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ABSTRACT 

 

 

 

ASSESSING COMMUNITY-WIDE HEALTH IMPACTS OF NATURAL DISASTERS: 

STUDIES OF A SEVERE FLOOD IN BEIJING AND TROPICAL CYCLONES IN THE 

UNITED STATES 

 

 

 

Death and injury tolls occurring during natural disasters have traditionally been estimated using a 

disaster surveillance approach, where each death or injury is considered case-by-case to 

determine if it can be attributed to the disaster. This approach may not always capture the overall 

community-wide health effects associated with disaster exposure, especially in cases where 

much of the excess morbidity and mortality result from outcomes common outside of disaster 

periods (e.g., heart attacks, respiratory problems) rather than well-characterized disaster-related 

risks that are rarer outside of storm events (e.g., drowning, carbon monoxide poisoning, trauma). 

The goal of this dissertation is to examine the community-wide impacts of natural disasters on 

some common health outcomes. To achieve this goal, we assessed the community-wide health 

risks from exposure to two types of climate-related natural disasters, a severe flood and tropical 

cyclones, as compared with matched unexposed days in the same community. Our results can 

provide new evidence on how natural disasters affect human health, contributing to and 

complementing the large base of existing literature generated using a disaster surveillance 

approach.  

 

Mortality risk of a severe flood. On July 21–22, 2012, Beijing, China, suffered its heaviest 

rainfall in 60 years, which caused heavy flooding throughout Beijing. We conducted a matched 
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analysis comparing mortality rates on the peak flood day and the four following days to similar 

unexposed days in previous years (2008–2011), controlling for potential confounders, to estimate 

the relative risks (RRs) of daily mortality among Beijing residents associated with this flood. 

Compared to the matched unexposed days, mortality rates were substantially higher during the 

flood period for all-cause, circulatory, and accidental mortality, with the highest risks observed 

on the peak flood day. No evidence of increased risk of respiratory mortality was observed in 

this study. We estimated a total of 79 excess deaths among Beijing residents on July 21–22, 

2012; by contrast, only 34 deaths were reported among Beijing residents in a study estimating 

the flood’s fatality toll using a traditional surveillance approach. Results were robust to study 

design and modeling choices. Our results indicate considerable impacts of this flood on public 

health, and that much of this impact may come from increased risk of non-accidental deaths. To 

our knowledge, this is the first study analyzing the community-wide changes in mortality rates 

during the 2012 flood in Beijing, and one of the first to do so for any major flood worldwide. 

This study offers critical evidence in assessing flood-related health impacts, as urban flooding is 

expected to become more frequent and severe in China. 

 

Health risk of tropical cyclones. To measure storm exposure, we separately considered five 

metrics—distance to storm track; cumulative rainfall; maximum sustained wind speed; flooding; 

and tornadoes. For mortality outcomes, we used community vital records for 78 large eastern 

United States (U.S.) communities, 1988–2005, to estimate the risks of storm exposure on four 

mortality outcomes. For emergency hospitalization outcomes, we used Medicare claims for 180 

eastern US counties, 1999–2010, to estimate storm-related risks on emergency hospitalizations 

from cardiovascular and respiratory disease among Medicare beneficiaries. We compared the 
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health outcome rates across the study population (all community residents for the mortality 

analysis; community Medicare beneficiaries for the hospitalization analysis) on storm-exposed 

days versus similar unexposed days within each community. For each combination of exposure 

metric and health outcome, we estimated storm-associated health risks for a window from two 

days before to seven days after the day of storm’s closest approach. For the mortality analysis, 92 

Atlantic Basin tropical cyclones were considered based on U.S. landfall or close approach, with 

70 communities exposed to at least one storm; for the hospitalization analysis, 74 storms were 

considered for 175 exposed counties. Under the wind-based exposure metric, we found 

substantially elevated risk for all mortality outcomes considered compared with matched 

unexposed days, with risk typically highest on the day of the storm’s closest approach. When 

excluding the ten most severe storm events based on wind exposures, however, we did not 

observe significantly increased risk for the remaining storm exposures on any mortality 

outcomes. Among Medicare beneficiaries, the cumulative risks of respiratory hospitalizations 

were increased under all storm exposure metrics considered, for all storm exposures and across 

all exposed counties; these risks remained significantly elevated even when the ten most severe 

storm exposures (based on wind exposure) were excluded. Our findings on community-wide 

health risks from tropical cyclones add important insights to results from disaster surveillance: 

first, the impacts of tropical cyclones on non-accidental mortality can, in some cases, be much 

greater than identified in case-by-case surveillance studies; second, there is strong evidence that 

risks of Medicare emergency hospital admissions due to non-injury morbidity are elevated 

during the storm exposure period; and third, intense wind exposure can characterize many of the 

tropical cyclone exposures with particularly high risk on non-accidental mortality, as well as 

respiratory hospitalizations in the elderly.  
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Chapter 1: Introduction 

1. Natural disasters 

1.1 Introduction 

This dissertation investigates how specific disasters—a severe flood in Beijing and tropical cyclones in 

the United States—are associated with changes in the community-wide risks of several broad health 

outcomes. According to the Centre for Research on the Epidemiology of Disasters (CRED), there are six 

categories of natural disasters: biological (e.g., epidemics), geophysical (e.g., earthquakes), 

meteorological (e.g., tropical cyclones (TCs)), hydrological (e.g., floods), climatological (e.g., heat waves 

and wild fires) and extra terrestrial (e.g., meteorites) (1). Since the late 1990s, many types of 

meteorological, hydrological, and climatological natural disasters have increased in frequency and 

intensity, including floods and TCs (2), the two types of disasters investigated in this research. 

Floods can occur in inland areas, including drainage floods, river floods, and flash floods, as well as in 

coastal areas, where floods are often caused by storm surge from tropical cyclones (3). Floods can be 

caused by or worsened by both climate- and human-related factors (4,5). With changes in climate and 

land use, the frequency of river, coastal, and flash floods have increased in past years (2), with Asia and 

Africa more frequently threatened by floods than other continents (2,5). From 1980 to 2009, although the 

annual frequency of floods has increased around the world, the reported average number of deaths per 

flooding event (based on disaster surveillance systems) has slightly decreased (5). China, in particular, is 

one of the countries most frequently impacted by floods. In the past decades, China has experienced 

several severe floods, including the 1998 Yangtze River flood (> 1,000 deaths) (6), the 1996 Yellow 

River flood, the 2012 north China flood (7,8) and the 2016 Guangdong flood (9). 

TCs are atmospheric circulations that develop over tropical or subtropical oceans and that, after 

developing, are primarily driven by the heat and moisture from oceans (10–12). TCs are typically 

characterized by a number of hazards that can affect humans, including storm surges, strong winds (which 
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usually weaken rapidly after the storm’s landfall), and heavy precipitation (10–12). Worldwide, TCs can 

originate over six tropical and subtropical ocean basins: North Atlantic, Northeast Pacific, Northwest 

Pacific, North Indian Ocean, South Indian Ocean, and Southwest Pacific-Australia (13,14). Thus, 

countries and regions bordering these TC basins typically most affected by TCs; these include Australia, 

South China, Japan, the Korean Peninsula, the Philippines, and the eastern United States. Depending on 

where it develops among these basins and its intensity, a TC is referred to by different names. For 

example, TCs that develop in the northwestern Pacific Ocean basin are called typhoons, while those that 

develop in the Atlantic basin and northeastern Pacific Ocean and have maximum sustained wind speed 

exceeding 33 m/s are called hurricanes (10). In the Atlantic basin, the Saffir-Simpson scale (with 

Category 1 to 5 ratings) is commonly used to characterize a hurricane based on the sustained wind speed, 

as well as to roughly estimate the potential damage of storm (15). In the Atlantic basin, the TC season 

generally lasts from June to November, typically peaking in September (16). While the timing of tropical 

cyclone seasons are almost the same over other basins in the northern hemisphere, in the southern 

hemisphere—South Indian and Southwest Pacific-Australia basin—the TC season generally runs from 

November to April (17). TC formation can be influenced by a number of slower-varying patterns in the 

climate system, including seas surface temperature, as well as by different oscillation patterns including 

the El Nino-Southern Oscillation (ENSO) (18–23). As a result of the dependence on these lower-

frequency phenomena, the average frequency of tropical cyclones can vary within a basin at periods of 

years to decades. 

1.2 Natural disasters under climate change 

Improving our understanding of the health risks associated with floods and tropical cyclones (TCs) is 

particularly important given the chance that changing climate could increase the frequency or intensity of 

these types of disasters in certain regions over the coming decades. In the past few decades, there has 

been considerable work done to investigate the interaction between climate change and meteorological, 

hydrological, and climatological natural disasters. These studies have focused on two main topics: 1) 
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whether changes in climate have already generated noticeable impacts on natural disaster (i.e., observed 

trends), typically assessed using historical data, and 2) how climate change might alter patterns in natural 

disasters in the future, typically assessed using projections output from climate models (24). Here, we 

discuss the observed trends in the recent past and projected changes in the frequency and characteristics 

of floods and TCs, with a focus on patterns in China and the United States, the two study areas 

investigated in the research projects forming this dissertation. 

Observed recent trends in floods. In China, recent trends in climate exposures related to flooding vary 

regionally. While some regions of China (e.g., the North China, Northeast China, and the Yellow River 

basins) experienced a decrease in the frequency of extreme rainfall events from 1961 to 2009, other 

regions experienced an increasing trend in these events (25). This observed temporal variability in the 

frequency of extreme rainfall events is in part attributable to global warming, with some influence as well 

from patterns in the state of other aspects of the climate system, including the East Asian Monsoon and 

ENSO (25). In the 50 years from 1961 to 2010, the total precipitation during summer months (June–

August) increased in Western China and Southeastern China, but decreased in Northeastern China (26). In 

the U.S., extreme precipitation events have become more frequent nationally during the past few decades, 

with increases particularly notable in the Northeast, Midwest, and upper Great Plains regions (4). 

However, this pattern in increased frequency of extreme precipitation events does not translate directly 

into an increase in the frequency of river flooding (27), in part because flooding is influenced by a 

number of factors other than precipitation, including drainage of the affected area, land use, and prior soil 

conditions. While most of the U.S. experienced little or no change in the frequency of river floods from 

the 1920s through 2008, some areas showed appreciable changes (27). 

Projections of floods. Projections created under different climate change-related scenarios indicate that 

future patterns in extreme precipitation and flood events will likely vary substantially across China. 

However, these climate studies are in broad agreement that an increase is expected in China in the 

intensity of the extreme precipitation and flood events that will occur in the future as a result of climate 
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change. For example, one study used coupled general circulation models (CGCMs) to create projections 

under three emissions scenarios and found that, while some regions of China (e.g., Southern China and 

the Yangtze River area) were projected to have extreme precipitation events that are both more frequent 

and intense in the coming century, the Northern and Northeastern regions of China were only projected to 

experience an increase in the intensity of extreme precipitation events, but not in their frequency (28). In 

another study, based on the simulations generated by 22 global climate models and a regional climate 

model, most parts of China were projected to experience flood events that are more frequent, more 

intense, and longer (29). 

Observed trends in tropical cyclones. There is clear evidence from climate studies that the intensity, 

frequency, and duration of TCs in the Atlantic basin has increased since the early 1980s; further, there is 

evidence of an increased frequency over this period of the most intense TCs in this basin (Saffir-Simpson 

Category 4 and 5 storms) (24,30). Recent studies have also found evidence that TCs have had a pattern of 

decreasing average forward (translational) speed of the storms, with a 10% decrease in this forward storm 

speed globally, and a 20% decrease when Atlantic basin TCs are over land, between 1949 and 2016 (31). 

This storm characteristic can play an important role in the potential human impacts of TCs, because the 

speed of a storm’s forward motion is generally related to the amount of rainfall from the storm, as 

evidenced by the unprecedented rainfall associated with Hurricane Harvey in Texas in 2017 (32) and 

Hurricane Florence in 2018 (33). 

Projections of tropical cyclones. TCs are driven by phenomena at a geographic scale that is smaller than 

can be easily captured by global-scale climate models. Because of this geographic scale of the phenomena 

key to TCs, climate projections of TC patterns under future scenarios can vary substantially across 

studies, as a result of differences in downscaling techniques and model resolutions and algorithms. The 

majority of such projection studies suggest that TCs will likely become less frequent (e.g., an estimated 

16% decrease in frequency from one study), but the TCs that do occur will on average be more intense 

(projected 3.6% increase in average TC intensity) and have higher precipitation rates (projected increase 
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of 5–20%) by the end of the 21th century (14,34). Further, very intense TCs (e.g., Saffir-Simpson 

Category 4 and 5 storms) are expected to become more frequent (35). Projections in TC trends differ 

between the basin that spawn TCs. For example, while the average intensity of Atlantic-basin hurricanes 

(maximum sustained wind > 33 m/s) is expected to increase by 4.5% by the late of the 21th century, the 

average intensity of such storms in the southwest Pacific basin is expected to decrease by 3.1% over the 

same period (14). Improving climate projections of expected trends in TC patterns is an area of 

continuing research, and projections of trends within specific basins continue to disagree substantially 

across projections generated from different climate models (24). 

2. Health impacts of natural disasters 

2.1 Assessing disaster-attributable mortality and morbidity 

Natural disasters can cause a range of public health consequences, including mortality, injuries, and 

infectious disease. According to CRED, a disaster death tool is counted as the “number of people who lost 

their life because the event happened (it includes also the missing people based on official figures)” (36), 

while disaster injuries are defined by this international epidemiology center as the “number of people 

suffering from physical injuries, trauma or an illness requiring immediate medical treatment as a direct 

result of a disaster” (36). Traditionally, estimates of the number of deaths and injuries related to a natural 

disaster have been determined based on disaster surveillance (5,37,38), an approach that considers the 

attribution of the cause or causes of each death in a disaster-exposed geographic area and time period on a 

case-by-case basis. Such analysis will often result in estimated death and injury tolls both for the entire 

disaster period and also categorized by disaster phase (pre-, during-, and post-disaster) (39). 

Disaster surveillance. Disaster surveillance has been conventionally used as a tool to generate the total 

estimates of injuries, morbidity, and mortality occurred during and in the aftermath of disasters (37). 

Existing disaster epidemiologic studies on health impacts of disasters, as discussed in the next subsections 

(“Current epidemiological evidence on health impacts of floods and TCs”), are generally based on the 
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information provided by disaster surveillance. Depending on the information collected, disaster 

surveillance is also sometimes referred to as morbidity (including injury and illness) surveillance or 

mortality surveillance. Four types of disaster surveillance can be conducted during disasters, including 

passive surveillance, active surveillance, sentinel surveillance, and syndromic surveillance (37,40). Given 

the specific situation and the feasibility of conducting surveillance during a disaster, a combination of 

different surveillance activities is often used to provide accurate and complete public health information. 

The primary purpose of this surveillance is typically to provide essential public health information during 

a disaster. To achieve this, disaster surveillance typically includes: 1) collecting health data, based on a 

specific case definition, from a population of interest; 2) analyzing and interpreting the collected data; and 

3) disseminating the data and analyzed results to public health practice (37). For the first element, data 

can be collected from a variety sources, including health care facilities, records from medical 

examiner/coroner, poison centers, vital statistics, American Red Cross, Federal Emergency Management 

Agency, and news media (37,41). Case definition is a very important consideration conducting disaster 

surveillance. Public officials have been recommended to take into consideration both the direct and 

indirect health effects in establishing case definitions for disaster surveillance activities (37,42). The U.S. 

CDC provides a comprehensive reference guide to help death certifiers (e.g., medical examiners and 

coroners) to classify whether a death occurring during a disaster period is disaster-related (43). This guide 

recommends two checks: 1) did the death occur in the geographic area affected by the disaster?; and 2) if 

so, can the death be directly linked to the disaster (i.e., is it a “death caused by the direct physical forces 

of the hazard or event” (43)) or linked indirectly to the disaster (i.e., was the death “a consequence of the 

unsafe or unhealthy conditions created by the hazard or event, or by preparations for or cleanup after the 

natural hazard of event, or by performing work to minimize consequences of the disaster” (43))? Deaths 

meeting these criteria should be identified as disaster-related on the death certificate; these disaster 

indications can then be used to collect all death certificates for deaths attributable to the disaster in 

generating the disaster’s fatality toll. 
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Since disaster surveillance is the main tool of generating overall estimates of disaster-related morbidity 

and mortality in affected areas, it has been traditionally the basis for many large-scale studies 

investigating flood- and TC-related mortality and morbidity (5,38,44–48), including research on trends in 

deaths and injuries associated with these disasters over time, health impacts by country and region, major 

causes of flood- and TC-related fatalities, and potential risk factors for adverse health consequences. 

However, disaster surveillance, though it plays a very important role in effectively responding to 

disasters, is likely to be subject to several limitations with respect to quantifying the full scale of health 

impacts associated with exposure to natural disasters. First, because of the lack of a standardized form in 

collecting and reporting health data in disaster surveillance activities, health officials use different criteria 

in classifying a health outcome as “disaster-related” (42,49–51), making it difficult to aggregate results 

across studies of different disasters. Second, surveillance activities can struggle to estimate accurate 

prevalence or incidence rates due to lack of denominator data or complete counts. Furthermore, 

surveillance activity, by collecting only information on deaths that occurred during and after a disaster, 

may miss any pattern of potential avoided death during a disaster. For example, people may stay at home 

instead of going outside in high-risk condition like tropical cyclones (52), so the potential death risks in 

driving would be reduced. Patients may no longer be exposed to any surgical risks if hospitals have 

cancelled scheduled surgeries due to power outages (53). Finally, surveillance evaluates whether a death 

or injury was “disaster-related” on a case-by-case basis (50,54) and so may not be able to capture the 

overall community-wide health effects associated with exposure to a disaster if for some of the disaster-

related deaths it is difficult to establish the causal chain between the disaster and the death. This is 

especially of concern if many of the excess events during a disaster were outcomes that are also common 

outside of disaster periods (e.g., heart attacks, respiratory problems), outcomes that are harder for public 

health surveillance system to classify on a case-by-case basis as “disaster-related”, compared to well-

characterized disaster-related risks (e.g., drowning and fracture) (55). There is some evidence that natural 

disasters are likely to elevate these common causes of morbidity and mortality (56–58), and recent 
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evidence has highlighted this critical gap in our understanding of health risks from disaster exposure 

(56,59–61). 

The recent controversy about the total deaths caused by Hurricane Maria in Puerto Rico has underscored 

the potential for underestimation disaster-related deaths by traditional disaster surveillance methods. 

Hurricane Maria made landfall in Puerto Rico on September 20, 2017. On December 9, 2017, the initial 

official death toll was 64 (62), based on counts of death certificates with “hurricane-related” appearing as 

the direct cause of death (63). Later in the year, based in part on strong anecdotal evidence that the 

official fatality toll severely underestimated the full mortality impacts of the storm, a number of 

independent investigations, including media reports, attempted to estimate the excess mortality in the 

post-hurricane period through other methods (64). For example, a randomized survey of households 

across Puerto Rico estimated that 4,645 excess all-cause deaths were attributable to hurricane between 

September 20 and December 31, 2017 (64). In another study, the excess mortality was estimated for the 

period from September 2017 to February 2018 in an independent assessment (65), in which the authors 

compared the observed mortality with expected mortality predicted from generalized linear model using 

previous seven years data, with adjustment for time trend of population characteristics and the massive 

population displacement following the hurricane. In August 2018, the Government of Puerto Rico 

officially revised the death toll to 2,975 (68), more than 60 times of the initial official toll of 64 deaths. 

Therefore, to complement results from this traditional surveillance approach, critical information is 

needed to improve current understanding of health risks in natural disasters. 

2.2 Current epidemiological evidence on health impacts of floods 

Several systematic reviews have been conducted to aggregate study findings on floods and human health 

(5,44–46). The magnitude of impacts varies between populations due to factors relating to flood types, 

flood characteristics, effectiveness of warning and evacuation, and population vulnerability (3,45). 

Worldwide between 1980 and 2009, 539,811 deaths and 361,974 injuries were attributed to floods (5), 

with Asia and Africa the two regions most frequently struck by floods (2). In 2010, floods caused 2,100 
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deaths in Pakistan and another 1,900 in China (2). In the U.S., between 1959 and 2005 a total of 4,586 

fatalities (not including deaths in Louisiana from Hurricane Katrina) were caused by flooding (69). 

Drowning has been identified as the primary cause of flood-related deaths (5). One study investigated 13 

flood events in the U.S. and Europe and found that, of all flood-attributable deaths, approximately two 

thirds were caused by drowning, with others caused by trauma (about 10%) and heart attacks (about 5%), 

among other causes (70). Several U.S.-based studies also found evidence that a number of flood-related 

deaths were tied to use of motor vehicles during the flood (71–73), and flood-related deaths from 

diarrheal diseases have been reported in several studies, although these results remain inconsistent across 

studies (74–76). In terms of non-fatal outcomes, the primary cause of flood-associated morbidity are non-

fatal injuries and exacerbation of chronic medical conditions (77,78). Many other types health 

consequences have also been reported as associated with floods in previous studies, including 

communicable and non-communicable diseases (79,80) and mental health issues (81). 

2.3 Current epidemiological evidence on health impacts of TCs 

Worldwide from 1980 to 2009, 412,644 deaths and 290,654 injuries were attributed to TCs (38). In the 

U.S. during the 50 years from 1963 to 2012, about 2,500 direct deaths (47) were identified as attributable 

to TCs, and in a subset of the TCs in that period, about 1,800 deaths were indirectly linked to the TCs 

(48). For the direct deaths identified in the U.S. as resulting from TCs, drowning and other water-related 

incidents accounted for the vast majority (approximately 90% of the identified direct TC deaths) (47). 

Common pathways for the link between TCs and indirect deaths included problems associated with power 

or power outages (e.g., carbon monoxide poisoning due to misuse of a portable generator, electrocutions), 

car accidents and other motor vehicle-related pathways, and evacuations (48). Indirect impacts of TCs on 

human health could also come through infectious disease outbreaks related to storm-damaged sanitation 

systems (83) and mental health outcomes, including post-traumatic stress disorder in both adults (84) and 

adolescents (85). 
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3. A brief description of the study design used in this dissertation 

To help respond to research gaps in current knowledge on the health impacts of floods and TCs, here we 

aim to estimate the overall community-wide change in the rates of health outcome rates from exposure to 

natural disasters, compared to the expected rates had the disasters not occurred. In framing our research 

question in this way, we are using a potential-outcomes (or counterfactual) paradigm: ideally, we would 

measure the community-wide health outcome rates both during the observed disaster exposures and 

during the same days, but without disaster exposure (i.e., the second potential outcome, or the 

counterfactual), and compare the difference in these rates as a causal effect estimate of the effect of 

disaster exposure on these health outcome rates (86–90). 

In a study of the effects of disaster exposure on community health outcome rates, the residents of the 

community that form the study population can be conceptually divided into four groups (Shown in Table 

1.1; based on the Table 8.1 in (90) and the ideas in (91)): Group 1: those who would always have the 

health outcome (D), regardless of exposure to the disaster; Group 2: those who would have the health 

outcome under disaster exposure but would not have it (ND) otherwise; Group 3: those who would have 

the health outcome without disaster exposure but would not have it with disaster exposure; and Group 4: 

those who would never have the health outcome, with or without disaster exposure. When considering 

rare outcomes like death or hospitalization, most community residents will fall into Group 4. Members of 

Group 3 might include community residents who, for example, were scheduled for a surgery on the day of 

the disaster and would have died during the surgery had the disaster not occurred, but for whom the 

surgery is cancelled because of the storm; this group could also include community residents who would 

have died from a car accident had the storm not hit the community but stayed home and avoided this 

outcome because of the storm. Members of Group 2 include most of the deaths counted in official fatality 

tolls based on disaster surveillance, for which the causal chain from disaster exposure to death can be 

established for that specific case, but may also include some deaths (e.g., from common causes like 

cardiorespiratory deaths, deaths among the very frail) that also would not have occurred during the study 
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days without the disaster, but for which it is difficult in surveillance to establish the causal link with the 

disaster, and so have been missed in official fatality tolls. 

