
DISSERTATION

ON COMPONENT-ORIENTED ACCESS CONTROL IN LIGHTWEIGHT VIRTUALIZED

SERVER ENVIRONMENTS

Submitted by

Kirill Belyaev

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2017

Doctoral Committee:

Advisor: Indrakshi Ray

Indrajit Ray

Yashwant Malaiya

Leo Vijayasarathy

Copyright by Kirill Belyaev 2017

All Rights Reserved

ABSTRACT

ON COMPONENT-ORIENTED ACCESS CONTROL IN LIGHTWEIGHT VIRTUALIZED

SERVER ENVIRONMENTS

With the advancements in contemporary multi-core CPU architectures and increase in main

memory capacity, it is now possible for a server operating system (OS), such as Linux, to handle

a large number of concurrent services on a single server instance. Individual components of such

services may run in different isolated runtime environments, such as chrooted jails or related forms

of OS-level containers, and may need restricted access to system resources and the ability to share

data and coordinate with each other in a regulated and secure manner.

In this dissertation we describe our work on the access control framework for policy formula-

tion, management, and enforcement that allows access to OS resources and also permits controlled

data sharing and coordination for service components running in disjoint containerized environ-

ments within a single Linux OS server instance. The framework consists of two models and the

policy formulation is based on the concept of policy classes for ease of administration and en-

forcement. The policy classes are managed and enforced through a Lightweight Policy Machine

for Linux (LPM) that acts as the centralized reference monitor and provides a uniform interface

for regulating access to system resources and requesting data and control objects. We present

the details of our framework and also discuss the preliminary implementation and evaluation to

demonstrate the feasibility of our approach.

ii

ACKNOWLEDGEMENTS

I would like to thank my Advisor and shepherd, Professor Indrakshi Ray and Dr. David Fer-

raiolo at NIST for providing financial support for this research.

I want to thank my daughter Tamiris for her prayers that kept me strong along the path.

I also want to thank my friends and fellow graduate students for their help, support and advice.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction . 1

1.1 Problem . 1

1.2 Solution . 4

1.3 Contribution . 5

1.4 Dissertation Structure . 6

Chapter 2 Background and Related Work . 7

2.1 Access Control Fundamentals . 7

2.2 Previous Work . 8

Chapter 3 Component-Oriented Access Control Framework 18

3.1 Motivating Example . 18

3.2 Component Formalization . 19

3.3 Capabilities Class . 20

3.4 Communicative Class . 24

3.4.1 Supplemental Use Case . 31

3.5 Overview of the Policies Formulation . 32

3.5.1 Capabilities Classes Management . 32

3.5.2 Communicative Classes Management 33

Chapter 4 Communication Architecture . 35

4.1 Tuple Space Paradigm . 35

4.1.1 Paradigm Limitations . 36

4.1.2 Paradigm Adaptation . 38

Chapter 5 Tuple Space Transactions . 45

5.1 Coordinative Transaction . 45

5.2 Collaborative Transaction . 47

5.3 Transactional API . 49

5.4 Formal Properties of Tuple Space Calculus 51

Chapter 6 System and Policies Storage Architecture 54

6.1 System Architecture . 54

6.2 Overview of the Policies Store . 56

iv

Chapter 7 Evaluation and Experimental Results . 61

7.1 Correctness of Access Control Enforcement 61

7.2 Performance of Tuple Space Transactions 64

7.3 Load Simulation of Tuple Space Controller 68

7.4 Performance of Enhanced Tuple Space Transactions 72

Chapter 8 Discussion on Framework Properties . 74

8.1 Security Aspects . 74

8.2 User-Space Design . 77

Chapter 9 Conclusion and Future Work . 79

9.1 Contributions . 79

9.2 Future Work . 81

v

LIST OF TABLES

7.1 Correctness of Enforcement Operations - 1 . 62

7.2 Correctness of Enforcement Operations - 2 . 63

7.3 Node Specifications . 64

7.4 Server Node Specifications . 68

vi

LIST OF FIGURES

3.1 Problems of Controlled Sharing illustrated in Web Cache Service Example 19

3.2 Capabilities Class for Components Accessing the Network 21

3.3 Capabilities Policy Classes . 23

3.4 Bidirectional Data Flow Control between Isolated Service Components 25

3.5 Unidirectional Data Flow Control between Isolated Service Components 26

3.6 Unidirectional Data Flow Control between Isolated Service Components 26

3.7 Unidirectional Pipelined Data Flow Control between Isolated Service Components . . 27

3.8 Bidirectional Pipelined Data Flow Control between Isolated Service Components . . . 28

3.9 Coordination Flow Control between Isolated Service Components 28

4.1 Tuple Space . 35

4.2 Tuple Space Limitations - 1 . 36

4.3 Tuple Space Limitations - 2 . 37

4.4 Tuple Space on a File System . 38

4.5 Interface of a Persistent Tuple Space . 39

4.6 Tuples Structure . 40

4.7 Interface of a Control Tuple . 41

4.8 Interface of a Content Tuple . 42

4.9 Template Matching Operations on Tuples . 43

5.1 Coordination through Tuple Spaces . 46

5.2 Collaboration through Tuple Spaces . 48

5.3 API of Tuple Space Transactions . 49

6.1 Architecture of Lightweight Policy Machine . 55

6.2 Database Schema of Policies Store . 56

7.1 Replication Performance for Sequential Collaboration 65

7.2 Replication Performance for Concurrent Collaboration 66

7.3 Tuple Space Controller Simulation Information for a 64 MB Object 69

7.4 Tuple Space Controller Simulation Information for a 2048 MB Object 70

7.5 Replication Performance for Concurrent Collaboration 73

8.1 Secure Deployment . 77

vii

Chapter 1

Introduction

"You and I are speaking different

languages, as always," said Woland, " but

that does not alter the things we are talking

about."

Mikhail Bulgakov, The Master and

Margarita

1.1 Problem

The advancements in contemporary multi-core CPU architectures and increase in main memory

capacity have greatly improved the ability of modern server operating systems (OS) such as Linux

to deploy a large number of concurrent services on a single server instance [59]. Such deploy-

ments become increasingly common as large data centers and cloud-centric services become more

popular [9].

The emergence of application containers [22, 40], introduction of support for kernel names-

paces [43], allows a set of loosely coupled service components to be executed in isolation from

each other and also from the main operating system. Service providers may lower their total cost

of ownership by deploying large numbers of services on a single server instance and possibly min-

imize horizontal scaling of components across multiple nodes [37, 59]. Executing the individual

service components in isolated containers has its benefits. If a single containerized environment is

compromised by the attacker, the attack surface is limited in its scope to a single component. This,

in theory, limits the possibility of disrupting the entire service. Moreover, such an approach also

simplifies the management and provision of service components [8].

1

In conventional UNIX or Linux OS, applications can be deployed in isolated (containerized)

environments, such as chrooted jails [36, 55]. Such constructs is a form of lightweight virtualiza-

tion technology that provides support for OS-level virtualization [37]. Such isolated environments

limit the access of the components and have the potential to offer enhanced security and perfor-

mance. However, we need to regulate the access that each component has on the system resources

and also control the communication and sharing of data objects between service components exe-

cuting in different isolated environments.

In general, applications that need to communicate across machine boundaries use TCP/IP level

communication primitives such as sockets. However, that is unnecessary for individual applica-

tions located on a single server instance [48]. Moreover, application containers currently resort to

inter-container communication using available TCP/IP sockets that essentially opens wide possi-

bilities for unregulated information flow between service components. Applications that need to

communicate on a modern UNIX-like OS may use UNIX domain sockets or similar constructs.

However, socket level communication is usually complex and requires the development and inte-

gration of dedicated network server functionality into an application. Modern service components

also prefer information-oriented communication at the level of objects [17]. The necessity of ad-

equate authentication primitives to prove application identity may also be non-trivial. Moreover,

many localized applications may require to communicate across isolated environments but may

not need access to the network I/O mechanisms. Thus, more privileges must be conferred to these

applications just for the purpose of data sharing or coordination, which violates the principle of

least privilege [8].

Reliance on kernel-space UNIX IPC primitives may also be problematic. First, such an IPC

may be unavailable for security reasons in order to avoid potential malicious inter-component ex-

change on a single server instance that hosts a large number of isolated services [37]. In other

words, IPC may be disabled on the level of OS kernel [35]. Aside from that, the basic IPC prim-

itives such as various forms of pipes are simply inaccessible to components in the scope of an

isolated runtime environment. That is because such primitives have been designed for centralized

2

systems where components could have shared access to them. Second, modern applications often

require more advanced, higher-level message-oriented communication that is not offered by the

legacy byte-level IPC constructs. Third, UNIX IPC is bound to user/group identifiers (UID/GID)

access control associations that does not provide fine-grained control at the level of individual ser-

vice components [35]. Therefore, kernel-space IPC mechanisms do not offer the regulated way of

inter-component interaction [8].

From access control standpoint, OS support for shared memory IPC has a number of inherent

security issues, as stated above. Despite being rather complex in use, shared memory is the fastest

and most common form of interprocess communication because all processes share the same piece

of physical memory. Shared memory segments permit fast bidirectional communication among

any number of processes. However, communicating processes must establish and follow some

protocol for preventing race conditions such as overwriting information before it is read. Unfortu-

nately, Linux OS kernel does not strictly guarantee exclusive access even if a new shared segment

is created with a private flag for access protection. Also, for multiple processes to use a shared seg-

ment, they must make arrangements to use the same key, which is nontrivial. Unrelated processes

can potentially access the same shared segment by specifying the same key value. Unfortunately,

other processes may have also chosen the same fixed key, which could lead to conflict [50].

Optional reliance on support for Access Control Lists (ACL) in modern UNIX/Linux kernels

for provision of a somewhat richer access rules to objects on the file system is also inadequate.

Such a support is not enabled in mainstream kernels by default. Aside from that, the underlying file

system is required to provide support for storage of access permissions via the extended attributes

on file objects. That is not supported by all the file systems by default. However, the main problem

with ACL usage is the fact that service components are isolated and therefore normally prevented

from access to mutual data objects even in the context of basic information flow.

The usage of system-wide user-space IPC frameworks such as D-Bus [33] may also be prob-

lematic. D-Bus is the IPC and Remote Procedure Call (RPC) mechanism that primarily allows

communication between GUI desktop applications (such as within KDE desktop environment)

3

concurrently running on the same machine. D-Bus offers a relatively high-level message-oriented

communication between applications on the same machine. However, it is not designed to trans-

mit data objects such as logs. Although it is a widely accepted standard for desktop applications,

D-Bus may not fit the requirements of modern server-based services. In fact, the main design

objective of D-Bus is not message passing but rather process lifecycle tracking and service dis-

covery [33]. It also does not possess a flexible access control mechanism despite its ability to

transport arbitrary byte strings (but not file objects). Moreover, applications have to connect to

D-Bus daemon using UNIX domain sockets or TCP sockets. Before the flow of messages begins,

two applications must also authenticate themselves which adds extra complexity layer to the com-

munication. However, the more pressing problem is the possibility that user-space D-Bus daemon

in line with kernel-space IPC may be disabled on the server node for security reasons. Moreover,

system-wide communication resources such as global UNIX domain socket for the D-Bus daemon

may be inaccessible for applications running in isolated environments [8].

1.2 Solution

In this dissertation we describe the access control framework whose objective is to give each

component minimum privileges to system resources on a need-to-know basis and also provide

regulated coordination and data sharing across service components that execute in isolated envi-

ronments within the context of a single OS. We introduce such a component-oriented access control

framework referred to as Lightweight Policy Machine for Linux [8] middleware (and shorten it to

just LPM in the rest of the dissertation) to address the identified challenges. Our LPM allows

the formulation, management and enforcement of access policies to OS resources for individual

service components and it also allows regulated inter-component communication. Our uniform

framework provides a coherent business logic interface that is available to administrative person-

nel to manage such an access control for a set of services.

The framework consists of two types of policy objects referred to as policy classes, namely,

capabilities classes and communicative classes. Each capability class consists of policies that are

4

associated with a set of Linux capabilities [44]. The capabilities classes differ from each other

on the basis of capabilities they possess. Each service component is placed in at most one capa-

bilities class. The OS resources that the component can access depends on the Linux capabilities

associated with that class. Our implementation provides a way by which Linux capabilities can be

administered to the services executing in isolated environments.

Communicative classes are needed for communication of components that belong to different

isolated environments. Each communicative class consists of policies for inter-component interac-

tion. Our implementation provides a way by which such communication can be administered to a

set of services.

However, we also need to implement a mechanism for the enforcement of communication

policies within such communicative classes. We adapt the generative communication paradigm

introduced by Linda programming model [29] which uses the concept of tuple spaces for process

communication. However, the traditional tuple spaces lack any security features and also have

operational limitations [7, 8]. We enhance the original paradigm and also provide enforcement

rules such that only components belonging to the same communicative class can communicate

using this approach. Our LPM middleware allows a regulated way of coordinating and data sharing

among components using tuple spaces. Note that, such coordination and sharing will be allowed

even if each of the components executes under different system UIDs and GIDs.

1.3 Contribution

The major contribution of the conducted research is a component-oriented access control frame-

work that provides implementation of two policy classes models. We now provide a list of contri-

butions for the research:

1. A state-of-the-art survey on access control models in the scope of our work

2. A capabilities classes model for components that administers policies for access to system

resources using Linux capabilities

5

3. A communicative classes model for components that administers policies for inter-component

interaction

4. An adaptation of tuple space paradigm for enforcement of policies for communicative classes

5. A research prototype that provides a reference implementation of the unified access control

framework

6. An evaluation of the proposed framework

1.4 Dissertation Structure

The rest of the dissertation is organized as follows. Chapter 2 covers a large body of related

work. Chapter 3 gives an overview of our framework that consists of two types of policy classes.

Chapter 4 provides the details of the inter-component communication architecture. Chapter 5

provides the details of tuple space transactions for secure coordination and data sharing between

service components. Chapter 6 gives system architecture. Chapter 7 demonstrates the feasibility of

our approach by describing the implementation experience with a focus on tuple space paradigm.

Chapter 8 provides discussion on properties of our framework in regard of its security and archi-

tecture. Chapter 9 concludes the dissertation.

6

Chapter 2

Background and Related Work

In this chapter we present the result of a systematic literature review we conducted on related

research area. A systematic review is important for research activities since it summarizes existing

techniques concerning a research interest and identifies further research directions. The purpose

of the review described in this chapter is to compare current solutions and identify their (possible)

limitations through a systematic evaluation.

Due to the vast scope of access control research that has been developed for the past several

decades we limit our study of related research literature to the existing efforts in the UNIX/Linux

based operating systems which is more closely related to our proposed work. In addition, we will

also reference literature outside the OS domain if it cross-cuts with our proposed directions.

2.1 Access Control Fundamentals

The basic entities in access control are subjects, objects, and operations. Subjects are active

entities and wish to perform operations on objects. Access control limits the operations that a

subject can perform on objects. The operations that a subject can perform on an object are termed

as the access rights of the subject.

The principle of least privilege is often times followed when conferring access rights to a sub-

ject which requires that the subject be given the minimal access rights that are needed to accomplish

her task [12].

A simple but very fast access control mechanism is a two dimensional matrix, stating which

subjects may access which objects. Yet, matrices have certain drawbacks with respect to their

maintenance and storage. Another mechanism is an Access Control List (ACL), which represents

a list associated with the concerned object. that includes all the subjects who can access the object

and their access modes.

7

2.2 Previous Work

Traditionally, UNIX/Linux environments supported Discretionary Access Control (DAC) which

allows read, write, and execute permissions for three categories of users, namely, owners, groups,

and all others for managing access to files and directories in the user-space. Another type of sup-

ported access control is based on the Mandatory Access Control (MAC) designed to enforce system

policies: system administrators specify policies which are checked via run-time hooks inserted into

many places in the operating system’s kernel. For managing access to system resources, typically

superuser privileges are needed. Each file in the system is annotated with a numerical ownership

UID. Applications needing access to system resources temporarily acquire the privilege of the su-

peruser. The superuser is assigned UID = 0 – a process executing with this UID can bypass all

access control rules. This simple model violates the principle of least privilege.

