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ABSTRACT 

 

 

 

ESTIMATING SPATIOTEMPORAL TRENDS IN WILDFIRE SMOKE CONCENTRATIONS  

IN THE WESTERN UNITED STATES 

 

 

 

The United States (US) has seen significant improvements in seasonal air quality over the past 

several decades. However, particulate air quality in summer over the majority of the western US 

has seen little improvement in recent decades. Particulate matter with diameters < 2.5 microns 

(PM2.5) is a large component of ambient air quality that is associated with negative health effects 

and visibility degradation. Wildfires are a major summer source of PM2.5 in the western US.  

While anthropogenic-related sources of PM2.5 have decreased across the US, wildfires have 

increased in both frequency and burn area since the 1980s. It is currently uncertain how this 

increase in wildfires has impacted seasonal air quality trends and how the health effects of 

wildfire-emitted PM2.5 may differ from anthropogenic-sourced PM2.5. We do not directly address 

the latter uncertainty, but rather focus on improving smoke-exposure estimates, which are a 

critical, yet challenging, component to understanding the health effects of wildfire-emitted PM2.5.  

 

In this thesis, we use a combination of satellite estimates, surface observations, and chemical 

transport models to distinguish wildfire smoke PM2.5 from non-wildfire-smoke PM2.5 during the 

summer in the US. We update the record of seasonal trends in PM2.5 observed at surface 

monitors and provide the first estimates of trends in wildfire smoke-specific PM2.5. We find 

continued decreases in total-PM2.5 in most seasons and regions of the US. In the summer in 
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heavily fire-impacted regions of the western US, we find non-decreasing total-PM2.5 while 

wildfire smoke-specific PM2.5 has increased and non-wildfire-smoke PM2.5 has decreased.  

 

We test the application of blended smoke exposure models, which use multiple data sources as 

input variables (e.g. satellite-derived aerosol optical depth, chemical transport models, etc.), 

across the full western US. We incorporate a novel dataset into the model, Facebook posts, 

which have been shown to correlate well with surface PM2.5 concentrations during the western 

US wildfire season. We find the blended smoke exposure model performs well across the 

western US (R
2
 = 0.66). However, the Facebook dataset is well correlated with interpolated 

surface monitors (another input variable) and thus does not significantly improve blended 

smoke-exposure estimates in the western US.  
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1. INTRODUCTION 

 

 

 

Ambient air pollution has been identified as one of the top causes of premature mortality 

worldwide, estimated to have led to 3 million premature deaths in 2010 (OECD, 2016). This 

threat to human health posed by air pollution is expected to double, or even triple, by the year 

2060 (OECD, 2016). Particulate matter, specifically particles with diameters smaller than 2.5 

microns (PM2.5), is a major component of ambient air pollution and is associated with significant 

negative health effects (e.g. Dockery et al., 1993; Xing et al., 2016). In the US, over 20% of 

primary PM2.5 emissions are produced by wildland fires (US EPA NEI 2011) . 

 

Unlike most anthropogenic emissions, wildfires are an episodic source of PM2.5. In the western 

US, most wildfire emissions occur in the summer, and occurrence of wildfires varies greatly 

from year to year. In this region, the interannual variability in wildfire occurrence drives 

interannual variability in summer aerosol concentrations (Jaffe et al., 2008; Spracklen et al., 

2007). Despite their episodic nature and high interannual variability, wildfires can have 

significant negative impacts on air quality and public health in the western US, especially in high 

fire years (Gan et al., 2017; Reid et al., 2016). 

 

On decadal timescales, wildfires in the western US have been increasing in frequency and burn 

area since the mid-1980s (A. L. Westerling et al., 2006). These increases are largely the result of 

changing climatic factors, in part driven by anthropogenic climate change, including earlier 

spring snowmelt, warmer temperatures, and reduced winter precipitation (Abatzoglou & 

Williams, 2016; Pechony & Shindell, 2010; A. L. Westerling et al., 2006). Increases in human-
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ignited fires have also had a significant contribution (Balch et al., 2017; Anthony LeRoy 

Westerling, 2016). Climate and ignition changes have led to approximately 20 additional large 

wildfires (over 140% increase) and an additional 123,000 ha in burn area (390% increase) over 

each subsequent decade since the 1973-1982 decade (Westerling, 2016). The most rapid 

increases in wildfire frequency and burn area over the past two decades have been observed in 

Pacific Northwest forests (Westerling, 2016). Climate-related increases in wildfire burn area and 

the number of large fires are projected to continue to increase (Barbero et al., 2015; Spracklen et 

al., 2009; Yue et al., 2013). Spracklen et al. (2009) project a 54% increase in burn area across the 

western US and 78% increase specifically in the Pacific Northwest between 2009 and 2050. 

 

As wildfires in the western US increase in frequency and burn area over the next century, 

emissions of PM2.5 from fires are also expected to increase (Ford et al., 2018; Liu et al., 2016; 

Val Martin et al., 2015). Liu et al. (2016) project 57% and 31% increases in the frequency and 

intensity, respectively, of smoke events (≥ 2 consecutive days of smoke-elevated PM2.5) in the 

western US by the mid-21
st
 century. It is estimated that by the end of the century, fire-related 

PM2.5 will increase by 55% (Ford et al., 2018) and dominate summertime PM2.5 concentrations in 

the West (val Martin et al. 2015). Similar increases are projected for organic aerosol (Ford et al., 

2018; Hallar et al., 2017; Yue et al., 2013). Yue et al. (2013) estimate a 46-70% increase in 

summertime organic carbon and 20-27% increase in summertime black carbon in the western US 

by the mid-21
st
 century due to increased wildfire emissions. 

 

Over the past several decades, aerosol concentrations have been decreasing across the eastern US 

(Hand et al., 2011; Leibensperger et al., 2012; Murphy et al., 2011; Schichtel et al., 2001). Using 
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sites from the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitor 

network, Hand et al. (2011) report statistically significant decreases in PM2.5 concentrations 

between 1989 and 2008 at many US monitoring sites, predominantly in the eastern US. Murphy 

et al. (2011) similarly observed > 25% decrease in annual national-average elemental carbon and 

fine particle mass concentrations between 1990 and 2004 using the IMPROVE network. 

Leibensperger et al. (2012) found a 50% (34%) and 27% (16%) US-average decrease in black 

carbon (organic carbon) using surface observations and the GEOS-Chem model, respectively, 

over the period 1990-2009. These decreases, which were underpredicted by the GEOS-Chem 

model, have been linked to large reductions in anthropogenic combustion emissions using both 

observations and models (Leibensperger et al., 2012; Murphy et al., 2011). Recent work has 

focused on largely unexpected reductions in organic aerosol in the eastern US (Malm et al., 

2017; Ridley et al., 2018). Malm et al. (2017) reported that sulfate and organic aerosol declined 

concurrently in most of the eastern US between 2001 and 2015. These declines in organic 

aerosol are the result of reductions in anthropogenic emissions driving changes in secondary 

organic aerosol chemistry. Up to two-thirds of the drop in annual median organic aerosol 

concentration can be explained by reductions in vehicle and residential fuel burning emissions 

(Ridley et al., 2018).  

