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ABSTRACT

OBJECT AND ACTION DETECTION METHODS USING MOSSE FILTERS

In this thesis we explore the application of the Minimum Output Sum of Squared Error

(MOSSE) filter to object detection in images as well as action detection in video. We

exploit the properties of the Fourier transform for computing correlations in two and three

dimensions. We perform a comprehensive examination of the shape parameters of the desired

target response and determine values to optimize the filter performance for specific objects

and actions. In addition, we propose the Gaussian Iterative Response (GIR) algorithm

and the Multi-Sigma Geometric Mean method to improve the MOSSE filter response on

test signals. Also, new detection criteria are investigated and shown to boost the detection

accuracy on two well-known data sets.
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Chapter 1

INTRODUCTION

Automation of information extraction from persistence surveillance data in images and

video has numerous applications for defense, medical care, transportation, and many other

disciplines. Object and action recognition technology would allow for continuous monitoring

of national borders, heavy crime areas, and public areas on an unprecedented scale. Instead

of requiring a large number of people each watching multiple video feeds in order to be able

to detect anomalous objects or actions, we could instead have computer systems analyzing

the data feeds in real time. This thesis addresses one of the main challenges related to

developing a computer surveillance system, i.e. automatic object detection in images and

action detection in video.

We can use image processing techniques to select and modify parts of signals for the

goal of object detection. Every image taken by digital cameras has the potential to contain

numerous objects such as trees, boats, or people. By examining these images, it is fairly

easy for the human brain to recognize the representation of these objects in a digital image.

However, describing what the representation of a generalized object is to a computer is a

difficult task. Consider the situation where an ATM machine takes an image every few

seconds. It would be advantageous to be able to determine if, e.g., there is a gun within the

field of view. If so, the authorities need to be notified immediately. Unless there is a way to

automatically detect the shape and size of a gun through a series of computer algorithms,

the only way for this detection to occur is if a human manually looks at each image taken

from every ATM machine. By creating a model of the appearance of a gun in terms that a

computer can understand, it would be possible to automatically search through every ATM

image for that model and flagging an alert when the object is detected. Instead of requiring

hundreds of thousands of man-hours per month to view the images, the image evaluation

process could be done automatically using computers.
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Another problem central to automated surveillance system is action detection in video.

It would be advantageous to be able to detect particular actions taken by humans (or other

subjects) whom have been recorded onto digital video. By generating a model of what the

action ’throw’ appears when projected onto a video, we can quickly search a set of videos for

this action. Given that a large number of building, streets, and homes have security cameras

that currently only serve to review known crimes, we could instead use this technology to

alert us, in real time, when a potential crime is occurring by detecting actions such as raising

a weapon, one person striking another, or kicking down a door.

To begin to understand signal detection, we examine a template matching approach.

Template matching refers to attempting to detect a feature given as a model in a test signal.

The simplest detection approach is to start with a model, n, which contains our desired

feature and a test signal t which may or may not contain the feature we are trying to detect.

By vectorizing these signals, we then compute the dot product:

v = t · n.

If v > ε, where ε is a threshold value, then a detection is said to occur. One problem with

this very basic approach to object detection is the location of the feature in the model must

essentially match the location of the feature in the test image to obtain optimal results.

To help solve this problem, we start looking at correlation based template matching

filters. In general, these filters operate on the same principle. A model of the desired feature

is created, then the model is applied to the test image. But instead of taking a dot product

between t and n we correlate them, meaning that we search t for the best representation of

n through a series of horizontal, vertical, and rotational shifts. The resulting output

v = t⊗ n
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is described by each pixel of v representing how well the region surrounding the corresponding

pixel of t is similar to the model, n, where ⊗ is the correlation operator. This removes the

condition that the pixel location of the feature in the model must match the pixel location

of the feature in the test image. One of the remaining problems is how do we create a model

of the feature we are trying to detect?

MOSSE filters provide us with a method of creating a model from real data [2, 3, 4].

By identifying a target feature in a handful of images or videos, we generate a MOSSE

filter, m∗. This filter strongly weights the frequencies local to the identified point while

weakly averaging the rest of the signal. By generating the MOSSE filter from real data,

we can obtain more accurate results from searching not only for the target feature, but

characteristics of the feature such as proximity to other fixed features, feature translations,

and background information. As we describe in Chapter 3, MOSSE filters extend naturally to

higher dimensions. We will show the use of these filters for the problems of object detection

(two-dimensional filters) and action detection (three-dimensional filters).

In two-dimensions, MOSSE filters are used to explore the problem of object detection.

Given a series of digital images (with height and width), we will spend Chapter 4 creating

four MOSSE filters, each designed to detect a particular facial feature in a series of images

all containing a human face. We will explore the creation of the MOSSE filter in detail

and show how to optimize the creation of the filter by solving the minimization problem

which leads to the creation of m∗. Given that m∗ depends on a number of parameters,

such as the size and shape of a Gaussian filter, we will examine the parameter space to

determine the optimal Gaussian filter to use for each facial feature. Once the MOSSE filter

is applied to a series of test images, we will explore the properties of the response through

a series of new techniques such as Gaussian Iterative Responses, Multi-Sigma Geometric

Mean, Peak-to-Side-Lobe Ratios, and maximized pixel intensities.

Finally, in Chapter 5 we will show the extension of MOSSE filters into three-dimensions.

Working with the KTH data set, a series of videos (dimensions of height, width, and time)
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each containing a human performing an action, we will explore the difficulties associated with

action detection. In particular, we will show attempts to identify the optimal parameters

for the creation of the Gaussian filter to use in the creation of the MOSSE filter. After 3-D

MOSSE filters have been created for all 6 actions contained in the data set, we will show

the responses obtained by applying the filter to test videos and we will examine the issue

of minimizing false detections. Concluding our current action detection attempts, we will

outline a series of issues to overcome in order to obtain a high accuracy detection rate.

4



Chapter 2

DESCRIPTION OF THE DATA SETS

Two well known computer vision data sets were used for this project: FERET and

KTH. These data sets showcase the power of creating and applying the MOSSE filter on real

world data.

2.1 FERET

The Facial Recognition Technology (FERET) data set is comprised of 14051 still images

release by the Defense Advanced Research Products Agency (DARPA) through the Depart-

ment of Defense’s Counterdrug Technology Development Program [12]. Each image is 384

pixels tall by 256 pixels wide, is presented in 8-bit grayscale, and contains a human face at

various angles to the camera. These faces are presented under different lighting conditions

and with variations in facial hair, race, gender, and the presence of glasses. Many images

contain partially open or closed eyes. Ground truth data is provided by DARPA where the

center of each eye, the center of the nose and the center of the mouth are given. The full

data set is broken down into parts by release date. For this project we used a subset of the

data, taking only 3364 images into account.

Each image has been preprocessed (scaled, rotated, and cropped) from the original

camera data so the eyes are fairly evenly spaced and the eyes, center of nose, and center of

the lips are in roughly the same pixel location. For reference, given that row 1, column 1 is

the upper-left corner of an image, the right eye is located around row 180, column 100. The

left eye, nose, and mouth are located around rows 180, 220, and 250, columns 180, 140, and

140 respectively.

For future reference, we have computed the average distance between the 4 facial features

using the l∞-norms in Table 2.1.
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Figure 2.1: Two examples FERET raw images.

