISTERED EMM-DEREGISTERED

EMM-CONNECTED

RCC-CONNECTED

EMM-IDLE

RCC-IDLE

Tracking Area Updates

Attach

Detach

S1 Release

Figure 2.5: User network behaviors.

2.2.3 Mobility Management and User Behaviors

The network behavior of users does not remain unaltered when it registers and is attached

to an LTE network. The state of network users is defined by the network behavior diagram

shown in Fig. 2.5. Such user management mechanism is aimed to address the issues of limited

UE battery life and signaling traffic overload in LTE networks. Once a UE is attached to

an LTE network in its switch-on initialization, the UE enters the EPS mobility management

(EMM) REGISTERED state from the DEREGISTERED state. At the same time, the UE

will be assigned a serving MME, a serving SGW and a default EPS bearer, based on the

UE location and the load status of the available MMEs and SGWs. In this phase, the UE

enters the EMM/RCC CONNECTED state, indicating that the UE has the full connectivity

to the external world. The radio resource control (RCC) state is the one viewed from the

perspective of RANs, while the EMM one is viewed from the EPC. Generally, these two states

are equivalent. In the EMM/RCC CONNECTED state, the MME has the UE’s location

information at the granularity of eNobeB. That is, the MME knows the exact eNodeB the

UE is attached to as long as the UE is in the EMM/RCC CONNECTED state. It is also
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worth noting that UEs in the EMM/RCC CONNECTED state will trigger a handover (HO)

event when it arrives a new cell so that the ongoing service could be seamlessly transferred

from the outdated eNodeB to the new one.

When the UE is registered but does not consume any radio resources for any services,

the S1 release procedure will be scheduled to shift the UE into the EMM/RCC IDLE state.

The S1 release procedure is initialized by the UE-attached eNodeB to release the assigned

radio bearer and S1 bearer resources. However, the S5/S8 bearer will be retained to accept

the UE’s downlink data traffic from the external networks. In the EMM/RCC IDLE state,

the UE could freely move around with limited signaling message exchanges with eNodeBs

and EPC. Also, the MME only has the location knowledge of the UE at the granularity of

tracking areas. Tracking area updates will be triggered by two events to maintain the MME’s

knowledge of the registered UEs’ status and location, to facilitate mobility management in

LTE. The first event is that the UE enters a new tracking area that is not in the UE’s recent

tracking area list. The second event is the expiration of a periodic tracking area update timer,

whose time duration is typically 54 minutes but can be customized by network operators.

During a tracking area update procedure, the UE will temporally enter the EMM/RCC

CONNECTED state and then finally return to the EMM/RCC IDLE state.

Two events trigger the transition from the EMM/RCC IDLE state to the EMM/RCC

CONNECTED state of UEs. First, the incoming flow to the UE arrives at the serving SGW

via interface S5/S8. The paging procedure is triggered by the SGW and scheduled by the

MME to search and wake the UE up within the latest tracking area updated by the UE.

During the paging procedure, the radio and S1 bearers will be re-assigned to the UE so that

the connection between the UE and the external networks could be established. Thus, the

18



UE’s state changes from IDLE to CONNECTED. Secondly, the UE will initialize a service

request procedure when it has a communication demand. The service request procedure

will sequentially re-establish the radio bearer and S1 bearer at the eNodeB and the serving

SGW, respectively. As a result, the UE’s state is changed to CONNECTED so that the UE

could communicate with external networks.

2.2.4 Data Collection and Categorization

Based on the previous description of network architecture and user network behaviors,

the characteristics of data collected at different spots of mobile networks will be discussed

here. Generally, mobile data collected in mobile networks could be categorized into four

types, namely the call detail records (CDRs) data, the user-plane traffic (UPT) data, the

control-plane traffic (CPT) data, and the radio measurement reports (RMR) data.

Call Detail Records (CDR): The CDR data is the most popular dataset studied in the

literature [22, 23]. Originally collected for service charging purposes by network operators,

the CDR data typically record users’ voice and texting activities. Its data fields include the

user identifier, when (timestamp) and where (at the granularity of base stations) the event

occurs, the duration that the event lasts for voice service. The CDR data may also include

the data traffic volume consumed by each UE. The reason behind the high popularity of CRD

data is the high accessibility of such data, as the CDR data typically resides at a single server

and is well structured. However, the CDR data can only provide the user information for

users in the CONNECTED state. Users in the IDLE state do not generate any input to the

CDR data. Also, users’ data traffic behaviors may be difficult to be thoroughly monitored
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Figure 2.6: Summary of data collections in cellular networks.

based on the CDR data alone.

User-Plane Traffic (UPT) Data: The UPT data refers to the IP session data collected at the

PGW (LTE) or GGSN(3G) of cellular networks. The UPT data is generated by inspecting

messages tunneled in GRPS tunneling protocol (GTP-U). It encapsulates the IP traffic

between UEs and the external networks. The UPT data fields generally include the IP session

start and end time, device/user pseudo identifier, type of service, and uplink/downlink traffic

volume. Occasionally, the UPT might also include the location of UE at the session start

time. However, the user location information in UPT data is sparse and less accurate, as the

duration of the session will allow users to move to new cells without any records updated in

the UPT data.

Control-Plane Traffic (CPT) Data: The CPT data refers to the data collected at controlling

components in mobile networks. Signaling data is a typical data type collected at the mobile
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switching center (MSC) in the CS core of 3G networks or the MME in the EPC of LTE

networks. In LTE, the data collected at the MME could have higher observability on UE

mobility behaviors, compared with the location information of CDR and UPT data. Based

on the network mobility management mechanism in LTE networks discussed previously, the

MME has the knowledge of the UE location at the granularity of cells when the UE is in

the CONNECTED state. Even when UEs are in the IDLE state, the MME still knows their

location at the granularity of tracking area via the tracking area updating mechanism of

mobility management. Tracking area updates provide the location information in terms of

cells at which UEs report their locations. Furthermore, the periodic tracking area update

frequency could be significantly increased from a 54-minute update interval to a 14-minute

one [24], providing more detailed and more accurate observations on UE mobility behaviors.

The data collected at the MSC of 3G networks also have records of UEs’ voice and texting

service activities. The data fields of CPT data typically include the user identifier, event

type, cell ID, and time stamp, etc.

Radio Measurement Reports (RMR): The RMR refers to the data based on radio measure-

ment reports generated at UEs. It is originally aimed to facilitate radio network operation

and radio network performance assessments. The RMR is generally challenging to collect,

due to the distributed nature of base stations and UEs. Also, the limited storage and com-

putation capabilities of base stations limit the availability of the RMR data. A typical

example of RMR data is the measurement reports collected from the minimization of drive

tests (MDT) server. The MDT functionality [25] is initially designed in LTE standards to

collect radio measurement reports directly from UEs to minimize the drive testing of network
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operators for radio network performance assessments. The data fields of MDT data typically

include the user ID, wideband channel quality indication (WCQI), serving reference signal

received power (RSRP) and quality (RSRQ), as well as resource block (RB) load [26]. Oc-

casionally, user throughput is also included in the MDT data. Their GPS receivers provide

the location information of UEs at the granularity of meters, which results in much more

precise location observations at the intra-cell level, in comparison with other data. However,

such data collection requires the permission of UEs and the investment of infrastructure for

data collection and transmission, both of which will limit the availability of RMR data.

2.3 Studied Signaling Dataset

The studied signaling data is a typical example of control-plane data (CPT) collected from

mobile networks, which is collected at the mobility management entity of LTE networks. The

signaling dataset records every communication/location update event of all active subscribers

in a mobile network. Data fields of the signaling data include 1) subscriber’s anonymized

identifier, 2) time stamp (e.g., 20160101184312), 3) location coordinates (i.e., the longitude

and latitude of the base station), 4) event type, and 5) cell type (i.e., small cell or macro

cell). The longitude and latitude coordinates where the base station of each cell is located

are accurate to 6 decimal places, and timestamps are accurate to seconds. Besides, the

signaling data logs event type as well as the direction of the event (e.g., initiating a call or

being called). Compared with the commonly used CDR data, the signaling data does not

record the duration information of voice services. However, the signaling data further logs two

types of location update events in addition to the regular event types (calls or texts), namely

the regular location update and the periodic location update. In cellular networks, location
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updating is a fundamental technique of idle mobile device mobility management. The regular

location update is triggered by crossing tracking areas, while the periodic location update

is prompted by a timeout event when no event occurs for a subscriber within a predefined

time. In the studied dataset, the timeout interval is about 1 hour, which can guarantee that

any active subscriber in the mobile network has at least one observation per hour in the

dataset. In this datasets, around three millions of subscribers are recorded.
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CHAPTER 3

INDIVIDUAL SPATIOTEMPORAL MODELING: USER IDENTIFICATION

FOR LOCATION PRIVACY EVALUATION

3.1 Background

1The privacy of mobile big data is primarily concerned, as human mobility is highly

regularized and highly predictable via mobile data spatiotemporal analysis [28, 29]. Mobile

big data with spatiotemporal information may need to be released to third parties or even

to the public, to facilitate various mobile data-driven applications and services. However,

direct data publishing may lead to subscriber privacy leakage risks [30], immediately result-

ing in data availability issues. For subscribers’ privacy protection, the common practice is

to anonymize the dataset by replacing subscribers’ identifiers (e.g., name, social security

number, etc.) with pseudo identifiers. Moreover, the anonymized identifiers are replaced

frequently (e.g., every other month) as a data management practice for further privacy pro-

tection. However, these practices may not be able to effectively protect subscriber’s privacy,

due to the uniqueness of human spatiotemporal mobility trajectory [2, 31–36].

Such uniqueness of subscriber mobility behaviors can also lead to another significant

concern on subscriber’s privacy risk, user re-identification [2,37]. In this work, we study the

mobile privacy in terms of user identity linkage across two datasets as a privacy attacker,

based on their spatiotemporal behaviors. The primary purpose of this work is to evaluate

subscriber’s privacy leakage risk in terms of user identifiability across two datasets.

1Part of this work has been published in [27].
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A scalable multi-feature ensemble matching framework is proposed in this work to study

the user identifiability across two datasets, which is aimed to effectively integrate multiple se-

mantic spatiotemporal features and their associated distance measures. User re-identification

was studied in [2] based on linear assignment problem (LAP) formulation with the prior

knowledge that at most one trace can be exclusively generated by one user in a dataset

(termed as exclusiveness). It has been proved [1] that the exclusiveness prior knowledge can

effectively improve user re-identification performance. The success of the LAP-based user re-

identification relies on effective quantitative distance measures between two spatiotemporal

traces.

However, user re-identification with a single distance measure may lead to a large portion

of false matches, especially when the coexisting users in two datasets are few. In this work,

we argue that the privacy adversary not only concerns about how many user pairs in total

can be identified (evaluated by the performance metric recall), but also on the precision

performance metric that suggests the reliability of declared results by a user re-identification

algorithm. Most of the works in the literature only focus on the user identification evalua-

tion in terms of the performance metric “recall.” In the literature, to discover as many as

possible correct pairs (i.e., improve the recall) has been the primary objective without false

matches considered. However, though correctly matched pairs are mostly identified in de-

clared matching results, user’s privacy could be still maintained to some extent, if many false

matched pairs also largely exist (i.e., precision is low). In other words, correctly matched

pairs are hidden under false matches, especially when the coexisting number of users across

two datasets are small. This is the reason why this work intends to reduce false matches and

improve the precision from the perspective of privacy attackers.
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As a result, our proposed multi-feature ensemble matching framework is aimed to improve

the precision performance of user identification by addressing the following questions:

1. how to effectively integrate identification results based on multiple diverse spatiotem-

poral features to reduce false matches and ensure a higher user identification precision,

especially when the number of coexisting users in two datasets is unknown;

2. how to model and extract various features that could distinctly represent a user and be

employed to measure the distance between two spatiotemporal attributes from diverse

perspectives.

Firstly, a LAP-based ensemble matching mechanism is proposed to integrate diverse dis-

tance measures by the philosophy of majority voting. The intuition underlying the proposed

ensemble matching mechanism is to crossly validate matched candidates via different se-

mantic spatiotemporal user modeling and their associative distance measures. As a result, a

match candidate with minority votes will be considered as a false match so that the precision

of the proposed multi-feature ensemble matching framework can be significantly enhanced.

Our proposed ensemble matching approach acts as an information/result fusion inspired by

the “stacking” approach [38]. The ensemble matching framework is divided into two phases,

namely the vote generation phase and the final matching phase. The first ensemble match-

ing algorithm, matching-filtered ensemble (MF-Ensemble) matching , is proposed directly

based on LAP formulation: 1) filtering out user-pair candidates via solving LAP for distance

matrices in the vote generation phase; 2) obtaining the final result by again solving LAP on

the aggregated vote matrix in the final matching phase.

However, the computational complexity of both the vote generation and final matching
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phases in the proposed MF-Ensemble matching algorithm is O(N3), which significantly

limits the scalability. In this work, we also tackle the scalability issue in both the vote

generation and ensemble phases. On the one hand, a dual-selection strategy is proposed

in the vote generation phase, by relaxing the exclusiveness constraints in LAP, which can

significantly reduce the complexity from O(N3) to O(N2). On the other hand, a partitioning

and matching (P&M) algorithm is further proposed in the final matching phase, by taking

advantage of the sparsity of vote matrix. The P&M algorithm is to first partition the

bipartite graph to subgraphs with the desired size, and then the matching could be employed

on resulted subgraph so that the computational complexity can be significantly reduced

from O(N3) to O(N logN). As a results, two additional ensemble matching algorithms,

dual-selection ensemble (DS-Ensemble) matching and dual-selection ensemble partitioning

& matching (DS-Ensemble P&M), are proposed for user re-identification.

Multiple distance measures originated from diverse semantic spatiotemporal modeling

are required to facilitate the proposed ensemble matching mechanism. Addition to the

visiting frequency only (VFO) in [2], we propose to model the visiting frequency and duration

(VFD) jointly, in which we utilize the temporal information provided by user spatiotemporal

traces. Furthermore, we propose to explore the semantic daily habitat regions (DHR) for

each user, characterizing the maximum area that a user covers in a calendar day. Also, a

mobility-pattern-based user grouping or clustering algorithm is further investigated based

on non-negative matrix factorization (NMF) [39,40] for large-scale user re-identification.

Experiment results validate the effectiveness of the proposed multi-feature ensemble

matching framework and also suggest that the proposed framework can significantly re-

duce false matchings with the maximal recall performance slightly compromised. Via large-
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scale user re-identification analysis, the mobile privacy of users revealed by mobile data is

at high risk even only with two-day data collection periods, where the result of two-day re-

identification analysis shows that around 30% users can be re-identified with 70% confidence.

The contributions of this work are summarized as follows:

• The importance of user identification precision is emphasized in terms of privacy risk

evaluation, based on which the tradeoff between the precision and the recall perfor-

mance is identified from the perspective of privacy attackers.

• A multi-feature ensemble matching framework is proposed to integrate the results of

multiple semantic spatiotemporal modeling so that the false matching can be signifi-

cantly reduced and the precision of user identification is significantly enhanced.

• The proposed low-complexity DS-Ensemble P&M algorithm with user grouping can

facilitate a large-scale user re-identification analysis, whose analytic complexity can be

less than O(N2).

3.2 Related Work

Generally, privacy protection is highly concerned in any personal-data-related services

and applications. k-anonymity is a common metric to evaluate the effectiveness of privacy

preservation [41], which requires any record in a database to be indistinguishable to at least

k − 1 other records in the database. The most common anonymization technique is to

replace critical identifiers (e.g., phone number, IMEI, etc.) with random pseudo identifiers.

However, such identifier anonymization fails for the mobile data with which the subscribers’

spatiotemporal behavior is recorded, due to the uniqueness of human mobile trajectories [32].
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In [42], Zang and Bolot studied a large-scale nationwide dataset with more than 30 billion

call records corresponding to 25 million users with different spatial granularities (i.e., cell

sector, cell, zip code, city, state). The spatiotemporal footprint of each user is represented

by the N most visited places within a predefined time (e.g., day, week, month, ect.), based

on which the privacy leakage risk could be evaluated. The authors concluded that the

spatiotemporal data sharing or publishing that is only anonymized by pseudo identifiers

leads to a severe privacy leakage risk. The potential privacy-preserving solution is to coarsen

the temporal resolution, which restricts the accuracy of extracting N most visited locations

from the dataset. However, the privacy protection mechanism, including detail-reduction [43]

and obfuscation [44], may broadly reduce the utility of the data. It is concluded in [32] that

spatiotemporal resolution curtailments may not be useful as expected, based on a human

mobility study with 15-month mobile data and 1.5 million people in a country. That is, the

uniqueness reduction is magnitudes of order slower than the resolution coarsening.

Therefore, a generalized scheme on the spatiotemporal privacy preserving based on k-

anonymity was proposed in [35]. Based on such uniqueness of user mobility behavior, a data-

driven spatiotemporal routing generator is developed in [45] to simulate mobility trajectories

of users. Also, it is demonstrated in [46] that the aggregated mobility dataset (e.g., the

number of subscribers covered by a cell at a specific time) may also lead to a privacy breach

of individual mobility trajectory. In [47], a visualization method is developed to infer one’s

living address based on twitter check-in data.

The user identification (or user reconciliation) [2,31,37,48–56] is another critical problem

in privacy protection, which is to link the spatiotemporal records generated by the same user

in two datasets. The user identification is closely related to “de-anonymization” attacks. A
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typical example is the Netflix prize task that is aimed to de-anonymize user identities by

public user reviews [48]. Two types of user identification can be roughly categorized, namely

matching users from different domains but in the same time span [37, 49, 50] and matching

the users from the same domains in different time spans [2]. In addition, two types of

location information, actual GPS coordinates [49,53,55] and base station location [2,31,54],

are mainly studied in the literature.

In [31], De Mulder et al. studied the user identification based on the location update

dataset from GSM networks, which records the phone’s network location with geographical

information periodically. The mobility Markovian model of each user is constructed based

on their spatiotemporal history. However, such a Markovian model requires the dataset

with subscribers’ transitions among cells to be recorded, which is not widely adopted or

collected by mobile network operators. In [2, 37], user identification is formulated as the

minimum (maximum) cost bipartite matching with two sets of vertices representing users

in two datasets, respectively, where the edge weight is obtained by a distance (similarity)

measure between any pair of nodes in the bipartite graph. In [2], Naini et al. suppress the

temporal information of users’ spatiotemporal trajectories and represent the user fingerprint

as the histogram of visited location for a given time length. The distance between the two

histograms is calculated by the Jensen-Shannon divergence. Instead of temporal information

suppression, Riederer et al. in [37] models the number of spatiotemporal appearances of a

given spatial and temporal bins by a Poisson process for each dataset, based on which the

similarity scores could be generated. However, the task of [37] could is to identify the user of

two datasets from different domains during the same time. In [53], the user matching based

on vehicle trajectories is investigated based on the improved term frequency and inverse
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document frequency (ITF-IDF) mobility feature. The modified Hausdorff distance between

two GPS traces has been studied in [49] to distinguish users from different domains. In [51],

a privacy risk assessment is studied by assuming that the privacy adversarial has a small

portion of the information on users’ trajectories, based on which the assessment is aimed to

match the prior knowledge with the full record. The privacy leakage assessment is evaluated

based on the re-identification rate—the reciprocal of the total number of users that matched

the prior information. In [56], a partition-and-group framework is proposed to prevent user

re-identification attacks from the adversarial with random prior knowledge.

Although a similar bipartite matching (LAP) formulation for user re-identification is

adopted in this work, the unique contributions of this work stand out from previous works

in the following aspects. The ensemble concept or cross-validation via different spatiotem-

poral features is studied to enhance the robustness of user re-identification. Accordingly, a

scalable ensemble matching algorithm with user grouping and bipartite graph partitioning is

proposed, which can reliably re-identify users. Although we study the user re-identification

in the same data domain with different time spans in this work, the proposed ensemble

matching framework can be easily extended to the user re-identification in heterogeneous

domains, as it provides an effective and scalable approach to integrate the matching results

by diverse distance measures.