 

In contrast to the eastern US, changes to western US PM2.5 concentrations have been small and 

largely insignificant (Hand et al., 2011; Murphy et al., 2011). Hand et al. (2011) found a 

significant decline in summer PM2.5 at a few western US sites, however at most western US sites 

there was an insignificant change in summer PM2.5 over the period 1989 to 2008. There were 

several positive trends observed at remote sites in Montana, Idaho, and Wyoming (Hand et al., 
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2011). Murphy et al. (2011) observed positive trends in summer PM2.5 at remote sites in 

Northern California, Colorado, Montana, Wyoming and Utah between 1990 and 2004. Previous 

work has proposed these positive trends in summer PM2.5 in the western US may be due to the 

influence of wildfires. Extreme PM2.5 events (the 98th quantile of daily PM2.5 concentrations), 

attributable to wildfires, have been increasing over the early 21st century in wildfire-prone 

regions of the western US (McClure & Jaffe, 2018).   

 

While the health impacts of anthropogenic-sourced PM2.5 are well understood, the health impacts 

of wildfire-sourced PM2.5 are less certain (Paglione et al., 2014; Reid et al., 2016). Research on 

the health impacts from wildfire-sourced PM2.5 relies heavily on accurate estimates of PM2.5 

concentrations in smoke plumes. Obtaining PM2.5 concentrations within wildfire smoke plumes 

for exposure estimates is challenging due to the transient nature of the smoke (Brey et al., 2018; 

Val Martin et al., 2013). In previous epidemiological studies that have estimated the health 

effects of exposure to wildfire-smoke PM2.5, concentrations were estimated by direct 

measurement of PM2.5 by a sparse network of in situ surface monitors, aerosol optical depth 

(AOD) of the atmospheric column from satellite observations, or surface PM2.5 estimates from 

chemical transport models (CTMs). There have been several case studies that have relied solely 

on one data source, examples include: satellite data (Rappold et al., 2011), in situ monitors 

(Elliott et al., 2013), or model simulations (Alman et al., 2016). There are a limited number of 

studies that have combined several of these datasets to estimate PM2.5 concentrations from fires 

in the western U.S. and those that exist only assess the blended estimates on a small scale (e.g. an 

individual state) (Lassman et al., 2017; Reid et al., 2016).  
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Researchers in several geo-science subfields have begun to investigate the potential of using 

user-generated information (e.g. social media posts) to understand the spatial distribution of 

natural hazards including fires and associated poor air quality (e.g. Abel et al., 2012; Bedo et al., 

2015; De Longueville et al., 2009; Kent & Jr, 2013; Sachdeva et al., 2017; Sachdeva & 

McCaffrey, 2018; Ford et al., 2017). Ford et al. (2017) show de-identified, aggregated Facebook 

posts related to air quality and/or wildfire smoke are well correlated with large changes in local 

PM2.5 concentrations during the western US wildfire season. Facebook posts may provide 

information on the air quality that a population is actually exposed to and thus can be a useful 

exposure-assessment tool in the US. This unique dataset has the potential to add new information 

to a data blend of more traditional exposure estimation tools (e.g. surface observations, satellite 

AOD, CTM simulations) and improve smoke-exposure estimates across the western US.  

 

In this work, we address two major questions regarding the impact of wildfires on seasonal air 

quality and public health: 

1. What fraction of summer PM2.5 is attributable to wildfire smoke, and how is that fraction 

changing in fire-impacted regions as wildfire occurrence increases? (Chapter 2) 

2. Can we improve blended smoke-exposure estimates with the addition of user-generated 

information, and how do these blended exposure models perform across the entire 

western US? (Chapter 3)  
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2. THE CONTRIBUTION OF WILDFIRE SMOKE TO US PM2.5  

AND ITS INFLUENCE ON RECENT TRENDS 

 

 

 

2.1. Methods  

 

2.1.1. Time Period and Domain 

We investigate changes in continuous US seasonal-mean PM2.5 over an 11-year period (2006-

2016). This time period is constrained on both ends by data availability, discussed in the 

following sections. For calculations of seasonal-mean values, we define seasons as follows; 

winter: January, February, March (JFM); spring: April, May, June (AMJ); summer: July, August, 

September (JAS); and fall: October, November, December (OND). This choice of months groups 

the three most active wildfire months in the northwestern US (July, August, September) together. 

The number of fires and the frequency of smoke in the atmospheric column peak between July 

and September in this region (Brey et al., 2018).   

 

2.1.2. Surface Observations  

We use in situ 24-hour average PM2.5 observations from the EPA’s Air Quality System (AQS) 

monitoring network (US EPA). The AQS network contains air pollution data collected by air 

quality monitors across the US maintained by the EPA, state, local, and tribal agencies. These 

data are collected from sites using both the gravimetric and beta-attenuation techniques and both 

24-hr and 1-hr sample durations. We use PM2.5 data from two sets of PM2.5 monitors that exist in 

the AQS database: 1) federal reference method (FRM) and federal equivalent method (FEM) 

sites (EPA parameter code 88101) and 2) acceptable non-FRM sites that reasonably match the 
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FRM (EPA parameter code 88502). In order for the data from a given monitor to be included in 

our trend analysis at monitoring sites, data must be available for that monitor for every season 

between 2006 and 2016 and the monitor must have 80% data availability for the season each 

year. In total, trends in PM2.5 are calculated for 413 unique PM2.5 monitors across the US. At 

each monitoring site, we evaluate the trend in PM2.5 using a linear least-squares regression 

(results in main text) as well as Theil-Sen estimator (results in Appendix 6.1). These two 

methods qualitatively agree, and the choice of method does not affect the conclusions of this 

work. The significance of the resulting best-fit lines is evaluated using a two-sided t-test with a 

null hypothesis that the slope is zero at a 95% confidence level.  

 

2.1.3. Interpolation of Surface Observations 

Surface monitors can be sparsely located in remote regions where wildfires often occur. To 

obtain a spatially continuous surface PM2.5 estimate we interpolate between surface 

measurements using ordinary kriging. Kriging is an inverse-distance-weighted data interpolation 

method (Isaaks & Srivastava, 1990) that has been recently used in air quality research (e.g. 

Janssen et al., 2008; Lassman et al., 2017). Kriging estimates values between data points by 

assuming a functional form for the rate of decay of the sites spatial autocorrelation. We select a 

spherical semivariogram, which has been shown to work well in previous studies using kriging 

with air quality data (Lassman et al., 2017).  