2.2 KTH

The KTH data set is comprised of 599 videos, each 120 pixels tall by 160 pixels wide

by 256 frames. In this data set, there are 25 human subjects, performing one action per

video (boxing, handwaving, handclapping, jogging, running, or walking) as seen in Figure

2.2, under four conditions (outdoors, outdoors with scale variations, outdoors with different

clothes, and indoors with harsh lightning) as seen in Figure 2.3. In order to make this

data set easier to work with, we duplicated one of the handclapping videos to replaced the

corrupted video from the original data. This action gave us a 600 video data set, with 100

videos per action.
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Table 2.1: l∞-norm distances between target facial features.
R. Eye L. Eye Nose Mouth

R. Eye 0 67 33 71
L. Eye 67 0 34 71
Nose 33 34 0 43
Mouth 71 71 43 0

No ground truth data has been provided by the authors of this data set. To effectively

use the algorithms presented in this thesis, we have made ground truth data. In order to

reproduce results, our ground truth data is given in Appendix A.
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Figure 2.2: KTH Action Classes.

Figure 2.3: KTH Scenarios.
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Chapter 3

MOSSE FILTERS

3.1 Pre-Processing the Data

MOSSE filters create a model of the target feature by using a set of training data.

However, before we can use this data in the construction of a filter we need to apply some

pre-processing techniques in order to normalize the data. We start by defining the set f to

be the elements f1, f2, f3... where each fi is a training signal, or a signal to be used in the

creation of the filter. Now we perform the following operations:

1. Mean subtract the data. For each fi define mi to be the mean across all pixels of fi

then take

f i = fp
i −mi

where fp
i is the pth pixel index of fi.

2. Set the standard deviation of the mean subtracted data, now called fi, to 1 by finding

hi, the global maximum of fi and computing

f i =
fp
i

hi
.

3. Finally, we will apply a cosine window to the mean subtracted signal with a standard

deviation of 1, now called fi. Defining n to be the dimension of a single signal, we

construct a n-dimensional discretized cosine window of one period by

c(i, j) = sin

(
2πi

L1

)
sin

(
2πj

L2

)
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or

c(i, j, k) = sin

(
2πi

L1

)
sin

(
2πj

L2

)
sin

(
2πk

L3

)
depending on the dimension of the data. Here, L1 is the number of rows which i is an

index over, L2 is the number of columns which j is an index over, and L3 is the number

of frames which k is an index over. where jk is the jth pixel along the kth dimension and

xk is the length of the data along the kth dimension. Finally, we perform a point-wise

multiplication between the cosine window and the mean subtracted, standard deviation

adjusted data.

These operations are designed to normalize the data to help reduce changes in lighting

conditions while minimizing potential artifacts created by the geometry of the MOSSE

filter. As we will discuss later in Chapter 3.3, we will only apply this series of prepro-

cessing to the training data, not the testing data.

3.2 Constructing a MOSSE Filter

Define the set f as above. Then define the set si associated with each fi ∈ f to be the

set of target points for fi.

Our mask filter wi is the desired response in physical space and is given by

wi(x) =
∑

{j|xj∈Si}

gj(x)

where

gj(x) =
1

2πσn/2
exp

−||x−xj ||
2
2

2σ2

and n is the dimension of the data.

There are 3 possibilities for wi. The first is that wi = 0 which occurs when we have

no target points associated with an fi. This will allow us to train the filter to not respond
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to certain frequencies corresponding to targets which we do not desire to detect. Another

possibility is that there only exists one target point for a given fi, in which case wi = g. The

last case is when there are multiple target points for a given fi. In this case, wi will be a

sum of Gaussians where each Gaussian is centered at a unique target point.

To increase computational efficiency we will perform the remaining calculations in fre-

quency space. To start, we will denote:

Fi = F(fi)

and

Wi = F(wi).

Here we take note that the Fourier Transform of a Gaussian is a Gaussian - a property

that this filter utilizes heavily as we move between pixel and Fourier space. To further

decrease computation time, we will use a Fast Fourier Transformation [13].

The goal of these computations is to obtain our desired response signal, Wi by requiring

Wi = Fi �M∗

where M is an unknown filter and � is component-wise multiplication. In pixel space the

problem we seek to solve is

minimize
m∗

∑
i

||wi − fi ⊗m∗||2.

The frequency space representation of this optimization problem is

minimize
M∗

∑
i

||Wi − Fi �M∗||2.
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An equation for M∗ may be obtained by setting the derivative of the objective with respect

to M∗ to zero, i.e. [10]:

∂

∂M

∑
i

(Wi − Fi �M,Wi − Fi �M) = 0

∂

∂M

∑
i

(W ∗
i �Wi + (Fi �M)∗ � Fi �M −W ∗

i � Fi �M − (Fi �M)∗ �Wi) = 0

∂

∂M

∑
i

(W ∗
i �Wi +M∗ � F ∗i � Fi �M −W ∗

i � Fi �M − (M∗ � F ∗i )�Wi) = 0

∑
i

(M∗ � F ∗i � Fi −W ∗
i � Fi) = 0

∑
i

(M∗ � F ∗i � Fi)−
∑
i

(W ∗
i � Fi) = 0

∑
i

(W ∗
i � Fi) = M �

(∑
i

(F ∗i � Fi)

)
.

So in solving for our MOSSE filter,

M =

∑
i (W ∗

i � Fi)∑
i (F ∗i � Fi)

or

M∗ =

∑
i (Wi � F ∗i )∑
i (Fi � F ∗i )

where division is point-wise division. The reason for using M∗ versus M is computa-

tional. In M∗ we do not need to compute the conjugate of the filter Wi.

3.3 Applying MOSSE

Once we have our MOSSE filter, M∗, we can introduce a new test signal, t, and apply

the filter to it in an attempt to get a response which is similar in structure to g. Given a

single target point per n-dimensional data, the MOSSE filter, when mapped back into pixel
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space by

m∗ = F−1 (M∗)

assuming the target locations used represent a similar feature across the entire training data

set, yields an outline of the desired featured centered in the n-dimensional data structure.

Given multiple target points per training data, m∗ has an average of all target features

centered in the data structure. Figure 3.1 shows us examples of MOSSE filters when trained

on various facial features from the FERET data set. Notice the target feature is strong, yet

the structure of the rest of the face is still present.

Figure 3.1: MOSSE Filters defined on various targets in FERET data.

Preprocessing of the training data, with the cosine window, removes unwanted high

frequency information. However, we observe that when we apply the cosine window to

testing data, the response signal is much weaker. This is especially true when the desired

action/object is near the boundary of the data. For example, consider a data cube associ-

ated with a video of an action. Application of the cosine filter to this effectively removes

information at the edges of the cube. Hence, we have opted to not filter the test data and
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risk failing to detect actions near the boundary of the data cube. Similar considerations hold

for 2-D images. Thus we limit our preprocessing to mean subtraction and normalizing to

unit standard deviation.

To apply the MOSSE filter (in Fourier space) we compute a pointwise multiplication

of T , the testing signal in frequency space, and the MOSSE filter, M∗, thereby getting a

response signal

R1 = T �M∗

.

By computing r1, the inverse Fourier Transform of R1, we can visually locate regions of

the new signal t which are similar to the trained targets.
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Chapter 4

OBJECT DETECTION

Given a MOSSE filter that has been trained on a target feature, our task is to apply

the filter to a set of test data and identify if the desired target feature is contained within

the image, and if so, where the target feature is located. In this chapter, we will explore

the creation of a 2-D MOSSE filter on the FERET data set. Techniques for optimizing the

performance of the creation of the filter as well as techniques designed to operate on the

response signal generated by applying a MOSSE filter to a test image will be explored. In

addition, we will present a series of detection criteria and show detection results with these

methods.

4.1 Measuring Squared Error

To create the MOSSE filter in Chapter 3 we solved the minimization problem

minimize
M∗

∑
i

||Wi − Fi �M ||2.

We note that using filters for object detection that minimize the sum of squared errors

between the output of the application of the filters and the training filter is not a new idea

[6, 9]. Here however, we will explore this idea in the context of MOSSE filters as we vary

parameters used in its construction. In particular, we desire to obtain a connection between

the construction of a filter, the size, shape, and representation of the target feature, and the

numerical value for the sum of squared error.

