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ABSTRACT OF DISSERTATION 

THE UTILITY OF NEAR-INFRARED REFLECTANCE SPECTROSCOPY FOR 

WHEAT QUALITY ASSESSMENT 

End-use quality improvement is an important objective in most wheat 

(Triticum aestivum L.) breeding programs. Limited sample size, destructive 

parameter testing, and the short duration between harvest and planting of winter 

wheat are challenges for testing early-generation breeding material for end-use 

quality parameters. Near-infrared reflectance (NIR) spectroscopy is a rapid and 

non-destructive technique that could facilitate early-generation selection for end-

use quality. The precision and accuracy of an NIR equation for prediction 

purposes is dependent on the construction of a reliable calibration. The 

objectives of this study were to: 1) develop and validate NIR calibration models 

for grain volume weight, kernel characteristics, and Farinograph parameters, and 

2) evaluate the performance of NIR calibration models in a breeding context for 

grain volume weight and single kernel characteristics. Calibration models for 

prediction of grain volume weight and single kernel characteristics were 

developed using NIR spectra and laboratory reference values from up to 10,000 

samples collected from breeding nurseries under multiple environments over four 

crop years. Models encompassing all years of data revealed R2 (validation) of 

0.73 for kernel diameter, 0.74 for kernel weight, 0.70 for kernel hardness, and 
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0.81 for grain volume weight. Of the Farinograph parameters, only absorption 

was effectively predicted using NIR calibration models for whole grain and flour 

with R2≥0.70. Realized heritability was estimated as a response to selection 

using NIR predicted values and laboratory reference values and was generally 

larger when using the reference values when compared to predicted values 

(0.17-0.77 vs. 0.05-0.77), but suggested that genetic gain was possible when 

using NIR models for selection. Classification errors when using the NIR models 

were highest in the mid-range reference values (56-66%), but could allow for 

divergent selection of high and low reference values. The results suggest that 

NIR models suitable for screening grain volume weight, SKCS kernel 

characteristics, and Farinograph absorption could be uti lized in a breeding 

program and could aid in the elimination of early-generation samples with 

unacceptable values. 

 

Joshua Donald Butler 
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Summer 2010 

 

 



v 

 

ACKNOWLEDGMENTS 

I would like to express my gratitude and appreciation to my advisor Dr. 

Scott Haley for the encouragement, guidance and advice he has provided me 

throughout this study. Dr. Haley has always been my biggest supporter, an 

inspiration, and my role model for almost 10 years and I can only hope that I will 

match his achievements in my lifetime. 

I would also like to thank my committee members, Drs. Mark Brick, Brad 

Seabourn, and Phillip Chapman for their support, guidance, and encouragement 

during my term at Colorado State University.  

I have the deepest appreciation for Dr. Haley’s research associates, John 

Stromberger and Emily Heaton, for their assistance, support, and friendship. 

 My love and appreciation goes out to my wife, Hayley Butler, for allowing 

me to see my own potential and helping me develop the self-confidence that has 

been invaluable in all aspects of my life. My deepest love goes out to my 

daughter, Addisyn; she makes it all worthwhile and has provided comic relief 

during the preparation of this dissertation. 

 I am grateful to Terri Randolph for her friendship, and for allowing Hayley, 

Addisyn, our dogs, and me to live with her during the last two months of our time 

in Colorado. 

I am also grateful to those that identi fied the useful properties of caffeine, 

without which none of this would be possible. 



vi 

 

Table of Contents 

LIST OF TABLES ...........................................................................................................viii 

LITERATURE REVIEW ................................................................................................... 1 

Introduction ................................................................................................................ 1 

Technology and Statistics ........................................................................................ 2 

NIR Models for Wheat Quality ................................................................................ 5 

CALIBRATION DEVELOPMENT AND VALIDATION .............................................. 18 

Near-Infrared Reflectance (NIR) Spectroscopy for Estimation of SKCS 
Parameters and Grain Volume Weight in Whole Grain Winter Wheat .............. 18 

Abstract..................................................................................................................... 18 

Introduction .............................................................................................................. 20 

Materials and Methods ........................................................................................... 26 

Results and Discussion .......................................................................................... 31 

Conclusions.............................................................................................................. 48 

Near-infrared Reflectance (NIR) Calibration Development for Farinograph 

Parameter Prediction of Wheat Whole Grain and Flour ....................................... 50 

Abstract..................................................................................................................... 50 

Introduction .............................................................................................................. 52 

Materials and Methods ........................................................................................... 56 

Conclusions.............................................................................................................. 71 

UTILITY OF NIR CALIBRATIONS IN WHEAT BREEDING .................................... 72 

Utility of Near-infrared Spectroscopy Based Selection for Wheat Single Kernel 

Characteristics and Grain Volume Weight ............................................................. 72 



vii 

 

Abstract..................................................................................................................... 72 

Introduction .............................................................................................................. 74 

Materials and Methods ........................................................................................... 78 

Results and Discussion .......................................................................................... 83 

Conclusions.............................................................................................................. 99 

LITERATURE CITED...................................................................................................100 

APPENDICES ...............................................................................................................105 

 



viii 

 

LIST OF TABLES 

Table 1.1. Summary of samples and Colorado environments used in calibration 
development.................................................................................................................... 28 

 
Table 1.2. Descriptive statistics of samples in calibration and validation datasets.
........................................................................................................................................... 32 

 
Table 1.3. Results of modified partial least squares (mPLS) model development 

(wavelength 400 to 2500 nm)....................................................................................... 34 
 
Table 2.1. Summary statistics for Farinograph water absorption, development 

time, stability, and mixing tolerance index for samples used in NIR calibration 
development and independent validation................................................................... 61 

 
Table 2.2. Pearson correlation coefficients between whole grain and flour protein 
concentration and Farinograph parameters (absorption, development time, 

stability, and mixing tolerance index). ......................................................................... 62 
 

Table 2.3. Summary statistics for whole grain calibration development, cross-
validation, and independent validation for Farinograph absorption, development 
time, stability, and mixing tolerance index.................................................................. 64 

 
Table 2.4. Summary statistics for flour calibration development, cross -validation, 

and independent validation for Farinograph water absorption, development time, 
stability, and mixing tolerance index. .......................................................................... 67 
 

Table 3.1. Mean values (± SD) for grain volume weight and kernel characteristics 
of F3:4 and F3:5 lines of three populations grown at four locations in eastern 

Colorado. ......................................................................................................................... 84 
 
Table 3.2. Summary statistics for calibration development, cross-validation, and 

independent validation for grain volume weight and SKCS kernel weight diameter 
and hardness index........................................................................................................ 87 

 
Table 3.3. Narrow-sense heritability estimates (± standard error) calculated with 
parent-offspring correlation using NIR (h2

rNIR) and reference (h2
rRef) data for 

grain volume weight and SKCS kernel weight, diameter, and hardness index. .. 92 
 

Table 3.4. Realized heritability estimates for selection using NIR (h2
r NIR) and 

reference (h2
r Ref) data for grain volume weight and SKCS kernel weight, 

diameter, and hardness index. ..................................................................................... 93 

 
Table 3.5. Jackknife classification table for all parameters. Columns represent 

classification by reference method and rows represent classification by NIR 
prediction. ........................................................................................................................ 97 



ix 

 

 
LIST OF FIGURES 

Figure 1.1. Average single kernel diameter reference values (y-axis) vs. near-
infrared kernel diameter modeled values (x-axis) for individual years and all years 
combined, evaluated on validation samples (n = number of validation samples 

used in analysis). Regression line and corresponding equation are best fit linear 
models.............................................................................................................................. 36 

 
Figure 1.2. Average single kernel weight reference values (y-axis) vs. near-
infrared modeled values (x-axis) for individual years and all years combined, 

evaluated on validation samples (n = number of validation samples used in 
analysis). Regression line and corresponding equation are best fi t linear models.

........................................................................................................................................... 38 
 
Figure 1.3. Average single kernel hardness index reference values (y-axis) vs. 

near-infrared modeled values (x-axis) for individual years and all years 
combined, evaluated on validation samples (n = number of validation samples 

used in analysis). Regression line and corresponding equation are best fit linear 
models.............................................................................................................................. 40 
 

Figure 1.4. Grain volume weight values (y-axis) vs. near-infrared modeled values 
(x-axis) for and all years combined, evaluated on validation samples (n = number 
of validation samples used in analysis). Regression line and corresponding 

equation are best fit linear models. ............................................................................. 42 
 

Figure 1.5. Effect of adding percentages (%) of new crop year samples on 
prediction of kernel diameter. Validation was done on remaining samples of the 
new crop year. ................................................................................................................ 44 

 
Figure 1.6. Effect of adding percentages (%) of new crop year samples on 

prediction of kernel weight. ........................................................................................... 45 
 
Figure 1.7. Effect of adding percentages (%) of new crop year samples on 

prediction of kernel hardness index. ........................................................................... 46 
 

Figure 2.1. Farinograph water absorption (ABS) reference values (y-axis) vs. 
whole grain near-infrared modeled values (x-axis), evaluated on validation 
samples (n = 198). Regression line and corresponding equation are best fit linear 

models.............................................................................................................................. 66 
 

Figure 2.2. Farinograph water absorption (ABS) reference values (y-axis) vs. 
flour near-infrared modeled values (x-axis), evaluated on validation samples (n = 
198). Regression line and corresponding equation are best fit linear models.  .... 69 

 



x 

 

Figure 3.1.  Regression of kernel characteristics and grain volume weight 
determined by prediction model and by reference method in all populations 

combined. ........................................................................................................................ 89 
 



xi 

 

LIST OF APPENDICES 

Appendix 1. Calibration loadings for kernel diameter.............................................105 

 
Appendix 2. Calibration loadings for kernel hardness............................................106 
 

Appendix 3. Calibration loadings for kernel weight.................................................107 
 

Appendix 4. Calibration loadings for grain volume weight. ....................................108 



1 

 

 

LITERATURE REVIEW 

Introduction 

Near-infrared (NIR) light refers to a region in the electromagnetic spectrum 

adjacent to the visible range (between 750 and 3000 nm in wavelength). While 

light in the infrared region is not visible to the human eye, most organic materials 

have excellent transmittance and reflectance properties at those wavelengths 

(Williams, 2003). Diffuse reflectance spectroscopy is an extension of human 

vision through instrumentation (Williams and Norris, 2001). Output from NIR 

spectroscopy is in numeric form so mathematical treatments can be used to 

further analyze results. 

Spectroscopists have recognized the existence of the fundamental 

absorption of energy in the infrared region since the early 1800’s (Williams, 

2003). Since then, technology has advanced, and with it, the usefulness of NIR 

spectroscopy. The technology was put to use in agricultural products by Karl 

Norris in the late 1950’s, and the first commercial application of NIR 

spectroscopy is credited to the Canadian Grain Commission (CGC) when it 

applied it to testing of grain samples for protein concentration, previously tested 

by chemical methods (Williams and Norris, 2001). Later calibrations were 

developed and implemented for moisture, oil, and starch concentration of grains. 

The mid-1970’s brought improvements in instrument design and software 

(Williams, 2003). In the early 1980’s, development of instrumentation for testing 
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whole grain wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) for 

protein and moisture occurred. This was significant since it was no longer 

necessary to mill or grind the samples, thereby providing information via rapid 

and nondestructive means. With the advancement of computer technolog y and 

software, the state of the art is now at a stage where computer memory capacity 

and computing time are no longer obstacles to development of useful 

calibrations.  

Technology and Statistics 

 The infrared (IR) portion of the electromagnetic spectrum is divided into 

three regions; far-infrared (25000-1000000 nm), mid-infrared (2500-25000 nm), 

and near-infrared (750-2500 nm) (Stuart, 2004). Infrared spectroscopy is 

commonly referred to as vibrational spectroscopy because chemical bonds have 

specific frequencies at which they vibrate corresponding to energy levels. Atoms 

commonly found in organic compounds can vibrate in six different ways: 

symmetrical and asymmetrical stretching, scissoring, rocking, wagging and 

twisting (Burns and Ciurczak, 2001). Molecules are in a continuous state of 

vibration at various frequencies and irradiation by an energy source, such as 

light, can cause the molecules to change their vibrations from one energy level to 

another. When this takes place, energy is absorbed, and this absorption can be 

measured and quantified by spectrophotometers (Williams, and Norris 2001). 

Different groups of atoms absorb at different wavelengths, and by taking 

measurements at wavelengths of a known group, chemical composition can be 

predicted (Williams, 2003). One complicating factor is that there is considerable 
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overlap due to the fact that more than one molecular group is absorbing at any 

one wavelength. Statistics are employed to further resolve vibrational and 

molecular differences. 

The two most commonly used regions in infrared spectroscopy are near-

infrared and mid-infrared (mid-IR).  The advantage of mid-IR is that it directly 

monitors the fundamental vibrations corresponding to functional groups, whereas 

the NIR is dominated by combinations and overtones, making interpretation of 

results difficult (Brad Seabourn, personal communication). Therefore, mid-IR 

reveals IR absorptions that correspond to unique, unambiguous molecular 

vibrations making it more straightforward to relate specific absorbances to the 

chemical changes that are of interest to a given application and, as a result, mid-

IR calibrations are often quite easy and fast to develop (Burns and Ciurczak, 

2001). In contrast, NIR spectra are dominated by broad, overlapping overtones, 

and calibration models are heavily reliant on statistics (Williams, 2003).  

The disadvantages of mid-IR are the expensive optical materials required 

for mid-IR (resulting in more expensive instruments) and the fact that the only 

suitable fiber optics for communication between a measurement point and a 

remote instrument are of limited length. While this has little bearing for research 

purposes, it does limit its use in process control applications. In contrast, NIR 

instruments have relatively inexpensive optical materials and fiber optics are 

routinely used in industry (Stuart, 2004).   
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NIR spectroscopy generally relies on diffuse reflectance , which is the 

reflection of light from an uneven or granular surface such that an incident ray is 

seemingly reflected at a number of angles. It is the complement to spectral 

reflection. Diffuse reflectance is also affected by particle size and shape; NIR 

spectroscopy can therefore be used to develop calibration models for textural 

properties in addition to chemical properties. 

The reference method of calibration development is the primary method 

used in NIR spectroscopy for agricultural applications. The first step in 

development of a calibration using this method is to derive a sample set that 

encompasses as much variation as possible for the trait of interest. It is also 

important to include material that represents a variety of genetic and 

environmental variation characteristic of the samples for which the calibration will 

later be used. Using an NIR spectrometer, spectral data are then collected on the 

sample set. Mathematical pretreatments, such as derivativization and smoothing, 

are then applied to the data. Smoothing theoretically reduces spectral noise and 

derivativization compensates for baseline drift and assists in resolution of 

overlapping absorption bands (Williams, 2003). Multiplicative scatter correction is 

also routinely used and involves correction for differences between the individual 

spectral data for all samples at a wavelength point and the average spectral data 

for all samples at that wavelength (Williams, 2003). Principal component analysis 

is then used to evaluate the spectral data, which allows for the removal of 

spectral outliers and spectrally redundant samples from the data set.  The other 

part of the process for this method involves collection of laboratory reference 
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data on samples that are present in the spectral dataset. When the reference 

data have been collected for all of the samples that remain in the spectral 

dataset, calibration development can begin. This can be carried out using several 

methods, but the two most frequently used are multiple linear regression and 

partial least squares regression. A prediction model is developed to predict the 

parameter of interest and its effectiveness is tested on an independent validation 

set of samples. 

NIR Models for Wheat Quality 

NIR spectroscopy, as a tool for prediction of wheat quality parameters, 

has been well documented in the literature. It not only allows for the possibility of 

non-destructive prediction of quality parameters, but also has the potential to 

quickly predict several parameters simultaneously with a very small sample that 

requires little or no preparation prior to analysis.  