3.3 Problem Statement

Assume that a spatiotemporal dataset X is collected by a mobile network operator during

a specific time period, in which the i-th subscriber with his/her corresponding mobility

trace Xi is represented as a tuple, i.e, (i, Xi) ∈ X . The mobility trace Xi is a sequence of
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timestamped location points (time th and location xh). That is,

Xi = [(t1, x1), · · · , (th, xh), · · · ], xl ∈ A , (3.1)

where A denotes the discrete location point set (i.e., base stations) covered by the mobile

network. In other words, xl ∈ A is the identifier (ID) of the base station l or its GPS

coordinate, i.e., xl = (lngl, latl). A typical example of such data is the commonly studied call

detail records (CDR) [30], which are voice or text event logs collected by network operators

for service charging.

Assume that the privacy attacker can access two of such datasets, X and Y , collected in

two time periods. Without loss of generality, the true user identity information of dataset Y

is assumed to be known to the privacy attacker, and then attacker attempts to connect the

spatiotemporal information generated by the same user in datasets X and Y based on their

attributes, despite that these mobility traces are associated with different anonymized IDs

within these two datasets. By the assumption that each user can have at most one record

in a dataset, the user identification problem can be formulated into a k-cardinality linear

assignment problem (kLAP) as in [2], that is,

minimize
cij

N∑

i

M∑

j

cijwij

subject to
M∑

j

cij ≤ 1,
N∑

i

cij ≤ 1, cij ∈ {0, 1}

N∑

i

M∑

j

cij = k, ∀j ∈ [M ], ∀i ∈ [N ]

, (3.2)
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where N = |X | and M = |Y| denote the cardinality of X and Y , respectively2, and k

denotes the number of users coexisting in both the datasets with different anonymized IDs,

i.e., k = |X ∩Y|. The classic solution to the LAP problem is the Kuhn-Munkres (Hungarian)

algorithm [57] and the Jonker-Volgenant (JV) algorithm [58], both of which the complexity

is O(N3).

It is worth noting that such a kLAP formulation would mainly take advantage of the

prior knowledge that one user can generate at most one record in one dataset, termed as

exclusiveness in this work. The weight wij in (3.2) denotes the distance between user i from

X and user j from Y , i.e.,

wij = ∆(Xi, Yj), (3.3)

where ∆(Xi, Yj) is a distance measure based on some specific feature modeling and user rep-

resentation on mobility traces, Xi and Yj, which will be discussed thoroughly in Section 3.5.

With respect to user re-identification performance assessment, the criterion—how many

correct pairs out of the ground truth across two datasets are identified (i.e., recall)—is mostly

concerned. However, we argue that the privacy adversarial not only concerns about the recall

performance but would also care about the precision performance for a robust attack, where

the precision is defined as the ratio of the number of correctly identified pairs over the total

number of declared pairs. The matching with a single distance measure will lead to an

inferior precision performance, especially when the coexisting user number k is unknown.

As a common practice, one would assume a maximum coexisting user number k (i.e.,

k = min(N,M)) in (3.2) in order to extract as many pairs as possible, regardless of inevitable

2Without loss of generality, we assume N ≤M in the rest of this chapter.
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false matching. Instead, we propose a scalable multi-feature ensemble matching framework to

effectively and efficiently integrate multiple distance measures based on diverse feature and

user representation modeling. The intuition underlying the proposed multi-feature ensemble

matching framework is to cross validate the identified pairs by diverse semantic features

and eventually determine the final result via majority voting strategy. Accordingly, falsely

identified pairs in some distance measures could be eliminated.

3.4 Ensemble Matching

Ensemble learning is a category of algorithms to integrate multiple weak learners [38],

in order to obtain a much more powerful learner. Ensemble learning is designed initially

for classification problems, where weak learners should satisfy the following two criteria:

1) weak learners should be accurate to some degree (at least better than random guess)

without contaminating final results; 2) weak learners should also be diversified to capture

different aspects. In this work, we propose an ensemble matching framework to integrate

diverse distance measures via different spatiotemporal feature extractions. None of the

existing frameworks could be directly applied, as the user identification problem is studied

in an unsupervised manner in this work. However, the strategy of majority voting in the

classic ensemble learning is adopted, while the information fusion philosophy behind the

“stacking” method inspires our proposed ensemble matching. Besides, the exclusiveness

property in our studied user identification problem—each user generates at most one record

in a dataset—should also be enforced to taking advantage of such prior knowledge to achieve

better performance.
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Let W denote the set of G user distance matrices,

W =
{
W 1,W 2, · · · ,WG

}
, (3.4)

where the element of each distance matrix is the pair-wise distance wij generated by a specific

distance measure between user i from X and user j from Y . Accordingly, the proposed

ensemble learning mechanism consists of two phases:

• Vote generation: the vote generation phase is to identify the matched candidates

corresponding to each distance matrix;

• Final matching: the final matching phase is to generate the final matching result

with majority voting and exclusiveness property ensured, by regarding the initial iden-

tification as votes on specific candidates.

Based on different vote generation strategies, we first propose two ensemble matching al-

gorithms in this work, namely matching-filtered ensemble (MF-Ensemble) matching and

dual-selection ensemble (DS-Ensemble) matching. For the final matching phase, we further

propose a low-complexity Partitioning and Matching (P&M) algorithm by taking advantage

of the sparsity of vote matrix.

3.4.1 Matching-Filtered Ensemble Matching

Each distance matrix can produce k matched pairs by (3.2) from the perspective of its

underlying spatiotemporal modeling and user representation. Such matching based on kLAP

(3.2) can be regarded as a filter to select k matched candidates out of massive
(
N
k

)(
M
k

)
k!
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possibilities. Therefore, the first phase of the proposed ensemble matching mechanism—

vote generation—is fulfilled based on kLAP matching, which termed as matching-filtered

ensemble (MF-Ensemble) matching.

With distance matrix set W , let matrix C(g,k) ∈ {0, 1}N×M denotes the matching result

by (3.2) based on the g-th distance measure with the assumption of k̂ coexisting user number,

C(g,k̂) = kLAP(W g, k̂) .

Let vote matrix V k̂
MF ∈ Z

N×M collect the matching results by total G distance measures on

each possible matching pair, that is,

V
(k̂)
MF =

G∑

g=1

C(g,k̂). (3.5)

Therefore, by the strategy of majority votes, the proposed MF ensemble matching algorithm

is aimed to maximize the sum vote by solving following combinatoric optimization problem,

maximize
zk̂ij

N∑

i

M∑

j

zk̂ijv
(k̂)
ij,MF

subject to
M∑

j

zk̂ij ≤ 1,
N∑

i

zk̂ij ≤ 1, zk̂ij ∈ {0, 1}

zk̂ij(v
(k̂)
ij,MF − τ) ≥ 0, ∀i ∈ [N ], j ∈ [M ]

. (3.6)

where Z k̂ ∈ {0, 1}N×M denotes the final result generated by the proposed MF-Ensemble

algorithm. The first two conditions in (3.6) are the same as kLAP (3.2), which guarantee

the exclusiveness property. The τ denotes the vote threshold that ensures that the final
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result is voted by majority, whose typical value is τ = ⌈G/2⌉. Thus, the third condition,

zk̂ij(v
(k̂)
ij,MF − τ) ≥ 0, is designed to ensure the solution voted by majority. The objective

function in (3.6) is aimed to maximize total votes generated by multiple distance measures

without any specific restriction on the cardinality of final results, as the cardinality restriction

condition has already been enforced in (3.2) before ensemble matching.

In fact, the intuition behind sum vote maximization in (3.6) is to choose the one with more

votes when the selection of certain two candidate pairs violates the exclusiveness property,

e.g.,

max(vij, vil), vij ≥ τ, , vil ≥ τ.

Moreover, we reformulate (3.6) into the classical linear assignment problem (LAP) as follows,

minimize
zij

n∑

i

m∑

j

zij

(
G− vk̂,τij,MF

)

subject to
M∑

j

zij = 1,
N∑

i

zij ≤ 1

∀i ∈ [N ], ∀j ∈ [M ], zij ∈ {0, 1}

. (3.7)

where vk̂,τij,MF = ξ(v
(k̂)
ij,MF, τ) denotes the votes after thresholding as follows,

ξ(v, τ) =





v, v ≥ τ

0, otherwise

. (3.8)

Via the Hungarian or JV algorithm of the classic LAP, N pairs are generated (Line 8,

Algorithm 1), from which final results are determined by removing the matched pairs whose
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Algorithm 1 Matching-Filtered Ensemble Matching

1: Input: W =
{
W 1,W 2, · · · ,WG

}
, k, τ

2: Output: Z
3: Initiating vote collection matrix V = 0
4: for g ∈ {1, 2, · · · , G} do ⊲ for each distance measure
5: C(g,k) ← kLAP(W g, k) ⊲ solve (3.2) on W g

6: V ← V +C(g,k)

7: end for
8: Z ← LAP(V , G, τ) ⊲ solve (3.7)
9: for i, j ∈ [N ]× [M ] do

10: if zij <> 0 and vk̂ij == 0 then
11: zij ← 0 ⊲ remove non-major-voted
12: end if
13: end for

votes do not satisfy vk̂,τij,MF > 0. Details of the proposed ensemble matching framework are

demonstrated in Algorithm 1.

3.4.2 Dual-Selection Ensemble Matching

The proposed MF-Ensemble matching needs to solve kLAPG times in the vote generation

phase and solve the LAP in the final matching phase, both of which the computational

complexity is O(N3). Such high computational complexity may make the proposed MF-

Ensemble matching infeasible when user size is large. In fact, the MF-Ensemble algorithm

enforces the exclusiveness property in both the vote generation phase and the final matching

phase, which may not be necessary. Therefore, we propose a dual selection strategy in the

vote generation phase by relaxing the exclusiveness constraint in the vote generation phase,

termed as dual-selection ensemble (DS-Ensemble) matching.

For each distance matrix W g, matched candidates can be generated based on the mini-

mum distance in terms of each user in both the datasets. For example, each user in dataset
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X would select the most similar user from dataset Y in terms of distance measure g, i.e.,

C(g,X ) =

{
(i, j)

∣∣∣∣j = arg min
j∈[M ]

wg
ij, i ∈ [N ]

}
(3.9)

Similarly, each user in dataset Y can again identify their candidates, i.e.,

C(g,Y) =

{
(i, j)

∣∣∣∣i = arg min
i∈[N ]

wg
ij, j ∈ [M ]

}
(3.10)

Therefore, such procedure is termed as dual selection (Line 7&10, Algorithm 2). By regarding

each pair via the dual selection procedure as one vote, the candidate matrix takes the form

as follows,

C
(g,{·})
ij =





1 (i, j) ∈ C(g,{·})

0 otherwise

,

where {·} denotes dataset X or Y . Hence, the final candidate matrix can be obtained by

superimposing these two candidate matrix (Line 12 in Algorithm 2), i.e.,

Cg = C(g,X ) +C(g,Y). (3.11)

It is worth noting that each true pair can get two votes for one distance matrix in the ideal

case. Also, an incorrect selection in one dataset does not impact the selection of the other, as

the selection in two datasets are independent of each other. The computational complexity

of dual selection is O(NM), an order of magnitude less than matching filtering based vote

generation.
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The vote collection can be achieved according to (3.5), i.e., V DS =
∑

g C
g. In the

DS-Ensemble matching algorithm, the final matching phase needs to ensure k-cardinality

condition and exclusiveness property, in order to determine the final matching. Similar to

(3.7), the DS-Ensemble matching algorithm is to solve the assignment problem with the

constraint of majority voting (Line 14, Algorithm 2) as follows,

minimize
zij

n∑

i

m∑

j

zij[2G− v
τ
ij,DS]

subject to
M∑

j

zij < 1,
N∑

i

zij ≤ 1, zij ∈ {0, 1}

N∑

i

M∑

j

zij = k̂, ∀i ∈ [N ], ∀j ∈ [M ]

, (3.12)

where vτij,DS = ξ(vij,DS, τ). It is worth noting that the maximum votes for one pair (i, j)

through dual selection procedure is 2G. Thus, the majority voting threshold is τ = G.

Details of the proposed DS-Ensemble matching can be found in Algorithm 2.

3.4.3 Dual-Selection Ensemble Partitioning & Matching

The DS-ensemble matching can reduce the computational complexity from O(N3) to

O(NM) in the vote generation phase, compared with the MF-ensemble matching algorithm.

Nonetheless, the scalability issue of our proposed ensemble matching framework still exists

due to the high-complexity LAP-based approach in the final matching phase (i.e., (3.7) and

(3.12)). In this subsection, we aim to tackle the scalability issue in the final matching phase

by reducing the average time complexity from O(N3) to O(N logN).

It is worth noting that the vote matrix V is an extremely sparse matrix, as each candidate
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Algorithm 2 Dual-Selection Ensemble Matching

1: Input: W =
{
W 1,W 2, · · · ,WG

}
, k, τ

2: Output: Z
3: Initiating vote collection matrix V = 0
4: for g ∈ {1, 2, · · · , G} do ⊲ candidate dual selection
5: C(g,X ) ← 0, C(g,Y) ← 0
6: for i ∈ [N ] do

7: j ← argminj W
g
ij, C

(g,X )
ij ← 1 ⊲ solve (3.9)

8: end for
9: for j ∈ [M ] do

10: i← argmini W
g
ij, C

(g,Y)
ij ← 1 ⊲ solve (3.10)

11: end for
12: V ← V +C(g,X ) +C(g,Y)

13: end for
14: Z ← kLAP(V , G, τ) ⊲ solve (3.12)
15: for i, j ∈ [N ]× [M ] do
16: if zij <> 0 and vij < τ then
17: zij ← 0 ⊲ remove non-major-voted
18: end if
19: end for

matrix by a distance measure (i.e., Cg) has at most 2N non-zero elements. Besides, the

superimposition of a total G candidate matrices will further reduce the number of non-zero

elements in the vote matrix V . In the worst case, the nonzero element number of vote matrix

V will be at the level of O(GN), where G ≪ N . Also, the majority voting strategy can

further reduce the nonzero element number of vote matrix V , as each element of V less than

vote threshold τ will be set to zero. One can regard the vote matrix as the adjacency matrix

of a bipartite graph, G(X ,Y ,V ), whose nonzero elements can be regarded as weighted edges

between two vertex sets in the bipartite graph. The intuition to resolve the scalability issue

in the final matching phase is to first partition the bipartite graph into subgraphs and then

conduct matching on the subgraphs to generate final matching results, by taking advantage

of the high sparsity of V .
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3.4.3.1 Bipartite Graph Partitioning without Loss

The sparsity of vote matrix indicates that the entire bipartite graph may be partitioned

without loss of votes, as most of the matrix elements are already zero. In other words, vote

matrix V may be rearranged into the block diagonal form by shuffling rows and columns as

follows,

V = diag{V 1,V 2, · · · ,V r}, (3.13)

where V i denotes a submatrix of V that cannot be further diagonalized without loss of

nonzero elements. As a result, one could perform bipartite matching (i.e., (3.12)) on each

submatrix V i to generate final matching results. Rearranging the vote matrix V into a block

diagonal form is equivalent to searching the connected components of the bipartite graph

V . Hence, an efficient tree-based data structure in the literature, union find or disjoint

set [59, Chapter 1], can be easily employed to find the connected components with the time

complexity O(GN).

3.4.3.2 Bipartite Graph Partitioning with Loss

Although the sparsity of the vote matrix may reduce the size for bipartite matching

without loss of nonzero elements, the size of each submatrix cannot either be controllable

nor be guaranteed to be small enough. In the worse case, the bipartite graph V cannot

be partitioned at all, especially when users have very similar mobility behaviors, while vote

matrix V still remains extremely sparse as previously discussed. As a result, we propose to

partition the bipartite graph with the minimum nonzero loss, where the size of submatrices

could be controllable to a certain degree.
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Starting from binary partitioning (i.e., each vertex set of a bipartite graph is partitioned

into two subsets), the minimization of normalized cut is commonly employed as an objective

function for bipartite graph partitioning [60,61]. Let vote matrix V be expressed in a block

format as follows,

V =



V 11 V 12

V 21 V 22


 .

where V ij corresponds to vertex subsets Xi and Yj, i, j ∈ {1, 2}. Thus, the normalized cut

is defined as follows,

NCut =
Cut

21TV 111+ Cut
+

Cut

21TV 221+ Cut
, (3.14)

where Cut = (1TV 121 + 1TV 211) denotes the loss of elements due to bipartite graph par-

titioning. It is worth noting that the normalized cut minimization is not only aimed to

minimize the loss of elements due to graph partitioning, but also designed to balance the

partitioning (i.e., the cardinality difference between two vertex subsets should approach to

zero).

It has been shown in [61] that the normalized cut minimization based bipartite graph

partitioning can boil down to finding the second largest singular vectors (ũ and ṽ) of Ṽ =

D
−1/2
X V D

−1/2
Y

Ṽ ũ = σ2ṽ,

where DX = diag{V 1} and DY = diag{V T1} denote the degree of each vertex in X and
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Algorithm 3 DS-Ensemble Partitioning&Matching

1: Input: V DS, X, Y , k̂, G, τ , t
2: Output: Z
3: V τ

DS = ξ(V DS, τ) ⊲ vote thresholding
4: V 1, · · · ,V R ← UnionFind(V τ

DS) ⊲ partitioning w/o loss
5: Initialize Z ← ∅
6: for r ∈ [R] do ⊲ partitioning w/ loss
7: Zr ←PartitionAndMatch(V r, Xr, Yr)
8: Z ∩ {Zr}
9: end for
10: Z ← diag(Z)
11: Find top k̂ pair based on Z and V τ

DS

12: function PartitionAndMatch(V , X, Y )
13: if |X| > t or |Y | > t then ⊲ partitioning

14: û, v̂ ← Lanczos(D
−1/2
X V D

−1/2
Y )

15: X1 ← {i|(DXû)i ≥ 0} and X2 ← X −X1

16: Y1 ← {j|(DY v̂)j ≥ 0} and Y2 ← Y − Y1
17: Z11 ← PartitionAndMatch(V 11, X1, Y1)
18: Z22 ← PartitionAndMatch(V 22, X2, Y2)
19: Z ← diag{Z11,Z22}
20: else ⊲ matching
21: Z ← LAP(V , 2G)
22: end if
23: for i, j ∈ [N ]× [M ] do ⊲ clean via majority voting
24: if zij <> 0 and vij < τ then
25: vij ← 0
26: end if
27: end for
28: return Z

29: end function

Y , respectively. As a result, both user set X and Y can be segmented as follows,

X1 = {i|ui ≥ 0} and Y1 = {j|vj ≥ 0}, (3.15)

where u = DXũ and v = DY ṽ. Furthermore, X2 and Y2 can be obtained by finding the

complement of X1 and Y1, respectively.
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3.4.3.3 DS-Ensemble Partitioning and Matching

Based on the previous discussions on vote matrix sparsity and bipartite graph partition-

ing, we propose a recursive DS-Ensemble partitioning and matching (P&M) algorithm with

a much lower computational complexity, compared with the DS-Ensemble matching. First,

the bipartite graph will be partitioned without loss based on the union find (Algorithm 3

Line 4). For each subgraph, a recursive partitioning and matching algorithm (Algorithm 3

Line 12-29) is employed to further segment the graph into multiple subgraphs, whose size is

not greater than the size threshold (t in Algorithm 3). In each final subgraph, the Hungarian

or JV algorithm (Algorithm 3 Line 21) will be employed to obtain the final matching result

(3.7) with the majority voting ensured (Algorithm 3 Line 23-27). After collecting all the

matching pairs from all the subgraphs, one can output the top-k̂ matched pairs. It is worth

noting that the DS-Ensemble P&M algorithm is a suboptimal algorithm, compared with the

DS-Ensemble matching. Details of the algorithm refer to Algorithm 3.

In the DS-Ensemble P&M algorithm, the heaviest computational load of bipartite graph

partitioning is the second largest singular vector calculation, where the full singular value

decomposition is computationally intensive (i.e., O(N3)). However, thanks to the high spar-

sity of Ṽ , the computational complexity of the second largest singular vector calculation

can be reduced to O(nnz(Ṽ )) based on Lanczos method in [61] and [62, Chapter 8], where

nnz(Ṽ ) denotes the number of nonzeros in matrix Ṽ . As a result, the time complexity

of binary bipartite graph partitioning is O(GN). The recursive number of bipartite graph

partitioning depends on the size threshold t. By roughly assuming that each bipartite graph

partitioning can exactly divide the graph into two equal-size subgraphs, the recursive num-
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ber is O(log(N/t)), and each recursive layer is on the complexity of O(GN). Thus, the

computational complexity of the proposed P&M algorithm is O(Nt2 + log(N/t)GN), where

O(Nt2) originates from N/t matchings on subgraphs with the size less than t. As t and G

are fixed and predefined, the average computational complexity of the DS-Ensemble P&M

algorithm could be simplified to O(NM +N logN), where O(NM) originates from the dual

selection procedure in the vote generation phase.