Another approach in order to model extents of access privileges is called Role based Access

Control (RBAC) [24, 26, 27]. RBAC was proposed to simplify access control management. By

insertion of a new level of abstraction, access privileges are not directly applied to user accounts,

but to roles. The user’s extent of access privileges is defined by the roles she is permitted to utilize.

Depending on her designated actions, a user needs to switch her active role and therefore performs

tasks with different sets of privileges, whereas a role can be utilized by several users. Users may be

allowed to use several roles simultaneously, or they are restricted to only one active role at a time.

Further, roles can reflect hierarchical relationships. The concept of RBAC can be combined with

either DAC or MAC mechanisms to complement the deployment in its multi-user environment

settings.

Researchers have proposed Domain and Type Enforcement (DTE) [3, 4, 31] for Linux and

UNIX environments. Type enforcement views a system as a collection of active entities (subjects)

and a collection of passive entities (objects) [3, 4]. The underlying idea is to classify a system’s

subjects and objects along a set of equivalence classes, whereas classes of subjects are associated

with invariant access control attributes called domains and classes of objects are associated with

attributes called types. The identifiers of domains and types are referred to as labels. Legitimate

8

accesses are defined by the association of domains and types or associations between domains. In

DTE, a process carries with itself the label of the domain in which it runs, and this determines

its access rights. A process can enter a new domain (and hence change its access rights) only

upon execution of an executable file associated with that process. Therefore, the process must be

invoked in order to enter the domain [3]. DTE is designed to provide MAC to protect a system

from subverted superuser processes as the access control is based on enforceable rule sets. The

DTE model, in contrast to other UNIX access control approaches, avoids the concept of users

and only concentrates on applications [3, 4]. Our work, in line with DTE, also concentrates on

access control requirements of applications and their interaction. We also express policies in a

human readable form. However, our LPM is entirely resident in user-space in contrast to DTE that

offers kernel level solution. Moreover, we target the access control requirements necessary for the

manageable deployment of large numbers of localized isolated services under unprivileged UIDs

in isolated environments, such as chrooted jails and application containers. Such environments

were outside the scope of DTE.

Security-Enhanced Linux (SELinux) [45, 60] allows for the specification and enforcement of

MAC policies at the kernel level. SELinux uses the Linux Security Modules (LSM) [70] hooks in

the kernel to implement its policy. The SELinux architecture is based on the Generalized Frame-

work for Access Control (GFAC) proposed by Abrams [1] and LaPadula [39] and supports multi-

ple security models. In SELinux, the policy server makes access control decisions and the object

managers are responsible for enforcing access control decisions. It provides a policy descrip-

tion language for expressing various types of policies. The three available standard policies for

SELinux are all based on the approach of Type Enforcement while additionally supplying RBAC

and Multilevel Security (MLS) mechanisms. The Type Enforcement implementation of SELinux

does not distinguish between domains and types and domain depicts a type concerning a subject.

In order to enable standard Linux program code to be mapped into a Type Enforcement environ-

ment without making any changes necessary, the SELinux policy language supplies a method to

automatically initiate domain transitions. In relation to RBAC, where access privileges are not

9

directly applied to user accounts, but rather to roles [24, 26], the user’s extent of access privileges

is defined by the roles she is permitted to utilize. SELinux supports the concepts of roles and users

but is not intended for enforcing policies at the level of individual applications. A role is mapped

to the Type Enforcement as a set of domains. In respect to MLS, where information is processed

at different security levels, access permissions are given to users with different security clearances

and needs-to-know requirements, to prevent users from obtaining access to information for which

they lack authorization. Policy description and configuration in SELinux is non-trivial because of

the relationships between multiple models of SELinux and consequently it is a little challenging

to use [72]. Our work complements the efforts of SELinux in that it provides access control for

isolated applications in user-space.

The Medusa DS9 security system [47] is another security extension for Linux kernels. Medusa

DS9 consists of a patch to the Linux kernel (monitor) and a user-space daemon (security decision

center) called Constable that acts as an authorization server that is invoked by the kernel to au-

thorize operations. Medusa provides a language for specifying the policies and the authorization

server is implemented as an interpreter for this configuration language. Medusa claims to be able

to implement different security models at user-space level. The user-space implementation of the

authorization server allows to port Medusa to new Linux kernel versions. This gives Medusa an

advantage over alternative approaches that require custom-built kernel with very specific patching

requirements. The virtual spaces (VS) model, used in Medusa, replaces the access control matrix

which is hard to implement in a real operating system. The objects and subjects are separated

into a finite number of domains, named virtual spaces. Each object can be a member of any num-

ber of virtual spaces at one time. Each subject is assigned a set of abilities, one for each access

type. Ability is a set of virtual spaces. Access is granted, when the object and the subject share

at least one common virtual space for the given access type. Note that the term virtual space has

no direct association with application containers or related isolated environments such as chrooted

jails. Similar to Medusa [47], we propose to incorporate the access control modeling and decision

control in user-space with robust and expressive persistence layer which allows high interoperabil-

10

ity and porting of the framework to any general-purpose Linux kernels without a requirement for

custom kernel patching [38]. However, Medusa does not offer support for managing Linux capa-

bilities and does not have a mechanism for regulated inter-component interaction across isolated

(containerized) environments.

The Rule Set Based Access Control (RSBAC) [53] attempts to bring more advanced access

control model to Linux based server systems. RSBAC is an open source security extension for

current Linux kernels. The kernel-based patch provides high level of security to the Linux ker-

nel and operating environment. In RSBAC model, the access control system of the Linux kernel

is divided into the Access Control Enforcement Facility (AEF), Access Control Decision Facil-

ity (ADF), and the Access Control Information (ACI) module. ADF implements the system’s

mandatory security policies and a metapolicy to decide whether processes’ requests satisfy those

security policies. AEF uses the ADF decisions to enforce the operations of system call functions.

All RSBAC framework components are hard-linked into the custom-built Linux kernel. RSBAC

supports divergent security policies implemented as modules in a single framework. However, the

framework does not have a mature representation format to provide a unified way of modeling and

expressing the policies for all the diverse policy modules that the framework claims to support.

This limits its wide-spread adaptability. In contrast to RSBAC, our work provides domain-specific

expressive policy formulation framework and is implemented in user-space that allows it to be

deployed on any Linux server system.

The Grsecurity package [30] is a composition of Linux kernel patches combined with a small

set of control programs. The package aims to harden known vulnerabilities in the Linux system

while paying special attention to privilege escalation and root exploits. Grsecurity provides a MAC

mechanism based on ACL and RBAC capabilities combined with trusted path execution, that al-

lows to limit the right of program executions to certain specified file names. The set of patches

provides protection mechanisms for file systems, executables and networks. Grsecurity can harden

the chroot environment against certain known attacks, prevent unprivileged users from reading

kernel information and is able to limit and isolate the operating system’s process view. In short,

11

Grsecurity hardens the Linux operating system and its proprietary mechanisms while restraining

system entities like users and processes. It does this by placing additional logic on the Linux kernel

and also alters the kernel’s own mechanisms to comply with the desired behavior. Grsecurity does

not follow any formal model of security and access control, but emerged as a composition of coun-

termeasures against several known weaknesses, vulnerabilities, or concrete attacks. Therefore, it

lacks a general systematic approach or comprehensive formal model. Consequently, analysis of

the security properties of the various mechanisms is non-trivial despite recent attempts to develop

techniques for its formal analysis [15].

The decomposition of complex, legacy, monolithic applications into fine-grained, least-privilege

memory compartments is supported by Bittau et al. [13] that provides programming primitives to

allow the creation of compartments with default-deny semantics. Specifically, Bittau et al. offer

a flexible memory tagging scheme that grants a compartment memory privileges at a memory-tag

granularity for the related memory objects. Contrarily to Bittau et al., in our work we deal with

information flow control at the granularity of stand-alone OS processes. Efforts at compartmental-

ization have also been recently observed in UNIX systems with Capsicum framework [63, 64] that

represents a lightweight operating system capability and sandbox framework planned for inclusion

in FreeBSD. It supports compartmentalization of monolithic UNIX applications into logical appli-

cations. By adding capability primitives to standard UNIX API, it gives application developers a

path to satisfying the requirement of least-privilege. Privilege separation also referred to as com-

partmentalization is addressed by introducing capabilities and capabilities mode. However, these

capabilities should not be confused with Linux capabilities, which are coarse-grained privileges

that are not associated with objects and cannot be transferred across processes. Capsicum capabil-

ities are an extension of UNIX file descriptors and reflect rights on specific objects such as files

and sockets. In contrast to our work, that adds a purely user-space management layer on top of

the existing kernel level support for capabilities, Capsicum requires application modifications to

exploit these new security functionalities. Moreover, extensive kernel changes are needed in Linux

and FreeBSD to provide support for Capsicum capabilities. However, our access control frame-

12

work also permits the management of compartmentalization for a single monolithic application

through the notion of policy classes and regulation of control and data flow interaction between

such isolated compartments implemented in the form of containerized OS processes.

The application-level access control is emphasized in Decentralized Information Flow Control

(DIFC) [51]. DIFC allows application writers to control how data flows between the pieces of

an application and the outside world. As applied to privacy, DIFC allows untrusted software to

compute with private data while trusted security code controls the release of that data. As applied

to integrity, DIFC allows trusted code to protect untrusted software from unexpected malicious

inputs. In either case, only bugs in the trusted code, which tend to be small and isolated, can lead

to security violations. Current DIFC systems that run on commodity hardware can be broadly

categorized into two types: language-level and operating system-level DIFC [38, 56]. Language

level solutions provide no guarantees against security violations on system resources, like files and

sockets. Operating system solutions can mediate accesses to system resources, but are inefficient at

monitoring the flow of information through fine-grained program data structures [56]. DIFC efforts

like Flume [38] and Laminar [56] generally employ an interposition layer that replaces system calls

with interprocess communication to the reference monitor, which enforces data flow policies and

performs safe operations on the application’s behalf. Regardless of the level of implementation

(Language level, OS level or both as in the case of Laminar) the security and privacy guarantees

come at a price – application code has to be modified and performance overheads are incurred

on the modified binaries. Moreover, the complexities of rewriting parts of the application code to

use the DIFC security guarantees are not trivial and require extensive API and domain knowledge

[56]. These challenges, despite the provided benefits, limits the widespread applicability of this

approach. Our solution allows to divide the information flow between service components into

data and control planes that are regulated through the user-space reference monitor. Therefore, no

modification to OS kernel is required. The rewrite of existing applications for utilization of data

flow may not be necessary, since a separate flow requesting application that leverages our TSL can

handle such a task and deliver the replica of a data object to unmodified application [7].

13

Application-defined decentralized access control (DCAC) for Linux has been recently pro-

posed by Xu et al. [72] that allows ordinary users to perform administrative operations enabling

isolation and privilege separation for applications. In DCAC, applications control their privileges

with a mechanism implemented and enforced by the operating system, but without centralized pol-

icy enforcement and administration. DCAC is configurable on a per-user basis only [72]. DCAC

is based on the concept of attributes, which can represent different types of principals including

users, groups, applications, and application components. The attributes can be arranged in a hier-

archy, where the parent attribute has a superset of the privileges of the child attribute. The regular

users can manage the principals by regulating the hierarchy without the need for a system admin-

istrator. The process carries an attribute set which is inherited by process control events. Each

object has an access control list that specifies the rules for each access mode based on conditions

of its attributes. If the attributes of a process match these conditions, it is permitted to access the

object in the specified mode. The authors also describe the notion of attribute gateways that pro-

vide controlled privilege escalation. The objective of DCAC is decentralization with facilitation

of data sharing between users in a multi-user environment. Our work is designed for a different

deployment domain – provision of access control framework for isolated applications where ac-

cess control has to be managed and enforced by the centralized user-space reference monitor at the

granularity of individual applications using expressive high-level policy language without a need

to modify OS kernel.

In the realm of enterprise computing applications running on top of Microsoft Windows Server

infrastructure, the aim is to provide data services (DSs) to its users. Examples of such services

are email, workflow management, and calendar management. NIST Policy Machine (PM) [23, 25]

was proposed so that a single access control framework can control and manage the individual

capabilities of the different DSs. Each DS operates in its own environment which has its unique

rules for specifying and analyzing access control. The PM tries to provide an enterprise operat-

ing environment for multi-user base in which policies can be specified and enforced in a uniform

manner. The PM follows the attribute-based access control model and can express a wide range of

14

policies that arise in enterprise applications and also provides the mechanism for enforcing such

policies. Our research efforts are similar to NIST PM [25] since it offers the policy management

and mediation of data services through a centralized reference monitor. However, our access con-

trol goals are different. We do not attempt to model user-level policies as done by NIST PM. Our

framework, on the other hand, provides the mechanism exclusively for controlled inter-application

collaboration and coordination of localized service components across Linux-based isolated run-

time environments that also regulates access to system resources based on the principle of least

privilege. Note that, the importance of such a mechanism, that is not currently present in NIST PM

is acknowledged by its researchers [25].

In the mobile devices environment, Android Intents [19] offers message passing infrastructure

for sandboxed applications; this is similar in objectives to our tuple space communication paradigm

proposed for the enforcement of regulated inter-application communication for isolated service

components using our model of communicative policy classes. Under the Android security model,

each application runs in its own process with a low-privilege user ID (UID), and applications can

only access their own files by default. That is similar to our deployment scheme. Our notion of

capabilities policy classes is similar to Android permissions that are also based on the principle

of least privilege. Permissions are labels, attached to application to declare which sensitive re-

sources it wants to access. However, Android permissions are granted at the user’s discretion [2].

Our server-oriented centralized framework deterministically enforces capabilities and information

flow accesses between isolated service components without consent of such components based on

the concept of policy classes. Despite their default isolation, Android applications can optionally

communicate via message passing. However, communication can become an attack vector since

the Intent messages can be vulnerable to passive eavesdropping or active denial of service attacks

[19]. We eliminate such a possibility in our proposed communication architecture due to the virtue

of tuple space communication that offers connectionless inter-application communication as dis-

cussed in Chapter 4. Malicious applications cannot infer on or intercept the inter-application traffic

of other services deployed on the same server instance because communication is performed via

15

isolated tuple spaces on a file system. Moreover, message spoofing is also precluded by our archi-

tecture since the enforcement of message passing is conducted via the centralized LPM reference

monitor that regulates the delivery of messages according to its policies store.

Our work also bears resemblance to the Law-Governed Interactions (LGI) proposed by Minsky

et al. [48, 49], which allows an open group of distributed active entities to interact with each other

under a specified policy called the law of the group. The inter-component communication in our

work is proposed in the same manner via the tuple space using the Tuple Space Controller inte-

grated in our centralized LPM reference monitor that has complete control over inter-component

interaction [21, 49].