In an example of published research using the reference method, 

Delwiche et al. (1998a) used 30 genotypes of hard red winter wheat from eight 

locations throughout Nebraska and assessed the ability of NIR spectroscopy to 

predict concentrations of gliadin, glutenin, albumins, globulins, sodium dodecyl 

sulfate (SDS) sedimentation volume, and mixograph dough handling properties. 

Eight of the 30 genotypes contained wheat-rye chromosome translocations and 

the presence of secalins were determined for these genotypes. Measurement of 

protein fractions was done using size-exclusion high performance liquid 

chromatography (HPLC). Sedimentation volumes were determined using 
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approved method 56-61A (AACC, 2000). Mixograph analysis provided four 

parameters: time to peak dough development, the height of the peak at 

maximum resistance, the width of the curve at maximum resistance, and the 

width of the curve at two minutes past the point of maximum resistance. Using 

reference data along with spectral data collected with a Foss NIRSystems model 

6500 (Foss North America, Eden Prairie, MN), prediction models were 

developed. Model performance was evaluated on the validation set and reported 

as: 1) correlation coefficient (r) determined from the linear association of the 

validation reference values onto model-predicted values; 2) standard deviation of 

validation errors (SDV), also commonly referred to as standard error of 

performance (SEP); 3) bias, defined as the mean difference between the 

modeled and reference values; 4) ratio of the standard deviation of the reference 

values (SD) to the SDV [residual prediction deviation (RPD), defined by Williams 

(1987) as RPD = SD/SDV]; and 5) ratio of the variance of the reference values 

with variance of the NIR model removed to the variance of the reference values 

with variance caused by the reference technique removed where RAP = ((SD2 – 

SDV2)/(SD2 –laboratory error2) (Martens and Naes, 1984). When calibrations 

were applied to an independent validation set, NIR models for glutenin content, 

gliadin content, SDS sedimentation volume, and mixograph peak resistance 

demonstrated relatively high values of R2 ranging from 0.87 to 0.94. 

In a variation on the traditional reference method of calibration 

development, Wesley et al. (1999) used a curve fitting approach to develop 

predictions based on theoretical spectra from nearly pure samples of gliadin and 
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glutenin. Internal curve fitting was based of the identification of regions in the NIR 

spectrum that are unique to the components of interest. In the case of flour, 

these components are gliadin, glutenin, starch, and water. Samples of gliadin 

and glutenin were isolated from wheat flour, freeze dried, and scanned with a 

Foss NIRSystems 6500. Spectra from the scans were used to determine regions 

of interest and a curve fitting approach along with a least squares unmixing 

methodology was used to develop a prediction model. One hundred and seventy 

doubled haploid lines consisting of 60 different glutenin subunit combinations 

were used to evaluate the prediction model. High R2 values were seen when 

regressing predicted values on those obtained by size-exclusion HPLC (gliadin 

R2=0.73 and glutenin R2=0.76).  While a significant bias was present in the 

prediction model, it was useful for ranking the samples correctly. This could 

prove useful in plant breeding programs where ranking is generally more 

important than accuracy.  

Discriminant analysis is another method used in the development of NIR 

spectroscopy calibrations. It proves useful to identify samples by discrete classes 

and involves the correlation of defined classes with principal component clusters 

derived from spectral data. In an example of discriminant analysis, McCaig 

(1993) investigated the use of NIR and visible light spectroscopy for assessment 

of seed coat color in a wheat breeding program. Red seed coat color in wheat is 

controlled by up to three genes and various combinations of these genes impart 

various shades of red to the genotypes (Metzger and Silbaugh, 1970; Baker, 

1981). Seed coat color can be determined by visual inspection in most samples, 
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but some genotypes can be difficult to distinguish. Environmental factors can 

also play a role in making red genotypes appear white , and white genotypes 

appear red. A total of 262 diverse wheat samples consisting of 115 red and 147 

white, including common and durum wheat (Triticum durum L.), were used in the 

analysis. After a first-derivative data transformation to remove spectral variation 

due to differences in seed size and shape, results revealed two regions that were 

useful to discriminate among the three wheat groups. The visible region around 

516 nm distinguished between red and white seed-coat wheat and durum could 

be distinguished from common white seed-coat wheat in the visible region of 450 

nm. Although average spectra for each group were clearly distinguished wi th a 

bimodal distribution, the range of values for both 516 nm and 450 nm resulted in 

some overlap (approximately 1%). 

 Dowell (1998) went further to address the problem of overlap with bulk 

sampling methods and evaluated the accuracy of color classification of single 

wheat kernels using visible and near-infrared reflectance. Using a single kernel 

characterization system (SKCS) integrated with a DA-700 diode-array 

spectrometer (Perten Instruments, Reno, NV), Dowell (1998) developed 

calibrations using samples representing the hard red winter, soft red winter, hard 

red spring, soft white, and hard white wheat market classes. In addition to 

samples that were easily classified as red or white by grain inspectors, 

approximately 20% were samples that were difficult for inspectors to determine 

color class. A calibration based on the entire visible and near-infrared spectrum 

resulted in >99% correct classification for single kernels. When single kernel 
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classification results were averaged, 100% correct classification of bulk samples 

was realized. The most useful information for correct classification was found to 

lie within the 450-1688 nm region; however, results revealed the best 

classification resulted from using the entire 450-1688 nm region. The fact that the 

use of NIR spectra improved classification accuracy suggests that there may be 

some difference in the molecular structure of the red and white seed coats.  

Various laboratory techniques are employed to determine bread baking 

quality of wheat. These include various measures of sedimentation, evaluation of 

dough mixing and handling properties, determination of chemical constituents of 

flour such as protein fractions and starch, and experimental baking. In addition to 

flour and bread baking quality, various other quality measures are of interest 

such as milling characteristics, including parameters indicative of milling 

performance (kernel weight, kernel diameter, grain volume weight, and 

hardness), and grain and flour color. 

In a study to determine whether reflectance spectroscopy could be used 

under commercial bakery conditions to monitor functional performance in hard 

red spring and hard red winter flours, Delwiche and Weaver (1994) evaluated 

flour for baking quality. Six parameters were used in the evaluation: 1) water 

absorption 2) loaf height, 3) mixing time, 4) mixing tolerance or stability, 5) 

internal grain score, and 6) overall baking score. Spectra were collected using a 

Foss NIRSystems 6500. One quarter of the 317 samples were not included in the 

calibration set and were used for independent validation of the calibration model. 

Using principal component analysis (PCA) and partial least squares (PLS) 
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regression, calibration models were developed and evaluated with the validation 

set. Results revealed high R2 for absorption (0.92), intermediate R2 for loaf height 

(0.63), and low R2 for mixing time, internal grain score, and overall bake score.  

Blazek et al. (2005) explored the use of NIR spectroscopy of laboratory 

milled flour to predict milling characteristics in experimental and commercial 

wheat. The values of milling parameters are determined by the milling quality of 

wheat, which is affected by the physical and chemical properties of the grain 

endosperm. Ninety-four samples were scanned using a Foss NIRSystems 6500. 

Samples were milled in a Chopin CD1 Auto mill and semolina extraction rate, 

semolina extractability, flour extraction rate, and Mohse extraction rate were 

determined. Eight samples were set aside as an independent validation set. 

Calibrations were developed using PLS/modified PLS (mPLS) and artificial 

neural network (ANN) methods with both cross-validation and independent 

validation. Results revealed that when using cross-validation and PLS/mPLS, the 

highest statistical correlation value (r=0.63) in the set was achieved for semolina 

extractability. Similar results were observed when using the ANN method, but 

higher r and lower SEV values were realized. When using independent 

validation, the best calibration equation was developed for semolina extraction 

rate with a resultant r=0.92. Low correlation coefficients were found for the other 

two parameters studied. The potential for use of NIR spectroscopy to predict 

milling characteristics was examined and deemed not fully satisfactory when 

using independent validation. The authors suggested that better results could be 

realized if a larger sample set were to be used for the evaluation. 
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Starch level and composition in wheat have an influence on processing 

characteristics. Plants synthesize starch in organelles called amyloplasts, with 

the major starch molecules made up of amylose and amylopectin. The two starch 

molecules differ in their molecular structure by their degree of branching of D-

glucosyl units, with amylose comprised of strait chains of α (1  4) linked D-

glucosyl units. Amylose is believed to be synthesized by a pathway in which 

granule-bound starch synthase (GBSS), also known as waxy protein, is the 

primary enzyme. As a hexaploid, common wheat contains three unique loci that 

code for iso-forms of GBSS (wx-A1, wx-B1, and wx-D1). Generally, the greater 

number of genes coding for GBSS, the greater the amylose content in the grain. 

Lines that contain all three genes for iso-forms of GBSS are wild-type, those with 

one or two nulls are partial waxy, and those with three nulls are termed waxy. 

Delwiche and Graybosch (2002) investigated the feasibility of using NIR 

spectroscopy to identify and differentiate between wild -type, partial waxy, and 

waxy wheat samples. One-hundred and ninety-two samples (27 triple null, 126 

single or double null, and 39 wild-type) were examined over two crop years. 

Samples were ground, and then spectra were collected with a Foss NIRSystems 

6500. Reference data were generated in duplicate using iodine-binding blue 

complex colorimetry. SAS procedures PRINCOMP, STEPDISC, and DISCRIM 

were used to develop a discriminant analysis model for prediction of waxy 

classes. Results indicated only one of the 27 waxy samples from the first year 

was incorrectly classified, and in year two only two of the 27 were incorrectly 

classified. Only 59% of the partial waxy samples were correctly classified, but 
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only 20% were classified as wild-type and none as waxy. Approximately 54% of 

wild-types were correctly classified. The results suggested that while 

misclassifications were present, they were generally minor and classification 

would be effective for early generation screening for allele enrichment.  

Pawlinsky and Williams (1998) evaluated the efficiency of prediction 

models for whole kernel wheat for quality parameters including protein 

concentration, wet gluten percent, Zeleny sedimentation volume, mixograph peak 

time, Farinograph absorption, Farinograph development time, Farinograph 

mixing tolerance index, extensigraph height, extensigraph area, and Canadian 

short process mixing time. Samples consisted of elite lines grown over two 

seasons (1995 and 1996) and 25% of the samples were not used in calibration 

development, but instead as an independent validation set. Significant res ults 

were obtained for calibration models for Farinograph absorption and mixing 

tolerance. 

A relatively complete and comprehensive evaluation of the potential of 

NIR spectroscopy to measure milling, flour, dough, and bread-making quality 

characteristics from whole grain and flour of hard red spring (HRS) and hard red 

winter (HRW) wheat was conducted by Dowell et al. (2006). One-hundred and 

eighty-six quality parameters were evaluated using 100 HRW and 98 HRS wheat 

and flour samples. Using four different NIR instruments, spectral data were 

collected in addition to the data collected from the 186 reference methods. Mean-

centered absorbance (log 1/R) and the Savitzky-Goley first-derivative of the 

absorbance spectrum were analyzed. Other mathematical treatments were not 
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tested under the assumption that improvements in prediction accuracies would 

be small. Ability of prediction by NIR was reported as the coefficient of 

determination (R2) and the standard error of cross-validation (SECV). Results 

were interpreted as suggested by Williams and Norris (2001) with R2 = 0.70-0.90 

suitable for rough screening, R2 = 0.90-0.97 suitable for screening and quality 

control, R2 = 0.97-0.99 as suitable for process control, and larger values as 

suitable for most applications. There were no whole grain, flour, dough or baking 

characteristics that were consistently predicted more accurately by a specific 

spectrometer, with the exception of flour color, which was predicted by the Foss 

6500 with R2 values twice that of the other instruments.  

When analyzing spectra from HRW whole kernels, Dowell et al. (2006) 

found that grain and flour protein concentration and grain moisture could be 

predicted with R2 ≥ 0.97, while average single kernel moisture, total gluten 

content, and mixograph absorption were predicted with R2 ≥ 0.90. Additionally, 

grain volume weight, average single kernel diameter, SDS sedimentation 

volume, soluble and insoluble glutenin content, soluble gliadin content, 

Farinograph absorption, alveograph length, alveograph swelling index, 

alveograph work, loaf volume and specific loaf volume were predicted with R2 ≈ 

0.70-0.90. When analyzing spectra from flour, NIR predictions with R2 ≥ 0.97 

were observed for grain and flour protein concentration, and color b*. Color a*, 

total gluten content, and mixograph absorption were predicted with R2 ≥ 0.90 and 

SDS sedimentation volume, soluble and insoluble glutenin content, soluble 
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gliadin content, alveograph length, alveograph swelling index, alveograph work, 

loaf volume, and specific loaf volume with R2 ≈ 0.70-0.90. 

In addition to the aforementioned papers, research on the use of NIR 

spectroscopy for prediction of wheat quality parameters is extensive. Delwiche 

and Hruschka (1998, 2000) investigated the utility of NIR spectroscopy for 

prediction of protein concentration of single kernels. Manley et al. (2002) and 

Morris et al. (2005) studied the effectiveness of predicting hardness and texture. 

Delwiche et al. (1991, 2002), Gergely and Salgo (2005), and Juhasz et al. (2005) 

examined the utility of NIR spectroscopy to predict starch and carbohydrate 

content including parameters measured by the rapid visco analyzer. Delwiche et 

al. (1994, 1998a), Wesley et al. (1999), and Nielsen et al. (2001) assessed the 

predictive power of NIR spectroscopy for flour characteristics, dough handling 

properties, and baking quality. Other studies have been conducted to determine 

NIR utility in determination of nitrogen uptake (Stenberg et al., 2005), Fusarium 

head blight damage (Delwiche and Hareland, 2004), insect damage (Perez-

Mendoza et al., 2005), and heat damage (Wang et al., 2001). 

Prediction of protein concentration by NIR spectroscopy has long been 

accepted as a useful method to assess the bread baking potential of a wheat 

sample. It is also important to recognize that in addition to protein quantity, 

protein quality is an important factor to consider. End-use quality of wheat is 

related to both the amount and quality of the gluten proteins and by the complex 

interactions of all the biochemical constituents present in flour.  
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An important issue in the development of NIR models for wheat end-use 

quality is the high level of correlation of many quality parameters to protein 

concentration. Osborne (1984) found that when evaluating a prediction model for 

SDS sedimentation volume, any predictive power of the model was lost when the 

contribution of protein concentration was removed from the model. Delwiche et 

al. (1998a) found that the absolute amount of gliadins and glutenins is 

predictable and is highly correlated with protein concentration. When the 

influence of protein concentration is removed from the model, R2 values were 

poor. When evaluating prediction models for HRW, Dowell et al. (2006) 

discovered that when the contribution of protein concentration was removed, only 

moisture concentration predicted from whole grain spectra, and color a*and b* 

from the flour had R2 ≥ 0.70.  

While several studies show that protein concentration is highly correlated 

with NIR-prediction of most quality parameters, there are studies to the contrary. 

Pawlinsky and Williams (1998) reported that in evaluation of samples from two 

separate growing seasons, protein concentration was largely influenced by 

environment. When correlating protein concentration to functionality parameters 

in one of the years, only weak correlations were observed while prediction 

models for some of the parameters were successful. From this, the authors 

concluded that the NIR method was apparently capable of predicting some 

functionality parameters, independent of the influence of protein. They went 

further to conclude that NIR reflectance scanning of whole grain appears to be 

capable of predicting wheat functionality parameters to sufficiently identify 
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suitable material for advancement in a breeding program. This was reiterated by 

Delwiche et al. (1998a) who concluded that protein quality measurements 

(quantity of gliadin and glutenin) by NIR may be applicable to breeding programs, 

but may not be attainable on commercial samples.  