For the case of object detection, we start by working with the FERET data set as

described in Chapter 2.1. For the rest of this chapter, unless otherwise stated, we will split

this data set into 2 parts, the first 512 images of the data set will be used to create the

MOSSE filter, here after called the training data, and the remaining 2852 images, here after
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called the testing data, will be used to test the filter. We chose to use 512 images for training

purposes based upon prior filter experiments [1]. The entire data set has been preprocessed

as described in Chapter 3.1.

Next, since σ is our only parameter for the MOSSE filter, we would like to determine

the effects of varying σ. Recall that we create a mask filter

wi(x) =
∑

j|xj∈Si

gj(x)

where

gj(x) =
1

2πσn/2
exp

−||x−xj ||
2
2

2σ2 .

We choose a step size for σ of 0.1, and create a MOSSE filter using the training data set

with unique σ value from 1 to 10.9. Then we apply the MOSSE filter over the 2852 images

in the training data set.

In Figure 4.1 we show the results of

minimize
M∗

∑
i

||Wi − Fi �M∗||2.

computed in several different ways.

The top-left plot shows the results of the above computations, where the sum squared

error is computed over the entire pixel response, r1. The sum squared error for both of the

eyes show clear structure i.e. when we select a value of σ around 2.8 the error is minimized.

However, the nose and mouth do not show a similar structure. A hypothesis as to why can

be found in Chapter 4.2.

The top-right plot computes the sum squared-error when measured in an 11x11 pixel

window around the given ground truth information. We note that as σ increases the error

decreases. This result is to be expected as the majority of the error is created from the sum

of false-positive detections. We show this is the case as we examine the average maximum

16



Figure 4.1: FERET data sum of squared error.

pixel intensity value in Figure 4.2. When the size of the Gaussian increases, the intensity

values of the pixel response decrease as shown in Figure 4.1.

Examining the bottom-left plot shows similar results. This time, we varied the radius

around the ground truth data so in all cases, we were examining a 5σ x 5σ window around

the given ground truth. In order to compare the results from σ value to σ value, we then

divided the sum by the number of pixels in the window. Note once again, the error decreases

monotonically as the Gaussian size increases.

Finally, the bottom-right plot of Figure 4.1 shows the complement of the bottom-left

plot. Notice, the structure is very similar to the error calculated over the entire image. Note

that the average maximum intensity pixel value, the fixed radius summed squared error, and

the variable radius averaged squared error (when properly scaled back to a sum instead of

17



Figure 4.2: FERET average maximum intensity pixel value.

an average) are all an order of magnitude less than the total image error and the variable

complement error (again, once scaled back to a sum instead of an average). This leads us to

conclude that the majority of the squared error between the filter and the desired (trained)

response comes from false-positives or places in the testing data where the filter responds

to an non-target feature. By using a σ where this summed squared error is minimized, we

hope to minimize the amount and intensity of misfires by the MOSSE filter onto the testing

data, thereby improving the filter response.

4.2 Selecting Sigma

The goal of creating and applying a MOSSE filter to a test data set is to be able to

identify the target feature by examining the response r1. We expect there there will be a

18



strong response in the pixel location around the identified target and a weak response in

all pixel locations not around the identified region. However, the result in real-world (non-

synthetic) examples is not as clear. As we see in Figure 4.3, the pixel response generated by

using a MOSSE filter created using a spherical Gaussian for gj with σ = 2 centered on the

right eye and applied to a test image of a face containing a right eye of roughly the same

pixel size, we not only get a strong response around the area corresponding to the right eye

in the test data, but we also get a non-zero response on the other (left) eye, and other parts

of the face/body.

Figure 4.3: Pixel responses with right eye trained MOSSE filter.

As we concluded from Section 4.1, on the well-defined eye features we can minimize the

false detections by carefully selecting a value for σ in the creation of gj. The idea behind this

is, in object detection, the size of the target object and surrounding detail helps to determine

the optimal σ that should be used. For example, if we have an eye detector and the size

of an eye is known to have a diameter of 20 pixels, then we will want to select a σ which

generates a Gaussian large enough to strongly weight the entire eye, yet not so large as to

strongly weight the nose (or ear, or other image feature).
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At this point, we take note that there is not a strong global minimum for the sum of

squared error on the nose. Examining the ground truth data for the nose may yield some

possible explanations. When compared with the eyes, the nose is a poorly defined feature

on a face. In the FERET data, the ground truth on the nose is defined to be the center of

tip on the nose. However, this low contrast feature can be difficult to detect (by humans

creating the ground truth data). In addition, due to the pre-scaling of the images, the eyes

are roughly the same size. In general, the size and shape of the nose has a greater variation.

Since the MOSSE filters are not scale invariant, if the MOSSE filter is trained on noses of

various sizes and applied to data of various sizes, we expect there will be weaker intensity

values for positive detections and stronger intensity values for some false-positive detections.

While we do see some structure within the summed squared error for the mouth, the same

argument applies.

To help solidify our argument, we determine the number of successes on the test data

set. Here, we consider the detection a failure if the maximum intensity value of

r1 = F−1 (T �M∗)

is located within 20 pixels of the ground truth data using the l∞-norm; otherwise it is

considered to be a failure. We chose to use a radius of 20 pixels as that was the radius

used in [1]. This value will allow us to avoid all but the most extreme (if any) examples of

mislabeling of ground truth data.

In Figure 4.4 we give the total number of failures when the MOSSE filter, made with

Gaussians of various σ values, is applied to both the training data set (of 512 images) and

the testing data set (of 2852 images). The results of both of these are presented to show

there are minimal differences in final results when the filter is applied to the data it was

trained on, provided the training size is large enough.

To perform this experiment, we trained 100 MOSSE filters, M∗, on the same training

data set. For each MOSSE filter we varied the value of σ in

20



Figure 4.4: FERET failures.
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gj(x) = exp
−||x−xj ||

2
2

2σ2

by σstep = 0.1. This step size allows enough variability in the Gaussian filter to make

non-trivial numerical differences in the created MOSSE filters.

A summary of the optimal value for σ is found in 4.1.

Table 4.1: Optimal Values for Sigma on various facial features using a sigma step-size of 0.1.
Training Data Testing Data

R. Eye 2.6 and 2.8 2.5 and 3.1
L. Eye 2.4 2.8
Nose 1 1
Mouth 1 1.7

When comparing Figure 4.4 with Figure 4.1, we note the similar structure among the

total summed squared image error, the variable radius complement average image error, and

the total number of failures over the data set. This evidence supports our conclusion that

when the summed squared image error is minimized, we achieve better results in that the

strongest response in a filtered image r1 is highly likely to be located on or close to the

desired target.

4.3 Non-Spherical Gaussians

The shape of any given feature we wish to detect is likely to not be spherical (or circular

given the projection of the subject onto a two-dimensional image). Until now, we have been

working with and optimizing a spherical Gaussian in gj. We know from Chapter 3.2 that the

Fourier Transform of a Gaussian is a Gaussian. That property holds even if the Gaussian is

not spherical. So, given a feature like the mouth which is longer (more horizontal) than tall

(more vertical), we consider trying various shapes of Gaussians.
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In Figures 4.5 - 4.8 we explore using non-spherical Gaussians through the 4 target

features of this data set. To generate these results, we redefined

gj(x) = exp
−||x1−x1,j ||

2
2

2σ21
−
||x2−x2,j ||

2
2

2σ22

where σ1 modifies the horizontal component of the Gaussian and σ2 modifies the vertical

component of the Gaussian.

Operating under the same criteria as we used in Chapter 4.2, we create our MOSSE

filter using 512 images. Once the MOSSE filter has been applied to the remaining 2852

images, if the maximum pixel intensity in r1 is with a 10 pixel radius (using the l∞-norm),

then we consider that a success. In the given figures, we plot σ1 and σ2 against the percent

of successes. The step size for both σ’s is 0.2.