Table 1.1 Distribution of possible health outcome as a result of exposed/unexposed to disaster in a population of size N (= N1 + 
N2 + N3 + N4), reproduced from Table 8.1 in (90) and based on the ideas in (91)* 

Group Exposed to disaster Unexposed to disaster Number Proportion of the population 

1 D D N1 P1 

2 D ND N2 P1 

3 ND D N3 P3 

4 ND ND N4 P4 

*D represents developing the health outcome of interest, and ND represents not developing the health outcome of interest. 

In an idealized study, we could measure health outcomes for the full study population both during disaster 

exposure and under the counterfactual of the disaster failing to hit the community (e.g., collect all 

information required to calculate all values of N and P in Table 1.1). With these measurements, we could 

directly determine the probability of the health outcome of interest when everyone is exposed to disaster 

as P1+P2, and the probability of the health outcome when no one is exposed to disaster as P1+P3. Then 

the causal relative risk is the ratio of these two probabilities. In reality, it is impossible to observe both 

potential outcomes, and so we must find a different way to try to determine how disaster exposure 

affected the probability of a given health outcome. 

The study design we used in the research in this dissertation is a matched-analysis approach, in which we 

compared the health outcome rates during each identified exposed day (i.e., flood- or TC-exposed day) to 

matched unexposed days in other years, with matching by community and time of year (more details 

given in the Methods sections of the next Chapters). We also applied model control in analyses to control 

for potential confounding from yearly trends and day of week. By matching disaster-exposed days with 

similar unexposed days in the same community, we are attempting to approximate the unobserved 

counterfactual health outcome distribution (i.e., in the absence of a disaster in the community) on the 

exposed days using the observed health outcome distribution on these matched unexposed days. 
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This approximation will never be exact, but can be effective in estimating a causal effect if the population 

of the community on the exposed day and the matched unexposed days are, or come close to being, 

exchangeable. The population on the disaster-exposed days and matched unexposed days are 

exchangeable if their health outcome distribution would be identical when they experience identical 

exposure (86,87). When using matched days from other years to measure health outcome rates in the 

unexposed state, the fact that the exposed and unexposed populations are from different years is a key 

threat to this exchangeability. As a consequence, the estimate of the effect of disaster exposure on risk of 

the health outcome may be subject to confounding. The most important confounding in this study design 

stems from temporal variation in many characteristics of study population, such as age distribution, 

socioeconomic status, and chronic disease rate. To address the confounding in our disaster-health signal, 

we adjusted for year in the regression model to estimate the association of interest. Details in adjusting 

confounding and possibility of residual confounding are discussed in the next Chapters. 

Therefore, although we are theoretically framing our design in terms of causal inference, we used 

traditional regression models rather than causal inference methods in statistical analysis. As a result, we 

will interpret our estimated results as associational instead of causal effects, and in Chapter 5 we discuss 

potential limitations of our study design in estimating the association between disaster exposure and 

community-wide health outcome rates. There has recently been a conversation in the context of air 

pollution epidemiology about whether assessing causal validity should focus exclusively on using causal 

inference methods (92,93). Dominici and Zigler argued that causality assessment in air pollution 

epidemiology should focus “most importantly on the design decisions that render the analysis of 

observational data an approximation of the analysis of a randomized experiment” (92), including design 

decisions regarding both the study design and analytical decisions. Such a focus emphasizes thoughtful 

considerations of how to make best use of available data to construct an adequate comparison group, and 

to use the framework of potential outcomes to explore potential for biases introduced by those design 
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decisions, regardless of whether the methods used to analyze the data are traditional regression methods 

or causal inference methods. 

4. Objectives of this dissertation 

The overarching goal of this dissertation is to examine the community-wide effects of natural disasters on 

some common health outcomes. Specifically, we estimate the associations between: 1) a severe flood of 

July 21, 2012, and all-cause, accidental, circulatory, and respiratory mortality in Beijing, China; 2) 

Atlantic-basin tropical cyclones and all-cause, accidental, cardiovascular, and respiratory morality in 

eastern U.S. communities, 1988–2005; and 3) Atlantic-basin tropical cyclones and cardiovascular and 

respiratory hospitalizations among Medicare beneficiaries in eastern U.S. communities, 1999–2010. 
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Chapter 2: Changes in the community-wide rates of all-cause, circulatory, respiratory, and 

accidental mortality in Beijing, China during the July 2012 flood 

1. Chapter overview 

On July 21–22, 2012, Beijing, China, suffered its heaviest rainfall in 60 years. The average rainfall was 

170 mm across Beijing and reached 460 mm in the Fangshan District in less than 24 hours, causing heavy 

flooding throughout Beijing. While two studies have estimated the fatality toll of this disaster based on a 

traditional surveillance approach of assessing deaths during the event case-by-case, this approach can be 

prone to miss some disaster-related deaths, particularly for deaths from common non-accidental causes, 

and would fail to identify any patterns in avoided deaths during the disaster. Therefore, to complement 

results from this traditional surveillance approach, we aimed to investigate how community-wide 

mortality rates differed during this flood from the rates expected had the flood not occurred. To do so, we 

conducted a matched analysis comparing mortality rates on the peak flood day and the four following 

days to similar unexposed days in previous years (2008–2011), controlling for potential confounders, to 

estimate the relative risks (RRs) of daily mortality among Beijing residents associated with this flood. 

Compared to the matched unexposed days, mortality rates were substantially higher during the flood 

period for all-cause, circulatory, and accidental mortality, with the highest risks observed on the peak 

flood day. On the peak flood day, the flood-associated relative risks of mortality were 1.34 (95% 

confidence interval: 1.11–1.61), 1.37 (1.01–1.85), and 4.40 (2.98–6.51) for all-cause, circulatory, and 

accidental mortality, respectively. No evidence of increased risk of respiratory mortality was observed in 

this study. We estimated a total of 79 excess deaths among Beijing residents on July 21–22, 2012; by 

contrast, only 34 deaths were reported among Beijing residents in a study estimating the fatality toll of 

this flood using a traditional surveillance approach. Results were robust to study design and modeling 

choices. Our results indicate considerable impacts of this flood on public health, and that much of this 

impact may come from increased risk of non-accidental deaths. To our knowledge, this is the first study 

analyzing the community-wide changes in mortality rates during the 2012 flood in Beijing, and one of the 
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first to do so for any major flood worldwide. This study offers critical evidence in assessing flood-related 

health impacts, as urban flooding is expected to become more frequent and severe in China. 

2. Introduction 

On July 21–22, 2012, Beijing, China, suffered its heaviest rain in 60 years (1,2). The average rainfall was 

170 mm across Beijing; in the Fangshan District, the district with heaviest rainfall, 460 mm of rain fell in 

18 hours (1). By comparison, in Beijing the typical total precipitation for the whole month of July is 160.5 

mm (3). This extreme rainfall caused extensive flooding in Beijing. 

Two studies (4,5) estimated the fatality toll from this flood, using a traditional surveillance approach of 

investigating each death that occurred in Beijing during the flood period, case-by-case, to identify which 

were flood-attributable. Based on this approach, 60 or more of the deaths in Beijing (including both 

residents and non-residents) on July 21–22, 2012, were attributable to the flood, mostly from drowning. 

However, this traditional surveillance approach can undercount disaster-associated deaths, especially 

from causes that are common outside of disaster periods (6). Further, it is unable to identify any patterns 

of potential avoided deaths during the disaster (e.g., a reduction in automobile fatalities related to people 

avoiding driving during severe weather conditions (7)). Given these limitations in the traditional 

surveillance approach, critical complementary information on disaster-associated health risks can be 

provided by assessments that investigate changes in mortality rates throughout the disaster-affected 

community, comparing observed rates during the disaster to the rates expected had the disaster not 

occurred. 

While assessments of community-wide mortality rates have been used to help understand the health 

impacts of other climate-related disasters, especially extreme temperature and heat waves (e.g., (8,9)), 

very few studies have used a similar technique to better understand the mortality risks associated with 

floods. Several previous studies have explored large-scale, multi-year patterns in flood-related fatality 

tolls, including in the United States (10) and Australia (11), but these employed a traditional surveillance 

approach. Worldwide, a few studies (e.g., (12–16)) have investigated flood-associated mortality risks by 
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comparing the rate of community-wide mortality observed during the flood to that in non-flooded periods 

or areas. These studies have generally found important increases in community-wide mortality rates 

during and following severe floods. For example, a 47% increase in monthly mortality rates was observed 

in New Orleans, LA, in the period following Hurricane Katrina and its related flooding compared to other 

years (13), while a controlled survey of the 1968 flood in Bristol reported a 50% increase in all-cause 

mortality among the affected population in the 12 months after the flood (14). However, evidence on how 

community-wide mortality rates change during severe floods remains extremely limited, including in 

China. 

These community-wide assessments can be particularly helpful in capturing changes in rates of 

circulatory and respiratory mortality during a disaster, as both are common mortality outcomes outside of 

disaster periods and so hard to attribute to a disaster on a case-by-case basis. Limited studies from outside 

China have found floods can substantially increase the risk of non-fatal cardiorespiratory outcomes, 

making it plausible that major floods could also increase community-wide rates of circulatory and 

respiratory deaths. For example, a typhoon-induced flood in South Korea was associated with elevated 

risks of heart palpitations (17), while a 1-in-180-year flood in Carlisle, England, exacerbated existing 

chronic conditions for many people, resulting in adverse health outcomes related to heart attacks and 

dementia (18). 

Beijing’s large population (> 21 million (19)) provides the power to investigate how a major flood 

changed community-wide mortality rates during and immediately after the event, both for deaths from all 

causes and for deaths from several specific causes (circulatory, respiratory, and accidental). Our analysis 

complements existing knowledge of how floods affect human health based on studies conducted using the 

traditional surveillance approach. In particular, our approach provides estimates that are less likely to 

undercount non-accidental disaster-associated deaths and that could identify any potential patterns of 

avoided mortality during the flood. 
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3. Methods 

Data 

We obtained daily mortality counts from the Chinese Center for Disease Control and Prevention (CDC) 

for all Beijing residents from January 1, 2008, to December 31, 2012. Cause of death was coded 

according to the International Classification of Disease, Revision 10 (ICD-10, 2003 version) (20). We 

aggregated data to create daily community-wide counts of deaths from four causes: all-cause, accidental 

(ICD-10: S00–Z99), circulatory (I00–I99), and respiratory (J00–J99). We obtained residential population 

data from the National Bureau of Statistics of China (19). We obtained daily temperature data from a 

weather station located in Nanjiao District and daily average concentrations of particulate matter with an 

aerodynamic diameter ≤ 2.5 micrometers (PM) (used in sensitivity analysis) from a station in the Haidian 

District, both administrated by the Beijing Meteorological Bureau. 

Statistical Analysis 

The methodology is still in development for estimating how community-wide mortality rates during and 

immediately after a disaster differ from expected rates had the disaster not occurred. One potential 

approach is to use the study designs common in studying ambient exposures like air pollution and 

temperature, including time series (e.g., (8,21)) and time-stratified case-crossover study designs (e.g., 

(22,23)). However, when investigating risks associated with a discrete disaster period, rather than a 

continuous exposure, a potential limitation of both of these approaches is that they include unexposed 

days that are close in time to the disaster, including days immediately after the disaster. This element of 

both study designs could lead to biased estimates if disasters have extended impacts on community-wide 

health risks beyond the modeled period of risk. Such extended impacts have been observed following 

previous major disasters; a recent example is that the mortality rate in Puerto Rico was 62% higher 

throughout the three months following Hurricane Maria compared with the same period the year before 

(24). Given these potential concerns with applying time series and case-crossover study designs to 
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analyze the effects of a disaster, we instead used a study design that matches the days of the flood disaster 

to similar unexposed days from the same time of the year in other years, with control for long-term trends 

in mortality rates and the influence of temperature on mortality risk incorporated in the statistical model 

fit to this matched data. As a sensitivity analysis, we also estimated risks based on time series and case-

crossover designs, to help determine the sensitivity of estimates to the choice of study design. 

We matched the day of worst flooding (peak flood day, July 21, 2012), as well as four days after the peak 

flood day, with similar unexposed days. For the matched unexposed days, we selected days that were in: 

1) a different year than the flood year; 2) the same month of year as the flood (July); and 3) the same day 

of week as the exposed day. To these matched data, we fit a model incorporating a distributed lag 

approach to estimate the immediate and short-term relative risks (RRs) of this flood on daily community-

wide mortality rates in Beijing while controlling for the potential confounders of long-term trends in 

mortality rates and temperature’s influence on mortality risk. We fit the following generalized linear 

model to the matched data: 

 log[&(())] = log(-)) + / + ∑ 123)42
5
267 + 8(9:;) + <=)  (2.1) 

where: 

• ()  is the daily mortality among all Beijing residents on day t; 

• -)  is the residential population of Beijing in the year of day t, included as an offset term to capture 

variation in Beijing’s population over the study period; 

• / is the model intercept; 

• 12 (l = 0, …, 4) are the coefficients estimated from an unconstrained distributed lag function of flood 

exposure (25). 3) is 1 for the peak flood day and 0 for other days, and therefore 3)42  is an indicator 

variable denoting whether a given day at lag l from day t is within the flood-exposed period or 

within the matched unexposed period; 
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• (9:;) is the year for day t, with 8 as the coefficient for year, allowing control for a linear trend in 

mortality rates across study years; 

• =)  is the mean temperature for day t, with < as the coefficient for =) . 

The estimated lag-specific RRs of mortality on lag l from the peak flood day were calculated as 93>(12? ), 

based on the values of 12?  estimated from eq. 2.1. To estimate the excess deaths attributable to the flood on 

each day of the flood period, we calculated (26): 

 &@2 = (2(
AAB4C

AAB
) (2.2) 

where: 

• &@2 is the estimated excess death count at lag l from the peak flood day; 

• (2 is the observed death count at lag l from the peak flood day; 

• DD2 is the estimated lag-specific RR, calculated based on the value of 1E2 estimated from eq. 2.1. 

Previous research that calculated the fatality tolls for this flood using a traditional surveillance method 

(4,5) determined their fatality tolls for the two days of July 21–22, 2012, since the extreme rain started at 

noon on July 21 and ended on the morning of July 22. Therefore, to allow us to compare estimated flood-

associated fatality tolls between our analysis approach and the traditional surveillance method, we also 

calculated excess deaths specifically for these two days. We calculated confidence interval for the 

estimate of total excess deaths on this two-day period through Monte Carlo simulations (48) (details in 

Appendix A, “Supplementary material for Chapter 2”). 

Sensitivity analysis. In additional to our primary analysis, we also conducted sensitivity analyses to help 

determine the sensitivity of estimates to study design and modeling choices. First, we investigated 

whether results changed with differing selections of control days: we changed to select from any day of 

the same month of year as the flood (July) in other years (i.e., without a day-of-week restriction; referred 

to as “Matching by month”). Second, we investigated the results of changing model control for potential 
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confounders. We first adjusted for the daily average concentration of fine particulate matter (PM) (“PM-

adjusted”). We next fit a model that did not adjust for temperature as in the primary analysis (“Not 

temperature-adjusted”). Finally, we investigated the sensitivity of effect estimates to using time series and 

case-crossover designs rather than matching to similar days from other years. In the time series analysis 

(“Time series”), we used a natural cubic spline function of time with 7 degree of freedom per year in the 

model to control for seasonal and long-term trends and, to control for temperature, a natural cubic spline 

with 3 degree of freedom over the entire study period. In the case-crossover analysis (“Case-crossover”), 

we used the time-stratified variant of this design (23), defining the case day as the peak flood day and 

control days as those days in the same year, month of year, and day of week as the case day. 

4. Results 

 

Figure 2.1 Daily mortality counts for Beijing residents in July 2012 (red) compared with average mortality counts in July of 
previous years for (A) all-cause mortality, (B) circulatory mortality, (C) respiratory mortality, and (D) accidental mortality. 

Shown for comparison are the mean (blue line) and interquartile range (grey area) of the five-day moving average of mortality 
counts in July of the four previous years (2008–2011). The yellow vertical lines show the peak flood day (July 21). 
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Table 2.1 Estimates of relative risk of mortality compared to expected mortality rates had the flood not occurred, as well as 
resulting estimates of flood-associated excess deaths, among Beijing residents on the peak flood day (July 21, 2012) and the 
following day. For each point estimate, 95% confidence intervals are shown in parentheses. 

 Relative risk on 

July 21, 2012 

(peak flood day) 

Relative risk on 

July 22, 2012 

Excess deaths on 

peak flood day* 

Excess deaths on 

July 21–22, 

2012# 

All-cause mortality 1.34 (1.11, 1.61) 1.11 (0.91, 1.35) 59 (23, 89) 79 (22, 125) 

Circulatory mortality 1.37 (1.01, 1.85) 1.22 (0.90, 1.65) 28 (1, 49) 46 (6, 79) 

Respiratory mortality 0.94 (0.52, 1.72) 0.64 (0.32, 1.28) -1 (-14, 6) -7 (-29, 5) 

Accidental mortality 4.40 (2.98, 6.51) 1.49 (0.82, 2.71) 24 (21, 26) 28 (20, 32) 

*Confidence intervals were calculated based on the uncertainty of estimated relative risk on the peak flood day.  
#Confidence intervals were calculated using Monte Carlo simulation (details in Appendix A). 

 

 

Figure 2.2 Estimates of the relative risk of mortality for four mortality outcomes on the peak flood day (lag 0) and on the four 
following days (lags 1–4) compared with matched unexposed days from other years, with modeled control for temperature and 
long-term mortality trends. Dots show point estimates and horizontal lines show 95% confidence intervals. The gray vertical line 
shows as a reference a relative risk of 1. 

 

Table 2.2 Sensitivity of estimates of relative risks of mortality on the peak flood day (July 21, 2012) to study design and 
modeling choices. The first row repeats the estimates generated based on our primary analysis (also shown in Table 2.1). All 
other rows show estimates based on alternative study design or modeling choices; see the Methods for descriptions of each. 

Shown in parentheses are the 95% confidence intervals for each estimate. 

 All-cause 

mortality 

Circulatory 

mortality 

Respiratory 

mortality 

Accidental 

mortality 

Primary analysis 1.34 (1.11, 1.61) 1.37 (1.01, 1.85) 0.94 (0.52, 1.72) 4.40 (2.98, 6.51) 

Matching by month 1.35 (1.11, 1.63) 1.38 (1.01, 1.88) 0.91 (0.50, 1.66) 3.86 (2.70, 5.54) 

PM2.5-adjusted 1.33 (1.09, 1.62) 1.32 (0.97, 1.79) 0.90 (0.49, 1.66) 4.55 (2.96, 6.98) 

Not temperature-adjusted 1.27 (1.02, 1.57) 1.28 (0.92, 1.77) 0.88 (0.48, 1.64) 4.22 (2.87, 6.21) 

Time series 1.30 (1.11, 1.52) 1.33 (1.06, 1.67) 0.93 (0.55, 1.56) 5.48 (3.73, 8.06) 

Case-crossover 1.33 (1.09, 1.62) 1.38 (1.04, 1.83) 0.85 (0.46, 1.57) 6.64 (3.48, 12.67) 
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Community-wide mortality rates were substantially higher among Beijing residents during the flood 

period for all-cause, circulatory, and accidental mortality compared to rates in matched unexposed periods 

(Figures 2.1 and 2.2). The highest increased risks were observed on the peak flood day (July 21, 2012) 

(Figures 2.1 and 2.2), when the relative risks (RRs) of community-wide mortality rates compared to 

matched unexposed days were 1.34 (95% confidence interval (CI): 1.11–1.61), 1.37 (1.01–1.85), and 4.40 

(2.98–6.51) (Figure 2.2), for all-cause, circulatory, and accidental mortality, respectively. These relative 

risks translated to 59 flood-related excess deaths overall on the peak flood day among Beijing residents, 

including 28 excess circulatory deaths and 24 excess accidental deaths (Table 2.1). For respiratory 

mortality, conversely, there was no evidence of an increase in the community-wide rate during the flood 

compared to matched unexposed days. 

The increases in community-wide rates for all-cause, circulatory, and accidental mortality were largest on 

the peak flood day (July 21, 2012), with some evidence of a continued increase in mortality rates on the 

day following the flood (Figure 2.2). For the days considered further after the peak flood day (lags 2–4), 

we did not find evidence of significantly increased mortality risk for any mortality cause considered. For 

the two-day period considered in calculating the fatality toll for this flood in traditional surveillance 

studies (July 21–22, 2012), we estimated a total of 79 excess deaths among Beijing residents (Table 2.1). 

Most of these deaths were from circulatory causes (an estimated 46 flood-related deaths) or accidental 

deaths (an estimated 28 flood-related deaths) (Table 2.1). 

Estimates of RRs were robust to modeling choice and the matching method for selecting unexposed days, 

with estimates especially consistent for all-cause, circulatory, and respiratory mortality (Table 2.2). 

However, when considering accidental mortality, we found greater RR point estimates for these estimates, 

when using time series and time-stratified case-crossover designs compared with our primary design of 

matching to control days from other years (Table 2.2). This could be because the accidental mortality rate 

in July varied across the years included in the study in a non-linear pattern that was difficult to capture 

using a linear control for long-term patterns in mortality rates (Figure A1), as done in our primary 
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analysis. Thus, residual confounding was likely to occur within our primary estimates of RRs for 

accidental mortality (More details in Chapter 5). 

5. Discussion 

Our results demonstrate this flood’s considerable impacts on public health in Beijing, with much of this 

impact resulting from increased risk of non-accidental mortality, in particular circulatory mortality. The 

government of China, using a traditional surveillance approach of identifying flood-related deaths on a 

case-by-case basis, identified 60 flood-related deaths (among Beijing residents and non-residents 

combined) on July 21–22, 2012 (4). Another study that similarly used a traditional surveillance 

approach—expanding on the government analysis by combining fatality information on specific deaths 

from different sources like government reports and site visitations—identified 71 flood-related deaths 

during this period, 34 of which were among Beijing residents (5). This estimated fatality toll among 

Beijing residents based on the traditional surveillance approach is less than half the number of flood-

related deaths we estimated based on an approach of comparing community-wide mortality rates during 

July 21–22, 2012, to the rates expected had the flood not occurred (Table 2.1). 

Further, the previous surveillance-based research found the majority of flood-attributable deaths were due 

to drowning (4,5). Research based on the surveillance approach did identify two circulatory deaths from 

the flood—two people who died in conducting rescues because of excessive work and heart failure (5). 

While we similarly estimated a substantial toll from accidental deaths (28 excess accidental deaths 

estimated for July 21–22), we also found an important increase in non-accidental mortality during the 

flood period, with 46 excess circulatory deaths estimated for July 21–22 (Table 2.1), an impact largely 

missed through the traditional surveillance method. The increased risk during the flood for circulatory 

deaths, and its associated impact, can be much more difficult to capture using the traditional disaster 

surveillance method than accidental deaths (e.g., drowning deaths). This is in part because circulatory 

deaths are not directly caused by the physical forces of the flood and in part because circulatory deaths are 
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not rare outside of flood periods, making it harder to declare that a specific circulatory death would not 

have occurred without the flood. 

The flood-related circulatory deaths we observed could have resulted in part from the flood disrupting 

health services through associated damage to infrastructure (such as transportation and communications). 

During this period in Beijing, many roads and bridges were flooded (about 63 main roads in Beijing (27)), 

crowded with fallen building and trees, and even destroyed (27). Infrastructure damage can prevent 

residents from reaching healthcare resources, which is especially dangerous among people with pre-

existing chronic medical conditions, or hinder medical personnel from offering services (28–30). 

Beijing’s dense population and heavy reliance on public transportation make it particularly susceptible to 

these complications. In addition, flooding can be an emotional trigger that exacerbates the initiating 

process of acute cardiac events (31), an effect that has been identified for other types of disasters 

including earthquakes (32) and human-caused disasters (33). Flood-related deaths from circulatory causes 

have also been reported in flood events in England (18), Bangladesh (34), and France (35), and a 

retrospective study of 1997 floods in the Czech Republic found the rates of cardiac-related mortality in 

the month of flood was more than twice the rate in the two previous months (16). 