As stated by Pawlinsky and Williams (1998), one of the most important 

aspects of evaluation of the characteristics of new genetic material is the degree 

to which important characteristics are heritable. Protein concentration in bread 

wheat is largely influenced by environmental conditions and is not highly 

heritable. Characteristics such as gluten strength and kernel texture, on the other 

hand, are much more highly heritable (Pawlinsky and Williams, 1998). This 

suggests a genetic basis for these parameters that can be exploited in a 

breeding program.  

In all of the papers to date, none have attempted to develop calibrations 

within a breeding program utilizing a broad spectrum of material in various filial 

generations. One benefit to this approach would be the vast genotypic, 

phenotypic, and environmental variability present in breeding material. In turn, 

this would greatly benefit the breeding program in allowing for quick, inexpensive, 

and non-destructive prediction of quality parameters in early-generation material 

and allow for improved genetic gain for heritable traits with each round of 

selection. 

The objectives of this study were to: 1) develop and validate NIR 

calibration models for grain volume weight, single kernel characteristics (SKCS 
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kernel weight, diameter, and hardness) and Farinograph parameters (absorption, 

development time, stability, and mixing tolerance index), and 2) evaluate the 

performance of NIR calibrations in a breeding context for grain volume weight 

and single kernel characteristics. 
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CALIBRATION DEVELOPMENT AND VALIDATION 

Near-Infrared Reflectance (NIR) Spectroscopy for Estimation of SKCS 

Parameters and Grain Volume Weight in Whole Grain Winter Wheat 

Abstract 

End-use quality improvement is an important objective in most wheat 

(Triticum aestivum L.) breeding programs. Limited sample size, destructive 

parameter testing, and the short duration between harvest and planting winter 

wheat are challenges for early-generation selection for end-use quality 

parameters. This study was conducted to develop near-infrared reflectance (NIR) 

spectroscopy calibration models for prediction of single kernel characteristics 

(SKCS; kernel diameter, weight, and hardness index) and grain volume weight, 

and assess the performance of calibration models for SKCS on an independent 

validation set and new crop samples. Calibration models were developed using 

NIR spectra and laboratory reference values from up to 10,000+ samples 

collected from breeding nurseries under multiple environments during the 2004-

2007 growing seasons. Models encompassing all years of data revealed R2
val 

(validation) in excess of 0.70 for all parameters. Increasing percentages of new 

crop years increased the R2
val with each incremental percentage of current crop 

year samples added. The need to add large percentages of new crop year 

samples declined with each year. Additionally, the R2
val approached the R2

cal 

(calibration) for all parameters, but did not reach R2
cal except for kernel hardness 
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index after data from all years were added to the model. Results indicate that the 

development of a robust calibration model for SKCS characteristics, which could 

be uti lized in a breeding program, is feasible and could aid in the rapid and non-

destructive elimination of samples with unacceptable values. 
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Introduction 

End-use quality improvement is an important objective in most wheat 

(Triticum aestivum L.) breeding programs. In the case of winter wheat, the short 

duration between harvest and planting represents a major challenge to efficiently 

and timely conduct quality evaluations to enable selection prior to planting. 

Furthermore, multiple test parameters, some being destructive of the grain 

sample, are commonly used as predictors of overall end-use quality which 

complicates the selection process. The large numbers of breeding samples 

typically handled, even by programs of modest size, represents another limitation 

in the process of quality evaluation and selection in a wheat breeding program.  

While actual milling and baking experiments conducted on samples would 

provide the best estimate of end-use quality, most early-generation lines are 

produced in a quantity insufficient for large-scale tests (Dowell, 2008). With 

samples of limited quantity, kernel characteristics and grain volume weight (test 

weight) are often used as indicators of milling and baking quality and flour yield. 

Increasing kernel weight and size through breeding has been proposed as 

a method to increase flour extraction, as larger grains have a greater ratio of 

endosperm to bran (Finney et al., 1987; Wiersma et al., 2001). Increased kernel 

weight and size has the added effect of increasing the grain volume weight in 

some samples (Barnard et al., 2002). Additionally, kernel hardness index has 
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been reported to influence milling and baking properties of the resulting flo ur 

(Veha, 2007).  

Ohm et al. (1998) observed strong correlation between milling 

characteristics and both SKCS and grain volume weight with results similar to 

those reported by other researchers (Finney et al., 1987; Wiersma et al., 2001; 

Barnard et al., 2002; and Veha, 2007). Lyford et al. (2005) developed a model 

using grain volume weight and SKCS parameters that accounted for 81% of the 

variability in mill extraction. With this model, estimates of flour extraction of a 

sample could be obtained without having to actually mill the sample. As a stand 

alone test, both SKCS and grain volume weight are relatively rapid techniques, 

but the large number of samples in early-generation screening, combined with 

other analyses lead to a substantial time commitment for data collection. In 

addition, SKCS requires destruction of seed, which may present a challenge in 

early-generation screening when seed is in limited supply. 

The single kernel characterization system (SKCS) 4100 (Perten 

Instruments, Springfield, IL) was developed by the USDA Grain Marketing and 

Production Research Center in Manhattan, KS. Measurements of kernel weight, 

kernel diameter, hardness index, and moisture concentration are determined as 

an average of a user specified number of kernels. The SKCS 4100 has been 

accepted as a viable means of measuring these parameters and has found a 

place in many wheat breeding programs for early- and late-generation testing. 

While the test can be conducted rather quickly, the test is destructive of the seed.  
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Near-infrared reflectance (NIR) spectroscopy is a rapid and non-

destructive technique that could facilitate early-generation selection for end-use 

quality. The precision and accuracy of an NIR equation for prediction purposes is 

dependent on the construction of a reliable calibration (Williams and Norris, 

2001). Prediction models can be developed using spectral fingerprints and 

phenotypic reference data. In this way, a single NIR scan of a wheat grain or 

flour sample can provide non-destructive estimates for several different quality 

parameters. The first step in the application of NIR spectroscopy technology in a 

wheat breeding program is to develop and evaluate prediction models (Williams  

and Norris, 2001). Spectra collection with an NIR instrument and parameter 

estimates with a calibration model for kernel characteristics would offer the 

advantage of rapid, non-destructive sampling (approximately 50 seconds) while 

providing other parameter estimates such as moisture, ash, and protein 

concentration. 

Several investigators have documented the development of NIR 

calibrations for wheat end-use quality assessment beyond moisture, protein 

concentration, and kernel hardness. Pawlinsky and Williams (1998) evaluated 

the efficiency of prediction models for whole grain wheat fo r dough mixing quality 

using samples of elite lines grown over two seasons and observed prediction vs. 

lab R2 values ranging from 0.58-0.98. Delwiche et al. (1998a) used 30 entries of 

hard red winter wheat from eight locations throughout Nebraska and assessed 

the ability of NIR spectroscopy to predict concentrations of gluten subunits, 

sedimentation volume, and mixograph dough mixing properties and when 
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calibrations were applied to an independent validation set, the authors observed 

relatively high values of R2 ranging from 0.87 to 0.94. In a variation on the 

traditional reference method of calibration development, Wesley et al. (1999) 

used a curve fitting approach to develop predictions based on theoretical spectra 

from nearly pure samples of gliadin and glutenin with resultant R2 values of 0.73 

for gliadin and 0.76 for glutenin. In a study to determine whether reflectance 

spectroscopy could be used under commercial bakery conditions to monitor 

functional performance in hard red spring and hard red winter wheat flours, 

Delwiche and Weaver (1994) evaluated flour for baking quality of 317 samples, 

developed calibration models, and reported low R2 for mixing time, internal grain 

score, and overall bake score, but high R2 for absorption (0.92) and intermediate 

R2 for loaf height (0.63). McCaig et al. (1993) investigated the utility of using NIR 

and visible light spectroscopy for assessment of seed coat color and revealed 

two regions (516 nm and 450 nm) that were useful to discriminate among three 

wheat groups.. Dowell (1998) went further to evaluate the accuracy of color 

classification of single wheat kernels using visible and near-infrared reflectance 

calibration based on the entire visible and near-infrared spectrum that resulted in 

>99% correct classification for single kernels. Blazek et al. (2005) determined the 

ability of NIR to predict wheat milling characteristics in 94 experimental and 

commercial wheat varieties with significant prediction models for some 

parameters. Delwiche and Graybosch (2002) investigated the feasibility of using 

NIR spectroscopy to identify and differentiate wild-type, partial waxy, and waxy 

wheat using 193 whole grain samples and produced a discriminant analysis 
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model that could correctly classify waxy wheat 93-96% of the time. A relatively 

complete and comprehensive evaluation of the potential of NIR spectroscopy to 

predict whole kernel, milling, flour, dough and bread-making quality 

characteristics from whole grain and flour of 100 hard red spring and winter 

wheats was conducted by Dowell et al. (2006) where several successful 

calibration models were developed.  

Calibration models for dough mixing and baking properties have met with 

limited success. Delwiche and Weaver (1994) concluded that the inability of NIR 

to robustly predict parameters such as dough mixing time, mixing tolerance, and 

overall bake score was due to the complexity of the interactions between protein, 

starch, and lipid. This is further complicated by the fact that the e xact nature of 

the relationship between chemical composition and dough rheological properties 

is not yet fully understood (Blazek et al., 2005).  

The aforementioned research has typically used samples of elite lines or 

cultivars, relatively small sample numbers, or a limited number of environments. 

To our knowledge, no previous studies have been conducted to develop 

calibrations within a breeding program utilizing all the inherent phenotypic 

(genetic and environmental) variation present in such a program. One benefit to 

this approach is the vast variability present in breeding material that is typically 

evaluated over multiple years and testing locations. In turn, this would greatly 

benefit the breeding program in allowing for rapid, inexpensive, and non-

destructive prediction of quality parameters in early-generation material and allow 

for improved genetic gain for heritable traits with each round of selection.  
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The objectives of this research were to: 1) develop NIR calibration models 

for kernel characteristics (average kernel diameter, weight, and hardness index) 

and grain volume weight using samples from breeding nurseries grown over 

multiple years and testing locations; 2) validate calibrations on independent 

samples not used in the development of the calibrations; and 3) assess 

performance of SKCS calibration models on new crop year samples as an 

indication of utility in real-world breeding scenarios and the number of years 

required to develop a robust calibration.  
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Materials and Methods 

Samples 

 Whole grain winter wheat samples were obtained from the Colorado State 

University Wheat Breeding Program for SKCS and grain volume weight 

evaluation. To maximize possible variation among samples, multiple test 

environments (years and locations) were utilized. Additionally, various levels of 

genetic variation including experimental lines from early-, middle-, and late-

generation trials, in addition to released varieties, were utilized. Test 

environments included rain-fed (dryland) and irrigated nurseries. Fertilizer 

treatments varied by environment and were applied when necessary in a manner 

consistent with current farming practices in eastern Colorado. For SKCS 

parameters, the sample set (n=10,416) included entries from the 2004-2007 crop 

years over 4-13 locations per year. For grain volume weight, the sample set 

(n=3,437) included entries from the 2006 and 2007 crop years from a similar 

range of early-, mid-, and late-generation breeding nurseries. Year and location 

combinations, along with corresponding sample numbers, are summarized in 

Table 1.1. 

Sample Preparation and Reference Analysis 

Following harvest, samples were cleaned, and approximately one kg was 

sub-sampled. All samples were analyzed for single kernel characteristics using 

AACC method 55-31 (AACC, 2000) with a SKCS 4100 (Perten Instruments, 

Springfield, IL); and average kernel weight (KW), kernel diameter (KD), and 
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kernel hardness index (KHI) were recorded. Grain volume weight of each sample 

(AACC method 55-10, 2000) was determined using a measuring cup and a 

Seedburo test weight device (Seedburo Equipment Co., Des Plaines, IL).  

NIR Hardware and Spectra Collection 

A scanning monochromator NIRSystems 6500 (Foss NIRSystems, Inc., 

Eden Prairie, MN) was used to measure NIR diffuse reflectance spectra from 400 

to 2500 nm at 2 nm intervals. The NIR spectra were collected on approximately 

20 g whole grain samples with a ¼ cup sample cell using a standard transport 

module. The acquisition of NIR spectra (Log 1/R) of whole grain was facilitated 

by the use of ISI Scan software (Infrasoft Intl. LLC., State College, PA) and 

collected as an average of 25 scans for a single cell pack for each sample. 

Calibration and Validation 

 The WINISI III software was used for spectral pretreatments, calibration 

development, and evaluation of calibration performance.  Raw spectra (Log 1/R) 

were first evaluated visually and outliers were removed. Frequency distributions 

of reference values were plotted and extreme outliers removed. Distributions 

were then subject to a Shapiro-Wilk normality test (Shapiro and Wilk, 1965). A 

preliminary analysis of NIR spectra revealed that only 40% of the samples were 

spectrally unique. Therefore, the samples were randomly separated into two 

groups: a calibration set (40% of samples) used for calibration development and 

a validation set (60% of samples) that were not included in the calibration 

development but were used to evaluate the calibration model.  
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Table 1.1. Summary of samples and Colorado environments used in calibration 
development.  

Parameter(s) Year Environments Total Environments N 

SKCS 2004 AK, FC, HX, JL† 4 2722 

SKCS 2005 AK, BL, FC, JL, 

SL, WL 

6 1862 

SKCS 2006 AK, BL, DL, FC, 

GN, HX, JL, SL, 
YM 

9 2387 

SKCS 2007 AK, BL, DL, FC, 
FR, GN, HD, JL, 

MK, OR, SL, WL, 
YM 

13 3445 

Grain 
Volume 

Weight 

2006 AK, BL, DL, FC, 
GN, HX, JL, WL, 

YM 

9 1625 

Grain 

Volume 
Weight 

2007 AK, DL, FC, JL,  4 1812 

SKCS Total  32 10416 

Grain 

Volume 
Weight 

Total  13 3437 

† Environments: AK= Akron; BL= Burlington; DL= Dailey; FC= Fort Collins; FR= 

Fruita; GN= Genoa; HD= Hayden; HX= Haxtun; JL= Julesburg; MK= Milliken; 
OR= Orchard, SL= Sheridan Lake; WL= Walsh; YM= Yuma. 
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Principal component analysis (PCA) was used for the calculation of 

Mahalanobis distance (H) for the removal of spectral outliers and the removal of 

redundant spectra. Various mathematical treatments were applied to the 

absorbance spectra to maximize the accuracy of the calibration model. 

Treatments included multiplicative scatter correction to minimize the nonlinear 

effect of light scatter due to particle size differences (none, standard normal 

variate + detrend, standard normal variate only, and detrend only) and data 

transformation via derivative mathematics that reduces the intercorrelation 

between the data points of a spectrum (Isaksson and Naes, 1988).  The 

treatments were applied during the calibration development and included 0,4,4,1; 

1,4,4,1; 2,4,4,1; 2,6,4,1; and 3,5,5,1. The first number indicates the order of the 

derivative with zero (0) representing no derivative, one (1) the first derivative, and 

two (2) the second derivative of the log 1/R. The second number is the gap 

interval (in the data points) over which the derivative was calculated. The third 

and fourth numbers refer to the number of data points used in the first and 

second smoothing, respectively.   

Calibration was performed using modified partial least squares (mPLS) 

regression available within the WINISI software. The optimum number of terms 

was determined by cross-validation of the calibration samples. Due to the high 

noise associated with the 400-1100 nm range, separate calibrations were 

developed using the 400 to 2500 nm and 1100 to 2500 nm wavelength ranges. 

Attempts were made to minimize the number of factors , and treatments were 

selected based on a minimum residual sum of squares. Calibrations were 
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evaluated using cross-validation and independent test set validation (Williams 

and Norris, 2001). Performance of the model was assessed with the following 

statistics: standard error of calibration (SEC), standard error of cross-validation 

(SECV), standard error of performance (SEP), and the coefficient of 

determination (R2) (Williams and Norris, 2001). Also used as an overall measure 

of performance was the ratio of the standard deviation of the reference values 

(SD) to the standard error of performance (SEP) (RPD = SD/SEP; Williams and 

Norris, 2001). After calibrations were developed and refined, the calibration 

equations were examined to identify key wavelengths underlying the calibrations. 