The tuple space model as a type of shared memory, originally introduced by Linda [29] has

been widely adapted for parallel programming tasks [16, 67], support for language-level coordi-

nation [62], multi-agent systems [17, 21] and distributed systems [46, 48, 49] in general. Several

commercial implementations of tuple space paradigm have also been developed in the past, target-

ing highly parallel and High-Performance Computing (HPC) applications with enhanced support

for tuple persistence, distribution across network nodes and matching capabilities [16]. We have

adapted the original Linda model to serve the requirements of secure inter-component communica-

tion within a single-node OS with dedicated file system-level space per component. In comparison

to traditional tuple spaces that allow potentially thousands of tuples per single space, our search

complexity is minimal since only at most two tuples are allowed to be present in a given tuple

space. That is a deliberate restriction imposed by the necessity of providing basic DoS protection

and resource preservation when dealing with concurrent transfers of large data objects made pos-

sible through our LPM middleware. As covered in Chapter 4, the original paradigm has a number

of resource-oriented limitations [16] and does not offer security guarantees. For that matter, many

researchers [17, 48, 62, 73] have conducted adaptation of the original tuple space model to fit the

domain-specific requirements. The LighTS tuple space framework [5] is somewhat similar to our

work in a sense that it also provides localized variant of a tuple space per application with a pos-

sibility of persistence. However, it has adapted the original operations on Linda tuple space for

16

use in context-aware applications. LighTS offers support for aggregated content matching of tuple

objects and other advanced functionality such as matches on value ranges and support for uncertain

matches. Our adaptation allows coordination and collaboration between isolated service compo-

nents based on precise content matching on a set of tuple fields. Our model allows a mixed mode

of information transfer between service components – tuples can contain actual language-level ob-

jects or could be used to replicate larger data objects such as large ASCII file objects. Note, that

no restriction on types of replicated objects exists in our TSL implementation – aside from ASCII

objects, a complete byte-level replication is entirely possible. Therefore, data objects, such as im-

ages, could be potentially replicated between service components. We also enable dual planes of

inter-component communication – components can communicate using a control plane, data plane

or both. To the best of our knowledge, we offer the first persistent tuple space implementation that

facilitates the regulated inter-component communication without a need for applications to share a

common memory address space or requirements for address space mapping mechanisms [7, 11].

17

Chapter 3

Component-Oriented Access Control Framework

This chapter provides a detailed overview of the developed access control framework. We first

present a real-world motivating example where a single service can consist of several components,

each deployed in isolation [7, 8].

3.1 Motivating Example

Consider a service deployment scenario illustrated in Figure 3.1 that is taken from a real-

world telecom service provider [52]. A Linux server has three applications, namely, Squid Web

Cache Server, Squid Log Analyzer, and HTTP Web Server, deployed in three separate isolated

environments (chrooted jail directories), each under a distinct unprivileged user identifier (UID).

Combined, all three applications represent individual components of a single service – ISP web

caching that caches Internet HTTP traffic of a large customer base to minimize the utilization of

ISP’s Internet backbone. Squid Web Cache Server component generates daily operational cache

logs in its respective runtime environment. Squid Log Analyzer component needs to perform data

analytics on those operational log files on a daily basis. It then creates analytical results in the

form of HTML files that need to be accessible by the HTTP Web Server component to be available

through the web browser for administrative personnel. Each component may also need access

to system resources. For example, Squid Web Cache Server component needs access to network

socket I/O resources and some advanced networking capabilities of the Linux kernel [42] in order

to operate.

As the example above demonstrates each service component has customized requirements for

access to various OS resources and also specific needs with respect to communication with other

components. We implement a new object-oriented access control framework based on the notion

of policy classes that regulates access to OS resources and also permits regulated and fine-grained

inter-component communication [8].

18

Figure 3.1: Problems of Controlled Sharing illustrated in Web Cache Service Example

3.2 Component Formalization

We begin by providing a definition of a component and then give the formalisms for the notion

of policy classes that forms the basis of our access control framework.

Definition 3.2.1 [Component:] A component is an application process in the Linux environment

executing with non super-user privileges (UID 6= 0) and having access to program executable

resources such as memory, network resources, CPU cycles, and files in its directory structure.

Let C = {c1, c2, . . . , cn} where C is the set of components and cj denotes a component where

1 ≤ j ≤ n. Note that, two components ci and cj where 1 ≤ i, j ≤ n may have the same UID

if they are executing in the same isolated containerized environment. In such a case, the two

components will have access to the same set of resources [10].

In the following sections, we describe how to confer fine-grained access control to a component

with regards to accessing system resources through the policies of the component’s capabilities

class. We then describe how components belonging to isolated containers can coordinate their

19

execution and get access to each others’ resources through the policies specified in the component’s

communicative policy class.

3.3 Capabilities Class

The individual containerized components of a service often need regulated access to OS re-

sources. In the Linux environments, the application runtime access control to the underlying OS

resources has been traditionally regulated by root privileges which provides all permissions on

system and user resources. The applications regulated by root privileges run with a special user

identifier (UID = 0) that allows them to bypass access control checks. However, giving root per-

missions to an application violates the principle of least privilege and can be misused. Subse-

quently, in Linux kernels starting from version 2.1, the root privilege was partitioned into disjoint

capabilities [41]. Instead of providing “root" or “non-root" access, capabilities provide more fine-

grained access control – full root permissions no longer need to be granted to processes accessing

some OS resources. For example, a web server daemon needs to listen to port 80. Instead of

giving this daemon all root permissions, we can set a capability on the web server binary, like

CAP_NET_BIND_SERVICE using which it can open up port 80 (and 443 for HTTPS) and listen

to it, like intended. The new emerging concept of Linux application containers such as Docker

service [22] and CoreOS [20] heavily leverages the Linux capabilities model. Despite the incorpo-

ration of capabilities in mainstream Linux and application containers, capabilities management in

user-space is challenging [32] and is only addressed in our work [8].

This is partly because the amendment of kernel-space capabilities does not provide persistent

storage of state change in regard to capabilities being removed or added to a particular application.

Consequently, such a deficiency leads to inability to track, identify and manage individual capabil-

ities and their sets for a large number of applications and service components in a timely manner

[32].

In service provider context, the only capabilities, realistically required by the containerized

services deployed on the same OS server instance are the capabilities associated with access to

20

Figure 3.2: Capabilities Class for Components Accessing the Network

OS network communication resources. That is because some customer facing service components,

such as web server component might need access to this type of OS resources. The rest of Linux

capabilities mostly represent highly specialized super-user capabilities that are of no interest to

general-purpose containerized service deployments and could be even dangerous in the multi-

service settings. For instance, CAP_CHOWN capability gives unnecessary capability to allow

making changes to the file UIDs and GIDs. Another capability, CAP_DAC_OVERRIDE allows

to bypass file read, write and execute permission checks that poses imminent security threat to the

OS environment. Another dangerous CAP_SYS_PTRACE capability allows a process to look up

information about another process, read and write the memory of that process, and attach to (or

trace) that process in order to debug it, or analyze its behavior. This gives total control over the

process being traced. Therefore, individual service components should be conferred with specific

capability(s) based on the principle of least privilege.

We introduce the notion of a capabilities class that is associated with a set of Linux capabilities.

Each capabilities class can have one or more service components. The components in such a

21

class have all the capabilities associated with this class and can therefore access the same set of

OS resources as illustrated in Figure 3.2. Each service component can belong to at most one

capabilities class, but a class can have multiple components. Note that, two distinct capabilities

classes will be associated with different sets of Linux capabilities.

We now describe how to manage Linux capabilities using the notion of a capabilities class that

we describe below.

Definition 3.3.1 [Capabilities Policy Class:] A capabilities policy class is one whose members

are components that have access to the same Linux capabilities. Each capabilities policy class has

an attribute called capability that lists the Linux capabilities associated with the class.

Let CP = {cp1, cp2, . . . , cpm} be the set of capabilities policy classes. Let cpi(cap) be the set

of Linux capabilities associated with class cpi. No two distinct capabilities classes can have the

same set of Linux capabilities, that is, for i 6= j, cpi(cap) 6= cpj(cap). Each capabilities class

cpi can have one or more components denoted as cpi = {cp, cq, cr, . . . , cs}. Components cp and cq

belonging to the same capability class cpi can access the set of OS resources as defined by cpi(cap).

Each component can belong to at most one capabilities class, that is, cs ∈ cpi ⇒ cs 6∈ cpj where

i 6= j. If component ck does not need access to any Linux capabilities, it is not a member of any

cpj , denoted as ck 6∈ cpj where 1 ≤ j ≤ m.

As a part of our unified framework, capabilities class supports a set of management operations

on it [8]. The following high-level operations are supported by our capabilities class model:

1. create a capabilities policy class,

2. add/remove capabilities to/from a policy class,

3. show capabilities in a policy class,

4. add/remove components to/from a policy class, and

5. show/count components in a policy class.

22

Figure 3.3: Capabilities Policy Classes

Note, that the necessity to associate a single service component with at most one capabilities

class is driven by the fact that a component in such a policy class inherits all the capabilities as-

sociated with such a class and can therefore access the same set of OS resources [8]. Since a

single capabilities policy class can have multiple components, we can place all the service com-

ponents into a single class depending on the service category [9]. For instance, all components

that require access to specific network socket I/O can be placed into a single capabilities class

that grants them such a capability. Some service categories may require access to more capabili-

ties than others. For instance, a web server may belong to a separate class that delegates a single

CAP_NET_BIND_SERVICE capability to gain access permission to network sockets while a Net-

work Time Protocol (NTP) server requires both CAP_NET_BIND_SERVICE capability as well

as CAP_SYS_TIME capability to change system time on the machine. In such cases, we place the

two components into different capabilities classes based on the principle of least privilege.

Such a separation is further supported by the fact that the capabilities enforcement is expressed

through the notion of capabilities bits assigned to a binary on the file system [8, 44] – OS kernel

23

cannot assign overlapping sets of capabilities to a single binary without overwriting some of them.

Thus, each component has to belong to a distinct capabilities class in accordance with service

categorization (classification) [10]. Such an enforcement is depicted in Figure 3.3.

3.4 Communicative Class

In order to address the requirements of the regulated communication between isolated service

components, we introduce the notion of a communicative class that consists of a group of appli-

cations (service components) that reside in different isolated environments and need to collaborate

and/or coordinate with each other in order to provide a service offering [8].

Definition 3.4.1 [Communicative Policy Class:] A communicative policy class is one whose

members are components belonging to isolated environments that need to communicate to provide

some service.

Let CM = {cm1, cm2, . . . cmt} be the set of communicative policy classes. Each commu-

nicative policy class cmi consists of two or more components that together offer some higher level

service; this is denoted as cmi = {cb, cd, cf , . . . , cg}. Each component cb cannot be a part of mul-

tiple communicative classes, that is cb ∈ cmi ⇒ cb 6∈ cmj where i 6= j. If component cd does not

need to coordinate or collaborate with other components in different isolated environments, then it

may not belong to any communicative class, denoted as cd 6∈ cmi where 1 ≤ i ≤ t.

Our notion of communicative class is different from the conventional notion of UNIX groups.

In the conventional groups, the privileges assigned to a group are applied uniformly to all members

of that group. In this case, we allow controlled sharing of private data objects among members of

the communicative class via object replication. Such a sharing can be very fine-grained and it

may be unidirectional – an isolated component can request a replica of a data object belonging to

another isolated component but not the other way around.

Some service components may require bidirectional access requests where both components

can request replicas of respective data objects. Such types of possible information flow are depicted

24

Figure 3.4: Bidirectional Data Flow Control between Isolated Service Components

in Figures 3.4, 3.5 and 3.6 where ’Allow’ arrow denotes the granted request for a replicated data

object in the direction of an arrow, while ’Disallow’ one signifies the forbidden request.

Implementing such rules may be non-trivial as isolated environments are non-traversable due to

isolation properties. This necessitates proposing alternative communication constructs. The access

control policies of a communicative class specify how the individual components in such a class

can request a replica of mutual data objects. Note that, the individual components in a class may

have different Linux capabilities – therefore, they may belong to the same communicative class

but to different capabilities classes. Only components within the same communicative class can

communicate and therefore communication across different communicative classes is forbidden.

Such a regulation is well-suited for multiple services hosted on a single server instance. The

assignment of individual service to a separate class facilitates the fine-grained specification of

communication policies between various isolated service components [7, 8].

A more complicated flow communication pattern is depicted in Figure 3.7 where a single uni-

directional data pipeline is depicted. Such a flow pattern is expressed via a composition of binary

communication policies between individual pairs of components. In this case, such a composition

25

Figure 3.5: Unidirectional Data Flow Control between Isolated Service Components

Figure 3.6: Unidirectional Data Flow Control between Isolated Service Components

26

Figure 3.7: Unidirectional Pipelined Data Flow Control between Isolated Service Components

allows each subsequent component to obtain a replica from a counter-component of such a multi-

component service but not the other way around. For instance, Component B is granted a replica

of an object that belongs to Component A. However, Component C is not granted with such an

access policy but can request a replica of an object that belongs to Component B. Consequently, a

fully bidirectional version of such a pipelined pattern is depicted in Figure 3.8.

The construct of communicative class is designed to support the following communication

patterns between the components in a single class.

Coordination – often components acting as a single service do not require direct access to mutual

data objects or their replicas but rather need an exchange of messages to perform coordinated

invocation or maintain collective state [8]. However, some services may need coordination in

support of certain data flows. For instance, in the context of introduced web caching service,

a Web Cache Server component may experience excessive load from users’ HTTP requests

and consequently generate large cache log objects. The size of such objects has to be kept

at threshold that allows efficient and fast processing that spares system resources such as

CPU and RAM. Therefore, the objects are rotated by the Web Cache Server component at

27

Figure 3.8: Bidirectional Pipelined Data Flow Control between Isolated Service Components

Figure 3.9: Coordination Flow Control between Isolated Service Components

28

predetermined size. Such a rotation under load may generate a number of log objects on

a daily basis that all need to be processed by the Log Analyzer component. Therefore, an

exchange of coordination messages between two components may allow them to convey

information about a specific set of objects that are required for processing to generate a

daily analytical report on HTTP traffic. Such a coordination flow is depicted in Figure 3.9.

Coordination across mutually isolated environments is problematic. However, if components

belong to a single communicative class, it enables the exchange of coordination messages

without reliance on usual UNIX IPC mechanisms that may be unavailable under security

constrained conditions [8].

Collaboration – components acting as a single service may need to access mutual data or runtime

file objects to collaborate and perform joint or codependent measurements or calculations

as illustrated in the description of the web caching service. Empowering a component with

the ability to obtain a replica of a data object that belongs to another component in the same

communicative class makes such a collaboration possible.

As a part of our unified framework, communicative class supports a set of management oper-

ations on it [8]. The following high-level operations are supported by our communicative policy

class model:

1. create a communicative policy class,

2. add/remove components to/from a communicative policy class,

3. show/count components in a communicative policy class,

4. add/remove explicit permission for a component to request a replica of a file system data

object(s) to/from a communicative policy class, and

5. enable/disable component coordination with other component(s) in a communicative policy

class.

29

A communicative policy class can be classified as a coordinative class or a collaborative class

depending on whether it needs to coordinate or share data with other components. Coordinative

class contains a set of coordination policies and a collaborative class contains a set of collaboration

policies. Let CR and CL be the set of coordinative classes and collaborative classes respectively.

Note that, the set of communicative classes comprise the set of coordinative class and the set of

collaborative class, that is, CM = CR ∪ CL. Moreover, if a communicative class cmi supports

both coordination and collaboration, then cmi ∈ CR ∩ CL.

We now give the details of our access control policies in coordinative and collaborative policy

classes. The access control rules for the coordinative policy class is defined by a partial function

AFcr that takes in two components as arguments and returns either 1 or 0 signifying whether the

coordination is allowed or prohibited. AFcr(ci, cj) = 1 signifies that components ci and cj are

allowed to coordinate with each other otherwise such coordination is prohibited. Note that, this

function is commutative. As per the rules of the coordinative policy class, the two components ci

and cj can coordinate only if they belong to some coordinative policy class crp. This is denoted as

AFcr(ci, cj) = 1 only if ci, cj ∈ crp where crp ∈ CR.

Next, we describe the access control rules for the collaborative policies. The collaborative

policies are more complex. The components must be part of the same collaborative class and also

there must be an explicit permission that gives a component access to replicas’ of specific objects

in the collaborative class. Each private object or is owned by some component which is given by

the function own(or). own(or) = cm denotes that or is the private object of component cm. Let P

be the set of explicit permissions, denoted as P = {p1, p2, . . . , ps}, that grants components access

to private object’s replica belonging to other components. Each permission pi ∈ P is a triple of

the form < cm, cn, ok > which denotes that component cm has permission to read replica of object

ok that is owned by component cn. We are now ready to describe the access control function AFcl.