Figure 4.5: FERET non-spherical Gaussian right eye detection rate.
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Figure 4.6: FERET non-spherical Gaussian left eye detection rate.

While the optimal values for the σ’s are close to the values we found when using a

spherical Gaussian, however they are not identical and as we will show in Chapter 4.9, they

do yield more accurate results than the optimal spherical σ. In Table 4.2 we show optimal

σ values for both spherical and non-spherical Gaussians.

Table 4.2: Optimal value of sigma for spherical and non-spherical Gaussians.
σ1 σ2 Spherical σ

R. Eye 4.6 3 2.5 and 3.1
L. Eye 3.6 3 2.8
Nose 1 1 1
Mouth 1 2.4 1.7

For the rest of this chapter, unless otherwise stated, we will be performing future ex-

periments using the optimal spherical Gaussian. Despite obtaining better results with the
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Figure 4.7: FERET non-spherical Gaussian nose detection rate.

non-spherical Gaussians (in all cases except the nose), we will sacrifice the small increase in

performance for computational efficiency.

4.4 Analyzing the Response using PSLR

Once we compute our pixel response, we need to be able to evaluate criteria for deter-

mining detections. As we have seen, there are many local peaks in the response

r1 = F−1 (T �M∗) .

Our goal is to determine which of these peaks (if any) are at a location that represents the

pixel location of the desired target in the original test data t. We will start by examining

the detection method used by Bolme [2].
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Figure 4.8: FERET non-spherical Gaussian mouth detection rate.

In pixel space we can examine the response signal and determine where in a given

testing signal, t, is the feature we identified when creating our w’s. One of the features of

the MOSSE filters that we have discovered is that the total energy of the filter is dependent

on σ and the frequencies in Wi � Fi. To equalize the effects in physical space, we normalize

r1 so min(r1) = 0 and min(r1) = 1 by the following:

r̂1 =
r1 −min(r1)

max(r1)
.

Alternatively, we could also create gj without the scalar term, so

gj(x) = exp
−||x−xj ||

2
2

2σ2 .
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From this point on, we will assume one of the above methods has been used so max (r1) =

1 and min (r1) = 0. To analyze this signal we use a Peak-to-Side-Lobe Ratio (PSLR) test

[3]. This method of detection is applied to r̂1 in physical space. To perform this test, we

start by defining Q(i, j) to be the pixel intensity at a pixel location (i, j) and the average

Q(i, j) =
1

N − 1

∑
(m,n)∈Ii,j
(m,n)6=(i,j)

Q(m,n)

where Ii,j indexes pixels in Bi,j and N is the number of pixels in Bi,j.

Then,

PSLR(i, j) =
Q(i, j)

Q(i, j)
.

And the location of the maximum PSLR is given by

(i∗, j∗) = argmax
i,j

PSLR(i, j).

From the structure in r1 we will only compute the PSLR values on pixel location which

are local peaks. Furthermore, we will declare (i∗, j∗) to be a true detection if the distance

between the pixel optimal pixel location and the ground truth for a given image is within a

certain distance of each other.

4.5 Better PSLR Calculations

One issue with the original method for computing the PSLR (as described in the previous

section) is that it favors small values of σ since Gaussian with small σ’s have a large slope

when measured from the peak. While it is ideal to create our wi filters using Gaussians with

small σ, the ramifications of mislabeling a point of interest, even by one or two pixels, are

such that all response signals would be changed. In order to help normalize the PSLR across

various values of σ, and thereby making it easier to select points of interest, we modify the

algorithm to compute the peak by taking an average centered on the local maximum instead
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of taking the peak value. To state the computation for the Modified PSLR (PSLRm), we

first define Ii,j to be the index set of Bi,j and Ki,j to be the index set of B′i,j where B′i,j < Bi,j.

Then

N(i, j) =
1

K

∑
(m,n)∈Ki,j

Q(m,n)

and

D(i, j) =
1

I −K
∑

(m,n)∈Ii,j\Ki,j

Q(m,n)

where K is the number of pixels in the small box and I is the number of pixels in the large

box.

Now we can define the PSLRm as

PSLR(i, j) =
N(i, j)

D(i, j)

where the location of the maximum PSLRm is given by

(i∗, j∗) = argmax
i,j

PSLRm(i, j)

This choice of Bi,j gives a radius around the maximum that would contain a significant

portion of the Gaussian, assuming the response is ideal. If their response is not ideal, this

width will ensure a low ratio.

Once again, instead of running the PSLR (or modified PSLR) computations over every

pixel in r1, we will only select local peaks as the center point for PSLR computations. Our

algorithm for determining local peaks is described in Chapter 4.7. After running the PSLR

algorithm over all local peaks, the pixel location which produces the maximum PSLR value

will be declared the target location.

We have combined the results of the PSLR and modified PSLR computations for all 4

facial features (right eye, left eye, nose, and mouth) in Figure 4.9 using c = 10 while varying

s from 0 (which gives us the normal PSLR computation) to 4.

28



Figure 4.9: FERET modified PSLR results.
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4.6 Maximum Value

Unfortunately, both the PSLR and modified PSLR detections when examined over the

entire pixel response r1, produce mixed results and can be computationally expensive. In [3],

we note that the PSLR computation was used after a tracker had already identified the region

in an image that contained the target feature. The PSLR detector at that point was able

to identify the exact (or close to exact) location of the desired target within that window

fairly easily, as the windowed response distribution favored this method of computation.

However, examining the entire pixel response (not-windowed), we observe much stronger

ratio responses on the false positives than true positives.

The PSLR does have some advantages over, e.g. a max intensity detection criterion, at

least in smaller windows. For example, since it is a ratio, it is not dependent on the pixel

intensity. When comparing the pixel response generated by applying the MOSSE filter to t1

and t2, we note the maximum pixel intensity is not necessarily the same. By using the PSLR

we can easily select a threshold value and declare the desired target is in the test image if

that PSLR value is above a certain number. Likewise, if the PSLR value is not above a

certain number, we declare the target is not in the test image.

However, in this thesis, we explore the more difficult problem of examining the pixel

response over the entire image, not a windowed area where the desired target is known to

exist. To make this process slightly easier, we take advantage of the fact that every image

in our testing and training data sets contain the desired features (meaning every image will

contain a right eye, left eye, nose, and mouth). So for detection purposes, we will declare

the location of the maximum pixel intensity to be the found target. When we test r1 for

successes (or failures) in matching the filter’s found target location with the ground truth

data, we will give the results as a function of distances from the ground truth using the

l∞-norm. This will allow us to see the effects of our algorithms without being too concerned

with errors in ground truth data.
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4.7 Gaussian Iterative Method (GIR)

As we have seen in Figure 4.3 the pixel response, r1, has numerous false peaks. In order

to get the highest correct detection rate possible, we need to improve the strength of the true

peak and decrease the strength of any false peaks. To do this, we look at several processing

techniques on the pixel response data.

In our new algorithm for detection, we try to take advantage of knowing the ideal desired

size and shape of the response for positive target points will be a Gaussian of the same size

and shape we used in creating gj for the MOSSE filter.

Since our choice of a mask for the original MOSSE filter was comprised with Gaussians of

size σ, we are training the filter to produce Gaussians of size σ as outputs. By examining the

first-order response signal, R1 or r1, we notice the signal is made up of a sum of Gaussians

of various scales (both magnitude and size) and noise which does not have a Gaussian

distribution. We know by the manner of which the MOSSE filter was created that only

areas of the signal in r1 with a Gaussian distribution can be detected actions.

Our eventual goal will be to identify the part of the response signal r1 which is comprised

of a sum of Gaussians. To start doing this, we identify local peaks in r1 by creating a gradient

map.