3.5 Features, Distances and User Grouping

As stated previously, distance measures wij play a critical role in user identification, which

could largely determine the performance of a user identification algorithm by solving the

kLAP in (3.2). However, the raw spatiotemporal attributes could not be directly employed

to assess the distance between two spatiotemporal attributes without proper data modeling

and feature extraction. Each feature extracted from the raw spatiotemporal attributes could

be regarded as a fingerprint of the user. Two spatiotemporal features are proposed to profile

users’ spatiotemporal behaviors in different aspects, which can contribute significantly to the

user identification task via the proposed ensemble matching framework. Each feature and

its corresponding distance measures will be discussed in terms of data modeling, representing

feature, and the corresponding distance measures.

3.5.1 Visiting Frequency Only (VFO) Modeling [1, 2]

The location visiting frequency only (VFO) is utilized as a representing feature in [1, 2]

to distinctly characterize a user.

Data Modeling: With the location point set (base station set) being abstracted as an alphabet
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set A = {a1, · · · , aL}, the raw spatiotemporal attribute (3.1) could be first modeled as a

string with length T by discarding the time information,

Xi = xi1, xi2, · · · , xiT . (3.16)

Every element xit ∈ A in the string is assumed to be i.i.d. from the alphabet set A based

on an unknown location visiting probability mass function Πi.

Representing Feature: Based on the i.i.d assumption of the string generation, the location

visiting probability Πi could be estimated by the empirical probability distribution or his-

togram Π̂i, i.e.,

Π̂i,l =
Ni(al)

T
, al ∈ A , (3.17)

where Ni(al) =
∑

xit=al
1 denotes the number of appearance of letter al in the string Xi,

counting the number of visits of user i at location al. Thus, the spatiotemporal behaviors

of a user could be represented by the histogram, characterizing his/her visiting frequency

over location point set A. However, such feature extraction further discards the temporal

information for modeling simplicity.

Distance Measures: To evaluate whether two spatiotemporal attributes are associated with

the same user in terms of the VFO is to find a good measure to assess the distance between

the two histograms. Here, the intuitive yet heuristic L1 distance function could be employed

to assess the distance between two histograms as follows,

∆VFO-L1(Xi, Yj) =
1

2

∑

al∈A

∣∣∣Π̂i,l − Π̂j,l

∣∣∣ . (3.18)
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Based on the multi-hypothesis test framework discussed in [1], to determine the optimum

hypothesis using the log likelihood test is equivalent to solving the kLAP with distance

generated by the Jensen-Shannon divergence (JSD). Thus, the JSD could serve as a distance

measure on the histograms as follows [2],

∆VFO-JSD(Xi, Yj) = JSD(Π̂i, Π̂j) . (3.19)

where

JSD(p, q) = KL (p ‖(p+ q)/2) + KL (q ‖(p+ q)/2) . (3.20)

3.5.2 Visiting Frequency and Duration (VFD) Modeling

The VFO only captures one spatial aspect of the available spatiotemporal attributes,

while neglecting the potential temporal information valuable for user identification. Though

the collected dataset may be an event log with users’ spatiotemporal trajectory sporadically

sampled, the temporal information could still be employed to characterize users. In this

subsection, we propose a visiting frequency and duration (VFD) feature to jointly capture

the distance in both the spatial and temporal aspects.

Data Modeling: Atop the previous string model (3.16), the raw spatiotemporal attribute

(3.1) could be modeled as a tuple string with size Pi as follows:

Xi = (xi1, ti1), (xi2, ti2), · · · , (xiPi
, tiPi

) , (3.21)

where xip ∈ A denotes the p-th recorded location of user i, and tip denotes the corresponding
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duration between the current event and the next one.

Based on the spatiotemporal tuple string modeling, we also assume that each tuple is

i.i.d. generated by an unknown probability distribution, where the duration of a user at a

given location al ∈ A is modeled as an exponential (EXP) distribution conditioned upon the

location al,

f(t|al;λi,l) = λi,lexp(−λi,lt), t > 0, (3.22)

where λi,l denotes the reciprocal of the average duration of user i at location point al.

Representing Feature: Assume that duration generated at locations are uncorrelated, the

likelihood of Xi takes the form

L(Xi) =
∏

l

L(Xi; al)Πi(al) (3.23)

where L(Xi; al) denotes the likelihood of Xi observed at location al as in (3.22).

As a result, one can obtain two representations to characterize users in both the spatial

and temporal aspects. The spatial representation is the visiting frequency by the empirical

probability distribution Π̂i calculated via (3.17). The temporal representation could be

obtained by the location-dependent exponential distribution parameter set Λ̂i = {λ̂i,l}, where

each element λi,l can be estimated at each al ∈ A,

λ̂i,l = Nl(al)/
∑

xip=al

tip. (3.24)

Distance Measures: With the similar multi-hypothesis test framework in [1], a distance

measure between two users in terms of both Π̂i and Λ̂i can be derived. With respect to
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the likelihood function (3.23), the derived distance measure can be decomposed into two

components, namely visited frequency only (VFO) and visited duration only (VDO), as

follows,

∆VFD-WD(Xi, Yj) = ∆VFO-WD(Xi, Yj) + ∆VDO-WD(Xi, Yj) (3.25)

Here, the “WD” is short for weighted divergence, which is a generalization of Jensen-Shannon

divergence. The ∆VFO-WD is originated from (3.20) with weighted divergence employed, while

the ∆VDO-WD is obtained based on the divergence between two exponential distributions on

their corresponding visited durations as follows,

∆VDO-WD(Xi, Yj) =
∑

al∈A

[
qiΠ̂i,lKL

(
λ̂i,l‖λ̂ij,l

)

+ qjΠ̂j,lKL
(
λ̂j,l‖λ̂ij,l

)]
. (3.26)

where KL(λ1‖λ2) denotes the KL divergence on two EXP distributions, i.e., KL(λ1‖λ2) =

log(λ1/λ2)+(λ2/λ1)−1. And λ̂ij,l is the weighted harmonic average over λ̂i,l and λ̂j,l. Details

of derivations on (3.25) and (3.26) can be found in Appendix 3.8.

Assume that the string length of each user and the number of each observation are the

same, the JSD could be easily obtained. In addition, the L1 distance could also be applied

as follows

∆VFD-L1(Xi, Yj) =
∑

al∈A

∣∣∣∣∣
Π̂i,l

λ̂i,l
−

Π̂j,l

λ̂j,l

∣∣∣∣∣ . (3.27)
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Table 3.1: Summary of Data Model, Features and Distance Measures
Data Modeling Representation Features Distance Measures Complexity

VFO Location String Visiting Histogram Π̂i
∆VFO-L1(Xi, Yj)
∆VFO-JSD(Xi, Yj)

O(support)

VFD Location and Duration Tuple String
Visiting Frequency Π̂i

Location-Dependent Exp. Distribution Set Λ̂i

∆VFD-WD(Xi, Yj)
∆VFD-JSD(Xi, Yj)

∆VFD-L1(Xi, Yj)

O(support)

DHR Daily Visiting Location Point Set Convex Hull Set Ci
∆DHR-COS(Xi, Yj)
∆DHR-IOU(Xi, Yj)

O(pnt num.2)

3.5.3 Daily Habitat Region (DHR) Modeling

The previously discussed spatiotemporal features abstract discrete location points as in-

dependent and unrelated letters in an alphabet set A. Such modeling discards the critical

geospatial information. In other words, the relationship between locations via the raw lati-

tude and longitude coordinates is ignored. The geospatial information may help combat the

information loss due to the sporadic sampling of users’ spatiotemporal trajectories. Thus, a

heuristic spatiotemporal feature is employed for user identification [27], daily habitat regions

(DHR), as well as its corresponding distance measures, based on the geospatial information

in this subsection. The daily habitat regions capture the daily spatial coverage of a sub-

scriber, which are expected to be consistent to some degree and may serve as the subscriber’s

mobility fingerprints.

Data Modeling: The spatiotemporal attribute (3.1) is first formulated into sets of location

points:

Xi = {Xi1,Xi2, · · · ,XiQX
}, (3.28)

where each set Xiq ⊆ A denotes a set of location points that the user visits during a calendar

date q and QX and QY denote the number of days collected in dataset X and Y , respectively.

Representing feature: Here, we employ a classical computational geometry concept, convex
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hull, to approximate the spatial coverage that a user visits daily. By approximating a small

region of geo-surface as an Euclidean space, the convex hull of a given point set Xiq in a

2-dimensional surface is defined as the set of the convex combination of the given finite point

set as follows,

Ciq =





|Xiq |∑

l=1

βlal

∣∣∣∣∣∣
∀l, βl > 0, al ∈ Xiq and

|Xiq |∑

l=1

βl = 1



 .

Thus, the daily convex hull, Ciq, is employed to represent the spatiotemporal behaviors of a

user for a given day. Hence, the spatiotemporal attributes of user i is represented as a set of

daily convex hulls,

Ci = {Ci1, Ci2, · · · , CiQi
} , (3.29)

where each convex hull is again assumed to be i.i.d. generated from an unknown probability

distribution.

Distance Measures: With the convex hull set representing users’ spatiotemporal behaviors,

we first define two distance measures between two convex hulls based on the cosine distance

and the intersection-over-union (IoU), respectively,

δcos(Cp, Cq) = 1−
area(Cp ∧ Cq)√

area(Cp)× area(Cq)
,

δiou(Cp, Cq) = 1−
area(Cp ∧ Cq)

area(Cp ∨ Cq)
,

(3.30)

where Cp ∧ Cq and Cp ∨ Cq denote the intersection and union of the two convex hulls,

respectively, and the operator area(·) is to calculate the area of a polygon. Therefore, a

distance measure between two convex hull sets is proposed based on (3.30) to evaluate the
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(a) Scenario 1a, k/N = 0.6 (b) Scenario 1a, k/N = 0.8

(c) Scenario 2, k/N = 0.6 (d) Scenario 2, k/N = 0.8

Figure 3.1: Performance comparison of different distance measures in terms of single match-
ing, where VFO-JSD and VFO-L1 are originated from [2].

similarity of two subscribers as follows,

∆DHR-COS(Xi, Yj) =
1

Qi ×Qj

∑

Cip∈Xi

∑

Ciq∈Yj

δcos(Cip, Ciq),

∆DHR-IOU(Xi, Yj) =
1

Qi ×Qj

∑

Cip∈Xi

∑

Ciq∈Yj

δiou(Cip, Ciq).

(3.31)

Intuitively, the distance measure between two convex hull sets is to calculate the average

distance between any two convex hulls in two respective sets. When the convex hull cannot

be obtained because the number of distinct visited location points within a day is less than

3, the daily habitat region would be omitted. If no convex hull could be generated, the user

will be labeled as non-identifiable.
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3.5.4 User Grouping

The complexity of each distance measure between two users depends on the support of

histogram or the number of points in two convex hulls. However, one needs to calculate

N ×M distances across two datasets so that a distance matrix W g can be generated. The

complexity of distance matrix generation, O(ψNM), may lead to scalability issue when the

user size of two datasets is tremendous. Here, ψ denotes the computational complexity of

distance measures per pair. Inspired by the graph partitioning concept employed in the

DS-Ensemble P&M algorithm, we propose to first cluster users into small groups so that the

distance matrix generation and the ensemble matching within each group could be conducted.

The mobility feature of user i on each base station takes the form as follows,

f i = [fi1, fi2, · · · , fiL]
T . (3.32)

In fact, fil characterizes the mobility behavior of user i on location l, fil = Π̂il × log(N/nl),

where nl is the number of users visiting location l out of total user N . The term log(N/nl)

is similar to inverse document frequency in the field of document clustering [39], which is

designed to depict the importance of location points for clustering. In other words, if most

users visit one location, the value of log(N/nl) will be small, meaning that such location is

less important to distinguish users.

Hence, one can obtain a feature matrix by stacking the feature of all the users from both

datasets as follows,

F = [f 1, · · · ,f (N+M)] ∈ R
L×(N+M), (3.33)
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where each column represents the mobility behavior of a user. Two characteristics of feature

matrix F could be observed: 1) the number of base stations could be very large, up to 6, 500

in the studied dataset, due to a large geographic area studied; 2) the mobility feature of

users f i could be very sparse, as one user can most likely visit a small portion out of all

the base stations. It is worth recalling that the objective of user grouping is to reduce the

user set size for matching, whose complexity is O(NM). In other words, the computational

complexity of the clustering algorithm cannot be as high as O(NM). Otherwise, direct

user re-identification on the entire user set would be more meaningful. Besides, the high

dimension of user mobility feature can lead to the uselessness of the commonly employed

low-complexity k-means clustering algorithm.

As a result, the clustering algorithm based on non-negative matrix factorization (NMF)

[39] is employed to cluster users in this work. The NMF is essentially to minimize the

Frobenius norm of the difference between the original matrix and the multiplication of two

non-negative factorized matrices as follows,

minimize
P ,Q

‖F − PQ‖F

subject to P = [p1, · · · ,pR] ∈ R
L×R
+

Q = [q1, · · · , q(M+N)] ∈ R
R×(N+M)
+

, (3.34)

where R denotes the factorization rank and also the number of user groups. Based on the

non-negativity of both matrices, each user can be represented by the non-negative weights
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qi on group representations P as follows,

f i =
R∑

r=1

qirpr ,

where qir denotes the weight on group r of user i. As qir is non-negative, the user group for

each user could be determined by finding the maximum user group weight as follows,

ri = argmax
r
qir . (3.35)

Therefore, one could obtain user grouping results with the complexity of O(R(N+M)), once

the feature matrix is factorized. In the literature, the multiplicative update method [39, 40]

is commonly employed for NMF with the complexity of O(iR(N +M)), where i denotes

the overall iteration. As a result, by combining with the DS-Ensemble P&M algorithm,

the complexity of the entire user re-identification procedure could be significantly less than

O(NM).

3.6 Experiments

In this Section, we validate our proposed feature extraction, distance measures, and

ensemble matching via experiments on a real-world signaling dataset collected in a mobile

network, which is an extension of the commonly studied call detail record (CDR) dataset.

3.6.1 Test Scenarios

Two test scenarios are generated from the dataset to evaluate the proposed multi-feature

ensemble matching framework and to compare with the existing methods in the literature.

56



(a) Scenario 1a, k/N = 0.6 (b) Scenario 1a, k/N = 0.8

(c) Scenario 2, k/N = 0.6 (d) Scenario 2, k/N = 0.8

Figure 3.2: Performance comparison of different distance measures in terms of ensemble
matching, where VFO-JSD and VFO-L1 are originated from [2].

• Scenario 1a. 15, 000 users are randomly selected out of the three million users for

comparisons. The time span of the selected dataset is from July 1st, 2016 to July

14th, 2016. That is, the dataset X covers July 1st to July 7th, 2016, while the dataset

Y covers July 8th to July 14th, 2016. The number of users in both datasets is 10, 000

with different coexisting user number k specified later;

• Scenario 1b. 150, 000 users are randomly selected out of three million users with

different data collection periods for further large-scale user re-identification analysis.

• Scenario 2. This scenario is to mimic that the network operator publishes a region-

based dataset. That is, a total of 5976 users are extracted based on their mobility
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(a) Precision

(b) Recall

Figure 3.3: Large-scale user re-identification analysis on Scenario 1b.

behaviors in specific regions of interest for certain applications. The dataset X covers

January 1st to January 7th, 2016, while the dataset Y covers January 8th to January

14th, 2016, whereM = N = 2, 500 with different k values specified in each experiment.

3.6.2 User Identification Performance

To evaluate the user identification performance, the classical precision-recall is employed.

In general, the tradeoff between the precision and recall could be controlled by a preset
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Table 3.2: Distance measures for each ensemble.

Ensemble 1 VFO-L1, VFO-JSD, VFD-JSD

Ensemble 2 VFO-L1, VFO-JSD, VFD-JSD, DHR-IOU

Ensemble 3 VFO-L1, VFO-JSD, VDO-JSD, VFD-JSD, DHR-IOU

parameter k̂, which can be regarded as an estimate of the true number of coexisting users.

Fig. 3.1 shows the comparisons among different spatiotemporal feature extraction strate-

gies and their corresponding distance measures. In both scenarios, it can be observed that

the proposed VFD feature with JSD distance measure has the highest precision at low recall

rates, while the VFD-JSD is slightly worse than the one VFO-JSD at high recall rates. The

reason behind such a phenomenon is that the duration modeling could contribute to user

identification if it is accurate, otherwise it may introduce noise. In both scenarios, the per-

formance of DHRs is the worst among all compared features and their associated distance

measures, because the DHR modeling is more sensitive to outliers and noises. However, DHR

still can achieve more than 50% and 60% in Scenario 1a in terms of the precision and recall

rate, respectively. Furthermore, the worst performance of DHR does not mean it is useless

at all. It can provide a unique and distinct aspect to model a user, which can contribute to

user identification in the proposed ensemble matching mechanism, as shown in Figs. 3.2.

Figs. 3.2 show the precision-recall comparison between the best single matching (VFO-

JSD & VFD-JSD), MF-Ensemble Matching (Algorithm 1), DS-Ensemble Matching (Algo-

rithm 2), and DS-Ensemble P&M (Algorithm 3) algorithms. The distance measures involved

in each ensemble can be found in Table 3.6.1. It can be observed in both scenarios that the

ensemble can broadly outperform the best individual matching in terms of the precision. The

performance gain is more significant as one distance measure is not capable of distinguishing
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certain user pairs, due to their similar residency areas. However, the proposed MF-Ensemble

algorithm can effectively take advantage of multiple diverse distance measures.

The tradeoff between the maximum recall and precision rates can also be observed in

Figs. 3.2. In other words, the proposed ensemble matching framework can achieve much

higher precision at the same recall, while it has a smaller maximum recall compared with

the individual ones (i.e., the absolute user pairs that the ensemble matching can discover

is less than that of individual matchings). However, the maximum recall gap between the

ensemble and the individual is shown negligible compared with the precision performance

gain. Besides, the more distance measures involved in the ensemble can result in a better

precision performance but with maximum recall performance slightly compromised.

It can be observed that the DS-Ensemble algorithm can achieve higher precision and trade

off more maximum recall performance. The DS-Ensemble can achieve almost 100% precision

at low recall rates and more than 95% at high recall rates. As a result, the DS-Ensemble

algorithm can be viewed as the most reliable user identification algorithm. However, the

reliability of DS-Ensemble comes at the cost of the maximum recall performance, especially

when users are similar to each other, as shown in Scenario 2. The proposed low-complexity

DS-Ensemble P&M algorithm has a similar performance as the DS-Ensemble matching, as

the size of most subgraphs after partitioning without loss is less than the threshold (t = 1, 000

in Algorithm 3).

3.6.3 Privacy Evaluation

Figs. 3.3 shows the precision and recall performance of large-scale user re-identification

analysis on a 150, 000 user set, based on the proposed DS-Ensemble P&M algorithm. In
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Figs. 3.3, the length of user data collection ranges from 2 to 7 days (x axis). For complexity

reduction, the entire user set is first partitioned by user grouping, as discussed in Section

3.5.4. The user grouping would lead to the loss of recall performance, since some users may

be clustered into different groups. The incorrect clustering rate ranges from 16.36% (7-day

data collection) to 19.64% (2-day data collection). It can be observed that both the recall and

precision performance can be improved as the data collection length grows, which suggests

the reduction of data collection could lead to privacy protection to some degree. Overall,

the subscriber privacy is vulnerable in terms of user identifiability across two datasets, if the

dataset is released only with ID anonymization. In Figs. 3.3, it shows that the user privacy

is still at high risk, as the proposed DS-Ensemble P&M algorithm still can recognize almost

half of the user pairs at very high confidence (up to 90%).