This is a partial function that takes in two arguments, namely, a component and a data object and

returns 1 or 0 signifying whether such access is allowed or prohibited. AFcl(ck, on) = 1 signifies

that ck is allowed to read a replica of on otherwise such read is prohibited. The component ck can

30

read object on, owned by component cm, only if ck and cm belong to some collaborative policy

class clq and there is a permission that allows ck access to on that is owned by cm. Formally,

AFcl(ck, on) = 1 only if < ck, cm, on > ∈ P where own(on) = cm, and ck, cm,∈ clq where

clq ∈ CL.

3.4.1 Supplemental Use Case

As noted, in the context of isolation within a single OS that hosts multiple services the various

service components may not have access to a shared location for the purpose of communication

and data sharing. We provide an additional example that will help to illustrate the introduced

collaboration and coordination workflows.

The e-greetings service is composed of three service components each running in a separate

isolated environment. The service sends personalized greeting e-cards to the e-mail addresses of

the recipients. Components have only the minimum privileges needed to accomplish their tasks

and are deployed under separate unprivileged UIDs. Due to isolation properties, those applications

cannot write data objects to a shared storage area of the server OS such as /var directory to simplify

their interaction.

First component is the HTTP web server that provides the web interface for the service users to

fill out the greetings card form where a user can choose a specific card image and specify the recip-

ient e-mail address. Four key attributes of the individual greetings order are written into a separate

order text file – greetings message, sender’s and recipient’s e-mail addresses and the absolute URL

to the location of the postcard image file. Second component is the e-mail assembling agent (mail-

man) that processes the order file to prepare the greetings e-mail message. Third component of

the service is the actual Mail Transfer Agent (MTA) that is responsible for sending the individual

e-card e-mail message to the greetings recipient. Thus, the mailman component requires controlled

access to the order file prepared by the web server component to create the e-mail message and the

mail sending component, in turn, requires controlled access to individual mail message object [8].

31

One possible deployment scheme for the described e-greetings service might add the layer of

coordination logic to the interaction between the components. For example, if the web component

of the service experiences excessive load from user requests and generates massive amounts of

order files in a single directory, it can optionally send the coordination message to the mailman

component to indicate that the request interval for the order files has to be decreased from the de-

fault 30 seconds to 5 seconds. Optionally, additional coordinative information may be incorporated

in the message such as availability of alternative web server for load-balancing purposes. If the

mailman component is capable of receiving and processing such coordination messages, it can, in

turn, adjust its e-mail message preparation intervals. Consequently, it can coordinate with the mail

sending component to indicate faster request times for the assembled e-mail message objects [8].

3.5 Overview of the Policies Formulation

The access control policies for the introduced framework are managed via the Domain Specific

Policy Language (DSPL) within LPM (a part of the Parser Layer depicted in Figure 6.1) that allows

the formulation of various component-oriented policies in a human, rather than machine-friendly

form [3, 8]. The language allows to perform Create / Read / Update / Delete (CRUD) functionality

on individual policies and create both capability as well as communicative policy classes in the

Policies Store (PS). In this section, we demonstrate that meaningful component-oriented policies

can be expressed completely in a form simple and concise enough to be administered at a reason-

able cost. For implementation details of the Parser Layer we direct the interested reader to our

GitHub repository for LPM [6].

3.5.1 Capabilities Classes Management

The following samples of policies illustrate how capabilities classes can be managed in practice

via the CLI provided to the administrative personnel:

• [COUNT_CAPABILITIES_CLASSES] – show how many Capabilities Classes exist in the

PS

32

• [SHOW_CAPABILITIES_CLASSES] – show individual Capabilities Classes in the PS

• [CREATE_CAPABILITIES_CLASS 1 application_service_with_ID_1_class] –

create Capabilities Class for a specific application service

• [SHOW_CAPABILITIES_CLASS_CAPABILITIES 1] – show all Linux Capabilities as-

sociated with a particular Capabilities Class

• [ADD_CAPABILITIES_CLASS_CAPABILITY 1 CAP_DAC_OVERRIDE] – add

CAP_DAC_OVERRIDE Linux Capability to a particular Capabilities Class

• [REMOVE_CAPABILITIES_CLASS_CAPABILITY 1 CAP_CHOWN] – remove

CAP_CHOWN Linux Capability from a particular Capabilities Class

• [SHOW_CAPABILITIES] – show all available Linux Capabilities

• [COUNT_CAPABILITIES_CLASS_COMPONENTS 1] – show how many service compo-

nents are associated with a particular Capabilities Class

• [SHOW_CAPABILITIES_CLASS_COMPONENTS 1] – show all service components asso-

ciated with a particular Capabilities Class

• [MOVE_COMPONENT_TO_CAPABILITIES_CLASS

/opt/containers/service-100/bin/log-analyzer 1] – move a service compo-

nent to a particular Capabilities Class

3.5.2 Communicative Classes Management

The following samples of policies illustrate how communicative classes can be managed in

practice via the CLI provided to the administrative personnel:

• [COUNT_COMMUNICATIVE_CLASSES] – show how many Communicative Classes exist

in the PS

33

• [SHOW_COMMUNICATIVE_CLASSES] – show individual Communicative Classes in the

PS

• [CREATE_COMMUNICATIVE_CLASS 1 web_caching_service_class] – create Com-

municative Class for a specific application service

• [SHOW_COMMUNICATIVE_CLASS_COMPONENTS 1] – show all service components as-

sociated with a particular Communicative Class

• [COUNT_COMMUNICATIVE_CLASS_COMPONENTS 1] – show how many service compo-

nents are associated with a particular Communicative Class

• [MOVE_COMPONENT_TO_COMMUNICATIVE_CLASS

/opt/containers/service-100/bin/log-analyzer 1] – move a service compo-

nent to a particular Communicative Class

• [SHOW_COMMUNICATIVE_CLASS_COLLABORATION_POLICIES 1] – show all collab-

oration records associated with a particular Communicative Class

• [SHOW_COMMUNICATIVE_CLASS_COORDINATION_POLICIES 1] – show all coordina-

tion records associated with a particular Communicative Class

• [ADD_COMMUNICATIVE_CLASS_COLLABORATION_POLICY 1 component_pathID

object_path] – add a collaborative policy to a particular Communicative Class

• [ADD_COMMUNICATIVE_CLASS_COORDINATION_POLICY 1 component_pathID_1

component_pathID_2] – add a coordinative policy to a particular Communicative Class

• [REMOVE_COMMUNICATIVE_CLASS_COLLABORATION_POLICY 1 component_pathID

object_path] – remove a collaborative policy from a particular Communicative Class

• [REMOVE_COMMUNICATIVE_CLASS_COORDINATION_POLICY 1 component_pathID_1

component_pathID_2] – remove a coordinative policy from a particular Communicative

Class

34

Chapter 4

Communication Architecture

As discussed in Chapter 3, communication between various service components is regulated via

the concept of communicative policy classes. Such an access control abstraction has to be properly

supported at the level of LPM reference monitor that needs to possess the necessary communication

primitives to enforce such a regulation. We now provide details on our enforcement architecture

for communicative class model that is one of the main contributions of this work.

4.1 Tuple Space Paradigm

In order to address the problems of interprocess communication across isolated environments we

proposed an alternative approach that can be classified as a special case of generative commu-

nication paradigm introduced by Linda programming model [29]. In this approach, processes

communicate indirectly by placing tuples in a tuple space, from which other processes can read

or remove them. Tuples do not have an address but rather are accessible by matching on content

therefore being a type of content-addressable associative memory [48]. Such a tuple space via

which processes can communicate is depicted in Figure 4.1.

Figure 4.1: Tuple Space

35

Figure 4.2: Tuple Space Limitations - 1

This programming model allows decoupled interaction between processes separated in time

and space: communicating processes need not know each other’s identity, nor have a dedicated

connection established between them [62]. In comparison to general-purpose message-passing that

provides a rather low-level programming abstraction for building distributed systems and enabling

inter-component interaction, Linda, instead, provides a simple coordination model with higher

level of abstraction that makes it very intuitive and easy to use [16].

4.1.1 Paradigm Limitations

The lack of any protection mechanism in the basic model [48, 62] makes the single global

shared tuple space unsuitable for interaction and coordination among untrusted components. There

is also the danger of possible tuple collisions – as the number of tuples that belong to a large set

of divergent components in a tuple space increases, there is an increasing chance of accidental

matching of a tuple that was requested by another component. Moreover, the traditional in-memory

implementation of tuple space, oriented at language-level interaction [66], makes it unsuitable in

36

Figure 4.3: Tuple Space Limitations - 2

our current work due to a wide array of possible security attacks and memory utilization overheads.

Solutions based on main memory could be subjected to heavy disk swapping with simultaneous

transfers of large data objects. That essentially eliminates the advantages of using purely memory

resident tuple spaces with hardware that has limited RAM capacity [7]. Therefore, we adapt the

tuple space model that will satisfy our requirements for secure and reliable communication between

service components within a single communicative policy class [8]. Note that, in this adaptation the

content-based nature of retrieval from a tuple space will necessitate content-based access control

approaches [48].

Another problem identified with the RAM-based tuple spaces is that it is suitable mainly for a

single application with multiple threads that share the same memory address space or applications

that rely on some form of shared memory support [11]. In such a simplified deployment scenario,

a global tuple space is easily accessible by consumer and producer threads within a single appli-

cation. However, in the context of our current work we deal with separate service components

that do not share the same address space in memory which makes such a solution unsuitable [17].

37

Figure 4.4: Tuple Space on a File System

For instance, two isolated service components written in Java cannot access mutual tuple spaces

because each component is deployed in a separate Java Virtual Machine (JVM) instance [65]. The

discussed limitations are depicted in Figures 4.2 and 4.3.

4.1.2 Paradigm Adaptation

We propose a tuple space calculus that is compliant with the originally introduced base model

[29] but is applied on dedicated tuple spaces of individual service components instead of a global

space. Our tuple space calculus comprises the following operations:

1. create tuple space operation,

2. delete tuple space operation – Deletes tuple space only if it is empty,

3. read operation – Returns the value of individual tuple without affecting the contents of a

tuple space,

4. append operation – Adds a tuple without affecting existing tuples in a tuple space, and

38

Figure 4.5: Interface of a Persistent Tuple Space

5. take operation – Returns a tuple while removing it from a tuple space.

We adhere to the immutability property – tuples are immutable and components can either append

or remove tuples in a tuple space without changing contents of individual tuples.

A component is allowed to perform all the described operations in its tuple space while LPM

is restricted to read and append operations only. Note, that the take operation is the only manner

in which tuples get deleted from a tuple space because the delete tuple space operation is allowed

only on an empty tuple space [8].

Tuple space is implemented as an abstraction in the form of a file system directory with its

calculus performed via Tuple Space Library (TSL) employed by the service components and the

LPM reference monitor through its Tuple Space Controller (TSC) – a module of LPM which is

allowed a limited access to a component’s tuple space. The adaptation is shown in Figure 4.4.

Therefore, this part of the proposed unified framework is not transparent and the components may

need to be modified in order to utilize the tuple space communication. However, in certain cases

that may not be necessary. For instance, if components require only limited collaboration, such

39

Figure 4.6: Tuples Structure

as periodic requests for replicas of data objects (the case for daily logs), a separate data requester

component that employs TSL can handle such a task without the need to modify the existing

component such as a log analyzer [8]. The discussed operations on such a persistent tuple space

on a file system are shown in Figure 4.5.

The LPM plays a mediating role in the communication between service components. The

communication takes place through two types of tuples: control tuples and content tuples. Control

tuples can carry messages for coordination or requests for sharing. Content tuples are the mech-

anism by which data gets shared across service components. The LPM periodically checks for

control tuples in the tuple spaces for components registered in its database. We have two different

types of communication between a pair of service components. The first case is where the two

components do not share any data but must communicate with each other in order to coordinate

activities or computation. The second case is where a component shares its data with another one.

Note, that in our calculus, at most one control tuple and one content tuple could be appended into

a tuple space at any given time [7, 8].

40

Figure 4.7: Interface of a Control Tuple

The structure of the tuples is shown in Figure 4.6. Control tuples are placed by a service

component into its tuple space for the purpose of coordination or for requesting data from other

components.

A control tuple has the following fields:

1. Source ID – This indicates an absolute path of the service component that acts as the identi-

fier of the communication initiator.

2. Destination ID – This indicates an absolute path of the component that acts as the identifier

of the communication recipient.

3. Type – This indicates whether it is a collaborative or coordinative communication.

4. Message – This contains the collaborative/coordinative information. For collaboration it is

the request for an absolute path of data object. Coordination message may be opaque as other

entities may be oblivious of this inter-component communication. It may even be encrypted

to ensure the security and privacy of inter-component coordination efforts. XML or JSON

41

Figure 4.8: Interface of a Content Tuple

are possible formats that can be used for the representation of coordination messages. LPM

merely shuttles the coordination tuples between respective components’ spaces and is not

aware of their semantics [8].

The interface for basic operations on manipulating various fields of a control tuple are de-

picted in Figure 4.7.

Content tuples are used for sharing data objects across components and they have the following

fields:

1. Destination ID – This indicates the ID of recipient component that is an absolute path of a

component.

2. Sequence Number – This indicates the sequence number of a data object chunk that is trans-

ported. ASCII objects in the form of chunks are the primary target of inter-component

collaboration.

42

Figure 4.9: Template Matching Operations on Tuples

3. Payload – This contains the chunk of a data object. Content tuples are placed by the LPM

reference monitor into corresponding tuple space of the requesting component that needs to

receive content. Note that content tuples are designed for collaboration only. Coordination

is performed exclusively through control tuples [8].

The interface for basic operations on manipulating various fields of a content tuple are de-

picted in Figure 4.8.

Aside from basic set and get operations, individual tuples have support for template matching

on main fields. Such operations are widely used in practice during access control checks prior to

enforcement. They may also provide rudimentary support for higher-level operations that could

be incorporated in the future based on service requirements [5]. The corresponding methods have

boolean output to easily detect whether the content of individual field matches the stated template.

Such matching operations are depicted in Figure 4.9.

Containerized service components are often not aware of whether they are deployed in an

isolated runtime environment, such as a chrooted jail or not. Therefore, tuple fields, such as

43

Source/Destination IDs and object paths that technically require the absolute path to the object

on the file system can be substituted with the isolated environment ID, such as a container ID. This

permits the service deployment with individual components that are only aware of immediate con-

tainerized path locations or corresponding components’ service identifiers. For instance, the con-

tainerized identifier, such as /100/opt/bin/service-component-2 can be mapped to a system-wide

path of /opt/containers/container-100/opt/bin/service-component-2 by the LPM reference monitor

with a proper support for such a composite service mapping [7].

44

Chapter 5

Tuple Space Transactions

In this chapter we provide the details on sample transactional flow involved in tuple space

operations, necessary to carry out collaborative and coordinative types of communication between

isolated service components. Such a flow, termed as Tuple Space Transactions (TST) could be

categorized as a form of regulated OS-level interaction [14] between such components. Since

loosely coupled processes cannot communicate directly due to isolation properties, the flow is

conducted indirectly via the Tuple Space Controller (TSC) [7].

5.1 Coordinative Transaction

Coordinative communication between two components is depicted in Figure 5.1. Intrinsically,

coordination is bidirectional, since both endpoints need to obtain coordinative messages. Both

components need to create the corresponding tuple spaces in the isolated runtime environments. In

the first phase, Component 1 delivers a message to Component 2.

• [Step 1:] Component 1 appends a control tuple (see the structure of tuples in Figure 4.6)

to its tuple space TS 1. This control tuple (denoted as message A) has to be subsequently

delivered to Component 2;

• [Step 2:] TSC reads the control tuple from TS 1;

• [Step 3:] Component 1 retracts the control tuple via the take operation;

• [Step 4:] TSC appends the control tuple into tuple space TS 2 of Component 2;

• [Step 5:] Component 2 takes the appended control tuple (message A from Component 1)

from its tuple space TS 2.

In the next phase of coordinative communication, Component 2 has to deliver its coordination

message to Component 1. Such a message could contain independently new coordinative infor-

45

Figure 5.1: Coordination through Tuple Spaces

mation or serve as the acknowledgement for the control tuple that has just been received. Such a

decision is service-specific. However, we require that coordinative transactional flow is terminated

through such a confirmative control tuple from Component 2. The steps in the second phase are

described next.