Conversely, we did not find a short-term association between respiratory mortality and this flood. Studies 

have found the likelihood of indoor mold growth increases in months following major floods (36), and 

indoor dampness or mold has been shown to be consistently associated with respiratory problems (37). 

Thus, while we found no evidence of an association between this flood and immediate respiratory 

mortality rates, the flood might still increase risk of respiratory mortality in a longer period (e.g., months) 

than that investigated here. A few epidemiological studies have found increased longer-term risk of 

respiratory problems and infections among people in flood-affected areas (15,34,38,39). For example, in 

Bangladesh, about half of respondents (46.8%) in two affected districts reported developing or suffering 

exacerbation of respiratory problems in the two months following the 1998 flood (34), and approximately 

13% of reported deaths in the two months following the country’s 1988 flood were attributed to 
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respiratory disease (39). Further, six months after the 2004 floods in rural Bangladesh, a moderate 

increased risk of acute respiratory infection (RR = 1.25, 95% CI, 1.06–1.47) was observed when 

comparing flooded versus unflooded areas (15). 

The increased mortality risks we identified occurred primarily on the peak flood day (July 21), with lower 

mortality risks on the following day and little or no evidence of elevated risks on the days following that 

(Figure 2.2). This pattern in risks lagging the flood may, however, be specific to this Beijing flood, which 

varied in some key characteristics from other major floods that have been studied. Although this flood 

event was extreme for Beijing (the heaviest rainfall in six decades), it results from an extreme 

precipitation event that was much shorter (< 24 hours) and had a much lower total rainfall than other 

major flood events like the two-month flooding in Bangladesh in 1998 (34). Further, in the most affected 

districts of Beijing (e.g., Fangshan District), most residents were evacuated within a day of the flooding 

(27), which may have helped prevent additional flood-related deaths on the following days. Flood 

characteristics can be important in determining patterns in flood-associated health risks (35,40); future 

research could explore whether community-wide flood mortality risks, including patterns in lagged 

effects following the flood, can be partially explained by variation in factors like the duration of rainfall 

and the community’s emergency response measures. 

One limitation of this study is that we were unable to explore district-level mortality risks and impacts of 

this flood, as mortality data at the district level were not available. The intensity of this rainfall was 

heterogeneous across Beijing (4,41); for example, the average hourly precipitation on July 21–22 in the 

Fangshan District (in the southwest of Beijing) was 15.2 mm, while in the Huairou District (northeast of 

Beijing) it was 5.7 mm (4). Based on one of the studies that analyzed this event using a traditional disaster 

surveillance method (4), the amount of rainfall in a person’s neighborhood was found to be an important 

factor in the risks of flood-related mortality, a pattern we are unable to explore using city-level data. A 

second limitation stems from the difficulty of estimating the community-wide expected mortality rate had 

the flood not occurred, for which we used the mortality rate in similar days from previous years. Given 
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our finding that there was little evidence of elevated mortality risk by the second day following the flood, 

our initial concern about use of the time series and case-crossover designs to study this event—that they 

might be prone to bias based on the inclusion of days classified as unexposed to the event within the 

period of plausible extended disaster effects—is unlikely to be a problem in studying this event. Indeed, 

in sensitivity analyses (Table 2.2), we found our key conclusions (an approximately 30% increased risk in 

all-cause mortality associated with the flood, with important contributions from both circulatory and 

accidental deaths) were robust across all study designs considered, adding weight to these conclusions, 

although choices among study design added some uncertainty to the exact quantitative estimates of risks 

and associated impacts, particularly for accidental mortality outcomes. 

Recent and expected climate trends make it critical to improve our understanding of the health risks 

associated with climate-related disasters, including floods, in order to help limit the health impacts of 

future events. Our study city, Beijing, is located in the North China Plain, where although the amount and 

frequency of rainfall have decreased over the last decades (42,43), the intensity of heavy rainfall is 

projected to increase substantially over the next few decades (44). Although flood events as severe as the 

one investigated in this study have to date been rare in Beijing, floods of similar magnitude may be more 

common in the coming decades. Throughout China, most regions have experienced an increasing trend in 

the frequency of extreme rainfall events (1961–2009) (43) and are expected to experience an increased 

frequency of severe flood events through the end of 21 century (45), as are many other locations 

worldwide (e.g., Europe (46) and the Midwest and Northeast regions of U.S. (47)). This study, and 

similar studies estimating the community-wide change in mortality rates during flood events, can add to 

existing studies of flood-related mortality based on a traditional surveillance method to offer critical 

evidence in assessing flood-related health impacts and crafting strategies to limit or prevent flood-related 

deaths during future events. 
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Chapter 3: Tropical cyclones and associated risks to all-cause, accidental, cardiovascular, 

and respiratory mortality in 70 United States communities, 1988–2005 

1. Chapter overview 

While risks of accidental deaths from tropical cyclones (e.g., drowning) have been well-documented 

using a traditional case-by-case surveillance approach, much less is known about mortality risks from 

more common causes of death (e.g., cardiorespiratory), for which specific deaths can be hard to attribute 

to a storm. To provide complementary information to existing knowledge, we analyzed the community-

wide change in mortality rates during storms compared with expected rates in the communities had the 

storms not occurred. We assessed tropical cyclone exposure using five metrics—–distance to storm track; 

cumulative rainfall; maximum sustained wind speed; flooding events; and tornado events. For each 

exposure metric, we modeled the association between community-level tropical cyclone exposure and 

daily death counts of residents in 78 large eastern United States (U.S.) communities (1988–2005) using a 

matched analysis of storm-exposed days versus similar unexposed days. Ninety-two tropical cyclones 

were considered based on U.S. landfall or close approach, with 70 communities exposed to at least one 

storm. Under tropical cyclone wind exposures, mortality risks were generally elevated, with highest risks 

typically on the day of the storm’s closest approach. For the strongest wind exposures, relative risks 

(RRs) of mortality on the day of storm’s closest approach were 1.42 (95% CI, 1.36–1.49), 12.03 (10.87–

13.32), 1.15 (1.06–1.24), 1.12 (0.92–1.38) for all-cause, accidental, cardiovascular, and respiratory 

mortality, respectively, across all exposed communities. These estimated associations may be dominated 

by extremely high risks during the few most severe tropical cyclone wind exposures; for example, a RR 

of 38.69 (7.37–203.21) was observed for cardiovascular mortality during Hurricane Katrina in New 

Orleans. Our analysis of community-wide mortality risks from tropical cyclones adds two important 

insights to results from traditional surveillance: first, the health impact of tropical cyclone exposures on 

non-accidental mortality can, in some cases, be much greater than identified in case-by-case surveillance 
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studies and, second, intense wind exposures characterize many of the tropical cyclones with particularly 

high associated risks of non-accidental mortality. 

2. Introduction 

The East and Gulf Coasts of the United States (U.S.) are commonly exposed to powerful and destructive 

hurricanes and other tropical cyclones, and the average intensity of tropical cyclones, as well as the 

frequency of the strongest storms in the Atlantic basin, are expected to increase under climate change by 

the late 21th century (1–3). Numerous studies have estimated fatality tolls during tropical cyclones in the 

U.S., and explored trends in these tolls (4–8), using a traditional surveillance approach. This traditional 

surveillance approach typically involves collecting information on every death that occurs in a storm-

affected area during and in the aftermath of a tropical cyclone, and then classifying whether each of those 

deaths was directly or indirectly related to the storm based on death certificates and other information that 

can be found about the causes of each specific death (9). 

However, limitations exist regarding the fatality tolls estimated using this traditional surveillance 

approach. First, coroners and medical examiners use different criteria in classifying a death as storm-

related, making it difficult to quantitatively aggregate findings across tropical cyclones and communities 

(10,11). Second, surveillance activity, by collecting only information about deaths that occurred during 

the storm period, may miss any pattern of potential avoided deaths during this period. For example, 

people may stay at home instead of going outside in high-risk condition like tropical cyclones (12), so the 

potential community-wide risks of death related to driving may be reduced. Patients may no longer be 

exposed to surgical risks they may otherwise have had without the storm, because hospitals storm-related 

power outages can cause hospitals to cancel scheduled surgeries (13). Third, while the traditional 

surveillance method can do a good job in counting deaths from some specific causes clearly related to 

tropical cyclones (e.g., trauma and drowning), the approach may undercount the total number of storm-

related deaths, especially undercounting deaths from natural causes that are also common outside of 

tropical cyclones (e.g., cardiovascular and respiratory deaths). 
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The recent controversy regarding the total deaths caused by Hurricane Maria provides a striking example 

of a case where the traditional surveillance approach may have dramatically undercounted tropical 

cyclone-related deaths. On September 20, 2017, Hurricane Maria made landfall in Puerto Rico. On 

December 9, 2017, the initial official death toll was 64 (14), based on death certificates with “hurricane-

related” appearing as the direct cause of death (15). After that, a number of independent investigations, 

including media reports, have attempted to estimate the excess mortality in the post-hurricane period 

using other approaches (15–19). For example, a randomized survey of households across Puerto Rico 

estimated that 4,645 total excess deaths in Puerto Rico between September 20 and December 31, 2017, 

were attributable to Hurricane Maria (16). Another study took another approach, comparing observed 

mortality in the year of the storm with expected mortality without the storm, as predicted from a 

generalized linear model based on data from the previous seven years and with adjustment for time trends 

in population characteristics and massive population displacement from Puerto Rico following the 

hurricane (17). This study similarly found a dramatically higher number of excess deaths attributable to 

Hurricane Maria than estimated in the original official death toll. As a result of these studies, the 

Government of Puerto Rico officially changed the death toll of this storm to be 2,975 (20), more than 60 

times the original official count (64). 

Considering these limitations of the traditional surveillance approach, important complementary 

information on storm-related mortality risks can be provided by assessing the change in community-wide 

mortality rates during a tropical cyclone compared to the expected rates had the storm not occurred. 

Although such community-wide assessments have been used to study the health risks associated with 

other natural disasters, especially heat waves (21–23), such assessments have seldom been used to help 

understand the community-wide health impacts from tropical cyclones. Results from the few studies that 

have used this approach to study tropical cyclones, however, have been striking and have added critical 

insights to our knowledge of tropical storm health risks based on traditional surveillance studies. For 

example, according to one community-wide assessment of mortality rates, four 2004 Florida hurricanes 
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were associated with approximately 600 excess deaths, a mortality impact underestimated by surveillance 

by a factor of more than four (24). Another study found that, in the month following Hurricane Sandy 

made landfall in New Jersey, all-cause mortality in older residents (>76 years) increased 6%, in 

comparison to the same time in earlier years (25). Further, a study based on Medicare and Medicaid 

claims data found that 23% of patients with end-stage renal disease in Hurricane Sandy-affected areas 

received early dialysis, while during the same time period of previous year, only 6.3% of these patients 

received this care (26). Almost all of these community-wide assessment studies for tropical cyclones to 

date, however, were conducted at the single-storm, single-year, or single-community level. The 

community-wide changes in risk of mortality during tropical cyclones have not been systematically 

assessed across a large collection of U.S. communities, separate storms, and multiple years. 

A systematic community-wide assessment may be particularly useful in clarifying how tropical cyclones 

might change the risks of mortality from non-accidental deaths, as there are reasons to expect that, like 

risk of death from accidental causes, risk of non-accidental deaths is also likely to increase during tropical 

cyclones. Several pathways are hypothesized, including loss of access to emergency service or treatment, 

increased physical activity (like clean-up), or storm-induced environmental hazard (like air pollution and 

heat) (27–30). While deaths from non-accidental causes in tropical cyclones were also identified using the 

traditional surveillance approach (31,32), non-accidental deaths can be difficult to attribute on a case-by-

case basis to a disaster (10,33), since such deaths are very common outside of disasters and often have 

indirect rather than direct links to disaster hazards. In fact, single-storm or single-year studies using 

community-wide assessments have indeed found evidence suggesting that non-accidental mortality risks 

during a tropical cyclone could be much higher than identified using the traditional surveillance approach. 

To help address these knowledge gaps that result from limitations in the traditional surveillance approach, 

and in particular for mortality from non-accidental causes that are common outside of a storm, we 

explored the association between Atlantic basin tropical cyclones and risks of all-cause, accidental, 

cardiovascular, and respiratory mortality among community residents, comparing mortality rates on 
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storm-exposed days with rates on similar unexposed days in 70 communities in the eastern U.S. between 

1988 and 2005. Our results provide information on tropical cyclones and health that is complementary to 

the extensive previous findings on tropical cyclones and human mortality based on a traditional 

surveillance approach. 

3. Methods 

Data 

Mortality data. Our study investigated a subset of communities in the National Morbidity, Mortality, and 

Air Pollution Study (NMMAPS) (34): those 78 communities in this study that are in the eastern half of 

the U.S. and so susceptible to Atlantic-basin tropical cyclones (Figure 3.1). Each community is either a 

single county or a group of adjacent counties (34). For each study community, a time series of daily 

mortality counts was available from 1988 to 2011 for all community residents for four categories of 

deaths: all-cause (International Classification of Diseases, Ninth Revision (ICD-9), 001–999), accidental 

(ICD-9, 800–999), cardiovascular (ICD-9 codes 390–448), and respiratory (ICD-9 codes 480–486, 490–

497, or 507). 

Tropical cyclones. We identified all tropical cyclones that passed within 250 kilometers of at least one 

eastern U.S. county during study period (1988–2005), using the National Hurricane Center’s revised 

Atlantic hurricane database (HURDAT2) (35). For each tropical cyclone, we measured county-level 

exposure in the 78 study communities based on five metrics: 1) distance to the storm track, 2) cumulative 

rainfall, 3) maximum sustained wind speed, 4) occurrence of one or more flood events, and 5) occurrence 

of one or more tornadoes. Some study communities included two or more adjacent counties. For these 

communities, we aggregated county-level exposure assessments to the community level by assessing the 

community as exposed to a storm for a given metric if at least one county in the community qualified as 

exposed to the storm by that metric. 
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Distance-based exposure. We first assessed exposure based on distance of the storm’s closest approach 

to the county. For each storm, we interpolated the storm track to a 15-minute interval, from the original 

six-hour position measurements given in HURDAT2, using a natural cubic spline with number of knots 

based on the number of available position measurements for that storm (36). We then measured, for each 

county in the study communities, the distance between the county’s population-mean center (37) and each 

15-minute estimate of the storm’s position. We used the minimum value of this distance as an estimate of 

the distance between the storm’s center and the county center at the storm’s closest approach to the 

county, as well as recorded the date of this closest approach to use in merging with recorded weather data 

for other exposure assessments. We investigated the mortality risk associated with storm exposure based 

on a distance-based metric for four thresholds of distance: 25, 50, 75, and 100 km. 

Rain-based exposure. To characterize county-level rain exposure to each tropical cyclone, we used 

precipitation data from the North American Land Data Assimilation System, phase 2 (NLDAS-2) (38), 

aggregated from its original 1/8th degree grid to the county level (39). This re-analysis dataset integrates 

from surface observations and satellites and applies a land-surface model to this collection of data to 

generate a county-level time series of daily precipitation across the continental United States (38,39). We 

considered a county exposed to a tropical cyclone if 1) cumulative rainfall from one day before to one day 

after the date of the storm’s closest approach to the county surpassed a certain threshold and 2) the county 

was within 500 km of the storm’s track at the storm’s closest approach. We explored the health risks 

associated with rain-based storm exposure as defined using four thresholds for this cumulative three-day 

precipitation: 50, 75, 100, and 125 mm. 

Wind-based exposure. To estimate storm-related winds within each study community for each storm, we 

modeled ground-level maximum sustained wind speed using a double exponential wind speed model 

(40). These functions are available as an R software package (41). This model integrates inputs from the 

HURDAT2 database on the storm’s position, direction of movement, forward speed, and maximum 10-

meter, 1-minute sustained wind speed to estimate maximum wind speeds associated with the storm at 
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each study community’s population mean center as the storm moves near or through the community. 

From this collection of modeled wind speeds, we identified for each community the highest wind speeds 

throughout the course of the storm. We explored mortality risks associated with wind-based exposure to 

tropical cyclones based on four thresholds of maximum storm winds at the county center: 12, 15, 18, and 

21 m/s. 

Flood- and tornado-based exposure. We assessed county-level exposure to storm-induced floods and 

tornadoes using storm event data from the National Oceanic and Atmospheric Administration (NOAA)’s 

Storm Events Database (42). For each tropical cyclone, this Storm Event database was queried for all 

study counties for which the storm came within 500 km of the county at closest approach. For each of 

these study communities, we identified all flood and tornado events with a start date within a five-day 

window of the date of the storm’s closest approach to the county. For our assessments based on these 

exposures, we limited our analysis to 1996 and later, because the NOAA Storm Events database was 

substantially expanded starting in 1996 and did not include flood events prior to that year. 

Three exposure metrics were continuous (distance to the storm track, cumulative rainfall, and maximum 

sustained wind speed). For these, we considered several thresholds for classifying a county as exposed 

based on that metric, to allow us to explore the influence of threshold choices on mortality risk estimates. 

For all tropical cyclone exposure assessments, we used the R packages “hurricaneexposure” (36) and 

“hurricaneexposuredata” (43). 

Statistical Analysis 

A storm exposure was defined as the occurrence of a storm bringing conditions to a study community that 

met one of the storm exposure definitions, based on either distance to the storm track, maximum sustained 

winds, cumulative rainfall, flooding, or tornadoes. Therefore, a storm could create multiple exposures 

within our study (if it brought these conditions to multiple study communities), and a study community 

could experience multiple exposures across the study period, from multiple storms. 
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For each metric of tropical cyclone exposure, we aimed to estimate across all storm exposures the change 

in the exposed communities’ mortality rates during periods of tropical cyclone exposure compared to 

expected mortality rates had the storm not hit. To estimate this, we conducted an analysis with a set of 

matched days, matching the days in which each study community was exposed to tropical cyclones to 

unexposed days in other years, with matching by community and time of year (more matching details 

below). Model control was used in analysis of these matched days to control for additional possible 

confounding related to year and day of the week. Similar study designs have previously been used to 

estimate the acute health effects of extreme events that occur infrequently and irregularly, including 

heatwaves (21) and wildfires (44). 

Tropical cyclones may influence community health not only on the day of the storm’s closest approach to 

the community, but also a day or two before—as residents prepare for the storm or evacuate—as well as 

after the storm has passed, as residents deal with clean-up efforts and damaged roads, power systems, and 

other infrastructure. To estimate the associations between tropical cyclone exposure and mortality risk for 

a window of days surrounding the day of each storm’s closest approach, we incorporated a distributed lag 

approach, modeling patterns in mortality risks from two days before to seven days after the storm’s 

closest approach. The distributed lag modeling approach has been used extensively in time series and 

case-crossover environmental epidemiology studies to investigate risks over a period of several days 

following exposure to an ambient environmental threat (22,23,45,46). Here, we extend this framework to 

also investigate elevated risk immediately before the day of the storm’s closest approach (lags -2 and -1, 

i.e., one and two days before the storm’s closest approach), as well as up to a week after the storm (lags 1 

to 7). 

Matching. For each tropical cyclone exposure metric considered, we first identified any exposed storm 

days for each of the study communities. Study communities with no storm exposure days under that 

metric were excluded from further analysis. Within each community with one or more exposed storm 

days, we then matched each identified storm day to ten unexposed days, matching by seasonality. These 
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ten matched unexposed days were randomly selected from a pool of candidate unexposed days for the 

community which: 1) were in a different year; 2) were within a seven-day window of the storm day’s day 

of the year (to match for seasonality); 3) were not within a three-day window of a different storm day for 

the community; and 4) were not in the two-week period starting on September 11, 2001. For each storm 

day and its ten matched unexposed days, we pulled the series of days from two days before to seven days 

after the target day, to allow us to investigate the association between tropical cyclone exposure and 

mortality risk for a period surrounding the date of a storm’s closest approach to a county. For example, if 

August 31, 2004, was defined as a storm day, then the period from August 29 to September 7, 2004, was 

pulled as the storm exposure period for that storm in that community, while a period of the same length 

was pulled surrounding each matched unexposed day. For days in the storm period, the day’s lag day was 

set as the amount of time between that day and the day of the storm’s closest approach (e.g., if the storm’s 

closest approach was August 31, 2004, then August 29, 2004 was identified as the lag-2 exposure day for 

that storm). 

Mortality risks of the ten most severe tropical cyclone wind exposures. Atlantic basin tropical cyclones 

are typically classified in intensity based on the Saffir-Simpson scale, which is primarily based on the 

storm’s maximum wind speeds (47), and a storm’s winds have been identified as the main storm hazard 

associated with damaging infrastructure and buildings (48,49). Therefore, we began with a targeted 

analysis of the single-storm mortality risks associated with the ten most intense storm exposures, in terms 

of maximum sustained winds experienced within the community, in communities in our study with a 

population of at least 400,000. Since death counts from respiratory and accidental causes are generally 

small in a single community, to achieve adequate statistical power and prevent model convergence issue, 

we only investigated all-cause and cardiovascular mortality outcomes for these severe storm exposures. 

To estimate the relative risk (RR) on the day of storm’s closest approach to the community for these ten 

storm exposures, we used the matching approach described above to create a subset of days to analyze 

and then fit the a single-community, single-storm generalized linear fixed-effect model to the matched 
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data. We first fit a model to estimate risk specifically on the day of the storm’s closest approach, without 

considering risks on other days in the period surrounding the storm: 

 log[&(())] = log(-) + / + 1)3) + FGHI) + <(9:;) (3.1) 

where: 

• ()  is the daily death count on the day t; 

• JKL(-) is an offset term for the residents’ population n for the community; 

• / is the model intercept; 

• 3) is an indicator variable of storm exposure (x = 1 for storm exposed day and x = 0 for matched 

unexposed day), and 1) is the coefficient for storm exposure on the day of storm’s closest approach 

to community; 

• GHI) is an indicator variable for day of week and M is a vector of regression coefficients for GHI; 

• (9:;) is the year of day t, to account for long-term trend in community’s mortality risk across the 

study period, and < is the regression coefficient for (9:;. 

For these ten storm exposures, we also calculated cumulative RRs, estimating the change in mortality risk 

during the entire period from two days before to seven days after the day of the storm’s closest approach, 

by fitting the following model: 

 log[&((N)] = log(-) + / + 1N3N + <(9:;N (3.2) 

where: 

• (N is the sum of daily death counts during the storm period T (i.e., two days before to seven days 

after the day of storm’s closest approach to the community); 

• JKL(-) is an offset term the residents’ population n for the community; 

• / is the model intercept; 
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• 3N is an indicator variable of storm exposure (3N = 1 for storm exposed period and 3N = 0 for the 

matched unexposed period) and 1N is the coefficient of storm exposure during the period; 

• (9:;N is the year of the storm period and < is the coefficient of (9:;. 

For each of these ten tropical cyclone exposures, the same-day RRs were estimated as 93>(1E)), based on 

the values of 1E) estimated by fitting   3.1, and cumulative RRs were estimated as 93>(1EN), based on the 

values of 1EN estimated by fitting eq. 3.2. We also estimated the number of excess deaths on the day of 

storm’s closest approach as ()(1 − 93>(−1E))), as well as the excess deaths for the entire storm period, 

calculated as (N(1 − 93>(−1EN)), with ()  and (N as defined in eq. 3.1 and 3.2 (50). As a sensitivity 

analysis, we also explored the associations for these ten storm exposures, using time series and case-

crossover analysis, which have been commonly used in studying the health effects of ambient 

environmental exposures. Results of this sensitivity analysis are shown in Appendix D. 