The influence of adding additional sample years on the predictive ability of 

the calibration models was determined by evaluating the effect of individual years 

and their contribution to the overall calibration model. Starting with a calibration 

model bui lt with samples from the first year (2004), samples from the new crop 

years were added in 10% increments, calibration models were rebuilt, and 

validated on the remaining samples from that crop year. Resulting coefficients of 

determination (R2) were plotted for the calibration set and the validation set. The 

analysis was conducted for SKCS parameters, but due to insufficient number of 

years of data, was not conducted for grain volume weight. 
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Results and Discussion 

Summary Statistics 

 Descriptive statistics for all datasets in all years are summarized in Table 

1.2. All datasets were subject to Shapiro-Wilk test for normality prior to division 

into calibration and validation sets and fit a normal distribution (P≥0.05). 

Differences between the calibration and validation sets were minimal in most 

cases, but overall ranges of the calibration set were generally broader than the 

validation set. In some cases, samples in the randomly selected validation set fell 

outside of the range of those in the calibration set. This would force the 

calibration model to predict samples outside of the range from which it was 

developed. Therefore, it was necessary to move those samples from the 

validation set to the calibration set. Means of the 2005 and 2007 sets (calibration 

and validation) were similar (P≤0.05) for KD and KHI. The KW means were 

similar (P≤0.05) for the 2006 and 2007 crop years. The range of data for KD was 

similar for all years with the exception of 2004, which had the largest range and 

highest overall mean. For KHI, the broadest ranges were observed in 2006 and 

2007, with 2006 having the largest overall mean. The broadest range for KW was 

observed in 2004, which also had the largest overall mean. Both KW and KHI 

had wide ranges, whereas KD had a narrow range. Mean grain volume weight 

differed between 2006 and 2007 for both the calibration set and validation set, 

but the mean of the combined samples sets were similar (P≤0.05) between the  
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Table 1.2. Descriptive statistics of samples in calibration and validation datasets.  

  Calibration Set  Validation Set 

Constituents Year n Range Mean ± SD  N Range Mean ± SD 

SKCS KD 2004 471 2.23-3.60 2.92 ± 0.23 a†  1564 2.31-3.44 2.95 ± 0.22 a† 
(mm) 2005 286 2.16-3.20 2.68 ± 0.17 b  1038 2.27-3.20 2.67 ± 0.15 b 

 2006 310 2.11-3.34 2.72 ± 0.21 c   1346 2.11-3.19 2.75 ± 0.20 c  

 2007 320 1.95-3.32 2.64 ± 0.23 b  1966 2.14-3.27 2.66 ± 0.22 b 

 All 915 2.11-3.44 2.76 ± 0.24  5914 2.11-3.44 2.76 ± 0.24 

         

SKCS KW 2004 474 19.7-52.9 36.3 ± 5.5 a  1569 23.1-50.1 37.0 ± 5.3 a 

(mg kernel-1) 2005 288 18.8-41.1 30.0 ± 3.7 b  1061 20.8-40.0 29.6 ± 3.4 b 

 2006 308 19.1-42.2 30.7 ± 3.9 c  1352 19.3-40.4 30.9 ± 3.7 c  

 2007 321 16.5-44.2 30.4 ± 4.6 c  1964 20.0-42.1 30.6 ± 4.5 c  

 All 895 20.3-47.2 32.2 ± 5.2  5946 20.8-42.1 32.2 ± 5.3 

         

SKCS KHI 2004 451 43.0-96.7 69.9 ± 8.9 a  1532 44.1-89.4 68.4 ± 8.8 a 
(index) 2005 280 41.9-90.2 66.1 ± 8.1 b  1034 43.5-87.1 64.7 ± 7.9 b 

 2006 315 43.1-94.7 68.9 ± 8.6 c   1378 43.5-89.7 69.9 ± 8.0 c  

 2007 317 38.4-95.5 66.9 ± 9.5 b  1941 42.1-93.7 64.9 ± 8.6 b 

 All 890 39.3-89.1 67.9 ± 8.9  5885 42.1-87.1 66.9 ± 8.7 

         

Grain Volume 2006 496 679.0-875.1 807.7 ± 40.0 a  807 691.6-867.2 823.5 ± 27.8 a 

Weight (kg m-3) 2007 480 446.6-802.3 721.2 ± 40.9 b  771 556.1-708.1 708.2 ± 45.7 b 

 All 632 446.6-875.1 765.7 ± 59.2  1072 556.1-867.2 761.2 ± 69.2 
† Means within a column followed by the same letter are not significantly different based on LSD test (α=0.05) 
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calibration and validation sets. Variation in parameter means and ranges among 

years are likely due to environmental influences where year-to-year effects can 

be greater than location or genotypic effect. 

NIR Calibration and Validation 

For SKCS parameters, spectral outliers (Mahalanobis distance H≥3.0) 

identified in the principal component analysis (PCA) varied among years ( from 0-

7 samples). Spectrally redundant samples (Mahalanobis distance H≤0.6) were 

also identified and removed (44.1% for 2004, 39.2% for 2005, 33.6% for 2006, 

23.7% for 2007, and 22.6% for the combined analysis). For grain volume weight, 

similar results were observed with a 26.3% reduction in 2006 and a 25.0% 

reduction in 2007 due spectrally redundant samples. A greater reduction of 

samples (50.4%) was observed in the combined analysis for grain volume weight 

perhaps due to decreased year effect compared to the other parameters.  

Overall, all SKCS parameters produced models that would be acceptable 

for screening (Table 1.3). The combined analysis, including data from all years 

and locations, produced R2
val≥0.70 for each trait. The SECV values tended to be 

high, resulting in RPD values ≤2.0, the exception being grain volume weight that 

had a combined analysis RPD value of 2.62. Since the SKCS testing required 

sample destruction, a random bulk sample was used for the NIR analysis. This 

could have contributed to higher variability, thus higher SECV values. 

Additionally, a large number of principal components (11 -16) were necessary to 

account for the spectral differences among samples for each trait. This was not  
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Table 1.3. Results of modified partial least squares (mPLS) model development 
(wavelength 400 to 2500 nm). Models are optimum results obtained through 

spectral pretreatments including derivative mathematics and scatter correction. 

  
Model 

  

  Calibration  Validation   

Parameter Year SEC SECV R2  SEP(C) R2  RPD 

SKCS  2004 0.12 0.13 0.73  0.11 0.72  1.77 
Kernel  2005 0.08 0.10 0.77  0.09 0.61  1.70 

Diameter  2006 0.09 0.12 0.77  0.11 0.70  1.75 
(mm) 2007 0.09 0.11 0.81  0.10 0.78  2.09 

 Combined 0.11 0.12 0.76  0.12 0.73  2.00 
          
SKCS  2004 2.4 2.8 0.81  2.5 0.77  1.96 

Kernel 2005 1.8 2.1 0.75  2.1 0.64  1.76 
Weight 2006 1.8 2.2 0.76  2.2 0.66  1.77 

(mg kernel-1) 2007 2.2 2.4 0.75  2.3 0.73  1.92 
 Combined 2.2 2.6 0.78  2.6 0.74  2.00 
          

SKCS  2004 4.5 4.8 0.73  4.6 0.72  1.85 
Hardness 2005 3.7 4.6 0.75  4.3 0.71  1.76 

(index) 2006 4.3 4.8 0.75  4.6 0.68  1.79 
 2007 3.3 4.4 0.88  4.1 0.78  2.16 
 

 

Combined 4.5 4.8 0.74  4.7 0.70  1.85 

Grain  Combined 17.9 20.4 0.83  26.5 0.81  2.62 

Volume          
Weight 
(kg m-3)  
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the case for grain volume weight where the NIR analysis sample was taken 

directly from the reference sample and the number of principal components was 

14. Details of calibration development and validation are broken down by 

individual parameter to allow for comparisons of environmental influences and to 

analyze results for each parameter independently. 

Kernel Diameter 

 Statistical terms related to the calibration development and analysis on 

calibration and validation datasets are summarized in Table 1.3. The KD was 

best modeled by the first-derivative transformation (1,4,4,1) with no multiplicative 

scatter correction (none) in the combined analysis with the exception of 2006 

where a second-derivative transformation (2,6,4,1) and a standard-normal variate 

+ detrend scatter correction resulted in a model with the best theoretical 

accuracy. The optimum number of terms (as determined by cross-validation) 

varied among crop years from 9 to 14. The highest R2 of calibration (R2
cal) was 

observed in 2007 (0.81) which also showed the highest R2 of validation 

(R2
val=0.78). 

 Regressions of the NIR predicted values vs. reference values for average 

KD are shown in Figure 1.1. All of the intercepts were greater than zero resulting 

from NIR predicted values being less than the corresponding reference value. 

Additionally, the slopes (β0<1) suggest that the degree of underestimation would 

increase with increased reference values. The R2
val varied among years with the  
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Figure 1.1. Average single kernel diameter reference values (y-axis) vs. near-
infrared kernel diameter modeled values (x-axis) for individual years and all years 

combined, evaluated on validation samples (n = number of validation samples 
used in analysis). Regression line and corresponding equation are best fit linear 

models.  
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largest (0.78) in 2007 and the smallest in 2005 (0.61). The combined analysis 

model had R2
val=0.73, meaning that 73% of the variability among the grain 

samples was explained by the model. In the combined analysis, the relative 

performance determinant (RPD, the ratio of the standard deviation (SD) to the 

SECV, Williams and Norris, 2001) was 2.00. While this is lower than the 

recommended value for screening purposes proposed by Williams and Norris 

(2001), the regression reveals an obvious association between predicted and 

reference values. This would indicate utility in a breeding program where the 

objective is generally to eliminate samples with the lowest values. 

Kernel Weight 

As observed for KD, KW was best modeled by the first-derivative 

transformation (1,4,4,1) with no multiplicative scatter correction (none) in all 

analyses resulted in a model with the best theoretical accuracy. The number of 

terms varied by year from 8 to 15. Models for SKCS KW produced the highest 

R2
cal (0.81) and R2

val (0.77) in 2004 (Table 1.3). The 2005 model had the lowest 

SEC (1.8), SECV (2.1), and SEP (2.1) but also had the lowest R2
cal (0.75) and 

R2
val (0.64). The combined analysis model resulted in R2

val=0.74, similar to the 

combined models for SKCS KD (R2
val=0.73) and KHI (R2

val=0.72). The RPD of 

the combined analysis model (2.00) was lower than recommended for screening 

(Williams, 2001), but higher than the RPD values for KHI and equal to KD RPD. 

Results of the regression of NIR predicted values vs. reference values for SKCS 

KW are shown in Figure 1.2. Slopes of the best-fit linear model for 2006 

(β0=0.71), 2007 (β0=0.71), and combined analysis models (β0=0.75) were 
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Figure 1.2. Average single kernel weight reference values (y-axis) vs. near-
infrared modeled values (x-axis) for individual years and all years combined, 

evaluated on validation samples (n = number of validation samples used in 
analysis). Regression line and corresponding equation are best fi t linear models. 
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relatively consistent, while 2004 had the greatest slope (β0=0.81) and 2005 the 

smallest (β0=0.66). The small slope (β0=0.66) and the large intercept (10.01) in 

the 2005 model may be the result of the limited range of values for KW in the 

calibration dataset. 

Kernel Hardness Index 

 Results of statistical analysis and calibration development and validation 

are summarized in Table 1.3. The KHI was also best modeled by the first-

derivative transformation (1,4,4,1) with no scatter correction (none), except in 

2006 where again a second-derivative transformation (2,6,4,1) with standard-

normal variate + detrend provided the best model. Optimum number of terms, as 

determined by cross-validation, varied by dataset from 5 to 14. The calibration 

model created with the 2007 data resulted in the highest R2
cal (0.88) and R2

val 

(0.78) and the lowest SEC (3.3), SECV (4.4), and SEP (4.1). The combined 

analysis model had the lowest R2
cal and R2

val (0.74 and 0.70) and the highest 

SEC (4.5), SECV (4.8), and SEP (4.7) and had a RPD value of 1.85. As with KD 

and KW, although the RPD ≤ 2.0 the results of the regression analysis (Figure 

1.3) of NIR predicted values vs. reference values indicate predictive ability that 

could be useful in a breeding program. The PCA analysis and corresponding 

Mahalanobis (H) distance calculations for elimination of spectral outliers and 

redundant spectra were similar to those for SKCS KD and KW analysis. Slopes 

of the best-fit linear models revealed similarities in the 2004, 2005, and combined 

analysis, while the 2006 model had the smallest slope (0.65) and 2007 the 

largest (0.86).  
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Figure 1.3. Average single kernel hardness index reference values (y-axis) vs. 
near-infrared modeled values (x-axis) for individual years and all years 

combined, evaluated on validation samples (n = number of validation samples 
used in analysis). Regression line and corresponding equation are best fit linear 

models. 
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Slopes for all models were again less than one (β0<1) and would indicate that the 

model would underestimate the parameter. 

Grain Volume Weight 

 Grain volume weight was best modeled by the first-derivative 

transformation (1,4,4,1) with standard normal variate and no detrend. Results of 

the regression on NIR predicted values vs. reference values for grain volume 

weight are shown in Figure 1.4. Based on the combined analyses, grain volume 

weight had the largest R2
cal (0.83) and R2

val (0.81) when compared to KD, KW, 

and KHI, despite the reduced number of samples and years (Table 1.3). The 

optimum number of terms, determined by cross-validation, was 14 and the RPD 

of the combined analysis model was 2.62, the largest of calibration models for 

any of the parameters and higher than the recommended level for screening 

(Williams, 2001). The slope of the best fit linear model for grain volume weight 

(β0=0.99) was the closest to β0=1 of any of the parameter models. As it is still 

less than one, this would indicate that model would only slightly underestimate 

the parameter. The graph reveals a tapering of data points as values increase, 

suggesting more accurate prediction is possible as values increase. The results 

of the prediction model for grain volume weight suggest that the prediction model 

may have utility in a breeding program for screening. 

Loading plots from the mPLS regression equations for KD, KW, KHI, and 

grain volume weight for the combined model do not reveal an obvious chemical 

basis for any of the parameters (Appendices 1-4). Loadings in the visible  
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Figure 1.4. Grain volume weight values (y-axis) vs. near-infrared modeled values 
(x-axis) for and all years combined, evaluated on validation samples (n = number 

of validation samples used in analysis). Regression line and corresponding 
equation are best fit linear models. 

 

Combined 
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wavelength (400-1100) range have much less influence when compared to 

wavelengths in the near-infrared range (1100-2500 nm). However, attempts 

made to develop models with wavelength ranges excluding the visible range 

resulted in inferior models with lower R2
val and higher SEC, SECV and SEP(C). 

The influence of visible wavelengths, albeit small, allows for a more theoretically 

accurate prediction model. The lack of large, isolated, wavelength ranges in the 

loadings would indicate that the calibration model is acting as an ‘optical sieve’ 

and is related more to light scattering effects and particle size than chemical 

constituents (B. Seabourn, personal communication). This would be further 

enforced by the results of calibration development, which in all cases except 

2006, minimal derivative transformation and no scatter correction was necessary 

to produce the calibration models. 

New Crop Year Analysis 

  To assess performance of calibration models on new crop year samples 

and the number of years required to develop robust calibrations, samples were 

added on a percentage-wise basis for each year and the model’s predictive 

ability on the remaining samples evaluated. For KD, the influence of the addition 

of new crop year samples on the calibration and the corresponding ability to 

predict the remainder of that crop year’s samples are illustrated in Figure 1.5. 