3.7 Summary

In this work, we studied the privacy attack in terms of user re-identifiability across two

datasets based on the spatiotemporal data collected from mobile networks. With the LAP

formulation, a scalable multi-feature ensemble matching framework was proposed. In this

work, we proposed to extract two new semantic spatiotemporal features as well as their

associated distance measures. With multiple matching results via the diverse features, a

scalable ensemble matching framework was proposed to fuse matching results so that the

final result is reliable and robust. Experiments demonstrated that our proposed multi-

feature ensemble matching achieves superior performance (up to 100% precision), which also

suggested the vulnerability of mobile network subscriber’s privacy.
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3.8 Distance Measure Derivation for VFD

The likelihood that two tuple strings Xi and Yj by (3.21) takes the form based on the

assumption that both are generated by the same user as follows,

L(Xi, Yj|Πij,Λij) =

Pi∏

p=1

f(tip|xip = al;λij,l)Πij(xip)

+

Pj∏

p=1

f(tjp|yjp = al;λij,l)Πij(yjp)

, (3.36)

where Λij denotes the collection of λij,l. By the maximum likelihood estimation, the empirical

probability distribution estimate Π̂ij is

Π̂ij(al) = qiΓXi
+ qjΓYj

=
Nij(al)

Pij

, ∀al ∈ A, (3.37)

where qi = Pi/Pij, qj = Pj/Pij, Pij = Pi + Pj, and Nij(al) = Ni(al) +Nj(al). Furthermore,

each parameter in set Λ̂ij takes the form as,

λ̂ij,l =
1

ki,l/λ̂i,l + kj,l/λ̂j,l
=

Nij(al)

t̃i,l + t̃j,l
, ∀al ∈ A, (3.38)

where t̃i,l =
∑

p,zip=al
tip and t̃j,l =

∑
p,zjp=al

tjp denote the sum of durations at al of users

i and j, respectively. ki,l = Ni(al)/Nij(al) and kj,l = Nj(al)/Nij(al) denote the weights.

Here, λ̂i,l and λ̂j,l are maximum likelihood estimates of Xi and Yj, respectively. Based on the

multi-hypothesis test framework in [1], the log likelihood of hypothesisHr could be expressed
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as follows,

L(Hr) = sup
Πij ,Πi,Πj ,
Λij ,Λi,Λj

∑

(i,j)∈Φr

log [L(Xi, Yj|Πij,Λij)]

+
∑

(i,j)/∈Φr

log [L(Xi|Πi,Λi)] + log [L(Yj|Πj,Λj)]

(3.39)

where L(Xi, Yj|Πij,Λij) = L(Xi|Πij,Λij)L(Yj|Πij,Λij) based on the i.i.d. assumption.

The likelihood function (3.36) could be rewritten in terms of two components, namely

visiting frequency and location-dependent duration as follows,

−
L(Xi, Yj|Πij,Λij)

Pij

= Lfreq(Π̂i, Π̂j) + Ldura(Π̂i, Π̂j, Λ̂ij). (3.40)

The first part, Lfreq, can be obtained on the frequency features in terms of unequal string

lengths,

Lfreq(Π̂i, Π̂j) = qiH(Π̂i) + qjH(Π̂j) + wdivqi(Π̂i‖Π̂j) . (3.41)

The second component Ldura is related to duration modeling, representing the weighted

sum of the cross entropy between the exponential distribution at each location point al.

With parameter estimates Π̂ij and Λ̂ij, Ldura(Π̂ij, Λ̂ij) (See Appendix 3.9) could be easily

obtained based on (3.41) and (3.44) as follows,

Ldura(Xi, Yj|Π̂ij, Λ̂ij) =
∑

al∈A

Π̂ij(al)
(
1− log λ̂ij,l

)
. (3.42)

With 1

λ̂ij,l
=

ki,l

λ̂i,l
+

kj,l

λ̂j,l
, Ldura could be further expressed at each al as follows,

Ldura(al)

Π̂ij(al)
= ki,l

[
λ̂ij,l

λ̂i,l
− log λ̂ij,l

]
+ kj,l

[
λ̂ij,l

λ̂j,l
− log λ̂ij,l

]
.
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The differential entropy of exponential distributions is H(λ) = 1− log λ. The KL divergence

between two exponential distributions, λ1 and λ2, is KL(λ1‖λ2) = log(λ1/λ2) + λ2/λ1 − 1 .

Therefore, Ldura could be further rewritten in terms of entropies and KL divergences as

follows,

Ldura =
∑

al∈A

Π̂ij(al)
{
ki,l

[
H(λ̂i,l) + KL(λ̂i,l‖λ̂ij,l)

]

+ kj,l

[
H(λ̂j,l) + KL(λ̂j,l‖λ̂ij,l)

]}
.

With Π̂ij(al)ki,l = qiΠ̂i,l and Π̂ij(al)kj,l = qjΠ̂j,l, Ldura could be further expressed as follows,

Ldura(Π̂i, Π̂j, Λ̂i, Λ̂j)

=
∑

al∈A

qiΠ̂i,l

[
H(λ̂i,l) + KL(λ̂i,l‖λ̂ij,l)

]

+qjΠ̂j,l

[
H(λ̂j,l) + KL(λ̂j,l‖λ̂ij,l)

]

. (3.43)

Similarly as in [1], the entropy part of (3.41) and (3.43) could be eliminated for it is a

constant for all the hypotheses. To determine the most likely hypothesis is to perform a

k-cardinality minimum cost bipartite matching, where the edge weights are the pair-wise

distance measure via both frequency and duration modeling. Thus, (3.25) and (3.26) could

be easily obtained by keeping the divergence parts in (3.41) and (3.43).

3.9 MLE Derivation of Concatenated Tuple String

By the assumption that each observation is drawn i.i.d. and users are uncorrelated, the

log likelihood of any tuple string pair (3.36) under the assumption that the pair are generated
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by the same user could be studied independently as follows,

L(Xi, Yj|Πij,Λij) =

∑

al∈A

Ni(al) [log(Πij(al)) + log λij,l − λij,lt̄i,l]

+Nj(al) [log(Πij(al)) + log λij,l − λij,lt̄j,l] ,

(3.44)

where t̄i,l =

∑
p,zip=al

tip

Ni(al)
and t̄j,l =

∑
p,zjp=al

tjp

Nj(al)
denote the average time length of users i and j

at location point al, respectively. The problem of maximum log likelihood (3.44) is:

maximize
Πij ,Λij

∑

al∈A

[Ni(al) +Nj(al)][log Πij(al) + log λij,l]

− λij,l[Ni(al)t̄i,l +Nj(al)t̄j,l]

subject to
∑

al∈A

Πij(al) = 1

(3.45)

It could be observed that the empirical probability distribution Πij is independent from the

exponential distribution of duration for any given location points. Therefore, the estimate

of Πij could be first obtained as (3.37) by optimizing (3.45) in terms of Πij. Furthermore,

λ̂ij,l could be obtained as (3.38) by optimizing (3.45) with respect to λij,l for each al ∈ A.
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CHAPTER 4

AGGREGATED SPATIOTEMPORAL MODELING: DEMAND

FORECASTING FOR TRAFFIC MANAGEMENT

4.1 Background

1The mobile big data collected by mobile network operators can also benefit the man-

agement of mobile networks. Mobile big data could help uncover and understand user’

behavior patterns [64] via effective data mining techniques, which could benefit to the

resource-constraint network optimization, from network planning, network traffic monitoring

to network management. In recent years, self-organizing networks (SON) is widely studied

to automatically manage and organize networks without manual intervention [65, 66]. One

motivation to employ SONs in cellular networks is the reduction of network operational ex-

penditures (OPEX) and capital expenditures (CAPEX), which requires full exploitation of

the capability of network infrastructure. The demand forecasting will play an essential role

in providing predictive knowledge [67] in various cellular SON functions, especially for the

future cellular networks with the virtualization and cloudization of network functions [68,69].

In this work, we study the mobile demand forecasting, the foundation of predictive mo-

bile network management. In the literature, the mobile traffic/demand forecasting schemes

have been studied for traffic apprehension and prediction via the Holt-Winter’s exponen-

tial smoothing technique [70], information theory [71], and the seasonal ARIMA model [72].

However, all these demand forecasting models only consider the temporal aspect via various

1Parts of this work have been published in [10,63].
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time series models without taking into account the spatial relevancy among cells. Models of

mobile demand forecasting accounting for the spatial relevancy have been recently studied

based on deep learning [73,74]. In these models, the temporal aspect of demand time series

is commonly studied via the recurrent neural networks (RNNs), while the spatial relevancy

is captured by various grid-based spatial models.

However, the main challenge of applying grid-based spatial models to per-cell demand

forecasting is the uneven spatial distribution of cells in the real-world setting. Generally, the

cell towers are distributed in a network covered area according to the population density.

That is, the distance between two cell towers is about 500 meters in the urban area, but

can reach 2000 meters in the rural area. Hence, grid-based models [73, 74] do not directly

apply. To utilize the grid-based models, one first needs to redivide the network covered area

into a uniform square grid, and then predict the aggregated demands of multiple cell towers

residing in each lattice. Such spatial area re-division and demand aggregation will lead to the

loss of the spatial granularity and will significantly limit the applications to future cellular

network management that requires variable spatial granularity.

To this end, we propose a flexible graph-based spatial model for the per-cell demand

forecasting without any spatial resolution degradation and data aggregation. First, we realize

that the spatiotemporal analysis of the per-cell demand time series via the semivariogram [75]

reveals that the relevancy between the demands of two cells relies on the spatial distance of

the two cells. That is, the dependency level of two cells would decrease when their spatial

distance increases. Hence, we can build a dependency graph characterizing the relevancy of

cells based on their spatial distances. In other words, the per-cell demands generated at each

cell tower could be regarded as signals generated at the vertices of a graph. Also, not only
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Figure 4.1: Cell distribution heatmap.

the recent demand history is applied to forecast the future demands, but also the periodic

history (e.g., day(s) ahead demands) are considered in order to obtain an accurate demand

predictor.

With the dependency graph formulation, the recently developed graph convolutional

networks (GCNs) [76,77] and the long short-term memory (LSTM) neural networks [78] are

employed to characterize the spatial aspect and the temporal aspect for demand forecasting,

respectively. The LSTM is a gated version of recurrent neural networks (RNNs) in deep

learning, which is well known for its excellent performance on sequence modeling. In GCNs,

the graph convolution operation originated from signal processing theory on graphs [79–81], is

employed to replace the matrix multiplication in the feedforward neural networks. The power

of graph convolution comes from the parameter sharing and sparse interaction techniques,

which have been discussed in the traditional convolutional neural networks (CNN) [82]. The

sparse interaction in per-cell demand prediction means that the demand prediction of one cell

is only related to itself and its nearest neighbors in the dependency graph. The parameter

sharing assumes that the model parameters are shared across all cells of the network.
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In this work, we first formulate the demand forecasting problem as a one-step-ahead de-

mand prediction problem. The demand forecasts after one step in the future are dynamically

generated by the one-step-ahead predictor. Three models, namely the spatial-only (GCNs),

the temporal-only (LSTM), and the spatiotemporal (GCLSTM), are studied. The graph

convolutional LSTM (GCLSTM) [83] is the model replacing the matrix multiplication oper-

ation with the graph convolution operation in LSTM, inspired by the convolutional LSTM

(convLSTM) [84]. Compared with GCLSTM, LSTM without the embedded spatial informa-

tion will predict the demand of one cell based on all other cells in the network, which would

lead to an inferior generalization performance. Experiments show that the temporal-only

LSTM could achieve a superior performance for the very-short-term demand forecasting for

its much larger model capacity but rapidly deteriorates when the forecast horizon increases.

This results from the inferior generalization performance of LSTM and the accumulated

errors in the generated predicts. The GCLSTM with the spatial and the temporal aspects

modeled will generally have a superior forecast performance except for the very-short-term

one. Main contributions of this work are summarized as follows,

• To the best of the authors’ knowledge, this is the first work modeling the spatial

relevancy among cells by a dependency graph. The graph-based spatial modeling

could completely retain the spatial granularity without any data aggregation.

• The periodicity of the per-cell demand time series is explicitly taken into account by

adding past periodic observations as input features in our studied models so that the

accuracy of demand forecasting could be enhanced without significantly increasing

model size.
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• The graph convolutional and recurrent neural networks are proposed to simultaneously

characterize both the spatial and temporal attributes with parameter sharing, which

could lead to a superior generalization performance of demand forecasting.

4.2 Per-Cell Demands

Based on the studied signaling dataset, two categories of service demands could be ex-

tracted, namely communication demands and tracking demands. The communication de-

mands include the first 4 events on calls and texts recorded in the signaling dataset, to

forecast which is the very task of this work. The tracking demands could be obtained based

on the location update events, which is closely related to crowd mobility. The location up-

date frequency is once per hour, which may be too coarse to exactly describe the crowd flow,

especially in the urban area (where cells are densely distributed). Hence, we focus on the

communication demand forecasting in this work.

With the spatiotemporal information of each event recorded, we define the per-cell de-

mand as the number of communication events occurring within a cell during an event count-

ing time window ∆T . Hence, a per-cell demand time series could be generated as follows,

[
xnt , x

n
t−1, x

n
t−2, · · · , x

n
t−l+1, · · ·

]
, (4.1)

where xnt = ln(1+ cnt ) denotes the per-cell demand within time window [t−∆T, t), where cnt

is the number of communication events of the n-th cell. Here, we utilize the commonly used

logarithm function ln(1+x) to convent the integer event number domain to the real number

domain of demands. In this work, we mainly study the demand forecasting in terms of the
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10-minute counting time windows, i.e., ∆T = 10.

It can be observed that small cells are densely deployed in the studied urban area (green

areas as shown in Fig. 4.1). In heterogeneous cellular networks, small cells are designed

to assist their corresponding macro cell by offloading data traffic, whose coverage is also

relatively much smaller than that of macro cells. As a result, the communication demands

of small cells is sparse, which is not of interest in this work. Hence, we aggregate the demand

of small cells to its corresponding macro cell, which is determined by their spatially closest

macro cell based on the location information (i.e., the longitude and latitude of cell towers).

In other words, we study the per-cell aggregated demands within a spatial area covered by

a macro cell.

In Fig. 4.2, the per-cell demands with different cell types are illustrated, namely business,

entertainment, and residence. In each subfigure, three demand time series with different

counting time window are plotted, ∆T = 5 minutes, ∆T = 10 minutes, and ∆T = 20

minutes. One can easily observe that the large counting time window could significantly

reduce the noise of the per-cell demand time series, as the larger counting time window acts

like a smoothing filter applied on the one generated by the small counting time window.

However, such noise reduction is at the cost of lowering the temporal resolution of demand

time series. Besides, it can be easily observed that per-cell demands are strongly periodic in

terms of calendar days, regardless of cell types. Another periodic effect that the demands

during weekends are less than those during weekdays could be observed from the demand time

series of the business type (Fig. 4.2(a)). Such effects would inspire the feature engineering

for demand forecasting, which will be discussed in detail later.
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Figure 4.2: Demand time series of various cell type, where the 7-day demands are recored
from Nov. 27th, 2016 to Dec. 3rd, 2016 and 24-hour demands are recorded on Nov. 27th,
2016. The business cell is located in the central business district (CBD), the entertainment-
type cell is located in a public park, and the residence area is located in a large residential
area.

4.3 Demand Prediction Problem Formulation

With the definition of per-cell demands, the demand forecasting is aimed to predict the

per-cell demands of all cells in a mobile network based on its history. In this work, demand

forecasting is studied as the one-step ahead prediction problem as follows,

x̂t+1 = f (xt,xt−1, · · · ,xt−l+1, · · · ) (4.2)
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where xt = [x1t , x
2
t , · · · , x

N
t ]

T denotes the per-cell demands of cells across the covered area

at time t and N is the total number of macro cells in the network. Hence, the prediction

problem essentially amounts to the estimation of a function or predictor f based on the

collected history data and the knowledge of cell locations. In this section, we will discuss

the one-step-ahead demand prediction with innovative spatiotemporal modeling.

4.3.1 Graph-Based Spatial Formulation

By the spatiotemporal analysis of multiple per-cell demand time series (see Section 4.5.2,

Appendix 4.8), it can be concluded that the demand relevancy between two cells declines

when their spatial distance increases. Hence, we first propose to model the spatial rele-

vancy between cells in the network by a dependency graph. The adjacency matrix A of the

dependency graph can be obtained based on the spatial distance between cells as follows,

Aij =





1, dist(si, sj) ≤ ζ

0, otherwise

, (4.3)

where si denotes the location of cell i and ζ is the threshold, a hyperparameter that could

be tuned. We set ζ = 2 km in this work. The threshold suggests that any two cells whose

distance is beyond the threshold will be considered irrelevant. Such graph modeling could

successfully make the cell relevancy sparse (from N2 to
∑

i,j Ai,j), which can lead to a good

demand forecasting generalization performance with the graph modeled in the predictor as

detailed in Sections 4.4 and 4.5. As a result, each cell could be regarded as a vertex in the

spatial dependency graph and the per-cell demand xt is viewed as the signal observed at
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each vertex of the graph at time t.

4.3.2 Periodicity-Based Temporal Features

As shown in Fig. 4.2, it is obvious that the per-cell demand time series is periodic con-

cerning calendar days or weeks. Such periodicity could provide valuable information for

one-step-ahead per-cell demand prediction at time t. Accordingly, we could reformulate the

per-cell demand time series in terms of calendar days at time t as follow,




xit xit−1 · · · xt−L+1 · · ·

xit−nd
xit−1−nd

· · · xt−L+1−nd
· · ·

xit−2nd
xit−1−2nd

· · · xt−L+1−2nd
· · ·

. . . . . . . . . . . . . . .

xit−7nd
xit−1−7nd

· · · xt−L+1−7nd
· · ·

. . . . . . . . . . . . . . .




,

where nd denotes the number of per-cell demand observations in one calendar day. To

predict xit+1, not only the recent demand history [xit, x
i
t−1, · · · , x

i
t−L+1] of cell i is taken into

accounts, but also their corresponding days ahead demand observations will be regarded

as input features for a predictor. Here, we only take the one-day ahead and 6-day ahead

observations as the extra features in order to make the predictor more dependent on the

current trend. Hence, the input features of all cells in the network at time t take the form,

Zt = [z1
t , z

2
t , · · · , z

N
t ]

T , (4.4)
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where zi
t denotes the input features of cell i at time t, i.e., zi

t = [xit, x
i
t−nd

, xit−7nd
].

4.3.3 Graph-Sequence Demand Prediction Formulation

Based on the spatial and temporal modeling discussed above, the one-step ahead demand

prediction problem could be further expressed as

x̂t+1 = f (Zt,Zt−1, · · · ,Zt−L+1;A) (4.5)

where L is the length of recent history used for demand prediction. We will discuss the

selection of L in Section 4.5. In this work, we employ the commonly used mean absolute

predicted error (MAE) as the evaluation criterion and cost function. Hence, the demand

prediction problem could be expressed as follows,

min
f

✶
TE [|xt+1 − x̂t+1|]

N
. (4.6)

Next, we will discuss the proposed per-cell demand predictor with effective graph and se-

quence information embedded based on deep learning.

4.4 Deep Graph-Sequence Spatiotemporal Modeling

In this work, the graph-based (GCN) model and the sequence-based model (LSTM) are

first proposed to capture the spatial and temporal aspects, respectively. Also, we study their

integrated version (GCLSTM), which embeds the graph information in the sequence model.
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4.4.1 Spatial Modeling - Graph Convolutional Networks

The graph convolution is the convolution operation in graph signal processing domain,

defined as gθ(L) ⋆ xt, where L = D − A denotes the graph Laplacian and gθ(L) denotes

a filter with respect to the graph L. The graph convolution would relate the signal of

one vertex to others in terms of the graph topology, where the corresponding graph filter

coefficients could be trainable based on data. Details of the graph convolution and graph

filter description refer to Appendix 4.7.

As only the nearest neighbors are considered in this work, the first-order graph filter

based on (4.19) , g
(1)
θ (Λ) = θ0 + θ1Λ, is considered. In [76], Kipf and Welling proposed a

simple first-order graph filer approximation based on Chebyshev polynomials of first kind [77]

by forcing θ = θ0 = −θ1 as follows,

g
(1)
θ (L̃) ⋆ xt = D̃

− 1

2 ÃD̃
− 1

2xtθ (4.7)

where Ã = I +A and D̃ is a diagonal matrix, D̃ii =
∑

j Aij.