• [Step 6:] Component 2 appends a control tuple to its tuple space TS 2. This control tuple

(denoted as message B) has to be subsequently delivered to Component 1;

• [Step 7:] TSC reads the control tuple from TS 2;

• [Step 8:] Component 2 retracts the control tuple via the take operation;

• [Step 9:] TSC appends the control tuple into tuple space TS 1 of Component 1;

• [Step 10:] Component 1 takes the appended control tuple (message B from Component 2)

from its tuple space TS 1. This step completes the coordinative transaction.

46

Note that the coordination messages could be of any type. Therefore, our communication

architecture allows full transparency in inter-component exchange and does not require proprietary

formats. Most common formats that could be incorporated into the message field of a control tuple

are XML, JSON or ASCII strings. Such a choice is service-dependent. Moreover, the service

components could utilize the serialization libraries such as XStream [71], to represent class objects

in the form of XML messages. In this case, isolated components that use our TSL library can

perform complete object-based transport within a single service solely through provided tuple

space communication [7].

5.2 Collaborative Transaction

Collaborative communication is depicted in Figure 5.2. Intrinsically, collaboration is unidirec-

tional, since the workflow is only directed from a single requester to TSC and back in the form of

content tuples [7]. In contrast to a control tuple, a content tuple only has a Destination ID field, as

depicted in Figure 4.6. However, at the level of service logic, collaboration flow could conceptually

be bidirectional. Both endpoints could obtain replicas of mutual data objects through TSC, if such

a replication is explicitly permitted in the policies store of a reference monitor. Such a scenario of

symmetric collaboration is depicted in Figure 5.2. The steps of collaborative transaction, on the

left, are shown below.

• [Step 1:] Component 1 appends a control tuple to its tuple space TS 1 with indication of

request for data object that is owned by Component 2;

• [Step 2:] TSC reads the control tuple from TS 1;

• [Step 3:] TSC reads the requested data object on the file system. Note that this step is not a

part of the actual transactional flow, but represents the internal operations of TSL;

• [Step 4:] TSC appends the replica of a data object, fragmented in three content tuples, into

tuple space TS 1, one tuple at a time. Note that TSC can append the next content tuple only

after the current one is taken from a tuple space. The step shows four actual tuples – TSC

47

Figure 5.2: Collaboration through Tuple Spaces

has to append a special End of Flow (EOF) content tuple to indicate the end of data flow.

Such a tuple has the Payload field set to empty string and Sequence Number field set to -1 to

indicate the EOF condition;

• [Step 5:] Component 1 takes appended content tuples, one tuple at a time;

• [Step 6:] Component 1 assembles the appended content tuples into a replica of the requested

data object. Note that this step is not a part of the actual transactional flow, but represents

the internal operations of TSL;

• [Step 7:] Component 1 takes a control tuple from its tuple space TS 1. This step completes

the collaborative transaction.

The flow of second collaborative transaction, on the right, is identical. The communication

starts with the creation of a tuple space and ends with its deletion after the transactional flow

completes.

48

Figure 5.3: API of Tuple Space Transactions

5.3 Transactional API

The complexity for both types of communication is hidden from the components. TSL provides

public Application Programming Interface (API) methods without exposing internal operations of

tuple space calculus [6].

The main API methods for tuple space transactions are depicted in Figure 5.3. TSC executes the

implementation of the ControllerTransactionManager class while the service component executes

the implementation of the AgentTransactionManager class within the TSL library. Controller-

TransactionManager implementation has the following public methods:

• facilitate_BidirectionalPersistentCoordinativeTransaction() – performs the exchange of con-

trol tuples between corresponding tuple spaces of service components. The implementation

of this method uses the private facilitate_UnidirectionalPersistentCoordinativeTransaction()

method to append control tuples to individual tuple spaces involved in the coordination.

• facilitate_PersistentCollaborativeTransaction() – performs the replication of a data object

requested in the collaborative request issued by the component.

AgentTransactionManager implementation has the following public methods:

49

• perform_ActivePersistentCoordinativeTransaction() – initiates a start of coordinative trans-

action by appending the initial control tuple in its own tuple space.

• perform_PassivePersistentCoordinativeTransaction() – initiates the ending of coordinative

transaction by waiting for a control tuple from the counterpart component.

• perform_PersistentCollaborativeTransaction() – initiates and completes the collaborative

transaction by assembling the replica at component’s end.

• get_ReplyControlTuple() – obtains the control tuple that has been appended by the TSC in

its tuple space from the counterpart component.

Therefore, a single coordinative transaction (control flow) depicted in Figure 5.1 that uti-

lizes a set of operations of tuple space calculus is actualized through the invocation of the facili-

tate_BidirectionalPersistentCoordinativeTransaction() method within ControllerTransactionMan-

ager instance in TSC. It is coupled with the invocation of perform_ActivePersistentCoordinativeTransaction()

method within AgentTransactionManager implementation on a side of the component that initiates

coordination. It is then followed by the invocation of perform_Passive- PersistentCoordinative-

Transaction() method within AgentTransactionManager implementation on a side of the compo-

nent that receives initial coordination message.

Consequently, a single collaborative transaction (data flow) depicted in Figure 5.2 that uti-

lizes a set of operations of tuple space calculus is implemented through the invocation of the

facilitate_PersistentCollaborativeTransaction() method within ControllerTransactionManager in-

stance in TSC. It is coupled with the invocation of perform_PersistentCollaborativeTransaction()

method within AgentTransactionManager implementation on a side of the component that requests

a replica of a data object. Note, that the actual replication through content tuples is implemented

within TSL Utilities package. ControllerTransactionManager invokes the fragment_ObjectReplica()

method of this package in its execution of facilitate_PersistentCollaborativeTransaction() method.

Consequently, AgentTransactionManager invokes assemble_ObjectReplica() method of the same

package in its execution of perform_PersistentCollaborativeTransaction() method.

50

5.4 Formal Properties of Tuple Space Calculus

In this section we elaborate on possible executions of introduced tuple space calculus that

forms the basis of Tuple Space Transactions (TST). In Chapter 4 we have already briefly defined a

set of such operations. Let us now formally define all of them individually in the form of calculus

functions that take a single TS parameter as input:

1. Cr_TS(TS) – Create Tuple Space (TS) operation,

2. D_TS(TS) – Delete TS operation

3. R_crt(TS) – Read operation on a control tuple

4. R_cnt(TS) – Read operation on a content tuple

5. A_crt(TS) – Append operation on a control tuple

6. A_cnt(TS) – Append operation on a content tuple

7. T_crt(TS) – Take operation on a control tuple

8. T_cnt(TS) – Take operation on a content tuple

9. C_crt(TS) – Count operation that outputs a number of control tuples in a given TS

10. C_cnt(TS) – Count operation that outputs a number of content tuples in a given TS

11. C(TS) – Count operation that outputs a number of both control and content tuples in a given

TS

Note, that in our calculus, at most one control tuple and one content tuple could be appended

into a tuple space at any given time [7, 8]. Therefore, C_crt(TS) ≤ 1, C_cnt(TS) ≤ 1 and

C(TS) ≤ 2 for any given TS in a given model. Let us now formally define a tuple space within a

given file system structure that may be accessed by TSC and service component in the context of

our model.

51

Definition 5.4.1 [Tuple Space:] A tuple space is one owned by the component whose members are

tuples that can be operated upon via a set of predefined calculus functions such that C_crt(TS) ≤

1, C_cnt(TS) ≤ 1 and C(TS) ≤ 2

Let us now define a notion of transactions.

Definition 5.4.2 [Collaborative Transaction:] A collaborative transaction is one conducted be-

tween TSC and service component through a sequence of calculus functions that delivers a copy

of an object to a service component through its tuple space.

Definition 5.4.3 [Coordinative Transaction:] A coordinative transaction is one conducted be-

tween a pair of service components via TSC through a sequence of calculus functions that ex-

changes control messages between such components through their respective tuple spaces.

As previously stated, TSC is restricted to a subset of Read and Append operations only. Note,

that the Read operation and its corresponding calculus functions are equivalent to a copy operation.

Read and Count operations are the only operations on TS that do not conflict with the rest of

calculus functions. Therefore, these are the only two operations that can be interleaved within a

given TST without a violation of the consistency of its execution. In fact, the actual implementation

of TSL library extensively uses Count to validate the stated properties of TS before the execution

of every calculus function within a given transactional sequence.

Note, that only a single TST may be executed within a given TS – every transaction starts with

a creation of a TS and terminates with its removal. Such a transactional singularity is ensured by

the single control tuple property per given TS. Therefore, the interleaving of multiple transactions

within a single TS is precluded in our variant of a tuple space abstraction.

We can now define a single TST in the form of a serial sequence S where each operation

is serially followed by the next one within such a transaction. Note, that operations executed

by TSC are marked with c while operations by service component are given with a notation. A

single collaborative transaction for a data object that can be replicated in three content tuples,

C_cnt(TS) = 3, can now be defined with the following serial sequence:

52

Example 5.1 Collaborative Sequence Example

S1 = {Cr_TS(TS)a;A_crt(TS)a;R_crt(TS)c;A_cnt(TS)c;T_cnt(TS)a;A_cnt(TS)c;T_cnt(TS)a;

A_cnt(TS)c;T_cnt(TS)a;A_cnt(TS)c;T_cnt(TS)a;T_crt(TS)a;D_TS(TS)a; }

Note, that a sequence of four A_cnt(TS) and T_cnt(TS) operations is required to complete the

transaction. That is because TSC appends additional EOF content tuple to indicate the completion

of replication. The execution of sequence S1 is equivalent to the flow depicted in Figure 5.2.

Note, that a collaborative sequence that involves a smaller/larger data object will only differ in the

number of A_cnt(TS) and T_cnt(TS) operations to complete its execution.

A single coordinative transaction can now be defined with the following set of serial sequences

between a pair of coordinating components:

Example 5.2 Coordinative Sequence Set Example

S2 = {Cr_TS(TS1)a1;A_crt(TS1)a1;R_crt(TS1)c;T_crt(TS1)a1;A_crt(TS2)c;T_crt(TS2)a2; }

S3 = {Cr_TS(TS2)a2;A_crt(TS2)a2;R_crt(TS2)c;T_crt(TS2)a2;A_crt(TS1)c;T_crt(TS1)a1; }

S4 = {D_TS(TS1)a1;D_TS(TS2)a2; }

Therefore, a complete bidirectional coordinative transaction is {S2;S3;S4; }. Note, that for

clarity purposes, we now indicate the corresponding TS parameter for every involved operation.

The execution of a set of sequences {S2;S3;S4; } is equivalent to the flow depicted in Figure 5.1.

Note, that both sequences S2 and S3 are equivalent and differ only in the TS input parameter for

respective calculus functions. We can observe that in each of the sequences, TSC performs a copy

of a tuple via the Read operation without the violation of tuple’s immutability property.

At the same time, S4 can only be executed after both S2 and S3 complete. Therefore, a tem-

poral execution dependency for S4 has to be observed for successful completion of transactional

flow. That is because Delete operations on a given set of tuple spaces cannot be interleaved within

earlier sequences due to bidirectional property of a coordinative transaction that requires the deliv-

ery of control tuples to a pair of service components. Specifically, such an interleaving will break

the successful execution because the confirmatory control tuple will not be appended to a given TS

due to its premature removal.

53

Chapter 6

System and Policies Storage Architecture

This chapter provides information on underlying system architecture of our component-oriented

access control framework.

6.1 System Architecture

LPM acts as a centralized enforcement point and reference monitor (RM) [8, 38] for the ser-

vices deployed on a single OS server instance. The unified framework uses the embedded SQLite

[61] database library to store and manage policy classes abstractions and their policy records. The

usage of embedded database facility eliminates the dependency on a separate database server that

is prone to potential availability downtimes and security breaches. The LPM implemented in Java

Standard Edition (SE) is deployed under unprivileged UID with elevated privileges using Linux

capabilities within the same OS outside the containerized environments such as chrooted jails as a

form of OS-level container. Figure 6.1 illustrates the components of the LPM. These are described

below.

• [User Interface Layer:] This layer provides operator with Command-Line Interface (CLI)

to issue commands to manage the framework.

• [Parser Layer:] This layer parses and validates the user input from the CLI shell and then

forwards the parsed input to the underlying layers for execution. Its main functionality lies

in internal DSPL policy language that is used for representing the access control policies in

user-friendly form.

• [Enforcer Layer:] This layer enforces the capabilities on the given application using Linux

LibCap [44] library and grants/denies access to OS resources depending on the capabilities

class associated with the component. The layer also integrates a TSC [48] that is responsible

for tuple space operations for the enforcement of collaboration and coordination of service

54

Figure 6.1: Architecture of Lightweight Policy Machine

components in a single communicative class. Note, that due to functional complexity of

TSC, we provide only its reference implementation that uses our TSL library.

• [Persistence Layer:] This layer provides the Create / Read / Update / Delete (CRUD) func-

tionality to manage access control policy records using embedded database facilities. This

layer is discussed in detail in Section 6.2.

System implementation features tens of classes and packages associated with corresponding

layers, with overall volume of current production code exceeding 12 000 lines, not counting the unit

tests per individual class [6]. Specifically, the reference monitor is implemented using the modular

architecture where individual layers are treated as a composition of multiple system components.

Such an architecture facilitates transparent testing of functionality for individual components with

a fine degree of granularity.

We believe that the provision of detailed implementation details for all the packages, classes

and their class variables and methods associated with corresponding functionality layers of LPM

55

is beyond the scope of this dissertation. Therefore, for such information we direct the interested

reader to our GitHub repository for LPM [6].

6.2 Overview of the Policies Store

Figure 6.2: Database Schema of Policies Store

Persistence Layer of our LPM reference monitor provides the Create / Read / Update / Delete

(CRUD) functionality to manage policies using embedded database facilities. For implementa-

tion details of the Persistence Layer that is rather complex, we direct the interested reader to our

GitHub repository for LPM [6]. We now provide detailed description of the schema, the business

logic, the relationship between main tables and the possible access control records involved in

our component-oriented access control model. The schema of the embedded database (referred

to as the Policies Store) for storing framework’s access control policies appears in Figure 6.2. It

shows the schema for three tables, namely, Components Table, Capabilities Classes Table, and

56

Communicative Classes Table. We begin by describing the attributes of the Components Table that

is described below.

[COLUMN_COMPONENT_PATH_ID, COLUMN_COMPONENT_DESC,

COLUMN_COMPONENT_ID, COLUMN_COMPONENT_CAPABILITIES_CLASS_ID,

COLUMN_COMPONENT_COMMUNICATIVE_CLASS_ID,

COLUMN_COMPONENT_CONTAINER_ID,

COLUMN_COMPONENT_TUPLE_SPACE_PATH, COLUMN_STATUS, UPDATE_COLUMN]

The description of individual columns is as follows:

• COLUMN_COMPONENT_PATH_ID – absolute path to the location of the service component is

currently used as the component ID.

• COLUMN_COMPONENT_DESC – description of the service component and its functionality.

• COLUMN_COMPONENT_ID – reserved for future use - may be used for alternative ID mecha-

nisms.

• COLUMN_COMPONENT_COMMUNICATIVE_CLASS_ID – a reference to the ID of the Commu-

nicative Class in Communicative Classes Table in which the component may belong. This

is a one-to-one relationship because a component may belong only to one such class.

• COLUMN_COMPONENT_CAPABILITIES_CLASS_ID – a reference to the ID of the Capabil-

ities Class in Capabilities Classes Table in which the component may belong. This is a

one-to-one relationship because a component may belong only to one such class.

• COLUMN_COMPONENT_CONTAINER_ID – reserved for future use with various container tech-

nologies.

• COLUMN_COMPONENT_TUPLE_SPACE_PATH – reserved for possible use. It indicates the

component’s tuple space location. Technically this should be determined automatically

based on the component’s path_ID – TS should be located immediately at the 1st level of

component’s root directory.