1. Start with the (i, j)th component of r1.

2. Identify all pixels, k1, k2, ..., kn with a radius of 1 from the (i, j)th component in the

l∞-norm.

3. If (i, j)− km ≥ 0, ∀m ∈ [1...n], then the (i, j)th pixel is a local maximum.

Now define the set s′ associated with a r1 to be the set of local maximums for r1. Our

mask filter w′ is the desired response in physical space and is given by

w′(x) =
∑

j|xj∈s′
gj(x).
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Now we can start to identify the sum of Gaussians in r1 by doing a correlation between

R1 and W ′, where

W ′ = F(w′)

Start by mapping r1 to frequency space to obtain R1. Then we compute a second

response signal

R2 = R1 �W ′.

Taking the inverse fast Fourier transform of R2 will give us the response signal r2, in

pixel space. Again, we normalize this response signal so

min (r2) = 0, max (r2) = 1.

To compute the correlation between the actual response r1 and the expected response

r2 we compute

v = r1 � r2

where � is a pointwise multiplication. To normalize the results across data sets we normalize

v by setting v̂ where min (v̂) = 0 and max (v̂) = 1.

By using the maximum pixel response location as described in Chapter 4.6, we then

compute the number of failures as a function of the radius away from the given ground truth

data and display the results in 4.10.

Unfortunately, we did not see any improvement in the detection rate by using GIR using

the FERET data set. A closer examination of the r1 (without the GIR method applied)

around the ground truth location reveals that in a non-trivial data set, such as FERET,

the actual output is not a Gaussian of the same size and shape as the Gaussians used in

the creation of gj. Instead, there are often summed Gaussians, where the filter produced

a strong response on the center of the target feature, and a strong response within a few

pixels of that (such as left of the center of the eye and to the right of the center of the eye).
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Figure 4.10: FERET GIR successes.

As these Gaussians are summed, the result is not Gaussian. Other common output features

include a response that appears Gaussian, but elongated. For example, the mouth often

has a horizontally elongated or rotated Gaussian (as that is the common appearance of the

mouth - it is more long than tall).

As we kept convolving the pixel responses with spherical Gaussians, we often lost the

positive detections due to their non-uniform structure. At the same time, there are many

false positives where the filter only responded at a single pixel location which produced

spherical Gaussians that we were training on. These false positives remained near the same

pixel intensity while the true positives decreased in intensity.
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4.8 Multi-Sigma Products

As we determined in Chapter 4.1 and 4.2, the value of σ used in the creation of wi

is critical to reduce the number of false detections. However, if we were to examine the

particular images that failed to have the maximum response located near the ground truth

data, would we find that the same images fail as we vary σ? And if so, would they have false

detections in the same location with the same pixel intensity?

An examination of the MOSSE filters in Figure 4.11 using a series of different σ values

will show us the answer to the latter question is ’no’. The size and shape of facial features

in the MOSSE filter has changed as well as relative pixel intensities.

Figure 4.11: FERET MOSSE right eye filters.
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In an ideal world, no matter what the value of σ is, we expect the greatest response to

be located on the target feature and every false detection would have a pixel intensity less

than that of the target. Obviously, that is not the case.

However, we can use the results from MOSSE filters with different values of σ to our

advantage. Consider this scenario: Given σ1 and σ2, such that σ1 6= σ2, we generate a

MOSSE filter with each σ value, then apply the MOSSE filters to a single test image t to

get two pixel response, r1 and r2 respectively. We examine r1 and find it has a positive true

detection at (40, 96) with pixel intensity of 1 and a fairly strong false detection at (80, 140)

with pixel intensity of 0.8. By examining r2 at the same coordinates, we find the positive

true detection only has a pixel detection of 0.9 while the false detection has a pixel intensity

of 1. If we were to test r2, we would classify that as a failure. However, if we compute the

Hadamard Product of r1 and r2 by performing a pixel-wise multiplication between the two,

the result would have a pixel intensity at the true positive as 0.9 while the false positive

would be lowered to 0.8. While the true positive value might slightly lower through these

products, we expect to see a dramatic decrease in the intensity values of the false positives

to the point where we would obtain a true positive detection.

We have performed 2 tests with this method. In both cases, we used a training data set

of 512 images and a testing data set of size 2852. For the first test, we generated and applied

MOSSE filters created using σ values of 2, 4, 8, and 16 and took the Hadamard Product of

the pixel responses generated by using σ = 2, σ = 2 & 4, σ = 2, 4, & 8, and σ = 2, 4, 8, &

16. These results are displayed in Figure 4.12.

For the second test, instead of using σ = 2, we replaced this value with the optimal

sigma’s per facial feature that we found in Chapter 4.2. The results from this test can be

found in Figure 4.13. Note that the blue lines represent just using the optimal value for σ

(meaning we do not take a Hadamard Product with other σ values). By comparing these

two sets of plots, we can conclude that if we do not know what the optimal σ is, this method

can improve results by a few percent.
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Figure 4.12: FERET multi-sigma product detection results.
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Figure 4.13: FERET multi-sigma product with optimal sigma detection results.
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When comparing these results with Figure 4.1, we can start to understand this behavior.

As we included responses generated with σ = 8 and 16 in the Hadamard Product, the variable

radius complement error shows us there are strong false detections. As we use an optimal

σ value, we are increasing the intensity of (at least a few) false detections. However, as we

only include σ = 4 with our optimal σ (or σ = 2) the amount of error that is not around the

target feature is still relatively small. In the case where σ = 2 our initial hypothesis remains

correct, we are essentially averaging out the false detections while keeping the true positives.

However when we use the optimal σ the location of false detections within an image is not

unique against σ. So in effect, we are slightly increasing the intensity of false detections.

4.9 FERET Conclusions

In this chapter, we have been running simulations that involve creating a MOSSE filter

using 512 images and testing the filter on the remaining 2852. This number was selected

based upon the prior work done by Bolme [1]. It was concluded that around 512 samples,

the MOSSE filter obtained optimal results. For completeness, and to show how our new

techniques works with fewer training samples, we ran various simulations with MOSSE filters

created from 4, 8, 16, 32, 64, 128, 256, and 512 images. The results are displayed in Figures

4.14 - 4.17.

In all 4 features, we see marginal improvements over the non-optimal spherical σ in

which σ = 2 by using some of our new methods such as Optimal σ, Non-Spherical Gaussian,

and Multi-Sigma Geometric Means. Results from Gaussian Iterative Response, the PSLR,

and modified PSLR were not included as the accuracy of detections did not improve on any

feature with any number of training sizes. We also see that once we reach ’enough’ images

in the training size, the use of a non-spherical optimal Gaussian outperforms all the rest.

In summary, we have gained several insights about MOSSE filters, how to construct

them, and the outputs obtained by applying the filter to a set of test images:
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Figure 4.14: FERET right eye comparison of methods with various training sizes.
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Figure 4.15: FERET left eye comparison of methods with various training sizes.
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Figure 4.16: FERET nose comparison of methods with various training sizes.
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Figure 4.17: FERET mouth comparison of methods with various training sizes.
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1. By minimizing the sum of squared error, we can find the value(s) of σ which optimize

filter performance for a given target feature. In addition, by examining the error in

various parts of the set of pixel responses, we have determined that the majority of

the error is coming from false peaks, or locations where the filter response to features

in the image which are not directly related to the desired feature.

2. By examining the PSLR and PSLRm, we have determined that although the PSLRm

value is high on the closest local peak to the ground truth data, in most cases there

is at least one false peak in the pixel response that has a higher PSLRm value. In

2-D (image) data where the entire data set is known to contain the target feature, it

is easier and more accurate to use the location of the maximum pixel intensity as the

computed feature location.

3. By performing the GIR algorithm and by subsequently examining the location around

the ground truth for a given feature, we have concluded that the size and shape of

the true peak is not the same size and shape as the Gaussian used to create wi.