Predictive ability of the calibration model including 2005 and 10% of 2006 

samples is very low (R2
val<0.20) for KD, but increases rapidly as an increasing 

percentage of 2006 samples are added. Regardless, even when 100% of 2006  
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Figure 1.5. Effect of adding percentages (%) of new crop year samples on prediction of kernel diameter. Validation was 
done on remaining samples of the new crop year. 
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Figure 1.6. Effect of adding percentages (%) of new crop year samples on prediction of kernel weight. Validation was 
done on remaining samples of the new crop year. 
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Figure 1.7. Effect of adding percentages (%) of new crop year samples on prediction of kernel hardness index. Validation 
was done on remaining samples of the new crop year. 
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samples are added the R2
val is still less than 0.55. As more crop years are added 

to the model, predictive ability increases, but still does not reach the level of 

predictive ability indicated by cross-validation where all models had R2
val<0.70. 

This trend is consistent with KW (Figure 1.6).  

 Several published studies use a small number of samples encompassing 

only one or a few years of data and report the predictive ability of a NIR 

calibration model based on cross-validation results or on a small validation set. 

Calibrations for KD were consistent with those found by Dowell et al. (2006) 

where R2 for calibration models on whole wheat kernels were 0.71, compared to 

0.73 found in this study. Dowell et al. (2006) reported a much lower R2 for KHI of 

0.46, whereas in this study a R2 value of 0.70 was observed. Dowell et al. (2006) 

reported an R2
cal of 0.74 for NIR predicted grain volume weight with a whole grain 

winter wheat model, while the results in this study were slightly higher with an 

R2
cal of 0.83. The addition of many samples over multiple years clearly has an 

influence on the predictive ability of these models. Even with samples grown 

under multiple environmental conditions over four years, the predictive ability, in 

terms of R2
val, does not reach that estimated by the by R2

cal for KD and KW. The 

model for KHI was an exception, and reveals that after adding all spectrally 

unique samples over four years, the R2
val approaches that of R2

cal (Figure 1.7). 

The results may differ for other parameters, but reveal that more sample and 

crop year combinations are needed for prediction of new crop year samples. 

Even within the same crop year, the calibration models for KD and KW are not 

yet robust enough to approach the results indicated by R2
cal. 
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 The trends of increasing predictive ability of calibration models as new 

crop year samples are added are likely to continue as more information is added 

to the model, eventually resulting in a calibration model that only requires regular 

maintenance and the addition of minimal amounts of new crop year samples. 

Conclusions 

Development of NIR calibration models was met with limited success. 

Reference data from the SKCS parameters (average kernel diameter, weight, 

and hardness index) resulted in moderately predictive modified partial least 

squares models, with models for grain volume weight slightly better. Clustering 

effects detected in the principal component analysis, due to environmental and 

genotypic influences, may be one of the reasons for the high number of principal 

components used and why models failed to provide greater predictive ability. The 

number of genotypes and environments in our study, while greater than many 

published studies, has not adequately provided the range of reference data 

necessary for accurate prediction of new crop year samples. The potential 

predictive ability observed in R2
cal values indicate potential for improvement of 

models. This is consistent with the thought that it may take 7-10 years of data, 

under multiple environments, to develop a robust prediction model (P. Williams, 

personal communication). 

 Published research on the development of calibration models for wheat 

end-use quality parameters has met with mixed results. Parameters such as 

protein concentration [R2=0.99 (Delwiche et al., 1998b)], starch damage [R2=0.92 
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(Morgan and Williams, 1995)], and particle size [Approved Method 39-70A, NIR 

method for hardness determination in wheat (AACC, 2000)] have been highly 

successful. Other parameters such as Alveograph measures [R2≤0.25 (Hruskova 

et al., 2004)] and baking absorption [R2=0.65 (Delwiche and Weaver, 1994)] 

have failed to result in accurate calibration models. Our resulting R2 were 

consistent with Dowell et al. (2006) for SKCS kernel diameter (0.73 vs. 0.71) but 

R2 were higher for SKCS hardness index (0.70 vs. 0.46). The objective of Dowell 

et al. (2006) was not to develop calibration models, but to examine the 

possibilities of NIR prediction for the grain industry and only limited spectral 

pretreatments were used. Additionally, this research went further to include 

breeding material grown under multiple environments.  

The predictive models indicate that, while not sufficient for quality control, 

they may be useful in a breeding program for the elimination of early-generation 

samples with low parameter values. Improvements and modifications could be 

made if the analysis were repeated including: 1) only scan the 300 kernels that 

are to pass through the SKCS, and 2) increase the number of repacks and the 

overall number of scans. 
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Near-infrared Reflectance (NIR) Calibration Development for 

Farinograph Parameter Prediction of Wheat Whole Grain and Flour  

Abstract 

The Farinograph is used for evaluation of wheat (Triticum aestivum L.) 

flour and provides data predictive of dough rheology and baking quality. 

Farinograph testing, however, is very time and labor intensive and it requires 

milling of the sample. While success in the development of flour NIR models for 

Farinograph parameters has been reported, previous methods have included 

small sample numbers and few environments. This research, using 500 sample 

collected from breeding nurseries under multiple Eastern Colorado environments 

from 2004-2007, was conducted to develop whole grain and flour near-infrared 

reflectance (NIR) spectroscopy calibration models for prediction of Farinograph 

parameters (absorption, development time, stability, and mixing tolerance index) 

and to validate the performance of the models on an independent validation set. 

Calibration models were developed using NIR spectra (every 2 nm between 400 

and 2500) and laboratory reference values. All parameters were significantly 

correlated with protein concentration for flour (r=-0.31 to 0.58) and whole grain 

(r=-0.28 to 0.63) with the largest correlations observed with water absorption in 

both cases. Only Farinograph absorption was effectively predicted using NIR 

calibration models for whole grain and flour with R2≥0.70. While whole grain NIR 

models for Farinograph absorption (R2
val=0.88) were reasonably high, prediction 

models for Farinograph development time (R2
val=0.46), stability (R2

val=0.37), and 

mixing tolerance index (R2
val=0.37) were not promising for selection in a breeding 
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program. Prediction models developed with flour followed the same trends with 

relatively high predictability for Farinograph absorption (R2
val=0.89) but low 

predictability for development time (R2
val=0.45), stability (R2

val=0.41), and mixing 

tolerance index (R2
val=0.38). The results suggest that a whole grain NIR model 

for Farinograph absorption may be useful as a non-destructive selection tool in 

wheat breeding programs. 
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Introduction 

With increasing market demands, breeding for end-use quality in winter 

wheat (Triticum aestivum L.) has taken higher priority among the objectives of 

many breeding programs. Full-scale bake testing of flour obtained from breeding 

samples provides the most accurate assessment of bread baking quality, but 

requires milling of the samples, specialized equipment and training, and 

considerable time. This presents a challenge in winter wheat breeding programs 

due to the short duration between harvest and planting. Additionally, when 

dealing with early-generation material, the large numbers of samples and limited 

seed supply make comprehensive evaluations of quality difficult or prohibitive.  

With limited sample supply, one alternative is to use various quantitative 

and qualitative tests that are predictive of end-use quality (Dowell et al., 2006). 

Numerous methods have been developed for routine quality assessment (AACC, 

2000). A significant amount of research has been conducted to establish the 

relationships among the values from these tests and the functionality of the flour 

produced from grain, including evaluation of kernel characteristics, grain volume 

weight (test weight), dough-handling properties, and various measures of dough 

strength. The relationship between protein concentration, and several quality 

measures including water absorption, mixing strength, and loaf volume, have 

been well established (Graybosch et al., 1993; Preston et al., 1995; Evers and 

Millar, 2002; Fowler and Kovacs, 2004). Other research has concluded that 

analysis based on protein concentration alone results in false assumptions about 

end-use quality. Weegels et al. (1996) concluded that the gluten content in flour 
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was more important than the protein concentration in determining loaf volume. 

Environmental effects have also been found to influence protein quality in 

addition to protein concentration, which in turn has a substantial influence on 

end-use quality. As protein concentration alone is commonly used for selection of 

early-generation breeding material, the need for a rapid, non-destructive 

measure of protein quality is apparent. Significant differences in dough strength 

can be detected as early as the F4 filial generation, but at this stage there is 

limited grain and stocks are valuable for breeding purposes (Pawlinksy and 

Williams, 1998). 

The Farinograph (Brabender GmbH & Co., Duisburg, Germany) is used 

for evaluation of flour in the baking industry as a predictor of bake water 

absorption, dough strength, and stability. Farinograph analysis is an approved 

method of AACC (2000) and Farinograph water absorption is highly correlated 

with loaf volume (Dowell et al., 2008). Analysis of flour samples with the 

Farinograph requires milling of the grain and requires a significant amount of time 

as the test may need to be repeated multiple times to optimize water absorption. 

The analysis also requires a relatively large sample, although recently the 

development of 50 g and 10 g Farinograph bowls has reduced the amount 

required. 

Near-infrared reflectance (NIR) spectroscopy is a rapid and non-

destructive technique that could facilitate early-generation selection for end-use 

quality. Prediction models can be developed using spectral fingerprints and 

phenotypic reference data. In this way, a single NIR scan of a wheat grain or 
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flour sample can provide simultaneous estimates for several different quality 

parameters. Spectra collection with an NIR instrument, followed by parameter 

estimation with a calibration model for Farinograph parameters, would offer the 

advantage of rapid, non-destructive sampling (approximately 50 seconds) while 

providing other parameter estimates such as moisture, ash concentration, and 

protein concentration. An additional benefit would be realized with the 

development of whole grain calibrations as destruction of the seed would not be 

necessary for parameter estimation. 

Several studies have reported inconsistent results in the development of 

NIR models for Farinograph parameters. Williams et al. (1988) described the use 

of NIR models to predict Farinograph parameters in a dataset of 92 hard red 

spring wheat samples grown in multiple environments with protein range of 

samples limited to 3%. Williams et al. (1988) reported R2 values of 0.73 for 

absorption and 0.86 for stability, and identified key wavelengths used in the 

calibration model related to protein, oil, and water. Pawlinsky and Williams (1998) 

later reported R2 values of 0.91 for absorption, 0.71 for development time, 0.81 

for stability, and 0.92 for mixing tolerance index from a NIR model developed with 

a set of 50 flour samples from two production years. Pawlinsky and Williams 

(1998) concluded that the efficiency of predictions is affected by growing season, 

and a significant amount of overall improvement could be achieved by combining 

samples from more than one season. Dowell et al. (2006) evaluated the potential 

of NIR to measure multiple quality parameters, including those from the 

Farinograph, from whole grain wheat and flour on 100 hard red winter wheats 
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grown over two years under multiple environments. In this study, the authors 

reported R2 values of 0.76 for Farinograph water absorption, while all other 

Farinograph parameters had observed R2 values < 0.27. 

The objective of this study was to develop NIR calibration models for 

Farinograph parameters (water absorption, development time, stability, and 

mixing tolerance index) and validate the models on an independent validation 

dataset. The present study has expanded on the previous studies by 

incorporating a larger number of unique samples (n=500). Furthermore, the 

samples were collected from breeding nurseries grown under a diverse set of 

environments over multiple years, some of which are likely to have had an 

influence on protein quality in addition to protein concentration.  
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Materials and Methods 

Sample Origin, Reference and NIR Analysis 

A total of 500 whole grain winter wheat samples were obtained from field 

trials throughout eastern Colorado. To maximize genotypic and environmental 

sample variation, samples were obtained from multiple test environments (years 

and locations) from breeding nurseries grown between 2004 and 2007. Test 

environments included rain-fed (dryland) and irrigated nurseries. Fertilizer 

treatments varied by environment and were applied when necessary in a manner 

consistent with current farming practices in eastern Colorado. Whole grain 

samples included released cultivars and mid- to late-generation experimental 

lines. Samples were milled with a modified Brabender Quadrumat Sr. (Brabender 

GmbH & Co., Duisburg, Germany) mill, and the break and reduction fractions 

were combined, well mixed, and used for further analysis. 

A scanning monochromator NIRSystem 6500 (Foss NIRSystems, Inc., 

Eden Prairie, MN) was used to measure NIR diffuse reflectance spectra from 400 

to 2500 nm at 2 nm intervals for both whole grain and flour. Analyses were 

performed on 50 ml volumetric measure samples with a ¼ cup sample cell using 

a standard transport module. The acquisition of NIR spectra of whole grain and 

flour was facilitated by the use of WINISI III (Infrasoft International LLC., State 

College, PA) and collected as an average of 25 scans for each sample (one cell-

pack), recorded as log(1/R). 
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Flour samples were evaluated using a Farinograph-E (Brabender GmbH & 

Co., Duisburg, Germany) in accordance with Approved method 54-21 (AACC, 

2000) with a 50 g bowl and sample weight adjusted to 140 g kg-1 (14%) moisture 

basis. Samples were rerun when necessary to optimize absorption to peak 

development at 500 ± 20 Brabender units (BU). Parameters measured by the 

Farinograph included absorption, development time, stability, and mixing 

tolerance index. Farinograph water absorption is a measure of the water-carrying 

capacity of the flour; development time is the time required for the flour to reach 

maximum strength; and stability is a measure of tolerance to over-mixing. Mixing 

tolerance index is the difference, in Brabender or Farinograph units, between the 

top of the curve at the peak and the top of the curve 5 min after the peak is 

reached. 

Statistical Analysis and Calibration Development 

Statistical analyses were conducted using SAS/STAT software, version 

9.1.3 (SAS Institute Inc., 2004). The UNIVARIATE procedure was used for the 

calculation of summary statistics and the CORR procedure was used to calculate 

Pearson correlation coefficients between whole grain and flour protein 

concentration and the Farinograph parameters. 

Commercial spectral analysis software (WINISI III, Infrasoft International 

LLC., State College, PA) was used for spectral pretreatments, calibration 

development, and evaluation of calibration performance. Spectra were first 

evaluated visually and outliers were removed. A preliminary analysis of the NIR 
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spectral data indicated that 60% of the samples were spectrally unique, therefore 

samples were then randomly separated into two groups: a calibration set (60% of 

samples) used for calibration development and a validation set (40% of samples) 

that was not included in calibration development but was used to evaluate the 

calibration model. 

Principal component analysis (PCA) was used for the calculation of 

Mahalanobis distance (H) for the removal of additional outliers based on spectral 

data and the removal of spectrally redundant samples. Various mathematical 

treatments were applied to the absorbance spectra to maximize the accuracy of 

the calibration model. Treatments included multiplicative scatter correction to 

minimize the nonlinear effect of light scatter due to particle size differences 

(none, standard normal variate + detrend, standard normal variate only, and 

detrend only) and data transformation via derivative mathematics that reduces 

the intercorrelation between the data points of a spectrum (Isaksson and Naes, 

1988). The treatments were applied during the calibration development and 

included 0,4,4,1; 1,4,4,1; 2,4,4,1; 2,6,4,1; and 3,5,5,1. The first number indicates 

the order of the derivative with zero (0) representing no derivative, one (1) the 

first derivative, and two (2) the second derivative of the log 1/R. The second 

number is the gap interval (in data points) over which the derivative is calculated. 

The third and fourth numbers refer to the number of data points used in the first 

and second smoothing, respectively.   

Calibration was performed using modified partial least square (mPLS) regression 

available within the WINISI software. The optimum number of terms was 
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determined by cross-validation of the calibration samples. Calibrations were 

developed using the 400 to 2500 nm wavelength range. Attempts were made to 

minimize the number of factors, and treatments were selected based on a 

minimum residual sum of squares. Calibrations were evaluated using cross-

validation and independent validation (Williams and Norris, 2001). Performance 

of the model was assessed with the following statistics: standard error of 

calibration (SEC), standard error of cross-validation (SECV), standard error of 

performance (SEP), and the coefficient of determination (R2) (Williams and 

Norris, 2001). To measure overall performance of the calibrations, the residual 

prediction deviation (RPD) was also used, defined by Williams and Norris (2001) 

as the ratio of the standard deviation of the reference values (SD) to the SEP 

(RPD = SD/SEP). 
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Results and Discussion 

Summary Statistics 

Descriptive statistics for the calibration and validation datasets for 

Farinograph absorption, development time, stability, and mixing tolerance index 

are presented in Table 2.1. The range, mean and standard deviation for all 

parameters are relatively consistent between the calibration and validation sets. 