Mortality risks of all tropical cyclones. Next, we estimated the overall mortality risks associated with all 

tropical cyclone exposures under a given metric, incorporating all exposed study communities and 

relevant storms in the study period into the analysis. To do this, we fit the following generalized linear 

mixed-effect model using the multi-community matched data, in which some of the letters have the same 

representations as eq.3.1: 

 log[&(()
R)] = log(-R) + / + /R + ∑ 123)S2

RT
264U + V(9:;) + FGHI) (3.3) 

where: 

• ()
R is the daily death count on day t for community c; 

• JKL(-R) is an offset term for the population of community c in (9:;, the year of day W; 

• /R are random intercepts for each study community, assumed to follow a normal distribution with a 

mean of 0 and variance of XU (i.e., /R ~ N(0, XU)); 
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• ∑ 123)S2
RT

264U  is an unconstrained distributed lag function of the storm exposure variable x. 12 is the 

coefficient estimating the association between tropical storm exposure and mortality at lag l from 

day t, the day of the storm’s closest approach to study community c. 3)S2
R  is the indicator variable 

representing whether a given day at lag l from day t for community c is part of an exposed storm 

period or part of a matched unexposed period. 

• (9:;) is an indicator variable of year on day t, with V as a vector of coefficients for (9:;. 

• GHI) is an indicator variable of day of week on day t, with F as a vector of coefficients for GHI. 

We fit eq. 3.3 separately for each combination of tropical cyclone exposure metric and mortality outcome. 

For each definition of tropical cyclone exposure, we estimated both lag-specific and cumulative RRs for 

days in the storm period compared with matched unexposed periods. The lag-specific RRs were 

calculated as 93>(1E2), based on the values of 1E2 estimated by fitting eq. 3.3. We also estimated 

cumulative RRs, which estimate the cumulative mortality risks across the entire storm exposure period, 

from two days before to seven days after the day of the storm’s closest approach. These cumulative RRs 

were calculated as 93>(∑ 1E2
T
264U ), based on the values of 1E2 estimated by fitting eq. 3.3 (45). 

For all-cause and cardiovascular mortality, we fit eq. 3.3 while including all study communities exposed 

to at least one storm under a given exposure metric. Since respiratory and accidental deaths are typically 

less frequent, in estimating tropical cyclone-related risks for these mortality outcomes, we considered 

only study communities with populations > 400,000, to prevent convergence problems in model fitting. 

As a sensitivity analysis, to investigate if differences in estimated risks by cause of death were associated 

with this modeling choice, we also estimated storm-associated risks for all-cause and cardiovascular 

mortality using this subset of higher-population communities. 

Influence of the ten most severe tropical cyclone wind exposures on overall estimates. Finally, we 

investigated whether estimates of storm-related mortality risk based on the multi-community, multi-storm 

model were driven mainly by the ten most severe tropical cyclone wind exposures over the study period. 
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For this subgroup analysis, we fit eq. 3.3 to the subset of all other identified tropical cyclone exposures, 

excluding the ten most severe tropical cyclone wind exposures, across all study communities with 

populations > 400,000. When selected matched unexposed days for this analysis, we excluded days from 

all classified storm exposures under the metric, including days within or near one of the ten most severe 

tropical cyclone wind exposures. We investigated how the average storm-related mortality risks for this 

subset of storm exposures compared to the relative risks estimated for the complete set of storm exposures 

under the main analysis. 

4. Results 

Over our study period, 92 tropical cyclones passed within 250 kilometers of at least one eastern U.S. 

county and were considered further in our study (Figure 3.1). Out of 78 study communities considered, 70 

communities were exposed to at least one tropical cyclone over our study period (1988–2005), based on 

at least one of the tropical cyclone exposure metrics considered (Figure 3.1). For all exposure metrics 

considered, the study covered at least 50 storm exposures; storm exposures were rarest for the most 

constrictive threshold of rain exposure (125 mm or more rainfall from one day before to one day after the 

storm’s closest approach) and for tornado event-based exposure (Table 3.1). Community-specific 

exposures to all tropical cyclones for the three continuous metrics considered (distance to the storm track, 

maximum sustained winds, and cumulative rainfall) are shown in Figure B1. 

Across the study communities and study period, Miami, FL, was exposed to the most severe storm wind 

exposure (Hurricane Andrew; maximum sustained wind speed: 52.1 m/s), while New Orleans, LA, was 

exposed to the most severe storm rain exposure (Hurricane Katrina; cumulative rain: 196.2 mm from one 

day before to one day after the day of storm’s closest approach) (Figure B1). Storm exposures 

experienced by a given community over our study period varied depending on the exposure metric 

considered; while New Orleans, LA, (19 wind exposures) and Cayce, SC, (16 rain exposures) were 

threatened by the most storm exposures under wind and rain metrics, St. Petersburg, FL, and Orlando, FL, 
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had the most storm exposures (12 exposures) when storm exposure was determined based on distance to 

the storm track. 

Ten most severe tropical cyclone wind exposures and their associated mortality risks 

Table 3.2 shows the estimates of storm-associated relative risks of mortality and excess deaths for all-

cause and cardiovascular mortality for the ten most severe tropical cyclone wind exposures in the study, 

both on the day of the storm’s closest approach to the community and across the entire storm period from 

two days before to seven days after the storm’s closest approach. Hurricane Andrew’s hit of Miami, FL, 

was the most severe tropical cyclone wind exposure observed in our study (modeled maximum sustained 

wind speed in Miami during the storm was 52.1 m/s). This storm exposure was associated with an 

increase in risk of all-cause mortality on the day of the storm (RR = 1.55, 95% confidence interval (CI), 

1.12–2.16). Hurricane Katrina’s hit of New Orleans, LA, which was the third most severe tropical cyclone 

exposure in the study in terms of wind (maximum sustained wind was 40.3 m/s), was associated with the 

largest increased mortality risk among these storms on all-cause mortality (RR = 43.94, 95% CI, 17.16–

112.48); this storm also brought severe winds to Miami, FL, (maximum sustained wind: 32.3 m/s) 

resulting in a large increase in all-cause mortality risk on the day of storm’s closest approach in that 

community, as well (RR = 1.57, 95% CI, 1.02–2.41). 

When considering cumulative relative risks across the entire storm period, Hurricane Katrina’s hit of New 

Orleans was also associated with the largest increased risks for all-cause (cumulative RR = 5.77, 95% CI, 

4.94–6.73) and cardiovascular mortality (cumulative RR = 2.46, 95% CI, 1.80–3.36) among these storms, 

translating to 497 and 48 excess deaths, respectively. Substantial increased mortality risks over storm 

period were also observed in Miami, FL, from exposure to Andrew (cumulative RR = 1.25, 1.14–1.37), 

Katrina (1.23, 1.11–1.37), and Irene (1.12, 1.02–1.23). In some instances, the risks of cardiovascular 

mortality remained elevated on several days across the storm period; for example, we estimated 69 excess 

cardiovascular deaths for the storm period based on the cumulative RR versus 6 on the day of Hurricane 



 49 

Andrew’s closest approach to Miami. The pattern of lag-specific RRs are shows in Figure B2 and B3 (in 

Appendix B) for these ten most notable tropical cyclone wind exposures. 

All tropical cyclones considered and their mortality risks based on all the exposure metrics 

Next, we examined the mortality risks associated with all tropical cyclone exposures under each of the 

tropical cyclone exposure metrics considered. In a few cases, a study community was exposed to two 

tropical cyclones on a single day based on a given exposure metric. For example, using the most lenient 

rain-based exposure metric, Kingston, NY, and Newport News, VA, were exposed to both Hurricane 

Gaston and Tropical Storm Hermine on August 31, 2004. Using the flood-based exposure metric, 

Kingston, NY, was also exposed to these two tropical cyclones on the same day. In these cases, we 

modeled the effects of the two storm events as a single exposure day for the study community, since 

effects of two storm on the same day cannot be separated using our modeling approach. Table 3.1 shows 

the number of storm exposures under all the exposure metrics investigated. 

Under the strictest thresholds of wind- and rain-based exposure metrics (i.e., maximum sustained wind 

speed > 21 m/s, cumulative rainfall > 125 mm), we found statistically significant increases in risks for all-

cause (wind: RR = 1.42, 95% CI, 1.36–1.49; rain: RR = 1.69, 1.60–1.79), cardiovascular (wind: 1.15, 

1.06–1.24; rain: 1.30, 1.18–1.44), and accidental mortality (wind: 12.03, 10.87–13.32; rain: 22.53, 20.03–

25.35) on the day of the storm’s closest approach to the community (lag 0) (Figure 3.2). For those two 

metrics, patterns in mortality risk across the storm period were similar, with largest associations on the 

day of storm’s closest approach. There was also some evidence that some mortality risks were elevated on 

the day before and a few days after the storm’s closest approach, particularly for accidental mortality, 

although the associations on these days were much smaller than on the day of the storm’s closest 

approach. The observed associations generally decreased as more lenient thresholds were used to classify 

a community as exposed based on wind and rain metrics (Figure B5-B8). 

In contrast, for the distance-based metric, while no evidence of association was found using the most 

stringent threshold (distance to storm track < 25 km, Figure B4), associations were observed for some 
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mortality outcomes when the distance threshold was relaxed. Flood- and tornado-based tropical cyclone 

exposure, as assessed here, showed no association with any of the mortality outcomes considered with the 

exception of some evidence of an association between flood exposure and elevated risk of respiratory 

mortality (Figure B4), which was also observed under wind-based exposure (Figure 3.2 and B7). Given 

the number of statistical tests represented in these supplemental results (Appendix B), some of the 

statistically significant results may be spurious, particularly for isolated results (e.g., increased risk of 

respiratory mortality for two higher-lag days based on flood exposure, Figure B4). 

We also estimated, for all storm exposures in the study, the cumulative RR of mortality risk throughout 

the storm period (two days before to seven days after the day of storm’s closest approach to the 

community) (Figure 3.3). For wind-based exposure metric, cumulative risks were consistently elevated 

during storm periods for all-cause, cardiovascular, and accidental mortality under all thresholds of wind 

speed considered in determining storm exposure, although the size of the association generally decreased 

as thresholds become more lenient, particularly for all-cause (cumulative RRs = 1.90, 1.54, 1.38, and 1.33 

based on the most to least constrictive thresholds, respectively) and accidental mortality. For the rain-

based exposure metric, we observed a large increased risk during storm periods for all-cause, 

cardiovascular, and accidental mortality, but, with the exception of accidental mortality, this increase was 

only observed under the strictest threshold of the rain metric considered. 

For distance-based exposure, we found evidence of increased risk of all-cause (distance to storm track < 

100 km: cumulative RR = 1.15, 1.05–1.25) and accidental mortality (cumulative RR = 4.63, 2.92–7.33) 

but, interestingly, only when using more lenient thresholds for exposure. Little evidence was found for 

associations between flood- or tornado-based exposure and mortality risk for the four outcomes 

considered, with the exception of some evidence of increased risk of respiratory mortality associated with 

flood-based exposure. Sensitivity analysis showed that, under most exposure metrics investigated, the 

cumulative risks of all-cause and cardiovascular mortality using the subset of large-population 



 51 

communities (the subset used in our primary analyses for respiratory and accidental mortality outcomes) 

were consistent with results based on all the study communities (Figure B9). 

Finally, we investigated whether the patterns observed when analyzing all tropical cyclone exposures in 

all exposed communities were dominated by extremely high risks associated with a few of the most 

severe tropical cyclone exposures, as based on the wind exposure metric. We estimated the RRs based on 

the subset of all other tropical cyclone exposures, excluding the ten most severe tropical cyclone wind 

exposures (shown in Table 3.2). When the ten most severe storm exposures were removed from analysis, 

we observed little evidence of associations between these less severe storm exposures and mortality risk 

on the day of storm’s closest approach (Table B1). However, the cumulative RRs estimated for the entire 

storm period remained elevated without the most severe storm exposures, though the associations were 

much lower than when considering all storm exposures (cumulative RRs of all-cause mortality were 1.90, 

95% CI, 1.58–2.29, for all tropical cyclone exposures, and 1.18, 95% CI, 0.96–1.45, for these less severe 

storm exposures). 
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Figure 3.1 Map of study communities (78 total) and storm tracks of all tropical cyclones considered in this study. Storm tracks 
are shown for all Atlantic-basin tropical cyclones (92 total) that came within 250 km of at least one county in the eastern U.S. 
between 1988 and 2005. Tracks of ten most notable tropical cyclones exposures, based on the wind-based metric, are shown in 
red, with the corresponding communities affected shown with red circles. For study communities, each circle shows a community 
considered in the study, with filled shapes inside the circle showing the county or counties comprising that community. 
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Figure 3.2 Estimates of lag-specific relative risk of mortality on days during storm periods compared to matched days in non-
storm periods, across all tropical cyclone exposures for study storms and study communities, based on the strictest thresholds for 

wind- and rain-based exposure metrics. Lag 0 represents the day of the storm’s closest approach to the community, lag -1 the day 
before the storm’s closest approach, lag 1 the day after the storm’s closest approach, etc. Models for respiratory and accidental 
mortality were fit using only communities with population of > 400,000 to prevent model convergence problems, as both of these 
outcomes are typically less frequent across study communities than cardiovascular and all-cause mortality; results for all-cause 
and cardiovascular mortality using the same subset of larger-population communities is included in the supplemental material as 
a sensitivity analysis. 
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Figure 3.3 Estimates of cumulative relative risk of tropical cyclone exposures on mortality across the full storm period considered 
(two days before to seven days after the date of storm’s closest approach to the community) compared to matched non-storm 
periods. Color indicates the metric used for defining tropical cyclone exposure (maximum sustained wind speed [‘Wind’], 

cumulative rainfall [‘Rain’], distance to storm track [‘Distance’], flood event [‘Flood’], or tornado event [‘Tornado’]), with the 
specific threshold used to identify tropical cyclone exposures based on continuous metrics (wind, rain, and distance) given on the 
y-axis. Note that x-axis scales differ for each cause of death considered, and a log-10 scale spacing is used for accidental deaths 
to accommodate the range of estimated relative risks for that outcome. 
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Table 3.1 Number of storm exposure under each of the exposure metrics investigated. The first number given in each cell is the 
total number of storm exposures in the study under that exposure metric, where a storm exposure is the combination of a storm 
hitting a specific study community (i.e., a single storm can cause multiple storm exposures, if it affects multiple study 
communities). The second number is the total number of study communities with at least one storm exposure under the metric. 
Number of exposures are shown for both the full collection of study communities and for the subset of study communities with 

populations greater than 400,000. For continuous exposure measurements (maximum sustained winds, cumulative rainfall, and 
distance to the storm track), the number of exposures are given for each of the thresholds of exposure considered in the study, 
from least to most constrictive. 

Exposure metric 
No. of tropical cyclone exposures [No. of communities] 

All study communities Large-population communities* 

Maximum sustained winds 

12 m/s 336 [56] 205 [38] 

15 m/s 192 [49] 120 [31] 

18 m/s 124 [37] 84 [24] 

21 m/s 83 [26] 52 [16] 

Cumulative rainfall 

50 mm 445 [63] 283 [41] 

75 mm 214 [55] 128 [35] 

100 mm 104 [37] 61 [23] 

125 mm 50 [26] 29 [16] 

Distance to storm track 

100 km 347 [68] 218 [45] 

75 km 259 [65] 167 [43] 

50 km 175 [61] 118 [40] 

25 km 79 [44] 57 [29] 

Events 

Flood event(s) 180 [51] 131 [35] 

Tornado event(s) 53 [22] 35 [14] 
*Large-population communities are those with population greater than 400,000.
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Table 3.2 Estimates of relative risk of all-cause and cardiovascular mortality, as well as associated excess death estimates, of ten most severe tropical cyclone wind exposures 
across the study storms and communities. Estimates are included for both the day of the storm’s closest approach to the community (’Same-day estimates’) and across the period 
from two days before to seven days after the storm’s closest approach 

 All-cause mortality Cardiovascular mortality 

Storm Community Wind 

(m/s) 

Relative risk Excess deaths Relative risk Excess deaths 

Same-day estimates 

Andrew (1992) Miami 52.1 1.55 (1.12, 2.16) 22 (7, 34) 1.47 (0.89, 2.42) 9 (-3, 16) 

Charley (2004) Orlando 41.2 0.40 (0.13, 1.23) -26 (-114, 3) 0.70 (0.12, 4.24) -2 (-38, 4) 

Katrina (2005) New Orleans 40.3 43.94 (17.16, 543 (524, 551) 38.69 (7.37, 203.21) 65 (58, 67) 

Katrina (2005) Providence 33.5 1.17 (0.60, 2.30) 2 (-9, 8) 1.47 (0.55, 3.98) 2 (-6, 5) 

Katrina (2005) Miami 32.3 1.57 (1.02, 2.41) 20 (1, 32) 1.30 (0.69, 2.43) 5 (-10, 13) 

Andrew (1992) Baton Rouge 31.8 1.58 (0.59, 4.25) 3 (-5, 5) 4.00 (0.73, 21.92) 3 (-1, 4) 

Irene (1999) Miami 31.3 1.13 (0.72, 1.79) 5 (-17, 19) 1.53 (0.76, 3.07) 8 (-7, 15) 

Wilma (2005) Miami 31.0 0.88 (0.60, 1.29) -6 (-30, 10) 0.95 (0.54, 1.66) -1 (-18, 9) 

Hugo (1989) Charlotte 30.8 0.80 (0.27, 2.31) -2 (-16, 3) 2.11 (0.38, 11.66) 2 (-7, 4) 

Bertha (1996) Providence 30.8 1.03 (0.54, 1.94) 0 (-13, 8) 1.43 (0.54, 3.76) 2 (-7, 6) 

Cumulative estimates 

Andrew (1992) Miami 52.1 1.25 (1.14, 1.37) 108 (67, 146) 1.38 (1.20, 1.58) 69 (43, 92) 

Charley (2004) Orlando 41.2 1.09 (0.89, 1.32) 12 (-18, 37) 1.09 (0.78, 1.51) 4 (-15, 18) 

Katrina (2005) New Orleans 40.3 5.77 (4.94, 6.73) 497 (479, 512) 2.46 (1.80, 3.36) 48 (36, 57) 

Bob (1991) Providence 33.5 1.01 (0.83, 1.22) 1 (-25, 23) 1.05 (0.79, 1.39) 3 (-16, 16) 

Katrina (2005) Miami 32.3 1.23 (1.11, 1.37) 95 (49, 136) 1.15 (0.97, 1.36) 25 (-5, 50) 

Andrew (1992) Baton Rouge 31.8 1.03 (0.81, 1.32) 2 (-17, 18) 1.17 (0.82, 1.68) 5 (-8, 14) 

Irene (1999) Miami 31.3 1.12 (1.02, 1.23) 55 (11, 95) 1.17 (1.02, 1.35) 33 (4, 57) 

Wilma (2005) Miami 31.0 0.98 (0.88, 1.09) -8 (-63, 41) 0.97 (0.82, 1.15) -7 (-43, 24) 

Hugo (1989) Charlotte 30.8 0.99 (0.78, 1.26) -1 (-25, 18) 0.98 (0.67, 1.42) -1 (-17, 10) 

Bertha (1996) Providence 30.8 0.95 (0.79, 1.13) -8 (-35, 16) 0.91 (0.69, 1.21) -5 (-25, 10) 
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5. Discussion 

We estimated storm-associated mortality risks by comparing community-wide mortality rates during 

storm periods with mortality rates in matched unexposed periods, with the aim of estimating the change in 

mortality risk during the storm compared to if the storm had not hit the community. We found tropical 

cyclone wind and rain exposures were associated with substantially increased risks of all-cause, 

accidental, and cardiovascular mortality based on evidence from a large number of communities in the 

eastern U.S. between 1988 and 2005. Our results suggest that tropical cyclone exposures, especially from 

very severe wind, may have important impacts on mortality from not only accidental causes, but also 

from non-accidental causes. Mortality risks were most elevated on the day of the storm’s closest approach 

to a community; however, there was also some evidence of elevated mortality risks on the day before and 

a few days following the storm’s closest approach, especially for accidental mortality. These observed 

associations between tropical cyclone exposure and community-wide mortality risk seemed to be 

dominated, however, by extreme risks associated with a few very severe tropical cyclone wind exposures 

within the study communities and storms, including the exposures of New Orleans, LA, and Miami, FL, 

to Hurricane Katrina in 2005 and of Miami, FL, to Hurricane Andrew in 1992. Taken together, these 

findings help deepen the understanding of the community-wide impacts of hurricanes and other tropical 

cyclones on mortality from accidental and natural causes, providing insights that are complementary to 

previous findings from traditional surveillance studies of mortality associated with tropical cyclones. 

While some studies using traditional surveillance activities have identified a few tropical storm-related 

cardiovascular deaths (e.g., from heart attacks) (29,31,32,51), studies using the traditional surveillance 

approach are likely to undercount the number of deaths from non-accidental causes associated with a 

tropical cyclone because such deaths are common without tropical cyclone exposure and thus are hard to 

definitively link, on a case-by-case basis, with tropical storm exposure. Here, we estimated greater 

impacts associated with tropical cyclone exposures for non-accidental mortality than was previously 

identified for some of our study storms and communities in traditional surveillance studies. For example, 
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during Hurricane Andrew in Dade County, a surveillance study of storm-related deaths identified two 

cardiovascular deaths—one from an acute myocardial infarct and the other from atherosclerotic heart 

disease—on the day of the storm, as well as twelve additional storm-related cardiovascular deaths in the 

two weeks following the storm (29). In contrast, here we estimated an increased risk of all-cause mortality 

in the same community during the storm that translates to 9 excess cardiovascular deaths on the day when 

Hurricane Andrew struck Miami and a total of 69 excess deaths during the ten-day storm period (Table 

3.2), which was much higher than the recognized storm-related cardiovascular deaths based on traditional 

surveillance method. Smaller studies of single years or storms have found similar evidence using a 

community-wide assessment design that tropical storm exposure can have larger impacts on all-cause 

mortality in affected communities than identified through traditional surveillance studies, and that these 

impacts can include important impacts from increased risk of cardiovascular deaths. For example, one 

study of the four 2004 Florida hurricanes estimated more than 600 excess deaths, while about 150 deaths 

were ascertained based on surveillance (24), and Hurricane Sandy was associated with a 31% increase in 

30-day cardiovascular mortality in New Jersey as compared with previous years (52). 

Our findings provide evidence of important risks and impacts associated with cardiovascular mortality 

from tropical cyclone exposures, often in excess of those impacts identified with more traditional methods 

of generating storm-related fatality tolls. Although the biological mechanisms through which tropical 

cyclone exposure increases risk of mortality from non-accidental causes are not well understood, there are 

plausible explanations linking tropical cyclones and cardiovascular and respiratory mortality, such as 

infrastructure damage and storm-induced stress. First, tropical cyclone hazards (such as heavy rainfall, 

strong winds, and storm surge) can damage infrastructure, resulting in power outages and damage to 

hospitals and transportation systems (28,53,54). During tropical cyclones, power outages can result from 

extreme rainfall or flood damage to underground electrical infrastructure, as well as from strong winds 

destroying above-ground wires (30). Power outages can impede communication, cause difficulty 

accessing health care providers, prevent hospitals from functioning normally (creating particularly 
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threatening conditions for patients in Intensive Care Units (13)), and increase exposure to air pollution 

and temperature extremes (28), all of which can be risk factors of cardiovascular and respiratory death 

(30,55,56). Transportation damage due to flooding and strong winds from tropical cyclones could also be 

associated with disruptions in treatment. For example, emergency department visits (ED) on Long Island 

(NY) dropped significantly on the day of Hurricane Sandy’s landfall (57), which may have been due to 

the storm’s effects on transportation limiting access to EDs. Similar results were also observed in two 

central Florida EDs on the days of three 2004 hurricanes’ landfalls (58). During tropical cyclones or other 

natural disasters, treatment disruptions can result in serious and even fatal health consequences, especially 

among populations with chronic medical conditions (59). Storm-related infrastructure damages can also 

be related to indirect pathways of risk for accidental mortality. For example, during the widespread power 

outage produced by Hurricane Irma, 12 people died of heat stress in a Florida nursing home due to loss of 

air-conditioning (28), and reported carbon monoxide exposures were significantly increased following 

Hurricane Sandy (2012) as compared with same days in previous years (60). 