Therefore, a graph convolutional network could be built based on the approximated first-

order graph convolution operation to replace the matrix multiplication in the feedforward

neural networks, which embeds the prior knowledge of graph topology into the learning

model. As a result, each layer of graph convolutional networks is defined as2

H l+1 = σ

(
D̃

− 1

2 ÃD̃
− 1

2H lΘl

)
(4.8)

2For simplicity, we ignore the bias terms in the presentation of each studied model.
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Figure 4.3: Spatial modeling: graph convolutional networks (GCN).

where σ(·) denotes the activation function for nonlinearity modeling. H l ∈ RN×nl denotes

the inputs of the l-th layer and Θl ∈ Rnl×nl+1 is the trainable parameters in the model.

Again, N denotes the number of vertices of the graph. In each graph convolution operation,

the H lΘl in (4.8) is first to learn the pattern in a cell-wise manner with shared parameters

Θl. The product of H lΘl and D̃
− 1

2 ÃD̃
− 1

2 is essentially equivalent to the weighted sum over

the cell and its first-order neighbors.

In the context of the per-cell demand prediction problem, we propose a three-layer graph

convolutional network as the demand predictor f as detailed in Model 1 and Fig. 4.3.

Model 1 (Graph Convolutional Networks (GCN)) A per-cell demand predictor is ap-

proximated by a three-layer graph convolutional network, x̂t+1 = f̂(Z
(GCN)
t , A), i.e.,

Layer 1: H(1) = σ
(
ÂZ

(GCN)
t Θ(1)

)
, Θ(1) ∈ R(L×F )×n1

Layer 2: H(2) = σ
(
ÂH(1)Θ(2)

)
, Θ(2) ∈ Rn1×n2

Layer 3: x̂t+1 = ÂH(2)Θ(3), Θ(3) ∈ Rn2×1

(4.9)

where Â = D̃
− 1

2 ÃD̃
− 1

2 and Z
(GCN)
t denotes the input of the GCN with L-length window,
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Here, Z
(GCN)
t is the L-length demand history with days ahead features as the input, i.e.,

Z
(GCN)
t = [Zt, · · · ,Zt−L+1].

In other words, the L-length demand history and extra days ahead features of each cell

are regarded as its input features of GCNs without the explicit sequence modeling. As a

result, the total number of free trainable parameters in the proposed three-layer GCN is

nh1
(L× F ) + nh1

nh2
+ nh2

.

4.4.2 Temporal Modeling - Long Short-Term Memory (LSTM)

In the literature, the recurrent neural networks (RNNs) is proved to be an effective

sequence model [85], which is designed to capture the sequential information inherited in

data, e.g., audio, natural language, etc. Essentially, RNNs adds a feedback path in the

feedforward neural networks, which could provide the information of the previous inputs so

that the current output is not only dependent on the current inputs but also relies on the

hidden state learned from previous inputs as follows,

ht = σ (Wzt + V ht−1) , (4.10)

where ht−1 denotes the hidden states updated previously.

The long short-term memory networks (LSTM) is one of special designed RNNs, which

has a capability of controlling the updating process by adding three gates, namely input gate
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gi, forget gate gf , and output gate go in a LSTM cell,

gi = σ (W izt + V iht−1)

gf = σ (W fzt + V fht−1)

go = σ (W ozt + V oht−1)

. (4.11)

where σ(·) denotes the sigmoid function. These gates control how much information should

be passed through in different places of LSTM cells as follows,

ct = gf ◦ ct−1 + gi ◦ tanh (W cxt + V cht−1)

ht = go ◦ tanh(ct)

, (4.12)

where ct and ht denote the cell state and the hidden state at time t, respectively. Here, the

operator “◦” denotes the element-wise multiplication. In LSTM, the cell state is employed

to remember the current state of the cell and the hidden state records the output of the

LSTM cell, which could be further inputted to next layer of the network.

In this work, we propose a three-layer LSTM network as a per-cell demand predictor as

described in Model 2, which regards the per-cell demand of all cells at each time stamp as

inputs.

Model 2 (Long Short-Term Memory (LSTM)) A per-cell demand predictor is approx-

imated by a three-layer LSTM network with two LSTM layers and one full-connection layer.

The LSTM sequence model is demonstrated in Fig. 4.4 and illustrated mathematically as
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Figure 4.4: Temporal modeling: long short-term memory (LSTM).

follows,

Layer 1: (h
(1)
t , c

(1)
t ) = η

(1)
lstm

(
z
(LSTM)
t ,h

(1)
t−1, c

(1)
t−1

)

Layer 2: (h
(2)
t , c

(2)
t ) = η

(2)
lstm

(
h

(1)
t ,h

(2)
t−1, c

(2)
t−1

)

Layer 3: x̂t+1 = W (3)h
(2)
t

(4.13)

where η
(i)
lstm(·, ·, ·) denotes the updating function of the layer i LSTM cell as described in

(4.11) and (4.12), in which the trainable parameters are listed as follows,

Layer 1: W
(1)
i,o,f,c ∈ R

(N×F )×nh1 ,V
(1)
i,o,f,c ∈ R

nh1
×nh1

Layer 2: W
(2)
i,o,f,c ∈ R

nh1
×nh2 ,V

(2)
i,o,f,c ∈ R

nh2
×nh2

Layer 3: W (3) ∈ Rnh1
×nh2 ,

where nh1
and nh2

denote the size of hidden states in layer 1 and layer 2, respectively.

Here, the input z
(LSTM)
t is a vector that contains features of all cells at time t, whose size is

(N × F )× 1. As a result, the number of trainable parameters in Model 2 is 4nh1
(N × F +

nh1
) + 4nh2

(nh1
+ nh2

) + nh2
N . In LSTM, we only model the temporal aspect of the per-cell

demand data, but omit the spatial information. In other words, the local spatial dependence
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is not considered in the LSTM model, but the full connection from one cell to all other cells

are taken into account, which may lead to overfitting issue in the LSTM model.

4.4.3 Spatiotemporal Modeling - Graph Convolutional LSTM (GCLSTM)

With the spatial and temporal information modeled, the LSTM and GCN can be in-

tegrated to utilize both the spatial and temporal information, which is termed as graph

convolutional LSTM (GCLSTM). In GCLSTM, the global connection among vertices (ma-

trix multiplication in LSTMs) is replaced by the local graph convolution (4.8) in each gates

as follows,

Gi =σ
(
Â(ZtΘi +H t−1Ψi)

)

Gf =σ
(
Â(ZtΘf +H t−1Ψf )

)

Go =σ
(
Â(ZtΘo +H t−1Ψo)

)
, (4.14)

where Gi,f,o ∈ R
N×nh . Also, the hidden states are also updated locally as follows,

Ct = Gf ◦Ct−1 +Gi ◦ tanh
(
Â(ZtΘc +H t−1Ψc)

)

H t = Go ◦ tanh(Ct)

(4.15)

Accordingly, a per-cell demand predictor based on GCLSTM is proposed to model both the

spatial and temporal dimension of the per-cell demand time series as illustrated in Model 3.

Model 3 (Graph Convolutional LSTM (GCLSTM)) A per-cell demand predictor is

approximated by a three-layer GCLSTM with two layers of GCLSTM cells and one graph
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Figure 4.5: Spatiotemporal modeling: graph convolutional LSTM (GCLSTM).

convolutional layer, i.e.,

Layer 1: (H
(1)
t ,C

(1)
t ) = η

(1)
gclstm

(
Zt,H

(1)
t−1,C

(1)
t−1

)

Layer 2: (H
(2)
t ,C

(2)
t ) = η

(2)
gclstm

(
H

(1)
t ,H

(2)
t−1,C

(2)
t−1

)

Layer 3: x̂t+1 = ÂH
(2)
t Θ(3)

(4.16)

where η
(i)
gclstm(·, ·, ·) denotes the layer i GCLSTM cell based on (4.14) and (4.15),where the

trainable parameters are illustrated as follows,

Layer 1: Θ1
i,f,o,c ∈ R

F×nh1 ,Ψ1
i,f,o,c ∈ R

nh1
×nh1

Layer 2: Θ2
i,f,o,c ∈ R

nh1
×nh2 ,Ψ2

i,f,o,c ∈ R
nh2

×nh2

Layer 3: Θ3 ∈ Rnh2
×1

.

Again, nh1
and nh2

denote the size of hidden states in layer 1 and layer 2, respectively.

Here, the input Zt at time t is a matrix with the shape N ×F defined by (4.4). The number

of trainable parameters is 4nh1
(nh1

+F )+4nh2
(nh2

+nh1
)+nh2

. Compared with LSTM, the

number of trainable parameters could be largely reduced, since the parameters are shared
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Table 4.1: Comparisons of Three Per-Cell Demand Prediction Models
Model Type Input Dimension Feature Size Trainable Param. Num. (Example∗)

GCN Spatial 2-D Matrix Z ∈ RN×(L×F ) L× F nh1
(L× F ) + nh1

nh2
+ nh2

(2, 208)
LSTM Temporal 1-D Vector zt ∈ R

(N×F )×1 N × F 4nh1
(N × F + nh1

) + 4nh2
(nh1

+ nh2
) + nh2

N (310, 976)
GCLSTM Spatiotemporal 2-D Matrix Zt ∈ R

N×F F 4nh1
(nh1

+ F ) + 4nh2
(nh2

+ nh1
) + nh2

(12, 704)

*nh1
= nh2

= 32, F = 3, N = 718 and L = 12

across the graph with local dependence modeled. Such parameter sharing could mitigate the

overfitting problem by structurally shrinking the capacity of the model. Details of model

comparisons are summarized in Table 4.1.

4.5 Experiments

In this section, we verify three proposed spatial, temporal, and spatiotemporal models

based on the extracted per-cell demand data of 718 cell towers in the mobile network. The

per-cell demands are first normalized by their mean and standard deviation in a cell-wise

manner. The demand predictors proposed in this work are implemented by PyTorch [86],

which is a deep learning framework with automatic differentiation and dynamic computa-

tional graph. The training dataset is from Aug. 22, 2016 to Nov. 26, 2016 and the test

dataset is from Nov. 27, 2016 to Dec. 3, 2016.

4.5.1 Per-cell Demands Autocorrelation Analysis

We first investigate the autocorrelation analysis of the per-cell demands in a cell-wise

manner, in order to determine the window length L should be taken into account for one-

step ahead prediction. In the literature, the autocorrelation analysis and its partial derivative

are commonly adopted to determine the order of autoregression integrated moving average

(ARIMA) model. Specifically, the autocorrelation function (ACF) would decide the order

of the moving average, while the partial autocorrelation function (PACF) could shed lights
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Figure 4.7: Autocorrelation function and partial autocorrelation function of demand time
series with event counting time windows ∆T = 10 minutes.

on the order selection for the autoregression. While the proposed time series model is quite

different from ARIMA, the autocorrelation analysis could still be employed to suggest the

window-length L selection.

Fig. 4.7 shows the correlation analysis on the per-cell demand time series with the count-

ing time window, ∆T = 10. As the per-cell demand is strongly periodic with respect to

calendar days as shown in Fig. 4.2, the per-cell demand of cell i can be further decomposed

into two parts, mean and its random component,

xi
d = x̄i

d + ǫi

where x̄i
d is the periodic component. Hence, Fig. 4.7 shows two kinds of curves, namely

the direct and the periodic (seasonal) component reduced, which demonstrate the (partial)

autocorrelation analysis directly on the per-cell demand time series and the random com-
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Figure 4.8: Spatiotemporal Semivariogram.

ponent, respectively. It could be observed that the PACF curves rapidly decrease to zero

with the time lag increased, while the ACF curves are slowly decreasing, especially the direct

one. One can conclude that one-hour history is sufficient for one-step-ahead prediction, but

a long history could benefit from capturing the random component in the time series. As a

result, we compare the different history lengths (half-hour, 1-hour, 2-hour, and 3-hour) for

all three proposed models in various settings.

4.5.2 Spatiotemporal Analysis

The objective of the spatiotemporal analysis on the multiple per-cell demand signals is

to evaluate how demand signals vary in space and time. In other words, the correlation

between two signals in terms of both the time lags and the spatial distance is of significant

interest. Such spatiotemporal analysis would lead to our critical spatial modeling of demands

observed by many cells irregularly spatially distributed. In this work, the semivariogram,

originated from spatial statistics, is employed to analyze the per-cell demands. Details of
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Figure 4.9: Semivariogram in terms of spatial distance.
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Figure 4.10: A example of dynamic per-cell demand forecasting.

semivariogram refer to Appendix 4.8. Fig. 4.8 shows the semivariogram of per-cell demand

time series with different counting time window lengths ∆T = 10. Based on the definition

of semivariogram, the small value of semivariogram indicates the high dependence between

signals separated at distance h and time lag τ . It could be observed that the semivariogram

slowly grows along the time lag axis when h = 0, which suggests that the current per-cell

demand is highly correlated with its history.

As for the spatial dependence, it can be observed in Fig. 4.9 that the value of semivar-

iogram will stay the same after the spatial distance is 4 km. Such a flat curve suggests
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Figure 4.11: MAE performance of dynamic forecasting over all cells.

that any two cells with the distance more significant than 4 km could be considered as irrele-

vant. In this work, two-layer graph convolution operations are employed in each graph-based

model, to mimic the second order graph filter based on the simple first-order graph filter

approximation. Accordingly, we set the threshold ζ to be 2 km to capture the neighbors

within 4 km after two-layer graph convolution operations.

4.5.3 Prediction Performance

In this work, we employ the mean absolute error (MAE) as the criterion to evaluate

the predictors studied in this work. Though the forecast problem is formulated as a one-

step-ahead prediction problem (4.2), the per-cell demand predictor should be capable of

forecasting the demands of a future time window. In fact, the demand forecasting is fulfilled

by the dynamic prediction via the one-step ahead predictor, which would take predicted

demands as inputs to further forecast the future demands, e.g., x̂t+2 = f(x̂t+1,xt, · · · ).

As a result, two parameters, forecast horizon and forecast resolution, are essential for

a forecasting problem. The forecast resolution relies on the length of event counting time

window, which is a predict per 10 minutes in this work. In this work, we focus on the

87



studied models with the forecasting horizon of 24 hours. In [72], a seasonal ARIMA model is

proposed to predict the per-cell demands of a single cell with seasonal component modeled,

SARIMA (1, 0, 3)× (1, 1, 1),

(1−ar1z
−1)(1−sar1z

−nd)(1−z−nd)xit = (1+ma1z
−1+ma2z

−2+ma3z
−3)(1+sma1z

−nd)ǫt,

where ǫt denotes the noise component and z−1 denotes the operation of one time lag. Though

SARIMA cannot model the spatial correlation among cells nor simultaneously predict the

per-cell demands across the entire network, we could still perform the comparisons in a cell-

wise manner. In Fig 4.10, an example of 24-hour demand forecasting of a cell is shown,

including the proposed models and the SARIMA. It could be observed that the predicts

by the SARIMA is more fluctuate than that of our models, while our proposed models

smoothly trace the ground truth curve. In Fig 4.11, the average predicted MAE comparisons

among three proposed models over all cells in the network is demonstrated. Overall, the

spatiotemporal model (GCLSTM) is the best except for the case that forecast horizons

are less than 5 hours. As the capacity of the LSTM model without parameter sharing

and locality modeling is much larger than the one of GCLSTM, demonstrated by their

number of trainable parameters (see Table 4.1), the LSTM can well capture the insight

for one-step-ahead prediction. However, the LSTM also efficiently models the noise into the

predictor during training, which could lead to the overfitting issue and worsen the forecasting

performance of the model. Fig. 4.13 also demonstrates the our proposed GCLSTM model

performs better than the SARIMA.

Fig. 4.12 illustrates the differences in demand history length for per-cell demand predic-
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Figure 4.12: MAE comparison between different window length L, where the event count
time window is 10 minutes.

tion. Overall, a long demand history could improve the accuracy for long forecast horizon,

especially for the LSTM-based models, which may result from the hidden states of LSTM-

based models could remember more information when their hidden states are updated longer.

On the other hand, the GCN model is not sensitive to the demand history length when L ≥ 6

(longer than or equal to 1 hour) due to the lack of explicit temporal modeling, as shown in

Fig. 4.12(a).
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Figure 4.13: Compared with SARIMA (1, 0, 1)× (1, 1, 1).

4.5.4 Discussion

As demonstrated in the experiment results, the LSTM model could always have the best

performance for the very-short-term demand forecasting, namely less than 3 hours. However,

due to accumulated errors during dynamic prediction and week generalization of the LSTM

model, the GCLSTM model is more capable for the short-term, mid-term, and day ahead

demand forecasting. The GCN is also stable for such forecast horizons but is less accurate,

while the number of trainable parameters is much smaller as illustrated in Table 4.1. The

SARIMA model performs well for the per-cell demands prediction task, but it is modeled

in a cell-wise manner. That is, the per-cell demand needs to be predicted cell-by-cell. As a

result, the parameters of SARIMA is linearly scaling with the number of cells in the network,

while our proposed GCLSTM takes both the spatial and temporal into accounts with fixed

number trainable parameters and could have a relatively small trainable parameter for a

large mobile network.
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4.6 Summary

In this work, we study the per-cell demand forecasting in cellular networks. To deal

with the irregular cell spatial distribution for spatial relevancy modeling among cells, we

proposed to model the spatial relevancy among cells as a dependency graph based on spatial

distances among cells without losing spatial granularity. Accordingly, we studied three mod-

els for demand forecasting, the spatial only (graph), the temporal only (sequence), and the

spatiotemporal model (graph-sequence) based on deep learning. The spatiotemporal model

simultaneously could capture both the spatial and temporal aspects in demand forecasting,

which could achieve a superior forecasting performance demonstrated by experiment results.

4.7 Graph Filters and Graph Convolution

The graph signal processing (GSP) [79–81] is recently developed to deal with signals

generated from a graph, such as social networks and sensor networks, which is a general

extension of the traditional signal processing techniques from regular sampled data (e.g.,

audio or image) to the irregular data (social network data). The graph signal processing

combines both the signal processing and graph spectral theory, to fulfill the standard signal

processing operations on the graph, e.g., convolution, filtering, translation, etc.

The main motivation of building a spatial dependence graph in this paper is to predict

the demand of one cell not only based on the its own demand history but also taking the

demand history of its neighbors into account. In the graph signal processing theory, such
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motivation could be captured by the graph Lapacian operation,

(L · xt)i =
∑

j∈Ni

[
xit − x

j
t

]
, (4.17)

where L = D −A is the graph Laplacian and D is the diagonal matrix, i.e., Dii =
∑

j Aij,

recording the connectivity of each vertex in the graph. Intuitively, the graph Laplacian

operation is essentially to capture the information of one vertex and its nearest neighbors.

Analogous to the filter design in the traditional signal processing, a graph filter could be

expressed as polynomials in terms of the graph Laplacian [79],

gθ(L̃) = θ0I + θ1L̃+ θ2L̃
2
+ · · ·+ θKL̃

K
, (4.18)

where L̃ is the normalized graph Laplacian, i.e., L̃ = I −D− 1

2AD− 1

2 . And θk is the filter

coefficient of tap k. The order of graph filters would determine the order of neighbors of

vertices in the graph affected by the filter.

By the eigendecomposition on the graph Laplacian, L̃ = UΛUT , any graph signal could

be transformed to the corresponding graph spectral domain, X = Ux, analogous to the

discrete Fourier transform [79–81], where the eigenvectors U are viewed as a basis. As a

result, the graph filter could be further expressed in the graph spectral domain,

gθ(Λ) = θ0 + θ1Λ+ θ2Λ
2 + · · ·+ θKΛ

K . (4.19)

Hence, the graph convolution operation gθ(L̃) ∗ xt can be calculated as multiplication oper-
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ations in the graph spectral domain,

gθ(L̃) ⋆ xt = Ugθ(Λ)UTxt. (4.20)

4.8 Spatiotemporal Semivariogram

The per-cell demand time series (4.1) could be further expressed in terms of both the

spatial and temporal aspects as follows,

z(sn, t) = xnt (4.21)

where sn represents the detailed spatial information of the n-th cell (i.e., location coordi-

nates). The semivariogram γ(h) is a function to describe the spatial dependence of two

stochastic processes generated in two locations sn and sm separated at h distance,

γ(h) = E
[
(z(sn)− z(sm))

2|dist(sn, sm) = h
]
.

With the temporal dependence considered, the time lag τ should be further considered atop

the spatial variogram γ(h).