The difference of range of Farinograph development time between the calibration 

and validation datasets is the only difference of note. Regardless of this 

difference, the mean and standard deviation of both sets are consistent, 

indicating that the data used in calibration development are consistent with the 

data used for validation of the NIR models. In some cases, the values of entries 

in the validation set fell outside the range of entries in the calibration set. In these 

cases, the samples were removed from the validation set and added to the 

calibration set. The results of the summary statistics indicate that a 

representative data set was used in both calibration and validation. 

 Pearson correlations between both whole grain and flour protein 

concentration and Farinograph parameters are summarized in Table 2.2. All 

parameters were significantly correlated (P≤0.001) with protein concentration of 

both whole grain and flour, and all but Farinograph mixing tolerance index 

showed positive correlation. Results were consistent among flour and whole 

grain with regard to direction and strength of the correlation. Correlations were 

intermediate for Farinograph absorption and development time (r=0.50 to 0.63),  
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Table 2.1. Summary statistics for Farinograph water absorption, development 
time, stability, and mixing tolerance index for samples used in NIR calibration 

development and independent validation. 

 Calibration  Validation 

Parameter n Range Mea
n 

SD  n Range Mean SD 

Water Absorption  
(g kg-1) 

268 506-712 629 32  198 561-710 630 33 

Development time 
(min) 

281 0.3-20.0 9.0 5.8  198 0.3-20.0 9.2 5.9 

Stability  
(min) 

281 1.5-19.9 11.6 5.3  200 1.5-19.3 11.5 5.3 

Mixing tolerance index 
(BU) 

203 4.0-142.0 29.7 21.7  198 4.0-122.0 30.1 21.8 
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Table 2.2. Pearson correlation coefficients between whole grain and flour protein 
concentration and Farinograph parameters (absorption, development time, 

stability, and mixing tolerance index).  

 Whole grain protein 

concentration 

Flour protein 

concentration 

Farinograph water absorption 
 

0.63† 0.58 

Farinograph development time 

 

0.50 0.52 

Farinograph stability 

 

0.21 0.22 

Farinograph mixing tolerance index 
 

-0.28 -0.32 

† All coefficients were significant at P≤0.001. 
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and low for stability (r=0.21 to 0.22). A negative correlation was observed 

between protein concentration and Farinograph mixing tolerance index in both 

flour and whole grain. Maghirang et al. (2006) reported that for hard red wheat, 

the only observed Farinograph parameter that had high correlation with protein 

concentration (r ≥ 0.70) was absorption. Pawlinsky and Williams (1998) reported 

correlation for Farinograph parameters and flour protein concentration of r=0.48 

to 0.68 for absorption, r=0.11 to 0.44 for development time, r=0.08 to 0.51 for 

stability, and r=0.34 for mixing tolerance index. Results from Pawlinsky and 

Williams (1998) varied greatly by year for all parameters, except Farinograph 

mixing tolerance index. These results indicate that protein concentration is 

correlated with all Farinograph parameters, but the parameters cannot be 

explained solely by protein concentration alone. 

Calibration Models 

 Results of the whole grain NIR calibration and validation are shown in 

Table 2.3. All whole grain NIR calibrations were best modeled with a second-

derivative transformation and standard-normal variate and detrend scatter 

correction. The number of factors varied by parameter with 11 factors for 

Farinograph absorption and stability, nine factors for development time, and 10 

factors for mixing tolerance index. Only one of the Farinograph parameters 

(absorption) was predicted with an R2
val ≥ 0.70, a value suggested by Williams 

and Norris (2001) as suitable for rough screening in a breeding program. Dowell 

et al. (2006) reported R2
val values of whole grain NIR prediction of 0.63 for  
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Table 2.3. Summary statistics for whole grain calibration development, cross-
validation, and independent validation for Farinograph absorption, development 

time, stability, and mixing tolerance index.  

 Calibration  Validation   

Parameter† n SEC SEC(V) R2  N SEP R2  RPD 

Absorption  
(g kg-1) 

268 11 19 0.87  198 12 0.88  1.74 

Development time 

(min) 

281 4.2 4.4 0.47  198 4.6 0.46  1.32 

Stability  

(min) 

281 3.8 4.3 0.45  200 4.2 0.37  1.23 

Mixing tolerance index 
(BU) 

203 10.9 12.3 0.50  198 18.1 0.37  1.76 

† SEC is standard error of calibration; SEC(V) is standard error of cross-

validation, and SEP the standard error of prediction. 
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Farinograph absorption, 0.29 for development time, 0.06 for stability, and 0.14 for 

mixing tolerance index. These results were more promising in all cases with R2
val 

values of 0.88 for Farinograph absorption, 0.46 for development time, 0.37 for 

stability, and 0.37 for mixing tolerance index. It is important to note that the 

objective of the study by Dowell et al. (2006) was to determine the feasibility of 

NIR modeling for multiple parameters and only a first-derivative spectral 

pretreatment was used, likely explaining the difference in results from this study. 

 The regression of Farinograph water absorption on whole grain NIR 

predicted absorption is presented in Figure 2.1. The y-intercept of the best fit 

linear regression model was 82.4, suggesting that the NIR prediction whole-

wheat model would underestimate the reference absorption values. The slope of 

the regression line was less than one, indicating that the underestimation would 

decrease with increased Farinograph absorption reference values. Overall, there 

were no obvious outliers in the validation set. The validation set results were 

indicative of a typical breeding scenario where outliers are not known or removed 

from the analysis. 

 The flour NIR calibration models for Farinograph water absorption and 

stability were best modeled with a second-derivative transformation and no 

scatter correction, and best modeled for development time and mixing tolerance 

index with a first-derivative transformation with detrend. Farinograph absorption 

was again the only model with an R2
val ≥ 0.70 (Table 2.4). Williams et al. (1988) 

reported results of NIR prediction using a small sample size hard red spring 

wheat flour in terms of coefficients of correlation (r) between the NIR and 
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Figure 2.1. Farinograph water absorption (ABS) reference values (y-axis) vs. 
whole grain near-infrared modeled values (x-axis), evaluated on validation 

samples (n = 198). Regression line and corresponding equation are best fit linear 
models. 
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Table 2.4. Summary statistics for flour calibration development, cross-validation, 
and independent validation for Farinograph water absorption, development time, 

stability, and mixing tolerance index.  

 Calibration  Validation 

Parameter† n SEC SEC(V) R2  N SEP R2 

Absorption  

(g kg-1) 

268 12 15 0.88  198 14 0.89 

Development time 
(min) 

281 4.1 4.5 0.51  198 4.5 0.45 

Stability  
(min) 

281 3.8 4.2 0.48  200 4.2 0.41 

Mixing tolerance index 
(min) 

203 13.5 14.4 0.53  198 14.4 0.38 

† SEC is standard error of calibration, SEC(V) is standard error of cross-
validation, and SEP(C) the standard error of prediction. 
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reference analysis, and observed values of 0.73 for Farinograph absorption and 

0.86 for stability. Williams et al. (1988) reported more promising results for 

Farinograph stability than those reported by Dowell et al. (2006), where flour NIR 

models for hard red winter wheat had R2
val values of 0.63 for Farinograph 

absorption, 0.29 for development time, 0.06 for stability, and 0.06 for mixing 

tolerance index. Pawlinsky and Williams (1998) observed NIR prediction results 

of 0.91 for Farinograph absorption, 0.71 for development time, 0.80 for stability, 

and 0.92 for mixing tolerance index. The results of Dowell et al. (2006) are more 

consistent with this study where NIR models for wheat flour resulted in R2
val 

values of 0.89 for Farinograph absorption, 0.45 for development time, 0.41 for 

stability, and 0.38 for mixing tolerance index. Pawlinsky and Williams (1998) 

concluded that the efficiency of NIR predictions is affected by the growing season 

and speculated that an overall improvement in prediction efficiency could be 

achieved by combining samples from more than season in calibration 

development. This conclusion is not supported by the results of this study where 

multiple growing seasons and environments were included, and the NIR 

prediction efficiencies were not greatly improved. This may be due to varied 

environments used in this study. 

The regression of Farinograph water absorption on flour NIR predicted 

absorption is presented in Figure 2.2. The results are similar to those for the 

whole grain model as the y-intercept of the best fit linear regression model is 

greater than zero (55.5), suggesting that the whole grain NIR prediction model 

would underestimate the reference absorption values. The underestimation 
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Figure 2.2. Farinograph water absorption (ABS) reference values (y-axis) vs. 
flour near-infrared modeled values (x-axis), evaluated on validation samples (n = 

198). Regression line and corresponding equation are best fit linear models. 
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would be less than observed in the whole grain model. Again, the slope of the  

regression line is less than one, indicating that the underestimation would 

decrease with increased Farinograph absorption reference values. As reflected in 

the R2 values, the flour NIR prediction model also reveals less deviation from the 

regression than observed in the whole grain model. 
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Conclusions 

Moderate correlation coefficients (r) for both flour and whole grain were 

observed with protein concentration and Farinograph absorption, but low-

intermediate correlations between protein concentration with other Farinograph 

parameters were observed. These results suggest that protein concentration is 

likely contributing to the calibration models, especially Farinograph absorption, 

but the parameters cannot be explained by protein concentration alone. Only 

Farinograph absorption was effectively predicted using NIR calibration models for 

whole grain and flour with R2 ≥ 0.70. Williams and Norris (2001) suggested 

R2=0.70 to 0.90 is suitable for rough screening, R2=0.90 to 0.97 is suitable for 

screening or quality control, R2=0.97 to 0.99 is suitable for process control, and 

larger values are suitable for most applications. The results of NIR prediction of 

Farinograph parameters in this study suggest that whole grain and flour models 

for Farinograph absorption may have utility for rough screening. Results of R2 

values for the remaining parameters were not as large as reported in some 

previous literature yet larger than found in other studies, but are unlikely to have 

utility in breeding for end-use quality. 
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UTILITY OF NIR CALIBRATIONS IN WHEAT BREEDING 

Utility of Near-infrared Spectroscopy Based Selection for Wheat 

Single Kernel Characteristics and Grain Volume Weight  

Abstract 

End-use quality improvement is an important objective in most wheat 

(Triticum aestivum L.) breeding programs. Grain volume weight (test weight) and 

single kernel characterization system (SKCS) parameters are commonly used for 

selection of early-generation breeding material. While effective methods, both are 

performed independently and the SKCS requires destruction of seed which 

prevents the sample from being replanted. An alternative would be the 

development and implementation of NIR prediction models where estimates from 

multiple parameters are returned in a single, rapid, and non-destructive scan. 

This study was conducted to determine the selection efficiency and accuracy of 

selection based on realized heritability (h2
r) and classification errors when using 

NIR spectroscopy as a selection tool for grain volume weight and SKCS 

parameters (kernel diameter, weight, and hardness index). One hundred F3:4 

lines from each of three single-cross populations were randomly selected in 

2006, and planted in replicated field trials in 2007 in four eastern Colorado 

environments. Using NIR calibration models for SKCS parameters grain volume 

weight, realized heritability was estimated as a response to selection using NIR 

predicted values and laboratory reference values. Heritability estimates from the 
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reference method varied by environment and among populations, but in general 

were intermediate-high (0.40 to 0.75) for grain volume weight, kernel weight, and 

hardness index, but were low-intermediate (0.16 to 0.45) for kernel diameter. The 

heritability estimates were generally higher when using the reference values, but 

suggested that genetic gain was possible when using NIR models for selection. 

Classification errors were observed when using the NIR models, but in general 

were not extreme misclassifications. The results suggest that while not as 

accurate as the reference selection method, the speed and efficiency of NIR-

based selection may be effective for early-generation selection. 
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Introduction 

There are standard and recommended measurement methods to determine 

end-use quality in winter wheat (Triticum aestivum L.). However, the methods are 

generally costly and time consuming, and many cannot be used to rapidly 

measure quality characteristics and functionality (Dowell et al., 2006). In addition 

to the more time-consuming flour and bread-baking quality characteristics, 

various other milling-related parameters are also of interest such as grain volume 

weight and kernel diameter, weight and hardness from the single kernel 

characterization system (SKCS; SKCS 4100, Perten Instruments, Springfield, IL). 

Kernel characteristics derived from the SKCS and grain volume weight have 

been accepted as viable means for evaluation of early-generation samples and 

are indicative of milling extraction.  

Ohm et al. (1998) observed strong correlation between milling characteristics 

and both SKCS and grain volume weight with results similar to those reported by 

other researchers (Finney et al., 1987; Wiersma et al., 2001; Barnard et al., 

2002; and Veha, 2007). Lyford et al. (2005) developed a model using grain 

volume weight and SKCS parameters that accounted for 81% of the variability in 

mill extraction. With this model, estimates of flour extraction of a sample could be 

obtained without having to mill the sample. As a stand alone test, both SKCS and 

grain volume weight are relatively rapid techniques, but the large number of 

samples in early-generation screening, combined with other analyses lead to a 

substantial time commitment for data collection. In addition, SKCS requires 
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destruction of seed, which may be limited for replanting for further field 

evaluation. 

Near-infrared reflectance (NIR) spectroscopy is a rapid and non-destructive 

technique that could facilitate early-generation screening in breeding programs 

(Williams and Norris, 2001). Recent advances that facilitate calibration 

development and permit whole grain analysis make NIR technology a promising 

tool for prediction of wheat end-use functionality. The development of whole grain 

NIR calibration models offers an advantage to winter wheat breeders for early-

generation screening, when seed supplies are limited and a quick turnaround is 

required. It also eliminates the need for the time consuming step of milling the 

samples for analysis of the flour and mill extraction. An additional benefit is that a 

single NIR scan could return predicted estimates for multiple parameters.  

Several investigators have documented the development of NIR calibrations 

for wheat end-use quality assessment beyond simple moisture, protein 

concentration, and grain hardness. Models have been developed for prediction of 

parameters including those obtained by the SKCS and grain volume weight 

(Chapter 1 of this dissertation; Dowell et al., 2006); degree of starch damage 

(Morgan and Williams, 1995); the presence of 1AL.1RS and 1BL.1RS wheat-rye 

chromosomal translocations (Delwiche et al., 1999); and dough-handling 

properties (Delwiche et al., 1998b). 

One of the most important aspects of evaluation of the quality characteristics 

of genetic material is the degree to which they are heritable (Pawlinsky and 
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Williams, 1998). High heritability estimates suggest that there is genetic influence 

that can be exploited in a breeding program. In early-generation selection, the 

main focus of a breeding program is to eliminate lines that perform poorly in 

environments representative of the target growing area. Using NIR spectroscopy 

for early-generation selection could allow rapid elimination of lines with 

undesirable quality characteristics. While NIR calibration models may not explain 

all of the variation for the reference values, it may be useful for screening early-

generation breeding materials. One risk in using a less than perfect prediction 

model is incorrect classification and elimination of lines with superior trait values  

or selection of lines with inferior trait values. By incorrectly classifying lines, the 

heritability and selection efficiency would be reduced. The risk of using a less 

than perfect calibration model can be examined by characterizing classification 

errors. 

The reliability of selection in a breeding program using NIR-based estimates 

of grain quality parameters has not been reported in the literature. For a breeding 

program, heritability of the evaluation method for any trait is a primary criterion of 

interest as this has a direct bearing on genetic gain over time. By comparing 

heritability of selection using the reference method with that of the NIR p rediction, 

the usefulness of NIR as an early-generation selection tool may be determined. 