57

• COLUMN_STATUS – not currently used but may be employed for specification of whether a

corresponding row in the database table is active or not from the access control standpoint.

Such a necessity may arise in the future when a record may still be kept in PS without a

need to physically delete it. Therefore, changing its status from active to inactive may be

beneficial for such an optimization of PS operation.

• UPDATE_COLUMN – used by Persistence Layer to indicate which field to update when calling

write_ComponentsTableRecord() method that belongs to Persistence Layer [6].

The schema of the Communicative Classes Table is given below.

[COLUMN_CLASS_ID, COLUMN_CLASS_NAME, COLUMN_COORDINATION_RECORD,

COLUMN_COLLABORATION_RECORD, COLUMN_STATUS, UPDATE_COLUMN]

The description of individual columns is as follows:

• COLUMN_CLASS_ID – unique Communicative Class ID. This is a one-to-many relationship

because several components in Components Table may belong to one such class.

• COLUMN_CLASS_NAME – Name of a Class.

• COLUMN_COORDINATION_RECORD – a pair: COMPONENT_1_PATH_ID ;

COMPONENT_2_PATH_ID. If such a record exists, that signifies a permission for coordina-

tion.

• COLUMN_COLLABORATION_RECORD – a pair: COMPONENT_PATH_ID ;

Data_Object_Absolute_Path. If such a record exists, that signifies a permission for

collaboration.

• COLUMN_STATUS – not currently used but may be employed for specifying whether a corre-

sponding row in the database table is active or not from the access control standpoint. Such

a necessity may arise in the future when a record may still be kept in PS without a need to

physically delete it. Therefore, changing its status from active to inactive may be beneficial

for such an optimization of PS operation.

58

• UPDATE_COLUMN – used by internal Persistence Layer to indicate which field to update

when calling write_CommunicativeClassesTableRecord() method that belongs to Persistence

Layer [6].

We now give some examples of coordination and collaboration records.

Example 6.1 Coordination Record Example 1

[/s/missouri/a/nobackup/services/containers/container-1/bin/component-publisher ;

/s/missouri/a/nobackup/services/containers/container-2/bin/component-generator]

Example 6.2 Coordination Record Example 2

[/s/missouri/a/nobackup/services/containers/container-2/bin/component-generator ;

/s/missouri/a/nobackup/services/containers/container-1/bin/component-publisher]

Example 6.3 Collaboration Record Example 1

[/s/missouri/a/nobackup/services/containers/container-1/bin/component-publisher ;

/s/missouri/a/nobackup/services/containers/container-2/data-logs/secure.log]

Example 6.4 Collaboration Record Example 2

[/s/missouri/a/nobackup/services/containers/container-2/bin/component-generator ;

/s/missouri/a/nobackup/services/containers/container-1/data-logs/secure.log]

Note, that both coordination records shown in Examples 6.1 and 6.2 should exist in the table to

allow bidirectional coordination between two components via TSC. Any record input is checked

for validity before insertion – corresponding component IDs and objects paths should exist in the

system. Such conditions are validated by the corresponding implementation logic in Persistence

Layer. It also ensures that there are no duplicate rows in corresponding tables and all key con-

straints are satisfied.

The schema of the Capabilities Classes Table is given below.

[COLUMN_CLASS_ID, COLUMN_CLASS_NAME, COLUMN_CAPABILITIES,

COLUMN_STATUS, UPDATE_COLUMN]

59

The description of individual columns is as follows:

• COLUMN_CLASS_ID – unique Capabilities Class ID. This is a one-to-many relationship be-

cause several components in Components Table may belong to one such class.

• COLUMN_CLASS_NAME – Name of a Class.

• COLUMN_CAPABILITIES – a list of one or more Linux Capabilities assigned to a class.

• COLUMN_STATUS – not currently used but could be employed for specification of whether a

corresponding row in the database table is active or not from the access control standpoint.

Such a necessity may arise in the future when a record may still be kept in PS without a

need to physically delete it. Therefore, changing its status from active to inactive may be

beneficial for such an optimization of PS operation.

• UPDATE_COLUMN – used by internal Persistence Layer to indicate which field to update when

calling write_CapabilitiesClassesTableRecord() method that belongs to Persistence Layer

[6].

60

Chapter 7

Evaluation and Experimental Results

The deployment of component-oriented access control framework in the real-world settings

requires a thorough performance evaluation. The model for capabilities classes does not incur any

significant performance overheads for the unified framework. This is because its enforcement is

based on the calls to the LibCap library [44] that essentially updates the file system capabilities

metadata information for a process [70]. Such operations do not incur the performance overheads

because library mediations do not require extra disk I/O aside from the I/O load of the base system

[3, 4]. There is also no additional memory utilization required aside from the RAM consumption

by the LPM reference monitor itself.

However, the situation is quite different for the model of communicative classes. The enforce-

ment is based on the tuple space paradigm that is known to be quite resource intensive [48]. The

performance overheads for a memory-resident global shared tuple space are well known and in-

clude memory consumption overheads, efficiency problems with tuple matching at high speeds

and search complexity with a large number of divergent tuples present in a single space continuum

[62]. Those properties essentially pose a limit on a number of tuple objects in a given tuple space

[29, 48, 62]. Taking that into consideration as discussed in Chapter 4, the design of our tuple space

implementation is reliant on the alternative strategy of the persistent file system-based solution

with personal tuple space per component [7].

7.1 Correctness of Access Control Enforcement

In this section we report the evaluation of correctness that is associated with enforcement of

access control policies for the proposed framework. It is important to verify such policies before

we measure various aspects of our framework that are related to its performance. Correctness

of such access control checks is crucial because without validated enforcement the framework

policies could be bypassed by the malicious or compromised service components.

61

Table 7.1: Correctness of Enforcement Operations - 1

Operation Policy Class Output Enforcement Description

Add capability to a class Capabilities Enforced This adds a given Linux ca-

pability for all the compo-

nents associated with a class

to components’ binaries in a

file system.

Remove capability from a

class

Capabilities Enforced This removes a given Linux

capability for all the compo-

nents associated with a class

from components’ binaries in

a file system.

Move component to a class Capabilities Enforced This adds all the capabili-

ties listed in a class to a

given component’s binary in

a file system. Consequently,

this removes all the capabil-

ities associated with a differ-

ent class from a previous as-

signment, if any, from a given

component’s binary.

The verified operations of the framework in a context of corresponding policy classes are given

in Table 7.1 and Table 7.2. The ’Enforcement Description’ column in each table provides a neces-

sary explanation of the enforcement outcome per individual operation.

The access control checks are conducted at the level of Enforcer Layer that in turn invokes the

Persistence Layer to query the Policies Store for the existence of corresponding policy records.

The enforcement has been empirically verified through unit tests at the level of business logic

for the proposed framework. The operations involved in enforcement of Linux capabilities on

components’ binaries have been verified using getcap() [44] utility.

The validations that correspond to Capabilities Classes in Table 7.1 are available at: https://

github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/BL_CapabilitiesClasses_UnitTests.java.

The validations that correspond to Communicative Classes in Table 7.2 are available at: https://

github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/BL_CommunicativeClasses_UnitTests.java

62

Table 7.2: Correctness of Enforcement Operations - 2

Operation Policy Class Output Enforcement Description

Add collaboration policy to a

class

Communicative Enforced This adds an explicit permis-

sion for a specified compo-

nent to request a replica of a

given data object from a spec-

ified location in a file system.

Remove collaboration policy

from a class

Communicative Enforced This removes an explicit per-

mission for a specified com-

ponent to request a replica of

a given data object from a

specified location in a file sys-

tem.

Add coordination policy to a

class

Communicative Enforced This adds an explicit permis-

sion for a given pair of com-

ponents to coordinate via in-

dividual tuple spaces in a file

system.

Remove coordination policy

from a class

Communicative Enforced This removes an explicit per-

mission for a given pair of

components to coordinate via

individual tuple spaces in a

file system.

Move component to a class Communicative Enforced This provides a mapping of a

given component to a speci-

fied class. All the operations

are checked for such a map-

ping before execution. There-

fore, both components have

to be mapped to the same

class in order to communicate

via collaboration or coordina-

tion.

63

7.2 Performance of Tuple Space Transactions

The initial prototype of the TSL implemented in Java SE is publicly available through the

LPM’s GitHub repository [6]. The specification of the machine involved in the benchmarking

is depicted in Table 7.3. Internal JVM memory utilization and time information has been ob-

tained using JVM’s internal Runtime and System packages. We do not provide the benchmarking

results for coordinative transaction. Despite its implementation complexity, such a transaction

involves only exchange of two control tuples and therefore does not incur any significant perfor-

mance overheads in terms of CPU and RAM utilization. The cumulative RAM consumption for

concurrent coordinative transaction with TSC and service component each executing in separate

JVM threads has been observed at merely 44 KB. The actual unit test for coordination is avail-

able at: https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests _Coor-

dination.java.

Table 7.3: Node Specifications

Attribute Info

CPU Intel(R) Xeon (R) X3450 @ 2.67 GHz; Cores: 8

Disk SATA: 3Gb/s; RPM: 10 000; Model: WDC; Sector size: 512 bytes

File System EXT4-fs; Block size: 4096 bytes; Size: 53GB; Use: 1%

RAM 8 GB

OS Fedora 23, Linux kernel 4.4.9-300

Java VM OpenJDK 64-Bit Server SE 8.0_92

For collaboration, the payload of individual content tuple is set at 1 MB. Therefore, for instance,

it takes 64 content tuples to replicate a 64 MB data object. Six sizes of data objects have been

chosen – 64, 128, 256, 512, 1024 and 2048 MB objects respectively. Collaborative transactional

flow, as discussed in Chapter 4, is performed on the EXT4 file system, where the requesting service

component creates a tuple space in its isolated directory structure and assembles the content tuples

appended by the TSC into a replica in its isolated environment outside the tuple space directory.

Replication performance for sequential collaboration is depicted in Figure 7.1. The create_Object

Replica() method in Utilities package of the TSL library is a reference method that sequentially

64

Figure 7.1: Replication Performance for Sequential Collaboration

executes the collaborative transaction conducted between TSC and the service component within a

single thread of execution. We can observe that the replication time progressively doubles with an

increase of the object size. On average, it takes 0.625 seconds to replicate a 64 MB object, 1.065

seconds a 128 MB object, 1.955 seconds a 256 MB object, 3.950 seconds a 512 MB object, 8.550

seconds a 1024 MB object and 17.505 seconds to replicate a 2048 MB object.

Java Virtual Machine (JVM) memory utilization during sequential collaboration has been ob-

served to be negligible. That is largely due to the usage of Java NIO library [34] in our Utilities

package that is designed to provide efficient access to the low-level I/O operations of modern oper-

ating systems. On average, memory usage is 23 MB for replication of a 64 MB object, 34 MB for

a 128 MB object, 56 MB for a 256 MB object, 305 MB for a 512 MB object (an outlier, repeatedly

observed with this object size that might be specific to the garbage collector for this particular

JVM), 58 MB for a 1024 MB objects, and 36 MB for replication of a 2048 MB object.

Note, that since the measured JVM memory utilization takes into account the processing of

both TSC and requester components within a single thread of execution, the actual JVM utilization

will be roughly twice lower for two endpoints in the collaborative transaction when endpoints

65

Figure 7.2: Replication Performance for Concurrent Collaboration

execute in separate JVMs. This shows the practical feasibility of our collaborative implementation

even for replication of large data objects. According to obtained results, we can anticipate that TSC

can handle a large number of concurrent collaborative transactions without consuming significant

amounts of physical RAM.

We observed partially full utilization of a single CPU core during replication of the largest data

object (2048 MB). The actual unit test for sequential collaboration is available at: https://github.com/

kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java.

In real-world settings TSC and service component execute concurrently in separate threads,

and in fact in different JVMs. Replication performance for concurrent collaboration is depicted in

Figure 7.2, where TSC and service component execute as concurrent threads in a single JVM. In

such settings, TCS thread performs a short sleep in its section of TSL library after every append

operation to allow the service component thread to take a content tuple from its tuple space. That

results in a longer replication time compared to sequential execution depicted in Figure 7.1.

Due to concurrent execution, two CPU cores have been partially utilized by the JVM during

concurrent collaboration. The obtained results show that replication time is sufficient for non-

66

critical, non-real-time services where medium-size data objects need to be replicated across service

components. Further decrease in replication time is possible through the usage of faster storage

media, such as Solid-State Drives (SSDs) and Non-Volatile Memory (NVM) [18].

Again, we can observe that the replication time progressively doubles with an increase of the

object size. On average, it takes 17.152 seconds to replicate a 64 MB object, 23.8 seconds a 128

MB object, 37.1 seconds a 256 MB object, 63.8 seconds a 512 MB object, 117.5 seconds a 1024

MB object and 246.505 seconds to replicate a 2048 MB object.

In line with sequential collaboration, JVM memory utilization during concurrent collaboration

also has been observed to be negligible. On average, memory usage is 7 MB for replication of a 64

MB object, 14 MB for a 128 MB object (an outlier, repeatedly observed with this object size that

might be specific to the garbage collector for this particular JVM that is not related to the outlier

depicted in Figure 7.1 during sequential collaboration), 8 MB for a 256 MB object, 9 MB for a

512 MB object, 12 MB for a 1024 MB objects, and 19 MB for replication of a 2048 MB object. In

fact, the utilization is much lower then in case of sequential collaboration.

Again, when executed in separate JVMs, the memory footprint for every endpoint in the trans-

actional flow will be further diminished. Therefore, TSC memory usage during real-life operations

for handling multi-component collaborative transactions is expected to be minimal. Note, that due

to preliminary nature of conducted transactional benchmarks, the focus is on functionality, rather

then availability. Therefore, no actual saturation of storage media has been attempted. The actual

unit test for concurrent collaboration is available at: https://github.com/kirillbelyaev/tinypm/blob/

LPM2/src/test/java/TSLib_UnitTests_Collaboration.java.

Note, that due to basic DoS protection properties of collaborative transaction that requires a

consumption of every content tuple before a new one is appended to a given tuple space, the speed

of object replication in our solution is theoretically slower in comparison to existing IPC mech-

anisms that do not address DoS issues. The preliminary comparison of replicating a 1 GB data

object via the existing UNIX pipe mechanism shows a 6 to 8 times decrease in object replication

time in comparison with our sequential collaborative transaction. However, pipe-based replication

67

is purely based on unidirectional byte flow. In our solution, a complex sequence of tuple space

operations on the file system is performed by endpoints involved in the transactional flow. Such

transactional logic that is performed at the granularity of individual tuples inherently requires syn-

chronization and additional computational overheads including access control checks that results

in longer execution time.

7.3 Load Simulation of Tuple Space Controller

The focus of our access control framework is on provision of flexible types of information flow

between infrequently communicating (not real-time) service components. Therefore, as already

noted, it is not intended for High-Performance Computing (HPC) services and large data object

transfers between components. Nevertheless, it is important to provide an accurate estimate of the

resource consumption incurred by the TSC that is responsible for the information flow transport.

In this part, we provide the actual memory allocation (Resident Set Size (RSS) info obtained

through ps and htop utilities) – the non-swapped physical memory that a replication task (a single

collaborative transaction) has used. In contrast to the previously reported JVM memory allocation

that is subject to arbitrary fluctuations related to garbage collection mechanism, RSS provides

the real memory allocation estimates on the actual hardware. The TSC load simulation has been

conducted on the enhanced server hardware. The specification of the machine is depicted in Table

7.4.