γ(h, τ) = E
[
(z(s, t)− z(s+ h, t+ τ))2

]

However, the cell towers are distributed irregularly in the covered area according to the

population density. Hence, we analyze the multiple per-cell demand processes in terms of
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the empirical spatiotemporal semivariogram [75,87] as follows,

γ(h(l), τ) =
1

|N (h(l), τ)|
×

∑

(n,m,t,t′)∈N (h(l),τ)

[z(sn, t)− z(sm, t
′)]

2
, (4.22)

where

N (h(l), τ) = {(n,m, t, t′)|dist(sn, sm) ∈ h(l), |t− t
′| = τ}.

The N (h(l), τ) is a set to collect any signal pairs spatially separated at distance within

the distance tolerance h(l) and temporally separated at τ . The distance tolerance h(l) is

employed to discretize the continuous spatial distance. In this paper, we utilize a linear

uniform discretization with the spatial resolution 0.5 km. As a result, h(l) = [(l − 1) ×

0.5, l × 0.5).
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CHAPTER 5

AGGREGATED SPATIOTEMPORAL MODELING: IDLE TIME WINDOW

PREDICTION FOR TRAFFIC MANAGEMENT

5.1 Background

1In recent years, self-organizing networks (SON) is widely studied to automatically man-

age and organize networks with much less manual interventions so that network operational

expenditures (OPEX) and capital expenditures (CAPEX) can both be reduced [65, 66].

Mobile data plays a critical role in cellular SONs, providing system observability and pre-

dictability for network management. One of the most substantial portions of OPEX is the

power consumption of cell towers [89]. To switch cells off when traffic loads across the net-

work are extremely low [89, 90] is a potential approach to lower the power consumption of

mobile networks.

However, cell towers may not be able to switch on to meet the traffic demands in real time.

As a result, the cell on/off switching requires reliable predictive knowledge of ITW for each

cell in a mobile network to reduce power consumption with subscribers’ quality of experience

ensured. ITWs in the network may vary spatially, which needs to be carefully learned [91].

Also, the ITW prediction is not limited to the application of cell switching on/off but can

facilitate flexible traffic scheduling and network management applications. For example,

time-dependent pricing [92] is one of the recently proposed solutions to reduce the peak-

to-average (PAR) by motivating delay-tolerant traffic consumed in idle time windows so

1This work has been published in [88].
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that the network congestion could be alleviated during the peak time. The dynamic pricing

mechanism highly relies on the predictive knowledge of the ITWs across the network, as

traffics and ITWs may vary temporally and spatially [93].

In this chapter, we propose to study the ITW prediction for each cell in mobile networks,

based on both the recent history and periodic factors of mobile demands and subscribers’

aggregated mobility behaviors observed by mobile operators. Prediction of the ITWs essen-

tially amounts to answer the following questions:

1. Will the ITW start within the prediction horizon in the future?

2. When will the ITW start and how long will it last?

The first question is essentially a detection problem, while the second question leads to a

regression or localization problem. The intuitive approach of ITW prediction is to first per-

form a long-term demand forecasting for each cell in the network, based on which ITWs in

the future could be extracted. However, the long-term demand forecasting is usually formu-

lated as one-step-ahead prediction [63, 72–74, 91, 94] and then generates long-term forecasts

one-by-one sequentially based on predicted results, leading to mediocre ITW prediction due

to error accumulation during forecasting. Furthermore, to predict ITW based on long-term

demand forecasting may be expensive, as it needs to generate far more estimates than desired

(i.e., start time and duration).

Differing from the approaches as mentioned earlier, we propose to directly predict ITW

for each mobile network cell in this work. Specifically, the start time and duration within the

prediction horizon in the future will be directly estimated. The ITW prediction is formu-

lated as a regression problem with an ITW presence confidence index, which simultaneously
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tackles the ITW detection problem (whether an ITW will present or not) and the ITW esti-

mation (where the ITW is located within the prediction horizon). The novel ITW presence

confidence index proposed in this work can effectively indicate the presence of ITWs in the

forecasting horizon, and also provide the flexibility and capability to control the robustness

of the prediction model in different practical scenarios. In terms of feature engineering,

we first propose an innovative feature extraction scheme to obtain multiple demands and

mobility features from the raw signaling datasets so that reliable ITW prediction can be fa-

cilitated. In addition, the day-ahead and week-ahead periodic observations will be regarded

as exogenous inputs to account for the strong temporal seasonality. Furthermore, the spa-

tiotemporal semivariogram demonstrates that mobile demand at the cell level has strong

temporal relevancy yet relatively weak spatial relevancy, where the spatial relevancy among

cells is modeled as a relevancy graph as in our previous work [63].

In light of the proposed feature engineering, exogenous inputs, and desired prediction

output, we propose a novel ITW prediction model, consisting of the representation learning

network and the output network. The representation learning network is aimed to learn

useful patterns from the recent demand and mobility history for ITW prediction via ef-

fective graph sequence modeling. The output network is aimed to combine the learned

patterns via representation learning networks and exogenous inputs to generate the desired

ITW presence confidence index and ITW location. In the literature, two graph-sequence

spatiotemporal models, GeoMAN [95] and DCRNN [96] were recently proposed to deal with

the sequence-to-sequence environmental pollution prediction and road traffic prediction, re-

spectively. However, these two models were designed for strong spatial and strong temporal

relevancy, which may not be ideally suitable for the mobile demand traffic with strong tem-
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poral relevancy yet relatively weak spatial relevancy. As a result, we further propose a novel

prediction model, termed as temporal graph convolutional networks (TGCN), based on the

cutting-edge temporal modeling [97] and graph modeling [76] techniques.

To effectively evaluate the performance of ITW estimation, we propose to employ a metric

called intersection-over-union (IoU) borrowed from the object detection task in the field of

computer vision [98], to assess how well the predicted time window overlaps with the ground

truth. Experiment results demonstrate that our proposed general ITW prediction model can

achieve a significant performance improvement compared with baselines, and the proposed

TGCN-based model can outperform the temporal convolutional networks (TCN) [97], long

short-term memory (LSTM) [78], and graph convolutional LSTM (GCLSTM) [63]. The good

prediction performance suggests the validity of the proposed problem formulation and feature

engineering as well as the superiority of our proposed TGCN model. The key contributions

of this work are summarized as follows:

• Direct ITW prediction is proposed for the first time. It is formulated as a regression

problem with an ITW presence confidence index, which can simultaneously tackle both

the ITW detection and estimation tasks.

• A feature extraction scheme is proposed to extract the demand and mobility features

from the raw signaling dataset as well as the exogenous inputs to account for the

inherent characteristics of the demand and mobility behaviors.

• A novel ITW prediction model consisting of a representation learning network and

an output network is proposed to account for both the spatiotemporal feature and the

exogenous inputs. In addition, a graph-sequence representation network model, TGCN,
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is proposed to characterize both the spatial and temporal relevancy in subscribers’

demand and mobility behaviors to facilitate a good ITW prediction.

• A cost function combining the cross-entropy loss for ITW prediction and the mean

absolute error for ITW estimation is proposed to train the prediction model effectively.

In addition, an evaluation metric, intersection-over-union (IoU), is proposed to assess

the performance of the ITW estimation.

5.2 Dataset and Problem Formulation

In this section, two semantic time series from the perspective of cells (base stations) based

on the studied signaling dataset can be extracted from the raw data, namely the demand

time series and the mobility time series. According to these two semantic time series, the

problem formulation of ITW prediction will be discussed.

5.2.1 Demand and Mobility Time Series

According to the event type, user pseudo-ID, timestamp and location information recorded

in the studied signaling dataset, one can extract two semantic time series for each cell in

the mobile network to understand the aggregated spatiotemporal behaviors of subscribers,

namely

• Demand Time Series. The demand time series can be extracted by counting the

number of communication events occurring in a counting time window for a specific

cell; that is,

di = {· · · , dt−l,i, dt−l+1,i, · · · , dt−1,i, dt,i, · · · }; (5.1)
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(a) business (b) entertainment

(c) residence

Figure 5.1: Mobility and demand time series of typical cells, including business, entertain-
ment, and residence.

• Mobility Time Series. The mobility time series is obtained by counting the number of

unique subscribers observed in a counting time window for a specific cell; that is,

mi = {· · · , mt−l,i, mt−l+1,i, · · · , mt−1,i, mt,i, · · · }; (5.2)

where subscripts i and t denote the i-th cell and the t-th counting time window (i.e., [t∆, (t+

1)∆)), respectively, and ∆ denotes the counting time window length (∆ = 20 minutes in

this work). The demand time series, counting voice and text service events of each cell,

can directly illustrate the load of mobile networks both spatially and temporally, while
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the mobility time series can capture the mobility behavior of subscribers in an aggregated

manner, shedding lights on the crowd flow of network subscribers. Both mobility and demand

time series extracted from the studied signaling dataset can lead to a better understanding

of mobile network subscribers.

Three demand and mobile time series examples of selected cells located at different typ-

ical points of interest are demonstrated in Fig. 5.1. The cells of business, entertainment,

and residence are located at the central business district (CBD), zoo, and residential area,

respectively. One can easily observe that both the mobile time series and demand time se-

ries are daily periodic in all three examples, while demands and mobility in the business and

the entertainment cells behave differently during weekdays and weekends, which may be re-

garded as weekly periodicity in both time series. Both the demand and the number of visited

subscribers (mobility) of the business-type cell decline during weekends, while the number of

visited subscribers in the entertainment-type cell increases, compared with the ones during

weekdays. In general, demands tend to increase as the number of visited subscribers rises,

but the relationship between the two is nonlinear and depends on the cell type and the time

within a day. Two peaks can be observed within a day for both the demand and mobile time

series, and the demands of cells can drop to zero after midnight. As a result, one can easily

find that the ITWs typically occur in the early morning in terms of the loads of each cell as

illustrated by demand time series, regardless of the mobility pattern shown by the mobility

time series.
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5.2.2 Idle Time Window Prediction Problem Formulation

In this work, we propose to predict the ITW in the near future based on the features

extracted from the demand and mobility time series in recent history, where the definition

of ITWs is given in Definition 5.1.

Definition 5.1 (Idle Time Window) The idle time window (ITW) of cell i at time t is

represented as a tuple, (St,i, Dt,i), indicating that a consecutive time period during which

demands fall below a predefined threshold ζi within the prediction horizon H, i.e.,

St,i, Dt,i = argmax
S,D

D

subject to dit+l < ζi, ∀l ∈ [S, S +D)

1 ≤ S,D ≤ H

where S and D denote the start time and duration of the ITW within the time horizon

[t+ 1, t+H] in the future, respectively.

To predict the per-cell ITW, one needs to answer the following questions:

1. Will an ITW present within the prediction horizon, i.e., [t+ 1, t+H]?

2. When will the ITW start (S) and how long (D) will it last?

In fact, the first question is essentially a binary classification or detection problem to de-

termine whether an ITW will present within the future horizon H. The second one can be

regarded as a regression problem, which is to estimate the start time S and the duration D

for each cell, respectively.
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Inspired by the object detection algorithm in the field of computer vision [98], we formu-

late the ITW prediction as a regression problem with a confidence index to simultaneously

account for both the ITW detection and the ITW regression tasks, i.e.,

Ct,i, St,i, Dt,i = f(X t,Et,A) (5.3)

where St,i = (St,i− 1)/H and Dt,i = Dt,i/H
2 denote the normalized start time and duration

with respect to the horizon H, respectively, when the ITW presents within the future horizon

H. In addition, Ct,i denotes the confidence index to suggest the confidence that an ITW

presents within the future horizon. Hence, Ct,i, St,i, Dt,i ∈ [0, 1). In (5.3) and (5.5), X t,

Et, and A represent the input features, the exogenous inputs at time t, and the geospatial

foreknowledge, respectively. Moreover, f(·) represents the predictor or the mapping that is

trainable in a supervised manner based on extracted input-output pairs from the raw data.

Furthermore, the presence of ITWs can be determined by the confidence index Ct,i, i.e.,





H0, Ct,i < τ

H1, Ct,i ≥ τ

, (5.4)

where H1 and H0 represent the presence and absence of ITWs, respectively. Also, τ denotes

the threshold for the confidence index to determine the presence of ITWs. In this work, we

also aim to predict the ITWs for all cells across the network simultaneously. As a result, the

2Without confusion, St,i and Dt,i are employed to denote the start time and duration variable and also
their normalized ones.
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per-cell ITW prediction (5.3) could be further rewritten as follows,

Ct,St,Dt = f(X t,Et,A) (5.5)

where Ct = [Ct,1, · · · , Ct,N ]
T , St = [St,1, · · · , St,N ]

T , and Dt = [Dt,1, · · · , Dt,N ]
T . Based

on the problem formulation in (5.5), all components of ITW prediction will be thoroughly

discussed in the next sections.

5.2.3 Combined Cost Function for Model Training

Although the value of all three outputs in our problem formulation ranges between 0

and 1, the meanings underlying these three outputs are different. The confidence index Ct,i

serves as a detection statistics to determine the presence of ITWs, where St,i and Dt,i are to

estimate where an ITW is located. As a result, the loss of these outputs in training should

be specifically designed. Due to the underlying meaning of confidence index, we employ the

cross entropy loss for binary classification (or detection) to train the model with respect to

the confidence index output, i.e.,

closs(Ĉt,i, C̃t,i) = C̃t,i log(Ĉt,i) + (1− C̃t,i) log(1− Ĉt,i) (5.6)
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where Ĉt,i and C̃t,i denote estimated confidence index Ct,i and its ground truth, respectively.

As the true value of C̃t,i is either 1 or 0, the cross entropy loss function could be reduced to

closs(Ĉt,i, C̃t,i) =





log(Ĉt,i) C̃t,i = 1

log(1− Ĉt,i) C̃t,i = 0

(5.7)

With respect to the estimation of ITW start time and duration, the absolute error is employed

to evaluate the estimates as follows,

bloss(Ŝt,i, S̃t,i, D̂t,i, D̃t,i) = |Ŝt,i − S̃t,i|+ |D̂t,i − D̃t,i| (5.8)

Accordingly, a cost function combining the above two loss functions is employed for model

training as follows,

cost =
1

T × B

∑

t

∑

i

{
closs

(
Ĉt,i, C̃t,i

)
+

λ× ✶

[
bloss

(
Ŝt,i, S̃t,i, D̂t,i, D̃t,i

)]}
(5.9)

where ✶[·] is an indicator function to let the cost function only consider the start time and

duration estimation when an ITW presents. In addition, a weight hyperparameter λ is

further employed to help the cost function emphasize the model trained on the start time

and duration prediction when an ITW exists.
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5.3 Feature and Foreknowledge Engineering

5.3.1 Input Features X t

As ITWs are directly defined based on demand time series as shown in Definition 5.1,

the trend of demands in each cell captured by the demand time series should be a key feature

for the ITW prediction. In addition, the mobility time series (5.2), describing the number of

subscribers observed by each cell within a counting time window, contains the information

of aggregated crowd mobility behavior trend in the network. As a result, a series of demand

and mobility observation of each cell should be regarded as features to predict the ITWs,

i.e.,

Xdm
t,i =



dt−L+1,i dt−L+2,i · · · dt,i

mt−L+1,i mt−L+2,i · · · mt,i


 , (5.10)

where L denotes the length of recent history considered for ITW prediction. According to

the characteristics of the signaling data, the mobility time series can only observe active

subscribers with communication demands or location updates. However, the counting time

window (20 minutes) is much smaller than the periodic location update interval (60 minutes).

Hence, the mobility time series may not be able to capture all subscribers attached to cells

within one counting window, as inactive subscribers might stay in the same cell after a

location update but unobserved at time t.

In this work, we propose an innovative feature extraction scheme to characterize the

aggregated subscriber’s mobility in each cell mainly. Let U1h
t,i denote a subscriber set of cell i

in a one-hour time windowW 1h
t , i.e.,W 1h

t = [(t−2)∆, (t+1)∆) based on 20-minute counting

windows employed in this work. We then propose to extract the following semantic feature
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Figure 5.2: Features, exogenous inputs and relevancy graph for ITW prediction at time t.

time series based on the subscriber set U1h
t,i and its one-step past U1h

t−1,i as follows,

• Arriving δm,+
t,i : The new arrival subscriber number is defined as the number of sub-

scribers that are only observed in the counting time window t but not present in its

one-step past subscriber set U1h
t−1,i, that is

δm,+
t,i =

∣∣U1h
t,i − U

1h
t−1,i

∣∣ .

Thus, the demand δd,+t,i generated by the newly arrived subscribers U1h
t,i −U

1h
t−1,i can also

be extracted in the counting time window [t∆, (t+ 1)∆).

• Staying δm,=
t,i : The subscribers observed in both sets, U1h

t,i and U1h
t−1,i, are assumed to

be the subscribers staying at cell i in the past one-hour time window, that is

δm,=
t,i =

∣∣U1h
t,i ∩ U

1h
t−1,i

∣∣ .

• Departing δm,−
t,i : The subscribers observed only in one-step ahead set U1h

t−1,i, but do
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not appear in current subscriber set U1h
t,i , that is

δm,−
t,i =

∣∣U1h
t−1,i − U

1h
t,i

∣∣ .

Here, the operation | · | denotes the set cardinality. Clearly, δm,+
t,i , δm,=

t,i , δm,−
t,i , δd,+t,i ≥ 0.

Accordingly, each cell could provide multiple features for its ITW prediction based on above

operations on subscriber sets as follows,

Xdiff
t,i =




δm,+
t−L+1,i δm,+

t−L+2,i · · · δm,+
t,i

δm,=
t−L+1,i δm,=

t−L+2,i · · · δm,=
t,i

δm,−
t−L+1,i δm,−

t−L+2,i · · · δm,−
t,i

δd,+t−L+1,i δd,+t−L+2,i · · · δd,+t,i




. (5.11)

Similar to our previous work on mobile demand forecasting [63], we also add the one-day

ahead and 7-day ahead demand observations as features in order to capture both the daily

periodic and weekly periodic effects as observed in Fig. 5.1, i.e.,

X
period
t,i =



dt−L+1−nd,i dt−L+2−nd,i · · · dt−nd,i

dt−L+1−7nd,i dt−L+2−7nd,i · · · dt−7nd,i


 (5.12)

where nd denotes the number of observations in one day (i.e., nd = 72). In this work, we

take periodic demands to predict ITWs, while only recent mobility information is considered

for ITW prediction.

In summary, the input features for the ITW prediction of cell i at time t can be expressed
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by stacking Xdm
t,i , X

diff
t,i , and X

period
t,i as follow,

X t,i =
[
(Xdm

t,i )
T , (Xperiod

t,i )T , (Xdiff
t,i )

T
]T
. (5.13)

By stacking X t,i of all cells in the network, one can easily obtain a three-dimensional tensor,

X t ∈ R
N×L×8,

each axis of which represents cells, temporal sequence, and features, respectively, as shown in

Fig. 5.2. The one-day plot of the input features X t is shown in Fig. 5.3, in which subscriber

movement can be rarely observed at the early morning from 3 am to 6 am by both δm,+
t,i

and δm,−
t,i . Also, the quantity (δm,+

t,i − δm,−
t,i ) is positive from 6 am to 9 am, meaning that

subscribers move into this cell in this interval. The quantity (δm,+
t,i − δ

m,−
t,i ) is negative from 5

pm to 8 pm, indicating that subscribers move out from this cell during this interval. Hence,

time series δm,+
t,i and δm,−

t,i can effectively capture the movement of subscribers.

5.3.2 Exogenous Inputs Et

As shown in Fig. 5.1, it can be observed that both demands and mobility are daily

periodic and weekly periodic. As a result, both the one-day-ahead and the 7-day ahead

ITWs of each cell at the corresponding time point could provide valuable information to

guide the ITW predictor to obtain more accurate estimates. The information of the one-

day-ahead and 7-day ahead ITWs in each cell can serve as a relatively good starting point

for ITW estimation, which will be employed as baselines in comparison with our proposed
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Figure 5.3: One-day plot of X t,i at the cell corresponding to Fig. 5.1(a): demand (dt,i),

dem p (δd,+t,i ), mobility (mt,i), mob p (δm,+
t,i ), mob e (δm,=

t,i ), mob m (δm,−
t,i ).

predictors. Hence, the information of the one-day and 7-day ahead ITWs in each cell at time

t will be regarded as exogenous inputs to our proposed predictors, i.e.,

Et =

[
Et,1 Et,2 · · · Et,N

]T
∈ RN×4, (5.14)

where Et,i = [St−nd,i Dt−nd,i St−7nd,i Dt−7nd,i]
T .