While several reports suggest the promise of NIR in wheat quali ty assessment, 

no whole grain NIR prediction models have been evaluated in the context of a 

breeding program for selection of early-generation samples with desirable 

characteristics. The objectives of this study were therefore to assess the utility of 
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NIR-based selection for grain volume weight and SKCS parameters by: 1) 

comparing the realized heritability of selection using NIR-based and conventional 

methods, and 2) determining classification errors resulting from NIR prediction of 

SKCS parameters and grain volume weight. 
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Materials and Methods 

Population Development and Reference Analysis  

Populations were developed using a modified bulk breeding procedure. All 

early-generation population and line development was done in the greenhouse or 

an irrigated field-testing location at Fort Collins, CO. The crosses between 

parents CO980376/TX97V2838, CO99W329/’Overley’, and TX97V2838/ 

CO99W188 were made in the greenhouse and F1 seed was harvested and 

planted in a field nursery. The parents CO980376, CO99W329, and CO99W188 

are unreleased experimental lines from Colorado State University. The 

TX97V2838 is an experimental line from Texas A&M University and Overley is a 

released variety from Kansas State University. The populations were selected 

based on contrasting performance of the parents for grain volume weight and 

SKCS weight and diameter. Seed from the F1 plants was harvested in bulk and 

planted in an unreplicated F2 bulk nursery. The F2 population was harvested in 

bulk with a small-plot combine and was planted in an unreplicated F3 bulk 

nursery. Populations were advanced by random sampling of approximately 300 

spikes harvested at maturity from the F3 bulks. Selected spikes were threshed 

individually and planted in an irrigated F3:4 headrow nursery in a paired-row 

arrangement 1 m long with 23 cm spacing between rows. One-hundred lines 

were randomly selected from F3:4 headrow populations of each of the three 

single-cross populations in the 2005-2006 crop year.  
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The F3:4 populations were planted in fall 2006 in short paired-rows (1 m 

long, 23 cm spacing between rows) at four locations in eastern Colorado (Akron, 

Dailey, Fort Collins, and Julesburg). Akron, Dailey, and Julesburg were rain-fed 

(dryland), and Fort Collins was sprinkler irrigated. Experimental units were 

replicated twice in a latinized row-column arrangement to allow for analysis of 

spatial variation. A planting rate of 2.47 million seeds ha-1 was used for each 

entry based on kernel weight counts. 

Plots were harvested with a small-plot combine, cleaned, and dockage-

free samples were immediately subjected to grain volume weight, SKCS, and 

NIR analysis. Single kernel characteristics were determined by AACC method 

55-31 (AACC, 2000) using a SKCS 4100 and average kernel weight (SKCS 

weight), average kernel diameter (SKCS diameter), and average kernel hardness 

index (SKCS hardness index) on approximately 300 kernels were recorded. 

Grain volume weight of each sample (AACC method 55-10, 2000) was 

determined using a measuring cup and a Seedburo test weight device (Seedburo 

Equipment Co., Des Plaines, IL). 

Calibration Development and Evaluation 

A scanning monochromator NIRSystem 6500 (Foss NIRSystems, Inc., MN) 

was used to measure NIR diffuse reflectance spectra from 400 to 2500 nm at 2 

nm intervals. Analyses were performed on approximately 20 g whole grain 

samples with a ¼ cup sample cell using a standard transport module . The 

acquisition of NIR spectra was accomplished using ISI Scan (Infrasoft 
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International LLC., State College, PA) and collected as an average of 25 scans 

for each sample (one cell-pack), recorded as log(1/R). 

Commercial spectral analysis software (WINISI III, Infrasoft International 

LLC., State College, PA) was used to develop the calibration equations and 

evaluate the calibration performance. Calibrations for parameters developed by 

Butler (Chapter 1) for grain volume weight and SKCS kernel diameter, weight, 

and hardness index were used for NIR predicted estimates. All NIR calibration 

models used in this study were developed with samples from breeding nurseries 

grown over several years in multiple environments. The samples used in this 

study were not included in the development of the calibrations, but were used for 

validation of the models.  

Statistical Analysis 

Statistical analyses were conducted using SAS/STAT software, version 8.2 

(SAS Institute Inc., 1999). To account for spatial variability, a SAS PROC MIXED 

anisotropic model was used to adjust trait values on the basis of spatial 

covariance analysis of adjacent plots (Butler et al., 2005). Rows and columns 

were considered as random effects and entries as fixed effects. Least square 

means (LS means) were estimated separately within each environment for each 

trait within each population. Separate LS means were calculated based on 

reference values and NIR predicted values. The LS means from both methods 

were used for all further analyses. Least significant difference (LSD) was 

estimated among populations within environments (α=0.05). 
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Heritability 

Narrow sense heritability (h2
N) as a function of parent-offspring correlation 

was estimated for each trait by calculating the correlation coefficient r between 

the values observed on the F3:4 and the value observed in the F3:5 (Frey and 

Horner, 1957). Adjustments were made to account for inbreeding according to 

Smith and Kinman (1965). Narrow sense heritability was calculated 

independently using the NIR values and the reference values. The standard error 

of h2
N was calculated as: 

 

where s denotes the standard error (Motzo et al., 2004). 

Realized heritability (h2
r) estimates for SKCS characteristics and grain volume 

weight were calculated based on reference and NIR-predicted data from each 

environment for grain from F3:4 and F3:5 lines. The heritability of a trait can be 

estimated by the amount of genetic improvement that is realized by selection 

within a population (Falconer, 1981). Using the formula h2
r = R/S, where R is the 

response realized by selection and S is the selection differential, genetic gain can 

be determined (Fehr, 1993). The selection differential is the difference between 

the mean of the individuals selected from a population and the overall mean of 

the population from which they were selected resulting in the following formula: 
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Selection intensity in this study was 0.30, where the top 30% of lines were 

selected. By comparing realized heritability from the reference and NIR-based 

analyses, the genetic gain realized by each selection method was estimated.  

Classification errors 

The F3:4 lines were ranked based on reference and NIR predicted parameter 

values and assigned into three separate, equally-sized classification groups 

(TOP, MID, BOTTOM). Samples were classified independently using data 

obtained from the reference analysis and NIR-based analysis. Results were 

entered into a jackknife classification table to analyze the percentage of samples 

that were incorrectly classified when using the NIR-based analysis. From this, the 

severity of misclassification (e.g., TOP reference samples incorrectly classified 

as BOTTOM by NIR) when using NIR-based analysis was assessed. 
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Results and Discussion 

Summary statistics 

 Analysis of variance showed highly significant variation (P≤0.001) among 

the 100 F3:5 lines in each population, at each of the four locations for all 

parameters. Ranking of the population means varied by environment and 

revealed some trends (Table 3.1). Greater (P≤0.001) grain volume weight values 

(overall average 756.3 kg m-3) were observed at Fort Collins than any of the 

other environments, likely due to positive effects of irrigation on grain volume 

weight maintenance. Drought stress was evident at Julesburg and was reflected 

in an overall grain volume weight of 659.8 kg m-3 which was lower (P≤0.001) than 

the other locations. Greater (P≤0.001) grain volume weight values for population 

CO99W329/Overley were observed at Fort Collins and Dailey, whereas 

populations CO980376/TX97V2838 and TX97V2838/CO99W188 had greater 

(P≤0.001) grain volume weight values at Akron and Julesburg. Mean SKCS 

kernel weight at Julesburg (26.2 mg kernel-1) and Dailey (26.9 mg kernel-1) were 

lower (P≤0.001) than the other two environments, likely due to drought stress. 

The greatest (P≤0.001) SKCS kernel weight was observed at Fort Collins, the 

only irrigated environment, with a combined mean of 35.3 mg kernel-1. 

Population means for SKCS kernel diameter were not different (P≤0.001) 

within the two environments with the greatest values (Akron and Fort Collins). 

Fort Collins had greater (P≤0.001) observed SKCS kernel diameter
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Table 3.1. Mean values (± SD) for grain volume weight and kernel characteristics of F3:4 and F3:5 lines of three populations 
grown at four locations in eastern Colorado. 

  F3:4  F3:5 
Parameter Population Fort Collins  Akron Dailey Fort Collins Julesburg 

Grain volume 
weight 

CO980376/TX97V2838 749.2 ± 14.3  743.7 ± 15.3 b† 724.3 ± 17.0 b 756.1 ± 12.4 b 656.1 ± 24.6 b 

(kg m-3) CO99W329/’Overley’ 744.9 ± 16.0  750.2 ± 10.8 a 729.1 ± 17.9 b 756.8 ± 9.0 b 669.0 ± 15.2 a 
 TX97V2838/CO99W188 754.8 ± 14.9  748.8 ± 15.1 b 736.8 ± 18.7 a 765.0 ± 10.3 a 655.1 ± 25.4 b 
 
 

Average 748.8 ± 16.4  747.1 ± 14.2 B‡ 730.1 ± 18.5 C 756.3 ± 11.3 A 659.8 ± 23.0 D 

SKCS Weight CO980376/TX97V2838 33.1 ± 2.6  29.3 ± 1.7 a 27.2 ± 1.7 a 33.1 ± 2.6 a 25.5 ± 1.6 b 
(mg kernel-1) CO99W329/’Overley’ 31.3 ± 2.8  28.6 ± 2.0 b 26.9 ± 1.8 a 34.8 ± 1.7 a 26.4 ± 1.7 a 
 TX97V2838/CO99W188 31.3 ± 2.5  28.1 ± 2.3 b 26.7 ± 1.9 a 35.0 ± 2.3 a 25.7 ± 1.8 b 
 
 

Average 31.9 ± 2.7  28.7 ± 2.1 B 26.9 ± 1.8 C 35.3 ± 2.1 A 26.2 ± 1.7 C 

SKCS Diameter CO980376/TX97V2838 2.84 ± 0.12  2.55 ± 0.09 a 2.45 ± 0.09 b 2.89 ± 0.09 a 2.42 ± 0.09 b 
(mm) CO99W329/’Overley’ 2.78 ± 0.13  2.54 ± 0.10 a 2.46 ± 0.09 b 2.87 ± 0.08 a 2.45 ± 0.08 a 
 TX97V2838/CO99W188 2.80 ± 0.11  2.55 ± 0.11 a 2.49 ± 0.10 a 2.88 ± 0.10 a 2.43 ± 0.09 b 
 
 

Average 2.81 ± 0.13  2.55 ± 0.97 B 2.47 ± 0.09 C 2.88 ± 0.09 A 2.43 ± 0.09 D 

SKCS Hardness CO980376/TX97V2838 70.5 ± 4.8  75.2 ± 3.3 b 76.1 ± 3.6 b 65.9 ± 4.0 b 54.5 ± 3.5 b 
(index) CO99W329/’Overley’ 69.8 ± 4.7  75.2 ± 2.9 b 76.8 ± 2.9 b 65.5 ± 3.4 b 54.6 ± 4.5 b 
 TX97V2838/CO99W188 75.8 ± 4.7  78.9 ± 3.1 a 81.3 ± 3.0 a 70.3 ± 4.3 a 56.9 ± 3.7 a 
 Average 72.1 ± 5.4  76.5 ± 3.5 B 78.1 ± 3.9 A 67.3 ± 4.5 C 55.3 ± 4.1 D 
† Means within a column followed by the same lower case letter are not significantly different based on LSD test (α=0.05) 
‡ Means within a row followed by the same upper case letter are not significantly different based on LSD test (α=0.05) 
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values than the other three environments. Additionally, there was no significant 

difference among the populations in the two environments with the smallest 

combined means: Dailey (KD=2.47 mm) and Julesburg (KD=2.43 mm). 

 The mean SKCS hardness index values at Akron (76.5 hardness units)  

and Dailey (78.1 hardness units) were greater (P≤0.001) than values observed at 

Fort Collins (67.3 hardness units) and Julesburg (55.3 hardness units). 

Differences among populations, within environments were evident in all 

environments with the TX97V2838/CO99W188 population having greater 

(P≤0.001) SKCS hardness index than the CO980376/TX97V2838 and 

CO99W329/Overley populations. Observed SKCS hardness index means for 

Julesburg were lower (P≤0.001) than the other three environments. 

 Results (Table 3.1) demonstrated overall differences among the 

environments and among populations within environments. The rank of the 

average for all parameters, except kernel hardness index, was Fort Collins with 

the greatest values, followed by Akron, Dailey, and Julesburg with the lowest 

values. Fort Collins was irrigated and had the largest (P≤0.001) observed values 

for all of the parameters, with the exception of SKCS hardness index. Population 

by environment interactions were observed as performance of the populations 

varied among locations for most parameters and rankings changed among 

environments. As an exception, the population rank for SKCS hardness index 

was consistent across all environments, and the TX97V2838/CO99W188 

population had larger values in all environments for SKCS kernel hardness index. 

This was likely due to the increased kernel hardness index values for parents 
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used in the formation of this population. The varied results under multiple 

environments suggest that the data derived from this study encompass a range 

of values that are consistent with what is observed in a typical hard winter wheat 

breeding program. 

NIR calibration development and validation 

 Calibration models for grain volume weight, SKCS kernel weight, kernel 

hardness index, and kernel diameter used in this study were developed by Butler 

(2010, dissertation Chapter 1). Details and statistics related to the cross-

validations and independent validations are presented in Table 3.2.  Cross-

validation was performed on the samples used in the development of the 

calibration and validation was performed using the samples from this study. The 

R2 variable was used to account for the variability contained in the grain samples 

that was explained by both the validation and calibration model. In regard to R2 of 

the validation set (R2
val), results for validation were consistent with those found 

when the calibration was developed for grain volume weight (0.798 vs. 0.810), 

kernel weight (0.703 vs. 0.740), kernel hardness index (0.740 vs. 0.700) and 

kernel diameter (0.728 vs. 0.730).  

For the grain volume weight calibration model, the R2 of the calibration set 

(R2
cal) was greater (82.5) than the R2

cal for any of the SKCS parameters. These 

results are consistent with other documented calibration models. Dowell et al. 

(2006) reported an R2
cal of 0.74 for NIR predicted grain volume weight with a 

whole grain winter wheat model using a Foss NIR 6500. 



87 

 

Table 3.2. Summary statistics for calibration development, cross-validation, and 
independent validation for grain volume weight and SKCS kernel weight diameter 

and hardness index. 

 Calibration  Independent validation 

Parameters n  SEC SEC(V) R2  n  SEP(C) R2  

Grain volume weight (kg m-3) 632 4.21 5.73 0.825  2691 7.31 0.798 

Kernel weight (mg kernel-1)  895 2.25 2.64 0.776  2683 3.12 0.703 

Kernel diameter (mm) 915 0.114 0.124 0.762  2669 0.161 0.728 

Kernel hardness  
(hardness units) 

890 4.89 4.81 0.744  2674 6.10 0.740 

†SEC is standard error of calibration, SECV is standard error of cross-validation, 
and SEP(C) the standard error of prediction. 
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An R2
cal of 0.80 was reported by Sissons et al. (2006) for a whole grain NIR 

calibration model for grain volume weight in durum wheat (Triticum turgidum). 

The R2
val was also higher for grain volume weight (79.8) compared to kernel 

weight (70.3), hardness index (74.0), and diameter (72.8). 