Second, stress related to tropical cyclone exposure may contribute to the observed increases in mortality 

risk from non-accidental causes. Disaster-induced psychological stress has been associated with increased 

risks of heightened platelet activation and increased risk of acute coronary disease (61,62) and upper 

respiratory infection (63). Previous literature has extensively explored the interplay of disaster exposure, 

psychological stress, and cardiovascular disease in the context of earthquakes (64,65); a similar pathway 

could exist with tropical cyclones. For example, one study found post-traumatic stress disorder related to 

Hurricane Katrina was an independent risk factor for cardiovascular disease among hypertensive elderly 

adults in southeastern Louisiana (66), although the timescale at which these associations were explored 

were longer than the periods surrounding storms that were investigated in our study. 

We found that there can be extraordinary impacts on cardiovascular deaths during tropical cyclones with 

the most intense wind exposures, but once we took out these very severe tropical cyclone wind exposures, 

there was little evidence that the remaining tropical cyclone exposures, on average, increase the risk of 
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cardiovascular mortality substantially within a community (shown in Table B1). These findings suggest 

that our estimates of overall death risks across all tropical cyclones could be dominated by those very 

severe tropical cyclone wind exposures, especially for cardiovascular mortality. As discussed earlier, 

cardiovascular deaths from tropical cyclones may be associated with infrastructure damage and stress. 

The physical damage caused by tropical cyclones is strongly associated with the speed of the winds from 

the storm at a location. For example, one study found the percentage of structural damage associated with 

Hurricane Andrew increased exponentially with wind speed at wind speeds greater than 45 m/s (48). If 

infrastructure damage, and stress related with this damage, are particularly important pathways in 

increasing tropical cyclone-related mortality risks, particularly risks associated with cardiovascular 

mortality, this could help explain why mortality risks associated with particularly severe tropical cyclone 

wind exposures seemed to dominate the associations identified in our study. 

Consistent with previous studies using the surveillance approach, we also found substantial impacts on 

accidental mortality from tropical cyclone exposures. Based on the traditional surveillance method, about 

2,170 deaths were directly related to tropical cyclones in the U.S. from 1963 to 2012 (7,8). According to 

the guidelines provided by U.S. CDC about how to ascertain death and complete death certificates 

following tropical cyclones (9,67), nearly all the deaths classified as directly related to tropical cyclones 

can be coded as accidental deaths. Based on a community-wide assessment of mortality risks, we 

estimated a RR of 22.53 (95% CI, 20.03–25.35) for accidental death on the day of storm’s closest 

approach to the community for all tropical cyclones considered and across all the exposed communities, 

under the strictest threshold of rain-based exposure. For respiratory mortality from tropical cyclones, 

while an immediately increased risk was not consistently evident in our study, fatal and non-fatal 

respiratory outcomes have been previously been reported to be associated with some certain tropical 

cyclone exposures, both in the rapid assessment immediate after tropical cyclones (68) and during the 

following month (25) or years (69), especially among vulnerable populations like children (70). 
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There was some evidence that mortality risks were elevated on the day before and a few days after the 

day of storm’s closest approach, in particular for wind and rain tropical cyclone exposures. Similar 

findings were also seen in earlier studies (11,71); for example, out of 799 Katrina-related deaths with a 

recorded date of death in Louisiana, seven occurred on the two preceding days and about fifty in the week 

following the storm, based on surveillance activity (11). Conditions related to pre-storm preparation, 

evacuation, and post-storm cleanup may all contribute to the increased risk of mortality on the days 

surrounding the defined storm-exposed day, as evidenced in both preliminary reports (29,31,71) and more 

thorough studies (11,51,72–74). For example, one of the deaths attributed to Hurricane Charley in Florida 

was caused by a heart attack suffered while cleaning up after the storm, and several accidental deaths 

attributed to this storm were related to falls during post-storm cleanup (31). Similarly, following 

Hurricane Andrew, seven deaths in Dade County that were attributed to the storm were caused by 

increased physical exertion during post-storm cleanup (29). Further, although evacuations typically 

reduce people’s exposure to tropical cyclone winds, rains, flooding, and tornadoes, evacuation can pose 

its own risks to health, and increased risk of death among evacuees has indeed been identified in earlier 

studies (11,29,71). For example, in a recent study of four Florida hurricanes, evacuation was found to 

substantially increase 90-day probability of death among nursing home residents, as compared with those 

residing in the same facilities during the same time in non-storm years (72). 

Our analyses of community-wide mortality risks from tropical cyclones adds two important insights to 

results from traditional surveillance. First, the health impacts of tropical cyclones on non-accidental 

mortality can, in some cases, be much greater than identified in case-by-case surveillance studies. Second, 

intense wind exposures characterized several of the tropical cyclones with particularly high associated 

risks of non-accidental mortality in this study. Given that the intensity of tropical cyclones in Atlantic 

basin may increase under climate change (3,75), and the population density in the tropical cyclone-prone 

coastal areas has greatly increased and is expected to continue to increase (76), improving understanding 
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of the full-scale health impacts from tropical cyclones and other climate-related disasters is a high priority 

in climate change and public health research. 
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Chapter 4: Tropical cyclones-associated risks of emergency Medicare hospital admission 

for cardiorespiratory diseases in 175 U.S. counties, 1999–2010 

1. Chapter overview 

While the risk of injury during tropical cyclones has been well characterized based on traditional 

surveillance activities, the risk of other types of morbidity from exposure to tropical cyclones has seldom 

been investigated. Further, the elderly (typically defined as adults aged 65 and older) are generally 

disproportionately affected by disasters due to functional limitations, although research in this regard is 

also scarce. To provide evidence on health impacts associated with tropical cyclones among the elderly, 

we analyzed the county-wide associations between tropical cyclones and emergency hospital admissions 

in the Medicare population. To measure storm exposure, we separately considered five metrics: distance 

to storm track; cumulative rainfall; maximum sustained wind speed; flooding; and tornadoes. We used 

Medicare claims made between January 1, 1999 and December 31, 2010 for 180 eastern United States 

(U.S.) counties and estimated how emergency hospital admissions among the county Medicare 

beneficiaries differed during tropical cyclone exposures compared to what would have been expected had 

the storms not occurred We used a matched analysis to compare health risks on storm-exposed days 

versus similar unexposed days within each county. For each combination of exposure metric and disease 

outcome, we estimated storm-associated health risks for a window from two days before to seven days 

after the day of storm’s closest approach. Over our study period (1999–2010), 74 Atlantic Basin tropical 

cyclones were considered based on U.S. landfall or close approach, with 175 out of 180 counties exposed 

to at least one storm based on at least one exposure metric. Among Medicare beneficiaries, the risks of 

storms on cardiovascular hospitalizations generally decreased on the day of storm’s closest approach, 

followed by a significant increase on the following days, with the largest increase often found on day two 

(e.g., when measuring exposure as storm-related maximum sustained wind > 21 m/s at the county’s 

population mean center: RR at lag 0 is 0.93 [95% CI, 0.88–0.98]; RR at lag 1 is 1.00 [95% CI, 0.96–

1.05]; and RR at lag 2 is 1.11 [95% CI, 1.06–1.17]). Risks for respiratory disease hospitalizations, in most 
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cases, increased on the day of storm’s closest approach, with the largest increase often on the following 

two days. Cumulative risks of respiratory hospitalizations were increased under all storm exposure 

metrics considered, for all storms and across all exposed counties; these risks remained significantly 

elevated (RR = 2.22, 95% CI, 1.53–3.21) even when the ten most severe wind-based storm events were 

excluded from analysis. Through an examination of the county-wide storm-associated risks on emergency 

hospitalizations among a large population aged 65 and older, our findings add two important results to the 

limited literature on health impacts from exposure to tropical cyclones: first, the impact on emergency 

hospital admissions due to non-injury morbidity (investigated for cardiovascular and respiratory diseases) 

from exposure to tropical cyclones can increase substantially during storm exposure periods; and second, 

tropical cyclones with most intense wind exposures may be particularly important in identifying high-risk 

storms associated with respiratory disease hospitalization among the elderly. 

2. Introduction 

Tropical cyclones pose a growing threat to human health in the United States. With continuing climate 

change, the intensity of tropical cyclones, and their associated rainfall rates, are projected to increase in 

the Atlantic basin in coming decades (1). From 1995 to 2005, about 20% of adults aged 65 and older lived 

in a county with at least one tropical cyclone exposure (2), making it particularly important to improve 

our understanding of the potential impacts of these disasters among the elderly. In the United States 

(U.S.), the percentage of the population aged 65 and older has been increased and is expected continue to 

increase in the coming decades, with projections anticipating the percentage of Americans in this age 

group increasing from 15% in 2014 to 24% in 2060 (3). Many of the elderly have functional limitations or 

other conditions (e.g., vision/hearing impairments, chronic medical conditions) that compromise their 

ability to stay safe during disasters (4). Given these unique health challenges faced by the elderly, they are 

at a particularly high risk of disaster related morbidity and mortality. For example, almost half of all 

deaths in the official New Jersey death toll for Hurricane Sandy (49 out of 106) occurred among people 

over 65 years old, based on disaster surveillance (5). Similarly, out of the 12 people who died from 
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cardiovascular causes during the two weeks following Hurricane Andrew in Miami-Dade county, 8 were 

elderly (6). In spite of a growing interest in investigating how natural disasters affect human health (7) 

and a wide recognition that the elderly are disproportionately affected by disasters (8), there are still few 

studies specifically examining the health impacts on the elder population from natural disasters, including 

tropical cyclones (9). 

There is much less known about the association between tropical cyclones and non-fatal chronic disease 

risks than about tropical cyclones’ effects on fatalities or injuries, as post-disaster surveillance in the U.S. 

usually focuses on estimating the toll of fatalities and injuries, with some investigation of infectious 

disease risks for some disasters (10). Based on a few surveys exploring non-fatal chronic disease 

outcomes associated with tropical cyclones, especially following Hurricane Katrina, the majority of non-

injury-related health care visits during and after storms are due to chronic disease and related conditions, 

such as hypertension, cardiovascular complaints, and respiratory problems (12). Although an association 

between tropical cyclones and health care utilizations was observed in these previous studies, literature in 

this area is still scarce and subject to a number of limitations. First, most studies to investigate the 

association between tropical cyclones and non-fatal chronic health effects to date have been limited to 

single-storm studies (15), especially studies focusing on Hurricane Katrina (12) and Hurricane Sandy 

(16). Second, most studies that have investigated the change in the overall hospital admissions during 

tropical cyclones (19); there have been few studies on health care utilizations due to some common 

diseases, even though there are reasons to believe that tropical cyclones may increase the risk of some 

common diseases like cardiovascular and respiratory disease (21), particularly among the elderly (16). 

Finally, few studies have provided views of how the health risks associated with tropical cyclones evolve 

over the period from before the storm, as communities prepare and evacuate, to the day of the storm, then 

through the post-storm period. Instead, most previous studies have assessed the cumulative health effect 

of tropical cyclone exposure throughout a two-week or one-month storm period as compared with pre- or 

post-storm periods (16). Given that the health risks associated with tropical cyclones likely vary 
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substantially throughout this storm period, understanding the evolution of patterns in health care 

utilization throughout the tropical cyclone period is critical for preparedness and response. 

To address research gaps in understanding the risks of non-fatal chronic health outcomes associated with 

tropical cyclone exposure among the elderly, we examined the associations between tropical cyclone 

exposures and emergency hospital admissions for cardiovascular and respiratory diseases in the Medicare 

population in the eastern U.S. from 1999 to 2010. To our knowledge, this is the largest study to date in 

exploring the patterns in emergency hospitalizations during tropical cyclones. 

3. Methods 

Data 

Tropical cyclones. We identified all tropical cyclones that passed within 250 kilometers of at least one 

eastern U.S. county during the study period (1988–2005), using the National Hurricane Center’s revised 

Atlantic hurricane database (HURDAT2) (26). For each storm, we then measured county-level storm 

exposure for all counties based on five metrics: distance to the storm track, cumulative rainfall (from one 

day before the storm’s closest approach to one day after), maximum sustained wind speed modeled at the 

county’s population mean center, occurrence of one or more flood events, and occurrence of one or more 

tornadoes. Specific details for the exposure assessment based on each of these exposures is included in 

the Methods section in Chapter 3. For the three continuous exposure metrics (distance to storm track, 

cumulative rainfall, and maximum sustained wind speed), we considered several different thresholds for 

classifying a county as exposed based on that metric, to allow us to explore the influence of these 

threshold choices on hospitalization risk estimates. For all tropical storm exposure assessment, we 

conducted this exposure classification using the R packages “hurricaneexposure” (27) and 

“hurricaneexposuredata” (28). 

Study population. We obtained daily counts of emergency hospital admissions for cardiovascular and 

respiratory disease, based on fee-for-service Medicare claims made between January 1, 1999, and 
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December 31, 2010, for beneficiaries aged 65 years or older residing in one of 180 study counties in 

eastern half of the U.S. (Figure 4.1). This Medicare population has also been investigated in previous 

studies to examine health effects of other ambient environmental exposures, including air pollution (29) 

and heat waves (30). Cause of disease was classified based on the International Classification of Diseases, 

ninth revision (ICD-9): cardiovascular disease admissions covered ICD-9 codes 390–398 and respiratory 

admissions covered ICD-9 codes 464–466, 480–487, and 490–492. 

Statistical analysis 

We applied the same definition of storm exposure as in Chapter 3: a storm exposure was defined as the 

occurrence of a storm bringing conditions to a study community that met one of the storm exposure 

definitions, based on either distance to the storm track, maximum sustained winds, cumulative rainfall, 

flooding, or tornadoes. Therefore, a storm could create multiple exposures within our study (if it brought 

these conditions to multiple study communities), and a study community could experience multiple 

exposures across the study period, from multiple storms. 

Matching. We used a matched-analysis approach, as used in the Chapter 3, to examine the change in 

emergency hospital admissions during tropical cyclones exposure periods versus matched non-storm 

periods. We first identified any storm-exposed days for each of the study counties, under each storm 

exposure metric considered. Study counties with no storm exposure days under any metric were excluded 

from further analysis. Within each county with one or more storm-exposed days, we then matched each 

identified storm day to ten non-storm days, matching by seasonality. These ten non-storm days were 

randomly selected from a pool of candidate non-storm days for the county which were: 1) in a different 

year; 2) within a seven-day window of the storm day’s day of the year (to match for time of year); 3) not 

within a three-day window of a different storm day for the county; and 4) not in the two-week period 

starting on September 11, 2001. For each storm day and its ten matched non-storm days, we pulled the 

series of days from two days before to seven days after these days, to allow us to investigate the 

association between storm exposure and hospital admissions for a period surrounding the date of a 
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storm’s closest approach to a county. For days in the storm period, the day’s lag day was set as the 

amount of time between that day and the day of the storm’s closest approach (e.g., if the storm’s closest 

approach was August 31, 2004, then August 29, 2004 was identified as the lag -2 exposure day for that 

storm). 

Association between all tropical cyclone exposures and hospital admissions. We first estimated the 

overall association across all tropical cyclones over our study period and all exposed study counties. We 

fit the following generalized linear mixed-effect model to the matched multi-county data, separately for 

each combination of exposure metric and disease outcome: 

 log[%('(
))] = log(-)) + / + /) + ∑ 123(42

)5
2678 + 9':;<( + =>?@( (4.1) 

where: 

• '(
) is the number of emergency hospital admissions in Medicare population on day t for county c; 

• -(
) is the total number of Medicare beneficiaries residing in county c on day t who were not already 

hospitalized, included as an offset term to capture the variation in the number of potential 

hospitalizations on each study day; 

• / is the model intercept; 

• /) are random intercepts for each study county, assumed to follow a normal distribution with a 

mean of 0 and variance of A8 (i.e., /) ~ N(0, A8)); 

• ∑ 123(42
)5

2678  is an unconstrained distributed lag function of storm exposure variable x. 12 is the 

coefficient estimating the association between tropical cyclone exposure and hospital admission at 

lag l from day t, the day of the storm’s closest approach to study county c. 3(42
)  is the indicator 

variable representing whether a given day at lag l from day t for county c is part of an exposed storm 

period or part of a matched unexposed period. 

• ':;<( is an indicator variable of year on day t, with 9 as a vector of coefficients for ':;<; 



 73 

• >?@( is an indicator variable of day of week on day t, with = as a vector of coefficients for >?@. 

For each definition of storm exposure, we estimated both lag-specific and cumulative relative risks (RRs), 

as compared with matched non-storm periods. The lag-specific RRs on each day in the storm period were 

calculated as :3B(1C2), based on the values of 1C2 estimated for eq. 4.1. The cumulative RRs estimate the 

cumulative risks for hospital admission across the entire storm exposure period, from two days before to 

seven days after the day of the storm’s closest approach, compared to matched periods without storm 

exposure. The cumulative RRs were calculated as :3B(∑ 1C2
5
2678 ), based on the values of 1C2 estimated for 

eq. 4.1 (31). 

Associations between the ten most severe tropical cyclone wind exposures and hospital admissions. To 

investigate if the overall estimated associations between tropical cyclone exposures and hospital 

admissions were driven by the few most severe tropical cyclone exposures, we also estimated the storm-

specific effects on hospital admissions from exposure to the ten most severe tropical cyclone wind 

exposures, as well as the average associations between hospitalizations and all other tropical cyclone 

exposures excluding these ten most severe wind exposures. To ensure adequate statistical power in this 

subgroup analysis, we limited our analysis to the study counties with > 50,000 Medicare beneficiaries on 

the day of storm’s closest approach to the county. 

For each of the top ten tropical cyclone wind exposures, to estimate the RR on the day of storm’s closest 

approach to the county, we applied the following overdispersed Poisson model to the matched single-

county, single-storm data: 

 log[%('()] = log(-() + / + 1(3( + =>?@( + D':;<( (4.2) 

where '(  is the hospital admission count on day t; -(  is the total number of unhospitalized Medicare 

beneficiaries in the county on day t; 3( is an indicator variable denoting whether the day t is a storm-

exposed day or matched unexposed day; >?@( is an indicator variable of day of week and E is a vector 

of coefficients for day of week; and ':;<( is included as a linear variable to adjust for the long-term 
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linear trend in hospital admissions over time, with D as the coefficient for year. The value of 1C  estimated 

from eq. 4.2 was used to calculated the RR for a certain storm in the affected county on the day of storm’s 

closest approach to the county. 

To estimate the cumulative RRs of the most severe tropical cyclone wind exposures, over the entire storm 

period, we first calculated from the multi-county time series data a total count of hospital admission for 

the ten-day storm exposure period (i.e., two days before to seven days after the storm’s closest approach 

to the county), as well as for the same period for each matched unexposed day. Since each storm-exposed 

day was matched to ten unexposed days, the transformed data contained eleven observations for each of 

these ten most severe tropical cyclone wind exposures. To this data we applied the following 

overdispersed Poisson model, separately for each of the ten most severe tropical cyclone wind exposures: 

 log[%('F)] = log(-F) + / + 1F3F + D':;<F (4.3) 

where 'F is the total count of hospital admissions for the storm period; -F is the average of daily number 

of hospitalized Medicare beneficiaries in the county over the ten-day storm period; 3F is an indicator 

variable of storm exposure, with 3F = 1 denoting storm-exposed period and 3F = 0 the matched 

unexposed period, with 1F the coefficient of storm exposure during the period; and ':;<F is a linear term 

for year to adjust for the long-term linear trend in hospital admission over time, with D the coefficient for 

year. 

Finally, we investigated the influence of the ten most severe tropical cyclone wind exposures on the 

overall estimated associations between tropical cyclones and hospital admissions for all the storms and 

across all the exposed counties. We fit eq. 4.1 to all other identified storm exposures (excluding the ten 

most severe wind exposures) across all study counties with Medicare beneficiaries > 50,000 on the day of 

storm’s closest approach to the county. For this analysis, we excluded days within the ten most severe 

wind exposures from the pool of candidate unexposed matching days. 
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4. Results 

Over the study period (1999–2010), 74 tropical cyclones passed within 250 kilometers of at least one 

eastern U.S. county and were considered as study storms. Out of the 180 study counties in the eastern half 

of U.S., 175 counties were exposed to at least one of these storms based on at least one exposure metric 

(Figure 4.1). The number of exposed counties and storm exposures differed greatly across the five 

exposure metrics considered (Table 4.1). For all tropical cyclones and across all the exposed counties, the 

emergency hospital admissions among the Medicare population due to cardiovascular disease and 

respiratory disease were generally higher during the storm-exposed periods compared with matched 

unexposed periods (Table 4.1). Under flood-based exposure, three counties (Oneida County, NY; Broome 

County, NY; and Lackawanna County, PA) were exposed to two storms (Hurricane Gaston and Tropical 

Storm Hermine) on the same day (August 31, 2004). Since our modeling approach cannot distinguish the 

effects of two storms on the same day, we modeled the effects of the two storm events as a single 

exposure day for the three counties. 

Under most of the tropical cyclone exposure metrics we considered, tropical cyclone exposure was 

associated with decreased risks for cardiovascular disease hospitalizations (wind > 21 m/s: RR at lag0 is 

0.93, 95% CI, 0.88–0.98) among Medicare beneficiaries on the day of storm’s closest approach, 

compared with risks on matched non-storm days (Figure 4.2 and C6). Following the day of the storm’s 

closest approach, there is evidence that the RR for cardiovascular disease hospitalizations then increased 

for a few days, with the largest increased risk typically on the second day following the day of storm’s 

closest approach (e.g., wind > 21 m/s: RR at lag 1 is 1.00 [95% CI, 0.96–1.05]; RR at lag 2 is 1.11 [95% 

CI, 1.06–1.17]; and RR at lag 3 is 1.08 [95% CI, 1.03–1.13]). In a few cases, especially for severe tropical 

cyclone wind exposures, risks of cardiovascular disease remained elevated for several days following the 

storm’s closest approach. Risks for respiratory disease admissions increased on the day of the storm’s 

closest approach and, like cardiovascular hospitalization risks, also remained elevated for several days 

after, with this pattern particularly clear when tropical cyclone exposure was assessed based on wind, 
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rain, and distance metrics. For respiratory hospitalizations, there was also some evidence that risk was 

elevated the two days before the storm’s closest approach. 

Next, we estimated the cumulative RR of emergency hospitalization across the storm period (two days 

before to seven days after the day of storm’s closest approach to the county) compared with the matched 

non-storm periods (Figure 4.3). During the storm period, the cumulative RRs for respiratory disease 

increased under all exposure metrics considered (Figure 4.3). Based on wind and rain exposure metrics, 

the cumulative RR for respiratory disease admissions steadily increased as we made the threshold for 

defining tropical cyclone exposure stricter (i.e., increased the wind speed threshold or rainfall threshold). 

For example, under wind-based exposure, the estimated cumulative RRs for respiratory disease 

admissions were 1.66 (95% CI, 1.44–1.91), 2.22 (1.85–2.67), 2.99 (2.41–3.72), and 4.28 (3.22–5.69) with 

a more constrictive threshold. For cardiovascular disease admissions, increased risks were mainly 

identified under the wind-based exposures compared with other metrics (e.g., wind > 21 m/s: cumulative 

RR is 1.36 [95%CI, 1.16–1.60]), with little evidence of an association between cumulative hospitalization 

risks over this storm period and tropical cyclone exposure under several of the exposure metrics (Figure 

4.3). A noticeable increase in cardiovascular disease hospitalizations was also found using the strictest 

threshold of distance-based metric (cumulative RR is 1.14 [95% CI, 0.98–1.34]), although statistical 

significance was not met (Figure 4.3). 

We further estimated the risks of ten most severe tropical cyclone wind exposures for counties with > 

50,000 Medicare beneficiaries on the day of storm’s closest approach (Figure C1 shows these counties). 