5.3.3 Geospatial Modeling via Graph A

Based on the spatiotemporal semivariogram analysis of the demand time series across

the network as in our previous work [63], it can be concluded as shown in Fig. 5.4 that the

demand relevancy between two cells declines when their spatial distance increases. Hence,

we employ the relevancy graph as in [63] to capture the spatial relevancy between cells across

the network. The adjacency matrix A of the dependency graph can be obtained based on
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Figure 5.4: Spatiotemporal semivariogram analysis on demand time series.

the spatial distance between cells as follows,

Aij =





1, dist(si, sj) ≤ η

0, otherwise

, (5.15)

where si denotes the geolocation of cell i, and η is the distance threshold, that is a hyper-

parameter that could be tuned. We set η = 2 km in this work. The threshold suggests that

any two cells whose distance is beyond the threshold will be considered irrelevant. Such

graph modeling could successfully make the cell relevancy sparse (from N2 to
∑

i,j Ai,j). As

a result, each cell could be regarded as a vertex in the spatial dependency graph and the

input X t,i is viewed as the signal observed at node i of the graph at time t.
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5.4 ITW Prediction Model

To predict the ITW for all cells in the network at each time t, a deep-learning-based

ITW prediction model is proposed to account for the inherited structure of input features

X t and exogenous features Et as well as the spatial relevancy foreknowledge encoded in the

graph adjacency matrix A. As demonstrated previously, the input features take the form

of a three-dimensional tensor with both the temporal and spatial structures, as shown in

Fig. 5.3. The proposed ITW predition model comprises two main components as shown in

Fig. 5.5, namely

• Representation Learning Network: The representation learning network is aimed

to learn the high-level representations from the spatiotemporal input tensor X t with

the foreknowledge provided by the relevancy graph A,

• Output Network: The output network is responsible to integrate the learned high-

level representations (obtained from the representation learning network) and the ex-

ogenous inputsEt to generate the potential ITWs with confidence index (i.e., [Ct,St,Dt]).

In this work, we employ the feedforward neural networks (FNN) as the output network

structure. As for the representation learning network, a temporal graph convolutional network

(TGCN) is proposed to account for the spatiotemporal structure of the input featuresX t and

to incorporate the spatial relevancy preknowledgeA. In the proposed TGCN, we innovatively

integrate the temporal convolutional networks (TCN) [97] and graph convolutional network

(GCN) [76] into a spatiotemporal model. It is worth noting that we propose to use the same

network (the same network architecture and network parameters) at each cell in the network
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Figure 5.5: ITW Prediction Model

to predict their respective ITWs, as the powerful prediction model could simultaneously

learn the representations of all cells in a mobile network.

5.4.1 Representation Learning Network

To learn the high-level representations from the input features X t, both the sequence and

graph structures in X t need to be sophisticatedly modeled, to prevent the overall prediction

model from overfitting. As a result, we will discuss both the sequence and graph modeling

for representation learning as follows.

A1. Temporal Modeling

In this work, we propose to employ the temporal convolutional network (TCN) to model

the temporal structure of input X t in our proposed representation learning network, which

has been demonstrated as an excellent generic temporal (sequence) modeling architecture
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in [97].

The TCN comprises two critical operations, namely the dilated casual convolution (DC-

Conv) and the residual connection, both of which are aimed to deal with the training difficulty

issue of very deep networks in different manners and discussed as follows.

Dilated Casual Convolution (DC-Conv): The dilated casual convolution operation

takes the form as follows,

y(t) = (Z ∗d F )(t) =
k−1∑

i=0

f i × zt−d∗i (5.16)

where Z = [z1, z2, · · · , zL] denotes a sequence of temporal signals, each of which zi is a

vector signal. And F = [f 0, · · · ,fk−1] represents a trainable filter with size k, each tap of

which f i is also a vector with the same size as zi, as shown in Fig. 5.6(a). Thus, the output of

a 1-D convolution is Y = [yi, · · · ,yF ], where F denotes the number of filters. As illustrated

in (5.16), the DC-Conv operation is different from the conventional 1-D convolution operation

in terms of two important concepts, namely causality and dilation:

• Causality : The causality is a fundamental requirement for temporal signal processing,

which prevents the leakage of future information to the past. In other words, the

current signal is completely dependent on its past but not relies on its future.

• Dilation: The dilation is to relax the consecutiveness restriction in convolution opera-

tions, i.e., f i × zt−d∗i, in the DC-Conv operation as shown in (5.16), where d denote

the dilation factor. That is, the conventional one-dimensional convolution is a special

case of dilated convolution with d = 1.
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Figure 5.6: An example of dilated casual convolution: a) 1-D convolution with d = 1 and
k = 2, b) Conventional convolution receptive field (RF) of a three-layer network with d = 1
and k = 2, c) Dilated convolution receptive field (RF) of a three-layer network d = 2j−1 and
k = 2.

The advantage of dilation is to enable a deep network to look back history of inputs much

faster than that of the conventional 1-D convolution as shown in Fig. 5.6 [97, 99], as the

dilation factor d is designed to grow exponentially with respect to the depth of the network.

Accordingly, the DC-Conv networks with exponential dilation factor could achieve the same

receptive field as the conventional 1-D convolution without a very deep network structure.

Residual Connection: The residual connection is to add a path bypassing some layers in a

very deep network as shown in Fig. 5.7, which has become a prominent architecture in deep

learning [100]. The mapping enabled by the residual path could be expressed as follows,

y = Activation(M(x)) = Activation(F(x) + x) (5.17)

whereM(·) denotes the underlying mapping, while F(·) denotes the actual mapping to be

learned in training. In (5.17), it can be observed that the term “residual” originates from

115



DC Conv

Relu

Relu

1x1 Conv

(optional)

TCN Block
Relu

DC Conv

DC Conv

Relu

Relu

1x1 Conv

(optional)

TGCN Block
Relu

DC Conv

Graph Avg.

Block
TGCN Block

TCN Block

TCN Block

TGCN

Representation

Learning Network

Figure 5.7: Representation Learning Network: Temporal Graph Convolutional Network
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the mapping F actually learning the residual betweenM(x) and x, i.e., F(x) =M(x)−x,

rather than the underlying mapping M(x). It is demonstrated in [101] that the residual

connection would lead to the easy training of very deep networks with high accuracy gain,

compared with the counterpart without the residual connection. With the residual shortcuts,

the entire neural network could be formed in terms of blocks [97], each of which consists of

DC-Conv layers and residual connection parallelly coupled as shown in Fig. 5.7. It is worth

noting that two DC convolution layers share the same dilation factor in one TCN block. In

addition, zero padding is employed to ensure the same sequence length in both the input

and the output of TCN blocks.

A2. Spatiotemporal Modeling:

TCN blocks are employed to account for the temporal relevancy underlying structure of the

input X t. However, the spatial relevancy among cells encoded by graph adjacency matrix
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A is not yet touched so far. In our previous work [63], the graph convolutional networks

(GCN) has been demonstrated that it can successfully capture the spatial relevancy on the

task of mobile demand forecasting. In this work, we propose to further employ the concept

beneath GCN combined with TCN blocks as discussed previously, to introduce the proposed

TGCN block that can account for both the temporal and spatial structures of the input.

The approximated graph convolution operation proposed by Kipf and Welling in [76]

takes the form as follows,

y = g
(1)
θ (L̃) ⋆Z = D̃

− 1

2 ÃD̃
− 1

2Zθ, (5.18)

where Ã = I+A ∈ RN×N and D̃ is a diagonal matrix, D̃ii =
∑

j Ãij. Moreover, Z ∈ RN×F

is the node-based input matrix, each row of which is the feature vector of each node in the

graph, while θ denotes the graph filter. In (5.18), it can be observed that the approximated

graph convolution is essentially to first filter the feature of each node independently (i.e.,

ziθ, where zi is a row vector representing the feature vector of node i), and the output of

each node by the graph convolution (5.18) is the average of the filtered results among itself

and its neighbors as follow,

yi =
1

|Ni|

∑

j∈Ni

ziθ, (5.19)

where Ni denote the neighbor set of node i including itself. In this work, this operation is

termed as graph average.

As a result, we propose to incorporate the graph convolution into the TCN block, to

create a model that can simultaneously capture both the underlying temporal and the spatial

structure of the input, termed as temporal graph convolutional networks (TGCN). The TGCN
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block is to add the graph average operation amid two dilated casual convolution layers in

TCN blocks, as shown in Fig. 5.7. Let Hj−1 ∈ RN×L×Fj−1 denote the input of j-th TGCN

block. The first DC-Conv layer in TGCN blocks will filter the inputHj−1 along the temporal

axis cell-by-cell and generate Hj,1 ∈ RN×L×Fj after activation function. The output Hj,1

will be further inputted to graph average based on the sparsity information provided by the

graph adjacency Ã as follows,

H
j,2
i =

1

|Ni|

∑

n∈Ni

Hj,1
n , (5.20)

where H
j,2
i ∈ R

L×Fj denotes the output of node i after graph average operation and tensor

Hj,2 ∈ RN×L×Fj can be obtained by stacking H
j,2
i across all the nodes in the graph. Also,

H
j,2
i will be further fed to the second DC-Conv layer and then combined with the result

via the residual connection to generate the final output of TGCN Hj. Details of TGCN is

shown in Fig. 5.7.

5.4.2 Prediction Model Assembly

As observed in Fig. 5.4, both demand and mobility time series are more relevant to its

history than the one from its neighbors. As a result, the proposed representation learning

network first emphasizes the temporal relevancy by employing three TCN blocks to learn

the high-level representation from inputs, as shown in Fig 5.7. Besides, one TGCN block is

introduced as the first block in the representation network to embed the graph information in

the proposed prediction model so that the spatial relevancy among cells could be accounted

for by the proposed ITW prediction model.

The output network is a two-layer full-connection forward neural networks, in which the
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Table 5.1: TGCN, TCN, LSTM, and GCLSTM Specifications

TGCN TCN LSTM GCLSTM

Input X t,Et,A X t,Et X t,Et X t,Et,A
RL Networks [128, 128, 8] [128, 128, 8] [90, 90] [90, 90]
Kernel Size 2 2 N/A N/A
Trainable Para. 106, 304 106, 304 103, 152 103, 152

rectifier (ReLu) function is employed as the activation function in the input and hidden

layers. Also, we employ sigmoid function as activation functions in the final layer, as the

value of the desired outputs (Ct, St, and Dt) is bounded between zero and one. In addition,

it is worth noting that the output of representation learning network will be flattened cell-

by-cell (i.e., the output will be formatted from RN×L×F4 into RN×Ff , where Ff = L × F4).

So the output layer will generate the final result also in a cell-by-cell manner. Details of the

proposed predictive model architecture are illustrated by Fig. 5.7.

5.5 Experiments Results

In this section, we validate the proposed problem formulation on cell ITW prediction

and also compare the proposed temporal graph convolutional network (TGCN) with other

sequence and sequence-graph models, namely long short-term memory (LSTM) [82], tem-

poral convolutional networks (TCN) [97], and graph-convolutional LSTM (GCLSTM) [63].

The GCLSTM model in our previous work is a natural extension of the classic convolutional

LSTM (convLSTM) [102] from grid-like spatiotemporal data to graph-based spatiotemporal

data. The output network among compared models, including TGCN, TCN, LSTM, and

GCLSTM, is kept the same as shown in Fig. 5.5 (one 32-unit hidden layer), while the speci-

fications of their representation learning networks are detailed in Table 5.1. It is observed in
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(a) training loss

(b) validation loss

Figure 5.8: Training and validation comparisons in terms of designed cost and epochs.

Table 5.1 that the total trainable parameters are designed to be similar for fair comparisons.

In addition, two baselines are also employed to validate the problem formulation and the

performance of the proposed predictive model, namely the baseline-Y and baseline-W, whose

performances are shown in Table 5.2. Specifically, the baseline-Y is to use the time window

at the same time directly but one-day before as the ITW estimate, while baseline-W is to

use the time window of one-week before. These two baselines are chosen based on the fact
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(a) RoC

(b) Precision-Recall

Figure 5.9: RoC and precision-recall comparison

that both the demand and mobility time series are daily periodic and weekly periodic.

5.5.1 Model Training

All experiments in this work are carried out by the PyTorch deep learning framework

[86]. In all experiments, the training-validation data are cleaned data extracted from the

previously discussed data starting from Aug. 1st, 2016 to Nov. 30th, 2016, while the test

data is extracted from Dec. 4th to Dec. 19th. The training and validation datasets are
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uniform-randomly selected from the entire train-validation data with the 95% and 5% of

total samples, respectively. The length of history for ITW prediction is 6 or equivalently 2

hours, while the future horizon H is 18 or equivalently 6 hours. In this work, we employ the

combine cost function, as stated in (5.9) to train all the compared models. The weight λ for

ITW estimation in the cost function (5.9) is set to be 5.

Before training, all the features and inputs are first normalized by their mean and stan-

dard deviation. The dropout technique [103] is employed as the regularization during training

the proposed predictive model. The optimization method utilized for training is Adam [104],

which generally has a relatively better performance compared with the commonly used

stochastic gradient descent (SGD) algorithm. In addition, weight normalization [105] is

added to every DC-Conv layer in the TCN and TGCN to expedite the training speed as

in [97]. Fig. 5.8 shows the loss of both the training dataset and validation dataset during

training versus epochs, which suggests that the prediction model converge easily. It could

be observed that the LSTM and GCLSTM could easily outperform the convolution-based

models (TCN and TGCN) in terms of training loss. However, the validation loss suggests

that the lower training loss does not necessarily lead to a good generalization. The LSTM

and GCLSTM easily overfit starting around the 60th and 100th epoch, respectively.

5.5.2 Testing: Performance Evaluation

In this work, two tasks are simultaneously fulfilled by our proposed ITW prediction

model, namely ITW detection and ITW estimation. As a result, both the ITW detection

and ITW estimation performance will be evaluated as follows.

ITW Detection
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(a) ITW Detected: IoU

(b) ITW Correctly Detected: IoU

Figure 5.10: IoU comparison, where line legend “-detected”, “-truth”, and “corr” denote the
ITW detected case, ITW presence case, ITW correctly detected case, respectively.
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(a) ITW Detected: Start Accuracy (b) ITW Detected: Start MAE

(c) ITW Correctly Detected: Start Accuracy (d) ITW Correctly Detected: Start MAE

Figure 5.11: Accuracy and MAE comparisons of ITW estimation, where line legend “-
detected”, “-truth”, and “corr” denote the ITW detected case, ITW presence case, ITW
correctly detected case, respectively.
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The receiver operating characteristics (RoC) and precision-recall curves are typically em-

ployed to assess the performance of detection or binary classification problems. The RoC

curve consists of two core metrics, namely the detection and false alarm. In fact, the detection

results could be categorized into the following 4 types (as shown in the table below), based

True

Predicted
True Positive False Positive
False Negative True Negative

on which the evaluation metrics (detection/recall, false alarm, and precision) are defined as

follows,

Detection/Recall =
True Positive

True Positive + False Negative
,

Precision =
True Positive

True Positive + False Positive
,

False Alarm =
False Positive

False Positive + True Negative
.

(5.21)

The F1 score is essentially the harmonic average of the recall and precision as follows,

F1 = 2×
Precision× Recall

Precision + Recall
. (5.22)

Based on our proposed prediction model, one can obtain the RoC and precision-recall curves

by adjusting the confidence threshold τ in the decision rule as stated in (5.4). Fig. 5.9

shows the RoC and precision-recall performance of all the compared models. It could be

observed that all the models could well detect ITW in future horizons in terms of both RoC

and precision-recall metrics, which verifies the validness of the proposed problem formula-

tion, feature engineering, and prediction model structure. Also, the proposed TGCN can

outperform others from the perspective of both the RoC and precision-recall.
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Table 5.2: ITW Prediction Test Results
GCLSTM TGCN LSTM TCN baseline-Y baseline-W

Detection

Recall (%) 93.5899 94.1442 93.7525 94.1974 92.0651 92.0906

Precision (%) 94.1415 94.5600 94.5171 94.3749 93.0336 92.5659

F1 Score (%) 93.8649 94.3516 94.1332 94.2861 92.5468 92.3276

False Alarm (%) 5.6931 5.2942 5.3162 5.4881 6.7387 7.2295

Estimation

Presence

IoU (%) 78.3439 79.8565 79.1544 79.1415 69.3181 68.8176

s Acc. (%) 58.5265 59.3068 58.5818 58.8425 52.1011 50.6305

d Acc. (%) 27.0026 30.6853 29.9848 30.3642 26.5762 25.6742

s MAE 0.0589 0.0541 0.0577 0.0558 0.0991 0.1005

d MAE 0.0924 0.0840 0.0886 0.0861 0.1080 0.1113

Detected

IoU (%) 73.1486 74.9044 74.3670 74.2978 70.6629 69.6650

s Acc. (%) 55.2978 56.4903 56.1036 56.1707 52.6492 50.8917

d Acc. (%) 23.6972 27.6653 27.3187 27.5659 26.8558 25.8067

s MAE 0.0851 0.0775 0.0819 0.0792 0.0928 0.0970

d MAE 0.1060 0.0949 0.0992 0.0975 0.1076 0.1126

Correctly

IoU (%) 79.3999 80.8638 80.4468 80.3472 77.8243 77.1938

s Acc. (%) 58.7390 59.7402 59.3582 59.5186 56.5916 54.9790

d Acc. (%) 25.1150 29.2438 28.8446 29.2013 28.8667 27.8793

s MAE 0.0576 0.0527 0.0558 0.0542 0.0664 0.0684

d MAE 0.0946 0.0858 0.0901 0.0878 0.0997 0.1032
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ITW Estimation

As ITW start time and duration estimation are only meaningful when an ITW is predicted

to appear, ITW estimation performance should be evaluated in terms of ITW detection.

Hence, the ITW estimation performance will be evaluated in terms of three cases, namely

ITW Presence, ITW Detected, and ITW Correctly Detected. The ITW Presence case is to

assess the model on all the samples that ITW indeed presents, regardless of whether the

prediction model can detect the ITW, which is aimed to evaluate the overall performance

that how a prediction model can estimate ITW. The ITW detected case is to test the model

on the samples that a prediction model claims ITW presence in the future horizon H, aimed

to evaluate a prediction model in practice, while the ITW correctly detected is to assess a

model on the samples that correctly identified. As the detection of all the models is not

perfect, false alarms will appear in the ITW detected cases, which will be penalized when

calculating IoU detailed later. In these three cases, the employed evaluation metrics on ITW

estimation will be discussed as follows.

• Accuracy. As both the state time and duration of ITWs as defined in Definition 5.1

are discretized, the accuracy is to assess how many start time and duration can be

exactly predicted by each predictor as follows,

sacc. =
#(S̃ = Ŝ)

total #
or dacc. =

#(D̃ = D̂)

total #
(5.23)

• Error. The absoluble error between ground truth and a predict is also employed as

assessment metrics, i.e., |Ŝ − S̃| or |D̂ − D̃|. To analysis the prediction error, we will

show mean absolute error (MAE) of both the start time and the duration estimates.
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• Intersection over Union (IoU). The previous two metrics only assess the start time

and duration prediction independently, but not the quality of the overall ITW estima-

tion. In this work, we borrow the intersection-over-union (IoU) metric from the object

detection task from the field of computer vision [98] to assess how well the predicted

time window overlaps with the ground truth as follows,

Intersection = min{Ŝ + D̂, S̃ + D̃} −max{Ŝ, S̃}

Union = max{Ŝ + D̂, S̃ + D̃} −min{Ŝ, S̃}

IoU = Intersection/Union

(5.24)

Among the above three evaluation metrics, the IoU shall be the most important one, as it

directly reflects how a predictor performs in terms of window estimation. As for false alarms,

the IoU will be directly set to be zero as the penalty, since the IoU metric when ITW is

absent is meaningless.