 The regression plots for NIR predicted values vs. reference values for 

each trait are shown in Fig. 3.1. The y-intercept for each trait is greater than zero, 

suggesting that NIR predicted values underestimate the reference values. A 

slight clustering of two distinct groups is evident for kernel hardness index and 

diameter, but is very pronounced for grain volume weight. This may be falsely 

inflating the R2
val values, since a best fit linear regression line drawn through two 

clusters may not be representative of a linear regression line drawn through each 

cluster independently. This clustering is the result of low values in the Julesburg 

environment. Regardless, the trend for grain volume weight is apparent and 

suggests that whole grain NIR has some predictive ability for grain volume 

weight. 
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Figure 3.1.  Regression of kernel characteristics and grain volume weight determined by prediction model and by 
reference method in all populations combined. 
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Heritability 

Narrow-sense heritability was estimated for each location-population-

parameter combination by parent-offspring regression using both reference data 

and NIR predicted data (Table 3.3). Estimates differed widely among population 

and environment for each trait, but when averaged across all data, estimates 

were 49.1% larger when calculated using the reference data when compared to 

the NIR prediction method. The difference is in some part due to several low 

estimates when using the NIR method that pulled the average down. Six (12.5%) 

of the estimates based on NIR predicted values were equal to or less than 0.10, 

whereas only one (2.1%) of the values based on reference data were less than 

0.10. Of the six low NIR heritability estimates, four were from the Julesburg 

environment. While the estimates from the reference data at Julesburg were not 

below 0.10, the average heritability estimates from Julesburg across populations 

were among the bottom half. This is likely due to drought stress at the Julesburg 

environment which reduced the range of values making among-line comparisons 

difficult.  

 Heritability estimates for grain volume weight are in general agreement 

with those reported by Barnard et al. (2002, h2 = 0.31, narrow-sense, based on 

variance components) with average h2
NIR=0.25 and average h2

Ref=0.33. Average 

estimates of heritability for kernel weight based on reference values (0.44) and 

NIR values (0.21) flanked narrow-sense heritability estimates reported by Dere 

and Yildirim (2006) (h2 of 0.31), but were lower than those reported by Wiersma 

et al. (2001, h2 of 0.59) and Barnard et al. (2002, h2 of 0.71) for both methods 
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Realized heritability was estimated separately for each parameter by 

population in each environment (Table 3.4). Estimates were calculated for both 

selection with the reference method and selection using the NIR predicted values 

with a selection intensity of 0.30. The selection intensity of 0.30 indicates that the 

top 30% of lines were selected in each population within environments.  

Grain volume weight 

 Realized heritability estimates for grain volume weight with the reference 

method was greater than for the NIR method in all cases (Table 3.4), with the 

exception of the CO980376/TX97V2838 population in Fort Collins (h2
r NIR=0.64 

vs. h2
r reference=0.55) and TX97V2838/CO99W188 in Julesburg (h2

r NIR of 0.77 

vs. h2
r reference of 0.42). Overall, realized heritability estimates were 

intermediate-high (0.45 to 0.77) in all populations in all locations, with the 

exception of the CO99W329/Overley population in Akron (h2
r reference of 0.20) 

and Dailey (reference of 0.17). The heritability results using the reference method 

are consistent with broad-sense heritability estimates based on variance 

components reported by Wiersma et al. (2001) in spring wheat (mean H2=0.55, 

following 8 cycles of recurrent selection), but higher than values reported by 

Barnard et al. (2002; h2 of 0.31, narrow-sense, based on variance components). 

Estimates of h2
r NIR when compared to h2

r Ref are not consistent with the high 

R2
val values for the NIR grain volume weight model, but are low to intermediate in 

general in all locations except Dailey. 
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Table 3.3. Narrow-sense heritability estimates (± standard error) calculated with parent-offspring correlation using NIR 
(h2

rNIR) and reference (h2
rRef) data for grain volume weight and SKCS kernel weight, diameter, and hardness index. 

  Akron  Dailey  Fort Collins  Julesburg 
Trait Population h2NIR h2Ref  h2NIR h2Ref  h2NIR h2Ref  h2NIR h2Ref 

Grain 
Volume  

CO980376/TX97V2838 0.28 
±0.03 

0.45 
±0.05 

 0.30 
±0.03 

0.32 
±0.04 

 0.59 
±0.06 

0.52 
±0.05 

 0.32 
±0.04 

0.42 
±0.08 

Weight CO99W329/’Overley’ 0.15 
±0.02 

0.08 
±0.01 

 0.09 
±0.01 

0.11 
±0.02 

 0.18 
±0.01 

0.27 
±0.01 

 0.09 
±0.01 

0.26 
±0.03 

 
 

TX97V2838/CO99W188 0.21 
±0.02 

0.42 
±0.05 

 0.31 
±0.01 

0.44 
±0.06 

 0.14 
±0.02 

0.42 
±0.03 

 0.34 
±0.04 

0.29 
±0.06 

 
SKCS 
Weight 

CO980376/TX97V2838 0.10 
±0.01 

0.47 
±0.08 

 0.38 
±0.06 

0.42 
±0.07 

 0.27 
±0.03 

0.44 
±0.09 

 0.07 
±0.01 

0.50 
±0.08 

 CO99W329/’Overley’ 0.26 
±0.04 

0.49 
±0.09 

 0.19 
±0.03 

0.40 
±0.07 

 0.43 
±0.05 

0.36 
±0.06 

 0.13 
±0.02 

0.29 
±0.05 

 TX97V2838/CO99W188 0.17 
±0.03 

0.53 
±0.12 

 0.13 
±0.02 

0.51 
±0.10 

 0.21 
±0.02 

0.49 
±0.11 

 0.17 
±0.02 

0.37 
±0.07 

             
SKCS 
Diameter 

CO980376/TX97V2838 0.15 
±0.01 

0.49 
±0.01 

 0.34 
±0.01 

0.43 
±0.01 

 0.13 
±0.01 

0.34 
±0.01 

 0.18 
±0.01 

0.54 
±0.01 

 CO99W329/’Overley’ 0.32 
±0.01 

0.36 
±0.01 

 0.27 
±0.01 

0.24 
±0.01 

 0.39 
±0.02 

0.22 
±0.02 

 0.07 
±0.01 

0.19 
±0.01 

 
 

TX97V2838/CO99W188 0.29 
±0.01 

0.42 
±0.01 

 0.32 
±0.01 

0.44 
±0.01 

 0.28 
±0.01 

0.28 
±0.01 

 0.10 
±0.01 

0.28 
±0.01 

 
SKCS 
Hardness 

CO980376/TX97V2838 0.19 
±0.04 

0.66 
±0.21 

 0.41 
±0.08 

0.51 
±0.17 

 0.36 
±0.11 

0.59 
±0.22 

 0.43 
±0.07 

0.55 
±0.19 

 CO99W329/’Overley’ 0.40 
±0.08 

0.43 
±0.12 

 0.20 
±0.03 

0.39 
±0.11 

 0.49 
±0.13 

0.42 
±0.14 

 0.51 
±0.11 

0.48 
±0.20 

 
 

TX97V2838/CO99W188 0.40 
±0.09 

0.54 
±0.16 

 0.27 
±0.05 

0.34 
±0.10 

 0.39 
±0.14 

0.53 
±0.22 

 0.46 
±0.09 

0.42 
±0.15 
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Table 3.4. Realized heritability estimates for selection using NIR (h2
r NIR) and reference (h2

r Ref) data for grain volume 
weight and SKCS kernel weight, diameter, and hardness index. 

  Akron  Dailey  Fort Collins  Julesburg 
Trait Population h2

rNIR h2
rRef  h2

rNIR h2
rRef  h2

rNIR h2
rRef  h2

rNIR h2
rRef 

Grain volume weight CO980376/TX97V2838 0.32 0.50  0.09 0.46  0.53 0.61  0.22 0.45 
 CO99W329/’Overley’ 0.16 0.20  0.09 0.17  0.64 0.55  0.14 0.42 
 TX97V2838/CO99W188 0.33 0.77  0.16 0.69  0.36 0.53  0.77 0.42 
             
SKCS Weight CO980376/TX97V2838 0.42 0.48  0.44 0.50  0.18 0.53  0.45 0.54 
 CO99W329/’Overley’ 0.65 0.58  0.51 0.44  0.63 0.42  0.34 0.24 
 TX97V2838/CO99W188 0.43 0.47  0.37 0.53  0.69 0.52  0.05 0.23 
             
SKCS Diameter CO980376/TX97V2838 0.45 0.31  0.53 0.44  0.51 0.42  0.82 0.18 
 CO99W329/’Overley’ 0.42 0.41  0.36 0.16  0.40 0.26  0.02 0.20 
 
 

TX97V2838/CO99W188 0.86 0.36  0.15 0.42  0.91 0.31  0.04 0.63 

SKCS Hardness CO980376/TX97V2838 0.75 0.74  0.41 0.46  0.60 0.63  0.70 0.66 
 CO99W329/’Overley’ 0.37 0.35  0.57 0.30  0.50 0.46  0.70 0.32 
 TX97V2838/CO99W188 0.13 0.47  0.09 0.29  0.50 0.50  0.71 0.48 
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Kernel Weight 

 Estimates of h2
r NIR for kernel weight differ from those calculated from the 

reference data (Table 3.3). In several comparisons between h2
r NIR and h2

r Ref, 

the NIR-based analysis resulted in larger values. Overall, h2
r Ref estimates are 

intermediate-high (0.40 to 0.60) for all populations in all environments, with the 

exception of Julesburg where the CO99W329/’Overley’ and TX97V2838/ 

CO99W188 populations had low-intermediate h2
r Ref estimates. This is again 

likely due to drought stress which commonly compresses distributions and 

reduces the range of parameter values. Estimates of realized heritability based 

on reference values for kernel weight in this study were consistent with narrow-

sense heritability estimates reported by Dere and Yildirim (2006) (h2 of 0.31), but 

lower than those reported by Wiersma et al. (2001, h2 of 0.59) and Barnard et al. 

(2002, h2 of 0.71). 

Kernel Hardness Index 

 Heritability estimates for SKCS hardness index varied among populations 

within environments (Table 3.4), but were intermediate-high (0.29 to 0.74) when 

using the reference method for selection. Estimates of h2
r derived from selection 

with NIR predictions were also intermediate-high (0.37 to 0.75), with the 

exception of the TX97V2838/CO99W188 populations at Akron (h2
r Ref of 0.13) 

and Dailey (h2
r Ref of 0.09). Overall, estimates using the reference method and 

the NIR-based method were more consistent for kernel hardness index than with 

any other parameter. This is likely due to the parents of all populations having 
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relatively large SKCS hardness index values that differ less between parents 

than the other parameters. 

Kernel Diameter 

When comparing the h2
r estimates calculated for the reference method 

and the NIR-based analysis, the estimates for kernel diameter were the most 

variable (Table 3.4). The TX97V2838/CO99W188 population at Akron (h2
r NIR of 

0.86 vs. h2
r Ref of 0.31) and Fort Collins (h2

r NIR of 0.91 vs. h2
r Ref of 0.31) had 

estimates that were much higher for the NIR selection method, but at Dailey and 

Julesburg the opposite was true. Overall, estimates of h2
r Ref were low-

intermediate (0.16 to 0.44) with the exception of TX97V2838/CO99W188 in 

Julesburg (h2
r Ref of 0.63). 

 Overall, the greatest amount of consistency between the heritability 

estimates based on SKCS reference values and NIR-based analysis were 

observed in Fort Collins. Fort Collins was the only irrigated environment and had 

the largest mean grain volume weight, SKCS weight and diameter. The 

availability of moisture would allow lines to reach their full genetic potential and 

would allow for maximum observable differences among lines.  

Based on the estimates for all environments, results indicate genetic gains 

can be obtained through selection with NIR predicted parameters. While in 

general for NIR-based analysis heritability estimates were lower than estimates 

calculated by the reference method, the NIR-based analysis suggest than 

genetic gains could be made using NIR predicted values. The speed and 
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efficiency of the NIR-based analysis may provide more benefits than risks in 

early-generation selection when the number of samples is great and time 

between harvest and planting is limited. 

Classification Errors 

 Samples from the three populations were combined and based on 

parameter values obtained from reference testing and NIR-based analysis, all 

F3:4 lines were ranked in descending order. Based on these ranks, samples were 

assigned into three separate classification groups (TOP, MID, BOTTOM). The 

TOP class included samples ranked in the top 1/3 of all samples, the MID class 

samples ranked in the middle 1/3, and BOTTOM class samples ranked in the 

bottom 1/3. Samples were classified independently using data obtained from the 

reference analysis and NIR-based analysis. Results were entered into a jack-

knife classification table (Table 3.5) to determine the percentage of samples that 

were incorrectly classified when using the NIR-based analysis.  

 The results indicate that when using NIR-based analysis, the percentage 

of correct classification when selecting for the best one-third (TOP) of samples 

ranges from 45% to 64%. Similar results are observed when making NIR-based 

selection for the bottom one-third (BOTTOM) of samples with a range of correct 

classification of 51% to 67%. In the context of breeding, when selecting the best 

samples for advancement, or the worst for elimination, approximately one-half to 

one-third of the selected samples would actually fall into the desired categories. 

At first glance, this would suggest that the NIR-based analysis would be  
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Table 3.5. Jackknife classification table for all parameters. Columns represent 
classification by reference method and rows represent classification by NIR 

prediction. 

  Reference classification rate (%) 

  Top Middle Bottom Correct 

NIR Grain volume weight Top (n=95) 56 33 12 56 
 Middle (n=95) 27 43 29 43 
 Bottom (n=95) 17 24 59 59 
 
 

   Average 53 

NIR Kernel Weight Top (n=100) 52 32 16 52 
 Middle (n=100) 26 43 31 43 
 Bottom (n=100) 22 25 53 53 

 
 

   Average 49 

NIR Kernel Diameter Top (n=100) 45 39 16 45 
 Middle (n=100) 33 34 33 34 
 Bottom (n=100) 22 27 51 51 

 
 

   Average 43 

NIR Kernel Hardness Top (n=95) 64 31 5 64 
 Middle (n=95) 28 44 27 44 
 Bottom (n=95) 7 25 67 67 
    Average 58 
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ineffective in a breeding program. A closer look at the degree of misclassification 

may suggest otherwise. In all parameters, when selecting the top one-third of 

samples based on NIR predicted values, between 84 and 94% fall into the top 

two-thirds (TOP and MID) of all samples, and only between 5 and 16% would be 

in the bottom one-third (BOTTOM). In the context of breeding, between 5 and 

16% of samples selected for advancement, based on NIR predicted values, 

would be inferior lines. A similar result is observed when selecting the bottom 

one-third (BOTTOM) of sample for elimination where between 7% and 22% of 

the lines would actually be superior lines.  
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Conclusions 

The objective of this study was to determine the selection efficiency and 

accuracy of selection based on realized heritability and classification errors when 

using NIR spectroscopy as a selection tool by comparison to traditional methods. 

Both genetic and environmental effects on kernel characteristics were observed 

under several environments, thereby reinforcing the approach of collecting 

samples from multiple environments when developing a NIR calibration model for 

kernel characteristics.  Heritability estimates suggest that genetic gains can be 

made when using NIR predicted values for selection. Analysis of classification 

errors indicate that while classification errors do occur when using NIR predicted 

values, they are in general not extreme misclassifications. Results suggest that a 

small percentage of desirable lines (7 to 22%) would be discarded when using 

NIR spectroscopy and calibration models for discarding inferior lines in early-

generation material. Severe misclassifications are slightly reduced when 

selecting superior lines where 5 to 16% of the advanced lines would be inferior. 

While not yet perfected, NIR prediction models for grain volume weight, SKCS 

kernel weight, diameter, and hardness index may be useful in a breeding 

program for early-generation selection. The degree of selection errors using this 

approach are relatively low, but it would be up to the individual breeders to 

decide if this is acceptable and if the benefits of using NIR-based analysis justify 

the associated selection error. 
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APPENDICES 

 

Appendix 1. Calibration loadings for kernel diameter. 
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Appendix 2. Calibration loadings for kernel hardness. 
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Appendix 3. Calibration loadings for kernel weight. 
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Appendix 4. Calibration loadings for grain volume weight. 

 