Table 7.4: Server Node Specifications

Attribute Info

CPU Intel(R) Xeon (R) E5520 @ 2.27 GHz; Cores: 8

Disk SAS: 3 Gb/s; RPM: 15 000; Model: Fujitsu; Sector size: 512 bytes

File System EXT4-fs; Block size: 4096 bytes; Size: 40GB; Use: 1%

RAM 24 GB

OS Fedora 24, Linux kernel 4.7.5-200

Java VM OpenJDK 64-Bit Server SE 8.0_102

68

Figure 7.3: Tuple Space Controller Simulation Information for a 64 MB Object

We have simulated the tentative resource consumption by the TSC conducting concurrent se-

quential collaborative transactions for a large number of service components – 1, 8, 16, 32, 64 and

128 concurrent transactions respectively, each executing in a separate JVM thread. Note, that this

necessitates a creation and corresponding removal of persistent tuple spaces per individual transac-

tion. Therefore, for instance 128 transactions will create and then consequently remove 128 such

tuple spaces after completion of transactional execution.

Two object sizes have been used for replication – 64 MB for the lower bound and 2048 MB for

the upper bound of the load assessment. No external processes unrelated to benchmarking were

present during the simulation load on the system. Note, that every individual experiment has been

repeated for up to 10 times to verify the consistency of performance indicators. The actual unit

tests for TSC load simulation are available at: https://github.com/kirillbelyaev/tinypm/blob/LPM2/

src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java.

We observed that the load has been evenly distributed on all CPU cores by the JVM and OS

SMP facility and initially utilizes 100% on every core, gradually decreasing, as every thread ex-

ecuting collaborative transaction passes the peak work section. Our main focus is on RAM con-

69

Figure 7.4: Tuple Space Controller Simulation Information for a 2048 MB Object

sumption since it is critically important to estimate its usage by potentially tens of concurrent

transactions performed by TSC.

The replication time and RSS info associated with a 64 MB data object is depicted in Figure

7.3. For a single transaction, executing within a single JVM thread, the RSS is 159 MB with

replication time at 0.78 s. For 128 concurrent transactions, executing in independent JVM threads,

the cumulative upper bound for RSS is 3415 MB with last transaction to complete replication at

the threshold of 110.858 s. The replication time nearly doubles with the proportional increase of

the number of objects that need to be replicated. However, the memory usage does not generally

double with load increase. The upper bound of 3415 MB represents only 14 to 15% of the available

system memory depicted in Table 7.4. Therefore, the simulation shows that TSC could be rather

memory-efficient on a larger scale with replication of small data objects for a large number of

requesting service components.

The RSS info, associated with replication of a 2048 MB data object is depicted in Figure 7.4.

Due to limitations of disk partition size we have not been able to run the 32, 64 and 128 thread

experiments until completion to record the final replication time. The experiments terminate at

70

the point of partition space saturation. However, two key indicators have been observed: peak

RSS shows the highest memory allocation observed for a repeated number of simulations; End of

Execution (EOE) RSS shows the highest memory allocation observed at transaction termination

time for a repeated number of simulations.

For a single transaction, executing within a single JVM thread, the peak RSS was observed

to be 552 MB with EOE RSS at 515 MB. We can see a consistent increase in peak RSS with

progressive increase in the number of transactions. For 128 concurrent transactions, executing in

independent JVM threads, the peak RSS reaches 3298 MB with EOE RSS at 3170 MB. However,

we do not see the drastic difference in memory consumption between 8 and 128 transactional

threads. In fact, peak RSS for 8 concurrent threads is 2525 MB – a mere 700 MB difference

observed with peak RSS for 128 threads. Such results, once again, empirically confirm that actual

TSC implementation could be rather memory efficient at a larger scale, occupying only a fraction

of available system RAM at peak load times on modern server hardware.

The important fact to observe is that the peak RSS with the same number of concurrent transac-

tions has been nearly identical for two different data object sizes depicted in Figure 7.4 and Figure

7.3. In fact, the RSS is slightly larger for 128 transactions associated with a 64 MB data object.

This shows that object size does not have a strong impact on the real memory usage of individual

collaborative transaction conducted through our TSL implementation. As already mentioned, this

is largely due to the use of Java NIO library [34] in our TSL implementation. It also shows that

modern Java platforms could often times provide a viable alternative to compiled languages such

as C++ for complex and secure enterprise-grade middleware implementations [68].

For the sake of completeness, we provide the actual replication time before disk saturation

observed for the TSC load simulation associated with a 2048 data object depicted in Figure 7.4.

For a single transaction executing within a single JVM thread the average replication time is 22.406

s. For 8 threads the average replication time is 199.545 s. For 16 threads the average replication

time to concurrently complete the replication of 16 2048 MB data objects is reported to be 431.72

s. Note, that reported replication time might be nearly irrelevant in real-world settings where

71

dozens of concurrently running service components could add additional I/O load on the server

storage hardware with service-specific file system activity. That could significantly increase the

completion time of a single collaborative transaction for a set of large data objects.

7.4 Performance of Enhanced Tuple Space Transactions

In this section we report the performance of the enhanced implementation of TSTs. The en-

hancement avoids potential race conditions within append operation between TSC and service

component in a single TS. This is achieved via writing both types of tuples in the form of hidden

objects. This property is achieved via appending ’.’ to the name of an object on a given file system.

Only after tuple object is fully written in TS it is exposed via rename operation. We have also

increased the sleep period on a side of the TSC (in fragment_ObjectReplica() method within Utili-

ties package of TSL library) for the collaborative transaction that results in longer replication time

in comparison to original version. However, the replication time is now consistent through multi-

ple test runs. Such an enhancement offers increased reliability in the event of multiple concurrent

collaborative transactions that replicate large data objects on the server instance.

Experiments have been conducted on the machine with the same server parameters depicted

in Table 7.4. Replication time and RSS information for various sizes of a data object for such an

enhancement of collaborative transaction is depicted in Figure 7.5. Here, TSC and service compo-

nent again execute as concurrent threads in a single JVM. Note, that we do not report the statistics

for a 2 GB object since in real service settings large data objects will be stored/rotated at 1 GB

granularity to avoid long replication times. We also do not measure internal JVM memory uti-

lization because it does not reflect the actual physical memory usage and is not consistent through

repeated experiments.

The RSS info has been recorded to be approximately the same for all data object sizes. We take

into account the final End of Execution (EOE) RSS that shows the highest static RSS in physical

RAM allocated by JVM at the termination time of collaborative transaction. We do not take into

72

Figure 7.5: Replication Performance for Concurrent Collaboration

account the fluctuating spikes in memory usage during the runtime of individual transaction that

last only several milliseconds.

The highest value of EOE RSS through repeated experiments was recorded under the boundary

of 5400 MB. In line with previous experiments it reinforces the fact that object size does not have

a significant correlation with the physical memory usage of individual collaborative transaction

conducted through our TSL implementation.

Note that, as previously stated, in real-world settings TSC and service component execute in

separate JVMs. Therefore, the memory footprint for every endpoint in the transactional flow will

be further diminished – roughly a two-fold decrease. Again, we can observe that the replication

time progressively doubles with an increase in the object size. On average, it takes 27.524 s to

replicate a 64 MB object, 43.9 s for a 128 MB object, 76.534 s for a 256 MB object, 142.4 s for a

512 MB object and 272.505 s to replicate a 1024 MB data object.

73

Chapter 8

Discussion on Framework Properties

This chapter provides discussion on security and system properties of our access control frame-

work.

8.1 Security Aspects

In this section, we discuss the security of our component-oriented access control framework. Each

component executes in an isolated runtime environment. Such a ’jail’ directory is assigned a dis-

tinct unprivileged UID to utilize existing Linux DAC mechanism. A chroot on UNIX/Linux OS is

an operation that changes the apparent root directory for the current running process and its chil-

dren. A program that is run in such a modified environment cannot name and therefore normally

cannot access files outside the designated directory tree. The isolated runtime is populated with all

required program files, configuration files, device nodes and shared libraries that are required for

the successful service component execution. Note that, the shared libraries (if present) have to be

properly audited before inclusion in the runtime environment [8].

Our framework aims to give each component only those capabilities that it needs and only

those inter-component interactions that are required for offering services. We assume that the LPM

which is our reference monitor and all parts of its Trusted Computing Base (TCB) such as TSL

and LibCap libraries are trusted. We also assume that the capabilities policies and communicative

policies have been written correctly. The LPM is responsible for executing these policies and

putting components in their respective policy classes. Thus, a component can access only those

system resources that is permitted by the capabilities policy class to which it has been assigned.

As indicated in Section 2, the policies of our component-oriented access control framework are

centrally enforced via a user-space reference monitor. Therefore, individual service components

may not be aware of specific policies that are being enforced upon them. For instance, a network

74

component may not be aware that a specific OS-level Linux capability has been enforced upon its

binary since our centralized enforcement would be completely transparent to such a component.

The enforcement of interaction across components is also completely transparent to them. Ser-

vice components are not aware of a reference monitor’s mediation and therefore the regulation

of communication between them is transparent. For that matter, in contrast to DIFC mechanisms

where applications may be able to dynamically declare and change access policies depending on

the privileges delegated to them [38], our centralized enforcement paradigm does not provide such

a freedom for individual components. That is because policies for individual service components

in our settings are predefined within a lifecycle of a particular service and are not subject to change.

Moreover, the mechanism of excessive trust delegation to untrusted components may be potentially

detrimental in multi-tenant settings where a single OS may host multiple services that belong to

different legal entities.

In our design, the communication across components takes place through their individual tuple

spaces. Thus, we must protect the confidentiality, integrity, and availability of the tuple space of

each component. Each component in an isolated runtime environment has a directory structure

within the file system in which it can create its own tuple space. The communicative policies

bind a component to its tuple space location. Only the individual component can perform all the

operations, namely, create tuple space, delete tuple space, read, append, and take. The LPM

reference monitor can only perform read and append operations on the tuple space. Thus, no one

other than the component itself can remove anything from its tuple space. A service component

cannot access the tuple space of its peers – this protects the confidentiality and integrity of the

tuple space and the data contained in it. A service component cannot also cause denial-of-service

on another component’s tuple space. This is because even if a component requests a large sized

data object, this data is decomposed into fixed size chunks and only one chunk at a time is loaded

into and transferred from the tuple space.

Coordination has also been designed with basic security in mind. Coordinative transaction

requires a second (confirmative) control tuple to be delivered to the initiating service component to

75

complete the transactional flow. In mission-critical scenarios, a reference monitor cannot be fully

trusted and no assumption should be made by the initiating component that its original coordinative

message has been successfully delivered to destination. Therefore, a confirmation in the form of a

second control tuple from the destination should be delivered to source. Note, that a compromised

reference monitor can append a forged control tuple mimicking the confirmation. However, such

a possibility is prevented in our framework, since LPM follows strict tuple space calculus [8].

Furthermore, such a forgery could be detected and precluded at the level of service logic where

individual service components can deploy a higher level security protocol [62] that operates on

fully encrypted message fields of individual control tuples.

Note, that although regulated communication flow is aimed at closing all known covert chan-

nels between unrelated services and their components, in practice that is hard to achieve. Some

covert channels (such as covert timing channels) can be reduced but not eliminated, particularly for

systems connected to the network [38, 74]. Components that are delegated a capability of network

access can potentially inter-communicate via network channels and additional measures such as IP

firewall rules should be used to preclude such a possibility.

A malicious entity cannot impersonate as an honest component and compromise the confiden-

tiality and integrity of the data of any component. The components and their tuple space in the

directory structure are binded in the policy store. Consequently, even if a malicious entity poses as

an honest component, it will not be able to access the tuple space that is in the directory structure

of the honest component. If a component is dishonest or has a trojan horse, it will get access only

to those resources that are allowed by the policy classes that contain it.

One of possible secure deployments is shown in Figure 8.1 where user-space LPM RM is

deployed under unprivileged UID with elevated privileges using Linux capabilities within the main

OS while service components are placed in OS-level containers such as chrooted jails. LPM has

limited file system access to tuple spaces of individual components and read-only access to data

directories where components may generate respective data objects. Note, that individual service

components may have layered file system structure [69] within their respective OS containers

76

Figure 8.1: Secure Deployment

where permanent storage of data objects is located in a directory hierarchy that is completely

inaccessible by the reference monitor.

8.2 User-Space Design

Our framework is supported through the user-space LPM reference monitor which becomes the

main differentiator in contrast to most existing works (covered in Chapter 2) that are mainly based

on kernel-space solution such as SELinux [57] and DTE [3]. In contrast to such kernel-level so-

lutions, LPM provides access control facilities that are mainly oriented towards containerized ser-

vices that operate in user space under unprivileged UIDs and may need incremental access to OS

and hardware resources mediated through kernel. The isolated components of such services that

require specific elevated privileges are given them through the notion of LPM’s capabilities classes

abstraction (discussed in Chapter 3) without a need to incorporate direct kernel-level support into

the reference monitor. At the same time, secure information flow between such components does

not require kernel-space support because components exchange business logic flows through cus-

77

tomized tuple space abstraction in user-space. In fact, mediation of intensive data flows through

kernel-level IPC has two inherent problems. First, its performance is architecturally limited by the

cost of invoking the kernel and mediating cross-address space interaction for two communicating

components. Inherently, the cost of context switching from kernel space to user space for large

data transfers can be detrimental to overall system performance [11]. Second, service components

execute in user space and therefore benefit from IPC mechanism implemented through user-level

libraries [11] such as our TSL implementation that avoids complexities of message passing that

requires additional synchronization primitives [8]. For instance, user-space IPC daemons such as

D-Bus [33] (discussed in Chapter 4) have been specifically designed to leverage such user-space

advantages. Moreover, having the kernel copy application-level data and coordination messages

between address spaces of interacting service components is neither necessary nor sufficient to

guarantee safety [11, 28, 38].

One of the main advantages of the user-space design for the reference monitor are portability,

ease of implementation and in some sense correctness. LPM does not destabilize the kernel [8, 38].

At the same time, our user-space reference monitor may benefit from tighter integration with OS

kernel through user-level interface such as Linux Security Modules [70] (LSM) hooks or related

mediation layers. For instance, LPM already utilizes the capabilities management through calls

to user-space LibCap [44] library that has direct interface to kernel. Note, that enforcement of

more fine-grained, execution-specific security policies for individual isolated service components

is possible through existing kernel-space access control solutions such as SELinux that may be

used in combination with our user-space reference monitor [9].

For instance, user-space reference monitor such as Flume [38] runs a small component in the

kernel that is accessed via LSM to implement a layer of system call interposition for regulation of

IPC flows. CamFlow [54], another similar DIFC solution with controlled data sharing for cloud

services also uses a kernel module, CamFlow-LSM that is implemented in the form of LSM for

OS-level IFC enforcement.

78

Chapter 9

Conclusion and Future Work

In this chapter we summarize the contributions (Section 9.1) of this dissertation and provide an

overview of plans for future related work (Section 9.2).

9.1 Contributions

The contribution of this dissertation includes (1) a state-of-the-art survey on access control

models in the scope of our work, (2) a capabilities classes model for components that manages

access to system resources using Linux capabilities, (3) a communicative classes model for com-

ponents that manages inter-component interaction, (4) a tuple space paradigm for enforcement of

policies for communicative classes, (5) a research prototype that provides a reference implementa-

tion of the unified access control framework, and (6) an evaluation of the proposed framework.

For the state-of-the-art survey, we conducted a systematic literature review on access control

related to systems research in the context of identified set of problems. The systematic review

compared relevant works in access and information flow control and identified their limitations

through a systematic evaluation.

We proposed a component-oriented access control framework for secure deployment of ser-

vices within a single Linux OS instance. The framework consists of two models and is based on a

concept of policy objects, referred to as policy classes.

Specifically, as part of the framework, we proposed a model for capabilities classes. Each

capability class consists of policies that are associated with a set of Linux capabilities [44]. The

capabilities classes differ from each other on the basis of capabilities they possess. Each service

component is placed in at most one capabilities class. The OS resources that the component can

access depends on the Linux capabilities associated with that class. Our implementation of the

model provides a way by which Linux capabilities can be administered to the services executing

in isolated environments.

79

We also proposed a model for communicative classes. Communicative classes are needed for

communication of components that belong to different isolated environments. Each communica-

tive class consists of policies for inter-component interaction. Our implementation of the model

provides a way by which such communication can be administered to a set of services.