 

The function is fit using three parameters: nugget, sill, and range. The parameters are determined 

using a k-fold cross validation with ten folds. 2,700 different combinations of parameters are 

tested. Values tested for each parameter are as follows: sill: 0.2, 0.4, …, 2.8, 3.0; range: 0.5, 1.5, 
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…, 9.5, 10.0; nugget: 0.1, 0.2, …, 0.9, 1.0. The parameters are evaluated over the western US for 

May - October of 2015. For each set of parameters, the available monitoring sites were divided 

into ten unique groups (or ‘folds’) containing 101 monitors each (except the final group which 

contained 104 monitors). We remove one group of monitors and krige the remaining monitors to 

obtain a continuous estimate of PM2.5 across the domain. We evaluate the kriged estimate against 

the PM2.5 concentrations reported by the removed monitors for each day by calculating R
2
, slope, 

mean bias, and mean absolute error. This process is repeated for each group of monitors. We 

then average the statistical parameters across the ten folds. The set of parameters used in this 

study was then selected from the 15 sets of parameters that produced an R
2
 in the highest 10%, 

slope in the highest 10%, mean bias in the lowest 10% absolute values, and mean absolute error 

in the lowest 10%. Using this method we select the parameters: sill = 2.6, range = 8.5, nugget = 

0.1. 

 

We focus the kriging analysis on the summer season and include all surface sites with data 

available on a given day for each summer season between 2006 and 2016 in the interpolation. 

This allows us to retain the maximum number of possible sites for the interpolation on each day. 

Daily-average PM2.5 values measured at these sites are kriged to a 15 x 15 km grid over the 

contiguous US. We calculate summer area-average PM2.5 values over the US PNW and over the 

contiguous US using the gridded PM2.5 estimates. The gridded estimates, rather than point 

measurements, are used to calculate the area-average summer PM2.5 to reduce bias towards urban 

locations where a larger proportion of the monitors are concentrated.   
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2.1.4. Satellite Observations of Smoke Plumes 

Smoke-specific PM2.5 is estimated using in situ PM2.5 observations concurrently with areal 

polygons of smoke extent from the Hazard Mapping System (HMS) (Brey et al., 2018; Rolph et 

al., 2009; Ruminski et al., 2006). A detailed description of the HMS fire location and smoke 

polygon dataset is given in Rolph et al. (2009). In brief, HMS is an interactive tool that relies on 

imagery from several satellites and trained satellite analysts to identify fire locations and smoke 

plumes across North America. The HMS smoke plume polygons are largely derived from visible 

satellite imagery from the GOES geostationary satellites. The smoke plume polygons indicate 

locations where there is likely smoke somewhere in the atmospheric column during daylight 

hours. The HMS smoke plume and fire detection dataset has been operational since 2005. We 

begin our study period in 2006 because this is the first full year where HMS smoke plumes are 

available. In general, the number and extent of HMS smoke plumes are conservative estimates of 

smoke occurrence in the atmospheric column (Brey et al., 2018).  

 

2.1.5. Identifying Smoke-PM2.5 

To estimate the smoke contribution to local PM2.5 concentrations, we first use HMS smoke 

plumes to flag potentially smoke-influenced days (referred to as smoke days). We then subset the 

data from each surface monitor into 1) days with no overlapping HMS smoke plume, and 2) days 

with an overlapping HMS smoke plume (smoke days). The first subset of data for a given 

monitor is used to estimate the seasonal-median PM2.5 concentrations on non-smoke-influenced 

days. We acknowledge that there are limitations to this method identifying the magnitude of 

smoke-influence on PM2.5. 1) Dilute smoke not identified by HMS may still influence PM2.5 

concentrations on days that do not overlap HMS plumes. 2) Smoke plumes identified by HMS 
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could be located above the surface and have little to no impact on surface PM2.5. 3) HMS smoke 

plumes are identified from observations during daylight hours, while 24-hour PM2.5 observations 

include overnight observations when smoke plumes can shift and go unnoticed by HMS. We will 

qualitatively address the potential severity of these limitations by comparing this method to the 

independent CTM method of determining smoke influence on PM2.5. 

 

We calculate the expected PM2.5 concentration from non-smoke sources at each monitor as the 

seasonal median of days with no overlapping HMS smoke plume. We use the seasonal median 

value rather than the mean as it is less sensitive to the effect of smoke-influenced days with 

higher PM2.5 concentrations that were missed by the HMS smoke plumes. We interpolate these 

non-smoke influenced seasonal PM2.5 concentrations using ordinary kriging to obtain a 

continuous non-smoke influenced PM2.5 estimate across the domain. A daily smoke PM2.5 (PM2.5 

from biomass burning) concentration is then estimated as the difference between the daily-mean 

PM2.5 concentration and the seasonal non-smoke influenced PM2.5 concentration for locations 

included in HMS smoke polygons (we set smoke PM2.5 concentrations to zero at locations 

outside of HMS smoke polygons). Smoke PM2.5 concentrations are calculated at each 

interpolated grid cell on each day during the time period. We calculate the seasonal mean of the 

total PM2.5 concentration, non-smoke PM2.5 concentration, and smoke PM2.5 concentration for 

each summer season over the 11-year period. We will refer to this method of estimating smoke 

PM2.5 and trends as the monitor-HMS method. 
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2.1.6. Chemical Transport Model Simulations 

We also use the GEOS-Chem CTM (geos-chem.org) version 11-01 to estimate the impact of 

wildfire smoke on US trends in PM2.5. The model is driven by assimilated reanalysis 

meteorology from the Modern Era Retrospective Analysis for Research and Applications, 

Version 2 (MERRA2) produced by the NASA Global Modeling Assimilation Office (Gelaro et 

al., 2017). Globally, we use the Emissions Database for Global Atmospheric Research (EDGAR) 

v4.2 anthropogenic emissions inventory with regional overwrites (Olivier et al., 1995). In the 

US, we follow the convention in GEOS-Chem version 12-01 where the EDGAR emissions are 

overwritten by the EPA NEI 2011 scaled for each year from 2006-2016 (Travis et al., 2016). 

Biogenic emissions are provided by the Model for Emissions of Gasses and Aerosols from 

Nature (MEGAN) (Guenther et al., 2012). We use biomass burning emissions of aerosol and 

gas-phase species from Global Fire Emissions Database version 4 (GFED4) at a 0.25
o
x0.25

o
 

resolution (Giglio et al., 2013; van der Werf et al., 2010).  

  

We run global GEOS-Chem simulations from 2006-2016 with 1-month spin up at 2°x2.5° 

resolution with 47 vertical layers between the surface and 0.01 hPa. The model includes tracers 

for hydrophobic and hydrophilic black carbon (BCPO, BCPI), hydrophobic and hydrophilic 

organic carbon (OCPO, OCPI), dust (DST), sea-salt aerosol (SALA), inorganic sulfur nitrates 

(NIT), ammonium (NH4), and sulfate (SO4). Monthly mean PM2.5 concentrations were 

calculated according to, 

 

PM2.5
 
= 1.33 (NH4 + NIT  + SO4) + BCPI + BCPO + 2.1 (OCPO + 1.16 OCPI)           (1) 

             + DST1 + 0.38 DST2 + 1.86 SALA, 
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where DST1 and DST2 are dust aerosol with an effective radius of 0.7 µm and 1.4 µm, 

respectively. To determine the impact of fires on PM2.5, we use a pair of simulations. One 

simulation includes all emissions and the second simulation includes all emissions except the 

biomass burning emissions from GFED4. With this pair of simulations, we can isolate the impact 

of biomass burning on trends in simulated PM2.5. Smoke PM2.5 was identified as the difference 

between monthly PM2.5 with biomass burning on and off.  