Furthermore, smoothing responses, ri, with a set of Gaussians will decrease detection

accuracy.

4. By examining the pixel responses generated by using the Multi-Sigma Geometric Mean

approach, we have concluded that the location and intensity of the false peaks varies

as σ varies. If we do not know the optimal value(s) of σ to use for a particular

feature, but rather, we know the approximate value(s) of σ we can use a Multi-Sigma

Geometric Mean to reduce the intensity of false peaks while maintaining a strong true

peak intensity.

We acknowledge that some of our techniques did not necessarily improve results on the

data sets analyzed, and other techniques showed only marginal improvements. However,

we conjecture that these algorithms may still prove to be valuable techniques. Further

investigation is required to evaluate the utility of these new algorithms, e.g., on data sets
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with much lower best classification rates. At this time however, we switch topics and start

to explore the action detection problem.
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Chapter 5

FIRST STEPS IN ACTION DETECTION

For applications to action detection in video, we propose to implement a 3-dimensional

version of the MOSSE filter. The calculations extend in a natural way with the 2-D FFT

being replaced by the 3-D FFT. In addition, the location of the action is now described by a

3-D Gaussian window, which again has a 3-D Gaussian FFT. In this setting we can explore

videos as a whole instead of just operating on them frame by frame. By considering the

spatial and temporal components together, we explore the use of MOSSE filter to create

action detectors. In addition we might detect a sequence of similar spatially similar objects

centered around a single point in space-time. In this chapter we explore the first steps of

how to create an action detector and illustrate the challenges of implementing MOSSE in

3-D. Using the KTH data set, as described in Chapter 2. We note that despite this popular

data set being available since 2003 [7], at the time of this writing, there are not any known

published results for action detection on this data set.

The construction of 3-dimensional MOSSE filters follows from the steps outlined in

Chapter 3.2, save for the preprocessing of the data. In the 2-dimensional FERET data, we

set the mean of each image to 0, the standard deviation to 1, then applied a cosine window.

This helped us to correct for lighting intensity differences and it filtered out high frequency

artifacts. Given that our target points were located within the center of each FERET image,

the cosine filter did not have much effect on the pixel values of the regions we were looking

at. However, with the KTH data, we have numerous examples where an action occurs within

the first or last few frames, or on the edges of one (or more) frames. The application of the

cosine filter in these cases would make the structure of the action unrecognizable, even to

the human eye. So as we explore the KTH data set, we will operate with the following

condition: all videos used in the creation of the MOSSE filter have been preprocessed by
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mean subtracting, setting the standard deviation to 1, and applying a cosine window, while

all videos used in the testing data set have only been mean subtracted and set to a standard

deviation of 1. Ideally, this will allow us to suppress high frequency responses by the MOSSE

filter while still allowing us to have the ability to detect actions which occur on the sides of

the video cube.

5.1 Selecting Sigma

We will start out as before in trying to determine the optimal value of σ to use in each

MOSSE filter. We assume σ will depend significantly on the nature of the action. However,

we modify the definition of gj

gj(x, y, t) = exp

−
(
(x−xj)

2
) 1

2−
(
(y−yj)

2
) 1

2

2σ21
−

(
(t−tj)

2
) 1

2

2σ22

where x and y are the horizontal and vertical components which correspond to σ1 and t is the

temporal component corresponding to σ2. By using this definition we are then able to create

a non-spherical Gaussian that scales in time and space separately. When we take a temporal

cross-section, we still have a circular Gaussian in the spatial domain, but a temporal cross-

section will reveal an elongated Gaussian. This formulation allows us to exploit the ground

truth of each action (as we described in detail in Appendix A).

We observe in these videos that the time an action takes (in frames) is much greater

than the spatial extent of the action. By allowing our Gaussian to elongate in the temporal

dimension, we can describe an action to the MOSSE filter over several frames while only

looking at a small spatial region.

Also, by removing the scaling term in front of the exponential of gj(x) we remove the

need to scale the pixel responses between 0 and 1. Since the intensity of the Gaussian is no

longer a function of the value of σ used, all our trials involving varying σ will have the same

relative scale and thus, can be directly compared.
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With this in mind, we set out to find the optimal σ’s, or the values (spatial and temporal)

of σ, that will result in the fewest number of failures in the testing data set. For this

experiment, we will only look at a subset of the videos. By the description of the data set

in Chapter 2.2, we know that Scene 1 contains 25 people per action in an outdoor setting

where the camera does not move. Scene 3 also contains 25 people per action in an outdoor

setting where the camera does not move. The characterized difference between these scenes

is that the actors/actresses are wearing different clothes. Since the other 2 scenes contain

much more variability (changing camera and indoor setting), we only look at Scenes 1 and

3. For Figure 5.1 we trained 6 MOSSE filters, one for each of the 6 actions. Each MOSSE

filter used in the 25 videos per action from Scene 3. The testing data is comprised from the

25 videos of the corresponding action in Scene 1. For the second run, we created the MOSSE

filter using videos from Scene 1, then tested them on the same set of videos. The results are

found in Figure 5.2.

In order to interpret these figures we first must consider the criteria to characterize

detection. In order to call a detection a failure we adopted the following criteria. For

the actions where the person is standing still (boxing, handclapping, and handwaving) we

selected the top 3 local peaks (the method for detecting local peaks is given in Chapter

4.7). If the spatial coordinates are within 10 pixels (using the l∞-norm) and the temporal

coordinates are within a 3 frame distance (also using the l∞-norm) of the ground truth for

all 3 local peaks, then a true detection is said to occur, otherwise we call it a failure. For the

actions where the person is not standing still (jogging, running, and walking) we selected

the top 2 local peaks and performed the same test. For this experiment, these criteria were

selected due to the number of examples of each action per video. The boxing, handclapping,

and handwaving videos have many (5+) examples of the action per video while the jogging,

running, and walking videos have, on average, far fewer.

In examining Figures 5.1 and 5.2 we see the actions in which the person is standing

in one place (boxing, handwaving, and handclapping) are more insensitive to increases in
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Figure 5.1: KTH Scene 3 created MOSSE Scene 1 test data failures.
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Figure 5.2: KTH Scene 1 created MOSSE Scene 1 test data failures.
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the spatial domain compared to increases in the temporal domain. Similarly, actions in

which the person is moving across the field of view (jogging, running, and walking) are more

insensitive to increases in the temporal domain in comparison to the spatial domain.

As we see in all actions with both test data sets, the optimal results (where the number

of failures is minimized) occurs when we set both the spatial and temporal σ to 1. Note

that σ = 1 is the smallest value we can use to create a discrete Gaussian - any value smaller

and the structure of the result would no longer approximate a Gaussian. Having this small

a value of σ means that in the current configuration, the MOSSE filters work best as a pose

detector rather than an action detector. We attribute this result to how ground truth data

was selected (as described in Appendix A). Each ground truth point identifies the action

based on a pose that is unique to the given action. As such, a σ = 1 value corresponds to

the MOSSE filter heavily weighting frequencies contained in a very small windowed region

around the ground truth point. In the case of a person running, the ground truth is identified

on the tip of the back foot when the back leg is parallel to the ground. Since this particular

pose does not occur when a person is jogging or walking, the MOSSE filter searches each

test video for a black tipped foot that is pointed down. Virtually no temporal information

is contained in the filter, nor is any other characteristic associated with running. With this

in mind, we predict that a video with a person standing still with one leg raised such that

the toe was pointed at the ground would also be identified as running.