For about half of these storms, there was evidence of decreased risk of cardiovascular hospitalizations on 

the day of storm’s closest approach. Across the entire storm period, while little evidence of increased risk 

was observed for cardiovascular hospitalizations, the risk for respiratory disease was consistently elevated 

across these storms (Table 4.2). For example, a cumulative RR of 1.66 (95% CI, 1.36–2.04) was 

estimated for respiratory disease hospitalizations among the elderly people in Broward County, FL from 

exposure to Hurricane Wilma (2005), resulting in an excess of 35 (95% CI, 23–45) hospital admissions 
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for the entire storm period. While the estimated RRs of tropical cyclones on emergency hospital 

admission were often higher for respiratory disease than cardiovascular disease, the quantitative health 

impacts on respiratory disease admissions were a little lower for respiratory than cardiovascular disease, 

as shown by the attributable numbers: Hurricane Katrina in Broward County, FL, was associated with a 

cumulative RR of 1.15 (95% CI, 1.09–1.21) for cardiovascular disease, causing an estimated 39 excess 

hospitalizations (95% CI, 26–51), while this exposure was associated with a RR for respiratory 

hospitalizations of 1.36 (95% CI, 1.19–1.57), which translates to an estimated 20 excess respiratory 

hospitalizations (95% CI, 12–27). This results mainly from the observed number of respiratory disease 

hospitalizations in some counties being smaller than the observed number of hospitalizations from 

cardiovascular disease. 

To investigate whether the estimated overall RRs for all tropical cyclone exposures identified were driven 

by these ten most severe tropical cyclone wind exposures, we compared the estimated RRs of 

cardiovascular and respiratory hospitalizations when calculated both with and without these ten exposures 

included in the analysis. While the risks for cardiovascular disease hospitalizations were very similar 

regardless of whether the ten severe storms were included in analysis (cumulative RRs: 1.14, [95% CI, 

0.95–1.37] for all the storm exposures vs. 1.12, [95% CI, 0.91–1.38] for less severe storm exposures), the 

observed tropical cyclone-related risks for respiratory disease hospitalizations may partly be driven by 

those tropical cyclones exposures characterized by the most severe winds (cumulative RRs: 3.24, [95% 

CI, 2.34–4.50] for all storm exposures vs. 2.22, [95% CI, 1.53–3.21] for less severe storm exposures), as 

these associations were somewhat dampened when excluding these exposures from analysis (Figure 4.4). 

Also, given that the majority of the ten most severe wind-based storms were identified in the counties of 

Florida, which is the most storm-prone state, we also conducted additional sensitivity analyses 

investigating the most severe wind-based storms in counties out of Florida (Table C1). 
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Figure 4.1 Map of study counties (180 total) and tracks of all Atlantic-basin tropical cyclones considered in this study. Storm 
tracks are shown in grey for all tropical cyclone (74 total) that came within 250 km of at least one county in the eastern U.S. 

between 1999 and 2010. Tracks in brown show the ten most severe wind-based storms. 
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Figure 4.2 Estimates of lag-specific relative risks of hospitalizations on days during storm periods compared to matched days, for 
all storms and across all exposed counties, based on selected exposure metrics. Dots show point estimates and horizontal lines 
show 95% confidence intervals. The gray vertical line shows as a reference a relative risk of 1. 
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Figure 4.3 Estimates of cumulative relative risks of hospitalizations across the storm period considered (two days before to seven 
days after the date of storm’s closest approach to the county) compared with matched non-storm periods, for all the storms and 
across all the exposed counties. Color is used to represent different exposure metrics. Dots show point estimates (with circle for 
cardiovascular disease and triangle for respiratory disease) and horizontal lines show 95% confidence intervals. The gray vertical 
line shows as a reference a relative risk of 1. 
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Figure 4.4 Estimates of relative risks (RR) of hospitalizations for all tropical cyclones (shown with triangle) and for tropical 
cyclones excluding the ten most severe wind-based ones (shown with circle). Dots show point estimates and horizontal lines 

show 95% confidence intervals. The gray vertical line shows as a reference a relative risk of 1. Estimates are shown for lag-
specific RR for cardiovascular disease hospitalizations (A) and respiratory disease hospitalizations (B), as well as cumulative RR 
for cardiovascular and respiratory hospitalizations (C).  
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Table 4.1 Number of storm exposure and emergency hospital admissions under each of the exposure metrics investigated. For continuous exposure measurements (maximum 
sustained winds, cumulative rainfall, and distance to the storm track), the numbers of exposures are given for each of the thresholds of exposure considered in the study, from least 
to most constrictive. 

   Cardiovascular disease Respiratory disease 

Exposure No. of counties 
No. of storm 
exposures* 

Storm-exposed 
days# 

Matched unexposed 
days$ 

Storm-exposed 
days# 

Matched unexposed 
days$ 

Wind       

12 m/s 145 558 63,125 62,982 19,739 19,070 

14 m/s 116 338 41,917 41,758 13,305 12,632 

18 m/s 86 217 30,167 29,976 9,830 9,085 

21 m/s 54 123 17,964 17,383 5,965 5,277 

Rain       

50 mm 169 919 106,046 103,194 32,907 32,026 

75 mm 155 505 58,502 57,250 18,484 15,578 

100 mm 123 267 30,155 29,450 9,434 8,924 

125 mm 88 133 14,637 14,109 4,708 4,223 

Distance       

100 km 159 590 66,879 65,391 20,886 20,087 

75 km 150 452 52,099 51,373 16,363 15,673 

50 km 136 309 35,324 35,126 11,300 10,829 

25 km 95 149 17,991 17,831 5,640 5,434 

Flood 151 570 69,594 67,778 21,225 20,556 

Tornado 55 111 14,381 14,213 4,401 4,295 

*Number of storms is the total number of storms under a given exposure metric (e.g., there were two storm exposures for county A, and three for county B, and those were the only two counties under a 
specific exposure metric, then the Number of storms was 5 (2+3). 
# Total hospital admissions for the entire storm period for all exposed counties under a certain exposure metric. 
$ Total hospital admissions (averaged by ten as the number of matched days) for the entire storm period for all exposed counties under a certain exposure metric. 
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Table 4.2 Estimates of relative risk of hospitalizations for cardiovascular and respiratory diseases, as well as associated excess admission estimates, of ten most severe tropical 
cyclone wind exposures across the study storms, among counties with total number of Medicare beneficiaries greater than 50,000 on the day of storm’s closest approach. Estimates 
are included for both the day of the storm’s closest approach to the community (’Same-day estimates’) and across the period from two days before to seven days after the storm’s 
closest approach. 

   Cardiovascular disease Respiratory disease 

Storm County Wind (m/s) Relative risk Attributable number Relative risk Attributable number 

Same-day estimates      

Wilma (2005) Palm Beach County, FL 51.5 0.44 (0.36, 0.53) -26 (-35, -18) 0.57 (0.18, 1.81) -3 (-18, 2) 

Charley (2004) Lee County, FL 45.3 0.90 (0.48, 1.66) -1 (-13, 5) 0.35 (0.03, 3.93) -15 (-250, 6) 

Charley (2004) Orange County, FL 41.2 1.16 (0.76, 1.78) 3 (-7, 10) 1.52 (0.18, 12.87) 3 (-41, 8) 

Ike (2008) Harris County, TX 38.7 0.47 (0.18, 1.26) -36 (-150, 7) 1.25 (0.58, 2.69) 3 (-10, 8) 

Charley (2004) Volusia County, FL 37.0 0.66 (0.22, 1.94) -7 (-46, 6) 1.13 (0.39, 3.28) 0 (-5, 2) 

Wilma (2005) Broward County, FL 36.7 0.59 (0.42, 0.82) -15 (-30, -5) 2.85 (1.56, 5.20) 8 (4, 10) 

Katrina (2005) Broward County, FL 33.5 1.18 (0.55, 2.53) 2 (-12, 9) 1.32 (0.31, 5.55) 2 (-15, 6) 

Frances (2004) Palm Beach County, FL 33.3 1.11 (0.75, 1.65) 4 (-12, 15) 0.83 (0.41, 1.70) -1 (-10, 3) 

Irene (1999) Broward County, FL 33.3 0.66 (0.33, 1.34) -15 (-62, 8) 0.70 (0.36, 1.36) -6 (-25, 4) 

Irene (1999) Palm Beach County, FL 33.2 1.21 (0.54, 2.68) 4 (-18, 13) 2.88 (0.60, 13.75) 3 (-3, 5) 

Cumulative estimates      

Wilma (2005) Palm Beach County, FL 51.5 0.99 (0.84, 1.17) -4 (-68, 51) 1.38 (0.97, 1.95) 32 (-3, 56) 

Charley (2004) Lee County, FL 45.3 1.07 (0.94, 1.21) 10 (-9, 27) 1.25 (0.90, 1.73) 10 (-6, 22) 

Charley (2004) Orange County, FL 41.2 1.20 (1.02, 1.41) 28 (3, 49) 1.44 (1.04, 1.99) 15 (2, 24) 

Ike (2008) Harris County, TX 38.7 0.93 (0.78, 1.10) -33 (-117, 38) 1.44 (1.25, 1.65) 34 (22, 43) 

Charley (2004) Volusia County, FL 37.0 1.23 (0.95, 1.60) 18 (-5, 35) 1.08 (0.85, 1.38) 2 (-6, 9) 

Wilma (2005) Broward County, FL 36.7 1.00 (0.85, 1.18) 0 (-59, 51) 1.66 (1.36, 2.04) 35 (23, 45) 

Katrina (2005) Broward County, FL 33.5 1.15 (1.09, 1.21) 39 (26, 51) 1.36 (1.19, 1.57) 20 (12, 27) 

Frances (2004) Palm Beach County, FL 33.3 1.08 (0.92, 1.26) 24 (-27, 67) 1.35 (1.15, 1.59) 20 (10, 28) 

Irene (1999) Broward County, FL 33.3 0.89 (0.73, 1.09) -38 (-117, 26) 1.10 (0.86, 1.41) 9 (-15, 27) 

Irene (1999) Palm Beach County, FL 33.2 0.86 (0.70, 1.07) -59 (-163, 24) 1.40 (0.97, 2.00) 26 (-3, 45) 
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5. Discussion 

We analyzed county-wide associations between tropical cyclones and emergency hospital admissions due 

to cardiovascular and respiratory disease in the Medicare populations in 175 exposed eastern U.S. 

counties between 1999 and 2010. For all the tropical cyclones considered in the study period and across 

all the exposed counties, the risks of storms on cardiovascular hospitalizations generally decreased on the 

day of the storm’s closest approach, followed by a significant increase on the following days, with the 

largest increase often two days after the storm’s closest approach. Risks for respiratory disease 

hospitalizations, in most cases, increased on the day of storm’s closest approach, and remained elevated 

on a few days after. Given strong links between the severity of maximum sustained winds in a location 

and infrastructure damage form storms (21), tropical cyclone wind exposures may be particularly 

important in identifying storms associated with heightened risks of respiratory hospitalizations among 

Medicare beneficiaries. These findings add two important results to the paucity of research on the health 

impacts related to exposure to tropical cyclones among the elderly: first, the impact on emergency 

hospital admissions due to non-injury morbidity (investigated for cardiovascular and respiratory diseases) 

from exposure to tropical cyclones can increase substantially during storm exposure periods; and second, 

tropical cyclones with intense wind exposures may be particularly important in identifying high-risk 

storms associated with respiratory disease hospitalization among the elderly. 

We observed an increase in risks of emergency Medicare hospitalizations for both cardiovascular and 

respiratory diseases in the period immediately following tropical cyclones’ closest approaches to study 

counties during our study period, a finding that is largely in line with previous research conducted at a 

smaller scale (22). For example, in the two weeks following Hurricane Sandy’s landfall, one study of 

highly impacted areas found a RR of 1.22 (95% CI, 1.16–1.28) for myocardial infarctions incidence and a 

RR of 1.07 (95% CI, 1.03–1.11) for stroke as compared to risks in the same weeks in the five previous 

years, using the data of all inpatient hospital discharges with cardiovascular diagnoses in New Jersey (22). 

Similarly, in the week following Hurricane Sandy’s landfall, the total emergency hospitalization visits in 
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a medical center of lower Manhattan, New York increased by 20% compared with the week before the 

storm and the proportion of hospitalizations due to chronic obstructive pulmonary disease (COPD) / 

asthma out of total hospital admissions increased approximately 3% compared with the previous week 

(18). 

An increasing number of case studies have investigated the risk of individual storms on chronic disease 

(e.g., cardiovascular disease and hypertension) (12,22,26,33). However, there have been few studies 

examining associations between tropical cyclone exposure and respiratory disease risks beyond those 

associated with infectious disease outbreaks, which are often investigated in surveillance activities in the 

aftermath of storms (10). There are, however, plausible pathways through which tropical cyclone 

exposures could increase the risks of respiratory outcomes, especially in terms of increasing risks of acute 

outcomes in patients with preexisting respiratory disease (34). For example, tropical cyclones can cause 

power outages (35), which would increase exposure to outdoor conditions, including extreme heat and air 

pollution following the storm. Similarly, post-storm clean-up could increase exposures to these outdoor 

conditions (36). In a survey in the New Orleans area of workers engaged in post-Katrina clean-up, the 

prevalence rate ratio (PRR) for new-onset asthma was found to be elevated (PRR = 2.2, 95% CI, 0.8–6.2) 

during the period of clean-up (37). In our study, we indeed found substantially increased risk on 

emergency hospitalizations for respiratory disease among the elderly during tropical cyclone exposure 

periods up to a week following the storm compared with matched unexposed periods. This finding 

provides new insight into existing evidence on potential health outcomes associated with tropical 

cyclones. 

The biological mechanisms by which tropical cyclones could increase the risk of cardiovascular and 

respiratory disease outcomes are unknown, but some hypotheses have been raised. Psychosocial stress 

may play an important role in the etiology of both cardiovascular disease (38,39) and respiratory disease 

(40–42). Furthermore, infrastructure damage caused by tropical cyclones can disrupt medical treatment or 

reduce medication adherence (35), which could lead to the onset of a new illness or the exacerbation of an 
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existing illness. In fact, in a rapid assessment of the health status among older adults after Hurricane 

Charley in Florida, 28% of households reported that at least one older adult was impeded from receiving 

routine or follow-up care for a pre-existing condition (43). Finally, tropical cyclones could increase 

exposure to environmental hazards, such as mold and air pollution (44,45), both by increasing ambient 

concentrations of these exposures (e.g., flooding triggering mold growth, increased air pollution from 

burning debris or use of generators) or through making residents more exposed to ambient outdoor 

exposures than had the storm not occurred (e.g., because of power outages or an increase in time spent 

outdoors for post-storm clean-up). These secondary environmental exposures have been documented to 

be associated with increased risk in cardiovascular and respiratory disease (46). 

When we investigated the timing of changes in hospitalization risks during the period from a few days 

before to a week after the storm’s closest approach to a county, we observed a lagging pattern in risks of 

emergency hospital admissions for both cardiovascular and respiratory diseases. There was a substantial 

increase in the RRs of Medicare cardiorespiratory hospitalizations 1–4 days after the day of storm’s 

closest approach, with a gradual return toward the expected risk without exposure (i.e., RR = 1) 

afterward. On the day of the storm’s closest approach, we found an appreciable decrease in the risk for 

Medicare cardiovascular disease hospital admissions, with these estimated protective relative risks in 

some cases statistically significant (e.g., RR = 0.84 at lag 0 [95% CI, 0.79–0.89] under the strictest 

threshold of rain-based exposure metric). These findings on the timing of changing health risks are 

consistent with patterns found in previous, smaller-scale observational studies on the association between 

tropical cyclone exposure and hospital utilization (19,20,25,47,48). For example, one study found a 

significant drop in the number of Long Island (NY) emergency department (ED) visits for physical health 

problems on the day when Hurricane Sandy made landfall in New York, with the number of visits then 

slightly increased for two days following the storm compared to baseline values (19). Another study 

analyzed the impacts of three 2004 hurricanes on total number of ED patients in two central Florida 

emergency departments (47). In this study, EDs dropped significantly on the day of landfall compared 
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with previous year (47) and increased on the following three days. These findings suggest that some 

tropical cyclone related factors could have contributed to the observed delay in treatments for patients. 

Tropical cyclones could cause important delays in seeking medical treatment for cardiovascular and 

respiratory disease through a number of pathways, including that the storm causes infrastructure damages 

such as suspension of public transportation, road closures, electricity outages, and impaired 

telecommunications. Those infrastructure damages may prevent patients from getting to the hospitals or 

calling emergency services for help (49). Such delays in medical care can lead to further adverse health 

outcomes; in previous studies, such delays have been found to increase subsequent risk of mortality 

across various setting and conditions (50,51). 

For respiratory hospitalizations, we also found some evidence suggesting that particularly intense wind 

exposure may characterize the tropical cyclones most associated with elevated risks among Medicare 

beneficiaries. When we removed the ten most severe tropical cyclone wind exposures from our analysis 

of associated respiratory hospitalization risks, estimated RRs for respiratory disease hospitalizations were 

much smaller compared with estimates when all tropical cyclone exposures were considered (cumulative 

RR: 2.22 [95% CI, 1.53–3.21] vs. 3.24 [95% CI, 2.34–4.50]). A heightened risk from the most intense 

tropical cyclone wind exposures on respiratory disease might be related to elevated levels of other 

environmental exposures generated by strong winds during tropical cyclones, such as air pressure (52,53), 

pollen (54), and mold (e.g., mold levels doubled the day after Hurricane Ike in Hamilton County, OH 

(55)). 

Although there is a large and growing body of research on the associations between some climate-related 

exposures, especially heat, and the health of older adults (31,56,57), research gaps remain for other 

climate-related exposures, including climate-related disasters like tropical cyclones (58). With coming 

climate change, the average intensity of tropical cyclones in the Atlantic basin is expected to increase (1). 

These storms will affect areas with large elderly populations (2). These expected future trends make it 

very important to focus more effort on understanding the potential health impacts of tropical cyclone 
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exposures, especially on older adults. Our findings that emergency hospital admissions tend to be elevated 

during tropical cyclone exposures in a large Medicare population in the U.S., together with other recent 

studies on health risks among the elderly population associated with tropical cyclone exposure (especially 

for Hurricane Sandy) (16,18), add significantly to the previous knowledge base on the health impacts of 

tropical cyclones. 
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Chapter 5: Main findings, limitations, and future work 

1. Main findings 

In this dissertation, we aimed to examine the community-wide change in health outcome rates during 

natural disasters relative to the expected rates in the absence of disasters. To do this, we compared 

community-wide rates of health outcomes observed during natural disasters to the health outcome rates on 

matched unexposed days in the same community. Our results can provide new evidence on how natural 

disasters affect human health, contributing to and complementing the large base of existing literature 

generated using a traditional surveillance approach to identify health outcomes attributable to a disaster 

on a case-by-case basis. 

Chapter 2: Changes in the community-wide rates of all-cause, circulatory, respiratory, and 

accidental mortality in Beijing, China during the July 2012 flood. In this study, we examined the 

community-wide mortality risks among Beijing residents from exposure to a severe flood. Compared with 

the matched non-flood days, mortality rates were substantially higher during the flood period for all-

cause, circulatory, and accidental mortality, with the highest risks observed on the peak flood day. On the 

peak flood day, the flood-associated relative risks (RRs) of mortality were 1.34 (95% confidence interval: 

1.11–1.61), 1.37 (1.01–1.85), and 4.40 (2.98–6.51) for all-cause, circulatory, and accidental mortality, 

respectively. No evidence of increased risk of respiratory mortality was found in this study. We estimated 

a total of 79 excess deaths among Beijing residents on July 21–22, 2012, as compared with expected 

mortality rates had the flood not occurred; by contrast, only 34 deaths were reported among Beijing 

residents in a study estimating the fatality toll of this flood using a traditional surveillance approach. Our 

results indicate considerable impacts of this flood on public health, and that much of this impact may 

come from increased risk of non-accidental deaths. To our knowledge, this is the first study analyzing the 

community-wide changes in mortality rates during the 2012 flood in Beijing, and one of the first to do so 

for any major flood worldwide. This study offers critical evidence in assessing flood-related health 

impacts, as urban flooding is expected to become more frequent and severe in China. 
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Chapter 3: Tropical cyclones and associated risks to all-cause, accidental, cardiovascular, and 

respiratory mortality in 70 United States communities, 1988–2005. We analyzed the community-wide 

change in mortality rates during storm-exposed days compared to similar unexposed days using multi-

community, multi-year data in eastern half of U.S. We assessed tropical cyclone exposure using five 

metrics: distance to storm track; cumulative rainfall; maximum sustained wind speed; flooding; and 

tornadoes. From 1988 to 2005, 92 Atlantic Basin tropical cyclones made landfall or passed near the 

eastern half of U.S., and 70 of our study communities were exposed to at least one of these storms. 

During tropical cyclone wind exposures, community-wide mortality risks were generally elevated, with 

highest risks typically on the day of the storm’s closest approach. For the strongest wind exposures, the 

RRs of mortality on the day of storm’s closest approach were 1.42 (95% CI, 1.36–1.49), 12.03 (10.87–

13.32), 1.15 (1.06–1.24), 1.12 (0.92–1.38) for all-cause, accidental, cardiovascular, and respiratory 

mortality, respectively, across all exposed communities. These observed associations may be dominated 

by extremely high risks during the few most severe tropical cyclone wind exposures; for example, a RR 

of 38.69 (7.37–203.21) was observed for cardiovascular mortality from Hurricane Katrina in New 

Orleans, the third most severe wind-based storm exposure observed in our study. Our findings on 

community-wide mortality risks from tropical cyclones add two important insights to results from 

traditional surveillance: first, the health impact of tropical cyclones on non-accidental mortality can, in 

some cases, be much greater than identified in case-by-case surveillance studies and, second, intense 

winds characterize many of the tropical cyclone exposures with particularly high associated risks of non-

accidental mortality. 

Chapter 4: Tropical cyclone-associated risks of emergency Medicare hospital admission for 

cardiorespiratory diseases in 175 United States counties, 1999–2010. We analyzed the county-wide 

associations between tropical cyclone exposures and emergency hospital admissions among Medicare 

beneficiaries in a large collection of eastern U.S. counties. Over our study period (1999–2010), 74 

Atlantic Basin tropical cyclones were considered based on U.S. landfall or close approach, with 175 out 
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of 180 study counties exposed to at least one storm based on at least one exposure metric. Among 

Medicare beneficiaries, tropical cyclone exposure was typically associated with a decreased risk in 

cardiovascular hospitalization on the day of storm’s closest approach, followed by a significant increase 

in risk on days following the storm, with the largest increase often found two days after the storm’s 

closest approach. Risks for respiratory disease hospitalizations, in most cases, increased on the day of the 

storm’s closest approach, with the risk continuing to increase following the storm. Cumulative risks of 

respiratory hospitalizations across the period from two days before to seven days after the storm were 

increased under all storm exposure metrics considered, when considering all storm exposures observed in 

the study (i.e., for all storms and across all exposed study counties); these risks remained significantly 

elevated (RR = 2.22, 95% CI, 1.53–3.21) even when the ten most severe tropical cyclone wind exposures 

were excluded from analysis (i.e., analysis was restricted to tropical cyclone exposures with less severe 

winds). By conducting an examination of the county-wide risks associated with tropical cyclone 

exposures on emergency hospitalizations among a large study population of Americans aged 65 and 

older, our results add two important findings to the paucity of literature on health impacts among the 

elderly associated with exposure to tropical cyclones: first, there is strong evidence that risks of Medicare 

emergency hospital admissions due to non-injury morbidity (investigated here for cardiovascular and 

respiratory diseases) are elevated during the period surrounding tropical cyclone exposures; second, 

tropical cyclones with most intense wind exposures may be particularly important in identifying high-risk 

storms associated with respiratory disease hospitalization among the elderly population, although elevated 

risks are also observed during less severe tropical cyclone wind exposures. 