 

2.2. Results and Discussion 

 

2.2.1. Seasonal Trends in PM2.5 Observed at Surface Sites 

Observed trends in seasonal-mean PM2.5 at contiguous US sites are shown in Figure 1 for the 

period 2006 to 2016. In line with previous several studies (Blanchard et al., 2013; Hand et al., 

2011; Murphy et al., 2011; Schichtel et al., 2001), we find a predominantly negative trend in 

seasonal-mean PM2.5 in all seasons. The largest reductions in absolute PM2.5 concentrations 

occurred in spring and summer in the eastern US during this time period. In these regions over 

our 11-year study period, the rate of decline in PM2.5 was as large as -1.67 µg m
-3

 yr
-1

, which 

occurred in Liberty, Pennsylvania in the summer season. Significant declines in PM2.5 are 

ubiquitous across the eastern US in all seasons: the PM2.5 trends are significantly negative at 

45%, 59%, 44%, and 55% of sites east of 100
o
 W in winter, spring, summer, and fall, 

respectively.  
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Figure 1. Slopes of linear fits on seasonal-mean PM2.5 at EPA AQS sites from 2006-2016. Sites 

with slopes that are significantly different from 0 at the 95% confidence level are outlined in 

black, and sites with insignificant slopes are outlined in gray. Dashed line drawn at 100
o
 W is 

used in the analysis to distinguish between the eastern and western US.  

 

In contrast to the eastern US, fewer sites in the western US exhibit significant declines in total 

PM2.5. The percent of sites in the western US (west of 100
o 

W) that exhibit a significant decrease 

in PM2.5 is 20%, 26%, and 37% over winter, spring, and fall. In summer (Figure 1c), only 4 sites 

(less than 5 % of sites studied in the western US) exhibit a significant decline in PM2.5 over this 

period; 42 of the 73 sites studied in the PNW (represented by the gray box in Figure 2) report 

positive but insignificant trends in summer-mean PM2.5 over the time period. This is in 

agreement with prior work on summer PM2.5 trends observed at surface monitors over previous 

years (Hand et al., 2011; Murphy et al., 2011). We investigate whether these positive trends in 

total PM2.5 can be attributed to positive trends in smoke PM2.5.  
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2.2.2. Trends in Smoke and Non-Smoke PM2.5 

Figure 2 presents trends in total, non-smoke, and smoke- influenced PM2.5 using the monitor-

HMS method (panels a, b, c) with 15 km resolution and GEOS-Chem with 2 x 2.5
o
 resolution 

Figure 2. Slopes of linear fits on summer-mean (JAS) total PM2.5, non-smoke PM2.5, and smoke 

PM2.5 from 2006-2016 for the monitor-HMS (panels a, b, and c) and the GEOS-Chem model 

(panels d, e, and f) methods. Locations with slopes significantly different from zero at the 95% 

confidence level are dotted. Gray boxes define the Pacific Northwest region.                              

 

(panels d, e, and f). By including CTM estimates in our analysis, we are able to identify 

discrepancies between observed and simulated trends in PM2.5 over the past decade. In general, 

the model and monitor-HMS approaches agree in the location and sign of trends in summer-

mean total PM2.5. GEOS-Chem predicts a larger spatial extent in significant negative trends in 

PM2.5 compared to the monitor-HMS method. In the PNW and northern California, the two 

approaches disagree about the location, sign, and magnitude of the trends in total PM2.5. The 

inconsistent patterns in PM2.5 trends in the PNW and northern California shown in both 

estimation methods are reflected in the observations from monitoring sites in the region (see 

Figure 1c). There are PM2.5 data records that have both increased and decreased at different 
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monitoring sites in the PNW and northern California over this time period likely due to high 

interannual variability in wildfire smoke concentration. 

 

Trends in non-smoke PM2.5 are shown in Figures 2b and 2e. In the absence of smoke influence, 

the spatial extent of significant negative changes in PM2.5 expands for both the model and the 

monitor-HMS method. The monitor-HMS method shows significant declines in PM2.5 across 

Idaho, Colorado, and Utah while GEOS-Chem shows significant declines in PM2.5 across most 

of the country. Both GEOS-Chem and the monitor-HMS method produce small negative, or 

insignificant, changes in non-smoke PM2.5 across most of the PNW. Despite several differences 

between the two methods of attributing smoke PM2.5, both estimation methods suggest that 

decreases in summer-mean PM2.5 would be expected over more of the West in the absence of 

wildfire smoke.  

 

Figures 2c and 2f show linear trends in smoke PM2.5. Both the monitor-HMS-based and GEOS-

Chem-based estimates produce an insignificant increase in smoke PM2.5 in Oregon and 

Washington over this period and an insignificant decrease over portions of Montana. Both 

methods show small positive smoke PM2.5 trends over the northern Great Plains and New 

England, but the two methods disagree on the sign of the changes in the Southeast. Simulated 

surface PM2.5 concentrations in GEOS-Chem are likely more sensitive to changes in fire 

emissions than reality because all biomass burning emissions in the version of the model we used 

here are emitted at the surface. However, on average, a large fraction of the smoke from fires in 

the PNW and Canada are emitted above the boundary layer (Zhu et al., 2018). A possible origin 

for the disagreement between the monitor-HMS-based and GEOS-Chem-based estimates in the  
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Southeast is our inability to completely isolate smoke PM2.5 from total PM2.5 in the observations 

due to the limitations of satellite-smoke plume estimates discussed in the methods.  

 

2.2.3. Wildfire Smoke Contributions to Summer-Mean PM2.5 in the PNW 

In Figure 3, we focus on area-averaged summer-mean PM2.5 in the PNW (the grey boxes 

outlined in Figure 2), where Figure 2 demonstrated most of the increases in summer-mean PM2.5.  

Figure 3: Estimated smoke contribution to area-averaged summer (JAS) mean PM2.5 across the 

Pacific Northwest, defined by the gray box in Figure 2, using the monitor-HMS method (panel a) 

and GEOS-Chem (panel b). The full height of each bar represents the summer mean of total 

PM2.5. Estimated summer-mean PM2.5 on days without smoke influence is shown in blue, and the 

difference (the estimated smoke contribution) is shown in orange.  

 

We separate the summer-mean PM2.5 for this region into a non-smoke mean PM2.5 concentration 

(what we would expect the summer-mean PM2.5 to be in the absence of wildfire smoke), and the 

mean smoke contribution to the summer-mean PM2.5. The smoke contribution, shown in orange, 

is the difference between the total summer-mean PM2.5 (total height of each bar) and the 

estimated non-smoke mean PM2.5 (blue section of each bar). During the 11-year study period, 

wildfire smoke contributes between 2.2 and 5.8 µg m
-3

 (monitor-HMS, Figure 3a) or 1.2 and 9.2 

µg m
-3

 (GEOS-Chem, Figure 3b) of the summer-mean PM2.5 in the PNW, depending on the year. 
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For several summers during active fire seasons, wildfire smoke contributes over 50% of the 

summer-mean PM2.5 according to both methods. The year with the largest contribution in this 

region according to both methods is 2015 with smoke contributing 64% of the summer-mean 

PM2.5 using the monitor-HMS-based approach and 76% using the GEOS-Chem-based approach. 