This example illustrates challenges associated with action recognition using the KTH

data set. Each video contains several examples of the given action. By looking at the ground

truth data in Appendix A we see that the number of examples of an action occurring in a

video varies, even within the action itself. With this in mind, once we have a pixel response,

what criteria should we put into place that will allow us to go from the pixel response to the

number and location of detected actions?
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5.2 Negative Sample Training

Since the KTH data set is closed, i.e., there are a finite number of human actions (6

in particular) that we are trying to recognize, we can improve filter results by training on

negative samples, or videos containing actions which are not the desired, target action. Let

us consider 2 similar actions, say running versus walking. When we create our MOSSE

filter on people running we are weighting frequencies contained in a windowed region around

the pixel representation target point (in this case the tip of the back foot when the back

leg is parallel with the ground) strongly, while at the same time weighting the frequencies

that comprise the non-windowed pixel representation region of the data cube to zero. In

this conceptualization, our filter is neutral to other actions. To elaborate, even though the

MOSSE filter is weighted strongly on the frequencies that surround the foot with a parallel

leg, it does not give any weight to the action of boxing. So when the walking MOSSE filter

is tested on the boxing video

R1 =

∑n
i=1 (F ∗i �Wi)∑n
i=1 (F ∗i � Fi)

� T

any frequencies that are part of the boxing action which are not part of the small constant

weighted extras from the running data cubes will partially respond to the filter. When the

action of the MOSSE filter does not match the action of the test video, yet satisfies the

detection criterion, the result is deemed a false positive.

To help with this problem, we will introduce negative samples into the creation of the

MOSSE filter. A negative sample, in this context, refers to a video of an action other than

the action we desire to detect, which is included in the creation of the MOSSE filter. To

include a negative sample we set wi = 0 for all video we use for negative samples.

Formally, if we define the set h to be the set of all signals hk where k ∈ {1, 2, ..., z} and

z is the number of negative samples to include, then the MOSSE filter is defined as
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M∗ =

∑n
i=1 (F ∗i �Wi) +

∑z
k=1 (H∗k � 0)∑n

i=1 (F ∗i � Fi) +
∑z

k=1 (H∗k �Hk)

where Hk = F (hk), H∗k is the conjugate of Hk, and n is the number of desired action signals.

In Figures 5.3 - 5.5 we show 3 basic statistics (maximum pixel intensity per frame,

average pixel intensity per frame, and standard deviation per frame) from when a MOSSE

filter was created using walking videos and then the pixel response was computed by applying

that MOSSE filter to various other actions. We used a leave one out method of testing in

that the MOSSE filter was created by using the videos from 24 persons from the target

action (a total of 120 positive samples). The test videos are from the person not used to

build the MOSSE filter. Additionally, we included a number of negative samples in the

MOSSE filter. In each figure, the statistics were plotted for when no negative samples were

used, when 8 negative samples were used from each of the other 5 actions (for a total of 40

negative samples), and when 16, 32, and 64 negative samples were used from each of the

other 5 actions (for a total of 80, 160, and 320 negative samples respectively).

We have investigated the maximum pixel intensity and standard deviation and after

running many trials we cannot find a correlation between the average pixel intensity value

and a positive (or false positive) detection. We observe the strongest pixel intensity value

(and standard deviation) when we do not include any negative training samples, but do not

view this as a problem. Our goal for detection is to be able to identify the true detections

from the false positive detections. By making that determination by using a test such as

PSLR, or some other test which involves measuring the declared true pixel response versus

another value within the same test video, we conclude our goal should be to decrease the

false detections at a faster rate than we decrease the true detections.

If we examine Figure 5.5 in which our MOSSE filter was constructed using the same

action as the test video, we notice that by including 8 negative samples in the MOSSE filter,

we still have a lot of structure at the locations corresponding to ground truth data. However,

in Figure 5.3 and Figure 5.4, we notice that we lose most of the structure by including 8
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Figure 5.3: Statistics on walking MOSSE filter applied to handclapping subject.
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Figure 5.4: Statistics on walking MOSSE filter applied to running subject.
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Figure 5.5: Statistics on walking MOSSE filter applied to walking subject.
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negative samples. Since these 2 figures were created by using a MOSSE filter built with

positive walking videos and then tested on handclapping and running videos, respectively,

this is a very desirable effect.

However, notice that if we include too many negative training videos, the structure

within the walking MOSSE filter tested on a walking video decreases greatly. Once we

include 32 or 64 negative training videos, there is barely any difference among the 3 figures.

Clearly, the choice of the number of negative training samples is very important. With no

negative samples included in the walking MOSSE filter, the other actions appear as though

they could have structure - there are several strong peaks in relation to other frames within

the tested videos.

Given there is a large difference between the actions of {boxing, handclapping, handwaving}

and {jogging, running, walking} we also provide similar examples in Figures 5.6 - 5.8. For

these plots, the setup and experiment was similar. The difference is the MOSSE filter was

trained using positive samples of handwaving videos instead of walking videos.

We notice the same effect, although to a lesser degree, in this set of examples as well.

When the MOSSE filter was tested on the same action it was trained for, the inclusion of

8 negative samples did not kill the structure of the maximum pixel intensity and standard

deviation. However, when the filter was tested on other actions, the apparent structure was

quickly diminished. And once again, as we include too many negative training signals, all

the structure in all figures (including the action the filter was trained to detect) was lost.

5.3 Three-Dimensional MOSSE Filters

In Chapter 3.3 we saw MOSSE filters created for each of the 4 target features from the

FERET data set. In all examples, the MOSSE filter, when viewed in pixel space by

m∗ = F−1 (M∗)
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Figure 5.6: Statistics on handwaving MOSSE filter applied to boxing subject.
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Figure 5.7: Statistics on handwaving MOSSE filter applied to handwaving subject.
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Figure 5.8: Statistics on handwaving MOSSE filter applied to walking subject.

59



placed the target feature in the center of the frame. In the same manner, the three-

dimensional MOSSE filter operates the same way. As we will see in Figures 5.9 - 5.14,

the main structure of the filter surrounds frame 128 and is centered in the frame. Now, we

have to be careful in the construction of the filter. With the 2-D FERET data, there was

only one example of a right eye or nose in each image. However, in the KTH data set we

have multiple instances of a person boxing, or handwaving, per video. By looking at the

ground truth coordinates in Appendix A we can see that these actions do not occur on the

same frame across different videos. Yet the MOSSE filter only has structure in the action in

the center of the pixel space MOSSE video.

For example, looking at selected frames of the boxing MOSSE filter in Figure 5.9, we see

that near the front and end of the video (in terms of frames) there is very little structure. In

any given original video featuring the action of boxing, we see that the action occurs about

once every 30 frames (on average). However, the only structure within the MOSSE cube is

located around frame 128, or the center of the data cube. This is because in the construction

of the filter each instance of the desired action gets mapped to the center of the pixel MOSSE

cube. Outside of a few frames in the center of m∗ the rest of the m∗ contains an average of

everything that is not the action. This means that the description of the action is only a

few frames in length and by applying the entire MOSSE filter to a test video we will only

be adding noise to the response by including the non-action portion of the MOSSE filter.

5.4 Multi-Sigma 3-D Geometric Mean

We once again turn our attention to the Multi-Sigma Geometric Mean approach intro-

duced in Section 4.8. The idea is that by using several σ values we will be able to separate

true peaks, or detections, from false peaks with higher accuracy. Since our tests to reveal

optimal values for a spatial and temporal σ in Chapter 5.1 provided inconclusive results for

the optimal value of σ to use for each action, we will return to using spherical Gaussians. We

hope that by selecting various sizes of Gaussians, the pixel response generated by applying
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Figure 5.9: Selected frames from 3-D boxing MOSSE filter.
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Figure 5.10: Selected frames from 3-D handclapping MOSSE filter.
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Figure 5.11: Selected frames from 3-D handwaving MOSSE filter.
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Figure 5.12: Selected frames from 3-D jogging MOSSE filter.
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Figure 5.13: Selected frames from 3-D running MOSSE filter.
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Figure 5.14: Selected frames from 3-D walking MOSSE filter.