Comparing results across the three projects. In Chapter 2, we found a substantially increased risk in 

circulatory mortality among Beijing residents during exposure to a severe flood event. In contrast, in 

Chapter 3, under the flood-based exposure metric, there was little evidence of increased risk in 

cardiovascular mortality associated with tropical cyclones across our study communities in the U.S. As 

discussed in the previous Chapters, natural disasters could increase the risk of non-accidental health 
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outcomes through infrastructure damage, such as suspension of public transportation, road closures, 

electricity outages, and impaired telecommunications. The different findings on mortality risk in relation 

to flooding (in Chapter 2 and 3) could be in part attribute to the characteristics of flooding (including the 

severity of the flooding) and study communities, all factors that could help determine the amount of 

infrastructure damage caused by a flood event. First, the flood event investigated in Chapter 2 and those 

included in Chapter 3 may differ in characteristics such as the intensity of the event that caused the 

flooding and in the secondary hazards generated by the flooding. In Chapter 2, the flooding was triggered 

by extreme rainfall and exacerbated by Beijing’s topography. The most heavily impacted regions were 

mountainous, rather than flat, regions of the city, where the flood also triggered landslides. Transportation 

and communication systems were seriously affected in these regions, making it hard for residents to 

access healthcare. In contrast, the tropical cyclone-associated flood events included in Chapter 3 may be 

less severe than the one in Beijing, or may have affected more sparsely populated regions in the affected 

communities. Second, community-level factors could also play a role in how flooding affects residents’ 

health. Given the dense population and heavy reliance on public transportation in Beijing, Beijing may be 

particularly susceptible to infrastructure damage caused by flooding. In the context of tropical cyclones 

(Chapter 3), communities may have had more time, given tropical cyclone forecasts and warnings, to 

prepare for storms in advance and evacuate from areas prone to flooding, thus residents may be less 

affected by flooding during tropical cyclones in the communities represented in the Chapter 3 study.  

In Chapter 3 and 4, we examined community-wide mortality and hospitalization risks associated with 

tropical cyclone exposure in the U.S., and in some cases the patterns in risks observed for hospitalizations 

for a certain cause varied from the patterns for mortality risks. While little evidence was observed for 

increased respiratory mortality risk among all the community residents from exposure to tropical cyclones 

(Chapter 3), we found a substantially elevated risk in emergency hospital admissions associated with 

tropical cyclones among Medicare beneficiaries (Chapter 4). Two factors may in part account for the 

inconsistency in observed patterns in risk for these two respiratory outcomes during tropical cyclone 
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exposures. First, the study population (which is limited to those 65 years and older) in Chapter 4 could be 

more vulnerable to tropical cyclones compared with the study population in Chapter 3, which covers the 

all residents in each study community, as the study population in Chapter 4 may have higher underlying 

prevalence for a number of health conditions (i.e., vision/hearing impairments, chronic medical 

conditions) that could increase susceptibility to acute respiratory-related risks triggered by a disaster. 

Second, the potential pathway linking tropical cyclone exposures and non-accidental health outcomes 

could be another important source of the observed differences in risks of hospitalization outcomes versus 

mortality outcomes observed in this study. Infrastructure damage caused by tropical cyclones can disrupt 

medical treatment or reduce medication adherence, which could be sufficient to lead to hospitalizations, 

but not the more severe outcome of mortality for respiratory outcomes. In Chapter 4, the health outcome 

investigated was emergency hospital admission and the subsequent health outcomes among patients after 

hospitalized were not considered. Patients could survive if they received timely medical treatment or die 

if they were too sick to save in the hospitals. In Chapter 3, although elevated risks in respiratory mortality 

were not consistently observed across all the exposure metrics considered, we indeed observed evidence 

of appreciable increased risk in respiratory mortality in a few cases (e.g., when using the strictest 

threshold of wind-based exposure (Figure 3.3)). Also, the results from Chapter 3 and 4 both indicated that 

intense wind exposure can characterize many of the tropical cyclone exposures with particularly high 

associated risks for non-accidental health outcomes, as the physical damage caused by tropical cyclones is 

strongly associated with the speed of the winds from the storm at a location. Thus, while tropical 

cyclones, in most cases, may cause or exacerbate respiratory illness in the affected population, they may 

only result in respiratory mortality when the physical infrastructure has been extremely damaged (for 

example, increased risk in respiratory mortality was found in communities where the maximum sustained 

wind speed > 21 m/s, as shown in Figure 3.3). 
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2. Strengths and limitations 

Strengths 

In this dissertation, we assessed the community-wide health risks from exposure to two types of climate-

related natural disasters, a severe flood and tropical cyclones. This dissertation can help deepen the 

current understanding of health effects from exposure to flooding and tropical cyclones through three 

important findings. First, flooding and tropical cyclones can be associated with substantial increases in the 

risks of non-accidental health outcomes at the community level, an association which has been largely 

missed or underestimated in the literature based on traditional surveillance following disasters, the 

method often used to generate official fatality tolls following a disaster. Second, Atlantic Basin tropical 

cyclones can substantially increase the risk of emergency hospital admissions due to cardiovascular and 

respiratory diseases in a diverse population aged 65 and older in U.S. communities. This finding 

contributes to the limited existing literature on storm-associated effects on non-injury health outcome. 

Third, severe winds may characterize the tropical cyclone exposures associated with particularly high 

elevated risks of non-accidental mortality and of Medicare respiratory hospitalizations. These findings 

highlight the range of health risks that may be caused by flood and tropical cyclone exposures and can 

help improve our understanding of the pathways and mechanisms of how these climate-related disaster 

exposures affect human health. 

These key findings would not only add important insights to existing knowledge based on traditional 

surveillance studies of floods and tropical cyclones, but they also highlight a strength of our approach of 

using a community-wide assessment of mortality or hospitalization risks during disaster exposures 

compared to matched unexposed days. Although similar techniques have been extensively used to assess 

community-wide health effects from exposure to other climate-related disasters—including heatwaves 

(1), wildfires (2), droughts (3), and snowstorms (4)—research gaps remain for other climate-related 

disasters like floods and tropical cyclones. Moreover, this approach can be readily applied in examining 

community-wide health effects from exposure to other types of natural disasters, and by using matched 
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unexposed days for comparison rather than days within the same year as the disaster, it may be possible to 

modify the method to explore the longer-term (i.e., over several months to a year) health effects 

associated with exposure to natural disasters. 

Limitations 

In these studies, our aim was to estimate the change in community-wide health outcome rates during a 

natural disaster as compared to the rate expected without the disaster. To try to estimate this value, we 

conducted an observational study using daily counts of the health outcome of interest, and compared the 

health outcome rates on the event-exposed days to those on the matched unexposed days, with additional 

model control for year and day of week. Many of the limitations of our study are linked to potential ways 

in which our method of estimating this disaster-associated risk (through a matched analysis) may struggle 

to estimate the effect we care about (how community-wide rates of a health outcome differed during the 

exposure compared to the counterfactual of no exposure on the same day).  

First, there is likely residual confounding within our analysis, as is the case in almost all observational 

studies, as well as in many randomized experiments (5). For each study community, we used a population 

of the community on matched unexposed days as an approximation of the unobserved counterfactual (i.e., 

had the disaster not occurred on the days of the observed disaster). This approach could lead to 

confounding because the matched unexposed days were selected from different years, introducing non-

exchangeability between the exposed and unexposed members of the study population (see more 

discussion in Chapter 1). Across different years, the population of a community may vary in many 

characteristics that are related to the distribution of health outcomes, such as age distribution, 

socioeconomic status, and chronic disease prevalence. To address this confounding, we adjusted for year 

in the regression model. However, residual confounding could remain if this is an inadequate adjustment 

of confounding from longer-term temporal trends that affect health outcome distributions in the 

community. 
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Residual confounding from incomplete control for long-term changes in the study population can have a 

different level of importance for a single-event, single-community analysis (Chapter 2) as compared to a 

multi-event, multi-community analysis (Chapters 3 and 4). In Chapter 2, we investigated community-

wide mortality risks of a severe flooding event in 2012 in Beijing, China, using five years of data of daily 

death counts (2008–2012) to compare mortality rates on the flood-exposed day (2012) to rates on 

matched similar (same month of year, and same day of week as the flood-exposed day) unexposed days in 

previous years (2008–2011). We adjusted for a linear trend of year in the regression model, which helps 

to adjust for some of the potential confounding by year, but may not completely prevent residual 

confounding associated with year-to-year changes in the study population. In Chapter 3 and 4, we 

explored the mortality and morbidity risk of all the Atlantic Basin tropical cyclone exposures and across 

all the exposed communities over multi-year study period (1988–2005, and 1999–2010). Given that 

tropical cyclones in the Atlantic Basin generally run from June to November, with a peak in frequency 

around September, we matched storm-exposed day to similar unexposed days by day of year, to adjust for 

potential confounding by season. We applied regression model to the matched multi-year data, with year 

included as an indicator variable to adjust for potential confounding related to long-term trends. With a 

long study period, covering multiple storms in many different study years, exposed and unexposed 

members of the study population should have a more even distribution over study years, and the strict 

matching based on seasonality should ensure an equal distribution of seasonal factors related to health 

outcomes between the exposed and unexposed populations. Thus, the magnitude of residual confounding 

is likely less of a concern than that in the Chapter 1 (a single-event, single-community study), although 

some potential for residual confounding remains even in these larger-scale studies. 

Second, exposure misclassification could occur in all three studies. In Chapter 2, given that the intensity 

of rainfall was heterogeneous across Beijing (6,7), it is likely that some areas of Beijing were heavily 

impacted by this flood, while other areas were mildly or even not impacted by the flood. In our analysis, 

we were not able to measure flood exposure at a fine geographic scale, but rather assigned residents 
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throughout Beijing residents as exposed to flood on the exposed day. Therefore, residents in some areas 

of Beijing might have been misclassified as exposed to flood on the flood day. In contrast, on the matched 

unexposed days (same time period in previous years), exposure misclassification is much less likely, 

because there were no other major flood in these years in Beijing. Thus, flood exposure misclassification 

was likely differential in the compared groups, with some of the study population assessed as exposed to 

the flood actually unexposed and so expected to have a similar risk of mortality as the population assessed 

as unexposed, rather than a flood-elevated risk. Under this circumstance, our estimated RR would likely 

be biased toward the null. 

In Chapter 3 and 4, exposure misclassification may occur when using flood- and tornado-based exposure 

metrics, both of which we obtained data from the NOAA Storm Events database. Given that existing 

evidence demonstrated the likelihood of underreporting tornado occurrence in the Storm Events database 

(8), missingness in the reporting of events in this database could result in misclassification of storm 

exposure in our study. Specifically, individuals residing in certain areas where an unrecorded tornado 

occurred during our study period would be misclassified as unexposed to storm. We believe this effect, 

however, would have negligible influence on our study estimates, since tornadoes are such rare events, 

and so it is unlikely that many, if any, of the matched unexposed days selected within our study had 

unreported tornadoes. 

Another limitation stems from using outcome misclassification in Chapters 2 and 3. Although the vast 

majority of the deaths should have been correctly classified according to the primary cause of death listed, 

there might be a chance of outcome misclassification (in this context, not counting a death that occurred), 

in particular in a extremely devastating disaster. For example, during a really bad disaster (e.g., Hurricane 

Katrina, Hurricane Maria, a very severe earthquake), some people might be killed but their bodies not 

found or, if they are found, not identifiable. Such deaths would lack a death certificate or would have a 

death certificate that cannot be linked to the decadent’s county of residence, so these deaths would not be 

included in daily counts of deaths among county residents. Also, a lot of people might evacuate before or 
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after some disasters. While the mortality counts used in our analysis are for residents of a community, 

regardless of the location of the death, in the case of massive evacuations, there could be failures in 

collecting and processing administrative data and so linking these some of these deaths to the correct 

residential location. One study examined Hurricane Katrina deaths using both Louisiana and out-of-state 

death certificates, as well as a database of victims, as confirmed by the Disaster Mortuary Operational 

Response Team (DMORT) (9). The DMORT database listed 171 storm victims who were not identified 

as Hurricane Katrina-related in the death certificates/vital records. Also, over 40 of these deaths lacked 

specific dates of death or the date when the body was found. In this scenario—some deaths are unreported 

in administrative daily death count data from vital statistics—our estimates of the association between 

disaster exposure and mortality rates would likely be biased towards the null. 

Fourth, potential effect modification on the associations between tropical cyclone exposures and 

mortality and morbidity were not evaluated in this dissertation. In Chapters 3 and 4, we found some 

evidence that the risks associated with tropical cyclone exposures vary across storms, and that in 

particular severe wind exposures might play a role in this variation. Other characteristics of the storm 

(e.g., cumulative rainfall, storm surge), as well as characteristics of the community in which the exposure 

happens (e.g., demographics, percent of roads or homes in flood plains, vulnerability of the power system 

to tropical cyclone hazards, preparedness and resiliency of the emergency health system) could modify 

the estimated associations. This is an area that could be explored in future research. 

3. Implications 

Implications for further research 

Explore the mechanisms linking natural disasters and non-accidental health consequences. In this 

dissertation, we observed evidence that a severe flood event and tropical cyclone exposures were 

associated with increased risks on mortality, including cardiovascular mortality, and non-accidental 

emergency hospital admissions in the Medicare population. Since the biological mechanisms through 

which flood and storm exposures increase risk of mortality and morbidity from non-accidental causes are 
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not well understood, a key next step in research is to clarify the pathways and mechanisms. As we 

discussed in previous chapters, flooding and tropical cyclones may affect non-accidental health outcomes 

by changing a variety of mediator factors on the pathway between tropical cyclone hazards (e.g., wind, 

rain, flooding, tornadoes) and fatal and non-fatal health outcomes, as evidenced by previous reports and 

investigations. For example, strong winds and flooding from a tropical cyclone can cause power outages 

(10), which increases residents’ exposure to outdoor conditions, including extreme heat (11). Post-storm 

clean-up can also increase average exposure within a community to outdoor conditions (12). Exposure to 

extreme heat is a direct risk factor for both accidental (e.g., heat stroke) and non-accidental deaths 

(11,13,14). Disruption in health care during natural disaster can be one of the primary causes of the 

substantial public health impacts, as shown in studies of some recent hurricanes in the U.S. (15–17), and 

patients with chronic diseases are likely particularly vulnerable to the interruption in medical care. To 

mitigate and prevent individuals from morbidity and mortality during natural disasters, future studies are 

needed to figure out the pathways through which natural disaster exposures might cause increased risks 

for adverse health outcomes. 

Examine other possible health outcomes with associations of natural disasters. Given these 

suggestive pathways linking natural disasters and adverse health outcomes, especially the potential 

pathway through disruption in health care during disasters, some other health outcomes may also be 

associated with natural disaster exposures. A number of studies have identified that, due to medical 

infrastructure damage from tropical cyclones (16,18) and earthquakes (19,20), health outcomes related to 

kidney disease increased in the aftermath of these disasters. Anecdotal records and surveys have also 

shown that many patients reported loss of health care treatment during a severe hurricane, which could 

increase the burden of several chronic disease, including hypertension, diabetes, and cancer (21–25). 

Hence, more research is needed to explore a spectrum of possible health outcomes which may be 

threatened by natural disasters. 
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Project potential future health burdens of tropical cyclone exposures under climate change 

scenarios. We observed evidence that intense wind exposures generated by tropical cyclones could be 

particularly important in identifying storms with high-risk on non-accidental health outcomes. By the late 

21th century, the frequency of the strongest storms (maximum sustained wind > 58 m/s) is projected to 

increase about 30% (26–28) [is this worldwide or in the Atlantic basin? clarify your wording here]. 

Combining these projections with our findings, there is the potential for tropical cyclones to have an 

increasing health impact in the future. 

Implications for practice 

Our findings based on community-wide assessment could help raise awareness of the potential risks 

on non-accidental health outcomes associated with flooding and tropical cyclones among public 

health officials, including among physician certifying death certificates in a disaster. As evidenced in 

some studies (29–31), disaster surveillance, given its inherent approach based on case-by-case attribution, 

could potentially undercount the number of death related to a disaster, especially those indirectly related 

to disaster. After Hurricane Maria (2017) made landfall in Puerto Rico, several independent investigations 

and press reports demonstrated that the official reported count of deaths caused by the hurricane was 

substantially underestimated (15,32–35). One (32) also evaluated how Puerto Rico reported deaths in 

disasters and how they implement the CDC guidelines (36). In that report, the authors pointed out that one 

primary cause for undercounting death caused by Hurricane Maria was inadequate personnel training in 

death certificate completion, especially during a disaster. When the authors interviewed these physicians, 

some “expressed reluctance to relate deaths to hurricanes due to concern about the subjectivity of this 

determination and about liability” (page iii, (32)). Further, according to an assessment conducted by the 

Disaster Epidemiology Subcommittee of the Council of State and Territorial Epidemiologists (CSTE) in 

the U.S., the 53 responding jurisdictions differed widely in how they conducted disaster surveillance, and 

only about half had specific group of public health officials responsible for disaster surveillance (37). 

Thus, our findings of considerable risks on non-accidental health outcomes associated with flood and 
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tropical cyclones, based on a large-scale study of many communities and events in the case of tropical 

cyclones, help highlight the role these disasters can play in increasing risks of both accidental and non-

accidental deaths in exposed communities. 

Our findings, based on community-wide assessment of changes in health outcomes rates during 

disasters, could help raise awareness of the potential risks disaster exposures may cause from some 

non-accidental health outcomes among the public, especially among people who are at high risks of 

these non-accidental causes of outcomes. Due to in part to interruptions in medical treatment that can 

result from natural disasters, patients with pre-existing medical conditions can struggle during disasters to 

maintain compliance with their treatment and medications. The vulnerability for dialysis patients in 

natural disasters have gotten particular attention in past few decades, especially after the 2005 Atlantic 

hurricane season (16,38,39), resulting in study findings that helped both dialysis patients and dialysis 

providers become better prepared to face natural disasters: dialysis providers have implemented extensive 

disaster plans (38,39), and many dialysis patients can now evacuate without the concern that they would 

not be able to receive treatment in the evacuation areas (40). However, disaster preparedness and planning 

for many other vulnerable individuals and chronic disease patients have not been as systemically and 

widely discussed. In this dissertation, we observed evidence of substantial risks for some broad non-

accidental health outcomes (i.e., cardiovascular and respiratory morbidity and mortality) from exposure to 

flooding and tropical cyclones. This finding underscores the significance of mitigating the effects of 

natural disasters on vulnerable individuals and chronic disease patients, through appropriate and specific 

disaster preparedness, planning, and education. 

Our findings of substantial effect of storm exposures on emergency hospital admissions due to non-

injury medical conditions in the elderly population, together with several single-storm reports on 

large proportion of non-injury emergency department visits after tropical cyclones (41,42), would 

be useful for further disaster medical planning. In this dissertation, we found noticeable delayed risks 

(with the largest increase often on the one or two days after the storm-exposed day) for cardiovascular 
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and respiratory hospitalizations in a large elderly population, suggesting patients might have difficulty in 

accessing hospitals on the day of storm’s approaching. This finding creates a hypothesis for one pathway 

of tropical cyclone health impacts among the elderly, and future research in this direction would be 

extremely useful for further disaster medical planning. For example, if road closures are a key step in the 

causal pathway, by making it harder to access medical care during and following a disaster, then knowing 

that could help inform longer-term community disaster planning and management, including steps like 

restricting the building of new roads in flood-prone areas and improving tree-trimming and other tree 

management near roadways, especially before each year’s hurricane season, to limit road closures from 

fallen trees. 
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Appendix A: Supplemental material for Chapter 2 

1. Supplemental methods 

We calculated confidence interval for the estimate of total excess deaths on July 21–22, 2012 (results 

shown in Table 2.1 in Chapter 2) through Monte Carlo simulations. First, we took 5,000 random samples 

of !", for # = 0 and 1, from the assumed multivariate normal distribution ('((*, ,)), with the mean 

vector * and covariance matrix , resulting from fitting eq. 2.1 in the main text to the observed mortality 

data from Beijing. We then used each of these samples to calculate an estimate of excess deaths on the 

peak flood day (July 21, 2012) and the following day (July 22, 2012), using eq. 2.2 in Chapter 2, and 

added up the excess deaths on these two days for each sample. The 2.5 and 97.5 percentiles of the 

distribution of these 5,000 estimates can be interpreted as a 95% empirical confidence interval for the 

estimate of total excess deaths on July 21–22, 2012. 

2. Supplemental results 

 

Figure A1 Accidental mortality rate in July in Beijing per 1,000,000 residents by study year. The red points and line (‘All days’) 

show rates calculated based on all the days in July. The blue points and line (‘Subset days’) show rates calculated after excluding 
data from July 21–22, 2012, and days with temperature greater than 90th percentile of July. 
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Appendix B: Supplemental material for Chapter 3 

1. Supplemental methods of estimating lag-specific relative risk for ten most severe wind-

based storms 

We estimated the lag-specific relative risk for ten most severe wind-based storms for all-cause and 

cardiovascular mortality. For each storm and its affected community, we fit the following generalized 

linear fixed-effect model with an unconstrained distributed lag function of storm exposure to the single-

community, single-storm matched data: 

 log[2(34)] = log(6) + 8 + ∑ :";4<"
=
">?( + @3ABC4 + DEFG4 (B1) 

where: 

• 34  is the mortality counts on day t; 

• 6 is the residents’ population; 

• 8 is the model intercept; 

• ∑ :";4<"
=
">?(  is an unconstrained distributed lag function of storm exposure variable x. :" is the 

coefficient estimating the association between tropical cyclone exposure and mortality at lag l from 

day t, the day of the storm’s closest approach to study community. ;4<"  is the indicator variable 

representing whether a given day at lag l from day t is part of an exposed storm period or part of a 

matched unexposed period. 

• 3ABC4 is the year of day t and @ is the regression coefficient for 3ABC, to account for a linear trend in 

mortality rate across year; 

• EFG4 is an indicator variable for day of week on day t, and D is a vector of regression coefficients 

for EFG. 

We calculated the RRs of each of the ten most severe wind-based storms, separately. Results are shown in 

Figure B2 and B3. 
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2. Supplemental results 

 

Figure B1 Community-specific exposures to Atlantic-basin tropical cyclones, 1988-2005, for the three continuous exposure 
metrics considered. Each point shows a tropical cyclone exposure within the community listed on the left axis, with the 
continuous value for the exposure metric shown on the x-axis. For communities with multiple storm exposures under a given 
exposure metric, a line is used to show the range of exposure severities across storms. For these three continuous metrics, 
multiple thresholds were considered in assessing binary storm exposure for our analysis; color is used to highlight these different 
thresholds, from least severe (red) to most severe (purple). Note that the scale of the x-axis for distance (right panel) is reversed, 

reflecting that storms that came closer to the community (smaller distance) represent a more severe exposure. The ten most 
notable community storm exposure for each exposure metric over our study period are highlighted by black circles. 
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Figure B2 Estimates of lag-specific relative risk of all-cause mortality on days during storm periods compared to matched days in 

non-storm periods, for most severe wind-based storm exposures among communities with population greater than 400,000. 

 

 

Figure B3 Estimates of lag-specific relative risk of cardiovascular mortality on days during storm periods compared to matched 
days in non-storm periods, for most severe wind-based storm exposures among communities with population greater than 
400,000. 
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Figure B4 Estimates of lag-specific relative risk of tropical cyclone exposures on mortality on days during storm periods 
compared to matched days in non-storm periods, for all storms and across all exposed communities, based on the strictest storm 
exposure definitions considered for distance-based exposure metric, as well as flood- and tornado-based metrics. 
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Figure B5 Estimates of lag-specific relative risk of tropical cyclone exposures on all-cause mortality on days during storm 
periods compared to matched days in non-storm periods, for all storms and across all exposed communities, based on more 
lenient thresholds for the three continuous exposure metrics considered (wind, distance, and rain). 
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Figure B6 Estimates of lag-specific relative risk of tropical cyclone exposures on cardiovascular mortality on days during storm 
periods compared to matched days in non-storm periods, for all storms and across all exposed communities, based on more 
lenient thresholds for the three continuous exposure metrics considered (wind, distance, and rain). 
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Figure B7 Estimates of lag-specific relative risk of tropical cyclone exposures on respiratory mortality on days during storm 
periods compared to matched days in non-storm periods, for all storms and across all exposed communities, based on more 
lenient thresholds for the three continuous exposure metrics considered (wind, distance, and rain). 
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Figure B8 Estimates of lag-specific relative risk of tropical cyclone exposures on accidental mortality on days during storm 
periods compared to matched days in non-storm periods, for all storms and across all exposed communities, based on more 
lenient thresholds for the three continuous exposure metrics considered (wind, distance, and rain). 
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Table B1 Relative risk (RR) at lag 0 and cumulative RR for all storms and across all exposed large-population communities, as 
well as RRs for all other storms and across all exposed large population communities, excluding the ten most severe wind-based 
storm exposures. 