There were many large fires in this region during 2015, and smoke impacted wide swaths of the 

US (e.g. Ford et al., 2017; Lindaas et al., 2017; Wettstein et al., 2018). Despite the fact that 

wildfires are typically sporadic and transient events, both methods indicate that wildfire smoke 

can greatly increase the summer-mean PM2.5, especially in years with many large fires.  

 

In the absence of wildfire smoke, there is much less inter-annual variability in summer-mean 

PM2.5 (Figure 3). Both of our approaches indicate that without the influence of smoke, we would 

expect modest improvements in summer-mean PM2.5 in the PNW in line with improvements 

elsewhere in the US. Both approaches produce a ~ 1% decrease in summer-mean PM2.5 per year 

across this region in the absence of smoke PM2.5. A linear fit on the non-smoke mean PM2.5 from 

the GEOS-Chem approach yields a slope of -0.12 µg m
-3

 yr
-1

 (R
2 

 = 0.85, p-value = 5.15 x 10
-5

); a 

linear fit on the monitor-HMS estimates yields a similar slope of -0.10 µg m
-3

 yr
-1

 (R
2
 = 0.39, p-

value = 0.04). We do not find statistically significant increases in the area-average summer-mean 

PM2.5 attributed to smoke over the 11-year study period using either the monitor-HMS (slope = 

0.05 µg m
-3

 yr
-1

, R
2
 = 0.02, p-value = 0.65) or GEOS-Chem approaches (slope = 0.10 µg m

-3
 yr

-1
, 

R
2
 = 0.02, p-value = 0.71). We note that linear trendlines are highly dependent on the start and 

end years of the fit (here ending on an exceptionally low fire year), and there was a large 

interannual variability in the contribution of smoke to PM2.5 during this period (e.g. Figure 3).  
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In Figure 4, we investigate two factors that are likely drivers of summer smoke PM2.5 trends, (1) 

the frequency of smoke days and (2) PM2.5 concentrations on smoke days. The first case 

corresponds to the average fraction of the PNW with smoke in the column (from HMS) in each  

Figure 4: Left axis: Dot-dashed line shows the area-averaged summer (JAS) mean PM2.5 

estimated using the monitor-HMS method on all days across the Pacific Northwest (PNW). Solid 

line shows the summer-mean PM2.5 on potentially smoke-influenced days in the PNW. Right 

axis: the red bars represent the average fraction of PNW area covered by a smoke plume during 

the summer.  

 

summer. The second case is the PM2.5 concentrations in areas with smoke in the column. Hence, 

we are investigating if variability in smoke PM2.5 in the PNW is due to variability in smoke area 

or smoke concentrations. The mean fraction of total area in the PNW with smoke somewhere in 

the column on a given summer day ranges from 10 - 15% in low fire years (e.g. 2010) to >40% 

in extreme years (e.g. 2012). The summer-mean PM2.5 concentrations on smoke days range from 

7.6 µg m
-3

 in low fire years to 15 µg m
-3

 in high fire years according to the monitor-HMS 

method. There is a weak correlation between the two cases (R
2
 = 0.36); big fire years tend to 

have higher values for both metrics. However, some high-smoke years are more driven by 
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extensive smoke spatial coverage (e.g. 2012) while others are more driven by higher smoke-day 

PM2.5 concentrations (e.g. 2015). Large interannual variability in both the area covered by smoke 

and PM2.5 on smoke days obscures decreasing trends in non-smoke summer-mean PM2.5 in this 

region (Figures 3 and 4).  
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3. THE USE OF SOCIAL MEDIA TO IMPROVE MODELS  

 

OF WILDFIRE SMOKE EXPOSURE 

 

 

 

3.1. Methods 

 

3.1.1. Time Period and Domain 

We focus our analysis on the western US, defined by the gray shaded region in Figure 5. We 

study the 2015 wildfire season, when portions of the western US were impacted by many large 

fires and elevated smoke concentrations, as shown in chapter 2. The study period, 5 June – 30 

September 2015, is defined by the western US wildfire season (typically June – September) and 

data-availability. The Facebook posts are available 5 June – 27 October 2015.  

 

3.1.2. Chemical Transport Model Simulations 

We use the Weather Research and Forecasting model with Chemistry (WRF-Chem) to simulate 

surface PM2.5 concentrations. WRF-Chem is a CTM that couples atmospheric dynamics and 

chemistry (Grell et al., 2005). CTMs are a useful tool to estimate exposure as they provide 

information on PM2.5 concentrations between surface monitoring sites. However, they are 

computationally expensive and may be incorrect due to errors in meteorology, fire locations, 

emission rates, and injection heights.  

 

For this work we use the WRF-Chem model version 8.3.1. The model domain is represented by 

the gray shaded region in Figure 5. We use Global Forecast System (GFS) initial and boundary 

conditions, Yonsei University boundary-layer parameterization (Hu et al., 2010), and the 
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Thompson microphysics parameterization (Thompson et al., 2004). We reinitialize the 

meteorology each day to minimize drifting from meteorology observations. For the chemistry 

initial/boundary conditions and mechanisms we use the Model for Ozone and Related chemical 

Tracers (MOZART) (Emmons et al., 2010) with the Goddard Chemistry Aerosol Radiation and 

Transport (GOCART) model (Chin et al., 2000).  

 
Figure 5: The WRF-Chem/kriging domain is represented by the gray shading. Surface sites from 

the EPA AQS network used in this study are represented by the colored dots. Red dots represent 

sites used in the kriging estimates and to evaluate the kriging. Blue dots represent sites used in 

the kriging estimates, but not used in the evaluation because they are outside of the domain. All 

remaining sites are shown in black. Note: black dots within the kriging domain represent sites 

with no available data during the study period.  

 

We use anthropogenic emissions from the EPA NEI 2011 emissions inventory (US EPA), 

biogenic emissions from the Model for Emissions of Gasses and Aerosols from Nature 

(MEGAN) (Guenther et al., 2012), and biomass burning emissions from the Fire Inventory from 

NCAR (FINN) (Wiedinmyer et al., 2011). Injection heights of pollutants in WRF-Chem are 

determined using a 1-D plume rise parameterization (Freitas et al., 2007). Using this model set-
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up, we simulate daily-average surface PM2.5 concentrations at 15 km x 15 km resolution over the 

western US for each day during the study period. 

 

3.1.3. Interpolated Surface Observations 

In this study, we use an interpolation approach similar to that described in Section 2.1.3. We use 

ordinary kriging with the same semivariogram model and parameters. In this study, we do not 

remove sites based on seasonal data-availability as was done with the trends analysis. For each 

day in the study period, we krige all available daily PM2.5 observations from both FRM sites and 

sites that reasonably agree with the FRM in the EPA AQS network. (See section 2.1.2 for further 

detail on the EPA AQS surface sites.) We krige the daily observations to the WRF-Chem grid, 

shown along with the kriging sites in Figure 5.  