We also implemented a mechanism necessary for the enforcement of communication poli-

cies within such communicative classes. We adapted the generative communication paradigm

introduced by Linda programming model [29] which uses the concept of tuple spaces for pro-

cess communication. We enhanced the original paradigm to address the problems of security and

operational limitations and provided enforcement rules such that only components belonging to

the same communicative class can communicate using this approach. We introduced and imple-

mented the well-formed Tuple Space Transactions that provide fine-grained regulation between

data and control flows for interacting service components. The introduced notion of such transac-

tions also incorporates the basic protection against denial-of-service attacks by malicious service

components.

We developed a research prototype that provides a reference implementation for the proposed

unified framework in the form of LPM middleware. Our LPM allows the formulation, management

and enforcement of access policies to OS resources for individual service components and it also

allows regulated inter-component communication across isolated environments. LPM is resident

in user-space and it acts as a form of a reference monitor [38] that allows high interoperability and

usage of the framework on any general-purpose Linux OS without a requirement for custom kernel

patching [8, 38].

We have evaluated the reference implementation of the proposed framework. Specifically, we

have assessed the performance of enforcement mechanism for inter-component interaction based

on the adaptation of tuple space paradigm. Contrarily to the enforcement based on Linux capabili-

ties, tuple space paradigm is known to be quite resource intensive. We conducted systematic bench-

marks with a large number of concurrent tuple space transactions involved in replication of large

data objects. The evaluation results suggest that our adaptation of the tuple space paradigm can be

80

utilized for regulated inter-component interaction by a multitude of server-side multi-component

services without significant consumption of computational resources. As part of the evaluation,

we also assessed the correctness for enforcement of access control policies for both types of policy

classes.

9.2 Future Work

The potential to deploy a multitude of services within a single OS offers a higher degree of

control over service workflows on modern hardware. Such deployments are becoming increasingly

common for cloud service providers. As part of future work, we plan to extend the proposed

access control framework for distributed settings [58] where service components may be located at

separate server nodes for the purpose of hardware optimization for specific workloads [74]. From

the perspective of access control such a distribution will require the design of an aggregation layer

that provides the transparency property for the management of distributed service components and

enforcement of corresponding component-oriented access policies.

Another future direction of this research is to investigate the applicability of proposed component-

oriented framework for provision of security guarantees to monolithic applications through the

mechanism of compartmentalization. Many monolithic server applications such as HTTP applica-

tion, web and cache servers, as well as many other system services are often designed as a single

stand-alone process executable. Such a legacy design is far from being secure and reliable. How-

ever, such applications may be decomposed into a set of application compartments – independent

modules that are based on functionality [13]. Each module may execute a part of the application

logic in a separate process and could be isolated from other modules in the system. For that mat-

ter, it may be worthwhile to investigate the applicability of proposed models and technologies for

coordination and potential exchange of data flows across such modules. Moreover, it will be worth-

while to see how the failure of one module impacts other modules and what types of coordination

constructs are needed to make the application secure and resilient.

81

Another interesting direction of relevant future research is the design of protocols for the provi-

sion of encrypted inter-component coordination flow that operate on top of tuple space transactions

and do not rely on key distribution and exchange via the potentially vulnerable reference monitor.

Such protocols may reduce a potential risk of decrypting the critical control flows between coordi-

nating service components by the reference monitor. In such an event a monitor may be instructed

to decrypt the flows based on the availability of encryption/decryption keys in the isolated environ-

ment of the deployed component. It then may potentially alter the original content of individual

coordination messages that may cause the disruption of established service workflow. However,

if appropriate protocols are designed to address such an issue, the impact of a breach may be

minimized. Therefore, the possibility of such a protective enhancement should be adequately in-

vestigated in the future.

82

Bibliography

[1] M.D. Abrams, K.W. Eggers, LJ LaPadula, and IM Olson. Generalized Framework for Access

Control: An Informal Description. In Proc. of NCSC, pages 135–143, 1990.

[2] Alessandro Armando, Roberto Carbone, Gabriele Costa, and Alessio Merlo. Android Per-

missions Unleashed. In Proc. of IEEE CSF, pages 320–333, 2015.

[3] Lee Badger, Daniel F Sterne, David L Sherman, Kenneth M Walker, and Sheila Haghighat.

Practical Domain and Type Enforcement for UNIX. In Proc. of IEEE S & P, pages 66–77,

1995.

[4] Lee Badger, Daniel F Sterne, David L Sherman, Kenneth M Walker, and Sheila A Haghighat.

A Domain and Type Enforcement UNIX Prototype. Computing Systems, 9(1):47–83, 1996.

[5] Davide Balzarotti, Paolo Costa, and Gian Pietro Picco. The LighTS Tuple Space Framework

and its Customization for Context-Aware Applications. WAIS, 5(2):215–231, 2007.

[6] Kirill Belyaev. Lightweight Policy Machine (LPM) for Linux – Component-Oriented Access

Control for "containerized" service environments. https://github.com/kirillbelyaev/tinypm/

tree/LPM2, 2016. accessed 18-September-2016.

[7] Kirill Belyaev and Indrakshi Ray. Component-Oriented Access Control for Deployment of

Application Services in Containerized Environments. In Proc. of CANS, pages 383–399,

2016.

[8] Kirill Belyaev and Indrakshi Ray. Towards Access Control for Isolated Applications. In Proc.

of SECRYPT, pages 171–182, 2016.

[9] Kirill Belyaev and Indrakshi Ray. Component-Oriented Access Control – Application Servers

Meet Tuple Spaces for the Masses. FGCS, page to appear, 2017.

83

[10] Kirill Belyaev and Indrakshi Ray. On the formalization, design, and implementation of

component-oriented access control in lightweight virtualized server environments. C&S,

71:15–35, 2017.

[11] Brian N Bershad, Thomas E Anderson, Edward D Lazowska, and Henry M Levy. User-level

Interprocess Communication for Shared Memory Multiprocessors. ACM TOCS, 9(2):175–

198, 1991.

[12] Matthew A. Bishop. The Art and Science of Computer Security. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

[13] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting Appli-

cations into Reduced-Privilege Compartments. In Proc. of USENIX NSDI, pages 309–322,

2008.

[14] Kevin Boos, Emilio Del Vecchio, and Lin Zhong. A Characterization of State Spill in Modern

Operating Systems. In EuroSys, pages 389–404, 2017.

[15] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Marco Squarcina. Gran: Model

checking grsecurity RBAC policies. In IEEE CSF, pages 126–138, 2012.

[16] Vitaly Buravlev, Rocco De Nicola, and Claudio Antares Mezzina. Tuple Spaces Implemen-

tations and Their Efficiency. In Proc. of COORDINATION, pages 51–66, 2016.

[17] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. XML Dataspaces for Mobile

Agent Coordination. In Proc. of ACM SAC, pages 181–188, 2000.

[18] Xianzhang Chen, Edwin H-M Sha, Qingfeng Zhuge, Weiwen Jiang, Junxi Chen, Jun Chen,

and Jun Xu. A Unified Framework for Designing High Performance In-Memory and Hybrid

Memory File Systems. JSA, 68:51–64, 2016.

[19] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing Inter-

Application Communication in Android. In Proc. of ACM MobiSys, pages 239–252, 2011.

84

[20] CoreOS Developers. What is CoreOS? https://coreos.com/docs/, 2016. accessed 18-

September-2016.

[21] Marco Cremonini, Andrea Omicini, and Franco Zambonelli. Coordination and Access Con-

trol in Open Distributed Agent Systems: The TuCSoN Approach. In Proc. of COORDINA-

TION, pages 99–114. Springer, 2000.

[22] Docker Developers. What is Docker? https://www.docker.com/what-docker/, 2016. accessed

18-September-2016.

[23] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. The Policy Machine: A Novel

Architecture and Framework for Access Control Policy Specification and Enforcement. JSA,

57(4):412–424, 2011.

[24] David Ferraiolo, Janet Cugini, and D Richard Kuhn. Role-Based Access Control (RBAC):

Features and Motivations. In Proc. of ACSAC, pages 241–248, 1995.

[25] David Ferraiolo, Serban Gavrila, and Wayne Jansen. On the Unification of Access Control

and Data Services. In Proc. of IEEE IRI, pages 450–457, 2014.

[26] David F Ferraiolo and D Richard Kuhn. Role-Based Access Control. Proc. of NCSC, pages

554–563, 1992.

[27] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed NIST Standard for Role-Based Access Control. ACM TISSEC, 4(3):224–

274, 2001.

[28] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. Ostia: A Delegating Architecture for

Secure System Call Interposition. In NDSS, 2004.

[29] David Gelernter. Generative Communication in Linda. ACM TOPLAS, 7(1):80–112, 1985.

[30] GrSecurity Developers. What is GrSecurity? https://grsecurity.net, 2016. accessed 18-

September-2016.

85

[31] Serge Hallyn and Phil Kearns. Domain and Type Enforcement for Linux. In Proc. of ALS,

pages 247–260, 2000.

[32] Serge E Hallyn and Andrew G Morgan. Linux Capabilities: Making them Work. In Proc. of

Linux Symp., pages 163–172, 2008.

[33] Inc. Havoc Pennington, Red Hat. D-Bus Specification. https://dbus.freedesktop.org/doc/

dbus-specification.html, 2016. accessed 18-September-2016.

[34] Java NIO Developers. Java Non-blocking I/O Library. http://en.wikipedia.org/wiki/

Non-blocking_I/O_(Java), 2016. accessed 25-October-2016.

[35] Michael K Johnson and Erik W Troan. Linux Application Development. Addison-Wesley

Professional, 2004.

[36] Poul-Henning Kamp and Robert Watson. Jails: Confining the Omnipotent Root. In Proc. of

SANE, pages 1–15, 2000.

[37] Poul-Henning Kamp and Robert Watson. Building Systems to be Shared, Securely. ACM

Queue, 2(5):42–51, 2004.

[38] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans Kaashoek, Eddie

Kohler, and Robert Morris. Information Flow Control for Standard OS Abstractions. In

Proc. of SOSP, pages 321–334, 2007.

[39] Leonard LaPadula. Rule-Set Modeling of Trusted Computer System. In Abrams M., Jajodia

S., and Podell H., editors, Information Security: An Integrated Collection of Essays. IEEE

Computer Society Press, 1995.

[40] Linux Containers Developers. What are Linux Containers? https://linuxcontainers.org/lxc/

introduction/, 2016. accessed 18-September-2016.

[41] Linux Developers. Linux Programmer’s Manual. http://man7.org/linux/man-pages/man7/

capabilities.7.html, 2016. accessed 18-September-2016.

86

[42] Linux Kernel Developers. Transparent Proxy Support. https://www.kernel.org/doc/

Documentation/networking/tproxy.txt, 2017. accessed 10-March-2017.

[43] Linux Programmer”s Manual. Kernel Namespaces. http://man7.org/linux/man-pages/man7/

namespaces.7.html, 2016. accessed 18-September-2016.

[44] Linux Programmer’s Manual. LIBCAP Manual. http://man7.org/linux/man-pages/man3/

libcap.3.html, 2016. accessed 18-September-2016.

[45] Peter Loscocco. Integrating Flexible Support for Security Policies into the Linux Operating

System. In Proc. of USENIX ATC, FREENIX Track, pages 29–42, 2001.

[46] Roberto Lucchi and Gianluigi Zavattaro. WSSecSpaces: a secure data-driven coordination

service for web services applications. In Proc. of ACM SAC, pages 487–491, 2004.

[47] Medusa Developers. Medusa DS9 Security System. http://medusa.terminus.sk/English/

project.shtml, 2016. accessed 18-September-2016.

[48] Naftaly H Minsky, Yaron M Minsky, and Victoria Ungureanu. Making Tuple Spaces Safe for

Heterogeneous Distributed Systems. In Proc. of ACM SAC, pages 218–226, 2000.

[49] Naftaly H Minsky and Victoria Ungureanu. Unified support for heterogeneous security poli-

cies in distributed systems. In Proc. of USENIX SS, pages 131–142, 1998.

[50] Mark Mitchell, Jeffrey Oldham, and Alex Samuel. Advanced Linux Programming. NRP,

2001.

[51] Andrew C Myers and Barbara Liskov. Protecting Privacy using the Decentralized Label

Model. ACM TOSEM, 9(4):410–442, 2000.

[52] n–Logic Ltd. n-Logic Web Caching Service Provider. http://n-logic.weebly.com/, 2016.

accessed 18-September-2016.

87

[53] Amon Ott and Simone Fischer-Hübner. The Rule Set Based Access Control (RSBAC) Frame-

work for Linux. In Proc. of ILK, 2001.

[54] Thomas FJ-M Pasquier, Jatinder Singh, David Eyers, and Jean Bacon. CamFlow: Managed

data-sharing for cloud services. IEEE TCC, 5(3):472–484, 2017.

[55] Daniel Price and Andrew Tucker. Solaris Zones: Operating System Support for Consolidating

Commercial Workloads. In LISA, volume 4, pages 241–254, 2004.

[56] Indrajit Roy, Donald E Porter, Michael D Bond, Kathryn S Mckinley, and Emmett Witchel.

Laminar: Practical Fine-Grained Decentralized Information Flow Control. ACM SIGPLAN

Notices, 44(6):63–74, 2009.

[57] SELinux Developers. Security Enhanced Linux. http://selinuxproject.org, 2016. accessed

18-September-2016.

[58] Jatinder Singh, Jean Bacon, and David Eyers. Policy enforcement within emerging dis-

tributed, event-based systems. In Proc. of ACM DEBS, pages 246–255, 2014.

[59] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson.

Container-based operating system virtualization: A scalable, high-performance alternative

to hypervisors. In ACM SIGOPS OSR, volume 41, pages 275–287. ACM, 2007.

[60] R Spencer, S Smalley, P Loscocco, M Hibler, D Andersen, and J Lepreau. The Flask Security

Architecture: System Support for Diverse Security Policies. In Proc. of USENIX SS, pages

123–139, 1999.

[61] SQLite Developers. SQLite. https://www.sqlite.org/, 2016. accessed 18-September-2016.

[62] Jan Vitek, Ciarán Bryce, and Manuel Oriol. Coordinating Processes with Secure Spaces. Sci.

Comput. Program., 46(1-2):163–193, 2003.

[63] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum: Prac-

tical Capabilities for UNIX. In Proc. of USENIX SS, volume 46, 2010.

88

[64] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. A Taste of Cap-

sicum: Practical Capabilities for UNIX. Communications of the ACM, 55(3):97–104, 2012.

[65] George Wells. Interprocess Communication in Java. In PDPTA, pages 407–413, 2009.

[66] George C Wells. New and improved: Linda in Java. Science of Computer Programming,

59(1):82–96, 2006.

[67] George C Wells, Alan G Chalmers, and Peter G Clayton. Linda Implementations in Java for

Concurrent Systems. CCPE, 16(10):1005–1022, 2004.

[68] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services. In Proc. of SOSP, pages 230–243, 2001.

[69] Charles P Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P Quigley, Erez

Zadok, and Mohammad Nayyer Zubair. Versatility and Unix Semantics in Namespace Uni-

fication. ACM TOS, 2(1):74–105, 2006.

[70] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman.

Linux Security Modules: General Security Support for the Linux Kernel. In Proc. of USENIX

SS, pages 17–31, 2002.

[71] XStream Developers. XStream Serialization Library. http://x-stream.github.io/, 2016. ac-

cessed 18-September-2016.

[72] Yuanzhong Xu, Alan M. Dunn, Owen S. Hofmann, Michael Z. Lee, Syed Akbar Mehdi, and

Emmett Witchel. Application-Defined Decentralized Access Control. In Proc. of USENIX

ATC, pages 395–408, 2014.

[73] Jia Yu and Rajkumar Buyya. A Novel Architecture for Realizing Grid Workflow using Tuple

Spaces. In Proc. of Intl. Workshop on Grid Computing, pages 119–128, 2004.

[74] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing Distributed Systems

with Information Flow Control. In Proc. of USENIX NSDI, pages 293–308, 2008.

89