Fig. 5.10 shows the IoU comparisons in three cases discussed previously in terms of

confidence threshold τ . Intuitively, the IoU of all compared prediction models does not vary

with the confidence threshold, which is also shown as a horizontal line in the figure. The

tradeoff between precision and recall could be demonstrated by adjusting the confidence

threshold. That is, the high confidence threshold suggests high precision performance but

relatively low recall performance and vice versa. As a result, one can observe that the IoU

in both the ITW detected and ITW correctly detected cases could grow with the increase

of confidence threshold. Such phenomenon demonstrates the flexibility of our proposed

prediction model facilitated by the designed confidence index. The IoU can reach 90% even
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in the ITW detected case when the confidence threshold is high. Compared with other

representation learning models, our proposed TGCN model is the best in terms of IoU.

Fig. 5.11 illustrates the ITW estimation performance in terms of start time and duration

accuracy and MAE. It can be observed that the accuracy and MAE have a similar pattern

as IoU performance for each compared prediction model. In Table 5.2, all the metrics

discussed previously of all compared prediction models are compared with baselines. The

confidence threshold for each prediction model is selected based on its optimal F1 score in

Table 5.2. It can be observed that the proposed prediction model can have about 10% IoU

improvement compared with two baselines employed (as shown by IoU in ITW presence

case). By relaxing the detection performance to be the same level as the baselines via

adjusting the confidence threshold, the IoU performance can be further improved according

to the relationship between IoU and confidence threshold as shown in Fig. 5.10.

5.5.3 Discussion

The experiment results discussed previously have shown the validness and effectiveness

of our proposed feature engineering scheme, ITW prediction model network structure, and

temporal-graph convolutional networks. ITW can be well predicted by one-day or one-week

ahead observations at the same time, due to the strong seasonality exhibited in mobile de-

mand time series across the network. In this work, our proposed prediction model can effec-

tively learn the pattern from recent history via representation learning network and project

a better ITW detection and estimation by taking the periodic observations as exogenous

inputs.

In the proposed ITW prediction model, the ITW existence confidence index plays an
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important role, as it not only indicates the confidence of ITW presence during the model

inference but also helps eliminate the negative impact of ITW non-presence samples on the

ITW estimation performance during the model training. Such ITW estimation performance

enhancement during model training is facilitated by the indicator function for ITW presence

in the designed cost function (5.9) for model training as well as its tunable weight hyperpa-

rameter λ emphasizing ITW starting time and duration estimation. Besides, the confidence

index threshold can be further employed to control the tradeoff between the recall perfor-

mance and the IoU performance (or the precision performance) of the predictor, as shown in

Figs. 5.10 and 5.11. In such a manner, our proposed model is flexible and can fulfill different

robustness requirements in practice.

As for representation learning models, both the TCN and LSTM can effectively learn

useful patterns for ITW prediction, as demonstrated by the experiment results discussed

previously. Also, the spatial modeling by graph averaging employed in TGCN can further

improve the ITW prediction, compared with the one by TCN and LSTM. However, due to

the strong individual temporal relevancy of mobile demand time series—semivariogram is

much smaller at 0 spatial distance as shown in Fig. 5.4—the overwhelming spatial modeling

may lead to a deteriorated prediction performance. This is the reason why the GCLSTM has

a worse performance compared with LSTM, where GCLSTM employs the graph averaging

operation (5.19) in both two layers. TCGN employs one TGCN block (Fig. 5.7) involving

the graph averaging operation (5.19) with other TCN blocks for temporal modeling, which

could effectively capture both the spatial and temporal characteristics. Since the TGCN is

similar to TCN yet with one additional graph averaging operation, the TGCN inherits the

advantages and limitation of TCN. The advantages and disadvantages of TCN compared
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with LSTM has been thoroughly discussed in [97] in terms of model training and inference.

Overall, the proposed TGCN model demonstrates its superiority by experiment results by

properly capturing both the spatial and temporal patterns.

5.6 Summary

In this work, we proposed to directly predict the idle time window based on subscribers’

demand and mobility in mobile networks. A novel feature extraction scheme has been dis-

cussed to capture current trends of demand and mobility as well as the exogenous inputs

accounting for the periodicity inherited in subscribers’ demands. By modeling the spatial

relevancy among cells as a graph, an ITW prediction model consisting of the representation

learning network and the output network has been proposed, in which the temporal graph

convolutional networks (TGCN) was further proposed to learn the high-level spatiotempo-

ral patterns for the ITW prediction. Experiment results validated the effectiveness of the

proposed idle time window prediction formulation and demonstrated the superiority of the

proposed TGCN.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we studied the individual spatiotemporal learning in terms of privacy

evaluation, while the aggregated spatiotemporal learning has been investigated in terms of

predictive network management applications, namely the demand forecasting and the ITW

prediction.

For privacy evaluation, we proposed a scalable multi-feature ensemble matching frame-

work that integrates multiple matching results based on linear assignment problem formu-

lation and the philosophy of majority voting. In addition, multiple spatiotemporal features

were explored and exploited to distinctly characterize users in different semantic aspects to

provide fuels for the proposed ensemble matching framework.

Next, we studied the traffic demand forecasting problem across the entire mobile network,

which is considered as the aggregated behaviors of network users. In this work, we proposed

to model the spatial dependency among cells by a dependency graph without the loss of

spatial granularity. Hence, the graph convolutional networks (GCNs), the long short-term

memory (LSTM) networks, as well as their integration GCLSTM have been employed to

model the spatial and temporal dependencies for demand forecasting, respectively.

In addition to demand forecasting, we studied the per-cell idle time window (ITW) pre-

diction in mobile networks based on subscribers’ aggregated spatiotemporal behaviors. The

ITW prediction was first formulated into a regression problem with an ITW presence confi-

dence index. To predict the ITW, a deep-learning-based ITW prediction model was proposed,
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consisting of a representation learning network and an output network. The temporal graph

convolutional network (TGCN) was also proposed to implement the representation learning

network, which effectively capture the graph-based spatiotemporal input features.

In summary, these spatiotemporal studies of mobile big data have shown that the success

of data mining on mobile big data heavily relied on the specific spatiotemporal modeling

for specific applications. It also suggested that graph is an excellent abstraction for spa-

tial modeling. Although this dissertation has studied the individual and the aggregated

spatiotemporal modeling for mobile big data application separately, it will be interesting

to connect and generalize the individual and aggregated spatiotemporal modeling in the

future.

133



REFERENCES

[1] J. Unnikrishnan, “Asymptotically optimal matching of multiple sequences to source dis-

tributions and training sequences,” IEEE Transactions on Information Theory, vol. 61,

no. 1, pp. 452–468, Jan. 2015.

[2] F. M. Naini, J. Unnikrishnan, P. Thiran, and M. Vetterli, “Where you are is who you are:

User identification by matching statistics,” IEEE Transactions on Information Forensics

and Security, vol. 11, no. 2, pp. 358–372, Feb. 2016.

[3] M. Ficek and L. Kencl, “Inter-call mobility model: a spatio-temporal refinement of call

data records using a Gaussian mixture model,” in Proceedings of IEEE International

Conference on Computer Communications (INFOCOM), Orlando, FL, Mar. 25–30, 2012,

pp. 469–477.

[4] A. Ladd, K. Bekris, G. Marceau, A. Rudys, D. Wallach, and L. Kavraki, “Using wireless

Ethernet for localization,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, Lausanne, Switzerland, Sep. 30–Oct. 4, 2002, pp. 402–

408.

[5] B. Ferris, D. Fox, and N. D. Lawrence, “WiFi-SLAM using Gaussian process latent

variable models,” in Proceedings of the 20th International Joint Conference on Artificial

Intelligence (IJCAI), vol. 7, Hyderabad, India, Jan. 6–12, 2007, pp. 2480–2485.

[6] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal, “Efficient,

generalized indoor WiFi GraphSLAM,” in Proceedings of IEEE International Conference

134



on Robotics and Automation (ICRA), Shanghai, China, May 9–13, 2011, pp. 1038–1043.

[7] M. Balakrishnan, I. Mohomed, and V. Ramasubramanian, “Where’s that phone?: ge-

olocating IP addresses on 3G networks,” in Proceedings of the 9th ACM SIGCOMM

conference on Internet Measurement Conference, Chicago, Illinois, Nov. 4–6, 2009, pp.

294–300.

[8] A. Metwally and M. Paduano, “Estimating the number of users behind IP addresses for

combating abusive traffic,” in Proceedings of the 17th ACM International Conference on

Knowledge Discovery and Data Mining, San Diego, CA, Aug. 21–24, 2011, pp. 249–257.

[9] L. T. Le, T. Eliassi-Rad, F. Provost, and L. Moores, “Hyperlocal: Inferring location of

IP addresses in real-time bid requests for mobile Ads,” in Proceedings of the 6th ACM

SIGSPATIAL International Workshop on Location-Based Social Networks, Orlando, FL,

Nov. 5, 2013, pp. 24–33.

[10] X. Cheng, L. Fang, L. Yang, and S. Cui, “Mobile big data: The fuel for data-driven

wireless,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1489–1516, Oct. 2017.

[11] ——, Mobile Big Data. Cham: Springer International Publishing, 2018.

[12] D. Z. Yazti and S. Krishnaswamy, “Mobile big data analytics: Research, practice, and

opportunities,” in Proceedings of the 15th IEEE International Conference on Mobile Data

Management (MDM), Brisbane, QLD, Jul. 14–18, 2014, pp. 1–2.

[13] Y. Park and E. Lee, “A new generation method of a user profile for information filtering

on the internet,” in Proceedings of the 12th International Conference on Information

Networking, Tokyo, Japan, Jan. 21-23, 1998, pp. 261–264.

135



[14] R. J. Mooney and L. Roy, “Content-based book recommending using learning for text

categorization,” in Proceedings of the 15th ACM Conference on Digital Libraries, San

Antonio, TX, 2000, pp. 195–204.

[15] M. Pazzani, J. Muramatsu, and D. Billsus, “Syskill & webert: Identifying interesting

web sites,” in Proceedings of the Thirteenth National Conference on Artificial Intelligence,

Portland, OR, Aug. 4–8, 1996, pp. 54–61.

[16] W. Kim, L. Kerschberg, and A. Scime, “Learning for automatic personalization in a

semantic taxonomy-based meta-search agent,” Electronic Commerce Research and Ap-

plications, vol. 1, no. 2, pp. 150–173, Summer 2002.

[17] C. C. Tossell, P. Kortum, C. W. Shepard, A. Rahmati, and L. Zhong, “Getting real:

a naturalistic methodology for using smartphones to collect mediated communications,”

Human-Computer Interaction, vol. 2012, no. 10, pp. 1–10, Apr. 2012.

[18] E. Nathan and A. Pentland, “Reality mining: sensing complex social systems,” Personal

and Ubiquitous Computing, vol. 10, no. 4, pp. 255–268, Mar. 2006.

[19] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet, T.-M.-T. Do, O. Dousse,

J. Eberle, and M. Miettinen, “The mobile data challenge: Big data for mobile comput-

ing research,” in Proceedings of Nokia Workshop on Mobile Data Challenge in conjunc-

tion with International Conference on Pervasive Computing, Newcastle, UK, Jun. 18–20,

2012.

[20] D. Wagner, A. Rice, and A. Beresford, “Device analyzer: Understanding smartphone

usage,” in Proceedings of the 10th International Conference on Mobile and Ubiquitous

136



Systems: Computing, Networking and Services, Tokyo, Japan, Dec. 2–4, 2013, pp. 195–

208.

[21] D. T. Wagner, A. Rice, and A. R. Beresford, “Device analyzer: Large-scale mobile

data collection,” ACM SIGMETRICS Performance Evaluation Review, vol. 41, no. 4,

pp. 53–56, Mar. 2014.

[22] S. Han, C. L. I, G. Li, S. Wang, and Q. Sun, “Big data enabled mobile network design

for 5g and beyond,” IEEE Communications Magazine, vol. 55, no. 9, pp. 150–157, Jul.

2017.

[23] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Large-scale mobile traffic analy-

sis: A survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 124–161,

Firstquarter 2016.

[24] Q. Lv, Y. Qiao, N. Ansari, J. Liu, and J. Yang, “Big data driven hidden markov

model based individual mobility prediction at points of interest,” IEEE Transactions on

Vehicular Technology, vol. 66, no. 6, pp. 5204–5216, Jun. 2017.

[25] J. Johansson, W. A. Hapsari, S. Kelley, and G. Bodog, “Minimization of drive tests

in 3GPP release 11,” IEEE Communications Magazine, vol. 50, no. 11, pp. 36–43, Nov.

2012.

[26] F. Chernogorov and J. Puttonen, “User satisfaction classification for minimization of

drive tests QoS verification,” in Proceedings of the 24th IEEE Annual International Sym-

posium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK,

Sep. 8–11, 2013.

137



[27] L. Fang, X. Cheng, L. Yang, and H. Wang, “Location privacy in mobile big data:

User identifiability via habitat region representation,” Journal of Communications and

Information Networks, vol. 3, no. 3, pp. 31–38, 2018.

[28] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individual human

mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, Mar. 2008.

[29] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human

mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, Feb. 2010.

[30] X. Cheng, L. Fang, X. Hong, and L. Yang, “Exploiting mobile big data: Sources,

features, and applications,” IEEE Network, vol. 31, no. 1, pp. 72–79, January 2017.

[31] Y. De Mulder, G. Danezis, L. Batina, and B. Preneel, “Identification via location-

profiling in GSM networks,” in Proceedings of the 7th ACM Workshop on Privacy in the

Electronic Society, Alexandria, Virginia, USA, 2008, pp. 23–32.

[32] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique in the

crowd: The privacy bounds of human mobility,” Scientific Reports, vol. 3, Mar. 2013.

[33] A. Cecaj, M. Mamei, and N. Bicocchi, “Re-identification of anonymized CDR datasets

using social network data,” in Proceedings of IEEE International Conference on Perva-

sive Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest,

Hungary, Mar. 24–28, 2014, pp. 237–242.

[34] M. Gramaglia and M. Fiore, “Hiding mobile traffic fingerprints with GLOVE,” in Pro-

ceedings of the 11th ACM Conference on Emerging Networking Experiments and Tech-

nologies, Heidelberg, Germany, Dec. 1–4, 2015, pp. 26:1–26:13.

138



[35] M. Gramaglia, M. Fiore, A. Tarable, and A. Banchs, “Preserving mobile subscriber

privacy in open datasets of spatiotemporal trajectories,” in Proceedings of IEEE Inter-

national Conference on Computer Communications (INFOCOM), Atlanta, GA, USA,

May 1–4, 2017, pp. 1–9.

[36] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data publishing:

A survey of recent developments,” ACM Comput. Surv., vol. 42, no. 4, pp. 14:1–14:53,

Jun. 2010.

[37] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi, “Linking users across

domains with location data: Theory and validation,” in Proceedings of the 25th Interna-

tional Conference on World Wide Web, Montreal, Quebec, Canada, Apr. 11–15, 2016,

pp. 707–719.

[38] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC press, 2012.

[39] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix

factorization,” in Proceedings of the 26th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, Toronto, Canada, Jul. 28 – Aug.

1, 2003, pp. 267–273.

[40] N. Gillis, “The why and how of nonnegative matrix factorization,” Regularization, Op-

timization, Kernels, and Support Vector Machines, vol. 12, no. 257, 2014.

[41] L. Sweeney, “K-anonymity: A model for protecting privacy,” International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 5, pp. 557–570, Oct.

2002.

139



[42] H. Zang and J. Bolot, “Anonymization of location data does not work: A large-scale

measurement study,” in Proceedings of the 17th Annual International Conference on

Mobile Computing and Networking, Las Vegas, Nevada, USA, Sep. 19–23, 2011, pp. 145–

156.

[43] Y. Song, D. Dahlmeier, and S. Bressan, “Not so unique in the crowd: a simple and

effective algorithm for anonymizing location data,” in Proceedings of the 37th annual

international ACM SIGIR conference, Gold Coast, Queensland, Jul. 6–11, 2014, pp.

19–24.

[44] N. Takbiri, A. Houmansadr, D. L. Goeckel, and H. Pishro-Nik, “Limits of location

privacy under anonymization and obfuscation,” in Proceedings of IEEE International

Symposium on Information Theory (ISIT), Aachen, Germany, Jun. 25–30, 2017, pp.

764–768.

[45] L. Pappalardo and F. Simini, “Data-driven generation of spatio-temporal routines in

human mobility,” Data Mining and Knowledge Discovery, vol. 32, no. 3, pp. 787–829,

May 2018.

[46] Z. Tu, F. Xu, Y. Li, P. Zhang, and D. Jin, “A new privacy breach: User trajectory re-

covery from aggregated mobility data,” IEEE/ACM Transactions on Networking, vol. 26,

no. 3, pp. 1446–1459, Jun. 2018.

[47] I. Liccardi, A. Abdul-Rahman, and M. Chen, “I know where you live: Inferring details

of people’s lives by visualizing publicly shared location data,” in Proceedings of the 2016

140



CHI Conference on Human Factors in Computing Systems, San Jose, California, USA,

2016, pp. 1–12.

[48] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,”

in Proceedings of IEEE Symposium on Security and Privacy, Oakland, CA, May 18–22,

2008, pp. 111–125.

[49] L. Rossi, J. Walker, and M. Musolesi, “Spatio-temporal techniques for user identification

by means of gps mobility data,” EPJ Data Science, vol. 4, no. 1, pp. 1–16, Aug. 2015.

[50] W. Cao, Z. Wu, D. Wang, J. Li, and H. Wu, “Automatic user identification method

across heterogeneous mobility data sources,” in Proceedings of IEEE 32nd International

Conference on Data Engineering (ICDE), Helsinki, Finland, May 16–20, 2016, pp. 978–

989.

[51] R. Pellungrini, L. Pappalardo, F. Pratesi, and A. Monreale, “A data mining approach

to assess privacy risk in human mobility data,” ACM Trans. Intell. Syst. Technol., vol. 9,

no. 3, Dec. 2017.

[52] H. Wang, C. Gao, Y. Li, G. Wang, D. Jin, and J. Sun, “De-anonymization of mobility

trajectories: Dissecting the gaps between theory and practice,” in Proceedings of The

25th Annual Network & Distributed System Security Symposium (NDSS’18), San Diego,

CA, USA, Feb. 18–21, 2018.

[53] S. Chang, C. Li, H. Zhu, T. Lu, and Q. Li, “Revealing privacy vulnerabilities of anony-

mous trajectories,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp.

12 061–12 071, Dec. 2018.

141



[54] A. Pyrgelis, N. Kourtellis, I. Leontiadis, J. Serrà, and C. Soriente, “There goes wally:
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LIST OF ABBREVIATIONS

APN Access Point Name
ARIMA Autoregressive Integrated Moving Average
CAPEX Capital Expenditures
CBD Central Business District
CDR Call Detail Records
CN Core Networks
CNN Convolutional Neural Networks
CPT Control-Plane Traffic
DC-Conv Dilated Casual Convolution
DHR Daily Habitat Regions
DS-Ensemble Dual-Selection Ensemble
DS-Ensemble P&M Dual-Selection Ensemble Partitioning and Matching
EMM Eps Mobility Management
EPC Evolved Packet Core
EPS Evolved Packet System
GCLSTM Graph Convolutional LSTM
GCN Graph Convolutional Networks
ITW Idle Time Window
IoT Internet of Things
IoU Intersection over Union
JV Jonker-Volgenant
LAP Linear Assignment Problem
LOWAN Low Power Wide Area Network
LSTM Long Short-Term Memory
MDT Minimization of Drive Tests
MF-Ensemble Matching-Filtered Ensemble
MME Mobility Management Entity
MSC Mobile Switching Center
NMF Non-Negative Matrix Factorization
OPEX Operational Expenditures
OTT Over the Top
PAR Peak-To-Average
PCEF Policy Control Enforcement Function
PDN Packet Data Network
PGW Packet Data Network Gateway
PS Core Packet Switched Core
RAN Radio Access Networks
RB Resource Block
RMR Radio Measurement Reports
RNC Radio Network Controller
RNN Recurrent Neural Networks
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RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
SARIMA Seasonal ARIMA
SGD Stochastic Gradient Descent
SGW Serving Gateway
SON Self-Organizing Networks
SSID Service Set Identifier
TA Tracking Area
TCN Temporal Convolutional Networks
TGCN Temporal Graph Convolutional Networks
UE User Equipment
UPT User-Plane Traffic
VFD Visiting Frequency and Duration
VFO Visiting Frequency Only
kLAP k-Cardinality Linear Assignment Problem
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