 

3.1.4. Satellite Observations  

We use aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument. AOD is a measure of the optical path extinction by particles in a vertical 

column (here the full atmospheric column), and is often used as a proxy for PM2.5 (Li et al., 

2015). Although AOD is a column measurement, it can be well correlated with surface 

measurements of PM2.5 is some regions of the US (e.g. Engel-Cox et al., 2004; Ford & Heald, 

2013; Li et al., 2015). AOD can be related to surface PM2.5 with an estimated scaling factor (e.g. 

van Donkelaar et al., 2010). Here, the conversion of AOD to PM2.5 is determined by the 

weighted regression coefficients calculated by the blended model described in section 3.1.6.  
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The MODIS instrument is located onboard the Aqua and Terra satellites with local overpass 

times of 1:30 P.M. and 10:30 A.M., respectively. The MODIS instrument uses 36 different 

electromagnetic wavelengths to observe the Earth’s surface. We use the Level 2 AOD Dark-

Target Collection 6 retrieval with 10 km spatial resolution (Sayer et al., 2014). The twice-daily 

retrievals of AOD at a 10 km resolution are re-gridded to the 15 x 15 km WRF-Chem grid by 

taking the average of all MODIS grid cells that fall within the larger WRF-Chem grid cell. We 

then average the two daily AOD retrievals from the Aqua and Terra overpasses for each grid cell 

to obtain a daily average MODIS AOD estimate on the WRF-Chem grid.  

 

The AOD-retrievals often have missing pixels due to a cloud-masking algorithm in the data 

processing code. Dense smoke plumes are frequently miss-classified as clouds by this algorithm 

and are subsequently removed from the final data product (van Donkelaar et al., 2011). To retain 

AOD estimates of smoke plumes, we fill in missing pixels in the Aqua and Terra composite 

AOD by the same method used in Lassman et al. (2017). Any grid cell that has at least 3 

surrounding data points is assigned the average of the surrounding AOD values. This processes 

is repeated five times. We stop filling in pixels after five iterations because after this point less 

than 5% of the remaining missing values are filled in by each subsequent iteration. By filling in 

these missing pixels, we are able to increase the data-completeness of the AOD retrievals from 

61% to 85% across the full study period and domain. An example day of filling in mixing pixels 

is shown in Figure 6.  

 

Satellite observations are beneficial for exposure classification because they can provide a 

continuous gridded product at sub-daily frequency. This is an advantage over sparsely located 
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surface observations, many of which only provide observations every three days. However, using 

satellite-derived AOD to assess surface PM2.5 concentrations comes with several disadvantages. 

1) The accuracy of AOD retrieval is highly dependent on surface properties, 2) the AOD:surface-

PM2.5 ratio varies with smoke plume height, aerosol properties, and the presence of clouds, 3) 

smoke plumes can often be misinterpreted as clouds in the retrieval algorithm and removed from 

the final AOD product. 

 
Figure 6: An example day (August 18, 2015) of the MODIS AOD pixels filled in using the 

filling algorithm, described in the methods, to fill in pixels of dense smoke often misclassified as 

clouds and removed from the data. Data before filling in missing pixels is shown in panel a and 

the data post-filling in mixing pixels is shown in panel b.  
 

3.1.5. Social Media 

In this study, we use the same dataset of Facebook posts described in Ford et al. (2017). The 

dataset is composed of de-identified, aggregated percent of Facebook posters in a town or city 

with posts containing keywords related to smoke exposure, while controlling for posts related to 

cigarette-smoke and those not related to air quality. These words include: “smoke”, “smoky”, 

“air quality”, “hazey”, etc. The Facebook posts are population-weighted and gridded to the 
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WRF-Chem grid shown in Figure 5. A full list of search terms and filtered phrases as well as a 

detailed description of the Facebook dataset is given in Ford et al. (2017). Ford et al. (2017) find 

that the performance of Facebook posts in predicting surface PM2.5 concentrations is dependent 

on cloud fraction (CF). Posters appear be less likely to post about being in smoke when it is 

cloudy. In their study, Ford et al. (2017) distinguishes Facebook posts on high CF days (CF > 

75%) and low CF days (CF < 75%). We take a similar approach in this study. We use CF 

products (“cloud_fraction_land” and “cloud_fraction_ocean”) from the MODIS instrument on 

the Terra and Aqua satellites. The CF retrievals from the twice-daily overpasses are combined 

and re-gridded using the same process described in section 3.2.3 used to process the AOD 

retrievals. 

 

3.1.6. Blending Datasets Using Geographically Weighted Ridge Regression 

We calculate a blend of the three datasets using a geographically weighted ridge regression 

(GWR), a method recently applied to air-quality studies (van Donkelaar et al., 2015; Lassman et 

al., 2017; Luo et al., 2017; Song et al., 2014). We follow a similar data blending approach to that 

described in Lassman et al. (2017). In brief, we calculate a set of linear ridge-regression 

coefficients at each surface monitor location by removing that monitor’s PM2.5 measurement 

from the dataset then estimating PM2.5 at the monitor location using kriging, WRF-Chem, 

MODIS AOD, and Facebook posts. A unique set of regression coefficients is calculated for each 

surface monitor location within the domain. The regression coefficients weight each dataset in 

the blend allowing for a blended estimate using the following equation, 
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PM2.5GWR = A + B×AOD + C×PM2.5kriging + D×PM2.5GEOS-Chem +      (2) 

E×(percent of Facebook posts) 

 

where A is the fitted intercept parameter, and B, C, D, and E are the fitted regression 

coefficients. In this equation B and E also account for the PM2.5:AOD ratio and PM2.5: percent of 

Facebook posts at each monitoring site, respectively. By calculating separate regression 

coefficients at each monitor site, this regression method allows the datasets to be weighted 

differently in locations where their utility may differ within the domain (e.g. urban versus rural 

areas). The regression coefficients at the surface-monitor locations are interpolated throughout 

the domain using a Gaussian kernel, 

 

G = exp(-(D/Bw)
2
),            (3) 

 

where G is the kernel value for each surface monitor, D is the distance to a grid cell from the 

surface monitor, and Bw is the bandwidth parameter which we define as 500 km. Interpolating 

the regression coefficients allows us to estimate PM2.5 concentrations between surface monitor 

sites at each grid cell within the domain. Figure 7 shows a sample blend of the kriging, WRF-

Chem simulations, MODIS AOD, and percent of Facebook posts using GWR for an active fire 

day in the western US during 2015. 

 

We calculate four sets of GWR blends to use throughout the domain. The sets of blends using 

different subsets of the input datasets are listed in Table 1. We use the four sets of blends to 

account for discontinuous datasets (e.g. missing AOD pixels) and to account for the impact of  
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Figure 7 - Sample day (August 18, 2015) of each individual dataset regrided to the WRF-Chem 

grid: a) kriged surface monitors, b) WRF-Chem simulated PM2.5, c) MODIS AOD, and d) 

population-weighted Facebook posters. The GWR blended estimate of the datasets shown in 

panels a-d, is shown in panel e.  In panels a, c, and e surface monitor-observed 24-hr average 

PM2.5 are also shown. Note: the GWR blended PM2.5 presented here does not take CF into 

account for the Facebook dataset. 