 Same day RR* Cumulative RR# 

All-cause mortality   

All storms 1.42 (1.36, 1.49) 1.90 (1.58, 2.29) 
All other storms 1.00 (0.95, 1.06) 1.18 (0.96, 1.45) 

Cardiovascular mortality   

All storms 1.15 (1.06, 1.24) 1.30 (0.97, 1.76) 
All other storms 1.01 (0.92, 1.10) 1.03 (0.74, 1.43) 

Respiratory mortality   

All storms 1.13 (0.92, 1.38) 1.54 (0.70, 3.39) 

All other storms 1.06 (0.85, 1.33) 1.30 (0.54, 3.09) 
Accidental mortality   

All storms 12.03 (10.87, 13.32) 161.40 (61.62, 422.75) 

All other storms 0.73 (0.51, 1.06) 1.37 (0.41, 4.54) 
*Estimate of RR on the day of storm’s closest approach (lag 0).  
#Estimate of cumulative RR across the full storm periods. 

 

Table B2 Estimates of lag-specific relative risk (shown in Figure 3.2 in Chapter 3) of mortality on days during storm 
periods compared to matched days in non-storm periods, across all tropical cyclone exposures for study storms and 
study communities, based on the strictest thresholds for wind- and rain-based exposure metrics. 

Lag All-cause mortality Cardiovascular mortality Respiratory mortality Accidental mortality 

Wind: 21 m/s 

-2 1.01 (0.96, 1.07) 1.03 (0.95, 1.12) 1.04 (0.84, 1.29) 1.34 (1.01, 1.78) 

-1 1.05 (0.99, 1.10) 0.98 (0.90, 1.07) 0.99 (0.79, 1.23) 1.45 (1.11, 1.90) 

0 1.42 (1.36, 1.49) 1.15 (1.06, 1.24) 1.13 (0.92, 1.38) 12.03 (10.87, 13.32) 

1 1.04 (0.99, 1.10) 1.04 (0.96, 1.13) 0.92 (0.73, 1.16) 1.59 (1.23, 2.06) 

2 1.07 (1.01, 1.12) 1.04 (0.96, 1.13) 1.08 (0.88, 1.34) 1.29 (0.97, 1.71) 

3 1.05 (1.00, 1.11) 1.04 (0.96, 1.13) 1.05 (0.85, 1.30) 1.22 (0.91, 1.63) 

4 1.00 (0.95, 1.05) 0.97 (0.90, 1.06) 1.23 (1.01, 1.50) 0.97 (0.70, 1.33) 

5 1.02 (0.97, 1.07) 0.98 (0.91, 1.07) 0.91 (0.73, 1.14) 1.30 (0.98, 1.73) 

6 1.03 (0.97, 1.08) 0.97 (0.90, 1.06) 1.00 (0.81, 1.24) 1.39 (1.05, 1.82) 

7 1.03 (0.98, 1.08) 1.07 (0.99, 1.15) 1.12 (0.91, 1.37) 1.57 (1.23, 2.01) 

Rain: 125 mm 

-2 1.02 (0.95, 1.09) 1.05 (0.94, 1.17) 0.90 (0.66, 1.23) 1.01 (0.66, 1.56) 

-1 1.04 (0.97, 1.12) 1.07 (0.95, 1.19) 0.86 (0.63, 1.18) 1.46 (0.98, 2.15) 

0 1.69 (1.60, 1.79) 1.30 (1.18, 1.44) 0.91 (0.67, 1.23) 22.53 (20.03, 25.35) 

1 1.05 (0.97, 1.12) 1.01 (0.90, 1.13) 0.83 (0.60, 1.14) 1.54 (1.07, 2.22) 

2 1.03 (0.96, 1.11) 0.96 (0.86, 1.08) 1.22 (0.93, 1.59) 1.98 (1.42, 2.76) 

3 1.05 (0.98, 1.13) 1.08 (0.97, 1.20) 0.99 (0.74, 1.33) 1.86 (1.34, 2.58) 

4 1.00 (0.93, 1.07) 0.98 (0.88, 1.10) 1.20 (0.91, 1.58) 1.05 (0.69, 1.61) 

5 1.04 (0.97, 1.12) 1.01 (0.90, 1.13) 0.98 (0.73, 1.33) 1.54 (1.08, 2.20) 

6 1.06 (0.99, 1.13) 0.98 (0.88, 1.10) 1.11 (0.84, 1.47) 1.57 (1.07, 2.29) 

7 1.04 (0.97, 1.11) 1.00 (0.89, 1.12) 1.01 (0.76, 1.35) 2.00 (1.46, 2.75) 
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Table B3 Estimates of cumulative relative risk (shown in Figure 3.3 in Chapter 3) of tropical cyclone exposures on mortality 
across the full storm period considered (two days before to seven days after the date of storm’s closest approach to the 
community) compared to matched non-storm periods. 

Exposure All-cause 

mortality 

Cardiovascular 

mortality 

Respiratory 

mortality 

Accidental 

mortality 

Wind: 12 m/s 1.33 (1.22, 1.45) 1.24 (1.07, 1.42) 1.12 (0.77, 1.63) 7.41 (4.64, 11.84) 

Wind: 15 m/s 1.38 (1.23, 1.55) 1.30 (1.08, 1.56) 0.87 (0.53, 1.43) 12.89 (6.97, 

23.83) Wind: 18 m/s 1.54 (1.34, 1.77) 1.28 (1.03, 1.60) 1.19 (0.66, 2.12) 43.31 (21.33, 

87.96) Wind: 21 m/s 1.90 (1.58, 2.29) 1.30 (0.97, 1.76) 1.54 (0.70, 3.39) 161.40 (61.62, 

422.75) Rain: 50 mm 1.01 (0.94, 1.08) 1.00 (0.89, 1.13) 1.01 (0.75, 1.35) 2.93 (1.98, 4.33) 

Rain: 75 mm 1.00 (0.90, 1.11) 0.92 (0.77, 1.09) 0.95 (0.61, 1.47) 5.24 (3.02, 9.10) 

Rain: 100 mm 1.04 (0.89, 1.21) 0.88 (0.69, 1.12) 0.87 (0.45, 1.68) 27.41 (12.25, 

61.36) Rain: 125 mm 2.34 (1.79, 3.07) 1.48 (0.95, 2.30) 0.94 (0.29, 3.05) 955.40 (256.39, 

3560.17) Distance: 100 km 

km 

1.15 (1.05, 1.25) 1.01 (0.88, 1.16) 1.04 (0.73, 1.48) 4.63 (2.92, 7.33) 

Distance: 75 km 1.10 (1.00, 1.21) 1.01 (0.86, 1.18) 0.85 (0.57, 1.27) 5.33 (3.18, 8.93) 

Distance: 50 km 1.15 (1.03, 1.29) 0.97 (0.81, 1.17) 1.04 (0.65, 1.64) 5.24 (2.90, 9.50) 

Distance: 25 km 0.93 (0.78, 1.12) 1.15 (0.86, 1.52) 0.94 (0.46, 1.93) 0.57 (0.22, 1.52) 

Flood 1.00 (0.90, 1.10) 1.02 (0.87, 1.20) 1.46 (0.98, 2.17) 1.17 (0.68, 2.00) 

Tornado 1.01 (0.81, 1.27) 0.83 (0.57, 1.20) 0.90 (0.36, 2.26) 1.13 (0.34, 3.76) 
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Figure B9 Estimates of cumulative relative risk of tropical cyclone exposures on all-cause and cardiovascular mortality in all exposed communities (circle) and when analysis is 
restricted to the subset of large communities (population > 400,000) used in the main results for the analysis of respiratory and accidental mortality (triangle). 

 



 120 

Appendix C: Supplemental material for Chapter 4 

1. Supplemental methods of estimating lag-specific relative risk for ten most severe wind-

based storms 

We estimated the lag-specific relative risk for ten most severe wind-based storms for emergency hospital 

admissions. For each storm and its affected county, we fit the following generalized linear fixed-effect 

model with unconstrained distributed lag function of storm exposure, to the single-county, single-storm 

matched data: 

 log[%('()] = log(,) + . + ∑ 012(31
4
1567 + 8'9:;( + <=>?( (C1) 

where: 

• '(  is the mortality counts on day t; 

• , is the total number of Medicare beneficiaries residing in a certain county on day t, included as an 

offset term; 

• . is the model intercept; 

• ∑ 012(31
4
1567  is an unconstrained distributed lag function of storm exposure variable x. 01 is the 

coefficient estimating the association between tropical cyclone exposure and hospital admissions at 

lag l from day t, the day of the storm’s closest approach to study county. 2(31 is the indicator 

variable representing whether a given day at lag l from day t is part of an exposed storm period or 

part of a matched unexposed period. 

• '9:;( is the year of day t and 8 is the regression coefficient for '9:;, to account for a linear trend in 

mortality rate across year; 

• =>?( is an indicator variable for day of week on day t, and < is a vector of regression coefficients 

for =>?. 
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We calculated the RRs of each of the ten most severe wind-based storms, among all the study counties 

and out-of-Florida counties. Results are shown in Figure C2–C5. 

2. Supplemental results 

 

Figure C1 Map counties with total number of Medicare beneficiaries greater than 50000 on the day of tropical cyclone’s closest 
approach to the county. 
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Figure C2 Estimates of distributed relative risks of cardiovascular disease hospitalizations for the ten most severe wind-based 
tropical cyclones, among counties with total number of Medicare beneficiaries greater than 50,000. 

 

Figure C3 Estimates of distributed relative risks of respiratory disease hospitalizations for the ten most severe wind-based 

tropical cyclones, among counties with total number of Medicare beneficiaries greater than 50,000
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Table C1 Estimates of relative risk and attributable number of hospitalizations of ten most notable wind-based storms among out-of-Florida counties with total number of Medicare 
beneficiaries greater than 50,000* 

    Cardiovascular disease Respiratory disease 

Tropical cyclone County Date Wind (m/s) RR Attributable number RR Attributable number 

Same day estimates#       

Ike (2008) Harris County, TX 2008-09-13 38.7 0.47 (0.18, 1.26) -17 (-70, 3) 1.25 (0.58, 2.69) 3 (-12, 11) 

Floyd (1999) Suffolk County, MA 1999-09-17 24.5 0.66 (0.16, 2.70) -6 (-64, 8) 0.74 (0.05, 11.06) -2 (-134, 6) 

Floyd (1999) Norfolk County, MA 1999-09-17 24.4 1.30 (0.59, 2.86) 4 (-10, 10) 1.09 (0.17, 7.22) 0 (-10, 2) 

Floyd (1999) Suffolk County, NY 1999-09-16 24.3 1.00 (0.61, 1.66) 0 (-18, 11) 1.94 (0.37, 10.27) 3 (-12, 6) 

Floyd (1999) Essex County, MA 1999-09-17 24.2 0.51 (0.11, 2.37) -19 (-162, 12) 1.06 (0.20, 5.69) 0 (-21, 4) 

Floyd (1999) Middlesex County, MA 1999-09-17 24.1 1.58 (0.75, 3.35) 8 (-7, 15) 0.14 (0.05, 0.40) -38 (-122, -9) 

Floyd (1999) Providence County, RI 1999-09-17 24.1 0.99 (0.41, 2.40) 0 (-1, 1) 0.21 (0.01, 3.48) -8 (-163, 1) 

Ike (2008) Marion County, IN 2008-09-14 23.2 0.85 (0.37, 1.94) -2 (-18, 5) 1.10 (0.25, 4.89) 1 (-18, 5) 

Ike (2008) Wayne County, MI 2008-09-14 23.1 0.93 (0.52, 1.66) -4 (-45, 19) 1.15 (0.71, 1.86) 2 (-5, 6) 

Floyd (1999) Nassau County, NY 1999-09-16 22.8 1.60 (1.14, 2.25) 7 (2, 11) 1.40 (0.26, 7.44) 1 (-8, 3) 

Cumulative estimates&       

Ike (2008) Harris County, TX 2008-09-13 38.7 0.93 (0.78, 1.10) -21 (-76, 25) 1.44 (1.25, 1.65) 45 (30, 58) 

Floyd (1999) Suffolk County, MA 1999-09-17 24.5 1.27 (1.01, 1.58) 23 (2, 41) 1.22 (0.79, 1.89) 7 (-11, 19) 

Floyd (1999) Norfolk County, MA 1999-09-17 24.4 0.88 (0.66, 1.16) -18 (-64, 17) 0.78 (0.55, 1.08) -13 (-36, 3) 

Floyd (1999) Suffolk County, NY 1999-09-16 24.3 0.98 (0.83, 1.16) -6 (-58, 39) 1.14 (0.93, 1.39) 11 (-7, 25) 

Floyd (1999) Essex County, MA 1999-09-17 24.2 0.84 (0.57, 1.24) -29 (-114, 28) 0.94 (0.62, 1.45) -2 (-23, 11) 

Floyd (1999) Middlesex County, MA 1999-09-17 24.1 1.05 (0.90, 1.23) 12 (-29, 46) 1.07 (0.81, 1.40) 6 (-22, 28) 

Floyd (1999) Providence County, RI 1999-09-17 24.1 1.05 (0.82, 1.35) 3 (-14, 17) 0.94 (0.62, 1.45) -2 (-20, 10) 

Ike (2008) Marion County, IN 2008-09-14 23.2 0.92 (0.69, 1.22) -14 (-72, 29) 1.01 (0.74, 1.38) 1 (-21, 17) 

Ike (2008) Wayne County, MI 2008-09-14 23.1 1.00 (0.87, 1.15) 1 (-79, 70) 0.85 (0.62, 1.17) -33 (-117, 27) 

Floyd (1999) Nassau County, NY 1999-09-16 22.8 1.00 (0.81, 1.22) -1 (-82, 64) 0.83 (0.63, 1.09) -15 (-44, 6) 

* The total number of Medicare beneficiaries was greater than 50,000 on the day of storm’s closest approach to the county. 
# Estimates on the day of storm’s closest approach. 
& Estimates for the entire storm period. 
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Figure C4 Estimates of distributed relative risks of cardiovascular disease hospitalizations for the ten most severe wind-based 

tropical cyclones, among out-of-Florida counties with total number of Medicare beneficiaries greater than 50,000. 

 

Figure C5 Estimates of distributed relative risks of cardiovascular disease hospitalizations for the ten most severe wind-based 
tropical cyclones, among out-of-Florida counties with total number of Medicare beneficiaries greater than 50,000. 
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Figure C6 Estimates of distributed relative risks for cardiovascular disease hospitalizations for all tropical cyclones and across all 
the exposed counties, under the less lenient wind-, rain-, and distance-based exposure metrics. 
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Figure C7 Estimates of distributed relative risks for respiratory disease hospitalizations for all tropical cyclones and across all the 
exposed counties, under the less lenient wind-, rain-, and distance-based exposure metrics.   
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Appendix D: Additional analyses of health effects for the most severe wind-based tropical 

cyclone exposures using time-series and case-crossover 

1. Chapter overview 

The methodology is still in development for estimating how community-wide health risks during and 

immediately after a disaster differ from expected rates had the disaster not occurred. One potential 

approach is to use the study designs common in studying ambient exposures like air pollution and 

temperature, including time series (1,2) and time-stratified case-crossover study designs (3,4). In this 

dissertation, we used a matching approach, which compares health outcome rates on disaster-exposed 

days to those on similar unexposed days in different years. We selected this approach given a few 

potential concerns about using time series and case-crossover study designs in estimating community-

wide impact of natural disaster exposures. First, these two methods may struggle to yield valid estimates 

if natural disasters have extended impacts on community-wide health risks beyond the modeled period of 

risk. Further, since tropical cyclones have apparent seasonal pattern, effect estimates based on time-

stratified case-crossover might be influenced by the frequency of storm exposure within a given time 

stratum. To assess whether our primary results are sensitive to modeling choice, we conducted sensitivity 

analysis in this Chapter using time series and time-stratified case-crossover study designs, analyzing the 

morbidity and mortality risk of ten most severe wind-based storm exposures, as examined in Chapter 3 

and 4. 

Methods description. In the time series analysis, we fit a generalized linear model with an overdispered 

Poisson distribution to the time series data for each community. We used a natural cubic spline function 

of time with 7 degree of freedom per year in the model to control for seasonal and long-term trends in the 

health outcome, a natural spline function of temperature with 3 degree of freedom to control for 

temperature, and a indicator variable to control for day of week. In the case-crossover analysis, we used 

the time-stratified variant of the case-crossover design, defining the case day as the storm-exposed day 
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and control days as those in the same year, month of year, and day of week as the case day for each 

stratum of analysis. 

2. Estimated relative risks of most severe wind-based storm exposures on mortality 

In Chapter 3, we analyzed the lag-specific relative risks (RRs) of the ten most severe wind-based storm 

exposures on all-cause and cardiovascular mortality, as compared to the matched unexposed days. These 

results are shown in Figure B2 (all-cause mortality) and B3 (cardiovascular mortality) in Appendix B. 

Here, we used time series and case-crossover methods to estimate the RRs for these single storm 

exposures, and then compared these results with our primary results as a sensitivity analysis of our study 

design choice. 

Estimates from time series analysis versus that from primary analysis. The majority of the estimated 

lag-specific RRs of tropical cyclone exposures for all-cause (Figure D1) and cardiovascular mortality 

(Figure D2) are consistent with estimates from our primary analysis (Figure B2–B3 in Appendix B), with 

the exception of Hurricane Katrina. While a RR of 48.29 (95% CI, 38.89–59.97) for all-cause mortality 

from exposure to Hurricane Katrina in New Orleans was estimated on the day of storm’s closest approach 

(i.e., lag 0) based on our primary matched-analysis approach, we estimated a RR of 135.90 (95% CI, 

112.89–163.60) using the time series analysis. The RR of Hurricane Katrina for cardiovascular mortality 

was also much higher when using time series compared with our primary results (RR: 68.94 vs. 19.64). 

Further, we investigated if the effect estimates using time series were sensitive to how much flexibility 

was applied in the spline function of time, which was included in the model to control for the long-term 

and seasonal trend of mortality rate. When the degree of freedom (d.f.) per year for the spline function of 

time was set at 3, 6, 9, and 11, the estimated RRs on the day of storm’s closest approach for Hurricane 

Katrina in New Orleans were 109, 98, 94, 135, respectively. Due to the devastating health impacts of 

Hurricane Katrina in New Orleans, the effect estimates were extremely sensitive to this parameter used in 

the model, making the time series analysis struggle to estimate an accurate association. However, 

estimates for other storms were very robust to this certain parameter; for example, the RRs for Hurricane 
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Andrew in Miami were 1.43, 1.38, 1.39, and 1.41 when using d.f. of 3, 6, 9, and 11. Taken together, time 

series analysis may struggle to estimate a valid community-wide effect on mortality from exposure to 

tropical cyclones, in particular when there was extraordinary health impact caused by that storm. 

 

Figure D1 Estimates of lag-specific relative risk of all-cause mortality on days during storm periods, under the most severe wind-
based storm exposures among communities with population greater than 400,000. Results were estimated using time series 
analysis. 

 

Figure D2 Estimates of lag-specific relative risk of cardiovascular (CVD in the plot) mortality on days during storm periods, 
under the most severe wind-based storm exposures among communities with population greater than 400,000. Results were 
estimated using time series analysis. 

Estimates from case-crossover analysis versus that from primary analysis. The estimates of lag-specific 

RRs of tropical cyclones on mortality are generally closer to the null for both all-cause and cardiovascular 

mortality when using the case-crossover analysis (Figure D3–D4), as compared to our primary results 

(Figure B2–B3 in Appendix B). For Hurricane Andrew in Miami, the RR for all-cause mortality on the 

day of storm’s closest approach was 1.50 (95% CI, 1.19–2.00) in our primary methods and 1.11 (95% CI, 
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0.95–1.28) from the case-crossover analysis. The difference in the effect estimates may in part result from 

the comparison unexposed groups in the two methods. In the case-crossover analysis, the RRs were 

estimated by comparing the storm days with other days in the same time stratum, which were in the same 

year, month of year, and day of week as the storm day. Using this time-stratified variant in the case-

crossover analysis, the estimated association might be underestimated in two situations: 1) the storm 

investigated had extended impacts mortality risk on the community, including in some days following the 

storm that were not identified as “exposed” within the study; or 2) there are different storms approaching 

the study community within or on the surrounding days of the analyzed time stratum. Both situations are 

very likely to occur in the context of tropical cyclone, especially during the storm season. By contrast, in 

our primary analysis, we compared mortality rates on storm-exposed days with the matched non-storm 

days which were 1) in a different year; 2) within a seven-day window of the storm day’s day of year; 3) 

not in a three-day window of a different storm day for the community; 4) not in the two-week period 

starting on September 11, 2001. By establishing specific selection criteria for comparison days, we could 

eliminate potential impacts from the two situations as noted above. 

 

Figure D3 Estimates of lag-specific relative risk of all-cause mortality on days during storm periods, under the most severe wind-
based storm exposures among communities with population greater than 400,000. Results were estimated using case-crossover 
analysis. 
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Figure D4 Estimates of lag-specific relative risk of cardiovascular (CVD in the plot) mortality on days during storm periods, 
under the most severe wind-based storm exposures among communities with population greater than 400,000. Results were 

estimated using case-crossover analysis. 

3. Estimated relative risks of most severe wind-based storm exposures on emergency 

hospital admissions 

In Chapter 4, we analyzed the lag-specific relative risks (RRs) of the ten most severe wind-based storm 

exposures on emergency hospital admissions due to cardiovascular and respiratory disease, as compared 

to matched unexposed days. The results were shown in Figure C2 (Cardiovascular disease) and C3 

(respiratory disease) in Appendix C. Here, we used time series and case-crossover methods to estimate 

the RRs for these single storm exposures, and then compared with our primary results. 

Estimates from time series analysis versus that from primary analysis. The estimated lag-specific RRs 

of tropical cyclone exposures for emergency hospital admissions (Figure D5–D6) are mostly consistent 

with those from our primary analysis (Figure C2–C3 in Appendix C). 
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Figure D5 Estimates of lag-specific relative risk of cardiovascular disease hospitalizations on days during storm periods, under 
the most severe wind-based storm exposures among counties with total number of Medicare beneficiaries greater than 50,000. 

Results were estimated using time series analysis. 

 

Figure D6 Estimates of lag-specific relative risk of respiratory disease hospitalizations on days during storm periods, under the 
most severe wind-based storm exposures among counties with total number of Medicare beneficiaries greater than 50,000. 
Results were estimated using time series analysis. 



 133 

Estimates from case-crossover analysis versus that from primary analysis. Compared with our primary 

results, the estimates for the storm-hospitalization association based on a case-crossover analysis are 

closer to the null (Figure D7–D8), which is in agreement with the comparison for tropical cyclones and 

mortality associations. 

 

Figure D7 Estimates of lag-specific relative risk of cardiovascular disease hospitalizations on days during storm periods, under 
the most severe wind-based storm exposures among counties with total number of Medicare beneficiaries greater than 50,000. 
Results were estimated using case-crossover analysis. 
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Figure D8 Estimates of lag-specific relative risk of respiratory disease hospitalizations on days during storm periods, under the 
most severe wind-based storm exposures among counties with total number of Medicare beneficiaries greater than 50,000. 

Results were estimated using case-crossover analysis. 

  



 135 

References 

1. Schwartz J, Marcus A. Mortality and air pollution in London: A time series analysis. American Journal 

of Epidemiology. 1990;131(1):185–194.  

2. Anderson GB, Bell ML. Heat waves in the United States: Mortality risk during heat waves and effect 

modification by heat wave characteristics in 43 US communities. Environmental Health Perspectives. 

2011;119(2):210.  

3. Neas LM, Schwartz J, Dockery D. A case-crossover analysis of air pollution and mortality in 

Philadelphia. Environmental Health Perspectives. 1999;107(8):629.  

4. Gronlund CJ, Zanobetti A, Schwartz JD, et al. Heat, heat waves, and hospital admissions among the 

elderly in the United States, 1992–2006. Environmental Health Perspectives. 2014;122(11):1187.  

 

 

 