66



a MOSSE filter to a test video will have different intensity values at locations where false

peaks occur, and similar intensity values at locations where there is a true peak.

We provide two example cases in Figures 5.15 and 5.16. In the first case, we construct

a MOSSE filter from a set of 96 handwaving videos. We then apply the 3-D MOSSE fitler

to one of the remaining 4 handwaving videos that was not used in the construction of the

MOSSE filter. We show the maximum pixel intensity and standard deviation per frame for

σ values of 2, 4, and 8. Given that r2 refers to the pixel response from applying a MOSSE

filter made with a Gaussian with parameter σ = 2 with a test video, we have then computed

r2,4 = r2 � r4

and

r2,4,8 = r2,4 � r8

In both figures, the red line provides a marking for which frame has been labeled as

ground truth. By first looking at Figure 5.15 we notice there is a substantial improvement

between the plots of r2 and r2,4. In r2,4 the peaks are much more pronounced and it is easy

to identify the true detections from the false detections.

However, this method is not entirely perfect. As we look at Figure 5.16 we see there

is little structure to the plot of the maximum intensity value for σ = 2 when a MOSSE

filter is created on the action of handwaving and tested on a video of walking. However, as

we increase the value of σ and when we compute r2,4 and r2,4,8 we artificially generate very

strong false detections when the person is walking through the video.

This initial results look encouraging. They illustrate that even with the too carefully

chosen ground truth locations, other values of σ besides σ = 1 can be used to detect actions.

If our conclusions concerning the 2-D Multi-Sigma Geometric Means hold, i.e., selecting

values of σ to use in this product that are surrounding the global minimum of sum squared
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Figure 5.15: Example of using Multi-Sigma Geometric Mean on similar actions.
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Figure 5.16: Example of using Multi-Sigma Geomtric Mean on dissimilar actions.
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error will result in a higher accuracy of detection, then we can start searching for a range of

σ values to use in this 3-D case.

5.5 KTH Conclusions

The KTH data set has been a widely investigated computer vision data set. Numerous

publications have used KTH for action classification tests [5, 8, 15, 11, 14]. However, there

are no published results concerning the task of action detection has (to the knowledge of this

author). The results presented here suggest this remains a challenging problem.

In this chapter, we have extended the domain of application of MOSSE filters to 3-

dimensional data i.e., video data cubes. We have developed several methods designed to

improve the task of action detection. We have also explored some of the challenges that go

along with action detection, such as selecting a threshold value to declare a detection has

occurred and selecting a method for obtaining a value to be used in the thresholding. We

have observed that the PSLR calculation is too computationally expensive to use in real

time 3-D applications.

The KTH data set is possibly not the ideal data set to use in order to achieve a good

understanding of MOSSE filters in 3-D. Given the low resolution, the small number of

training samples, the difference between the 4 scenes varies to an extent that the filter has

difficulties picking humans out of the scene, and various camera movements, shifts, zooms,

and in-video camera focus changes are features which the MOSSE filter is not currently

designed to handle.
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Chapter 6

FUTURE WORK

There are several outstanding questions remaining concerning the MOSSE filter. An-

swering these questions would not only lead to a better understanding of the creation and

application of the filter, but could lead to faster performance or increased accuracy of ob-

ject/action classification and detection.

� How do the features present in the pixel space representation of the MOSSE filter

correspond to the shape of the pixel response?

� What causes the difference in magnitude of different pixel responses despite the testing

videos having been normalized?

� What information could we obtain if we were to apply the MOSSE filter over several

features?

� How can we modify MOSSE filters to correct for scale, rotation, or temporal differences

of an object/action?

� Depending on the data set, would it be advantageous to try rotations on the non-

spherical Gaussian when creating the MOSSE filter?

� Can we determine a method of picking values of σ to use in the Multi-Sigma Geometric

Mean method that will increase the intensity of true peaks in relation to false peaks?

� With three-dimensional data, how can we detect actions in the pixel response without

knowing how many (if any) instances of the action occurs? Similarly in the two-

dimensional case, what if there is more that one of the desired object present or what

if the object is not present?
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� Can we gain a better understanding of the filter by looking at its properties from a

theoretical view-point through the use of Fourier analysis and other signal processing

techniques?

� What data sets can we look at which are harder to perform detections on in 2-D and

less difficult to perform detections on in 3-D?

In conclusion, it has been observed that the MOSSE filter is a powerful tool for object

detection in images and action detection in video. The extension of the filter to the 3-D

setting appears to have significant potential though more work needs to be done to realize

the automatic surveillance system described in the introduction.
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Appendix A

KTH GROUND TRUTH

Since there is no known ground truth data for the KTH data set, we provide our own,

hand-labeled, ground truth data. All simulations, experiments, and trials in Chapter 5 were

performed using the data provided here.

For each action we identified a spatio-temporal coordinate that we decided best repre-

sents the given action. To help illustrate the point chosen, we have placed a red dot on the

location we have chosen in the following 6 figures. In boxing videos, we chose the furthest

extended point on the top of the right hand as the arm was at its maximum extension during

the action (see Figure A.1).

The handclapping spatio-temporal point is identified as the center of the top of the

hands during the frame where the hands first make contact with each other see Figure A.2).

The handwaving spatio-temporal point is identified as the center of the top of the hands

during the frame where the hands first overlap with each other. In actions where the hands

do not overlap, the point is identified as the top of the right hand during the frame where

the hands are the closest together (see Figure A.3).

The jogging spatio-temporal point is identified as the point where the two legs of a

person intersect at the time when the angle of that point is maximized (see Figure A.4).

The running spatio-temporal point is identified as the point at the tip of the back foot

(the foot that is not on the ground) when the back leg is parallel to the ground. In cases

where the leg does not reach that state, we take the tip of the back foot when the leg is as

close to parallel to the ground as possible (see Figure A.5).

The walking spatio-temporal point is identified as the point of the tip of the back foot

as soon as the front foot is firmly on the ground (see Figure A.6).

As with any human-labeling of data, there will be errors in ground truth data. For

practical applications it is recommended that a variance of 10 pixel in the spatial dimension
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Figure A.1: Boxing labeling example.
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Figure A.2: Handclapping labeling example.
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Figure A.3: Handwaving labeling example.
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Figure A.4: Jogging labeling example.
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Figure A.5: Running labeling example.
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Figure A.6: Walking labeling example.
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and 2 pixels (or frames) in the temporal dimension (when measured using the l∞-norm be

used. Tables A.7 - A.26 provide all ground truth data used. It is separated by Person Number

and Scene Number as provided with the download of the original KTH data [7]. The column

denoted as y gives the column number. The column denoted as x gives the row number.

And the column denoted as t gives the frame number where the first column/row/frame is

numbered as 1.

82



Figure A.7: Boxing Coordinates.
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Figure A.8: Boxing Coordinates Continued.
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Figure A.9: Boxing Coordinates Continued.
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Figure A.10: Boxing Coordinates Continued.
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Figure A.11: Hanclapping Coordinates.
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Figure A.12: Handclapping Coordinates Continued.
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Figure A.13: Handclapping Coordinates Continued.
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Figure A.14: Handclapping Coordinates Continued.
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Figure A.15: Handwaving Coordinates.
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Figure A.16: Handwaving Coordinates Continued.
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Figure A.17: Handwaving Coordinates Continued.
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Figure A.18: Jogging Coordinates.
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Figure A.19: Jogging Coordinates Continued.
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Figure A.20: Jogging Coordinates Continued.
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Figure A.21: Running Coordinates.
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Figure A.22: Running Coordinates Continued.
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Figure A.23: Running Coordinates Continued.
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Figure A.24: Walking Coordinates.
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Figure A.25: Walking Coordinates Continued.
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Figure A.26: Walking Coordinates Continued.
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