 

Table 1: List of separate GWR blends and input variables used to account for MODIS AOD-

availability at individual grid cells and the impacts of CF on the Facebook data. 

Days/grid cells where 

GWR estimate is used 

Input variables Days used to calculate GWR 

regression coefficients at surface sites 

High CF with available 

AOD 

Kriged surface monitors, MODIS 

AOD, WRF-Chem, Facebook data 

High CF days for each surface site 

Low CF with AOD 

available 

Kriged surface monitors, MODIS 

AOD, WRF-Chem, Facebook data 

Low CF days for each surface site 

High CF, without AOD Kriged surface monitors, WRF-Chem, 

Facebook data 

High CF days for each surface site 

Low CF, without AOD Kriged surface monitors, WRF-Chem, 

Facebook data 

Low CF days for each surface site 
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CF on the accuracy of the Facebook dataset in predicting surface PM2.5 concentrations. The 

high/low CF GWR blends are calculated as follows: We divide the input datasets into two groups 

based on CF. The high CF group contains all days and surface sites where the CF is greater than 

0.75, and the low CF group contains all data points where the CF is less than 0.75. We use these 

two subsets of data points to calculate GWR regression coefficients at each surface site across  

the domain. The regression coefficients are then interpolated throughout the domain, described 

previously. The value of 0.75 was chosen because this was the high/low CF cutoff used by Ford 

et al. (2017).  

 

We combine the subsets of blends into a final GWR blended estimate by using the blend from 

the subset of blended datasets that is most appropriate for each individual grid cell on each day 

of the study period. For example, if a grid cell has a high cloud fraction and no AOD estimate for 

that day, we use the high CF GWR blend of kriging, WRF-Chem, and Facebook blended PM2.5 

estimate for that grid cell. This process is repeated for each grid cell on each day of the study 

period. This process ultimately produces two final GWR blended datasets, one including the 

Facebook dataset as an input variable, and one without.  

 

3.1.7. Evaluation of Datasets 

We evaluate each individual dataset and the blended datasets against PM2.5 concentrations 

reported by surface monitors in the EPA AQS monitor network. For the MODIS, WRF-Chem, 

and Facebook posts gridded datasets, each grid cell containing a surface monitor is evaluated 

against that surface monitor’s measured PM2.5 values. The kriged surface monitor dataset and 

GWR-blended data (which uses the kriged surface monitor dataset) are evaluated using the 
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“leave-one-out cross-validation” technique (Efron, 1982) to overcome the potential bias of 

evaluating these estimates using the same surface monitors that were used to create the 

interpolated and blended data sets. This technique acts to mitigate the aforementioned bias by 

removing a surface monitor from the interpolation, re-calculating the interpolated 

concentration/regression coefficients, and comparing the interpolated concentration/PM2.5 

estimated using the regression equation at the location of the removed monitor to the value 

measured by the monitor. This process is repeated for all sites in the domain.  

 

3.2. Results and Discussion 

 

3.2.1. Performance of Individual Datasets 

The performance of each individual dataset against the surface monitors is shown in Figure 8. 

Figure 8: Performance of each individual dataset against surface-monitor observed PM2.5: a) 

kriging, b) WRF-Chem, c) MODIS AOD, d) Facebook posters. Each day and site during the 

study period is represented by the blue dots. Blue lines represent linear-least squares best-fit 

lines. Black lines in panels a and b show a 1-1 line. These lines are not shown in panels c and d 

because these datasets do not explicitly estimate PM2.5; a 1-1 fit is not expected.  
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Similar to the results from Lassman et al. (2017), the kriged surface monitor dataset best predicts 

surface monitor concentrations overall with an R
2
 = 0.66. In agreement with the results from 

Ford et al. (2017), the Facebook dataset outperforms both WRF-Chem and MODIS AOD with an 

R
2
 = 0.4 compared to 0.17 and 0.19, respectively. Figure 9 shows how the overall performance 

of each dataset is distributed among the surface sites. 

 

Figure 9: R
2
 between each dataset and observed surface-monitor PM2.5 at each monitor within 

the domain: a) kriging, b) WRF-Chem, c) MODIS AOD, d) Facebook posters. Only sites with at 

least 30 observations during the time period are shown.  

 

In general, each dataset has higher R
2
 values at surface sites in the northern part of the domain 

than the southern. This is likely due to the larger fluctuations in PM2.5 in that region from a larger 

influence of wildfire smoke. The datasets have a greater ability to capture these large fluctuations 

in PM2.5 in this region, compared to the predominately smaller fluctuations in the southwest, 

increasing the R
2
.  
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3.2.2. Performance of Blended Dataset with and without Facebook 

In Figure 10, we present the performance of the blended dataset both with and without Facebook 

data evaluated against surface-monitor observed PM2.5. According to each of the performance-  

 

Figure 10: Performance of the GWR blended data against surface-monitor observed PM2.5 

without (panel a) and with (panel b) Facebook posts as an input variable. Performance-assessing 

metrics: R
2
, slope, mean bias (MB), and mean absolute error (MAE) are shown. Each day and 

site during the study period is represented by blue dots. Blue lines represent linear-least squares 

best-fit lines and black lines represent a 1-1 line. 

 

assessing metrics we use, the addition of Facebook posts to the blended data makes little or no 

difference in the overall performance of the dataset. In Figure 11 we show the change in R
2
 at the 

individual sites within the domain. Overall, there is little or no change at most monitoring sites 

(note the small scales on the absolute change color bar). Although not shown in Figure 11, there 

is also little change at most surface sites in all other performance-assessment metrics used. These 
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Figure 11 - The change in R

2
 at each individual monitoring site with the addition of Facebook to 

the GWR blend. R
2
 between surface-monitor observed PM2.5 and the GWR blend without 

Facebook is shown in panel a. R
2
 between surface-monitor observed PM2.5 and the GWR blend 

with Facebook is shown in panel b. The absolute change in R
2
 between panels a and b is shown 

in panel c. Note the relatively small color bar scale in panel c.  

 

include: slope, mean bias, and mean absolute error. The cause for the lack of influence of the 

Facebook data is revealed in Figures 12 and 13.  

 

In Figure 12 we show the weight given to each dataset at the individual monitoring sites. 

Weights of the Facebook and MODIS datasets, which do not directly provide surface PM2.5 

concentrations, are normalized by the mean Facebook:PM2.5 (0.02) and AOD:PM2.5 (0.01) ratios. 

The majority of the weight in the blended dataset is given to the kriging data, with moderate 

influence from WRF-Chem and Facebook data in a few locations. Facebook data receives little 

or no weight at most sites in the blended dataset because it is well correlated with the kriging 

data (R
2
 = 0.43). In Figure 13 we show the correlation of the Facebook and kriging datasets at 

each surface site. In general, the two datasets are well correlated throughout the domain. The 

locations where the Facebook and kriging data disagree are in locations where neither dataset 
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Figure 12: Regression coefficients given to each individual dataset at surface monitor locations 

in the GWR blend. Facebook and MODIS AOD regression coefficients have been normalized by 

the Facebook:PM2.5 and AOD:PM2.5 ratios empirically found with the data used in this study. 

These values are given in the main text. Note: these are the Facebook post weights without 

taking CF into account.  

Figure 13: Correlation coefficient between the kriged surface monitors and Facebook posts at 

surface monitor locations. We use the leave-one-out cross validation kriging estimate in the 

calculation of the correlation coefficient.  
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accurately estimates PM2.5 concentrations (namely, Arizona and southern New Mexico). While 

the strong agreement between Facebook posts and interpolated surface monitors is remarkable, 

the Facebook data does not provide sufficient new, orthogonal information to the blended dataset 

to significantly improve its performance.  
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4. CONCLUSIONS AND FUTURE WORK 

 

 

 

In this work, we address two questions regarding the impact of wildfire smoke on air quality and 

public health in the western US. The first question asked, “What fraction of summer PM2.5 is 

attributable to wildfire smoke, and how is that fraction changing in fire-impacted regions as 

wildfire occurrence increases?”. To address this question we provide the first estimates of trends 

in fire-specific PM2.5. We estimate these trends in fire-specific PM2.5 with two distinct methods: 

1) surface monitor observations combined satellite estimates of smoke influence and 2) the 

GEOS-Chem model with GFED4 biomass burning emissions.  

 

Our updated record of US PM2.5 trends show continuing improvements in air quality in the 

eastern US. We show that without the impact of wildfire smoke, these improvements would also 

be visible in the summer in much of the western US. We quantify the contribution of wildfire 

smoke to summer-mean PM2.5 in the PNW region, heavily impacted by wildfires, over the past 

11 years and find wildfire smoke contributes more than 50% of the summer-mean PM2.5 in large 

fire years but with large interannual variability making trend assessment challenging. We 

hypothesize that smoke PM2.5 trends may be significant in the western US if our method (which 

involves HMS that does not go back further than 2006) could be applied over a longer time 

period. As wildfires are expected to continue to increase in frequency and severity in the western 

US, we also hypothesize that our methods may be used to determine significant trends in smoke 

PM2.5 in the future if monitor and HMS data sources operate continuously. This work adds to the 

current literature on US trends in PM2.5 by attributing observed increases (and lack of significant 

trends) in PNW summer-average PM2.5 to wildfire smoke. 
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Changes in air quality from wildfire smoke can have a significant impact on public health. 

Recent work has projected that by the end of the 21st century we may expect a doubling in 

premature deaths attributable to wildfire smoke in the US (Ford et al., 2018). In the future, we 

hope to perform a health impact assessment on our observation-based estimates of fire-specific 

PM2.5 over the past decade. This will allow us to investigate if we can already observe these 

projected changes in the public health burden in the western US due to changes in wildfire 

smoke.  

 

The second question we aimed to address in this work asked, “Can we improve blended smoke-

exposure estimates with the addition of user-generated information, and how do these blended 

exposure models perform across the entire western US?”. In response to this question, we 

developed two blended smoke-exposure models for the western US. The first model included: 

kriged surface observations, WRF-Chem simulations, and MODIS AOD; the second model 

included the previously mentioned input datasets as well as Facebook data. Overall, the blended 

smoke-exposure models perform well across most of the western US with an R
2
 = 0.66, 

evaluated against surface observations. However, there is little difference in the performance of 

the blended exposure model with the addition of the Facebook data due to the strong correlation 

of the Facebook and kriged-surface-monitor data (R
2
 = 0.43).   

 

We acknowledge the performance of the individual datasets used in our blended model may 

differ by region in the US. Here we focus on the western US, which has historically been 

fractionally more impacted by wildfire smoke. However, large wildfires impacted the 

southeastern US in fall 2016, and the region is regularly impacted by smoke from prescribed 
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fires (Brey et al., exp2018). A recent future projection estimates that the southeastern US could 

be increasingly prone to wildfires over the next century (Ford et al., 2018) and there has already 

been research investigating the health impact of wildfire smoke using fires in the southeastern 

US (Rappold et al., 2011).  

 

We believe the performance of smoke-exposure datasets may differ between the western and 

southeastern US. Examples of potential impacts on each dataset include: 1) Surface monitors: In 

the western US, where surface monitors are more sparse, an interpolation between monitors may 

have greater uncertainty than a similar interpolation in the SE US, where more monitors would 

feed the interpolation. 2) Satellite-derived AOD: Despite noted discrepancies between surface 

measurements and AOD in summer in the SE US, (e.g. Ford and Heald, 2013), MODIS AOD 

performance and AOD correlations with PM2.5 are generally higher in the SE US compared to 

other US regions due to a more-spatially-consistent dark surface (Li et al., 2015; Sayer et al., 

2014; Zhang et al., 2009). 3) CTMs: CTMs can have difficulty with the flow of smoke through 

complex topography in the western US and the greater variability of smoke injection heights in 

the western US [Val Martin et al., 2010]. These are just a few examples of factors that differ 

between the western and southeastern US, which may impact the performance of smoke 

estimation tools. In the future, we intend to investigate how these datasets (without the Facebook 

dataset) may perform across these two fire-impacted regions and determine the best tool for 

smoke-exposure estimates in each region.  
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APPENDIX 
 

 

 

Alternative Statistical Approach for GEOS-Chem and Monitor-HMS Estimates of Trends 

 

For the alternative statistical approach, we follow a similar methodology outlined in the main 

text with the exception of the linear-least squares regression and associated significance test. 

Here we estimate slopes using the Theil-Sen estimator (Theil, 1950), which calculates a linear 

least squares regression between each possible pair of points in the dataset (here, each available 

year) and takes the median of the resulting slopes. We use Kendall’s tau to estimate the statistical 

significance of the correlation between years and concentrations at a 95% confidence level, with 

a null hypothesis of independence. The Theil-Sen estimator and Kendall’s tau have been used 

recently in air quality trend studies (Hand et al., 2011; Malm et al., 2017) as they are less 

sensitive to outliers. We apply this alternative statistical approach to the datasets shown in 

Figures 1 and 2 of the main text. Results are presented in Figures 14 and 15. The two methods 

result in similar slopes for each dataset across the domain.  
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Figure 14 : Thiel slopes of seasonal-mean PM2.5 at EPA AQS sites from 2006-2016. Sites with 

significant correlations at the 95% confidence level according to Kendall’s tau are outlined in 

black; sites with insignificant correlations are outlined in gray. Dashed line shown at 100
o
 W. 
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Figure 15: Thiel slopes of summer-mean (JAS) total PM2.5, non-smoke PM2.5, and smoke PM2.5 

from 2006-2016 for the monitor-HMS (panels a, b, and c) and GEOS-Chem (panels d, e, and f) 

methods. Locations with significant correlations at the 95% confidence level according to 

Kendall’s tau are dotted.  
 


